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ABSTRACT

Bipedal robots are becoming more popular in performing tasks in an environment that is

designed for humans. For this purpose, most bipedal robots are equipped with various sensors

to sense the robot’s environment. From the measurements of the sensors, a perception system

is implemented to translate and convert the raw data into a meaningful format corresponding

to the tasks and also provide safety for humans, properties in the environment as well as the

robot itself. This thesis presents the implementation of a perception system using various

sensors available to a bipedal robot, Digit, to obtain objectively useful information of the

environment as well as the state of the robot itself. Various methods of data processing were

applied to available sensor measurements, then a mapping algorithm was implemented to

generate a 3D model of the environment. Simultaneous localization and mapping (SLAM)

algorithm was also implemented to perform mapping and provide odometry for localization

in the absence of an external source of odometry. We found that performing SLAM using

Light Detection and Ranging sensor (LiDAR) performs exceptionally well on the bipedal

robot in closed indoor space. Additionally, state estimation is implemented with Invariant

Extended Kalman filter using inertial measurement data and the assumption of contact

points to predict the state of the robot over time. The performance of position estimation

from Invariant Extended Kalman filter and odometry from LiDAR SLAM is compared with

the default state estimator from Digit itself which are demonstrated through an experiment

with ground truth reference.
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CHAPTER 1

INTRODUCTION

Recently, autonomous navigation and behavior have been a very popular research topic.

The importance and application of autonomous behavior are becoming more pronounced

in industrial production, medical procedure and search and rescue operations, etc. These

technologies can replace people or traditional measures in mundane and dangerous tasks.

The basic requirements for autonomous navigation are having a good understanding of the

external state of the environment, knowing the accurate internal state of the agent within

the environment as well as having a good understanding of the task. These complex sys-

tems are constructed from designing multi-layer modules such as control, manipulation, and

perception module. Then, all modules are integrated to form a complex robust autonomous

system which is one of the biggest challenges in an engineering perspective.

Perceiving the environment is the very first step toward autonomous behaviors. The

idea of perception might seem simple for humans because we can understand what we see

through our eye or we can interpret the sounds we hear from our own cumulative experiences,

but for a machine, these processes are not straightforward. A machine has to sense the

information of the environment and then interpret what it perceived before performing any

action. This information was acquired through various types of sensors such as camera,

LiDAR (light detection and ranging) sensors, RADAR (radio detection and ranging), IMU

(inertial measurement unit), and RGB-D camera, etc. Each sensor provides us with different

kinds of data of the environment, for example, LiDAR and depth camera provides us with

the spatial structure of the environment in the form of point clouds or visual camera which
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output images in the form of pixels, etc. In an autonomous system or robotic system, there

are usually multiple sensors collecting different types of data simultaneously to get a better

understanding of the environment.

After an agent sensed the information of the environment through sensors, it has to fuse

those data in a meaningful way and estimate the state of the environment as well as the

agent itself. For example, the point cloud from continuous scans of a LiDAR can be used

to reconstruct a three-dimensional scene of the environment and localize itself within the

constructed scene at the same time. This problem is referred to as SLAM (Simultaneous

localization and mapping). SLAM problem has been used in various kinds of applications.

One of the most famous applications is in autonomous vehicles, where navigation relies

heavily on the spatial structure of the environment. We can also use internal sensors such

as IMU to estimate the state of the agent through linear acceleration and angular velocity.

This robust estimation is commonly done through the Kalman family of filters such as the

Extended Kalman filter (EKF) to reduce the drift or error that may accumulate over time.

There is various kind of agents that depends on the perception system. One of the most

popular fields in the autonomous robot, especially the robots that operate in a dynamic

environment such as drones, wheeled mobile robots, quadruped, and bipedal robots. Most

mobile robots are designed to safely operate and transverse in an unknown environment with

dynamic objects which makes accurate and robust perception a very crucial part of those

systems. This thesis will focus on implementing the perception system on the humanoid

bipedal robot which has become one of the popular choices in human-robot interaction tasks

due to their human-like appearance and the ability to deal with various conditions of ground

clearance.

1.1 Related work

There are many layers to the perception module in robotic or autonomous applications.

Those aspects range from sensor fusion, data processing, mapping, object detection, and

state estimation, etc. Many interesting methods and approaches to solve corresponding

fields were proposed in the past few years along with the improvement of quality and cost
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of advanced sensors like LiDAR and the state-of-the-art optimization algorithm.

1.1.1 Sensor Data Processing

Sensor data processing is the first procedure that has to be executed when we obtain mea-

surements from various sensors. For depth-related data or point cloud data, one of the most

used libraries was Point Cloud Library or PCL [36]. The library is based on linear algebra

calculation in Eigen library [15]. It consists of useful tools for manipulating point cloud data,

of which, their performance was demonstrated in various papers [26, 22]. Those tools include

point cloud registration which is used to align 3D point cloud from one scan with another

set of point cloud[18], ground segmentation tools used to extract ground plane or other geo-

metrical shapes using RAndom SAmpling Consensus method or RANSAC [11] from a point

cloud scene [22, 24, 34], and filtering tools to remove unwanted data and downsampling the

point cloud to reduce the size of data. Those are some examples of the point cloud processing

technique that is commonly used recently.

Other than depth-related data, another common form of sensing is through image or

visual scenes. These kinds of data have countless applications such as obstacle detection

for autonomous vehicles [41], object recognition using visual camera [13] and doing feature-

based mapping method called ORB-SLAM [28]. Most camera has 3 color channels, but

some camera has a depth channel in addition to RGB to perceive the depth information and

embed on into the image pixel simultaneously, such camera is called RGB-D camera which

can be used in 3D scene reconstruction of the environment [46].

1.1.2 3D Scene Reconstruction

Three-dimensional information of the environment is one of the most important areas in au-

tonomous systems. To represent spatial characteristics of an environment, there are various

kinds of representations proposed, such as raw point cloud through point cloud registration

mentioned in Section 1.1.1, elevation map [21] or multi-level surface map of the terrain [43].

Another popular method is to discretize the space into cubic volumes called voxels. This

idea was implemented in 3D SLAM applications in [30], however, due to fact that free space
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and unknown area are not modeled into the system, it cannot be used in the application

where free space and unknown space need to be represented. Another implementation of

the mentioned approach where free space and unknown space are taken into consideration is

called “Octomap” [19] which represents the 3D space as components of volumetric structure

like octree with probabilistic occupancy value which yield high accuracy and efficiency. Fur-

thermore, OctoMap can give simplified representation such as occupancy grid map where

3D information is projected on 2D plane or height map which is occupancy grid map with

height information, which are more practical and is sufficient in general tasks due to smaller

data size.

1.1.3 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping or SLAM is a complex problem where a map and

localization process occurs at the same time. This is important for navigation purposes where

the external reference of state such as GPS is not available. There are multiple methods

to handle SLAM problems including the various combination of sensors and optimization

methods. Camera is a common choice of sensor due to the availability and relatively low

cost of the sensor. ORB-SLAM [28], which was briefly mentioned in Section 1.1.1, is one of

the most famous open-source SLAM algorithm that deals with a multitude of visual cameras

including monocular, stereo, and fisheye cameras. Another algorithm is MonoSLAM [9]

where the main focus is to obtain the trajectory of the agent using only one monocular

camera.

Recently, the cost of more advanced sensors such as LiDAR and Radar is much lower than

before, so more SLAM algorithm that is based on these sensors were proposed. The simple

variation of LiDAR such as 2D sensor can be used to create 2D map of the environment

while localizing the robot in the self-created map with the help of loop-closure technique

[17, 31]. A more common choice of LiDAR sensor is the three-dimensional LiDAR which

composes of multiple bands or channels of rotating laser to collect a set of point clouds

with 3D coordinates. A state-of-the-art 3D LiDAR SLAM algorithm is proposed in [45]

called Lidar Odometry and Mapping (LOAM), where the system consists of two algorithms
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running in parallel to estimate the motion of the LiDAR and to accurately map the point

cloud to a map. This method achieve high performance in estimating odometry with 0.55%

error on KITTI dataset [12] and ranked as one of the best SLAM algorithms on the KITTI

benchmark. There are other variations that are derived from LOAM [38, 39] where IMU is

introduced into the system to improve the odometry estimation in SLAM.

Other than choices of sensors, the main approach to SLAM differs for different research.

One of them is graph-based SLAM [14], where states or pose of the agent is formulated

as nodes with edges representing the constraint between each node, then a map can be

constructed using the spatial configuration and the associated measurements modeled by the

edges. Another approach that has become more popular recently is using optimization-based

SLAM where probabilistic inferences are considered such as convex optimization SLAM [23].

However, the idea of these optimization-based methods will not be covered in the scope of

this thesis.

1.1.4 State estimation

State estimation is a crucial process in control modules. For a linear system, the state can

easily be predicted using Kalman filter introduced in 1960. The idea is to fuse measurement

information into the deterministic propagation model with a known control input to get

accurate state prediction. However, in most cases the system is nonlinear, so a variant of

Kalman filter called Extended Kalman Filter (EKF) with better convergence property [40,

20] is used instead of linear Kalman filter. EKF will linearize the error model using first-

Taylor expansion on the nonlinear functions in system dynamics. The application of EKF is

very broad, some examples include attitude estimation [42] and multi-sensor fusion in UUV

(Unmanned Underwater Vehicle) [33].

Generally, for legged robots, the state estimation uses EKF with IMU measurement

fused with nonlinear observers to predict the trajectory, position, orientation as well as

control parameters [35]. For a humanoid robot, sometimes foot contact information, where

contact point velocity is assumed to be zero, is incorporated into the EKF state estimation

as well [5, 10]. However, due to the linearization through Taylor approximation in EKF, the
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filter is sometimes inconsistent and led to divergences in actual applications. Therefore, the

idea of using geometrical properties of Lie group theory to represent the state was originally

introduced in [6] as Invariant Extended Kalman filter (InEKF) and further explored in [7,

2, 1, 25, 3, 4]. InEKF utilizes the group affine properties in matrix Lie groups to assume

the log-linear property of the nonlinear error [8], resulting in the error being independent of

the previous state estimate. This improves the convergence properties in the EKF, resulting

in strong local convergence of estimation. The idea is implemented on a bipedal robot

along with contact information [16], the method achieves better convergence properties than

another state-of-the-art variation of EKF for quaternion-based orientation system called

quaternion-based EKF[37].

1.2 Objective of the Thesis

Utilizing available sensors on a bipedal robot, we will design a framework and implement a

perception system for the robot. Raw sensor measurements from each sensor are processed

into useful data through various means such as filtering, segmentation, and sensor fusion.

The processed sensor data is then used to create a 3D map of the environment using the

odometry of the robot relative to a fixed frame provided by the robot itself. Additionally,

we will implement the LiDAR SLAM algorithm to perform mapping and localization in a

situation where external odometry is unreliable or unavailable. Finally, we will implement a

state estimation algorithm based on invariant observer design variation of Extended Kalman

Filter in matrix Lie group. Then, we will evaluate the performance of state estimation using

external ground truth reference.

In summary, the primary goal of the this thesis are as follows

• Design the perception system pipeline for bipedal robot

• Process and fuse raw sensor measurements into useful information for further applica-

tions

• Construct 3D scene of the environment and represent the information through proba-

bilistic inference
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• Implement SLAM algorithm for creating 3D map along with local localization in the

generated map

• Implement Invariant Extended Kalman Filter (InEKF) to accurately estimate the state

of the system represented in matrix Lie group

In this thesis, we demonstrated the methods of processing the raw sensor measurements

obtained from the sensors equipped on the Digit bipedal robot using various techniques

implemented in the Point Cloud Library (PCL) introduced in [36]. This includes the down-

sampling of point cloud based on voxels, ground plane segmentation using RANSAC iterative

process [11] and fusion of point cloud from various sources such as depth cameras and LiDAR.

This is the fundamental process to lay the groundwork for following applications using depth-

based information or specifically, point clouds.

From the pre-processed point cloud, we implemented 3D occupancy-based mapping tech-

nique, OctoMap [19] with the point cloud and odometry information of the robot relative

to a world fixed frame from the default state estimator of the robot as the inputs to the

mapping algorithm. The point clouds are registered in voxels along with the probabilistic

occupancy value presented in the map. Using sensor measurements from Digit, we success-

fully reconstruct the 3D model of the indoor room, where Digit was operating in real-time.

Considering when the state estimation fails or is not available, we implemented a SLAM

algorithm using a LiDAR sensor called LOAM [45] to estimate the motion and position of

the bipedal robot along with constructing a 3D map of the environment with the localized

position of the robot in it. This provides Digit with the spatial understanding of the environ-

ment which is crucial for further navigation purposes. The position estimate obtained from

LOAM is demonstrated in an indoor experiment to have better performance and accuracy

than the default state estimator from the robot itself.

Additionally, the Invariant Extended Kalman Filter is implemented on Digit to use noisy

inertial measurements from IMU to propagate the system and the position of the foot con-

tact point with the floor from the kinematics of the robot as measurements to predict and

update the states of Digit over time. Although the results are shown to be not as good as
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expected, the InEKF lays the groundwork for state estimation in Digit and further improves

the performance of the state estimation over classical nonlinear filtering methods that is

Extended Kalman Filter.

1.3 Organization of the Thesis

Chapter 2 presents the bipedal robot used in this thesis along with its sensor components

and configurations. Then, we introduce point cloud processing methods to remove noise or

unwanted cloud, extract obstacles or objects from a point cloud scene and fuse the point

cloud data from multiple sensors sources.

Chapter 3 presents the key principle of the OctoMap mapping algorithm which is used

to generate a probabilistic occupancy map of the environment from point cloud input. We

demonstrate the implementation on the bipedal robot as well as the applications of reduced

dimension map output from the algorithm. Additionally, we discuss the core idea of the

LiDAR Odometry and Mapping (LOAM) method as well as the implementation on hardware.

Chapter 4 introduce the formulation of Extended Kalman Filter and how we can incorpo-

rate Lie group theory into the filter, exploiting group affine properties to formulate Invariant

Extended Kalman filter with invariant observer design and improved convergence property.

Then, we implement InEKF filter on the bipedal robot and evaluate the accuracy of state

estimation through hardware experiment provided with ground truth reference.

Chapter 5 concludes the core idea of the thesis, highlights important remarks, and dis-

cusses the future work of this thesis.
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CHAPTER 2

SENSORS AND DATA MANIPULATION

In this chapter, we introduce the bipedal robot used in this research called Digit developed

by “Agility Robotics” company along with the sensors equipped on the robot. The sensor

measurements were processed with various methods to remove noise and unwanted data

before being used in applications such as the reconstruction of the 3D environment and

Simultaneous Localization and Mapping (SLAM).

(a) Robot hardware (b) Digit in simulation (c) Perception sensors

Figure 2.1: Digit bipedal robot developed by “Agility Robotic”
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2.1 Sensor components

Digit is a bipedal robot developed by“Agility robotics” (see Figure 2.1) to its successful

predecessor from the same company, Cassie. It featured added upper torso, arms, and sensors

to accommodate higher mobility and capability requirements for more complex tasks. Digit

is equipped with 3 depth cameras (Intel RealSense D430) at the pelvis, an RGB-D camera

(Intel RealSense D435) at the upper chest, a LiDAR (Velodyne VLP-16 or Puck) on top of

the torso, and an RGB camera at the chest. The position of sensors on the robot is depicted

in Figure 2.1c. All conventions described in this thesis will follow REP-0103 conventions, in

which axis orientations are x-forward, y-left, and z-upward, and units are in SI unit unless

specified otherwise.

2.1.1 Depth cameras

Three Intel RealSense D430 depth cameras installed at the pelvis (see Figure 2.1c) are used

to monitor the surrounding ground for obstacles and identify the stepping clearance for

the robot. Each camera has the field of view of 85◦ × 58◦ in horizontal and vertical axis

respectively. The pitch angle of each depth camera on the pelvis are 45◦, 90◦ and 135◦

respectively as shown in Figure 2.2. They capture most of the ground area in front, under,

and behind the robot (see Figure 2.3). However, there are blind angles on the side of each

leg lowering the safety in lateral movement. The reliable range for each depth camera is up

to 2-3 meters and the accuracy will drop significantly for objects detected at 3 meters or

(a) Forward camera (b) Downward camera (c) Backward camera

Figure 2.2: Depth cameras at the pelvis
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further. Therefore, the acceptable perceivable range from the pelvis is less than 3 meters.

These cameras provide data in form of dense point clouds.

(a) Pointcloud from all depth camera (b) Forward depth pointcloud (white)

(c) Downward depth pointcloud (white) (d) Backward depth pointcloud (white)

Figure 2.3: Point cloud obtained from depth cameras

2.1.2 3D LiDAR sensor

Velodyne VLP-16 or Puck LiDAR sensor is attached on the top of Digit’s torso (see Fig-

ure 2.4a). With 16 laser channels and 360◦ horizontal field of view, this sensor can capture

accurate distance to objects up to 100 meters. This gives the robot a general idea of the
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spatial features of the environment that the robot is operating in and provide Digit the

ability to detect large objects, walls, or human around itself. For the vertical field of view,

the sensor has (−15◦,+15◦) field of view (FOV), which results in a blind angle region near

the robot, but this issue is subsidized by the presence of depth cameras mentioned earlier.

The data structure of the sensor is in the form of rings of point clouds, each associated with

the channels of laser (see Figure 2.5).

(a) LiDAR sensor (b) Visual cameras

Figure 2.4: LiDAR sensor and visual cameras installed on the torso of Digit.

2.1.3 Visual camera

Digit has 2 visual cameras which are located at the chest section of the torso (see Figure 2.4b).

Intel Realsense D435 RGB-D camera is installed at a tilted pitch angle (facing slightly

downward as seen in Figure 2.1c) to capture the scenes of space in front of the robot,

resembling how people look at the floor while walking. The field of view for this camera

is 85◦ × 58◦ in horizontal and vertical axis respectively The camera also provides depth

information, however, the field of view is mostly overlapped with the depth camera at the

pelvis and since the RGB-D camera is located higher than the depth camera, the depth
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information of the detected objects or ground is more prone to error. The only advantage

of the depth information from the RGB-D camera is that it can cover some area within the

blind angle region above the depth camera. The second camera is a monocular RGB camera

(TIS DFM 27UP) located on the chest and facing forward. The RGB camera has a wider

field of view to monitor the scenes directly in front of the robot. With a wider field of view,

the image is slightly distorted which needed to be accounted for before using in any further

application.

Figure 2.5: Point cloud from LiDAR sensor
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2.1.4 Inertial measurement unit

Digit has a built-in 9-axis inertial measurement unit (IMU) located inside the torso and

coincides with the position of the base link of the robot. The orientation of the IMU is −90◦

rotated in pitch angle from the default orientation of the base link of the robot. To clarify,

the x-axis of the IMU is pointing upward and the z-axis is pointing backward relative to the

robot. This sensor provides linear acceleration and angular velocity information along with

its orientation which is calculated from the measurement of a magnetometer.

2.2 Point cloud manipulation

Raw sensor measurements are usually noisy and not appropriate to be used directly. Some-

times sensors can capture unwanted data or redundant information. Therefore, we have to

pre-process the sensor measurement before using them in mapping, localization, or state

estimation.

2.2.1 Voxel filtering

The point cloud we obtained from the depth cameras is very dense making further pro-

cesses computationally costly which is not feasible for real-time operations. Therefore, the

measurements from the depth camera need to be downsampled using VoxelGrid filter [36].

A voxel is a 3D box in the space, each containing a number of point clouds. We downsam-

ple them by calculating the spatial average or centroid of the point clouds within the same

voxel, then we can use that centroid as the representative of all points within that voxel.

This method may be slower than directly using the center of each voxel as the approxima-

tion, but it can represent the underlying surface much more accurately. The number of the

output point cloud from voxel grid filtering depends entirely on the size of voxel or leaf size.

Smaller leaf size gives a larger number of output point clouds and retain more information

from the original point cloud. Therefore, using optimal leaf size is crucial for the optimal

trade-off between computational cost and the amount of information retained.

We used a leaf size of 0.02 meter per voxel dimension which retained all the crucial

information of the object from the scan and from 10 sample scans the average point cloud
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Table 2.1: Number of points in point cloud before and after voxel grid filtering

Sample Scan Input cloud size (points) Output cloud size (points) Reduction (%)
1 640371 49899 92.21
2 541798 38285 92.93
3 527150 42283 91.98
4 570801 58701 89.72
5 639343 56623 91.14
6 567481 55318 90.25
7 623727 57544 90.77
8 578479 55319 90.44
9 627272 58780 90.63
10 626255 58967 90.58

Average 91.07

reduction is at 91.07% as shown in Table 2.1 which significantly reduce the computation load

in each scan.

In addition to the dense point cloud, the point clouds further from the depth camera are

also noisy and sometimes outlier points showed up as well, so we have to filter out unwanted

point clouds from the measurement to reduce the error of the data. We filtered out point

clouds that are 2.7 meters or further from the depth camera to maintain the balance between

accuracy and detection range of the camera itself. Due to the reflection of some objects, the

depth camera will sometimes capture points that are underground or stray points that are

not within the range of the sensor. These outliers are removed with pass-through filters,

which will filter out unwanted points according to specified conditions. The final result of

filtering is shown in Figure 2.6.

2.2.2 Ground segmentation

Point clouds we obtained from the depth camera can help Digit identify where the available

stepping region are or where the obstacles are located. However, the system cannot directly

extract that information from the given point clouds. Therefore, we need to differentiate the

region that allows stepping as ground cloud and the obstacles region as obstacle cloud. This

process is done after fusing the filtered point cloud from all depth cameras by transforming
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(a) Raw point cloud data (b) Filtered point cloud data

Figure 2.6: Filtered point cloud

the reference frame of each point cloud to base link frame coordinate using transformation

given by tf topic in Robot Operating System(ROS) platform and then, concatenate all point

clouds together.

After fusing the point clouds, we perform ground cloud segmentation by using an iterative

process algorithm called Random Sampling and Consensus (RANSAC) proposed in [11].

This algorithm is used to separate outliers from inliers within a group of data points. The

overview of the process is shown in Algorithm 1. In our case, it is used to extract the best

plane from 3D point clouds (P ). The algorithm will randomly select 3 points to construct a

geometrical plane model in the following form

ax+ by + cz + d = 0. (2.1)

Then, the absolute distance (Di) from each point in the 3D point clouds (P ) to the plane is

calculated using the following equation

Di =

∣∣∣∣axi + byi + czi + d√
a2 + b2 + c2

∣∣∣∣, for i ∈ {1, 2, .., n}, (2.2)

where n is the total number of points in the point cloud (P ).
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Next, the algorithm will detect all the points pi ∈ P that has absolute distance to plane

within a certain distance threshold and considered them as inliers, denoted as PI :

PI = {pi ∈ P | Di < Dthreshold}. (2.3)

This process is repeated iteratively to get the plane model that fits the largest number of

point or inliers in the point clouds P and also having lowest standard deviation for the

distance (Di) in case of ties. The number of iterations (N) are determined statistically as

the following equation:

N = round

(
log(1− α)

log(1− (1− ϵ)3)

)
, (2.4)

where

• N is the number of trials or observation needed to achieve at least one good plane,

• α is the minimum probability to find at least one good plane from the point cloud

(usually lies between 0.90 and 0.99) ,

• ϵ is the probability of error allowed in each observation which is calculated by

ϵ = 1− nmax

ntotal

, (2.5)

where nmax is the maximum probable number of points in a plane and ntotal is the total

number of points in the point cloud.

The example of segmentation results of the point cloud from Digit are shown in Figure 2.7

and the RANSAC algorithm is summarized in Algorithm 1 where

• points2plane(·) is a function to generate plane model from three arbitrary points;

• distance2plane(·) is a function to calculate the distance of a point to a plane;

• standard-deviation(·) is a function to calculate the standard deviation of a point cloud.
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Algorithm 1 RANSAC algorithm

maxFit = 0, minStd =∞
bestP lane = [0, 0, 0]
i = 0
N = round(log(1− α))/(log(1− (1− ϵ)3))

while i <= N do
r = 3 randomly selected points from point cloud P
plane = points2plane(r)
D = distance2plane(plane,P )
inliers = find(abs(D) < threshold)
Std = standard-deviation(inliers)
if (length(inliers) < maxFit) or (length(inliers) = maxFit and Std < minStd) then

maxFit = length(inliers)
minStd = Std
bestPlane = plane

end if
end while

Figure 2.7: Point cloud are segmented in to ground cloud(Green) and obstacle cloud(Red)
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2.2.3 Point cloud fusion

To utilize all the sensors’ point cloud measurement, we will fuse the point cloud from depth

cameras and LiDAR sensors together by transforming the point cloud from each sensor

frame to a single reference frame on the robot (see Figure 2.8). Since LiDAR and depth

cameras are all attached to the torso of the robot which is considered a single rigid body,

we can get a static homogeneous transformation matrix between each sensor and the robot

from the information given by internal tf topic in ROS provided by Digit itself. Then, the

transformation we obtained is used to transform the point cloud from each sensor to the

base link frame of the robot which is located at the pelvis of Digit.pb

1

 =

Rbc tbc

0T 1

pc

1

 , (2.6)

where

• pb is the position vector of a point in base link reference frame,

• pc is the position vector of a point in camera or sensor reference frame,

• Rbc is the static rotation matrix from base link orientation to camera/sensor orienta-

tion obtained from the kinematics of the robot,

• tbc is the static translation vector from base link orientation to camera/sensor orien-

tation obtained from the kinematics of the robot.

Since the there is no intersection area of point cloud between depth cameras and LiDAR,

we can directly concatenate the transformed point cloud together to get the combined point

cloud measurement from all available depth perception sensor.
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Figure 2.8: Fused point cloud from LiDAR (White), obstacle cloud (Red) and Ground cloud
(Green)

2.3 Summary

We introduce the sensor components on Digit and the types of information we can get from

the sensors. Then, we presented various methods of point cloud manipulation to process

depth-related sensor data such as downsampling the point cloud to reduce the computational

load and memory usage, filtering, and segmentation to fix noisy measurements and remove

unwanted point cloud that may cause an error in further applications. Then, we use the

kinematic information of the robot to transform and fuse the measurement from each sensor

together. In the next chapter, we will introduce the applications of point cloud such as 3D

mapping and Simultaneous localization and mapping (SLAM).
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CHAPTER 3

MAPPING AND LOCALIZATION

Individually, the point cloud measurement from each scan is not very meaningful in practical

application. To get a better understanding of the spatial layout of the environment, this

chapter introduces the method to reconstruct and visualize the 3D structure of the objects

and landscape in the environment. For this purpose, we used OctoMap, which is a framework

to construct 3D models using octrees and probabilistic occupancy estimation detailed in [19].

3.1 3D scene reconstruction using OctoMap

3.1.1 Octree

Octrees are the main data structure used to partition 3D space in OctoMap framework.

They consist of nodes in a hierarchical tree. Each node represents a cubic volume called

voxels and the size of the voxel is called leaf size. The voxels are recursively divided into

8 sub-volumes until the smallest voxel reaches the specified minimum leaf size which is the

resolution of the octree (see Figure 3.1).

Octree uses Boolean values to represent the occupancy of a volume or voxel. Each node

has discrete values assigned to them which are either occupied, free or unknown. This can

be used to identify free space that the robot can operate in which will be beneficial for path

planning and trajectory optimization later on. When a voxel is identified as occupied, the

corresponding node in the octree is initialized as occupied. To differentiate free voxel and

unknown voxel, the ray-casting technique is used. The area between the sensor and measured

endpoint is identified as free space and initialized as such. All other uninitialized voxels are
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considered as unknown space. Additionally, if all the children nodes of a parent node have

the same state, that node can be pruned to reduce the computational cost. However, for

the robots operating in a highly dynamic environment, the discrete values alone will not be

sufficient to cope with the changes in the environment. Therefore, OctoMap introduced an

approach to model probability into the occupancy consideration which will be explained in

the following section.

Figure 3.1: Octree data structure where each cubic volume is segmented into 8 sub-volumes
and each cells will store occupancy values [19]

.

3.1.2 Probabilistic Sensor Fusion

For every time step that the robot receives point cloud measurements from sensors, the point

cloud’s reference frame is transformed to a world-fixed frame using odometry information

provided by the robot’s state estimation. Then, the measurements from various sources are

fused into a single point cloud measurement (zt) and are integrated into the prior occupancy

nodes. Then, the probabilistic value is assigned to each node instead of discrete values. The

calculation of the probability that a node is occupied is introduced in [27] where uncertainty

is accounted for in the sensor measurements. The probability of a node being occupied given
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all previous measurements is as follows

P (n|z1:t) =
[
1 +

1− P (n|zt)
P (n|zt)

· 1− P (n|z1:t−1)

P (n|z1:t−1)
· P (n)

1− P (n)

]−1

, (3.1)

where

• P (n|z1:t) is the estimated probability that node n is occupied given all previous mea-

surements up to time t (z1:t),

• P (n|zt) is the estimated probability that node n is occupied given current measurement

zt,

• P (n|z1:t−1) is the previously estimated probability that node n is occupied given mea-

surements up to time t− 1,

• P (n) is prior probability.

All probability takes values in range [0.0, 1.0]. The prior probability P (n) that a node

is occupied is usually assumed to be 0.5, which means a node is equally probable that it

is occupied or unoccupied. Therefore, in [19], equation (3.1) can be written in log-odds

notation, resulting in update rule being in addition form, reducing the computational load.

L(n|z1:t) = L(n|z1:t−1) + L(n|zt), (3.2)

with L(n) = log
[

P (n)
1−P (n)

]
. Due to computational optimality, these log-odds values (L(n|z1:t))

are stored in each node instead of the occupancy probabilistic value (P (n|z1:t)). Log-odds

value can be translated back to probabilistic values as needed.

It is also common to impose a minimum threshold for occupancy probabilistic value

P (n|z1:t) for node n to be considered as occupied in order to take account for the noises from

sensor measurements. Therefore, the probability that a node is occupied needs to be high

enough to be initialized as occupied. This inferred that to change the state of a node with

m occupied observations, it needs at least m unoccupied observations to change the state

23



of that particular node. However, for navigation applications in a dynamic environment, we

need the update and adapt to the changes in the environment as fast as possible. Therefore,

[44] proposed an approach to limit the number of updates needed to change the state of

the voxel. This method is called clamping update policy, in which lower and upper limit

of the log-odds values are imposed, so the update equation from (3.2) became the following

equation.

L(n|z1:t) = min(min(L(n|z1:t−1) + L(n|zt)), lmax), lmin), (3.3)

where lmin and lmax are lower and upper limit of log-odds value respectively.

The clamping update policy ensures that the value of log-odds value are bounded to a

lower and upper limit. This provide the OctoMap the ability to quickly adapt to changes in

the environment and then update the state of the nodes as such.

Octomap is implemented on Digit using the processed point cloud from Chapter 2 which

is depicted in Figure 2.8 as input to provide a dynamic 3D map model of the environment

which is updated over time when new measurements are obtained. The point cloud and

voxel presentation of the output map is shown in Figure 3.2.

(a) OctoMap reconstruct 3D scene of a room
within indoor environment using point cloud

(b) OctoMap represents the 3D point cloud
with occupied voxels in a height map

Figure 3.2: 3D scene reconstruction using OctoMap
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3.1.3 Occupancy grid map and application

In some mobile robot applications, three-dimensional information is not compulsory and it

might even unnecessarily increase the computational load as well. The 3D map is sometimes

projected to a lower dimension such as 2D plane, e.g. occupancy voxels are projected onto a

plane (usually x-y plane), converting 3D volume into occupancy grids. At least one voxel in

the same x and y coordinate has to be occupied for the occupancy grid to be considered as

occupied, while all voxels have to be unoccupied for a corresponding grid to be considered

free, otherwise, the grid is marked as unknown. The collection of occupancy grids are called

2D occupancy grid map (see Figure 3.3). This map is useful in grid-based path planning

applications such as A* and D* along with their variations. The global path can be obtained

and updated after each time step that new measurements are provided.

Figure 3.3: Projected 2D map with discrete grid values as occupancy grid map
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However, for local path planning and motion planning processes in legged robots such

as bipedal or quadruped robots, 2D occupancy grid map is not enough to capture all the

information needed. Therefore, a height occupancy map or 2.5D map are often used instead.

Height maps are occupancy grid maps with object height information stored in each grid in

addition to the discrete occupancy values (see Figure 3.2b). This information is helpful in

tasks like stepping over an obstacle or identifying the task-space or work-space of the robot.

3.2 Simultaneous localization and mapping (SLAM) using Li-

DAR sensor

In the previous section, we discussed the 3D environment reconstruction using OctoMap

while assuming the odometry of the robot was provided from external sources such as wheel

encoders and GPS/GNSS. However, if the external source of odometry is not available, the

previously presented approach will not be functional.

To solve the issue, we can obtain odometry or states of the agent from sensor mea-

surements through the Simultaneous localization and mapping (SLAM) approach. SLAM

consists of the task of building a map of the environment while estimating the pose of the

agent at the same time. The challenge in SLAM problems is that both mapping and local-

ization have to be done at the same time since building a map requires the state estimate

of the agent and localization needs a map for the agent to be localized in. This is initially

known as the chicken-and-egg problem. SLAM is a very active field of research and there

are various techniques and methods to solve this problem. There are many kinds of sensors

used in SLAM problems such as visual cameras, LiDAR and RADAR, etc. Sometimes, IMU

is also used to estimate the motion of the agent and reduce the drift in the state estimation,

making the prediction more robust.

3.2.1 LiDAR Odometry and Mapping

Due to limitations from the low frame rate of the RGB camera relative to the movement

of the bipedal robot, the camera is not a very good choice of the sensor to do SLAM since

it will incur a large amount of drifting due to low-frequency updates which also affect the
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ability of the robot to perform feature tracking. As for the RGB-D camera on the upper

chest, the viewing angle of the camera is facing slightly downward, so the number of feature

points extracted from each scene is low, consequently resulting in poor performance in feature

tracking.

LiDAR can provide high frequency and wide-angle range measurements and the sensor

is also insensitive to texture and the ambient lighting in the environment. The error from

LiDAR measurements is also relatively constant regardless of the distance measured. Due to

the aforementioned advantages, LiDAR is one of the most popular sensor choices for SLAM

applications.

One of the state of the art approach called LiDAR Odometry and Mapping or LOAM

is introduced by Ji Zhang in [45]. The approach suggested using two algorithms running in

parallel to optimize a large number of variables simultaneously. Those algorithms are LiDAR

odometry running at high frequency to estimate the velocity of the agent with relatively lower

accuracy and LiDAR mapping which performs fine feature points matching and mapping at

a lower frequency.

Figure 3.4: Overview of the LOAM system [45]

The system overview is shown in Figure 3.4. First, each point in point cloud from the kth

sweep of LiDAR (P̂ ) are registered in the LiDAR reference frame (L) to get the point cloud

Pk. Then, the LiDAR odometry algorithm will use the point clouds from two consecutive

sweeps to estimate the pose transformation of the sensor between each sweep or time step
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at the frequency of 10 Hz. The obtained transformation will be used to correct the drift in

point cloud Pk. The outputs from the LiDAR odometry algorithm are further used in the

LiDAR mapping algorithm, where the undistorted point cloud will have its features matched

with its correspondence in the current map and the point clouds will be registered into the

map accordingly. LiDAR mapping algorithm runs at a lower frequency of 1 Hz ensuring

the robustness of the map output. The transformation output from both algorithms is fused

together to get the average transform update of 10 Hz. The detailed procedures are explained

in [45] as follows.

3.2.2 Feature point extraction

When a point cloud is obtained, LOAM extracts feature points from sharp edges and planar

surface patch from the point cloud. To identify whether a point belongs to an edge or a

planar surface features, the term smoothness of local surface (c) is introduced.

ci =
1

|S| · ||XL
(k,i)||

·
∑

j∈S,j ̸=i

(XL
(k,i) −XL

(k,j)), (3.4)

where

• ci is the smoothness value at point Pi,

• S is the set of consecutive points returned from the same sweep as point Pk,i in point

cloud Pk,

• XL
(k,i) is the coordinate of point of interest Pi in the point clouds from the kth sweep

which was registered in LiDAR frame L,

• XL
(k,j) is the coordinate of consecutive points Pj in the point clouds from the kth sweep

which was registered in LiDAR frame L.

The smoothness value of each point in the point cloud (Pk) is used to sort the points

from lowest c value to highest c value. Points that have the highest c values are considered

edge points (E) and points with the lowest c values are planar points (H). To ensure that
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the feature points are evenly distributed in the point cloud, the point cloud from each scan

is split into 4 sub-regions. Each region can have at most 2 edge points and 4 planar points.

Additionally, the selected feature points cannot have surrounding points that were already

selected as feature points to prevent redundancy in feature selection and the selected feature

point cannot be on a surface that is parallel to the laser coming out of LiDAR during

measurement.

3.2.3 Feature correspondence

Next, LOAM will associate each feature point with their correspondences from previously

obtained data. The point clouds obtained during each sweep are projected to the timestamp

at the end of a sweep as Pk. In the next sweep k + 1, we will extract the feature points

using the methods mentioned earlier to get a set of edge points (Ek+1) and a set of planar

points (Hk+1). We will project those feature points to the beginning of the sweep k+1 using

currently estimated transform to get projected feature points Ẽk+1 and H̃k+1. For each of

the points in Ẽk+1 and H̃k+1, we will find their closest neighbors in Pk using 3D KD-tree.

For an edge point in Ẽk+1, we need to find an edge line correspondence in Pk which consist

of 2 points (j, l) which are the nearest neighbor points from different scans during the kth

sweep. For a planar point, we need to find a surface patch consisting of 3 points (j, l,m),

where two of them are closest neighbor points from the same scan and another is from the

consecutive scans to the first two points with in the kth sweep (see Figure 3.5).

After the correspondences are found for all the feature points (Ẽk+1, H̃k+1), we can

calculate distance from each point to their correspondence which are edge points to edge line

(dE) and planar points to planar surface patch (dH) as follows.

dE =

∣∣∣(XL
(k+1,i) −XL

(k,j))× (XL
(k+1,i) −XL

(k,l))
∣∣∣∣∣∣XL

(k,j) −XL
(k,l)

∣∣∣ , (3.5)

where

• XL
(k+1,i) is the coordinate of interested feature point i in sweep k + 1 expressed in L
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frame,

• XL
(k,j),X

L
(k,l) are the coordinate of correspondences points j, l for edge line in sweep k

expressed in L frame.

dH =

∣∣∣∣∣∣ XL
(k+1,i) −XL

(k,j)

(XL
(k,j) −XL

(k,l))× (XL
(k,j) −XL

(k,m))

∣∣∣∣∣∣∣∣∣(XL
(k,j) −XL

(k,l))× (XL
(k,j) −XL

(k,m))
∣∣∣ , (3.6)

where

• XL
(k+1,i) is the coordinate of interested feature point i in sweep k + 1 expressed in L

frame,

• XL
(k,j),X

L
(k,l),X

L
(k,m) are the coordinate of correspondences points j, l,m for planar

patch in sweep k expressed in L frame.

Figure 3.5: Principal to match features with their correspondences depicted in [45]
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3.2.4 Motion Estimation

Motion estimate is the last process in the LOAM’s LiDAR odometry algorithm where the

transform T L
k+1 is constantly updated and is used to reduce the distortion of the point

cloud and output the undistorted point cloud to be used in the LiDAR mapping algorithm

respectively. The algorithm will estimate the motion of the LiDAR between each sweep from

the measurements we obtained. First, we have to find the transform between the coordinate

of the projected points (Ẽk+1, H̃k+1) and the actual coordinate of the points extracted from

the point cloud (Ek+1, Hk+1).The linear velocity and angular velocity are assumed to be

constant during a sweep. Let the time stamp at the beginning of k + 1th sweep be denoted

as tk+1 and the current timestamp be denoted as t. Let T L
k+1 be the rigid transform from

time tk+1 to current time t. This 6 DOF transform vector consists of translation and Euler

angle rotation ([rL
k+1,θ

L
k+1]

T = [rx, ry, rz, θx, θy, θz]
T ) of the LiDAR. Given transformation

T L
k+1, due to constant velocity assumption, we can linear interpolate to get the transform of

a point i from sweep k + 1 from time tk+1 to the timestamp of point i (ti) as

T L
(k+1,i) =

ti − tk+1

t− tk+1

T L
(k+1) , (3.7)

where T L
(k+1,i) is the transformation of point i between time [tk+1, ti]

From transform T L
(k+1,i) = [rL

k+1,i,θ
L
k+1,i]

T , we can construct rotation matrix R using

Rodrigues formula [29]:

R = I + ω̂ sin(θ) + ω̂2(1− cos(θ) , (3.8)

where

• I ∈ R3×3 is an identity matrix,

• θ is the magnitude of rotation obtained from the norm of θL
k+1,i as θ = ||θL

k+1,i||,

• ω is a unit vector of the rotation axis obtained from vector θL
k+1,i as ω = θL

k+1,i/||θL
k+1,i||,
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• ω̂ is a the skewed symmetric matrix of ω.

Therefore, we can get the actual coordinate of a point i (XL
(k+1,i)) in (Ek+1, Hk+1) from

given coordinate of projected point i (X̃L
(k+1,i)) in (Ẽk+1, H̃k+1) as

XL
(k+1,i) = RX̃L

(k+1,i) + rL
k+1,i , (3.9)

From (3.5) and (3.5), we calculated the distance of projected feature points in (Ẽk+1, H̃k+1)

to their correspondences. Combining with (3.9), we obtain geometric relationships between

actual feature points i ∈ Ek+1, Hk+1 to their correspondences as

fE(X
L
(k+1,i),T

L
k+1) = dE, i ∈ Ek+1 (3.10)

fH(X
L
(k+1,i),T

L
k+1) = dH , i ∈ Hk+1 , (3.11)

Combining (3.10) and (3.11), we can get a nonlinear function as

f (T L
k+1) = d , (3.12)

where each row of f represents a feature point and vector d contains the corresponding

distance from the feature point to its correspondence.

From (3.12), the Jacobian matrix (J) with respect to T L
k+1 can be calculated and (3.12)

is optimized by minimizing d to zero using Levenberg-Marquardt nonlinear optimization

method introduced in [32] to get the transform TW
k

T L
k+1 ← T L

k+1 − (JTJ + λdiag(JTJ))−1JTd , (3.13)

where λ is specified in the Levenberg-Marquardt method. Finally, the obtained transform

TW
k is used to remove the drift from the point cloud to generate undistorted point cloud

Pk+1.
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3.2.5 LiDAR mapping

While the LiDAR odometry algorithm runs at a frequency of 10 Hz, the LiDAR mapping

algorithm runs at a much lower frequency at 1 Hz, which is called only once at the end of

each sweep. The motion of LiDAR from the beginning of k + 1th sweep to the beginning of

k + 1th sweep was obtained from the LiDAR odometry algorithm as T L
k+1. This transform

vector will be fused with the accumulated motion of the LiDAR up to kth sweep expressed in

world frame W, denoted as TW
k to get the updated transform TW

k+1. The undistorted point

cloud output from LiDAR odometry Pk+1 is projected into the world frame W to get PW
k+1.

Next, the algorithm will match newly obtained point cloud PW
k+1 with accumulated point

cloud up to kth sweep (PW
1:k). The feature points are extracted with the same method men-

tioned earlier but the number of maximum feature points is 10 times higher. The correspon-

dence of each feature points in the map was matched and the distance to their correspondence

is calculated. The distance is minimized through the Levenberg-Marquardt optimization

method again. Then, the new point cloud PW
k+1 is registered onto the map to get the map

with updated point cloud PW
1:k+1. Both LiDAR odometry and LiDAR mapping algorithm

were called simultaneously, albeit at different frequencies, to continue keeping the motion or

transformation of the LiDAR and the point cloud in the map updated in real-time.

LOAM is implemented on digit using LiDAR point cloud measurements to perform SLAM

as described earlier in this section. The 3D map output of an indoor room generated ny

LOAM is shown in Figure 3.6.

3.3 Summary

In this chapter, we talked about 3D reconstruction of the environment, and the 3D mapping

method with the presence of an external source of odometry was introduced. We used

the OctoMap mapping method to probabilistically register new point cloud measurements

in the tree-like structure called octree. Other than visualization purposes, the occupancy

characteristics of the volumetric cube or voxel are projected to lower dimensions such as

occupancy grid maps which can be utilized in other applications like path planning.
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(a) Acute view (b) Top view

Figure 3.6: LOAM constructs the 3D amp of a room within indoor environment using point
cloud.

Finally, we presented the simultaneous localization and mapping method using LiDAR

to generate a 3D map and localize the agent onto the map at the same time. The method

used in this task is called LOAM which is one of the state of the art method that achieved

relatively high performance. Using only LiDAR sensor measurement, we can estimate the

odometry of the robot, build a 3D map of the environment and localize the robot in the map

through two algorithms running in parallel.

In the next section, we will discuss an equally important topic in the control perspective

which is state estimation of the robot through dynamic models and measurement. Although

we can obtain the odometry of the robot using LiDAR SLAM, the velocity estimate is not

robust because the SLAM method used in this research uses scan matching of point cloud

while disregarding the effect of acceleration. Therefore, in the next section, we will introduce

the use of Kalman filters and their variations which are widely used in robotic applications.
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CHAPTER 4

STATE ESTIMATION

State estimation is one of the most important aspects of the robotic and autonomous behavior

fields. Estimating accurate states of an agent such as its position and orientation when

the agent is moving through the world is crucial for designing robust control and planning

modules. Usually, robots or autonomous vehicles rely on noisy sensor measurements such

as inertial measurement units (IMU), cameras, or encoders to estimate the motion and the

state of the robot over time. For the purpose of estimating the state of a dynamic system,

filters were introduced, of which the goal is to combine the evolution of the dynamic model

over time and sensor measurements which collects partial information of the state of the

agent and provides the best estimate of the state. However, the evolution model can be

inaccurate in practical applications and sensor measurements are generally noisy, so these

uncertainties have to be taken into the account in the estimation as well. Various types

of filters were introduced in the past few decades such as Kalman filter, Particle filter, and

optimization-based filter. Many filters achieve high performance and can provide robust state

estimates, one such example is particle filters. However, due to high computational cost, it

is not appropriate to be used in real-time operations where the computation speed needs to

keep up with the changes in a dynamic environment. Therefore, the Kalman filter, which

can estimate the state of the agent such as position and trajectory in real-time remains one

of the most popular choices in navigation, control, and guidance applications even though

the idea was first introduced in 1960.
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4.1 Extended Kalman Filtering

The main idea of Kalman Filtering is to take a series of noisy measurements along with a

dynamic model of the system and compute the best estimate of the state of the robot in

real-time. Extended Kalman Filter is one of the most important tools in various estimation

applications [40, 20]. It is a variation of Kalman Filtering, where the state evolution and

observation model is nonlinear as opposed to the linear models in classical Kalman Filter.

The state of a dynamic system in discrete time is expressed as

Xt = f(Xt−1, ut, wt) , (4.1)

where

• Xt is the vector containing the states of the system at time t,

• Xt−1 is the vector containing the states of the system at previous time step t− 1,

• f(·) is the function describing the evolution of system,

• ut is the control input at time step t,

• wt is the Gaussian noise associated with model covariance matrix Qt.

The observation or measurement is expressed as

Yt = h(Xt) + Vt , (4.2)

where

• Yt is the vector containing measurements at time step t,

• h(·) is the observation function of system,

• Vt is the measurement noise.
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Extended Kalman Filter (EKF) will approximate the state X̂t|t along with the estimated

uncertainty matrix Pt|t given measurements up to time t, Y1:t. There are two steps in the

EKF, which are propagation step using evolution dynamic model and update step where

measurements are taking into account in the state estimate.

4.1.1 Propagation step

In this step, EKF will predict the state X̂t|t−1 using previously estimated state X̂t−1|t−1

which was obtained after observation Yt−1. The state is propagated as in (4.1) with current

control input ut to get a deterministic estimate of the state (noise parameter wt is zero).

X̂t|t−1 = f(X̂t−1|t−1, ut, 0) , (4.3)

Then, the error in estimation are defined as

et−1|t−1 = Xt−1 − X̂t−1|t−1 (4.4)

et|t−1 = Xt − X̂t|t−1 , (4.5)

where

• et−1|t−1, et|t−1 are the estimation error given measurements up to time t − 1 at time

step t and t− 1 respectively,

• Xt−1,Xt are the true state of the system at time step t− 1 and t respectively,

• Xt−1|t−1,Xt|t−1 are the estimated state of the system given measurements up to time

t− 1 at time step t and t− 1 respectively.

The core idea of EKF is to linearize the error system using first-order Taylor expansion

on the non-linear functions f(·), h(·) and noise parameter as stated in (4.1) and (4.2) at the
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estimated state X̂t−1|t−1 to obtain Jacobians as follows

Ft =
∂f

∂X
(X̂t−1|t−1, ut, 0) (4.6)

Ht =
∂h

∂X
(X̂t−1|t−1, ut, 0) (4.7)

Gt =
∂f

∂w
(X̂t|t−1) , (4.8)

These Jacobians, with higher order terms ignored, are used to formulate the error dynamic

model as follows

et|t−1 = Ftet−1|t−1 +Gtwt (4.9)

Yt − h(X̂t|t−1) = Htet|t−1 + Vt , (4.10)

Then, we propagate the uncertainty matrix from Pt−1|t−1 to Pt|t−1 as

Pt|t−1 = FtPt−1|t−1F
T
t +GtQtG

T
t . (4.11)

where Qt = cov(wt) is the covariance matrix associated to noise parameter wt at time step

t.

4.1.2 Update step

Next step is to account for the measurement Yt obtained at time step t. We define the

innovation term zt as

zt = Yt − h(X̂t|t−1) . (4.12)

We can compute Kalman gain as

St = HtPt|t−1H
T
t +Rt , (4.13)
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where St is the innovation covariance and Rt is the covariance matrix associated with mea-

surement noise Vn.

Kt = Pt|t−1H
T
t S

−1
t . (4.14)

Finally, we can update the current estimated state X̂t|t and uncertainty matrix Pt|t as

X̂t|t = X̂t|t−1 +Ktzn (4.15)

Pt|t = [I −KtHt]Pt|t−1 , (4.16)

The overview of the Extended Kalman Filter algorithm is shown as in Algorithm 2 and

Figure 4.1. However, due to the linearization of the non-linear functions f and h through first-

order Taylor expansion, EKF may sometimes be inconsistent and sometimes leads toward

divergence in practical applications. Therefore, the idea of incorporating geometry in Kalman

filter was introduced in [6] where matrix Lie groups are used to describe the states, in which

we will explore the details in the following sections.

Figure 4.1: Architecture of EKF depicted in [4]
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Algorithm 2 Extended Kalman Filter

Initialize state X0|0 and uncertainty matrix P0|0
while (true) do

Calculate Jacobians Ft,Ht,Gt

Propagation step
X̂t|t−1 = f(X̂t−1|t−1, ut, 0) ▷ State Propagation
Pt|t−1 = FtPt−1|t−1F

T
t +GtQtG

T
t ▷ Uncertainty matrix propagation

Measurements
zt = Yt − h(X̂t|t−1) ▷ Innovation
St = HtPt|t−1H

T
t +Rt ▷ Innovation covariances

Kt = Pt|t−1H
T
t S

−1
t ▷ Kalman gain

Update step
X̂t|t = X̂t|t−1 +Ktzn ▷ State Update
Pt|t = [I −KtHt]Pt|t−1 ▷ Uncertainty matrix update

end while

4.2 Lie groups theory introduction

4.2.1 Matrix Lie Groups

Lie group is a differentiable manifold which is widely used in mathematics and robotics. A

matrix Lie group (G) is a subset of square invertible matrices with the following properties
IN ∈ G

∀X ∈ G,X−1 ∈ G

∀X1,X2 ∈ G,X1X2 ∈ G

, (4.17)

where In is the identity matrix or RN and X is a point on curved space G.
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Figure 4.2: Mapping between spaces in matrix Lie groups depicted in [4]

For each point X ∈ G, we can associate the point to a tangent space TXG and the elements

in this space are called tangent vectors. The tangent space at the identity of Lie group IN is

specifically called ”Lie algebra” denoted as g (see Figure 4.2). Lie algebra’s dimension will

define the dimension of the Lie group G itself. We will denote a vector in euclidean space

as ξ ∈ Rd and the corresponding element in Lie algebra as ξg ∈ g. There exist an invertible

linear map (Lg : Rd → g) from euclidean space to Lie algebra or (Lg(ξ) = ξg), for example

skewed symmetric matrix (ω → [ω]×).

There are two methods to identify TXG at any X ∈ G for vector ξ ∈ Rd through left and

right multiplication, depending on how the vector ξ is defined. For example, if the vector

ξ is defined in fixed frame S as ξs, the corresponding tangent vector in tangent space TXG

at X is (ξg)X . However, if the vector is defined in body frame B as ξb, the tangent vector

on tangent space became X (ξg). Although both vectors are in the same tangent space TXG,

they are different due to the non-commutative properties of matrix. This is the basis for left

or right observation models.

Then, we will define the matrix exponential map from Lie algebra to Lie group (g→ G)

which is a bijection of the neighborhood of origin of Lie algebra (g) to the neighborhood of

identity in Lie group (G) as

expm : g→ G . (4.18)
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We will define Lie group exponential map from Euclidean space to Lie group (Rd →

G) which is a bijection map from the neighborhood of origin of Euclidean space to the

neighborhood of X in Lie group as

exp(ξ) = expm(Lg(ξ)) = expm(ξ
g) , (4.19)

4.2.2 Uncertainty and error definition

For random variable defined in Euclidean space (Rd), we can represent the variable as

X = X̄ + e, e ∼ N (0,P ) , (4.20)

where

• X̄ is the mean of random variable X.

• P is the covariance of e.

• e is the Gaussian noise parameters where e ∼ N (0,P ).

However, in Lie groups, we cannot use additive noise as in Euclidean space. We define

the distribution of random variable X ∈ G as X ∼ N (X̄ ,P ) and it is defined depending left

or right multiplication by

X = X̄ exp(ξ), for left multiplication

X = exp(ξ)X̄ , for right multiplication
, (4.21)

where

• X̄ is the mean of random variable X ,

• P is the covariance associated with error ξ,

• ξ is the Gaussian noise parameters where ξ ∼ N (0,P ).
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To represent the error terms for matrix Lie group, we will use non-linear error terms:

left-invariant error (ηL)and right-invariant error (ηR). For the error between states in Lie

group at time t (actual state Xt and estimated state X̂t), it is defined according to whether

left or right multiplication are used.

ηL = X−1
t X̂t = (LX̂t)(LXt)

−1, left-invariant

ηR = X̂tX−1
t = (X̂tL)(XtL)

−1, right-invariant
, (4.22)

where L is arbitrary element in Lie group (G).

4.2.3 Important theorems for Invariant EKF

There are two key theorem which is the core of Invariant Extended Kalman Filter (InEKF).

Given a function of control input fut(·), the evolution of the state X in Lie group can be

described as

d

dt
Xt = fut(Xt) . (4.23)

Theorem 1. According to [4], a system is group affine if the system dynamics fut(·) satisfy

∀t ≥ 0 fut(X1X2) = fut(X1)X2 + X1fut(X2)−X1fut(Id)X2 , (4.24)

where

• fut(·) is the dynamic function of control input ut at time t of the system,

• X1,X2 are elements defined in Lie group (G),

• Id is the identity matrix of dimension d defined in in Lie group (G).
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If the condition is satisfied, we can formulate error dynamics as

d

dt
ηLt = fut(η

L
t )− ηLt fut(Id) = gut(η

L
t )

d

dt
ηRt = fut(η

R
t )− fut(Id)η

R
t = gut(η

R
t )

. (4.25)

Let At ∈ Rdxd be a square matrix with same dimension as Lie algebra (g) and At satisfy

the following equation;

gut(exp(ξ)) ≜ Lg(At) +O(||ξ2||) . (4.26)

We will define ξt as the solution of the following linear differential equation

d

dt
ξt = Atξt . (4.27)

Theorem 2. Log-linear property of error described in [4] states that for initial error ξ0 ∈ Rd,

if η0 = exp(ξ0), for t ≥ 0, the non-linear error at time t can be described by

ηt = exp(ξt) . (4.28)

Theorem 2 suggests that the non-linear error estimation between two states at time t

can be fully recovered from the solution ξt of (4.27). Therefore, the left-invariant and right-

invariant is independent of the previous states. This property is used in the propagation

step of an EKF to propagate exact covariance of the system.

4.3 Invariant Extended Kalman Filtering

Invariant Extended Kalman Filtering (InEKF) was first introduced in [6] where the system is

continuous and it is further explained as discrete time system in [[3], [4]]. The state space in

InEKF is represented as matrix Lie group and taking advantage of the properties presented

in previous section, the filter is non-linear observer with local convergence properties.
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4.3.1 System and observation models

Consider a noisy system with the following dynamic model

d

dt
Xt = fut(Xt) + Xtwt , (4.29)

where fut(·) satisfy (4.24) and wt ∈ g is the white noise whose covariance matrix is denoted

as Qt For the measurement, we have two kinds of observations. The first type is left-invariant

observation where observations are in the following form

Y i
t = Xt(d

i +Bi) + V i, i = 1, 2, ..., k , (4.30)

where

• Y i
t is the ith measurement at time t

• di are known vectors that associate state space with measurement

• k is the number of measurements

• Bi, V i are noise parameter with known characteristics

As for right-invariant observer design, we have measurements in the following forms

Y i
t = X−1

t (di +Bi) + V i, i = 1, 2, ..., k . (4.31)

4.3.2 Error definition

From Theorem 2, the non-linear error is defined in (4.28). In the propagation step for time

step tn−1 ≤ t ≤ tn , according to Theorem 1, we have the noisy non-linear error model for

left-invariant and right-invariant as

d

dt
ηLt = gLut

(ηLt )− wtη
L
t

d

dt
ηRt = gRut

(ηRt )− (X̂twtX̂−
t 1)ηRt ,

(4.32)

45



where ŵt ∈ Rd is the noise parameters in Euclidean space and we can map it to Lie algebra

by Lg(ŵt) = −wt for left-invariant error and Lg(ŵt) = −X̂twtX̂−1
t for right-invariant error

as shown in (4.32). Then, we can linearized the error equation in Rd similar to (4.27) but

with added noise parameter as follows

d

dt
ξt = Ai

ut
ξt + ŵt , (4.33)

where Ai
ut

is defined as giut
(exp(ξ)) ≜ Lg(A

i
ut
) + O(||ξ2t ||) of which the higher order term

O(||ξ2t ||) is ignored.

For simplicity, we will use left-invariant EKF (LIEKF) to explain the error update pro-

cedure when some noisy measurements are obtained as follows

(ηLtn)
+ = X−1

tn X̂
+
tn

= ηLtnexp
[
Ln

(
(ηLtn)

−1di − di + V̂ i
n + (ηLtn)

−1Bi
n

)]
, i = 1, 2, ..., k ,

(4.34)

where Ln is the Kalman gain which will be calculated later.

We can linearize the innovation terms in the bracket using Taylor expansion of matrix

exponential map as

(ηLtn)
−1di − di + V̂ i

n + (ηLtn)
−1Bi

n

= (ηLtn)
−1(di +Bi

n)− di + V̂ i
n

= expm (Lg(ξtn))
−1 (di +Bi

n)− di + V̂ i
n

= (Id − Lg(ξtn))(di +Bi
n)− di + V̂ i

n +O(||ξtn||2)

= −Lg(ξtn)d
i + V̂ i

n +Bi
n +O(||ξtn||2) +O(||ξtn||||Bi

n||), i = 1, 2, ..., k .

(4.35)

Similarly, from (4.34) and (4.35), we have

Id + Lg(ξ
+
tn) = Id+ Lg(Ln(−Lg(ξtn)d

i) + V̂ i
n +Bi

n) + T, i = 1, 2, ..., k , (4.36)

where T consists of higher order terms which are neglected and thus, we have the linearized
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error equation expressed in Euclidean space (Rd) as follows

ξ+tn = ξtn + Ln(Hξtn + V̂n +Bn) , (4.37)

where Hξ, V̂n, Bn are defined as follows

Hξ =


−Lg(ξtn)d

1

...

−Lg(ξtn)d
k

 (4.38)

V̂n =


V̂ 1
n

...

V̂ k
n

 (4.39)

Bn =


B1

n

...

Bk
n

 . (4.40)

4.3.3 Uncertainty evaluation

Let Q̂t be the covariance of noise parameter ŵt and let N̂n be the covariance of the modified

noise parameters V̂n + Bn. According to Kalman filter design, we have state dynamic as

d
dt
Xt = AutXt + ŵt and discrete measurement model Yn = HXtn + V̂n + Bn. We have the

dynamic model of uncertainty matrix Pt as

d

dt
Pt = AutPt + PtA

T
ut
+ Q̂t . (4.41)
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Then, we can calculate the Kalman gain (Ln) as follows

Sn = HPtnH
T + N̂n

Ln = PtnH
TS−1 .

(4.42)

Finally, the uncertainty update model can be formulated as

P+
tn = (I − LnH)Ptn . (4.43)

4.3.4 Summary

To summarize, consider the propagation step of a noisy system. The dynamic model of state

and uncertainty matrix are defined as follows

d

dt
Xt = fut(Xt) + Xtwt

= AutXt + ŵt

d

dt
Pt = AutPt + PtA

T
ut
+ Q̂t .

(4.44)

Next, we can formulate dynamic model of non-linear error similar to (4.32)

d

dt
ηt = gut(ηt) + Lg(ŵt)ηt

d

dt
ηLt = gLut

(ηLt )− wtη
L
t for left-invariant

d

dt
ηRt = gRut

(ηRt )− (X̂twtX̂−
t 1)ηRt for right-invariant .

(4.45)

According to (4.26), we can linearize the error to get the dynamic model of the linearized

error as shown in (4.33) : d
dt
ξt = Ai

ut
ξt + ŵt .

Then, we obtain some noisy measurements

Y i
t = Xt(d

i +Bi) + V i, i = 1, 2, ..., k for left-invariant

Y i
t = X−1

t (di +Bi) + V i, i = 1, 2, ..., k for right-invariant .
(4.46)
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The error update model are formulated as follows

(ηLtn)
+ = X−1

tn X̂
+
tn for left-invariant

= ηLtnexp
[
Ln

(
(ηLtn)

−1di − di + V̂ i
n + (ηLtn)

−1Bi
n

)]
, i = 1, 2, ..., k

(ηRtn)
+ = X̂+

tnX
−1
tn for right-invariant

= exp
[
Ln

(
(ηRtn)d

i − di + V̂ i
n + (ηRtn)B

i
n

)]
ηRtn , i = 1, 2, ..., k .

(4.47)

From (4.47), we can linearize the non-linear error update using Taylor expansion of the

exponential map as in (4.37) : ξ+tn = ξtn + Ln(Hξtn + V̂n + Bn) where Hξtn , V̂n and Bn are

defined in (4.38), (4.39) and (4.40) respectively.

We can calculate Kalman gain Ln as in (4.42)

Sn = HPtnH
T + N̂n

Ln = PtnH
TS−1 .

(4.48)

Finally, in the update step of the filter, we have state and uncertainty matrix update model

as follows

(Xtn)
+ = X̂tnexp

[
Ln

(
(Xtn)

−1di − di + V̂ i
n + (Xtn)

−1Bi
n

)]
, i = 1, 2, ..., k (LIEKF)

(Xtn)
+ = exp

[
Ln

(
(Xtn)d

i − di + V̂ i
n + (Xtn)B

i
n

)]
X̂tn , i = 1, 2, ..., k (RIEKF)

P+
tn = (I − LnH)Ptn .

(4.49)

The overview of Invariant Kalman Filter architecture is shown in Figure 4.3.
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Figure 4.3: Invariant EKF architecture depicted in [4]

4.4 Contact measurement implementation of InEKF

The most common method to estimate the state of the robot with a nonlinear observer is

to use EKF with IMU measurements including linear acceleration and angular velocity as a

control input, propagating the system, and some sensor measurements to update the state

prediction. For legged robots, the odometry of the leg joints from kinematics measurement

is usually used as the measurement to the filters due to the high update frequency of the

joint encoder and IMU. However, due to the linearization in EKF, the system does not have

globally convergence properties and might diverge in practical implementation. Therefore,

an approach utilizing the properties of right invariant observer design along with contact

assumption for the bipedal robot, Cassie, was proposed in [16]. The contact point at the

foot is assumed to have zero velocity but the measurement is designed to be corrupted with

additive noises to account for the possible slippage. The position of the robot can be obtained

from a forward kinematic calculation using the joint angles obtained from encoders. The

system has strong convergence result and achieves better results than quaternion-based EKF

which is commonly used in the system where orientation is expressed in quaternion. Due to

similarities between Cassie and Digit, we will implement the same system to estimate the
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state of Digit. The IMU frame and contact frame for Digit is roughly depicted in Figure 4.4.

The problem formulation in [16] are presented as follows.

Figure 4.4: IMU frame and contact frame positions on Digit

4.4.1 State space definition

We will estimate the orientation, velocity, and position of the IMU expressed in world frame

W . Additionally, the position of the current contact point is incorporated into the state as

well. For simplicity, we will assume that there is only one contact point at a time indicated

by binary contact measurement. For example, if the force measurement from the contact

sensor for the right foot exceeds a certain threshold, Digit will switch to right support mode
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indicating that the contact point at the right foot is stationary in the world frame and the

position of the right foot contact point is used in the state space, vice versa. The state of

the system in Lie group Xt ∈ G can be represented as

Xt =


Rt vt pt bt

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1

 , (4.50)

where

• Rt ∈ SO(3) is the rotation matrix representing the orientation of IMU in world frame

W ,

• vt ∈ R3×1 is the velocity vector of IMU in world frame W ,

• pt ∈ R3×1 is the position vector of IMU in world frame W ,

• bt ∈ R3×1 is the contact point position in world frame W .

4.4.2 System dynamics

IMU measurements are treated as control input of the system and the measurements from

IMU including angular velocity (ω̃t) and linear acceleration (α̃t) are modeled with additive

Gaussian noise as follows

ω̃t = ωt + wg
t , wg

t ∼ N (03,1, σ
g)

α̃t = αt + wa
t , wa

t ∼ N (03,1, σ
a) ,

(4.51)

where

• ωt and αt are true angular velocity and linear acceleration respectively,

• wg
t , w

a
t are Gaussian noise from gyroscope and accelerometer respectively,
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• σg, σa are covariances associated with sensor noises from gyroscope and accelerometer

respectively.

From the assumption that at contact, the measured velocity of contact point is zero but

the measurement is corrupted with additive Gaussian noise, the velocity of contact point is

ṽC,t = 03,1 = vC,t + wv
t , wv

t ∼ N (03,1, σ
v) , (4.52)

where

• ṽC,t is the measured velocity of contact point which is assumed to be zero,

• vC,t is the true velocity of the contact point,

• wv
t is the Gaussian noise of the measurement,

• σv is covariances associated with slippage at contact point.

The system dynamics can be formulated using IMU strap down model and contact mea-

surements as the following equations

d

dt
Rt = Rt(ω̃t − wg

t )×

d

dt
vt = Rt(α̃t − wa

t ) + g

d

dt
pt = vt

d

dt
bt = RthR(q̃t)(−wv

t ) ,

(4.53)

where

• (·)× denotes the skewed-symmetric form,

• g is the gravity vector,

• hR(q̃t) is the orientation of the contact frame C with respect to IMU frame which is

obtained from forward kinematics calculation using joint parameters q̃t.
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The system in (4.53) can be written in matrix form corresponding to the state space.

The system consisting of deterministic part and associated noise part. The deterministic

part can be written in the form of function fut(Xt) as

fut(Xt) =


Rt(ω̃t)× Rtα̃t + g vt 03,1

01,3 0 0 0

01,3 0 0 0

01,3 0 0 0

 . (4.54)

The function fut(·) is proven to satisfy the group affine property described in (4.24), so

according to Theorem 1, we can conclude that the right-invariant error dynamic can evolve

in time while being independent from the system state.

Next, the noise parameters part can be represented in matrix form as

XtLg(wt) =


Rt vt pt bt

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1




(wg

t )× wa
t 03,1 hR(q̃t)w

v
t

01,3 0 0 0

01,3 0 0 0

01,3 0 0 0

 . (4.55)

Finally, we have the full dynamic model of the system as

d

dt
Xt = fut(Xt)−XtLg(ŵt) . (4.56)

4.4.3 Error formulation

With function fut(·) satisfied the group affine property, from Theorem 1, we have the dynamic

model of nonlinear right-invariant error as follows

d

dt
ηRt = fut(η

R
t )− ηRt fut(Id) + X̂twtX̂−1

t ηRt

= gut(η
R
t ) + Lg(ŵt)η

R
t .

(4.57)
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From Theorem 2, if matrix At is defined by

gut(exp(ξ)) ≜ Lg(Atξ) +O(||ξtn||2) . (4.58)

Then, the linearized error or the log of invariant error (ξt ∈ Rd) satisfies the following

d

dt
ξt = Atξt + ŵt

= Atξt + AdX̂t
wt

and ηRt = exp(ξt) ,

(4.59)

where AdXt is the adjoint operator for the state defined as

AdXt =


Rt 03,3 03,3 03,3

(vt)×Rt Rt 03,3 03,3

(pt)×Rt 03,3 Rt 03,3

(bt)×Rt 03,3 03,3 Rt

 . (4.60)

We can compute the matrix At by linearizing the invariant error term using first-order Taylor

approximation ηRt = exp(ξt) ≈ Id+Lg(ξt), so we have the linearized dynamic function gut(·)
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as

gut(η
R
t ) = gut(Id + Lg(ξt))

=


(I + (ξRt )×)(ω̃t)× (I + (ξRt )×)α̃t + g ξvt 03,1

01,3 0 0 0

01,3 0 0 0

01,3 0 0 0



−


I + (ξRt )× ξvt ξpt ξbt

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1




(ω̃t)× α̃t + g 03,1 03,1

01,3 0 0 0

01,3 0 0 0

01,3 0 0 0



=


03,3 (g)×ξ

R
t ξvt 03,1

01,3 0 0 0

01,3 0 0 0

01,3 0 0 0

 .

(4.61)

From (4.61), we can get At matrix as

At =


03,3 03,3 03,3 03,3

(g)× 03,3 03,3 03,3

03,3 I3 03,3 03,3

03,3 03,3 03,3 03,3

 . (4.62)

Finally, the uncertainty matrix can be propagated using the following evolution model

from Kalman filtering design

d

dt
Pt = AtPt + PtA

T
t + Q̂t , (4.63)

where Q̂t = AdX̂t
Cov(wt)Ad

T
X̂t

is the covariance matrix associated with noise wt.
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4.4.4 Measurement and update model

The relative position of the contact point relative to the body frame is used as the measure-

ment in the RIEKF filter, which is obtained from a forward kinematic calculation using joint

position or angle. Similar to other measurements, the measurement of the joint parameters

is also modeled to have additive Gaussian noise as follows

q̃t = qt + wq
t , wq

t ∼ N (0M,1, σ
q) , (4.64)

where M is the number of corresponding joints in the forward kinematic calculation The

contact point position relative to the IMU is calculated as

pC,t = hp(q̃t − wq
t )

RT
t (bt − pt) = hp(q̃t)− Jv(q̃t)w

q
t

hp(q̃t) = RT
t (bt − pt) + Jv(q̃t)w

q
t ,

(4.65)

where hp(q̃t) is the relative position of the contact point from forward kinematic calculation

and Jv denotes the linear velocity Jacobian From (4.65), the measurements can be written

in matrix form corresponding to the right invariant observer design as follows

Yt = X−1
t d+ Vt

hp(q̃t)

0

1

−1

 =


RT

t −RT
t vt −RT

t pt −RT
t bt

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1




01,3

0

1

−1

+


Jv(q̃t)w

q
t

0

0

0

 .
(4.66)

4.4.5 Kalman gain calculation

From (4.47), we have the nonlinear error update model as

(ηRtn)
+ = exp

[
Lt

(
(ηRt )d− d+ X̂tVt

)]
ηRtn . (4.67)
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For simplicity, the reduced Kalman gain (Kt) and auxiliary matrix (Π ≜
[
I3 03,3

]
) is

used so that

Lt(X̂tYt − d) = KtΠ(X̂tYt) . (4.68)

Then, we can rewrite (4.67) with reduced Kalman gain as

(ηRtn)
+ = exp

[
KtΠ

(
(ηRt )d+ X̂tVt

)]
ηRtn (4.69)

(4.69) can be linearized using ηRt = exp(ξt) ≈ Id + Lg(ξt) so we have

(ηRtn)
+ ≈ Id + Lg(ξt) + Lg

(
KtΠ

(
(Id + Lg(ξt))d+ X̂tVt

))

Id + Lg(ξ
+
t ) ≈ Id + Lg(ξt) + Lg

KtΠ




I + (ξRt )× ξvt ξpt ξbt

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1

+ X̂t


Jv(q̃t)w

q
t

0

0

0







Lg(ξ
+
t ) ≈ Lg(ξt) + Lg

KtΠ




ξpt − ξbt

0

1

−1

+ X̂t


Jv(q̃t)w

q
t

0

0

0





 .

(4.70)

Taking L−1
g for both side in (4.70), we have

ξ+t = ξt −Kt

([
03,3 03,3 −I3 I3

]
ξt − R̂t(Jv(q̃t)w

q
t )
)

= ξt −Kt

(
Htξt − R̂t(Jv(q̃t)w

q
t )
)

,
(4.71)
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where Ht is the observation matrix

We can compute reduced dimensional Kalman gain Kt as

St = HtPtH
T
t + N̂t

Kt = PtH
T
t S

−1
t ,

(4.72)

where N̂t = R̂tJv(q̃t)Cov(w
q
t )Jv(q̃t)

T R̂T
t and Ht is obtained from (4.71)

Finally the update models for state and uncertainty model can be expressed as

X̂+
t = exp

(
KtΠ(X̂tYt)

)
X̂t

P+
t = (I −KtHt)Pt .

(4.73)

4.5 Experiment on Digit

4.5.1 Experiment setup

Right-observer Invariant EKF was implemented on Digit to estimate the state of the robot

along with LiDAR SLAM (LOAM) to obtain the odometry simultaneously in an indoor

environment. The estimate is compared with the output from the default controller provided

by Agility Robotics. Furthermore, in the absence of a GNSS signal, the motion capture

system is used to get an absolute position as the ground truth reference of the robot. The

motion capture system consists of 8 motion capture cameras and a set of retro-reflective

markers attached to Digit.

Digit is controlled to follow a rectangular path in an indoor closed space as shown in Fig-

ure 4.5. The starting point and endpoint of the path are approximately the same positions to

monitor the accuracy of the estimation. The kinematic, inertial, and LiDAR measurements

were recorded with robot operating system (ROS) and the state estimation along with pro-

cessing and filtering were done offline. Even though the system is formulated in 3D settings,

we will focus on 2D results for simplicity.
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Figure 4.5: Experiment setup with motion capture system

4.5.2 Experimental results

The position estimate in x and y direction from different sources including default state

estimator provided by the robot, Invariant EKF estimate using contact point position and

kinematics, odometry generated from LiDAR odometry and mapping algorithm (LOAM)

were measured and compared with the ground truth trajectory measured using external

motion capture system. The results are plotted as follows.
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Figure 4.6: Estimate of x position over time from different sources compared to ground truth

From Figure 4.6, the position estimate in the x-direction from LOAM (shown in yellow)

is significantly more accurate than other sources compared to the ground truth trajectory

(shown in purple). The mean square error for LOAM is at 0.0648 m2. For the x-position

estimate from the Invariant EKF (shown in orange), the estimate is reasonably accurate in

the first 100 seconds of the experiment, but the estimate diverges from the actual trajectory

when the robot starts to walk backward. The mean square error of the first 100 seconds for

Invariant EKF is approximately 1.6405 m2. Finally, for the default state estimator from the

robot itself, even though the trends of the graph look similar to other sources, the estimation
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error or drift is significantly large and the highest estimation error is more than 2 meters.

Figure 4.7: Estimate of y position over time from different sources compared to ground truth

Figure 4.7 shows the position estimation in the y-direction, which represents the ability

to predict the lateral movement of the robot. Similar to results in Figure 4.6, the results from

LOAM still demonstrates highest accuracy with mean square error at 0.0309 m2. However,

in contrast to the previous figure, the y-position estimate from Invariant EKF shows a large

error due to divergence early in the trajectory. Even though the estimation recovers when
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the robot is sidestepping, the rest of the trajectory has a large estimation error. The default

state estimator has good estimation performance in the earlier part of the trajectory at an

approximate mean square error of 0.0320 m2 but starts to diverge from true trajectory after

the robot walks backward for a short period of time.

Figure 4.8: Estimate of X-Y position from different sources compared to ground truth

In Figure 4.8, the estimated position in the X-Y plane is shown to give a better under-

standing of the spatial movement characteristic of the robot in the experimental space. The
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robot starts at the origin or (0.0, 0.0) position shown in the graph. The initial movement of

the robot is aggressive, resulting in large noise in IMU measurements, which would consec-

utively affect the estimation from both the default state estimator and the Invariant EKF

filter where IMU measurement plays a big role in propagating the system. Since the LOAM

algorithm does not depend on IMU measurements, the noises in IMU did not affect the

odometry estimation. So, the position estimation results are significantly better for LiDAR

SLAM.

Figure 4.9: Estimate of linear velocity in x-direction from different sources
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From Figure 4.9, although the velocity estimate from Invariant EKF and default state

estimator seems less noisy, compared to the ground truth, the estimation underestimates the

actual velocity which means that it did not accurately depict the velocity in the x-direction.

As the Invariant EKF diverges, the estimation became unreliable and since the implemented

Invariant Kalman filter only relies on proprioceptive sensors, there is no external reference

to recover the trajectory. Although showing some estimation error, the velocity estimation

of LOAM resembles the actual velocity the most out of the sources of prediction we have.

Figure 4.10: Estimate of linear velocity in y-direction from different sources
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Due to the general movement of bipedal robots, the lateral velocity is usually noisy, and

is difficult to obtain a robust estimate. The characteristics of each source of prediction seem

noticeably different, but they still follow a certain trend. LOAM shows accumulated drift

at the later stage of the trajectory and Invariant EKF also shows a large error in prediction

in the same period as well. Default state estimator demonstrates great results in lateral

prediction based on the ground truth trajectory.

4.6 Summary

In this chapter, we introduced the state-of-the-art method on state estimation, the Ex-

tended Kalman Filter which is very popular in robotics applications. However, due to the

linearization through first-order Taylor expansion which leads to divergence in some practi-

cal operations. Therefore, the idea of incorporating geometry into the filter is introduced.

Lie group became one of the focus of the Kalman filter due to the group-affine property re-

sulting in invariant error dynamic being independent of the previously estimated state. We

explained the details and theory of the matrix Lie group and how the Invariant Extended

Kalman filter takes advantage of the property to achieve highly convergence characteristics.

Then, we showed the derivation of the system’s dynamic model and how to formulate

update model equations as an implementation of Right Invariant Extended Kalman Filter

introduced in [16] on Digit. The position of the contact point relative to the body frame

of the robot is used as a measurement to update the predicted state from the deterministic

propagation model. Finally, we perform an experiment to verify the performance of the filter

as well as the accuracy of the odometry generated from LOAM compared to the ground truth

from the motion capture system.

66



CHAPTER 5

CONCLUSION

5.1 Conclusion

We demonstrated various methods to process sensor measurements and convert them into

useful information of the environment for perception purposes. First, we obtained raw data

from sensors and processed them in a meaningful manner to conform with the objective of

the task. Down-sampling and voxel filtering techniques were used to reduce the number of

the point cloud in a 3D space. The amount of point cloud filtered depends on the leaf size

which is the minimum size that a voxel can take. In our implementation, the leaf size is set

to be 0.02 meters per side of a cubic voxel which is the optimal trade-off between the amount

of data retained and the amount of data removed. We also used the RANSAC algorithm

to separate the ground region of the point cloud from the obstacle point cloud, so we can

define the task space for the robot while avoiding obstacles. Finally, we fused all the point

clouds from various sensors together to obtain a complete field of perception that the robot

is capable of sensing.

Then, we used the processed data to generate and reconstruct the three-dimensional

scene of the environment. Given the odometry of the robot from a fixed frame, we can

use OctoMap to probabilistically register the obtained point cloud onto the map and store

them in an octree structure. The advantage of OctoMap is the ability to update the map

in a dynamic environment through ray-casting techniques and probabilistic inferences. In

the scenario where an external source of odometry is not available and we want to obtain
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a 3D map while localizing our robot or agent onto the newly created map, we can use the

Simultaneous Localization and Mapping or SLAM approach. We used a LiDAR sensor to

perform SLAM due to the accuracy of the depth measurement and the independence of

lighting conditions. The LiDAR SLAM we implemented is introduced in [45] which is called

LiDAR Odometry And Mapping or LOAM. It can provide a low drift and robust 3D map of

the environment as well as perform an accurate localization of the map is created. However,

the disadvantage of LOAM is that the environment is assumed to be static, so dynamic

objects were registered onto the map as well. This causes noises in the map and sometimes

an error during the point cloud registration step. Nonetheless, the LiDAR SLAM shows

a high accuracy position estimate in the indoor environment as well as a robust 3D map

output.

Finally, we implemented Invariant Extended Kalman Filter (InEKF) on Digit to estimate

the state of the robot. The position estimate was evaluated in the experiment with ground

truth trajectory from the motion capture system. As seen from the results, Invariant EKF’s

initial position estimate can be noisy, but it eventually recovers to the actual value after

some time. However, the position estimation from Invariant EKF, as well as the default

state estimator, diverges from true values in the latter part of the trajectory. This estimation

error is assumed to have been caused by the noisy inertial measurement from the high update

frequency of IMU. Even though, theoretically, Invariant EKF has log-linear error property

which makes the error dynamic independent of the previous state as long as the group affine

property is satisfied, practically, there might be some violation of the assumption which will

result in an error being not fully invariant. So, along with asynchronous initial orientation

of frames and hardware implementation, the result from Invariant EKF did not shows the

expected results and showed a large error when divergence occurred. Overall, for position

estimation, LiDAR SLAM demonstrated better results since LiDAR is an exteroceptive

sensor that continuously collects external information of the environment, so the position

estimate in fixed world frame is more accurate than estimating the state of the robot from

IMU and kinematic measurements which are all considered internal measurements.
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5.2 Future work

5.2.1 Verification of state estimation assumption and parameters

The Invariant EKF is implemented on Digit using an open-source package from [16] which

is originally implemented on Cassie. Therefore, there are some minor differences in contact

position assumption which is varied depending on the control policy on walking gait. In

the current implementation, the contact point is defined at the heels of Digit’s feet. These

differences might violate the zero velocity assumption at the contact point and leads to

accumulated error and inaccuracies in state estimations. So, the details of the parameters

need to be intensively revised.

5.2.2 Experimental Implementations

Due to time limitations, the Invariant EKF implementation is not tested in multiple scenarios

including the various movement of the robot and different paths to verify its performance.

This can provide us with more understanding of the limitation and issues of the estimation

filter in a different scenario. Additionally, the velocity and orientation estimation, which are

crucial information in control modules, were not investigated in this thesis due to a lack of

time limitation and proper ground truth references.

5.2.3 Integration of LiDAR odometry to Invariant EKF filter

From the experiment, the LOAM implementation of LiDAR SLAM gives good results in

position estimate, but the velocity estimate is not very accurate due to the relatively low

update frequency (10 Hz) compared to the high-frequency update of the IMU and joint en-

coders. Therefore, the output from SLAM can be used to formulate a left-invariant observer

which can be expressed in Lie group format and integrated into the current state estimation

module as an extra measurement update layer to provide some global information to the

filters, increasing the consistency in fixed frame estimation.
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