
Decision Making and Classification for Time Series Data

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Qiwei Yang, B.S.

Graduate Program in Department of Computer Science and Engineering

The Ohio State University

2022

Dissertation Committee:

Rajiv Ramnath, Advisor

Theodore Allen, Co-Advisor

Ping Zhang

© Copyright by

Qiwei Yang

2022

Abstract

With the continuous increase of time series data, more and more research is focused on

using these data to improve people’s lives. On the one hand, the Markov Decision Process

(MDP) is used widely in decision-making. An agent can decide the best action based on its

current state. When the agent is applied to time series data, the model will help people make

more informed decisions. However, state identification, which is very important in obtaining

an optimal decision, has received less attention. On the other hand, with the development of

deep learning, identifying the category of a time series has become more and more precise.

As a result, the recognition of complex time series sequences has become the hub of public

attention. In this dissertation, we focus on developing an automatic state selection using

MDP and investigate the application of deep learning in recognizing time series data.

We propose a method that combines decision-tree modeling and MDP to permit auto-

matic state identification in a way that offers desirable trade-offs between simplicity and

Markovian behavior. We first create a simplified definition of the host state, which becomes

the response measure in our decision-tree model. Then, we fit the model in a way that

weighs accuracy and interpretability. The leaves of the resulting decision-tree model become

the system states. This follows, intuitively, because these are the groupings needed to predict

(approximately) the system evolution. Then, we generate and apply an MDP control policy.

Our motivating example is cyber vulnerability maintenance. Using the proposed methods,

ii

we predict that a Midwest university could save more than four million dollars compared to

the current policy.

Prechtl’s general movements assessment (GMA) allows visual recognition of movement

patterns in infants that, when abnormal (cramped synchronized, or CS), have very high

specificity in predicting later neuromotor disorders. However, training requirements and

reliability problems have hindered the universal adoption of the GMA in the newborn period.

We used a two-step approach to design a clinically feasible and accurate CS GMA detector

to address this challenge. First, we recorded 300 hospitalized infants moving on a pressure

sensor mat and standard video. Masked observers with advanced GMA training classified

and timed each movement and their overall impression of the pattern on the videos. The

sensor mat allowed data collection with time, spatial, and pressure coordinates. Second,

sensor data were treated as time series imaging data. Each time frame was treated as

a single image, and features were extracted using transfer learning techniques based on

image feature extraction frameworks. Feature sequences were passed through deep-learning

sequential-data prediction models.

iii

This is dedicated to my beloved grandfathers.

You will always be remembered.

iv

Acknowledgments

I would like to express the sincerest appreciation to my advisors, Rajiv Ramnath and

Theodore Allen, for their insightful, encouraging, and constant help in both my research and

my life. I also wish to say thank you to my committee member, Ping Zhang, for his time,

guidance, and goodwill. Although I have had a tough and unpredictable time in the past

few years, I want to thank all the people I ever talked and listened to. You made my days

brighter and better.

v

Vita

2014 . B.S. Automation,
Tianjin University

2014 - present . Graduate Research Associate,
Computer Science and Engineering,
The Ohio State University

Publications

Research Publications

Patterson, Emily S., C. J. Hansen, Theodore T. Allen, Qiwei Yang, and Susan D. Moffatt-
Bruce “Predicting mortality with applied machine learning: Can we get there?” In
Proceedings of the International Symposium on Human Factors and Ergonomics in Health
Care, vol. 8, no. 1, pp. 115-119. Sage CA: Los Angeles, CA: SAGE Publications, 2019

Yang, Qiwei, Theodore Allen, Gagan Agrawal, Rajiv Ramnath “Combining Markov
Decision Processes with Decision Trees For Semi-Automatic State Identification Applied
to Cyber Maintenance for Business Saving.” The Machine Learning for Consumers and
Markets Workshop at Knowledge Discovery and Data Mining (MLCM at KDD), 2021

Yang, Qiwei, Theodore Allen, Ping Zhang, Rajiv Ramnath “An Automated Cost Saving Tool
for Detection of Infants with Cramped Synchronized General Movements Combining Sensor
Fabrictechnology, Deep Learning and A Pragmatic Interface.” The Machine Learning for
Consumers and Markets Workshop at Knowledge Discovery and Data Mining (MLCM at
KDD), 2021

Fields of Study

Major Field: Department of Computer Science and Engineering

vi

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1 Time Series . 1
1.2 Time Series Analysis and Forecasting 1
1.3 Automatic Definitions of System States 2
1.4 Future Work . 3

2. Semi-Automatic State Identification for Markov Decision Process 5

2.1 Introduction . 5
2.2 Background . 8

2.2.1 Cyber Vulnerability Dataset and Policies 8
2.2.2 MDPs . 10
2.2.3 Decision Trees . 13

2.3 Methods . 14
2.4 Numerical Example . 15
2.5 Case Study Example: Cyber Vulnerability Maintenance 17

2.5.1 Fitting the Tree Model and Determining States 19
2.5.2 Applying MDP: The Estimated Transition Matrices 23

vii

2.5.3 Applying MDP: Expected Reward Estimation 25
2.5.4 Implementation Details . 27
2.5.5 Comparing Policies Using Simulation 27

2.6 Conclusions . 30

3. Deep Learning for Cramped Synchronous Infant Classification 31

3.1 Introduction . 31
3.2 Related Work . 34

3.2.1 The Prechtl Method and Cramped Synchronous Movements . . . 35
3.2.2 Overview of Deep Learning for Health Applications 36
3.2.3 Convolutional Neural Networks 36
3.2.4 Transfer Learning . 37
3.2.5 Recurrent Neural Networks Including Long Short-Term Memory 38
3.2.6 Training Methods . 39

3.3 Materials and Method . 40
3.3.1 Ethics statement . 40
3.3.2 Description of the data used . 40
3.3.3 Method . 41

3.4 Experiments . 45
3.4.1 Model training and testing setup 45
3.4.2 Performance measurement metrics 46
3.4.3 Results . 47

3.5 Discussion . 52

4. Conclusions and Future Work . 55

4.1 Conclusions . 55
4.2 Future Work . 56

4.2.1 Future Work Derived from Semi-Automatic State Identification . 56
4.2.2 Future Work Derived from Deep Learning for cramped synchro-

nized infant classification . 56
4.2.3 Long Term Future Work . 57

Bibliography . 59

viii

List of Tables

Table Page

2.1 Four states . 9

2.2 The co-variate structure relating to true states for the numerical example . . 15

2.3 Simulated data for the numerical example include true and "*" approximated
state . 16

2.4 The numerical example decision tree model diagnostics 16

2.5 The description of 10 features of the input of a decision tree 18

2.6 The description of five prediction labels of a decision tree 19

2.7 Prediction results of a decision tree . 19

2.8 Average usability score from a large number of students 22

2.9 The value of (x1,x2,x3) . 22

2.10 Recall and precision rate of severity 4 and 5 23

2.11 Example of state transformation count matrix from Month 1 to Month 2 . . 24

2.12 Example of state transformation count matrix from Month 2 to Month 3 . . 24

3.1 The average area under the curve-receiver operating characteristics of the
presented method . 49

3.2 The average F1 score of the presented method 49

3.3 The average recall(sensitivity) of the presented method 49

ix

List of Figures

Figure Page

2.1 The decision tree model showing the states as leaves for the numerical example 17

2.2 Six groups of hosts divided by the operating system, age of worst vulnerability 28

2.3 Six groups of hosts divided by the operating system, average age vulnerabilities 28

2.4 Nine groups of hosts divided by the operating system, age of worst vulnera-
bility (AWV), average age vulnerabilities (AAV). 29

2.5 The cost savings of four proposed models compared to MDP only model,
$0 refers to cost saving of MDP only model 30

3.1 Step-wise approach to automatic infant classification 34

3.2 Visualization of two frames pressure data for a relatively large infant Note:
The pressure plate is a 32 × 32 two-dimensional pressure mapping. For the
pressure plate, the value of every sensing point is essentially the voltage
potential measurement that is related to the pressure. The bigger the black
circle, the higher the pressure value for the sensor. 35

3.3 Two additional individuals of different weights Note:
The infants are put on pressure sensor plates. The pressure plate is a 32 ×
32 two-dimensional pressure mappings. For the pressure plate, the value of
every sensing point is essentially the voltage potential measurement that is
related to the pressure. The bigger the black circle, the higher the pressure
value for the sensor. 41

3.4 The proposed neural network architecture for classifying a single infant . . 44

3.5 The average area under the curve-receiver operating characteristics of the
presented methods . 50

x

3.6 The average F1 score of the presented methods 51

3.7 The average recall of the presented methods 51

xi

Chapter 1: Introduction

1.1 Time Series

A time series is a set of observations x, each one being recorded at a specific time t. A

discrete-time time series is one in which the set of times, T0, at which observations are made

is a discrete set, as is the case, for example, when observations are made at fixed intervals.

Continuous-time time series are obtained when observations are recorded continuously over

some time intervals, e.g. when T0 = [0,1]. [7]

Time series are used in various fields such as mathematical finance, manufacturing, event

data (e.g., clickstreams and application events), IoT data, and generally in any domain of

applied science and engineering that involves temporal measurements. In addition, time

series database management systems represent the fastest-growing segment in the database

industry, testifying the growing need for time series forecasting in the industry.

1.2 Time Series Analysis and Forecasting

Time series analysis extracts meaningful statistics and other dataset characteristics to

understand it. Time series analysis can improve predictions of a future value, but this is

not necessarily the study’s primary goal. In practice, a suitable model is fitted to a given

time series, and (in the case of supervised learning) the corresponding parameters are

1

estimated using the known data values. The time series analysis process comprises methods

that attempt to understand the nature of the series and is often helpful for forecasting and

simulation. This field of study seeks to understand the underlying factors that govern the

time series.

Time series forecasting involves taking models to fit historical data (the training set) and

predicting future observations (the test set). Past observations are collected and analyzed to

develop a suitable mathematical model that captures the underlying data-generating process

for the series. Then, the future events are predicted using the model. This approach is

beneficial when a satisfactory explanatory model is lacking. Making predictions is known

as extrapolation in the classical statistical handling of time series data. More modern fields

focus on the topic and refer to it as time series forecasting. The accuracy of a time series

forecasting model is determined by its future prediction performance. During the past

several decades, researchers have focused on developing and improving suitable time series

forecasting models. This often has been at the expense of cogent explanations for why a

specific prediction was made, confidence intervals, and an even better understanding of the

underlying causes behind the problem.

1.3 Automatic Definitions of System States

Automatic definitions of system states in time series modeling are essential. One concern

is whether any given number and description of states is enough to capture the system’s

behavior adequately. Our key idea is to develop a preliminary simplified number of state-like

measurable conditions. The conditions could be a subset of the system states. The subset

better describes conditions and better represents the homogeneity of each state. Then, a

tree model is applied to predict these states from previously available information. By

2

accurately predicting important future details, the tree’s leaves create natural groups with

similar evolution. Lastly, these states are regarded as the Markov Decision Process (MDP)

states. The proposed method predicts possible economic benefits using time series data from

a major Midwest university.

This thesis also examines methods to identify system states precisely based on complex

medical time-series sensor data. To address analytical challenges, we propose applying a

well-studied deep learning technique: combining the first step of feature extraction followed

by the second step of classification, with comparisons of several possible methods for each

step to determine the optimal methodology. Finally, we convert and validate the optimal

deep learning methodology with a user-friendly platform and interface; the goal is to produce

easily readable results in a clinical setting in less than one hour, a time usually acceptable

for neuroimaging or complex laboratory results.

1.4 Future Work

We plan to investigate several problems derived from our current work as future research.

First, MDPs can be used to understand many dynamic systems, but before they can be

applied, the processes that govern the system must be Markovian. We will also apply our

method to more datasets to empirically evaluate our approach for other types of problems.

Next, while conducting experiments, we found that hyperparameter tuning is essential

for a deep-learning model’s performance. Therefore, we plan to tune the hyperparameter

and obtain a more reliable performance automatically.

We will continue to focus on time series data-related problems for long-term future work,

especially classification. Based on our experience with the MDP and deep learning, we

propose to apply deep learning and deep reinforcement learning in cybersecurity and health

3

time series data. One exciting project is recognizing suspicious patterns of login events from

a Midwest university. The revision of attention-based deep-learning networks is likely to

find and make predictions about suspicious patterns.

4

Chapter 2: Semi-Automatic State Identification for Markov Decision

Process

2.1 Introduction

Markov Decision Process (MDP) methods and concepts are used and studied widely

[8, 31, 60]. The core concepts and ideas of MDP were originally published by Bellman [6],

and Howard [36]. Applications include routing vehicles, scheduling hospitals, and searching

for submarines to design maintenance policies for economic gains. Many researchers have

studied issues related to identifying system states [48, 74]. Concerns have been raised as

to whether any given number and description of states is enough such that the state is a

sufficient statistic needed to describe future evolution.

Many past approaches to state identification have included "extra states" and worked to

reduce them, i.e., automatically, they involved "reducibility" [23, 66]. Methods that could

inform automatic state identification have been devised. For example, Ferns et al. [25]

provided distance measures between states. Presumably, if measured distances are too

small, states could be reduced. Also, Hopp [35] identified relatively homogeneous periods

in nonhomogeneous processes. This could inform state identification. Still, little (if any)

attention has been given to identifying system states (approximately) based on data analysis,

which is our objective.

5

Recent work on reinforcement learning has confidently assumed that it is "easy" to

identify states automatically such that the system is Markovian, i.e., the state is a sufficient

statistic [29]. These methods have identified the states automatically and estimated transition

probabilities without the inclusion of human intervention necessarily at all. The reinforce-

ment literature has attempted to learn transition probability and states simultaneously while

assuming the system is Markovian (even not knowing what the states are).

Here, we focus on problems for which interpretability and roles for human decision-

makers are essential. Further, we assume that the number of states could be quite large, such

that the past methods of reducibility or manual identification are inadequate. At the same

time, the amount of data is somewhat small in the sense that, with more than 10 states and

10 actions, we likely do not have large numbers of observed transitions to estimate all the

needed probabilities and expected rewards.

Our primary objective is to develop a data-driven approach for identifying states that are

(approximately) sufficient statistics for predicting behavior. We do this using realistically

obtainable amounts of data and addressing the huge number of possible states that are

combinations of feature-level settings.

Our key idea is to develop a preliminary simplified number of state-like measurable

conditions. This could be a subset of the system states. The subset helps better describe the

homogeneity of each state. Then, a tree model is applied to predict crucial future information

from previously available data. By predicting well, the leaves of the tree create natural

groups that have similar evolution. These states are then regarded as the states in MDP.

Tree models offer an intuitive method for forecasting because branches are often easily

comprehended by decision-makers. Also, trees may provide advantages in addressing

unbalanced data [49]. Our approach is based on the following idea: If a tree model is used

6

to predict key aspects of future activity, then the elements in the leaves have the same future

paths. Therefore, these leaves can be used to define system states. The elements in these

leaf sets are predicted to have the same or similar evolution. This approach is likely most

appropriate for systems with sparse transition matrices in which states derive only from a

small number of other states.

Our motivating example relates to the maintenance of computer hosts, which can be

laptops, cell phones, personal computers, printers, exercise machines, or other devices. This

example is of great economic and strategic importance [16, 67]. Like people, hosts can exist

in large numbers of vulnerable states, and any small number of states is an approximation.

For example, with 7,000 or more active vulnerabilities, one host might have vulnerabilities

3, 5, 22, and 6,789. Further, this host might operate in a specific environmental condition

relating to the placement of firewalls and incentives for hackers. We cannot confidently

assert that the system has any small number of states and that it is Markovian. Moreover,

we cannot prove easily with data that the system is not Markovian unless we use a small

number of states.

A reasonable approach that we pursue is to approximate the system by a small number

of states, e.g., whether the worst vulnerability on the host is critical or whether the host is

compromised. Then, we can find the attribute combinations that predict these preliminary

state values and find a reasonable set of predictive states from the leaves of a tree.

Surprisingly, more than 90% of actual attacks exploit known vulnerabilities where

technologies that could have prevented the attack were readily available but not applied

[18, 47]. Therefore, a significant challenge is the generation of the right policies and

incentives for the timely application of maintenance actions.

7

One small set of system states is given in a paper by Afful-Dadzie, and Allen [2]. In that

paper, a method is proposed based on MDP for cyber vulnerability management with five

states relating to the worst vulnerability or incidence of known compromise related to the

host. This previous work is not associated with any guarantee (or even likelihood) that the

system is Markovian in these states. An objective here is to advance this work to create a

more significant number of states such that the approximation of Markovian behavior is

much more likely to apply. Further, a relatively nuanced and economically beneficial control

policy is enabled with more states.

The remainder of this chapter is organized as follows. Section 2 describes the background

for the proposed methods that are described in Section 3. Section 4 illustrates the proposed

methods and predicts possible economic benefits using a major Midwest university data.

Section 5 discusses a cyber vulnerability maintenance example. Finally, section 6 offers

conclusions and suggests topics for future research.

2.2 Background

This section reviews cyber vulnerability maintenance problems, our case study example

data, MDPs, and decision tree models.

2.2.1 Cyber Vulnerability Dataset and Policies

Our full dataset includes all computers/devices, or hosts scanned over 22 months at the

Ohio State University. Vulnerabilities were detected through a monthly scan using Nessus

software from Tenable Security. According to surveys done by sectools.org, Nessus is

the world’s most popular vulnerability scanner. Because of the security of hosts at OSU,

we cannot provide the dataset either for educational use or industrial use. Each row of

8

data represents a vulnerability of a host, and each column of data is a feature value of a

vulnerability. Each host can have multiple vulnerabilities.

Nessus uses the so-called "common vulnerability scoring system" (CVSS) in [52], which

provides values between 0.0 and 10.0 for all vulnerabilities present on that host. In the

Nessus documentation, vulnerabilities are also rated by severity into four states. The four

states are shown in Table 2.1.

Table 2.1: Four states

State 1 0.0 to 3.9 are "low severity"
State 2 4.0 to 6.9 are "medium severity"
State 3 7.0 to 9.9 are "high severity"
State 4 10 is "critical severity"

As mentioned previously, in Afful-Dadzie and Allen [2] a host’s state is characterized

by the highest level of all vulnerabilities present on it. For example, if host 1 in month 3

had one vulnerability with CVSS value 1.2 and another with CVSS value 5.0, it is modeled

as being in State 2, i.e., "medium severity," because its highest CVSS is 5.0. State 5 is

also included to describe hosts for which known successful cyber attacks are ongoing. The

related information on State 5 was not generated by Nessus reports and needed to be filled

in using administrator notes.

IT staff take action to patch or remediate vulnerabilities. Patching might include updating

the software to the current version without the bug, and remediation might include putting

the host behind an additional firewall or otherwise restricting access. In the current system,

Action 1 and Action 2 are the only types of actions. The current policy is simple. If hosts

are in State 1 or 2, the IT staff will take Action 1. And if hosts are in State 3, 4, or 5, IT staff

9

would take Action 2. In general, having additional action options increases the net present

value of your system. Therefore, we introduce two new actions (Action 3 and 4) as follows:

• Action 1: Automatic patching only is applied, and the system administrator took no

action

• Action 2: Manual patching is applied. A checklist of evaluations and patching is

applied manually by the system administrator, often (but not always) resulting in the

elimination of vulnerabilities. In many cases, there is no patch, and risks are accepted.

• Action 3: Manual patching is applied on all top two levels of vulnerabilities. A

checklist of evaluations and patching is applied manually by the system administrator,

always eliminating the selected vulnerabilities. In many cases, there is no patch, and

drastic action, such as uninstalling software, is taken.

• Action 4: Replace with a new host.

2.2.2 MDPs

Cyber vulnerabilities may appear randomly on a system host, potentially shifting its

state. The system administrator has an available set of actions that can be taken to patch

these vulnerabilities; these actions also may shift the host state. Cyber system properties

of randomness in state transitions, finite numbers of actions, and monthly decision periods

suggest a discrete-time infinite-horizon MDP problem formulation [6, 36].

MDPs are methods for the control of stochastic systems to maximize the expected

discounted reward [30] (net present value). Generally, MDPs recommend optimal actions

for every combination of decision period and system state, taking into account action costs

and expected rewards. In our notation, S is a finite set of states, A is a finite set of actions,

10

p is a tensor of state transition probabilities for different actions, r is a tensor of expected

rewards for different transitions and actions. The scalar, V , is the value of a policy, and V ∗

is the value of the optimal policy. The random state of the system in period t is Yt . The

parameter, γ , is a discount factor ranging from 0 to 1, which reflects the fact that future gains

are generally less important than current rewards. The mathematical expression of an MDP

is as the following tuple:

S,A, p,r,γ (2.1)

The number of applications of MDPs is large. Alaa et al. [21] use an MDP model to deter-

mine a replacement policy for components for which degradation processes are monitored

using dedicated sensors. Amari et al. [5] use an MDP to generate optimal cost-effective

maintenance policies based on the revealed condition of an inspected machine for a condition-

based model. Byon et al. [9] generate optimal preventive maintenance policies for wind

turbines operated under stochastic conditions using partially observable MDPs. Durango

et al. [19] use an MDP to determine optimal maintenance and repair policies for facilities

based on their deterioration rate. Chan et al. [11] described the key considerations and

concerns facing electric utilities related to operation and maintenance budgeting, planned

and unplanned outages, and explained the differences between preventive maintenance (PM)

vs predictive maintenance (PdM). Unplanned outage activities are also considered by Sim

and Endrenyi [63], while Zheng et al. [78] consider a two-state Markov repairable system

to determine product availability to assess the reliability of a single object or system; the

states utilized by the authors are "operating" and "failed". Chiang and Yuan [12] expand

the maintenance decision model to a multistate Markov repairable system and Maillart and

Pollock [51] explore condition monitors allocated based on PM value (cost minimization).

A finite time horizon partially observable MDP is used by Ivy and Pollock [39] to model

11

a system with monitoring capabilities. Maillart [50] utilizes configuration management

data to observe parameters over the lifetime of an object or system to assess the degree

of deterioration that can be used to establish PdM policies. Oguchi et al. [55] construct a

database with lifespan data for existing electrical and electronic equipment.

Our approach branches from the MDP application in Afful-Dadzie et al. [2]. That article

proposes a method based on MDP for the generation and graphical evaluation of relevant

maintenance policies for cases with limited data availability. The method can generate

specific guidance and cost predictions for the real-world cyber vulnerability data set.

The expected cost minimization (standard MDP) is over each policy parameter for each

period written,

(x1, ...,xH−1). (2.2)

The problem formulation is then:

V ∗(Y1, p,r,γ) = Minimize(x1,...,xH−1)V (x1, ...,xH−1,Y1, p,r,γ) (2.3)

subject to:

V (x1, ...,xH−1,Y1, p,r,γ) = EY1,...,YH [
H−1

∑
t=1

γ
t−1rat |xt

Yt ,Yt+1,θ
+ γ

H−1r0
YH
] (2.4)

Yt |Yt−1,at−1, pat−1 ∼ Multinomial[RowYt−1(P
at−1)]. (2.5)

Several approaches can be utilized for solving MDP formulations. The simple approach that

we apply is called value iteration. This approach derives the actions for each state in each

period using the recursion:

12

V ∗
t (i) = mina[

N

∑
j=1

pa
i, j(r

a
i, j,θ + γV ∗

t−1(j))] ∀i = 1, ...,N. (2.6)

2.2.3 Decision Trees

A decision tree is a model with the structure of a tree-like graph. The leaves at the bottom

are associated with either categories for classification problems or values for continuous

output "regression" problems [17]. Decision trees are, therefore, a general-purpose modeling

method that is loosely associated with decision problems [59]. Decision trees are considered

to offer desirable levels of interpretability. For example, if you are more than 50.0 years

old and have systolic blood pressure greater than 90.0, you are at high risk of heart failure.

These clear cutoffs based on simple variables are intuitive.

Decision trees can be constructed in many ways [53]. One common approach is based on

entropy and gain objectives and picking the variable and split to maximize, at each step, the

gain. The information gain is the decrease in entropy after a dataset is split on an attribute.

Therefore, in this approach, the approximate most homogeneous branches are derived.

Entropy using the frequency table of one attribute:

Entropy(T) =
c

∑
i=1

−pilog2 pi. (2.7)

Entropy using the frequency table of all attributes:

Entropy(T,X) = ∑
c∈X

P(c)E(c) (2.8)

Information Gain:

Gain(T,X) = Entropy(T)−Entropy(T,X) (2.9)

The algorithm is run recursively on the non-leaf branches until all data are classified.

Here we will show the first round calculation. The first step is to calculate the entropy of

13

the target. Next, we choose the feature with the most significant information gain as the

decision node. A branch with the entropy of 0 is a leaf node. It does not require further

splitting. A branch with the entropy of more than 0 requires further splitting.

2.3 Methods

In this section, a method is proposed for semi-automatic state identification in Markov

chain modeling and MDPs.

1. Label each period and system combination in a data set with a simplified set of

states or measurable variables based on expert opinion. The expert-tagged states may

indicate approximate sufficiency for transitions or key differences in rewards.

2. Fit a decision tree model to predict the single-period-ahead tagged state as a function

of co-variate values. Here, we consider a constrained variable selection-based tree-

modeling method for our case study example. Then, we consider two options for the

following states: (i) the leaves of the tree are assumed to be the states of the system,

and (ii) the leaves of the tree combined with the original labels are the states. The

second option is conservative and likely only appropriate for cases with sufficient data

availability, as in our motivating cyber maintenance case study.

3. Apply the developed state descriptions to estimate transition probabilities and expected

rewards. Then, implement the MDP control scheme.

The intuitive justification of this method is that the state should be a sufficient statistic

to predict system evolution. If the system is fully or near fully characterized by the sim-

plified state, then the tree leaves are sufficient to predict system evolution. By combining

14

constrained variable selection in step 2, the decision-maker can weigh the concerns of

interpretability and sufficiency for the states directly.

2.4 Numerical Example

In this section, we consider an example for which the true states, transition probabilities,

and co-variate relationships are known. The table below shows the four states and transition

probabilities for the numerical example. The table shows a somewhat sparse matrix in which

the system evolves toward State 4 and comes back with a high probability, perhaps because

of remedial action.

Table 2.2 shows the co-variate combinations associated with the true states. If the true

states were as shown on the left-hand side, then one of the co-variate combinations is given.

Therefore, the state is unknown, but the co-variate values are known. The table also shows

the first few rows of simulated true transitions.

Table 2.2: The co-variate structure relating to true states for the numerical example

State #Sets v1 v2 v1 v2 v1 v2
1 1 1 1
2 2 1 2 1 3
3 3 2 1 2 2 2 3
4 3 3 1 3 2 3 3

Table 2.3 shows the simplified state that is the same as the true states with States 1 and

2 grouped. The table shows the simulated co-variate values following the Table 2.3. The

series also shows the one-step-ahead series.

15

Table 2.3: Simulated data for the numerical example include true and "*" approximated state

Run Chain V1 V2 *State 1+
1 1 1 1 2 2
2 1 1 1 2 2
3 1 1 1 2 2
4 2 1 3 2 2
5 2 1 2 2 2
6 2 1 2 2 2
7 2 1 3 2 3
8 3 2 2 3 3
9 3 2 2 3 3
10 3 2 3 3 3

Table 2.4: The numerical example decision tree model diagnostics

Measure Training Definition
Entropy RSquare 0.3800 1-Loglike(model)/Loglike(0)
Gen. RSquare 0.6325 (1− (L(0)/L(model))2/n)/(1−L(0)2/n)
Mean-Log p 0.6687 Σ2 −Log(ρ[j])/n
RMSE 0.4948 Σ2(y[j]−ρ[j])2)/n
Mean Abs. Dev. 0.4206 Σ2|y[j]−ρ[j]|/n
Misclass. Rate 0.3266 Σ2(ρ[j] ̸= ρMax)/n

The co-variate information and a tree model are then applied to predict the one-step-

ahead series as shown in Figure 2.1. The leaves in the figure correspond directly to the

structure of co-variate values in the table, indicating that the proposed procedure can

successfully identify a missing state.

16

Figure 2.1: The decision tree model showing the states as leaves for the numerical example

In the next section, we describe an application with real-world data in the field of cyber

vulnerability maintenance.

2.5 Case Study Example: Cyber Vulnerability Maintenance

Here we return to the cyber security case study introduced in Section 2, and describe the

application of the procedure in Section 3 to this case.

We use a 10-feature decision tree model to predict the worst severity of a host in the next

month. Table 2.5 and Table 2.6 show the 10 features and 5 labels description.

17

Table 2.5: The description of 10 features of the input of a decision tree

Features Description
Mean Service Name mean value of service

name of all
vulnerabilities of a host

Mean Protocol mean value of protocol
of all vulnerabilities
of a host

Mean Nessus Plugin Category mean value of Nessus
plugin category of all
vulnerabilities of a host

Mean Operating System mean value of operating
system of all
vulnerabilities of a host

Mean Host System Type mean value of host
system type of all
vulnerabilities of a host

Worst Port Number the worst value of
port number of a
host. The port number
is sorted by a report
"Top 100 Vulnerable
Ports".A port number
is closer to 0
is worse and a port
number is closer
to 1 is better

Age Worst Vulnerability the age of the worst
vulnerability of a host

Average Worst Vulnerabilities the average age of all
vulnerabilities of a host

Number Vulnerabilities the number of
vulnerabilities a host

18

Table 2.6: The description of five prediction labels of a decision tree

Labels Description
Label 1 the worst severity of a host is 1
Label 2 the worst severity of a host is 2
Label 3 the worst severity of a host is 3
Label 4 the worst severity of a host is 4
Label 5 the worst severity of a host is 5

The overall correctly classified instances of prediction results are almost 100%. The

precision and recall rate for each label is approximately 90%. Prediction results are described

in the Table 2.7. The high level of accuracy results shows that these features strongly

influence the state of hosts.

Table 2.7: Prediction results of a decision tree

Overall correctly classified rate 99.2%
Precision rate for label 1 99.8%
Precision rate for label 2 98.6%
Precision rate for label 3 83.0%
Precision rate for label 4 85.6%
Precision rate for label 5 90.2%
Recall rate for label 1 99.8%
Recall rate for label 2 98.6%
Recall rate for label 3 83.2%
Recall rate for label 4 83.4%
Recall rate for label 5 91.3%

2.5.1 Fitting the Tree Model and Determining States

In Step 1 of our method, we label each host for each month with the level of the worst

vulnerability on the host: low (1), medium (2), high (3), critical (4), and compromised (5).

19

This follows because the level of the worst vulnerability on a host relates to the standard

control scheme implemented in practice. Hosts with high or critical vulnerabilities are

subject to maintenance actions typically within one month. We include a severity level 5 for

hosts known to be compromised, which must be addressed immediately (of course).

In Step 2, we explore multiple models. In particular, we explore the 10 features in Table

2.5. By studying multiple models, we determine that decision trees can obtain near-perfect

accuracy (training set) with only three features. To determine "the most desirable" three

features for the model, we need to define what feature is "the best".

On the one hand, the best three features of the model need to achieve the best possible

prediction results. On the other hand, many features do not make sense to most people

because it is difficult to apply the features to cybersecurity problems. Therefore, our model

needs to achieve high accuracy while also making sense to people. This is a typical bi-

objective optimal problem. For a bi-objective optimization problem, if a single solution exists

that simultaneously optimizes each objective, that solution is the solution we want. However,

usually, we can only get Pareto optimal solutions, which satisfy constraint functions, but

cannot optimize both objectives. Here we apply the weighted-sum method to deal with

the problem. We use the sum recall rate of the decision tree when severity is equal to 4

and 5 to measure prediction results. We use the usability score to measure the degree of

understanding among people about features.

To assign values to the usability score, we interviewed (briefly and informally) a large

number of students from computer science and non-computer science majors. We asked

them to give a score to each feature based on how easily they understood it. Scores above 6

(Constant = 6) represent features with names and concepts that they understood well. Scores

20

below 6 represent features that were not easy to understand. The survey results are shown in

Table 2.8.

In our notation, x1, x2, x3 are the 3 features we select from 10 features. The function,

f1(x1,x2,x3), is the sum recall rate of the decision tree, when severity is equal to 4 and 5.

f1max is the maximum sum recall rate of all combination of 3 features, when the severity

is equal to 4 and 5. The function, f2(x1,x2,x3), is the sum of usability scores of x1,x2,x3.

f2max is the maximum sum of usability score of all combination of 3 features. The function,

f3(x1,x2,x3), is the sum precision rate of the decision tree, when severity is equal to 4

and 5. f3max is the maximum sum precision rate of all combinations of 3 features, when

severity is equal to 4 and 5. f4(x1,x2,x3) is the total accuracy of the decision tree. f4max

is the maximum total accuracy of the decision tree. F1(x1,x2,x3) is the normalized value

of f1(x1,x2,x3). F2(x1,x2,x3) is the normalized value of f2(x1,x2,x3). w1 is the weight of

F1(x1,x2,x3). w2 is the weight of F2(x1,x2,x3). E is the maximum normalized difference

we can accept between our model and the maximum value.

The model formulation for feature selection is:

Minimize F(x1,x2,x3) = w1 ∗F1(x1,x2,x3)+w2 ∗F2(x1,x2,x3)

F1(x1,x2,x3) =
(f1max− f1(x1,x2,x3))

f1max

F2(x1,x2,x3) =
(f2max− f2(x1,x2,x3))

f2max

E ≥ f3max− f3(x1,x2,x3)

f3max

E ≥ f4max− f4(x1,x2,x3)

f4max

(2.10)

21

Table 2.8: Average usability score from a large number of students

Features Average Scores
(Scale from 0 to 1)

Mean Service Name 5.46
Mean Protocol 4.78
Mean Resolution Status 8.14
Mean Nessus Plugin Category 2.24
Mean Operating System 9.46
Mean Host System Type 5.12
Worst Port Number 3.14
Age Worst Vulnerabilities 8.54
Average Age Vulnerabilities 8.44
Number Vulnerabilities 9.24

With some arbitrariness, we assign w1 = 0.4, w2 = 0.6, E = 10%. The minimum value of

the objective function is 0.0225. The three features are the age of the worst vulnerabilities,

the average age of all vulnerabilities, and the type of operating system. The overall accuracy

is 97.72%. The recall and precision rates are shown in the Table 2.10.

Table 2.9: The value of (x1,x2,x3)

F f1 f2
0.11146143 0.986 26.14
0.171713241 0.803 26.04
0.089381548 1.007 26.84
0.211010072 0.743 25.12
0.210835397 0.688 25.92
0.218430586 0.671 25.82
0.129912977 0.907 26.44
0.08183981 1.003 27.24
0.081187576 1.012 27.14
0.02246696 1.261 26.22

22

Table 2.10: Recall and precision rate of severity 4 and 5

Labels Recall Precision
Severity 5 with Critical Server 0.904 0.904
Severity 5 with Non-critical Server 0.794 0.813
Severity 4 with Critical Server 0.873 0.923
Severity 4 with Non-critical Server 0.758 0.868

Notice that, with a selected tree variable, the leaves are mostly noninteracting. For

example, hosts rarely change their operating systems. Therefore, and because we have a

large amount of data (540,000 or more records), we can define our states using a combination

of the leaves and the original five states. Also, in the final step of our method, we divide

our dataset into the nine groups corresponding to the tree leaves. Then, for each group

separately, an MDP is applied using the original five levels as described next.

2.5.2 Applying MDP: The Estimated Transition Matrices

We estimate the average probability matrix using transition counts for the 22 months for

each group and action. For example, suppose we have only three months of data (Month

1, Month 2, and Month 3), and only two states (State 1 and State 2) for each host in every

month. In addition, we will take two actions (Action 1 and Action 2) for each host. From

Month 1 to Month 2, one host stays in State 1; three hosts transfer from State 1 to State 2;

four hosts transfer from State 2 to State 1; two hosts stay in State 2. This example is shown

in Table 2.11.

23

Table 2.11: Example of state transformation count matrix from Month 1 to Month 2

State 1(Month 2) State 2(Month 2)
State 1(Month 1) 1 3
State 2(Month 1) 4 2

From Month 2 to Month 3, one host stays in State 1; four hosts transfer from State 1 to

State 2; five hosts transfer from State 2 to State 1; two hosts stay in state 2. This example is

shown in the Table 2.12.

Table 2.12: Example of state transformation count matrix from Month 2 to Month 3

State 1(Month 3) State 2(Month 3)
State 1(Month 2) 1 4
State 2(Month 2) 5 2

Therefore, from Month 1 to Month 3, the average state transformation probability

for staying in State 1 is (naively) estimated to be (1+1)
(1+1+3+4) = 0.222; the average state

transformation probability for transferring from State 1 to State 2 is estimated to be

(3+4)
(1+1+3+4) = 0.778; the average state transformation probability for transferring from State

2 to State 1 is estimated to (4+5)
(4+5+2+2) = 0.692; the average state transformation probability

for staying at State 2 is estimated to be (2+2)
(4+5+2+2) = 0.308.

Similar to the calculation process above, we get the average state transformation proba-

bility matrix of four actions and five states, for each of the nine groups’ data.

24

2.5.3 Applying MDP: Expected Reward Estimation

For each state, we have four actions to consider. Compared with other states, the action

costs for State 5 are different. State 5 means the host is compromised. We potentially lose

some data from that host, may spam others, and need to perform an expensive investigation.

The cost for a host in State 5 is mainly the investigation cost in our models Because other

costs are difficult to estimate. The exception is hosts with critical "S4" data. Therefore, the

cost for State 5 is classified by system type. Three types of systems are recognized: Normal,

S4 Data, and Mission Important. For all actions, we assume that the cost for a Normal

host in State 5 is $1,000. The cost for an S4 Data host in State 5 is $200,000, and the cost

for a Mission Important host is $5,000. These were estimated through conversations with

university staff.

For Action 1, we incur no labor costs because the action is automatic patching. The

costs for the other states (except State 5) are $10 for scanning and processing.

For Action 2, the costs are estimated using:

C = c∗N (2.11)

where C is the total cost (negative expected reward), c is the hourly labor cost, and N is the

average number of vulnerabilities of the top level on the hosts.

The hourly labor cost depends on the type of operating system. For a Windows server,

the cost is $43 per hour. For Linux, the cost is $34.5 per hour. For all other servers, the cost

and average is $27.5 per hour. Usually, Action 2 requires around one hour. The average

number of vulnerabilities depends on the specific data of the nine groups.

For Action 3, the expected total cost, C, is:

C = c∗N ∗10 (2.12)

25

where c is the hourly labor cost, N is the average number of vulnerabilities of the top level

on the hosts, and 10 relates to the expected number of hours needed.

We assume that the average time for technical staff to eliminate all the top 2 levels of

vulnerabilities is 10 hours.

For Action 4, approximately $1,000 is needed to replace a host, including labor cost and

machinery cost.

The next step is to calculate the average cost for each group of hosts. We compare the

cost of the current policy and the lowest cost of the new policy from the above groupings.

The expected average cost, C, for the current policy and new policy equals the weighted

average of the expected cost of each state. The average cost formula is:

C = ∑
0<i<6

wi ∗ ci (2.13)

where wi is the ratio of the number of hosts in state i to the number of hosts in all states

and ci is the expected cost of state i.

Next, we calculate the expected average cost for all hosts. The calculation process is

similar to the above. The expected average cost, C, for all hosts of both the current policy

and new policy equals the weighted average of the expected cost of each group of hosts:

C = ∑
0<i<4
0< j<4

wi j ∗ ci j (2.14)

where wi j is the ratio of the number of hosts in type j of group i to the number of all

hosts and ci j is the average expected cost of type j of group i

After deriving the expected average cost of all hosts, the expected savings, S, is:

S = (Cc −Cn)∗N (2.15)

26

where Cn is the average cost of all hosts for the new policy, Cc is the average cost of all

hosts for the current policy based on MDP only, and N is the total number of hosts.

2.5.4 Implementation Details

The MDP model was implemented using Visual Basic for application. The inputs to the

MDP program consisted of the average state transformation probability matrix and operating

system cost. This approach relates to people potentially using multiple hosts in the same

location over multiple years. The outputs are the cost of the current policy for each group of

hosts, the lowest cost, and corresponding actions of the new policy for each group of hosts.

2.5.5 Comparing Policies Using Simulation

The reason for dividing all hosts into groups is to save money through a more nuanced

approach i.e., instead of using the same policy for all types of hosts, tailoring is applied.

Next, we describe a simulation-based comparison of a blanket policy compared with separate

policies for each group.

For our proposed method, we derived nine groups from the leaves of the tree. For the

comparison, we also consider the results from simpler groupings based on a single feature,

two features, and three features. Then, the relevant groupings were:

• 1-feature-3-group model where we use only the operating system feature (OS Model)

which has three different values, therefore three different groups: Linux, Windows,

and Others.

• 2-feature-6-group model where we first use the operating system feature and age worst

vulnerability (AWV) feature (OS−AWV Model). In addition, we use the operating

system feature and average age vulnerability (AAV) feature (OS−AAV Model). The

27

structure of the OS−AWV Model decided by the decision tree is shown in Figure 2.2,

the structure of the OS−AAV Model is shown in Figure 2.3.

• 3-feature-9-group model where we use the operating system, average age vulnerability,

and age worst vulnerability features (OS−AAV −AWV Model). The structures are

shown in Figure 2.4.

Figure 2.2: Six groups of hosts divided by the operating system, age of worst vulnerability

Figure 2.3: Six groups of hosts divided by the operating system, average age vulnerabilities

Following the cost details and formulas in section 5.3, the performance comparison

for the expected cost savings is shown in Figure 2.5. From discussion with OSU IT, we

28

Figure 2.4: Nine groups of hosts divided by the operating system, age of worst vulnerability
(AWV), average age vulnerabilities (AAV).

identified 50,000 hosts in total. Using Cn as the average cost of all hosts for the new policy,

Cc as the average cost of all hosts for current policy, and N as the total number of hosts show

that $3.88 million could be saved with the nuanced the nine-group policy compared to the

blanket policy. Using only the three-group model (OS model) can save around $1 million

compared to the blanket policy. The cost saving of the OS-AAV model is slightly higher

than the OS-AWV model.

29

Figure 2.5: The cost savings of four proposed models compared to MDP only model, $0
refers to cost saving of MDP only model

Note: OS refers to three-group model with the operating system; OS-AAV refers to
six-group model with the operating system and average age vulnerability; OS-AWV refers

to the nine-group model with the operating system and age worst vulnerability;
OS-AAV-AWV refers to the nine-group model with the operating system, average age

vulnerability, and age worst vulnerability.

2.6 Conclusions

This paper has presented and evaluated a new method of combining decision trees

and MDP. The concern that the states lead to Markovian behavior is alleviated using tree

leaves as states. These are designed to offer sufficient information when used to predict

the critical state-related information selected by experts. We illustrated the application of

trees to recover the true states for a numerical example for which the states are assumed to

be known. We also explored real-world data and information to value the cost savings for

the different combinations relating to cyber security maintenance. Our simulation results

indicate a hypothetical savings of millions of dollars through a nuanced policy.

30

Chapter 3: Deep Learning for Cramped Synchronous Infant

Classification

3.1 Introduction

Neuromotor disorders such as cerebral palsy (CP) occur in 8% to 10% of preterm babies

and more frequently in those with brain trauma [22,54,56]. Guidelines for early detection of

CP recommend the use of assessments with the highest levels of evidence to detect CP below

the age of 5 months. One of these tools is Prechtl’s general movements assessment (GMA),

which when abnormal, has high specificity and sensitivity in high-risk populations in the

perinatal period [20, 26]. Screening with GMA can be performed before discharge from

the neonatal intensive care unit (NICU), where high-risk infants often receive care. Early

screening with GMA can help identify infants with the greatest need for close developmental

surveillance and early intervention in infancy.

The GMA is of particular interest as a screening tool in busy clinical settings because

highly-trained examiners can determine abnormal patterns visually in high-risk infants in a

matter of minutes. Prechtl’s GMA performed between 36 to 42 weeks corrected gestational

age (CGA) has high specificity in predicting neuromotor disorders when examiners have

received extensive training and certification in recognizing movement patterns. Practice and

recalibration of this recognition are essential. Abnormal GMA patterns with the highest

31

sensitivity (70%) and specificity (94%) for future neuromotor problems are classified as

cramped synchronized (CS) movements, and can be differentiated by the variability of

their timing, movement acceleration, topology, and amplitude. Therefore, we aimed to

design a technological solution that would allow automated, rapid, accurate, and noninvasive

characterization of CS GMA in the NICU, in a usual population of hospitalized infants.

Several challenges need to be addressed to achieve this goal.

First, we had to record GMAs in a large representative population of NICU infants

(rather than only high-risk infants) to address the value of the technology to clinical care.

Secondly, we had to design a system to convert a three-dimensional general movement into

pattern data, something the human eye does easily from two-dimensional videos. Thirdly,

an algorithm was required to classify infants as either CS or other based on short recordings

read by masked experts trained in the recognition of Prechtl’s GMA. Finally, the algorithm

needs to be reintroduced and validated in the NICU setting with a user-friendly interface

and rapid results to allow for clinical decision-making.

Previous attempts to classify infants were conducted by attaching multiple markers on

the limbs and body of infants or by using wearable accelerometers. Singh et al. [65]stud-

ied alternative machine learning techniques including Support Vector Machine, decision

trees, and combinations of dynamic Bayesian nets and random forests to classify cramped-

synchronized movements. Fan et al. [24] proposed an Erlang-Cox statistical technique

for recognizing gestures, using accelerations characteristics. Gao et al. [27] proposed a

Discriminative Pattern Discovery framework with a kernel-based algorithm to detect abnor-

mal movements in infants. Although conceptually excellent, none of these classifications

achieved clinically relevant quality, with cross validation-based accuracy estimates all less

32

than 90%. The quality of the data obtained from the accelerometers probably did not fully

translate the complexities of three-dimensional movements observed during GMA.

To solve this problem, we used a flat, flexible mat with a grid of sensors that measured

pressure changes in addition to spatial displacements during movements. We also solved the

problem of ease and generalizability to all NICU patients; the current system allows infants

to be evaluated with minimal disturbance in their beds and without attaching extraneous

sensors to them, by gently placing them onto the mats. To address analytical challenges, we

proposed the application of a well-studied deep learning technique: combining the first step

of feature extraction followed by a second step of classification, with comparisons of several

possible methods for each step to determine the optimal methodology. Finally, we converted

and validated the optimal deep learning methodology with a user-friendly platform and

interface; the goal was to produce easily readable results in s clinical setting under one hour,

a time usually acceptable for neuroimaging or complex laboratory results. Our step-wise

approach to the problem illustrated in Figure 3.1 was tested using a prospective observational

study in a large tertiary care NICU and incorporated into its clinical flow to ensure both

internal and external validity of our findings.

33

Figure 3.1: Step-wise approach to automatic infant classification

3.2 Related Work

Multiple methods are used for classifying infant neuromotor disorders. These include

trained medical professionals inspecting Magnetic Resonance Imaging (MRI) results and

the relatively low-cost method of Prechtl [20, 26]. In this section, we review a manual

inspection method, the Prechtl method, and selected alternative methods including statistical

and deep learning automatic classification approaches. These methods could, conceivably,

incorporate either accelerometer or pressure plate data. Here, we focus on pressure plate data

as indicated in Figure 3.2. The figure shows 1,026 pressure values indicated by the dot sizes.

In the upper panel, the infant is on its back with head, torso, and buttocks visible. In the

lower panel, the infant is slumped over, a pattern characteristic of the cramped synchronous

movement.

34

Figure 3.2: Visualization of two frames pressure data for a relatively large infant
Note: The pressure plate is a 32 × 32 two-dimensional pressure mapping. For the pressure
plate, the value of every sensing point is essentially the voltage potential measurement that
is related to the pressure. The bigger the black circle, the higher the pressure value for the

sensor.

3.2.1 The Prechtl Method and Cramped Synchronous Movements

The “Prechtl Method” is highly predictive of neuromotor disorders. The Prechtl method

is based on the fact that if an individual displays a specific pattern of limb activations called

35

a “cramped synchronous” (CS) movement, then the individual can reliably be classified as

having the associated neuromotor disorder [20, 26]. The CS movement pattern is simply the

simultaneous or near-simultaneous activation of the four limbs and the torso which may be

accompanied by a slumping of the body sideways. The lower panel of Figure 3.2 indicates

an individual slumping during a CS movement. The fact that observing one such movement

permits the accurate classification of the infant greatly simplifies the modeling challenge.

Still, the modeling method needs to detect the associated temporally localized phenomena

because CS movements may last only ten or fewer seconds.

3.2.2 Overview of Deep Learning for Health Applications

Deep learning techniques have recently been applied to a large number of clinical

applications that relate to patient risks [4, 40, 77]. Our application has two key attributes: (1)

our number of subjects is limited and (2) we use pressure data rather than videos. These

attributes motivated us to use a combination of convolutional neural networks, transfer

learning, and time series classification using long short-term memory modeling.

3.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep learning methods associated

with analyzing images [46]. CNNs are a type of artificial neural network in which each

neuron is connected to all neurons in the next layer. Some well-known CNNs for classifying

images include: Alexnet [44], ResNet101 [32], and VGGNet16 [4]. We consider these

CNN methods in our comparison. As seen in Figure 3.2, our pressure data appears as an

image. Yet, Singh et al. [65] are the first to explicitly transform pressures to images for CNN

analysis. However, the limited number of observations suggests that enriching the data with

a method called transfer learning can achieve improved accuracy.

36

3.2.4 Transfer Learning

Transfer learning methods take data from one problem and apply them to another

problem. This allows large datasets to enhance smaller datasets with many successful

clinical applications [61]. Singh et al. [65] use a particular CNN to enrich their pressure

plate images in a pre-step and then use the enriched images for classification. The widely

distributed Tensorflow package in python includes the Google Inception-v3 neural network

with the weights pre-fitted using a large image classification dataset [1]. Singh et al. resize

their pressure "images" to the dimensions 299 x 299 as required by Inception-v3. They

then input these images to the neural net with fixed weights and record the outputs of the

16th layer (out of 17). These outputs, termed "activations," are 2,048-dimensional vectors

for each input. Each output can then be interpreted as the descriptor for each frame in the

pressure sequence. We follow this approach to generate our enriched pressure images.

For all the transfer learning methods that we study, the data derived from the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC). We study several CNN alternative

methods and codes available as candidates for transfer learning in our comparison. These

CNN methods are also considered for classification in the second step of our procedure:

• Inception [73] is a widely used image recognition model proposed by researchers at

Google. The Inception deep convolutional architecture was first introduced in [72]

and called GoogLeNet or Inception-v1. inception-v1 won the ILSVRC 2014 [73].

Later, the Inception architecture was refined in various ways, first by the introduction

of batch normalization (Inception-v2) by Ioffe et al [38]. Also, the architecture was

improved by additional factorization ideas in the third iteration, which is referred

to as Inception-v3. [71] Inception-v3 became the first runner-up of ILSVRC 2015.

37

Inception-v3 is the method that we propose to generate enriched features to classify

infants because it performed the best in our comparison.

• AlexNet in 2012 significantly outperformed all the prior competitors and won the

ILSVRC by reducing the top-5 error from 26% to 15.3%. The neural network, which

has 60 million parameters and 650,000 neurons, consists of five convolutional layers,

some of which are followed by max-pooling layers, and three fully-connected layers

with a final 1,000-way softmax. [44]

• ResNet won the first place in the ILSVRC 2015 classification task [32]. Resnet was

developed to address the issue of decreasing accuracy as layers are added in other

CNN methods. The layers of ResNet were reformulated explicitly in relation to

differences or residuals from previous layer inputs. In our comparison, we apply

ResNet with 101 layers which are on the high end of those considered by the ResNet

inventors.

• VGGNet, proposed by the Visual Geometry Group, was the runner-up of the ILSVRC

2014 [4]. The main contribution of VGGNet is a thorough evaluation of networks of

increasing depth using an architecture with small (3 × 3) convolution filters, which

shows that a significant improvement on the prior-art configurations can be achieved

by pushing the depth to 16–19 weight layers [64]. In our comparison, we use VGGNet

with 16 layers following comments by the authors [4].

3.2.5 Recurrent Neural Networks Including Long Short-Term Memory

Recurrent neural network (RNN) is a type of neural network associated with time

sequences because each layer has inputs from a different time frame. Long short-term

38

memory (LSTM) is a special kind of RNN that is regarded increasingly as an effective and

scalable model time series classification [34]. LSTM models have been applied successfully

in a variety of modeling problems including health care [40, 69, 75]. Singh et al. [65] used

enriched images in a time sequence for their classification. However, they ignored the

temporal element because of the simple nature of identifying footsteps. Our CS movements

are characterized by particular time sequences such that we use LSTM methods for our

classification.

An RNN method in addition to LSTM used in our comparison is:

• Gated recurrent units (GRUs), were proposed by [13] to capture dependencies of

different time scales. GRUs have a different architecture within the nodes than LSTM

with some potential advantages [15]. Therefore, we include GRUs as a classification

method in our comparison.

In applying LSTM to image data, it is common to add "dropout" and associated dense

layers to the base layers to enhance performance [33, 68]. Dropout is a regularization

method where input and recurrent connections to LSTM units are excluded from activation

and weight updates in a probabilistic manner while training a network [33, 68]. The added

dropout layers are intended to prevent overfitting and to improve the performance. The fully

connected or "dense" layers around a dropout layer add flexibility to the model and can

further enhance performance. A final scaling called "flattening" is often needed to create

outputs with the proper dimensions.

3.2.6 Training Methods

Model parameters in deep learning are commonly divided into weights and hyperparam-

eters [40]. The hyperparameters are optimized heuristically using errors from the validation

39

set. Typically, the test set errors are zero because of the weight optimization. Even while

multiple optimization methods, e.g., stochastic gradient descent [57], gradient descent with

momentum [58], or Adam [43], achieve zero weights, some might better fit a problem as as-

sessed with validation and test data. In our work, we consider the common hyperparameters

for deep learning [40], including the optimization method, learning rate, rho, epsilon, and

decay.

3.3 Materials and Method

3.3.1 Ethics statement

Although our study was observational, it is registered with the U.S.A. National Institute

of Health in accordance with the policies and procedures of the Institutional Review Board

(IRB). Construction of our dataset and de-identification was approved by the Nationwide

Children’s Hospital IRB. All parents (both mothers and fathers) gave their written informed

consent on behalf of their infants. The Children’s Hospital IRB approved the study protocol

and the consent procedure. The babies were assigned numbers and all the data was de-

identified for analysis. The analysis team knew only, for a given infant number, whether CS

movements were observed.

3.3.2 Description of the data used

We observed 96 infants in the Natal Intensive Care Unit of Nationwide Children’s Hospi-

tal (Columbus, Ohio). Of the 96 infant participants, 12 were identified using MRI to exhibit

neuromotor disorders associated with CS movements. The remaining 84 infants did not

exhibit neuromotor disorders using MRI data and CS movements were not observed during

the two-minute evaluation. The data was divided into 66.7% training, 16.7% validation, and

16.7% testing.

40

Sensors under the infants recorded pressures (in Pascals) at 32 × 32 = 1,024 panel

locations. Figure 3.3 shows the visualization of two frames of infant pressure data for two

infants of different weights in which 32 frames of pressure data are recorded by each sensor

per second. The pressure values range from 0 to around 200.

Figure 3.3: Two additional individuals of different weights
Note: The infants are put on pressure sensor plates. The pressure plate is a 32 × 32

two-dimensional pressure mappings. For the pressure plate, the value of every sensing point
is essentially the voltage potential measurement that is related to the pressure. The bigger

the black circle, the higher the pressure value for the sensor.

3.3.3 Method

We describe methods in three parts: data transformation, feature extraction, and classifi-

cation. The outline of our network architecture is shown in Figure 3.4.

41

3.3.3.1 Data transformation

Transformation of the raw data from sensors constitutes the steps to convert the sensor

mode into the visual mode in the form of color images to facilitate transfer learning using

the established codes. First, we apply "zero padding" to our pressure sensor data. Zero

padding introduces new 0 values around the edges of the sensor data. It helps the sensor

data to match the 299 x 299-pixel image dimensions. Next, we transfer these values linearly

into a gray-scale color map, in which each pixel represents a sensing point, and the brighter

color corresponds to higher pressure. Finally, we assign the value of the single-channel

grayscale image separately to the red, green, and blue channels of a color image.

3.3.3.2 Feature extraction using inception-v3

For feature extraction, we apply the Inception-v3 pre-trained model from the large

ImageNet dataset. The associated outputs or extracted features promise to generate better

classification results than the raw images, leveraging the data and insights associated with

the ImageNet dataset.

The Inception-v3 architecture consists of 3 convolutional layers followed by a pooling

layer, 3 convolutional layers, 10 Inception blocks, and a final fully connected layer. This

results in 17 layers that can be learned by training the network on the data. The 17th

(classification) layer is removed and its activation inputs are used as feature descriptors

following the procedure from Singh et al. [65]. The output of each data transformation is an

enriched 2,048 feature item. Each output can be interpreted as the descriptor for each frame

in the sequence.

42

3.3.3.3 Classification model

The classification block consists of one LSTM layer with two dense layers and one

dropout layer added. In the dropout layer, we apply a standard 50% Dropout to the final

LSTM outputs [33, 68]. The basic LSTM layer has 2,048 hidden units. Each of the dense

layers has 512 hidden units. An activation function is applied for activation of the dense

layer [28]. After the dropout layer, we flatten to remove all of the dimensions and pass it to

the final dense layer with two hidden units for improved performance. The resulting model

augmenting basic LSTM is also referred to as LSTM for simplicity.

3.3.3.4 Model training

In our heuristic optimization of the validation errors estimated using six-fold cross-

validation, hyperparameter values were selected. The optimization algorithm that we apply

is Adam. The first dense layer activation function is Relu and the final dense layer activation

is softmax. For our methods and all numerical competitors, we use the standard values:

learning rate of 1e-05, epsilon of 1e-07, and decay of 1e-06. Batch sizes of 40 were used

and binary cross-entropy defined the loss functions for all models.

43

Figure 3.4: The proposed neural network architecture for classifying a single infant
44

3.4 Experiments

3.4.1 Model training and testing setup

We apply six-fold cross-validation for our dataset. We divide the 96 infants into six

groups each with 10 normal and two CS infants. For each of the six evaluation runs, all the

infants in four of the groups are used for training. One of the groups is used for validation

and the last group is used for testing.

We utilize three steps for model training and testing procedures. The first step is the

training step, in which we set up hyperparameters of our model and update parameters while

training. The second step is the validation step, which is used to tune hyperparameters and

obtain minimum validation loss. The third step is the testing step, in which we use the model

with minimum validation loss to assess the accuracy using measures described below.

Our models are implemented in Keras [14] with a TensorFlow [1] back end. One

exception is that different baseline RNNs are applied. All of our baseline classification

models have the same architecture connected to RNNs. The hyperparameters (learning

rate, epsilon, and decay) are tuned during both the training and validation steps. Before

manipulating the hyperparameters in each phase, the training set balance, the number of units

in an LSTM layer, and feature normalization were all tuned manually. All hyperparameters

selected before model training were adjusted subsequently in the next train based on the

loss in the validation set. RNNs were trained with an Adam optimizer [43] with a learning

rate of 1e-05, epsilon of 1e-07, and decay of 1e-06. Batch sizes of 40 were used and binary

cross-entropy defined the loss function for all models.

45

3.4.2 Performance measurement metrics

Considering the imbalance attribute of our dataset, Area Under The Curve (AUC) -

Receiver Operating Characteristics (ROC) and F1 score are good metrics to measure the

performance. For our specific problem, we want to predict as many CS infants correctly as

possible. The impact of missing a CS infant is much greater than the impact of predicting

a normal infant as a CS infant. For this reason, we also add recall, which is referred to as

sensitivity in medical testing.

The AUC-ROC curve is a performance measure of the classification problem at various

threshold settings. ROC is the probability curve. The associated AUC curve indicates the

degree or measure of separability. It tells us how many models can be classified. The higher

the AUC, the better the model, with 0 being predicted to be 0 and 1 being predicted to be 1.

By analogy, the higher the AUC, the better the model distinguishes between diseased and

disease-free patients. The ROC curve is plotted against the false positive rate (FPR) using

the true positive rate (TPR), where TPR is on the y-axis and FPR is on the x-axis.

When class distribution is uneven, the F1 score seeks balance between precision and

recall. Equations (3.1), (3.2), and (3.3) show the function of F1 score.

Precision =
True Positive

True Positive+False Positive
(3.1)

Recall =
True Positive

True Positive+False Negative
(3.2)

F1 =
2∗Precision∗Recall

Precision+Recall
(3.3)

46

Here, True Positive is the number of items where the model correctly predicts the

positive class, False Positive is the number of items where the model incorrectly predicts the

positive class, False Negative is the number of items where the model incorrectly predicts

the negative class.

3.4.3 Results

Considering our dataset is imbalanced, we apply AUC-ROC and F1 score to our model

performance measurements. Because the impact of missing a CS infant is much greater than

the impact of predicting a normal infant as a CS infant, we also study recall or, equivalently,

sensitivity, which is the fraction of CS infants that are identified correctly.

The AUC-ROC score, F1 score, and recall (sensitivity) are shown in Tables 3.1, 3.2, 3.3.

For all three measurements, the combination of Inception v3 and LSTM yields the best

results. Our proposed method achieves 0.97 for the average AUC-ROC score, which is 0.07

better than the second combination. The average F1 score is 0.97 and the average recall

is 0.98. Therefore, we decided to use the combination of Inception v3 and LSTM as our

prediction model. The comparisons of different sequential models with the same kinds of

feature extraction models are shown in Figures 3.5, 3.6, and 3.7.

For the extraction methods, Tables 3.1, 3.2, and 3.3 show that Inception v3 combined

with different classification methods achieves superior results consistently for prediction

accuracy. The factorization idea behind Inception v3 plays an important role. Factorizing

convolutions aim to reduce the number of parameters effectively. For infants, the key CS

behaviors are somewhat simple and localized over 10-second-long sets of sequential frames,

making parameter reductions potentially appropriate. With factorization, the number of

parameters is reduced for the whole network, over-fitting is less likely, and consequently, the

47

network can go deeper. The two-minute-long video With 42 layers deep, the computation

cost is only about 2.5 times higher than that of GoogLeNet, and much more efficient than

that of VGGNet.

For the classification methods, Tables 3.1, 3.2, and 3.3 show that LSTM combined

with different extraction methods achieves superior results consistently compared with

the alternatives considered. Unlike the alternatives, LSTM units include a ’memory cell’

that can maintain information in memory for long periods. A set of gates is used to

control when information enters the memory, when the information is output, and when the

information is forgotten. This architecture learns longer-term dependencies. Because infant

CS movements last more than 10 seconds (i.e., long-term memory), LSTM is appropriate for

our classifications. LSTM methods are designed to address time series-based classification

and also the so-called “long-term dependency" problem. The long-term dependency problem

relates to temporal inputs dying relatively quickly in an ordinary RNN. With infant CS

movements lasting 10 seconds or more, long-term memory is important. The key to LSTMs

is the cell state, the horizontal line running through the top of the diagram. The cell state is

similar perhaps to a conveyor belt. The cell state runs straight down the entire chain, with

only some minor linear interactions. Information flows relatively easily along with the cell

state unchanged.

48

Table 3.1: The average area under the curve-receiver operating characteristics of the
presented method

Classi f ication
Extraction RNN GRU MLP LST M
Inceptionv3 0.84 0.88 0.73 0.97

AlexNet 0.60 0.82 0.64 0.84
ResNet101 0.81 0.88 0.75 0.92
V GGNet16 0.72 0.85 0.70 0.90

Table 3.2: The average F1 score of the presented method

Classi f ication
Extraction RNN GRU MLP LST M
Inceptionv3 0.86 0.90 0.72 0.97

AlexNet 0.67 0.84 0.63 0.83
ResNet101 0.82 0.91 0.74 0.93
V GGNet16 0.76 0.83 0.68 0.92

Table 3.3: The average recall(sensitivity) of the presented method

Classification
Extraction RNN GRU MLP LST M
Inceptionv3 0.88 0.92 0.70 0.98

AlexNet 0.71 0.82 0.61 0.84
ResNet101 0.84 0.90 0.72 0.95
V GGNet16 0.79 0.86 0.66 0.91

49

Figure 3.5: The average area under the curve-receiver operating characteristics of the
presented methods

50

Figure 3.6: The average F1 score of the presented methods

Figure 3.7: The average recall of the presented methods

51

3.5 Discussion

In our current investigation, we demonstrate a fully automated deep learning model to

classify whether infants exhibit the neuromotor disorder associated with CS movements.

This method appears to be better able to divide infants into disordered and control groups

than the 15 alternative approaches that we also study. All the methods that we consider in

our comparison involve transfer learning for image processing and feature extraction. The

methods also include a classifier to use the extracted features for prediction.

The nature of the neuromotor disorders studied involves patterns of motion over approx-

imately 10-second time frames. The successes of all the deep learning methods studied

indicate that automatic identification of these localized patterns may be as simple as ob-

serving images such as those in the lower panel of Figure 3.2 and the right-hand-side of

Figure 3.3. The proposed method also seems to be robust to a variety of infant sizes and

orientations. This follows because our pre-processing steps did not involve rotations or

scaling.

Some preliminary analysis indicated that transfer learning is critical for processing the

pressure "images" within the data limitations of our study. AUC values for methods not

involving transfer learning are omitted for space reasons. Yet, they generally did not exceed

0.65. Similarly, adding dropout and dense layers to the basic LTSM formulation appears to

be critical. None of the tested formulations without these layers achieved clinically relevant

accuracy.

LSTM needs more time to train for the computational cost, and it is more memory-

consuming than the traditional machine-learning method. However, we have only limited

data for training for our use case. Therefore, the time and computation cost are affordable,

and the difference between LSTM and the traditional method can be ignored. A limitation

52

of LSTM occurs when the training dataset is enormous. Because the input of the next unit is

based on the output of the previous unit, the training process of LSTM is difficult to peform

in parallel. Despite this limitation, considering the data-gathering speed for CS infants, our

training dataset is unlikely to become too large for training.

The proposed deep learning method is not free from errors. Our method selection

involved picking the apparent best from our comparison involving 16 method combinations.

This approach may indicate that the accuracy measure results are inflated by the multiplicity

of tests. Therefore, we suggest that, in practice, observed accuracy may be closer to

the median performance of all methods considered, probably a recall over 90%. With

adjustments to the thresholds in the neural networks, recalls approaching the estimated 98%

are likely with some losses in precision.

Our method can be applied to a dataset that has similar characteristics. It can also

be extended to the irregular time-series dataset, which is more common than the regular

time-series dataset, with some revisions of LSTM. Imputation-focused models based on

LSTM are developed to handle irregular data. Kim et al. [42] implement a method through

a proposed imputation module combined with an LSTM, as part of our current structure,

which systematically imputes missing values in both forward and backward directions and

then performs prediction. The Bidirectional Recurrent Imputation for Time [10] model

treats imputed values as trainable variables that are fully updated during the backpropagation

process. It considers the correlations between feature variables.

The study presented here has limitations and more extensive studies are required to

confirm our initial findings. Future work can begin by investigating larger training cohorts.

With additional data, the complexity of the model may be increased. Additional work can

also enhance the assessment quality leading to greater generality.

53

We have proposed a new deep learning classifier. The proposed model outperformed

15 alternative methods that we considered as well as simpler approaches not involving

transfer learning and a dropout layer. The treatment of pressure maps as images seems

appropriate in that the images provide an intuitive indication of the health of the individual.

The structure of the proposed method involving image processing using a CNN and time

series modeling with LSTM may be considered to be standard. The model prediction, with

threshold adjustments, can provide clinically relevant indications to suggest MRI screening.

If further improved, the proposed deep learning model may obtain a role in pressure-based

neuromotor disorder screening in routine neonatal care.

54

Chapter 4: Conclusions and Future Work

4.1 Conclusions

Our work focuses on decision making and classification for time-series data. The work

involves semi-automatic state identification for the Markov decision process and a deep-

learning classifier for time-series classification with limited data. These contributions help

algorithms make better decisions and increase classification performance.

A new approach for integrating decision trees and the Markov decision process has

been proposed and assessed. Using tree leaves as states alleviates the worry that states

lead to Markovian behavior. When used to anticipate crucial state-related facts chosen by

experts, tree leaves are supposed to provide sufficient knowledge. For a numerical case in

which the states are assumed to be known, we demonstrated the use of trees to retrieve the

true states. We also looked at real-world data and statistics to determine the cost savings

for various cyber security maintenance combinations. Our simulation results show that a

nuanced approach could save millions of dollars in the long run.

A novel deep-learning classifier has been proposed. The suggested model outperformed

15 competing strategies and more straightforward approaches without transfer learning

and a dropout layer that we investigated. The representation of pressure maps as images

appears to be acceptable because the images provide an intuitive indicator of the individual’s

55

health. The framework of the proposed method, which includes image processing with a

CNN and time-series modeling using LSTM, may become standard. The model prediction

can provide clinically valuable indications to suggest MRI scanning with threshold tweaks.

The proposed deep-learning model can play a role in pressure-based neuromotor disease

screening in regular infant care if further enhanced.

4.2 Future Work

4.2.1 Future Work Derived from Semi-Automatic State Identification

While exploring more system states, we found that relating the process to established

methods for evaluating whether processes are Markovian (e.g., see Kelton and Kelton [41])

is an interesting problem to solve in the future. Also, other data-driven applications can be

explored, including those that relate to lean six sigma projects (e.g., see Allen et al. [3]). In

addition, multi-fidelity modeling may contribute to improved state selections (e.g., Huang

and Allen [37]). Finally, in recent related work based on data not available in the analysis

here, we identified the importance of a variable not considered here called administrator

privilege. By restricting this privilege, significance can be achieved. Further applications of

our proposed methods will explore this important variable.

4.2.2 Future Work Derived from Deep Learning for cramped synchro-
nized infant classification

For the medical time-series sensor data project, we find that it takes a long time to

do hyperparameter tuning. Tuning machine learning hyperparameters is a tedious yet

crucial task, as the performance of an algorithm can be highly dependent on the choice

of hyperparameters. Manual tuning takes time away from important steps of the machine-

learning pipeline, such as feature engineering and interpreting results. Grid and random

56

search are hands-off but require long run times because they evaluate unpromising areas of

the search space. For future work, we plan to explore methods that make hyperparameter

tuning fast and easy and that results in a great performance. Increasingly, hyperparameter

tuning is done by automated methods that aim to find optimal hyperparameters using an

informed search with no manual effort beyond the initial set-up. Bayesian optimization, a

model-based method for finding the minimum of a function, and design of experiments,

which evaluates the factors that control the value of a parameter or group of parameters, are

two potential methods we will explore.

4.2.3 Long Term Future Work

In recent years, deep learning has pushed dataset accuracy to the highest known in

machine-learning applications. With the increase in time-series data availability, hundreds

of algorithms have been proposed to deal with the data. Considering the success of deep

learning and deep reinforcement learning in other areas, it is surprising that only a few

algorithms have applied deep learning to the time-series problem. We plan to apply deep

learning and deep reinforcement learning, and to revise the structure of the deep neural

network, to make these processes fit time series data.

Although many types of deep neural networks exist, three types of architectures are

adapted widely for end-to-end deep-learning models [45] for time series classification:

Multi-Layer Perceptron, Convolutional Neural Network, and Echo State Network.

The deep neural network mentioned above cannot capture reliably the information from

the dataset, thus the performance is not good enough. The idea of a combination of different

kinds of networks arises to solve the time-series classification dataset. The latest research

achieves good results from other fields including human activity recognition [62] [70], and

57

text classification [76]. The combination not only gives better performance but also provides

a better explanation about networks.

58

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Anthony Afful-Dadzie and Theodore T Allen. Data-driven cyber-vulnerability mainte-
nance policies. Journal of Quality Technology, 46(3):234, 2014.

[3] Theodore T Allen, Shih-Hsien Tseng, Kerry Swanson, and Mary Ann McClay. Im-
proving the hospital discharge process with six sigma methods. Quality Engineering,
22(1):13–20, 2009.

[4] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding
Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K
Asari. The history began from alexnet: A comprehensive survey on deep learning
approaches. arXiv preprint arXiv:1803.01164, 2018.

[5] Suprasad V Amari, Leland McLaughlin, and Hoang Pham. Cost-effective condition-
based maintenance using markov decision processes. In RAMS’06. Annual Reliability
and Maintainability Symposium, 2006., pages 464–469. IEEE, 2006.

[6] Richard Bellman. A markovian decision process. Technical report, DTIC Document,
1957.

[7] P.J. Brockwell and R.A. Davis. Introduction to Time Series and Forecasting. Springer
Texts in Statistics. Springer International Publishing, 2016.

[8] Richard R Brooks, Jason M Schwier, and Christopher Griffin. Behavior detection
using confidence intervals of hidden markov models. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 39(6):1484–1492, 2009.

59

[9] Eunshin Byon, Lewis Ntaimo, and Yu Ding. Optimal maintenance strategies for wind
turbine systems under stochastic weather conditions. IEEE Transactions on Reliability,
59(2):393–404, 2010.

[10] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional
recurrent imputation for time series. arXiv preprint arXiv:1805.10572, 2018.

[11] GK Chan and Sohrab Asgarpoor. Optimum maintenance policy with markov processes.
Electric Power Systems Research, 76(6):452–456, 2006.

[12] Jui-Hsiang Chiang and John Yuan. Optimal maintenance policy for a markovian system
under periodic inspection. Reliability Engineering & System Safety, 71(2):165–172,
2001.

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[14] François Chollet et al. Keras. https://keras.io, 2015.

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[16] Richard A Clarke and Robert K Knake. Securing the gcc in cyberspace. ECSSR (Abu
Dhabi). Emirates Lecture Series, (83):0_1, 2010.

[17] Robert T Clemen and Terence Reilly. Making hard decisions with DecisionTools.
Cengage Learning, 2013.

[18] E Cockburn. Websites here, websites there, websites everywhere..., but are they secure?
The Quaestor Quarterly, 4(3):1–4, 2009.

[19] Pablo L Durango and Samer M Madanat. Optimal maintenance and repair policies
in infrastructure management under uncertain facility deterioration rates: an adaptive
control approach. Transportation Research Part A: Policy and Practice, 36(9):763–778,
2002.

[20] Christa Einspieler and Heinz FR Prechtl. Prechtl’s assessment of general movements:
a diagnostic tool for the functional assessment of the young nervous system. Mental
retardation and developmental disabilities research reviews, 11(1):61–67, 2005.

[21] Alaa H Elwany, Nagi Z Gebraeel, and Lisa M Maillart. Structured replacement policies
for components with complex degradation processes and dedicated sensors. Operations
research, 59(3):684–695, 2011.

60

https://keras.io

[22] Gabriel J Escobar, Benjamin Littenberg, and Diana B Petitti. Outcome among surviving
very low birthweight infants: a meta-analysis. Archives of disease in childhood,
66(2):204–211, 1991.

[23] Brian D Ewald, Jeffrey Humpherys, and Jeremy M West. Computing expected tran-
sition events in reducible markov chains. SIAM journal on matrix analysis and
applications, 31(3):1040–1054, 2010.

[24] Mingming Fan, Dana Gravem, Dan M Cooper, and Donald J Patterson. Augmenting
gesture recognition with erlang-cox models to identify neurological disorders in pre-
mature babies. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
pages 411–420. ACM, 2012.

[25] Norman Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden. Meth-
ods for computing state similarity in markov decision processes. arXiv preprint
arXiv:1206.6836, 2012.

[26] Fabrizio Ferrari, Giovanni Cioni, Christa Einspieler, M Federica Roversi, Arend F
Bos, Paola B Paolicelli, Andrea Ranzi, and Heinz FR Prechtl. Cramped synchronized
general movements in preterm infants as an early marker for cerebral palsy. Archives
of pediatrics & adolescent medicine, 156(5):460–467, 2002.

[27] Yan Gao, Yang Long, Yu Guan, Anna Basu, Jessica Baggaley, and Thomas Ploetz.
Towards reliable, automated general movement assessment for perinatal stroke screen-
ing in infants using wearable accelerometers. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 3(1):12, 2019.

[28] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323, 2011.

[29] Abhijit Gosavi. Reinforcement learning: A tutorial survey and recent advances.
INFORMS Journal on Computing, 21(2):178–192, 2009.

[30] Jason H Goto, Mark E Lewis, and Martin L Puterman. Coffee, tea, or. . . ?: a markov de-
cision process model for airline meal provisioning. Transportation Science, 38(1):107–
118, 2004.

[31] Christopher Griffin, Richard R Brooks, and Jason Schwier. A hybrid statistical
technique for modeling recurrent tracks in a compact set. IEEE Transactions on
Automatic Control, 56(8):1926–1931, 2011.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

61

[33] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[35] Wallace J Hopp. Identifying forecast horizons in nonhomogeneous markov decision
processes. Operations research, 37(2):339–343, 1989.

[36] Ronald A Howard. Dynamic programming and markov processes. 1960.

[37] Deng Huang and Theodore T Allen. Design and analysis of variable fidelity experi-
mentation applied to engine valve heat treatment process design. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 54(2):443–463, 2005.

[38] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[39] Julie S Ivy and Stephen M Pollock. Marginally monotonic maintenance policies for
a multi-state deteriorating machine with probabilistic monitoring, and silent failures.
IEEE Transactions on Reliability, 54(3):489–497, 2005.

[40] Deepak A Kaji, John R Zech, Jun S Kim, Samuel K Cho, Neha S Dangayach, An-
thony B Costa, and Eric K Oermann. An attention based deep learning model of
clinical events in the intensive care unit. PloS one, 14(2):e0211057, 2019.

[41] W David Kelton and Christina ML Kelton. Hypothesis tests for markov process
models estimated from aggregate frequency data. Journal of the American Statistical
Association, 79(388):922–928, 1984.

[42] Yeo-Jin Kim and Min Chi. Temporal belief memory: Imputing missing data during
rnn training. In In Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI-2018), 2018.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[45] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

62

[46] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-
propagation network. In Advances in neural information processing systems, pages
396–404, 1990.

[47] D Legard. Cyberattacks exploit user security indifference. Gartner Re-
port.(http://articles. cnn. com/2002-05-03/tech/security. indifference. idg 1 gartner-
securityefforts-firewall-and-intrusion-detection, 2002.

[48] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state
abstraction for mdps. In ISAIM, 2006.

[49] Wei Liu, Sanjay Chawla, David A Cieslak, and Nitesh V Chawla. A robust decision
tree algorithm for imbalanced data sets. In Proceedings of the 2010 SIAM International
Conference on Data Mining, pages 766–777. SIAM, 2010.

[50] Lisa M Maillart. Maintenance policies for systems with condition monitoring and
obvious failures. IIE Transactions, 38(6):463–475, 2006.

[51] Lisa M Maillart and Stephen M Pollock. Cost-optimal condition-monitoring for predic-
tive maintenance of 2-phase systems. IEEE Transactions on Reliability, 51(3):322–330,
2002.

[52] Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to the common
vulnerability scoring system version 2.0. In Published by FIRST-Forum of Incident
Response and Security Teams, pages 1–23, 2007.

[53] Thomas M Mitchell et al. Machine learning, 1997.

[54] Iona Novak, Cathy Morgan, Lars Adde, James Blackman, Roslyn N Boyd, Janice
Brunstrom-Hernandez, Giovanni Cioni, Diane Damiano, Johanna Darrah, Ann-Christin
Eliasson, et al. Early, accurate diagnosis and early intervention in cerebral palsy:
advances in diagnosis and treatment. JAMA pediatrics, 171(9):897–907, 2017.

[55] Masahiro Oguchi, Shinsuke Murakami, Tomohiro Tasaki, Ichiro Daigo, and Seiji
Hashimoto. A database and characterization of existing lifespan information of elec-
trical and electronic equipment. In Proceedings of the 2010 IEEE International
Symposium on Sustainable Systems and Technology, pages 1–1. IEEE, 2010.

[56] PO Pharoah, T Cooke, RW Cooke, and L Rosenbloom. Birthweight specific trends in
cerebral palsy. Archives of Disease in Childhood, 65(6):602–606, 1990.

[57] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

63

[58] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[59] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier method-
ology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674, 1991.

[60] Jason M Schwier, Richard R Brooks, and Christopher Griffin. Methods to window
data to differentiate between markov models. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 41(3):650–663, 2010.

[61] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,
Jianhua Yao, Daniel Mollura, and Ronald M Summers. Deep convolutional neural
networks for computer-aided detection: Cnn architectures, dataset characteristics and
transfer learning. IEEE transactions on medical imaging, 35(5):1285–1298, 2016.

[62] Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tieniu Tan. An attention
enhanced graph convolutional lstm network for skeleton-based action recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1227–1236, 2019.

[63] SH Sim and J Endrenyi. Optimal preventive maintenance with repair. IEEE Transac-
tions on Reliability, 37(1):92–96, 1988.

[64] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[65] Mohan Singh and Donald J Patterson. Involuntary gesture recognition for predicting
cerebral palsy in high-risk infants. In International Symposium on Wearable Computers
(ISWC) 2010, pages 1–8. IEEE, 2010.

[66] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement learning
with soft state aggregation. In Advances in neural information processing systems,
pages 361–368, 1995.

[67] H Jeff Smith, Tamara Dinev, and Heng Xu. Information privacy research: an interdis-
ciplinary review. MIS quarterly, 35(4):989–1016, 2011.

[68] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[69] Marijn F Stollenga, Wonmin Byeon, Marcus Liwicki, and Juergen Schmidhuber.
Parallel multi-dimensional lstm, with application to fast biomedical volumetric image
segmentation. In Advances in neural information processing systems, pages 2998–3006,
2015.

64

[70] Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz. Lsta: Long short-term
attention for egocentric action recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9954–9963, 2019.

[71] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[72] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9, 2015.

[73] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[74] William TB Uther and Manuela M Veloso. Tree based discretization for continuous
state space reinforcement learning. In Aaai/iaai, pages 769–774, 1998.

[75] Svitlana Volkova, Ellyn Ayton, Katherine Porterfield, and Courtney D Corley. Fore-
casting influenza-like illness dynamics for military populations using neural networks
and social media. PloS one, 12(12):e0188941, 2017.

[76] Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan
Zhang, Ricardo Henao, and Lawrence Carin. Joint embedding of words and labels for
text classification. arXiv preprint arXiv:1805.04174, 2018.

[77] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and Robert X Gao.
Deep learning and its applications to machine health monitoring: A survey. arXiv
preprint arXiv:1612.07640, 2016.

[78] Zhihua Zheng, Lirong Cui, and Alan G Hawkes. A study on a single-unit markov re-
pairable system with repair time omission. IEEE Transactions on Reliability, 55(2):182–
188, 2006.

65

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Time Series
	1.2 Time Series Analysis and Forecasting
	1.3 Automatic Definitions of System States
	1.4 Future Work

	2. Semi-Automatic State Identification for Markov Decision Process
	2.1 Introduction
	2.2 Background
	2.2.1 Cyber Vulnerability Dataset and Policies
	2.2.2 MDPs
	2.2.3 Decision Trees

	2.3 Methods
	2.4 Numerical Example
	2.5 Case Study Example: Cyber Vulnerability Maintenance
	2.5.1 Fitting the Tree Model and Determining States
	2.5.2 Applying MDP: The Estimated Transition Matrices
	2.5.3 Applying MDP: Expected Reward Estimation
	2.5.4 Implementation Details
	2.5.5 Comparing Policies Using Simulation

	2.6 Conclusions

	3. Deep Learning for Cramped Synchronous Infant Classification
	3.1 Introduction
	3.2 Related Work
	3.2.1 The Prechtl Method and Cramped Synchronous Movements
	3.2.2 Overview of Deep Learning for Health Applications
	3.2.3 Convolutional Neural Networks
	3.2.4 Transfer Learning
	3.2.5 Recurrent Neural Networks Including Long Short-Term Memory
	3.2.6 Training Methods

	3.3 Materials and Method
	3.3.1 Ethics statement
	3.3.2 Description of the data used
	3.3.3 Method

	3.4 Experiments
	3.4.1 Model training and testing setup
	3.4.2 Performance measurement metrics
	3.4.3 Results

	3.5 Discussion

	4. Conclusions and Future Work
	4.1 Conclusions
	4.2 Future Work
	4.2.1 Future Work Derived from Semi-Automatic State Identification
	4.2.2 Future Work Derived from Deep Learning for cramped synchronized infant classification
	4.2.3 Long Term Future Work

	Bibliography

