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Abstract

The Resolve Online [17] development environment currently supports multiple

provers: Dafny, SplitDecision, and variations and combinations thereof. The existing

provers used by Resolve Online have some areas of improvement. One downside of the

Dafny prover is that it generates Dafny programs to discharge verification conditions,

tying it closely to the specific version of the Dafny compiler used. This approach is

brittle because new releases of Dafny tend to break the backend prover, making it

difficult for the Resolve Online tool to leverage improvements in the Dafny language.

Other areas of potential improvement include the number of verification conditions

that are automatically discharged and the execution time of the provers.

Z3 [6] is a modern theorem prover developed at Microsoft Research. First released

in 2012, Z3 is under active development, with 3 releases in the last year at the time

of writing [1] and frequent commits. Z3 is used by Boogie [20], F* [26], Pex [27],

and more, as well as tools that indirectly use Z3 through Boogie. This ongoing

development could lead to future improvements that will allow for better verification

of Resolve programs in the future. In order to leverage Z3 in Resolve Online, we have

extended Resolve Online by creating a new prover backend that uses Z3.

A benchmark of Resolve code consisting of 30 examples was used. Each example

was run with the three provers: the new Z3 backend, Dafny, and SplitDecision. In

all examples Z3 is able to prove at least as many VCs as Dafny, and in 28 examples,
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Z3 was able to prove at least as many VCs as SplitDecision. There are 20 examples

where Z3 proved more VCs than Dafny and 11 when compared to SplitDecision. A

smaller benchmark consisting of 8 complex examples from the full benchmark was

selected to be used for analyzing the execution time of the provers. In most cases,

Dafny takes substantially longer than SplitDecision and Z3. SplitDecision and Z3 are

both close in the execution times. Either one of the two could be faster depending

on the example. However, there is one major outlier where Z3 is significantly faster

than SplitDecision, running for under a minute while SplitDecition runs for around 3

hours.
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Chapter 1: Introduction

Reasoning about software to prove correctness has long been a goal of computer

scientists. Verification is the process of proving that a program meets a specification.

Hoare logic, [16] developed by Tony Hoare, is a system of techniques that defines

axioms and rules of inference for proving that programs meet a specification. Hoare

logic is the basis for most modern verification systems. The Resolve [14, 15] language

was created for the purpose of writing verifiable code.

There are techniques that can be used to statically detect specific classes of errors.

There are many examples of tools and techniques to detect memory leaks [25, 29, 13,

24, 4, 18, 30]. There are also techniques for detecting deadlocks and race conditions

[8, 23, 28]. However, while eliminating such errors is useful, these techniques cannot

be used to detect logical errors such as a function producing an incorrect result.

Full-functional verification, on the other hand, allows for defining a specification and

proving that the implementation conforms to it.

Automated verification is a computationally intensive task. Satisfiability, a core

component of many provers, is an NP-complete problem [5]. Furthermore, Gödel’s

incompleteness theorems [12] show that there are fundamental limits to algorithms

that are designed to decide whether formulas are true. Despite these limitations,

verification is still possible. Since most programs are designed by humans to perform a
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practical function, there is more regularity than in an arbitrary program. It is possible

to create a prover that is useful for verifying many programs written by humans,

without being able to verify every verification condition that could theoretically be

needed to verify an arbitrary program.

With more powerful computers, it is now feasible to build and run automatic

provers. This means that instead of needing to perform verification by hand, pro-

grams can be verified automatically. Resolve Online [17] is a web-based development

environment for Resolve programs. It supports multiple prover engines as backends

to dispatch verification conditions in order to perform verification.

Resolve was designed to support verification from the beginning. This leads to

advantages over existing languages such as C++, Java, and Rust. One advantage

is that Resolve uses value semantics to eliminate aliasing. C++ and Java have no

compiler support for handling aliasing. These languages allow for copying pointers

or references which makes verification difficult. On the other hand, Rust has an

ownership model that can be used to prevent mutable aliasing. As long as the user

avoids unsafe code and escape hatches such as RefCell, the ownership model can

be utilized for verification.

Resolve also distinguishes between specifications and executable code. This sep-

aration allows mathematicians to define the theories used in specifications, while

programmers can write the implementations. In systems for verification of existing

languages, such as Prusti [9] for Rust and JML [19] for Java, there is no separation.

This lack of separation results in extra work to ensure that the functions used in

specifications are mathematical functions. That is, that the functions are determin-

istic, side effect-free, and always terminate. Additionally, the use of a mathematical

2



representation of the state allows the implementation to represent its internal state

in a manner suitable to the algorithm, without effecting the interface.

Resolve enforces separation of specifications from implementations. This abstrac-

tion is useful because it allows for multiple implementations of the same specification.

Other languages support means of abstraction such as traits and interfaces, but the

use of such features is not enforced. This lack of abstraction can result in tight

coupling of the specification to the implementation.

The Resolve Online development environment currently supports multiple provers:

Dafny, SplitDecision, and variations and combinations thereof. The existing provers

used by Resolve Online have some areas of improvement. One downside of the Dafny

prover is that it generates Dafny programs to discharge verification conditions, tying

it closely to the specific version of the Dafny compiler used. This approach is brittle

because new releases of Dafny tend to break the backend prover, making it difficult

for the Resolve Online tool to leverage improvements in the Dafny language. Other

areas of potential improvement include the number of verification conditions that are

automatically discharged and the execution time of the provers.

Z3 [6] is a modern theorem prover developed at Microsoft Research. First released

in 2012, Z3 is under active development, with 3 releases in the last year at the time

of writing [1] and frequent commits. Z3 is used by Boogie [20], F* [26], Pex [27],

and more, as well as tools that indirectly use Z3 through Boogie. This ongoing

development could lead to future improvements that will allow for better verification

of Resolve programs in the future. In order to leverage Z3 in Resolve Online, we

have extended Resolve Online by creating a new prover backend that uses Z3. This
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new backend is able to successfully verify more code and, in many cases, perform this

verification faster.
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Chapter 2: The Z3 Theorem Prover

Z3 [6] is a theorem prover developed at Microsoft Research. It is open source

and available under the MIT License. It was developed for the primary purpose of

solving problems in formal verification and related problems in software engineering

and programming languages. It has been used to perform verification, automatic test

generation, model checking, and more.

There are bindings and APIs for multiple languages including the C, C++, Python,

.NET/C#, Java, and more. Z3 is used by Boogie [20], F* [26], Pex [27], and more.

Boogie is used by Dafny [21], Viper [22], and more, allowing these tools to use Z3 as

well.

Z3 uses an SMT (Satisfiability modulo theories) solver as the primary method of

solving problems. An SMT solver combines a SAT solver with theories. Z3 recognizes

the SMT-LIB [3] format as its syntactic representation of expressions. SMT-LIB

expressions are Common Lisp S-expressions.

2.1 SAT Solvers

A SAT solver determines whether there is an assignment of boolean variables such

that a given boolean formula is true. Boolean formulas consist of atomic formulas,

conjunction (a ∧ b, (and a b)), disjunction (a ∨ b, (or a b)), and negation (¬a,
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(not a)). To determine satisfiability, atomic formulas are assigned either true or false

values. If a set of assignments resulting in a true result exists, the result SAT indicates

that the expression is satisfiable; if no such set of assignments exists, the result

UNSAT indicates that the expression is unsatisfiable. For example, (a∧ b)∨ (b∧¬c)

is SAT because the expression is true when a and b are true. An example of an

UNSAT formula is a ∧ ¬a because a cannot be both true and false.

2.2 Quantifiers

Quantifiers are logical operators that bind variables within a formula. Z3 sup-

ports both universal quantifiers (∀) and existential quantifiers (∃). SAT solvers do

not directly handle quantifiers. Instead, the subformulas involving quantifiers are ef-

fectively treated as atomic formulas. Then an separate technique is used for quantifier

instantiation.

2.2.1 Universal Quantifiers

A universal quantifier binds variables for a formula that must hold for all values.

Universal quantifiers are of the form ∀xp(x). This means for all x, p(x) is true.

2.2.2 Existential Quantifiers

An existential quantifier binds variables for a formula that must hold for some

value. Existential quantifiers are of the form ∃xp(x). This means that there exists a

value x such that p(x) is true.
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2.3 Theories

As implied by the name Satisfiability modulo theories, boolean satisfiability alone

is not sufficient for a SMT solver to produce a SAT result. In an SMT solver, atomic

formulas can include variables, relations, and functions. The formula must addition-

ally meet the requirements of the theories related to the relations and functions.

2.3.1 Integers

The theory of integers allows for mathematical comparisons and operations related

to integers to be used in formulas. The formula x > 0 ∧ x < 0 is UNSAT. Under

a SAT solver, x > 0 and x < 0 are considered distinct atomic formulas. However,

the theory recognizes that these two formulas cannot be considered independently.

The theory of integers understands that the variable x cannot be both positive and

negative.

A number of operations are supported including addition ( (+ a b)), subtraction

( (- a b)), multiplication ( (* a b)), division ( (/ a b) resulting in a Real value or

(div a b) for integer division), and modulo ( (mod a b)). Equality ( (= a b)) and

inequality ( (< a b), (> a b), (<= a b), (>= a b)) comparisons are also supported.

2.3.2 Equality

Equality reasoning allows for reasoning about equality of formulas. Expressions

representing equality have the form a = b. Since Equality is an equivalence relation,

the properties of equivalence relations hold.

1. Identity: ∀a :: a = a

2. Symmetry: ∀a, b :: a = b ⇐⇒ b = a
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3. Transitivity: ∀a, b, c : a = b ∧ b = c : a = c

2.3.3 Sequences

Sequences are finite, ordered collections of values. Sequences support a number

of operations, some of which are detailed below.

1. (seq.unit x) produces a sequence that contains x.

2. (as seq.empty T) produces an empty sequence.

3. (seq.++ s1 s2 ...) concatenates two sequences or more sequences.

4. (seq.len s) gets the number of values in the sequence.

5. (seq.extract s start len) gets a subsequence from the specified range.

2.3.4 BitVectors

BitVectors are used to represent fixed-size binary data. For example, (_ BitVec

32) represents a 32-bit value. Usually this is used to model fixed-size integral values.

The String sort is defined as (Seq (_ BitVec 8)).

2.3.5 Custom Sorts

Z3 supports multiple kinds of custom sorts. This allows for defining sorts that

represent types that are not natively supported by Z3.

Records

Records are sorts that contain a fixed set of fields. Each record has a constructor

that, given the values of the fields, creates a value of the record sort. Each field of a
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record has an accessor function that gets the value of the field from a record value.

Listing 2.1 contains an example of a record with two Int fields.

1 (declare-datatypes () ((Pair (mkpair (first Int) (second Int)))))
2

3 (push)
4 (assert (not (= 4 (first (mkpair 4 5)))))
5 (check-sat)
6 (pop)
7

8 (push)
9 (assert (not (= 5 (second (mkpair 4 5)))))

10 (check-sat)
11 (pop)

Listing 2.1: Example of Records in Z3 (SMT-LIB)

Uninterpreted Sorts

Uninterpreted sorts define new sorts without any specific meaning. Instead, the

meaning is based on the assertions made about the sort.

2.4 Other Features

Z3 supports other features as well. These features are not used in this work, but

may be of interest for other use cases.

Custom types can be defined using discriminated unions. Values of discriminated

unions can be constructed using one of multiple constructors.

Z3 supports strategies [7] similar to those found in interactive theorem provers.
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Chapter 3: The Resolve Language

Resolve [14, 15] is a language created at The Ohio State University for the purpose

of the specification and verification of programs.

3.1 Contracts and Realizations

Resolve separates code into contracts and realizations. This separation enables

the consumer of the component to understand its behavior without needing to know

how it is implemented. The separation also allows for multiple implementations of a

contract. Furthermore, it allows for independent verification of individual functions

and procedures.

Interfaces of the code are defined in contracts. Contracts define the supported

procedures, functions, math functions, and types. Contracts can also be parameter-

ized by math functions and types. Procedures and functions definitions include the

specification which includes the parameter list, precondition, and postcondition. The

precondition is specified in a requires clause and the postcondition in an ensures

clause. Each parameter has a name, type, and a mode.

The restores mode is used when the parameter will have the same mathematical

value after the procedure or function exits. This mode can be used by both procedures

and functions. This is essentially equivalent to adding x = #x to the ensures clause
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where x is the name of the parameter. The #x syntax represents the original value

of x when the procedure or function is called.

In addition to the restoresmode, procedures can also use three additional modes.

The updates mode is used when it is expected that the parameter will be modified.

The replaces mode is used when the behavior is the same, regardless of the original

value. The clears mode is used when the value after the procedure or function exits

is the initial value of the type of the variable.

Contracts can also enhance other contracts. Enhancements allow additional pro-

cedures and functions to be defined for existing contracts.

Implementations are defined in realizations. Realizations define the implementa-

tions of procedures and functions. Verification is performed on these implementations

in order to ensure that the implementation conforms to the specification.

3.2 Value Semantics

Reference semantics (or pointers) make reasoning about programs more difficult.

Consider the Concatenate procedure in Algorithm 1. This procedure moves values

from the queue q into p.

However, if queues had pointer semantics, then p and q could be references to

the same queue. In this case, the loop would remove an item from the queue and

add it back into the same queue. This would mean the the length of source never

decreases. As long as the queue is not initially empty, the loop is now infinite.

In order to avoid such problems, Resolve uses value semantics in order to elimi-

nate aliases. This decision has implications that impacts how code is written. One

consequence is that Resolve has no copying assignment. The assignment operator can
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Algorithm 1 Concatenate Queues

1 procedure Concatenate(p, q)
2 while ¬IsEmpty(q) do
3 x← Dequeue(q)
4 Enqueue(p, x)

only be used for the return value of a function. Because of this, copying requires a

function to copy a value and create a duplicate value. Instead, the swap operator is

preferred.

For example, the Add procedure for unbounded natural numbers in Listing 3.1

avoids copying the value of m is being added. It does this by building up a separate

value p. Whenever it decrements m, it increments p. This means that once m

reaches 0, p has the original value of m. The values are then swapped using m :=: p,

restoring the original value of m.

1 // Contract
2 procedure Add(updates n: UnboundedNaturalBase,
3 restores m: UnboundedNaturalBase)
4 ensures
5 n = #n + m
6

7 // Realization
8 procedure Add (updates n: UnboundedNaturalBase,
9 restores m: UnboundedNaturalBase)

10 variable p: UnboundedNaturalBase
11 loop
12 maintains n + m = #n + #m and m + p = #m + #p
13 decreases |m|
14 while not IsZero(m) do
15 Decrement(m)
16 Increment(n)
17 Increment(p)
18 end loop
19 m :=: p
20 end Add

Listing 3.1: Addprocedure (Resolve)
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3.3 Loop Invariants

Loop invariants are an essential tool for verifying code that uses loops. A loop

invariant is a condition that must be true every time the loop condition is tested.

Consider the loop invariant found in Listing 3.2, a Resolve implementation of Al-

gorithm 1. The invariant is true initially because p and q still have their original

values. The invariant is also true after a loop iteration because a value is removed

from the front of q and added to the end of p. Because of this, after the loop exits,

the loop invariant is known to hold.

1 // Contract
2 procedure Concatenate(updates p: Queue,
3 clears q: Queue)
4 ensures
5 p = #p * #q
6

7 // Realization
8 procedure Concatenate (updates p: Queue,
9 clears q: Queue)

10 loop
11 maintains p * q = #p * #q
12 decreases |q|
13 while not IsEmpty(q) do
14 variable x: Item
15 Dequeue(q, x)
16 Enqueue(p, x)
17 end loop
18 end Concatenate

Listing 3.2: Concatenateprocedure (Resolve)

3.4 Mathematical Theories

Program types have underlying mathematical theories. The underlying theories

include mathematical types which are distinct from program types, as well as asso-

ciated operations and functions. This separation of program space and math space
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allows for mathematicians to develop theories. These theories can then be incorpo-

rated into Resolve. Programmers can then use these theories as the basis of program

types, procedures, and functions. This allows program types to make design decisions

that are useful for programmers while still relying on an underlying theory.

3.4.1 Integers

The integer type represents mathematical integers. Integers have inequality

comparison operators ( a < b, a > b, a <= b, a >= b). The theory of integers

also includes common operations such as addition ( a + b), subtraction ( a - b),

multiplication ( a * b), division ( a / b), and negation ( -a). Resolve also has syntax

for modulo ( a mod b) and absolute value ( |a|). These symbols are an approximation

for the mathematical syntax to make it easier to enter in the editor. For example <=

is used instead of ≤, >= instead of ≥, and * instead of ×.

In Resolve, division and modulo satisfy the properties

a = qb+ r and

0 ≤ r < |b|

where q is the result of a / b and r is the result of a mod b.

3.4.2 Booleans

The boolean type has two possible values: true and false. Boolean theory defines

logical operations such as conjunction ( a and b), disjunciton ( a or b), negation (

not a), and implication ( a implies b). Universal and existential quantifiers such as

for all and there exists also have type boolean. These operators can be written

in mathematical notation using logical operators such as ∧ for conjunction, ∨ for
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disjunciton, ¬ for negation, =⇒ for implication, ∀ for universal quantifiers and ∃

for existential quantifiers.

3.4.3 Finite Sets

A finite set of A is a finite set of values of type A. Set theory defines opera-

tions such as cardinality ( |a|), union ( a union b), intersection ( a intersection b),

difference ( a \ b), and membership testing ( x is in a). These set operations can

be written in mathematical notation using ∪ for union, ∩ for intersection, and ∈ for

membership.

3.4.4 Strings

A string of A is a finite sequence of values from an alphabet A. String theory has

operations such as concatenation ( a * b), cardinality or length ( |a|), and substring

extraction ( substring(s, start, end)). There is also an operation for getting the

set of values contained in the string ( elements(s)). Concatenation can be written

mathematically as ◦.

The substring(s, i, j) operation is defined such that, if the indexes are in the

range 0 ≤ i ≤ j ≤ |s| then the substring contains the characters starting at index i

and ending before the character at index j. If the indexes are not in range, then the

substring is the empty string.

3.4.5 Characters

The character type is a finite type that represents a single code unit. A code

unit is a fixed-size value. Code points are encoded as a sequence of code units. A
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code point is a number that is the atomic building point of unicode text. Graphemes

are visible characters composed of one or more code points.

Resolve defines a simple theory of characters. This is because most operations

on characters are not very useful for verification. For example, there is no ordering

of characters. This is because an ordering is best defined for graphemes. However,

even if ordering is defined on code points, having an ordering for code units will most

likely not result in an ordering that and end user would understand.

3.4.6 Tuples

Tuples are types that contain a sequence of values of fixed types. Each element in

the tuple has an associated name. Tuples are most commonly used as math subtypes

which add a constraint onto the values in the tuple.

In Listing 3.3, we see the definition of ARRAY_MODEL. This math type is defined as

a subtype of a tuple that consists of three values: a lower bound, an upper bound,

and a string. The string models the values in the array. The lower bound models

the lowest valid index into the array. The upper bound models the highest valid

index into the array. Both of these bounds are inclusive. In the subtype definition

the exemplar introduces a name for the value used in the constraint. The notation

tuple.field is used to access the fields of the tuple. In this instance, a.s accesses

the string of items in the tuple a. Similarly, a.lb and a.ub refer to the values of

the two fields for the bounds of the array.
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1 math subtype ARRAY_MODEL is (lb: integer,
2 ub: integer,
3 s: string of Item)
4 exemplar a
5 constraint a.lb <= a.ub + 1 and
6 |a.s| = a.ub - a.lb + 1

Listing 3.3: ARRAY_MODELmath subtype of a tuple (Resolve)

17



Chapter 4: Resolve Toolchain

The Resolve Online IDE [17] is a web based development environment used to

write Resolve programs. It includes a collection of base libraries with code for common

types such as integers, queues, and more. A tree view browser visualizes the contracts,

enhancements, and realizations from the base libraries and that are written by the

user. The editor provides syntax highlighting and formatting as seen in Figure 4.1. In

order to perform verification, multiple toolchains are supported. The toolchain can

be selected using the dropdown seen in Figure 4.2. The main toolchains supported

by the IDE are the Dafny prover and the SplitDecision prover.

4.0.1 Verification Conditions

When a verification attempt begins, Resolve Online will generate a list of verifi-

cation conditions (VCs) that need to be proven. A verification condition consists of

a goal that must be proven, a list of givens, and metadata about types and mathe-

matical functions used in the formulas. The IDE can show the VCs that are sent to

the prover as seen in Figure 4.3.

Reasoning Tables

Table 4.1 is a reasoning table for the Concatenate procedure from Listing 3.2. VCs

are generated for each of the state indexes listed in the table. The path conditions
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Figure 4.1: Resolve Online IDE editing the BinarySearch realization

list givens that are known because of control flow such as the condition from a loop

or if then statement.

For state 0, the facts are empty because Concatenate has no requires clause.

The first obligation, p0 ◦ q0 = p0 ◦ q0 comes from the loop invariant. Because the

current state is 0, p and q are replaced with p0 and q0 respectively. #p and #q

are replaced with p0 and q0 because the state 0 is the state right before the loop

condition. The second obligation, q0 ̸= λ =⇒ |q0| > 0, comes from the termination

metric. This obligation is in the from of a implication that indicates that if the loop
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State Index Path Conditions Facts Obligations

1 procedure Concatenate (updates p: Queue,
2 clears q: Queue)

0
p0 ◦ q0 = p0 ◦ q0
q0 ̸= λ =⇒ |q0| > 0

3 loop
4 maintains p * q = #p * #q
5 decreases |q|
6 while not IsEmpty (q) do

1 q1 ̸= λ
p1 ◦ q1 = p0 ◦ q0
|q1| ≥ 0

7 variable x: Item

2 q1 ̸= λ
p2 = p1

q2 ̸= λq2 = q1
is initial(x2)

8 Dequeue (q, x)

3 q1 ̸= λ
q2 = ⟨x3⟩ ◦ q3
p3 = p2

9 Enqueue (p, x)

4 q1 ̸= λ
p4 = p3 ◦ ⟨x3⟩ p4 ◦ q4 = p0 ◦ q0
is initial(x4) |q4| ≥ 0
q4 = q3 |q4| < |q1|

10 end loop

5
q5 = λ q5 = λ
p5 ◦ q5 = p0 ◦ q0 p5 = p0 ◦ q0

11 end Concatenate

Table 4.1: Reasoning Table for Concatenateprocedure
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Figure 4.2: Resolve Online IDE toolchain selection

is entered, then the termination metric must have a lower bound of 0. This is needed

because without a lower bound on the metric, the loop could run forever.

The obligation q1 ̸= λ in state 2 comes from the requires clause of the Dequeue

procedure. Additionally, the ensures clause of Dequeue results in the addition of the

fact q2 = ⟨x3⟩ ◦ q3 in state 3.

In state 4, the obligations again come from the loop invariant and termination

metric. The same technique is used for the loop invariant; the current state is used

for variable references and state 0 is the state before the loop condition. However,

the termination metric results in two VCs. One of these, |q4| ≥ 0, is to ensure that
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Figure 4.3: Resolve Online IDE VC Viewer

the metric has a lower bound. However, because we are already inside the loop, the

implication is no longer used. Additionally, because the loop could exit, the metric

is now allowed to be a zero. There is another obligation, |q4| < |q1|, to show that the

metric decreases.

In state 5, the facts come from the loop condition becoming false and the loop

invariant. The obligations are from the ensures clause, including the parameter

modes. The obligation q5 = λ is because the parameter q has the mode clears and

λ is the initial value of the Queue type.
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If the Resolve code contains a confirm statement, the property that is being

confirmed will result in an additional obligation. This obligation will then be added

as a fact in the following state.

An if statement will have states in the if branch and the else branch if present.

In these states, a path condition is added based on whether it is the if branch or the

else branch. After the if statement, facts added in the body will be added as facts

with an implication. The left side of the implication is either the condition of the if

statement or the negation if the fact originated in the else body.

Before generating VCs from these obligations, the VC generator will make some

simplifications. For example, because p1, p2, and p3 all have the same value (p1 =

p2∧p2 = p3), these could be collapsed into a single variable p1. Since p is not modified

between state 1 and state 3, the reasoning table introduces facts that the value is the

same in these three states. This allows these to be collapsed into a single variable.

After collapsing variables, some trivial obligations are eliminated. For example, if

the obligation is of the form a = a, no VC will be generated. Also, if the obligation

is also included verbatim as a given, no VC will be generated.

Generated VCs

Figure 4.4 contains a verification condition generated from the Concatenate pro-

cedure. This VC comes from state 4 and is derived from the loop invariant. The

variables have already been collapsed. For example, the result uses q3 even though

the reasoning table uses q4 because q3 = q4. The VC includes additional facts that

are not needed to prove the result; only givens 2, 5, and 6 are needed as seen in the

proof below.
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Prove:
p4 ◦ q3 = p0 ◦ q0

Given:

1. q1 ̸= λ

2. p1 ◦ q1 = p0 ◦ q0

3. |q1| > 0

4. is initial(x2)

5. q1 = ⟨x3⟩ ◦ q3

6. p4 = p1 ◦ ⟨x3⟩

7. is initial(x4)

Figure 4.4: Verification Condition from Concatenate

Proof of VC from Figure 4.4. We can see from given 6 that

p4 ◦ q3 = p1 ◦ ⟨x3⟩ ◦ q3.

If we apply given 5, then

p1 ◦ ⟨x3⟩ ◦ q3 = p1 ◦ q1.

Putting this together with given 2, we see that

p4 ◦ q3 = p1 ◦ q1 = p0 ◦ q0.

4.1 Prover Architecture

The Resolve Online IDE supports multiple toolchains. Each toolchain accepts VCs

an These toolchains are configured using XML files. The XML files describe how to
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configure the prover. Listing 4.1 contains an example of a toolchain configuration

file. In this case, the RemoveProver class is used. This class uses a SOAP API to

communicate with a service that proves VCs.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <toolchain name="Dafny">
3 <inputFileExtensions><extension>rr</extension></inputFileExtensions>
4 <component>
5 <className>edu.osu.cse.resolve.ResolveToolchain.VCGenerator</className>
6 <displayName>VCGenerator</displayName>
7 <config>
8 <config name="TEMP_DIRECTORY">
9 <value>/MVEData/workarea</value>

10 </config>
11 </config>
12 <onSuccess>
13 <component>
14 <className>edu.osu.cse.resolve.WSComponents.RemoteProver</className>
15 <displayName>Dafny</displayName>
16 <config>
17 <config name="endpoint">
18 <value>http://dafnyprover</value>
19 </config>
20 </config>
21 </component>
22 </onSuccess>
23 </component>
24 <observer>
25 <className>edu.osu.cse.resolve.MVEWeb.server.WebObserver</className>
26 </observer>
27 </toolchain>

Listing 4.1: Dafny Toolchain Configuration (XML)

In Figure 4.5, we see that when the user requests verification, the VC Generator

will send generated VCs to the RemoteProver. The RemoteProver will communicate

with the prover at the configured URL. At the remote URL, the ComponentHost will

accept VC requests and dispatch them to the underlying prover.
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Browser
Editor

VC Generator

RemoteProver

ComponentHost Dafny Prover

ComponentHost SplitDecision Prover

Figure 4.5: Prover Architecture

4.1.1 The Dafny Prover

The Dafny prover backend makes use of the Dafny language to prove VCs. Dafny

[21] is a programming language that supports verification. It uses Boogie to interface

with the prover, usually Z3, to perform verification. It supports object-oriented con-

structs such as classes and an ML-style module system. The compiler can generate

code in C#, Go, and JavaScript.

The Dafny prover backend takes the VCs generated by Resolve Online and gen-

erates Dafny code. It works by generating a Dafny class. If needed, the class is

parameterized by types to represent the type parameters of a contract. The ver-

sioned variables are turned into fields of the class. A single method is defined in order

to perform the actual verification. In this method, assume statements are added for

the givens and math functions. This is followed by a single assert statement for the

goal of the VC.
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There are a number of downsides of using Dafny for verification. First, the perfor-

mance cost is large. The Dafny compiler is for an entire programming language and

many of the features are not utilized, but still are part of the pipeline. Additionally,

the Dafny compiler runs on .NET. Because of this, the Dafny compiler is run and

the startup cost for .NET is incurred for every VC. Additionally, Dafny loads a large

amount of information into Z3. Dafny would typically be able to reuse this, but since

each VC is a separate invocation, this must be reloaded for every VC.

Another issue is the fragile nature of generating code. As the Dafny language

evolves, sometimes code that was previously valid is no longer allowed. This makes

it difficult to upgrade to newer versions of the compiler. Additionally, using Dafny

results in additional layers of abstraction on top of the prover. Dafny itself has

semantics that influence how the VC is translated into Z3. Boogie is another layer of

abstraction between the Resolve VC and the prover.

4.1.2 The SplitDecision Prover

The SplitDecision [2] prover is a prover developed at The Ohio State University

for verifying Resolve programs. SplitDecision uses an XML format to represent the

input VCs. It is geared toward solving problems involving strings. When proving

formulas involving disjunction, it splits into separate VCs.

While SplitDecision is able to prove VCs involving strings, it is more limited

for other problems. Notably, SplitDecision has only limited support for problems

involving quantifiers. It was noted that SplitDecision is better than Z3 at most

problems and that Z3 was primarily only useful for integer problems. However, Z3

has since had over a decade of development and is now one of the most commonly
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used SMT solvers. SplitDecision, on the other hand, has not had much development

during that same time period.
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Chapter 5: Implementing a Resolve Online prover using Z3

In order to address the limitations of the existing provers used by Resolve Online,

we created a new prover backend that utilizes Z3 to prove VCs. Z3 configured with

an rlimit of 1000000. The rlimit ensures that Z3 will terminate after a machine-

independent number of operations, even if it hasn’t proven or disproven the VC.

5.1 Translating VCs to Satisfiability

In order to perform proofs using Z3, the VCs must be converted into satisfiability

problems. A VC with givens g1(x̄), ..., gn(x̄) and goal p(x̄) can be seen as a single

formula with free variables x̄ = x1, ..., xm. (5.1)

(g1(x1, ..., xm) ∧ ... ∧ gn(x1, ..., xm)) =⇒ p(x1, ..., xm) (5.1)

In this case, the free variables could be substituted for an arbitrary value of the

correct type. Effectively, this means that the formula is equivalent to a universally

quantified formula with no free variables. (5.2)

∀x̄ :: (g1(x̄) ∧ ... ∧ gn(x̄)) =⇒ p(x̄) (5.2)
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However, satisfiability problems attempt to find the existence of an assignment of

variables. This means that to translate the formula (5.2) into a satisfiability problem,

we need to use an existentially quantified formula. (5.3)

∃y1, ..., yk :: f(y1, ..., yk) (5.3)

In order to convert to an existential quantifier, we negate the formula. (5.4)

¬∃x̄ :: ¬((g1(x̄) ∧ ... ∧ gn(x̄)) =⇒ p(x̄)) (5.4)

Using the law of material implication and DeMorgan’s Laws, we can write this

without the implication. (5.5)

¬∃x̄ :: (g1(x̄) ∧ ... ∧ gn(x̄) ∧ ¬p(x̄)) (5.5)

Because the existential quantifier is negated, the formula is true if there is no

satisfying assignment of the existentially quantified variables. Thus, we can give

(g1 ∧ ... ∧ gn ∧ ¬p) as input to the SMT solver. If the formula is UNSAT, then the

VC is true.

The VC from Figure 4.4 can be written as a formula. For brevity, the unused

givens are excluded. (5.6)

(p1 ◦ q1 = p0 ◦ q0 ∧

q1 = ⟨x3⟩ ◦ q3 ∧

p4 = p1 ◦ ⟨x3⟩) =⇒

p4 ◦ q3 = p0 ◦ q0

(5.6)

Then we make the implicit universal quantifier explicit. (5.7)
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∀p0, q0, p1, q1, x3, q3, p4 :: (p1 ◦ q1 = p0 ◦ q0 ∧

q1 = ⟨x3⟩ ◦ q3 ∧

p4 = p1 ◦ ⟨x3⟩) =⇒

p4 ◦ q3 = p0 ◦ q0

(5.7)

Next, we convert the universal quantifier into a negated existential quantifier.

(5.8)
¬∃p0, q0, p1, q1, x3, q3, p4 :: ¬((p1 ◦ q1 = p0 ◦ q0 ∧

q1 = ⟨x3⟩ ◦ q3 ∧

p4 = p1 ◦ ⟨x3⟩) =⇒

p4 ◦ q3 = p0 ◦ q0)

(5.8)

Then we eliminate the implication using the law of material implication. (5.9)

¬∃p0, q0, p1, q1, x3, q3, p4 :: ¬(¬(p1 ◦ q1 = p0 ◦ q0 ∧

q1 = ⟨x3⟩ ◦ q3 ∧

p4 = p1 ◦ ⟨x3⟩) ∨

p4 ◦ q3 = p0 ◦ q0)

(5.9)

Then, using DeMorgan’s Laws we simplify the body of the quantifier. (5.10)

¬∃p0, q0, p1, q1, x3, q3, p4 :: p1 ◦ q1 = p0 ◦ q0 ∧

q1 = ⟨x3⟩ ◦ q3 ∧

p4 = p1 ◦ ⟨x3⟩ ∧

¬( p4 ◦ q3 = p0 ◦ q0)

(5.10)
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Now that we have a formula that is in the form of a satisfiability problem, we can

remove the quantifier and use (5.11) as the input to the SMT solver.

p1 ◦ q1 = p0 ◦ q0 ∧

q1 = ⟨x3⟩ ◦ q3 ∧

p4 = p1 ◦ ⟨x3⟩ ∧

¬( p4 ◦ q3 = p0 ◦ q0)

(5.11)

5.2 Mapping Resolve Types to Z3 Sorts

In order to translate Resolve VCs to Z3, there needs to be a mapping from Resolve

math types to Z3 sorts. In the case of integer and boolean, the types are directly

mapped to Z3’s Int and Bool sorts. The string of T type can be mapped to

(Seq T).

The character type is mapped to (_ BitVec 8). This means that characters

are 8-bit values. This was chosen out of a desire to use UTF-8 encoded strings of

characters.

The finite set of T type is mapped to an uninterpreted sort. This is used

instead of Z3’s (Set T) sort because (Set T) allows for infinite sets. Instead, a

function is defined to map the sets onto Z3 sets.

5.3 Operation Mapping

Many common operations have a direct mapping from Resolve to an equivalent

operation in Z3. For example, logical operators such as conjunction, disjunciton,

and more all map directly. Similarly, many integer operations such as addition and
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multiplication can simply use Z3 addition and multiplication. However, as discussed

below, there are some where more work is required.

5.3.1 Absolute Value

Z3 does not define a built-in absolute value function. Because of this, a custom

function was used. This function was defined using a conditional. When the value is

already non-negative, the original value is used. In the case that the value is negative,

the result is the negation of the original value. Listing 5.1 contains a definition of an

absolute value function and proves that abs always returns a non-negative value.

1 (declare-const a Int)
2

3 (declare-fun abs (Int) Int)
4 (assert (forall ((x Int))
5 (= (abs x) (ite (>= x 0) x (- x)))
6 ))
7

8 (assert (not (>= (abs a) 0)))
9

10 (check-sat)

Listing 5.1: Proof of Absolute Value properties (SMT-LIB)

5.3.2 Division and Modulo

Unlike other integer operations such as addition, subtraction, and multiplication,

integer division is not the same as division on real numbers. This is because using

division of real numbers, dividing two integers does not always result in an integer.

For example 1
2
̸∈ Z even though 1, 2 ∈ Z. Because of this, integer division is defined

to include rounding.
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There are two common ways of defining how rounding works: rounding toward

zero and rounding toward −∞. Each option has tradeoffs. In both cases the modulo

operation is defined to match division such that a = (a/b) ∗ b+ (a mod b).

When rounding toward −∞, the remainder r is in the range 0 ≤ r < |b|. However,

this definition has the disadvantage that −a/b ̸= −(a/b). For example, if a = 1 and

b = 2, then −1/2 = −1 but −(1/2) = 0.

When rounding toward zero, the remainder r is in the range 0 ≤ r < b when b > 0

and b ≤ r ≤ 0 when b < 0.

We can see from Listing 5.2 that Z3 uses rounding toward −∞.

1 (declare-const a Int)
2 (declare-const b Int)
3 (declare-const q Int)
4 (declare-const r Int)
5

6 (assert (not (= b 0)))
7 (assert (= r (mod a b)))
8 (assert (= q (div a b)))
9 (assert (not (and

10 (= a (+ (* b q) r)) ; a = bq + r
11 (>= r 0)
12 (< r (ite (>= b 0) b (- b))) ; r < |b|
13 )))
14

15 (check-sat)

Listing 5.2: Proof of mod properties (SMT-LIB)

5.3.3 Substring

The Resolve substring operation does not have a direct correspondence in Z3.

The closest equivalent is seq.extract which gets a subsequence of a sequence. How-

ever, there are two differences in the operations.
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The first difference is that substring uses a start index and an end index;

seq.extract uses a length. This can be handled by calculating the length by sub-

tracting the start index from the end index.

The second difference is how out of range indexes are handled. In Resolve, if

values of the indexes are not within the expected range 0 ≤ start ≤ end ≤ |s|, the

substring is the empty string. In Z3, if start < 0, start ≥ |s|, or length < 0, then

the subsequence is also empty. However, if start + length > |s|, the result is the

subsequence starting at start until the end of the sequence. In order to turn this case

into the empty sequence, we used a conditional. If end ≤ |s|, then end− start is used

as the length. Otherwise, 0 is used as the length. Listing 5.3 contains a definition of

a substring function along with proofs that out of range indexes result in the empty

string.

5.3.4 Finite Set Operations

Because finite sets of T are mapped to an uninterpreted sort S, we must define

custom functions for all set operations. However, in many cases, these operations can

leverage underlying Z3 set operations.

1. z3 set : S → Set(T )

2. empty : S

3. singleton : T → S

4. cardinality : S → Int

5. elements : Seq(T )→ S
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6. membership : T × S → Bool

7. union : S × S → S

8. intersection : S × S → S

9. difference : S × S → S

The z3 set function defines a mapping from S to Z3 sets. The remaining operations

implement Resolve operations. empty is the empty set. singleton is a set with a single

element. cardinality gets the number of elements in the set. elements gets the set of

values contained in a string. membership tests whether a value is in a set. union,

intersection, and difference perform the corresponding operation on the sets.

Axioms are used to define these operations. Where possible, the Z3 set operations

are used in the definitions. In these axioms, native Z3 operations are represented

using mathematical notation.

Axiom 1 is important because it allows the reasoning Z3 performs on the projected

sets to be translated back to finite sets. Axioms 2 through 7 define the operations

other than cardinality. Axiom 3 is written as ∅∪{x} because Z3 does not have a direct

operation for creating a set of one element. Instead, it is implemented by adding x

to the empty set.

1. ∀a, b : z3 set(a) = z3 set(b) : a = b

2. z3 set(empty) = ∅

3. ∀x :: z3 set(singleton(x)) = ∅ ∪ {x}

4. ∀seq, n : 0 ≤ n < |seq| : membership(nth(seq, n), elements(seq))
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5. ∀a, b :: z3 set(union(a, b)) = z3 set(a) ∪ z3 set(b)

6. ∀a, b :: z3 set(intersection(a, b)) = z3 set(a) ∩ z3 set(b)

7. ∀a, b :: z3 set(difference(a, b)) = z3 set(a) \ z3 set(b)

Axioms 8 and 9 define the elements function in terms of membership. Axiom 8

states that the elements in the string are members of the set. Axiom 9 states that if

an element is a member of the set, then it must have been in the string.

8. ∀seq, x : membership(x, elements(seq)) : (∃n : 0 ≤ n < |seq| : x = nth(seq, n))

9. ∀a, x :: membership(x, a) = x ∈ z3 set(a)

The remaining axioms, 10 through 22, define cardinality and how it relates to the

other operations. Axiom 10 states that all cardinalities are non-negative. Axiom 12

states that all sets of cardinality 0 are the empty set. Axiom 22 handles the case

where a single element is being removed from a set. This is included because it is

common for loops to remove elements and define the termination metric in terms of

cardinality.

Axiom 13 is redundant because it can be proven from other axioms. However, it

is useful because it is known to be true and the proof is complex.

Proof of Axiom 13. We can see from instantiating 22 that

cardinality(difference(singleton(x), singleton(x))) = cardanility(singleton(x))− 1.
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Furthermore, from 2, an instantiation of 7, and mathematical reasoning on sets,

z3 set(difference(singleton(x), singleton(x)))

= z3 set(singleton(x)) \ z3 set(singleton(x))

= ∅

= z3 set(empty).

Thus, by 1, difference(singleton(x), singleton(x))) = empty. Substituting this and

using 11, 0 = cardanility(singleton(x)) − 1. Therefore, cardanility(singleton(x)) =

1.

10. ∀a : cardinality(a) ≥ 0

11. cardinality(empty) = 0

12. ∀a : cardinality(a) = 0 : a = empty

13. ∀x :: cardinality(singleton(x)) = 1

14. ∀seq :: cardinality(elements(seq)) ≤ |seq|

15. ∀a, b :: cardinality(union(a, b)) ≥ cardinality(a)

16. ∀a, b :: cardinality(union(a, b)) ≥ cardinality(b)

17. ∀a, b :: cardinality(intersection(a, b)) ≤ cardinality(a)

18. ∀a, b :: cardinality(intersection(a, b)) ≤ cardinality(b)

19. ∀a, b :: cardinality(difference(a, b)) ≤ cardinality(a)

20. ∀a, b :: cardinality(difference(a, b)) ≥ cardinality(a)− cardinality(b)
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21. ∀a, b :: cardinality(union(a, b)) =

cardinality(a) + cardinality(b)− cardinality(intersection(a, b))

22. ∀x, a : membership(x, a) :

cardinality(difference(a, singleton(x))) = cardinality(a)− 1
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1 (declare-sort T)
2

3 (declare-const s (Seq T))
4 (declare-const a Int)
5 (declare-const b Int)
6

7 (declare-fun substring ((Seq T) Int Int) (Seq T))
8 (assert (forall ((str (Seq T)) (start Int) (end Int))
9 (= (substring str start end)

10 (seq.extract str start
11 (ite (<= end (seq.len str))
12 (- end start)
13 0
14 ))
15 )
16 ))
17

18

19 (push)
20 (assert (< a 0))
21 (assert (not
22 (= (as seq.empty (Seq T)) (substring s a b))
23 ))
24 (check-sat)
25 (pop)
26

27 (push)
28 (assert (< b a))
29 (assert (not
30 (= (as seq.empty (Seq T)) (substring s a b))
31 ))
32 (check-sat)
33 (pop)
34

35 (push)
36 (assert (> b (seq.len s)))
37 (assert (not
38 (= (as seq.empty (Seq T)) (substring s a b))
39 ))
40 (check-sat)
41 (pop)

Listing 5.3: Proof of out of range properties of Substring (SMT-LIB)
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Chapter 6: Results

The Z3 prover backend was evaluated in relation to the other provers on two

primary measures: the number of VCs proved and the execution time. These data

were captured on computer running Debian Linux with an 8 core AMD Ryzen 7

3700X and 64GB of RAM. The results were captured using a Ruby script that reads

the log output of the provers. It counts the number of VCs and tracks the start

and end time of the entire set of VCs for the realization being verified. The timing

numbers are based on an average of 5 runs.

The realizations that were selected as test cases were chosen by the following crite-

ria. Except for SortableSimple/QuickSortRealization from ArrayAsStringTemplate,

all realizations were chosen from the default Resolve Online repository of Resolve

code. SortableSimple/QuickSortRealization was written as part of a case study on

verifying a QuickSort variation. First, a set of facilities that define a variety of dif-

ferent, commonly used data types was selected. Next, realizations that intentionally

contain bugs in the implementation were excluded. These realizations are used to

check that the provers are not proving false VCs. Additionally, some realizations

that implement trivial operations were excluded.

Table 6.1 contains the number of VCs proved by the Resolve online provers in a

variety of code examples. The number of VCs is listed in bold when the number of
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VCs proved is the largest among the provers. In the case of a tie, all tied numbers

are bolded. The result column includes a checkmark if all VCs were proven by the

prover. As seen in this table, in all realizations Z3 is able to prove at least as many

VCs as Dafny. There are only two realizations where SplitDecision proves more VCs

than Z3. There are 20 realizations where Z3 proved more VCs than Dafny and 11

when compared to SplitDecision. Of these, there are 8 realizations where Z3 proved

more VCs than both Dafny and SplitDecision, three of which are fully proven by Z3.

The first case where Z3 proved all VCs, but the other provers did not is Mod-

/RemainderRealization from the IntegerFacility. Under the Dafny prover, the VCs

that failed involed absolute values. In fact, these VCs failed because the Dafny code

generation did not correctly detect that the absolute value function was used. This

resulted in invalid Dafny code being generated. In the case of SplitDecition, the two

goals that were not proved are found in Equations (6.1) and (6.2). In both cases,

SplitDecision appears to have difficulty with proofs involving mod and the absolute

value.

i8 mod j8 − |j8|+ j8 = i8 mod j8 (6.1)

i8 mod j8 − |j8| = i8 mod j8 (6.2)

The second case where Z3 proved all VCs, but the other provers did not is Sqrt/Bi-

narySearch from the IntegerFacility. Dafny was unable to prove 2 VCs. These goals

of these VCs involve multiplication and inequality: m33 × m33 ≤ m33 × i8 and

m33 × i8 ≤ i8 × i8. SplitDecision was unable to prove 10 VCs. All of these VCs

had goals consisting of inequalities of integral expressions involving variables and

subtractions.
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Dafny SplitDecision Z3
#VCs Proved Result Proved Result Proved Result

ArrayAsStringTemplate
Contains/LinearIterative 23 15 - 23 ✓ 17 -
SortableSimple/QuickSortRealization 1419 1410 - 1264 - 1413 -

IntegerFacility
Add/Iterative 17 17 ✓ 17 ✓ 17 ✓
Add/IterativeOptimized 23 5 - 23 ✓ 23 ✓
Add/Recursive 18 15 - 18 ✓ 18 ✓
Mod/RemainderRealization 40 27 - 38 - 40 ✓
Multiply/Iterative 132 129 - 132 ✓ 132 ✓
Multiply/IterativeCases 50 50 ✓ 50 ✓ 50 ✓
Multiply/IterativeNonObvious 24 24 ✓ 24 ✓ 24 ✓
Multiply/IterativeOneLoop 90 88 - 90 ✓ 90 ✓
Multiply/IterativeOneLoopOptimized 103 99 - 103 ✓ 103 ✓
Sqrt/BinarySearch 31 29 - 21 - 31 ✓

QueueTemplate
Concatenate/Iterative 5 5 ✓ 5 ✓ 5 ✓
Concatenate/Recursive 4 4 ✓ 4 ✓ 4 ✓
Sort/MergeSort 62 39 - 38 - 43 -
Sort/QuickSort 23 9 - 7 - 12 -
Sort/SelectionSort 22 9 - 9 - 14 -

SetTemplate
Apply/Iterative 16 15 - 13 - 15 -
Intersect/Iterative 14 13 - 14 ✓ 14 ✓
Split/Iterative 23 18 - 19 - 20 -
Subtract/Iterative 14 14 ✓ 13 - 14 ✓
Unite/Iterative1 8 7 - 8 ✓ 8 ✓
Unite/Iterative2 16 14 - 16 ✓ 16 ✓
UniteAndIntersect/Iterative1 15 14 - 15 ✓ 15 ✓
UniteAndIntersect/Iterative2 30 27 - 30 ✓ 29 -

StackTemplate
Reverse/Iterative 5 3 - 5 ✓ 5 ✓

TextFacility
SwapSubstring/Recursive1 17 11 - 9 - 17 ✓

UnboundedIntegerFacility
Add/Iterative 11 11 ✓ 11 ✓ 11 ✓
Sqrt/BinarySearch 23 23 ✓ 13 - 23 ✓
Sqrt/Iterative 9 9 ✓ 9 ✓ 9 ✓

Table 6.1: Comparison of VCs proved by Resolve Online Toolchains
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The third case where Z3 proved all VCs, but the other provers did not is Swap-

Substring/Recursive1 from the TextFacility. The VCs that Dafny was unable to

prove were the VCs that referenced the math definitions from the SwapSubstring en-

hancement. These definitions also involve existential quantifiers, making them more

difficult to prove. SplitDecision had difficulty with two additional VCs involving

integer inequalities.

The first case where SplitDecision proved more VCs than Z3 is the LinearIterative

realization of the Contains enhancement of ArrayAsStringTemplate. It makes sense

that SplitDecision would do well in this test case as it was designed to handle string

problems. The VCs that are failing all have goals or proofs involving givens of the

form x ∈ elements(s). Unfortunately, this reasoning appears to be difficult for Z3.

The second case where SplitDecision proved more VCs is the Iterative2 realization

of the UniteAndIntersect enhancement of SetTemplate as seen in Listing 6.2. In this

case it is due to a single VC that fails under Z3. This realization is very similar to

Iterative1 from Listing 6.1, except that it swaps so that s, the first parameter, is

larger. The result of this is that the VC is split between the two branches of the if

statement. In the branch without the swap, the VC, s19 ∩ t19 \ {tmp21} = t4 ∩ s4 ∪ ∅,

is proved. With the swap, the VC, s19 ∩ t19 \ {tmp21} = t4 ∩ s4 ∪ ∅, is not proved.

The givens are equivalent except that t4 and s4 are swapped.

The data from Table 6.1 are summarized in Table 6.2. The Average VC Per-

centages shown are the average of the percentage of VCs proved for each realization.

This is done to prevent realizations with larger numbers of VCs from dominating the

results. For both Average VC Percentages and Percent Fully Proved, Z3 performed

the best, followed by SplitDecition, and then Dafny.
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1 variable tmp: Set
2 loop
3 maintains s union t = #s union #t and
4 (s intersection t) union tmp =
5 (#s intersection #t) union #tmp and
6 t intersection tmp = {}
7 decreases |t|
8 while not IsEmpty(t) do
9 ...

10 end loop
11 t :=: tmp

Listing 6.1: UniteAndIntersectprocedure from Iterative1(Resolve)

1 variable ss, ts: Integer
2 variable tmp: Set
3 ss := Size(s)
4 ts := Size(t)
5 if IsGreater(ts, ss) then
6 s :=: t
7 end if
8 loop
9 maintains s union t = #s union #t and

10 (s intersection t) union tmp =
11 (#s intersection #t) union #tmp and
12 t intersection tmp = {}
13 decreases |t|
14 while not IsEmpty(t) do
15 ...
16 end loop
17 t :=: tmp

Listing 6.2: UniteAndIntersectprocedure from Iterative2(Resolve)

Table 6.3 contains a selection of realizations that were selected for execution time

analysis. Realizations were selected was based on the number of VCs, preferring a

larger number of VCs. This results in longer overall verification times.

In most cases, Dafny takes substantially longer than SplitDecision and Z3. In

fact, the time that Dafny takes is close to linear to the number of VCs. This is due to

the large initial startup time of the Dafny compiler. Dafny runs on .NET and needs

to be Just-In-Time compiled before it can be executed. Additionally, the theories
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Dafny SplitDecision Z3
Average % of VCs Proven 83% 88% 95%
% of Realizations Fully Proved 30% 63% 73%

Table 6.2: Summary of VCs proved by Resolve Online Toolchains

are loaded into Z3. These could be reused in a normal execution of the compiler.

However, since each VC is a separate execution, this startup time dominates the

execution time of the Dafny prover.

SplitDecision and Z3 are both close in the execution times. SplitDecision is ahead

in 3 cases, while Z3 is ahead in 5. In these cases, the verification time is more

dependent on the nature of the VCs than just the number of VCs.

One major outlier is SortableSimple/QuickSortRealization. In this case, the ex-

ecution time of SplitDecision at around 3 hours is around five times that of Dafny.

Z3, in contrast, is under a minute. One likely cause of this massive difference is the

substantial use of quantifiers in this realization.
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Dafny SplitDecision Z3
ArrayAsStringTemplate
Contains/LinearIterative 00:37.78 ± 00:00.24 00:03.36 ± 00:00.09 00:04.03 ± 00:00.02
SortableSimple/QuickSortRealization 35:17.61 ± 00:24.95 03:01:52.94 ± 06:52.97 00:40.88 ± 00:00.87

IntegerFacility
Mod/RemainderRealization 00:33.95 ± 00:00.12 00:01.06 ± 00:00.03 00:00.60 ± 00:00.02
Multiply/Iterative 02:27.58 ± 00:00.41 00:03.94 ± 00:00.11 00:02.08 ± 00:00.02

QueueTemplate
Sort/MergeSort 01:33.97 ± 00:00.18 00:01.98 ± 00:00.09 00:08.99 ± 00:00.09

SetTemplate
UniteAndIntersect/Iterative2 00:39.19 ± 00:00.14 00:00.66 ± 00:00.08 00:01.47 ± 00:00.02

TextFacility
SwapSubstring/Recursive1 00:24.12 ± 00:00.10 00:00.67 ± 00:00.03 00:00.44 ± 00:00.08

UnboundedIntegerFacility
Sqrt/BinarySearch 00:24.99 ± 00:00.04 00:03.62 ± 00:00.01 00:00.45 ± 00:00.01

Table 6.3: Execution times of Resolve Online Toolchains
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Chapter 7: Contributions and Future Work

7.1 Future Work

7.1.1 Set Cardanility

The theory of finite sets we defined utilizes Z3’s underlying theory of infinite

sets. A projection function is defined from the custom finite set sort to Z3’s set

sort. However, some operations required by Resolve are not directly supported in

Z3’s theory. As a result, these unsupported operations are defined using assertions.

One notable operation that is not supported by Z3 is the cardinality operation. In

fact, SMT-LIB has an operation set-has-size which is a predicate that is true when

a set has a specific size. There is also a function in the C API, Z3_mk_set_has_size,

that creates expressions using this predicate. However, support for this predicate

was removed from Z3 and the API function now throws an exception. [10] This

predicate was removed due to soundness bugs that were discovered that occur when

this predicate is used. [11] It is unknown whether set-has-size will be supported

in the future. If set-has-size is fixed in Z3, it would be beneficial to update the

theory of sets to utilize this function.
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7.1.2 Type Inference for Empty Literals

The VC Generator is expected to annotate expressions with their types. However,

in the case of some empty string and set literals, the element type cannot be known

without examining the context in which it is used. This is handled in the Z3 prover

by recording the first known string and set types. This type is used as the type of

the respective empty literal if the element type is unspecified.

7.1.3 Leveraging Unsat Core

Currently, VC Generation is performed before sending any VCs to the provers.

One issue is that multiple branches can result in exponential explosion in the number

of VCs. Consider the code in Figure 7.1. The confirm statement on line 10 causes

a VC to be generated to prove P . However, in order to take the information from

the if statement with condition A on line 1, the VC must be split. This means that

there will be one VC with A as a given and another with ¬A. This is in addition to

any givens introduced in the corresponding branch. Repeating this for the next two

if statements, results in two more splits. If this pattern continues, then there will be

2n times as many VCs as there were originally.

1 if A then
2 ...
3 end if
4 if B then
5 ...
6 end if
7 if C then
8 ...
9 end if

10 confirm P

Listing 7.1: Exponential explosion of VCs
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One thing that could help to reduce this explosion is to leverage the Unsat Core

generated by Z3. When Z3 generates an UNSAT result, it can be configured to

generate an Unsat Core which is a subset of the assertions that is sufficient to prove

the result. This could be used to quickly detect whether the other VCs that were

split from the proven VC can be shown using Unsat Core, eliminating the need to

send them to the prover.

7.2 Contributions

We have seen in Chapter 4 how VCs are generated from Resolve code. We saw how

a tracing table represents the way VCs are generated and how givens are introduced.

We also saw the existing provers and some of their limitations.

In Chapter 5 we saw how an SMT solver such as Z3 can be used to prove VCs.

We saw how VCs are reduced to a satisfiability problem. We also saw how the

types are mapped into Z3 sorts and how operations are defined in Z3. Some of the

operations without built-in support include the absolute value, substring, and finite

set operations.

In Chapter 6 we saw that Z3 compared favorably to both the Dafny and Split-

Decision prover backends. Z3 fully proves more realizations from the test cases than

either Dafny or SplitDecision. Furthermore, Z3 proves at least as many VCs as the

Dafny prover in all realizations. When compared to SplitDecision, Z3 proves at least

as many VCs in all but 2 realizations. In terms of the execution time of the provers,

Z3 was consistently faster than the Dafny prover due to high startup overhead in the

Dafny prover. SplitDecision and Z3 were similar in execution time, with either one

taking the lead depending on the realization being verified. However, in one case that

50



makes extensive use of quantifiers, SplitDecision ran for over 3 hours, while Z3 was

under a minute. From this, we see that Z3 is an improvement over existing prover

backends in what it is able to prove, while having similar or better verification time.
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Appendix A: Execution Time Data
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Dafny SplitDecision Z3
ArrayAsStringTemplate
Contains/LinearIterative 00:38.21 00:03.51 00:04.02

00:37.72 00:03.31 00:04.02
00:37.69 00:03.32 00:04.04
00:37.61 00:03.31 00:03.99
00:37.68 00:03.34 00:04.06

SortableSimple/QuickSortRealization 35:55.95 03:03:13.61 00:42.35
35:03.07 02:50:11.13 00:40.81
35:29.82 03:02:57.04 00:40.77
35:01.97 03:08:20.75 00:40.16
34:57.24 03:04:42.16 00:40.30

IntegerFacility
Mod/RemainderRealization 00:34.07 00:01.08 00:00.59

00:33.89 00:01.08 00:00.62
00:33.79 00:01.05 00:00.61
00:34.08 00:01.06 00:00.61
00:33.89 00:01.02 00:00.58

Multiply/Iterative 02:27.04 00:04.11 00:02.08
02:27.91 00:03.96 00:02.05
02:27.85 00:03.96 00:02.08
02:27.24 00:03.81 00:02.09
02:27.87 00:03.86 00:02.08

Table A.1: Raw Execution Times (Part 1)
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Dafny SplitDecision Z3
QueueTemplate
Sort/MergeSort 01:33.85 00:02.13 00:08.95

01:33.90 00:02.02 00:09.12
01:34.29 00:01.91 00:08.99
01:33.87 00:01.92 00:09.05
01:33.94 00:01.95 00:08.88

SetTemplate
UniteAndIntersect/Iterative2 00:39.23 00:00.74 00:01.49

00:39.05 00:00.69 00:01.47
00:39.04 00:00.73 00:01.47
00:39.37 00:00.58 00:01.45
00:39.26 00:00.58 00:01.49

TextFacility
SwapSubstring/Recursive1 00:24.22 00:00.66 00:00.58

00:24.02 00:00.65 00:00.41
00:24.11 00:00.63 00:00.41
00:24.21 00:00.71 00:00.42
00:24.02 00:00.69 00:00.40

UnboundedIntegerFacility
Sqrt/BinarySearch 00:25.05 00:03.63 00:00.45

00:24.98 00:03.62 00:00.44
00:25.01 00:03.64 00:00.45
00:24.95 00:03.63 00:00.45
00:24.98 00:03.60 00:00.45

Table A.2: Raw Execution Times (Part 2)
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Appendix B: Repository of Resolve Code

Listing B.1: ArrayAsStringTemplate/ArrayAsStringTemplate.rc
1 contract ArrayAsStringTemplate (type Item)
2 uses UnboundedIntegerFacility
3

4 math subtype ARRAY_MODEL is (lb: integer,
5 ub: integer,
6 s: string of Item)
7 exemplar a
8 constraint a.lb <= a.ub + 1 and
9 |a.s| = a.ub - a.lb + 1

10

11 type Array is modeled by ARRAY_MODEL
12 exemplar a
13 initialization ensures a = (1, 0, empty_string)
14

15 procedure SetBounds(updates a: Array,
16 restores lower: Integer,
17 restores upper: Integer)
18 requires
19 lower <= upper + 1
20 ensures
21 a.lb = lower and a.ub = upper
22

23 procedure SwapItem(updates a: Array,
24 restores i: Integer,
25 updates x: Item)
26 requires
27 a.lb <= i and i <= a.ub
28 ensures
29 a.lb = #a.lb and
30 a.ub = #a.ub and
31 substring(a.s, 0, i - a.lb) = substring(#a.s, 0, i - #a.lb) and
32 substring(a.s, i + 1 - a.lb, |a.s|) = substring(#a.s, i + 1 - #a.lb,

|#a.s|) and
33 substring(a.s, i - a.lb, i + 1 - a.lb) = <#x> and
34 substring(#a.s, i - #a.lb, i + 1 - #a.lb) = <x>
35

36 function LowerBound (restores a: Array) : Integer
37 ensures
38 LowerBound = a.lb
39

40 function UpperBound (restores a: Array) : Integer
41 ensures
42 UpperBound = a.ub
43
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44 end ArrayAsStringTemplate

Listing B.2: ArrayAsStringTemplate/Contains/Contains.rc
1 contract Contains
2 enhances ArrayAsStringTemplate
3

4 function Contains (restores a: Array,
5 restores x: Item) : control
6 ensures
7 Contains = x is in elements(a.s)
8

9 end Contains

Listing B.3: ArrayAsStringTemplate/Contains/LinearIterative/LinearIterative.rr
1 realization LinearIterative (function AreEqual (restores i: Item,
2 restores j: Item) : control
3 ensures
4 AreEqual = (i = j))
5 implements Contains for ArrayAsStringTemplate
6

7 function Contains (restores a: Array,
8 restores x: Item) : control
9 variable pos: Integer

10 variable ub: Integer
11 pos := LowerBound(a)
12 ub := UpperBound(a)
13 if not IsGreater(pos, ub) then
14 loop
15 maintains a = #a and
16 x = #x and
17 a.lb <= pos and
18 pos <= ub and
19 ub = a.ub and
20 Contains = (x is in elements(substring(a.s, 0, pos -

a.lb)))
21 decreases ub - pos
22 while not Contains and not AreEqual(pos, ub) do
23 variable y: Item
24 SwapItem(a, pos, y)
25 Contains := AreEqual(x, y)
26 SwapItem(a, pos, y)
27 Increment(pos)
28 end loop
29 if not Contains then
30 variable y: Item
31 SwapItem(a, ub, y)
32 Contains := AreEqual(x, y)
33 SwapItem(a, ub, y)
34 end if
35 end if
36 end Contains
37

38 end LinearIterative
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Listing B.4: ArrayAsStringTemplate/SortableSimple/QuickSortRealiza-
tion/QuickSortRealization.rr

1 realization QuckSortRealization (function AreInOrder (restores i: Item,
2 restores j: Item) :

control
3 ensures
4 AreInOrder = (ARE_IN_ORDER1(i, j)),
5 function ItemReplica (restores x: Item) :

Item
6 ensures
7 ItemReplica = x)
8 implements SortableSimple for ArrayAsStringTemplate
9

10 procedure AverageImpl (updates i: Integer,
11 restores j: Integer)
12 decreases j - i
13 if IsGreater(j, i) then
14 Decrement(j)
15 if IsGreater(j, i) then
16 Increment(i)
17 Average(i, j)
18 end if
19 Increment(j)
20 end if
21 end AverageImpl
22

23 procedure Average (updates i: Integer,
24 restores j: Integer)
25 if IsGreater(i, j) then
26 variable j2: Integer
27 j2 := Replica(j)
28 AverageImpl(j, i)
29 j :=: j2
30 i :=: j2
31 else
32 AverageImpl(i, j)
33 end if
34 end Average
35

36 procedure ElemReplica (restores a: Array,
37 restores i: Integer,
38 replaces elem: Item)
39 variable temp: Item
40 SwapItem(a, i, temp)
41 elem := ItemReplica(temp)
42 SwapItem(a, i, temp)
43 end ElemReplica
44

45 function ArrayReplica (restores a: Array) : Array
46 variable i: Integer
47 variable max: Integer
48 variable copy: Array
49 i := LowerBound(a)
50 max := UpperBound(a)
51 SetBounds(copy, i, max)
52 Increment(max)
53 loop
54 maintains a = #a and
55 i >= a.lb and
56 i <= a.ub + 1 and
57 max = a.ub + 1 and
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58 copy.lb = a.lb and
59 copy.ub = a.ub and
60 substring(a.s, 0, i - a.lb) = substring(copy.s, 0, i -

copy.lb)
61 decreases 1 + |a.s| - (i - a.lb)
62 while IsGreater(max, i) do
63 variable item: Item
64 ElemReplica(a, i, item)
65 SwapItem(copy, i, item)
66 Increment(i)
67 end loop
68 ArrayReplica :=: copy
69 end ArrayReplica
70

71 procedure FindNewLeftLoopBody (restores a: Array,
72 restores mid: Item,
73 updates newLeft: Integer,
74 updates i: Integer,
75 updates foundGT: Boolean)
76 variable curr: Item
77 SwapItem(a, i, curr)
78 if not AreInOrder(mid, curr) then
79 SwapItem(a, i, curr)
80 Increment(i)
81 else
82 newLeft := Replica(i)
83 if not AreInOrder(curr, mid) then
84 SwapItem(a, i, curr)
85 Negate(foundGT)
86 else
87 SwapItem(a, i, curr)
88 Increment(i)
89 end if
90 end if
91 end FindNewLeftLoopBody
92

93 procedure FindNewLeft (restores a: Array,
94 restores left: Integer,
95 restores right: Integer,
96 restores mid: Item,
97 updates newLeft: Integer)
98 variable i: Integer
99 variable foundGT: Boolean

100 i := Replica(left)
101 loop
102 maintains a = #a and
103 left = #left and
104 right = #right and
105 mid = #mid and
106 left <= newLeft and
107 newLeft <= right and
108 newLeft <= a.ub and
109 left <= i and
110 i <= right and
111 (foundGT implies newLeft = i) and
112 (for all j: Integer
113 where (left <= j and j < i)
114 (ARE_IN_ORDER1(ELEM_AT(a, j), mid))) and
115 ARE_IN_ORDER1(mid, ELEM_AT(a, newLeft)) and
116 (#newLeft < right implies newLeft < right)
117 decreases 10 + right - i + TRUE_IS_SMALLER(foundGT)
118 while IsGreater(right, i) and not IsTrue(foundGT) do
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119 FindNewLeftLoopBody(a, mid, newLeft, i, foundGT)
120 end loop
121 end FindNewLeft
122

123 procedure FindNewRightLoopBody (restores a: Array,
124 restores mid: Item,
125 updates newRight: Integer,
126 updates i: Integer,
127 updates foundLT: Boolean)
128 variable curr: Item
129 SwapItem(a, i, curr)
130 if not AreInOrder(curr, mid) then
131 SwapItem(a, i, curr)
132 Decrement(i)
133 else
134 newRight := Replica(i)
135 if not AreInOrder(mid, curr) then
136 SwapItem(a, i, curr)
137 Negate(foundLT)
138 else
139 SwapItem(a, i, curr)
140 Decrement(i)
141 end if
142 end if
143 end FindNewRightLoopBody
144

145 procedure FindNewRight (restores a: Array,
146 restores left: Integer,
147 restores right: Integer,
148 restores mid: Item,
149 updates newRight: Integer)
150 variable i: Integer
151 variable foundLT: Boolean
152 i := Replica(right)
153 Decrement(i)
154 loop
155 maintains a = #a and
156 left = #left and
157 right = #right and
158 mid = #mid and
159 left - 1 <= newRight and
160 newRight < right and
161 left - 1 <= i and
162 i < right and
163 (foundLT implies newRight = i) and
164 (for all j: Integer
165 where (i < j and j < right)
166 (ARE_IN_ORDER1(mid, ELEM_AT(a, j)))) and
167 ARE_IN_ORDER1(ELEM_AT(a, newRight), mid) and
168 (#newRight >= left implies newRight >= left)
169 decreases 10 + i + TRUE_IS_SMALLER(foundLT)
170 while not IsGreater(left, i) and not IsTrue(foundLT) do
171 FindNewRightLoopBody(a, mid, newRight, i, foundLT)
172 end loop
173 end FindNewRight
174

175 procedure PartitionSwap (updates a: Array,
176 restores first: Integer,
177 restores last: Integer,
178 restores newLeft: Integer,
179 restores newRight: Integer,
180 restores mid: Item)
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181 if IsGreater(newRight, newLeft) then
182 variable a2: Array
183 variable temp: Item
184 SwapItem(a, newLeft, temp)
185 SwapItem(a, newRight, temp)
186 SwapItem(a, newLeft, temp)
187 end if
188 end PartitionSwap
189

190 procedure Partition (updates a: Array,
191 restores first: Integer,
192 restores last: Integer,
193 replaces left: Integer,
194 replaces right: Integer,
195 replaces mid: Item)
196 variable midIdx: Integer
197 midIdx := Replica(first)
198 Average(midIdx, last)
199 ElemReplica(a, midIdx, mid)
200 left := Replica(first)
201 right := Replica(last)
202 loop
203 maintains a.lb = #a.lb and
204 a.ub = #a.ub and
205 first = #first and
206 last = #last and
207 midIdx = #midIdx and
208 mid = #mid and
209 first <= left and
210 left <= last and
211 first <= right and
212 right <= last and
213 ((left = first and right = last) or (left > first and right

< last)) and
214 (left = first implies mid = ELEM_AT(a, midIdx)) and
215 (for all i: Integer
216 where (first <= i and i < left)
217 (ARE_IN_ORDER1(ELEM_AT(a, i), mid))) and
218 (for all i: Integer
219 where (right <= i and i < last)
220 (ARE_IN_ORDER1(mid, ELEM_AT(a, i)))) and
221 substring(a.s, 0, first - a.lb) = substring(#a.s, 0, first

- a.lb) and
222 substring(a.s, last - a.lb, |a.s|) = substring(#a.s, last -

a.lb, |a.s|) and
223 IS_PERMUTATION1(a.s, #a.s)
224 decreases 10 + (a.ub - a.lb) + (right - left)
225 while IsGreater(right, left) do
226 variable newLeft, newRight: Integer
227 if AreEqual(left, first) then
228 newLeft := Replica(midIdx)
229 newRight := Replica(midIdx)
230 else
231 newLeft := Replica(right)
232 newRight := Replica(left)
233 Decrement(newRight)
234 end if
235 FindNewLeft(a, left, right, mid, newLeft)
236 FindNewRight(a, left, right, mid, newRight)
237 if IsGreater(newLeft, newRight) then
238 left :=: newLeft
239 right :=: newRight
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240 Increment(right)
241 else
242 PartitionSwap(a, first, last, newLeft, newRight, mid)
243 left :=: newLeft
244 Increment(left)
245 right :=: newRight
246 end if
247 end loop
248 end Partition
249

250 procedure Sort (updates a: Array,
251 restores first: Integer,
252 restores last: Integer)
253 decreases last - first
254 variable i: Integer
255 i := Replica(first)
256 Increment(i)
257 if IsGreater(last, i) then
258 variable a0, a1, a2: Array
259 variable left, right: Integer
260 variable mid: Item
261 Partition(a, first, last, left, right, mid)
262 Sort(a, left, last)
263 Sort(a, first, right)
264 end if
265 end Sort
266

267 end QuckSortRealization

Listing B.5: ArrayAsStringTemplate/SortableSimple/SortableSimple.rc
1 contract SortableSimple (definition ARE_IN_ORDER1 (a: Item,
2 b: Item)
3 : boolean
4 satisfies for all x, y, z: Item
5 ((ARE_IN_ORDER1(x, y) or

ARE_IN_ORDER1(y, x)) and
6 ((ARE_IN_ORDER1(x, y) and

ARE_IN_ORDER1(y, x)) implies x =
y) and

7 (if (ARE_IN_ORDER1(x, y) and
ARE_IN_ORDER1(y, z)) then

8 ARE_IN_ORDER1(x, z))))
9 enhances ArrayAsStringTemplate

10

11 uses BooleanFacility
12

13 definition OCCURS_COUNT1 (s: string of Item,
14 i: Item)
15 : integer
16 satisfies if s = empty_string then
17 OCCURS_COUNT1(s, i) = 0
18 else
19 there exists x: Item,
20 r: string of Item
21 ((s = <x> * r) and
22 (if x = i then
23 OCCURS_COUNT1(s, i) = OCCURS_COUNT1(r, i) + 1
24 else
25 OCCURS_COUNT1(s, i) = OCCURS_COUNT1(r, i)))
26

61



27 definition IS_PERMUTATION1 (s1: string of Item,
28 s2: string of Item)
29 : boolean
30 is
31 for all i: Item
32 (OCCURS_COUNT1(s1, i) = OCCURS_COUNT1(s2, i))
33

34 definition TRUE_IS_SMALLER (b: boolean)
35 : integer
36 satisfies TRUE_IS_SMALLER(true) >= 0 and TRUE_IS_SMALLER(true) <

TRUE_IS_SMALLER(false)
37

38 definition ELEM_AT (a: Array,
39 i: integer)
40 : Item
41 satisfies (for all b: Array,
42 j: integer
43 where (b.lb <= j and j <= b.ub)
44 (substring(b.s, j - b.lb, j + 1 - b.lb) = <ELEM_AT(b, j)>))
45

46 procedure AverageImpl (updates i: Integer,
47 restores j: Integer)
48 requires
49 i <= j
50 ensures
51 i + i <= #i + j and #i + j <= i + i + 1
52

53 procedure Average (updates i: Integer,
54 restores j: Integer)
55 ensures
56 i + i <= #i + j and #i + j <= i + i + 1
57

58 procedure ElemReplica (restores a: Array,
59 restores i: Integer,
60 replaces elem: Item)
61 requires
62 a.lb <= i and
63 i <= a.ub
64 ensures
65 elem = ELEM_AT(a, i)
66

67 function ArrayReplica (restores a: Array) : Array
68 ensures
69 ArrayReplica = a
70

71 procedure FindNewLeftLoopBody (restores a: Array,
72 restores mid: Item,
73 updates newLeft: Integer,
74 updates i: Integer,
75 updates foundGT: Boolean)
76 requires
77 a.lb <= i and
78 i <= a.ub and
79 not foundGT and
80 ARE_IN_ORDER1(mid, ELEM_AT(a, newLeft))
81 ensures
82 ARE_IN_ORDER1(mid, ELEM_AT(a, newLeft)) and
83 (if foundGT then
84 (i = #i and
85 newLeft = i and
86 not ARE_IN_ORDER1(ELEM_AT(a, #i), mid))
87 else
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88 (i = #i + 1 and
89 (newLeft = #newLeft or newLeft = #i) and
90 ARE_IN_ORDER1(ELEM_AT(a, #i), mid)))
91

92 procedure FindNewLeft (restores a: Array,
93 restores left: Integer,
94 restores right: Integer,
95 restores mid: Item,
96 updates newLeft: Integer)
97 requires
98 0 <= a.lb and
99 a.lb <= left and

100 left <= newLeft and
101 newLeft <= right and
102 right <= a.ub + 1 and
103 newLeft <= a.ub and
104 ARE_IN_ORDER1(mid, ELEM_AT(a, newLeft))
105 ensures
106 left <= newLeft and
107 newLeft <= right and
108 newLeft <= a.ub and
109 (#newLeft < right implies newLeft < right) and
110 (for all j: Integer
111 where (left <= j and j < newLeft)
112 (ARE_IN_ORDER1(ELEM_AT(a, j), mid))) and
113 ARE_IN_ORDER1(mid, ELEM_AT(a, newLeft))
114

115 procedure FindNewRightLoopBody (restores a: Array,
116 restores mid: Item,
117 updates newRight: Integer,
118 updates i: Integer,
119 updates foundLT: Boolean)
120 requires
121 a.lb <= i and
122 i <= a.ub and
123 not foundLT and
124 ARE_IN_ORDER1(ELEM_AT(a, newRight), mid)
125 ensures
126 ARE_IN_ORDER1(ELEM_AT(a, newRight), mid) and
127 (if foundLT then
128 (i = #i and
129 newRight = i and
130 not ARE_IN_ORDER1(mid, ELEM_AT(a, #i)))
131 else
132 (i = #i - 1 and
133 (newRight = #newRight or newRight = #i) and
134 ARE_IN_ORDER1(mid, ELEM_AT(a, #i))))
135

136 procedure FindNewRight (restores a: Array,
137 restores left: Integer,
138 restores right: Integer,
139 restores mid: Item,
140 updates newRight: Integer)
141 requires
142 0 <= a.lb and
143 a.lb <= left and
144 left < right and
145 right <= a.ub + 1 and
146 left - 1 <= newRight and
147 newRight < right and
148 a.lb <= newRight and
149 ARE_IN_ORDER1(ELEM_AT(a, newRight), mid)
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150 ensures
151 left - 1 <= newRight and
152 newRight < right and
153 a.lb <= newRight and
154 (#newRight >= left implies newRight >= left) and
155 (for all i: Integer
156 where (newRight < i and i < right)
157 (ARE_IN_ORDER1(mid, ELEM_AT(a, i)))) and
158 ARE_IN_ORDER1(ELEM_AT(a, newRight), mid)
159

160 procedure PartitionSwap (updates a: Array,
161 restores first: Integer,
162 restores last: Integer,
163 restores newLeft: Integer,
164 restores newRight: Integer,
165 restores mid: Item)
166 requires
167 0 <= a.lb and
168 a.lb <= first and
169 first <= newLeft and
170 newLeft <= newRight and
171 newRight < last and
172 last <= a.ub + 1 and
173 ARE_IN_ORDER1(mid, ELEM_AT(a, newLeft)) and
174 ARE_IN_ORDER1(ELEM_AT(a, newRight), mid) and
175 (for all j: Integer
176 where (first <= j and j < newLeft)
177 (ARE_IN_ORDER1(ELEM_AT(a, j), mid))) and
178 (for all i: Integer
179 where (newRight < i and i < last)
180 (ARE_IN_ORDER1(mid, ELEM_AT(a, i))))
181 ensures
182 a.lb = #a.lb and
183 a.ub = #a.ub and
184 (for all j: Integer
185 where (first <= j and j <= newLeft)
186 (ARE_IN_ORDER1(ELEM_AT(a, j), mid))) and
187 (for all i: Integer
188 where (newRight <= i and i < last)
189 (ARE_IN_ORDER1(mid, ELEM_AT(a, i)))) and
190 substring(a.s, 0, first - a.lb) = substring(#a.s, 0, first - a.lb) and
191 substring(a.s, last - a.lb, |a.s|) = substring(#a.s, last - a.lb,

|a.s|) and
192 IS_PERMUTATION1(a.s, #a.s)
193

194 procedure Partition (updates a: Array,
195 restores first: Integer,
196 restores last: Integer,
197 replaces left: Integer,
198 replaces right: Integer,
199 replaces mid: Item)
200 requires
201 0 <= a.lb and
202 a.lb <= first and
203 first < last and
204 last <= a.ub + 1
205 ensures
206 a.lb = #a.lb and
207 a.ub = #a.ub and
208 first <= right and
209 right <= left and
210 left <= last and
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211 first < left and
212 right < last and
213 (for all i: Integer
214 where (first <= i and i < left)
215 (ARE_IN_ORDER1(ELEM_AT(a, i), mid))) and
216 (for all i: Integer
217 where (right <= i and i < last)
218 (ARE_IN_ORDER1(mid, ELEM_AT(a, i)))) and
219 substring(a.s, 0, first - a.lb) = substring(#a.s, 0, first - a.lb) and
220 substring(a.s, last - a.lb, |a.s|) = substring(#a.s, last - a.lb,

|a.s|) and
221 IS_PERMUTATION1(a.s, #a.s)
222

223 procedure Sort (updates a: Array,
224 restores first: Integer,
225 restores last: Integer)
226 requires
227 0 <= a.lb and
228 a.lb <= first and
229 first <= last and
230 last <= a.ub + 1
231 ensures
232 a.lb = #a.lb and
233 a.ub = #a.ub and
234 (for all i, j: Integer
235 where (first <= i and i < j and j < last)
236 (ARE_IN_ORDER1(ELEM_AT(a, i), ELEM_AT(a, j)))) and
237 substring(a.s, 0, first - a.lb) = substring(#a.s, 0, first - a.lb) and
238 substring(a.s, last - a.lb, |a.s|) = substring(#a.s, last - a.lb,

|a.s|) and
239 IS_PERMUTATION1(a.s, #a.s)
240

241 end SortableSimple

Listing B.6: IntegerFacility/Add/Add.rc
1 contract Add
2 enhances IntegerFacility
3

4 procedure Add(updates i: Integer,
5 restores j: Integer)
6 requires
7 MIN <= i + j and i + j <= MAX
8 ensures
9 i = #i + j

10

11 end Add

Listing B.7: IntegerFacility/Add/Iterative/Iterative.rr
1 realization Iterative
2 implements Add for IntegerFacility
3

4 procedure Add (updates i: Integer,
5 restores j: Integer)
6 variable nj, z: Integer
7 loop
8 maintains i + j = #i + #j and nj + j = #nj + #j and z = 0
9 decreases |j|

10 while not AreEqual(j, z) do

65



11 if IsGreater(j, z) then
12 Increment(i)
13 Increment(nj)
14 Decrement(j)
15 else
16 Decrement(i)
17 Decrement(nj)
18 Increment(j)
19 end if
20 end loop
21 j :=: nj
22 end Add
23

24 end Iterative

Listing B.8: IntegerFacility/Add/IterativeOptimized/IterativeOptimized.rr
1 realization IterativeOptimized
2 implements Add for IntegerFacility
3

4 procedure Add (updates i: Integer,
5 restores j: Integer)
6 variable nj, z: Integer
7 if IsGreater(j, z) then
8 loop
9 maintains i + j = #i + #j and nj + j = #nj + #j and

10 z = 0 and
11 j >= 0
12 decreases |j|
13 while not AreEqual(j, z) do
14 Increment(i)
15 Increment(nj)
16 Decrement(j)
17 end loop
18 else
19 loop
20 maintains i + j = #i + #j and nj + j = #nj + #j and
21 z = 0 and
22 j <= 0
23 decreases |j|
24 while not AreEqual(j, z) do
25 Decrement(i)
26 Decrement(nj)
27 Increment(j)
28 end loop
29 end if
30 j :=: nj
31 end Add
32

33 end IterativeOptimized

Listing B.9: IntegerFacility/Add/Recursive/Recursive.rr
1 realization Recursive
2 implements Add for IntegerFacility
3

4 procedure Add (updates i: Integer,
5 restores j: Integer)
6 decreases |j|
7 variable z: Integer
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8 if IsGreater(j, z) then
9 Increment(i)

10 Decrement(j)
11 Add(i, j)
12 Increment(j)
13 else
14 if IsGreater(z, j) then
15 Decrement(i)
16 Increment(j)
17 Add(i, j)
18 Decrement(j)
19 end if
20 end if
21 end Add
22

23 end Recursive

Listing B.10: IntegerFacility/IntegerFacility.rc
1 contract IntegerFacility
2 definition MIN
3 : integer
4 satisfies restriction MIN <= 0
5

6 definition MAX
7 : integer
8 satisfies restriction 0 < MAX
9

10 math subtype INTEGERMODEL is integer
11 exemplar i
12 constraint MIN <= i and i <= MAX
13

14 type Integer is modeled by INTEGERMODEL
15 exemplar i
16 initialization ensures i = 0
17

18 procedure Increment (updates i: Integer)
19 requires
20 i < MAX
21 ensures
22 i = #i + 1
23

24 procedure Decrement (updates i: Integer)
25 requires
26 MIN < i
27 ensures
28 i = #i - 1
29

30 function AreEqual (restores i: Integer,
31 restores j: Integer) : control
32 ensures
33 AreEqual = (i = j)
34

35 function IsGreater (restores i: Integer,
36 restores j: Integer) : control
37 ensures
38 IsGreater = (i > j)
39

40 function Replica (restores i: Integer) : Integer
41 ensures
42 Replica = i
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43

44 function Min () : Integer
45 ensures
46 Min = MIN
47

48 function Max () : Integer
49 ensures
50 Max = MAX
51

52 end IntegerFacility

Listing B.11: IntegerFacility/Mod/Mod.rc
1 contract Mod
2 enhances IntegerFacility
3

4 procedure Mod(updates i: Integer,
5 restores j: Integer)
6 requires
7 j > 0
8 ensures
9 i = #i mod j

10

11 end Mod

Listing B.12: IntegerFacility/Mod/RemainderRealization/RemainderRealization.rr
1 realization RemainderRealization
2 implements Mod for IntegerFacility
3

4 uses Add for IntegerFacility
5 uses Subtract for IntegerFacility
6 uses Remainder for IntegerFacility
7

8 procedure Mod (updates i: Integer,
9 restores j: Integer)

10 variable z: Integer
11 Remainder(i, j)
12 if IsGreater(z, i) then
13 if IsGreater(j, z) then
14 Add(i, j)
15 else
16 Subtract(i, j)
17 end if
18 end if
19 end Mod
20

21 end RemainderRealization

Listing B.13: IntegerFacility/Multiply/IterativeCases/IterativeCases.rr
1 realization IterativeCases
2 implements Multiply for IntegerFacility
3

4 uses IsPositive for IntegerFacility
5 uses Add for IntegerFacility
6 uses Subtract for IntegerFacility
7

8 procedure Multiply (updates i: Integer,
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9 restores j: Integer)
10 variable p, nj, z: Integer
11 if IsGreater(j, z) then
12 if IsGreater(i, z) then
13 loop
14 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
15 i = #i and
16 z = #z and
17 j >= 0
18 decreases j
19 while IsPositive(j) do
20 Add(p, i)
21 Increment(nj)
22 Decrement(j)
23 end loop
24 else
25 loop
26 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
27 i = #i and
28 z = #z and
29 j >= 0
30 decreases j
31 while IsPositive(j) do
32 Add(p, i)
33 Increment(nj)
34 Decrement(j)
35 end loop
36 end if
37 else
38 if IsGreater(i, z) then
39 loop
40 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
41 i = #i and
42 z = #z and
43 j <= 0 and
44 nj <= 0
45 decreases -j
46 while not AreEqual(j, z) do
47 Subtract(p, i)
48 Decrement(nj)
49 Increment(j)
50 end loop
51 else
52 loop
53 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
54 i = #i and
55 z = #z and
56 j <= 0
57 decreases -j
58 while not AreEqual(j, z) do
59 Subtract(p, i)
60 Decrement(nj)
61 Increment(j)
62 end loop
63 end if
64 end if
65 i :=: p
66 j :=: nj
67 end Multiply
68

69 end IterativeCases
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Listing B.14: IntegerFacility/Multiply/Iterative/Iterative.rr
1 realization Iterative
2 implements Multiply for IntegerFacility
3

4 uses IsPositive for IntegerFacility
5 uses Add for IntegerFacility
6 uses Subtract for IntegerFacility
7

8 procedure Multiply (updates i: Integer,
9 restores j: Integer)

10 variable p, nj, z: Integer
11 if IsGreater(j, z) then
12 loop
13 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
14 i = #i and
15 z = #z and
16 j >= 0
17 decreases j
18 while IsPositive(j) do
19 Add(p, i)
20 Increment(nj)
21 Decrement(j)
22 end loop
23 else
24 loop
25 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
26 i = #i and
27 z = #z and
28 j <= 0 and
29 (if (j < 0 and i > 0) then
30 (nj + j) * i <= p - i) and
31 (if (j < 0 and i < 0) then
32 p - i <= (nj + j) * i)
33 decreases -j
34 while not AreEqual(j, z) do
35 Subtract(p, i)
36 Decrement(nj)
37 Increment(j)
38 end loop
39 end if
40 i :=: p
41 j :=: nj
42 end Multiply
43

44 end Iterative

Listing B.15: IntegerFacility/Multiply/IterativeNonObvious/IterativeNonObvious.rr
1 realization IterativeNonObvious
2 implements Multiply for IntegerFacility
3

4 uses IsPositive for IntegerFacility
5 uses Add for IntegerFacility
6 uses Subtract for IntegerFacility
7

8 procedure Multiply (updates i: Integer,
9 restores j: Integer)

10 variable p, nj, z: Integer
11 if IsGreater(j, z) then
12 loop
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13 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
14 i = #i and
15 z = #z and
16 j >= 0
17 decreases j
18 while IsPositive(j) do
19 Add(p, i)
20 Increment(nj)
21 Decrement(j)
22 end loop
23 else
24 loop
25 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
26 i = #i and
27 z = #z and
28 j <= 0
29 decreases -j
30 while not AreEqual(j, z) do
31 Subtract(p, i)
32 Decrement(nj)
33 Increment(j)
34 end loop
35 end if
36 i :=: p
37 j :=: nj
38 end Multiply
39

40 end IterativeNonObvious

Listing B.16: IntegerFacility/Multiply/IterativeOneLoop/IterativeOneLoop.rr
1 realization IterativeOneLoop
2 implements Multiply for IntegerFacility
3

4 uses IsPositive for IntegerFacility
5 uses Add for IntegerFacility
6 uses Subtract for IntegerFacility
7

8 procedure Multiply (updates i: Integer,
9 restores j: Integer)

10 variable p, nj, z: Integer
11 loop
12 maintains p + i * j = #p + #i * #j and nj + j = #nj + #j and
13 i = #i and
14 z = #z and
15 (if #j > 0 then
16 j >= 0
17 else
18 j <= 0)
19 decreases |j|
20 while not AreEqual(j, z) do
21 if IsGreater(j, z) then
22 Add(p, i)
23 Increment(nj)
24 Decrement(j)
25 else
26 Subtract(p, i)
27 Decrement(nj)
28 Increment(j)
29 end if
30 end loop
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31 i :=: p
32 j :=: nj
33 end Multiply
34

35 end IterativeOneLoop

Listing B.17: IntegerFacility/Multiply/IterativeOneLoopOptimized/Itera-
tiveOneLoopOptimized.rr

1 realization IterativeOneLoopOptimized
2 implements Multiply for IntegerFacility
3

4 uses Add for IntegerFacility
5 uses Negate for IntegerFacility
6

7 procedure Multiply (updates i: Integer,
8 restores j: Integer)
9 variable jSign, iIncr, k, zero, prod: Integer

10 Increment(jSign)
11 iIncr := Replica(i)
12 if IsGreater(zero, j) then // and not AreEqual (i, zero) then
13 Negate(jSign)
14 Negate(iIncr)
15 end if
16 // confirm if ( i /= 0 and j /= 0 ) then iIncr = jSign * i
17 loop
18 maintains jSign = #jSign and iIncr = #iIncr and i = #i and j = #j and
19 prod = i * k and
20 (if 0 < j then
21 (0 <= k and k <= j)
22 else
23 (j <= k and k <= 0))
24 decreases |j - k|
25 while not AreEqual(k, j) do
26 Add(k, jSign)
27 Add(prod, iIncr)
28 end loop
29 i :=: prod
30 end Multiply
31

32 end IterativeOneLoopOptimized

Listing B.18: IntegerFacility/Multiply/Multiply.rc
1 contract Multiply
2 enhances IntegerFacility
3

4 procedure Multiply(updates i: Integer,
5 restores j: Integer)
6 requires
7 MIN <= i * j and i * j <= MAX
8 ensures
9 i = #i * j

10

11 end Multiply

Listing B.19: IntegerFacility/Sqrt/BinarySearch/BinarySearch.rr
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1 realization BinarySearch
2 implements Sqrt for IntegerFacility
3

4 uses Average for IntegerFacility
5 uses Subtract for IntegerFacility
6 uses Square for IntegerFacility
7

8 procedure Sqrt (updates i: Integer)
9 variable one: Integer

10 Increment(one)
11 if IsGreater(i, one) then
12 variable t, hi, d: Integer
13 t := Replica(i)
14 hi := Replica(i)
15 Increment(hi)
16 Clear(i)
17 d := Replica(hi)
18 loop
19 maintains 0 <= i and i * i <= t and
20 t < hi * hi and
21 hi <= MAX and
22 d = hi - i and
23 one = #one and
24 t = #t and
25 hi <= #hi and
26 #i <= i and
27 i <= hi and
28 0 <= hi
29 decreases d
30 while IsGreater(d, one) do
31 variable m, msq: Integer
32 m := Replica(i)
33 Average(m, hi)
34 confirm 0 <= m and m <= t
35 confirm m * m <= m * t and m * t <= t * t
36 confirm m * m <= t * t
37 msq := Replica(m)
38 Square(msq)
39 if IsGreater(msq, t) then
40 hi :=: m
41 else
42 i :=: m
43 end if
44 d := Replica(hi)
45 Subtract(d, i)
46 end loop
47 end if
48 end Sqrt
49

50 end BinarySearch

Listing B.20: IntegerFacility/Sqrt/Sqrt.rc
1 contract Sqrt
2 enhances IntegerFacility
3

4 procedure Sqrt(updates i: Integer)
5 requires
6 0 <= i and i * i < MAX
7 ensures
8 i * i <= #i and #i < (i + 1) * (i + 1)
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9

10 end Sqrt

Listing B.21: QueueTemplate/Concatenate/Concatenate.rc
1 contract Concatenate
2 enhances QueueTemplate
3

4 procedure Concatenate(updates p: Queue,
5 clears q: Queue)
6 ensures
7 p = #p * #q
8

9 end Concatenate

Listing B.22: QueueTemplate/Concatenate/Iterative/Iterative.rr
1 realization Iterative
2 implements Concatenate for QueueTemplate
3

4 procedure Concatenate (updates p: Queue,
5 clears q: Queue)
6 loop
7 maintains p * q = #p * #q
8 decreases |q|
9 while not IsEmpty(q) do

10 variable x: Item
11 Dequeue(q, x)
12 Enqueue(p, x)
13 end loop
14 end Concatenate
15

16 end Iterative

Listing B.23: QueueTemplate/Concatenate/Recursive/Recursive.rr
1 realization Recursive
2 implements Concatenate for QueueTemplate
3

4 procedure Concatenate (updates p: Queue,
5 clears q: Queue)
6 decreases |q|
7 if not IsEmpty(q) then
8 variable x: Item
9 Dequeue(q, x)

10 Enqueue(p, x)
11 Concatenate(p, q)
12 end if
13 end Concatenate
14

15 end Recursive

Listing B.24: QueueTemplate/QueueTemplate.rc
1 contract QueueTemplate (type Item)
2 uses UnboundedIntegerFacility
3
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4 math subtype QUEUE_MODEL is string of Item
5

6 type Queue is modeled by QUEUE_MODEL
7 exemplar q
8 initialization ensures q = empty_string
9

10 procedure Enqueue(updates q: Queue,
11 clears x: Item)
12 ensures
13 q = #q * <#x>
14

15 procedure Dequeue(updates q: Queue,
16 replaces x: Item)
17 requires
18 q /= empty_string
19 ensures
20 #q = <x> * q
21

22 function Length (restores q: Queue) : Integer
23 ensures
24 Length = |q|
25

26 function IsEmpty (restores q: Queue) : control
27 ensures
28 IsEmpty = (q = empty_string)
29

30 end QueueTemplate

Listing B.25: QueueTemplate/Sort/MergeSort/MergeSort.rr
1 realization MergeSort (function AreInOrder (restores i: Item,
2 restores j: Item) : control
3 ensures
4 AreInOrder = ARE_IN_ORDER(i, j))
5 implements Sort for QueueTemplate
6

7 uses Concatenate for QueueTemplate
8

9 local procedure Split(updates q1: Queue,
10 replaces q2: Queue)
11 ensures IS_PERMUTATION(q1 * q2, #q1) and
12 |q2| <= |q1| and
13 |q1| <= |q2| + 1
14 variable tmp: Queue
15 Clear(q2)
16 tmp :=: q1
17 loop
18 maintains IS_PERMUTATION(tmp * q1 * q2, #tmp * #q1 * #q2) and
19 |q2| <= |q1| and
20 |q1| <= |q2| + 1 and
21 (tmp /= empty_string implies |q1| = |q2|)
22 decreases |tmp|
23 while not IsEmpty(tmp) do
24 variable x: Item
25 Dequeue(tmp, x)
26 Enqueue(q1, x)
27 if not IsEmpty(tmp) then
28 Dequeue(tmp, x)
29 Enqueue(q2, x)
30 end if
31 end loop
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32 end Split
33

34 local procedure Merge(updates q1: Queue,
35 clears q2: Queue)
36 requires |q1| > 0 and
37 |q2| > 0 and
38 IS_NON_DECREASING(q1) and
39 IS_NON_DECREASING(q2)
40 ensures IS_PERMUTATION(q1, #q1 * #q2) and
41 IS_NON_DECREASING(q1)
42 variable tmp: Queue
43 variable q2Item: Item
44 Dequeue(q2, q2Item)
45 loop
46 maintains IS_PERMUTATION(tmp * q1 * q2 * <q2Item>,
47 #tmp * #q1 * #q2 * <#q2Item>) and
48 IS_NON_DECREASING(tmp * q1) and
49 IS_NON_DECREASING(tmp * <q2Item> * q2)
50 decreases |q1 * q2|
51 while not IsEmpty(q1) do
52 variable q1Item: Item
53 Dequeue(q1, q1Item)
54 if not AreInOrder(q1Item, q2Item) then
55 q1Item :=: q2Item
56 q1 :=: q2
57 end if
58 confirm ARE_IN_ORDER(q1Item, q2Item)
59 confirm IS_NON_DECREASING(<q1Item> * q1)
60 confirm IS_NON_DECREASING(<q2Item> * q2)
61 confirm IS_NON_DECREASING(<q1Item> * q2)
62 confirm IS_NON_DECREASING(tmp * <q1Item>)
63 Enqueue(tmp, q1Item)
64 end loop
65 Enqueue(tmp, q2Item)
66 Concatenate(tmp, q2)
67 q1 :=: tmp
68 end Merge
69

70 procedure Sort (updates q: Queue)
71 decreases |q|
72 variable qLength, one: Integer
73 Increment(one)
74 qLength := Length(q)
75 if IsGreater(qLength, one) then
76 variable qSplit: Queue
77 Split(q, qSplit)
78 Sort(q)
79 Sort(qSplit)
80 Merge(q, qSplit)
81 end if
82 end Sort
83

84 end MergeSort

Listing B.26: QueueTemplate/Sort/QuickSort/QuickSort.rr
1 realization QuickSort (function AreInOrder (restores i: Item,
2 restores j: Item) : control
3 ensures
4 AreInOrder = ARE_IN_ORDER(i, j))
5 implements Sort for QueueTemplate
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6

7 uses Concatenate for QueueTemplate
8

9 local procedure Partition(updates qSmall: Queue,
10 replaces qBig: Queue,
11 restores p: Item)
12 ensures IS_PERMUTATION(qSmall * qBig, #qSmall) and
13 IS_PRECEDING(<p>, qBig) and
14 IS_PRECEDING(qSmall, <p>)
15 variable tmp: Queue
16 Clear(qBig)
17 loop
18 maintains IS_PERMUTATION(qSmall * qBig * tmp, #qSmall * #qBig * #tmp)

and
19 IS_PRECEDING(<p>, qBig) and
20 IS_PRECEDING(tmp, <p>) and
21 p = #p
22 decreases |qSmall|
23 while not IsEmpty(qSmall) do
24 variable x: Item
25 Dequeue(qSmall, x)
26 if AreInOrder(x, p) then
27 Enqueue(tmp, x)
28 else
29 Enqueue(qBig, x)
30 end if
31 end loop
32 qSmall :=: tmp
33 end Partition
34

35 procedure Sort (updates q: Queue)
36 decreases |q|
37 variable qLength, zero: Integer
38 qLength := Length(q)
39 if IsGreater(qLength, zero) then
40 variable partitionElement: Item
41 variable qBig: Queue
42 Dequeue(q, partitionElement)
43 Partition(q, qBig, partitionElement)
44 Sort(q)
45 Sort(qBig)
46 confirm IS_NON_DECREASING(<partitionElement> * qBig)
47 Enqueue(q, partitionElement)
48 confirm IS_NON_DECREASING(q)
49 Concatenate(q, qBig)
50 end if
51 end Sort
52

53 end QuickSort

Listing B.27: QueueTemplate/Sort/SelectionSort/SelectionSort.rr
1 realization SelectionSort (function AreInOrder (restores i: Item,
2 restores j: Item) : control
3 ensures
4 AreInOrder = ARE_IN_ORDER(i, j))
5 implements Sort for QueueTemplate
6

7 local procedure RemoveMin(updates q: Queue,
8 replaces min: Item)
9 requires q /= empty_string
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10 ensures IS_PERMUTATION(q * <min>, #q) and
11 IS_PRECEDING(<min>, q)
12 variable tmp: Queue
13 Dequeue(q, min)
14 loop
15 maintains IS_PERMUTATION(tmp * q * <min>, #tmp * #q * <#min>) and
16 IS_PRECEDING(<min>, tmp)
17 decreases |q|
18 while not IsEmpty(q) do
19 variable x: Item
20 Dequeue(q, x)
21 if not AreInOrder(min, x) then
22 min :=: x
23 end if
24 Enqueue(tmp, x)
25 end loop
26 q :=: tmp
27 end RemoveMin
28

29 procedure Sort (updates q: Queue)
30 variable sorted: Queue
31 loop
32 maintains IS_PERMUTATION(q * sorted, #q * #sorted) and
33 IS_NON_DECREASING(sorted) and
34 IS_PRECEDING(sorted, q)
35 decreases |q|
36 while not IsEmpty(q) do
37 variable min: Item
38 RemoveMin(q, min)
39 Enqueue(sorted, min)
40 end loop
41 q :=: sorted
42 end Sort
43

44 end SelectionSort

Listing B.28: QueueTemplate/Sort/Sort.rc
1 contract Sort (definition ARE_IN_ORDER (x: Item,
2 y: Item)
3 : boolean
4 satisfies restriction for all z: Item
5 ((ARE_IN_ORDER(x, y) or

ARE_IN_ORDER(y, x)) and
6 (if (ARE_IN_ORDER(x, y) and

ARE_IN_ORDER(y, z)) then
7 ARE_IN_ORDER(x, z))))
8 enhances QueueTemplate
9

10 definition OCCURS_COUNT (s: string of Item,
11 i: Item)
12 : integer
13 satisfies if s = empty_string then
14 OCCURS_COUNT(s, i) = 0
15 else
16 there exists x: Item,
17 r: string of Item
18 ((s = <x> * r) and
19 (if x = i then
20 OCCURS_COUNT(s, i) = OCCURS_COUNT(r, i) + 1
21 else
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22 OCCURS_COUNT(s, i) = OCCURS_COUNT(r, i)))
23

24 definition IS_PERMUTATION (s1: string of Item,
25 s2: string of Item)
26 : boolean
27 is
28 for all i: Item
29 (OCCURS_COUNT(s1, i) = OCCURS_COUNT(s2, i))
30

31 definition IS_PRECEDING (s1: string of Item,
32 s2: string of Item)
33 : boolean
34 is
35 for all i,
36 j: Item
37 where (OCCURS_COUNT(s1, i) > 0 and
38 OCCURS_COUNT(s2, j) > 0)
39 (ARE_IN_ORDER(i, j))
40

41 definition IS_NON_DECREASING (s: string of Item)
42 : boolean
43 is
44 for all a,
45 b: string of Item
46 where (s = a * b)
47 (IS_PRECEDING(a, b))
48

49 procedure Sort(updates q: Queue)
50 ensures
51 IS_PERMUTATION(q, #q) and
52 IS_NON_DECREASING(q)
53

54 end Sort

Listing B.29: SetTemplate/Apply/Apply.rc
1 contract Apply (definition FUNCTION (x: finite set of Item)
2 : finite set of Item
3 satisfies FUNCTION(empty_set) = empty_set and for all s,
4 t:

finite
set
of
Item

5 (FUNCTION(s union t) = FUNCTION(s) union
FUNCTION(s)))

6 enhances SetTemplate
7

8 procedure Apply(restores s: Set,
9 replaces t: Set)

10 ensures
11 t = FUNCTION(s)
12

13 end Apply

Listing B.30: SetTemplate/Apply/Iterative/Iterative.rr
1 realization Iterative (procedure Apply(restores x: Item,
2 replaces y: Item)
3 ensures
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4 {y} = FUNCTION({x}))
5 implements Apply for SetTemplate
6

7 procedure Apply (restores s: Set,
8 replaces t: Set)
9 variable tempSet: Set

10 Clear(t)
11 loop
12 maintains t = FUNCTION(tempSet) and
13 s intersection tempSet = empty_set and
14 s union tempSet = #s union #tempSet
15 decreases |s|
16 while not IsEmpty(s) do
17 variable x, y: Item
18 RemoveAny(s, x)
19 Apply(x, y)
20 if not Contains(t, y) then
21 Add(t, y)
22 end if
23 Add(tempSet, x)
24 end loop
25 s :=: tempSet
26 end Apply
27

28 end Iterative

Listing B.31: SetTemplate/Intersect/Intersect.rc
1 contract Intersect
2 enhances SetTemplate
3

4 procedure Intersect(updates s: Set,
5 restores t: Set)
6 ensures
7 s = #s intersection t
8

9 end Intersect

Listing B.32: SetTemplate/Intersect/Iterative/Iterative.rr
1 realization Iterative
2 implements Intersect for SetTemplate
3

4 procedure Intersect (updates s: Set,
5 restores t: Set)
6 variable tmp: Set
7 loop
8 maintains (s union tmp) intersection t =
9 (#s union #tmp) intersection t and

10 s intersection tmp = empty_set and
11 tmp intersection t = tmp and
12 t = #t
13 decreases |s|
14 while not IsEmpty(s) do
15 variable x: Item
16 RemoveAny(s, x)
17 if Contains(t, x) then
18 Add(tmp, x)
19 end if
20 end loop
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21 s :=: tmp
22 end Intersect
23

24 end Iterative

Listing B.33: SetTemplate/SetTemplate.rc
1 contract SetTemplate (type Item)
2 uses UnboundedIntegerFacility
3

4 math subtype SET_MODEL is finite set of Item
5

6 type Set is modeled by SET_MODEL
7 exemplar s
8 initialization ensures s = empty_set
9

10 procedure Add(updates s: Set,
11 clears x: Item)
12 requires
13 x is not in s
14 ensures
15 s = #s union {#x}
16

17 procedure Remove(updates s: Set,
18 restores x: Item,
19 replaces xCopy: Item)
20 requires
21 x is in s
22 ensures
23 s = #s \ {x} and
24 xCopy = x
25

26 procedure RemoveAny(updates s: Set,
27 replaces x: Item)
28 requires
29 s /= empty_set
30 ensures
31 x is in #s and
32 s = #s \ {x}
33

34 function Contains (restores s: Set,
35 restores x: Item) : control
36 ensures
37 Contains = (x is in s)
38

39 function IsEmpty (restores s: Set) : control
40 ensures
41 IsEmpty = (s = empty_set)
42

43 function Size (restores s: Set) : Integer
44 ensures
45 Size = |s|
46

47 end SetTemplate

Listing B.34: SetTemplate/Split/Iterative/Iterative.rr
1 realization Iterative (function PRECEEDS (restores x: Item,
2 restores y: Item) : control
3 ensures
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4 PRECEEDS = IS_PRECEDING({x}, {y}))
5 implements Split for SetTemplate
6

7 procedure Split (updates s: Set,
8 restores x: Item,
9 replaces t: Set)

10 variable tempSet: Set
11 Clear(t)
12 loop
13 maintains x = #x and
14 IS_PRECEDING({x}, t) and
15 IS_PRECEDING(tempSet, {x}) and
16 (s union t union tempSet = #s union #t union #tempSet) and
17 (s intersection t = empty_set) and
18 s intersection tempSet = empty_set and
19 tempSet intersection t = empty_set
20 decreases |s|
21 while not IsEmpty(s) do
22 variable y: Item
23 RemoveAny(s, y)
24 if PRECEEDS(x, y) then
25 Add(t, y)
26 else
27 Add(tempSet, y)
28 end if
29 end loop
30 tempSet :=: s
31 end Split
32

33 end Iterative

Listing B.35: SetTemplate/Split/Split.rc
1 contract Split (definition IS_PRECEDING (x: finite set of Item,
2 y: finite set of Item)
3 : boolean
4 satisfies restriction IS_PRECEDING(x, empty_set) and
5 IS_PRECEDING(empty_set, x) and
6 (IS_PRECEDING(x, y) or

IS_PRECEDING(y, x)) and
7 for all t,
8 s: finite set of Item
9 where (y = t union s and

IS_PRECEDING(x, y))
10 (IS_PRECEDING(x, t) and

IS_PRECEDING(x, s)) and
11 for all t,
12 s: finite set of Item
13 where (x = t union s and

IS_PRECEDING(x, y))
14 (IS_PRECEDING(t, y) and

IS_PRECEDING(s, y)))
15 enhances SetTemplate
16

17 procedure Split(updates s: Set,
18 restores x: Item,
19 replaces t: Set)
20 ensures
21 #s = s union t and
22 s intersection t = empty_set and
23 IS_PRECEDING(s, {x}) and
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24 IS_PRECEDING({x}, t)
25

26 end Split

Listing B.36: SetTemplate/Subtract/Iterative/Iterative.rr
1 realization Iterative
2 implements Subtract for SetTemplate
3

4 procedure Subtract (updates s: Set,
5 restores t: Set)
6 variable tmp: Set
7 loop
8 maintains s union tmp union t = #s union #tmp union t and
9 s intersection tmp = empty_set and

10 tmp intersection t = empty_set and
11 t = #t
12 decreases |s|
13 while not IsEmpty(s) do
14 variable x: Item
15 RemoveAny(s, x)
16 if not Contains(t, x) then
17 Add(tmp, x)
18 end if
19 end loop
20 s :=: tmp
21 end Subtract
22

23 end Iterative

Listing B.37: SetTemplate/Subtract/Subtract.rc
1 contract Subtract
2 enhances SetTemplate
3

4 procedure Subtract(updates s: Set,
5 restores t: Set)
6 ensures
7 s = #s \ t
8

9 end Subtract

Listing B.38: SetTemplate/UniteAndIntersect/Iterative1/Iterative1.rr
1 realization Iterative1
2 implements UniteAndIntersect for SetTemplate
3

4 procedure UniteAndIntersect (updates s: Set,
5 updates t: Set)
6 variable tmp: Set
7 loop
8 maintains s union t = #s union #t and
9 (s intersection t) union tmp =

10 (#s intersection #t) union #tmp and
11 t intersection tmp = {}
12 decreases |t|
13 while not IsEmpty(t) do
14 variable x: Item
15 RemoveAny(t, x)
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16 if not Contains(s, x) then
17 Add(s, x)
18 else
19 Add(tmp, x)
20 end if
21 end loop
22 t :=: tmp
23 end UniteAndIntersect
24

25 end Iterative1

Listing B.39: SetTemplate/UniteAndIntersect/Iterative2/Iterative2.rr
1 realization Iterative2
2 implements UniteAndIntersect for SetTemplate
3

4 procedure UniteAndIntersect (updates s: Set,
5 updates t: Set)
6 variable ss, ts: Integer
7 variable tmp: Set
8 ss := Size(s)
9 ts := Size(t)

10 if IsGreater(ts, ss) then
11 s :=: t
12 end if
13 loop
14 maintains s union t = #s union #t and
15 (s intersection t) union tmp =
16 (#s intersection #t) union #tmp and
17 t intersection tmp = {}
18 decreases |t|
19 while not IsEmpty(t) do
20 variable x: Item
21 RemoveAny(t, x)
22 if not Contains(s, x) then
23 Add(s, x)
24 else
25 Add(tmp, x)
26 end if
27 end loop
28 t :=: tmp
29 end UniteAndIntersect
30

31 end Iterative2

Listing B.40: SetTemplate/UniteAndIntersect/UniteAndIntersect.rc
1 contract UniteAndIntersect
2 enhances SetTemplate
3

4 procedure UniteAndIntersect(updates s: Set,
5 updates t: Set)
6 ensures
7 s = #s union #t and t = #s intersection #t
8

9 end UniteAndIntersect
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Listing B.41: SetTemplate/Unite/Iterative1/Iterative1.rr
1 realization Iterative1
2 implements Unite for SetTemplate
3

4 procedure Unite (updates s: Set,
5 clears t: Set)
6 loop
7 maintains s union t = #s union #t
8 decreases |t|
9 while not IsEmpty(t) do

10 variable x: Item
11 RemoveAny(t, x)
12 if not Contains(s, x) then
13 Add(s, x)
14 end if
15 end loop
16 end Unite
17

18 end Iterative1

Listing B.42: SetTemplate/Unite/Iterative2/Iterative2.rr
1 realization Iterative2
2 implements Unite for SetTemplate
3

4 procedure Unite (updates s: Set,
5 clears t: Set)
6 variable ss, ts: Integer
7 ss := Size(s)
8 ts := Size(t)
9 if IsGreater(ts, ss) then

10 s :=: t
11 end if
12 loop
13 maintains s union t = #s union #t
14 decreases |t|
15 while not IsEmpty(t) do
16 variable x: Item
17 RemoveAny(t, x)
18 if not Contains(s, x) then
19 Add(s, x)
20 end if
21 end loop
22 end Unite
23

24 end Iterative2

Listing B.43: SetTemplate/Unite/Unite.rc
1 contract Unite
2 enhances SetTemplate
3

4 procedure Unite(updates s: Set,
5 clears t: Set)
6 ensures
7 s = #s union #t
8

9 end Unite
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Listing B.44: StackTemplate/Reverse/Iterative/Iterative.rr
1 realization Iterative
2 implements Reverse for StackTemplate
3

4 procedure Reverse (updates s: Stack)
5 variable tmp: Stack
6 loop
7 maintains reverse(s) * tmp = reverse(#s) * #tmp
8 decreases |s|
9 while not IsEmpty(s) do

10 variable x: Item
11 Pop(s, x)
12 Push(tmp, x)
13 end loop
14 s :=: tmp
15 end Reverse
16

17 end Iterative

Listing B.45: StackTemplate/Reverse/Reverse.rc
1 contract Reverse
2 enhances StackTemplate
3

4 procedure Reverse(updates s: Stack)
5 ensures
6 s = reverse(#s)
7

8 end Reverse

Listing B.46: StackTemplate/StackTemplate.rc
1 contract StackTemplate (type Item)
2 uses UnboundedIntegerFacility
3

4 math subtype STACK_MODEL is string of Item
5

6 type Stack is modeled by STACK_MODEL
7 exemplar s
8 initialization ensures s = empty_string
9

10 procedure Push(updates s: Stack,
11 clears x: Item)
12 ensures
13 s = <#x> * #s
14

15 procedure Pop(updates s: Stack,
16 replaces x: Item)
17 requires
18 s /= empty_string
19 ensures
20 #s = <x> * s
21

22 function IsEmpty (restores s: Stack) : control
23 ensures
24 IsEmpty = (s = empty_string)
25

26 function Length (restores s: Stack) : Integer
27 ensures
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28 Length = |s|
29

30 end StackTemplate

Listing B.47: TextFacility/SwapSubstring/Recursive1/Recursive1.rr
1 realization Recursive1
2 implements SwapSubstring for TextFacility
3

4 uses IsPositive for UnboundedIntegerFacility
5

6 procedure SwapSubstring (updates t1: Text,
7 restores pos: Integer,
8 restores len: Integer,
9 updates t2: Text)

10 decreases |t2| + len
11 if IsEmpty(t2) then
12 if IsPositive(len) then
13 variable c: Character
14 variable z: Integer
15 Remove(t1, pos, c)
16 Decrement(len)
17 SwapSubstring(t1, pos, len, t2)
18 Increment(len)
19 Add(t2, z, c)
20 end if
21 else
22 variable c: Character
23 variable z: Integer
24 Remove(t2, z, c)
25 SwapSubstring(t1, pos, len, t2)
26 Add(t1, pos, c)
27 end if
28 end SwapSubstring
29

30 end Recursive1

Listing B.48: TextFacility/SwapSubstring/SwapSubstring.rc
1 contract SwapSubstring
2 enhances TextFacility
3

4 definition SUBSTRING (s: string of character,
5 start: integer,
6 finish: integer)
7 : string of character
8 satisfies if (start < 0) or (start > finish) or (finish > |s|) then
9 SUBSTRING(s, start, finish) = empty_string

10 else
11 there exists a,
12 b: string of character
13 (s = a * SUBSTRING(s, start, finish) * b and
14 |a| = start and
15 |b| = |s| - finish)
16

17 definition SUBSTRING_REPLACEMENT (s: string of character,
18 ss: string of character,
19 start: integer,
20 finish: integer)
21 : string of character
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22 satisfies if (start < 0) or (start > finish) or (finish > |s|) then
23 SUBSTRING_REPLACEMENT(s, ss, start, finish) = s
24 else
25 there exists a,
26 b,
27 c: string of character
28 (s = a * b * c and
29 |a| = start and
30 |c| = |s| - finish and
31 SUBSTRING_REPLACEMENT(s, ss, start, finish) = a * ss * c)
32

33 procedure SwapSubstring(updates t1: Text,
34 restores pos: Integer,
35 restores len: Integer,
36 updates t2: Text)
37 requires
38 0 <= pos and pos + len <= |t1| and len >= 0
39 ensures
40 t1 = SUBSTRING_REPLACEMENT(#t1, #t2, pos, pos + len) and
41 t2 = SUBSTRING(#t1, pos, pos + len)
42

43 end SwapSubstring

Listing B.49: TextFacility/TextFacility.rc
1 contract TextFacility
2 uses CharacterFacility
3 uses UnboundedIntegerFacility
4

5 definition DIFFER_BY_ONE (t1: string of character,
6 t2: string of character,
7 pos: integer,
8 ch: character)
9 : boolean

10 is
11 there exists a,
12 b: string of character
13 (t1 = a * b and t2 = a * <ch> * b and |a| = pos)
14

15 type Text is modeled by string of character
16 exemplar t
17 initialization ensures t = empty_string
18

19 procedure Add(updates t: Text,
20 restores pos: Integer,
21 restores ch: Character)
22 requires
23 0 <= pos and pos <= |t|
24 ensures
25 DIFFER_BY_ONE(#t, t, pos, ch)
26 // there exists a, b: string of character
27 // (#t = a * b and t = a * <ch> * b and |a| = pos)
28

29 procedure Remove(updates t: Text,
30 restores pos: Integer,
31 replaces ch: Character)
32 requires
33 0 <= pos and pos < |t|
34 ensures
35 DIFFER_BY_ONE(t, #t, pos, ch)
36 // there exists a, b: string of character
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37 // (#t = a * <ch> * b and t = a * b and |a| = pos)
38

39 function Length (restores t: Text) : Integer
40 ensures
41 Length = |t|
42

43 function IsEmpty (restores t: Text) : control
44 ensures
45 IsEmpty = (t = empty_string)
46

47 function AreEqual (restores t1: Text,
48 restores t2: Text) : control
49 ensures
50 AreEqual = (t1 = t2)
51

52 function Replica (restores t: Text) : Text
53 ensures
54 Replica = t
55

56 end TextFacility

Listing B.50: UnboundedIntegerFacility/Add/Add.rc
1 contract Add
2 enhances UnboundedIntegerFacility
3

4 procedure Add(updates i: Integer,
5 restores j: Integer)
6 ensures
7 i = #i + j
8

9 end Add

Listing B.51: UnboundedIntegerFacility/Add/Iterative/Iterative.rr
1 realization Iterative
2 implements Add for UnboundedIntegerFacility
3

4 procedure Add (updates i: Integer,
5 restores j: Integer)
6 variable nj, z: Integer
7 loop
8 maintains i + j = #i + #j and nj + j = #nj + #j and z = 0
9 decreases |j|

10 while not AreEqual(j, z) do
11 if IsGreater(j, z) then
12 Increment(i)
13 Increment(nj)
14 Decrement(j)
15 else
16 Decrement(i)
17 Decrement(nj)
18 Increment(j)
19 end if
20 end loop
21 j :=: nj
22 end Add
23

24 end Iterative
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Listing B.52: UnboundedIntegerFacility/Sqrt/BinarySearch/BinarySearch.rr
1 realization BinarySearch
2 implements Sqrt for UnboundedIntegerFacility
3

4 uses Average for UnboundedIntegerFacility
5 uses Subtract for UnboundedIntegerFacility
6 uses Multiply for UnboundedIntegerFacility
7 uses Square for UnboundedIntegerFacility
8

9 procedure Sqrt (updates i: Integer)
10 variable one: Integer
11 Increment(one)
12 if IsGreater(i, one) then
13 variable two, t, hi, d: Integer
14 Increment(two)
15 Increment(two)
16 t := Replica(i)
17 hi := Replica(i)
18 Increment(hi)
19 Clear(i)
20 d := Replica(hi)
21 loop
22 maintains 0 <= i and i * i <= t and
23 t < hi * hi and
24 d = hi - i and
25 one = #one and
26 two = #two and
27 t = #t and
28 0 <= hi and
29 hi <= #hi and
30 #i <= i and
31 i <= hi
32 decreases d
33 while IsGreater(d, one) do
34 variable m, msq: Integer
35 m := Replica(i)
36 Average(m, hi)
37 msq := Replica(m)
38 Square(msq)
39 if IsGreater(msq, t) then
40 hi :=: m
41 else
42 i :=: m
43 end if
44 d := Replica(hi)
45 Subtract(d, i)
46 end loop
47 end if
48 end Sqrt
49

50 end BinarySearch

Listing B.53: UnboundedIntegerFacility/Sqrt/Iterative/Iterative.rr
1 realization Iterative
2 implements Sqrt for UnboundedIntegerFacility
3

4 uses Add for UnboundedIntegerFacility
5 uses Subtract for UnboundedIntegerFacility
6 uses Multiply for UnboundedIntegerFacility
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7 uses Divide for UnboundedIntegerFacility
8 uses Square for UnboundedIntegerFacility
9

10 procedure Sqrt (updates i: Integer)
11 variable x, xsqrd: Integer
12 Increment(x)
13 Increment(xsqrd)
14 loop
15 maintains xsqrd = x * x and
16 i = #i and
17 x + x > 1 and
18 (x - 1) * (x - 1) <= i
19 decreases i - (x - 1) * (x - 1)
20 while not IsGreater(xsqrd, i) do
21 Increment(x)
22 xsqrd := Replica(x)
23 Square(xsqrd)
24 end loop
25 Decrement(x)
26 i :=: x
27 end Sqrt
28

29 end Iterative

Listing B.54: UnboundedIntegerFacility/Sqrt/Sqrt.rc
1 contract Sqrt
2 enhances UnboundedIntegerFacility
3

4 procedure Sqrt(updates i: Integer)
5 requires
6 i >= 0
7 ensures
8 i * i <= #i and #i < (i + 1) * (i + 1)
9

10 end Sqrt

Listing B.55: UnboundedIntegerFacility/UnboundedIntegerFacility.rc
1 contract UnboundedIntegerFacility
2 type Integer is modeled by integer
3 exemplar i
4 initialization ensures i = 0
5

6 procedure Increment(updates i: Integer)
7 ensures
8 i = #i + 1
9

10 procedure Decrement(updates i: Integer)
11 ensures
12 i = #i - 1
13

14 function AreEqual (restores i: Integer,
15 restores j: Integer) : control
16 ensures
17 AreEqual = (i = j)
18

19 function IsGreater (restores i: Integer,
20 restores j: Integer) : control
21 ensures

91



22 IsGreater = (i > j)
23

24 function Replica (restores i: Integer) : Integer
25 ensures
26 Replica = i
27

28 end UnboundedIntegerFacility
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