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Abstract

Modular verification of parallel and concurrent software built from reusable data

abstractions is a challenging problem. Reasoning about sequential software can be

modularized using the specifications of data abstractions, but the need to consider

implementation details complicates reasoning about parallel execution.

Addressing this challenge requires advancing the state of the art in several ways,

beginning with a theoretical foundation. The A/P Calculus for describing the effects

of program actions is developed in this dissertation to enable sound modular reason-

ing about parallel programs with non-interfering parallel sections of operation calls on

abstract data types. Building on the calculus and a programming language with clean

semantics, a methodology for designing decomposable data abstractions is presented

to produce fork-join parallel programs that are manifestly data race free and readily

amenable to modular reasoning. A new specification construct, the non-interference

contract, is proposed to enhance the specification of data abstractions to hide imple-

mentation details and yet facilitate modular reasoning about parallel programs that

share objects among processes.

As a key first step to transition these results to practice, this dissertation describes

Clean++, a discipline for writing software in C++ that leverages move semantics

to make ownership transfer the primary data movement operation (as opposed to
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either deep or shallow copying) and produce programs that are amenable to formal

verification with only minimal scaffolding related to pointer manipulation.
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Chapter 1: Introduction

Parallelism is one of an engineer’s best tools to improve the performance of soft-

ware; however, parallel programming brings a set of challenges unique from sequential

programming. Therefore, as computing hardware becomes ever more parallel and

parallelism is exploited to improve the performance of mission- and safety-critical

software, the importance of making sure parallel software is correct increases. When

multiple processes are executed in parallel in a shared-memory environment, they

have the possibility of interfering (e.g., they might concurrently write data to a single

memory location). Interfering processes are said to exhibit a data race, and their

combined behavior is inherently nondeterministic. However, when several processes

execute in parallel but do not exhibit any data races, their execution is inherently

deterministic—it is these kinds of systems that garner the majority of attention in

this work.

Complicating reasoning about concurrent programs is the fact that most parallel

and concurrent software at present is written with low-level software patterns, such

as explicit locks or semaphores, and does not normally involve rich abstractions to

aid in reasoning about the behavior of programs. One reason that this programming

style is popular is that in order to guarantee the absence of data races, it is neces-

sary to have sufficient knowledge of the implementation of a software component. A
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key contribution of this dissertation is showing that this knowledge can be attained

without sacrificing rich abstraction.

In sequential software, abstraction is commonly used to ease reasoning (and there-

fore verification) by increasing modularity. Unfortunately, guaranteeing simultane-

ously the modularity of the verification process and the independence of concurrent

threads is complicated by two key challenges. The first is how to account for data

sharing between threads such as through aliased references, and the second is how

to guarantee safe (i.e., deterministic) parallel execution of operations on an object

without violating abstraction.

In total, there are four main contributions of this dissertation.

1. A calculus to serve as the foundation for provably sound modular reasoning

about parallel programs

2. A methodology for designing data abstractions that permit safe parallelism

without the need for additional specification constructs within a language that

does not permit aliased references

3. A new specification construct to expand the reach of automated verification of

parallel and concurrent programs

4. A discipline for programming in C++ to reduce or eliminate aliases without

novel language features and to produce programs that are easy to reason about

1.1 Foundation and Soundness

A provably sound framework for modular reasoning about parallel programs is

presented in chapter 3. The framework takes the form of a calculus for effects. The
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calculus is defined and discussed as a purely algebraic structure before being used

as the basis for a programming model in which data abstraction is the norm and

fork-join parallel programs have well-defined semantics. The programming model,

while nonstandard, is shown to be reasonable and is used to prove that statements

that are specified to have non-interfering effects exhibit equivalent behavior to any

order of their sequential composition. This result motivates rules for the semantics

of parallelism in this programming model and it is used to show the soundness of

modular reasoning about fork-join parallel programs in a real programming language

in chapters 4 and 5.

1.2 Leveraging Language Restrictions for Data Race Free
Parallelism

In chapter 4, a fundamental barrier to automated software verification—the pres-

ence of aliased references—is addressed. Aliased references cause problems because it

is in general impossible to decide via local reasoning whether two references are aliases

to one another. When there is even a possibility of aliasing, determining the scope of

effects of, e.g., a method call, becomes intractable. One language that has sidestepped

the aliasing problem is RESOLVE, in which most routine aliases are avoided and they

are compartmentalized when unavoidable [132]. The alias control mechanism of RE-

SOLVE has been dubbed clean semantics because it creates an elegant space for

reasoning devoid of complicated frame and heap assertions. Within the framework

of RESOLVE, rich data abstractions can be designed to enable the development of

obviously data race free parallel programs without the need for additional specifica-

tion constructs. Doing so amortizes the cost of reasoning about such programs by

requiring data race freedom to be shown only once (in the implementation of each
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data abstraction) and producing client code that requires no proof of non-interference.

Several array abstractions are introduced in chapter 4 which permit a client to par-

tition an array into arbitrary sub-arrays based on some client-defined indices and

to operate on those sub-arrays in parallel and without fear of interference. Similar

data abstractions appear in related work for a variety of programming languages, but

their guarantees are weaker than those achieved here, showcasing the power of clean

semantics to contribute to the modular verification of parallel programs.

1.3 Abstract Specifications for Non-Interference

To solve the second problem (i.e., how to preserve abstraction and modularity

in reasoning about parallel programs), a new specification construct called a non-

interference contract is introduced in chapter 5. A non-interference contract can

guarantee innterference-free execution of parallel programs that invoke operations on

instances of abstract data types. To illustrate the ideas, a bounded queue data ab-

straction is presented with informal descriptions of three different implementations

that vary in their potential for parallelism among different queue operations. To

capture the parallel potential in a class of implementations of the queue, its specifi-

cation is augmented with a non-interference contract that identifies additional details

that enable a verifier to make guarantees of safe execution of parallel code. A non-

interference contract is still quite abstract and is devoid of concrete implementation

details. The novelty of this solution is that it modularizes the verification problem

for parallel programs along abstraction boundaries. That is, verification of implemen-

tation code with respect to both its behavioral specification and its non-interference
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specification is done once in the lifetime of the implementation; verification of client

code can then rely solely on those specifications.

The rules for reasoning with non-interference contracts generalize results from oth-

ers [115, 121, 43] by increasing abstraction. Specifically, a non-interference contract

can guarantee the interference freedom of several parallel statements even when they

share the same abstract variable, as long each of the statements affects a different

part of a concrete representation of that variable. The need to delve into implementa-

tion details is avoided by a non-interference contract because it enhances the abstract

specification to help the verifier of a client program to establish when statements do

not interfere.

1.4 Easing Reasoning in a Mainstream Programming Lan-
guage

The C++11 standard included move semantics [78], which changed the way data

movement works in certain situations. A primary motivation for adopting move se-

mantics is performance improvement by reducing or eliminating the copying of tem-

porary variables such as return values and expression values. Chapter 6 describes a

discipline for programming C++ that leverages move semantics to approximate RE-

SOLVE’s clean semantics and, in turn, produce software that is easy to reason about.

The motivation for adopting software disciplines in general is well-understood: pro-

gramming without a strict software discipline produces code that is hard to read, even

harder to understand, and nearly impossible to prove correct (if in fact it is correct).

Following even the simplest of software disciplines—naming conventions, formatting

conventions, etc.—dramatically improves the readability and understandability of a

program. More sophisticated disciplines, however, are needed for substantial progress
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towards easing (automated) reasoning. For this reason, many idioms, design patterns,

style guides, and language mechanisms have been devised that attempt to improve

this facet of software engineering. A common theme among many of these disciplines

is alias control, in which aliased references are advertised, made immutable, or elim-

inated altogether. The discipline presented in chapter 6 shares similar objectives,

but the approach relies on existing language mechanisms in a language widely used

in practice, rather than introducing new capabilities to a language or starting from

scratch with an entirely new language.

1.5 Thesis Statement

In summary, this dissertation expands the reach of automatable, modular verifica-

tion of software to include a class of fork-join parallel programs and provides a sound

foundation for continuing that expansion into more complex parallel and concur-

rent programs. It also provides guidance on how to use a mainstream programming

language as a compilation target for verification-focused languages by describing a

discipline for programming in C++ that makes extensive use of move semantics. The

discipline could also be used as a tool for teaching formal reasoning to beginning

computer science students, or for large-scale software development.
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Chapter 2: Related Work

There is a large body of work related to this dissertation ranging from closely-

related to only tangentially so. The order of examination of those projects is as

follows. First, an overview of the earliest and most influential work on formal reason-

ing about parallel and concurrent programs is presented, then efforts to enable safe

parallelism through data abstraction are explored, including array slices and locking

data structures. Next, recent and contemporary verification efforts are summarized,

including automated verification of sequential programs, auto-active and interactive

verification of parallel and sequential programs, and techniques for verifying only that

certain properties of parallel and concurrent programs hold. Finally, an overview of

programming language-based efforts to ease reasoning and enable safe concurrency is

presented.

2.1 Classical Efforts

Owicki and Gries, in their seminal paper [115], provide many of the foundational

ideas for verifying the partial correctness of parallel programs. In the paper, they

formulate a proof rule for arbitrarily many parallel statements as follows:

{P1}S1{Q1}, {P2}S2{Q2}, . . . , {Pn}Sn{Qn} are interference-free

{P1 ∧ P2 ∧ · · · ∧ Pn}S1‖S2‖ . . . ‖Sn{Q1 ∧Q2 ∧ · · · ∧Qn} (2.1)
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The definition of “interference-free” used in eq. (2.1) is concerned with the

interference-freedom of the proofs of the Hoare triples in the premises, and not di-

rectly with the statements themselves. This definition is conservative in the sense

that it places strict conditions on statements that share modified variables that are

weakened by the approach in this dissertation.

Concurrent Separation Logic (CSL) [121, 43], an extension of Separation Logic, is

one attempt to address this limitation. In the simplest case, the parallel composition

rule in CSL is as follows.

{P1}S1{Q1} {P2}S2{Q2} . . . {Pn}Sn{Qn}
{P1 ∗ P2 ∗ · · · ∗ Pn}S1‖S2‖ . . . ‖Sn{Q1 ∗Q2 ∗ · · · ∗Qn} (2.2)

Here, ∗ is the separating conjunction, which asserts that the predicates on either

side of the operator hold in disjoint portions of the heap. The semantics of concurrent

separation logic are detailed in [43] where restrictions on the statements S1, S2, . . . , Sn

are given. These restrictions involve access to memory locations from within the

statements and amount to a definition of interference freedom that relies on exposing

enough implementation details to reason about pointers directly. This exposure limits

somewhat the support for modularity: the assertions required to verify programs with

even moderately deep abstraction hierarchies are considerably more complex than

their shallow-hierarchy counterparts.

One approach supporting modular non-interference specifications is rely-guarantee

reasoning [86, 105, 87]. In rely-guarantee frameworks, a process relies on the environ-

ment behavior in order to guarantee properties about itself. The required behavior of
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the environment can be thought of as a generalized form of non-interference. Rely-

guarantee methods enable modular reasoning about many kinds of programs includ-

ing aspect-oriented programs [130], asynchronous programs [70], garbage collectors

[146], and non-blocking algorithms [56]. Improving the scalability and expressiveness

of rely-guarantee, including combining it with separation logic, is an active area of

research [138, 137, 64, 60, 104, 72].

When specification statements as described by Morgan [106] are used to define

the semantics for a programming language, the parallel composition rule can be char-

acterized as a lattice join (4) on these statements [102]. The effect of interference

on parallel execution is captured naturally by the definition of 4 in the lattice: that

is, the join of interfering statements is “miraculous”. Non-interfering statements are

those with disjoint modification frames, which limits concurrency to statements on

independent variables.

Well-known work by Herlihy and Wing on linearizability [77] laid the foundation

for abstract and modular reasoning about parallel programs. Their work established

a correctness condition for concurrent objects that guarantees that any concurrent

program that operates on a linearizable object will result in a value that may have

been achieved by an “equivalent” sequential program on the same object. That an

object is linearizable is, however, difficult to prove in general [59, 125]. The results

in chapter 3 could be cast as a weakening of the definition of a linearizable object to

include only some concurrent programs that operate on the object, thus making the

condition easier to verify.
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2.2 Enabling Parallelism Through Data Abstractions

A central contribution of this research is the recognition that data abstraction and

concurrency are both essential software engineering tools and should be addressed

jointly. Software component interfaces can be designed such that parallel programs

can be written to utilize them and take advantage of lock-free and data-race-free

parallelism. It is useful to examine work related to software component design to

enable concurrency as a gauge of the utility of the solution presented in chapter 4

as well as to understand the burdens that are introduced or lifted by designing these

components in the context of a verification-focused language such as RESOLVE.

2.2.1 Array Slices

Many modern programming languages have libraries that provide data abstrac-

tions with operations that divide an array in to several sub-arrays for which it is

easy to show comprise disjoint index sets [15, 17, 16, 20, 19, 9]. When a client of the

array uses sub-arrays with disjoint index sets as parameters to parallel statements,

they have the guarantee that—absent aliases between elements of the original array—

there will be no data races during concurrent access to distinct slices. However, an

important distinction between related work and the work described in chapter 4 is

that aliases are guaranteed to be absent by properties of the programming language

which serves as the broad context for this dissertation. Without robust alias control,

race conditions remain a threat even when the index sets of array slices are disjoint.
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2.2.2 Locking Data Structures

Another approach to enabling data abstraction in the face of concurrency is to use

data structures that (internally) use locking or synchronization mechanisms to ensure

exclusive access by one thread or process at a time. These software components are

useful because they enable data-race-free concurrency even when the data abstrac-

tion might not, at first glance, seem to allow it. However, programs written with

these components are not necessarily deterministic, complicating formal reasoning.

Examples of these kinds of components for Java can be found in the java.util.

concurrent package [114] and for C++ in Mircosoft’s PPL [11].

2.3 Verification, Concurrency, and Abstraction

Research on the formal verification of software can be roughly divided into three

overlapping areas.

1. Verification of full functional correctness of programs that make use of rich data

abstractions. Such research is usually limited to sequential programs because

of complications to concurrency introduced by abstraction.

2. Verification of full functional correctness of concurrent programs. Most of this

work is dedicated to verifying the correctness of programs that make use of

concurrency primitives or other low-level software components, and such proofs

are not typically fully automated.

3. Automated verification of a limited set of properties (such as safety, termination,

or data race freedom) of concurrent and parallel programs. Efforts in this space

include those employed either at compile-time or run-time.
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The main contribution of this disertation lies at the intersection of these three

areas, that is, it tackles the automated verification of full functional correctness of

concurrent programs that make use of data abstractions.

All of the verification efforts discussed here can be placed on a spectrum of inter-

activity, ranging from fully interactive to fully automatic (with so-called auto-active

verification in the middle). The focus of the discussion here is on automatic and

auto-active verification; a discussion of the details of the taxonomy of verification

efforts can be found in [143].

2.3.1 Verification of Full Functional Correctness of (Sequen-
tial) High-Level Programs

Significant advances have been made recently in the verification of high-level pro-

grams (including in the context of RESOLVE [126, 139, 132, 143]), some of which

are summarized in [76, 95, 90]. While Dafny [100, 101], backed by Z3 [58], uses its

own programming language, several other automation efforts are based on industry-

standard languages. JML (Java Modeling Language) [96, 97] and related tools such

as KeY and ESC/Java2 [48, 34, 35] (for Java), Jahob (for Java) [42, 94, 147, 148],

VCC (for C) [53, 107], VeriFast (for C and Java) [85, 8], SPARK (for Ada) [5], Spec#

(for C#) [33, 6], and nearly all other recent or active similar projects emphasize the

claimed ability to specify and automatically verify programs written in existing lan-

guages with extra annotations. Krakatoa [65] (also for JML-annotated Java) and

Frama-C’s verification plug-in Jessie [3] (for annotated C with ACSL [1]), along with

the latter’s predecessor (the stand-alone tool Caduceus [65]), compile down to the in-

termediate language Why [39, 54], from which VCs are derived and ultimately proved

using Coq [57].
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RESOLVE has been used in long-term and large-scale efforts to automatically

verify the full functional correctness of imperative programs [81]. Zaccai, in his PhD

thesis, discusses the challenges to automated verification in Java which stem primarily

from aliased references (and arguments) [145]. Hollingsworth, et al, built relatively

large-scale software using a dialect of C++ called RESOLVE/C++ [81]. Their work

has validated that many important formal methods principles—such as the ones that

drive the development of Clean++ in chapter 6—can be applied at scale in real

software. RESOLVE/C++ has also been used to teach software engineering principles

to undergraduate students [103, 44, 127, 24].

2.3.2 Automated Verification of Certain Properties of Pro-
grams

Several success stories in automated hardware and software verification focus on

specific properties (e.g., absence of deadlocks, race conditions, or null pointer ac-

cesses). They span sequential and concurrent/distributed software and use symbolic

model-checking [46, 47, 52, 55, 57, 61] and other formal techniques. They include

several by industry [2, 28, 32, 33, 31, 30, 74, 75, 99, 116, 4, 5, 6]. Static techniques

(some cast as extensions of typing) focusing on limiting the inadvertent introduction

of races include [63, 109, 23, 69, 67, 108, 88], whereas dynamic techniques which im-

prove precision at the expense of execution overhead include software-based efforts

[120, 119, 66, 123, 36, 37, 122] and harware-based efforts such as transactional memory

[124, 71].

The reasoning approach introduced in chapter 3 and its subsequent implementa-

tion in the form of non-intererence contracts (chapter 5) is related to but dissimilar
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from the work of region logic, an approach that has been studied to enable shared-

memory concurrency in situations where multiple threads might mutate the same

variable [29]. One application of region logic is Deterministic Parallel Java (DPJ)

[40]. The key feature of interference contracts that distinguishes it from region logic

is that in an implementation, it is not memory locations that are assigned to pieces of

an object’s partition but rather pieces of the partitions of those fields. In contrast, a

region logic-based specification of the implementation of a software component would

identify regions explicitly as disjoint sets of memory locations.

Another capability that differentiates non-interference contracts from DPJ (in

particular) is that effects clauses may be conditional on abstract values of parame-

ters. This capability does not identify a fundamental novelty beyond (theoretical)

region logic, but rather demonstrates the advantages of implementing a specification

framework for parallel programs in the context of a language with sequential-program

verification capability.

2.4 Specification and Verification with Shared Data

Chapter 6 presents a discipline in which aliases are largely avoided at all costs, pri-

marily through extensive use of std::unique_ptr. However, as discussed in that

chapter, data sharing—including aliasing—is occasionally unavoidable. The challenge

of verifying (i.e., reasoning about) software involving aliasing is well recognized in the

literature [98, 121].

A language with explicit references necessarily gives rise to aliases, either through

assignment statements or parameter passing. Aliases, however, create significant chal-

lenges for reasoning by undermining modularity and by forcing memory addresses to
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be part of the state of the program [98]. Because of potential aliasing, verification in

popular languages such as Java requires establishing the frame property (that objects

not mentioned do not change) for practically every method call. Some machinery

such as separation logic [121, 111] or equivalent is absolutely necessary to ease this

process [145]. When there is potential for aliasing, modular reasoning of one compo-

nent at a time becomes difficult because it is not possible to reason about variables

using their abstract values in specifications and instead their data representations

become relevant, which breaks abstraction [73]. Though there has been progress, the

automation of software verification remains a challenge when code involves objects

and aliased references.

Separation logic is an extension of Hoare’s logical rules to address the challenges

of aliases. Specification of a concurrent map using separation logic is the topic of

[144]. Examples of (interactive) verification using separation logic in Coq include

[51, 49, 54] and in VeriFast to verify Java and C programs include [84, 85]. Automating

verification with separation logic is the topic of [38, 41, 117, 118, 42]. There have been

attempts to combine modularization and to address information hiding in conjunction

with separation logic [111, 112, 113], though problems remain in generalizing the

approach to encompass many object instances.

Another approach to ease reasoning about aliased references is to devise and

reuse concepts in which a set of locations (an abstraction of addresses) is “shared”

[91, 92, 134]. Two concepts in RESOLVE to address this include a general referenc-

ing concept and a specialized acyclic referencing concept, both of which are relatively

low-level and provide a reference type and operations for the usual manipulation of

references, including linking and aliasing [93]. The detailed specifications employ
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standard, higher-order logic and their automated verification reuses results from ex-

tensions to function theory [133]. The discussion in [91] also contains a solution to

avoid the classical parameter aliasing problem on calls with repeated arguments, a

solution that can be realized directly in C++ with move semantics.

2.5 Language-Based Approaches

Because the reasoning difficulties aliases introduce are well-known, several popular

programming languages have introduced features to keep them under control at the

language level. Some efforts have focused on efficient ways to enrich value types so

that they may be used for as much software as possible or on developing disciplines

and style guidelines within popular, existing languages to control and advertise the

use of aliases. Other efforts have been directed toward the development of entirely

new languages built from the ground up to eliminate aliasing concerns. Ultimately,

not all aliasing can be avoided, so admitting aliasing and enabling sound reasoning in

its presence are topics that have received attention in the formal methods literature

and in the programming languages community.

2.5.1 Efficient Value Types

One typical solution to the aliasing problem offered by modern programming

languages is the introduction of value types [26, 18, 22] that, when assigned, copy the

variable’s entire value to the destination.1 The obvious advantage of value types in

the context of this work is that aliases are never introduced, thus enabling simpler

reasoning. Unfortunately, frequent copying is quite costly for large objects. This has

1At least, this is the client’s view of what is happening. Some types, such as immutable ones,
need not be copied entirely.
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led some languages to impose restrictions on what may be done with variables of

value types so their use does not incur unaccaptable performance penalties [26, 14].

For example, Swift [26] offers a rich toolbox for creating and using value types

(called structs). However, value types in Swift are immutable by default and the

compiler restricts them from being mutated without additional annotations. This lim-

itation is necessary because structs in Swift are copied lazily (a mechanism sometimes

called “copy-on-write”), so making them immutable allows Swift to offer equivalent

performance in struct-heavy code as it does in reference-heavy code (except in rare

cases where a struct is mutated). Implementing lazy copying at the language level

encourages programmers to consider using value types where appropriate without

having to worry about performance. Other work on lazy copying includes work by

Adcock on implementing it while maintaining value semantics in RESOLVE/C++

[25].

2.5.2 The Google C++ Style Guide

Google’s style guide [12] offers extensive guidance on how to write disciplined C++

code, from variable naming conventions to high-level structuring. Several sections

address themes directly related to the work in chapter 6.

Of most relevance is the section “Ownership and Smart Pointers”. In that sec-

tion, an argument is made as to why having a regimented discipline for expressing

ownership (beyond simple pointers) is a “Good Thing” in C++ programs. The stylis-

tic suggestion made in the guide is to “prefer to keep ownership with the code that

allocated it,” and when ownership transfer is necessary, to use std::unique_ptr

to make such transfer explicit.
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Two other sections, “Copyable and Movable Types” and “Rvalue References” are

also closely related to the discipline described in chapter 6. Google’s C++ style

guide recommends that a class be either copyable or movable or neither, but not

both copyable and movable except in rare circumstances. The justification for this

rule is that having a copyable class that is also movable is a potential source of bugs

because the expected (i.e., copying) behavior of parameter values or return values

might not actually occur. The guide argues that defining moving operations on a

copyable class should be viewed strictly as a performance optimization and so should

not be used unless there is a clear performance improvement for doing so. The section

on rvalue references makes the recommendation that rvalue references (identified in

C++ by &&) be used in overloaded function pairs (one taking a const& and the

other a && argument). Again, the crux of the decision is that rvalue references and

move semantics should be viewed strictly as a performance optimization. Minimizing

aliasing and simplifying reasoning are not considered in the discussion.

2.5.3 The Rust Programming Language

Rust [89], an open-source programming language project sponsored by Mozilla,

is a relatively new and popular programming language that aims to (and does, in

many cases) solve exactly the kind of problems identified in chapter 6. However,

the motivations for it are related to memory safety, not based in a desire for simple

(abstract) reasoning.

Specifically, the developers of Rust identified that shared data (e.g., in the form

of aliases) is a primary source of problems such as dangling pointers and memory

leaks. It aims to solve these problems by introducing a statically-checked system of
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ownership and borrowing to ensure that immutable data is never mutated except when

the programmer really, really wants that behavior. Rust’s system of ownership and

borrowing have deep implications for alias control in programs and is quite nuanced,

so it will be discussed only at a high level here. Ownership in Rust follows three rules:

1. Each value in Rust has a variable called its owner

2. A value may have only one owner at a time

3. When an owner goes out of scope, its value is dropped (i.e., its memory is freed)

Assignment in Rust, by default, transfers ownership from the right hand side to

the left hand side. The semantics of Rust’s ownership transfer is similar—though not

identical—to the semantics of assignment with the std::move operation in C++.

Both Rust and C++ leave a moved-from right hand side with an undefined value; the

difference is that in Rust, a compile-time check ensures that no moved-from variable

is subsequently used before it is given a new value. A C++ compiler makes no such

checks.

In Rust, a variable may borrow ownership from another, in which case the second

variable is a reference to the first (borrowing does not introduce an alias directly—see

fig. 2.1). Borrows may be done mutably or immutably, and the rules for each vary.

Overall, borrowing in Rust follows three core rules:

1. There may be either one mutable reference or any number of immutable refer-

ences in scope for a given variable

2. A reference must always be valid (the value it refers to must not have been

dropped)
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3. Assignment may only be done to variables that are not borrowed from

4
s_ref

4
s

4
s

“Hello”

“Hello”
s owns the
value “Hello”.

s_ref is borrowing the
value “Hello” from s.

Figure 2.1: Visualizing borrowing in Rust.

In Rust, shared data is advertised (through the borrowing operator &) when

needed so that the programmer can reason more carefully about those portions of

code. All of the ownership and borrowing rules in Rust are enforced at compile time.

2.5.4 Pointer-Free Parallel Programming in ParaSail

ParaSail [135] addresses several of the issues raised in this dissertation, but in

the context of a new language. ParaSail was developed with two complementary

goals in mind: pointer-free and parallel programming. ParaSail unifies pointer-free

and parallel programming idioms by permitting the sharing of data across threads

explicitly only in cases where it is intended. Everywhere else there are no aliases.

2.5.5 Functional Languages and Immutable Data

A key insight of functional languages is that the exclusive use of immutable data

can eliminate a whole class of reasoning problems. Immutable types, of course, are

not limited to functional languages: as mentioned above, structs in Swift are im-

mutable by default. It is functional languages’ exclusive use of immutable types that
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makes them so attractive as targets for verification efforts [131]. While functional

programming has its benefits, the focus of this work is on developing and verifying

imperative programs.
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Chapter 3: Foundation and Soundness of Abstract

Non-Interference Specifications and Proof Rules for Parallel

Operation Calls

Parallel programs are notoriously difficult to prove correct because of the possib-

lity of interference among threads. The formal verification of such programs typ-

ically involves reasoning directly about the implementation of the objects in use

rather than relying solely on their behavioral specification. However, complex soft-

ware components in the real world are built in a layered fashion, reusing complex

high-level components (which themselves are built by reusing other high-level com-

ponents). Verification of the correctness of sequential programs built in this manner

typically proceeds in a modular fashion, using the behavioral specification—and not

the implementation—of the components that are used. Unfortunately, such modular

reasoning breaks down in a concurrent system because the underlying implementation

matters somewhat. For example, a reasonable behavioral specification for a queue

could be implemented in many ways, one of which might become corrupted when

multiple processes attempt to concurrently enqueue and another that guarantees a

consistent state no matter how many concurrent processes are modifying it. Of course,

only the second implementation would be useful in a concurrent system.
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This chapter proposes a sound basis for enhancing a behvarioral specification

with a non-interference specification to capture the conditions under which it is safe

to use a component in a parallel context. The verification that an implementation

meets such a non-interference specification can proceed modularly and without sac-

rificing abstraction (this advances the state of the art in the verification of parallel

programs). It is shown that the manner in which an implementation meets its non-

interference specification and is considered “safe” implies that the parallel execution

of non-interfering statements is equivalent to all possible sequential executions of

those statements.

3.1 A/P Calculus

A non-interference specification must identify, for each operation on an object,

under what conditions various pieces of the object’s state are affected (i.e., might have

their value changed), preserved (i.e., might have their value read), or ignored (i.e.,

are neither read from nor written to) by the execution of that operation. This section

introduces a calculus to facilitate formal reasoning about these effects independent

of their use in programs. An effect is modeled as a pair of sets (A,P ); despite

the apparent generality in the calculus, effects find their primary use in reasoning

about programs involving partitioned objects, in which some pieces of each object

are affected (corresponding to the ‘A’ set) and others are preserved (the ‘P ’ set).

Pieces of an object that are ignored by an effect are not in either the A or P sets of

that effect.

For example, consider the C++ program fragment in listing 3.1. The method

modifyX changes the value of p.x and reads but does not change the values of p.y
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Listing 3.1: C++ program fragment to illustrate a simple use of effects.

1 struct Point {
2 int x;
3 int y;
4 int z;
5 };
6

7 void modifyX(struct Point &p) {
8 p.x = p.x + p.y + p.z;
9 }

and p.z. In the A/P Calculus, its effect is summarized as the pair ({p.x}, {p.y, p.z}).

In this way, some information about the method’s implementation is exposed to the

client: just enough information that the client can make a decision about how to safely

use the method in a parallel program. Of course, objects in real-world programs are

typically far more complex than the Point struct in listing 3.1. The A/P Calculus is

general enough to serve as a useful reasoning tool both for simple structures such as

Point and for complex objects with rich abstraction of the kind used in real-world

programs. This generality is applied through the mechanisms described in sections 3.2

and 3.3.

This section is organized as follows. First, several definitions and simple lemmas

provide the structure of effects. That structure is then shown to be a lattice, and

finally a variety of interesting results about effects are proved.

3.1.1 Basic Definitions

Definition 3.1.1 (Effect). An effect is a pair of sets e = (A,P ).
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(e = )
,

A P

Figure 3.1: Visualization of the definition of an Effect.

Definition 3.1.2 (Target of an effect). The target of an effect e = (A,P ) is T(e) =

A ∪ P .

T(e) = A P

Figure 3.2: Visualization of the Target function.

Definition 3.1.3 (Reduction). The reduction of an effect e = (A,P ), denoted R(e),

is defined as follows.

R(e) = (A,P \ A)

(R(e) = )
,

A P

Figure 3.3: Visualization of the Reduction function.
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Definition 3.1.4 (Equivalence Modulo Reduction). The relation ≡R, defined as fol-

lows, is an equivalence relation:

e1 ≡R e2 ⇔ R(e1) = R(e2)

Definition 3.1.5 (Projection). The projection of an effect e = (A,P ) to a set S is

e|S = (A ∩ S, P ∩ S).

Definition 3.1.6 (Combined effect). The combined effect of two effects e1 = (A1, P1)

and e2 = (A2, P2), denoted e1 t e2, is defined as follows.

e1 t e2 = R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)

t = (
,

)A1 P1 A2 P2

A1

A2

P1

P2

Figure 3.4: Visualization of the Combined effect operation.

Definition 3.1.7 (Common effect). The common effect of two effects e1 = (A1, P1)

and e2 = (A2, P2), denoted e1 u e2, is defined as follows.

e1 u e2 = R
(
(A1 ∩ A2,T(e1) ∩ T(e2))

)
Definition 3.1.8 (The Is Covered By relation). The is covered by relation v on

effects e1 = (A1, P1), e2 = (A2, P2) is defined as follows.

e1 v e2 ⇔ (A1 ⊆ A2) ∧
(
T(e1) ⊆ T(e2)

)
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A1 P1A2 P2

e1 v e2

A1 P1A2

P2

¬(e1 v e2)

Figure 3.5: Visualization of the Is Covered By relation.

Definition 3.1.9 (The Does Not Interfere With relation). The does not interfere

with relation ‡ on effects e1 = (A1, P1), e2 = (A2, P2) is defined as follows.

e1 ‡ e2 ⇔
(
A1 ∩ T(e2) = ∅

)
∧
(
A2 ∩ T(e1) = ∅

)

A1
P1

A2
P2

e1 ‡ e2

A1
P1

A2
P2

¬(e1 ‡ e2)

Figure 3.6: Visualization of the Does Not interfere With relation.

Definition 3.1.10 (Well-formedness). An effect e = (A,P ) is well-formed if A∩P =

∅. e is well-formed with respect to a set S if e is well-formed and T(e) ⊆ S.

3.1.2 Basic Lemmas

Lemma 3.1.1. For effect e = (A,P ), T
(
R(e)

)
= T(e).
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Proof.

T
(
R(e)

)
= T

(
(A,P \ A)

)
(def. of R)

= A ∪ (P \ A) (def. of T)

= A ∪ P (appl. of ∪, \)

= T(e) (def. of T)

Lemma 3.1.2. For effects e1 = (A1, P1), e2 = (A2, P2),
(
e1 t R(e2) = e1 t e2

)
and(

e1 uR(e2) = e1 u e2

)
. That is, when computing t or u, R need only be applied once,

at the end, rather than at each individual step.

Proof.

e1 t R(e2) = R
(
(A1 ∪ A2,T(e1) ∪ T(R(e2)))

)
(def. of t)

= R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)
(lemma 3.1.1)

= e1 t e2 (def. of t)

e1 u R(e2) = R
(
(A1 ∩ A2,T(e1) ∩ T(R(e2)))

)
(def. of u)

= R
(
(A1 ∩ A2,T(e1) ∩ T(e2))

)
(lemma 3.1.1)

= e1 u e2 (def. of u)

Lemma 3.1.3. For effect e = (A,P ), R(e) is well-formed. That is, R is a transfor-

mation from ill-formed effects to well-formed effects.
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Proof.

A ∩ (P \ A) = ∅ (appl. of \,∩)

⇒ (A,P \ A) is well-formed (def. of well-formedness)

⇒ R(e) is well-formed (def. of R)

Lemma 3.1.4. Well-formedness is closed under |, R, t, and u.

Proof. We show each individually.

1. Well-formedness is closed under |. That is, for any well-formed effect e = (A,P )

and set S, e|S is well-formed.

e|S = (A ∩ S, P ∩ S) (def. of |)

⇒ (A ∩ S) ∩ (P ∩ S) = (A ∩ P ) ∩ (S ∩ S) (assoc., commut. of ∩)

⇒ (A ∩ S) ∩ (P ∩ S) = ∅ ∩ (S ∩ S) (well-formedness of e)

⇒ (A ∩ S) ∩ (P ∩ S) = ∅ (appl. of ∩)

⇒ (A ∩ S, P ∩ S) is well-formed (def. of well-formedness)

⇒ e|S is well-formed (def. of |)

2. Well-formedness is closed under R. That is, for any well-formed effect e, R(e)

is well-formed.

By lemma 3.1.3, the reduction of any effect (including well-formed ones) is

well-formed. Therefore, well-formedness is closed under R.

3. Well-formedness is closed under t and u. That is, for any well-formed effects

e1, e2, e1 t e1 and e1 u e2 are both well-formed.
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By the definitions of t and u, e1t e2 and e1u e2 are each the result of applying

R to some effect. By lemma 3.1.3, the reduction of any effect is well-formed.

Therefore well-formedness is closed under t and u.

Lemma 3.1.5. The operations t and u are associative and commutative.

Proof. 1. t is associative. Given effects e1 = (A1, P1), e2 = (A2, P2), e3 = (A3, P3):

e1 t (e2 t e3)

= e1 t R
(
(A2 ∪ A3,T(e2) ∪ T(e3))

)
(def. of t)

= e1 t
(
A2 ∪ A3,T(e2) ∪ T(e3)

)
(lemma 3.1.2)

= R
(
(A1 ∪ (A2 ∪ A3),T(e1) ∪ (T(e2) ∪ T(e3)))

)
(def. of t)

= R
(
((A1 ∪ A2) ∪ A3, (T(e1) ∪ T(e2)) ∪ T(e3))

)
(assoc. of ∪)

=
(
A1 ∪ A2,T(e1) ∪ T(e2)

)
t e3 (def. of t)

= R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)
t e3 (lemma 3.1.2)

= (e1 t e2) t e3 (def. of t)

2. t is commutative. Given effects e1 = (A1, P1), e2 = (A2, P2):

e1 t e2 = R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)
(def. of t)

= R
(
(A2 ∪ A1,T(e2) ∪ T(e1))

)
(commut. of ∪)

= e2 t e1 (def. of t)
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3. u is associative. Given effects e1 = (A1, P1), e2 = (A2, P2), e3 = (A3, P3):

e1 u (e2 u e3)

= e1 u R
(
(A2 ∩ A3,T(e2) ∩ T(e3))

)
(def. of u)

= e1 u
(
A2 ∩ A3,T(e2) ∩ T(e3)

)
(lemma 3.1.2)

= R
(
(A1 ∩ (A2 ∩ A3),T(e1) ∩ (T(e2) ∩ T(e3)))

)
(def. of u)

= R
(
((A1 ∩ A2) ∩ A3, (T(e1) ∩ T(e2)) ∩ T(e3))

)
(assoc. of ∩)

=
(
A1 ∩ A2,T(e1) ∩ T(e2)

)
u e3 (def. of u)

= R
(
(A1 ∩ A2,T(e1) ∩ T(e2))

)
u e3 (lemma 3.1.2)

= (e1 u e2) u e3 (def. of u)

4. u is commutative. Given effects e1 = (A1, P1), e2 = (A2, P2):

e1 u e2 = R
(
(A1 ∩ A2,T(e1) ∩ T(e2))

)
(def. of u)

= R
(
(A2 ∩ A1,T(e2) ∩ T(e1))

)
(commut. of ∩)

= e2 u e1 (def. of u)

3.1.3 The A/P Lattice

Effects form a lattice with join and meet operations t and u. While the lattice is

defined here only for well-formed effects, it could be analogously defined for equiva-

lence classes of effects under ≡R, and indeed that formulation might be preferred for

some applications.
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Notation

Beginning in this section we adopt the following definitions and notational conve-

niences, which are used for the remainder of this chapter.

• S is some set

• ES = {e : e is a well-formed effect with respect to S} (when S is understood or

irrelevant, it is left out and we refer simply to E)

• ⊥ = (∅, ∅) is the empty effect

• >S = (S, ∅) is the total effect (when S is understood or irrelevant, it is left out

and we refer simply to >)

• LS = (ES,t,u,⊥,>S) (when S is understood or irrelevant, it is left out and

we refer simply to L)

⊥

e1 u e2

e1 e2

e1 t e2

>

v

v

Figure 3.7: The effects lattice L.
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Theorem 1 (Well-formed effects form a lattice). For all S, LS is a bounded lattice

over ES with operations t and u, least element ⊥, and greatest element >S.

Proof. We show that (E,t,u) is a lattice, then show that ⊥ and > are its bounds.

First, by lemma 3.1.4, E is closed under t and u. (To be precise, the lemma states

that the set of all well-formed effects is closed under those operations. However, the

proofs that T(e1 t e2) ⊆ S and that T(e1 u e2) ⊆ S for e1, e2 ∈ ES are trivial.)

Claim 1. (E,t,u) is a lattice.

Proof. By lemma 3.1.5, the operations t and u are associative and commutative.

For these operations to form a lattice, they must additionally satisfy the absorption

properties for effects e1 = (A1, P1) and e2 = (A2, P2) in E:

1. e1 t (e1 u e2) = e1

e1 t (e1 u e2)

= e1 t R
(
(A1 ∩ A2,T(e1) ∩ T(e2))

)
(def. of u)

= e1 t
(
A1 ∩ A2,T(e1) ∩ T(e2)

)
(lemma 3.1.2)

= R
(
(A1 ∪ (A1 ∩ A2),T(e1) ∪ (T(e1) ∩ T(e2)))

)
(def. of t)

= R
(
(A1,T(e1))

)
(appl. of ∩,∪)

= R
(
(A1, A1 ∪ P1)

)
(def. of T)

= (A1, (A1 ∪ P1) \ A1) (def. of R)

=
(
A1, (A1 \ A1) ∪ (P1 \ A1)

)
(distrib. of \)

= (A1, P1 \ A1) (appl. of \,∪)

= (A1, P1) (def. of well-formedness, appl. of \)

= e1 (def. of effect)
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2. e1 u (e1 t e2) = e1

e1 u (e1 t e2)

= e1 u R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)
(def. of t)

= e1 u
(
A1 ∪ A2,T(e1) ∪ T(e2)

)
(lemma 3.1.2)

= R
(
(A1 ∩ (A1 ∪ A2),T(e1) ∩ (T(e1) ∪ T(e2)))

)
(def. of u)

= R
(
(A1,T(e1))

)
(appl. of ∩,∪)

= R
(
(A1, A1 ∪ P1)

)
(def. of T)

= (A1, (A1 ∪ P1) \ A1) (def. of R)

=
(
A1, (A1 \ A1) ∪ (P1 \ A1)

)
(distrib. of \)

= (A1, P1 \ A1) (appl. of \,∪)

= (A1, P1) (def. of well-formedness, appl. of \)

= e1 (def. of effect)

Therefore, (E,t,u) is a lattice. �

Claim 2. The empty effect ⊥ = (∅, ∅) is the identity of t. That is, ∀e ∈ E : et⊥ = e.

Proof. ⊥ ∈ E because ∅ ∩ ∅ = ∅ (so ⊥ is well-formed) and ∅ ∪ ∅ ⊆ S (so T(⊥) ⊆ S).

Given effect e = (A,P ) s.t. e ∈ E,

e t ⊥ = R
(
(A ∪ ∅,T(e) ∪ T(⊥))

)
(def. of t)

= R
(
(A ∪ ∅,T(e) ∪ ∅)

)
(def. of T)

= R
(
(A,T(e))

)
(identity of ∪)

= (A,T(e) \ A) (def. of R)

= (A, (A ∪ P ) \ A) (def. of T)
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=
(
A, (A \ A) ∪ (P \ A)

)
(distrib. of \)

=
(
A, ∅ ∪ (P \ A)

)
(appl. of \)

= (A,P \ A) (identity of ∪)

= (A,P ) (def. of well-formedness, appl. of \)

= e (def. of effect)

�

Claim 3. The total effect > = (S, ∅) is the identity of u. That is, ∀e ∈ E : eu> = e.

Proof. > ∈ E because S ∩ ∅ = ∅ (so > is well-formed) and S ∪ ∅ ⊆ S (so T(>) ⊆ S).

Given effect e = (A,P ) s.t. e ∈ E,

e u > = R
(
(A ∩ S,T(e) ∩ T(>))

)
(def. of u)

= R
(
(A ∩ S,T(e) ∩ S)

)
(def. of >)

= R
(
(A,T(e))

)
(appl. of ∩)

= (A,T(e) \ A) (def. of R)

= (A, (A ∪ P ) \ A) (def. of T)

=
(
A, (A \ A) ∪ (P \ A)

)
(distrib. of \)

=
(
A, ∅ ∪ (P \ A)

)
(appl. of \)

= (A,P \ A) (identity of ∪)

= (A,P ) (def. of well-formedness, appl. of \)

= e (def. of effect)

�

Therefore, LS = (ES,t,u,⊥,>S) is a bounded lattice.
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Theorem 2 (Ordering on L). For all S, v is a partial order induced by LS.

Proof. To show that v orders LS for any S, it suffices to show that

∀e1, e2 : e1, e2 ∈ ES : e1 v e2 ⇔ e1 t e2 = e2.

⇒

e1 v e2 ⇒

e1 t e2 = R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)
(def. of t)

= R
(
(A2,T(e2))

)
(def. of v, appl. of ∪)

= R
(
(A2, A2 ∪ P2)

)
(def. of T)

= (A2, (A2 ∪ P2) \ A2) (def. of R)

=
(
A2, (A2 \ A2) ∪ (P2 \ A2)

)
(distrib. of \)

=
(
A2, ∅ ∪ (P2 \ A2)

)
(appl. of \)

= (A2, P2 \ A2) (identity of ∪)

= (A2, P2) (def. of well-formedness, appl. of \)

= e2 (def. of effect)

⇐

e1 t e2 = e2

⇒ R
(
(A1 ∪ A2,T(e1) ∪ T(e2))

)
= e2 (def. of t, effect)

⇒
(
A1 ∪ A2, (T(e1) ∪ T(e2)) \ (A1 ∪ A2)

)
= e2 (lemma 3.1.1)

⇒ A1 ∪ A2 = A2 ∧
(
T(e1) ∪ T(e2)

)
\ (A1 ∪ A2) = P2 (def. of effect)

⇒ A1 ∪ A2 = A2 ∧
(
(A1 ∪ P1) ∪ (A2 ∪ P2)

)
\ (A1 ∪ A2) = P2 (def. of T)
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⇒ A1 ∪ A2 = A2 ∧
(
(A1 ∪ A2) ∪ (P1 ∪ P2)

)
\ (A1 ∪ A2) = P2

(assoc., commut. of ∪)

⇒ A1 ∪ A2 = A2 ∧
(
A2 ∪ (P1 ∪ P2)

)
\ A2 = P2 (substitution)

⇒ A1 ⊆ A2 ∧
(
A2 ∪ (P1 ∪ P2)

)
\ A2 = P2 (appl. of ∪)

⇒ A1 ⊆ A2 ∧ P1 ∪ P2 = P2 (appl. of \)

⇒ A1 ⊆ A2 ∧ P1 ⊆ P2 (appl. of ∪)

⇒ A1 ⊆ A2 ∧ (A1 ∪ P1) ⊆ (A2 ∪ P2) (appl. of ∪)

⇒ A1 ⊆ A2 ∧ T(e1) ⊆ T(e2) (def. of T)

⇒ e1 v e2 (def. of v)

Theorem 3 (L is distributive). For all well-formed effects e1 = (A1, P1), e2 =

(A2, P2), e3 = (A3, P3):

e1 u (e2 t e3) = (e1 u e2) t (e1 u e3)

Proof.

e1 u (e2 t e3) = e1 u R
(
(A2 ∪ A3,T(e2) ∪ T(e3))

)
(def. of t)

= e1 u
(
A2 ∪ A3,T(e2) ∪ T(e3)

)
(lemma 3.1.2)

= R
(
(A1 ∩ (A2 ∪ A3),T(e1) ∩ (T(e2) ∪ T(e3)))

)
(def. of u)

= R
(
((A1 ∩ A2) ∪ (A1 ∩ A3), (T(e1) ∩ T(e2)) ∪ (T(e1) ∩ T(e3)))

)
(dist. of ∩)

=
(
A1 ∩ A2,T(e1) ∩ T(e2)

)
t
(
A1 ∩ A3,T(e1) ∩ T(e3)

)
(def. of t)

= R
(
(A1 ∩ A2,T(e1) ∩ T(e2))

)
t R

(
(A1 ∩ A3,T(e1) ∩ T(e3))

)
(lemma 3.1.2)

= (e1 u e2) t (e1 u e3) (def. of u)
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3.1.4 Other Lemmas about Effects

Lemma 3.1.6. For effect e, R(e) v e.

Proof. Let R(e) = (AR, PR) and e = (A,P ).

AR = A ∧ T
(
R(e)

)
= T(e) (def. of R, lemma 3.1.1)

⇒ AR ⊆ A ∧ T
(
R(e)

)
⊆ T(e) (appl. of ⊆)

⇒ R(e) v e (def. of v)

Lemma 3.1.7. The ‡ relation is symmetric. That is, for effects e1 = (A1, P1), e2 =

(A2, P2), e1 ‡ e2 ⇔ e2 ‡ e1.

Proof.

e1 ‡ e2

⇔
(
A1 ∩ T(e2) = ∅

)
∧
(
A2 ∩ T(e1) = ∅

)
(def. of ‡)

⇔
(
A2 ∩ T(e1) = ∅

)
∧
(
A1 ∩ T(e2) = ∅

)
(commut. of ∧)

⇔ e2 ‡ e1 (def. of ‡)

Lemma 3.1.8. For effects e1 = (A1, P1), e2 = (A2, P2), e3 = (A3, P3),

e1 ‡ e2 ∧ e3 v e1 ⇒ e3 ‡ e2
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Proof.

e1 ‡ e2 ∧ e3 v e1

⇒ A1 ∩ T(e2) = ∅ ∧ A2 ∩ T(e1) = ∅ ∧ e3 v e1 (def. of ‡)

⇒

A1 ∩ T(e2) = ∅ ∧ A2 ∩ T(e1) = ∅ ∧

A3 ⊆ Ae1 ∧ T(e3) ⊆ T(e1)

 (def. of v)

⇒ A3 ∩ T(e2) = ∅ ∧ A2 ∩ T(e3) = ∅ (appl. of ⊆, substitution)

⇒ e3 ‡ e2 (def. of ‡)

Lemma 3.1.9. For effects e1 = (A1, P1), e1 = (A2, P2),

e1 v e2 ⇔ R(e1) v R(e2)

Proof. Let R(e1) = (AR1 , PR1) and R(e2) = (AR2 , PR2). Then by the definition of R

and lemma 3.1.1, we have:

(AR1 = A1) ∧ (AR2 = A2) ∧
(
T(R(e1)) = T(e1)

)
∧
(
T(R(e2)) = T(e2)

)
.

e1 v e2

⇔ A1 ⊆ A2 ∧ T(e1) ⊆ T(e2) (def. of v)

⇔ AR1 ⊆ AR2 ∧ T(e1) ⊆ T(e2) (substitution)

⇔ AR1 ⊆ AR2 ∧ T
(
R(e1)

)
⊆ T

(
R(e2)

)
(substitution)

⇔ R(e1) v R(e2) (def. of R)
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Lemma 3.1.10. For a function f : D → R, let F : ℘(D) → ℘(R) be defined as

F (X) = {f(x) : x ∈ X}, the element-wise application of f to X, a subset of D. Then

for all A1, P1, A2, P2 such that A1, P1, A2, P2 ⊆ D and all f : D → R for some R,

(
F (A1), F (P1)

)
‡
(
F (A2), F (P2)

)
⇒ (A1, P1) ‡ (A2, P2).

Proof. We show the contrapositive, i.e.,

¬
(
(A1, P1) ‡ (A2, P2)

)
⇒ ¬

(
(F (A1), F (P1)

)
‡
(
F (A2), F (P2))

)
.

¬(
(
(A1, P1) ‡ (A2, P2)

)
⇒ ∃x : x ∈ T

(
(A1, P1)

)
∧ x ∈ A2 (def. of ‡, appl. of ¬)

⇒ ∃x : x ∈ T
(
(A1, P1)

)
∧ x ∈ A2 ∧ f(x) ∈ T

(
(F (A1), F (P1))

)
∧ f(x) ∈ F (A2)

(def. of F )

⇒ ¬
(
(F (A1), F (P1)) ‡ (F (A2), F (P2))

)
(def. of ‡)

Therefore,
(
F (A1), F (P1)

)
‡
(
F (A2), F (P2)

)
⇒
(
(A1, P1) ‡ (A2, P2)

)
.

Remark. Observe that converse of the conditional in lemma 3.1.10 is not true be-

cause when (A1, P1)‡(A2, P2) there might be some x, y such that x 6= y∧x ∈ A1∧y ∈

A2 but f(x) = f(y), and thus that F (A1) ∩ F (A2) 6= ∅, so ¬
(
(F (A1), F (P1)) ‡

(F (A2), F (P2))
)
.

3.2 Understanding Effects in Context

Effects are not particularly interesting without context. However, when combined

with a formal description of programs, they enable the proof of non-trivial properties

of parallel programs, such as the fact that statements with non-interfering effects

commute (theorem 4 in section 3.4).
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Notation

While most of the notation used here is standard, there are a few notable excep-

tions.

• The ∈ (“is element of”) relation is overloaded to be meaningful for sequences

as well as sets, in the obvious way.

• Expressions such as x.T refer to the component of tuple x named T in the

definition of x.

• The notation [x : T ] is taken to mean “the type associated with object x is T ,”

i.e., x.T = T .

• A parenthesized zero-subscript such as in σ(0) is taken to mean “with every

occurence of a variable x replaced with x0”.

• [seq1 → seq2] is taken to mean “with each occurence of a variable in seq1

replaced with the corresponding variable in seq2”.

• 〈a1, a2, . . . 〉 denotes an ordered sequence, and ◦ is sequence concatenation.

• σ
s−→ σ′ means roughly “statement s takes state σ to state σ′”. It is formally

defined in eq. (3.3) on page 53.

3.2.1 Definitions

Definition 3.2.1 (Object). An object x = (T,R) is a tuple consisting of a type T

and a realization R.

Definition 3.2.2 (Type). A type T = (V, v0,Op) is a tuple consisting of a (possibly

infinite) set of values V , initial value v0 ∈ V , and a sequence Op of operation contracts.
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Definition 3.2.3 (State). A state for a universe of objects X is a function σ : X →(⋃
T,R : (T,R) ∈ X : T.V

)
such that each object x = (T,R) has a value σ(x) ∈ T.V .

Definition 3.2.4 (State Space). The state space σ̂(X) for a universe of objects X is

the set of all possible states on the objects in X.

Definition 3.2.5 (Partition). A partition of a universe of objects X is a function P

from X to nonempty finite sets.

Definition 3.2.6 (Collective Partition). The collective partition P̂(X) of a universe

of objects X is

P̂(X) =
⋃

x : x ∈ X : P(x).

Definition 3.2.7 (Operation Contract). An operation contract o = (i, π, pre, post , S)

is a tuple consisting of an identifier i, a sequence of parameters (i.e., objects) π, a

precondition predicate pre, a postcondition predicate post , and a specified effect S.

Definition 3.2.8 (Specified Effect). For an operation contract o = (i, π, pre, post , S),

the specified effect is a function S : σ̂(π)→
{

(A,P ) : T
(
(A,P )

)
⊆ P̂(π)

}
.

Definition 3.2.9 (Realization). The realization of object x = (T,R) is a tuple

R = (B,F, I, C, I) consisting of a sequence B of operation bodies (i.e., sequences

of program statements), a set F of fields (i.e., objects), a representation invariant

I : σ̂(F ) → {true, false}, an abstraction relation C ⊆ σ̂(F ) × T.V , and a function

I : σ̂(F )× P̂(F )→ P(x).

Definition 3.2.10 (Actual Effect). The actual effect of an operation body b with

parameters π for some σ ∈ σ̂(π), denoted Aσ(b), is the combined effect of each

statement in b that is executed when b starts with its parameters having the values

in σ. Details of its structure are below, in section 3.2.3.
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Definition 3.2.11 (The Implements relation). An operation body b implements an

operation contract o = (i, π, pre, post , S), denoted b 7→ o, if

∀σ, σ′ : σ b−→ σ′ ⇒ σ
o(π)−−→ σ′

A realization R = (B,F, I, C, I) implements a type T = (V, v0,Op), denoted

R 7→ T , if

∀i : 0 ≤ i < |Op| : Bi 7→ Opi.

Definition 3.2.12 (The Respects relation). An operation body b respects an opera-

tion contract o = (i, π, pre, post , S), denoted b� o, if

∀σ : σ ` pre : Aσ(b) v S(σ).

A realization R = (B,F, I, C, I) respects a type T = (V, v0,Op), denoted R � T ,

if

∀i : 0 ≤ i < |Op| : Bi � Opi.

Definition 3.2.13 (Validity). An operation body b is valid for an operation contract

o if b 7→ o ∧ b� o.

A realization R is valid for a type T if every operation body is valid for the

corresponding contract in T .

3.2.2 Well-Formedness Conditions

Definition 3.2.14 (Well-formedness of specified effects). A specified effect S is well-

formed if
(
∀σ : S(σ) is well-formed

)
. S is well-formed with respect to a set T if S is

well-formed and
(
∀σ : T(S(σ)) ⊆ T

)
.

Definition 3.2.15 (Well-formedness of operation contracts). An operation contract

o = (i, π, pre, post , S) is well-formed if:
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1. Every identifier in π is unique

2. Every free variable in pre is in π

3. Every free variable in post is of the form x or x0 where x is in π

4. S is well-formed with respect to P̂(π)

Definition 3.2.16 (Well-formedness of types). A type T = (V, v0,Op) is well-formed

if each contract in Op is well-formed.

Definition 3.2.17 (Well-formedness of objects). An object x = (T,R) is well-formed

if T is well-formed and R is valid for T .

Hereafter, we are concerned only with well-formed objects and operation contracts.

3.2.3 Programs

The above definitions amount to a model of programming on which a language can

be built. A program in this model consists of a sequence of statements. Each state-

ment is a control structure (e.g., a conditional statement or a loop) or an operation

call that has some number of arguments that correspond to that operation’s parame-

ters. Each statement has a behavior and an effect. For an operation call, the behavior

of the statement is some relation on the values of the arguments, derived from the

behavioral specification (e.g., pre- and post-conditions).2 Effects are derived from

a non-interference specification (part of an operation contract) and are manipulated

via the A/P Calculus introduced in section 3.1. An operation is implemented by an

operation body, a sequence of statements involving the parameters of the operation.

2Behavioral specifications and verification are discussed at length in the literature [68, 79, 115,
106, 110]; it is assumed that there is a mechanism by which a program may be reasoned about, that
is, there is a definition of correctness and a formal semantics.
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3.3 The Language

We define a simple programming language (along with its semantics with respect

to effects) that enables the computation of the actual effect of an operation body

beginning in a particular state. The grammar for the language is in fig. 3.8.

〈body〉 ::= operation 〈op-name〉(〈id-list〉): 〈stmt〉 end Operation
Body

〈id-list〉 ::= 〈id〉, 〈id-list〉 Identifier List
| 〈id〉 Identifier

〈stmt〉 ::= ε Empty Statement
| 〈simp-stmt〉; Simple Statement
| 〈stmt〉1 〈stmt〉2 Sequential Composition
| if 〈id〉 then 〈stmt〉1 else 〈stmt〉2 end If Statement
| while 〈id〉 do 〈stmt〉 end While Statement
| cobegin 〈par-block〉 end Cobegin Statement

〈simp-stmt〉 ::= 〈type-id〉 〈id〉 Variable Introduction
| 〈id〉1 :=: 〈id〉2 Swap
| 〈op-call〉

〈op-call〉 ::= 〈op-name〉 (〈id-list〉) Operation Call

〈par-block〉 ::= 〈op-call〉 ‖ 〈par-block〉 Parallel Block
| 〈op-call〉

Figure 3.8: Context-free grammar for our programming language.

It is important to note that this language is just one possible programming lan-

guage that implements the programming model from section 3.2. There is nothing in

this work that fundamentally requires this particular language, although semantics

are—in this chapter—defined concretely in its terms. (In fact subsequent chapters
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make use of a fully-fledged language called RESOLVE [110, 62, 45, 126] to implement

these ideas.)

One nonstandard restriction placed on the structure of programs in a language

that implements the programming model from section 3.2 is that an 〈id-list〉 must

consist of unique 〈id〉s. This restriction is left implicit in the inference rules below to

improve readability.

3.3.1 Parameter Passing and Aliases

The language above, by design, does not premit aliases in the usual sense although

parameter passing in the language is, strictly speaking, by reference. However, param-

eter passing by reference might be said to introduce an alias (between the argument

and the formal parameter) even though the two names are not in scope at the same

time. In sequential programs, this cannot introduce unsoundness to reasoning with

value semantics (that is, as if there were no references). Unsoundness can arise,

however, when concurrency is introduced such as by a cobegin statement in which

several parallel operation calls share an argument. If several parallel operation calls

attempt to mutate the same object, it could produce an inconsistent state that does

not satisfy the representation invariant of that object. A consequence of the results

proven below in section 3.4 is that given pairwise non-interference between the spec-

ified effects of 〈op-call〉s in a 〈par-block〉, the value of an object is always well-defined

even in the presence of such data sharing among threads.

46



It is due to this tension between reasoning about sequential and concurrent pro-

grams that the language has two conceptual parameter passing mechanisms. Argu-

ments to operation calls in cobegin statements are reasoned about using pass-by-

reference semantics, while arguments to all other operation calls use pass-by-swapping

semantics. Under pass-by-swapping, each argument is swapped into the correspond-

ing formal parameter at the point of the call—leaving the argument with an initial

value for its type—and that formal parameter is swapped back to the argument at

the end of the operation. Such a reasoning “shortcut” guarantees that in a sequential

program there is never a time at which there are two names for the same object—

even names that are not simultaneously in scope. Pass-by-swapping also sidesteps

the well-known repeated arguments problem [92] because it provides for well-defined

semantics when the same argument is provided several times to the same operation

call.

While alias freedom may seem like a too-restrictive condition to place on programs,

it has been shown that real-world software can be built entirely without aliases [81]

and when they are absolutely necessary, aliases may be dealt with as a special case

[132]. Several popular modern programming languages, in fact, have mechanisms

to enable alias-free programming [89, 78] and can require the programmer to put in

extra work to introduce aliases. In our programming model, the alias-free restriction

manifests in the following axiom.

Axiom 1 (Alias Freedom). For any two distinct objects x, y in scope, P(x)∩P(y) = ∅.
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3.3.2 Primitive Operations

Without additional machinery, programs in the model of section 3.2 have no

lowest-level implementation because everything is implemented in terms of something

else. Therefore, it is necessary to ground these programs with primitive operations

that do not themselves have operation bodies. Each primitive operation is atomic: it

occurs in one “step” of execution and it operates on entire objects rather than pieces

of objects. A primitive operation in any language that implements our programming

model is a refinement of the contract below for Prim.



i : Prim,

π : πA ◦ πP ,

pre : true,

post : ∀x : x ∈ πP : x = x0

S(σ) :
(
P̂(πA), P̂(πP )

)


(Prim)

3.3.3 Possible Primitive Operations

Although the Prim contract is quite general, there are two specific primitive

operations that are used in the language of fig. 3.8. These operations are Init and

Swap.

The Init Operation

The first primitive operation in the language is the Init operation. Its contract

is below.
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

i : Init,

π : 〈T, x〉,

pre : true,

post : x = T.v0,

S(σ) :
(
P(x), ∅

)


(Init)

The Init operation sets the value of its argument to the initial value for its type.

It is used implicitly in variable introduction statements.

The Swap Operation

The other primitive operation is Swap, with the following contract.



i : Swap,

π : 〈x, y〉,

pre : true,

post : (x = y0 ∧ y = x0),

S(σ) :
(
P(x) ∪ P(y), ∅

)


(Swap)

The Swap operation is used implicitly by the :=: operator in the language.

3.3.4 Using the Language

Although the language of fig. 3.8 is essentially a toy language for showing proof

of concept, it is reasonably complete in the sense that it can be used to write any

program (although those programs may be quite verbose).
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Example: Defining a Constant

A constant can be implemented within the language by defining a new type for

each value a programmer wishes to use. For example, the integral constant 42 is

implemented by the type C42 in eq. (3.1); it is instantiated by a variable introduction

statement such as “C42 FORTY_TWO;”.

C42 =
(
{42}, 42, 〈〉

)
(3.1)

Example: Implementing Bit

Using the primitive operations (Swap) and (Init), one could implement any

other component. For example, it is quite easy to implement a single bit that provides

two operations (Set and Unset, defined below) using the primitive operations in the

language (listing 3.2). Objects of type Bit (eq. (3.2)) have a singleton partition, that

is, ∀b : [b : Bit] : P(b) = {b}.

Bit =
(
{true, false}, false, 〈Set, Unset〉

)
(3.2)



i : Set,

π : 〈b〉,

pre : [b : Bit],

post : b,

S(σ) :
(
{b}, ∅

)


(Set)
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

i : Unset,

π : 〈b〉,

pre : [b : Bit],

post : ¬b,

S(σ) :
(
{b}, ∅

)


(Unset)

The implementation begins by defining two constant types, T TYPE and F TYPE

as follows.

T TYPE =
(
{true}, true, 〈〉

)
F TYPE =

(
{false}, false, 〈〉

)
The operation bodies for the two Bit operation contracts are in listing 3.2.

Listing 3.2: Valid operation bodies for (Set) and (Unset).

1 operation Set(b) :
2 T_TYPE TRUE;
3 b :=: TRUE;
4 end
5

6 operation Unset(b) :
7 F_TYPE FALSE;
8 b :=: FALSE;
9 end

Example: Layering Implementations

Observe that by using objects of type Bit, it is possible to implement a function-

ally complete set of logical operators (e.g., by implementing NOR, denoted by ↓), and
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therefore to simulate a computer.3 For example, the operation body in listing 3.3 is

valid for the operation contract (Nor).



i : Nor,

π : 〈a, b〉,

pre :
(
[a : Bit] ∧ [b : Bit]

)
,

post :
(
(a = a0 ↓ b0) ∧ b = b0

)
,

S(σ) :
(
{a}, {b}

)


(Nor)

Listing 3.3: Valid operation body for (Nor).

1 operation Nor(a, b) :
2 if a then
3 Unset(a);
4 else
5 if b then
6 Unset(a);
7 else
8 Set(a);
9 end

10 end
11 end

3.3.5 Behavioral Semantics

In this section, the semantics of the language discussed in section 3.3 are formal-

ized. The behavior of a statement s is notated with
s−→ (3.3), a (non-total) relation

between states defined by post(s). The relation is restricted by pre(s)—that is, σ
s−→ σ′

is only defined when σ ` pre(s). For an operation call, pre(s) and post(s) are equal

3It is in this respect that we mean the programming model is “reasonably complete”—it can be
used to simulate any other programming model, though no rigorous proof is given to this effect.
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to the pre and post predicates in the contract for the operation.

σ
s−→ σ′ ⇔

(
σ ` pre(s) ∧ σ(0), σ

′ ` post(s)
)

(3.3)

Frame Rule

There is an enormous body of work on formalizing the semantics of programming

languages, so most of the rules below (3.5–14) are not too interesting. One deviation

from standard semantics is the formulation of the frame rule. Typically, a frame rule

is formulated in terms of objects and their memory footprints; here it is defined in

terms of partitioned objects and effects on those objects.

Frame Rule

σ
s−→ σ′ Aσ(s).A ∩ P(x) = ∅

σ(x) = σ′(x)
(3.4)

The rule for sequential composition (3.10) is slightly awkward because it accounts

for relational behavior and the semantics of 〈par-block〉 in eq. (3.14) is perhaps surpris-

ing. The parallel composition of two statements is modeled as an arbitrary interleav-

ing of the constituent instructions within those statements. Informally, the rule for

〈par-block〉 states that whenever the operation calls in 〈par-block〉 are non-interfering,

if the precondition of any permutation of the calls in 〈par-block〉 is satisfied by state

σ then the resultant state σ′ satisfies the postcondition of every permutation of the

calls in 〈par-block〉.4 The soundness of these semantics is a consequence of the results

from section 3.4.

The “context” or “environment” for the rules below is provided as a pair (X,M),

a symbol table consisting of X, the objects in scope, and M , the operation contracts

4Strictly speaking, the rule as written only considers permutations where 〈op-call〉 is the first
or last call in the sequence. This does not compromise soundness, and is notationally convenient.
Theorem 4 does not restrict permutations in this way.
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in scope. The context is changed only by eq. (3.7), in which X grows to X ′ (in all

other rules X = X ′). Finally, σ ∈ σ̂(X) and σ′ ∈ σ̂(X ′).

Semantics of Operation Body

b = operation Op(ids): s end σ ` pre σ
s−→ σ′

σ
b−→ σ′

(3.5)

Semantics of ε

σ
ε−→ σ

(3.6)

Semantics of Variable Introdudction

σ = σ′ �X X ∪ {x} = X ′ [x : T ] σ′(x) = T.v0

σ
T x;−−→ σ′

(3.7)

Semantics of Swap

σ = σ′[〈x, y〉 → 〈y, x〉]
σ

x:=:y−−−→ σ′
(3.8)

Semantics of Operation Call(
Op, π, pre, post , S

)
∈M σ ` pre[π → ids ] σ(0), σ

′ ` post [π → ids ]

σ
Op(ids);−−−−→ σ′

(3.9)

Semantics of Sequential Composition

∀σ′ : σ s1;−→ σ′ : σ′ ` pre(s2) ∀σ′ : σ′ s2;−→ σ′′ : σ(0), σ
′ ` post(s1)

σ
s1;s2;−−−→ σ′′

(3.10)

Semantics of If Statement

σ(x)⇒ σ
s1;−→ σ′ ¬σ(x)⇒ σ

s2;−→ σ′

σ
if x then s1 else s2 end;−−−−−−−−−−−−−−→ σ′

(3.11)

Semantics of While Statement

σ(x)⇒ σ
s1; while x do s1 end;−−−−−−−−−−−−−→ σ′ ¬σ(x)⇒ σ

ε−→ σ′

σ
while x do s1 end;−−−−−−−−−−−→ σ′

(3.12)

Semantics of Cobegin

σ
par−−→ σ′

σ
cobegin par end;−−−−−−−−−→ σ′

(3.13)

54



Semantics of Parallel Block
Aσ(Op) ‡Aσ(par)

σ `
(
pre(Op; par ; ) ∨ pre(par ; Op; )

)
σ(0), σ

′ `
(
post(Op; par ; ) ∧ post(par ; Op; )

)
σ

Op‖par−−−−→ σ′

(3.14)

3.3.6 Defining the Effect of a Program

The actual effect of a statement (Aσ(s)) is defined for each kind of statement in

the language. Any agent that determines the actual effect of a statement must do

so in tandem with the determination of the behavior of that statement: the actual

effect depends on the values of the objects as derived from the behavioral semantics

in section 3.3.5.

It is frequently useful to apply the non-interference correspondence, I, of a re-

alization R = (B,F, I, C, I) to an entire effect e (rather than to a single piece of a

partition). For this purpose the related function Î : σ̂(F ) × E → E is defined as

follows, where E = {e : e is a well-formed effect}.

Î(σ, e) =

(
{I(σ, p) : p ∈ e|P̂(F ).A}, {I(σ, p) : p ∈ e|P̂(F ).P}

)
t(

{p : p ∈ (e.A \ P̂(F ))}, {p : p ∈ (e.P \ P̂(F ))}
) (3.15)

The actual effect of an operation body is defined by eq. (3.16) below. For that

rule, realization R = (B,F, I, C, I) is well-formed with respect to a specification

T = (V, v0,Op), operation contract o = (i, π, pre, post , S) is such that o ∈ O, and

σ ∈ σ̂(π).

The defintions of the actual effect for the other kinds of statements and expressions

are in eqs. (3.17–25) below. For each equation below, we are given S = (X,M) and

σ ∈ σ̂(X) (as in section 3.3.5).
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• Effect of Operation Body: b = operation Op(ids): s end

Aσ(b) = Î
(
σ,Aσ(s)

)
|P̂(ids) (3.16)

• Effect of Empty Statement: s = ε

Aσ(s) = ⊥ (3.17)

• Effect of Variable Introduction: s = T x;

Aσ(s) =
(
P(x), ∅

)
(3.18)

• Effect of Swap Statement: s = x :=: y;

Aσ(s) =
(
P(x) ∪ P(y), ∅

)
(3.19)

• Effect of Operation Call: s = Op(ids) where (Op, π, pre, post , S) is the

well-formed contract of some operation.

Aσ

(
s
)

= S(σ[ids → π])[π → ids ] (3.20)

• Effect of Sequential Composition: s = s1; s2

Aσ(s) = Aσ(s1) t
(⊔

σ′ : σ
s1−→ σ′ : Aσ′(s2)

)
(3.21)

• Effect of If Statement: s = if x then s1 else s2 end

Aσ(s) =
(
∅,P(x)

)
t

{
Aσ(s1)|P̂(X) σ(x)

Aσ(s2)|P̂(X) ¬σ(x)
(3.22)

• Effect of While Statement: s = while x do s1 end

Aσ(s) =
(
∅,P(x)

)
t

{
Aσ(s1; s)|P̂(X) σ(x)

⊥ ¬σ(x)
(3.23)
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• Effect of Cobegin Statement: s = cobegin par end

Aσ(s) = Aσ(par) (3.24)

• Effect of Parallel Block: s = Op‖par

Aσ(s) = Aσ(Op) tAσ(par) (3.25)

3.4 Results

Through the combination of the A/P Calculus of section 3.1 and the programming

model and language of sections 3.2 and 3.3, it can be shown that non-interfering

statements always commute. These results have implications for reasoning about

and verifiying the correctness of parallel programs in languages that implement the

programming model described above.

Lemma 3.4.1 states that any object not mentioned in a statement is not in the

target of the actual effect of that statement; by the frame rule, then, any object

not mentioned in a statement does not have its value changed by that statement.

It is useful in applying the frame rule even to objects that are not mentioned in a

statement.

Lemma 3.4.1. For any statement s, state σ, and object x not mentioned in s,

T
(
Aσ(s)

)
∩ P(x) = ∅.

Proof. We proceed by induction on s.

Base Cases

• s = ε (empty statement).

By eq. (3.17), T
(
Aσ(s)

)
= ∅ and the lemma is trivially true.
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• s = T y (variable introduction).

By eq. (3.18), T
(
Aσ(s)

)
= P(y). If x is not mentioned in s, then x 6= y.

Therefore, T
(
Aσ(s)

)
∩ P(x) = ∅.

• s = y :=: z (swap statement).

By eq. (3.19), T(Aσ(s)
)

= P(y) ∪ P(z). It x is not mentioned in s, then x 6= y

and x 6= z. Therefore, T
(
Aσ(s)

)
∩ P(x) = ∅.

• s = Op(ids) (operation call).

By well-formedness definitions 3.2.14 and 3.2.15 and eq. (3.20), if x is not men-

tioned in s then T
(
Aσ(s)

)
∩ P(x) = ∅.

Inductive Step

For induction, assume that s1 and s2 are such that x does not appear in either

statement (and thus have the property that T
(
Aσ(s1)

)
∩ P(x) = ∅ and T

(
Aσ(s2)

)
∩

P(x) = ∅).

• s = s1; s2.

By eq. (3.21), T
(
Aσ(s)

)
= T

(
Aσ(s1)

)
∪ T

(
Aσ(s2)

)
. By inductive hypothe-

sis, T
(
Aσ(s1)

)
∩ P(x) = ∅ and T

(
Aσ(s2)

)
∩ P(x) = ∅. Thus, it follows that

T
(
Aσ(s)

)
∩ P(x) = ∅.

• s = if y then s1 else s2 end.
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By eq. (3.22), either T
(
Aσ(s)

)
= P(y) ∪ T

(
Aσ(s1)

)
or T

(
Aσ(s)

)
= P(y) ∪

T
(
Aσ(s2)

)
. If x is not mentioned in x, then y 6= x; by inductive hypothe-

sis T
(
Aσ(s1)

)
∩ P(x) = ∅ and T

(
Aσ(s2)

)
∩ P(x) = ∅. Thus, it follows that

T
(
Aσ(s)

)
∩ P(x) = ∅.

• s = while y do s1 end.

By eq. (3.23), T
(
Aσ(s)

)
= P(y) ∪ T

(
Aσ(s1)

)
. If x is not mentioned in s, then

x 6= y; by inductive hypothesis T
(
Aσ(s1)

)
∩ P(x) = ∅. Thus, it follows that

T
(
Aσ(s)

)
∩ P(x) = ∅.

• s = cobegin Op‖par end.

By eq. (3.25), T
(
Aσ(s)

)
= T

(
Aσ(Op)

)
∪ T

(
Aσ(par)

)
. Since by assumption

T
(
Aσ(Op)

)
∩ P(x) = ∅ and T

(
Aσ(par)

)
∩ P(x) = ∅, it follows that T

(
Aσ(s)

)
∩

P(x) = ∅.

Lemma 3.4.2 states that the behavior of a statement depends only upon variables

mentioned in that statement. It serves as a justification for ignoring overly-broad

specifications when reasoning about non-interference.

Let X̂σ(s) =
{
x : P(x) ∩ T(Aσ(s)) 6= ∅

}
(i.e., the objects mentioned in s in a

statement that is executed when s begins in state σ). X̄σ(s) is its complement. f �S

denotes the restriction of function f : D → R to the domain S ∩D.
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Lemma 3.4.2. For all statements s and states σ1, σ′1, σ2, and σ′2,
(
σ1 �X̂σ1 (s)= σ2 �X̂σ2 (s)

)
∧
(
σ′1 �X̂σ1 (s)= σ′2 �X̂σ2 (s)

)
∧(

σ1 �X̄σ1 (s)= σ′1 �X̄σ1 (s)

)
∧
(
σ2 �X̄σ2 (s)= σ′2 �X̄σ2 (s)

)
 ⇒

(
(σ1

s−→ σ′1)⇔ (σ2
s−→ σ′2)

)
.

That is, whenever σ1, σ′1, σ2, and σ′2 are related as in fig. 3.9, it follows that σ1
s−→

σ′1 ⇔ σ2
s−→ σ′2. An edge D between two states in the figure indicates they are equal

when restricted to the domain D.

σ1 σ′1

σ2 σ′2

X̄σ1(s)

X̂σ1(s) X̄σ2(s)
X̂σ1(s)

Figure 3.9: Diagram of the relationships between σ1, σ′1, σ2, and σ′2 described in
lemma 3.4.2.

Proof. First, observe that for the antecedent to hold, it must be the case that X̂σ1(s) =

X̂σ2(s) (and, therefore that X̄σ1(s) = X̄σ2(s)). We can therefore reason (without loss

of generality) only with X̂σ1(s) and X̄σ1(s).

We proceed by induction on s.

Base Cases

• s = ε (empty statement).

By eq. (3.17), T(Aσ1(s)) = ∅; therefore X̂σ1(s) = ∅, so σ1 = σ′1 and σ2 = σ′2. By

eq. (3.6), for any σ, σ
ε−→ σ, so the lemma holds.
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• s = T x (variable introduction).

By eq. (3.18), T(Aσ1(s)) = P(x); therefore X̂σ1(s) = {x}. By eq. (3.7), σ1
s−→ σ′1

whenever σ1 = σ′1 �X (where X is the set of in-scope objects before s) and σ′1 is

additionally defined on x. Moreover, whenever σ1
s−→ σ′1, and the antecedent of

the lemma holds, it is also true that σ2
s−→ σ′2. Therefore the lemma holds for

s = T x;.

• s = x :=: y (swap statement).

By eq. (3.19), By eq. (3.19), T(Aσ1(s)) = P(x)∪P(y); therefore X̂σ1(s) = {x, y}.

If σ1 �X= σ2 �X , then σ1(x) = σ2(x) (analogously for y). By eq. (3.8), the only

variables that have their values changed by s are x and y; therefore whenever

σ1
s−→ σ′1, and the antecedent of the lemma holds, it is also true that σ2

s−→ σ′2.

Therefore the lemma holds for s = x :=: y.

• s = Op(ids) (operation call).

Let there be some (Op, π, pre, post , S) ∈ M . It follows from eq. (3.9) and the

definition of
s−→ (3.3) that σ1 ` pre ⇔ σ1 ` pre(s). By assumption, for each

object x mentioned in s, σ1(x) = σ2(x). Because pre mentions only objects in π

(by well-formedness definition 3.2.15), it follows that σ1 ` pre ⇔ σ2 ` pre (and,

therefore, that σ2 ` pre ⇔ σ2 ` pre(s)). Therefore σ1 ` pre(s) ⇔ σ2 ` pre(s).

By analogous reasoning, we see that σ1(0), σ
′
1 ` post(s) ⇔ σ2(0), σ

′
2 ` post(s).

Therefore, σ1
s−→ σ′1 ⇔ σ2

s−→ σ′2.

Inductive Step

Assume the lemma holds for s1 and s2.
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• s = s1; s2.

Assume we have some states σ1, σ2, σ
′
1, σ

′
2 related as in fig. 3.9. Without loss of

generality we proceed from σ1
s−→ σ′1. By eq. (3.10), σ1

s−→ σ′1 whenever

(
∀σ′′ : σ1

s1−→ σ′′ : σ′′ ` pre(s2)
)
∧
(
∀σ′′ : σ′′ s2−→ σ′1 : σ1(0), σ

′′ ` post(s1)
)
.

By our inductive hypothesis, then, it is also true that

(
∀σ′′ : σ2

s1−→ σ′′ : σ′′ ` pre(s2)
)
∧
(
∀σ′′ : σ′′ s2−→ σ′2 : σ2(0), σ

′′ ` post(s1)
)
.

Therefore, by eq. (3.10), σ2
s−→ σ′2. Therefore, given σ1, σ2, σ

′
1, σ

′
2 related as in

fig. 3.9, it follows that σ1
s−→ σ′1 ⇔ σ1

s−→ σ′2.

• s = if x then s1 else s2 end.

By eq. (3.11), σ1
s−→ σ′1 if and only if either σ1

s1−→ σ′1 or σ1
s2−→ σ′1. Since by our

inductive hypothesis the lemma holds for both s1 and s2, it also holds for s.

• s = while x do s1 end.

By eq. (3.12), σ1
s−→ σ′1 if and only if either ¬σ1(x) (in which case σ1 = σ′1,

and the lemma holds for the same reasons as when s = ε) or σ1(x) and

σ1
s1; while x do s1 end−−−−−−−−−−−−→ σ′1. Since we have shown that the lemma holds for s1; s2;,

it also holds for s.

• s = cobegin par end.

By the grammar in fig. 3.8, par consists of a list of 〈op-call〉s oi, which we

showed above each individually satisfy the lemma. Therfore, if σ1 ` pre(s),

then by eq. (3.14) there must be some oi in par such that σ1 ` pre(oi). So it

is also true that σ2 ` pre(oi), so σ2 ` pre(s). Similarly, if σ′1 ` post(s) then it
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follows that σ′1 ` post(oi) for every oi in par . Thus, we have that σ′2 ` post(oi)

for each i and therefore σ′2 ` post(s). Therefore the lemma holds for s.

Therefore, by induction, we have that the lemma holds for all s, σ1, σ2, σ
′
1, σ

′
2.

To enable modularity, it must be sound to reason about a specification rather than

an implementation. Therefore, it is imperative to show that whenever the specified

effects of two operation calls are non-interfering, the actual effects of any valid bodies

for those operations are also non-interfering.

Lemma 3.4.3. Given two operation contracts o1 = (i1, π1, pre1, post1, S1) and o2 =

(i2, π2, pre2, post2, S2), bodies b1, b2 such that (b1 7→ o1∧b1 � o1)∧(b2 7→ o2∧b2 � o2),

and state σ,

S1(σ) ‡ S2(σ)⇒ Aσ(b1) ‡Aσ(b2).

Proof. Let bodies b1 and b2 be in realizations with fields F1, F2 and interference cor-

respondences I1, I2, respectively. Without loss of generality, we work only with b1, o1,

and I1, for which we will omit subscripts; the proof and definitions are analogous for

b2, o2, and I2.

By eq. (3.16), Aσ(b) is the application of function Î to the actual effect of the

statements s that make up b. To obtain a useful instance of lemma 3.1.10, we first

define the function jσ as follows.

jσ(x) =

{
I(σ, x) x ∈ P̂(F )

x otherwise
(3.26)

From this, we observe that Î(σ, e) = R
(
Jσ(e.A), Jσ(e.P )

)
where Jσ is defined relative

to jσ as in lemma 3.1.10, that is, element-wise application of jσ to a set of objects.
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We further observe that Aσ

(
o(p)

)
= S(σ)[π → p] for some sequence of arguments p;

that is, by definition 3.2.12, Î
(
σ,Aσ(s)

)
v S(σ)[π → p].

Next, by lemma 3.1.8, if S1(σ)‡S2(σ), then Aσ

(
o1(p1)

)
‡Aσ

(
o2(p2)

)
. By lemma 3.1.10

(and lemmas 3.1.6 and 3.1.8), if Aσ

(
o1(p1)

)
‡Aσ

(
o2(p2)

)
then Aσ(b1) ‡Aσ(b2). There-

fore, S1(σ) ‡ S2(σ)⇒ Aσ(b1) ‡Aσ(b2).

Although enabling modularity in reasoning is a primary concern, it remains impor-

tant in parallel programs to have some knowledge of the implementation. Lemma 3.4.4

below ensures that reasoning about these implementation details does not break

soundness. This lemma justifies the function inlining transformation that is a ubiq-

uitous optimization of modern compilers.

Lemma 3.4.4. An operation call can be replaced with any correct body without com-

promising correctness. That is,

∀s, t,Op, o, p, b : (s; o(p); t 7→ Op ∧ b 7→ o)⇒ (s; b; t 7→ Op)

(Renaming within the body to match argument names and to avoid name collisions is

left implicit.)

Proof. By eq. (3.10),

s; o(p); t 7→ Op ⇒(
∀σ, σ′, σ′′ : σ s−→ σ′ : σ′

o(p)−−→ σ′′ ⇒ σ′′ ` pre(t)
)
.

By definition 3.2.11 and eq. (3.3),

b 7→ o⇒(
∀σ, σ′ : σ b−→ σ′ ⇒ σ

o(p)−−→ σ′
)
⇒

∀σ, σ′ :
(
σ ` o.pre ⇒ σ ` pre(b)

)
∧
(
σ′ ` post(b)⇒ σ′ ` o.post

)
.
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Therefore,

s; o(p); t 7→ Op ⇒(
∀σ, σ′, σ′′ : σ s−→ σ′ : σ′

b−→ σ′′ ⇒ σ′′ ` pre(t)
)
.

Then, by definition 3.2.11 and eq. (3.10),(
s; o(p); t 7→ Op ∧ b 7→ o

)
⇒
(
s; b; t 7→ Op

)
.

This contract/body replacement can go the other way, too, given a strong enough

contract. Define ôp,q to be the operation contract induced by operation contracts p

and q as follows (when p and q are understood, they are left out and we refer simply

to ô).

π : p.π ◦ q.π,

pre : pre(p(p.π); q(q.π)) ∨ pre(q(q.π); p(p.π)),

post : post(p(p.π); q(q.π)) ∧ post(q(q.π); p(p.π)),

S(σ) : p.S(σ) t q.S(σ)


(ôp,q)

Lemma 3.4.5.

∀s, t1, t2, r,Op : s; t1; t2; r 7→ Op∧ : s; ôt1,t2 ; r 7→ Op.

Proof. Suppose that s; t1; t2; r 7→ Op for some operation contract Op = (i, π, pre, post , S).

Then, by definition 3.2.11 and eq. (3.3),

∀σ, σ′ : σ s;t1;t2;r−−−−→ σ′ ⇒ σ ` pre ∧ σ′ ` post .

By eq. (3.10), the state of the program after s satisfies both post(s) and pre(t1; t2; r)

and the state after s; t1; t2 satisfies both post(s; t1; t2) and pre(r). It is also true that

pre(t1; t2; r)⇒ pre(t1; t2) ∧ post(s; t1; t2)⇒ post(t1; t2).
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By (ôp,q),

pre(ôt1,t2) = (pre(t1; t2) ∨ pre(t2; t1)) ∧

post(ôt1,t2) = (post(t1; t2) ∧ post(t2; t1)).

Clearly, then, pre(t1; t2)⇒ pre(ôt1,t2) and post(ôt1,t2)⇒ post(t1; t2). Therefore, what-

ever state the program is in after s (which we saw above must satisfy pre(t1; t2; r) and

therefore pre(t1; t2)) also satisfies pre(ôt1,t2). Further, whatever state the program is in

after s; ôt1,t2 (which must satisfy post(s; ôt1,t2) and therefore post(ôt1,t2)) also satisfies

post(ôt1,t2). Therefore,

σ
t1;t2−−→ σ′ ⇒ σ

ôt1,t2−−−→ σ′,

and therefore

s; t1; t2; r 7→ Op ⇒ s; ôt1,t2 ; r 7→ Op.

3.4.1 Commutability of Non-Interfering Statements

Theorem 4 is the main result of this chapter. Using this result, modular proof

rules for the parallel composition of non-interfering statements can be formulated that

generalize previous results. One application of this result (and of the A/P Calculus

and the programming model above) is the system for reasoning about non-interference

contracts introduced in chapter 5.

Theorem 4 (Non-interfering Statements Commute). For any two operations o1, o2

with valid bodies s1, s2, if

∀σ, p1, p2 :(
σ ` pre(o1(p1); o2(p2)) ∨ pre(o2(p2); o1(p1)) : o1.S(σ) ‡ o2.S(σ)

)
,
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then both of the following are true.

1. s1; s2 is a valid operation body for ôo1,o2 if and only if s2; s1 is a valid operation

body for ôo1,o2. That is,

(s1; s2 � ô ∧ s1; s2 7→ ô)⇔ (s2; s1 � ô ∧ s2; s1 7→ ô)

2. cobegin s1‖s2 end is a valid operation body for ôo1,o2 if and only if s1; s2 is a

valid operation body for ôo1,o2. That is,

(cobegin s1‖s2 end � ô ∧ cobegin s1‖s2 end 7→ ô)⇔(
s1; s2 � ô ∧ s1; s2 7→ ô

)
.

Proof. First, by eq. (3.21), definition 3.2.11, and theorems 1 and 2,

s1; s2 � ô ∧ s2; s1 � ô ∧ cobegin s1‖s2 end � ô,

i.e., the actual effect of the sequential composition of the two statements in either

order is covered by the specified effect in ô, as is the actual effect of their parallel

composition.

We show that the implements relation (7→) holds by induction on the “abstraction

level” of the statements (how far removed they are from primitive operations).

Base Case

The base case is when s1 and s2 both consist of a single call to Prim (and

o1, o2 are equivalent to Prim). First, pre(s1; s1) and pre(s2; s2) are both true (i.e.,

ôo1,o2 .pre = true). By (Prim), each sequence of parameters p1 and p2 is divided into

two subsequences, πA and πP . Additionally, the value of each object in πP is the same
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after the operation as it was before the operation. Next, because Prim places entire

objects into the A and P sets of the (constant) specified effect S (i.e., the objects are

not sub-divided based on their partitions), the two calls to Prim are noninterfering

(i.e., Aσ(s1) ‡ Aσ(s2)) only when either no objects are shared between the two calls

or all of the shared objects are in πP for both calls. Therefore, by the Frame Rule

(3.4), all shared objects have the same value after s1; s2 as they have after s2; s1—

specifically, their value has not changed. Moreover, by lemma 3.4.1 and eq. (3.4), any

object not an argument in either s1 or s2 has the same value before and after s1; s2

and s2; s1. Finally, we consider those objects that appear in πA for either s1 or s2 (but

not both)—without loss of generality consider those objects that appear in s1 but not

s2. Each object x that appears in s1 but not s2 has, after s1 is complete, value x′. But

x does not appear in s2, so its value after s2 is also x′, so the value of x after s1; s2

and s2; s1 is the same: x′. Therefore, if Aσ(s1) ‡ Aσ(s2), post(s1; s2) = post(s2; s1);

therefore by eq. (3.10) s1; s2 7→ ô⇔ s2; s1 7→ ô.

Since Prim is atomic, the parallel execution of two calls to Prim is exactly equiva-

lent to one of the sequential orderings of those calls (which themselves are equivalent,

as shown above); therefore, s1; s2 7→ ô⇔ cobegin s1‖s2 end 7→ ô.

Inductive Step

Assume the theorem holds for each consitituent statement in s1 and s2 which are

valid bodies for some operations o1, o2 with preconditions pre1, pre2, postconditions

post1, post2, and specified effects S1 and S2, respectively. Further assume σ is such

that S1(σ) ‡ S2(σ) and σ ` pre1 ∨ pre2.

We adopt the following conventions and notations for the remainder of the proof:
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• Every statement is an operation call. This does not reduce generality because

any other kind of statement (such as a conditional statement or loop) can be

refactored as an operation contract and associated body.

• An operation body s is treated as the sequential composition of statements

s[1]; s[2]; . . . ; s[|s|].

• s[i, j) is the subsequence of statements in s from the ith through (j − 1)th

statements, well-defined whenever 1 ≤ i ≤ j ≤ |s|+ 1.

• bi[j] is a valid operation body for the operation call in statement si[j].

By eq. (3.21), lemmas 3.1.8 and 3.1.10, and theorems 1 and 2,

∀σ, i, j : σ
s1[1,i)−−−→ σi ∧ σ

s2[1,j)−−−→ σj : Aσi(s1[i]) ‡Aσj(s2[j]). (3.27)

Without loss of generality, we consider s1; s2 (an analogous proof applies to s2; s1).

The statements s1[|s1|] and s2[1] induce ôs according to eq. (ôp,q). Let σ′ be such that

σ
s1[1,|s1|)−−−−−→ σ′. By lemma 3.4.4, for all Op,

s1; s2 7→ Op ⇒ b1[1]; b1[2]; . . . ; b1[|s1|]; b2[1]; b2[2]; . . . ; b2[|s2|] 7→ Op

By eq. (3.27),

Aσ′(s1[|s1|]) ‡Aσ′(s2[1]).

So, by inductive hypothesis,

b1[|s1|]; b2[1] 7→ ôs ⇔ b2[1]; b1[|s1|] 7→ ôs.

By eqs. (3.9) and (3.10) and lemma 3.4.5,

s1; s2 7→ Op ⇒ s1[1, |s1|); s1[|s1|]; s2[1]; s2[1, |s2|+ 1) 7→ Op

⇒ s1[1, |s1|); ôs; s2[1, |s2|+ 1) 7→ Op.
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By lemma 3.4.4,

b1[1]; b1[2]; . . . ; b1[|s1|−1]; b2[1]; b1[|s1|]; b2[2]; b2[3]; . . . ; b2[|s2] 7→ Op.

Now, the statements s1[|s1| − 1] and s2[1] induce ô′s; by the same reasoning as above

we have that

b1[1]; b1[2]; . . . ; b1[|s1|−2]; b2[1]; b1[|s1|−1]; b1[|s1|]; b2[2]; b2[3]; . . . ; b2[|s2] 7→ Op,

and we can continue applying the same reasoning to sift b2[1] to the beginning of the

sequence of statements:

b2[1]; b1[1]; b1[2]; . . . ; b1[|s1|]; b2[2]; b2[3]; . . . ; b2[|s2|] 7→ Op.

Furthermore, we can sift each statement b2[i] to the front of the b1[j]’s, and we have

that

b2[1]; b2[2]; . . . ; b2[|s2|]; b1[1]; b1[2]; . . . ; b1[|s1|] 7→ Op

Since b1[1]; b1[2]; . . . ; b1[|s1|] 7→ s1 and b2[1]; b2[2]; . . . ; b2[|s2|] 7→ s2, it follows that

σ
b2[1];b2[2];...;b2[|s2|];b1[1];b1[2];...;b1[|s1|]−−−−−−−−−−−−−−−−−−−−−→ σ′ ⇒ σ

s2;s1−−→ σ′.

Therefore, by definition 3.2.11,

b2[1]; b2[2]; . . . ; b2[|s2|]; b1[1]; b1[2]; . . . ; b1[|s1|] 7→ Op ⇒ s2; s1 7→ Op.

By transitivity of ⇒, then, we have that

s1; s2 7→ Op ⇒ s2; s1 7→ Op

Therefore,

s1; s2 7→ ôo1,o2 ⇒ s2; s1 7→ ôo1,o2 .
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By swapping s1 and s2 and performing the same sifting process as above, we conclude

s2; s1 7→ ôo1,o2 ⇒ s1; s2 7→ ôo1,o2 .

Therefore,

s1; s2 7→ ô⇔ s2; s1 7→ ô.

Through the sifting process, it was established that every possible interleaving

of the consituent statements in s1 and s2 is also a valid operation body for ôo1,o2 .

Therefore, if s1; s2 is a valid operation body for ôo1,o2 , then cobegin s1‖s2 end is also

a valid operation body for ôo1,o2 .

3.5 Applying Theorem 4

The A/P Calculus and programming model have implications for writing and rea-

soning about parallel programs. In particular, theorem 4 implies that non-interfering

operation calls commute even when their specifications indicate otherwise. Consider

the operation contracts (Rem) and (Add) that operate on a Queue (with entries of

type T ) with type specification in eq. (3.28). Each object of type QueueT has a par-

tition with two pieces named h and t, i.e., ∀q : [q : QueueT ] : P(q) = {q@h, q@t} (a

specific piece of a partition of an object is denoted with @, e.g., q@h refers to the

element of q’s partition named h).

QueueT =
(
T ∗, 〈〉, {enqueue, dequeue, isEmpty}

)
(3.28)

An object of type
QueueT is a modeled
as a string with en-
tries of type T .

QueueT .v0 is
the empty
string.

QueueT provides these
operations (their con-
tracts are as would be
expected).

71





i : RemoveAnEnd,

π : 〈q, x〉,

pre : [q : QueueT ] ∧ [x : T ] ∧ |q| > 0,

post : q0 = q ◦ 〈x〉 ∨ q0 = 〈x〉 ◦ q,

S(σ) : ({q@h} ∪ P(x), ∅)


(Rem)



i : AddAnEnd,

π : 〈q, y〉,

pre : [q : QueueT ] ∧ [y : T ],

post : q = q0 ◦ 〈y0〉 ∨ q = 〈y0〉 ◦ q0,

S(σ) : ({q@t} ∪ P(y), ∅)


(Add)

Next, consider the program fragment below in which objects q, u, and v are initialized

previously and have some values.

Listing 3.4: Program fragment making operation calls on a Queue.

1 AddAnEnd(q, v);
2 RemoveAnEnd(q, u);

Assume the program is in the following state at the beginning of the fragment:

q = 〈10, 20, 30〉 ∧ u = 4

By looking solely at the behavioral specifications of the two operations (i.e., the pre

and post in the contracts), it can be shown (via eq. (3.10)) that the program is in one

of the following four states after the two statements:

• q = 〈4, 10, 20〉 ∧ v = 30
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• q = 〈20, 30, 4〉 ∧ v = 10

• q = 〈4, 20, 30〉 ∧ v = 10

• q = 〈10, 20, 30〉 ∧ v = 4

However, the possible states can be whittled down by recognizing that the two

operation calls are non-interfering based on their specified effects. Using theorem 4,

we recognize that the program above (more precisely, the sequential composition of

two valid operation bodies for RemoveAnEnd and AddAnEnd) is a valid operation

body for the following contract, (Rot).

i : RotateOnce,

π : 〈q, u, v〉,

pre : [q : QueueT ] ∧ [u : T ] ∧ [v : T ],

post :

(q = 〈u0〉 ◦ q0[0, |q| − 1) ∧ 〈v〉 = q0[|q| − 1, |q|)
)
∨(

q = q0[1, |q|) ◦ u0 ∧ 〈v〉 = q0[0, 1)
)

 ,

S(σ) :
(
P(q) ∪ P(u) ∪ P(v), ∅

)


(Rot)

Therefore, we can conclude that the state at the end of the program in listing 3.4

is one of the following two states (rather than one of the four above):

• q = 〈4, 10, 20〉 ∧ v = 30

• q = 〈20, 30, 4〉 ∧ v = 10

In fact, the theorem leads to even a stronger conclusion. The two states above

are also the only possible states after either of the following two program fragments

given the same initial conditions:

1 AddAnEnd(q, v);
2 RemoveAnEnd(q, u);

1 cobegin
2 RemoveAnEnd(q, v);
3 AddAnEnd(q, u);
4 end
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Moreover, observe that except for type restrictions, Rot.pre ≡ true. Therefore,

even when |q| = 0, the parallel execution of AddAnEnd and RemoveAnEnd can safely

proceed even though the precondition for RemoveAnEnd would suggest otherwise.

3.6 Comparison to Region Logic

The actual effect of a statement maps approximately to the effects summaries in

region-logic based programming languages such as DPJ [40] except that the actual

effect depends on the behavioral semantics of the program. To concretize this map-

ping, it is useful to define the effect of a statement on a conservative basis without

regard for the initial state. For this purpose we define the syntactic effect, denoted

A(s), so named because it is syntactically derivable from the program text. Formally,

A(s) =
⊔

σ : Aσ(s).

Because the syntactic effect is always more conservative than the actual effect, it

can be used in place of the actual effect without compromising soundness (although

there is a penalty to completeness). That is,

∀s, σ : Aσ(s) v A(s).

In the effects summary of a DPJ method, annotations identify which regions of

memory are written to or read from by the body. Those regions correspond to pieces

in our object model. In the effect, the A set corresponds to the written-to regions

and the P set the read-from regions. However, each field in a DPJ implementation

is placed into a single region; this is in contrast with the partition of an object

in this chapter, whereby an object might be split into several pieces—perhaps even
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dynamically based on the (abstract) values of the fields. In this way, the A/P Calculus

generalizes other results by increasing abstraction and modularity.

3.7 Conclusions

The calculus introduced in section 3.1 provides a general foundation for reasoning

about the non-interference of parallel programs. It was used in the definition of a

model of programming in which non-interfering statements commute even when their

specifications indicate otherwise, and a simple program was reasoned about in this

model. Chapters 4 and 5 build upon these foundations and show how more complex

parallel programs can be reasoned about and proven correct.
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Chapter 4: Array Abstractions to Amortize the Reasoning

Cost of Parallel Client Code

Traditional parallel implementations of many algorithms (e.g., divide-and-

conquer, map-reduce, and producer-consumer) are often subtly difficult for automated

verification systems to reason about because the verifier must ensure that the parallel

calls do not write to the same memory location at the same time. Moreover, small

modifications to these programs (e.g., dividing a data structure into four parts instead

of two) can result in having to re-prove the program from scratch, even though the

new proof obligations are mostly identical to the previous ones. Finally, aliased refer-

ences cause problems because it is in general impossible to decide via local reasoning

whether two references are aliases to one another.

This chapter focuses on the SplittableArray abstraction that permits a client

to split an array into sub-arrays of contiguous indices and ensures by construction

that all sub-arrays of the array that may be accessed are separate from one another

and which leverages clean semantics to ensure that no dangerous data sharing can

occur. This array abstraction simplifies proofs of non-interference between parallel

threads, often turning them into simple syntactic checks that do not require reasoning

about the values of objects. The abstraction can be implemented using a traditional
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array that is shared among many instances in order to maintain desirable performance

characteristics of such data structures: constant-time split, combine, and lookup.

4.1 A Motivating Example

Listing 4.1 shows a generic recursive, parallel divide-and-conquer method written

in a Java-like language that mutates each entry in the array arr. The parallel calls

to mutateEach share two arguments: arr and mid. This data-sharing between

concurrent threads of execution is safe (i.e., non-interfering) only when arr is written

by different threads in compatible (non-overlapping) ways and mid (in this case, a

primitive variable) is copied in each call. If either of these criteria are not met (e.g.,

there is aliasing within arr), then no guarantees of non-interference can be made

and reasoning is complicated substantially.

Listing 4.1: A generic recursive, parallel divide-and-conquer solution using a Java-like
language.

1 void mutateEach(T[] arr, int lowEnough, int tooHigh) {
2 if (tooHigh - lowEnough > 1) {
3 int mid = (lowEnough + tooHigh) / 2;
4 cobegin {
5 mutateEach(arr, lowEnough, mid);
6 mutateEach(arr, mid, tooHigh);
7 }
8 } else if (tooHigh > lowEnough) {
9 mutate(arr[lowEnough]);

10 }
11 }

4.1.1 Verification Challenges with this Approach

The approach in listing 4.1 presents several challenges to verification, and espe-

cially to modular verification. These challenges are addressed in order of increasing
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complexity of reasoning: first the case is considered where arr is an array of primi-

tives or immutable objects, then when arr is an array of mutable objects, and finally

when arr is an array of objects using a shared representation.

The Overlapping Array Intervals Problem

arr =

Figure 4.1: mutateEach might affect the closed interval [lowEnough, tooHigh] or
the half-open interval [lowEnough, tooHigh).

The simplest case is when T is a primitive or immutable type. To verify the func-

tional correctness of this method body relative to a formal version of its specification,

it is helpful to show that the parallel portion of the code does not introduce any nonde-

terminism5 through data races. For this, it is sufficient to show that the two recursive

calls are non-interfering. Showing non-interference, especially when each element of

the array might be modified, requires showing that the intervals [lowEnough,mid)

and [mid , tooHigh) are disjoint. This is not a hard problem in this simple case, but

suppose (e.g., for performance reasons) that a programmer modified this program

to split A into 4 parts: [lowEnough, q1), [q1,mid), [mid , q3), and [q3, tooHigh). Now

there are four intervals which must be shown to be pairwise disjoint. In the general

case, showing mutual disjointness of n sets of indices is non-trivial, and it is certainly

5It is possible for a program to exhibit nondeterminism and still be correct, but for now we are
concerned only with provably deterministic parallel programs.

78



not readily scalable (the number of pairs increases quadratically with n). The ex-

plicit split/combine operations in the SplittableArray abstraction discussed in

section 4.3 are motivated by this problem.

This problem is exacerbated when the partition is not into contiguous segments of

the array, for example a partition of arr into the entries with even indices and those

with odd indices. A desire for enabling the use of arbitray index sets motivates a more

general array abstraction, IndexPartitionableArray, discussed and specified in

section 4.4.2.

Challenges Related to Aliasing

arr = 4 4 4 4 4

Figure 4.2: An array with aliases between its elements.

Next we identify challenges posed when T is a mutable reference type such as

Stack. When reasoning about the code in mutateEach, a requirement for the

non-interference of the parallel section of code is the total independence of each stack

in arr. In particular, a specification of this method written as a Hoare triple in

Separation Logic might look similar to the specification in eq. (4.1).

{
h−1⊙
i=l

listαi (arr0[i], nil)

}
mutateEach(arr, l, h);

{
h−1⊙
i=l

listα′i (arr0[i], nil)

}
(4.1)
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In English, the meaning of this specification is as follows. The precondition,{⊙h−1
i=l listαi (arr0[i], nil)

}
, states that for each i ∈ [l, h), the initial value of the i-th

element of array arr is a nil-terminated (singly linked) list with abstract value αi,

and that each of these lists is separate in the heap (that is, they share no nodes). The

postcondition states that the abstract value of each element of arr has changed to

α′i (and, again, that the lists are separate).

arr = 4

4
...

4

4
...

4

4
...

4

4
...

4

4
...

Figure 4.3: Even if the precondition of eq. (4.1) is satisfied, there may be aliases
within the elements of arr.

A major problem with the specification in eq. (4.1) is that it does not preclude

aliasing within the stacks in arr. For example, if the top element of arr[0] is

an alias to the top element of arr[1], the picture might look like fig. 4.3. Note

that it is still true that for some α, β, {list α (arr[0], nil) ∗ list β (arr[1], nil)}, so the

precondition is satisfied. The concern with this scenario is that if the mutation

performed by the mutate operation is not idempotent, the result will not be correct

(in fact, if the top of one stack is an alias to an element of a stack that is not the

top, even an idempotent mutation will result in incorrect behavior). In a language

with clean semantics, we can rely on the fact that separate variables act as separate

objects to guarantee there is no dangerous aliasing.6

6While a modified specification could be written in separation logic to handle each particular
situation, it is extremely challenging to generalize the specification [136].
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The Shared Representation Problem

A more subtle issue arises when instances of T use a shared representation. For

example, the precondition as written would not be satisfied if the stack implemen-

tation were swapped out for one based on a shared “cactus stack”, as in fig. 4.4,

even though such an implementation could provide correct behavior. In the fig-

ure, the separation logic specification breaks down because it is not the case that

list α(arr[0], nil) ∗ list β(arr[1], nil) for any α, β because they share a node. This lack

of modularity demonstrates a need for abstraction in the specification of concurrent

programs to facilitate reusable code that can remain proven to be correct even when

different underlying data structures are used.

arr = 4 4 4 4 4

nil

Figure 4.4: If the stacks in arr use a cactus stack realization, the separation logic
specification breaks down.
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4.2 The RESOLVE Programming Language

The broad context for this dissertation is RESOLVE [129, 110, 62, 45, 126], an im-

perative, object-based programming language that also includes a specification frame-

work to support the automated, modular verification of software. In RESOLVE, a

realization provides executable code for a concept, which contains behavioral speci-

fications for several operations in terms of abstract state. The operation contracts

that make up the behavioral specification are composed of pre- and post-conditions

that utilize mathematical notation appropriate for the abstract state. Most routine

aliasing is avoided in RESOLVE by using swap as the fundamental data movement

operation [73].

In addition to pre- and post-condition specifications, operation contracts include

“parameter modes”, whereby the modification frame is defined and certain behaviors

are summarized. There are five parameter modes:

• Restores: The value of a restores-mode parameter is the same at the end of

the operation as it was at the beginning.

• Clears: The value of a clears-mode parameter is an initial value for its type at

the end of the operation (e.g., a clears-mode Integer parameter would have

the value 0 at the end of the operation, or a set would be made empty).

• Updates: The value of an updates-mode parameter might be changed by the

operation, and its initial value impacts the behavior of that operation.
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• Replaces: The value of a replaces-mode parameter might be changed by the

operation, and its initial value does not have an impact on the behavior of that

operation.

• Preserves: The value of a preserves-mode parameter is not changed—even

temporarily—by the operation.7

4.2.1 Clean and Rich Semantics

One way to address the challenges discussed above is by eliminateing aliases en-

tirely. RESOLVE does this through a mechanism called clean semantics, by which

separate variables are reasoned about as separate entities. Reasoning with clean se-

mantics helps to keep reasoning devoid of complicated frame and heap assertions.

Rich semantics is a mechanism by which variables are reasoned about only in terms

of values in arbitrary mathematical domains and never in terms of memory loca-

tions. Reasoning with rich semantics ensures that a client of a software component

need not concern themselves with implementation details. The soundness of rich

semantics is guaranteed by clean semantics. Rich semantics and a value-based rea-

soning framework are necessary for the implementation of conditional effects in the

non-interference contracts introduced in chapter 5.

7Preserves is necessary because in the realm of concurrency, restores-mode is not sufficient to
ensure that two concurrent operations that share a restores-mode argument do not write to the
same memory location since it does not preclude the temporary modification of a parameter during
the execution of an operation.
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Notation

The syntax used in the listings in this chapter and the next is based on RESOLVE

except that traditional mathematical notation is used for the specifications to improve

readability. The language has textual equivalents that would appear in a real program.

4.3 The SplittableArray Abstraction

The SplittableArray abstraction is a novel array abstraction that amortizes

the cost of reasoning about parallel programs such as the one presented in listing 4.1.

It provides the client with operations that divide the array at some split point into

two sub-arrays with contiguous indices. By virtue of RESOLVE’s clean semantics

the resulting sub-arrays may be reasoned about as totally independent objects. The

behavioral specification of this component is shown in listing 4.2.

Listing 4.2: Abstract specification for SplittableArray.

1 concept SplittableArrayTemplate(type Entry)
2

3 var Ids: ℘(Z)
4 initialization ensures Ids = ∅
5

6 type family SplittableArray is modeled by (
7 Id: Z
8 LowerBound: Z,
9 UpperBound: Z,

10 Contents: Z→ Entry,
11 SplitPoint: Z,
12 PartsInUse: B
13 )
14 exemplar A
15 constraint
16 A.LowerBound ≤ A.UpperBound ∧
17 A.LowerBound ≤ A.SplitPoint ≤ A.UpperBound ∧
18 A.Id ∈ Ids
19 initialization ensures
20 A.LowerBound = 0 ∧ A.UpperBound = 0 ∧
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21 ¬A.PartsInUse ∧ A.Id /∈ #Ids
22 end
23

24 operation SetBounds(
25 restores LB: Integer,
26 restores UB: Integer,
27 updates A: SplittableArray)
28 requires LB ≤ UB ∧ ¬A.PartsInUse
29 ensures A.LowerBound = LB ∧ A.UpperBound = UB ∧
30 ¬A.PartsInUse ∧ A.Id /∈ #Ids ∧#A.Id /∈ Ids
31

32 operation SetSplitPoint(
33 restores i: Integer,
34 updates A: SplittableArray)
35 requires A.LowerBound ≤ i ∧ i ≤ A.UpperBound ∧
36 ¬A.PartsInUse ∧
37 ensures A = #A except A.SplitPoint = i
38

39 operation SwapEntryAt(
40 restores i: Integer,
41 updates A: SplittableArray,
42 updates E: Entry)
43 requires ¬A.PartsInUse ∧
44 A.LowerBound ≤ i < A.UpperBound
45 ensures E = #A.Contents(i) ∧
46 A = #A except A.Contents(i) = #E
47

48 operation Split(
49 updates A: SplittableArray,
50 replaces L: SplittableArray,
51 replaces U: SplittableArray)
52 requires ¬A.PartsInUse
53 ensures (A = #A except A.PartsInUse) ∧
54 L.InclLowerBound = A.InclLowerBound ∧
55 L.ExclUpperBound = A.SplitPoint ∧
56 U .LowerBound = A.SplitPoint ∧
57 U .UpperBound = A.ExclUpperBound ∧
58 L.Id = A.Id ∧ L.Contents = A.Contents ∧
59 U .Id = A.Id ∧ U .Contents = A.Contents ∧
60 ¬L.PartsInUse ∧ ¬U .PartsInUse
61

62 operation Combine(
63 updates A: SplittableArray,
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64 clears L: SplittableArray,
65 clears U: SplittableArray)
66 requires A.PartsInUse ∧
67 ¬L.PartsInUse ∧ ¬U .PartsInUse ∧
68 L.InclLowerBound = A.InclLowerBound ∧
69 L.ExclUpperBound = A.SplitPoint ∧
70 U .InclLowerBound = A.SplitPoint ∧
71 U .ExclUpperBound = A.ExclUpperBound ∧
72 L.Id = A.Id ∧ U .Id = A.Id
73 ensures A = #A except

(
¬A.PartsInUse ∧

74 ∀(i : Z)(
75 (i < A.SplitPoint)⇒ (A.Contents(i) = #L.Contents(i)) ∧
76 (i ≥ A.SplitPoint)⇒ (A.Contents(i) = #U .Contents(i)))

)
77

78 operation LowerBound(preserves A: SplittableArray):
Integer

79 ensures LowerBound = A.LowerBound
80

81 operation UpperBound(preserves A: SplittableArray):
Integer

82 ensures UpperBound = A.UpperBound
83

84 operation SplitPoint(preserves A: SplittableArray):
Integer

85 ensures SplitPoint = A.SplitPoint
86

87 operation PartsInUse(preserves A: SplittableArray):
Boolean

88 ensures PartsInUse = A.PartsInUse
89

90 operation IdsMatch(
91 preserves A1: SplittableArray,
92 preserves A2: SplittableArray): Boolean
93 ensures IdsMatch = (A1.Id = A2 .Id)
94

95 end SplittableArrayTemplate

The math model of a SplittableArray is a tuple with several components.

A client should view a SplittableArray as a function from integer indices to

values of type Entry, addressable in the range [LowerBound ,UpperBound). The

86



operations allow the client to set a split point within the addressable range, and to

split the array into two subarrays at index A.SplitPoint (and to combine them

back into the original array). The PartsInUse flag indicates whether the array has

been split into subparts, and controls access to those parts.

Figure 4.5 visualizes how a SplittableArray can be partitioned. After a call

to Split, a SplittableArray is inaccessable until its two parts are fused back

together with a call to Combine. The pre- and post-conditions of those operations

ensure the contiguity of the addressable ranges of the sub-arrays.

arr =

Figure 4.5: A SplittableArray can be partitioned into two sub-arrays of con-
tiguous indices.

4.3.1 Divide-and-Conquer Client Code Using SplittableAr-
ray

A natural application of SplittableArray is in a parallel divide-and-conquer

algorithm such as the mutateEach operation from listing 4.1. Using the component

in that context dramatically simplifies the reasoning involved in formally verifying the

correctness of such code. Listing 4.3 shows how MutateEach might be implemented

and specified using SplittableArray.

Listing 4.3: A recursive, parallel divide-and-conquer solution using
SplittableArray.

1 uses SplittableArray
2 uses Entry
3

4 operation MutateEach(updates A: SplittableArray);
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5 requires
6 A.LowerBound < A.UpperBound ∧
7 ¬A.PartsInUse;
8 ensures
9 ∀(i)(A.LowerBound ≤ i < A.UpperBound)(

10 A.Contents(i) = f(#A.Contents(i)));
11 recursive procedure
12 decreasing A.UpperBound − A.LowerBound;
13

14 if (UpperBound(A) - LowerBound(A) > 1) then
15 var A1, A2: SplittableArray
16 var mid: Integer := (LowerBound(A) + UpperBound(A)) / 2
17 SetSplitPoint(mid, A)
18 Split(A, A1, A2)
19 cobegin
20 MutateEach(A1)
21 MutateEach(A2)
22 end
23 Combine(A, A1, A2)
24 else
25 var entry: Entry
26 var index: Integer := LowerBound(A)
27 SwapEntryAt(A, index, entry)
28 Mutate(entry)
29 SwapEntryAt(A, index, entry)
30 end
31 end MutateEach

As discussed in section 4.1, keeping verification of this code relatively simple

involves showing that the operations inside the cobegin block are non-interfering

as defined in chapter 3. Because the operation modifies A, if there were a shared

array parameter between the two recursive calls, it would be challenging to show non-

interference. Fortunately, however, the two calls to MutateTops inside the cobegin

statement operate on different variables, so they are necessarily independent because

of RESOLVE’s clean semantics.
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4.3.2 Reusability and Modifiability

The code in listing 4.3 is highly reusable. A client can use any type as the array’s

entry type. For example, if there is a cactus realization of a Stack, the client may

use it without having to re-prove MutateEach or write a new specification.

It is also robust to modifications, requiring only simple proofs to be discharged

in most cases. Consider an alternate approach to MutateEach where the array is

split into four parts instead of two. Now the parallel section of the code might look

like listing 4.4. Thanks to clean semantics, it is still a simple syntactic check to show

that the four parallel calls are non-interfering. The one-time proof of disjointness in

the intervals falls on the implementer of the SplittableArray specification—but

is trivial unless the implementer opts for a shared realization such as one discussed

in section 4.3.3.

Listing 4.4: The parallel section of a divide-and-conquer solution which splits A into
four parts via consecutive calls to Split.

1 cobegin
2 MutateEach(A1)
3 MutateEach(A2)
4 MutateEach(A3)
5 MutateEach(A4)
6 end

4.3.3 Efficiently Realizing SplittableArray

A combination of clean semantics, careful component design, and robust specifica-

tion capabilities has reduced the potentially complicated reasoning problem of show-

ing non-interference in listing 4.1 to a purely syntactic check in listing 4.3, demon-

strating a clear advantage of this approach over the traditional one. Importantly,

these reasoning advantages can be achieved without compromising performance.
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Although clean semantics permits a client to reason about the two sub-arrays

A1 and A2 in listing 4.3 as if they were totally separate arrays, an efficient imple-

mentation of this concept would not make any copies of the array. The interface

for the component was designed with a shared implementation in mind so that a

realization could employ an underlying (traditional) array that is shared among all

SplittableArray instances with the same Id. This design choice manifests itself

in the use of the Split and Combine operations as pseudo-synchronization points

by flipping PartsInUse and of preconditions to prevent access to the array while it

is split. These choices ensure that at any time, there is only one array with each Id

that can access any given index. Enabling such a shared implementation is impor-

tant for preserving the performance benefits that programmers expect from parallel

software: the operations Split, Combine, and SwapEntryAt can all be done in

constant time.

4.4 Related Array Abstractions

The SplittableArray abstraction presented above is one member of a hier-

archy of concurrency-ready array abstractions that can be used in multiple contexts

[140]. The most general abstraction in this family, IndexPartitionableArray,

may be partitioned on arbitrary indices rather than contiguous portions of the array.

A third abstraction, DistinguishedIndexArray, allows a client to isolate one

entry and operate on it separately from the rest of the array.

4.4.1 Distinguished Index Array

The DistinguishedIndexArray keeps a “distinguished index” whose

corresponding entry is independent from the rest of the array. The
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arr =

Figure 4.6: A DistinguishedIndexArray can be partitioned into two sub-arrays:
one holding a single element and the other holding the rest of the array.

DistinguishedIndexArray is useful to simplify, e.g., the verification of concur-

rency properties of an implementation of a bounded queue component (see chapter 5,

section 5.6.1) or for an implementation of an array mapping algorithm. It could also

be used as an underlying type in the implementation of a parallel iteration construct.

The specification of DistinguishedIndexArray is in listing 4.5.

Listing 4.5: Specification for DistinguishedIndexArray.

1 concept DistinguishedIndexArrayTemplate(type Entry)
2

3 var Ids: ℘(Z)
4

5 type family DistinguishedIndexArray is modeled by (
6 Id: Z,
7 LowerBound: Z,
8 UpperBound: Z,
9 Contents: Z→ Entry,

10 DistinguishedIndex: Z,
11 Domain: ℘(Z),
12 RestInUse: B
13 )
14 exemplar A
15 constraint
16 A.LowerBound ≤ A.UpperBound ∧
17 A.Id ∈ Ids ∧ A.DistinguishedIndex ∈ A.Domain
18 initialization ensures
19 A.LowerBound = 0 ∧ A.UpperBound = 0 ∧ A.Id /∈ #Ids ∧
20 ¬A.RestInUse ∧ A.Domain = {A.DistinguishedIndex}
21 end
22

23 operation SetBounds(
24 restores LB: Integer,
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25 restores UB: Integer,
26 updates A: DistinguishedIndexArray)
27 requires LB ≤ UB ∧ ¬A.RestInUse
28 ensures A.LowerBound = LB ∧ A.UpperBound = UB ∧
29 ¬A.RestInUse ∧ A.Id /∈ #Ids ∧ A.Id ∈ Ids ∧ A.Id 6= #A.Id ∧
30 A.Domain = {(i : Z)(A.LowerBound ≤ i ∧ i < A.UpperBound)(i)}
31

32 operation SwapDistinguishedEntry(
33 updates A: DistinguishedIndexArray,
34 updates E: Entry)
35 requires A.LowerBound ≤ A.DistinguishedIndex ∧
36 A.DistinguishedIndex < A.UpperBound
37 ensures E = #A(A.DistinguishedIndex ) ∧
38 A = #A except A(A.DistinguishedIndex ) = #E
39

40 operation RetrieveRest(
41 updates A: DistinguishedIndexArray,
42 replaces B: DistinguishedIndexArray)
43 requires ¬A.RestInUse
44 ensures (A = #A except A.RestInUse) ∧
45 B .Domain =
46 A.Domain \ {A.DistinguishedIndex} ∪ B .DistinguishedIndex ∧
47 A.DistinguishedIndex 6= B .DistinguishedIndex ∧
48 EqExceptOn(A.Contents ,B .Contents ,A.DistinguishedIndex ) ∧
49 B .LowerBound =
50 A.LowerBound ∧ B .UpperBound = A.UpperBound ∧
51 B .Id = A.Id ∧ ¬B .RestInUse
52

53 operation ReplaceRest(
54 updates A: DistinguishedIndexArray,
55 clears B: DistinguishedIndexArray)
56 requires
57 A.RestInUse ∧ B .Domain = A.Domain \ {A.DistinguishedIndex}
58 ensures A = #A except

(
¬A.RestInUse ∧

59 EqExceptOn(A.Contents ,#B .Contents ,A.DistinguishedIndex )
)

60

61 operation ChangeDistinguishedIndexTo(
62 updates A: DistinguishedIndexArray,
63 restores i: Integer)
64 requires ¬A.RestInUse ∧ ¬A.DistinguishedEntryInUse
65 ensures A = #A except A.DistinguishedIndex = i
66
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67 operation LowerBound(preserves A: SplittableArray):
Integer

68 ensures LowerBound = A.LowerBound
69

70 operation UpperBound(preserves A: SplittableArray):
Integer

71 ensures UpperBound = A.UpperBound
72

73 operation IsInRest(
74 preserves A: DistinguishedIndexArray,
75 restores i: Integer): Boolean
76 ensures IsInRest = (i ∈ A.Domain ∧ i 6= A.DistinguishedIndex )
77

78 operation DistinguishedIndex(
79 preserves A: DistinguishedIndexArray): Integer
80 ensures DistinguishedIndex = A.DistinguishedIndex
81

82 operation RestIsInUse(
83 preserves A: DistinguishedIndexArray): Boolean
84 ensures RestIsInUse = A.RestInUse
85

86 operation IdsMatch(
87 preserves A1: DistinguishedIndexArray,
88 preserves A2: DistinguishedIndexArray): Boolean
89 ensures IdsMatch = (A1 .Id = A2 .Id)
90

91 end DistinguishedIndexArrayTemplate

The model of a DistinguishedIndexArray is not dissimilar to that of a

SplittableArray. The primary difference is that a client only retrieves the “rest”

of a DistinguishedIndexArray: the entry at the distinguished index is always

accessible. The postcondition of RetrieveRest guarantees that at any time, there

is only one array of a particular Id with any given distinguished index.
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arr =

Figure 4.7: An IndexPartitionableArray can be partitioned into two sub-
arrays of arbitrary index sets.

4.4.2 Index Partitionable Array

The third array abstraction in this family of arrays, called

IndexPartitionableArray, is a generalization of both the SplittableArray

abstraction and the DistinguishedIndexArray abstraction in sec-

tion 4.4.1. It is a generalization in the sense that each of the above con-

cepts can be implemented on top of this concept (that is, using an in-

stance of IndexPartitionableArrayTemplate it is possible to real-

ize either SplittableArray or DistinguishedIndexArray). The

IndexPartitionableArray abstraction itself is useful, for example, in the

implementation of heterogeneous parallel operations in which the assignment of data

to processes is dynamic. The specification of IndexPartitionableArray is in

listing 4.6.

Listing 4.6: Specification for IndexPartitionableArray.

1 concept IndexPartitionableAraryTemplate(type Entry)
2

3 var Ids: ℘(Z)
4 initialization ensures Ids = ∅
5

6 type family IndexPartitionableArray is modeled by (
7 Id: Z,
8 LowerBound: Z,
9 UpperBound: Z,

10 Contents: Z→ Entry,
11 Red: ℘(Z),
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12 Blue: ℘(Z),
13 RedPartInUse: B,
14 BluePartInUse: B
15 )
16 exemplar A
17 constraint A.LowerBound ≤ A.UpperBound ∧
18 A.Id ∈ Ids ∧
19 A.Red ∩ A.Blue = ∅
20 initialization ensures
21 A.LowerBound = 0 ∧ A.UpperBound = 0 ∧
22 ¬A.RedPartInUse ∧
23 ¬A.BluePartInUse ∧
24 A.Id /∈ #Ids ∧
25 A.Blue = {(i : Z)(A.LowerBound ≤ i ∧ i < A.UpperBound)(i)}
26 end
27

28 operation SetBounds(
29 restores LB: Integer,
30 restores UB: Integer,
31 updates A: IndexPartitionableArray)
32 requires LB ≤ UB ∧ ¬A.RedPartInUse ∧
33 ¬A.BluePartInUse
34 ensures A.LowerBound = LB ∧ A.UpperBound = UB ∧
35 ¬A.RedPartInUse ∧ ¬A.BluePartInUse ∧
36 ¬A.Id ∈ #Ids ∧ ¬#A.Id ∈ Ids ∧
37 A.Blue ∪ A.Red =
38 {(i : Z)(A.LowerBound ≤ i ∧ i < A.UpperBound)(i)}
39

40 operation MakeEntryRed(
41 restores p: Integer,
42 updates A: IndexPartitionableArray)
43 requires ¬A.RedPartInUse ∧ ¬A.BluePartInUse ∧
44 p ∈ A.Red ∪ A.Blue
45 ensures A = #A except p ∈ A.Red
46

47 operation MakeEntryBlue(
48 restores p: Integer,
49 updates A: IndexPartitionableArray)
50 requires ¬A.RedPartInUse ∧ ¬A.BluePartInUse ∧
51 p ∈ A.Red ∪ A.Blue
52 ensures A = #A except p ∈ A.Blue
53

54 operation SwapEntryAt(
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55 restores i: Integer,
56 updates A: IndexPartitionableArray,
57 updates E: Entry)
58 requires ¬A.RedPartInUse ∧ ¬A.BluePartInUse ∧
59 A.LowerBound ≤ i ∧ i < A.UpperBound ∧
60 i ∈ A.Red ∪ A.Blue
61 ensures E = #A.Contents(i) ∧
62 A = #A except A.Contents(i) = #E
63

64 operation RetrieveRedPart(
65 updates A: IndexPartitionableArray,
66 replaces B: IndexPartitionableArray)
67 requires ¬A.RedPartInUse
68 ensures (A = #A except A.RedPartInUse) ∧ B .Id = A.Id ∧
69 B .Red = #A.Red ∧ B .Blue = ∅ ∧ B .Contents = #A.Contents ∧
70 ¬B .RedPartInUse ∧ ¬B .BluePartInUse ∧
71

72 operation ReplaceRedPart(
73 updates A: IndexPartitionableArray,
74 clears B: IndexPartitionableArray)
75 requires A.RedPartInUse ∧
76 ¬B .RedPartInUse ∧ ¬B .BluePartInUse ∧
77 B .Id = A.Id ∧ B .Red ∪ B .Blue = A.Red
78 ensures A = #A except(

A.Contents = #B .Contents ∧ ¬A.LowerPartInUse
)

79

80 operation RetrieveBluePart(
81 updates A: IndexPartitionableArray,
82 replaces B: IndexPartitionableArray)
83 requires ¬A.BluePartInUse
84 ensures (A = #A except A.BluePartInUse) ∧ B .Id = A.Id ∧
85 B .Blue = #A.Blue ∧ B .Red = ∅ ∧ B .Contents = #A.Contents ∧
86 ¬B .RedPartInUse ∧ ¬B .BluePartInUse ∧
87

88 operation ReplaceBluePart(
89 updates A: IndexPartitionableArray,
90 clears B: IndexPartitionableArray)
91 requires A.BluePartInUse ∧
92 ¬B .RedPartInUse ∧ ¬B .BluePartInUse ∧
93 B .Id = A.Id ∧ B .Red ∪ B .Blue = A.Blue
94 ensures A = #A except

A.Contents = #B .Contents ∧ ¬A.LowerPartInUse
95
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96 operation LowerBound(preserves A: SplittableArray):
Integer

97 ensures LowerBound = A.LowerBound
98

99 operation UpperBound(preserves A: SplittableArray):
Integer

100 ensures UpperBound = A.UpperBound
101

102 operation RedPartIsInUse(
103 preserves A: IndexPartitionableArray): Boolean
104 ensures RedPartIsInUse = A.RedPartInUse
105

106 operation BluePartIsInUse(
107 preserves A: IndexPartitionableArray): Boolean
108 ensures BluePartInUse = A.BluePartInUse
109

110 operation IsBlue(
111 restores i: Integer,
112 preserves A: IndexPartitionableArray): Boolean
113 ensures IsBlue = i ∈ A.Blue
114

115 operation IsRed(
116 restores i: Integer,
117 preserves A: IndexPartitionableArray): Boolean
118 ensures IsRed = i ∈ A.Red
119

120 operation IdsMatch(
121 preserves A1: IndexPartitionableArray,
122 preserves A2: IndexPartitionableArray): Boolean
123 ensures IdsMatch = (A1 .Id = A2 .Id)
124

125 end IndexPartitionableArrayTemplate

An IndexPartitionableArray provides operations to individually assign

indices of the array to either the “red” or “blue” sets, and to retrieve ei-

ther or both of those sets as (non-contiguous) subarrays. The operation and

use of an IndexParitionableArray is entirely analogous to the use of a
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SplittableArray except that indices are individually identified (rather than as a

range) to facilitate an arbitrary partition of the array.

4.4.3 Layered Implementations

The IndexPartitionableArray (and DistinguishedIndexArray) can

be efficiently implemented in a similar manner to SplittableArray; that is, by

sharing a single underlying array amongst all instances with the same Id. Once an

efficient realization8 for IndexPartitionableArray is provided, however, more

specialized realizations can be built by layering on top of it, preserving performance

while avoiding additional reasoning costs. For example, SplittableArray can be

realized with an underlying IndexPartitionableArray and mapping the two

sets of indices of the IndexPartitionableArray to the low and high parts of

the SplittableArray and maintaining the invariant that each set of indices in

the underlying IndexPartitionableArray is contiguous (and corresponds to

the appropriate indices for abstraction to a SplittableArray).

4.5 Conclusions

The family of arrays presented here provides a basis for a generalizable method-

ology for designing data abstractions that enable safe parallelism without the need

for novel specification constructs and amortize the reasoning costs associated with

verifying the correctness of a class of fork-join parallel programs. Programs written

with any of these data abstractions can be proven correct with standard client verifi-

cation machinery, such as tools developed for the verification of RESOLVE programs.

8There is no implementation of this kind shown here because the machinery for specifying such
shared realizations in RESOLVE is not yet developed and is not a contribution of this dissertation.
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However, building and verifying the correctness of an efficient implemenation of any

of these abstractions does require novel specification constructs, perhaps of the kind

introduced in the next chapter, along with more sophisticated reasoning machinery

of the kind introduced by Sun [132].
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Chapter 5: Abstract Non-Interference Specifications

When concurrent threads of execution do not modify shared data, their parallel

execution is equivalent to their sequential execution. For many imperative program-

ming languages, however, the modular verification of this independence is frustrated

by (i) the possibility of aliasing between variables mentioned in different threads, and

(ii) the lack of abstraction in the description of read/write effects of operations on

shared data structures. The reasoning framework introduced in chapter 3 can be

implemented to overcome these frustrations.

The non-interference contract is such an implementation for the RESOLVE pro-

gramming language that permits the specification and (modular) verification of par-

allel operations on objects in the language. Two examples of software components

that are useful in parallel programs are discussed to show the utility of the non-

interference contract as a tool to aid reasoning about parallel programs. The first

example is that of a bank account with which is is possible to perform a withdrawal

concurrently with a deposit. The second example is a classic concurrent data struc-

ture, a bounded queue. Three different implementations of a queue are described,

each with varying degrees of entanglement and therefore different degrees of possible

synchronization-free concurrency.
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5.1 Motivating Example: Bank Account Manager

As a motivating example, consider a bank account. This account belongs to a bank

that has two “modes” of overdraft handling: (1) no overdrafts, i.e., a withdrawal of

an amount greater than the current account balance is never permitted, and (2) any

withdrawal is valid so long as, by the end of the day, the account balance is non-

negative.

The BankAccount type (which has a field balance modeled as an unbounded

natural number) provides two revelant methods to the client:

• Withdraw(amt: Natural, acct: BankAccount)

• Deposit(amt: Natural, acct: BankAccount)

5.1.1 Operation Specifications

To reason formally about a program involving objects of type BankAccount, the

behavior of the operations must be specified. One possible pair of specifications for

the operations is as follows.

1 operation Withdraw(preserves amt: Natural, updates acct:
BankAccount)

2 requires acct .balance ≥ amt
3 ensures acct .balance = #acct .balance − amt
4

5 operation Deposit(preserves amt: Natural, updates acct:
BankAccount)

6 ensures acct .balance = #acct .balance + amt

The reason for the precondition to Withdraw is obvious: you can’t withdraw

funds you don’t have! However, in mode 2, the bank actually does allow such a

withdrawal—provided the money is paid back by the end of the day. The question,
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then, is how to model mode 2 of the bank’s operation, and how to prove a prgram

written with that model is correct.

5.1.2 Client Programs

Consider the following sequence of transactions on a bank account named acc.

Listing 5.1: A sequential client program using a bank account named acc.

1 assume acc.balance = 100
2 -- day begins
3 Deposit(100, acc)
4 Withdraw(150, acc)
5 -- day ends
6 confirm acc.balance = 50

It should be clear that a sequential program such as listing 5.1 models mode 1 of

the bank’s operation, that is, a withdrawal of more money than is in the account is

never permitted to take place. (Note that had the two operations in the listing above

had been written in the reverse order, the program would not be correct.) Mode 2

can be modeled by considering the day itself as a single transaction period, and the

various individual transactions as parallel operations within that period. A valid day

in this model is one in which there is some serialization of the transactions that never

brings the account balance below zero. For example, the client program for the same

set of transactions in this model might look like the following.

Listing 5.2: A client program written as a parallel program to model mode 2 of the
bank’s operation.

1 assume acc.balance = 100
2 -- day begins
3 cobegin
4 Deposit(100, acc)
5 Withdraw(150, acc)
6 end
7 -- day ends
8 confirm acc.balance = 50
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5.1.3 Implementation

Of course, the client program of listing 5.2 program is deterministic only when

the parallel calls are non-interfering. There are several ways to guarantee non-

interference. The first approach is to use locks to guarantee exclusive control of

shared state by a single process at a time. The second (preferred, for this discussion)

approach is to implement the bank account not with a single natural number that is

added to or subtracted from within each operation call, but rather as a pair (in, out)

of natural numbers—one that represents the total amount deposited and the other

the total amount withdrawn. In this way, a call to Withdraw(x, a) is always

non-interfering with a call to Deposit(y, a) (because they operate on differnt

pieces of the underlying data structure). Two important parts of the implemen-

tation, the abstraction function (correspondence in RESOLVE) and representation

invariant (convention), are as follows.

1 type BankAccount is (in: Natural, out: Natural)
2 exemplar a
3 correspondence a.balance = in − out
4 convention in ≥ out

The abstract model (a single natural number balance) is entirely decoupled from

the implementation (a pair of natural numbers (in, out)) except that an implemen-

tation provides a mapping from its concrete state to its abstract state. The concrete

state of an implementation is determined, in turn, on the abstract values of its fields.

Unfortunately, sound reasoning about the parallel program in listing 5.2 involves

exposing these implementation details, violating the principles of modularity and ab-

straction. To overcome this problem, a new specification construct that enables sound
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modular reasoning about that program and others like it is presented in section 5.3

below.

5.2 Motivating Example: Concurrent Bounded Queue

While there is only one sensible implementation of the bank account type above

that permits the desired degree of synchronization-free parallism, other data abstrac-

tions invite several reasonable implementations, each of which might differ in the

degree of interference-free parallelism they enable. Concurrent queues are one such

common data abstraction used in parallel programs. However, most of them employ

a form of locking to prevent concurrent access to the head (or tail) of the queue.

The queue presented here differs from traditional concurrent queues in several ways:

(i) it is designed and specified to avoid the need for locks or other synchronization,

provided the queue’s size is always middling, (ii) it is bounded (for ease of imple-

mentation), and (iii) it is designed to avoid reference leaks and thus permit clean

semantics. Recognize that the boundedness is not fundamental to the topic at hand:

an unbounded queue could be implemented using the same principles.

5.2.1 Abstract Specification

The BoundedQueueTemplate concept models a queue as a mathematical string

of “items” (of some arbitrary type); its full specification is in listing 5.3. This concept

defines five queue operations that have been designed and specified to avoid the

reasoning pitfalls associated with aliasing that arises when a queue contains non-

trivial objects [73] and to facilitate clean semantics.

Listing 5.3: Specification for BoundedQueueTemplate.

1 concept BoundedQueueTemplate (type Item, MAX_LENGTH: Integer
)
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2

3 type Queue is modeled by string of Item
4 exemplar q
5 constraint |q| ≤ MAX LENGTH
6 intialization ensures q = 〈〉
7

8 operation Enqueue (clears e: Item, updates q: Queue)
9 requires |q| < MAX LENGTH

10 ensures q = #q ◦ 〈#e〉
11

12 operation Dequeue (replaces r: Item, updates q: Queue)
13 requires |q| > 0
14 ensures #q = 〈r〉 ◦ q
15

16 operation SwapFirstEntry (updates e: Item, updates q:
Queue)

17 requires |q| > 0
18 ensures
19 〈e〉 = #q [0, 1) ∧
20 q = 〈#e〉 ◦#q [1, |#q |)
21

22 operation Length (restores q: Queue) : Integer
23 ensures Length = |q|
24

25 operation RemCapacity (restores q: Queue) : Integer
26 ensures RemCapacity = MAX LENGTH − |q|
27

28 end BoundedQueueTemplate

The precondition (requires clause) for Enqueue states that there must be

space in the queue for the new element. Formally, this is expressed as |q| < MAX LENGTH .

The postcondition (ensures clause) says that the outgoing value of q is the string

concatenation of the incoming value of q (denoted #q) and the string consisting of

a single item, the old value of e. Formally, this is expressed as q = #q ◦ 〈#e〉. In

simple terms, Enqueue puts the item e at the end of the queue q. The parameter

mode (clears) for e defines its outgoing value: an initial value for its type (e.g., the

value 0 if Item is a numeric type or an empty tree if it is a tree).

105



The requires clause for Dequeue says that q must not be empty—formally, |q| > 0.

The ensures clause says that the concatenation of the resulting element r and outgoing

value of q is the original value of q (i.e., it removes the item from the head of the

queue and places it into r)—formally, #q = 〈r〉 ◦ q.

The SwapFirstEntry operation allows a client to retrieve the queue’s head

without introducing aliasing. A traditional concurrent queue might instead use a

Peek operation that returns an alias to the element at the head of the queue.

The functions Length and RemCapacity behave as expected: Length returns

an integer equal to the number of elements in the queue, and RemCapacity returns

an integer equal to the number of free slots left in the queue before it becomes full.

Neither changes the abstract value of the queue.

5.2.2 Possible BoundedQueueTemplate Implementations

Three alternative implementations of the bounded queue specified above have

been developed, each with different parallelization opportunities. All three are based

on an array. In the first two implementations, the length of the underlying array is

equal to the maximum length of the queue, MAX LENGTH , while in the third the

length of the array is one greater than MAX LENGTH .

The first implementation has two integer fields, front and length, where

front is the index in the array of the first element of the queue and length is

the number of elements in the queue. This implementation cannot handle concurrent

calls to Enqueue and Dequeue without synchronization because both of those calls

must necessarily change the value of length. A client can, however, make concurrent

calls to SwapFirstEntry and Enqueue when the preconditions for both methods
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Figure 5.1: Three alternative BoundedQueueTemplate implementations on an
array, each with the same abstract value 〈a, b, x, y, z〉.

are met before the parallel block (that is, if 0 < |q| and |q| < MAX LENGTH ).9

These two methods may be executed in parallel because SwapFirstEntry touches

only the entry at the head of the queue (by reading front) and does not even read

the value of length, while Enqueue writes length and touches the only the entry

just past the tail of the queue (also by reading front)—which we know is different

from the head of the queue because the precondition of SwapFirstEntry guaran-

teed there was at least one entry in the queue. An empty queue in implemented in

this way has length = 0 and 0 ≤ front < MAX LENGTH , and a full queue has

length = MAX LENGTH and 0 ≤ front < MAX LENGTH .

The second realization also has two integer fields (named head and postTail)

and an additional boolean field isEmpty. The field head is the index of the array

9A more detailed discussion of the proof rule for the parallel composition of statements is found
in chapter 3 and below in section 5.4.1; in fact the precondition for parallel composition is more
subtle than this.
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at which the first element of the queue is located and postTail is the index of

the first element of the array after the last element of the queue. The boolean field

isEmpty is used to distinguish between a full queue and an empty queue. As in

realization #1, a client can concurrently call Enqueue and SwapFirstEntry as

long as both preconditions are satisfied. Additionally, it appears as though it should

be possible to concurrently call Enqueue and Dequeue because the length of the

queue is computed on demand from the head and postTail fields (and not some

other field written by both Engueue and Dequeue). Unfortunately, the obvious

implementations of Enqueue and Dequeue for this queue realization might both

attempt to change the value of isEmpty. To facilitate the expected degree of par-

allelism, we can augment the functional specification of BoundedQueueTemplate

by adding a method: DequeueFromLong, which has the same postcondition as

Dequeue, but has the precondition that the queue will not be either empty nor full

after the operation. The formal specification is in listing 5.4. By augmenting the

functional specification in this way, a body for DequeueFromLong need not check

if the queue has been made empty (the precondition precludes its invocation in that

situation), and can simply increment the appropriate queue endpoint field.

Listing 5.4: Augmentation of BoundedQueueTemplate.

1 operation DequeueFromLong (replaces r: Item, updates q:
Queue)

2 requires |q| − 1 > 0
3 ensures #q = 〈r〉 ◦ q

The third implementation is similar to the second in that its two integer fields are

head and postTail (and they act identically to realization #2), but in lieu of a

boolean isEmpty field, there is a sentinel element added to the array so that when

head = postTail it can only be the case that the queue is empty (a full queue has
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head = (postTail −1) mod (MAX LENGTH + 1)). Because the length of the array

is greater than MAX LENGTH , there will always be some element of the array that

is not part of the queue. Being able to differentiate between a full and empty queue

without the need to have a separate variable ensures that even when the queue might

become empty during a call to Dequeue, that operation body need not observe or

change the value of any variable that Enqueue either observes or changes. Therefore,

Enqueue may be executed concurrently with Dequeue when this realization is used

(and applicable preconditions are met).

The variety of parallelization opportunities arising from these different implemen-

tations of a single interface illuminates the need for a new specification construct

that can expose just enough implementation details to enable reasoning about the

concurrent execution of several statements for several classes of implementations for

a single behavioral specification.

5.3 Non-Interference Contracts and Modular Verification

Modular reasoning about the safe execution of concurrent threads can be separated

into three distinct tasks:

(i) a one-time description of the conditions under which operations are indepen-

dent,

(ii) a proof that client code ensures these independence conditions, and

(iii) a one-time proof that an implementation guarantees non-interference under

these conditions.

109



A functional specification such as in listing 5.3 by necessity does not reveal the

degree to which different parts of the concrete state are entangled in the implemen-

tation. The correspondence relation between concrete state and abstract state does

reveal the degree of entangledness and is part of the proof of correctness for the im-

plementation, but the principles of modular verification preclude its use in reasoning

about client code.

Reasoning soundly about the independence of concurrent threads in client code,

however, requires exposing some implementation details. One approach for describing

this independence involves defining an intermediate model consisting of orthogonal

components, and encapsulating the description of this intermediate model in a dis-

tinct specification construct, a non-interference contract. While a simple, static seg-

mentation is all that is necessary for the examples here, in general a non-interference

contract could introduce a dynamic number of orthogonal components or annotations

for synchronization operations.

The relationships of a non-interference contract to other parts of a software com-

ponent are illustrated in fig. 5.2. Its use is explored by applying it to the two examples

from above (sections 5.1 and 5.2).

5.3.1 Describing Non-Interference

The non-interference contract specification construct partitions the representation

space of a data type into a number of pieces, each of which is disjoint from the

others in the sense that at the representation level, each piece of data (e.g., each

representation field10) is a member of exactly one piece. A non-interference contract

10Notice that because non-interference contracts are modular, a representation field might have a
piece of its partition—not necessarily its whole self—that maps to the higher-level partition.
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Figure 5.2: Component diagram illustrating the role of non-interference contracts.
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extends an abstract specification to include effects summaries that define how an

operation interacts with the pieces of an object’s partition. These summaries are

described in terms of three modes: affects, preserves, and ignores. In addition to

these three modes, an operation is said to have a restructures effect if, by executing

the operation, the members of some piece of a parameter’s partition might be moved

to a different one, though none of the values of those members will have changed. All

three modes and the restructures effect may be conditional on the abstract values of

the parameters.

A when clause gives a condition that restricts the scope of effects by defining a

predicate that must hold initially for the stated effect to occur. When clauses help to

generalize non-interference contracts so that potentially many implementations could

satisfy a single non-interference contract that exposes desirable parallelism properties.

Reasoning about when clauses relies on an abstract behavioral specification and the

ability to reason about the abstract specification; this is a power of using a program-

ming language with sequential verification capabilities such as RESOLVE as a basis

for verification of parallel programs.

Non-interference contracts are designed to ease reasoning about cobegin blocks

and the rules for showing the non-interference of several statements inside a cobegin

block in RESOLVE code using interference contracts are relatively straightforward.

Each piece of the partition of an object mentioned in a cobegin block’s constituent

statements may be affects-mode in at most one statement, and if it is affects-mode

in some statement then it must be ignores-mode in all others. When these properties

are satisfied, the statements in the cobegin block are said to be non-interfering and
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their execution will be deterministic. Once non-interference (and therefore determin-

ism) is established using the non-interference contract, verification can proceed as if

the execution of the operations were sequential. In terms of the A/P Calculus and

framework from chapter 3, the specified effect of each statement in the cobegin block

must be non-interfering with the sepcified effect of every other statement in the block.

RESOLVE’s clean semantics ensure that an operation ignores (i.e., neither reads

nor writes) any variable not explicitly included as a parameter. Similarly, an operation

ignores any piece of a partition not explicitly mentioned in its effects.

The Restructures Effect

In component implementations that make use of dynamically assigned partitions,

a subtle interaction can occur: an operation might shuffle the membership of an

object’s partition without altering the values of any fields that live in its pieces.

In this case, we say that method restructures some pieces of that partition. The

restructures effect is fundamentally different than three partition modes in that it

places no proof obligation on the implementation, but it does place an obligation on

the client. If a statement in a program restructures pieces of an object’s partition, all

subsequent statements in that program must have those pieces in ignores-mode.

5.4 Reasoning About Non-Interference Between Threads

In the programs examined in this dissertation, non-interference comes in several

flavors. First, processes are non-interfering if they share no variables in common (such

as in chapter 4). Second, processes are non-interfering if they do share a variable but

it is only read from—not written to—by both processes. Finally, processes can be
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non-interfering even when they share and modify a variable through the use of non-

interference contracts.

In addition to satisfying the usual preconditions for functional correctness, the

verification of the client code includes establishing the conditions of non-interference

of the two operations. The establishment of these conditions is carried out entirely

in the context of the client code, using only the abstract behavioral specification and

non-interference contract of the type.

5.4.1 A Modular Proof Rule for Parallel Operation Calls

Given a set of operations with some behavioral specifications that have been aug-

mented with effects summaries (e.g., in a non-interference contract), the semantics

of their parallel composition is as in eq. (5.1). The specific rule is given only for the

two-way parallel composition of a pair of operations A and B (with specifications

given in listing 5.5), though it could readily be generalized to n arbitrary parallel

operation calls.

Listing 5.5: Specifications of two general operations for formulating a proof rule for
parallel operation calls.

1 partition for T2 is {a, b}
2

3 operation A(preserves x: T1, updates y: T2)
4 preserves x
5 affects y@a
6 when GA(x, y) affects y@b
7 requires PreA(x, y)
8 ensures PostA(x,#y, y)
9

10 operation B(preserves x: T1, updates y: T2)
11 preserves x
12 affects y@b
13 when GB(x, y) affects y@a
14 requires PreB(x, y)
15 ensures PostB(x,#y, y)
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(preA;B)
A(u,v);B(u,v)−−−−−−−−→ (postA;B)

∧ (preB;A)
B(u,v);A(u,v)−−−−−−−−→ (postB;A)

G⇒ A(u, v) ‡B(u, v)

(
G ∧ (preA;B ∨ preB;A)

) A(u,v) ‖B(u,v)−−−−−−−−→ (postA;B ∧ postB;A) (5.1)

Here, G is a predicate on the abstract values of the variables u and v that must

be true for the two statements to be non-interfering (notated with ‡). In this case,

G = ¬GA(u, v)∧¬GB(u, v). The predicate preA;B (respectively, preB;A) is the compos-

ite precondition for the serialization A(u, v);B(u, v) (respectively, B(u, v);A(u, v))—

that is, the weakest predicate that, when satisfied, will produce a trace of those

operation calls with no violated preconditions. postA;B and postB;A are the composite

postconditions of the serializations.

5.4.2 Verifying the Respects Relation for an Implementation

A mapping from concrete implementation state to abstract specification state is

provided by a realization’s representation invariant (called a convention in RESOLVE)

and abstraction relation (correspondence). To establish operation non-interference,

the correspondence relation is augmented with a partitioning of the constituent con-

crete state space. Thus, a realization must provide a mapping from the concrete

data structure involved in the implementation to the partitioned model of the non-

interference contract. Specifically, it must place each piece of the realization into

exactly one of the pieces of the non-interference contract.

The proof obligation for a realization is as follows: the actual effect of the body of

each operation must be covered by the specified effect in the non-interference contract,
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under the conditions specified in any when clauses. An operation body ignores a piece

of a partition only when all statements in its body ignore the corresponding parts of

the data structure. The underlying data structure itself might be built from other data

abstractions with their own non-interference contracts. This is not a problem—in fact

it enables the non-interference contract to preserve modularity—because the lack of

entanglement of one component can be layered on top of appropriately disentangled

realization fields, and the actual effect of the body can be computed using the specified

effects of its constituent statements.

5.5 Continued Example: Bank Account Manager

A non-interference contract for the operations Withdraw and Deposit that

permits their parallel execution is below.

Listing 5.6: Non-interference contract for type BankAccount.

1 noninterference contract TotalIndependence for BankAccount
2

3 partition for BankAccount is {w, d}
4

5 operation Withdraw(preserves amt: Natural, updates acct:
BankAccount)

6 affects acct@w
7

8 operation Deposit(preserves amt: Natural, updates acct:
BankAccount)

9 affects acct@d
10

11 end TotalIndependence

5.5.1 Reasoning about a Bank Account Client Program

Consider the example parallel client program in listing 5.2 (reproduced here).

1 assume a.balance = 100
2 cobegin
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3 Deposit(100, a)
4 Withdraw(150, a)
5 end
6 confirm a.balance = 50

By the proof rule in eq. (5.1), either (any) of the preconditions for the serializations

must be met in order to conclude both (all) of the postconditions. This can result in

surprising behavior. Applying the various rules for sequential composition of state-

ments, we have the following two formulas (eqs. (5.2) and (5.3)) that describe the

semantics of each serialization.

(a.balance ≥ 150)
Withdraw(150,a);Deposit(100,a)−−−−−−−−−−−−−−−−−→ (a.balance = #a.balance − 50) (5.2)

(a.balance ≥ 50)
Deposit(100,a);Withdraw(150,a)−−−−−−−−−−−−−−−−−→ (a.balance = #a.balance − 50) (5.3)

When Deposit and Withdraw are non-interfering, as is the case when we use an

implementation that respects the non-interference contract for BankAccount from

listing 5.6, the semantics of their parallel execution as defined by eq. (5.1) is as follows.

(a.balance ≥ 50)
Withdraw(150,a) ‖ Deposit(100,a)−−−−−−−−−−−−−−−−−−→ (a.balance = #a.balance − 50) (5.4)

Notice the precondition for the parallel composition (5.4) is weaker than the pre-

condition for one of the serializations (5.2). This is surprising because at runtime

the execution of Withdraw might be scheduled before the execution of Deposit,

resulting in a violated precondition if 50 ≤ a.balance < 150. However, because of

the non-interference of these two statements, that does not matter: there will still be
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no data races and the behavior will be identical to that if Deposit had come first.

Therefore, we can reason about their parallel composition as if the scheduler makes

an “angelic” choice: the serialization Deposit(100, a); Withdraw(150, a),

in which no preconditions are violated.

This conclusion is achieved with the help of a substantial amount of meta-

information that is gleaned from the non-interference of several operations—that is,

that the two operations always commute. Without the notion that the statements

Withdraw(150, a) and Deposit(100, a) are non-interfering and thus always

commute, their parallel composition with the weak precondition could not be ver-

ified as correct because of the precondition for Withdraw. Their non-interference

means that this specification is artificially weak: there is no operational reason in

the body of Withdraw for the precondition. That is not to say that an artificially

weak specification is useless—many problems, in fact, rely on weak specifications

for generality. In the example at hand, however, the relatively weak specification of

Withdraw is a consequence of the abstract view of a BankAccount’s balance being

a natural number (i.e., a non-negative integer) even though the particular class of im-

plementations under discussion (i.e., those that respect the non-interference contract

TotalIndependence in listing 5.6) does not rely on that being the case.

In the implementation discussed here, the correspondence and the convention to-

gether ensure that the balance is always a natural number. The usual rules for the

convention (i.e. representation invariant) state that it may only be broken within the

body of an operation, and must be returned to a valid state before that operation’s

body ends. However, when parallelism is involved, an operation might be interrupted

by another one mid-execution. In this situation, that interrupting operation might
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begin in a state with a violated convention! However, one interpretation of the defi-

nition of non-interference is that the way in which a convention might be violated by

one operation cannot affect the execution of any non-interfering operation.11

5.6 Continued Example: Concurrent Bounded Queue

Listing 5.7 below is a possible non-interference contract for the bounded queue

abstraction specified in listing 5.3. It matches the parallelization capabilities provided

by realization #1 in fig. 5.1.

Listing 5.7: A non-interference contract for type BoundedQueueTemplate.

1 noninterference contract LookupOffset
2 for BoundedQueueTemplate
3

4 partition for Queue is {head, tail, offset}
5

6 operation Enqueue (clears e: Item, updates q: Queue)
7 affects q@tail, e@*
8 preserves q@offset
9 when |q| = 0 affects q@head

10

11 operation Dequeue (replaces e: Item, updates q: Queue)
12 affects q@head, q@offset, e@*
13 restructures q@head, q@tail
14

15 operation SwapFirstEntry (updates e: Item, updates q:
Queue)

16 affects q@head, e@*
17 preserves q@offset
18

19 operation Length (restores q: Queue) : Integer
20 preserves q@head, q@offset
21

22 operation RemCapacity (restores q: Queue) : Integer
23 preserves q@head, q@offset
24

25 end LookupOffset

11The validity of this interpretation is a consequence of the results from chapter 3.
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Names for different pieces of the intermediate model are introduced on line 4 with

the partition keyword. For example, in the non-interference contract LookupOffset

partitions the concrete space of a queue into three pieces: q@head , q@tail , and

q@offset . The operations SwapFirstEntry and Enqueue affect distinct pieces

(q@head and q@tail , respectively). Furthermore, each ignores the piece affected by

the other, assuming the queue is non empty. Finally, the piece used by both (q@offset)

is preserved by both. The following client code illustrates a parallel composition of

these operations.

1 assume 0 < |q| < MAX LENGTH
2 cobegin
3 SwapFirstEntry(x, q)
4 Enqueue(y, q)
5 end

First, note that the client code above can be safely executed only if there is no

aliasing between objects x and y. This can be achieved by using a programming lanau-

gage like RESOLVE (that has clean semantics) or through disciplined programming

of the kind discussed in chapter 6 to avoid unintended aliasing.

Listing 5.8 below is an (augmented) implementation of

BoundedQueueTemplate that respects the non-interference contract

LookupOffset of listing 5.7. Line 24 introduces the non-interference corre-

spondence, which identifies how the implementation state is partitioned.

Listing 5.8: Example code showing a realization of BoundedQueueTemplate in
line with the picture of realization #1.

1 realization ArrayWithLength for BoundedQueueTemplate
2 respects LookupOffset
3 uses ArrayTemplate with SeparateElements
4

5 function FunctionToStringWithWrapping(f: integer -> Entry,
s: integer, e: integer): string of E is
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6 if s = e then 〈〉
7 else 〈f(s)〉 ◦ FunctionToStringWithWrapping(
8 f, (s+ 1) mod (MAX LENGTH ), e)
9

10 type representation for Queue is
11 (contents: array 0..MAX_LENGTH - 1 of Item,
12 front: Integer,
13 length: Integer)
14 exemplar q
15 convention
16 0 ≤ q .front < MAX LENGTH ∧
17 0 ≤ q .length ≤ MAX LENGTH
18 correspondence function is
19 FunctionToStringWithWrapping(
20 q .contents ,
21 q .front ,
22 q .front + q .length + 1
23 )
24 noninterference correspondence for LookupOffset
25 q@head: q.contents@c[q.front]
26 q@tail: q.length, q.contents@c except on {q.front}
27 q@offset: q.front
28 end Queue
29

30 procedure Enqueue(clears e: Item; updates q: Queue)
31 var newIdx := q.front + q.length mod MAX_LENGTH
32 e :=: q.contents[newIdx]
33 q.length := q.length + 1
34 Clear(e)
35 end Enqueue
36

37 procedure Dequeue(replaces e: Item, updates q: Queue)
38 e :=: q.contents[q.front]
39 q.front := q.front + 1 mod MAX_LENGTH
40 q.length := q.length - 1
41 end Dequeue
42

43 procedure SwapFirstEntry(updates e: Item; updates q: Queue
)

44 e :=: q.contents[q.front]
45 end SwapFirstEntry
46

47 function Length(preserves q: Queue)
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48 Length := q.length
49 end Length
50

51 function RemCapacity(preserved q: Queue)
52 RemCapacity := MAX_LENGTH - q.length
53 end RemCapacity
54

55 end ArrayWithLength

Applying the Rules for the Restructures Effect

Observe that the operation Dequeue from listing 5.7 restructures the pieces

q@head and q@tail . To understand what this entails, consider realization #1 of

BoundedQueueTemplate as illustrated in fig. 5.1 (the code for which appears in

listing 5.8) and in particular how the Dequeue operation is implemented. The in-

terference correspondence of that realization places the element of the array at index

q.front in the q@head piece of the object’s partition, and the rest of the array in

the q@tail piece. The body of Dequeue in that realization swaps the element of the

array at index q.front with the parameter e (line 38), then increments q.front

(line 39). Upon changing the value of q.front, the operation body has changed the

membership of the q@head and q@tail pieces of q’s partition. Therefore, a client of

Dequeue no longer knows after the operation returns how q is partitioned (because

the client has no knowledge of the front field) and there might be a parallel oper-

ation that was non-interfering before the call, but that is no longer non-interfering

afterward.

5.6.1 Layering Non-Interference Contracts

Real-world software components are built with many layers of abstraction.

The use of a non-interference contract to reason about safe parallelism enables
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such modular composition, as seen in listing 5.8. Line 3 in the listing iden-

tifies that the ArrayTemplate instantiation used in this realization uses the

SeparateElements non-interference contract. That non-interference contract is

not formally specified here, but it exposes the expected concurrency properties of an

array, that is, it permits the concurrent access to elements of the array at distinct

indices (which, by clean semantics, are guaranteed not to be aliases to a shared ob-

ject). In general, layering non-interference contracts limits the realizations that can

be used to instantiate the concept.

Notice that the partition assignment of the field q.contents on lines 25 and 26

involves the non-interference contract for the array (i.e., q .contents@c refers to the

piece of the partition of q.contents named c). It is the partition at this nested

level that is used in the realization’s interference correspondence.

Proving the Respects Relation

The proof that Enqueue ignores q@head (when the queue is non-empty—otherwise

it affects q@head and this proof is trivial) is seen as follows. When the queue is

non-empty, q .length ≥ 1. So the part of q.contents that is modified is not q.

contents[q.front]. Because q@head contains only q .contents@c[q .front ], En-

queue ignores q@head .

TheSwapFirstEntry operation, on the other hand, ignores q@tail . This can

be seen immediately from two facts: that the operation body does not mention q.

length and that only the entry of q.contents at index q.front is affected, so

it ignores the rest of q.contents, and therefore the entirety of q@tail .

The proof that q@offset is preserves-mode in both Enqueue and

SwapFirstEntry amounts to a proof that no statement in those bodies writes to
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the field q.front (as that is the only part of the realization that is in the piece

named q@offset). This proof follows immediately from the effects of the statements

in the bodies of Enqueue and SwapFirstEntry.12 In particular, the statements

that mention q.front (line 31 and line 44) only read its value and do not change

it.

5.6.2 Other Realizations

Other realizations of BoundedQueueTemplate demand different augmentations

and implementation annotations for concurrent execution. For example, listing 5.9

is a more permissive non-interference contract that permits concurrent execution of

Enqueue with either Dequeue or SwapFirstEntry when the queue is non-empty

and non-full. A queue with this non-interference contract might be used in a producer-

consumer context when the queue is known never to be empty.

Listing 5.9: A permissive non-interference contract for BoundedQueueTemplate.

1 noninterference contract ParEnqDeq
2 for BoundedQueueTemplate
3

4 partition for Queue is {a, b}
5

6 operation Enqueue(updates q: Queue, clears e: Entry)
7 affects q@b
8 affects e@*
9 when |q| = 0

10 affects q@a
11

12 operation Dequeue(updates q: Queue, replaces e: Entry)
13 affects q@a
14 affects e@*
15 restructures q@a, q@b
16

17 operation SwapFirstEntry(updates q: Queue, replaces e:
Entry)

12Although those effects are not formally specified here, they are as one would expect.
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18 affects q@a
19 affects e@*
20

21 function Length(preserves q: Queue): Integer
22 preserves q@a, q@b
23

24 function RemCapacity(preserves q: Queue): Integer
25 preserves q@a, q@b
26

27 end ParEnqDeq

The non-interference contract ParEnqDeq in listing 5.9 stands out because

there are several reasonable implementations that respect it. For example, the

DistinguishedIndexArray abstraction from section 4.4.1 can be used to im-

plement BoundedQueueTemplate in a way that respects this non-interference

contract. Code for that realization is in listing 5.10. In the realization the non-

interference contract for DistinguishedIndexArray has three pieces: dist , rest ,

and idx (they are used in the noninterference correspondence on lines 31 to 35).

Listing 5.10: A realization of BoundedQueueTemplate using an instance of
DistinguishedIndexArray.

1 realization DistinguishedIndexArrayRealization
2 implements BoundedQueueTemplate
3 respects ParEnqDeq
4 uses DistinguishedIndexArrayTemplate with DistIdxSeparate
5

6 function FunctionToStringWithWrapping(
7 f: integer -> Entry,
8 s: integer,
9 e: integer): string of Entry is

10 if s = e then 〈〉
11 else
12 〈f(s)〉 ◦ FunctionToStringWithWrapping(
13 f, (s+ 1) mod (MAX LENGTH + 1), e)
14

15 lemma ∀(f : Z→ Entry , s : Z, e : Z)
16 ((|FunctionToStringWithWrapping(f, s, e)| = 0)⇔ (s = e))
17
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18 representation for Queue is
19 (contents: DistinguishedIndexArray,
20 postTail: Integer)
21 exemplar Q
22 convention
23 0 ≤ q .postTail ≤ MAX LENGTH ∧
24 q .contents .domain = {(i : Z)(0 ≤ i ∧ i ≤ MAX LENGTH )(i)}
25 correspondence function is
26 FunctionToStringWithWrapping(
27 q .contents .contents ,
28 q .contents .distinguishedIndex ,
29 q .postTail
30 )
31 noninterference correspondence
32 q.contents@dist in q@a
33 q.contents@rest in q@b
34 q.contents@idx in q@a
35 q.postTail in q@b
36 initialization
37 SetBounds(q.contents, 0, MAX_LENGTH)
38 end Queue
39

40 operation Enqueue(updates q: Queue, clears e: Entry)
41 if (IsInRest(q.contents, q.postTail))
42 var A: DistinguishedIndexArray
43 RetrieveRest(q.contents, A)
44 ChangeDistinguishedIndexTo(q.postTail, A)
45 SwapDistinguishedEntry(A, e)
46 ReplaceRest(q.contents, A)
47 else
48 SwapDistinguishedEntry(q.contents, e)
49 end if
50 q.postTail := (q.postTail + 1) mod (MAX_LENGTH + 1)
51 Clear(e)
52 end Enqueue
53

54 operation Dequeue(updates q: Queue, replaces e: Entry)
55 SwapDistinguishedEntry(q.contents, e)
56 var Spec: Integer
57 Spec := DistinguishedIndex(q.contents)
58 Spec := (Spec + 1) mod (MAX_LENGTH + 1)
59 ChangeDistinguishedIndexTo(q.contents, Spec)
60 end Dequeue
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61

62 operation SwapFirstEntry(updates q: Queue, replaces e:
Entry)

63 SwapDistinguishedEntry(q.contents, e)
64 end SwapFirstEntry
65

66 operation Length(preserves q: Queue): integer
67 Length := q.postTail - DistinguishedIndex(q.contents)
68 Length := Length mod (MAX_LENGTH + 1)
69 end Length
70

71 operation RemCapacity(preserves q: Queue): integer
72 var Length: Integer
73 Length := Length(q)
74 RemCapacity := MAX_LENGTH - Length
75 end RemCapacity
76

77 end Distinguished_Index_Array_Realization

The non-interference contract ParEnqDeq could also be realized by using two

instances of BoundedQueueTemplate, each of which also respect the ParEnqDeq

non-interference contract, the code for which is in listing 5.11. (In listing 5.11, the

function intrl on line 23 in the correspondence is the element-wise interleaving of the

two string arguments, beginning with the first argument.)

Listing 5.11: Another realization of BoundedQueueTemplate layered on top of
two other instances of BoundedQueueTemplate that respects the non-interference
contract ParEnqDeq.

1 realization SplitQueues
2 implements BoundedQueue
3 respects ParEnqDeq
4

5 uses BoundedQueueTemplate with ParEnqDeq
6 uses Mod for UnboundedIntegerFacility
7 uses Increment for UnboundedIntegerFacility
8 uses Add for UnboundedIntegerFacility
9

10 facility QueueFacility is BoundedQueueTemplate(Item,
MAX_LENGTH/2)

11
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12 type representation for Queue is (queueT: Queue,
13 queueF: Queue,
14 nextHead: Boolean,
15 nextTail: Boolean)
16 exemplar q
17 convention
18

∣∣|q .queueT | − |q .queueF |
∣∣ ≤ 1 ∧

19 |q .queueT | < |q .queueF | = (¬q .nextHead ∧ q .nextTail) ∧
20 |q .queueT | > |q .queueF | = (q .nextHead ∧ ¬q .nextTail) ∧
21 (|q .queueT | = |q .queueF |) = (q .nextHead = q .nextTail)
22 correspondence function is

23

{
intrl(q .queueT , q .queueF ) q .nextHead

intrl(q .queueF , q .queueT ) otherwise

24 noninterference correspondence for ParEnqDeq
25 q.nextHead is in q@a
26 q.nextTail is in q@b
27 q.queueT@a is in q@a if q.nextHead, else in q@b
28 q.queueF@a is in q@a if not q.nextHead, else in q@b
29 q.queueT@b is in q@b
30 q.queueF@b is in q@b
31 end Queue
32

33 procedure Enqueue (clears e: Item, updates q: Queue)
34 if (q.nextTail) then
35 Enqueue(e, q.queueT)
36 else
37 Enqueue(e, q.queueF)
38 end
39 Negate(q.nextTail)
40 end Enqueue
41

42 procedure Dequeue (replaces r: Item, updates q: Queue)
43 if (q.nextHead) then
44 Dequeue(r, q.queueT)
45 else
46 Dequeue(r, q.queueF)
47 end
48 Negate(nextHead)
49 end Dequeue
50

51 procedure SwapFirstEntry (updates e: Item, updates q:
Queue)
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52 if (q.nextHead) then
53 SwapFirstEntry(e, q.queueT)
54 else
55 SwapFirstEntry(e, q.queueF)
56 end
57 end SwapFirstEntry
58

59 end SplitQueues

5.7 Conclusions

Although the semantics for the parallel programs have been well-studied, essen-

tially all prior work on verifying the correctness of parallel programs involves reasoning

about explict implementation details of the software components that are used. The

non-interference contract is a novel specification construct that works in concert with

a behavioral specification to expose only some implementation details to enable the

safe parallel composition of several operations on an object and preserves the abil-

ity to soundly reason in a modular fashion about parallel software. By partitioning

the representation space of a type into a number of pieces and defining how various

operations interact with those pieces, a non-interference contract can guarantee that

some parallel programs will be data race free even if parallel statements share abstract

variables and do not involve explicit synchronization constructs. As a consequence

of these guarantees, a verifer may reason about non-interfering parallel programs as

if they were sequential, paving the way for the automated verification of a variety of

parallel programs that make use of high-level abstract data types.
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Chapter 6: Using C++ Move Semantics to Minimize

Aliasing and Simplify Reasoning

Efforts to ease reasoning about software written in RESOLVE and other academic

programming languages are valuable endeavors, but are not immediately adoptable

by the wider software engineering community because of the languages used. The

facilitate the transfer of ideas and techniques from academic languages to mainstream

programming languages, this chapter presents a discipline for C++ programming that

produces programs that exhibit many of the properties of RESOLVE programs that

make the language an attractive target for automated formal verification.

Most modern programming languages rely on pointer and reference copying for

efficient data movement. When references to mutable objects are copied, aliases are

introduced, often complicating formal and informal behavioral reasoning. While some

aliasing (and the resulting increase to reasoning complexity) is generally regarded as

necessary in performant software, aliasing can be minimized for practical software de-

velopment by leveraging the relatively recent introduction of move semantics in C++

(as of C++11), while also satisfying important performance requirements of real-

world software. Applying a carefully-developed discipline for programming based on

move semantics can avoid most routine introduction of aliasing in programs, thereby

leading to simpler reasoning about the behavior of software. The discipline, called
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Clean++, requires attention to interface and implementation design, and it is illus-

trated through a series of components that have been developed to address a variety

of programming use cases.

6.1 Move Semantics in C++

Introduced in the C++11 specification, move semantics is a mechanism designed

to improve the performance of data movement [78]. It is an efficient alternative to

both traditional value and reference copying. Its efficiency stems from avoiding a

deep copy by moving a value from one variable to another, leaving the old variable

in an undefined state.

In C++, an expression appearing on the right-hand side of an assignment oper-

ation is one of two kinds: an lvalue or an rvalue. An lvalue represents something

occupying an identifiable location in memory and is therefore suitable for the left-

hand side of an assignment, for example a variable (x), a pointer dereference (*p),

or a function returning a reference (a[3]). An rvalue, on the other hand, represents

the temporary result of an expression evaluation and is not suitable for the left-hand

side of an assignment, for example the result of a constructor (new T()), a literal

("Hello"), or an address-of operation (&x). Beginning with C++11, rvalues are

further divided into rvalue references and const rvalues : the former may be modified

while the latter may not.

What use is it to modify an rvalue, given that rvalues are temporary values poised

to go out of scope very soon anyway? A key observation that led to the inclusion of

move semantics is that in order to implement “moving assignment”, the right-hand

side might have to be modified (e.g., by being set to nullptr or an initial value for
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its type). The idea behind moving assignment is that precisely because the right-hand

side is poised to go out of scope, the left-hand side does not need to make a copy.

Rather, it is enough to merely steal ownership of the data from the right-hand side.

Move semantics offer clear performance benefits. When a parameter to a method

is passed by value, or when a variable is assigned with the assignment operator,

the copy constructor or copy assignment operator is called (which might make an

expensive deep copy). For large or complex data types, copying can be expensive

or difficult to implement, or both. If the value of an actual parameter to a method

call is not needed after the call completes, then parameter passing can be made far

more efficient by moving the value of the actual parameter to the formal parameter,

leaving the actual parameter in an easily constructed (or undefined) state. In [13],

a sample program is shown in which copy semantics leads to the creation of several

unnecessary copies of a resource; employing move semantics eliminates this copying

and results in a single allocation of the resource, whose value is then moved between

variables, parameters, and return values.

6.1.1 Reasoning Benefits of Move Semantics

In typical C++ programs, there are often many pointers and references. Some-

times, the use of pointers stems from the implementation of a linked data structure

with unavoidable aliases, such as a directed graph. Often, however, aliases arise from

efficiency concerns as they provide a mechanism for constant-time and constant-space

assignment and parameter passing. For example, consider the list component from

the C++ standard template library [21]. This component’s insert method creates
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a copy of each inserted item. To avoid expensive copying, a list could be declared

to hold pointers to items (T*) rather than the items themselves (T).

Unfortunately, the use of pointers and reference semantics introduces significant

challenges for reasoning about the behavior of code. At the root of these challenges is

the fact that aliases permit a program statement to affect variables that are not ex-

plicitly mentioned by that statement (making local reasoning unsound). Put another

way, understanding the effect of a program statement requires, in the worst case, a

whole-program analysis of pointer variables and the memory addresses they identify.

Listing 6.1: Short main method illustrating the reasoning challenges introduced by
aliased references.

1 int main(int argc, const char* argv[])
2 {
3 int* a = new int[3];
4 for (int i = 0; i < 3; i++) {
5 a[i] = i+1;
6 }
7 int* b = a;
8 b[1] = 4; // modify array b
9 printf("b = {%d, %d, %d}\n", b[0], b[1], b[2]);

10 printf("a = {%d, %d, %d}\n", a[0], a[1], a[2]);
11 return 0;
12 }

Consider the aliasing illustrated in listing 6.1 above. The program prints the same

value for both a and b: {1, 4, 3}, even though a appears not to be modified after

it is initialized in the loop to hold the value {1, 2, 3}. Although this simple exam-

ple is easy to reason about, understanding even slightly more complicated programs

in a systematic, modular, or automated way is intractable in the general case (for

example because some code that modifies b might be hidden inside the body of a

function or method call replacing line 8).
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Memory Management

One specific manifestation of these challenges is the difficulty of memory manage-

ment. Properly balancing memory allocation and deallocation is notoriously hard, as

evidenced by the ubiquity of errors related to memory leaks, dangling pointers, and

null dereferences (and by the existence of garbage collectors). Using move semantics

and programming according to a strict discipline with can eliminate many of these

errors. Rust [89] is one attempt to tackle this class of errors at the language level by

using moving semantics as the default data movement operation and by providing a

strict set of rules for data that is shared between variables. It is discussed in some

detail in section 2.5.3.

To eliminate aliasing in the example above, we could encapsulate an array inside

a class and override the constructor and assignment operator for that class, allow-

ing only the moving assignment and initialization operations. The modified code,

including the implementing class, might look like the following listing.

Listing 6.2: Implementation and use of a moving-only array type.

1 class MoveArrInt
2 {
3 private:
4 int m_a[];
5 public:
6 MoveArrInt(const MoveArrInt& m_arr) = delete;
7 MoveArrInt(MoveArrInt&& m_arr)
8 {
9 m_a = m_arr.m_a;

10 m_arr.m_a = new int[0];
11 }
12 MoveArrInt(int*&& arr)
13 {
14 m_a = arr;
15 arr = new int[0];
16 }
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17

18 MoveArrInt& operator=(const MoveArrInt& m_arr) = delete;
19 MoveArrInt& operator=(MoveArrInt&& m_arr)
20 {
21 if (&m_arr == this)
22 {
23 return *this;
24 }
25 delete[] m_a;
26 m_a = m_arr.m_a;
27 m_arr.m_a = new int[0];
28 return *this;
29 }
30

31 int& operator[](std::size_t idx)
32 {
33 return m_a[idx];
34 }
35 };
36

37 int main(int argc, const char * argv[])
38 {
39 MoveArrInt a(new int[3]);
40 for (int i = 0; i < 3; i++) { a[i] = i+1; }
41 MoveArrInt b = std::move(a);
42 b[1] = 4; // modify array b
43 printf("b = {%d, %d, %d}\n", b[0], b[1], b[2]);
44 printf("a = {%d, %d, %d}\n", a[0], a[1], a[2]);
45 return 0;
46 }

The MoveArrInt class deletes the copy constructor and copy assignment opera-

tor, opting instead to only allow construction and assignment when the argument or

right-hand side is an rvalue reference. The result, as seen in the main method, is that

when assigning a MoveArrInt from another one, the client must enclose the right-

hand side in a call to std::move. Introduced in C++11, the std::move operation

converts its argument to an rvalue reference, effectively marking it as unowned (and

hence modifiable). Because the C++ language specification does not define the value
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of a variable after it is moved, a moved variable should never be used after such a call

until it is assigned a new value. Indeed, printing the value of b on line 43 displays

{1, 4, 3} as in listing 6.1, but printing the value of a on line 44 displays garbage

values.

In the modified program, there is never more than one variable that “owns” any

chunk of memory. Aliasing is eliminated, and it becomes possible to reason locally

about the program: the value of a is not changed by the statement on line 42, nor

can any statement not explicitly mentioning a change its value.

This design pattern can be extended to include a wide range of data types, includ-

ing linked data types and others whose values are typically allocated and managed on

the heap. By implementing move constructors and move assignment operators and

also deleting their copying counterparts, aliases can be prevented while the perfor-

mance benefits afforded by reference semantics can be preserved.

6.2 Clean++: A Discipline for Software Engineering in C++

The use of move semantics makes it possible to write clean, modular code that

is easy to understand and reason about. A discipline based on move semantics can

encourage abstraction and understandability, and would guarantee the soundness of

local reasoning. The development of such a discipline, called Clean++, is directed by

several broad goals:

• Soundness of Local Reasoning. A Clean++ program should exhibit behavior

that is immediately apparent from locally reasoning about the code: e.g., rea-

soning about a function call should not require knowing the implementation
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details of that function. Ensuring the soundness of local reasoning requires

eliminating aliases.

• Preservation of Good Object-Oriented Programming Practices. A programmer

writing in the Clean++ discipline should be guided by the rules and structures

of the discipline to write code that makes judicious use of data abstractions to

maximize modularity.

• Familiarity. A Clean++ program should be familiar to a C++ programmer.

It should “look like” C++ and the behavior of the program should not be

unexpected to an experienced C++ programmer.

In total, the Clean++ discipline comprises eight rules as well as several informal

guidelines. This discussion distinguishes between two kinds of software components:

“low-level” components with implementations that fall outside the discipline (because

they use vairables of types not in the discipline) and “high-level” components that

make exclusive use of Clean++ types.

Mutability The Clean++ discipline has been developed with a specific focus on

mutable data because immutable data preempts the reasoning problems posed by

aliased references. Immutable types in Clean++ have no marked differences compared

to their counterparts in idiomatic C++, so they are ignored in this discussion.

6.2.1 Soundness of Local Reasoning

Local reasoning is a technique by which automated verifiers are able to tractably

verify the correctness of relatively large programs. There are many language features
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of mainstream programming languages that complicate local reasoning—and, in some

cases, break it entirely.

Perhaps the leading cause for unsound local reasoning is the prevalence of aliased

references. When two variables refer to the same piece of memory, the modification

of the data through one of the variables will change the value of the other (at least,

most people would say so). It is thus desirable for a programming discipline that

wishes to maintain the soundness of local reasoning to preclude aliases where possible

and advertise or encapsulate them where necessary.

There are several options for maintaining the soundness of local reasoning in

Clean++. The first is to prefer statically allocated stack variables, which by de-

fault are copied on assignment. Of course, the performance of stack variables is

prohibitively poor in many cases so the possiblity of dynamically-allocated objects

must be accounted for.

Experience has shown that it is possible to develop real-world software with

dynamically-allocated objects that has no aliases whatsoever [81], and design pat-

terns that support such components are preferred when applicable. A good way to

prevent aliases is to develop types with appropriate move constructors and move as-

signment operators, and to use them everywhere. An example of such a type from the

C++ standard template library is std::unique_ptr, a “smart pointer” that ex-

presses singular ownership of its contents. Any assignment of a std::unique_ptr

must be enclosed in a call to std::move, which relinquishes ownership. A program

in which all raw pointers are replaced with unique pointers is a program in which

there are no aliases.
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There are, however, situations that necessitate data sharing of some form—usually

aliasing. In such cases, the Clean++ discipline encourages the use of the std::

shared_ptr type, which advertises the fact that a variable might have an alias.

Put another way, in a traditional C++ program, the default for any reference is that

it may be aliased. To prevent such aliasing, the programmer must do something

special such as using std:unique_ptr. On the other hand, in a program that

follows the Clean++ discipline, the default for any reference is that it may not be

aliased and the programmer must explicitly allow such aliasing, if needed, with std

::shared_ptr. The situations in which a shared pointer is necessary are rare and

include the implementation of cyclic data structures.

Clean++ Rule 1

All pointers are instances of std::unique_ptr. In the rare situations when
data sharing is absolutely necessary, std::shared_ptr is used.

Another source of unsoundness in local reasoning is null pointers. If a function

takes a parameter that might be null, and it attempts to dereference a null pointer,

this is a failure of local reasoning. The most obvious way to avoid null dereferences is

to prevent null pointers entirely. Experience has shown that eliminating null point-

ers entirely is, in general, possible, but it leads to code that might be unfamiliar to

C++ programmers used to dealing with nullable pointers. In Clean++, pointers are

initialized at the point of their declaration to refer to a default object of the appropri-

ate type. This grants to some important reasoning benefits, though it is not always

feasible for performance reasons, especially in Clean++ implementations of low-level

components (i.e., those that are implemented without other Clean++ components),
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and for that reason Clean++ permits null pointers in low-level implementations pro-

vided they are never leaked to client code. Eliminating null references eliminates a

significant category of run-time errors, making programs written in Clean++ safer

by default.

Clean++ Rule 2

If a null pointer is used in the implementation of a Clean++ component, it is
never leaked to client code.

Parameter Passing and Return Types

Every parameter to a method in a Clean++ program should be an rvalue reference.

Although this rule causes Clean++ to deviate somewhat from idiomatic C++ more

than other rules, the benefits of doing so far outweigh the familiarity concerns.

Clean++ Rule 3

Every method parameter is passed as an rvalue reference.

Rules regarding ownership force Clean++ to account for situations in which, for

example, several parameters to a method are to have their values changed. One way

to solve this problem is to permit pass-by-reference, although that is avoided because

it creates aliases. Since all of the parameters to a method are rvalue references (that

is, they are moved into the method rather than copied), the arguments lose their

values. Sometimes, however, keeping the argument values around is necessary for

one reason or another—normally performance. Therefore, rule 3 has a closely-related

counterpart, rule 4: std::tuple is the default return type of methods in Clean++.

Each method should return both any newly-created objects and the updated values of

all arguments as components of a tuple. This idiom allows Clean++ to simulate “pass-

by-swap” as is implemented in verification- and reasoning-focused languages such as
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RESOLVE [128] as well as “in-out” parameters such as in Ada or Swift [26, 7]. A

secondary positive side effect of rule 4 is that is easy to automatically translate more

traditional-looking method headers and calls into Clean++-conformant headers and

calls.

Clean++ Rule 4

Every method has a return type of std::tuple, in which the first compo-
nent(s) are objects created by the method, if any, and the rest are the new
values of the arguments in left-to-right order.

Exception: Member Functions

Member functions in C++ always pass their receiver by reference,13 and because

member functions are crucial to producing good C++ code, this language-level lim-

itation on member functions creates an exception to the Clean++ rules above: the

receiver to a member function may, indeed, be passed by reference (and its value

might be changed).

Exception: Single or Nonexistent Return Values

Sometimes, a method will be simple enough that using a tuple as described in

rule 4 would involve a tuple that has a single component (or is empty). In that

case, the method need not wrap the return value in a tuple. Situations in which this

exception applies include methods for which every argument is intended to have its

ownership relinquished by the client or in which there is only one parameter (excluding

the distinguished parameter). Examples of this exception in practice appear in the

13It is possible in C++ to pass a receiver as an rvalue reference with a ref-qualified member
function, but the complications that arise when doing so in a way that is compatible with the rest of
Clean++ are overwhelming and therefore ref-qualified functions are not recommended in Clean++.
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Clean++ stack component below in section 6.4.2: neither the push nor pop method

returns a tuple.

6.2.2 Support for Good Object-Oriented Programming Prac-
tices

In Clean++ a programmer is guided, by the encapsulation restrictions on aliases

and null references, to implement software components with many layers of data

abstraction. Doing so allows her to have total control over aliases and to keep them

confined to a single abstraction layer. The principle of alias control is, as noted above,

one of the cornerstones of the Clean++ discipline. A consequence of this pattern is

the following rule.

Clean++ Rule 5

No method introduces an alias that is visible to the client.

A key feature of software components in Clean++ is that they implement an

efficient no-argument initializer that produces a coherent value for the type. Doing so

ensures that Clean++ can make the guarantee that a client never sees a null pointer,

even immediately after the declaration of a new variable.14

Clean++ Rule 6

Each component implements a no-argument initializer, which can be made
efficient.

Every component in Clean++ must have an efficient and “correct” implementation

of std::move. This allows a client to leverage built-in C++ move semantics to

maintain efficiency without relying on pointer semantics. Correctness in this case

14Some components, such as an Array, might use lazy initialization for performance reasons. Null
pointers in such situations are not a problem because their existence is totally hidden from the client
(see rule 2).
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imposes a stronger requirement than the C++ specification. In particular, a moved

object in Clean++ must be left in a consistent initial state for that type, as if the no-

argument initializer had been called. (By contrast, the C++ language specification

places no restrictions on the resulting value of a moved object).

Clean++ Rule 7

Each component deletes its copy constructor and copy assignment operator.
Instead, it implements a move constructor and move assignment operator.

The software components in the Clean++ library are declared in the cleanpp

namespace, and every Clean++ software component extends cleanpp::base, which

is roughly analogous to Java’s Object (the superclass of all Java types) but limited

to Clean++ types.

Listing 6.3: The cleanpp::base abstract class.

1 namespace cleanpp {
2 class base {
3 public:
4 base() = default;
5 virtual ˜base() = default;
6 virtual void clear() = 0;
7 };
8 }

The cleanpp::base class defines one pure virtual method, clear(). The

purpose of this method is to provide an efficient way to set an object’s abstract value

to an initial value for its type—that is, one produced by the zero-argument initializer

(required by the Clean++ discipline).

Clean++ Rule 8

Each component extends the cleanpp::base abstract class, directly or in-
directly.
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6.2.3 Familiarity

One way in which familiarity is achieved in Clean++ is the manner in which

language constructs related to move semantics (e.g., std::move) are encapsulated

within class implementations as far as possible. This encapsulation means that client

code does not include extra syntactic clutter that may be unfamiliar to a C++ pro-

grammer. In other words, it is possible for both novice and expert C++ programmers

to adopt Clean++. The syntax is simple enough for the former, and familiar enough

for the latter. These qualities hold despite a software component built in Clean++

having a somewhat different structure from the idiomatic C++ style.

6.2.4 Additional Considerations Going Beyond the Discipline

The following considerations are not necessarily a novel contribution of Clean++,

rather they are widely accepted principles for writing great software. They are dis-

cussed here only as examples of well-known software engineering principles that need

not be cast aside to realize the reasoning benefits of writing software in the Clean++

discipline.

Abstraction and Reasoning

Components in Clean++, by their modular nature, typically provide a clear dis-

tinction between the abstract value and concrete value of a variable. The benefits

are similar to the use of “model” variables in [50]. A consequence of using many

levels of abstraction to write software in Clean++ is that often the abstract value

of a given type will be substantially different from the concrete value for that type.

For this reason, most components in Clean++ do not use public fields in classes

and instead opt for well-named methods and functions which reflect the abstract
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value of the type and not the concrete value. However, this tends to make Clean++

components less familiar to C++ programmers, and making use of public fields does

not—necessarily—complicate reasoning. It is therefore permissible to use public fields

in Clean++ components, though their use should be considered carefully.

Observability and Controllability

Two design principles in identifying suitable operations for interfaces in Clean++

are observability and controllability, as motivated by Weide et al. to guide the design

of abstract data types (ADTs) [142]. The principle of observability states that a client

of a component should be able to distinguish between any two unequal values in the

ADT’s state space using some combination of operations on the ADT. Controllabil-

ity, on the other hand, says that every value in the ADT’s state space is reachable

through some combination of operations of the ADT. An approach to designing soft-

ware components (ADTs) using these principles as a guide tends to produce interfaces

that are, in a sense, “sufficient”. It is for that reason that Clean++ interfaces should

be designed with these principles in mind.

6.3 Prototypical Clean++ Component Structure

The implementations of Clean++ components based on the rules of section 6.2

are only one part (albeit the most complex part) of a Clean++ software component.

In most cases, classes of the kind discussed above are not directly used by a client of

a component; instead the client declares variables of “flex types” that are wrappers

around the implementation types. A flex type in Clean++ has several properties:

1. It is essentially a wrapper around a std::unique_ptr to an object of some

implementation class.
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2. It provides a default implementation type for that object—that is, a client of

a Clean++ component with a flex type need not have any knowledge of the

implementation(s).

3. It has a class hierarchy that mirrors the structure of the class hierarchy for the

implementation types (e.g., if the implementation includes both a kernel and

secondary interface, so does the flex type).

4. Every method in the implementation type has a sibling method in the flex type,

the implementation of which is simply a redirection to the same method in the

implementation.15

The flex type pattern closely resembles the “bridge” design pattern, but has several

key differences. First, it is not intended to decouple the implementation from the

abstraction—such decoupling is done via C++ abstract classes on the implementation

side. As a consequence, the abstraction (i.e., the flex type) is a concrete class, not

an abstract class. Second, the flex type has an interface that is always identical

to the interface of the implementation. Of course, the flex type pattern does enjoy

several of the benefits of the bridge pattern, most notably the ability to change the

implementation at run-time, during the lifetime of a variable.

A Clean++ component family has a structure such as in fig. 6.1. Because a

client will use a flex type, Clean++ naming convention dictates that the flex type(s)

be named with the canonical name of the component, and that the implementation

type(s) be suffixed with “_impl”.

15The exception to this general rule is that when a component is structured with both a kernel
and secondary interface, the secondary methods must additionally perform a static cast.
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A Clean++ Component

Used by Client Hidden from Client

mytype
implementations

mytype_impl

mytype_kernel_impl

mytype

mytype_kernel

cleanpp::base

Client Program:
cleanpp::mytype x;
x.foo(...);
... = bar(std::move(x));

C++ class: C++ abstract class:
Extends: Uses: Is a Wrapper For:

Figure 6.1: Prototypical structure of a Clean++ software component.

The primary purpose of including flex types in the stucture of a Clean++ com-

ponent is to enable polymorphism without the need for complicated syntax using

explicit instances of std::unique_ptr or calls to std::make_unique. To this

end, a flex type provides a special initializer to replace the no-argument initializer

of the component’s “_impl” class that takes one (unused) argument, a variable of

the implementation type to be used for this instance of the flex type. Typically,

this argument is provided at the point of the initializer call by way of a call to the

no-argument constructor of the implementing class. Listings 6.4 and 6.5 show some

simple client code and a sample flex type.

Listing 6.4: Client code using cleanpp::stack.

1 int main() {
2 cleanpp::stack<int> s;
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3 s.push(4);
4 s.push(5);
5 s.push(6);
6 int x = s.pop();
7 std::cout << s; // prints "<5, 4>"
8 }

Listing 6.5: Example flex type for cleanpp::stack.

1 namespace cleanpp {
2

3 template<typename Item>
4 class stack: public base {
5 protected:
6 template <typename I>
7 using _flex_stack_def_t = linked_stack<I>;
8 static_assert(std::is_base_of<stack_impl<int>,

_flex_stack_def_t<int>>::value, "_flex_stack_def_t must
derive from stack_impl<Item>");

9

10

11 std::unique_ptr<stack_impl<Item>> rep_;
12 public:
13 stack() : rep_(std::make_unique<_flex_stack_def_t<Item>>()

) { }
14

15 template<template<typename> class I>
16 stack(__attribute__((unused)) const I<Item>& impl): rep_(

std::make_unique<I<Item>>()) {
17 static_assert(std::is_base_of<stack_impl<Item>, I<Item

>>::value, "Template parameter I must derive from
stack_impl<Item>");

18 }
19

20 stack(const stack<Item> &o) = delete;
21 stack(stack<Item>&& o): rep_(std::move(o.rep_)) {
22 o.rep_ = std::make_unique<_flex_stack_def_t<Item>>();
23 }
24 template<template<typename> class I>
25 stack(stack<Item>&& o, __attribute__((unused)) const I<

Item>& impl): rep_(std::move(o.rep_)) {
26 static_assert(std::is_base_of<stack_impl<Item>, I<Item

>>::value, "Template parameter I must derive from
stack_impl<Item>");
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27 o.rep_ = std::make_unique<I<Item>>();
28 }
29

30 stack<Item>& operator=(const stack<Item>& o) = delete;
31 stack<Item>& operator=(stack<Item>&& other) {
32 if (&other == this) {
33 return *this;
34 }
35 rep_ = std::move(other.rep_);
36 other.rep_ = std::make_unique<_flex_stack_def_t<Item>>()

;
37 return *this;
38 }
39 template<template<typename> class I>
40 stack<Item>& operator=(stack<Item>&& other, __attribute__

((unused)) const I<Item>& impl) {
41 static_assert(std::is_base_of<stack_impl<Item>, I<Item

>>::value, "Template parameter I must derive from
stack_impl<Item>");

42 if (&other == this) {
43 return *this;
44 }
45 rep_ = std::move(other.rep_);
46 other.rep_ = std::make_unique<I<Item>>();
47 return *this;
48 }
49

50 void clear() {
51 this->rep_->clear();
52 }
53

54 virtual void push(Item&& x) {
55 rep_->push(std::forward<Item>(x));
56 }
57

58 virtual Item pop() {
59 return rep_->pop();
60 }
61

62 virtual bool is_empty() const {
63 return rep_->is_empty();
64 }
65
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66 bool operator==(stack<Item>& other) {
67 return *this->rep_ == *other.rep_;
68 }
69

70 friend std::ostream& operator<<(std::ostream& out, stack<
Item>& o) {

71 return out << *o.rep_;
72 }
73 };
74 }

One important feature of the flex type is that it identifies a default implementation

(line 7 in listing 6.5). When the flex type is instantiated, information about the

implementation type is lost, so when a stack (or other flex type) is move-assigned,

because rule 2 restricts null references, a new (empty) stack must be initialized in its

place and since this requires a class name, a default type is provided. It is important

to note that the client need not know about this default type—a client can simply

declare a variable of type stack without identifying an implementation class (line 2

in listing 6.4). A drawback to the flex type pattern is that a variable of a flex type

might have its implementation type changed over the course of its lifetime without

the client being made aware of it. Of course, this will not affect the correctness of

a program but it might have an impact on performance. When performance is a

concern, the client should be aware of the performance profiles of the implementation

options and select appropriately: a programmer always has the option of using a

particular implementation.

A flex type can be easily generated—automatically, in principle—for Clean++

components that have both “kernel” and “secondary” interfaces such as mytype

from fig. 6.1, as well as for those that provide just one interface. Implementing a

flex counterpart for a secondary interface involves a static cast of the private variable

150



rep_ and while the method bodies in that case have some complex syntax, the client

code is exceptionally clean. However, because a flex type such at mytype can be

automatically generated from the mytype_impl class, a human need not ever look

at the “ugly” code in the flex type class.

6.4 Illustrative Clean++ Component Design and Implemen-
tation

Designing abstract data types (or software components) to support sound local

reasoning requires some changes to the usual way of programming in C++. To

illustrate the ideas, this section considers a relatively straightforward resource

example followed by a more detailed stack example.

6.4.1 Implementing a Non-Template Component

As a simple example, we present a class implementation of the type cleanpp::

resource that can be used as the type parameter to any of the several collectionn-

type classes in the Clean++ library. This example serves two purposes. First, it

demonstrates how a non-template type might be implemented in the Clean++ disci-

pline, and second, it provides a context that should be familiar to C++ programmers—

one of resource ownership and transfer thereof.

Listing 6.6: Implementation of a Clean++ non-template component.

1 namespace cleanpp {
2 class resource_impl: public base {
3 private:
4 int i_;
5 public:
6 resource_impl(const resource_impl& other) = delete;
7 resource_impl(resource_impl&& other) {
8 i_ = other.i_;
9 other.clear();
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10 }
11

12 resource_impl& operator=(const resource_impl& other) =
delete;

13 resource_impl& operator=(resource_impl&& other) {
14 if (&other == this) {
15 return *this;
16 }
17 i_ = other.i_;
18 other.clear();
19 return *this;
20 }
21 resource_impl() {
22 i_ = 0;
23 }
24 resource_impl(int i) {
25 i_ = i;
26 }
27

28 void clear() override {
29 i_ = 0;
30 }
31

32 void mutate(int x) {
33 i_ *= x;
34 }
35

36 int access() {
37 return i_;
38 }
39 };
40 }

6.4.2 Template Class Implementation with Move Semantics
and Unique Pointer

One way a stack can be implemented is using a linked list of raw pointers, al-

though with such an implementation comes the potential for aliases and reasoning

complications. With move semantics and std::unique_ptr, it is possible to create
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an efficient linked implementation of a stack while avoiding the reasoning pitfalls

that are inherent in raw pointer-based software. Using std::unique_ptr every-

where that a traditional linked implementation of a stack would use a raw pointer

can dramatically reduce the complexity of reasoning required by the traditional im-

plementation and maintain desirable performance characteristics.

However, a move-based stack implementation on its own is not enough to eliminate

reasoning difficulties in its client software: the type of item contained within the stack

must also be written in the discipline. An example of such a type, resource, is

discussed above in section 6.4.1.

Consider a simple singly-linked list implementation such as below in listing 6.7.

Since it typically requires no pointers connecting nodes to be aliases, the “next”

pointer of each node (and the pointer to the first node) can be replaced. Specifi-

cally, a smart pointer type introduced alongside move semantics in C++11, std::

unique_ptr, can be leveraged as a drop-in replacement for pointers in places where

a programmer knows a priori that there will be no aliasing, and to prevent unwanted

aliasing everywhere else. A unique pointer enforces at compile time (by the deletion

of the copy constructor and copy assignment operator) that there are no aliases to

its contents.16

Because the usual behavior of a stack in C++ involves creating aliases to the

contents of the stack, the behavior of a stack in Clean++ will necessarily be different

than the behavior of the stack in the C++ standard library. Specifically, a call to

top() on a std::stack returns an alias to the object at the top of the stack, and

16Given the full power of C++, it is technically possible to subvert the guarantee of std:
unique_ptr through a convoluted series of pointer manipulations. However, this process is suffi-
ciently exotic that it is beyond the scope of ordinary software development and extremely unlikely
to happen by accident.

153



a call to pop() simply discards the object formerly at the top of the stack. This

problem can be solved simply: eliminate the top() method altogether and modify

the pop() operation to remove and return the object at the top of the stack. This

behavior change is relatively small, so developers familiar with std::stack will not

be totally out of their element working with a Clean++ stack. (Developers familiar

with stacks in other languages will immediately be comfortable with this behavior.)

Listing 6.7: Code for a linked implementation of the Clean++ stack.

1 namespace cleanpp {
2 template <typename T>
3 class stack_impl: public base {
4 private:
5 class node: base {
6 public:
7 T contents;
8 std::unique_ptr<node> next;
9

10 node(): contents(), next() {}
11

12 node(T&& new_contents):
13 contents(), next() {
14 std::swap(contents, new_contents);
15 }
16

17 node(node const &other) = delete;
18 node(node&& other):
19 contents(std::move(other.contents)),
20 next(std::move(other.next)) {
21 other.clear();
22 }
23

24 node& operator=(const node& other) = delete;
25 node& operator=(node&& other) {
26 if (&other == this) {
27 return *this;
28 }
29 contents = std::move(other.contents);
30 next = std::move(other.next);
31 other.clear();
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32 return *this;
33 }
34

35 void clear() {
36 contents = T();
37 next.reset();
38 }
39 };
40

41 std::unique_ptr<node> top_ptr_;
42 public:
43 stack_impl<T>() { }
44

45 stack_impl<T>(stack_impl<T> const &other) = delete;
46 stack_impl<T>(stack_impl<T>&& other):
47 top_ptr_(std::move(other.top_ptr_)) {
48 other.clear();
49 }
50

51 stack_impl<T>& operator=(const stack_impl<T>& other) =
delete;

52 stack_impl<T>& operator=(stack_impl<T>&& other) {
53 if (&other == this) {
54 return *this;
55 }
56

57 top_ptr_ = std::move(other.top_ptr_);
58 other.clear();
59 return *this;
60 }
61

62 void clear() override {
63 if (!is_empty()) {
64 top_ptr_.reset();
65 }
66 }
67

68 void push(T&& x) override {
69 top_ptr_ = std::make_unique<stack_node>(std::forward

<T>(x), std::move(top_ptr_));
70 }
71

72 T pop() override {
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73 assert(!is_empty());
74 T pop = top_ptr_->contents();
75 top_ptr_ = top_ptr_->next();
76 return std::move(pop);
77 }
78

79 bool isEmpty() const override {
80 return top_ptr_ == nullptr;
81 }
82 };
83 }

The decision to eliminate the top() method is important because it enables the

elimination of aliases in the Clean++ stack component: a client need not first

acquire a reference (i.e., an alias) to the item at the top of the stack before removing

it. The push operation also deviates from std::stack in that it takes as an

argument an rvalue reference to the item to be placed at the top of the stack. The

primary consequence of this decision is that the client no longer owns the object they

pass to a call to push. In the client program, the argument is surrounded by a call to

std::move to advertise this fact, and after the operation the value of the argument

is an initial value for its type.

6.4.3 Implementing New Components By Reusing Existing
Ones

A savvy developer can leverage the reasoning benefits provided by one component

by reusing it to easily implement other software components which then exhibit the

same nice reasoning properties.

For an example, we consider a reuse of cleanpp::stack component from sec-

tion 6.4.2. Doubly-linked lists are used to great effect as the underlying data structure

for abstractions such as a list with a cursor, which describes a series of items in which
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the client can insert a new element at the cursor position, remove the element at

the cursor position, and advance or retreat the cursor. Navigating a doubly-linked

list in this way is extremely efficient as the data structure provides a natural way of

doing so. Unfortunately, by their nature, doubly-linked lists rely on aliases. Since

alias avoidance is a key goal of Clean++, it is desirable to implement this data type

without any aliases at all.

We can do so using a pair of stacks, one of which represents the list contents pre-

ceding the cursor and the other representing the remaining list contents. Advancing

or retreating the cursor, then, is done by popping an element from one stack and then

pushing it onto the other. Insertion and removal, similarly, are done by pushing an

element onto or popping one off of a stack. It was shown above that the push and pop

operations on stack are efficient. The entire listwithcursor_impl class takes

about 30 SLOC (see listing 6.8), and exhibits the desired reasoning characteristics of

a Clean++ component.

Listing 6.8: An implementation of listwithcursor_impl built with a pair of
Stacks.

1 namespace cleanpp {
2 template <class T>
3 class listwithcursor_impl: public base {
4 private:
5 stack<T> prec_ { };
6 stack<T> rem_ { };
7 public:
8 void advance() {
9 T x{ };

10 rem_.pop(x);
11 prec_.push(x);
12 }
13

14 void retreat() {
15 T x{ };
16 prec_.pop(x);
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17 rem_.push(x);
18 }
19

20 void insert(T& x) {
21 prec_.push(x);
22 }
23

24 void remove(T& x) {
25 prec_.pop(x);
26 }
27

28 bool isAtEnd() {
29 return rem_.length() == 0;
30 }
31

32 bool isAtFront() {
33 return prec_.length() == 0;
34 }
35 };
36 }

6.4.4 Implementing Components with Unavoidable Aliasing

Some work has been done recently with respect to verifying behavioral correct-

ness of programs with aliased references [91, 92, 134]. The products of this research

are somewhat exotic and require language-level primitives, so until their results are

adopted by C++, an alternative is needed in cases where aliases are unavoidable.

Such a case is a linked-list implementation of a Queue, with a pointer to both the

head of the list (marking the front of the queue) and the last node in the list (marking

the tail of the queue). The tail pointer is an alias to the next pointer of the second-

to-last node in the list. Eliminating the tail pointer solves the aliasing problem, but

incurs unacceptable performance penalties. Such a queue can be implemented within

the Clean++ discipline because no aliases will ever leak to the client, and thus the
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soundness of modular reasoning is preserved. Listing 6.9 shows such an implementa-

tion.

Listing 6.9: A linked implementation of a queue in the Clean++ discipline.

1 namespace cleanpp {
2 template <typename T>
3 class queue: public base {
4 private:
5 class node: base {
6 private:
7 public:
8 T contents;
9 std::shared_ptr<node> next;

10 node(): contents(), next() {}
11

12 node(T&& new_contents):
13 contents(std::move(new_contents)), next() {}
14

15 node(node const &other) = delete;
16 node(node&& other):
17 contents(std::move(other.contents)),
18 next(std::move(other.next)) {
19 other.clear();
20 }
21

22 node& operator=(const node& other) = delete;
23 node& operator=(node&& other) {
24 if (&other == this) {
25 return *this;
26 }
27 contents = std::move(other.contents);
28 next = std::move(other.next);
29 other.clear();
30 return *this;
31 }
32

33 void clear() {
34 contents = T();
35 next.reset();
36 }
37 };
38 std::shared_ptr<node> top_ptr_;
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39 std::shared_ptr<node> tail_ptr_;
40 public:
41 queue<T>(): top_ptr_(), tail_ptr_() { }
42

43 queue<T>(queue<T> const &other) = delete;
44 queue<T>(queue<T>&& other):
45 top_ptr_(std::move(other.top_ptr_)),
46 tail_ptr_(std::move(other.tail_ptr_)) {
47 other.clear();
48 }
49

50 queue<T>& operator=(const queue<T>& other) = delete;
51 queue<T>& operator=(queue<T>&& other) {
52 if (&other == this) {
53 return *this;
54 }
55

56 top_ptr_ = std::move(other.top_ptr_);
57 tail_ptr_ = std::move(other.tail_ptr_);
58 other.clear();
59 return *this;
60 }
61

62 void clear() {
63 top_ptr_.reset();
64 tail_ptr_.reset();
65 }
66

67 void enqueue(T& x) {
68 auto new_tail = std::make_shared<node>(std::move(x));
69 if (tail_ptr_ != nullptr) {
70 tail_ptr_->next = new_tail;
71 } else {
72 top_ptr_ = new_tail;
73 }
74 // Alias!!
75 tail_ptr_ = new_tail;
76 }
77

78 void dequeue(T& x) {
79 std::swap(x, top_ptr_->contents);
80 std::swap(top_ptr_, top_ptr_->next);
81 }
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82

83 bool isEmpty() const {
84 return top_ptr_ == nullptr;
85 }
86 };
87 }

The similarities to the linked implementation of cleanpp::stack are signifi-

cant, with the obvious difference that std::shared_ptr is used in places where

std::unique_ptr was used in listing 6.7. This difference is because of the alias

introduced at line 75 that is a consequence of maintaining a pointer to the tail of the

queue in addition to the head. Importantly, this alias is never leaked to the client

(nor is the null reference indicating the end of the queue). A shared pointer is used

rather than a raw pointer for several reasons: first, to advertise the fact that this

variable might have aliases at any given time, and second to let the C++ compiler

manage memory for the programmer.

6.5 Evaluating Clean++

The Clean++ discipline was presented to an undergraduate audience in order

to evaluate its efficacy and usability in two kinds of programs: “client” software

that make use of existing Clean++ components and “implementation” software that

comprise the totality of a Clean++ component. Qualitative evaluation showed that

the syntactic burden is not overwhelming; it it easy for an undergraduate student to

successfully incorporate syntax related to move semantics into both kinds of programs.

However, it was clear that leveraging an existing C++ compiler to raise errors when

the discipline is violated was crucial to efficient development, which justified the

attention paid to such features from the beginning.
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Feedback from evaluation of the discipline informed several descisions in its re-

finement. To give one example, at several points during evaluation it was deemed

necessary to write a function that both changed the value of one of its arguments

and returned a separate object. However, because move semantics was a key part

of Clean++ from the beginning, this led to the inclusion of rule 4, by which every

method has a return type of std::tuple.

6.5.1 Concurrency

It is possible to achieve a degree of fork-join parallelism within the Clean++

discipline. However, because arguments are passed by move in Clean++, parallel

operations that ought to share an argument are in fact not able to do so—with

one exception: member functions, to which the receiver is passed by reference. An

object could, for example, serve as the receiver to several parallel member function

calls, although the programmer must take care not to share any other arguments

between the parallel calls. Reasoning about such a program could then involve logical

machinery such as the A/P Calculus introduced in chapter 3 and be specified using

a construct such as the non-interference contract from chapter 5. Other concurrency

tools such as threads, semaphores, and locks were not considered in the development

or evaluation of the discipline.

6.6 Clean++ vs. Other RESOLVE Disciplines

Clean++ is not the first attempt to ease reasoning in an industrial language us-

ing RESOLVE principles. Over the several-decades-long lifetime of the RESOLVE

project [129], there have been a number of projects that bridge the gap between purely
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academic and purely practical software engineering, including several disciplines sim-

ilar in principle to Clean++. However, in each of the previous efforts, mapping to

and from RESOLVE was hindered by the ubiquity of reference semantics and aliases

in the target language, which in most cases forced compromises by the designers.

This work, in contrast, leverages existing features of C++ (namely, move semantics)

to curtail aliases without inventing new language features or completely redefining

existing ones.

6.6.1 RESOLVE/Ada

In his dissertation [80], Hollingsworth describes the RESOLVE/Ada discipline for

building high-quality reusable software components in the Ada programming lan-

guage. He identifies several key properties of programs in the discipline that overlap

broadly with those of Clean++. They are:

• Correctness

• Composability

• Reusability

• Understandability

The RESOLVE/Ada discipline is intended to serve as a guide for Ada programmers

wishing to bring the principles of RESOLVE to Ada, including formal specifications,

a clear distinction between abstract and concrete state, and the idea that a software

component might be composed of several correct implementations (not just one).

The properties of composability and reusability are closely aligned with properties of

Clean++ programs in that satisfying these properties in a meaninfgul way requires the
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programmer to tightly control rogue references and prevent implementation details

from leaking to the client. Reference control is achieved in Clean++ through the

use of std::unique_ptr and in RESOLVE/Ada through two “principles” (which

correspond to Clean++ “rules”) prohibiting repeated arguments to procedure calls

and prohibiting arguments to procedure calls that are part of global state accessible

by the procedure.

6.6.2 RESOLVE/C++

Developed approximately contemporaneously with RESOLVE/Ada is the RE-

SOLVE/C++ discipline [82], which includes not only a set of principles for developing

C++ programs that adhere to the RESOLVE ideology, but also a set of macros and

redefined C++ operators to support such development. As RESOLVE/C++ was

developed in the mid-1990s—well before move semantics was introduced to the C++

standard or even proposed—it was limited by the features of C++ at the time to

manage aliases (which were essentially nonexistent). The workaround in the disci-

pline was two-fold: redefine the “&=” operator to be “swap” and prohibit assignment

and copy construction entirely by declaring the relevant functions as “private”. These

decisions make RESOLVE/C++ programs entirely unlike idiomatic C++ programs,

limiting its utility as a general-purpose software engineering discipline.

Clean++ takes these two principles a step further by leveraging relatively recent

advancements to C++ (including move semantics) by deleting copy constructors and

assignment operators entirely and replacing them with their moving counterparts.

Despite its shortcomings as a general-purpose software discipline, RESOLVE/C++
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proved to be a useful precursor to Clean++ as it justified the practicality and feasibil-

ity of the flex type pattern in Clean++ in which the implementation type is provided

as a template parameter.

6.6.3 RESOLVE and Java

Relatively more recent work by members of the RESOLVE group in bridging the

academic/practical divide has been focused on Java [83, 145].

The first foray by Hollingsworth, et al., produced preliminary “Rules of Engage-

ment” (i.e., a discipline) for Java that codified the preference of transfer as the

primary data movement operation. Although swapping has long been at the core

of the RESOLVE project, it is not practical in Java.17 In the Rules of Engagement

for Java, non-aliasing data movement is implemented through the explicit use of null

references and by restricting the use of the assignment operator. The various rules

ensure that there is only ever one (non-temporary) reference to each object. This is

accomplished, in part, by simulating ownership transfer by explicitly assinging the

value null to variables that have relinquished ownership.

Zaccai, in his dissertation [145], formalized a discipline for writing Java programs

in which it is sound to reason about objects in terms of their abstract or mathematical

value and, in general, ignore concerns about references and the heap. The so-called

Resolve Java discipline prefers ownership transfer as the primary data movement

17Because every type (except the primitive types) in Java is a reference type and Java does not
allow a programmer to access the reference directly, there are two ways to implement swapping—
neither of which are acceptable. First, an extra level of indirection could be added to each component;
that is, the implementation of a component would have a single field: a reference to an object that
contains the “real” data. Under this modus operandum, the implementation of swap would involve
the usual three-line assignment sequence to swap the inner references of two variables. If there is no
extra indirection, the implementation of swap would require language features that do not exist in
Java, such as pass-by-reference, multiple return values, or clever use of a preprocessor.
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operation, and implements it for mutable types with the transferFrom operation.

Assignment (by reference) and copying are still permitted in Resolve Java, but they

are avoided. In pursuit of the stated goal of identifying a subset of Java that is

amenable to modular verification, several Java software components are specified and

verified. Zacai additionally formally specified a variety of ubiquitous Java statements

such as assert statements, branching (if/else) statements, and iteration (for

/while) statements, including break and continue. The Resolve Java discipline

has been used as a tool for teaching undergraduate computer science students sound

software engineering principles [10].

6.7 Clean++ vs. Rust

Rust addresses many of the problems identified and addressed by Clean++. Con-

sequentially, it is natural to ask whether Clean++ has already been made redundant

by Rust. The answer is no. First, while Rust is an entirely new language that intro-

duces complex new ideas18 and requires programmers to learn new syntax, Clean++

identifies a subset of a well-established programming language that virtually all pro-

grammers are familiar with.

Additionally, while Rust provides limited facilities for true object-oriented pro-

gramming, C++ provides a full suite of capabilities for building robust, modular,

object-oriented programs that make use of abstract data types, polymorphism, and

inheritance. These capabilities are drawn upon in Clean++ to maintain client/im-

plementer separation and to encourage the use of many levels of abstraction—things

18The ownership system alone has been the topic of discussion for several weekly meetings of a
group of university professors and graduate students . . . and it still is not completely understood by
all of them.
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that would, in Rust, be at best difficult and cumbersome to achieve. For comparison’s

sake, appendix A contains a sample component written both in Clean++ and Rust.

Finally, Rust’s solutions to many of the problems addressed in this paper are

framed in terms of memory management and memory safety—not ease of reasoning.

This does not mean that Rust’s fixes do not improve reasoning (they do), but it does

mean that in some cases Rust may not go far enough toward easy reasoning to make it

amenable to automated formal verification (although there is work in that direction

[27]). We believe that Clean++ does, since it is inspired directly by verification-

focused languages such as RESOLVE. By including comment-based formal contracts,

it is believed that programs written from the ground up in Clean++ could be formally

verified to be correct.

6.8 Repository of Clean++ Components

A small library of components written in Clean++ has been developed to accom-

plish a variety of programming tasks. It is available in a public GitHub repository

[141].

6.9 Conclusions

While the dangers posed by aliased references are well-understood, there is rel-

atively little work on curtailing them in mainstream programming languages, and

especially little work on doing so with the stated goal of easing reasoning. A vari-

ety of longstanding efforts by members of the RESOLVE community have produced

disciplines with such a goal, but none were able to leverage language-level support

for ownership transfer in C++ (simply because they were developed too early). The
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Clean++ discipline, therefore, advances the state of the art in two respects. Pro-

grams written in Clean++ do not have aliases, which by intention eases reasoning

about them, and the discipline leverages C++ move semantics to provide ownership

transfer as the primary data movement operation without altering the language.
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Chapter 7: Conclusions and Future Directions

For all their advantages, reusable data abstractions are not widely used in parallel

programs. This research has shown that principles of modularity and abstraction

can be leveraged to ease development and facilitate modular verification of parallel

software.

7.1 Logical Framework and Proof of Soundness

In pursuit of enabling modular reasoning in the presence of concurrency, a calculus

for effects was introduced that abstracts an object and operations on that object.

The effects were used as the basis for a programming model in which many layers of

abstraction is the norm and parallel programs are deterministic by default.

The A/P Calculus presented is currently suitable as the foundation for any speci-

fication construct that describes objects that are either statically partitioned (as they

are in the non-interference contracts of chapter 5) or dynamically partitioned (as they

would be in the specification of, e.g., a list abstraction).

The semantics of the proposed programming model were discussed and shown to

generalize earlier results about the semantics of parallel programs. Specifically, the

definition of “non-interference” was relaxed from prior work, enabling the semantics

of parallel programs to be well-defined even when objects are shared among processes.
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The utility of these semantics was demonstrated by reasoning about a simple parallel

program involving a concurrent queue.

7.2 Clean Semantics and Decomposable Data Abstractions
for Fork-Join Parallelism

Even without machinery such as the A/P Calculus, there are several classes of

parallel programs that can be made amenable to modular verification given enough

language support. This support might come in the form of clean semantics, which

guarantees in part that there are no aliases. A methodology which leverages clean

semantics for developing data abstractions that can be used in parallel programs

without novel specification constructs was presented, and a family of components built

using that methodology was evaluated. The methodology guides the development of

abstract data types that can be decomposed before a parallel section and recomposed

afterward. Such decomposition enables a verifier or programmer to reason about a

parallel section of code as if it were sequential because no two parallel statements

modify the same variable and are therefore non-interfering.

7.3 Abstract Non-Interference Specifications

Considered component design alone is not always a practical way to enable safe

parallelism, so a new specification construct, the non-interference contract, was in-

troduced that can enable modular reasoning about parallelism even in situations that

would, with other verification techniques, force the breakdown of the principles of

modular reasoning and data abstraction. A non-interference contract is an imple-

mentation of the programming model based on the A/P Calculus in the RESOLVE
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programming language, and is accompanied by a cobegin statement. A client rea-

sons about parallel operation calls using the non-interference contract’s effects clauses,

which describe in abstract terms how the operation calls interact with the object’s

state. Importantly, a non-interference contract does not reveal any implementation

details and the partition structure is completely modular. It was used to specify

the parallelism capabilities of a bank account and a concurrent bounded queue and

to reason about a queue implementation using one of the decomposable components

introduced in chapter 4.

7.4 Writing C++ Programs That Are Easy To Reason About

Finally, a discipline for programming in C++ was presented that enables sound

local reasoning about a wide variety of sequential software. Components were devel-

oped in the discipline that exhibit a variety of properties that ease reasoning, such

as alias freedom. Despite the perception of move semantics as a purely performance-

improving trick, this work shows that there is significant potential for C++ move

semantics to be broadly applied in large software projects not only to improve perfor-

mance but also to simplify reasoning and, thus, increase their robustness. It is also

shown that even without specialized analysis tools, clean semantics (and the reason-

ing simplifications that it entails) can be achieved in C++ through judicious—and

careful—use of move semantics and std::unique_ptr.

7.5 Future Directions

Although fork-join parallel programs are an important subset of parallel programs,

they represent a tiny fraction of the universe of parallel software. There are important
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directions of inquiry that stem from this work to further expand the reach of modular

reasoning.

7.5.1 A/P Calculus

The current iteration of the A/P Caluclus does not support the modeling of syn-

chronization. However, a model of synchronization might be achieved by adding to

each effect a third set that represents pieces that are “atomically affected” by an

operation. This change in turn could impact the calculus itself or the programming

model for which it serves as the basis.

7.5.2 Leveraging Clean Semantics for Fork-Join Parallelism

The limitations of the methodology for designing decomposable components are

directly related to the limitations of RESOLVE and the A/P Calculus. While a

“shared” implementation of the various array abstractions in chapter 4 is discussed

at a high level, the actual code is conspicuously absent. There is not, at present,

a mechanism in the RESOLVE language to handle objects that are decomposed at

the abstract level but still share data at the implementation level. Enabling such an

implementation is not a goal of this work but it is a natural extension of the work by

Sun in his recent dissertation [132].

7.5.3 Abstract Non-Interference Specifications

At present, a non-interference contract is capable of identifying a static number

of pieces for an object’s partition. Improving the expressivity of the partition syntax

is a key goal and would enable the specification of the parallelism capabilities of a

variety of collection types including arrays, sets, and dictionaries, and enable the
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implementation of more sophisticated program statements such as parallel iteration.

Expanding the reach of the A/P calculus would have a cascading effect on the utility

of non-interference contracts. For example, if a model of synchronization is achieved

in the A/P Calculus, it could be readily realized through non-interference contracts.

There is not, at present, a capability to automatically verify the “respects” rela-

tion, but there is a road map to achieve such automation. There is also no automation

involved in verifying the correctness of client programs with cobegin statements;

however, because reasoning about a non-interfering parallel program is equivalent

to reasoning about a sequential program with the same statements, a rudimentary

implementation of the cobegin statement in RESOLVE would be trivial.

7.5.4 Clean++

The Clean++ discipline, as presented here, is rigid enough in many respects that

a static analyzer could be developed to check automatically that code adheres to

several of the core ideas, although such a validator has not been implemented. There

are several aspects of the discipline that would be relatively easy to check and others

that would prove more challenging. Specifically, it would be trivial to check for any

raw pointers and warn the programmer if any are found. If a smart pointer other

than std::unique_ptr or std::shared_ptr is found, a warning could also be

dispatched suggesting that the programmer employ one of those two “acceptable”

types. Ensuring that all user-defined types delete the copy constructor and assign-

ment operator and have replaced them with a move constructor and move assignment
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operator would not be difficult (although showing their correctnesss is another prob-

lem entirely). Finally, many instances of null references or alias “leakage” to the client

could be caught with only a moderately sophisticated static analysis.

Challenges to automating Clean++ validation include checking the correctness of

the no-argument constructor and not just its existence. Options for enabling this kind

of sophisticated analysis include employing comment-based specifications regarding

abstraction and initial values. In most cases, default initializers are straightforward

and determining the abstract value generated by such a method, given an appropriate

specification, could be achieved.

7.5.5 Technology Transfer

RESOLVE has been used both as a language and a set of principles to teach com-

puter science to undergraduate students, with projects of that kind reaching back

several decades at multiple institutions. The non-interference contract (and the ac-

copanying cobegin statement) could be implemented in RESOLVE to enable the

teaching of concurrency and parallel software development in those courses. Enabling

the teaching of parallel programming contemporaneously with general formal reason-

ing principles could improve the quality of parallel and concurrent software written

by undergraduate students, and in turn the quality of software they produce after

they graduate.

Moreover, the benefits afforded by the Clean++ discipline make it a good can-

didate to be a tool for teaching formal reasoning to computer science students. In

Clean++, a programmer explicitly advertises the moving behavior of components and

forces the client to use rvalue references for arguments to methods. Thus, she never
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needs to reason about the possibility of aliases: every object always has a unique

owner. This simplification is a boon to students, especially to those who are only

beginning to learn about programming.

Another benefit of the strictness of the Clean++ discipline with regard to the ease

of reasoning is that some C++ code that introduces aliases are flagged as erroneous

by any off-the-shelf C++ compiler as long as the programmer is using Clean++

components. This feature could help beginning students see how to write programs

that avoid aliases, and to develop an understanding of the mechanisms of data transfer

that are used in many of today’s popular programming languages.

The ideas proposed by this dissertation are directly applicable to academic pro-

gramming languages such as RESOLVE. Chapter 6 describes a discipline in C++ to

apply various principles of RESOLVE to a mainstream language, and it could serve

as a framework to further the reach of these ideas. For example, as discussed near

the end of that chapter, a degree of parallelism is achievable in the Clean++ disci-

pline without any modification. Clean++ programs also posess properties that make

them amenable to local and modular reasoning, so it is feasible that C++ could be

used as a compilation target for RESOLVE programs that have been verified to be

correct—including RESOLVE programs that make use of a new cobegin construct.

7.6 Conclusion

In conclusion, this work has expanded the reach of modular reasoning to include a

class of fork-join parallel programs, provided a sound foundation for such reasoning,
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and demonstrated how to write easy-to-reason-about software in C++. It has addi-

tionally built scaffolding that could enable modular reasoning about complex parallel

and concurrent programs, and identified important directions of inquiry to that end.
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Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish, Rod Chapman, Ernie
Cohen, Mark Hillebrand, Bart Jacobs, K Rustan M Leino, Rosemary Monahan,
Frank Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans, Stephan Tobies,
Thomas Tuerk, Mattias Ulbrich, and Benjamin Weiß. The 1st Verified Software
Competition: Experience Report. In Michael Butler and Wolfram Schulte,

185



editors, FM 2011: Formal Methods, volume 6664 of Lecture Notes in Computer
Science, pages 154–168. Springer Berlin Heidelberg, 2011.

[91] Gregory Kulczycki. Direct Reasoning. Phd dissertation, Clemson University,
School of Computing, 2004.

[92] Gregory Kulczycki, Murali Sitaraman, Bruce W Weide, and Atanas Rountev.
A Specification-based Approach to Reasoning About Pointers. In Proceedings
of the 2005 Conference on Specification and Verification of Component-based
Systems, SAVCBS ’05, New York, NY, USA, 2005. ACM.

[93] Gregory Kulczycki, Hampton Smith, Heather Harton, Murali Sitaraman,
William F Ogden, and Joseph E Hollingsworth. The Location Linking Con-
cept: A Basis for Verification of Code Using Pointers. In Rajeev Joshi, Peter
Müller, and Andreas Podelski, editors, Verified Software: Theories, Tools, Ex-
periments, volume 7152 of Lecture Notes in Computer Science, pages 34–49.
Springer Berlin Heidelberg, 2012.

[94] Viktor Kuncak and Martin Rinard. An Overview of the Jahob Analysis Sys-
tem: Project Goals and Current Status. In Proceedings of the 20th International
Conference on Parallel and Distributed Processing, IPDPS’06, page 285, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[95] Gary T Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessan-
dro Coglio, Kathi Fisler, Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-
Jones, Murali Sitaraman, Douglas R Smith, and Aaron Stump. Roadmap for
Enhanced Languages and Methods to Aid Verification. In Proceedings of the
5th International Conference on Generative Programming and Component En-
gineering, GPCE ’06, pages 221–236, New York, NY, USA, 2006. ACM.

[96] Gary T Leavens, Albert L Baker, and Clyde Ruby. JML: a Java Modeling
Language. In Formal Underpinnings of Java Workshop (at OOPSLA’98), oct
1998.

[97] Gary T Leavens, Albert L Baker, and Clyde Ruby. Preliminary Design of JML:
A Behavioral Interface Specification Language for Java. SIGSOFT Softw. Eng.
Notes, 31(3):1–38, may 2006.

[98] Gary T Leavens, K Rustan M Leino, and Peter Müller. Specification and
Verification Challenges for Sequential Object-oriented Programs. Form. Asp.
Comput., 19(2):159–189, jun 2007.

[99] K Rustan M Leino. Specification and verification of object-oriented software.
In Manfred Broy, Wassiou Sitou, and Tony Hoare, editors, Engineering Methods
and Tools for Software Safety and Security, Volume 22 NATO Science for Peace

186



and Security Series - D: Information and Communication Security, pages 231–
266. IOS Press, 2009.

[100] K Rustan M Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages 348–370,
Berlin, Heidelberg, 2010. Springer-Verlag.
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Appendix A: Object-Oriented Programming in Rust vs.

Clean++

Consider a simple mutable type, called Natural that is modeled by the natural

numbers N and is unbounded (this is similar to a “Big Integer” found in libraries

for many languages). Our implementation, however, will be represented by a single

unsigned long (or u64 in Rust) for simplicity’s sake, so it is bounded in reality.

Keep in mind while reading that an alternative implementation (e.g., based on a

Stack) could be employed to make it effectively unbounded.

Listing A.1: Implementation in Rust of a Natural type.

1 pub mod natural {
2 use std::fmt;
3

4 pub trait Kernel: fmt::Debug + fmt::Display {
5

6 /*
7 type NATURAL is integer
8 exemplar n
9 constraint n >= 0

10 initialization ensures n = 0
11

12 natural_number_kernel is modeled by NATURAL
13 */
14

15 /*
16 updates self
17 requires 0 <= d and d < 10
18 ensures self = #self * 10 + d
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19 */
20 fn multiply_by_radix(&mut self, digit: u64);
21

22 /*
23 updates self
24 ensures #self = self * 10 + d and
25 0 <= d and d < 10
26 */
27 fn divide_by_radix(&mut self, digit: &mut u64);
28

29 /*
30 ensures is_zero = (self = 0)
31 */
32 fn is_zero(&self) -> bool;
33

34 /*
35 ensures self = 0
36 */
37 fn clear(&mut self);
38 }
39

40 pub trait Secondary: Kernel
41 {
42 /*
43 updates self
44 ensures self = #self + 1
45 */
46 fn increment(&mut self) {
47 let mut last_digit = 0;
48 self.divide_by_radix(&mut last_digit);
49 last_digit += 1;
50 if last_digit == 10 {
51 last_digit -= 10;
52 self.increment();
53 }
54 self.multiply_by_radix(last_digit);
55 }
56

57 /*
58 updates self
59 requires self > 0
60 ensures self = #self - 1
61 */
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62 fn decrement(&mut self) {
63 let mut last_digit = 0;
64 self.divide_by_radix(&mut last_digit);
65 if last_digit == 0 {
66 last_digit += 10;
67 self.decrement();
68 }
69 last_digit -= 1;
70 self.multiply_by_radix(last_digit);
71 }
72

73 /*
74 replaces self
75 ensures self = n
76 */
77 fn set_from_u64(&mut self, mut n: u64) {
78 self.clear();
79 if n > 0 {
80 let d = n % 10;
81 n /= 10;
82 self.set_from_u64(n);
83 self.multiply_by_radix(d);
84 }
85 }
86 }
87

88 #[derive(Debug)]
89 pub struct Bounded {
90 n: u64,
91 }
92

93 impl Bounded {
94 pub fn new() -> Bounded {
95 Bounded { n: 0 }
96 }
97 }
98

99 impl fmt::Display for Bounded {
100 fn fmt(&self, f: &mut fmt::Formatter) ->
101 fmt::Result {
102 write!(f, "{}", self.n)
103 }
104 }
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105

106 impl Kernel for Bounded {
107 fn multiply_by_radix(&mut self, digit: u64) {
108 self.n *= 10;
109 self.n += digit;
110 }
111 fn divide_by_radix(&mut self, digit: &mut u64) {
112 *digit = self.n % 10;
113 self.n /= 10;
114 }
115 fn is_zero(&self) -> bool {
116 self.n == 0
117 }
118 fn clear(&mut self) {
119 self.n = 0;
120 }
121 }
122

123 impl Secondary for Bounded {}
124

125 /*
126 updates lhs
127 ensures lhs = #lhs + rhs
128 */
129 pub fn add(
130 lhs: &mut std::boxed::Box::<impl Secondary>,
131 mut rhs: std::boxed::Box::<impl Secondary>) {
132 let mut lhs_last = 0;
133 let mut rhs_last = 0;
134 lhs.divide_by_radix(&mut lhs_last);
135 rhs.divide_by_radix(&mut rhs_last);
136 lhs_last += rhs_last;
137 if lhs_last > 10 {
138 lhs_last -= 10;
139 lhs.increment();
140 }
141 if !rhs.is_zero() {
142 add(lhs, rhs);
143 }
144 lhs.multiply_by_radix(lhs_last);
145 }
146 }
147
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148 fn main() {
149 use natural::Secondary;
150 let mut n =
151 std::boxed::Box::new(natural::Bounded::new());
152 n.set_from_u64(42);
153 let mut m =
154 std::boxed::Box::new(natural::Bounded::new());
155 m.set_from_u64(21);
156 natural::add(&mut n, m);
157 println!("n = {}", n);
158 }
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Listing A.2: Implementation in Clean++ of a Nautral type, with #include direc-
tives and namespace declarations elided.

1 /**********************\
2 * natural_number.hpp *
3 \**********************/
4

5 class natural_number_kernel: public clean_base {
6 /*
7 type NATURAL is integer
8 exemplar n
9 constraint n >= 0

10 initialization ensures n = 0
11

12 natural_number_kernel is modeled by NATURAL
13 */
14 public:
15 static const int RADIX = 10;
16

17 /*
18 ensures is_zero = (this = 0)
19 */
20 virtual bool is_zero() const = 0;
21

22 /*
23 updates this
24 requires 0 <= d and d < RADIX
25 ensures this = #this * RADIX + d
26 */
27 virtual void multiply_by_radix(int d) = 0;
28

29 /*
30 updates this
31 ensures #this = this * RADIX + d and
32 0 <= d and d < RADIX
33 */
34 virtual void divide_by_radix(int &d) = 0;
35

36 /*
37 ensures ‘==‘ = (this = other)
38 */
39 bool operator==(natural_number_kernel &other);
40
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41 friend std::ostream& operator<<(std::ostream& out,
natural_number_kernel& o);

42 };
43

44 class natural_number_secondary:
45 public natural_number_kernel {
46 public:
47 /*
48 updates this
49 ensures this = #this + 1
50 */
51 virtual void increment();
52

53 /*
54 updates this
55 requires this > 0
56 ensures this = #this - 1
57 */
58 virtual void decrement();
59

60 /*
61 replaces this
62 requires n >= 0
63 ensures this = n
64 */
65 virtual void set_from_long(long n);
66

67 /*
68 updates x
69 ensures x = #x + y
70 */
71 friend void add(
72 std::unique_ptr<natural_number_secondary> &x,
73 std::unique_ptr<natural_number_secondary> &y);
74

75 /*
76 updates x
77 requires x >= y
78 ensures x = #x - y
79 */
80 friend void subtract(
81 std::unique_ptr<natural_number_secondary> &x,
82 std::unique_ptr<natural_number_secondary> &y);
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83 };
84

85 /**********************\
86 * natural_number.cpp *
87 \**********************/
88

89 // natural_number_kernel
90 bool natural_number_kernel::operator==(
91 natural_number_kernel &other) {
92 bool ans = false;
93 if (other.is_zero() && this->is_zero()) {
94 ans = true;
95 } else if (other.is_zero() == this->is_zero()) {
96 int last_this, last_other;
97 this->divide_by_radix(last_this);
98 other.divide_by_radix(last_other);
99 if (last_this == last_other) {

100 ans = *this == other;
101 }
102 this->multiply_by_radix(last_this);
103 other.multiply_by_radix(last_other);
104 }
105 return ans;
106 }
107

108 std::ostream& operator<<(
109 std::ostream& out,
110 natural_number_kernel& o) {
111 if (o.is_zero()) {
112 out << 0;
113 } else {
114 int d;
115 o.divide_by_radix(d);
116 if (!o.is_zero()) {
117 out << o;
118 }
119 out << d;
120 o.multiply_by_radix(d);
121 }
122 return out;
123 }
124

125 // natural_number_secondary
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126 void natural_number_secondary::increment() {
127 int d = 0;
128 divide_by_radix(d);
129 d++;
130 if (d == RADIX) {
131 d -= RADIX;
132 increment();
133 }
134 multiply_by_radix(d);
135 }
136

137 void natural_number_secondary::decrement() {
138 assert(!is_zero());
139 int d = 0;
140 divide_by_radix(d);
141 d--;
142 if (d < 0) {
143 d += RADIX;
144 decrement();
145 }
146 multiply_by_radix(d);
147 }
148

149 void natural_number_secondary::set_from_long(long n) {
150 assert(n >= 0);
151 if (n == 0) {
152 clear();
153 } else {
154 long nLeft = n / RADIX;
155 set_from_long(nLeft);
156 multiply_by_radix(n % RADIX);
157 }
158 }
159

160 void add(
161 std::unique_ptr<natural_number_secondary> &x,
162 std::unique_ptr<natural_number_secondary> &y) {
163 int x_low;
164 x->divide_by_radix(x_low);
165 int y_low;
166 y->divide_by_radix(y_low);
167 if (!y->is_zero()) {
168 add(x, y);
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169 }
170 x_low += y_low;
171 if (x_low >= natural_number_secondary::RADIX) {
172 x_low -= natural_number_secondary::RADIX;
173 x->increment();
174 }
175 x->multiply_by_radix(x_low);
176 y->multiply_by_radix(y_low);
177 }
178

179 void subtract(
180 std::unique_ptr<natural_number_secondary> &x,
181 std::unique_ptr<natural_number_secondary> &y) {
182 int x_low;
183 x->divide_by_radix(x_low);
184 int y_low;
185 y->divide_by_radix(y_low);
186 if (!y->is_zero()) {
187 subtract(x, y);
188 }
189 x_low -= y_low;
190 if (x_low < 0) {
191 x_low += natural_number_secondary::RADIX;
192 x->decrement();
193 }
194 x->multiply_by_radix(x_low);
195 y->multiply_by_radix(y_low);
196 }
197

198 /******************\
199 * bounded_nn.hpp *
200 \******************/
201

202 class bounded_nn: public natural_number_secondary {
203 public:
204 bounded_nn(long n = 0);
205

206 bounded_nn(bounded_nn const &other) = delete;
207 bounded_nn(bounded_nn&& other);
208

209 bounded_nn& operator=(const bounded_nn& other) =
210 delete;
211 bounded_nn& operator=(bounded_nn&& other);
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212

213 bool operator==(const bounded_nn &other);
214

215 void clear() override;
216 bool is_zero() const override;
217 void multiply_by_radix(int d) override;
218 void divide_by_radix(int &d) override;
219 void increment() override;
220 void decrement() override;
221 void set_from_long(long n) override;
222

223 friend std::ostream& operator<<(
224 std::ostream& out,
225 bounded_nn& o) {
226 return out << o.n_;
227 }
228 private:
229 long n_;
230 };
231

232 /******************\
233 * bounded_nn.cpp *
234 \******************/
235

236 bounded_nn::bounded_nn(long n): n_(n) {};
237

238 bounded_nn::bounded_nn(bounded_nn&& other):
239 n_(std::move(other.n_)) {
240 other.clear();
241 }
242

243 bounded_nn& bounded_nn::operator=(bounded_nn&& other) {
244 if (&other == this) {
245 return *this;
246 }
247

248 n_ = other.n_;
249 other.clear();
250 return *this;
251 }
252

253 bool bounded_nn::operator==(const bounded_nn &other) {
254 return this->n_ == other.n_;
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255 }
256

257 void bounded_nn::clear() {
258 n_ = 0;
259 }
260 bool bounded_nn::is_zero() const {
261 return n_ == 0;
262 }
263 void bounded_nn::multiply_by_radix(int d) {
264 n_ *= RADIX;
265 n_ += d;
266 }
267 void bounded_nn::divide_by_radix(int &d) {
268 d = n_ % RADIX;
269 n_ /= RADIX;
270 }
271

272 void bounded_nn::increment() {
273 this->n_++;
274 }
275

276 void bounded_nn::decrement() {
277 this->n_--;
278 }
279

280 void bounded_nn::set_from_long(long n) {
281 this->n_ = n;
282 }
283

284 /************\
285 * main.cpp *
286 \************/
287

288 int main() {
289 std::unique_ptr<natural_number> n =
290 std::make_unique<bounded_nn>();
291 n->set_from_long(42);
292 std::unique_ptr<natural_number> m =
293 std::make_unique<bounded_nn>();
294 m->set_from_long(21);
295 add(n, m);
296 printf("n = %s", to_str(n));
297 }
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When either of the main programs in listings A.1 or A.2 is run, the output is "n

= 63", just as is expected from a quick read of the main method in either case. The

key takeaway from this example is in Rust’s type inference. The type of n (and m, for

that matter) in Listing A.1 is std::boxed::Box::<natural::Bounded>, while

the (explicitly defined) type of the variables in Listing A.2 is std::unique_ptr

<natural_number>. From a reasoning point of view, the Clean++ version is

superior because the specification of the behavior of the Rust variables lives in the

traits natural::Kernel and natural::Secondary (respectively, the classes

natural_number_kernel and natural_number_secondary in the Clean++

version), and not in Bounded, the implementation.
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