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Abstract

Computational fluid dynamics provides quantitative insights that complement

physical experiments and enable cheaper and faster design/analysis processes.

However, problems of interest tend to be highly complex, manifesting multiple

physical processes over a broad range of spatial and temporal scales. The con-

sequence of this is the desire for fluid simulations spanning many temporal and

spatial scales. Here, relevant physical phenomena include steep gradients – due to

shock waves, boundary layers, and laminar to turbulent boundary layer transition

– and the broadband response of turbulence. Despite continual advancement in

computing power, tractable analysis of problems involving such phenomena de-

pends upon parallel advancements in the efficiency of numerical solution strate-

gies.

In these contexts, the overarching goal of this research is to assess the numerical

solution of fluid dynamic problems using an enriched finite element framework.

Through an enrichment process, this framework enables the expansion of the ap-

proximation space associated with more traditional finite element methods to non-
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polynomials. Non-polynomial approximation spaces better enable solution-tailored

approximations that can significantly reduce computational costs. For example,

previous works applying enriched finite elements in other disciplines have re-

sulted in highly efficient numerical simulation of problems containing steep gra-

dients, discontinuities, and singularities. Application of enriched finite elements

for fluid dynamics problems is nontrivial due to numerical challenges: (1) restric-

tions on allowable velocity-pressure discretization for the solution of incompress-

ible flows and (2) non-physical spurious oscillations in numerical solutions for ad-

vection dominated problems. Therefore, an enriched finite element method must

address these challenges.

For applying enriched finite elements to fluid dynamics, this research focuses

on (1) addressing the aforementioned numerical challenges and (2) obtaining high-

accuracy numerical solutions using solution-tailored enrichments. In the presented

methodology, stability and high-accuracy solutions are interlinked. Specifically,

solution-tailored enrichments typically result in stable and high-accuracy solutions

that capture relevant features more efficiently regarding status quo methods; Re-

sults demonstrate this for the numerical solution of the governing equations of an

elastic medium, creeping flow, the advection-diffusion equation, and the Burgers’

equation.
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ḡ′ = approximation of g′
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Chapter 1

Introduction and Objectives

1.1 Introduction

Fluids make up the atmosphere, ocean, and parts of Earth’s internal structure. Flu-

ids are essential to life, such as blood flow for transporting oxygen and other essen-

tial nutrients to our cells. Fluids are fundamental for developing and improving

medical devices, transportation systems, renewable energy systems, and defense

systems. Thus, fluids underlie or directly impact a vast range of significant prob-

lems. The Navier-Stokes equations describe fluid dynamics at continuum length

scales, which assume a fluid obeys the conservation of mass and momentum. The

nonlinearity of these equations combined with complex, multiscale phenomena

often precludes analytical solutions. Therefore, it is often necessary to conduct ex-

periments and simulate the Navier-Stokes equations with numerical methods to

gain quantitative insight.

Computational fluid dynamics (CFD) refers to numerical methods that approx-
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imate the Navier-Stokes equations. High-fidelity CFD models provide unprece-

dented quantitative insights into complex physical systems, aiding experimental

work and enabling cheaper and faster design/analysis processes. However, the

demand for very fine discretizations to accurately resolve the multiscale behavior

of fluids often requires days to weeks to complete, even on high-performance com-

puters. Additionally, the amount of data required for storage quickly becomes un-

reasonable for simulations with long time records. Consider Fig. 1.1, which shows

a high-density, implicit large eddy simulation of a Mach 2.25 turbulent equilibrium

flow parallel to a 90 degree corner (977× 473× 805 grid points) [1]. These compu-

tations came from the Air Force Research Laboratory’s supercomputer ”Thunder,”

performing 1 million iterations with an estimated cost of 1.2M CPU-hrs (i.e., 5,000

cores require approx. 240 hours to complete). To fully capture the multiscale fea-

tures of the turbulent flow over a time record of 0.0012 seconds requires approxi-

mately 1.6 TB of data. Numerical simulation of physically relevant problems often

demands time records much larger than those currently attainable. Thus, there

is a motivation to pursue more efficient solution strategies for the Navier-Stokes

equations.

Numerical schemes typically carried out for CFD use the finite difference (FDM),

finite volume (FVM), or finite element (FEM) methods. To date, no scheme is a

perfect approach to the numerical solution of fluid dynamics problems. This re-

search focuses on finite elements; FEM has well-known advantages, including the

ability to handle complex geometry, incorporate differential-type boundary con-
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Figure 1.1: Multiscale features of a Mach 2.25 turbulent equilibrium flow parallel
to a 90 degree corner (simulation of a 977× 473× 805 point grid over a 0.0012 sec.
time-window requiring approximately 1.6 TB of data).

ditions naturally, and a rich mathematical structure that enables theoretical error

estimates [5]. However, FEM incurs challenges when applied to the prediction of

fluids that restricts widespread use, as solution strategies to these challenges often

limit approximation spaces to be relatively low-order. These challenges include:

(1) restrictions on allowable velocity-pressure discretization for the solution of in-

compressible flows, (2) non-physical, spurious oscillations that arise in numerical

solutions for advection dominated problems, and (3) capturing steep gradients

due to shock waves, boundary layers, and laminar to turbulent boundary layer

transition.

A potential solution to these challenges using an enriched finite element frame-

work is the focus of this research. More specifically, this work explores the gen-

eralized finite element method (GFEM). GFEM was developed concurrently by

Babuska and Melenk at the University of Maryland [6–8], and by Duarte and Oden
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at the University of Texas at Austin [9–11]. Work also exists for the eXtended finite

element method (XFEM) developed at the Northwestern University [12], which

is noted in Gracie et al. [13] as equivalent to the GFEM. As such, the rest of this

dissertation opts to use GFEM to refer to both methods. Briefly, the GFEM is an

extension of the finite element framework that expands the finite element approx-

imation space through an “enrichment process” [14] (see Fig. 1.2). The appeal of

this enrichment process is that it enables the implementation of functions that may

be one or more of the following: non-polynomial, analytical, numerical, solution-

tailored, and time-dependent (see Fig. 1.3). The versatility of the GFEM has led

to success in addressing several challenges, predominantly in solid mechanics and

heat transfer problems, such as handing steep gradients [15], capturing discon-

tinuities and singularities [16], and modeling of three-dimensional fatigue crack

propagation [17].

This research is focused on a deep study of the role of enrichment functions

when applying GFEM to the solution of fluid dynamics problems. Enrichments

in this work are considered in two aspects to address the aforementioned numer-

ical challenges incurred in finite elements: (1) stability and (2) high accuracy. In

the presented methodology, stable and efficient, high accuracy solutions are in-

terlinked. Specifically, solution-tailored enrichments typically result in stable and

high-accuracy solutions that capture relevant features more efficiently compared

to status quo methods. As such, this work is focused mainly on numerical stability

using enrichment functions, with higher accuracy arising as a result. The following
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section details the state-of-the-art finite element methods applied to fluid dynam-

ics for the following numerical challenges: (1) solutions to incompressible flow and

(2) solutions to advection-dominated problems.

(a) continous enrichment (b) discontinous enrich-
ment

Figure 1.2: Depiction of two-dimensional FEM shape functions (ϕα), enrichment
functions (Eαj), and GFEM shape functions (φαj = ϕαEαj) over node α.

Figure 1.3: Abstract depiction of expanding the FEM approximation space through
the GFEM enrichment process.
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1.2 Literature Review

1.2.1 Solutions for Incompressible Flow

For flows where the viscous forces overshadow inertial terms, the Navier-Stokes

equations simplify to a set of governing equations often referred to as Stokes flow

/ creeping flow. The governing equations for Stokes flow lead to a class of for-

mulations referred to as saddle-point problems [28, 29]. The approximation of

these saddle-point problems using Galerkin finite element methods must satisfy a

stability condition known as the Ladyzhenskaya-Babuška-Brezzi (LBB) condition

[30–32]. Mixed-element methods [29] use finite element shape functions that sat-

isfy the LBB condition. Unfortunately, the restrictions on the approximation space

due to the LBB condition are severe, which has motivated a significant number of

efforts to alleviate this shortcoming.

Legrain et al. [33] and Srinivasan et al. [34] explored GFEM application to

(near-)incompressible problems involving discontinuities. The result is stable solu-

tions to the saddle-point formulation. However, this process requires the enriched

solution space to satisfy the LBB condition; thus, restrictions on the available ap-

proximation remain. Furthermore, these approaches are valid only for low-order

methods, and further work is necessary to obtain stable high-order solutions.

Perhaps the most widely known class of methods developed to address the

LBB condition are the stabilized methods: pressure-stabilizing/Petrov-Galerkin
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method [35], Galerkin/least-squares [36], and residual-free bubbles [37]. Hughes

later showed in [38] that stabilized methods could be derived from a variational

multiscale framework. Essentially, stabilized methods account for the residual er-

ror of the discretized solution by modifying the variational form of the governing

equations. The result is the stability of approximations that would otherwise not

be conformal in the mixed-element framework. Unfortunately, these stabilized

methods are generally limited to h-refinement (grid refinement) strategies, and the

stabilizing terms do contribute towards improving the rate of convergence of the

solution.

Other methods developed to circumvent the LBB condition are divergent-free

methods [39] and segregated methods [40]. Divergent-free methods aim to de-

velop a divergence-free approximation space such that the LBB condition is alle-

viated. However, it is challenging to obtain high-order interpolations that main-

tain a divergent free space. Segregated methods are a class of iterative methods

in which one sequentially solves for the velocities and pressure fields at each it-

eration. These iterations are not ideal for high-fidelity solutions since it requires

carrying them out with large matrices.

In this work, the penalty pressure method is considered [41]. Here the LBB

condition is circumvented by adding negligible compressibility to the Stokes flow

equations using a penalty parameter. Note that implementing the penalty pressure

method to Stokes flow results in equations of equivalent form to elasticity equa-

tions for nearly incompressible materials. Thus, this work explores the application
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of GFEM to incompressible field problems in general. Typically, the challenge of

such an approach is the introduction of locking - a phenomenon that results in var-

ious finite element schemes returning poor rates of convergence [42].

One commonly employed approach for addressing locking is selective or re-

duced integration, which demonstrates equivalency to the classical mixed-element

methods [41]. Seabra et al. [43] explored the application of the GFEM for nearly in-

compressible problems involving discontinuities through the use of reduced inte-

gration. Here reduced integration schemes were developed for the discontinuous

enrichments, which resulted in optimal convergence. There is a large body of liter-

ature, generally referred to as B-bar methods [35, 44, 45], encompassing the afore-

mentioned modified integration techniques, along with other similar approaches

aimed at augmenting the element formulation to satisfy the incompressibility con-

straint on an average sense over each element (see, for example, Herrmann [46]),

as opposed to attempting enforcement at each integration point. These methods

have succeeded in incompressible media problems but generally use standard La-

grangian elements. They thus do not lend themselves to higher-order approxima-

tions and improved convergence rates, such as those attainable with the GFEM

proposed in this work.

In the GFEM context, there is no requirement to modify the (GFEM) element

formulation or use reduced integration schemes to alleviate locking, and thus the

potential numerical issues which may arise from the use of reduced numerical in-

tegration schemes can be avoided with the GFEM approach. Note Babuska and
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Suri [42] explored higher-order FEM using Lagrangian elements without reduced

integration and found that higher-order elements maintained optimal convergence

but observed a shift in the constant in the error estimates. The benefit of such a

formulation is that the shift is recoverable through improved convergence rates

provided by higher order elements. However, the complexity of implementing a

higher-order basis in standard FEM often limits application to quadratic or cubic

solutions at best. It is shown in this work that, similar to work done in [42], prop-

erties of the GFEM formulation address the effect of locking naturally. The result is

a stable GFEM approximation of the Stokes flow equations using the penalty pres-

sure method without reduced integration. This work presents a robust method

that enables optimal solution convergence for this class of problems. Details on

GFEM solutions to incompressible field problems are found in chapter 3, for GFEM

applied to a 2D elasticity problem driven by volumetric forcing, as well as a 2D lid-

driven cavity problem.

1.2.2 Solutions for Advection Dominated Problems

For advection-dominated problems in traditional finite element approaches, spu-

rious node-to-node oscillations manifest in the solution due to the inherent trun-

cation error of the discretized Galerkin approximation [47]. One of the first ap-

proaches to surface that addressed this challenge was the streamline upwind/Petrov-

Galerkin method (SUPG) developed by Brooks and Hughes in [5]. SUPG ad-
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dressed shortcomings of classical upwind techniques by only adding artificial dif-

fusion in the streamlined direction. The result is no artificial diffusion perpen-

dicular to the flow direction; thus, oscillation-free solutions are obtainable with

convergence behavior comparable to classical Galerkin methods.

In the years to follow, the advancing mathematical theory resulted in several

improvements. Most notable are the Galerkin/least-squares (GLS) [36], [48] and

residual-free bubble methods [37], [49]. The GLS method is essentially a general-

ization of the SUPG method motivated by mathematical analysis rather than ar-

tificial diffusion. For residual-free bubbles, the basic idea is to use bubble func-

tions (functions that vanish on element boundaries) to approximate the residual

error introduced by the standard FEM. The use of these bubble functions allows

the elimination of the additional degrees of freedom by static condensation, which

ultimately results in a stabilization term added to the standard Galerkin FEM for-

mulation.

Eventually, the observed similarities between the methods above, now often

denoted stabilized methods, resulted in the development of the variational multi-

scale (VMS) method by Hughes [38], [50]. The VMS method is a general framework

that stabilized methods are derivable through. Fundamentally, the VMS method

decomposes a solution into coarse/resolved scales and fine/subgrid scales. A

stable solution for the coarse scales is obtainable when using an analytical rep-

resentation for the fine scales. However, for most problems, and the analytical

fine-scale solution is not available. Therefore additional assumptions are required
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which tailor stabilized methods to a particular set of governing equations. Un-

fortunately, these assumptions often result in low-order methods [51]. Thus, a

high-order method necessarily requires alleviation of some assumptions made in

classical stabilized methods.

Turner et al. previously explored GFEM application for advection-dominated

problems in [52], using both analytical and numerical functions as enrichments for

the steady advection-diffusion equation. The work resulted in stable solutions at

Péclet numbers above one. Additionally, Turner et al. briefly made connections

between the GFEM, GLS, and residual-free bubble methods. In these contexts, this

work explores the GFEM for advection-dominated problems and the connection to

the VMS method. This work expands upon the work of Turner et al. in the follow-

ing ways: (1) a generalized formulation is used to decompose GFEM consistently

with the VMS method, highlighting the natural capability of the GFEM enrichment

process for stabilization of a linear differential operator, (2) stabilizing enrichments

are obtained based on the fundamental solutions of the linear differential operator,

providing a deeper understanding of the underlying solution features necessary

for stabilizing advection dominated solutions, and (3) the applied GFEM frame-

work expands to time-dependent advection-diffusion problems and the nonlinear

Burgers’ equation.
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1.3 Objectives of this Dissertation

The overarching goal of this research is to develop and assess the GFEM for the

numerical solution of the Navier-Stokes equations. However, the solution to the

complete Navier-Stokes equations involves addressing several challenges at once.

Thus, an approach is taken in this work to decompose issues in solving the Navier-

Stokes equations into manageable pieces. First is focus on the Stokes flow equa-

tions for instabilities in incompressible flow, a simplified version of the incom-

pressible Navier-Stokes equations. Essentially, the nonlinear advection term is re-

moved in Stokes flow while maintaining the challenge of incompressibility. For

advection-dominated problems, this work initially focuses on the linear advection-

diffusion equation. Numerical discretization of this equation exhibits similar in-

stabilities in the advection term as the Navier-Stokes equations; however, it avoids

additional complexity introduced by the nonlinear term and additional variables

of interest: density, pressure, temperature. Nonlinearity is considered by focusing

on the Burgers’ equation, equivalent to the advection-diffusion equation, except

the advection rate is replaced with the solution variable itself. This equation has

many features similar to the Navier-Stokes equations and is used to clarify the

interaction between temporal, dissipative, and nonlinear terms.

The specific objectives of this work are to:

1. Develop insights into the GFEM enrichment process for numerical stability
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of incompressible flows.

2. Assess the GFEM enrichment process such that the role of enrichments for

the stability of advection-dominated problems is well understood.

3. Identify solution-tailored enrichments that demonstrate the capability of GFEM

for both stable and high-accuracy solutions to fluid problems.

The remainder of this dissertation is arranged as follows: the fundamentals

necessary for constructing the GFEM approximation space and system of equa-

tions are outlined in chapter 2; the GFEM for addressing locking in nearly incom-

pressible field problems is discussed in chapter 3 along with numerical examples;

the capability of the GFEM to naturally stabilize advection dominated problems is

the focus of chapter 4; numerical examples applying solution-tailored enrichments

for the advection-diffusion equation and Burgers’ equation are shown in chapters

5 and 6, respectively; and lastly principle conclusions and suggested future work

are provided in chapter 7.

1.4 Key Novel Contributions of this Dissertation

The principal contributions of this work are summarized as follows:

1. Demonstrates the GFEM combined with the penalty pressure method cir-

cumvents the LBB condition and naturally addresses challenges associated

with locking in traditional finite element methods for nearly incompressible,
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viscous dominated problems. This alleviation is due to the singular matrix

obtained from linear dependencies of the polynomial enrichments in GFEM.

2. Several assumptions made in traditional stabilized methods are alleviated

through the enrichment process in the GFEM. The result is that very few

restrictions are placed on the enrichment selection process, thus allowing the

choice of solution-tailored enrichments with local solution conformity.

3. Obtains stable, high-accuracy GFEM solutions using generalizable, solution-

tailored, exponential, and hyperbolic tangent enrichments, which effectively

capture the formation of local, steep boundary layer/shock features in the

advection-diffusion equation and Burgers’ equation.
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Chapter 2

Methodology

This chapter covers the fundamentals necessary for constructing the GFEM ap-

proximation space and corresponding GFEM system of equations. Additional de-

tails include time discretization, initial conditions, and enforcement of Dirichlet

boundary conditions.

2.1 Preliminaries

Let Ω be an open set contained in Rn, n ≥ 1, with a piecewise smooth boundary

Γ. Vector and tensor fields defined on Ω are in boldface notation with lowercase

and uppercase variables, respectively (e.g., vector y and tensor A). For prescribing

boundary conditions, it is necessary to define Γ = ΓD ∪ ΓN such that ΓD ∩ ΓN = ∅,

where ΓD denotes part of the boundary for prescribed Dirichlet boundary con-

ditions, and ΓN denotes part of the boundary for prescribed Neumann bound-

ary conditions. The majority of the subsequent chapters considers abstract, linear,
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boundary value problems of the following form: Find u such that:

Lu(x, t) = f(x, t) on Ω

u(x, t) = gΓD
(x, t) on ΓD

∂u
∂n

(x, t) = gΓN
(x, t) on ΓN

u(x, 0) = u0(x) on Ω

(2.1)

where L is a linear differential operator on u, f is volumetric forcing, gΓD
are

prescribed Dirichlet boundary conditions, gΓn
are prescribed Neumann boundary

conditions, and u0 is the initial condition at t = 0. Note for boundary value prob-

lems where the solution is not a vector, the boldface notation is dropped (e.g., u is

presented as u).

In subsequent sections the weak, Galerkin, and GFEM formulation for differ-

ential equations like Eq. 2.1 is developed. These sections assume a basic under-

standing of the functional analysis tools necessary for developing the variational

formulation of differential equations. If necessary, a thorough introduction to the

functional analysis tools required for finite element methods are in [53] and for a

more general introduction to functional analysis, see [54].

2.2 Weak and Galerkin Formulation

The weak formulation of the boundary value problem (Eq. 2.1), is obtained by

multiplying by weighting functions w and integrating over the domain Ω. The
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formulation is as follows: find u ∈ H̃1 such that for all w ∈ Ḣ1:

a(w,u) = (w, f)Ω on Ω (2.2)

where (·, ·)Ω is the standard inner product over the domain Ω, a(·, ·) = (·,L(·))Ω is

a bilinear operator, and

H̃1 = {u ∈ H1|u = gΓD
on ΓD} (2.3)

and

Ḣ1 = {w ∈ H1|w = 0 on ΓD} (2.4)

where H1 is a first order Hilbert space. The Galerkin formulation is obtained by

assuming finite-dimensional approximations of the test and trial functions. That

is, let Ṽ be a finite-dimensional subspace of the space H̃1, such that ū ∈ Ṽ is a

finite-dimensional approximate solution to the weak form of the boundary value

problem (Eq. 2.2). Similarly, define V̇ to be a finite dimensional subspace of the

space Ḣ1. The Galerkin formulation is as follows: Find ū ∈ Ṽ such that for all

w̄ ∈ V̇

a(w̄, ū) = (w̄, f)Ω on Ω (2.5)

In the context of FEM/GFEM, subscript h will be added to the test and trial
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functions such that ū = ūh and w̄ = w̄h.

2.3 GFEM Approximation Space

Construction of the GFEM approximation space consists of three components: a)

patches, b) a partition of unity, c) and local approximation spaces.

a) Patches: build an open covering defined such that for a parameter h > 0,

Ω ⊂
N(h)⋃
α=1

ωα (2.6)

where ωα are patches defined over xα, α = 1, ... , N(h). Any x ∈ Ω belongs

to at most M ≤ N(h) elements of the set {ωα}N(h)
α=1 . In the generalized finite

element method, ωα is given by the union of finite elements sharing node α

of the finite element mesh covering Ω. Additionally, N(h) is defined to be the

number of nodes in the domain Ω. Note that Fig. 2.1 provides a visual repre-

sentation of patches typically used in GFEM for a one-dimensional domain.

b) Partition of unity: let {ϕα}N(h)
α=1 be piecewise C0 functions defined on Ω satisfy-

ing:

N(h)∑
α=1

ϕ(x) = 1, ∀ x ∈ Ω (2.7)

Then the set {ϕα}N(h)
α=1 forms a partition of unity with respect to the open cover
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set {ωα}N(h)
α=1 . In the generalized finite element method, the set {ϕα}N(h)

α=1 is

typically chosen as linear, Lagrangian shape functions (see Fig. 2.1).

c) Local approximation spaces: For each patch ωα we associate an mα-dimensional

space χα(ωα) of functions, denoted the local approximate space, such that:

χα = span{Eαj, 1 ≤ j ≤ mα, Eαj ∈ H1} (2.8)

where the functionsEαj ∈ χα are known as enrichment functions. It is assumed

each χα contain a constant function. The inclusion of a constant function

allows for the set {ϕα}N(h)
α=1 to be contained in the trial space.

Figure 2.1: Patches (ωα) and the partition of unity composed of linear, Lagrangian
shape functions (ϕα) over a one-dimensional, uniformly discretized computational
domain (Ω).

The GFEM trial space is given by:

SGFEM
(
Ω
)

= span{φαj = ϕαEαj (no sum over α), 1 ≤ α ≤ N(h), 1 ≤ j ≤ mα}

(2.9)
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where φαj are called the GFEM shape functions. Thus, any trial function uh ∈

SGFEM ⊂ Ṽ may be written in vector notation as:

uh =


uh

vh

...

 =


φTu cu

φTv cv

...

 = φT c (2.10)

whereφ is the vector of GFEM shape functions and c is the vector of corresponding

weighting coefficients. GFEM test functions wh are defined identically. Finally,

substitution of Eq. 2.10 into Eq. 2.5 results in a system of equations of the general

form:

Kc =b (steady case)

Mċ + Kc =b (unsteady case)

(2.11)

Note the system of equations in Eq. 2.11 is generalized to be inclusive of any

abstract, boundary value problem (Eq. 2.1). The specific terms which make up

M, K and b depend on the differential operator, volumetric forcing, boundary

conditions, and initial conditions. Subsequent chapters will provide the specific

formulation of M, K and b for: the governing equations of an elastic medium, the

governing equations for a creeping flow, the advection-diffusion equation, and the

Burgers’ equation.
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2.4 Time Discretization and Initial Conditions

For the unsteady problems presented in this dissertation, the temporal term in Eq.

2.11 is discretized using the θ-scheme, such that:

M
(cn+1 − cn

∆t

)
= θ
[
bn+1 −Kn+1cn+1

]
+ (1− θ)

[
bn −Kncn

]
(2.12)

where θ = 0 is the forward Euler scheme, θ = 1 is the backward Euler scheme,

and θ = 0.5 is the Crank-Nicolson scheme. The formulation in Eq. 2.12 may be

condensed and presented as:

M̃cn+1 = b̃ (2.13)

where M̃ = M
∆t

+ θKn+1 and b̃ = M
∆t

cn + (θ − 1)Kncn + θbn + (1− θ)bn+1.

Solution of the above system of equations requires an initial solution vector,

c0. To obtain the initial solution vector, c0, the following initial value problem is

solved:

uh(x, 0) = φT (x)c0 ≈ u0(x). (2.14)

The degrees of freedom are obtained by solving the Galerkin formulation of Eq.

2.14, following the same methodology presented in section 2.2.
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2.5 Enforcing Dirichlet Boundary Conditions

In the Lagrangian finite element method, the Kronecker delta property of the shape

functions allows the direct enforcement of Dirichlet boundary conditions by set-

ting the coefficients equal to the desired solution values. However, the addition

of enrichments in the GFEM formulation results in multiple degrees of freedom

per node, making this approach nontrivial. For one-dimensional problems that

have enrichments shifted by nodal values, Dirichlet boundary conditions may be

enforced by following the traditional approach of subtracting out columns of the

matrix that correspond to the boundary. Specifically, by defining enrichments Eαj

such that Eαj(xα) = 0, the only active functions on the one-dimensional boundary

(ΓD) are the finite element shape functions (ϕα), thus allowing direct enforcement

of the boundary conditions through the FEM degrees of freedom. For dimensions,

n ≥ 2, the FEM degrees of freedom are still directly enforceable if using shifted

enrichments. However, the GFEM shape functions (φαj) are typically nonzero in

between nodes on the domain boundary (ΓD). For these GFEM degrees of free-

dom, a penalty approach may be adopted to enforce Dirichlet boundary condi-

tions. Specifically, to enforce desired Dirichlet boundary conditions in GFEM, add

a penalty term to both sides of the matrix form (Eq. 2.11 for steady problems, or

Eq. 2.13 for unsteady problems) such that:
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(K + MΓD)c =b + bΓD (steady case)

(M̃ + MΓD)cn+1 =b̃ + bΓD (unsteady case)

(2.15)

where

MΓD = β(φ,φ)ΓD (2.16)

bΓD = β(φ,gΓD
)ΓD (2.17)

and β is the penalty parameter that is typically very large in relation to the other

matrix components contained in K and M̃. For a sufficiently large β, Dirichlet

boundary conditions may be accurately enforced. Note that because of the linear

dependencies of the GFEM formulation when using polynomial enrichments (see

[55]), the iterative algorithm presented in [56] and displayed in Algo. 1 is used to

solve the potentially indefinite system of equations. For the subsequent numerical

examples contained in chapters 3-6 ε1 = ε2 = 10−10 is used.
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Algorithm 1: Solution to the system of equations Ãc̃ = b̃

INPUT: Ã, b̃, perturbation ε1 << 1, and criterion ε2 << 1

OUTPUT: c̃ = ci

Initialization:

Precondition Ãc̃ = b̃ to equivalent system Ac = b by defining:

Tij =
δij√
Ãij

A = TÃT

c = T−1c̃

b = Tb̃

Perturbed matrix: Aε = A + ε1I;

Approximate system of equations solution vector: c0 = A−1
ε b;

Residual error of approximate system of equations: r0 = b−Ac0;

Residual error of solution vector: e0 = c− c0 ≈ A−1
ε r0;

while

∣∣∣∣∣ eiAei
ciAci

∣∣∣∣∣ > ε2 do

ri = ri−1 −
∑i−1

i=0 Aei;

ei = A−1
ε ri;

ci = c0 +
∑i−1

i=0 ei;

end

return c̃ = Tci
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Chapter 3

Nearly Incompressible Field Problems

This chapter focuses on developing the GFEM formulation for Stokes flow, a regime

where viscous forces are dominant compared to inertial terms. The governing

equations for Stokes flow lead to a class of formulations referred to as saddle-

point problems, which require Galerkin finite element methods to satisfy the LBB

condition. In this chapter, using the penalty pressure method circumvents the LBB

condition. The penalty pressure method introduces slight compressibility to the

Stokes equations through the use of a penalty parameter. Typically, the challenge

of this approach is locking. However, it is shown in a subsequent section that the

GFEM formulation naturally alleviates challenges associated with locking. Addi-

tionally, implementation of the penalty pressure method to Stokes flow results in

equations of equivalent form to elasticity equations for incompressible materials.

Thus, this work explores the application of GFEM to incompressible field problems

in general.

The remaining outline of this chapter is as follows: First, the governing equa-
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tions for an elastic medium are presented, followed by the specific GFEM matrix

formulation for the two-dimensional case. Next, the effect of locking in the incom-

pressible limit is discussed along with the GFEM enrichment process to address

this challenge naturally. Stokes flow using a penalty pressure method is then dis-

cussed, along with its form equivalence to the elasticity equations. Lastly, GFEM

solutions of a two-dimensional elasticity equation with a variable Poisson’s ratio

and a two-dimensional lid-driven cavity Stokes flow are presented, followed by a

general discussion of the results.

3.1 Boundary Value Problem: Linear Elasticity

3.1.1 Governing Equations

The governing equations for an elastic medium in Rn are:

µ∆u + (µ+ λ)∇(∇ · u) + f = 0 on Ω

u = gΓD
on ΓD

∂u
∂n

= gΓN
on ΓN

(3.1)

where u is the displacement field, f is the volumetric forcing vector, and µ and

λ are the first and second Lamé parameters, respectively. Further defining Lamé

parameters in terms of Young’s modulus, E, and Poisson’s ratio, ν, gives:
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µ =
E

2(1 + ν)
λ =

Eν

(1 + ν)(1− 2ν)
(3.2)

As Poisson’s ratio, ν, approaches 0.5, the material becomes increasingly incom-

pressible. For the limiting case of ν = 0.5, an exact solution u must satisfy the

constraint:

∇ · u ≈0 (nearly incompressible, ν ≈ 0.5)

∇ · u =0 (incompressible limit, ν = 0.5)

(3.3)

The imposition of Eq. 3.3 on a numerical approximation is what leads to locking.

3.1.2 Matrix Formulation

Substituting the GFEM approximation space Eq. 2.10 into the Galerkin formulation

of Eq. 3.1 results in the following system of equations for a 2D problem:

Kc = b→

 Ku Cuv

(Cuv)
T Kv


cu

cv

 =

fu

fv

 (3.4)

where:
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Ku = µ

∫
Ω

(
∂φu
∂x

∂φTu
∂x

+
∂φu
∂y

∂φTu
∂y

)
dΩ + (µ+ λ)

∫
Ω

(
∂φu
∂x

∂φTu
∂x

)
dΩ (3.5)

Kv = µ

∫
Ω

(
∂φv
∂x

∂φTv
∂x

+
∂φv
∂y

∂φTv
∂y

)
dΩ + (µ+ λ)

∫
Ω

(
∂φv
∂y

∂φTv
∂y

)
dΩ (3.6)

Cuv = (µ+ λ)

∫
Ω

(
∂φu
∂x

∂φTv
∂y

)
dΩ (3.7)

fu =

∫
Ω

φTuf1 dΩ (3.8)

fv =

∫
Ω

φTv f2 dΩ (3.9)

Recall that for nearly incompressible problems, the Poisson’s ratio, ν, approaches

a value of 0.5. In return, Lamé’s first parameter, λ, tends toward∞. From Eq. 3.4,

we may write:

 Ku Cuv

(Cuv)
T Kv

 =

 Ku Cuv

(Cuv)
T Kv


µ

+

 Ku Cuv

(Cuv)
T Kv


λ

(3.10)

where matrices [ · ]µ and [ · ]λ are proportional to µ and λ, respectively. It is evident

that if matrix [ · ]λ is nonsingular, then as λ→∞, the corresponding displacements

uh → 0 for any homogeneous Dirichlet boundary condition problem. Further de-

tails on the requirements of a singular matrix in order to obtain non-trivial solu-

tions for problems involving internal constraints (i.e., incompressible materials)

can be found in most standard finite element textbooks, for instance, by Hughes

[57], Cook [58], Donea and Huerta [59], and Onate [60]. Standard Lagrangian finite
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element shape functions result in a non-singular, constrained matrix for this term

when using exact integration [41]. For standard finite element methods, alleviation

of this locking phenomena is possible by introducing a singular matrix through se-

lective reduced integration as detailed, for instance in [61]. In the GFEM context,

the enrichment process using polynomials is well-known to result in linear depen-

dencies in the shape functions [56, 62–64], resulting in a singular matrix.

3.2 Boundary Value Problem: Stokes Flow

3.2.1 Governing Equations and the Penalty Pressure Method

The equations for a creeping flow, where viscous forces dominate over the advec-

tive inertial forces, are denoted as Stokes equations and are given by:

∆u−∇p+ f = 0 on Ω

∇ · u = 0 on Ω

u = gΓD
on ΓD

∂u
∂n

= gΓN
on ΓN

(3.11)

where u is the velocity field, and p is the pressure. Note Stokes flow is charac-

terized by a low Reynold’s number (Re << 1). This Reynold’s number does not

appear explicitly in the normalized equations (Eq. 3.11).

The penalty pressure method aims to alleviate challenges encountered in the
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saddle-point problem (Ref. [29]) Eq. 3.11 by approximating pressure as:

p = −1

ε
∇ · u (3.12)

where ε is the penalty pressure parameter. Substitution of Eq. 3.12 into the original

Stokes flow equations (Eq. 3.11) results in the following set of equations:

∆u +
1

ε
∇(∇ · u) + f = 0 on Ω

u = gΓD
on ΓD

∂u
∂n

= gΓN
on ΓN

(3.13)

It can immediately be observed that the penalty pressure method applied to

Stokes flow (Eq. 3.13) is form identical to the elasticity equations (Eq. 3.1). It should

be noted that 1
ε

is analogous to the first Lamé parameter, λ, which approaches∞

for nearly incompressible problems. Thus the penalty pressure parameter term, ε,

is chosen to be small. Convergence of the solution of the penalty-pressure formu-

lation Eq. 3.1 to the Stokes flow solution Eq. 3.11 is proved in [66]. The GFEM

matrices for this boundary-value problem are excluded, as they are identical to

that of the elasticity equations (Eq. 3.5) with different material coefficients.

3.2.2 A Note on Locking

It is important to note that there exist specific conditions under which the effect of

locking is negligible for numerical solution to the field equations 3.1, 3.11. Recall
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in the incompressible limit that λ and 1
ε
→ ∞. If the matrix corresponding to

these terms is non-singular, the numerical approximation is essentially solving the

following Galerkin problem: find uh ∈ Ṽ such that for all wh ∈ V̇

∫
Ω

(∇ ·wh)(∇ · uh) dΩ = O

(
µ

λ
, ε

)
≈ 0 (3.14)

The corresponding strong formulation results in the following boundary value

problem: find u ∈ Rn such that:

∇(∇ · u) ≈ 0 on Ω

u = gΓD
on ΓD

∂u
∂n

= gΓN
on ΓN

(3.15)

That is, locking results in numerical approximation of the boundary value prob-

lem Eq. 3.15, as opposed to Eqns. 3.1, 3.11. Through comparison, conditions for

which the solution to Eq. 3.15 is equivalent to the solution in Eqns. 3.1, 3.11 are

obtained. Specifically for problems not subject to volumetric forcing (i.e. f = 0),

field solutions of the following form are solvable:

u = a1x+ a2y + a3

v = b1x+ b2y + b3

(3.16)

where an, bn are arbitrary constants. Solutions of this form are trivial solutions to

Eqns. 3.1, 3.11, and thus real world application is severely limited and often unnec-
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essary. It should be noted that in the case of real world application, the additional

requirement that∇·u→ 0 as the solution field approaches the incompressible limit

will result in a1 = −b2. The subsequent section focuses on the GFEM solution of

two nontrivial example problem: (1) the two-dimensional, nearly incompressible

elasticity equations with volumetric forcing, and (2) a two-dimensional lid-driven

cavity problem.

3.3 Numerical Results

3.3.1 2D Elasticity Equations with Volumetric Forcing

First consider the 2D elasticity equations (Eq. 3.1). The problem is defined over

a unit square domain and subject to homogeneous Dirichlet boundary conditions

everywhere (gΓD
= 0) as shown in Fig. 3.1. Using the method of manufactured

solutions [67], the analytical displacement fields (shown in Fig. 3.1) are chosen as:

u = sin 2πy(cos 2πx− 1) +
sin πx sin πy

1 + λ

v = sin 2πx(1− cos 2πy) +
sin πx sin πy

1 + λ

(3.17)

and the corresponding volumetric forcing terms are:

f = −π2


(
λ+µ
λ+1

)
cos π(x+ y)− µ

(
sin 2πy(8 cos 2πx− 4) + 2 sinπx sinπy

λ+1

)
(
λ+µ
λ+1

)
cos π(x+ y)− µ

(
sin 2πx(4− 8 cos 2πy) + 2 sinπx sinπy

λ+1

)
 (3.18)
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Figure 3.1: Domain (Ω) and Dirichlet boundary conditions (u = gΓD
) for the elas-

ticity problem.

(a) u-velocity (b) v-velocity

Figure 3.2: Reference solution (u) for the elasticity problem.

Clearly as λ → ∞, the solution becomes divergent-free (i.e. ∇ · u → 0). This

problem is solved over uniform grids
(
h =

[
1
5
, 1

10
, 1

20
, 1

30
, 1

40
, 1

60
, 1

80

])
using bilinear

and quadratic Lagrangian FEM with and without reduced integration, as well as

a bilinear Lagrangian FEM enriched with linear and quadratic polynomial enrich-

ments, resulting in quadratic and cubic approximation spaces, using full integra-

tion. The local approximation space for GFEM is defined as:
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χα = span
{

1,
x− xα
h

,
y − yα
h

,
(x− xα)2

h2
,

(y − yα)2

h2

}
(3.19)

Note that a quadratic GFEM solution uses only the first three elements of the set

in Eq. 3.19, whereas a cubic solution uses the complete set. A Young’s modulus of

E = 1500 is used, and a material Poisson’s ratio of ν = [0.3, 0.4, 0.49, 0.499, 0.4999, 0.49999]

is used to assess locking as the domain approaches the incompressible limit. The

corresponding values of the Lamé parameters (Eq. 3.2) are shown in Table 3.1,

which demonstrates the increasing value of λ as the incompressible limit is ap-

proached. The convergence of the energy norm for various Poisson’s ratios are

shown Fig. 3.3. The actual convergence rate of the two finest grids studied is

present for each of the cases. Theoretical convergence rates are 0.5 (linear), 1.0

(quadratic), and 1.5 (cubic). The quadratic FEM and quadratic GFEM solutions

without reduced integration return similar errors, except GFEM does so at fewer

DOFs. As expected, since 0.3 and 0.4 are well below the incompressible limit of 0.5,

all polynomial orders converge optimally. However, as ν increases to 0.499, the lin-

ear FEM begins to show signs of locking. In the most extreme case of ν = 0.49999,

linear FEM is essentially completely locked and yields poor solution accuracy, re-

turning errors of 93% for 80 × 80 elements. The quadratic GFEM solution corre-

spondingly yields sub-optimal convergence but returns errors of 3.3% at the same

number of degrees of freedom. As the order of the GFEM solution increases to cu-

bic, the result is optimal convergence with returned errors of 0.77%. The linear and
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quadratic FEM with reduced integration return errors of 2.5% and 0.1%, respec-

tively. As Poisson’s ratio approaches 0.5, a shift in the constant for the error in the

energy norm is apparent for all solutions without reduced integration. However,

the increased convergence rates offered by the higher-order methods eventually

surpass the reduced integration schemes even with this shift present. Absolute er-

ror contours of the computed displacement fields uh are shown in Figs. 3.4 - 3.5 for

the finest grid size of 80× 80 elements and ν = 0.49999. By comparing the scales of

the contours, it is evident that all high-order solutions or solutions using reduced

integration compare favorably to the reference solution over the entire domain. In

contrast, linear FEM captures the shape of the solution but is off by several orders

of magnitude.

Table 3.1: Lamé parameters (µ, λ) for E = 1500 and ν
ν µ λ

0.3 5.769× 102 8.654× 102

0.4 5.357× 102 2.143× 103

0.49 5.034× 102 2.466× 104

0.499 5.003× 102 2.497× 105

0.4999 5.000× 102 2.500× 106

0.49999 5.000× 102 2.500× 107

3.3.2 2D Stokes Flow: Lid-Driven Cavity Problem

The second problem of interest is the lid-driven cavity problem defined over a

unit domain with the top wall moving in the x-direction with a velocity given in

Fig. 3.6. The choice of these boundary conditions is such that no singularities
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(a) ν = 0.3 (b) ν = 0.4

(c) ν = 0.49 (d) ν = 0.499

(e) ν = 0.4999 (f) ν = 0.49999

Figure 3.3: Energy norms (‖u‖E) over a range of Poisson’s ratio (ν).

are present in either the solution or gradient fields. The used penalty pressure

parameter is ε = 10−5. Note this value is equivalent to an elasticity problem with

Young’s modulus ofE = 2.99999 and Poisson’s ratio of ν = 0.499995. No analytical

solution is available, so an extrapolation strategy for the strain energy of the system

is used (see [68]). Specifically, the theoretical error estimate is given by:
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(a) Linear (FEM) (b) Linear Reduced (FEM)

(c) Quadratic (FEM) (d) Quadratic Reduced (FEM)

(e) Quadratic (GFEM) (f) Cubic (GFEM)

Figure 3.4: u-displacement absolute error contours (|u− uh|) for ν = 0.49999 over
an 80x80 element grid.

‖U − Uh‖ =
√
U − Uh = Ch

p
n (3.20)

where h is the element size, p is the polynomial order of the approximation, n is

the number of dimensions, and C is an arbitrary constant. Consider the known
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(a) Linear (FEM) (b) Linear Reduced (FEM)

(c) Quadratic (FEM) (d) Quadratic Reduced (FEM)

(e) Quadratic (GFEM) (f) Cubic (GFEM)

Figure 3.5: v-displacement absolute error contours (|v − vh|) for ν = 0.49999 over
an 80x80 element grid.

strain energies, Uh0 , Uh1 , and Uh2 , and their corresponding grid sizes h0, h1, and h2.

The following three equations are obtained through substitution into Eq. 3.20:
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(a) : ‖U − Uh0‖ =
√
U − Uh0 = Ch

p
n
0

(b) : ‖U − Uh1‖ =
√
U − Uh1 = Ch

p
n
1

(c) : ‖U − Uh2‖ =
√
U − Uh2 = Ch

p
n
2

(3.21)

Taking
log

(a)
(b)

log
(b)
(c)

from Eq. 3.21 and simplifying results in the following nonlinear

equation:

f(U) = log

(
U − Uh0
U − Uh1

)
−

log
(
h0
h1

)
log
(
h1
h2

) log

(
U − Uh1
U − Uh2

)
= 0 (3.22)

Thus, by solving for the roots of Eq. 3.22, the exact strain energy U can be esti-

mated using known values. The known values used were obtained from quadratic

FEM using reduced integration over grid sizes of 60 × 60, 70 × 70, and 80 × 80

elements (h = 1
60
, 1

70
, 1

80
, respectively). The resulting reference strain energy is

U = 16893.71040039219. An example velocity field is shown in Fig. 3.7, using a

160× 160 cubic GFEM solution.

Similar to the first example, this problem is solved over uniform grids
(
h =[

1
10
, 1

20
, 1

30
, 1

40
, 1

50
, 1

60
, 1

70
, 1

80

])
using linear and quadratic Lagrangian FEM with and

without reduced integration, as well as GFEM using linear and quadratic polyno-

mial enrichment. The convergence of the energy norm versus the total number

of degrees of freedom is shown in Fig. 3.8. The true convergence rate of the two

finest grids studied is present for each of the cases. Theoretical convergence rates

are 0.5 (linear), 1.0 (quadratic), and 1.5 (cubic). The high error levels of the linear
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Figure 3.6: Domain (Ω) and Dirichlet boundary conditions (u = gΓD
) for the lid-

driven cavity problem.

(a) u-velocity (b) v-velocity

Figure 3.7: Lid-driven cavity velocity field (u) for 160× 160 cubic GFEM solution.

FEM arise from a combination of locking and direct enforcement of the Dirichlet

boundary conditions. That is, linear FEM converges optimally over ΓD due to di-

rect enforcement of boundary conditions, however the effect of locking leads to

poor solution convergence in the interior domain Ω. The result is errors of 385% at

a grid size of 80×80 elements. Similar to the first example, the quadratic GFEM so-

lution correspondingly yields suboptimal convergence, but returns errors of 4.0%
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at the same number of degrees of freedom. As the order of the GFEM solution

is increased to cubic, optimal convergence is maintained, and errors of 1.9% are

returned. The linear and quadratic FEM with reduced integration return errors

of 0.57% and 0.055%, respectively. Absolute error contours of the computed dis-

placement fields uh are shown in Figs. 3.9 - 3.10 for the finest grid size of 80 × 80

elements and ν = 0.49999. By comparing the scales of the contours, it is evident

that all high-order solutions or solutions using reduced integration compare favor-

ably to the reference solution over the entire domain. In contrast, linear FEM fails

to capture the shape of the reference solution in Ω even when accurately enforcing

boundary conditions.

Figure 3.8: Energy norm (‖u‖E) versus total degrees of freedom (NDOF ) for lid-
driven cavity problem.
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(a) Linear (FEM) (b) Linear Reduced (FEM)

(c) Quadratic (FEM) (d) Quadratic Reduced (FEM)

(e) Quadratic (GFEM) (f) Cubic (GFEM)

Figure 3.9: u-displacement absolute error contours (|u− uh|) over an 80x80 element
grid.

3.4 General Discussion

In this chapter, GFEM formulation for nearly incompressible field problems is

examined and compared to traditional FEM formulations. Quadratic and cubic

GFEM solutions compared against Lagrangian FEM -both with and without re-
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(a) Linear (FEM) (b) Linear Reduced (FEM)

(c) Quadratic (FEM) (d) Quadratic Reduced (FEM)

(e) Quadratic (GFEM) (f) Cubic (GFEM)

Figure 3.10: v-displacement absolute error contours (|v − vh|) over an 80x80 ele-
ment grid.

duced integration - for 2D nearly incompressible elasticity equations driven by

volumetric forcing and 2D Stokes flow of a lid-driven cavity yield the following

conclusions:

1. Consistent with higher-order Lagrangian elements, the use of polynomial en-

richments in the GFEM significantly improves convergence relative to linear
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FEM in the incompressible limit.

2. Optimal convergence is noted in the 2D nearly incompressible elasticity prob-

lem for quadratic GFEM up to a Poisson’s ratio of ν = 0.499, and for cubic

GFEM at least up to Poisson’s ratio of ν = 0.49999. The Stokes flow example

ran closer to the incompressible limit, with observed degradation in the con-

vergence rates for each high-order solution considered. Cubic GFEM yielded

between 1.4 - 2 times the convergence rate of quadratic Lagrangian FEM and

quadratic GFEM.

3. Both GFEM and Lagrangian FEM experience a shift in the energy norm val-

ues when approaching the incompressible limit. This shift is not present in

the reduced integration schemes of the Lagrangian FEM. However, this shift

is ultimately overcome with cubic GFEM by grid refinement.
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Chapter 4

Stabilization of Advection Dominated

Problems

The previous chapter focused on GFEM solutions to Stokes flow and the form

equivalent elasticity equations. Stokes flow represents a regime where viscous

forces dominate the advective inertial forces, and the previous chapter shows that

the GFEM is well-suited to naturally address stability concerns in this regime. For

the remainder of this work, a shift to the other extreme will be the focus. That is

problems where advective inertial forces dominate over the viscous forces. Tradi-

tional finite element approaches are well-known to introduce spurious oscillations

when applied to advection-dominated problems. This chapter explores alleviation

of this issue from the perspective of GFEM, which enables the stabilization of a

linear differential operator through enrichments based on fundamental solutions.

Improvements offered by the GFEM enrichment process are illuminated through a

consistent decomposition of the variational multiscale method, enabling compari-
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son with classical stabilized methods.

The chapter outline is as follows: first, details of the VMS are provided, along

with some assumptions made to obtain practical stabilized methods. Next, the

GFEM is reformulated for comparison to these methods, highlighting the potential

of the enrichment selection process for stabilizing advection-dominated problems.

Lastly, details for deriving analytical, exponential enrichments are shown using

the VMS framework connected with GFEM. Chapters 5 and 6 present stable solu-

tions using these exponential enrichments for the steady/unsteady one- and two-

dimensional advection-diffusion problems and the nonlinear, one-dimensional Burg-

ers’ equation.

4.1 The GFEM as a Stabilized Method

4.1.1 Variational Multiscale Method

The VMS procedure begins with a sum decomposition of the solution (u) into

coarse/resolved scales (ū) and fine/subgrid scales (u′), such that u = ū+u′. An ex-

act equation for the coarse scales, and thus stable solutions, can be obtained when

u′ is derivable analytically [51]:

a(w̄, ū) + (L∗w̄, u′)Ω = (w̄, f)Ω on Ω (4.1)

where the fine scales depend on the coarse-scale residual error (Lu − f ), and a

46



fine-scale Green’s function (g′):

u′(x) = −
∫

Ωs

g′(x, s)(Lū− f)(s)dΩs (4.2)

Note Eq. 4.1 is essentially a modification of the classical Galerkin method given

in Eq. 2.5. Additionally, Eq. 4.2 assumes smoothness of ū. In the case of the FEM,

in which the gradients of the basis have discontinuities across element boundaries,

additional jump terms are necessary. For this rough case, fine scales are given by:

u′h(x) = −
nel∑
e=1

(∫
Ωes

g′(x, s)(Lūh − f)(s)dΩe
s +

∫
Γes

g′(x, s)(būh)(s)dΓes

)
(4.3)

where b is a boundary operator and nel are the total number of finite elements.

The challenge of this formulation is determining the analytical fine-scale Green’s

function g′. Typically, the exact analytical fine-scale Green’s function is unknown;

thus, additional assumptions are necessary in practice. That is, an approxima-

tion is made on the fine-scale Green’s function such that g′ ≈ ḡ′. One such as-

sumption, as is shown in the early VMS work by Hughes in [69], is to replace the

global Green’s function with elemental Green’s functions, which are zero on ele-

ment boundaries such that:
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ḡ′(x, s) = g′e(x, s) ∀x, s ∈ Ωe, e = 1, 2, ..., nel

g′e(x, s) = 0 on Γe, e = 1, 2, ..., nel

(4.4)

Here, subgrid scales get confined within element interiors by vanishing on el-

ement boundaries. This process is known as static condensation, which results in

the removal of the additional degrees of freedom the subgrid scales introduce.

Note that the concept of element Green’s functions has many similarities to that

of residual-free bubbles. For information on this connection, see [51].

4.1.2 Stabilized Methods

Classical stabilized methods for the FEM make two additional assumptions be-

yond elemental Green’s functions that lead to practical methods. First, the coarse-

scale residual error (Lū − f ) is assumed constant over each element. Note this

is only exactly true in the case of one-dimensional problems where volumetric

forcing, f , is constant over each element and the linear operator, L, contains only

derivatives. Second, the elemental Green’s function is assumed constant over each

element, with the optimal value given by the mean. The result, as shown in [51],

are stabilized methods of the following form:

a(w̄h, ūh) + (Lw̄h, τ(Lūh − f))Ω = (w̄h, f)Ω on Ω (4.5)

where τ is the mean value of the element Green’s function given by:
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τ =
1

meas(Ωe)

∫
Ωex

∫
Ωes

g′e(x, s)dΩe
sdΩe

x (4.6)

and L is a differential operator given by:

L = Ladv SUPG

L = L GLS

L = −L∗ Multiscale

(4.7)

This approximation is adequate for low-order, h-refinement methods. How-

ever, for high-order, p-refinement methods, the variation of τ over an element may

be required [51]. The subsequent section outlines the GFEM and shows its relation

to VMS/stabilized methods as a high-order, naturally stabilizing method.

4.1.3 Reformulation of the GFEM

Recall the GFEM approximation in Eq. 2.10. This approximation can similarly be

expressed in terms of the FEM portion/”coarse scales” and enriched portion/”fine

scales” such that:

uh = ūh + u′h (4.8)

where
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ūh =

N(h)∑
α=1

c̄αϕα = (φ̄)T c̄

u′h =

N(h)∑
α=1

ϕα

M∑
j=1

c′αjEαj = (φ′)Tc′

(4.9)

Note that the coarse scales need not contain only FEM shape functions. For ex-

ample, one could consider the coarse scales as all GFEM shape functions contain-

ing products of linear FEM shape functions with constant and linear enrichments

(i.e., p = 2 GFEM solution).

Substitution of Eq. 4.8 into the Galerkin formulation (Eq. 2.5) results in two

subproblems:

a(w̄h, ūh) + (L∗w̄h, u′h)Ω = (w̄h, f)Ω

a(w′h, ūh) + (L∗w′h, u′h)Ω = (w′h, f)Ω

(4.10)

The latter equation can be rearranged such that:

(L∗w′h, u′h)Ω = −(w′h, (Lūh − f))Ω
(4.11)

Substitution of Eq. 4.9 into Eq. 4.11 and solving for u′h:

u′h = −(φ′)T (K′)−1(φ′, (Lūh − f))Ω
(4.12)

where

50



K′ = (L∗(φ′), (φ′)T )Ω
(4.13)

Note to solve for the fine scales as done in Eq. 4.12, knowledge of the residual

error of the coarse scales is necessary. For the purpose of comparing the GFEM

to stabilized methods, assuming the residual error of the coarse scales is known is

valid, as both coarse and fine scales are solved for simultaneously in the GFEM in

Eq. 2.11. Finally, substitution of Eq. 4.12 into the first equation of Eq. 4.10 results

in the following solution for the coarse scales:

a(w̄h, ūh)− (L∗w̄h, (φ′)T (K′)−1(φ′, (Lūh − f)))Ω = (w̄h, f)Ω
(4.14)

Comparison of the GFEM formulation (Eq. 4.14) to the VMS formulation (Eq.

4.1) and classical stabilized methods (Eq. 4.5), yields the following insights:

1. Similar to the VMS and stabilized methods, the ”fine scales” of the GFEM so-

lution are driven by the residual error of the ”coarse scales.” This is observed

in Eq. 4.12, where the fine scales of the GFEM solution (u′h) depend directly

on the residual error of the coarse scales (Lūh − f).

2. Unlike the VMS, the GFEM solution does not require the fine scales be zero

on element boundaries. Specifically, no assumptions are made on the GFEM

enrichments chosen to construct the local approximation space in Eq. 2.8.

3. Unlike classical stabilized methods, the GFEM solution accounts for spatial
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variance over each element, thus making it better suited for p-refinement.

Specifically, the GFEM shape functions (φ) are spatially variant, unlike the

stabilization parameter (τ ) in the stabilized methods.

4. The coarse-scale residual error need not be assumed constant over each ele-

ment to lead to a practical method.

5. Using static condensation in GFEM is helpful for theoretical comparison with

alternative multiscale/stabilization techniques but not required in practice.

In the GFEM approach, the fine scales stabilize the coarse scales and con-

tribute to the convergence rate.

6. In the GFEM, only the basis of the fine scales is chosen a priori, with the corre-

sponding weights determined simultaneously with the coarse scales through

Galerkin’s method. The benefit of simultaneously solving the weights of both

the coarse and fine scales is that the fine-scale basis is better applied over

general meshes, as the corresponding fine-scale weights adjust accordingly

to grid refinement. Selection of only the fine-scale basis in GFEM offers an

improvement over stabilized methods, where the stabilization parameter is

chosen a priori and depends more strictly on specific grid discretization.

Regarding the last two points above, some nuances warrant an expanded dis-

cussion. The implementation of GFEM in this work does not make use of static

condensation. Thus, calculation of the additional degrees of freedom introduced
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by the fine scales in GFEM requires the inversion of a larger matrix than those

obtained by using static condensation. As a result, the computational costs of

the GFEM are greater than standard FEM over equivalent grid sizes. However,

as demonstrated for a given mesh size, GFEM with solution-tailored enrichments

has substantially reduced errors compared to standard FEM. Alternatively, GFEM

achieves the same error levels of standard FEM with far fewer degrees of freedom,

which has yielded a computational speed-up when applied on other multiscale

problems [70]. A detailed investigation of the computational cost-benefit compar-

ison against standard FEM approaches is not the focus of the current work but is

likely in future studies, particularly those involving three-dimensional advection-

dominated physics. For problems where static condensation is desired or deemed

advantageous, an algorithm suitable for the solution of hierarchically-enriched fi-

nite element methods, such as the GFEM proposed in this work, is provided in [71]

and used in application to 3D linear elastic fracture mechanics [70] and transient

heat conduction [72] in the open literature. Note that the algorithm is algebraically

equivalent to the direct solution of the enriched systems of equations, and merely

alters the efficiency with which the equations can be solved, and exploits an ability

to re-use large portions of the factorized system matrices if using a time-evolving

enrichment strategy. The algorithm does not restrict enrichment selection and ap-

plies to polynomial, non-polynomial, numerical, and time-dependent enrichment

bases. The algorithm is readily available to address the advection-diffusion equa-

tion should a detailed comparison of computational efficiency against alternative
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approaches be of primary interest.

In the current work, the a priori chosen enrichment bases are derived from

fundamental solutions to the governing equations. For more general applicabil-

ity, there is a growing body of literature for GFEM with global-local enrichments

[71] where the enrichment basis is computed on the fly, using two-way commu-

nication between a coarse, global discretization and a potentially highly-adapted

local boundary value problem defined in regions of localized interest. The local

boundary value problems obtain boundary conditions from the coarse global so-

lutions, and the solution of the local BVP made an enrichment for the coarse global

model. The two-way information transfer dramatically improves the accuracy of

the method [73] as compared to more standard global-local FEM approaches [74].

Regardless of the computational size of the local BVP, the use of the local solu-

tion as enrichment adds a minimal number of degrees of freedom to each enriched

node in the global model, equal to the dimensionality of the solution to the field

problem under consideration - one DOF is added per node in a scalar field problem

such as heat conduction [75], and three DOFs are added per node for a vector field

problem, such as three-dimensional elasticity [71]. Additional computational effi-

ciency is achievable through the parallel solution of local BVPs in scenarios where

the local BVP(s) become large as compared to the size of the global problem [76].

It is important to note there is no requirement involving conformity between the

coarse and fine scales as this property is retained through the solution of the re-

sulting problem inclusive of all relevant scales of interest, as is the case with any
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conforming finite element approach. Alternative approaches require assumptions

of strict locality (use of elemental Green’s functions/bubble functions) over sub-

grid scales to avoid the need for iterations between resolved and subgrid scales, as

well as between adjacent subgrid-scale problems to maintain C0 continuity across

the solution domain [69, 77, 78].

4.2 Example: Stabilization of a Steady, 1D Advection-

Diffusion Equation

To demonstrate the stabilizing property of GFEM enrichments, consider the fol-

lowing simple 1D steady advection-diffusion equation with constant volumetric

forcing:

Lu =

(
ax
du

dx

)
+

(
− kd

2u

dx2

)
= 100 on Ω = [0, 1]

u = 0 on ΓD = {0, 1}

(4.15)

and ax and k are the rate of advection and rate of diffusion, respectively. This

problem has an analytical solution given by:

u =
100k(1− x− eaxk x + xe

ax
k )

ax(e
ax
k − 1)

(4.16)

Hughes shows in [51] the exact elemental Green’s function is given by:
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g′e(x, s) =


C1(s)(1− e−2Pe x

h ) x ≤ s

C2(s)(e−2Pe x
h − e−2Pe) x > s

(4.17)

where

C1(s) =
1− e−2Pe(1− s

h
)

ax(1− e−2Pe)

C2(s) =
e−2Pe(1− s

h
)

ax(1− e−2Pe)

(4.18)

and Pe = axh
2k

is the elemental Péclet number. Without stabilization, p = 1 FEM

will exhibit spurious oscillations when Pe > 1. From Eqs. 4.6 and 4.17, the optimal

value for τ in the stabilized methods applied to 4.15 is given by:

τoptimal =
h

2ax

(
cothPe− 1

Pe

)
(4.19)

For direct comparison of GFEM to stabilized methods, consider Eq. 4.14. For

the simple problem 4.15, volumetric forcing is constant and the Galerkin formula-

tion is concerned only with gradients. Thus the residual error of the p = 1 FEM

solution (Lūh − f ) may be extracted from the integrand such that:

a(w̄h, ūh)− (L∗w̄h, τGFEM(x)(Lūh − f))Ω = (w̄h, f)Ω
(4.20)

where
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τGFEM(x) = (φ′)T (K′)−1(φ′, 1)Ω
(4.21)

Here, Eq. 4.20 is form identical to the multiscale method Eq. 4.5, except τGFEM

is spatially variant.

This example was solved over uniform grids sizes of h = {1
5
, 1

10
, 1

15
, 1

20
, 1

30
, 1

40
, 1

50
,

1
60
, 1

80
, 1

100
} over a range of Péclet numbers. To vary the Péclet number, the rate

of diffusion was fixed at k = 1, and the rate of advection was varied with ax =

{10, 20, 40, 100, 200, 400}. Eq. 4.15 was solved using linear (p = 1) FEM, and

quadratic (p = 2) thru (p = 6) polynomial GFEM. The GFEM local approximation

space (Eq. 2.8) is given by:

χα = span

{
1,
x− xα
h

,
(x− xα)2

h2
, ... ,

(x− xα)5

h5

}
(4.22)

Note p = 2 GFEM uses only the first two elements of Eq. 4.22 as enrichments,

p = 3 GFEM uses only the first three elements, and this trend continues up to p = 6

GFEM, where the entire set is used. A plot of the normalized optimal stabilization

parameter in Eq. 4.19 is shown in Fig. 4.1. For Péclet numbers slightly above 1, the

instabilities in the p = 1 FEM solution are small, thus a small value of τ is necessary

to stabilize. However, as the Péclet number increases, the advection term becomes

more dominant and requres a larger τ to stabilize. The mean value of τGFEM(x)

from Eq. 4.21 is also shown in Fig. 4.1. Here, for increasing enrichment order, the

GFEM solution follows the optimal τ over increasing ranges of Pe. Relative H1
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norms versus total degrees of freedom are shown in Fig. 4.2 for various Pe. The

finest grids studied are used for each of the cases for computing true convergence

rates. As Pe increases, error levels increase, and convergence rates decrease over

coarse grids. Note when Pe is ”small” (i.e. Fig. 4.2a, b, and c), the higher-order

polynomial solutions converge to the reference solution over fine grids, returning

errors on the order ofO(10−7). In these cases, the errors returned for the finest two

grids studied begin to oscillate with increasing resolution, so the convergence rate

before asymptotic behavior is shown instead. When Pe = 200h, none of the poly-

nomial solutions return near-optimal convergence, even for the finest grid sizes

studied. Solutions for a fixed grid of 10 elements is shown in Fig. 4.3. For Pe = 0.5

and Pe = 1, no oscillations are observed in any polynomial solutions as expected.

When Pe = 2 and Pe = 5 instabilities in the p = 1 FEM and p = 2 GFEM solution are

observed, with oscillations in the p = 2 GFEM solution being less severe. When Pe

= 10, the p = 4 GFEM solution begins to exhibit oscillations. Lastly, at Pe = 20 all

solutions exhibit spurious oscillations.

This simple example demonstrates the natural stabilizing property of enrich-

ments in the GFEM without the additional assumptions made in traditional sta-

bilized methods. However, enrichment quality remains essential for solution con-

vergence. The standard polynomial set often used in GFEM does not efficiently

capture the upwind behavior of an advection-dominated problem, therefore mo-

tivating the use of solution-tailored enrichments for more effective stabilization,

which is the focus of the following section.
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Figure 4.1: Optimal stabilization parameter (τoptimal) and the GFEM stabilization
parameter (τGFEM ) as the local Péclet number (Pe) increases.

4.3 Obtaining Stabilizing Enrichments in GFEM

This section makes use of fine-scale Green’s functions in the VMS to provide in-

sight into enrichments for GFEM. Consider Eq. 2.1. Substitution of u = ū+ u′ and

solving for the fine scales results in the following equation:

Lu′(x) = −(Lū− f)(x) on Ω

u′(x) = −(ū− gΓD)(x) on ΓD

∂u′(x)

∂n
= −(

∂ū

∂n
− gΓN )(x) on ΓN

(4.23)

Consider a Green’s function of the fine scales problem Eq. 4.23, g′, such that:
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(a) ax = 10;Pe = 5h (b) ax = 20;Pe = 10h

(c) ax = 40;Pe = 20h (d) ax = 100;Pe = 50h

(e) ax = 200;Pe = 100h (f) ax = 400;Pe = 200h

Figure 4.2: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus total degrees of freedom (NDOF )

for a simple advection-diffusion problem.

Lg′(x, s) = δ(s− x) on Ω (4.24)

where δ is the Dirac delta function. Multiply Eq. 4.24 by−(Lū−f)(s) and integrate

with respect to s:
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(a) ax = 10;Pe = 0.5 (b) ax = 20;Pe = 1

(c) ax = 40;Pe = 2 (d) ax = 100;Pe = 5

(e) ax = 200;Pe = 10 (f) ax = 400;Pe = 20

Figure 4.3: 10-element solutions (u) for a simple advection-diffusion problem.

−
∫

Ωs

Lg′(x, s)(Lū− f)(s) = −
∫

Ωs

δ(s− x)(Lū− f)(s) = −(Lū− f)(x) (4.25)

Since L operates only on x, it can be extracted from the integrand. Comparing

to Eq. 4.23, reveals:
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u′(x) = −
∫

Ωs

g′(x, s)(Lū− f)(s) (4.26)

This is the smooth VMS solution shown in Eq. 4.2. In the case of the FEM, the

additional jump error terms in Eq. 4.3 must be included. Consider Eq. 4.24. If

x 6= s, then the problem becomes one of finding the homogeneous solution of g′.

Since L is a linear operator, g′ is separable such that g′(x, s) = g′1(x)g′2(s), and Eq.

4.24 can be used to solve for g′1(x) such that:

Lg′1(x) = 0 on Ω (4.27)

Additionally, Eq. 4.3 simplifies to:

u′h(x) = −g′1(x)

nel∑
e=1

(∫
Ωs

g′2(s)(Lūh − f)(s) +

∫
Γes

g′2(s)(būh)(s)dΓes

)
(4.28)

In the GFEM, the fine scales are given by Eq. 4.9. Substitution into Eq. 4.28:

φ′(x)Tc′ = g′1(x)

nel∑
e=1

(
−
∫

Ωs

g′2(s)(Lū− f)(s)−
∫

Γes

g′2(s)(būh)(s)dΓes

)
(4.29)

By direct comparison of the left- and right-hand side of Eq. 4.29, solution tai-

lored enrichments are obtainable if one knows the solution to g′1(x). The solution
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of g′1(x) can be obtained from Eq. 4.27 as a summation of the fundamental so-

lutions yi product with corresponding coefficients ci. For example, if g1(x) has

two fundamental solutions, then g1(x) = c1y1(x) + c2y2(x). Since the coefficients ci

are only used to enforced boundary conditions, they are not necessary for deriv-

ing enrichments for the GFEM. That is, useful enrichments for any linear problem

Lu = f are observed if one knows one or more of the fundamental solutions to

the homogeneous problem Lu = 0. (i.e. Eαj(x) = yj(x)). Due to the superposition

principle of linear systems, these enrichments are applicable to any problems of

the form Lu = f , regardless of boundary conditions or forcing f . The following

section shows fundamental solutions for the one- and two-dimensional advection-

diffusion equation.

4.3.1 Fundamental Solutions to the 1D and 2D Advection-Diffusion

Equation

For the one- and two-dimensional advection-diffusion equation, the fundamental

solutions are:

• 1D (L = −k d
2(·)
dx2

+ ax
d(·)
dx

):

y1 = 1 and y2 = exp (ax
k
x)

• 2D (L = −k∆(·) + a · ∇(·)):

y1 = 1, y2 = exp (ax
k
x), y3 = exp (ay

k
y), and y4 = exp (ax+ay

2k
(x+ y))
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Chapter 5 provides solutions to the one- and two-dimensional steady/unsteady

advection-diffusion equation. All GFEM solutions displaying ”+ exp.” at the end

of the polynomial order indicate using the exponential enrichments from this sec-

tion. For example, a 1D, p = 2 + exp. GFEM solution to the steady advection-

diffusion equation will include constant and linear polynomial enrichments as

well as the exponential enrichment exp (ax
k
x). Although the exponential functions

presented here are analytical solutions to the homogeneous problem, they are nu-

merically ill-suited for huge exponents due to machine precision. Specifically, for

exponents of around 700 or larger, the value is no longer storable using double-

precision. A simple solution to alleviate this is to shift the exponential enrich-

ments by the node they are defined over. For example, if node xα is enriched by

exp (ax
k
x), an equivalent enrichment which is better suited for large exponents is

given by exp (ax
k

(x− xα)). These enrichments represent equivalent approximation

spaces because the shift in constant is recoverable in the corresponding weights.

4.3.2 A Priori Error Estimations

A priori error estimates are well-known for polynomial approximation spaces: for

Ω ⊂ Rn with Lipschitz boundary, a p-degree polynomial solution converges in

the L2 and H1 norm versus total degrees of freedom at a theoretical convergence

rate of p+1
n

and p
n

, respectively. Theoretical convergence rates are not developed

formally for approximation spaces containing the exponential enrichments in the
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previous section. However, insights on expected convergence behavior are pro-

vided by considering the relevance of the exponential enrichment. Specifically, for

linear BVPs (Lu = f ), u may be split in terms of the complementary and particular

solutions, such that u = uc + up. Furthermore, the complementary solution uc may

be described through superposition as uc = c1y1 + c2y2 + ...+ ciyi, where yi are the

fundamental solutions of the homogeneous problem, and ci are corresponding co-

efficients used to enforce boundary conditions. Since the exponential enrichments

in the previous section represent yi exactly (for L ≡ advection-diffusion equation),

it is reasonable to assume removal from the problem for the remaining polyno-

mial approximation space. Thus, for sufficiently smooth boundary conditions and

particular solutions, one should expect similar convergence rates to the theoretical

rates provided above, of at least p
n

. If the particular solution plus boundary condi-

tions do not include gradients of the approximation, then convergence rates of p+1
n

may be achieved. For problems where polynomials exactly represent the particu-

lar solution plus boundary conditions, one should expect the numerical solution

to be the same order as the reference solution.
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Chapter 5

GFEM Solution to the Advection-Diffusion

Equation

The focus of the next two chapters is to explore solution-tailored enrichments for

the stabilization of advection-dominated problems. In this chapter the exponen-

tial enrichments obtained in chapter 4 are applied for solutions to the advection-

diffusion equation. Advection-diffusion equations exhibit similar instabilities in

the advection term as the Navier-Stokes equations. However, it avoids additional

complexity introduced by the nonlinear term and additional variables of interest:

density, pressure, and temperature. The focus of chapter 6 is to reintroduce the

nonlinearity of the Navier-Stokes equations by solving the Burgers’ equation. The

Burgers’ equation is equivalent to the advection-diffusion equation, except the rate

of advection is replaced with the solution variable itself. The result is a nonlinear

advection term with many similarities to the Navier-Stokes equations. The Burg-

ers’ equation is useful to study the interaction between transient, dissipative, and
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nonlinear terms.

The outline of this chapter is as follows: first, the governing equations for the

advection-diffusion equation are presented, followed by the corresponding GFEM

matrix formulation. Then, GFEM solutions to the steady/unsteady one- and two-

dimensional advection-diffusion equations are presented, followed by a general

discussion of the results.

5.1 Governing Equation and GFEM Linear System of

Equations

For the advection-diffusion equation with constant rates of advection and diffu-

sion, the linear differential operator is given by L(·) = ∂(·)
∂t

+ a · ∇(·) − k∆(·). The

resulting differential equation becomes:

∂u

∂t
+ a · ∇u− k∆u = f on Ω

u = gΓD on ΓD

∇u · n = gΓN on ΓN

u(x, 0) = u0 on Ω

(5.1)

Substitution of the GFEM approximation Eq. 2.10 into Eq. 5.1 and following

the Galerkin method procedure outlined in Chapter 2 results in the following:
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Mċ + (A + K)c = f (5.2)

where

M = (φ,φT )Ω (5.3)

A = a · (φ,∇φ)Ω (5.4)

K = k(∇φ · (∇φ)T )Ω (5.5)

f = (φ, f)Ω + (φ,∇u · n)ΓN (5.6)

After applying the Crank-Nicolson method (Eq. 2.13) and enforcing Dirichlet

boundary conditions (Eq. 2.15) to Eq. 5.2, the final system of equations is:

[M̃ + MΓD ]cn+1 = b̃ + bΓD
(5.7)

where M̃ = 1
∆t

M + 1
2
(A + K), b̃ = 1

∆t
Mcn + 1

2

[
fn+1 + fn− (A + K)cn

]
, and MΓD and

bΓD are defined in Eqs. 2.16 and 2.17, respectively.

5.2 Numerical Results

This chapter presents solutions to several advection-diffusion problems up to two

dimensions. For the following examples, please note:
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1. All enrichments are shift by their nodal values to retain the physical meaning

of the standard FEM DOFs at each node.

2. Special consideration is necessary to integrate the exponential enrichment

functions accurately. The computational cost of integrating the enrichments

is trivial in the following examples since the elemental matrices are not time-

dependent. As such, the following work uses a conservative number of

Gaussian quadrature points for each grid refinement. For example, we use

ten-point Gaussian quadrature on the most refined meshes considered (ap-

prox. 1
80

element size); while we use sixty-point Gaussian quadrature for the

coarsest meshes considered (approx. 1
10

element size). For problems where

the elemental matrices are time-dependent, evaluation of the elemental ma-

trices at each time step using Gaussian quadrature may increase costs con-

siderably. More efficient integration strategies may be beneficial for these

problems, such as the Gauss-Laguerre quadrature, an extension of Gaussian

quadrature for integrating exponential functions.

5.2.1 Example: 1D Steady Advection-Diffusion Equation with Com-

plex Volumetric Forcing

First consider the following 1D steady advection-diffusion equation:
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−kd
2u(x)

dx2
+ ax

du(x)

dx
= f(x) on Ω = [0, 1]

u = {0, 1} on Γ = {0, 1}
(5.8)

where ax is the rate of advection in the x-direction, k is the rate of diffusion, and

f is the volumetric forcing. For this example, ax = 200, k = 1, and f(x) = 100x +

2000 sin2 4πx. A reference solution for this problem was generated using a 2000

element cubic GFEM solution, and is shown in Fig. 5.1. The highly advective

nature of the problem is observed with a steep boundary layer forming around

x = 1. Stability of the p = 1 FEM solution occurs at a grid size greater than or

equal to 100 elements/101 DOFs. Eq. 5.8 is solver over uniform grids using p = 1

FEM, p = 2, p = 3, p = 1 + exp., p = 2 + exp., and p = 3 + exp. GFEM. The local

approximation space for GFEM is defined as:

χα = span
{

1,
x− xα
h

,
(x− xα)2

h2
, e

ax
k
x − e

ax
k
xα
}

(5.9)

Relative H1 norm versus total number of degrees of freedom is shown in Fig.

5.2. The vertical dashed line represents 101 DOFs at which the p = 1 FEM solution

becomes stable. Here, the addition of linear and quadratic enrichments in GFEM

only slightly improves the solution’s convergence, whereas the addition of the ex-

ponential enrichments yields significant improvement. 48 DOFs solution plots are

shown in Fig. 5.3. Linear, quadratic, and cubic solutions without use of the expo-

nential enrichment are shown in Fig.5.3a. Although quadratic and cubic GFEM
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solutions exhibit less severe oscillations than the linear FEM, they are still present

around the steep boundary layer at x = 1. Linear, quadratic, and cubic solutions

with use of the exponential enrichment are shown in Fig. 5.3b. Here no instabili-

ties are observed, and all the solutions compare favorably with the reference. Note

these solutions are well below the stable limit of 101 DOFs.

Figure 5.1: 2000 element cubic GFEM reference solution (u) for the 1D steady
advection-diffusion problem with complex volumetric forcing (f(x))

5.2.2 Example: 1D Unsteady Advection-Diffusion Equation with

Complex Initial Condition

This extension is made to the unsteady case as well. Consider the following un-

steady problem:
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Figure 5.2: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus degrees of freedom (NDOF ) for the

1D steady advection-diffusion problem with complex volumetric forcing (f(x)).

(a) unstable (b) stable

Figure 5.3: 48 DOF linear, quadratic, and cubic solutions (a) with and (b) without
exponential enrichments.

∂u(x, t)

∂t
= k

∂2u(x, t)

∂x2
− ax

∂u(x, t)

∂x
on Ω = [0, 1]

u = {1, 0} on Γ = {0, 1}

u(x, 0) = 0.5(1 + tanh(5− 50x)) on Ω = [0, 1]

(5.10)
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For this example, ax = 100, k = 1, and t = [0, 0.02]. For all figures in this section,

time t is normalized to be t̄ = [0, 1]. A reference solution for this problem was gen-

erated using a 1000 element cubic GFEM solution, and is shown in Fig. 5.4 for var-

ious normalized times, t̄. The Crank-Nicolson method was used for temporal dis-

cretization with 1000 time steps. Initially there is no presence of upwind behavior,

but as t̄ → 1.0, a steep boundary layer forms around x = 1. Stability of the linear

FEM solution occurs at a grid size greater than or equal to 50 elements / 51 DOFs.

Similar to the steady case, this problem was solved over uniform grids using linear

p = 1 FEM, p = 2, p = 3, p = 1 + exp., p = 2 + exp.), and p = 3 + exp. GFEM.

The local GFEM approximation space is defined in 5.9. Relative H1 norms of the

24 DOFs solutions versus normalized time are shown in 5.5. Initially no presence

of upwind behavior is observed, thus the polynomial solutions with and without

exponential enrichments solutions return similar error. The intially larger errors

in the exponential solutions is explained by considering the complexity of the ini-

tial condition. The shape of the initial condition u(x, 0) = 0.5(1 + tanh (5− 50x))

behaves similarly to a discontinuity in the domain, and requires h-refinement to

resolve unless proper enrichment is used to capture it. Since equal DOFs are con-

sidered, the addition of the exponential enrichments coarsens the grid, resulting in

increased error as both the polynomial enrichments and exponential enrichments

are inefficient at capturing the shape of the initial condition. However, around

t̄ = 0.4, upwind behavior is observed. The result is spurious oscillations in the

solutions without exponential enrichments, and improved convergence of those
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with them. This is observed in Fig. 5.6, which displays 24 DOF solutions versus

normalized time. Lastly, Fig. 5.7 shows the relative H1 norm versus total degrees

of freedom at various time instances. The errors returned by the polynomial so-

lutions with and without the exponential enrichment prior to the formation of the

boundary layer are similar, as shown by Figs. 5.7 (a) and 5.7 (b). However, once

the boundary layer begins to form, the oscillations affect convergence of the poly-

nomial solutions without exponential enrichments as seen in Fig. 5.7 (c) and Fig.

5.7 (d). Note that error from the GFEM solutions using exponential enrichments

approaches a constant value later due to convergence to the numerical reference.

At t̄ = 1 relative errors in theH1 norm are around 0.01% or less. In the steady-state,

the problem simplifies down to a homogeneous problem, which the exponential

enrichments capture exactly since the boundary conditions are not complex.

5.2.3 Example: 2D Steady Advection-Diffusion Equation with Com-

plex Volumetric Forcing

Consider the following 2D steady advection-diffusion equation:

− k∆u(x) + a · ∇u(x) = f(x) on Ω = [0, 1]× [0, 1]

u(x) = 0 on Γ

(5.11)

For this example, ax = 64, ay = 64, k = 1, and f(x) = 500 sin 2π(1− x)(1− y). A

reference solution for this problem was generated using a 100× 100 element cubic
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q

Figure 5.4: 1000 element cubic GFEM reference solution (u) for the 1D unsteady
advection-diffusion problem with complex initial condition (uIC(x)).

Figure 5.5: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus normalized time (t̄) at 24 DOFs

for the 1D unsteady advection-diffusion problem with complex initial condition
(uIC(x)).
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(a) Linear (p = 1) FEM (b) Linear + exponential (p = 1 + exp.) GFEM

(c) Quadratic (p = 2) GFEM (d) Quadratic + exponential (p = 2 + exp.)
GFEM

(e) Cubic (p = 3) GFEM (f) Cubic + exponential (p = 3 + exp.) GFEM

Figure 5.6: 24 DOF linear, quadratic, and cubic solutions (uh) with ((a), (c), (e))
and without ((b), (d), (f)) exponential enrichments for the 1D unsteady advection-
diffusion problem with complex initial condition (uIC).

GFEM solution, and is shown in Fig. 5.8. Steep boundary layers are observed

along the x = 1 and y = 1 walls.

Stability of the p = 1 FEM occurs at a grid size greater than or equal to 32 × 32

elements / 1089 DOFs. This problem was solved over uniform grids using p = 1
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(a) t̄ = 0 (b) t̄ = 0.3

(c) t̄ = 0.4 (d) t̄ = 1

Figure 5.7: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus total degrees of freedom (NDOF ) at

various normalized times (t̄) before and after a steep boundary layer forms for the
1D unsteady advection-diffusion problem with complex initial condition (uIC).

FEM, p = 2, p = 1 + exp., and p = 2 + exp. GFEM. The GFEM local approximation

space is:

χα = span
{

1,
x− xα
h

,
y − yα
h

, e
ax
k
x−e

ax
k
xα , e

ay
k
y−e

ay
k
yα , e

ax+ay
2k

(x+y)−e
ax+ay

2k
(xα+yα)

}
(5.12)

Relative H1 norm versus total number of degrees of freedom is shown in Fig.

5.9. The vertical dashed line represents 1089 DOFs at which the linear FEM so-

lution becomes stable. Here the addition of linear enrichments only slightly im-
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(a) Reference solution contour (b) Reference solution slice

Figure 5.8: Reference solution (u) for the 2D steady advection-diffusion problem
with complex volumetric forcing (f(x)).

proves the convergence of the GFEM solution over coarse grids, whereas the addi-

tion of the exponential enrichments leads to significantly improved convergence.

Note that error from the p = 2 + exp. solution approaches a constant value over

fine grids due to their solutions converging to the numerical reference. Solutions

along the slice formed 45 degrees to the grid for DOFs 147 ± 3 are shown in Fig.

5.10. Oscillations are observed for both the p = 1 FEM and p = 2 GFEM solutions,

whereas when exponential enrichments are added no oscillations are observed and

the p = 2 + exp. GFEM solution visually matches the reference. Note that these

solutions are 147 ± 3 DOFs, which is over a seven times reduction in DOFs from

the stable limit of 1089.
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Figure 5.9: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus total degrees of freedom (NDOF )

for the 2D steady advection-diffusion problem with complex volumetric forcing
(f(x)).

Figure 5.10: 147± 3 DOF solutions (uh) along the slice for the 2D steady advection-
diffusion problem with complex volumetric forcing (f(x)).
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5.2.4 Example: 2D Steady Advection-Diffusion Equation with Ad-

vection Skewed to the Grid

Consider another 2D steady problem, this time driven by boundary conditions:

− k∆u(x) + a · ∇u(x) = 0 on Ω = [0, 1]× [0, 1]

u(x) = d(x) on Γ

(5.13)

where d(x) are the Dirichlet boundary conditions given in Fig. 5.11. Note two

discontinuities exist along the boundary at (x, y) = (0, 0.2) and (x, y) = (1, 0). For

this problem, k = 1
64
√

2
, and a = [cos θ, sin θ], where θ represents the flow direction

of the solution u. Reference solutions to this problem for θ = [22.5, 45, 67.5] degrees

were generated using 400 × 400 element, p = 1 FEM, and solution are shown in

5.12. For all θ, a steep boundary layer is formed along the wall (1, y), with the

boundary layer thickness increasing as θ increases. For θ = 45 and 67.5 degrees a

boundary layer also forms along the (x, 1) wall. This set of problems were solved

numerically over uniform grids using p = 1 FEM, p = 2, p = 1 + exp., and p = 2 +

exp. GFEM. The GFEM local approximation space is given by Eq. 5.12.

Note since the source of flow comes directly from the boundary conditions

(specifically where u(x) = d(x) = 1 on Γ), traditional convergence rates for this

example problem are not well established. That is, along the walls (x, 0) and (0, y),

the discontinuities are approximated by a finite number of elements, resulting in
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either an over- or under-prediction of the true flow through the boundary. Spe-

cific to this problem, the inclusion of u(0, 0.2) = 1 in Fig. 5.11 results in an over-

prediction of the flow since for grid size h, a linear interpolation from u(0, 0.2) = 1

to u(0, 0.2 + h) = 0 occurs. Similarly, the exclusion at (1, 0) will result in an under-

prediction of the flow. To ensure the FEM and GFEM solutions have indentical

boundary conditions over a specific grid discretization, the nodes along the walls

(x, 0) and (0, y) are not enriched. This results in a linear interpolation of the dis-

continuities along these walls, regardless of the approximation space provided.

Figure 5.11: Dirichlet boundary conditions (d(x) for the 2D advection skewed to
the grid problem.

Absolute error contours for θ = 22.5 degrees are shown in Fig. 5.13 for 10× 10

and 40×40 element solutions. Here it is observed for the 10×10 element solutions,

oscillations are present in the p = 1 and p = 2 solutions without the exponential en-

richments. When the exponential enrichments are used, no oscillations are present.
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(a) θ = 22.5 deg. (b) θ = 45 deg. (c) θ = 67.5 deg.

Figure 5.12: 400 × 400 element, linear FEM reference solutions (u) at various flow
angles (θ) for the 2D advection skewed to the grid problem.

However, as mentioned prior, the over- and under-prediction of the flow through

the boundary results in a propagation of error in the domain along the flow di-

rection θ. Unless specific enrichments are used to capture the boundary exactly,

only h-refinement is capable of reducing the error propagation observed. This is

shown in the 40× 40 solutions, where all the solutions with and without exponen-

tial enrichments visually return similar error, and both the magnitude and area of

influence of the propagated error is reduced. Note that minor oscillations are still

observed for the p = 1 FEM solutions. Similar results are obtained for θ = 45 and

67.5 degrees, as shown in Figs. 5.14 and 5.15, respectively, except the oscillations

are observed along the (x, 1) wall as well. Relative H1 norm versus total degrees

of freedom is shown in Fig. 5.16 for these three flow angles. Here the oscillations

in the coarse grid, p = 1 and p = 2 solutions result in larger errors than those with

the exponential enrichments at the same number of degrees of freedom. Since the

exponential enrichments capture exactly the steep boundary layers forming along

walls (x, 0) and (0, y), the dominant error in the GFEM solutions comes from the
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boundary conditions.

This is observed in Fig. 5.17, which shows the same relative H1 norm now

versus 1
h

. Here it is shown that the p = 1 + exp. GFEM and p = 2 + exp. GFEM so-

lutions are nearly identical at every grid size studied, indicating only h-refinement

is capable of improving error for the given approximation spaces. Additionally for

fine grids where the p = 2 GFEM solution no longer exhibits instability, the error

returned is almost identical to the exponential solutions.

(a) 10× 10 element grid (b) 40× 40 element grid

Figure 5.13: Absolute error contours (|uh−u|) for θ = 22.5 deg for the 2D advection
skewed to the grid problem.

5.2.5 Example: 2D Unsteady Advection-Diffusion Equation with

Periodic Boundary Conditions

Finally, consider the 2D unsteady advection-diffusion equations with periodic bound-

ary conditions:
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(a) 10× 10 element grid (b) 40× 40 element grid

Figure 5.14: Absolute error contours (|uh − u|) for θ = 45 deg for the 2D advection
skewed to the grid problem.

(a) 10× 10 element grid (b) 40× 40 element grid

Figure 5.15: Absolute error contours (|uh−u|) for θ = 67.5 deg for the 2D advection
skewed to the grid problem.

∂u(x, t)
∂t

= k∆u(x, t)−∇ · (au(x, t)) on Ω = [0, 1]× [0, 1]

u = sin2(64πt) sin

(
π

2
(x− 1)(y − 1)

)
on Γ = {0, 1} × {0, 1}

u(x, 0) = 0 on Ω = [0, 1]× [0, 1]

(5.14)
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(a) θ = 22.5 deg. (b) θ = 45 deg. (c) θ = 67.5 deg.

Figure 5.16: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus total degrees of freedom (NDOF )

at various flow angles (θ) for the 2D advection skewed to the grid problem.

(a) θ = 22.5 deg. (b) θ = 45 deg. (c) θ = 67.5 deg.

Figure 5.17: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus 1

h
at various flow angles (θ) for

the 2D advection skewed to the grid problem.

For this example, ax = 64, ay = 64, k = 1, and t = [0, 3
64

]. For all upcoming

figures, time t is normalized to be t̄ = [0, 1]. The boundary conditions have a

period of T = 1
64

, thus three full periods are observed. A reference solution for

this problem was generated using an 81× 81 element cubic GFEM solution, and is

shown in Fig. 5.18 for various normalized times, t̄. The Crank-Nicolson method

is used for discretization of the temporal term with 40 time steps. Initially there

is no presence of advection, but around t̄ = 1
3
, a boundary layer forms around

(x, y) = (1, 1). Stability of the linear FEM solution occurs at a grid size greater than
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or equal to 32x32 elements / 1089 DOFs. Similar to the 2D steady case, this problem

was solved over uniform grids using linear p = 1 FEM, and p = 2, p = 1 + exp., and

p = 2 + exp. GFEM. The GFEM local approximation space is given in 5.12. Relative

H1 norms of the 147± 3 DOF solutions versus normalized time are shown in 5.19.

At t̄ = 0, all solutions are trivial, thus no error is introduced. For the next few

time steps it is observed initially the presence of upwind behavior is small, thus

the polynomial solutions with and without stabilized enrichments agree relatively

well. However, starting around t̄ = 0.225 oscillations in the polynomial solutions

without exponential enrichments are observed and improved errors are noted with

those which use them. 147± 3 DOF solutions along the contour slice are presented

in Fig. 5.20. Similar to the steady cases, oscillations are observed near the steep

boundary layer point (x,y) = (1,1) for the p = 1 FEM and p = 2 GFEM solutions

without exponentitial enrichments. Introduction of the exponential enrichments

results in an error spread that is more uniform, with no oscillations present in

the numerical solutions even though the total DOFs are far fewer than the stable

limit of 1089 DOFs. Lastly, the convergence rates of the relative H1 norm versus

total degrees of freedom is presented in Fig. 5.21. Initially before the boundary

begins to form around t̄ = 0.225, the errors in the solutions with and without

the exponential enrichments are similar. However, aftedrwards the exponential

solutions return significantly reduced errors than those without.
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5.3 General Discussion

Chapter 4 details the potential of GFEM to naturally stabilize highly advective

problems through comparison with classical stabilized methods using a consistent

decomposition with the variational multiscale method. Additionally, Chapter 4

provides insights into stabilizing linear differential operators based on fundamen-

tal solutions, suggesting that GFEM may stabilize any linear differential operator.

Unlike stabilized methods, no restrictions are placed on the enrichment selection

process, thus allowing the choice of solution-tailored enrichments while maintain-

ing local solution conformity. For the class of advection-diffusion problems con-

sidered in this chapter, the results demonstrate significant improvements when

using solution-tailored enrichments for both stability and error convergence, rela-

tive to linear FEM and GFEM using only polynomial enrichments. An advantage

of using fundamental solutions as enrichments is the independence of boundary

conditions and forcing.

For the advection-diffusion problems considered, which assume constant rates

of advection and diffusion, the fundamental solutions are exponential functions.

For spatially variant rates of advection, a(x), and diffusion, k(x) (such as the ad-

vection in a rotating flow field presented in [5]), or a different linear operator, other

enrichments are likely necessary. For more complex problems, where fundamental

solutions may not be theoretically derivable, enrichments may be obtainable using
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the GFEM global-local method [71]. Also, note that for all the examples presented,

the entire domain Ω was enriched. However, since the fine scales in the GFEM

approach depend on the residual error of the coarse scales, DOFs in the GFEM

may be further reduced by enriching only a portion of the domain where the steep

boundary layer is present.
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(a) t̄ = 0.05 = 0.15T reference
contour

(b) t̄ = 0.05 = 0.15T reference
slice

(c) t̄ = 0.175 = 0.525T reference
contour

(d) t̄ = 0.175 = 0.525T reference
slice

(e) t̄ = 0.225 = 0.675T reference
contour

(f) t̄ = 0.225 = 0.675T reference
slice

(g) t̄ = 0.325 = 0.975T reference
contour

(h) t̄ = 0.325 = 0.975T reference
slice

(i) t̄ = 0.425 = 1.275T reference con-
tour

(j) t̄ = 0.425 = 1.275T reference slice

Figure 5.18: Reference solution (u) for the 2D unsteady advection-diffusion prob-
lem with periodic boundary conditions.
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Figure 5.19: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus normalized time (t̄) for the 2D

unsteady advection-diffusion problem with periodic boundary conditions.

90



(a) t̄ = 0 (b) t̄ = 0.05

(c) t̄ = 0.175 (d) t̄ = 0.225

(e) t̄ = 0.325 (f) t̄ = 0.425

Figure 5.20: 147±3 DOF solutions (uh) along slice for the 2D unsteady advection-
diffusion problem with periodic boundary conditions.
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(a) t̄ = 0.05 (b) t̄ = 0.175

(c) t̄ = 0.225 (d) t̄ = 0.325

(e) t̄ = 0.425 (f) t̄ = 0.5

Figure 5.21: Relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus total degrees of freedom (NDOF )

at various normalized times (t̄) before and after a steep boundary layer forms with
periodic boundary conditions.
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Chapter 6

GFEM Solution to the Burgers’ Equation

This chapter summarizes work to extend upon the advection-diffusion equation

work in Chapter 6 by detailing the exploration of solution-tailored enrichments

applied to the one-dimensional, unsteady Burgers’ equation. The viscous Burgers’

equation is identical to the advection-diffusion equation, except the advection co-

efficient is replaced by the solution variable, u, thus resulting in a nonlinear term.

This equation was first introduced by Bateman in [79] as a relatively simple equa-

tion to explore discontinuous solutions as the kinematic viscosity tends towards

zero. It was not until many years later that Burgers explored this equation in [80] as

a nonlinear equation with similar phenomena to turbulence. Nowadays, the Burg-

ers’ equation is known to have physical relevance for problems which include: vis-

cous flows, shock theory, gas dynamics, cosmology, traffic flow, and quantum com-

puting [81]. The Burgers’ equation has many features similar to the Navier-Stokes

equations and is used to clarify the interaction between transient, dissipative, and

nonlinear advective terms. Specifically, the Burgers’ equation contains an inertial
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and dissipation range similar to turbulence in the Navier-Stokes equations [82, 83].

As such, numerical simulation of the Burgers’ equation presents a challenge when

inertial effects dominate the solution, analogous to challenges associated with nu-

merically solving Navier-Stokes equations with high Reynolds numbers. These

highly advective problems often demand ultra-fine discretizations to resolve the

multiscale behavior of the system accurately; Otherwise, nonphysical oscillations

arise in the solution.

The outline of this chapter is as follows: first is a summary of the governing

equations for the viscous Burgers’ equation, formulation of the GFEM nonlinear

system of equations, and linearization using Newton-Raphson. Next, the invis-

cid Burgers’ equation is presented, followed by a discussion on the formation of

shocks in the domain and numerical stability. Finally, numerical examples are pre-

sented for the GFEM solution to the unsteady one-dimensional Burgers’ equation,

along with a general discussion of the results.

6.1 Viscous Burgers’ Equation

6.1.1 Governing equation

The one-dimensional viscous Burgers’ equation is given by the following: find u

such that:
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∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0 on Ω

u(x, 0) = uIC(x) on Ω

u(x, t) = gΓD(x, t) on ΓD

∂u(x, t)

∂x
= gΓN (x, t) on ΓN

(6.1)

where when referring to fluids, ν is the kinematic viscosity, and u(x, t) is the fluid

velocity.

6.1.2 GFEM Nonlinear System of Equations

Substitution of the GFEM approximation Eq. 2.10 into Eq. 6.1 and following the

Galerkin method procedure outlined in Chapter 2 results in the following nonlin-

ear system of equations:

Mċ(t) = −(A(t) + K)c(t) + fΓN (t) (6.2)

where
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M =

∫
Ω

φφT dΩ (6.3)

A(t) =

∫
Ω

φφT c(t)
∂φT

∂x
dΩ (6.4)

K = ν

∫
Ω

∂φ

∂x

∂φT

∂x
dΩ (6.5)

fΓN (t) =

∫
ΓN

φgΓN (x, t) dΓN (6.6)

After applying the Crank-Nicolson method (Eq. 2.13) and enforcing Dirichlet

boundary conditions (Eq. 2.15) to Eq. 6.2, the final system of equations is:

[M̃(cn+1) + MΓD ]cn+1 = b̃ + bΓD
(6.7)

where M̃(cn+1) = 2
∆t

M+A(cn+1)+K, b̃ = fΓN (tn+1)+
[
fΓN (tn)−(A(cn)+K)cn

]
, and

MΓD and bΓD are defined in Eqs. 2.16 and 2.17, respectively. Notice the extreme

similarity in Eq. 6.7 with the final system of equations for the advection-diffusion

equation in Eq. 5.7. The subtle difference between the two is that the system of

equations for the Burgers’ equation represent a nonlinear system of equations, and

thus additional work must be done to obtain the solution vector at each time step.

This is the focus of the next section.
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6.1.3 Iteration of the Nonlinear System using the Newton-Raphson

Method

Eq. 6.7 is a nonlinear system of equations with knowns cn and unknowns cn+1.

Using the Newton-Raphson method, the solution may be iterated to solve for the

solutions at the n+ 1 time step. To do so, assume cn+1 = cn + ε, where solutions at

the previous time steps n are an approximation of the n+1 solution, and ε is a small

correction. First, applying this above decomposition to the nonlinear matrix term

(A(tn+1)) product with solution coefficients at the n+ 1 time step (cn+1) simplify to

the following after neglecting the underlined O(ε2) terms:

A(cn+1)cn+1 ≈ A(cn)cn +

(
A(cn) +

∫
Ω

φφT

(
∂φ

∂x
cn
)
dΩ

)
ε+O(ε2)

≈ A(cn)cn +
(

A(cn) + Ã(cn)
)
ε+O(ε2)

(6.8)

Substituion of cn+1 = cn + ε and Eq. 6.8 into Eq. 6.7 results in the following

system of equations to solve for the corrections ε:

G̃ε = g̃ (6.9)

where G̃ = M̃(cn) + Ã(cn) + MΓD and g̃ = b̃ + bΓD − (M̃(cn) + MΓD)cn. Finally,

iterate over Eq. 6.9 until some residual is converged.
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6.2 Inviscid Burgers’ Equation

6.2.1 Governing Equation

The inviscid Burgers’ equation represents a limiting case where the kinematic vis-

cosity tends toward zero (ν → 0). The resulting inviscid Burgers’ equation is the

following: find u such that:

∂u

∂t
+ u

∂u

∂x
= 0 on Ω

u(x, 0) = uIC(x) on Ω

u(x, t) = gΓD(t) on ΓD

∂u(x, t)

∂x
= gΓN (t) on ΓN

(6.10)

Using the method of characteristics an implicit solution to Eq. 6.10 can be con-

structed. Readers are directed to [84] for additional details on this procedure. The

resulting implicit solution is given by u(x, t) = uIC(x − ut) = uIC(ξ), with a char-

acteristic trajectory x = ut + ξ, where ξ is an arbitrary point on the x-axis of the

x-t plane. Note the formulation of the GFEM system of equations for this inviscid

case is identical to that of Eq. 6.9 with K removed.

6.2.2 Formation of Shocks

In the inviscid case, a discontinuity (“shock”) will form in the domain if u′IC(x) < 0.

This work’s notion of a shock is assumed to be inclusive of any solution which con-
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tains a steep gradient. Therefore, the distinction between the inviscid and viscous

Burgers’ equation for shock formation is the discontinuity that appears in the do-

main. Additionally, the time when the discontinuity first occurs is denoted the

breaking time and is given by:

tb =
−1

minu′IC(x)
(6.11)

If uIC(x) crosses the x−axis at xb, such that uIC(xb) = 0 and u′IC(xb) < 0, the

shock that forms will be stationary at xb. In the case where u′IC(x) < 0 and uIC(x)

does not cross the x-axis, the shock formed will be moving. If uIC(x) > 0 the

shock will travel in the positive x-direction with time, otherwise for uIC(x) < 0 the

shock will travel in the negative x-direction with time. This may be demonstrated

by considering a series of Riemann problems represented by the following initial

conditions:

uIC(x) =


b+ 1 x ≤ 1

2

b+ 2(1− x) 1
2
< x < 3

2

b− 1 3
2
≤ x

(6.12)

where b is an arbitrary value to translate the initial condition. The resulting solu-

tion to Eq. 6.10, with initial conditions Eq. 6.12 for values of b = {−1.25, −1, 0, 0.5,

1, 1.25}, is shown in Fig 6.1. Observe that the initial problem is strictly negative

for b = −1.25, and the forming shock moves to the left with time. If b = 1.25, the
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initial problem is strictly positive and moves to the right. The remaining values

of b cross the x-axis at some point and form a stationary wave. Addressing mov-

ing shocks is outside of the scope of this paper, as the authors are concerned with

addressing stability concerns in the GFEM. Thus, this work considers only station-

ary shocks for subsequent numerical examples. However, the authors note that

previous work on GFEM to solve time-dependent problems indicates a promise to

handle transient, local behavior. The authors direct the readers to [15] for work on

GFEM solution to highly localized sharp, transient thermal gradients as an exam-

ple of such application.

6.2.3 A Note on Stability

Recall the viscous Burgers’ equation (Eq. 6.1) is form identical to the advection-

diffusion equation, where the advection coefficient is replaced by the solution vari-

able, u. For advection-diffusion equations, the Péclet number is considered for

stability of the linear FEM. Specifically, for linear FEM solution over uniform grid

size, h, Pe = ah
2ν

> 1 results in spurious oscillations, where a and ν are the rate

of advection and rate of diffusion, respectively. Rearranged, the required element

size to eliminate spurious oscillations in the numerical solution is determined by

h ≤ 2ν
a

. Using this, a conservative estimate for stability of the Burgers’ equation is

obtained by replacing a with the absolute maximum value of u at t = 0. Specifi-

cally, for max |u(x, 0)| = max |uIC(x)|, then h ≤ 2ν
max |uIC(x)| . Note in the limit ν → 0,
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(a) b = 1.25 (b) b = 1

(c) b = 0.5 (d) b = 0

(e) b = −1 (f) b = −1.25

Figure 6.1: Riemann solutions (u) for various initial conditions (uIC(x)).

the required grid size for a stable solution in linear FEM is unachievable.

6.3 Numerical Results

This section presents GFEM solutions of the one-dimensional Burgers’ equation.

For the following examples, please consider:
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1. All enrichments are shift by their nodal values to retain the physical meaning

of the standard FEM DOFs at each node.

2. Special consideration is necessary to integrate the non-polynomial enrich-

ment functions accurately. The computational cost of integrating the enrich-

ments is trivial in the following examples since the elemental matrices are

not time-dependent. Such, the following work uses a conservative number

of Gaussian quadrature points for each grid refinement. For example, we use

ten-point Gaussian quadrature on the most refined meshes considered (ap-

prox. 1
80

element size); while we use sixty-point Gaussian quadrature for the

coarsest meshes considered (approx. 1
10

element size). For problems where

the elemental matrices are time-dependent, evaluation of the elemental ma-

trices at each time step using Gaussian quadrature may increase costs con-

siderably. More efficient integration strategies may be beneficial for these

problems, such as the Gauss-Laguerre quadrature, an extension of Gaussian

quadrature for integrating exponential functions.

3. A priori error estimates are well-known for polynomial approximation spaces:

for Ω ⊂ Rn with Lipschitz boundary, a p-degree polynomial solution con-

verges in the L2 and H1 norm versus total degrees of freedom at a theo-

retical convergence rate of p+1
n

and p
n

, respectively. However, for approxi-

mation spaces containing solution-tailored enrichments, theoretical conver-

gence rates are not formally developed. Insights into convergence rates for
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solution-tailored enrichments are provided by considering convergence plots.

Unless specified, convergence rates in the L2 and H1 norm versus total de-

grees of freedom use the finest two grids studied. For a sufficiently smooth

solution using polynomial + non-polynomial enrichments, convergence rates

are similar to those of the polynomial approximation spaces. An exception is

when the numerical solution is of the same order of numerical precision as

the reference solution. Same order numerical precision is often the case when

using solution-tailored enrichments.

6.3.1 Example 1: Boundary Layer Solution as the Kinematic Vis-

cosity Tends Toward Zero

6.3.1.1 Problem Statement and Reference Solutions

Consider the viscous Burgers’ equation (Eq. 6.1) defined over a unit domain (Ω =

[0, 1]) and subject to homogeneous Dirichlet boundary conditions everywhere (Γ =

ΓD = 0; ΓN = ∅). The problem formulation is as follows: For t ∈ [0, 1], find u such

that:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0 on Ω

u(x, 0) = sin πx on Ω

u(0, t) = u(1, t) = 0 on Γ

(6.13)

An analytical Fourier solution to Eq. 6.13 is obtainable through use of the Hopf-
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Cole transformation, as detailed in [85]. The resulting analytical Fourier solution

is:

u(x, t) = 2πν

∑∞
n=1 ane

−n2π2νtn sinnπx

a0 +
∑∞

n=1 ane
−n2π2νt cosnπx

(6.14)

with Fourier coefficients, an:

a0 =

∫ 1

0

e−
1

2πν
(1−cosπx) dx

an = 2

∫ 1

0

e−
1

2πν
(1−cosπx) cosnπx dx

(6.15)

The integrals of Eq. 6.15 are convergent for all ν 6= 0. However, for small

values of ν and t, the rate of convergence of the series slows down significantly, and

results in extremely difficulty computing u using this analytical expression [86]. A

good discussion on this convergence issue is provided by [87] and the references

within. Since this work concerns solution-tailored numerical solutions with very

small viscosities, the poor accuracy of the truncated series may affect convergence

rates. Thus, a 5000-element, p = 1 FEM solution is used as a reference instead, with

the Crank-Nicolson scheme implemented with a step size of ∆t = 1
5000

. For ν = 0,

p = 1 FEM is incapable of obtaining a convergent solution (recall the conservative

estimate for stability h ≤ 2ν
maxuIC(x)

= 0; or see Figs. 6.3 and 6.4). Thus, for ν = 0

the analytical solution to the inviscid problem (Eq. 6.10) is used as a reference,

and is found by solving for u in the implicit equation u = uIC(x − ut). Reference

solutions for kinematic viscosities ν =
{

1
10
, 1

50
, 1

100
, 0
}

are shown in Fig. 6.2. A
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boundary layer forms near x = 1 with thickness decreasing as ν decreases. When

ν = 0, a discontinuity forms at x = 1, starting at time tb = 1
π

, and persisting through

later times.

(a) ν = 1
10 (b) ν = 1

50 (c) ν = 1
100 (d) ν = 0

Figure 6.2: Reference solution contours (u) for the boundary layer problem over a
range of kinematic viscosities (ν)

6.3.1.2 Finite Element Solutions

Problem 6.13 was initially solved over uniform grids (h =
{

1
11
, 1

23
, 1

47
, 1

95
, 1

191

}
)

using linear (p = 1) FEM. The Crank-Nicolson scheme is used for temporal dis-

cretization with a step size of ∆t = 1
5000

. At each time step the Newton-Raphson

method is used to iteratively solve the nonlinear set of equations. At times t =

[0, 0.25, 0.318, 0.5, 0.75, 1], relative L2 and H1 integral norms versus total degrees of

freedom are shown in Figs. 6.3 and 6.4, respectively. True convergence rates are

obtained and presented using the two finest grids studied (h =
{

1
95
, 1

191

}
). It is

observed as ν decreases, errors in the L2 and H1 norms increase. Specifically, a

shift in the relative L2 and H1 norm is observed, with convergence rates remaining

relatively unaffected except when ν = 0. This is a result of the increasing difficulty

in resolving the steep boundary layer that forms around x = 1. For ν = 0, conver-
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gence does not occur once a discontinuity arises at tb ≥ 1
π

. Spurious oscillations are

visually observed in the numerical solutions for small viscosities as shown in Fig.

6.5, which displays 11-element solution contours. For relatively large kinematic

vicosities (ν = 1
10

) no oscillations are visually observed. However, when ν = 1
100

and ν = 0, severe nonphysical oscillations arise in the 11-element solutions. With

sufficient grid refinement, the boundary layer is captured for ν = 1
100

, as exem-

plified by the 47-element solutions contours in Fig. 6.6. However grid refinement

does not improve the numerical solution when ν = 0.

(a) t = 0 (b) t = 0.25 (c) t = 0.318 ≈ 1
π

(d) t = 0.5 (e) t = 0.75 (f) t = 1

Figure 6.3: Linear (p = 1) FEM convergence in the relative L2 norm
(‖uh−u‖L2

‖u‖L2

)
versus total degrees of freedom (NDOF ) for the boundary layer problem at various
times (t).
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(a) t = 0 (b) t = 0.25 (c) t = 0.318 ≈ 1
π

(d) t = 0.5 (e) t = 0.75 (f) t = 1

Figure 6.4: Linear (p = 1) FEM convergence in the relative H1 norm
(‖uh−u‖H1

‖u‖H1

)
versus total degrees of freedom (NDOF ) for the boundary layer problem at various
times (t).

(a) ν = 1
10 (b) ν = 1

50 (c) ν = 1
100 (d) ν = 0

Figure 6.5: 11-element, linear (p = 1) FEM solution contours (uh) for the boundary
layer problem over a range of kinematic viscosities (ν).

6.3.1.3 Generalized Finite Element Solutions

For ν = 1
100

, the p = 1 FEM solutions are improved upon using GFEM with

exponential functions as enrichments. These enrichments are applied to the lo-

cal domain, Ωlocal = [0.8, 1], roughly where the boundary layer forms. Use of
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(a) ν = 1
10 (b) ν = 1

50 (c) ν = 1
100 (d) ν = 0

Figure 6.6: 47-element, linear (p = 1) FEM solution contours (uh) for the boundary
layer problem over a range of kinematic viscosities (ν).

these enrichments is motivated by findings in [88], which demonstrate exponen-

tial enrichments stabilize the GFEM solution around boundary layers arising in

the advection-diffusion equation. Recall the Burgers’ equation is of similar form to

the advection-diffusion, except the rate of advection is replaced with the solution

variable, u. Physically, the solution variable u may never exceed the maximum or

minimum value provided by the initial conditions uIC(x). Thus, the specific expo-

nential enrichment used for this problem is chosen to be E1 = e
|maxuIC (x)|x

ν = e100x.

Results using these exponential enrichments are denoted as p = 1 + exp. GFEM

solutions. Grid sizes, temporal discretization, and nonlinear iteration are idential

to those used for the p = 1 FEM solutions. Convergence in the relative L2 and H1

integral norm at various times are shown in Figs. 6.7 and 6.8, respectively. True

convergence rates are obtained and presented using the two finest grids studied

(h =
{

1
95
, 1

191

}
). Recall no theoretical convergence rates are formally developed for

GFEM using the enrichments in this example. It is observed in Figs 6.7 and 6.8 that

use of the exponential enrichments results in a significant reduction of error after

the boundary layer forms, and at the same number of DOFs when compared to
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p = 1 FEM. Plots of the relative L2 and H1 integral norms versus time are shown

in Fig. 6.9 for the 11- and 95-element GFEM solutions. The FEM and GFEM so-

lutions have nearly identical error until t ≈ 0.25 where boundary layer gradients

become larger. The FEM solutions increase in error due to spurious oscillations,

whereas the GFEM error levels remain relatively unaffected. The result is approxi-

mately 10 times reduction of error in the GFEM solutions at later time steps. Lastly,

11-element solution contours are shown in Fig. 6.10. Here, severe nonphysical os-

cillations in the p = 1 FEM solution are observed; whereas the p = 1 + exp. GFEM

solution successfully captures the steep boundary layer, presenting smooth solu-

tion contours at roughly the same number of degrees of freedom.

(a) t = 0 (b) t = 0.25 (c) t = 0.318 ≈ 1
π

(d) t = 0.5 (e) t = 0.75 (f) t = 1

Figure 6.7: Convergence in the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus total de-

grees of freedom (NDOF ) for the boundary layer problem with kinematic viscosity
ν = 1

100
using exponential enrichments.
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(a) t = 0 (b) t = 0.25 (c) t = 0.318 ≈ 1
π

(d) t = 0.5 (e) t = 0.75 (f) t = 1

Figure 6.8: Convergence in the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus total

degrees of freedom (NDOF ) for the boundary layer problem with kinematic viscos-
ity ν = 1

100
using exponential enrichments.

When ν = 0, the presented p = 1 FEM is ill-suited for two reasons: 1) enforce-

ment of the Dirichlet boundary condition u(1, t) = 0 inhibits the FEM solution from

capturing the discontinuity occuring at x = 1, and 2) increasingly steep gradients

leading up to t = 1
π

(infinitely steep at t = 1
π

) results in spurious oscillations which

propagate with time. To address the first challenge, the last node in the domain

at x = 1 is enriched with a Heaviside function which is 0 everywhere except the

element containing the node. This may be thought of as a linear correction, which

allows the GFEM to satisfy u(1, t) = 0, but also account for the discontinuity which

arises. Results using the Heaviside enrichment are denoted as p = 1 + disc. GFEM

solutions. Convergence in the relative L2 andH1 integral norm at various times are
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(a) Relative L2 integral norm (b) Relative H1 integral norm

Figure 6.9: Relative L2

(‖uh−u‖L2

‖u‖L2

)
and H1

(‖uh−u‖H1

‖u‖H1

)
integral norms versus time

(t) for 11-element and 95-element FEM and p = 1 + exp. GFEM for the boundary
layer problem with kinematic viscosity ν = 1

100
.

(a) Reference (b) 12 DOF FEM (c) 15 DOF GFEM

Figure 6.10: 11-element, p = 1 FEM (12 DOF) and p = 1 + exp. GFEM (15 DOF)
solution contours (uh) compared to the reference for the boundary layer problem
with ν = 1

100

shown in Figs. 6.11 and 6.12, respectively. True convergence rates are obtained and

presented using the two finest grids studied (h =
{

1
95
, 1

191

}
). Recall no theoretical

convergence rates are formally developed for GFEM using the enrichments in this

example. Here convergence in the L2 norm is significantly improved in the GFEM

solutions with respect to linear FEM, however, the GFEM using Heaviside enrich-
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ment does not appear to convergence in the H1 norm. Plots of the relative L2 and

H1 integral norms versus time are shown in Fig. 6.13 for 11- and 95-element GFEM

solutions. Similar to the ν = 1
100

results, the FEM and GFEM solutions have simi-

lar error levels until t ≈ 1
π

where boundary layer gradients become larger. Around

t ≈ 1
π

, both the FEM and GFEM solutions rise in error. This is explained as both the

linear interpolation and Heaviside function are ill-suited for capturing the increas-

ingly steep gradients leading up to the discontinuity at t = 1
π

. This is observed in

Fig. 6.14, which provides 11-element p = 1 FEM and p = 1 + disc. GFEM solution

contours. Severe oscillations are observed in the p = 1 FEM solutions, whereas

comparatively the GFEM solution is significantly better. However, oscillations still

persist in the GFEM solutions, starting around t = 1
π

, and propagate with time.

With grid refinement as shown in Fig. 6.15, which provides 47-element p = 1 FEM

and p = 1 + disc. GFEM solution contours, the FEM solution does not improve.

However, while oscillations persist with the GFEM solution, they are significantly

muted. These results demonstrate the importance of the intermediate, transitional

solution features on stability of the GFEM solution for the Burgers’ equation. Spe-

cific to this example, the infinitely steep boundary formed in the limit as t → 1
π

results in spurious oscillations even though the discontinuity is captured. To bet-

ter explore the effect the intermediate solution features have on the stability of the

GFEM, a second example is examined in which a shock forms with a known steady

state solution.
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(a) t = 0 (b) t = 0.25 (c) t = 0.318 ≈ 1
π

(d) t = 0.5 (e) t = 0.75 (f) t = 1

Figure 6.11: Convergence in the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus to-

tal degrees of freedom (NDOF ) for the boundary layer problem with ν = 0 using
Heaviside enrichments.

6.3.2 Example 2: Shock Formulation in the Domain

6.3.2.1 Problem Statement and Reference Solutions

Consider the viscous Burgers’ equation (Eq. 6.1) defined over a unit domain (Ω =

[0, 1]) and subject to Dirichlet boundary conditions everywhere (Γ = ΓD). The

problem formulation is as follows: For t ∈ [0, 1], find u such that:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0 on Ω

u(x, 0) = cos πx on Ω

u(0, t) = 1;u(1, t) = −1 on Γ

(6.16)
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(a) t = 0 (b) t = 0.25 (c) t = 0.318 ≈ 1
π

(d) t = 0.5 (e) t = 0.75 (f) t = 1

Figure 6.12: Convergence in the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus to-

tal degrees of freedom (NDOF ) for the boundary layer problem with ν = 0 using
Heaviside enrichments.

(a) Relative L2 integral norm (b) Relative H1 integral norm

Figure 6.13: Relative L2

(‖uh−u‖L2

‖u‖L2

)
and H1

(‖uh−u‖H1

‖u‖H1

)
integral norms versus time

(t) for 11-element and 95-element FEM and p = 1 + disc. GFEM for the boundary
layer problem with kinematic viscosity ν = 0.
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(a) Reference (b) 12 DOF FEM (c) 13 DOF GFEM

Figure 6.14: 11-element p = 1 FEM (12 DOF) p = 1 + disc. GFEM (13 DOF) solu-
tion contours (uh) compared to the reference for the boundary layer problem with
kinematic viscosity ν = 0.

(a) Reference (b) 48 DOF FEM (c) 49 DOF GFEM

Figure 6.15: 47-element p = 1 FEM (48 DOF) p = 1 + disc. GFEM (49 DOF) solu-
tion contours (uh) compared to the reference for the boundary layer problem with
kinematic viscosity ν = 0.

An analytical solution to this problem is unknown, however a steady state so-

lution is provided by uss =
√

2k tanh
[√

k
2ν2

(
1
2
− x
)]

, where k is a constant solv-

able from the nonlinear equation
√

2k tanh
√

k
8ν2
− 1 = 0. For sufficiently small

kinematic visocity ν, the constant k ≈ 1
2
, simplifying the steady state solution to

uss ≈ tanh
[

1
2ν

(
1
2
− x
)]

. The steady state solution represents the instance when

the shock has formed entirely, with the shock thickness decreasing as ν decreases.

Shock location is at x = 0.5. Fig. 6.16 shows 5000-element, p = 1 FEM reference

solutions for ν =
[

1
50
, 1

100
, 1

500
, 1

1000

]
. Note the temporal term for these references
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were solved over t = [0, 0.75] using the Crank-Nicolson scheme with a step size of

∆t = 1
5000

.

6.3.2.2 Numerical Solutions

Problem 6.16 was initially solved over uniform grids
(
h =

[
1
11
, 1

23
, 1

47
, 1

95
, 1

191

])
using p = 1 FEM and GFEM enriched with the steady state solution for ν =[

1
50
, 1

100
, 1

500
, 1

1000

]
. The local domain the steady state enrichment is applied is given

by Ωlocal =
[

1
2
− 2ν tanh−1 0.99 − he,

1
2

+ 2ν tanh−1 0.99 + he

]
, which includes all

nodes around the shock location x = 1
2

where the steady state solution |uss| ≤ 0.99.

GFEM solutions using the steady state solution as an enrichment are denoted by

p = 1 + ss GFEM solutions. The Crank-Nicolson scheme is used for temporal dis-

cretization with a step size of ∆t = 1
5000

. At each time step the Newton-Raphson

method is used to iteratively solve the nonlinear set of equations.

Plots of the relative L2 and H1 norm versus time are shown in Figs. 6.17 and

6.18, respectively. The p = 1 FEM and p = 1 + ss GFEM solutions return simi-

lar error levels up until t ≈ 1
π

where shock gradients increase. This is expected

since the steady state solution is not closely correlated with the initial transient

solution. Around t = 1
π

, error levels rise in the p = 1 FEM solutions, with the

rise increasing as ν becomes smaller. At t = 0.75, 95-element p = 1 FEM solu-

tions return errors in the relative L2 are 0.10%, 0.27%, 0.86%, and 3.3% for ν =[
1
50
, 1

100
, 1

500
, 1

1000

]
, respectively. Similarly in the relativeH1 norm the errors are 4.4%,

10.4%, 35.0%, and 73.5%, respectively. Use of the steady state as an enrichment in
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GFEM results in a significant reduction of error in both the L2 and H1 norm. At

t = 0.75 the 95-element GFEM solutions enriched with the steady state solution

have errors in the relative L2 norm of 0.0027%, 0.0047%, 0.0041%, and 0.0032% for

ν =
[

1
50
, 1

100
, 1

500
, 1

1000

]
, respectively. Similarly in the relative H1 norm the errors are

0.13%, 0.26%, 1.36%, and 2.79%, respectively. Although the p = 1 + ss GFEM solu-

tions significantly reduce relative errors with respect to p = 1 FEM, around t = 1
π

errors peak to high values in both the integral norms. The peak value of the 95-

element GFEM solution error in the H1 norm for ν =
[

1
50
, 1

100
, 1

500
, 1

1000

]
are 0.62%,

1.3%, 12.9%, and 17.0%, respectively. These large errors arising in the GFEM solu-

tions while the shock is forming is due to the linear interpolation and the steady

state enrichment being ill-suited at capturing the intermediate solution features,

similar to the results of example 1 when ν = 0. Visually this is explained in Fig.

6.19 which shows 11-element p = 1 FEM and p = 1 + ss GFEM solution contours.

As expected for p = 1 FEM solutions, oscillations arise in the numerical solutions

for small ν =

[
1

100
, 1

500
, 1

1000

]
. For the p = 1 + ss GFEM solutions, muted oscillations

are observed for ν =

[
1

500
, 1

1000

]
, which arise during the formation of the shock

around t = 1
π

and which propagate with time. With grid refinement as shown in

Fig. 6.20, which provides 47-element p = 1 FEM and p = 1 + ss GFEM solution

contours, oscillations visually improve.

Convergence plots in the relative L2 norm versus total degrees of freedom at

times t = [0, 0.25, 0.3, 0.35, 0.5, 0.75] for ν =
[

1
50
, 1

100
, 1

500
, 1

1000

]
are shown in Figs.
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6.21, 6.22, 6.23, 6.24, respectively. Similarly, Figs. 6.25, 6.26, 6.27, 6.28, show con-

vergence plots for the relative H1 norm. Note since the steady state solution is

closely correlated with the transient solution post-shock, the p = 1 + ss GFEM so-

lutions are on the same order of numerical precision as the 5000-element, p = 1

FEM reference solution. This is observed in the convergence plots as the p = 1 + ss

GFEM solution convergence begins to flatten out after around t = 1
π

. Before shock

formation, both FEM and GFEM converge similarly in all norms studied. Addi-

tionally, p = 1 FEM performs slightly better since the steady state as an enrichment

is not correlated with the initial transient solution. However, around t = 0.25 and

persisting through t = 0.35, the formation of the shock results in a shift in the error,

as well as sub-optimal convergence in both the FEM and GFEM solutions. After

the shock has mostly formed around t = 0.35, error levels in the FEM solutions

for the 95-element solution are larger than 30% in the H1 norm. Error levels in the

GFEM solutions at the same degrees of freedom are less than 2%. However, the ef-

fect of the oscillations which arise in the GFEM solution at earlier time steps greatly

affects the convergence rate in the GFEM solution in theH1 norm, and sub-optimal

convergence is observed over all grids studied.

6.3.2.3 Capturing Intermediate Solution Features

For ν = 1
500

, GFEM solutions are further improved during shock formation by

enriching the domain with additional shock enrichments, Eαj = tanh
[

1
2ρ

(
1
2
− x
)]

,

where ρ controls the shock thickness. The local domain(s) these enrichments are
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(a) ν = 1
50 (b) ν = 1

100 (c) ν = 1
500 (d) ν = 1

1000

Figure 6.16: 5000-element FEM reference solutions (u) for various kinematic vis-
cosities (ν) for the shock problem.

(a) FEM; ν = 1
50 (b) FEM; ν = 1

100 (c) FEM; ν = 1
500 (d) FEM; ν = 1

1000

(e) GFEM; ν = 1
50 (f) GFEM; ν = 1

100 (g) GFEM; ν = 1
500 (h) GFEM; ν = 1

1000

Figure 6.17: Relative L2 norm L2

(‖uh−u‖L2

‖u‖L2

)
versus time (t) for 11-, 23-, 47-, 95-

element, and 191-element p = 1 FEM and p = 1 + ss GFEM solutions over various
kinematic viscosities (ν) for the shock problem.

applied are given by Ωlocal =
[

1
2
−2ρ tanh−1 0.99−he, 1

2
+2ρ tanh−1 0.99+he

]
, which

is the region where |Eαj| ≤ 0.99. Plots of the shock enrichments for various ρ are

shown in Fig. 6.29. The p = 1 + ss GFEM solution is further enriched using ρ = 1
50

,

ρ = 1
100

, ρ = 1
200

, ρ =

[
1
50
, 1

100
, 1

200

]
. These solutions are presented as p = 1 + ss + ρ =

1
50

, p = 1 + ss + ρ = 1
100

, p = 1 + ss + ρ = 1
200

, and p = 1 + ss + ρ = all GFEM solutions,
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(a) FEM; ν = 1
50 (b) FEM; ν = 1

100 (c) FEM; ν = 1
500 (d) FEM; ν = 1

1000

(e) GFEM; ν = 1
50 (f) GFEM; ν = 1

100 (g) GFEM; ν = 1
500 (h) GFEM; ν = 1

1000

Figure 6.18: Relative H1 norm H1

(‖uh−u‖H1

‖u‖H1

)
versus time (t) for 11-, 23-, 47-, 95-

element, and 191-element p = 1 FEM and p = 1 + ss GFEM solutions over various
kinematic viscosities (ν) for the shock problem.

(a) 12 DOF FEM; ν =
1
50

(b) 12 DOF FEM; ν =
1

100

(c) 12 DOF FEM; ν =
1

500

(d) 12 DOF FEM; ν =
1

1000

(e) 16 DOF GFEM; ν =
1
50

(f) 16 DOF GFEM; ν =
1

100

(g) 14 DOF GFEM; ν =
1

500

(h) 14 DOF GFEM; ν =
1

1000

Figure 6.19: 11-element p = 1 FEM and p = 1 + ss GFEM solution contours (uh)
over various kinematic viscosities (ν) for the shock problem.
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(a) 48 DOF FEM; ν =
1
50

(b) 48 DOF FEM; ν =
1

100

(c) 48 DOF FEM; ν =
1

500

(d) 48 DOF FEM; ν =
1

1000

(e) 60 DOF GFEM; ν =
1
50

(f) 54 DOF GFEM; ν =
1

100

(g) 50 DOF GFEM; ν =
1

500

(h) 50 DOF GFEM; ν =
1

1000

Figure 6.20: 47-element p = 1 FEM and p = 1 + ss GFEM solution contours (uh)
over various kinematic viscosities (ν) for the shock problem.

(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.21: Convergence the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus total de-

grees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
50

.
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(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.22: Convergence the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus total de-

grees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
100

.

respectively. Relative L2 and H1 norm versus time plots are shown in Fig. 6.30.

for 11-element solutions. Here the addition of various shock enrichments reduces

the maximum error in the GFEM solutions, with the p = 1 + ss + ρ = all GFEM

providing the largest reduction of error. The maximum error in theL2 andH1 norm

for 11-element p = 1 + ss GFEM is 4% and 37.9%, respectively. For 11-element p = 1

+ ss + ρ = all GFEM, the maximum error in the L2 and H1 norm is 0.75% and 9.6%,

respectively, providing a 4-5 times reduction of error. Error levels improve further

with grid refinement, as shown in Fig. 6.30 for 47-element solutions. Here, the

maximum error in the L2 and H1 norm for 47-element p = 1 + ss GFEM is 0.75%

and 17.1%, respectively. For 47-element p = 1 + ss + ρ = all GFEM, the maximum

error in the L2 and H1 norm is 0.031% and 1.55%, respectively, providing over a
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(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.23: Convergence the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus total de-

grees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
500

.

10 times reduction of error. Lastly, convergence in the L2 and H1 norms versus

total degrees of freedom are shown in Figs. 6.32 and 6.33, respectively. Here, the

addition of multiple shock enrichments improves overall convergence, specifically

during shock formation between t = 0.25 and t = 0.35.

6.4 General Discussion

This chapter presents a stable, numerical solution of the one-dimensional, un-

steady Burgers’ equation for both a boundary layer and shock formation problem

over a range of small kinematic viscosities. Compared to linear FEM, the GFEM

using solution-tailored enrichments yields a significant error reduction at the same
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(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.24: Convergence the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus total de-

grees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
1000

.

number of degrees of freedom. For the boundary layer problem, the exponential

enrichments obtained in [88] are sufficient for capturing the formation of steep

boundary layers. A hyperbolic tangent function is used for the shock formation

problem to capture the thin shock forming in the domain. For both examples pre-

sented, the enrichments effectively capture the local phenomena up to relatively

small kinematic viscosities and reduce errors significantly regarding linear FEM in

both the relativeL2 andH1 norms. However, as the kinematic viscosity approaches

extremely small values, the intermediate solution features impact the GFEM solu-

tion stability. Specifically, the boundary layer and shock formation in both exam-

ples exhibit a range of steep gradients over intermediate time scales when ν << 1,

which neither the linear interpolation nor initially presented solution-tailored en-
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(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.25: Convergence the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus total

degrees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
50

.

richments are sufficient at capturing. The result is spurious oscillations in the

GFEM solution during the formation of the boundary layer/shock. These oscil-

lations propagate through later time steps and affectH1 and L2 norm convergence.

Although oscillations exist in the GFEM solutions over extremely small kinematic

viscosities, the oscillations are small over coarse grids, and the errors of the GFEM

solutions are still significantly reduced compared to the linear FEM. However, to

further improve the shock formation problem results, a set of shock enrichments

were introduced to capture the range of scales, resulting in a further reduction of

error in both the L2 and H1 norms. Specifically, roughly greater than 100 times

reduction of error is observed compared to the linear FEM at the same number

of degrees of freedom. Capturing the intermediate, transitional solution features
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(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.26: Convergence the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus total

degrees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
100

.

will likely be an important challenge for solving more complex flow field problems

using the presented GFEM framework. Such problems may demand a set of en-

richments that capture various scales of the flow as presented in the shock example

or time-dependent enrichments as presented in [15].
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(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.27: Convergence the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus total

degrees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
500

.

(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.28: Convergence the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus total

degrees of freedom (NDOF ) for the shock problem with kinematic viscosity ν =
1

1000
.
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Figure 6.29: Set of shock enrichments
(
Eαj = tanh

[
1
2ρ

(
1
2
− x
)])

for various ρ

(a) Relative L2 integral norm (b) Relative H1 integral norm

Figure 6.30: Relative L2

(‖uh−u‖L2

‖u‖L2

)
and H1

(‖uh−u‖H1

‖u‖H1

)
integral norms versus time

(t) for 11-element FEM and GFEM solutions to the shock formation problem when
kinematic viscosity ν = 1

500
.
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(a) Relative L2 integral norm (b) Relative H1 integral norm

Figure 6.31: Relative L2

(‖uh−u‖L2

‖u‖L2

)
and H1

(‖uh−u‖H1

‖u‖H1

)
integral norms versus time

(t) for 47-element FEM and GFEM solutions to the shock formation problem when
kinematic viscosity ν = 1

500
.

(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.32: Convergence the relative L2 integral norm
(‖uh−u‖L2

‖u‖L2

)
versus total de-

grees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
500

.

129



(a) t = 0 (b) t = 0.25 (c) t = 0.3

(d) t = 0.35 (e) t = 0.5 (f) t = 0.75

Figure 6.33: Convergence the relative H1 integral norm
(‖uh−u‖H1

‖u‖H1

)
versus total

degrees of freedom (NDOF ) for the shock problem with kinematic viscosity ν = 1
500

.
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Chapter 7

Concluding Remarks

7.1 Principal Conclusions Obtained in this Study

This research aims to provide meaningful theoretical and numerical results that

support and build confidence in the enriched finite element framework for high-

resolution numerical solutions of fluid dynamics problems. As such, this research

focuses on a deep study on the role of the enrichment process in solving fluid

dynamic problems. Specifically, in this work, the enrichment process is consid-

ered for addressing the following numerical challenges incurred when solving the

complete Navier-Stokes equations: (1) restrictions on allowable velocity-pressure

discretization for the solution of incompressible flows, (2) non-physical, spurious

oscillations that arise in numerical solutions for advection-dominated problems,

and (3) capturing steep gradients due to shock waves, boundary layers, and lami-

nar to turbulent boundary layer transition.

The complete Navier-Stokes equations simultaneously exhibit all of the above
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numerical challenges and, therefore, are not ideal for providing clarity into the

enrichment process. Isolation of each challenge is achievable in this work by mak-

ing various simplifications to the complete Navier-Stokes equations. The first of

these challenges is the focus of Chapter 3, which develops the GFEM formulation

for Stokes flow, an incompressible, viscous dominated flow exempt from the lat-

ter challenges. In this chapter, the GFEM, combined with the penalty pressure

method, is shown to address this challenge naturally using higher-order enrich-

ments. Subsequently, results yield improvements in solution convergence regard-

ing more traditional, Lagrangian finite elements.

Chapter 4 reinforces the theoretical foundation for stable, numerical solutions

of linear advection-dominated problems using enriched finite elements. Insight

into the enrichment process for stabilizing this class of problems is achievable us-

ing a consistent decomposition with the variational multiscale method. The en-

richment process improves status-quo stabilized methods by reducing the number

of assumptions necessary to achieve practical methods. No restrictions are placed

on the enrichment selection process, allowing the choice of solution-tailored en-

richments. This chapter provides insights into stabilizing solution-tailored enrich-

ments based on fundamental solutions of linear differential operators. Fundamen-

tal solutions represent robust, generalizable enrichments for enriched finite ele-

ments, as they are independent of boundary conditions and volumetric forcing,

albeit exist only for linear boundary value problems.

Chapter 5 puts the theory from Chapter 4 into practice for the numerical solu-
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tion of several advection-diffusion examples. The solution-tailored, stabilizing en-

richments used in the results are fundamental solutions, representing exponential

functions for advection-diffusion equations. The exponential enrichments effec-

tively capture upwind, boundary layer features arising in the advection-diffusion

equations. The result is significant improvements for both stability and error con-

vergence relative to more traditional approaches. Chapter 6 introduces additional

complexity by providing numerical solutions to the nonlinear Burgers’ equation.

Similar exponential enrichments effectively represent boundary layer features in

the Burgers’ solutions, and hyperbolic tangent functions effectively represent shock

features. However, an important observation from these results is that a sufficient

representation of the full range of scales is necessary for stable numerical solutions

using enriched finite elements. Specifically, capturing intermediate, transitional

solution features will significantly challenge solving more complex flow field prob-

lems using enriched finite elements.

Overall, this research presents theoretical and numerical results that build con-

fidence in enriched finite elements for the numerical solution of fluid dynamics

problems. Results demonstrate significant improvements compared to more tradi-

tional finite elements for the numerical solution of the governing equations of an

elastic medium, creeping flow, the advection-diffusion equation, and the Burgers’

equation. This work helps lay the foundation for further research on enriched fi-

nite elements applied to fluid dynamics problems. The following section provides

some suggestions for future work.
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7.2 Recommendations for Future Research

This research helps lay the foundation of enriched finite elements for application

to fluid dynamics problems. The methodology and problems considered in this

work provide both theory and numerical results that support and build confidence

in the enriched finite element framework for high-resolution numerical solutions

of fluid dynamics problems. However, the numerical problems considered in this

work by no means represent the full range of complexities associated with the

complete incompressible and compressible Navier-Stokes equations. Thus, crucial

future work is the application of enriched finite element methods to the complete

Navier-Stokes equations.

In addition to the numerical solution of more complex problems, more work

developing theory on stable solutions of nonlinear differential equations is neces-

sary. Specifically, in Chapter 4, the methodology that uses a consistent decomposi-

tion of the variational multiscale method to compare GFEM to classical stabilized

methods is only formally developed for linear differential operators. It may be

assumed implicitly through linearization of nonlinear equations that the frame-

work presented in Chapter 4 is applicable, but explicitly showing this stability for

nonlinear problems would be beneficial.

The most significant avenue of future work likely comes from different method-

ologies for enrichment selection. The GFEM enrichment selection process is restriction-
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free and detached from the remaining procedure. This freedom enables the use of

both analytical and numerical enrichments that may be time-independent or time-

dependent. For example, in this work, solution-tailored enrichments are obtained

based on fundamental solutions of linear differential operators and known steady-

state solutions; Deshmukh et al. in [27] apply data-derived, spatially localized

enrichments to reconstructing 3D flow past a cylinder and a 2D flow inside a lid-

driven cavity. A popular approach for the solution to solid mechanics problems

is using global-local enrichments [71], where the enrichment basis is computed

numerically, on-the-fly, using two-way communication between a coarse, global

discretization and a potentially highly-adapted local boundary value problem de-

fined in regions of localized interest.

Lastly, the versatility of the GFEM enrichment selection process also offers po-

tential solutions in the field of model order reduction (MOR) and scientific machine

learning (SciML). MOR and SciML make use of available data from experiments,

numerical simulations, or analytical solutions to find patterns, signals, or struc-

tures that enhance predictions compared to more traditional scientific computing

methods [18]. Traditional modal decomposition techniques such as proper orthog-

onal decomposition (POD) [19], balanced POD [20], dynamic mode decomposition

(DMD) [21], global stability methods [22], and sparse coding based decomposition

[23, 24] share commonality in that representation of their solutions use “global”

basis vectors spanning the entire computational domain. Such methods are often

inefficient for achieving dimensionality reductions for fields with high variance
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[25]. Essentially, global bases often fail to take advantage of redundant features

which exist locally. The GFEM framework offers the potential to spatially local-

ize and learn redundant features, resulting in a more effective, “simpler” basis for

representations of high variance fields. In SciML, an ongoing research focus is de-

veloping techniques which complement traditional domain models, such as hybrid

methods, which combines both machine learning techniques with first principle

models [26]. The GFEM offers a direct link between the governing equations and

available data through the enrichment process.
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