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Abstract

With ongoing research in intelligent transport systems and connected and au-

tomated vehicles, enabled by advancements in artificial intelligence, the large-scale

advanced simulation has become an important part of product/software development

for the automotive industry. Nowadays, traffic simulations are used to mimic real-world

environment scenarios for connected vehicle technologies. The focus of this thesis lies

in the development of microscopic traffic simulation calibration and enhance traffic

signal control systems

This thesis makes the following major contributions. First, a calibration framework

is proposed which harnesses the exiting data set of OSU campus shuttles (CABS) to

determine the traffic state and create a microscopic traffic simulation. The traffic

simulation is implemented for a section of the OSU campus(“Woody Hayes Drive")

which can be extended to the entire OSU campus.

The second contribution is an investigation of an intelligent traffic signal control

system. The signal control operation is formulated as a decision-making process where

each controller or control component is modeled as an intelligent agent. The agents

make decisions based on traffic conditions and their past knowledge of the environment.

A state estimation method and an adaptive control scheme by reinforcement learning

(RL) are introduced to implement such an intelligent system. Simulation experiments
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have been performed to verify the improvements of intelligent traffic control systems

and compare them with the existing control policy.

The third contribution summarises the initial integration work for the co-simulation

framework completed by dSpace ASM and SUMO to create a complete real-time

simulation of urban environments for ADAS testing. The demo scenario is the OSU

campus with traffic demand generated using the calibrated model from the first part

of the thesis.
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Dedicated to the safe and sustainable future of earth.
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Chapter 1: Introduction

In the 21st century, urbanization has increased at a rapid pace. City planners

and government needs to understand the impact of their decision on society in a

controlled environment. With ever-increasing digital data acquisitions, the concept

of smart cities has risen. A smart city harnesses data to build a digital model for its

various subsystems, which interact in a community The components of1.1 the different

subsystems in a city. The data acquired from various sources by the government

agencies are used to develop multiple simulation models to plan the decision-making.

Digital Twin : The term digital twin exists since the early 2000s. According to

IBM, a digital twin “is a virtual representation of a physical object or system across

its life-cycle, using real-time data to enable understanding, learning and reasoning".

Siemens adds to that the ability of a digital twin “to simulate, predict, and optimize

the product and production system before investing in physical prototypes and assets."

For an Urban planning concept, the digital twin is focused on modeling subsystems of

a city environment. According to Arup, “the promise of the city digital twin is to help

provide a simulation environment, test policy options, bring out dependencies and

allow for collaboration across policy areas, while improving engagement with citizens

and communities."
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Figure 1.1: Illustration of relationship between city subsystems [1]

Traffic Challenge : As per the US Department of Transportation, there are 212

million licensed drivers in the USA. Americans own 252 million light-duty vehicles.

Americans use approximately 180 billion gallons of fuel, driving 3.2 trillion miles a

year[2]. The increasing number of vehicles overload the current road infrastructure,

which creates congestion, leading to more fuel burning. More fuel consumption leads

to irreversible environmental impacts.

In the last two decades, researchers and governments have focused a lot on solving

the traffic congestion problems using multiple methods. In the initial stages of

the 21st century, the traffic congestion problem was tackled by expanding the road

infrastructure and adding more options for public transport. Expanding current road

infrastructure is very costly, and restricted by available land space. The research
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focus to tackle the congestion problem has shifted to optimizing the current road

infrastructure like traffic signals, dynamic lane assignments, dynamics speed limits.

An accurate and reliable simulation model is needed to improve existing traffic systems.

In a simulation modifications to the traffic lights and other parameters can improve

traffic congestion and enhance safety on the road.

Figure 1.2: A typical traffic congestion scenario at intersection , Mumbai, India(Image
Courtesy: Google Images: asurza.ca)

The way people are getting around is changing. Humankind is in the midst of a

significant transformation in automobile transportation. With fast-paced research in

connected and automated vehicles and intelligent infrastructure, soon there are many

potentials to optimize the current traffic.
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The next section asks the various research questions which are answered in this

thesis.

1.1 Research Questions

Q1: What infrastructure characteristics are needed to depict the actual environ-

ment in the virtual environment accurately?

Q2: How can one define the parameters which characterize the traffic in an urban

environment with high density?

Q1 is answered in the chapter 3that explores the road infrastructure: the number

of lanes, speed limits, and traffic light phases directly impacting how the traffic flows

through a network. Q2 is answered in the chapter 4. In this chapter, the travel time

and calibration strategy are decided.

Q3: Can a dynamic traffic light control be implemented to reduce the traffic?

Q3 is answered in the chapter 5 which implements multi-agent reinforcement-based

learning. The individual traffic light is characterized as a learning agent. The traffic

simulation acts as an environment in which the algorithm learns and updates its

control strategy to reach optimal phase timings.

Q4: How can a Co-simulation platform be developed to link high fidelity powertrain

and vehicle dynamics models with the traffic model(low fidelity)?

Chapter 6 implements the Q4 in which the dSPACE ASM simulator is used as

a high fidelity model platform and linked with the SUMO traffic simulator. The

benefit of the interface between the high fidelity and low fidelity traffic model gives
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a platform for developing and testing various energy management and autonomous

vehicle algorithms.

1.2 Motivation

In partnership with other departments and industry partners, the Center for

Engineering at the Ohio State University is trying to create a digital replica for the

campus. The digital twin("replica") would encompass various aspects within the

campus like the building’s energy and water requirements, waste resource management,

communication, and mobility of people and goods around the campus 1.3. This thesis

works contribute towards the mobility aspect of the digital twin model. The focus is

to create a traffic simulation for road sections with the highest traffic density so that

the same methodology can be expanded to the entire campus. The simulation model

harnesses data sets from Campus Area Bus Service(CABS) from the period between

2011-2019. (Covid-19 pandemic drastically changed mobility during 2020 and 2021

academic year, thus data before 2020 is used.)

1.3 Objective

As explained in the section, 1.2 the motivation is to create a mobility simulation

that can be expanded to the entire campus. This thesis aims to create a traffic

simulation environment and calibrate it with real-world data-sets to capture the

Ohio State University campus traffic scenario ("Woody Hayes Drive Section"). In

6a Co-simulation environment, with dSPACE Automotive Simulation Model(ASM)

is developed, which can be used to create autonomous and energy management

algorithms for vehicles. A5 multi-agent Reinforcement learning-based approach is

5



Figure 1.3: Smart Community Subsystems Interactions

used to optimize the traffic light green phase timings in the chapter.The objective for

developing such a simulation platform is following:

• Use the simulation platform for testing emerging technologies like connected

and automated CABS, smart traffic lights, dynamic speed limit, etc.

• Create an improved traffic light control strategy which can be implemented to

handle dynamic traffic conditions

• Use simulation platform for testing out various powertrain energy management

strategies for electric CABS.
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• Run "what-if scenarios" to understand their impact on the current mobility

conditions around campus.

• Explore what more data collection is required to enhance the traffic model.

Some of these scenario changes cannot be safely executed in the real environment.

Thus a simulation platform is required.

1.4 Definition of Problem Statement

In this section, the work scope of this thesis is defined, and some terminology is

introduced:

The notion of “calibration" in the thesis refers to the following issues:

• Analyze the existing traffic data sources to determine the traffic state.

• Estimation of vehicle counts from entry points in the network to estimate traffic

flow at intersections.

• Create a structured framework for parameters tuning in model based on existing

data to reduce the uncertainty of inputs to traffic simulation. [3]

The notion of “RL traffic light agents" in the thesis refers to implementing an

Artificial Agent-based traffic light that gets a reward based on reducing the traffic

7



congestion to the served lanes. The target of the agent is to maximize the reward by

updating the green phase timings.

1.5 Contribution and Outline

The figure 1.4 gives an illustration of the structure of the thesis and the contribution.

In the subsequent sections, readers are referred to relevant content in the specific

chapters.

Traffic Simula�on Setup

Co-Simula�on 
with HIL

Local Intelligent 
Traffic Control

Simula�on Environment
Chapter 3

Calibra�on  
Chapter 4

Mul�-agent RL for Traffic 
Signal Control 

Chapter 5

Traffic in Loop with Real Time 
HIL

Chapter 6

Figure 1.4: Illustration of the Contribution and Structure of the thesis.

Every chapter in the thesis describes a unique contribution. The below list presents

brief insights into the contribution and contents of each chapter.

• Chapter 2 presents a high-level literature survey of various components of the

project. The chapter starts with state of the art in traffic simulation. What

efforts have been made in the real environment to map the traffic? Then chapter

8



moves to explore which researchers use data types to calibrate a traffic simulation

environment? The various traffic light control systems implemented are explained.

Multi-agent Reinforcement Learning(RL) and its various implementation are

explored. Then literature review for RL application in the field of traffic control

is surveyed. In the last section of this chapter, Hardware in Loop modeling

combined with traffic modeling is investigated.

• Chapter 3 outlines the SUMO traffic simulator. This chapter explains each

component for a traffic simulation, starting from the network, vehicle demand

modeling, to the car-following model. This chapter is very critical in setup for

the chapter 4.

• Chapter 4 introduce the approach used to analyze the data sets received from

the Traffic and Transpiration department(TTM). The floating car data (GPS

timestamps) for CABS is analyzed in detail, and important ground truth param-

eters are extracted from the data. This chapter also describes the calibration

approach and the objective function. The target for the calibration algorithm

is to match the parameters extracted from the real environment data set to

the simulation environment. Important simulation assumptions are mentioned

in this chapter.A detailed analysis of the calibrated simulation is done. The

shortcoming of the calibration approach is discussed. This chapter also examines

what other real-world data might be needed to improve the calibration efforts.

• Chapter 5 investigates the implementation of the Multi-Agent RL approach to

optimize the traffic light control algorithm. Local intelligent control is compared

to the static phases approach.
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• Chapter 6 integrate the calibrated simulation environment with a high fidelity

vehicle dynamics & powertrain model. The high-fidelity model is running in an

embedded hardware environment. A communication algorithm is introduced

between the traffic simulator and the high fidelity model, which shares the data

in real-time.

• Chapter 7 summarizes the contribution of this thesis and identifies the area for

further research.

1.6 Definition of Common Terms

• SUMO: “Simulation for Urban Mobility". The open-source microscopic traffic

simulator.

• dSPACE SCALEXIO: Hardware in Loop system provided by dSPACE used

to simulate the Ego vehicle high fidelity models(high fidelity models are built-in

Simulink.)

• dSPACE ASM: Automotive Simulation Model(ASM) is the commercial soft-

ware package used to visualize the real-time running model.

• Network or map: Road infrastructure including lanes, traffic signals junctions,

bus stops, pedestrian lanes, etc. This virtual representation of the connected

roads, connections(defining movement directions) in the SUMO environment.

• Edge : A road is defined as edge in SUMO.

• Host/Ego Vehicle: Refers to a specialized vehicle whose powertrain and vehicle

dynamics high fidelity model is running the dSPACE SCALEXIO hardware.
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• Leader Vehicle: The vehicle which is immediately in front of ego vehicle in

the same lanes.

• Fellow/Neighbour Vehicles: Vehicles from traffic that are in the nearby

vicinity of the ego vehicle. These vehicles directly or indirectly affect the motion

of the ego vehicle.

• Route: This is the defined path from origin to destination for a vehicle. The

user specifies the path route for ego vehicle.

• Flow: Defined the number of vehicles entering from a particular direction in

the network
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Chapter 2: Literature Review

Simulation, according to Shannon (1975)[4], is “the process of designing a model of

a real system and conducting experiments with this model for the purpose either of

understanding the behavior of the system or of evaluating various strategies (within

limits imposed by a criterion or set of criteria) for the operation of the system."

In this chapter, current research and state of the art in the following fields of

simulation is discussed:

• Traffic Flow Modeling

• Traffic Simulation Calibration

• Traffic Signal Optimization

• Co-Simulation for ADAS and powertrain in the traffic environment.

2.1 Traffic Flow Modeling

Traffic flow theory originated in the 1930s. Traffic flow theory was pioneered by

American Bruce D Greenshields (fig 2.1). After the 1990s, the traffic demand has

increased a lot, and more data can be collected; thus, traffic flow modeling has gained a

lot of research interest. In the early 2000s, the research in autonomous cars and driver
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assisting systems has also helped advance understanding traffic flow dynamics at the

microscopic level. The field of traffic research is mostly divided into two subcategories.

The first one is traffic flow modeling, and the second is transportation planning. There

is some difference between traffic flow modeling and transportation planning:

• Temporal aspect: Transportation planning time-span is very large, covering

periods from several hours to days or even years. The traffic flow dynamics

timescale is very small in the order of minutes to few hours.

• Objective aspect: Infrastructure and traffic demand is not variable in traffic

flow dynamics, while transportation planning considers the dynamics of traffic

demand and effects of infrastructure changes.

• Subjective aspect: The higher-level decisions like activity choice (number and

type of trips), destination choice, mode choice, and route choice belong to trans-

portation planning, whereas traffic flow dynamics analyses human/automated

driving behavior (acceleration, braking, lane-changing, turning) [5]

There are different applications for traffic flow dynamics and transportation plan-

ning. Both the modeling types can approach a problem, but the solution would be

quite different. Traffic flow dynamics can help in optimizing the current infrastructure

to reduce traffic jams. Transportation planning is usually used to add infrastruc-

ture(new roads, traffic signal junctions, bridges, roundabouts, etc.) to alleviate traffic

jams. A detailed understanding of the changes suggested by transportation planning

is verified by using traffic flow models.
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Figure 2.1: Traffic theory in the 1930s: Historical speed-density diagram and the
experiment carried out by Bruce D. Greenshields. [From Greenshields, B.D., A study
of traffic capacity. In: Proceedings of the Highway Research Board, Vol. 14. Highway
Research Board, Washington, D.C. (1935)]

2.1.1 Model Classification

Traffic flow models can be classified by many aspects: Aggregation Level, mathe-

matical structure, and conceptual aspects.

Aggregation Level

There are multiple ways to represent the real-world traffic events in the simula-

tion(mathematical representation) (fig 2.2)

Macroscopic Models describe traffic flow similar to gas flow dynamics. These

models are referred to as hydrodynamics models. The variables are traffic density

ρ(x, t), flow Q(x, t), mean speed V (x, t) or the speed variance σ2
V (x, t). These variables

aggregate in a local environment; thus, the variables vary across space and time, i.e.,

they correspond to dynamic fields. Macroscopic models are useful in the below cases:
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Figure 2.2: Comparison of various model categories (concerning the way they represent
reality), including typical model equations [5]

• Effects that are computationally intensive for a macroscopic simulation(e.g., lane

changes, several driver-vehicle types).

• Input data available is from heterogeneous sources or is inconsistent, thus making

data fusion necessary.

Microscopic Models use car-following models and are focused on individual vehicle

dynamics. The car-following models describe the reaction of each driver (acceleration,

braking lane changes) based on the surrounding traffic. Microscopic traffic flow models

are examples of driven multi-particle models. The variables which are dynamics are:

xα(t), speeds vα(t), and accelerations v̇α(t). Microscopic models are used for the

following applications :
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• Modeling how single vehicle movement affects traffic: This field is becoming very

important for the advanced driver-assistance systems (ADAS) such as adaptive

cruise control (ACC) or Vehicle to Infrastructure (V2X) and other applications

of Intelligent Transportation Systems.

• Modeling heterogeneous vehicle types and their interaction on the road. These

models help understand the effects of speed limits or vehicle-specific lanes in

urban/highway scenarios with heterogeneous vehicles.

• Predicting human driving behavior, including estimation errors, reaction times.

Microscopic models allow accessing how various driving parameters affect traffic

capacity and stability. [5]

Mesoscopic Models are an intermediary between macroscopic and macroscopic

traffic flow models. They are similar to gas kinetic traffic models, which use idealized

“collisions" to describe the dynamics of the quantity called phase-space density ρ(x, t, v)

which includes the traffic density and the local probability distribution of vehicle speed.

Mesoscopic models can be called hybrid traffic flow models. Hybrid models can be

built which describe the critical parts of the traffic network (intersections and traffic

lights) microscopically, and the rest of the network is modeled using macroscopic

dynamics [5].

2.2 Traffic Simulation Calibration

Microscopic simulations are widely used in transportation planning, design, and

analysis due to their cost-effectiveness, risk-free and high-speed benefits. IN traffic

simulations models, there are multiple independent parameters (e.g., car-following
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model, flow rate) that determine the movement of vehicles in a network. The usefulness

of a microscopic simulation is increasing if it can accurately depict the real work traffic.

To match the traffic from a real environment, many sensors can be installed, which

help determine the state of the traffic. In this section, the data types collected by

various sensors, their application, and the optimization algorithms used to calibrate

the simulation parameters to match the simulation data with the observed data from

the real-world sensors.

2.2.1 Traffic Data

Traffic simulations represent a crucial element for today’s mobility. For determining

the state of traffic, many sensor technologies can be used. The parameters which

determine the state of traffic in a network are :

• Origin-Destination Pairs

• Vehicle Counts

• Vehicle Flow

• Vehicle Queue Density on Lanes

• Travel Time

• Average Speed

The sensors used to determine the above-mentioned traffic states are:

Vehicle Detector Loops(VDL)

Vehicle Detector Loops are permanent counting stations that are the most common

data source for traffic state estimation(2.3). The data provided by the VDL is limited

17



in area coverage and vulnerable to errors and malfunction [6]. The data provided

by the VDL is vehicles counts and flow for a particular lane in the network. The

data is aggregated over a period of time. The usual time period for data collection is

15 minutes. Every 15 minutes, the data is aggregated and then stored in a central

server. Inductor loops are the most cost-efficient method for estimating traffic used by

government departments. The Ohio Department of Transportation provides this data

to the public on their website[7]. The fig 2.4 represents the location of VDL marked

in blue squares.

Figure 2.3: Mat Type Inductor Loop(image courtesy: www.fhwa.dot.gov)

2.2.2 Calibration Algorithms

A calibration process must include: the definition of an objective/fitness function

to evaluate the performance, the parameter that will be optimized and calibrated,

and the algorithm developed to optimize the calibration process and minimize the

objective function[8].
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Figure 2.4: Snapshot of Inductor Locations in Columbus, Ohio

Parameters

In traffic calibrations, most of the research is done to optimize the car following

model parameters. Even in the car following model, every researcher focus on different

parameters. For example, Ciuffo et al. calibrated only reaction time and speed

acceptance[9]. In Cheu et al.’s research, the mainline free-flow speeds upstream and

downstream of North Buena Vista Road off-ramp and the free-flow speeds at on-ramps

and off-ramps, as well as the parameters that control the movement of vehicles (e.g.,

minimum car-following distance and sensitivity factor) were calibrated. A total of 12

parameters were calibrated in their research[10]. In Paz et al.’s study, 11 parameters.
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Generally, less number of parameters can help the researcher on focusing better on

the calibration when its value is changed. However, some parameters can have a much

more significant impact on calibration compared to others when combined. Thus

usually, the parameter optimization for calibration is not global optima for an objective

function. Usually, algorithms find local optima. In this thesis, the focus is on flow

probability parameters that decide the vehicle generation at the entry points to the

network. For freeways, and 15 parameters for surface streets were calibrated[11].

Optimization algorithms

To obtain a match between simulation and observed(calibration data) traffic

measurements a proper calibration of traffic simulation model parameters needs to

be done. As there are large number of unknown parameters involved in microscopic

simulation , the calibration task is a time-consuming complex task. The task of the

optimization algorithm is to minmize the difference between calibration data and the

simulation data by varying the parameters. Optimization algorithms can be broadly

classified into two categories:

• Gradient dependent algorithms.

• Heuristic search algorithms.

The traffic simulation and calibration problem is a non-convex optimization problem

[12]. The gradient dependent algorithms are not efficient to solve non-convex problems

because they are dependent on the initial parameters provided to it. In a non-convex

optimization problem the search based algorithms like, Particle Swarm Optimization

(PSO) and GA are much more widely used because of there independence on initial

parameters. The gradient based algorithm cannot find the global optimum solution
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because of multiple local optimum(minimum) in the search space of objective function.

The search based algorithm can be adapted by using large population size in the

search space of objective function which helps to find the global optimum of the

calibration objective function. In heuristic search algorithms,Genetic algorithm and

Simultaneous Perturbation Stochastic Approximation (SPSA) are widely used in

calibration studies([13], [14], [15], [16], [17], [18], [11], [19], [20]). Some other algo-

rithms used are OptQuest/Multi start. Algorithm (OQMA), non-linear programming

techniques, Particle Swarm (PS), and Trial-and-Error Method (IA). GA is used as a

popular calibration method for micro-simulation models, and it has given near-global

optima for the objective function. Cheu et al. has used the GA approach to calibrate

FRESIM parameters(average speed and average volume), and the objective function

was to match the detector outputs from simulation to Singapore case expressway

data[21]. Ma and Abdul have used the GA-based optimization approach to calibrate

the PARAMICS model[22]. In this thesis, GA is used to optimize the flow probability

for vehicle generation.

2.3 Traffic Signal Optimization

The primary objective for a traffic signal control policy is the safe and efficient flow

of traffic across the intersection. Due to advancements in AI and data availability, a

new algorithm can be developed which adapts the traffic light control policy based on

the traffic congestion in its vicinity. Simulation-based optimization is a fast alternative

to real-world testing of the control algorithms. Therefore, traffic simulators are often

applied to evaluate optimized signal control systems (e.g.[23]). Many studies have

been done to integrate traffic signal control with microscopic simulations.
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Part et al.[24] were the first to integrate a genetic algorithm (GA) to minimize the

average travel delay obtained in microscopic simulations with a local signal controller.

The study was focused on over-saturated signalized intersections. In 2000 and 2009,

Park et al. extended their work to maximize the traffic flow and reduce the overall

emissions [25],[26].

Similar studies have been conducted by Stevanovic et al.([27],[28],[29]). Similar

work has been done by Zhang et al.[30],they applied simulation-based optimization to

arterial control, and various traffic simulators were used.

Li et al.[31] proposed a two-level optimization framework for optimal traffic signal

control problems. The higher-level controller decided the traffic signal states to reduce

the driver’s average travel time, while the lower level aimed for achieving network

equilibrium using the settings at a higher level.

2.3.1 Signal control by reinforcement learning

Some studies have simulated the signal timing decision as a sequential process. The

green phase duration is adapted to the traffic determined by sensors. The sequential

decision-making process is used in emerging AI fields like reinforcement learning (RL).

Thorpe et al.[32] first implemented RL based agent approach to control an intersection.

The simulation results show that RL based agent (adaptive controller) outperformed

the fixed time controller by reducing the average wait time of vehicles crossing the

intersection. For further details, a comprehensive work by Yau et al.[33] on a survey

of various RL models dedicated to signal control systems can be referred.

In some RL studies for traffic control vehicles, states have been used to combine

traffic signal states. Vehicle states can include information like vehicle position and
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destination. Khakis et al.[34] used vehicle states in their RL agent-based control.

Implementing a vehicle state-based controller for traffic optimization may not be

cost-effective since it requires a broad network of connected vehicles to infrastructure

(V2I) so that vehicle information can be passed to the nearest local traffic controller.

2.4 Co-Simulation for ADAS and powertrain in the traffic en-
vironment

Modern vehicles systems are becoming complex with every new generation. Hard-

ware in the Loop (HIL) simulation is used to support the development of various

embedded controls in vehicle subsystems. With the new generation of ADAS and

autonomous algorithms, researchers need real-time simulation platforms to test their

models, which can mimic real work driving. The co-simulation platform consisting of

HIL and traffic simulators can test V2X and V2I based algorithms. In recent years

wireless communication has enabled cars to become part of smart city interacting

systems[35]. To accurately simulate interacting systems in the context of a car- the

Vehicle Ad-Hoc Network (VANET) - must therefore be simulated. For VANET simu-

lation, the system under test(ego vehicle) and context (traffic and communication)

are modeled in a city-scale simulation. The research work in the field of co-simulation

is in the very nascent stage.

A simulation company rFpro has released its work on integrating a 3-D rendered

city environment with a SUMO traffic simulator, and the end-user can decide the ego

vehicle physics model. The fig 2.5 shows the important sub-component in the rFpro

co-simulation framework [36].

In this thesis, the co-simulation between ego vehicle physics(modeled in Simulink)

and SUMO is developed using dSpace ASM simulation environment.
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Figure 2.5: Data flows between rFpro, SUMO, and the end user’s vehicle model vehicle
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Chapter 3: Traffic Simulation Software

This chapter details the simulation software used for traffic generation. The

software used for the virtual section of the OSU campus is SUMO(Simulation for

Urban Mobility) [37]. The table 3.1 presents a preview of various traffic simulation

software solutions. The objective of the thesis is to develop a simulation for traffic

and a calibration algorithm. The simulation is calibrated with real-world data sets

to represent traffic mobility accurately. For this purpose, a microscopic simulator is

required. SUMO has both capabilities to simulate a dynamic traffic model and traffic

light systems. The JAVA-based Matlab API called TRACI is utilized to integrate the

heuristic (Genetic Algorithm) calibration algorithm.

3.1 Traffic Simulation

Traffic modeling is a mathematical representation of the component in the mobility

systems. Traffic simulations involve the network elements like road infrastructure,

traffic lights, junctions, roundabouts, and different modes of transportation. The

elements like road infrastructure are static, but other model components like traffic

lights, number of vehicles on road segments are dynamic. Traffic simulators employ

different kinds of sub-models to simulate the interaction between various traffic modes.

The traffic simulation technique can be classified into three types:
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Modelling Software Objective

Microscopic Vissim
1) Model urban transit traffic operations
2) Framework for animation of vehicle movements,
traffic signal timings and travel time simulation results

Microsopic AIMSUN
1) To produce real traffic conditions in urban network such
as expressway and arterial routes
2) Simulation of traffic detectors like counts, occupancy etc.

Microscopic SUMO
1) Comparison and evaluation of different car following
and routing algorithms
2) Evaluation of traffic light systems

Microscopic FRESIM(FREway)
1) Enhancement of geometric and operational capabilities
in a road network and study effect of various
car following and lane changing models

Microscopic CORSIM 1) Simulation of traffic control systems(Traffic lights)
Microscopic Paramics 1) Simulation of congested traffic networks

Macroscopic Visum 1) Model traffic flows, forecast traffic congestions
2) Develop public transport routes

Macroscopic Saturn 1) Evaluate impacts of one way streets &
traffic control measures

Table 3.1: Traffic Simulation Softwares

1. Microscopic

2. Mesoscopic

3. Macroscopic
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Microscopic

Microscopic traffic simulation is based on the emulation of individual motion

of vehicles.SUMO falls under this category of traffic simulators. This simulation

technique involves modeling vehicle dynamics, e.g., acceleration, deceleration, lane

change of individual driver response to its surroundings. SUMO implements various

car following and lane changing models to simulate the individual driver behavior,

which are explained in section 3.2.5

Mesoscopic

Mesoscopic simulations create an aggregate level for vehicle groups. Vehicle groups

or platoons are made from the general flow direction. The vehicles inside a group are

assumed to be homogeneous. This model approach reduces the computational load

compared to microscopic simulation as individual vehicle behavior is not modeled.

Mesoscopic models are used in medium to large-scale networks.

Macroscopic

Macroscopic simulations are based on continuum traffic flow theory. The continuum

flow theory variables characterize the flows: volume q(x,t), speed v(x,t), and density

defined every instant in time t and every point in space x. The equation describing

continuum flow theory is conservation equation ([38])

∂q

∂x
+
∂k

∂t
= 0 (3.1)

The equation 3.1 is completed by the following relationship:

q(x, t) = k(x, t)v(x, t) (3.2)
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3.2 SUMO Traffic Simulator

SUMO("Simulation for Urban MObility") is a microscopic simulator chosen for

creating a virtual section of OSU campus mobility by the author. It is an open-

source traffic simulator supporting multi-modal agents. SUMO is available under a

public license(GPL). SUMO is developed in collaboration with the Center for Applied

Informatics Cologne (ZAIK) and the Institute of Transportation Systems (ITS) at the

German Aerospace Center (DLR). Figure 3.1shows how the traffic is assigned in the

simulation within SUMO. SUMO is a discrete time-space continuous traffic simulator.

In this thesis, SUMO is linked with a calibration algorithm developed in MATLAB

using TraCI.

Time – Dependent OD 
matrices

Time dependent 
link cost es�ma�on

1.1  Path Calcula�on and Selec�on
1.2 Route Choice Stochas�c Model

Computa�on of paths and 
�me dependent flows

2.1 Dynamic Network 
       Loading
2.2 Simula�on model
      Analy�cal Algorithm

Link flows, link travel �mes, 
path travel �mes

Convegence 
Criteria

Stop Yes

No

Figure 3.1: SUMO Traffic Assignment Algorithm
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3.2.1 Model Building in SUMO

As SUMO is open-source software, the network and the vehicle demand are not

predefined in the software package. SUMO has different tools to import road networks

and generate traffic. In this thesis, the network map is derived using Open Street

Maps(OSM). The network map derived from OSM does not have multiple lanes. The

Java editor for OSM(JOSM) is used to match the satellite imaging(Bing Maps), and

then the network is finally edited in NETEDIT to correct the missing lanes. The fig

3.2 depicts the file structure and data requirements for a SUMO simulation setup.

The subsequent sections will explain each of the data requirements in detail.

SUMO

Vehicle 
Demand

Addi�onal 
Files

Network

Vehicle parameters:
 Types of Traffic 
modes(cars/buses/
pedestrians)
 Car Following Models, 
Lane Changing Model 

Vehicle Flow Defini�ons:
Buses(COTA) fixed 
frequency routes with 
stop �mes
Flow Probabili�es for each 
entry node for cars
Probabilis�c pedestrian 
flows at junc�ons
Turn ra�o real�on 
between edges at each 
junc�on  

· Lane Area based detectors 
data collec�on frequency

· Bus stops posi�ons
Connec�on Edges (Roads)

Junc�ons
TLS(Traffic Light 

Signal)

Figure 3.2: SUMO File Structure Visualization and Data Requirement
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3.2.2 Network

Network in sumo is a directed graph consisting of roads(defined as edges in

sumo), junctions, connections between edges and junctions, and traffic light defini-

tion. The network represents the infrastructure on which the different traffic modes

interact.SUMO supports multiple types of network files import like open drive, OSM

and XML. OSM is used in this thesis because of its better compatibility with the

SUMO NETGENERATE(network import tool that converts osm to XML format).

The network is the most critical component of the simulation.

Traffic Lights : Traffic light actuation is an important component to capture the

traffic movement in simulation accurately. In SUMO, the traffic lights are defined in

the network file using NETEDIT.

3.2.3 Additional Files(detectors)

As defined in fig 3.2 the additional files contain two components. The detector

information and the bus stop positions in the network. There are multiple types of

detectors in the SUMO that can be used to determine the traffic state in the simulation.

Most of these detectors give output in an XML file structure, which can extract the

information for traffic parameters like, total wait time, average travel time, average

stops, etc. The various types of detectors in SUMO are defined below:

• Induction Loop Detector(e1) : An inductor loop detector detects the pres-

ence of a vehicle. This type of detector is usually used to generate aggregate

counts/flows of vehicles on a particular lane. Please refer to fig 3.4a with yellow

marked e1 detectors on multiple lanes.
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• Lane Area Detectors(e2): This type of detector is used to determine the

traffic on an area along a lane or lanes. There are two types of e2 detectors.

One is a single lane, and another one with multiple lane coverage. In a real

environment, e2 detectors are similar to camera sensors on intersections. Lane

detectors have a specific length determined by start and end positions. These

detectors are usually used to detect jams and queue lengths near traffic signalized

control intersections. Please refer to fig 3.4b in which the e2 detector is marked

with blue color

• Multi-Entry-Exit Detectors(e3): The descriptions of these types of detectors

include an exit and entry point on the network. There is no restriction on the

number of entry and exit points. The e3 detectors in a real environment can be

assumed to be roadside units(RSU) that need additional sensors to work and

collect data Please refer to fig 3.4c with entry-point marked. The yellow line

connects the entry to the exit point for the e3 detector.

Figure 3.3: SUMO Network Bus Stop
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(a) Induction Loop Detector:e1

(b) Lane Area Detector:e2

(c) Multi Entry-Exit Detectors:e3

Figure 3.4: Various detectors in SUMO

3.2.4 Vehicle Demand

Once the network setup is complete in NETEDIT, the user can define the traf-

fic/vehicle demand. There are many ways of generating traffic demand in SUMO, as

explained below:

• Trip Definitions: In SUMO, a trip definition consists of at least starting

edge, ending edge, and the departure time. For converting trips to routes, a

SUMO program called Dynamic user assignment(Duarouter) is used. Duarouter

can access many types of routing algorithms to calculate the optimal path
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for the vehicle based on the edge’s priority. Routing can be done using two

different modes. The first mode is called routing by travel time and edge priority.

The second mode is routing by effort. In SUMO, the objective of the routing

algorithm is to minimize the travel time between origin and destination. The

travel time can be calculated either from the speed limit and vehicle maximum

speed or computed during the run-time of the simulation. The run-time option

allows a vehicle to know beforehand if it will face a jam on some edges. This is

similar to the human behavior model. Due to tools like Google Maps, humans

on the road can dynamically detect the traffic and adjust their routes.

• Flow Definitions: This approach is very similar to the trip definition approach,

but the benefit of using this approach is many vehicles having the exact origin

and destination can be grouped in one flow definition. Flow definition needs

starting and ending edge, the flow starts and end time, and also flow parameters

like vehicle number per hour/probability of vehicle generation per second.

• Random Demand: This one uses a custom inbuilt script in SUMO called

"randomTrips.py". This approach is an easy way to generate random traffic in

the simulation network, but the results are usually highly unrealistic.

• Origin-Destination (O-D) matrices: This is the most used approach by

traffic engineers to generate traffic in simulations. O-D matrices are usually

available from traffic authorities. O-D matrices contain information for each

vehicle’s origin and destination. O-D matrices are used in SUMO in conjecture
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with "od2trips.py," which converts O-D definitions to trips. Due to the nonavail-

ability of O-D matrices on the OSU campus author chooses another approach in

this thesis.

• Flow Definitions combined with turning ratios: This approach modifies

the flow definition approach. If destination edges are skipped and instead turn

ratios at each junction are defined, this approach can be used at multi-junction

types of network.

• Detector data(observation points): In the USA, most of the city’s trans-

portation departments use inductor loops to generate large data sets of traffic

counts on various roads.These inductor loop counts can be used by SUMO

"dfrouter" to generate traffic demand.

• Custom traffic demand by hand:If the user wants, they can define trips

using XML file format. This approach is not suitable for generating traffic

demand for more extensive networks.

• Population statistics: To define traffic, users can define inhabitants, house-

holds, car rate, incoming traffic, outgoing traffic, etc. in a statistics file which is

then used by a program in SUMO called "activitygen" to generate routes

3.2.5 Car Following Model

As explained in section 3.1 SUMO is a microscopic traffic simulator. To model in-

dividual vehicle driving physics, various types of car-following models are implemented

in SUMO which is explained in the following subsections:
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Krauss Model

The car-following model’s basics are that velocity v of a vehicle i is affected by

its leader velocity i + 1 and the position gap between the two vehicles. There are

other parameters like driver reaction time or sensitivity τ . (Krauss 1998). The default

car following model in SUMO is the Krauss model. A vehicle can have two types of

longitudinal motion in a traffic simulation: free-motion, i.e. no leader, and interacting

motion. In free motion, as no leader is bounding the speed of the vehicle is determined

by the speed limit of the road given by the equation3.4.

∂vi(t)

∂t
= f(vi+1(t), xi+1(t− xi(t), τ...)) (3.3)

v ≤ vmax (3.4)

If the motion type is interacting, then there would be a leader in front of the

vehicle. The car-following model must be collision-free thus, the equation determines

the velocity of the vehicle. 3.5 and equation 3.6

v ≤ vsafe (3.5)

vsafe(t) = vl(t) +
g(t)− vl(t)τ

v
b(v)

+ τ
(3.6)
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t : time step

vl(t) : velocity of leading vehicle at time t

g(t) : gap between vehicle and leading vehicle i at time t

τ : reaction time of the driver

b(v) : deceleration function

In the real world , vehicle dynamics(acceleration/deceleration) are affected by

many road load factors like rolling friction, aerodynamic drag, and inertia forces. A

desired vdes is calculated based on the powertrain limits. The desired speed of each

vehicle is given by equation3.7. Human drivers have an imperfection in real life, and

to capture this effect, a random error is subtracted from the desired speed vdes given

by equation 3.8

vdes(t) = min[vsafe(t), v(t) + a, vmax] (3.7)

v(t) = max[0, rand[vdes(t)− aε, vdes(t)]] (3.8)

Intelligent Driver Model(IDM)

The IDM car following model is derived from Optimal Velocity Model (OVM)

(Treiber and Kesting 2010):

v̇ =
vopt(s)− v

τ
(3.9)
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s : current gap to leading vehicle

vopt(s) : optimal velocity depends on gap s

τ : Time to adapt to new speed

OVM model could not react to speed to the leading vehicle. The parameters it

reacts are only relative distance. As OVM does not account for leading vehicle velocity,

it is susceptible to accidents. IDM was modeled to correct this error. IDM is modeled

on acceleration equation 3.10

v̇ = a

[
1−

(
v

v0

)δ
−
(
s ∗ (v,∆v)

s

)2
]

(3.10)

v : current velocity

v0 : desired velocity

s∗ : desired gap

The desired gap s∗ is calculated by below equation:

s∗(v,∆v) = s0 +max

[
0,

(
vT +

v∆v

2
√
ab

)]
(3.11)
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Each vehicle type can have different values for the parameter of the model.

T : the time headway (between 0.8-2 seconds)

s0 : the minimum gap

a : acceleration (between 1-2 m/s2)

b : deceleration (between 1-2 m/s2)

3.3 Traffic Simulation Setup for OSU Campus

3.3.1 Network

The “Woody Hayes Drive" section of the campus is selected as the road network.

A selection of the Woody Hayes Drive is selected for this study because:

1. This road section is within most Campus Area Bus Service (CABS).

2. This road connects student and staff parking spaces at Buckeye lot and Carmack

on the west campus to the north east campus.

3. Woody Hayes provides a connection to US315 with north-campus surface parking,

and parking garages. US315 is the major highway that connects suburban areas

with OSU campus and Columbus downtown.

Figure 3.6 exhibits the OSM import for Woody Hayes Drive, and the complete network

is divided into sections. Figure 3.5explains the steps taken to improve the default

network imported from OSM. A JAVA-based tool called JOSM is used to superimpose

bing maps for the network. JOSM helped to accurately map the lanes, which are very

critical for traffic movement across junctions. The speed limit defined in the OSM
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maps is not updated. To correct the speed limit NETEDIT has been used to define

the road limits for each edge of the network. The connections define the turn-only

lanes in the network; for connections reference check fig 3.9. There are five controlled

traffic light junctions on the network. The network is divided into six sections from

west to east direction. The objective for diving the network into sections is to capture

the traffic movement across controlled traffic lights accurately.

Figure 3.5: Network Import Process
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Figure 3.6: Woody Hayes Drive Network Junctions
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SUMO MAP EDITS
• Incorrect number of lanes
• Incorrect turn only lanes
• No walkways
• Incorrect junc�ons

Figure 3.7: Missing Features in OSM Network
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(a) CABS Routes & Bus Stops:Part1

(b) CABS Routes & Bus Stops:Part2

Figure 3.8: CABS Routes & Bus Stops on Woody Hayes Drive(Network Image in Two Parts)
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Figure 3.9: Connections

3.3.2 Traffic Lights

The author focuses on both kinds of traffic lights. The first four intersections

mentioned in fig 3.6 work in a coordinated manner and the fifth junction has vehicle

actuated traffic lights.

The traffic light controller timings for the five intersections are provided by Trans-

portation and Traffic Management (TTM) OSU. The traffic lights on the Woody

Hayes section can be divided into two categories:

• Coordinated Traffic Lights: Phase actuation is not dynamic. The green

phases for each direction are already fixed in the controller. The coordination

between different junctions is achieved by synchronizing the green phases for

the west to the east direction in the network. There is a fixed offset time for

the first phase of each traffic light predetermined in the controller to implement

green waving in the network.
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Figure 3.10: Traffic Light Phases:SUMO

• Vehicle actuated Traffic lights: Actua3ted traffic lights are based on using

different detectors to verify the presence of a vehicle in the serviced lane. In OSU

campus, cameras are used to detect the presence of vehicle fig 3.11. Actuated

traffic lights have a minimum green phase timing, and the phase extends if the

camera detects a vehicle on the lane. For each vehicle detected, the green phase

extends. There is a maximum green time for each lane.

3.3.3 Virtual Detectors

In this thesis, e3 detectors are used to determine the average travel time for 12

segments in the network. There are 12 detectors placed in the simulation, giving the

output of average travel time in E-W and W-E directions. The entry and exit points

are selected so that each segment includes a traffic light junction, but no bus stops

are included in the segment. An e3 detector calculates the travel time for a vehicle

detected at both entry and exit points.
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Figure 3.11: Camera on Traffic Light

There are nine bus stops for CABS routes on Woody Hayes Drive depicted in fig

3.8. The GPS location of the bus stops is mapped in the SUMO network. The SUMO

network BUS stops are depicted in fig 3.3 highlighted with green color.

3.3.4 Vehicle Parameters & Car Following Model

The objective of the project is to generate a multi-modal traffic simulation scenario.

There are three different modes of mobility interacting in the simulation. In the

simulation setup, passenger cars, Buses and pedestrians have been used as mobility

agents. There can be other modes as well, but these are the most prominent ones. As

one can observe from fig 3.12 cars and buses are more than 90% of the total traffic

on Woody Hayes drive.In sumo, various vehicle types are defined as vehicle classes.
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The classes used in this simulation setup are explained below with their respective

parameters are explained in the Table: 3.2

Table 3.2: Traffic Modes Parameters

vClass

length
width
height
(m)

minGap
(m)

Maximum
Acceleration

(m/s2)

Maximum
Deceleration

(m/s2)

Emergency
Braking

Deceleration
(m/s2)

Maximum
Speed
(km/h)

Speed
Deviation

pedestrian
0.215
0.478
1.719

0.25 1.5 2 5 5.4 0.1

passenger cars
4.3
1.8
1.5

2.5 2.9 7.5 9 180 0.1

bus
12
2.5
3.4

2.5 1.2 4 7 85 0.1

This thesis uses the IDM model because it is more accurate in depicting actual-

world driving. The IDM model selection is based on a literature survey. In the article,

[39] authors have done a comprehensive analysis and compared the performance of

different car following models to real-world driving data. As shown in fig 3.13 the IDM

model average speed and average passing time is nearest to the real data captured by

L.Bieker et. al. in their work.

3.3.5 Vehicle Flow

For CABS routes flow definitions have been defined with bus stop timings and

frequency-based in data received from TTM for various CABS routes on Woody Hayes

Drive. The flow definition aspect of simulation will be explained in detail in Chapter

4.
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Figure 3.12: Traffic Modes Distribution

This thesis uses this approach as the turn ratios are fixed for each edge, and the

optimization algorithm varies the starting flow probability. For passenger cars flow

probability with turn ratio definition has been used. For CABS, this approach is not

required as they have a fixed route defined. In SUMO, a program called "jtrrouter" is

used to generate traffic from flow and turn ratio files. This approach will be explained

in detail in chapter 4.jtrrouter send trip definitions to duarouter which uses shortest

path algorithm called "Dijkstra."

3.4 Chapter Summary

Traffic simulation setup in SUMO was introduced. This chapter explained the

critical components of a microscopic traffic simulation. Different traffic modes were

explained. The reasoning behind the selection of Woody hayes Drive for the network

was presented. Traffic lights and their types were introduced. The working of different
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(a) Speed Comparison

(b) Travel Time Comparison

Figure 3.13: Comparison of car following model with real driving data at intersection
[39]

detectors in SUMO and how they were linked to traffic measurement were explained

in this chapter. The vehicle demand subsection explains various traffic methods,

and the selection criteria for the turn-based algorithm were presented.In last section
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car following models Krauss and IDM were explained. IDM was selected for the

car-following model in this simulation based on the literature review.
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Chapter 4: Traffic Simulation Calibration

A microscopic traffic simulation model needs a variety of information as inputs

. The model’s fidelity is linked to the input data . The model accuracy increases as

sample size for data collection from real environment is increased . It isn’t easy to

collect sufficient data sets in many scenarios that accurately depict the traffic state.In

case of limited data, the traffic simulation engineer has to set specific targets for

the simulation to match the input calibration data set. There are challenges in data

acquisition for traffic state estimation because of cost & infrastructure restrictions..

The target for the calibration process for traffic models is to sufficiently match

the simulation results with calibration data sets, representing the traffic state. A

calibration process includes the following stages:

• Gathering data for the traffic simulation calibration which represent the traffic

state in real environment.

• Definition of criteria to evaluate the performance of simulation in terms of the

objective function.

• Selection of parameters for the calibration.

• Design of an optimization algorithm to minimize the objective function.
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This chapter will introduce all the above stages for calibration.

4.1 Input Data

4.1.1 CABS GPS Data

OSU TTM provides the primary data source used in this thesis. The data used is

GPS logged points from the CABS busses. There are various CABS routes on the

Woody Hayes Drive network, but the challenge with this data is that the frequency

for data capture is not consistent. The average interval for data capture from CABS

GPS is 30 seconds. Refer fig 4.1 depicting the position and speed for a CAB route.

The sparse arrows marked in the figure show the less frequent GPS logging for a route

. The parameter used for determining the traffic state is the travel time between

sections of the entire network . The network as a whole is divided into 12 sections

4.2and 12 entry points. Out of 12 entry points, nine are used to estimate the traffic

flow. For the other three marked with stars (refer fig 4.2) in the network, the flow

probability is constant(0.001) for the simulation .
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Figure 4.1: CABS Route GPS marked
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Figure 4.2: SUMO Network With Sections and Entry Points
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Figure 4.3: CABS GPS Logging

The fig.4.3 shows the distribution of delta time(time gap between consecutive GPS

timestamps for a CABS route).It can be observed from the figure that the logging

frequency is very low and inconsistent which increases uncertainty in determining

the exact position and speed for CABS.In the fig 4.4,each box bar represents the

distribution in the travel time for one hour from CABS GPS data.

As explained in the previous section due to inconsistency in the frequency of

logging GPS locations, an algorithm is developed to calculate the average travel time

for the specified section length. The algorithm defines two reference points in the

CABS route. The algorithm process the GPS data file and search for the nearest

GPS point logged during the trip. The distance and timestamps between the two

GPS points are extracted to calculate the average speed. This average speed is then

used to compute the average travel time between the specified section length. The
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Figure 4.4: Travel Time for Tuttle Park Intersection

fundamental for the travel time algorithm is depicted in fig 4.5. The R used in the

algorithm is 30 meters. The sections in the network are selected so that each section

has one traffic light, and no section included the bus stop as stop time at the bus stop

can add noise in the travel time calculation.

Figure 4.5: Travel Time Section for CABS
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V =
DGPS

∆Ttimestamp
(4.1)

T =
Lsection

V
(4.2)

V : Average Speed

∆Ttimestamp : Difference between detected GPS logged timestamps

T : Average Travel Time from CABS GPS for a section j

Lsection : Section length in m

4.1.2 Count Data at Intersection

The travel time data is not sufficient enough to determine the state of traffic

because CABS are less than 20% in the network. thus, traffic count data provided

by Carpenter Marty (CM) Transportation Inc. is used to calculate the turn ratios

at each intersection The fig 4.6 shows an example of how the data that is gathered

around an intersection. This count data is used to generate the probability ratio, the

turn at each intersection (example figure, for turn ratio of one lane 4.7).In the fig 4.8

the turn ratio comparison for different times of the day can be observed.
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Figure 4.6: Tuttle Park Intersection Traffic Counts

4.1.3 Traffic Light Controller Data

The travel time for a vehicle is dependent on the traffic light timing. If a vehicle

arrives at green phase during crossing the intersection its travel time would be less.

To calibrate the model ,actual traffic phase timings used in Woody Hayes Drive traffic

controllers is required to be emulated in the simulation. TTM also provided traffic

light controller data for this work. The controller data is also verified in the field

to check the accuracy of phase timings. The traffic controller in the OSU campus
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Figure 4.7: Turn ratio Example for a lane

Figure 4.8: Turn Ratio for Tuttle Park East-Bound Traffic

works in two different modes during a weekday. From 8:00 a.m to 9:00 a.m first

five intersections work in a coordinated manner(fixed phase timings), and the sixth

intersection has vehicle actuated traffic lights 4.2. The sample data sheet used to

extract controller phase timings is shown in fig. 4.9 The table 4.1 shows the extracted
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controller green phase timings for turn directions at Tuttle Park intersection. This

green phase timings is imported in the simulation. The phases which are in same

column occur concurrently in the traffic controller. The right turn moving traffic has

to always yield to traffic moving from other direction.

Figure 4.9: Traffic Signal Controller Phase Time Data

4.2 Objective Function

In the section 2.2.2 different objective functions used in literature for traffic

simulation calibration are introduced. In this thesis, the following objective function
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Table 4.1: Green Phase Timings for Tuttle Park Intersection

Direction
(Phase Number)

Green Phase
Time(s)

Direction
(Phase Number)

Green Phase
Time(s)

Direction
(Phase Number)

Green Phase
Time(s)

Direction
(Phase Number)

Green Phase
Time(s)

East Bound
Left Turn (1) 15 West Bound

Thru (2) 29 South Bound
Left Turn (3) 15 North Bound

Thru (4) 41

West Bound
Left Turn (5) 15 East Bound

Thru (6) 29 North Bound
Left Turn (7) 22 South Bound

Thru(8) 34

is used to calibrate the traffic simulation. Point Mean Relative Error (PMRE). The

selection of PMRE is based on the criteria that only travel time could be extracted.

The absolute difference between the average travel time of simulation and calibration

data is divided by calibration data travel time to properly scale for each lane. This

scaling gives relative error for each intersection and ensures that the objective function

is not biased for any section.

PMRE(T ) =

√√√√j=N∑
j=1

(
Tobs,j − Tsim,j

Tobs,j

)2

(4.3)

Each vehicle type can have different values for the parameter of the model.

j : section number

N : Total Number of Sections(12)

Tobs,j : Average Travel Time from CABS GPS for section j

Tsim,j : Average Travel Time from SUMO Simulation for section j

The SUMO traffic simulation time is two hours. The Tsim,j is calculated for the

middle one hour in the sumo simulation.The first half-hour and last half-hour are not

used to calculate the travel time because vehicles start entering and exiting during

these periods. Thus the traffic has not reached an equilibrium state during the first

and last half hours.The middle one hour is used when the traffic flow in the network is
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in equilibrium. For a particular SUMO simulation run, the average travel time across

a section of the network can be defined by the below function:

Tsim,j = f(Vcount, Pcounts, SpaT, Tstop, Carfollowing) (4.4)

Vcount : Number of Vehicles in lane

Pcounts : Number of Pedestrian Crossing an Intersection

SpaT : Signal Phase and Timing

Tstop : Stop Time for Cabs at Bus Stops

Cfollowing : IDM Car Following Model Parameters

Tsim,j : Average Travel Time from SUMO Simulation for section j

Assumptions

Due to the shortage of traffic data, there are some assumptions in the traffic

simulation. The assumptions are listed below:

• Average CABS bus stop time is 20 seconds for each bus stop (CABS have to

stop at every bus stop irrespective of the riders).

• Pedestrian is generated with a consistent flow of one pedestrian every 60 seconds

at every lane of the intersection crossing. Pedestrian interaction is focused at

the Tuttle Park intersection. Tuttle park is selected for generating pedestrian

because this intersection has the highest travel time and the right turning vehicles

have to yield for any pedestrian. To capture effect of pedestrian on right turning

vehicles this intersection is selected.
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• Section lengths are small enough so that the average travel time for CABS and

passenger cars should be comparable, i.e., due to high traffic density, passenger

cars will not reach the acceleration limits in the network.

• IDM is used as the car-following model(refer section 3.3.4 ).

Figure 4.10: SUMO Routes Generation

4.3 Optimization Parameters

The objective of the calibration is to minimize the difference between CABS GPS

data travel time and simulation travel time. The optimization algorithm minimizes the

objective function 4.3. In the equation 4.4, only vehicle count is the variable that the

optimization algorithm can change; other parameters are inputs from data or assumed
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to be constant. In the SUMO simulator, there are various ways to generate vehicles

fig 4.10. In this thesis, the author has used “JTRROUTER" for routes generation.

Turning ratios are generated from the count data, and the algorithm optimizes the

“flow" to minimize the objective function. In section,3.3.5 this approach is explained.

The below equation describes the optimization flow:

The variable Pk decides the vehicle flow per hour. For example, if Pk is 0.10, then

180 vehicles will be generated in one hour from that entry point.

Optimisation problem :

Minimize PMRE(Tsim) =

√√√√j=N∑
j=1

(
Tobs,j − Tsim,j

Tobs,j

)2

(4.5)

Tsim,j ∝
1

Pk

where:

Pk ∈ [0.05, 0.20] (4.6)

Pk : Probability of Vehicle Generation from kth entry in network

k : k is the entry number in network from 1 to 9

4.4 Optimization Algorithm

The optimization algorithm used to minimize the objective function 4.3 is a heuristic

Genetic Algorithm(GA). The objective function 4.3 is nonlinear and discontinuous;

thus, a gradient-based optimization algorithm cannot minimize the PMRE. Matlab’s

GA implementation is used to solve the problem. The objective function, data
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extraction from SUMO detectors, is also programmed in MATLAB. The parameters

used for GA are described in the table 4.2. At every generation, 150 candidate

solutions are generated as a population. The SUMO model is run through MATLAB

for every candidate in the population. Once the SUMO execution is complete, e3

detectors in the SUMO network generate XML files.The e3 detector data collection

frequency is 1Hz. The data from XML for each vehicle travel time across the section

is parsed using MATLAB script. The parsed travel time data is used to calculate the

average travel time for one hour. The best candidate solution is then used to generate

population candidates for the next generation; this process is repeated till the target

for ten generations is reached. The flow chart 4.11 explains the calibration process

with the GA as an optimization algorithm.

Table 4.2: GA parameters

Parameter Value
Population per Generation 150
Maximum Generation 10

4.5 Calibration Results

The GA optimization algorithm provides a sub-optimal solution for the objective

function minimization. The fig 4.12 depicts the evolution for the best candidate solution

among the population. At the end of 10th generation, the best fitness(minimum

objective function value) candidate(vehicle flow probability) is stored as the best

solution4.3.
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Figure 4.11: Calibration Process Flow Chart

From the fig 4.13the difference between the simulation and the actual(data extracted

from CABS GPS) can be observed. For sections number 3,6,7,8, and 11, the error is

above 30%. The absolute error is calculated using the below equation:

Error(e) =
|Tobs,j − Tsim,j|

Tobs,j
(4.7)
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Figure 4.12: Genetic Algorithm Best Solution Evolution

Table 4.3: Flow Values from Network Entry After Calibration

Optimization Parameter Flow
Probability (Entry Number) Value Vehicle Flow

per hour(vph)
P(1) 0.05 180
P(2) 0.011 40
P(3) 0.09 324
P(4) 0.13 468
P(5) 0.07 252
P(6) 0.025 90
P(7) 0.016 58
P(8) 0.013 47
P(9) 0.082 295

In the fig 4.14 ,the frequency of travel time for simulation and calibration data is

compared for section number 5 at tuttle park.It can be observed that the peak of the

curve fit to both simulation and actual travel time is offset by 20 seconds. The reason

for this offset is due to the assumption in the section 4.2. More data is required to
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Figure 4.13: Average Travel Time: Simulation vs Data

determine the traffic state. The data required will improve the calibration by removing

the constant stop time and constant vehicle flow.If vehicle count data can be gathered

from the camera sensors located on each traffic light, 3.11 then the objective function

can be improved by adding vehicle count and travel time.

4.6 Chapter Summary

This chapter summarized the work on calibration algorithm. It can be observed

from the results that travel time can be used as a state to determine traffic in a

network. Due to inconsistency in GPS data-set the calibration is not very accurate but

if GPS logging frequency can be increased the travel time algorithm will work more
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Figure 4.14: Simulation vs Actual Travel Time(Section 5)

efficiently to remove uncertainty in calculation of CABS position. Also pedestrian

count data needs to be captured on OSU campus intersections so that the constant

flow rate assumptions at crossings (for pedestrian counts) can be removed.
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Chapter 5: Multi-Agent Reinforcement Learning for Traffic

Signal Control

5.1 Traffic Signal Control Systems

The function of a traffic signal control system is to safely and efficiently manage

traffic flows at intersections via alternating the green, yellow, and red lights. The

traffic signal control problem is usually solved on two different levels: local and arterial.

Local traffic signal control only considers the local traffic conditions at an isolated

intersection. In arterial control, several traffic light controllers coordinate to manage

the traffic flow. In arterial control, the common goal is to generate the “green wave"

scenario. A series of traffic lights are synchronized to allow a platoon of vehicles to

move through several intersections. The fig 5.1 shows the impact if coordination is

not done properly. The vehicles arrive at the green phase for Intersection A, but they

face red light for consecutive B & C. In a perfect scenario, all the vehicles should

face green light at three (A, B,&C) intersections. In Woody Hayes Drive, traffic

light control works in an arterial control manner to provide green waving for traffic

movement from East to West and West to East. The control logic for each traffic light

is predetermined(fixed phase timings) and doesn’t change with the dynamic traffic

conditions. As in arterial control, the signal phasing are predetermined in this chapter.
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An intelligent agent-based control strategy is introduced, which can adapt the signal

timings by learning the traffic conditions in its vicinity. The fig 5.2 shows the various

control strategy for traffic signal systems. In the OSU campus, the phasing approach

is “Group-Based," and the signal timings are either “Fixed" or “Vehicle Actuated."

The focus of this thesis is to adopt a signal timing strategy that is adaptive to traffic

response.

Figure 5.1: Ineffective Static Coordinated Green Phases for Green Wave [40]
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Figure 5.2: A Summary of Signal Control Structure [40]

5.2 Problem Formulation

Traffic signal optimization is a stochastic and continuous nonlinear constrained

problem. Simulation-based optimization is the best candidate for solving this problem

since in the real world, the changes in the traffic controller policy may cause safety

concerns.

Simulation based optimisation problem can be formulated as:

min
x
f(x, v) = E[F (x, v)]

s.t. c1(x, v, u) = 0

c2(x, v, u) ≤ 0
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The expected value of a predefined network performance measure F is the objective

function f . F depends on the deterministic decision variables x (traffic controller

phase timings) and exogenous parameters v. The feasible space is defined by c1 and

c2 , two sets of deterministic and analytical constraints.

For example, a cumulative stop time of vehicles in traffic can be an objective

function F for a signal optimization problem. The decision variables are the green

duration for the signal phases. Network topology and the traffic demand are captured

in v. The traffic demand is based on probability of flow from each entry to network

which affect the traffic counts during traffic simulation run. The flow probability is

the parameter which creates variability in the traffic pattern. For microscopic traffic

simulation , u defines the car-following model and lane change model parameters.

Calibrated microscopic traffic simulation can act as a Software in Loop(SIL) for the

traffic signal controller strategy development. The fig 5.3 shows the general framework

of SIL for traffic control problems.

5.3 Intelligent local traffic signal control

A traffic signal controller can be designed as an agent-based framework. In an

agent-based framework, each signal controller can be modeled as an intelligent agent

which learns from its environment and outcomes of its past actions.

Figure 5.5 shows the process of decision-making by the intelligent agent. The

agent can receive the state from the external traffic environment at every decision

step by two methods. The first method involves direct measurement based on sensors

deployed in a traffic surveillance system. The second method is to use the state

estimation approaches to determine traffic states from the observations. The first

72



Figure 5.3: Optimization Framework for Traffic Signal Control [40]

method is dependent on a lot of data collection(e.g., traffic counts), while the second

method can be performed with fewer data(e.g., lane queue in a specific area). After

the agent has received the traffic state, it acts and receives a reward as feedback from

the environment. The agent is assumed to follow the Markov decision process(MDP).

The MDP assumption is that the future state depends only on the current state and

control instead of a sequence of events that are precursors to the state-control pair.

Markov Decision Process

The traffic light agent process is MDP. The components of MDP are summarized

in fig 5.4. MDP is defined by a state-set X , action set U , one step dynamics, and

transition from state action (x, u) to the next state x′, and reward (Puterman, 2014).

The transition dynamics T (x′|x, u) and reward r(x, u) are given by
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Figure 5.4: A flowchart for the Markov Decision Process

T (x′|x, u) = P[Xt+1 = x′|Xt = x, Ut = u] (5.1)

r(x, u) = E[Rt+1|Xt = x, Ut = u] (5.2)

The agent’s knowledge is represented by either state-based V (x) or action-based

Q-function (Q(x, u)). These terminology is derived from Bellman equations. Bellman

equations for state-based and action-based value functions are:

Vπ(x) = Eπ[Rt+1 + γVπ(Xt+1)|Xt = x] (5.3)

Qπ(x, u) = Eπ[Rt+1 + γQπ(Xt+1, Ut+1)|Xt = x, Ut = u] (5.4)
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Figure 5.5: Description of agent-environment interaction

The optimum policy is decided by the value functions. In this thesis action-based

Q-function is used as the value function for finding the optimum policy. A policy π1 is

better than π2 if Qπ2(x, u) ≤ Qπ1(x, u) for the state-action pair (x, u). For MDP there

always exist an optimal policy denoted by π∗ with the corresponding value function

as Q∗(x, u). The optimal policy for action-based value function is found by below

equation:

π∗(u | x) =

{
1 if u = arg maxu∈U Q∗(x,u)
0 otherwise (5.5)
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5.3.1 Traffic Light Agent Framework

The fig 5.7 shows the intelligent controller implementation. The agent updates its

action and receives a reward every 100 seconds from the environment(SUMO traffic

simulation). The MDP parameter for the agents are defined below:

• States: The states for the traffic agent are the green phase timing, individual

lane density, and individual queue length (vehicle count in the lane). We can

take the example of junction 1 (Fyffe) with three grouped green phases and

serve nine lanes in all directions combined (fig 5.6). The states are denoted by

X ∈ (PhaseT imings,Qlanes(k), Qdensity(k)), where k is the lane.

• Control Action: The action for the controller is the next cycle green phase

duration for the grouped phases.The action taken by the agent is every 100

seconds. The controller doesn’t interrupt the ongoing traffic phase cycle. Once

the last cycle is complete new actions are applied. The action space is denoted

by:

U = (Gt : where Gt = 15 + 5m and m ∈ (1, 10) s.t. m ∈ N)

Thus the bounds for actions are (15,75) seconds.

Two junctions are selected for this study on intelligent traffic light control (5.8).

The subsequent sections will introduce the MDP solution for the RL problem.

Learning Algorithm

Temporal difference (TD) is used to solve the MDP problem for traffic light control.

TD implements bootstrapping to make updates to Q-function, and its updates are:

Q (xt,ut)← Qt (xt,ut) + αδt (xt,ut) (5.6)
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Figure 5.6: Fyffe Junction in SUMO Network(lanes highlighted)

where α ∈ [0, 1] is the learning rate and δt is TD error.

TD error is the difference between TD estimation and the corresponding action-

value. The calculation method for TD used in this work is on-policy State Action

Reward Next State Next Action(SARSA). For SARSA the TD error is defined

by below update:

δ (xt,ut) = rt+1 + γQt (xt+1,ut+1)−Qt (xt,ut) (5.7)

TD algorithms use tabular format for storing the Q-function value Q(x, u). This

represents scalability issues for large environments with multiple traffic lights. The

number of state-action pairs increases in the order of magnitudes requiring a lot of

memory to store the Q-function.Due to memory constraints, only two traffic lights are

considered in this work.
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Figure 5.7: Agent Framework For Traffic Light

Agent Policy

The action in the ui,t+1 is determined by the decaying epsilon greedy policy. In

this policy a random action is selected with εi,t(exploration parameter) probability

while a greedy action is selected with 1− εi,t probability.

ui,t+1 =

{
random (ui) , if ξ < εi,t;

arg maxui
Qi,t (xi,t+1,ui) , otherwise ui ∈ Ui (5.8)

The ε used in this work is decaying with each step. The following equation shows

the decays nature of exploration parameter:

εi,t = max[λstepεo, εf ] (5.9)
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Figure 5.8: Two Intersections for Intelligent Agent

εi,t : Exploration parameter for ith junction at time t

λ : 0.999, decaying parameter

step : step number for actions by controller; t/100

εo : 0.05, initial epsilon for the exploration

εf : 0.005 minimum epsilon value for exploration

Reward Function

The reward function is the feedback from the traffic environment after the traffic

light agent takes an action. For traffic, the light agent receives a reward from the

environment every 100s. The below equation denotes the reward function.

ri,t =
Twait,step-1 − Twait,step

100
(5.10)
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where :

Twait,step−1 : Sum of wait time in all lanes for (step− 1) 100 seconds

Twait,step : Sum of wait time in all lanes for previous 100 seconds

This reward function gives the agent a positive reward if the action was taken

by it(green phase timings) reduces the total wait time(wait time is determined by

vehicles in a standstill on lanes served by traffic signal).By implementing this reward

function, the agent must take optimum actions to reduce the wait time for vehicles.

5.4 Results

The fig 5.9 and 5.10 shows the results of training the two RL agents in the SUMO

traffic simulation environment. The x-axis shows the simulation time in hours, and the

y-axis is the sum of vehicle stop time for every 100s in minutes. It can be observed that

till the Equill. Line the agent is exploring different actions, but after this line, the

actions are optimized to reduce the vehicle stop time.The two agents are independent

and are not sharing traffic state information to each other. This type of RL is called

independent agent based framework.The fig 5.11 is the distribution of sum of wait

time in all lanes for two junctions. The mean for RL agent is 56 seconds and for static

control is 172 seconds. The RL agent traffic control is much better in reducing the

traffic congestion.
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Figure 5.9: Sum of wait time for vehicles Agent 1
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Figure 5.11: Comparison of sum of wait time for two controller policy
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Figure 5.12: Initial learning phase for RL agent
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Figure 5.13: The optimized policy used by RL agent
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5.4.1 Discussion on RL Controller

In this study the updated green timings for a traffic signals is updated every

100 seconds. The update time for the controller is varied from 5 seconds to 1000

seconds. The aim of higher update time is to achieve multiple traffic signal cycles in

between consecutive control updates. During this multiple traffic signal cycles the

signal timings are not changed. The benefit of higher update time is multiple cycles

can help in achieving in isolation of control design decision for a particular choice

of green phase timings from the last controller decision. The challenges with higher

update time is agent needs much more time to learn in the environment and the

second challenge is the high traffic flow gets stuck in tuttle park intersection(section

5) if the agent takes an action which is not optimum during the learning phase. In

further extension of this work the traffic flow jam can problem can be alleviated by

using smaller time step for SUMO solver(e.g 0.1s)

5.5 Chapter Summary

This chapter introduced the concept of MDP for traffic light controller. An

intelligent Reinforcement agent based controller strategy was adopted to improve

the traffic flow across two intersections. The comparison between RL agent and the

static controller depicted a significant improvement in reducing the traffic congestion.

The simulation approach can be extended to the more intersection and can also be

implemented in real time online learning agents.
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Chapter 6: Traffic Co-Simulation with Real-Time Hardware in

Loop Setup

This chapter introduces an integration framework for the dSpace Automotive

Simulation Model (ASM) with the traffic simulator (SUMO). This framework aims

to link high-fidelity vehicle dynamics, powertrain, and autonomous vehicle systems

models with low-fidelity traffic models. This framework works in Real-Time using the

Hardware in Loop(HIL) setup (SCALEXIO) provided by dSpace.

Engineers and researchers use real-time simulation to develop, test, and validate

many areas of vehicle testing, for example, vehicle dynamics, chassis control systems,

powertrain control strategies. The recent research in the area of implementing Artificial

Intelligence (AI) based methods for connected and autonomous vehicles(CAVs) controls

also needs a lot of testing. Testing CAVs can be performed either in the real world

with all the necessary hardware or parts of the environments could be simulated using

virtual representation. The simulation-based approach is a much faster, safer and

efficient alternative compared to actual road testing. A virtual simulation environment

can also be used for human drivers training using the driver in the loop with the

simulation environment. The simulation for emulating the real environment involves a

critical component of replicating the real traffic conditions in terms of network and
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nearby vehicles to ego vehicles (the vehicle on which different algorithms are being

tested).

A framework that integrates real-time HIL and a large scale traffic simulator need

the following three components:

• High-Fidelity Simulation for ego vehicle dynamics compared to traffic simulators.

• A communication interface between the above two components exchanges the

information of ego vehicle and fellow vehicles between two simulators in real-time.

In this chapter, all the above-mentioned components will be discussed. The primary

focus of this thesis is to develop a real-time communication interface between two

simulators.

6.1 Ego Model Simulation Environment

The ego for ADAS and powertrain is developed in Simulink. The fig 6.1 shows the

basic blocks in the Simulink model. The dSPACE IO block communicates with the

HIL bench (SCALEXIO).

6.2 Ego Vehicle Interface(EVI)

The real-time execution of the simulation also adds a layer of complexity to the

simulation as the SCALEXIO hardware has enough computation power to compute

the high fidelity model for ego vehicle in real-time but extracting information from

SUMO for traffic is not optimized by the TRACI API. The EVI block decides the

region of interest(ROI) in the vicinity of the ego vehicle, and then the nearest ten

vehicles from traffic are chosen as fellow vehicles. Fellow vehicle speed, position, and
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Figure 6.1: Automotive Simulation Models
Vehicle Dynamics with Traffic

pose(yaw angle) are transferred through EVI to the HIL bench in real-time. fig 6.4

shows steps 1-5 for order and information flow between the three components.

The integrator reset(6.2) updates every 200 ms and exchanges information about

EGO and traffic between SUMO and ASM.As the update rate of ASM is 1ms which is

very fast compared to SUMO 200 ms. There is an extrapolation algorithm in the EVI

which predicts the future position of fellow traffic vehicles till the next SUMO step

is available for updated fellow positions. Thus there is an “extrapolation algorithm"

in the “SUMO position block," which finds the (x,y) coordinates for every 1ms step.

This extrapolation algorithm performance is discussed in the results section.
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Figure 6.2: Simulink Blocks for Information Exchange

Figure 6.3: Co-Simulation Framework

6.2.1 XIL API

XIL [41] is an API standard for communication between test automation and test

benches. The standard is developed by “Association for Standardization of Automation89



HIL(dSpace 
SCALESXIO)

[1] Ego Posi�on (t=0)  

EVI [3] Ego Posi�on(t=0) Traffic Simulator(SUMO)

[2]. Fellow Traffic (t=0)

[4] Compute ROI(t=1)

[5] New Traffic in ROI(t=1)

Figure 6.4: Order for information flow between three components: Steps Repeat every
200ms

and Measuring Systems" (ASAM). It was launched in June 2009 . The standard

supports all stages of testing and development like model-in-the-loop (MIL), software-

in-loop (SIL), and hardware-in-the-loop (HIL). This standard can be used for all

“in-the-loop" systems and is thus called “XIL." The benefit of this standard is it can

be used with any HIL bench irrespective of supplier. This benefits in migrating the

hardware to different HIL bench.

The XIL API supports the following features:

• Access to the metadata of complex variables.

• Capturing support of complex data types (vector and matrix).

• Signal Generation support for complex data types.

• Stimulate variables with raw or physical values.

• Pausing the simulation.

• Read and write data from a testbench variable as raw or physical value.

• Discard fetched data.
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• Specify the XIL version of the Testbench / Framework implementation to be

instantiated.

XIL API has multiple ports, as shown in fig 6.5. In this thesis, the “MAPort" has

been used with Traci in a python script for the EVI interface.

Figure 6.5: Concept of Ports in XIL[42]

6.2.2 TraCI

TraCI is a TCP-based client/server to provide access to SUMO. TraCI is called

the “Traffic Control Interface". The benefit of this interface is it can communicate

with SUMO in online mode and start/stop simulation or extract/write information to

the SUMO model. The API commands used in this work are listed below:
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Table 6.1: TraCI commands for EVI

TraCI Command Information
traci.start() Start the SUMO simulation
traci.simulationStep() Progress simulation by one time step

traci.simulation.getTime() Get current simulation clock
time from SUMO

traci.vehicle.getIDList() IDs for all vehicle in SUMO scenario

traci.vehicle.getNextTLS(‘ego’) Get State Information for next
traffic light in front of Ego

traci.vehicle.moveToXY() Move Ego Vehicle to position
specified by ASM

traci.vehicle.getPosition() Get XY position for the fellow
traffic in SUMO network

traci.vehicle.getSpeed() Get longitudinal speed in m/s
traci.vehicle.getLateralSpeed() Get lateral speed in m/s

traci.vehicle.getAngle() Get Yaw angle in degrees for
fellow vehicles

traci.close() Close the SUMO simulation

Scenario Demo

The demo scenario used for co-simulation purpose is the calibrated sumo network

(Woody Hayes Drive) from 4. The Ego vehicle is inserted 600 seconds after the SUMO

simulation has started. During first 600 seconds SUMO is not in synchronisation and

computes the traffic in network till 600 seconds in approximately 10 seconds. Once

the insertion time(600s) has reached the ASM starts and then the EVI controls the

SUMO steps. After insertion time Ego vehicle starts its route from West to East in

Woody Hayes Drive. The route is predetermined in the SUMO and ASM simulators.

The ego vehicle dynamics are controlled by ASM and the traffic vehicles are controlled

by SUMO. The task for EVI is to exchange information every 200ms for the fellow

vehicles and ego vehicle in ASM and sumo respectively. The benefit of insertion time

is that user can define any insertion time and the network will get pre-populated with

traffic before the start of ego vehicle route. This can help in generating different traffic

conditions for the same route.
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Results

This subsection shows the results of synchronization between SUMO and ASM in

real-time execution. At every step start, the clock information from ASM is extracted,

which is then used to proceed with the SUMO simulation step. SUMO calculates

the position for fellow vehicles and caches the result to EVI within 150ms. The

information for fellow traffic vehicles in ROI is then passed to ASM at 180ms. This

step is repeated till the end of the scenario for the simulation. (refer fig 6.6). The

fig 6.8 shows the distribution of response time in milliseconds for the EVI and the

SUMO simulation step. This plot shows that the meantime is less than 100ms, but as

the outlier is around 150ms, the simulation δT for SUMO is 200ms. If the outliers

can be removed, the δT for SUMO can be reduced to 100ms. The fig 6.8 shows the

distribution of time to write EVI data to the HIL bench in ASM. The mean time

is around 2ms, but outliers are in the range of 20ms. This is the reason caching is

started at 180 ms(20ms before the sumo step time). This can create a small offset

error and can be improved if outliers are removed.

The fig 6.7 is the plot for (x,y) coordinates of a fellow vehicle in ROI. The

extrapolation algorithm and SUMO output at every synchronisation step(in this plot

sumo is running at δT = 100ms) is exchanging information.The error in the position

predicted by extrapolation and SUMO is maximum 0.3 metres at urban speeds
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Figure 6.6: One Cycle of Simulation Synchronisation: Repeats every 200ms
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Figure 6.10: Co-Simulation Snapshot: ASM & SUMO
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6.2.3 Chapter Summary

In this chapter, a framework was established using the dSpace ASM and SUMO

traffic simulator. The results of the extrapolation and synchronization algorithm(EVI)

show that this framework can be used to test powertrain and ADAS functionality in

an urban environment with high traffic conditions. The extrapolation algorithm in

EVI handles the data exchanging between two simulators efficiently with minimum

error in the future state prediction for traffic vehicles.
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Chapter 7: Conclusion & Future Research

7.1 Conclusions

Microscopic traffic simulations and their calibrations present a promising means

to help the development of intelligent mobility systems. Using existing data sources

to calibrate the traffic simulations can help understand the challenges in solving

this complex problem of nonlinear traffic dynamics. This thesis examined the use of

existing data sources in the OSU campus to build a framework for microscopic traffic

simulation in one section(Woody Hayes Drive). The final chapter concludes this thesis

and summarizes some possible future research directions.

In chapter 4, the optimization framework was introduced, which can be used

to calibrate microscopic traffic simulation using GPS data from the vehicles. From

GPS data, traffic state variables make travel time extracted and used as an objective

criterion for simulation calibration. The CABS count was less than 20% in the “Woody

Hayes network" thus, the approach was to use multiple days data-set to capture many

travel routes in the network. The challenges in terms of GPS logging inconsistency

introduced errors in the calibration process which can be improved by having better

quality GPS logging. The objective function can be enhanced if the count data for

vehicles are available as it removes the uncertainty for vehicle flow in the network.
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This can be done with the current infrastructure on the campus using a video camera

mounted on traffic signals.

In chapter 5, a smart RL agent-based traffic light optimization framework was

explored. The framework is governed by an evolutionary optimizer (RL) and SUMO

traffic simulator. An arterial traffic light control with two junctions was considered.

Comparing the RL agent traffic controller with the static controller showed scope for

improvement in traffic congestion.

Chapter 6 extended the idea of linking traffic simulator with hardware in loop

simulator DSpace ASM. An ego vehicle can be modeled with high-fidelity vehicle

and powertrain models compared to the SUMO vehicle dynamics model. The com-

munication platform can be used to test the various algorithm in the field of energy

management and ADAS for vehicle testing.

7.2 Future Work

There can be some extensions to work presented in this thesis. The future work is

divided into specific problems tackled in this thesis.

Traffic Calibration

The work in the field of traffic calibration presented in this thesis was offline

calibration. This calibration can be extended for online cases in which the calibration

is adapting to real-time traffic information. For real-time traffic information, a

framework can be developed which seeds real-time data to traffic simulation. The

benefit of this framework would be to predict the traffic for the nearby horizon.

Prediction of traffic can help in mitigating traffic congestion or using to optimize the

energy management strategy for connected vehicles.
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Intelligent Signal Control

The Multi-agent RL traffic signal control introduced in this thesis was independent

control. The two traffic agents were not sharing knowledge about traffic state in

their vicinity to each other. A study can be performed in which some traffic states

can be shared between the agent. For traffic control, dynamic lane assignment or

dynamic speed limit study can be performed. The fig 7.1 shows this implemented in

an intersection.

Figure 7.1: Dynamic message signs indicate the lane use at the intersection in Utrecht,
The Netherlands(Courtesy of Anema(2015))

Traffic Co-simulation

The brief work on co-simulation has proved that real work traffic scenarios can

be generated using SUMO and dSpace ASM. The integration and the extrapolation

algorithm are very accurate for urban traffic speeds to predict the position of traffic

vehicles. The following improvements can be implemented:
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• Additional modes of mobility from SUMO can be implemented in ASM; pedes-

trian and various vehicle types (buses, vans, etc.) improve the traffic scenario in

ASM.

• Adding the infrastructure elements like buildings, pedestrian footpaths represent

the terrain from the real environment more accurately. Some work has already

started to work in this direction(refer to fig 7.2).

Figure 7.2: 3D render of buildings in OSU campus(extracted from Google Earth)
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Appendix A: EVI Communication
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Figure A.1: EVI communication block flow chart
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