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Abstract

Digital contact tracing offers significant promise to help reduce the spread of

SARS-CoV-2 and other viruses. Google and Apple joined together to create the

Google/Apple Exposure Notification (GAEN) framework to determine encounters

with anonymous users later diagnosed COVID-19 positive. However, as GAEN lacks

geospatial awareness, it is susceptible to geographically distributed replay attacks.

While the replay attack is generally known, we contribute a new proof-of-concept for

an easily deployed, anonymous, low-cost, crowd-sourced replay attack network by

malicious actors (or far away nation-state attackers) who utilize malicious (or inno-

cent) users’ smartphones to capture and replay GAEN advertisements that drasti-

cally increase false-positive rates even in areas that otherwise exhibit low positivity

rates. In response to this powerful and feasible replay attack, we introduce GAEN+,

a solution that enhances GAEN with geospatial awareness while maintaining user

privacy, and demonstrate its ability to effectively prevent distributed replay attacks

with negligible overhead compared with the original GAEN framework.
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Chapter 1: Introduction

1.1 COVID-19 & Digital Contact Tracing

The COVID-19 pandemic continues to evolve and spread nearly two years since its

outbreak, claiming over 4.7 million lives globally as of September 2021 [1]. Contact

tracing remains as one of the early identified countermeasures to reduce the spread

and overall impact of viruses such as SARS-CoV-2. To reduce time and cost inten-

sive resources required by contact tracing solely performed by humans, numerous

digital contact tracing (DCT) protocols and smartphone apps have been developed

for complementary use [2]. These protocols commonly utilize native smartphone

features, such as Bluetooth, WiFi, or GPS, to provide the underlying mechanisms

for smartphone apps to determine encounters with other individuals and ultimately

notify of potential exposure to positive diagnosed users.

Compared to other wireless technologies, Bluetooth Low Energy (BLE) predom-

inately enables numerous DCT protocols, such as BlueTrace [3], Temporary Contact
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Numbers (TCN) Protocol [4], Pan-European Privacy Preserving Proximity Trac-

ing (PEPP-PT) [5], SpreadMeNot [6], PPContactTracing [7], Decentralized Privacy-

Preserving Proximity Tracing (DP-3T) [8], and more. BLE is an attractive enabling

technology partly because of its relatively low power consumption and its ability to fa-

cilitate proximity awareness without using additional sensors or location data. DCT

protocols relying solely on BLE are characterized as more decentralized and privacy

preserving because they detect proximity between devices to determine encounters

as opposed to uploading precise location coordinates to a central server. However,

findings from Wen et al [9] reveal numerous protocols leak information, as privacy

preservation is simply not inherent to BLE. Thus, the design and implementation is

a key factor for privacy preserving, decentralized protocols.

Google and Apple joined forces to create the Google/Apple Exposure Notifica-

tion (GAEN) framework [10, 11] based heavily on DP-3T, and provided SDKs for

approved public health authorities to develop and publish smartphone contact tracing

apps. As a result, GAEN-powered apps are widely available, operate more efficiently

in the background, and offer a unified protocol to enable communication between

the two typically competing, widely adopted platforms with a combined near 99% of

the mobile OS global market share [12].

At a high level, GAEN securely generates pseudo-random, ephemeral identifiers

and broadcasts them over BLE for nearby participating smartphones to capture.

Later, these identifiers are re-derived from a key shared anonymously by a positively

2



diagnosed user and matched with previously captured identifiers. These mechanisms

for encounter determination and significance occurring on users’ devices, with a cen-

tral server only to relay pseudo-random keys, make GAEN a largely decentralized

protocol.

While GAEN attempts to balance the tradespace between data-utility and data-

privacy to preserve user privacy and increase adoption rates, this approach also

introduces weaknesses. Particularly, analysis of GAEN shows it is susceptible to

wide-spread replay attacks due to the wireless broadcasting nature of BLE adver-

tisements and the lack of geospatial awareness in the protocol itself. Therefore, a

malicious actor can capture a legitimate GAEN advertisement from an honest user

and replay it anywhere in the world. If another honest user captures a replayed

advertisement originating from a user who is later diagnosed positive for COVID-19,

they may receive a false-positive exposure notification even though the two were not

in close proximity. Consequently, geographically distributed replay attacks would

substantially increase false-positive exposure notifications and bring negative conse-

quences to individuals’ and collective society’s daily life.

Previous works have specifically addressed the replay vulnerability in GAEN.

For instance, SpreadMeNot [6] offers a public-private key distribution solution that

diverges significantly from GAEN. Others offer modifications that arguably fit within

the GAEN framework.
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In particular, Raskar et al present a recommendation for adding global location

to GAEN [13], suggesting GPS context to be included as an encrypted payload in

broadcasted GAEN advertisements. While this recommendation appears to be a

strong candidate against replay attacks, among other issues that we discuss later, it

risks decreased adoption from public perception around GPS locations being continu-

ously broadcasted to others, even if encrypted. Another recent work, ACTGuard [14]

recommends a third-party app and server to ultimately verify two users’ identifiers

are broadcasted at the same time and location through relaying one-way hashes upon

encounter and calculation of encounter to a separate server. However, this solution

seems to add unnecessary complexity to an otherwise simple protocol.

1.2 Thesis Contribution

The main contribution of this thesis is twofold. First, we raise public awareness

of the impact of replay attacks against GAEN, by demonstrating concretely such

an attack in a low-cost, easily deployed, scalable, and practical way (§3). While

replay attacks are known, we introduce a geographically distributed, crowd-sourced

replay attack network Proof-of-Concept (PoC) that offers citizen malicious actors a

low-barrier to participate and crowd-source data through a simple smartphone app

installation. More critically, the essence of our PoC can be extended by far away

nation-state actors with advanced capabilities for deploying botnets [15] through

compromised smartphones and BLE IoT devices. If adapted as malware, innocent

4



users across the entire world may unknowingly contribute or fall victim to a larger

attack aimed to destroy public trust and confidence in DCT protocols.

More importantly, the contribution’s second aspect includes our proposal of

GAEN+ (§4), an elegant variant of the GAEN framework that increases its re-

siliency against a geographically distributed replay attack by introducing geospatial

awareness. After recognizing the weaknesses of the existing GAEN protocol and

the proposed solutions from Raskar et al [13] and ACTGuard [14] (detailed in §8),

we propose a solution that does not modify, add any sensitive location data to the

transmitted protocol fields, or introduce additional infrastructure. Instead, GAEN+

slightly modifies the existing key derivation to include location context provided by

a hierarchical geospatial index while still preserving bi-directional anonymity.

5



Chapter 2: Background

In this chapter, we discuss the systematic characterization (§2.1) and introduc-

tory summary of three BLE enabled DCT protocols. Then we focus on the GAEN

framework in particular (§2.2.1), describe its protocol specification (§2.2.2) and then

discuss various attacks and countermeasures (§2.2.3).

2.1 Digital Contract Tracing Protocols

The following section provides descriptions for systematic characterization of

DCT protocols which provides necessary background to then discuss three BLE-

enabled DCT protocols: DP-3T, BlueTrace, and GAEN.

2.1.1 Characterization

Digital contact tracing protocols can be understood and compared by three defin-

ing operational characteristics:

1. Detection of encounters

2. Determination of epidemiological significance

3. Communication of encounters and exposure

6



Each characteristic lies on the spectrum of centralized and decentralized ap-

proaches. Generally, one can think of centralized approaches having access to more

granular data such as user location, age, gender, personally identifiable informa-

tion (PII), etc, and therefore able to process large, multi-variate data sets on high

performance computing environments. However, this increased data utility often

comes at the cost of user privacy. Decentralized approaches on the other hand push

computation to the edge, often using pseudo-random tokens to avoid potential for

identification.

When determining an encounter, a centralized approach may capture a single

device’s location and time and upload to an aggregating, remote server which ingests

space-time points to determine proximity. However, a decentralized approach may

transmit beacons over a nearby wireless communication protocol between devices

using a broadcast protocol, storing captured beacons in local storage.

When determining if an encounter has epidemiological significance, a centralized

approach may easily run processor-intensive algorithms that yield more accurate

results, save data in large quantities to provide insight overtime to epidemic, disease,

and other related medical researchers, and provide public health insight to mitigate

and predict patterns for spread. Whereas a decentralized approach may run analysis

completely on the edge device and therefore must consider processing and power

constraints, potentially using more simple algorithms that yield less insightful results.

7



Finally, communication of encounters and exposure in a centralized approach may

employ human contact tracers or other public health workers to contact users directly

over phone, email, or text, to gather more personal information and recommend

quarantine. This contrasts to a decentralized approach where positive cases may

be self-identified on a user’s device and exchanged over a beacon to other nearby

devices.

Exploring these extremes reveals a value calculation that protocol developers

must consider in their designs. This calculation navigates the tradespace between

data-utility and data-privacy to create a protocol that is both effective and widely

adopted. A fully centralized approach may appear to be more capable and effective

at determining, gathering information about, notifying users, and providing valuable

data to health authorities about potential exposure, but will likely be less adopted if

individuals and societies are skeptical about the use of this data. A fully decentralized

approach may appear to better safe-guard personal data, but inherently suffers from

less accurate determination algorithms, environment context, exposure notifications,

and withholds valuable data from epidemiologists.

An optimal solution is likely found between these extremes. The following proto-

cols explored in this thesis each attempt to strike a balance between centralized and

decentralized characteristics in order to provide an effective protocol while preserving

the greatest amount of privacy.

8



Protocol Encounter Significance Communication

DP-3T Decentralized Decentralized Decentralized
BlueTrace Decentralized Centralized Centralized

GAEN Decentralized Decentralized Decentralized

Table 2.1: Surveyed protocols characteristics described as centralized vs. decentral-
ized

2.1.2 Enabling Protocols

Numerous existing network protocols are leveraged to facilitate digital contact

tracing protocols’ core requirement to transmit and receive data. The application

of various wireless protocols has been explored as a mechanism to exchange data

between DCT applications and determine proximity, to include WiFi, GPS, Zigbee,

and Bluetooth. Trivedi et al present a solution with WiFiTrace which utilizes WiFi

network logs to passively determine user proximity and trajectory [16]. Safe Paths

from researchers at MIT Media Lab propose utilizing fuzzy, time-stamped GPS trails

to determine proximity with infected users. Bluetooth Low Energy emerges as the

dominate wireless technology utilized to determine encounters with other individuals.

2.1.3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is one of two Bluetooth wireless communication

protocols developed for lower power consumption devices [17]. BLE is capable of pro-

viding point-to-point, broadcast, and mesh device communication network topologies

9



in addition to its device proximity, direction, and distance positioning capabilities.

Operating at the 2.4GHz unlicensed ISM frequency band, BLE features over 40

channels with 2 MHz separation providing 3 advertising and 37 data channels.

The protocols explored in this thesis all utilize BLE to determine encounters with

other participating devices. As described above, this makes these protocols’ approach

to encounter determination decentralized. Further, they utilize a smartphone’s BLE

interface Receiver Signal Strength Indicator (RSSI) to determine distance as part of

the significance calculation. However, research from Q. Zhao et al [18] observed 20

BLE DCT apps to conclude several factors can make the accuracy of this calculation

challenging, including broadcasting frequency, TxPower, and lack of specific tuning.

2.1.4 DP-3T

The first protocol we explore is DP-3T [8], developed by an international group of

technologists, legal experts, engineering and epidemiologists, primarily from universi-

ties. It features decentralized proximity tracing through BLE beacons, mostly decen-

tralized communication of data through non-attributable data uploads to servers and

subsequent broadcasting to other users, and an on-device, decentralized encounter

significance computation. The latest revision of DP-3T features three designs: low-

cost, unlinkable and hybrid. The specifications are open-source and provided with

demo implementations [19].

Once a DP-3T powered smartphone app is downloaded, a user is not required to

provide any personally identifiable information. Upon first-time initialization, the

10



app generates a random secret key, SK0. Daily, the app would use the previous day’s

secret key as an argument to a hash function to generate the current day’s secret

key, SKT:

SKT ← H(SK(T−1)) (2.1)

Using the newly generated key for some day T, a set of n ephemeral IDs (eIDs) are

generated using a pseudo-random function (PRF), combined with a shared, prede-

termined, constant string, and used as the argument to a pseudo-random generator

(PRG), such that:

eID1||eID2||. . . ||eIDn ← PRG(PRF (SKT , “ < constant string > ”)) (2.2)

With each passing epoch, recommended to be approximately 15 minutes, the appli-

cation will randomly choose a new eID to broadcast as its payload in a BLE adver-

tisement. There is no additional data in the BLE packet that potentially identifies

the user and epochs randomly vary in time to reduce temporal pattern matching.

While broadcasting an eID, the app is also capturing BLE advertisements of similar

characteristics, storing them on the device with a timestamp and RSSI.

Upon a user’s positive diagnosis, a health authority provides an anonymous,

random code to the user to enter into the app. The user now decides still whether

to upload their secret keys over a chosen date range. In effect, the user uploads a set

of SK and T pairs:

UploadSet← {(SKi, Ti) | Td ≥ i ≥ Te} (2.3)

11



Where each i is in the range from the day of diagnosis Td, to a chosen day no earlier

than a date that is determined to have epidemiological relevance, Te. In the case

of COVID-19, the range would include 14 days. Therefore, a user wanting to fully

share their max amount of daily generated SK would upload 14 total pairs.

Other participating devices download large sets of new (SK, T) pairs daily. For

each day T, a device will use the SKT to compute sets of eIDs to search for matches in

its local database of previously captured eIDs. Upon finding a match, a distance cal-

culation and potential duration calculation is performed to determine the encounter’s

significance. If the predetermined significant-encounter threshold is surpassed, the

device notifies the user. As days pass, captured eIDs and generated SK that are

older than the epidemiological relevant time period (i.e., 14 days for COVID-19) are

deleted from the device’s local storage.

2.1.5 BlueTrace

BlueTrace was developed by Singapore’s Government Technology Agency and

Ministry of Health [3]. BlueTrace features decentralized proximity tracing through

BLE handshakes, centralized communication of data through encrypted but at-

tributable by phone number and PIN to health authority servers, and a decentralized

encounter significance computation on individuals devices. Utilizing the BlueTrace

privacy-preserving protocol, TraceTogether is the first nationally deployed Bluetooth-

based application and contact tracing system in the world. Subsequent to over 50

12



governments expressing interest, Singapore’s Government Technology Agency re-

leased OpenTrace, the open-source implementation [20].

Once a BlueTrace-powered application is installed, the user provides a phone

number and is returned a randomized UserID. This phone number is stated to enable

a human-in-the-loop component, allowing a contact tracer to call an individual who

has notified the server of a positive diagnosis for any clarifying questions. BlueTrace

apps transmit TempIDs that are AES-256-GCM encrypted payloads consisting of

the UserID and start and end times for lifetime and validity checking. This payload

is combined with an initialization vector (IV) and Auth Tag, then Base64 encoded,

totaling 84 bytes. Only the health authority has access to the encryption key to

encrypt and decrypt the encrypted payload and therefore logically must generate and

send TempIDs to each user. Batches of TempIDs are sent to account for potential

network instability or a device being offline for extended periods.

As opposed to DP-3T that simply broadcasts and captures BLE advertisements,

BlueTrace performs a typical BLE handshake that relies on standard BLE protocols,

such as Generic Attribute Protocol (GATT), to facilitate device discovery and En-

counter Message (EM) sharing through characteristic exchanges. The transmitted

EM is in JSON format and consists of a user’s TempID for a specific time window,

device model, health authority organization code, and protocol version. The RSSI,

as seen from the Central device, and device models are shared so each device can

better estimate distance during processing.
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Alice

Public Health 
Authority Server

(PhoneNumbera)

(UserID, 
PhoneNumbera)

(UserID, TempIDs)
Bob

EMa = {TempID, 
<DeviceModel>, 
<RSSI>,
<Organization Code>,
<version>}

EMb = {TempID, 
<DeviceModel>,
<Organization Code>,
<version>}

BLE Peripheral (P) BLE Central (C)
C discovers P, 

R/W EM 
Characteristic

Figure 2.1: BlueTrace registration and BLE exchange of Exposure Messages from
Central and Peripheral devices

Upon positive diagnosis, a user receives an authorization code from the health au-

thority and decides whether to upload captured EMs. The health authority decrypts

the transmitted data and determines the epidemiological relevance of each encounter

using time, RSSI, and device model as factors. Since their database holds at least

a UserID and phone number pair for each participant, manual contact tracers can

now reach out to other users that may have encountered the positively diagnosed

individual. As provided by the OpenTrace implementation, devices delete captured

EMs after a 21 day period.
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2.2 Google/Apple Exposure Notification (GAEN) Frame-
work

The following provides an introduction GAEN and a closer look at its cryp-

tography and BLE specifications. We then further explore attacks against GAEN,

particularly focusing on geospatial and temporal characteristics that enable replay

attacks.

2.2.1 Introduction to GAEN

GAEN is heavily based on the decentralized, privacy-preserving proximity tracing

system, namely, DP-3T [8]. The primary enabling technology is the use of smart-

phones’ BLE chipsets to continually broadcast and capture pseudorandom ephemeral

tokens or identifiers. Captured identifiers are later compared against anonymous

identifiers derived from keys provided by others who are diagnosed positive for

COVID-19. The occurrence of an encounter is determined on a user’s smartphone,

anonymous keys are shared with other users through a central server that does not

store personally identifiable information, and the significance of an encounter is again

determined on each individual’s device. These qualities make GAEN largely a de-

centralized protocol.

While many other DCT protocols are implemented entirely in a standalone smart-

phone app, GAEN is provided as an SDK framework for iOS and Android app devel-

opers at approved public health authorities to utilize, making the core cryptographic

15



and BLE functionality implemented at the operating system level. Providing a frame-

work also enables the capability for iOS applications to continually broadcast BLE

beacons, overriding the typical behavior which shuts down critical BLE functionality

when an application is in the background or the smartphone’s screen is off.

Privacy & Adoption. With a combined approximate 99% mobile OS global market

share [12], a framework provided by Google and Apple intuitively has the highest

potential for wide-spread adoption. This potential underscores the responsibility

of their researchers to release a framework which users can understand and feel

their privacy is preserved while providing the most utility to combat the spread of

highly contagious diseases. To this end, both companies have made freely available

online the specifications, documentation, terms of use for application developers and

health authorities, source code and reference implementations, and explanations of

the privacy preserving characteristics of GAEN [10, 11]. These privacy preserving

characteristics and policies include [10]:

1. Users opt-in to share their anonymous tokens upon positive diagnosis with the

health authority.

2. No location collection or tracking, only determination of proximity to other

anonymous devices.

3. Identity and diagnosis status is not shared with other users, Apple, or Google.

4. Applications are limited to approved public health authorities who must adhere

to privacy, security, and data use restrictions [21].

16



These characteristics trade data-utility for data-privacy. While these likely benefit

adoption, they also limit the potential to ultimately reduce the spread of disease

through more accurate exposure notifications. GAEN is very specific to only include

BLE backed technology for proximity detection without location services, despite

many useful and commonly used apps, such as navigation, utilizing GPS.

2.2.2 GAEN Specification

In the following, we summarize the GAEN framework cryptography and BLE

specifications [22, 23] to provide sufficient context for the attack analysis and coun-

termeasure recommendations.

Pseudo-random Key Derivations. Once a user has downloaded and confirmed

installation of a GAEN-powered app from Google Play Store or Apple App Store, a

Temporary Exposure Key (TEK) is generated daily using a cryptographic random

number generator function (CRNG):

TEKi ← CRNG(16) (2.4)

and stored securely, along with its creation time interval i, for 14 days on the user’s

device. The current day’s TEK is then combined with a null salt value and the static

string “EN-RPIK” to generate a 16-byte Rolling Proximity Identifier Key (RPIK)

through an HMAC Key Derivation Function (HKDF):

RPIKi ← HKDF (TEKi, NULL, “EN−RPIK”, 16) (2.5)
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The current RPIK is combined with 16-bytes of padded data, consisting of the static

string “EN-RPI” and a discrete time interval value, as input to a symmetric encryption

algorithm, AES128. A 32-bit Exposure Notification Interval Number (ENIN):

ENIN(UnixT imestamp)← UnixT imestamp

60× 10
(2.6)

is derived from 10 minute windows starting from the Unix Epoch and therefore allow

all participants to use the same values for key derivation, including the j -th interval:

ENINj ← ENIN(j) (2.7)

for TEK derivation. With the additional 6-NULL bytes added in the padding:

PadDataj ← (“EN−RPI”, NULL, ENINj) (2.8)

the framework eventually generates the ephemeral Rolling Proximity Identifier (RPI)

for a given time interval, resulting in 144 derived per day:

RPIi,j← AES128(RPIKi, PadDataj) (2.9)

Ephemeral Payloads. A new 16-byte RPI is generated every 10-15 minutes, co-

inciding with the operating system’s rotation of the broadcasting BLE address to

reduce the potential for identification and long-term tracking. A 4-byte Associated

Encrypted Metadata (AEM) field is generated containing version information and

transmission power to assist in distance calculation, as well as reserved bytes. An

RPI and AEM is combined to form the service data portion of a BLE payload. The
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BLE advertisement includes a 0xFD6F service UUID that allows applications and

chipset interfaces to apply filters. The complete BLE advertising payload is broad-

casted several times per second.

Scanning. Every 2-5 minutes, the GAEN-powered app opportunistically enters a

scanning mode for approximately 10 seconds. Each captured RPI is paired with its

BLE RSSI value and timestamp before being securely stored in a database on the

user’s smartphone for 14 days. These captured RPIs never leave the smartphone.

Exposure Notification. Upon positive diagnosis, a user is provided a submission

key from the app’s governing public health authority and is given the option to

upload Diagnosis Keys (DKs) to a centralized server managed by a public health

authority. The set of DKs consists of a range of TEK and respective creation ENINi

pairs, (TEKi, i), stored on the device for up to 14 days. If a user is not positively

diagnosed, the pairs do not leave their device. DKs from all positively diagnosed

users who choose to share are aggregated on the server and sent periodically to other

app users.

The app now uses the aggregated TEK and ENINi pairs to reproduce the RPIKs

and subsequent RPIs. The RPIs derived from the anonymous TEKs are then com-

pared to the RPIs captured and stored in the user device’s database. Upon a suc-

cessful match, the proximity and significance of an encounter is determined through

an RSSI calculation. If an encounter is considered significant, the user receives an

exposure notification from the app with healthcare guidance.
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Figure 2.2: Current GAEN framework operations among honest users

Scenario. Figure 2.2 depicts a typical scenario between honest users Alice, Bob, and

Charlie, where Alice and Bob exchange RPIs as they are within BLE range of each

other. Upon Alice’s positive diagnosis, she anonymously uploads (TEKi, i) pairs

to the public health authority which combines them with other pairs to periodically

distribute to Bob and Charlie to calculate potential encounters. Since Bob deter-

mines he was in close proximity anonymously with Alice, he receives an exposure

notification.

While some GAEN-based apps may ask users to optionally provide their phone

number during initial signup to assist human contract tracing efforts, no other person-

ally identifiable information (PII) is required by or uploaded to the server. Therefore,

the identity of the individual(s) for whom a user was exposed remains private.
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2.2.3 Attacks Against GAEN

DCT protocols such as GAEN are subject to various attacks [24, 25], including (I)

Denial-of-Service (DoS), (II) sniffing, (III) tracking, (IV ) identification, and (V )

replay particularly due to their reliance on BLE for connection-less, wireless data

transmission broadcasting. In the following, we review these attacks and discuss

countermeasures incorporated thus far into GAEN.

(I) Denial-of-Service. A DoS attack aims to degrade or limit access to a service.

In the case of BLE, this may present itself as packet flooding such that the chipset

is unable to keep up with incoming transmissions and is forced to drop, potentially

valid, packets. Another type of DoS occurs after successful capture and during data

processing. If a protocol does not limit the type or amount of packets it will process,

finite system resources such as storage can become exhausted which may result in

degraded application or overall system performance. Tech-savvy users can modify

the minimum and maximum broadcast interval parameters of an advertisement of

a device’s BLE interface to increase transmission rate of packets. With inexpensive

USB BLE dongles, the number of broadcasted advertisements in a given time span

can be easily scaled.

Protocols like GAEN that transmit connection-less, pseudo-random payloads are

easy targets for DoS attacks. As such, GAEN mitigates the impact from storage DoS

attacks by only scanning for advertisements opportunistically once every 2-5 minutes.

This results in approximately 415 scans per day on average. Each GAEN advertising
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payload is 20 bytes, which includes the 16-byte RPI and 4-byte AEM, and is stored

for 14 days. If we assume a constant attack with a target smartphone capturing an

average of 100 unique GAEN advertisements per scan window, this totals to 581,000

after 14 days and requires approximately 11.62MB of storage. Given typical modern

smartphone storage capacities ranging from 32-256GB and more, this DoS attack’s

impact on storage is minimal.

(II) Sniffing. As a wireless communication protocol, BLE is inherently suscepti-

ble to sniffing attacks. BLE utilizes adaptive frequency hopping to reduce collisions

[26] for connection-oriented data transmission, which makes following stateful trans-

missions between two devices more difficult. However, the connection-less nature

of advertisements in GAEN removes this barrier, requiring simply a BLE enabled

device that follows the protocol specification to receive BLE advertisement payloads.

Therefore, there is not a mitigation GAEN can employ to address sniffing BLE

advertisements. Doing so would logically contradict the very purpose of advertising

presence or services. Consequently, the intended ease of BLE advertisement capture

paves the way for other attacks, such as tracking and relay/replay.

(III) Tracking. Mobile apps that advertise an identifier are prone to tracking

attacks that aim to observe data trends and record an individual’s location over

time. Essentially, if an advertised attribute (e.g., the BLE MAC address or a payload

value) is observed in one location at one time and again at another time, one can
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infer the device’s trajectory, average speed, and location. This attack becomes more

accurate the longer low entropy, identifiable attributes are broadcast.

GAEN attempts to counter tracking attacks by deriving a new RPI with each

change in BLE Media Access Control (MAC) address already in place by the An-

droid and iOS operating systems. Specifically in BLE parlance, the advertiser’s BLE

MAC address is set as Random, Private, and Non-resolvable [27]. This occurs ap-

proximately every 10-15 minutes to mitigate timing attacks that attempt to observe a

strict change frequency to further support tracking. In effect, this type of ephemeral

address hides the true, static, private MAC address of the BLE interface. This re-

duces the potential for tracking a repeatedly observed BLE MAC address or RPI.

However, despite this mitigation, Corona-Sniffer [28] has demonstrated the feasibility

for tracking a smartphone using a GAEN-powered app through a deployed network

of geographically dispersed BLE receivers.

(IV) Identification Attacks. Malicious tech-savvy actors can develop and de-

ploy additional sensors alongside BLE receivers to enable identification attacks. For

example, one can setup a low-cost video camera feed to pair with sniffed GAEN ad-

vertisements. With root access to a smartphone with a GAEN-powered app installed,

the malicious actor may be able to identify a positively diagnosed user after RPIs are

derived from received DKs. They may utilize familiar knowledge, such as recognizing

an employee or student, or through advanced facial recognition capabilities.

23



Attacks that utilize complementary data are difficult to mitigate, particularly

when sources include media such as video or sound that are potentially easily cap-

tured without notice. For example, to block identification from a video feed, one

may require a physical barrier or to disguise their person. Therefore, it is again

by the nature of BLE advertisements and the technical skills of a malicious actor

that enable this attack that effectively fall out of the scope for GAEN to reasonably

address.

(V) Replay Attacks. Generally, a replay attack involves the capture and repeat

transmission of data by a third-party. This is typically carried out by a malicious

actor who intends to exploit a protocol’s weakness to gain access to a system, poison

a data set, or cause undesirable system effects.

Replay attacks may be mitigated at different levels of the network communication

stack. For example, by using session IDs that cryptographically confirm the originat-

ing source, packet sequence numbers, or two-factor authentication. Effectively, these

mitigations aim to provide connection state, timing, or other contexts to verify the

validity of the transmission. However, mitigating replay attacks with broadcasted,

connection-less protocols, such as BLE advertisements, becomes more difficult.

As such, since GAEN transmits its RPIs within BLE advertisements, it is a prime

target for replay attacks. While the developers of GAEN are clearly aware of replay

attacks, the ephemeral nature of RPIs only provides a weak temporal defense, leaving

the geospatial vector open to attack.
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• Temporal Context. GAEN limits the replay window of a captured RPI to

approximately 2 hours. While RPIs are both originally created and later de-

rived using established Unix timestamp intervals, GAEN adds a +/- 2 hour

buffer to increase validity assumingly to account for the fuzzyness of RPI ro-

tation and minor time disparities among devices. RPIs are stored by interval

when captured by a GAEN-powered app, rendering RPIs replayed outside the

interval +/- 2 hours invalid.

However, an RPI and timestamp interval pair is 20 bytes total, and therefore

can be quickly transmitted across the Internet with typical smartphone data

rates, even at high volume. For example, with a modest 5 Megabit/second

download rate, a smartphone can theoretically download 200 kilobytes (KB), or

10,000 captured (RPI, interval) pairs, in just 320 milliseconds. Consequently,

distributed RPIs can be replayed by a malicious actor and captured by honest

users within this wide window.

• Geospatial Context. GAEN relies on the limited range of BLE and the

RSSI values at time of capture to calculate proximity to nearby smartphones.

However, since the payload lacks geospatial awareness, an RPI is valid when

broadcasted in any location. For example, an RPI generated and broadcasted

in Brooklyn, New York is equally valid in San Diego, California.

This lack of geospatial context makes GAEN vulnerable to geographically dis-

tributed replay attacks.
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Chapter 3: Low Cost, Crowd-Sourced Replay Attacks

While it is well-known in principle that GAEN is subject to replay attacks [24, 25],

we are unaware of concrete realizations of a crowd-sourced, geographically distributed

replay attack network targeting GAEN, or consideration of the ease of its implemen-

tation, deployment, cost, scalability, and the potential severity of their impact. We

address these issues in this chapter, in terms of the attack scenario (§3.1), a concrete

implementation, (§3.2), and its impact (§3.3).

3.1 Attack Scenario

We consider a tech-savvy, malicious actor who aims to disrupt intended func-

tionality of GAEN. At a high level, this malicious actor has the ability to design

and develop smartphone applications using standard operating system SDKs, deploy

infrastructure necessary to facilitate an attack, observe and dissect wireless traffic,

and modify device components and drivers to deviate from protocol specifications.

To demonstrate exactly how the attack works, we provide a walk-through example

shown in Figure 3.1.
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Figure 3.1: Step-by-step attack scenario demonstrating GAEN’s vulnerability to
crowd-sourced, geographically distributed replay attacks

Assume there are three honest users Alice, Bob, and Charlie who have a GAEN-

powered app installed on their smartphone, and two malicious users Mallory and

Malaki who do not know each other but have individually subscribed to the replay

attack network and have the replay app installed on their smartphone. The replay

attack works as follows:

1. Alice generates a TEK and derives an RPIK daily. Then, she creates a new

RPI every 10 to 15 minutes and broadcasts it over BLE.
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2. Bob and Mallory are within Alice’s BLE advertising range, capture Alice’s

GAEN advertisement, and extract the RPI. Bob stores the RPI for 14 days.

Mallory calculates the current ENIntervalNumber i and sends the captured

(RPI, i) pair to the replay attack network from his location in San Diego, CA.

3. Malaki, in Brooklyn, NY, receives (RPI, i) pairs, including Alice’s, and con-

tinuously replays the broadcast of received RPIs in the interval window i.

4. Charlie receives Alice’s RPI, replayed by Malaki.

5. A few days later, Alice is positively diagnosed for COVID-19. She elects to

submit her (TEK, i) pairs to the public health authority’s server.

6. Bob and Charlie receive the set of anonymous DKs from the public health

authority server and derive the RPIKs and subsequent RPIs. Bob and Charlie

individually find a match between Alice’s RPI and an RPI derived from a TEK.

7. Bob and Charlie are both notified of exposure (due to proximity to Alice,

though this is anonymized). Bob’s notification is valid whereas Charlie’s is a

false-positive.
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3.2 Our Implementation

Simple Network Topology. An anonymous, crowd-sourced, geographically dis-

tributed replay attack network easily scales through smartphone apps and cloud ser-

vices, without requiring specialized hardware. Like-minded malicious actors down-

load the replay app on their BLE enabled and Internet connected smartphones to

serve as nodes that query a central server. After a simple, one-time setup, they

simply carry their smartphone on their person throughout their normal daily rou-

tine capturing, transmitting, and replaying RPIs. The replay attack network central

server includes a simple application that receives and distributes captured RPIs from

subscribing nodes.

Capture. Each node will continuously scan for BLE advertisements and filter for

the 0xFD6F Exposure Notification Service UUID, as outlined in the GAEN Bluetooth

specification [23]. Upon successful capture of a GAEN advertisement, the 16-byte

RPI value is extracted from the payload and paired with the current calculated

Unix timestamp interval. This interval is calculated exactly how GAEN calculates

an ENIntervalNumber for key derivation. To avoid unnecessary traffic from sending

duplicates, only unique RPI and timestamp interval pairs are published to the replay

attack network central server’s message queue. The capture algorithm is described

as pseudo-code in algorithm 1.

Distribution. The central server distributes received pairs to all other participating

nodes through standard HTTP requests. Received pairs are checked for recent receipt
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Algorithm 1: Replay Attack Network: Node - Capture

1 hciDevice = HCIConnection(ble device id);
2 hciDevice.setServiceUUIDFilter(0xFD6F );
3 server = httpConnection(server endpoint);
4 adverts = new Dictionary;
5 // Capture Thread
6 while true do
7 gaenAdvert = hciDevice.blockUntilMatch();
8 rpi = gaenAdvert.extractRPI();
9 curT imeInterval = ENIntervalNumber(now);

10 if adverts does not contain (rpi, curT imeInterval) then
11 adverts.add((rpi, curT imeInterval));
12 server.post((rpi, curT imeInterval));

13 end

14 end

and uniqueness to remove duplicates that may arrive from two nearby malicious

nodes. The server effectively acts as a many-to-many, bent pipe transport mechanism

for unique data. By grouping received RPIs in the valid time interval window, the

server does not distribute expired RPIs.

Our PoC does not implement additional meta processing, but can be easily aug-

mented to extend its utility with additional data from the nodes, such as location.

This enhancement could provide tracing capabilities as demonstrated in previous

works [28] but outside the scope of our focus and contribution on demonstrating a

geographically distributed replay attack.

Replay. In a separate thread, nodes query the central server every 60 seconds to

receive valid RPIs for the current interval, captured by other participating nodes.
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Meanwhile, the node is continuously iterating through its local queue of received

RPIs. For each pair, the node modifies its BLE address, confirms timestamp interval

validity, and constructs and broadcasts the RPI in a valid GAEN BLE advertisement

format. The replay of RPIs is described in pseudo-code in algorithm 2.

Algorithm 2: Replay Attack Network: Node - Replay

1 server = httpConnection(server endpoint);
2 rpis = new FIFOQueue;
3 // Server Query Thread
4 while true do
5 // Every 60 Seconds
6 newPairs = server.queryForPairs();
7 rpis.append(newPairs);

8 end
9 // Broadcast Thread

10 while true do
11 curT imeInterval = ENIntervalNumber(now);
12 curPair = rpis.dequeue();
13 if curPair.timeInterval == curT imeInterval then
14 SetRandomBLEAddress();
15 BroadcastGAENPayload(curPair.rpi);
16 rpis.queue(curPair);

17 end

18 end

App Installation. An app intended to cause disorder and undermine a social good

is likely to be removed from the app stores. However, malicious users interested

in participating in a replay attack network may understand other methods for app

installation, such as “jailbreaking”, “rooting” [29], or direct installation via IDEs
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or pre-compiled binaries. Meanwhile, motivated nation-state actors may integrate

the concepts into malware and a worm that develops a botnet, compromising smart-

phones and IoT devices connected to the Internet without user awareness - a feasible

effort given the numerous 0-click attacks against innocent users’ smartphones from

nation-state attackers (e.g. [30, 31, 32]). While a 0-click exploit costs millions of

USD, it is still a low cost attack for a nation-state.

We have implemented the replay smartphone app PoC using standard Android

SDKs for BLE and HTTP requests on a Samsung Galaxy S8. This PoC does not

utilize the provided GAEN framework and therefore does not require approval as a

public health authority. The central server application is created using Python 3.8,

a micro web framework Bottle, and served with Gunicorn WSGI.

3.3 Attack Impact

Our concrete, crowd-sourced, geographically distributed replay attack network

can cause severe consequences, albeit we have never deployed it in practice. Below

are a few hypothetical consequences.

First, depending on government, public health authority, employer, or academic

institution guidance and policies, an exposure notification may require someone to

self-quarantine and lead to wide-spread cascading effects to others. Since rapid, ac-

curate in-home tests are not currently common place, teachers or students may miss

classes requiring a decreasing supply of substitutes to cover, resulting in continual

disruption of education. Food suppliers may become excessively delayed in shipping
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causing grocery store stocks to dwindle. Replay attacks continuously and success-

fully executed in high numbers would become widely publicized, likely resulting in

a loss of user confidence and a severe negative impact on GAEN adoption rates.

Daily personal activities or long-planned vacations may be cancelled or postponed,

exacerbating economic and mental health effects. The scenarios that introduce chaos

to typically predictable activities that have health, political, and economic impacts,

among others, are countless.
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Chapter 4: Countermeasures & Research Goals

The absence of geospatial awareness makes GAEN exposed to geographically dis-

tributed replay attacks. If a replay attack network, as introduced by our PoC (§3.2),

is deployed and adopted by malicious actors, false-positive rates in otherwise low

positivity rate areas would substantially increase. This potentially decreases pub-

lic trust and adoption rates of GAEN and DCT applications in general. Therefore,

GAEN must maintain public trust in order to increase adoption rates and provide its

maximum utility for notifying users of exposure to positively diagnosed individuals.

To this end, we establish the following research goals to enhance the current

GAEN framework:

• G1: Current location data retrieval without compromising user privacy (§4.1).

• G2: Enhancement of GAEN with geospatial awareness to reduce the effect of

replay attacks (§4.2).

• G3: Incorporation of modifications without requiring significant rework of the

protocol or significantly changing its performance or user experience (§4.3).

In the following, we describe how we achieve each of these goals in greater detail.
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4.1 G1: Retrieving Current Location

When a concept requires location context, GPS is typically the first solution

considered. Fortunately, modern smartphones commonly feature GPS receivers that

utilize satellite constellations for its current latitude and longitude. Researchers

demonstrate accuracy of GPS data from smartphones varies wildly depending on

conditions, however, determine an average horizontal position accuracy of an iPhone

6 to be within 7-13m and frequently under 2m, consistent with other autonomous

GPS receivers [33]. While an approximate 23-42 feet falls outside of the Center for

Disease Control and Prevention’s recommendation of maintaining a distance of 6

feet between others [34], it falls well within BLE range of approximately 300 feet.

However, this level of GPS accuracy both may appear too pervasive to user privacy

and plainly violates GAEN’s Additional Terms that states apps can not collect pre-

cise location [21]. Further, traditional GPS solutions typically consume significant

amounts of power when active, resulting in noticeable battery drain and degraded

user experience.

There are numerous alternative sources for location, including WiFi, Bluetooth,

cellular networks, and the use of infrared and ultrasound frequencies [35]. Fortu-

nately, both Android and iOS offer WiFi and cellular network positioning through

coarse location services [36], which benefits our use case from the perspectives of

adoption and adhering to GAEN’s terms for developers. Additionally, these alterna-

tives consume less power and are generally faster to retrieve results since the data is
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received from ground systems versus satellite constellations with GPS. Given these

characteristics, WiFi and cellular positioning appear to be viable solutions for a

smartphone to retrieve its current, approximate location. However, the challenge

still remains how to use these coordinates in a meaningful way to provide geospatial

awareness.

4.2 G2: Geospatial Awareness

Now with an appropriate solution to retrieve location, the next goal involves

applying this context to the current GAEN framework to reduce the impact of replay

attacks. The most obvious way is to include GPS coordinates in the AEM field as

part of the advertised payload, as recommended by Raskar et al [13]. However,

broadcasting precise or coarse GPS coordinates, even if encrypted, may leave GAEN

susceptible to more public scrutiny. Further, GPS coordinates are point values and

do not intrinsically provide any surrounding bounds to reduce the space to which an

RPI is considered valid and still requires a calculation on the receiving smartphone.

This inspires the use of a predetermined partition of area, restricting RPI validity

from the entire Earth to something more reasonable.

Using Political Boundaries. Naturally, we first considered established and adopted

conventions for geographic partitions, such as political boundaries, to include states,

counties, and zip codes. In the United States, development of GAEN-powered ap-

plications are left up to state-level health authorities and governments. If each state
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uses their own backing server to upload and exchange keys, this would provide up

to 50 distinct geographically distinct zones.

However, the Association of Public Health Laboratories hosts a national key

server that U.S. states can utilize to increase effectiveness during travel across state

lines. As of September 2021, nearly half of the U.S. states are participating [37].

While a national server aims to ensure users in all states receive DKs despite their

originating state, it also increases the space for which a geographically, wide-reaching

replay attack is valid. However, this seems like a reasonable trade-off that can simply

be addressed through a creative solution in the protocol itself. Further, given their

non-uniformity of area and representation of population densities, state boundaries

make for seemingly arbitrary divisions from protocol and statistical perspectives.

Finally, using states as a geographic separation would simply prevent a malicious

subscriber from receiving RPIs from other states with the simple counter of focusing

malicious adoption on more concentrated areas of cases within state lines. These

issues do not support using state boundaries to as a geospatial component to mitigate

replay attacks.

Counties and ZIP codes are the next intuitive alternatives that provide more gran-

ular geographic bounds compared to states. However, these still suffer from the same

population density and size issues discussed above. Further analysis reveals an issue

around encounters near borders where two users are only feet apart but technically

in different zones. The reasonable solution is to include neighboring zones during
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RPI derivation from received TEKs. But accurate calculation becomes intuitively

very difficult when considering the number of edges a county or ZIP may have. If we

simply include neighboring counties, non-uniform size and population densities again

make the results of this calculation vary wildly. A relatively small county may border

a significantly larger neighbor which may drastically and inaccurately increase the

geographic search space.

Using a Hierarchical Geospatial Index. The need to address zone size, popula-

tion density, and cross-border calculation issues leads us to consider more uniform,

hierarchical geographic data structures. The underlying recursive algorithms take

latitude and longitude coordinates and output index values at various resolutions

that are contained within each other, providing their hierarchical characteristic. We

next systematically examine a number of open-source geospatial index implementa-

tions, which include Geohash [38], Google’s S2 Geometry library [39], and Uber’s

H3 [40]. The key differences between these solutions largely involve the shape of

the geofenced area represented by the output value from provided coordinates, as

illustrated in Figure 4.1, providing other defining characteristics.

1. GeoHash. GeoHash is a hierarchical, geospatial system that encodes latitude

and longitude coordinates into alphanumeric strings. Using Z-curves [41], it

effectively subdivides maximum resolutions of longitudinal coordinates from

-180 to +180 degrees and latitudinal coordinates from -90 to +90 degrees for

each successive bit pair. The higher or lower interval is chosen with bits 1 and
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0, respectively. For example, a latitude value starting with 1 will make the

current latitude interval 0 to +90, producing an effective error of ±45. This

produces a sub-divisible collection of non-overlapping rectangles as precise as

the number of bit-pairs.

While GeoHash is relatively straight forward, its simplicity introduces undesir-

able flaws. Generally, shared proximity between two points is easily determined

by matching common prefixes. However, this is not true for points on either

side of the 180 meridian due to its Mercator projection [42], where they would

have different prefixes on each side. While this is an edge case, it represents

an unnecessary limitation that is addressed by other available solutions. Fur-

ther, GeoHash’s geometrical representation is rectangular with varying areas,

depending on the latitude input, due to its two-dimensional projection on the

Earth’s spherical shape. This results in varied error rates for proximity detec-

tion that again introduce an unnecessary limitation given alternatives.

2. Google’s S2 Geometry. Google’s S2 Geometry library overcomes GeoHash’s

geometric limitations by providing data overlaid to a three-dimensional sphere

that better represents the Earth. Latitude and longitude are converted to

indices representing geodesic squares of consistent area depending on the res-

olution. The spherical geometry approach also removes the discontinuity lim-

itation around the 180 meridian. While S2 is an improvement over GeoHash,

it still provides a less optimal solution compared to others when considering
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neighboring areas. This is due to its geodesic square zone representation, re-

quiring consideration of both edge-to-edge and diagonal neighbors, eight in

total. Further, distance calculation from a zone’s center to its neighbors is

non-uniform, as edge-to-edge neighbors have smaller distances than diagonal

neighbors.

3. Uber’s H3. Developed by Uber, the H3 hierarchical geospatial indexing li-

brary overcomes S2’s geometric limitation from using a geodesic square rep-

resentation by utilizing hexagonal areas instead. Hexagons provide the use-

ful characteristic that all neighboring cells’ centers are equidistant, removing

S2’s non-uniform distance calculations. Additionally, the number of nearest-

neighbor cells to process is reduced from 8 to 6. Hexagons also impact the

hierarchical overlap; rather than one resolution perfectly containing its child

rectangles from a higher resolution, hexagons will have small overlaps which

may provide interesting optimizations for neighbor calculation. H3 provides

16 levels of resolution that range from providing 122 unique indexes at ap-

proximately 4.2 × 106 km2 at resolution 0 to 1.1 × 1013 unique indexes at

approximately 4.3× 10−5 km2.

Our analysis leads us to choose H3 as the more optimal geospatial index solution.

While GeoHash and S2 perform well in typical cases, H3 is able to overcome more

edge cases and provides a more uniform grid overlay of the Earth, thereby reducing

the false-positive and false-negative rates from neighboring zone calculations.
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Figure 4.1: Hierarchical geospatial indexes with (a) GeoHash Z-Curve encoding (b)
S2 geodesic squares (c) H3 hexagons

4.3 G3: Minimal GAEN Modifications

The final goal is to incorporate the geospatial awareness in a manner that would

not require drastic changes to the existing GAEN protocol, reduce privacy, or require

additional third-party services. Once again, including the fuzzy, bounded area in

the AEM field presents an obvious first consideration. However, the property that

two different smartphones are able to separately determine a shared, bounded area

index prompts us to consider GAEN’s pseudo-random key derivation algorithms as

discussed in §2.2.2.

As shown in the specification background, GAEN creates three keys during its

derivation scheme. TEKs are sent to the public health authority by users who opt-

in upon positive diagnosis and derived RPIs are broadcasted for others to capture.

This makes the RPIK particularly interesting because its placement between the
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TEK and RPI make it the only key that truly remains on the smartphone and is not

exposed to other parties. The RPIK is thus an ideal candidate to include a geospatial

component to achieve the desired property.

In effect, using the smartphone’s calculated geospatial index as the salt value —

instead of just using the NULL bytes during RPIK derivation— adds geospatial

awareness through a bi-layer indirection. No location context is directly included

in the RPI payload nor in the TEKs uploaded to the central server. As a result,

this key differentiator from other solutions maintains GAEN’s current level of user

privacy.

By using the geospatial index as the salt, the static string “EN−RPIK” is left

intact and therefore still adhering to the GAEN specification and its ability to create

an Associated Encrypted Metadata Key (AEMK). Therefore, our enhanced protocol

GAEN+ introduces a Location-based Rolling Proximity Identifier Key (LRPIK) that

includes the geospatial index, Locx, as its salt argument instead of the NULL byte

as in the RPIK derivation in the original GAEN:

LRPIKx ← HKDF (TEKi, Locx, “EN−RPIK”, 16) (4.1)

GAEN+ generates a single daily TEK as before. Now, the smartphone will retrieve

its coarse location coordinates to query a geospatial index periodically to detect

movement into a new zone and with each new RPI computation. A new LRPIK

will be derived whenever the geospatial index query returns a new value, implying

the user is in a new zone. When the returned geospatial index matches the previous
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query return value, the LRPIK does not need to be derived again, implying the user

is still in the same zone, reducing unnecessary calculations. Finally, the RPI is then

derived from the current LRPIKx and broadcasted as before with GAEN.

We now consider new scanning and RPI derivation behavior. As before, smart-

phones within BLE range will scan and receive nearby GAEN advertisements con-

taining an RPI. Now, after a scan which results in at least one successful GAEN

advertisement capture, the current geospatial index value, Locx, is stored on the

smartphone’s local, secure storage L. The smartphone will periodically download

the DKs from the central server as before. Similar to advertising, each Locx in L

will be used to derive a new LRPIKx for each TEK. For each derived LRPIKx,

the set of RPIs is derived and compared with previously captured RPIs for a given

ENIntervalNumber as before.

Effectively, our enhancement defines the geospatial bounds that a derived RPI is

valid. If the RPI is broadcasted and received in the same bounds as it was derived,

its derivation from a TEK provided by a positively diagnosed user will result in a

match. Otherwise, a match will not occur. As a result, GAEN+ can drastically the

number of false-positives introduced by a replay attack network demonstrated by our

PoC in §3.
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Chapter 5: GAEN+ Implementation

We now discuss the implementation details and algorithms of GAEN+. Our

proposed enhancements to the GAEN framework align with our research goals (§4):

(I) enabling location services permissions for coarse latitude and longitude coordi-

nates (II) including Uber’s H3 hierarchical geospatial index, and (III) modifications

of the algorithms to include LRPIK derivation without requiring drastic rework of

the original GAEN protocol.

5.1 Enabling Coarse Location Services

We arrived at using coarse location services for its numerous benefits for our use

case over standard GPS. Compared to precise locations offered by standard GPS,

coarse location services adheres to GAEN’s Additional Terms, helps preserve privacy,

and consumes less power by using location data from WiFi access points and cellular

towers. Android provides resolution approximate to a city block [43] or 311 feet [44].

For iOS, the Significant-change Location Service provides updates approximately
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every 1600 feet. While this represents a 5x difference, we discuss future options for

iOS later in §7.

The first modification to the framework is to require users to grant app permis-

sions for coarse location services. On Android, this includes adding the ACCESS -

COARSE LOCATION and ACCESS BACKGROUND LOCATION permissions to

allow access to data while the app is in the background [43]. On iOS, this includes the

Significant-change Location Service and Always authorization [36]. If a user disables

GPS, a notification should appear to the user that the contact tracing application

is unable to operate, similar to the notification that currently appears when a user

disables Bluetooth with a GAEN-powered app installed.

5.2 Calculating Hierarchical Geospatial Index with H3

GAEN+ features H3 as the hierarchical geospatial index to provide geospatial

awareness. H3 is written in C and compiled as a shared library with bindings available

in Java and other languages [45], making it easily portable to both Android and iOS.

The library size is approximately 200 kilobytes and therefore, when compared to the

average size of smartphone apps in the tens of megabytes [46], the additional size is

negligible.

The coarse latitude and longitude coordinates provided by the location services

will be fed into an H3 function to calculate an index, given a resolution:

long geoToH3(double lat, double lng, int res);
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H3 overlays a hexagon grid to provide coverage for the entire Earth with 16 reso-

lutions [47]. We recommend resolution 10 which provides an average hexagon edge

length of approximately 216 feet and provides over 33 billion hexagons with approxi-

mately 1.5×10−2 km2 of area. We discuss future work for dynamic resolutions in §7.

5.3 Modification of GAEN Algorithms

Our proposed solution requires minimal changes to the GAEN cryptography and

BLE specifications. Specifically, (1) RPIK derivation must include the geospatial

index as a salt value. This includes deriving the RPIK to both create RPIs to

broadcast and match for exposure notification. (2) Storing the geospatial index

whenever an RPI is received to later use for matching. This index value is stored for

14 days and not paired with any additional information; it is therefore temporally

agnostic within the 14 day period. Algorithm 3 shows the addition of a loop on line

5 that uses the previous 14 days geospatial indexes as salt values to derive LRPIKs

for matching against RPIs from a DK.

Next, the framework must periodically retrieve the smartphone’s coarse GPS

coordinates to compute the geospatial index. If the index value changes from the

last query, the framework must generate a new LRPIK and RPI, change the BLE

advertising address, and continue broadcasting the new GAEN advertisement. This

feature is outlined in Algorithm 4.

46



Algorithm 3: GAEN+ RPI Matching

1 locs = getLocFromLocalSecureStorage();
2 rpis = getRPIFromLocalSecureStorage();
3 dks = getDKPublicHealthAuthorityServer();
4 for dk in dks do
5 for loc in locs do
6 lrpik = HKDF(dk.TEK, loc, “EN −RPIK”, 16);
7 curInterval = ENIntervalNumber(dk.i);
8 for interval in [0...144] do
9 curInterval += interval;

10 rpi = AES128(lrpik, curInterval);
11 if rpi in rpis[curInterval] then
12 // Encounter significance calculation per GAEN
13 end

14 end

15 end

16 end

Algorithm 4: GAEN+ Broadcasts

1 while true do
2 latestLatLng = GetCoarseLocation();
3 latestGeoIndex = GetGeospatialIndex(latestLatLng);
4 if curGeoIndex != latestGeoIndex then
5 curGeoIndex = latestGeoIndex;
6 SetRandomBLEAddress();
7 rpik = HKDF(TEKi, curGeoIndex, “EN −RPIK”, 16);

8 end
9 if 10-15 minutes has elapsed then

10 SetRandomBLEAddress();
11 enin = ENIntervalNumber(now);
12 rpi = AES128(rpik, ENIN);

13 end
14 BroadcastGAENPayload(rpi);

15 end
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5.4 Mitigated Replay Attack Scenario by GAEN+

This replay attack network scenario is provided for the curious reader and demon-

strates the mitigation by GAEN+. Once again, it involves honest users Alice, Bob,

and Charlie who have an app installed on their smartphone that now uses our pro-

posed GAEN+. As illustrated in Figure 5.1, Mallory and Malaki are malicious actors

who have subscribed to the replay attack network and have the replay app installed

on their smartphone. To demonstrate the defense and mitigation of our proposed

variant, Mallory and Malaki operate as before.

1. Alice generates a TEK daily. She queries the geospatial index and uses it to

derive the current LRPIK for her location in San Diego, CA. Then, she creates

a new RPI every 10-15 minutes and broadcasts it over BLE. She periodically

checks if her location has changed to warrant a new RPIK and RPI derivation.

2. Bob and Mallory are within Alice’s BLE advertising range, capture Alice’s

GAEN advertisement, and extract the RPI. Bob stores his current geospatial

index and the RPI for 14 days. Mallory calculates the current ENIntervalNum-

ber i and sends the captured (RPI, i) pair to the replay attack network from

his location in San Diego, CA.

3. Malaki, in Brooklyn, NY, periodically receives (RPI, i) pairs, including Alice’s.

He determines the current interval is i, and continuously replays the broadcast

of all matching received RPIs.
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Figure 5.1: Our proposed GAEN+ adds a geospatial component to decrease potential
for broad, cross-region replay attacks

4. Charlie is nearby Malaki and receives Alice’s replayed RPI. He stores his current

geospatial index and Alice’s RPI for 14 days.

5. A few days later, Alice receives a positive diagnosis for COVID-19. She elects

to submit her (TEK, i) pairs to the public health authority’s server.

6. Bob and Charlie receive the set of DKs from the public health authority server.

Using each stored geospatial index, they derive the LRPIKs and subsequent

RPIs for each TEK. Bob finds a match between Alice’s RPI and a derived RPI
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from an anonymous TEK. Charlie does not because he was not in San Diego,

CA during the day and time Alice generated her RPI.

7. Bob is correctly notified of exposure (due to proximity to Alice, though this is

anonymized). Charlie is not notified of exposure due to capturing Alice’s RPI

(however, he may from another individual’s valid RPI).

50



Chapter 6: Evaluation

In this chapter, we evaluate the cost of our replay attack network PoC as well as

the overhead and performance of GAEN+ compared to the current GAEN framework.

6.1 Replay Attack Network Cost

Deploying and participating in the replay attack network PoC has relatively low-

cost and a low-technical barrier from the perspective of both the malicious network’s

owner and participants.

Infrastructure. The central server application is implemented using Python 3.8,

served with Gunicorn, and runs on a typical Ubuntu 20.04 installation. Since this

application mostly serves as a bent-pipe for RPI distribution, processing, memory,

and non-volatile storage requirements outside of request handling are minimal.

We deployed the central server on a range of default virtual private server (VPS)

configurations from DigitalOcean to evaluate the number of subscribers downloading

RPIs each offering can accommodate. We use Apache Bench to simulate 25, 50, and
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Figure 6.1: Comparing stable virtual CPU performance with total requests served
over 10 minutes with 500 RPIs/request

100 concurrent requests over a 10 minute interval window. Each response contains

500 RPIs, totaling 8kB per request.

The results indicate that with default, “1-click” deployments and minimal addi-

tional configuration, one can easily accommodate over 100,000 requests per an inter-

val window and scale the replay attack network further. With default configurations,

a $5 USD/month VPS with a single virtual CPU is able to accommodate approx-

imately 100 concurrent connections to serve 222,000 requests for 500 RPIs within

a 10 minute interval window [48]. This totals to approximately 7,686 GB/month,

which would require an additional $80 USD/month in bandwidth charges over 30
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days. This cost can be reduced through server optimizations and the use of Content

Delivery Networks. In summary, a standard cloud service for $85 USD/month can

serve approximately 480 trillion RPIs to malicious subscribers.

The replay attack network can be augmented with additional features, such as

persistently storing payloads and associated metadata for further analysis. To scale

with subscribers, one could implement the application entirely in a more perfor-

mant language, such as C, and incorporate load balancers to handle thousands of

concurrent connections.

Nodes. To participate in the replay network, a malicious actor simply downloads

and installs an app on their smartphone with BLE capabilities and Internet connec-

tivity. Given smartphones are commonplace in the U.S. and typically on an individ-

ual’s person throughout the day, this low-barrier to participate makes it reasonable

to recruit other malicious actors interested in disrupting and creating distrust in

GAEN and DCT in general.

Network usage is negligible relative to typical smartphone data packages providing

unlimited or multiple gigabytes of data per month. For example, 500 RPI downloads

every 10 minute interval results in approximately 1.2MB of data per day. Since

replayed RPIs are discarded after no more than 10 minutes, there is no persistent

storage requirement outside of the app installation. Power usage is ironically similar

to that of a legitimate GAEN application due to continuously broadcasting BLE

beacons with the intent to be captured by other users. In effect, the minimal impacts
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to malicious actors’ smartphones and requirements to join a replay attack network

represent a low-barrier to participation.

6.2 GAEN+ Overhead

Power Consumption. We evaluate GAEN+ for power requirements compared to

the original GAEN. Since the framework’s SDK will only compile if provided a license

granted to an approved public health authority [10], we use the reference code pro-

vided for Android [49] and implement critical operations for deriving, broadcasting,

and matching RPIs.
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Figure 6.2: Battery performance of GAEN+ and GAEN over time in different tasks.

Figure 6.2a depicts RPI derivation and advertisement broadcasting power con-

sumption over two hours and reveals GAEN+ is within 1% on average of GAEN. The
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remaining battery percentage decreases linearly, as expected, given the consistent op-

erations. While the precision of battery percentage is limited to integer values, this

level of granularity still shows the minor difference between GAEN+ and GAEN. If

more precise introspection was available, this difference might actually prove to be

less than 1%.

Figure 6.2b measures RPI derivation and matching power consumption for 1, 400

TEKs and shows GAEN+ has exactly the same battery consumption with GAEN

for the first 5 minutes. However, GAEN+ spends more time during RPI matching

due to the additional runtime complexity from the additional LRPIK derivations

for each location a user has entered, versus a single RPIK derivation per day with

GAEN.

This effect can be mitigated in future work through algorithm optimizations to

reduce the computational complexity. Additionally, to minimize any impact to user

experience, GAEN+ can defer matching to a time when the smartphone is not

actively in use, as recommended by SpreadMeNot to address similar effects and

concerns [6].

Network & Storage. GAEN+ does not modify the original GAEN upload or

download process of DKs and therefore network traffic remains unchanged and with-

out additional burden. GAEN+ requires storing geospatial index values for which

an RPI was successfully captured over a 14-day period. For example, Brooklyn, New

York and its surrounding areas has 823,543 cells at resolution 10. At 8 bytes per cell,
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this results in only 6.5MB of storage if every cell was visited and captured an RPI

within a 14-day period. In practice, the number of visited cells will be substantially

lower, resulting in minimal storage requirements.

6.3 GAEN+ Performance

Effectiveness Against Replay Attacks. To evaluate GAEN+’s capability of

preventing replay attacks, we simulate a set of experiments and compare the results

with the original GAEN framework. The experiment setup is presented in Table 6.1.

Specifically, we generate 1, 400 TEKs for 100 GAEN+ (or GAEN) users, which are

then used to derive 201, 600 RPIs from the 30 locations spread across the globe

at different time intervals. This simulates an attack scenario where a malicious

subscriber replays RPIs captured from other locations.

Generate Receive

Random
#TEK

#RPI
#Locations

#RPI #Location #Matched RPI #Matched RPI
Seed Gen. Recv. Visited (GAEN+) (GAEN)

255 1, 400 201, 600 30 6, 048 5 1, 046 6, 048
254 1, 400 201, 600 30 6, 048 5 995 6, 048
253 1, 400 201, 600 30 6, 048 5 965 6, 048
252 1, 400 201, 600 30 6, 048 5 926 6, 048
251 1, 400 201, 600 30 6, 048 5 1, 044 6, 048

Table 6.1: Effective evaluation of GAEN+ using H3 Resolution 10 compared with
original GAEN.
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Next, we assume 6, 048 (3%) of these 201, 600 generated RPIs are received by an

honest user (i.e., a single replay attack victim), further restricting the user to have

only visited 5 of the 30 locations. The user’s smartphone then validates the captured

RPIs using the 1, 400 TEKs and 5 locations to derive and check for matches between

the received and computed RPIs. The H3 library is used to calculate the geospatial

index of the locations with 10 as the resolution parameter. As shown in Table 6.1,

we use 5 different seed values for RPI generation and location selection to provide

randomness and enable evaluation of multiple, distinct simulations.

The results of RPI matching are shown in the last two columns of Table 6.1,

showing GAEN+ accurately confirming approximately 1, 000 (1/6th of the generated

RPI set) in the cells for which the user recorded being present. However, GAEN

inaccurately confirmed all 6, 048 RPIs, including those from locations which the

user did not visit. Our results demonstrate the ability for GAEN+ to accurately

determine valid captured RPIs, further indicating its general effectiveness against

geographically distributed replay attacks.

Impact of the Resolution Parameter. To clearly show how resolution affects

geospatial indexing, we randomly selected 100 latitude and longitude points in Brook-

lyn, NY, and show their distribution and placement within H3 cells at resolution 4,

6, and 7, respectively in Figure 6.3a, Figure 6.3b, and Figure 6.3c. As shown, under

resolution 4, 6, and 7, the 100 locations are respectively mapped to 2, 8, and 26 H3

hexagon-shaped cells.
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Figure 6.3: Distribution of 100 H3-indexed latitude and longitude coordinates under
different resolutions

To further evaluate the impact of resolution on GAEN+, we conduct different

sets of experiments with similar setup, shown in Table 6.1. And additionally, the

impact decreasing resolution has on accuracy, from resolution 10 down through 4, as

presented in Table 6.2.

For each experiment, we count the number of the RPIs that are correctly matched

(i.e., the matched RPI originated from a location the receiver actually visited) and

the RPIs mismatched (vice versa). As shown in the last two columns of Table 6.2,

there are a great number of mismatched RPIs under relatively low resolutions 4, 5,

and 6, due to the high frequency of H3 index collisions of two different locations. For

instance, under resolution 4 (Figure 6.3a), location points that are relatively long

distances between each other will still be mapped to the same H3 index, as the area

of the hexagon is significantly larger. However, at higher resolutions, the chance of

collision between these same points is significantly reduced and thus the number of
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Res. #Loc #H3 Index
RPIs

#Total #Matched #Mismatched

4 100 2 6, 048 76 5, 101
5 100 3 6, 048 76 3, 755
6 100 8 6, 048 145 3, 316
7 100 26 6, 048 207 898
8 100 86 6, 048 274 134
9 100 97 6, 048 340 0
10 100 99 6, 048 340 0

Table 6.2: Impact of resolution parameter on GAEN+.

mismatches becomes lower, converging to 0 at resolution 9. In summary, a higher

resolution parameter in GAEN+ offers finer-grain protection against replay attack,

therefore capable of eliminating more false positives.

Time Complexity. Enhancements from GAEN+ impact the run-time complexity

for RPI derivation for both advertising and receiving. In GAEN, the complexity to

derive an RPI for an advertiser is:

O(1)

In GAEN+, a single smartphone’s number of locations is upper-bounded by the

number of discrete cells in the chosen H3 resolution. In practice, this is significantly

smaller given a person’s average daily schedule has them in similar locations for work,

school, etc, and not travelling the whole Earth. Therefore producing:

O(|ResolutionCells|)
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When deriving RPIs as a receiver of DKs, the time complexity for GAEN is

similarly straight forward:

O(|ReceivedDKs| × |CapturedRPIs|)

However, GAEN+ introduces another loop to derive LRPIKs for each geospatial

index it stored in L. Again as an upper bound, every cell in a resolution must be

considered but is not practical, resulting in complexity:

O(|ReceivedDKs| × |ResolutionCells| × |CapturedRPI|)

Yet again, in practice the set L is significantly smaller than ResolutionCells, so

run-time is more realistically:

O(|ReceivedDKs| × |L| × |CapturedRPI|)
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Chapter 7: Discussion

We now discuss the effectiveness of GAEN+ against replay attacks, privacy im-

plications of GAEN+ and related works, and future work around accuracy of coarse

location and optimizing the use of H3.

7.1 Effectiveness Against Replay Attack

GAEN+ does not fully remove the ability for replay attacks to rebroadcast within

the same cell a legitimate RPI was captured. For example, a static node could cap-

ture RPIs in an area of high traffic and immediately replay them for the duration

of the timestamp interval. This effectively mimics a scenario where every individual

broadcasting a valid RPI stays in place at the point of collection until the valid time

window has elapsed, creating an opportunity for other users later passing by to cap-

ture a replayed RPI that was derived from the same geospatial index. Alternatively,

the malicious replay network could reference the same geospatial index database and

nodes could subscribe to only download RPIs from their current location’s index.

The countermeasures to this type of static and confined variant of a replay attack
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include more dynamic use of higher H3 resolutions, thereby reducing the geospatial

validity area, and more precise smartphone locations.

7.2 Privacy Preserving Assertion

Despite adding geospatial awareness, GAEN+ does not diminish the privacy

preserving aspects and requirements of GAEN. Introducing a geospatial component

during RPIK derivation, GAEN+ maintains a bi-layer of indirection because the

location context is effectively hidden from those nearby receiving RPIs and the central

server and users receiving DKs. Note that in order to derive a location from a TEK,

one must also have an RPI derived from it, and vice versa.

From the central server’s perspective, we do not include additional data in up-

loads, such as location or RPIs, since we do not modify this behavior from GAEN (a

user still only generates one TEK per day and optionally uploads a limited selection

upon diagnosis). Since the server does not have RPIs by regular means, there is no

way to determine the location a TEK was generated.

There are two recipients to consider for captured RPIs: the honest user and the

malicious actor. It is important to note that, by virtue of being able to capture an

RPI from a nearby user, one can simply query their own location which is inherently

shared by the nearby user. The honest user does not attempt to derive location and

therefore is not a threat. Suppose the malicious actor has captured RPIs, receives

DKs, and attempts to bruteforce the RPI derivation to determine the originating

smartphone’s location. For each TEK, this would require computing LRPIKs for
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each geospatial index found in a resolution, then comparing each of the 144 derived

RPIs to the set of captured RPIs. Considering resolution 10 from H3, this would

require approximately 242 values to compare per random TEK. Despite this being a

reasonable safeguard, as noted, bruteforcing is a superfluous activity - the malicious

actor can already query their own location, thus the nearby user’s. Therefore, adding

a location component to LRPIK derivation does not expose location context that a

malicious actor couldn’t already attain with easier, direct methods.

Geospatial index values are stored on a user’s device in a secure way similar

to captured RPIs, using the operating systems’ underlying mechanisms for secure

storage. A severe flaw in an operating system would need to be exploited in order

for a malicious actor to retrieve these values, therefore out of scope. Further, these

index values are intended to remain on device and not shared with any other user,

application, or enabling server for the protocol.

GAEN, like many other protocols, suffers from an inherent ability for tech-savvy

bad actors to complement RPIs with other captured information or indicators. For

example, an individual can setup a video camera to record a crosswalk while cap-

turing RPIs with a BLE receiver to pair with timestamps. If a user passing by is

diagnosed COVID-19 positive and decides to upload a set of DKs that include the

time of video capture, the bad actor could potentially calculate all the RPIs from

the received DK pairs and match with complemented video data and identify with

advanced image processing techniques. While our proposed modification does not
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remedy this issue, it also does not further reveal any additional location data despite

adding a location component as discussed above.

Responsible Disclosure. We reported our “low-cost” replay attacks against GAEN

to Apple via product-security@apple.com and Google via https://issuetracker.

google.com/issues/new on 10/14/2021. On 11/17/2021, Google stated they are in-

vestigating current documentation and considering publicly releasing details of our

research, which will receive an Honorable Mention at https://bughunters.google.

com/leaderboard/honorable-mentions.

7.3 Future Work & Recommendations

While GAEN+ demonstrates ability to reduce the impact of geographically dis-

tributed replay attacks while preserving user privacy, there is still room for future

improvement and areas for future research.

1. Location Precision. GAEN+ utilizes coarse locations to adhere to GAEN’s

Additional Terms that forbid the use of precise location data. However, the

two platforms offer various levels of precision that may vary substantially in

practice (§5). In keeping with the approach of GAEN, it is recommended that

Google and Apple collaborate on defining a consistent radius coarse location

service specifically for contact tracing, which allows for optimized use with H3.

2. H3 Resolutions. Given the range of precision provided by the 16 resolutions

of H3, future work can explore creative applications of dynamic resolutions that
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adapt to population density and events. For example, if a smartphone detects

it is inside a stadium, the resolution increases to provide more resilience against

replay attacks.

3. Nearest Neighbors. While we chose H3 for its uniform consistency in dis-

tance to nearest neighbors, we do not evaluate its full potential in this paper, in-

cluding calculating near-border encounters. This can be currently implemented

using the H3 library, but would introduce increased computation requirements,

with a worst-case 6x increase. However, additional research into optimized

calculations and algorithms would further strengthen GAEN+’s ability to ef-

ficiently and accurately account for this edge-case.

65



Chapter 8: Related Work

Having recognized the absence of geolocation context in GAEN, ACTGuard [14]

recommends thwarting replay attacks by installing a third-party app that creates a

hash of captured RPIs with respective time, location, and its own RPI. This hash is

then uploaded to a third-party central server to later distribute to other users. How-

ever, compared to GAEN apps, the installation of an additional app for ACTGuard

introduces an unnecessary adoption barrier and complexity. For each captured RPI

at a new time and location, the user’s smartphone must compute, store, and upload

a one-way hash. Additionally, download a very large set of hashes and compare dur-

ing matching against positive users’ DKs. Without specific guidance on limiting the

geospatial context, besides using precise GPS coordinates, this concept potentially

creates massive amounts of hashes and network transfer burden.

Raskar et al [13] propose recommendations for adding global context to GAEN in

an effort to address a broader set of inherent limitations of its decentralized approach,

including reducing false-positives and—in contrast to the GAEN principle—to allow
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GAEN [10, 11] 7 - 7 X 7 X X X
ACTGuard [14] X X 7 X X 7 7 7
Raskar et al [13] X 7 7 7 X X X X

GAEN+ X X X X X X X X

Table 8.1: Comparison of our proposed GAEN+ with other closely related works.

a user to recall the environment in which an exposure occurred. They propose insert-

ing GPS/location data into the AEM field, which is subsequently encrypted with the

AEMK, and broadcast as part of the advertisement payload. Upon a successful RPI

match, the TEK used to derive the RPI will subsequently be used to also derive the

AEMK. Since the encryption of the AEM field uses the AEMK as a symmetric key,

the app can now decrypt the AEM field and retrieve the originating user’s location.

While their recommendation begins to approach similar resiliency against geo-

graphically distributed replay attack as our GAEN+, it does so by including location

context directly in the broadcasted payload. This direct inclusion thus risks alarming

users who may not understand cryptography and only focus on the idea their GPS

coordinates are broadcasted for anyone to capture. This approach may further in-

hibit adoption, whereas GAEN+ is completely location context-free in the protocol

payload.
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While both solutions recommend GPS, neither concretely provides a solution for

representing geospatial location relative to other users. Given the limitations of their

approaches, as illustrated in Table 8.1, we motivated the development of GAEN+,

whose payload location-free protocol is completely compatible with GAEN.
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Chapter 9: Conclusion

Digital contact tracing offers significant potential to help reduce the spread of

SARS-CoV-2 and other viruses. Low-cost, crowd-sourced, geographically distributed

replay attack networks threaten the GAEN framework if deployed by malicious cit-

izen or nation-state actors, replaying GAEN advertisements throughout the world.

Such a scaled attack would greatly increase false-positive notifications and intro-

duce cascading social effects, undermining the intent of GAEN as a public good. By

adding geospatial awareness during an intermediate key derivation, enabled by coarse

location coordinates and a hierarchical geospatial index such as H3, our GAEN+ is

a solution that demonstrates its ability to mitigate cross-region replay attacks while

preserving user privacy.

We implemented a PoC of the distributed replay attack and a prototype of

GAEN+ on Android and evaluated it with a set of experiments. Our results show

that GAEN+ is able to effectively prevent distributed replay attacks with negligible

additional overhead compared with the original GAEN framework.
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