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Abstract

Sustainable computing, dark silicon and approximate computing have ushered a new

era in which some processing capacity is available only as ephemeral bursts, a technique

called computational sprinting. Computational sprinting speeds up query execution by in-

creasing power usage, dropping tasks, precision scaling, and etc. for short bursts. Sprinting

policy decides when and how long to sprint. Poor policies inflate response time signifi-

cantly. However, sprinting alters query executions at runtime, creating a complex depen-

dency between queuing and processing time. Sprinting can speed up query processing and

reduce queuing delay, but it is challenging to set efficient policies. As sprinting mecha-

nisms proliferate, system managers will need tools to set policies so that response time

goals are met. I provide a method to measure the efficiency of sprinting policies and a

framework to create response time models for sprinting mechanisms such as DVFS, CPU

throttling, cache allocation, and core scaling. I compared sprinting policies used in com-

petitive solutions with policies found using our models.
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Chapter 1: Introduction

Currently, gains in processing capacity are a result of scaling out computer hardware.

For example, modern CPUs are equipped with multiple cores clocked at lower frequencies

compared to their predecessors which had fewer cores clocked at higher frequencies. Early

integrated circuit (IC) design relied on the power density staying constant as transistors

decreased in size and the switching frequency increased. This is commonly known as

Dennard scaling which allowed computer hardware to increase processing capacity without

increasing overall power consumption. Dennard scaling started to breakdown after 2006

because current leakage posed greater challenges at smaller transistor sizes. However, the

transistor count in circuits are still growing but the performance improvement are more

gradual compared to the improvements experienced by frequency increases. The end of

Dennard scaling has led to sharp increases in power densities that prevent powering on all

transistors at nominal voltage simultaneously, while keeping the circuitry within thermal

limits. The portion of IC that cannot be powered on given a thermal design power (TDP)

constraint is called Dark Silicon. Consequently, modern CPUs can only activate all of its

transistors for short periods of time without exceeding its TDP. This offers a mechanism

that provides temporary bursts in processing capacity.

Datacenters are increasingly using renewable energy from wind turbines or solar pan-

els to reduce their dependency on less clean energy. Unlike other managed resources,
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renewables are only available when the sun shines or the wind blows. This intermittency

is challenging for datacenters to use renewables efficiently. Traditional techniques used

to manage energy and other resources cannot easily manage resources with intermittent

capacity. Renewables are affected by many environmental factors that change their avail-

ability and cause unpredictable supply. For example, renewables may only be produced

during low activity periods. When renewables are available, datacenters must treat them

as precious resources and maximize their performance impact when used. Renewables are

just another mechanism that increase processing capacity for a limited amount of time.

Large scale applications such as data analytics and scientific computing far exceed

available resources. In addition, they consume significant amount of time and energy dur-

ing execution. The amount of data managed by datacenters will outpace the number of

processors 5 to 1. Approximation techniques have been gaining popularity as a solution for

reducing the amount of resources, time, and energy that is consumed. Techniques such as

task dropping, data sampling, and precision scaling are used to speed up execution but not

necessarily increase processing capacity. These techniques sacrifice computational accu-

racy to get large resource savings.

Dark silicon, sustainable computing, and approximating computing use transient re-

sources to reduce execution time for short bursts. This is known as computational sprinting.

The processing rate of a query can be increased temporarily when resources are available

and certain conditions are met. For example, resources such as thermal headroom for

overclocking and accuracy-leniency for approximation are accompanied by conditions that

prevent the temperature of a CPU from exceeding the max and the output quality of a query

from falling below 90% respectively. Computational sprinting is a resource management

approach governed by policies. A sprinting policy specifies when to increase processing
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capacity and by how much. When the sprinting policy is triggered, additional resources are

allocated to a query (i.e. the query is sprinted) for a specific amount of time. Resources are

revoked by the policy or when the budget is exhausted.

Cloud providers strive to maximize the utilization of their hardware. This results in the

allocation of resources from a single machine to multiple query requests. Such systems

set a service level objective (SLO) for each query type to define the expected performance

provided to the client. In many allocation schemes, resources are over-provisioned so that

SLOs are easily achieved. Less resources can be provisioned if queries are sprinted during

opportune times that significantly reduce response time. Thus, increasing utilization of the

system by enabling the colocation of more queries. Each colocated query contributes to

the provider’s profit. Overly aggressive policies will result in too many SLO violations

that cause clients to withdraw from the service. This ultimately hurts the provider’s profit.

Operating hardware at high utilization benefits providers only if clients continue to use

their service, which implies SLOs must be met.

Resources are allocated to avoid SLO violations but at the same time allocations drain

the budget. The challenge arises when a sprinting policy must wisely make decisions to

minimize the number of SLO violations while conserving the budget for later use. For

example, the system receives a sudden surge of requests. The typical decision is to allocate

more resources to compensate for excessive queuing delay. Assume the last allocation

exhausted the budget. Soon after, the system receives another surge of requests 2X greater

than the previous one. At this very moment, the resources used on the first surge would be

better spent on the larger one. Effective sprinting policies must be aware of how additional

resources impact response time and anticipate changes in system load.
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Many of the proposed policies in prior work improve upon naive, greedy policies, show-

ing the importance of good resource management policies. However, it is also important to

explore a large space of possible management policies to compare between policies. Re-

source management software can use only one sprinting policy at a time. The policy used

should significantly reduce response time, increase throughput or, more generally, perform

well on key performance metrics. Empirical approaches measure performance directly

to rank competing policies. Prior research relied on such empirical methods to highlight

poor detection and wasteful triggering in simple policies. Empirical approaches are time

consuming when there are many competing policies, for example, resource management

software can define a new policy by adjusting tunable parameters. As a result, assessing the

optimality of sprinting policies becomes even more challenging. In my research, I develop

an efficient metric that can help determine whether poor performance is caused by inoppor-

tune triggering or insufficient sprinting speedup. Such a metric defines performance under

a target policy divided by the best performance under any policy. Performance is a function

of the sprinting mechanisms available to competing policies. Each is defined by workload,

speedup and budget. The optimal performance is obtained from models or simulation.

My other research focuses on designing performance models for various sprinting mech-

anisms such as DVFS, core scale, and CPU throttling. Since computational sprinting makes

processing rate and queuing delays interdependent, my work uses hybrid models consisting

of a machine learning component and first-principles simulation. Machine learning mod-

els can characterize interdependence, but are slow to train when directly used for response

time predictions. A hybrid approach that marries machine learning with models based on

first principles reduces training time and complexity per prediction unit. This hybrid ap-

proach maps policies and workload conditions to response time. The workload conditions

4



include query semantics from profiling, arrival rate, etc. Model-driven sprinting can com-

pare policies under runtime conditions without changing actual policies. System managers

can explore a large space and settle on policies that yield low response time.
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Chapter 2: Sprint Ability: How Well Does Your Software Exploit

Bursts in Processing Capacity?

Internet services can process queries faster by over clocking processors, exceeding cir-

cuit breaker capacity and returning lower quality answers. These solutions can have harm-

ful long-term side effects, but they can be used safely in short bursts. Sprinting mechanisms

use such techniques to boost processing rates for short periods and then safely disable them

before their side effects arise. Recent examples of sprinting mechanisms in research and

commercial products include:

- Adrenaline [51] uses DVFS to boost processor clock rates, exceeding the system

power budget.

- ApproxHadoop [47] drops map tasks to speed up map-reduce computations, lowering

the quality of final answers.

- Data center sprinting [119] temporarily over subscribes data center circuit breakers.

- Redundant query scheduling [4, 63, 29] starts redundant query executions, increas-

ing cost per query.

- Intel TurboBoost [85] increases per-core clock rates above their rated operating fre-

quency if the whole processor is below power limits.
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Sprinting mechanisms can speed up query executions that demand heavy computation.

Also, sprinting mechanisms can subdue workload surges that would otherwise cause queu-

ing delays. However, sprinting mechanisms can improve response time only if they can

be triggered. Resource management software must preserve precious bursts in processing

capacity for moments where they are needed most.

Recent research proposes various policies to manage sprinting mechanisms, termed

simply sprinting policies hereon. Across the board, the proposed sprinting policies per-

form better than policies that do not use sprinting mechanisms. Many of the proposed poli-

cies also improve upon naive, greedy policies, showing the importance of good resource

management policies. However, it is also important to explore a large space of possible

management policies to answer the following research questions:

- How much better are the best sprinting policies compared to proposed sprinting poli-

cies?

- Do good sprinting policies share conspicuous features that make them easy to identify?

- Are the best sprinting policies affected by factors that change, e.g., failures, query

arrival rates or renewable energy. If so, what autonomics are needed to adapt sprinting

policies over time?

This paper discusses sprint ability, a metric that assesses sprinting policies, i.e. how

well a sprinting mechanism is managed. Sprint ability divides performance achieved under

a targeted sprinting policy by the best performance achieved under any sprinting policy. If

sprint ability equals 1, the targeted sprinting policy manages its sprinting mechanism better

than (or equal to) all other sprinting policies. Sprint ability complements performance

debugging tools. It separates the speedup provided by sprinting mechanisms from the

7



limitations of sprinting policies. To be sure, a sprinting mechanism that supports larger

bursts and power budget will improve performance but not necessarily sprint ability. To

improve sprint ability, resource management software must (1) use bursts more opportunely

or (2) better balance the magnitude and duration of processing bursts.

The baseline for sprint ability is the best performance achieved under any sprinting

policy. We argue for new simulation and modeling tools that output expected speedup

given workload and sprinting factors. These tools will predict performance in a fraction of

the time required to set up the system, configure the target sprinting policy and run tests.

However, these tools present new research challenges. First, a core assumption in queuing

theory (a widely used approach to model response time) is contrary to sprinting: Service

time is supposed to be independent of queuing delay. In contrast, many sprinting policies

invoke sprinting mechanisms only when queuing delay is large. For example, Adrenaline

triggers DVFS when queries are within 50% of SLO limits [51]. Correlations between ser-

vice time and queuing delay break queuing theory models, making closed-form results hard

to obtain. To obtain response time across a wide range of sprinting policies, we designed

a sprinting-aware simulator for simple M/M/k1 Internet services. Our simulator considers

workload factors (e.g., arrival and service rates) and sprinting factors (e.g., speedup from

sprinting and sprinting frequency). It uses discrete-event simulation to model queuing and

total response time per query, under a given sprinting policy and mechanism. The simulator

is an efficient mean to explore large parameter space of sprinting policies and search for

the optimal performance that is used to compute the sprint ability.

We used our simulator to evaluate the sprint ability of internet services under two sprint-

ing mechanisms. The first mechanism speeds up query executions by 1500X but only 25%

1M/M/k is a system with k servers in which the arrival and service rates are exponentially distributed.
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of query executions can trigger the mechanism in a 5-minute interval. This mechanism was

inspired by ApproxHadoop [47]. Query executions are akin to map tasks that are dropped to

speed up execution. For a given query, the sprinting policy in ApproxHadoop drops a fixed

number of maps (i.e., 25%) as set by the user. We explored alternative sprinting policies

where the drop rate changes at the end of each 5-minute interval. Our results showed that

the sprinting policy that drops the same number of maps in each interval has sprint ability

of 71%, and sprinting policies that drop 49% of maps once a day maximize performance.

The second sprinting mechanism speeds up query execution by up to 1.57X, but it has a

limited energy budget. Sprinting policies choose how often to trigger the mechanism. This

mechanism was inspired by Adrenaline [51]. We studied the proposed policy that triggers

sprinting when (1) the query execution time neared SLO limits or (2) the query execution

time fell above the 85th percentile. In our tests, this policy achieved 75% sprint ability.

With more degrees of freedom, these tests highlighted the wide ranging effects of sprinting

policies.

This paper generalizes sprinting mechanisms as ephemeral processing bursts triggered

by software. The hardware and software techniques used to burst processing capacity are

orthogonal to the sprinting policies that determine when and how to sprint. It is our position

that there are rich research problems in setting and adapting sprinting policies.

The remainder of this paper is as follows. Section 2.1 compares three simple poli-

cies. The discussion reveals challenges in setting sprinting policies. Section 2.2 defines

sprint ability formally and makes the case that sprint ability is hard to measure without new

research on performance models and system profiling. Section 2.3 presents a simulator

that provides a first step toward new models on the effects of sprinting policies. Sec-

tion 2.3.1 uses the simulator to consider sprinting mechanisms similar to ApproxHadoop

9



and Adrenaline. Our results suggest that there is room to improve recently proposed poli-

cies. Section 2.4 discusses related work.

10
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Fig. 2.1: Depiction of a sprinting mechanism that speeds up indivudal query executions.
We compare response time under policies that (top) never trigger the sprinting mechanism,
(center) greedily trigger via first come first serve and (bottom) trigger more opportunely.

2.1 Motivating Example

In this paper, a sprinting mechanism is hardware or software that allocates additional

resources for processing queries. Dynamic voltage frequency scaling (DVFS) under an en-

ergy budget is a concrete example. It allocates additional voltage for short periods. Sprint-

ing policies control how often and when to trigger these mechanisms. The terminology

borrows from earlier operating systems concepts [64].

Figure 2.1 depicts query execution times, queue lengths and response time for an Inter-

net service with access to a DVFS sprinting mechanism. Here and throughout the paper,

we characterize sprinting mechanisms as a triplet: target workload, speedup per sprint and

budget. In Figure 2.1, the DVFS mechanism targets individual query executions, speeds up

their processing rate by 2X and has a budget of 4 sprinting seconds.
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Fig. 2.2: Using sprint ability, empirical and model-based, to debug performance problems.

Figure 2.1 compares 3 policies that govern sprinting for the same query arrival work-

load. The top chart depicts query executions under a policy that never triggers DVFS

sprinting. Queuing delay increases average response time to 3.8 seconds per query. The

center chart depicts a policy that triggers sprinting for queries as they arrive until budget

is exhausted. This fist-come-first-serve approach wastes resources on queries that execute

quickly without sprinting. Finally, the bottom chart shows a policy that opportunely sprints

on the third and fourth arriving queries. By triggering DVFS at the right time, this approach

reduces query processing and eliminates queuing delay. Response time is 2.3X and 1.12X

faster.

Figure 2.1 shows two key challenges in setting sprinting policies: (1) detecting which

moments provide the greatest utility for sprinting and (2) carefully preserving budgeted

resources for only those moments. Poor detection arises from poor scheduling or uncer-

tainty regarding future demands. Resources are wasted when sprinting is unavailable due

to triggering too often or inefficiently using resources.
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2.2 Sprint Ability: Vision and Research Challenges

Resource management software can use only one sprinting policy at a time. The policy

used should significantly reduce response time, increase throughput or, more generally,

perform well on key performance metrics. Empirical approaches measure performance

directly to rank competing policies. Prior research relied on such empirical methods to

highlight poor detection and wasteful triggering in simple policies [51, 119, 63]. Empirical

approaches are time consuming when there are many competing policies, for example,

resource management software can define a new policy by adjusting tunable parameters.

As a result, assessing the optimality of sprinting policies becomes even more challenging.

We advocate that sprint ability offers an efficient metric to evaluate and improve sprinting

policies across a wide range of sprinting mechanisms.

Particularly, sprint ability narrows competing policies by answering the following ques-

tions for a targeted policy: (1) Does the targeted policy exploit bursts in processing capacity

well? (2) Are there better policies available? Equation 2.1 formally defines sprint ability as

performance under a target policy (Ptrg) divided by the best performance under any policy

(Popt). ~c is a collection of sprinting mechanisms available to competing policies. Each is

defined by workload, speedup and budget.

SA =
Per f (Ptrg,~c)
Per f (Popt ,~c)

(2.1)

In our vision, Popt is obtained from models or simulation. (If Popt can be obtained from

direct measurements, then empirical ranking remove the need for sprint ability.) Mod-

els and simulators can compute expected performance across a wide range of sprinting

policies much faster than empirical approaches. There are two ways to compute Ptrg. Em-

pirical sprint ability (ESA) uses direct measurements. Model-based sprint ability (MSA)

13



use models or simulations. ESA and MSA are both useful to debug performance problems

with sprinting policies. Sprint ability does not replace response time, throughput or other

first-class metrics. We plan to use sprint ability to complement performance debugging in

the presence of a sprinting mechanism. Specifically, sprint ability determines whether poor

performance is caused by inopportune triggering or insufficient sprinting speedup.

Figure 2.2 illustrates performance debugging with sprint ability. Assume an SLO vi-

olation has occurred. If ESA is high (i.e., greater than 95%) then replacing the sprinting

policy will provide only small performance gains. More powerful sprinting mechanisms

are needed. If ESA and MSA are both low, the sprinting policy is causing unneeded slow

down. Some modelling approaches may suggest competing policies to explore for ESA. If

ESA and MSA disagree, other metrics can uncover the difference between model expec-

tations and actual performance. For example, systems with poor elasticity may over state

speedup by discounting adaptation time. A wide range of tools exist to align model expec-

tations to actual performance [28, 27, 96]. The remainder of the section outlines research

in managing and measuring sprint ability.

Systems and Adaptive Resource Management: It is important to show that sprint ability

integrates nicely with existing systems. We would like to characterize exactly which pieces

of code in today’s widely used platforms yield high sprint ability. However, modern sys-

tems are complex, comprising multiple layers (e.g., platform, OS and networking stacks).

Each layer may comprise thousands of lines of code. The relevance of systems code to

sprint ability depends on the sprinting mechanism. For example, code about data sampling

has more relevance to software-driven approximation bound by quality limits than to dark

silicon sprinting limited by power.
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Mechanism Systems layer  Task Challenge Description

software-driven 
approximate 
computing

runtime platform 
data 

sampling

detect when 
sprinting will 
have impact

sampling at a fixed rate for all queries 
does not minimize queue delay 

OS & distributed 
file system

key-value 
lookup

preserve 
resources

sampling data hosted on remote 
servers may limit speedup

coordination 
service

resource 
containers

preserve 
resources

changing a query's sampling rate on 
the fly demands mechanisms to track 
execution over distributed resources

dark silicon

OS & runtime 
platform

thread 
manager

preserve 
resources

OS and runtime platforms are slow to 
detect new cores, limiting speedup

runtime platform
detect slow 

queries

detect when 
sprinting will 
have impact

heavy query arrival rates should 
encourage frequent sprinting

cloud burst distributed stores
spot market 
provisioning

detect when 
sprinting will 
have impact

when spot prices decrease, sprinting 
frequency can safely increase

Table 2.1: Open research problems for high sprint ability in adaptive resource management.

Table 2.1 provides examples of systems issues that affect sprint ability under different

categories of sprinting mechanisms. While the taxonomy is not complete, it outlines in-

teresting challenges for the autonomic computing field. For example, in software-driven

approximation, fixed data sampling across all queries is similar to FCFS policy described

in Section 2.1. Policies that use variable, time changing rates could use approximation

opportunely. In Section 2.3.1, we provide early results that confirm this opportunity. This

problem along with tail detection are concerned with improving choices about when to

sprint. Research on these topics directly improve sprint ability.

Sprint ability also improves when sprinting mechanisms are preserved for longer pe-

riods. In Table 2.1, we highlight slow core detection from Apache YARN. The problem

is that core scaling spends a portion of its energy budget when systems software can’t

use it. Both policy and mechanism can attack this problem. Policies that target work-

loads in early stages, before the resource manager provisions nodes, can improve detection
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speeds—increasing sprint ability. In contrast, YARN could better support core scaling as a

sprinting mechanism. This research will improve speedup from sprinting but could improve

or degrade sprint ability. Looking closely at Equation 2.1, we note that such research ex-

tends the vector of candidate constraints, i.e., a larger collection of sprinting mechanisms

in ~c. If this increases Popt by more than Ptrg, sprint ability will decrease—even though

speedup improves. Research that improves the speedup of sprinting mechanisms is best

evaluated using performance improvement (not sprint ability). However, it is important to

measure sprint ability whenever there are major speedups as the decision making process

may need to change fundamentally.
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Models for Optimal Performance: Sprint ability needs to model the best performance

across a wide range of policies. Building accurate models is challenging. However, our

charactization of sprinting mechanisms (workload, speedup, budget) reduces complexity.

For this paper, we discuss two possible research solutions. The first and ideal solution

would be closed-form queuing models that capture the effects of sprinting. These mod-

els would consider the speedup gained from sprinting and the decision making process for

sprinting. However, effective sprinting that targets reduced queuing delay breaks the fol-

lowing fundamental assumption underlying most queuing theory models: “the presence of

a long queue is supposed to have no effect on the speed of service. [60]” Queue-dependent

service times complicate Markovian analysis. Multi-level queues could yield closed form

for certain sprinting conditions, e.g., coarse grained server setup times [43]. Further, repli-

cation for predictability and redundancy also offer some sprinting benefits, albeit with lim-

ited choice in query targeting. We call for continued research on such models. The second

solution is to build accurate simulators. To this end, Section 3.1.2 presents a first-cut and

open-source simulator for sprinting targeted at query executions.

Profiling Speedup Due to Sprinting: Speedup due to sprinting is hard to measure. As pro-

filing software must know when sprinting is on. This requires advanced context tracking.

Some sprinting mechanisms, such as approximation, the performance with sprinting off

simply requires extending query execution with sprinting on [59] However, other mech-

anisms require two totally separate query executions. Another approach uses statistical

models to understand average speedup.
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2.3 First Steps: A Simulator

We built an M/M/k like simulator that supports a wide range of sprinting mechanisms

and policies. In addition to arrival and departure rate parameters, the simulator accepts

speedup and budget parameters that describe a sprinting mechanism. In its current version,

our simulator only supports mechanisms that accelerate specific query executions. The

simulator accepts parameters on the frequency with which sprinting policy triggers sprint-

ing mechanisms, including support to target specific types of queries (e.g., tail response

time).

Figure 2.3 illustrates our proposed discrete-event simulator. Prior to the first discrete

time step, the simulator creates an array of query objects. A query is defined by its arrival

and service time. Arrival time is relative to the first tick (0 time). Service time is abso-

lute. In M/M/k mode, the simulator increments the clock by one, checks for an arrival,

then checks the queue for a departure. In sprinting mode, the simulator executes sprint-

ing policies at each time step. It marks whether the query execution triggered a sprinting

mechanism and when its execution ended. After the simulation, it checks to see if the

policy would have violated budgeted power, quality loss or cost by accelerating too many

queries for too long.

Limitations: As a first step, our simulator allows us to explore the effects of a wide range

of policies. However, simulation is much slower than analytic models. Closed-form models

for response time with sprinting should eventually replace this simulator. Our team has al-

ready begun working on such models. However, queuing theory models are fundamentally

harder when the service rate depends on the queue size. Ghandhi et al. needed multi-

level hidden Markov models to build queuing models for elastic services where the queue
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Fig. 2.3: Architecture of the simulator used to explore performance under a wide range of
policies.

size adjusts the number of servers slowly over time [43]. However, sprinting is harder to

model because the increase in processing capacity is ephemeral (by definition, not lasting

to steady state) and applied to individual executions (rather than all queries).

The implementation of our simulator could simplify the specification of policies and

mechanisms. Currently, the package is written in GoLang. New policies, excluding minor

parameter tweaks, require new source files. Also, power budgets are checked after the

simulation. This makes it hard to simulate approaches like data center sprinting that rely

on the mechanisms to prevent sprinting too often.
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2.3.1 Early Results

We used our simulator to compute model-based sprint ability for policies proposed in

Adrenaline and ApproxHadoop [47, 51]. We extracted key features regarding the sprinting

mechanism (speedup and budget) and sprinting policy in each paper. Our simulator com-

puted the expected response time under a wide range of policies and searched for the best

performance defined in the denominator of the sprint ability.

ApproxHadoop: ApproxHadoop subsamples data and drops map tasks to reduce running

time for Hadoop jobs. We focused on the configuration where all data was used and map

tasks were dropped. In this configuration, the price for dropping tasks is lower answer

quality. Specifically, ApproxHadoop targets Hadoop jobs that output statistical answers.

Answer quality is defined using the 95th percentile bound on the absolute error of the

output (i.e., 1% - error). Users specify a target for answer quality and ApproxHadoop

then completes each job quickly (dropping map tasks) while respecting the target quality.

By default, ApproxHadoop drops map tasks randomly. We consider this policy and an

alternative where ApproxHadoop drops map tasks that run slowly. We term the latter as

ApproxHaddop with straggler prediction. Finally, we test the hypothesis of not using the

same target answer quality for each query. Instead, we allow ApproxHadoop to sprint at a

higher rates (up to 5% more dropped map tasks) as long as the average quality after 1 day

is within budget. Specifically, our metric of merit is average response time across 96 jobs

issued throughout the day. Table 2.2 shows the settings associated with our tests inspired

by ApproxHadoop.
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ApproxHadoop Simulation Settings
mechanism speedup budget
drop maps 1,500X avg. quality = 97.5%

policy name query selection worst target quality
default random 97.5%
rand random 95 – 97.5%
strag stragglers 95 – 97.5%

Adrenaline Simulation Settings
mechanism speedup budget

DVFS 1.57X energy = 9.6
policy name query selection frequency

default tail 15%
rand tail 10 – 50%

Table 2.2: Sprinting mechanisms and policies simulated [47, 51].

Figure 2.4 plots CDF of sprint ability under two different ApproxHadoop sprinting

mechanisms, namely random and straggler dropping. Each point in CDF represents a par-

ticular sprinting policy setting, i.e., frequency, measured at the simulator. Particularly, the

sprint ability achieved by ApproxHadoop’s default strategy is at 71%. We tested random

policies that allowed various worst target quality at intervals .1%. Thanks to our simulator,

we are able to efficiently explore 250 settings. And, only 74 out of 250 met the quality

budget. ApproxHadoop’s default strategy out performed only 3. The best policy allowed

sprinting with quality loss of 4.5% for one job. As shown in the ApproxHadoop paper,

dropping map requests can cause significant reduction in response time even while degrad-

ing answer quality only slightly. Comparing the random and straggler dropping policies

reveals the importance of well targeted workloads on sprint ability. Straggler reduces the

variance of sprint ability substantially. The median under straggler dropping policy that

does not violate budget achieves over 97% sprint ability.

Adrenaline: Adrenaline exploits a DVFS mechanism capable of voltage transitions in

nanoseconds. It significantly reduces energy wasted transitioning to higher frequencies.
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Fig. 2.4: Sprint ability for policies proposed in ApproxHadoop and Adrenaline.

With this technology, Adrenaline sets out to speed up query executions that are likely to

violate SLO. It targets (i) query executions that exceed the 85th percentile in service time

and (ii) queries with total execution time within 50% of the SLO target, i.e queries whose

response time exceed 500 ms. In the paper, a DVFS increase from 1.4 GHz to 2.1 GHz

provide 1.57X speedup. There is a global energy budget of 30% of the baseline.

For this paper, we changed the percentile that constitutes the tail. To stay within energy

budget, the change in tail was matched by a proportional change in DVFS max speed. More

aggressive tail settings provided less speed up per sprint. Using data from the paper, we set

the service rate to 5 ms. The utilization was 90% (labeled high in the paper). Figure 2.4

shows the CDF of sprint ability under any sprinting frequency explored by the simula-

tor. One can see that sprint ability in Adrenaline had higher variance than ApproxHadoop.

There are two reasons. First, our policies prohibit invalid settings. Second, Adrenaline

boosts performance significantly under high utilization. Poor policies that essentially dis-

able sprinting mechanisms cause significant harm. Figure 2.5 shows the speedup of the

Adrenaline sprinting mechanism under a fixed speedup as the tail threshold increases. This

figure highlights the outsized effects under 90% utilization.
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2.4 Related Work

Sprint ability complements metrics used to guide resource management, e.g., response

time, scalability, and elasticity. This section overviews existing metrics and draws key

contrasts, making the case for the research community to use sprint ability more often.

Elasticity measures how quickly a system can adapt to workload changes by provi-

sioning and deprovisioning resouces [50]. Elasticity subsumes scale-out scalability which

measures how efficiently a system can continuously add resources. These metrics con-

cern the detection of resources and distribution of work. Systems with poor elasticity and

scalability are hard to model, making sprint ability hard to compute. However, elasticity

presumes changes are caused by workload rather than ephemeral resources. Systems that

require workload surges to scale, e.g., workloads that load balance at coarse granularities,

can achieve high elasticity but poor spint ability. We expect future processors will support

fine-grained sprinting within the context of a single query execution. Support for ephemeral

resources that are available for very short bursts distinguishes sprint ability. Auto scaling

techniques can not support short bursts yet [43, 44].

Research on powering systems with intermittent renewable energy shares a key feature

with sprinting: Variability is supply side not demand side. Many recent papers propose

policies to quickly adapt resources in response to solar outages [110, 89]. These systems

coupled with recent papers on sprinting mechanisms have focused on proposing good poli-

cies. In contrast, sprint ability answers (1) does a sprinting mechanism permit policies that

provide sufficient SLO, etc. and (2) are there policies better than the current policy.
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Fig. 2.5: Speedup from sprinting as a function of system utilization.

2.5 Conclusion

Sustainable computing, dark silicon and approximate computing have ushered a new

era in which some processing capacity is available only as ephemeral bursts, a technique

called sprinting. New techniques and metrics are needed to achieve lower response time and

high throughput with sprinting mechanisms. Sprint ability complements existing metrics

by distinguishing the role of software policies from sprinting mechanisms. This paper

argues that sprint ability, or similar metrics, should become a part of resource management

vernacular. We built a simulator to start evaluating sprint ability. Early results revealed

that proposed, good policies are not always best. We have open sourced our simulator to

encourage others to begin studying sprint ability [83].
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Chapter 3: Model-Driven Computational Sprinting

Modern processors are constrained by increasingly tight power caps [81]. Computa-

tional sprinting is a resource management approach that speeds up workload execution by

using power reserves to boost processing rates above sustained rates for short bursts [79].

Sprinting helps workloads meet response time requirements specified by SLOs [91, 51] and

interactive applications [79]. DVFS [51, 115], core scaling [49], and CPU throttling [105]

are commonly used to implement sprinting.

This paper examines sprinting for workloads comprising independent query executions

(e.g., cloud servers) where all executions share the power budget reserved for sprinting.

In this context, sprinting should target queries that most improve whole-system response

time [51]. Consider two Spark query executions that compute K-means clustering. The

first query arrives when no other queries are in the system. The second arrives during a

busy period. On an Intel Xeon 2660, DVFS sprinting can speed up Spark K-means queries

by 97%. But what if the sprinting budget afforded only one of the query executions? In

this case, the second query execution should sprint; speeding up its own execution and

reducing time other queries spend queuing. Generalizing from this example, cloud servers

can use sprinting to improve response time by speeding up individual query executions and

by reducing queuing delays.
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Sprinting policies govern which queries to speed up by setting (1) timer interrupts that

trigger sprinting for a query execution, called timeouts [99, 68, 49], (2) processing speed

during sprinting, called sprint rate and (3) sprinting budget for a given sprinting mechanism.

Sprinting policies have complicated effects on response time. Figure 3.1 depicts query

execution under a sprinting policy where the timeout is 1 minute. In this example, timeouts

trigger sprinting for queries 1 and 2, draining the budget. The remaining queries must

execute at the sustained processing rate. Here, sprinting is applied too aggressively to

early arrivals which causes queuing delays for queries 4, 5 and 6. However, increasing

the timeout has mixed effects. A 3-minute timeout counterintuitively degrades response

time, because it is too conservative and does not exhaust the sprinting budget. Under a 2-

minute timeout, response time improves by 25%. This example shows that subtle changes

in sprinting policies can significantly affect response time.

Model-driven computational sprinting uses performance models to set sprinting poli-

cies. Performance models map policies and workload conditions to response time. Pre-

cisely, sprinting policies include sustained processing rate, sprint rate, timeout, budget,

etc. Workload conditions include query semantics, arrival rate, etc. Model-driven sprinting

can compare policies under runtime conditions without changing actual policies. System

managers can explore a large space and settle on policies that yield low response time. Fur-

ther, model-driven sprinting can explore what-if questions for past and future workloads.

For example, what would response time have been if sprinting budget doubled during last

week’s spike? Or, how much can be saved by purchasing hardware with the latest sprinting

mechanisms?

Computational sprinting makes processing rate and queuing delays interdependent;

Long queues trigger sprinting and sprinting reduces queues. Machine learning models

26



time (minutes)
0 1 2 3 4 5 6 7

q
ue

ry
 id

arrival normal
processing 

queueing timeout sprinting

1
2
3
4
5
6

8 9 10 11

sprinting budget 
is exhausted

Fig. 3.1: Query executions under a tight sprinting budget. The first two queries drain the
budget. Remaining queries can not sprint despite slow response time.

can characterize interdependence. A direct approach maps policy and workload inputs to

expected response time. While conceptually sufficient, this approach learns complicated

semantics of sprinting. As a result, the model is slow to train. We propose a hybrid model

that marries machine learning with models based on first principles. Our approach maps

inputs to effective sprint rate. Effective sprint rate is the amortized speedup observed at run-

time across sprinted executions (i.e., interdependence per sprint). Compared to response

time, effective sprint rate is less sensitive to subtle policy changes, making machine learn-

ing more efficient. Finally, our hybrid model simulates query arrivals and departures using

effective sprint rate. We study whether our hybrid model can produce accurate predictions

that can be trained quickly enough for cloud workloads.

We compared modeling approaches using cloud server benchmarks. Our proposed hy-

brid approach used a random forest to get effective sprint rate and a first-principles queuing

simulator to get response time. We compared our approach to an artificial neural network

(ANN) that directly mapped inputs to response time. We studied prediction error across

a range of (1) sprinting policies, (2) sprinting mechanisms (DVFS, core scaling, and CPU

throttling), (3) query semantics (numerical computation, scientific kernels, memory-bound
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streaming, machine learning, search and mixed workloads) and (4) arrival and service rate

distributions. Our hybrid approach achieved median error below 4.5% in most tests. On

Spark workloads, its median error was only 3.2%. In contrast, direct-mapping approaches

yielded 30% error in most tests and 5% error on Spark workloads. Of course, direct-

mapping approaches improved when the training set grew. However, these approaches re-

quired 6X–54X larger training set to achieve accuracy comparable to the hybrid approach.

We also compared our first-principles simulator without a machine learning model. Median

error was 40%.

Our performance models make 900 predictions per minute (throughput scales with pro-

cessor cores). This enables model-driven sprinting to compare thousands of timeout and

budget policies for cloud servers. We used simulated annealing to explore the space. The

best policies outperformed the worst policies by 1.65X. Our model-driven policies outper-

formed policies proposed in Adrenaline [51] and Few-to-Many [49].

Model-driven sprinting also supports service level objectives (SLOs) with response time

clauses. In this case, model-driven sprinting can uncover sprint rates and budgets that (1)

allow multiple workloads to share a cloud server and (2) respect SLO for hosted work-

loads. This use-case is inspired by AWS Burstable Instances which use CPU throttling

to constrain sustained processing speed, set a fixed 5X sprint rate and budget 720 sprint-

seconds per hour [9]. We studied homogeneous and heterogeneous workloads. Excluding

model training, model-driven sprinting reduces tail latency by 3.16X and improves profit

by up to 1.7X. However, our machine learning models require hundreds of examples for

training. Further, the typical virtualized cloud server has a lifetime of 552 hours [26]. When

we account for opportunity cost while collecting training data, net profit from model-driven

sprinting is 1.6X greater than default AWS settings.
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The remainder of this paper is as follows. Section 3.1 outlines our design for model-

driven computational sprinting. Section 3.2 evaluates our modeling approach across cloud

benchmarks and sprinting hardware. Section 3.3 studies speedup and cost savings from im-

proved sprinting policies. Section 3.4 frames open challenges to widely deploy and extend

model-driven sprinting. Section 3.5 overviews related work in the area of computational

sprinting and modeling for highly dynamic systems. Section 3.6 draws conclusions.
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Fig. 3.2: Our approach combines workload profiling, queue simulation and machine learn-
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3.1 Design

Figure 3.2 depicts software, inputs and outputs in our modeling approach. A represen-

tative workload includes binaries and query mix. Our profiling software includes a query

generator on the front-end and a back-end queue manager. The front-end replays the query

mix and the queue manager dispatches queries to server system binaries. Our profiler runs

on a server that supports the sprinting mechanism considered. We replay the mix many

times, changing query arrival patterns and sprinting policies. The profiler captures re-

sponse time, service time and queuing delay for each query execution. The profiler outputs

the following:

1. Service rate: This is the inverse of mean processing time for query executions that

do not trigger sprinting. In classic queuing literature, this is µ .

2. Marginal sprint rate: This reflects mean processing time when timeouts trigger

before the queue manager dispatches queries, i.e., the whole execution is sprinted.

We represent this using µm.

3. Observed response times: Each time the workload is replayed, we observe response

times under the tested conditions and policies.

30



Query
Generator

Normal

Sprint

 Execution 
Engine

  T
O =

 n
o

TO = yes

T
O

=
y

ta
sk

 i+
2

ta
sk

 i+
1

Queue
Manager

arrival dist.                         
query m

ix                        

tim
eout                    

arrival rate                         

Response
Time

Budget

rs
rv

=
0

rsrv>
0

budget                      
refill rate                      

w
orkload                         

workload 
conditions

sprint
policies

Fig. 3.3: Key instrumentation points for workload profiling in our approach.

After the profiler finishes, characterizations of the workload and sprinting policy are

passed into a random decision forest classifier. The classifier outputs effective sprint rate

(µe), i.e., amortized speedup of sprinted queries caused by runtime dynamics. This metric

captures the effects of having interdependent processing time and queuing delay.

To predict response time, we input sprinting policies, workload characterizations and

effective sprint rate into a discrete event queue simulator. The simulator steps through

system execution, detecting timeouts and modeling the impact of effective sprint rate. Our

simulator can consider a wide range of queuing parameters including exponential, Pareto,

and deterministic distributions of arrival, service, and sprint rates. It also executes quickly

parallelizing execution across multiple cores and servers easily. This section details each

stage in our design.

3.1.1 Workload Profiling

As shown in Figure 3.3, our query generator controls (1) the rate at which queries are

sent to the queue manager, (2) timeout settings that trigger sprinting, (3) the budget for

sprinting (in seconds), and (4) the rate at which the budget is refilled. To be clear, our
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workload generator is constrained by hard budgets and refill rates. In this paper, we ex-

plore soft budgets that provide flexibility. The generator can also switch between workload

binaries and different mixes of query types.

The queue manager receives query requests (HTTP) from the query generator. The

queue manager timestamps queries upon arrival, adding them to a FIFO queue. Queries

wait in the queue manager until queries that arrived earlier complete. The queue man-

ager forwards queries at the head of the queue to the execution engine when a slot opens.

The queue manager also timestamps queries when they are sent to the execution engine.

Timestamps allow us to compute processing time, queuing delay and response time.

The queue manager detects timeouts and triggers sprinting. For each query, the manager

adds the timeout to arrival time and schedules an interrupt with a callback function. If the

function executes before the query is dispatched, the queue manager initiates sprinting

when the query reaches the head of the queue and a slot opens. If the callback executes

after the query is dispatched, the queue manager initiates sprinting right away— provided

the sprinting budget is not empty. After each query completes, the queue manager subtracts

any time spent sprinting from the budget. In our current implementation, communication

between generator, manager, and execution engine is through HTTP.

Our profiling setup covers a wide range of conditions. For example, our profiler can set

arrival rates between 0.1%–100% of service rate at step sizes of 0.1%, covering over 1,000

arrival rates. This allows us to test small changes in system utilization. The parameters of

sprinting timeouts and budgets also cover a wide range of settings. We use cluster sampling

to obtain good coverage for a smaller range of conditions. Specifically, for each workload,

we sample 5 settings for arrival rate, 8 timeout settings, and 9 power budgets respectively.
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Cluster sampling ensures that random sampling covers key natural clusters within our

supported conditions. However, cluster sampling can yield biased and high sampling error.

In Section 3.2, we evaluate our ability to linearly interpolate between clusters to predict

response time.

3.1.2 Timeout-Aware Simulator

Algorithm 1 outlines data structures and pseudo code for the simulator. Here, Vector

means a expandable array of query objects. Each query object has the following proper-

ties: (1) arrival time, (2) processing time, (3) departure time, (4) time at which processing

started, and (5) booleans that signal if queries were sprinted.

Given arrival patterns, we set the time when each query to be processed will arrive. We

randomly sample service time data collected during profiling to set µ̄ . These properties are

set before simulation begins.

Our simulator steps through server execution. We normally set step size to one millionth

of a second. To focus on handling timeouts, Algorithm 1 shows a simple setup that does

not allow concurrent query executions. Our full simulator is open source and supports

concurrent executions [83]. The queue vector holds queries waiting to be processed. When

queries arrive, they are appended to the queue vector. If the execution engine has a slot,

query processing begins immediately. If not, the query waits until it reaches the head of the

queue.

As shown in Equation 3.1, we model sprinting, i.e., the query depart time, as a linear

speedup on the query’s remaining execution time, using the quotient of service and effective

sprint rate as the coefficient. We denote τ as a fraction of completed work, which is defined

by the difference of current clock time and its start time divided by the average processing
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// Key data structures
GLOBAL Vector queries   // queries to be processed
GLOBAL Vector queue     // capture queueing effects
GLOBAL Vector clock = 0 // fine resolution clock
GLOBAL int    slots = 1 // slots in execution engine

void function qs ( μ, μ
e
, timeout, budget ) {

 while (queries.empty() == false) {

   // Add new arrivals to the queue
   arriving_query = queries.elementAt(0)
   if (clock == next_query.arrival) {
     queue.append(arriving_query)
     queries.removeElement(0)
   }

  // Dispatch from queue to execution engine
  if (slots == 1) {
     queue.elementAt(0).start = clock
     queue.elementAt(0).depart = start + μ
     slots = 0
  }

  // Check for timeouts
  head_query = queue.elementAt(0)
  if (clock == head_query.arrival + timeout) {
     head_query.TimedOut = true
     if (budget > 0)
       head_query.depart = clock + f(start, μ, μ

e
)

  }
  else if (clock == head_query.depart) {
  // Check for query completion
     queue.removeElement(0)
     slots = 1
  }
  clock++
 }
}

Alg. 1: G/G/1 timeout-aware queuing simulator.

time. To be clear, all variables in this equation align with Algorithm 1 and clock is captured

immediately after timeout.

depart = clock+(1− τ) · µ̄ · µe

µ
, where (3.1)

τ = (clock− start)/µ̄

3.1.3 Effective Sprint Rate

Workload profiling provides observed response time under tested workload conditions.

Furthermore, our queue simulator eschews runtime factors in its model of computational
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Fig. 3.5: Creating and using random decision trees to classify effective sprint rate.

sprinting, see Equation 3.1. We use workload profiling and queue simulation together to

model effective sprint rate. Specifically, our machine classifier targets unaccounted runtime

factors, such as: (1) the points in query execution where sprinting begins, (2) queuing delay

caused by toggling the sprinting mechanism and (3) queue length when sprinting begins.

Our classifier maps workload conditions and sprinting policies to a linear regression that

quantifies unaccounted factors. To be precise, we define effective sprint rate as the nearest

sprint rate that aligns simulator and observed response time. Equation 3.2 formalizes our

model. RTwp is the response time function for workload profiling. The input is tested

workload conditions ~F and marginal sprint rate µm. RTqs is the response time function

for the queue simulator. The effective sprint rate makes the smallest absolute change to

marginal sprint rate while achieving tolerable error on response time.
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µe = µm +min |x|, where (3.2)

|x| ∈ {RTwp(~F ,µm) = t ∗RTqs(~F ,µm + x),∃t < T}

We find the expected sprint rate through exhaustive search. We increment and decre-

ment the marginal rate by 1 unit to get candidates for effective sprint rate. We use these

candidates as input to the queue simulator and compare observed and simulator response

time. If the difference exceeds our tolerance threshold, we repeat.

3.1.4 Random Decision Forest

Random Decision Forest (RDF) is a combination of decision tree predictors [13]. Each

decision tree depends on the values of a random feature vector sampled independently.

We use RDFs to infer effective sprint rate. First, we randomly divide profiling runs into

training and testing data. We then create random subsamples from the training data. For

each subsample, we select a random subset of workload conditions and sprinting policies

to build decision trees. Figure 3.5 depicts the subsampling process. Columns represent

workload conditions and sprinting policies (~F) used as predictive features for the effective

sprinting rate. Offline profiling produces each row, i.e., we observe response time and align

simulator results to get effective sprint rate.

For each subsampled training set, we use the ID3 algorithm to build a deep decision

tree [77]. A decision tree is an acyclic graph where internal nodes are predictive features,

edges are feature settings, and leaf nodes provide regression results for training data that

matches feature settings specified in the path from the root. We create binary trees. At each

node, we compute variance V (S) for data that matches feature settings in the path from

root (all data for the root node). Then for each feature, we compute variance for data in
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(1) a proper subsets of the feature settings (V (SFi=k) and (2) the complement (V (SFi 6=k)).

As shown in Equation 3.3, the subset and complement that most reduce variance provide

edges to the next node. When all feature settings are exhausted, we create a leaf node by

using linear regression on the remaining samples.

max
F

gaini =V (S)−
V (SFi=k)+V (SFi 6=k)

2
(3.3)

As shown in Figure 3.5, each subsample from the training set produces a decision tree.

We average the regression parameters from each tree to derive final prediction patterns.

Why Random Decision Forests? Cluster sampling systematically explores a subset of

policies but also introduces bias, i.e., it misses policy settings that differ from cluster cen-

troids. Bias causes modeling error for unseen conditions. Random decision forests mini-

mize bias caused by cluster sampling without increasing profiling costs. Without additional

data, the key is to understand which data points (i.e., tested runtime conditions) are most

similar to unseen conditions. Our key observation is that sprinting policies (1) exhibit

low-variance in effective sprinting rate under specific conditions and policy settings and

(2) subtle changes on most settings have only small effects on sprint rate. A key insight

is that these observations can be applied to effective sprinting rate, but not necessarily to

response time. Random decision forests minimize bias by creating deep decision trees.

We eschew pruning approaches, because shorter trees ignore the complex effects of some

workload conditions sprinting policy parameters. However, by creating multiple trees that

each use different predictive settings, we can group data points that are likely related on

key parameters.
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3.2 Performance Modeling Results

In this section, we evaluate our performance modeling approach. Unless otherwise

stated, our experiments use the following procedure. For each workload and platform

tested, we observe response time for all workload conditions and sprinting policies at clus-

ter sampling centroids. We randomly select a subsample to train our model. The remaining

20% of tested conditions, as well as conditions outside of cluster sampling centroids, are

used to compare observed to predicted response time.

We compare performance modeling approaches shown in Table 3.1(A). ANN directly

predicts response time from input policies and workload conditions. Recall, response time

is sensitive to subtle policy changes. This approach requires machine learning that can

characterize discontinuous functions. We used an artificial neural network (ANN), a pow-

erful approach that uses error residuals to find non-linear splits in discontinuous functions.

In comparison, bias in the ID3 algorithm limits the effectiveness of random forests on dis-

continuous functions. No-ML uses our timeout-aware simulator with marginal sprint rate.

It eschews machine learning. Hybrid implements our approach.

Table 3.1(B) describes sprinting hardware in our tests. DVFS and CoreScale use a

Xeon 2660 processor. DVFS uses Pupil [115], state-of-the-art power capping software.

Pupil maximizes throughput under a power cap by learning the relationship between DVFS

setting and power usage. We sprint by temporarily increasing the power budget, allow-

ing Pupil to adjust the processor to the best DVFS setting for the workload. CoreScale

increases the number of active cores used during query execution from 8 to 16, using the

Linux taskset utility [46, 66]. EC2DVFS used an EC2 Extra Large C-class instance (circa

2017). Here, we sprint by changing P-States, i.e., we set DVFS directly.
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(c) Cloud Server Workloads

Wrkld ID Description Sustained/Burst
Tput (on DVFS)

Spark
Stream

continuously process data 
from source

87 qph / 224 qph

Spark
Kmeans

cluster analysis in data 
mining 

73 qph / 144 qph

Jacobi solve Helmholtz equation 51 qph / 74 qph

KNN k-nearest neighbors 40 qph / 71 qph

BFS breadth-first-search 28 qph / 41 qph

Mem stress memory bandwidth 28 qph /  37 qph

Leuk track leukocytes in medical 
images

25 qph / 29qph

(B) Sprinting Hardware

Mechanism ID Processor Specs

DVFS 16 Cores, 62 GB RAM, 20 M Cache
1.2 –- 2.40 GHz processing speed
Sustained power cap: 44--70 watts
Burst power cap: 90--190 watts

CoreScale 16 Cores, 62 GB RAM, 20 M Cache
2.1 GHz (active  cores) 
Sustained speed: 8 active cores
Burst speed: 16 active cores

EC2DVFS 36 virtual CPU, 60 GB RAM
Sustained speed: 1.4 Ghz
Burst speed: 2.0 Ghz

(A) Performance Modeling Approaches

Approach ID Description

ANN Multi-layer (10 layers and 100 neurons) artificial 
network maps policies and workload conditions 
directly to response time

No-ML timeout-aware queue simulation uses marginal 
sprint rate (no machine learning)

Hybrid our hybrid approach → random forest (10 trees) 
+ timeout-aware simulation

Table 3.1: Identifiers (IDs) for models, hardware and workload in our experiments.
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Fig. 3.6: Absolute relative error produced by competing performance modeling ap-
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Table 3.1(C) compares query execution semantics (workloads) on DVFS hardware. We

set up 2 Spark cloud services, running data streaming and K-means benchmarks. These

workloads are compute intensive. Their performance scales with Pupil power cap. We also

set up 5 HPC kernels that stress specific aspects of the processor architecture. HPC kernels

run under MPI 2.1 with 16 software threads. Jacobi and KNN are both computational

intensive workloads with good cache locality; sprinting improves throughput significantly

(1.2X and 1.7X respectively). Memory bandwidth constrains BFS and Mem, making DVFS

sprinting less effective (1.3X speedup). Finally, Leukocyte is limited by synchronization.

Sprinting provides speed up of only 1.16X on this workload.

The following list specifies cluster sampling centroids.

Query Arrival Rate: 30%, 50%, 75%, 95%

Workload Mix: Uniform, Weighted

Arrival Distribution: Exponential, Pareto

Timeout: 50, 60, 70, 80, 120, 130, 160 (seconds)
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Fig. 3.7: CDFs of prediction error across workloads with hybrid approach.

Refill Time: 50, 200, 500, 800, 1000 (seconds)

Sprint Budget: 14%, 16%, 18%, 20%, 40%, 60%, 80%

Query arrivals are shown as percentages of service rate (i.e., system utilization in queu-

ing literature). We have studied mixes of uniform query workloads with exponential and

heavy-tail arrival distributions. The queue manager enforces a global timeout on each query

execution. After refill time elapses without sprinting, the budget for computational sprint-

ing reaches full capacity. We set the sprinting budget as the percentage of maximum query

throughput during the refill time. To be clear, both sprinting budget and query arrivals

depend on service rate— this is why we normalize.

3.2.1 Impact of Modeling Approach

Figure 3.6 shows error rate as system utilization increases. The hardware is DVFS. We

report averages across all tested workloads. Hybrid and ANN approaches were trained for

7.2 hours (80% of sampling centroids). We also show results where ANN was trained for

8.6 hours.
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Our hybrid approach achieves median error of 4%. It outperforms ANN and No-ML

approaches by 4X-6X. ANN performs better with more training data. Median error drops

to 15% after enlarging training data by 20%. We adjusted training data for Hybrid and

ANN until they performed similarly. ANN required 6X–54X more training data to match

our Hybrid approach depending on the workload.

Interdependent processing rate and queueing delay hurts No-ML under high system

utilization. At low arrival rates, No-ML performs nearly as well as our hybrid approach, but

under heavy arrivals, it performs worse than all others. No-ML uses only our timeout-aware

simulator. We validated our simulator using classic MMK workloads, where it achieved

median error of 5%.

3.2.2 Impact of Query Execution Semantics

Figures 3.7(A) and 3.7(B) evaluate Hybrid and ANN models for each workload. Both

models were trained with 80% of cluster sampling centroids. These tests use DVFS.

Hybrid achieves lower median error than ANN for all workloads. Its median error is

below 5% for Spark K-means, Spark Stream, Jacobi and Leuk. Median error is below 10%

for all workloads.

Hybrid errors by more than 35% for 20% of Leuk and 17% of Jacobi tests. In contrast,

ANN achieves median error below 10% for Jacobi and Leuk. These workloads have low

variance in service time distribution which reduces the learning burden for ANN. Hybrid

struggled to capture late timeouts for Leuk, a workload with strong execution phases. Late

timeouts trigger while execution is in flight. Our random forest did not detect discontin-

uous shifts in response time where long timeouts trigger sprinting after sprinting-friendly

phases passed. Nonetheless, the hybrid approach translates between marginal and effective
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sprint rate well. Its predictions align with observed response time across a wide range of

workloads and policies.

3.2.3 Impact of Sprinting Hardware

Figure 3.7(C) plots error for Hybrid across sprinting hardware. This plot shows only

Jacobi. Median error with DVFS and EC2DVFS was below 4%. On these platforms, our

approach yielded error below 10% on over 80% of the tested sprinting policies. With core

scaling as the sprinting mechanism, median error was 8%, and over 60% of tested policies

yielded error below 10%.

Core scaling is limited by Amdahl’s Law; as execution progresses there are fewer ac-

tive software threads and the potential speedup from increased parallelism diminishes. In

Jacobi, marginal sprint rate with core scaling is 1.87X faster than service rate, i.e., with

sustainable processing mode, the execution time was 202 seconds but, if the whole kernel

was sprinted, the execution time was 108 seconds. However, if only the last 22 seconds are

sprinted, the speedup drops to 1.5X. Bias caused by cluster sampling and ID3 algorithm

makes it hard to model such phase behavior. Adding data can reduce bias. In particular,

the following techniques dropped median error below 5%:

· Cluster sampling at 60% and 85% query arrival rates,

· Using 90%–10% training-to-test data split.

3.2.4 Impact of Query Mix

We also studied our approach under a mix of workloads. In queuing theory, a query

mix alters the probability distribution governing processing time. Prior studies have shown

that query mix is best modeled with M/G/K models, where G stands for general processing
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Fig. 3.8: The cumulative distributions of prediction error for two distinct mixed workloads.

time distribution. We tested two query mixes. In the first mix, 50% of query executions ran

Jacobi and 50% ran Stream. The second mix evenly split query executions between Jacobi,

Stream, NN, and BFS. We also changed arrival distribution to Pareto (α = 0.5). In classic

queuing models, this setup is called G/G/K. There is not a closed-form analytic model for

this setup. However, our approach, which uses simulation, can predict expected response

time even with computational sprinting enabled.

We ran tests on DVFS. Our workload profiler measured sustained service rates of 35

and 30 for query Mix I and II, respectively. Note, sustained service rate for each mix fell

below the average of the kernels in isolation due to interference between the workloads.

Figure 3.8 plots the CDF of error for Mix I and Mix II. The median error was 7% for Mix I

and 10% for Mix II. 75% of the predictions for Mix I achieved error below 15%. For Mix

II, 60% achieved error below 15%.

3.2.5 Impact of Other Design Factors

In our approach, service rate, arrival rate, timeout setting, and sprint budget are first-

class parameters. We studied the impact of these parameters on prediction accuracy. Here,
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we used experiments from all platforms and workloads and grouped them according to

their setting on these parameters. We used binary groups (hi & low). For service rate, we

split at 40 qph. For arrival rate (utilization), we split at 60%. For timeout setting, we split

at 100 seconds. And for sprint budget, we split at 40%.

Figure 3.9 shows average prediction error for each grouping. 75th and 25th percentiles

are shown as bars. The largest error across all groups was 4%. Our approach predicts

response time well regardless of throughput of target workload, system utilization, and

sprinting policy setting.

Cluster sampling reduces profiling time, but also makes training data less representa-

tive (i.e., more biased). We studied the accuracy of our model for response time prediction

under conditions not in cluster sampling centroids. We studied linear interpolation in ar-

rival rate and timeouts by removing cluster centroids from training data. Specifically, we

remove arrival rate of 75% and timeouts of 60, 70 and 120 seconds. We used observations

under these settings as test conditions and evaluated the accuracy of our predictions. To

traverse the decision tree, we snap parameter settings to the nearest centroid. Figure 3.9

shows median error when these centroids are in the training data and out of the training

data. As expected, our predictions yield 2.5X greater error when test conditions are not

cluster sampling centroids. Median error was 10% and workload variance was larger than

other design factors. Still, 10% error is sufficient to help system managers choose between

competing sprinting policies.
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3.2.6 Predictions Per Minute (Overhead)

Figure 3.10 plots the number of predictions our approach can produce per minute.

These tests were run on an Intel Xeon 12-core processor at 2.6 GHz. Figure 3.10 shows

that our approach achieves speedup of 11.4X when scaled from 1 to 12 cores. Throughput

also depends on the number of queries simulated. Fewer queries increase throughput, but

lead to less accurate predictions. We observed a knee-point in the variance of our predic-

tions at 100K queries simulated. At that point, we can compute roughly 100 predictions

per minute.

3.3 Model-Driven Computational Sprinting

Model-driven sprinting helps cloud workloads achieve low response time and cloud

providers share hardware among workloads. This section studies the impact of model-

driven sprinting in both contexts. First, we describe computational sprinting for this con-

text.
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3.3.1 Computational Sprinting

Computational sprinting uses a resource budget to speedup a workload. Traditional

sprinting overclocks hardware for short burst followed by a cooldown period. The addi-

tional heat generated from overclocking restricts the duration. A resource budget assigned

on a CPU-cycle granularity allows policies to precisely control sprinting. This finer control

prevents thermal runaway when overclocking hardware. A coarser granularity is sufficient

when speedups are gained through allocating more hardware or increasing utilization. For

example, cloud providers throttle-down the CPU to conserve power during low traffic peri-

ods. High traffic periods trigger the CPU to throttle-up. This dynamic scaling maintains the

quality of service regardless of load variation. The use-case in the following section defines

the budget in seconds and uses CPU throttling for sprinting. CPU throttling operates within

normal thermal limits. Therefore, defining the budget in CPU-cycles is unnecessary.

3.3.2 Timeout Policy Exploration

Our exploration algorithm iteratively selects policies from a multi-dimensional space.

It computes the response time of each policy and finds the one with the lowest result. This

technique is probabilistic. It randomly makes large leaps to other policies of the search

space. This helps it avoid stopping at local minima or maxima.

Our objective is to find a timeout policy which leads to the minimum response time.

That is, we iteratively adjust the timeout setting to our model-driven approach for a maxi-

mum number of iterations. Then, we choose the setting associated with the lowest expected

response time. Equation 3.4 formalizes the problem.

MIN(RT ) : ∃t ≥ 0,RT = PM(SF 6=t , t) (3.4)
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RT is expected response time produced by our model-driven approach PM. SF 6=t is a subset

of workload conditions and sprinting policies— excluding timeout. This algorithm finds

timeout t as follows:

1. Generate a random timeout to and predict RTo.

2. Generate a neighboring timeout tn and predict RTn.

3. If RTn < RTo move to the new solution; Else, move to the new solution based on the

acceptance probability.

4. Repeat steps 2-3 until maximum number of iterations is reached.

Neighbor timeouts tn are drawn randomly from a narrow range of timeouts. Specifically,

we use [to− 100, to + 100]. Step 3 compares RTo and RTn and makes a decision to accept

the tuple < RTo, to > or < RTn, tn >. This algorithm avoids local minimums by using

an acceptance probability a when RTn performs worse than RTo. Acceptance probability is

defined in Equation 3.5.

a =

{
1 if RTo−RTn > 0
e

RTo−RTn
Z otherwise

(3.5)

Z starts at 1 and decreases by 10% per 100 timeout settings explored. This reduces the

probability of searching new gradients as the algorithm progresses.

3.3.3 Model-Driven Sprinting for Cloud Workloads

Model-driven sprinting helps workloads decide (1) when to sprint by finding good time-

out policies and (2) how much budget to request. We answered these questions for Jacobi.

The sprinting mechanism studied was CPU throttling. In CPU throttling, resource man-

agers enforce a sustained processing rate by limiting access to CPU. During a sprint, man-

agers remove limitations until a workload exhausts its budget. Jacobi’s throughput was
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Fig. 3.11: Our model-driven approach was used for space exploration on DVFS. The ver-
tical axes are the expected response times for a workload. Exploring timeout policies with
(A) Jacobi kernel and (B) Mix I (Jacobi & Stream). (C) Response time as sprinting budget
and timeout vary. We report budget as percent of sustained processing rate.

throttled to 20% of its sprint throughput on DVFS. Sustained processing rate was 14.8

queries per hour (qph). Sprint rate was 74 qph. Budget allowed 5 query executions to

sprint fully. Queries arrived at 11.8 qph (80% utilization).

Our service level objective (SLO) was to throttle CPU but keep response time nearly the

same. To be precise, our SLO allows response time to increase by 15% relative to throttling

turned off. We compared these approaches:

+ big-burst: Timeout is 0. Each arriving query sprints until budget is drained.

+ small-burst: Timeout is 0. Each arrival sprints but with lower sprint rate (44 qph) and

larger budget to 10 queries.

+ few-to-many: Adapts Few-to-Many to our context [49]. Profiles marginal sprint rate

for query executions offline. Then, finds the largest timeout setting that exhausts budget

(speeding up the slowest queries). Throughput improved 1.9X.
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+ adrenaline: Adapts a key policy in Adrenaline to our context [51]. Sets timeout to the

85th% percentile of non-sprinting response time.

Results: Figure 3.11(A) shows the response time across a range of timeout settings. Poor

performing settings exceed SLO response time by 1.4X. In contrast, timeouts set well meet

SLO and approach no-throttling performance.

When sprint rate improved throughput by 5X (big-burst), model-driven sprinting found

settings that improved response time by 1.44X compared to Adrenaline and by 1.3X for

Few-to-Many. Our approach explores all timeout policies, including policies that target

short executions. For Jacobi with fast sprinting, fast timeouts kept queue length small

which improved response time. In contrast, under 3X sprint rate (small-burst), Few-to-

Many matched our approach. With larger sprint budget, Few-to-Many’s approach sprinted

for enough fast queries to perform well.

Figure 3.11(B) compares timeout settings on Mix I (Jacobi and Mem). Small-burst

never meets SLO, because this CPU throttling offers low speedup for Mem. Few-to-Many

finds good timeout settings for both small-burst and big-burst setups. Model-driven policies

still outperform Adrenaline by 1.17X and 1.24X in small-burst and big-burst respectively.

For the tests in Figure 3.11(C), we fixed timeout setting and explored the impact of

sprinting budget. The best timeout setting depended on sprinting budget. Under tight

budgets, loose timeouts that target very slow queries led to lowest response time. Under

loose budgets, strict timeouts that aggressively sprint led to lowest response time. This

finding parallels a key intuition in Few-to-Many [49]: Under low utilization, all query

executions should sprint aggressively but, under heavy utilization, resource managers must

sprint for the most needy queries.
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3.3.4 Model-Driven Sprinting for Cloud Providers

Amazon EC2 T-class Burstable Instances allow multiple workloads to share a server

with CPU throttling. Burstable instances can compute at a sustained rate and sprint at a

faster rate. On EC2, burstable instances of the same class have the same sprinting policy,

regardless of workload. For example, T2.small Instances use 20% of a single core, sprint

5X faster and have a budget of 720 sprint-seconds per hour [9]. In this case, the budget

specifies how long a workload has access to 100% of the CPU before returning to baseline

performance. Amazon sells T2.small Instances at $0.026 per hour per workload. However,

the number of workloads that can share a server is limited by SLO. Workloads that incur

SLO violations will not use T2.small Instances.

In this section, we use our model-driven approach to colocate workloads on burstable

instances. We compute expected response time under a policy’s sustained processing rate,

sprint rate and budget. If the policy meets SLO (i.e., 1.15X of response time under no throt-

tling), then workload is permitted to colocate. We add workloads until we have committed

100% of CPU resources (i.e., the sum of sustained rate and sprinting). Colocation is not

allowed to over subscribe.

Figure 3.12 compares revenue per node of the following approaches to set sprinting policy.

+ AWS: Sets a fixed sprint rate and budget for each workload. To be precise, each workload

receives 20% of a single core and sprints 5X faster for 12 minutes per hour.

+ Model-Driven Budgeting: Enlarges sprint rate by shrinking budget. Searches for com-

bination that meets SLO.

+ Model-Driven Sprinting: After setting budget, this approach also explores timeout set-

tings. Workloads allow cloud providers to change their timeouts.
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Results: Figure 3.12 shows revenue per node across competing sprinting policies, i.e.,

$0.03 × n where n is number of colocated workloads. We studied three workload com-

binations. The first workload combo has 4 copies of a Jacobi service running at 70% uti-

lization. Our model-driven approach finds good sprinting policies for this workload. The

budget approach can host 2 workloads under SLO. Budget+timeout can host 3 workloads.

AWS policy hosts 1 workload per server, essentially making the server a dedicated host.

The second combo hosts 2 Jacobi (70% util) and 2 Stream (80% util). Again, adjusting

budget and timeout allows workloads to meet SLO without overbooking. The third combo

hosts diverse workloads with utilization ranging from 50% to 80%. We find unique budgets

and timeouts for each. In this case, we can host all workloads under SLO.

We also examined 99th percentile tail latency for Jacobi (i.e., response time >335 sec-

onds). Compared to our model-driven policy, the AWS policy produced 3.16X more query

executions in the tail. Model-driven policy reduced 99.9th percentile (i.e., >521 sec.) by

3.76X. By its nature, sprinting shrinks the tail [51]. Model-driven policies amplify gains.

Does model-driven sprinting save cloud providers more than it costs? Our model-

driven approaches require offline workload profiling. The previous section shows that our

sprinting policies can improve revenue per server but does not consider revenue lost during

profiling. Figure 3.13 explores the following approach. When a user starts a burstable

instance, the server owner runs it on a dedicated node and starts workload profiling on

another node. During profiling, the server owner (Amazon) does not profit. After profiling,

however, the server owner benefits from increased revenue per server. Our approach needs

roughly 7.2 hours per workload (e.g., on the DVFS platform) for profiling. For the four

workloads in Combo III, total profiling time would be 28.8 hours. After 2.5 days, model-

driven sprinting with our hybrid model is cost effective. Recall, the ANN model trains

53



combo #1 combo #2 combo #3
Jacobi Stream Jacobi
Jacobi Stream Stream
Jacobi Jacobi BFS
Jacobi Jacobi K-NN

0

0.05

0.1

0.15 aws
model-driven budgeting
model-driven sprinting

re
ve

nu
e 

pe
r 

n
od

e
($

)

max

Fig. 3.12: Dollars earned for a burstable instances which optimizes the sprinting policy
based on budget and timeout.

0 100 200 300 400 500
0

20

40

60

aws burstable
model-driven (hybrid)
model-driven (ann)

hours

to
ta

l r
ev

en
ue

Fig. 3.13: The number of hours required to offset the profiling cost using our model.

longer, but this approach is eventually cost effective too. Over the lifetime of a virtualized

server [26]. Model-driven sprinting with our hybrid model increases revenue by 1.6X.
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3.4 Discussion

Model-driven sprinting requires that sprints target specific query executions. This pro-

hibits sprinting mechanisms that affect all concurrent queries. Fortunately, most container

platforms already track and manage resources usage of query executions. Early research

prototypes aimed to provide such first-class support to query executions [6, 7]. Intellectual

descendants of these systems include Omega [104], Apache Hadoop, Apache Spark, and

C-groups Docker.

Cloud services can also use model-driven sprinting by managing sprint resources di-

rectly. With careful thread management, OS tools can be used to isolate sprinting to query

executions. For example, taskset can pin a query’s threads to specific cores, enabling core

scaling. Similarly, P-states can be used to control per-core DVFS for each query execution.

Such explicit application control can actually enable improved performance [19].

Model-driven sprinting provides greater speedup and cost savings by setting timeout

policies. However, applications normally implement, set and manage timeouts without

involving platforms. Few platforms manage timeout policies directly. Recent research

platforms have shown that it is possible to provide rich timeout support [47, 59, 57]. AWS

Lambda is a commercial platform that supports application timeouts. Its adoption promises

exciting use cases for model-driven sprinting.

In this work, we evaluated and tested our performance models under known runtime

conditions (e.g., arrival rate). A key open challenge is to estimate runtime conditions online

and apply our model on noisy predictions. Sliding window approaches can be used to

estimate runtime conditions. Building upon these approaches in the context of sprinting is

critical. A related challenge is updating machine-learned models when runtime conditions
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shift. This can be especially challenging when there are multiple sprinting mechanisms

available.

The generality of model-driven sprinting depends on the data used for training and the

simulator’s parameters. Data representative of the policy-space enables accurate predic-

tions for unseen sprinting policies. However, this approach cannot extrapolate its predic-

tions for more sprint rates than allowed by the simulator. This is also true for different

timeouts assigned across workloads. Only small modifications to the simulator are needed

to support multiple sprint rates and timeouts.

Finally, cloud applications are widespread and have significant economic impact. Re-

sults like our 3.16X improvement to tail response time could save a large services millions

annually. But model-driven sprinting has applications beyond cloud servers. Mobile soft-

ware, IoT/edge systems and even client-side browsers increasingly struggle under tight

(often battery limited) energy budgets. Sprinting mechanisms under these contexts will

also benefit from model-driven space exploration.

3.5 Related Work

Systems limited by dark silicon [36, 102] cannot sustain peak processing rates. Sprint-

ing mechanisms enable peak processing in bursts and have been implemented across the

whole system stack from transistors [40] to processors [98] to racks [81] to data cen-

ters [51, 119] and cooling systems [48]. Sprinting policies [79, 37] address the management

challenge: Can short bursts in processing rate boost response time for the whole system? If

so, how large of a budget is needed? And which runtime factors matter? Our contribution

is a model-driven approach to explore these problems for cloud systems. The remainder of
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this section divides prior work by the workload types, i.e., single v.s., multiple jobs, and

model-driven approaches.

3.5.1 Sprinting policies for a single job

The dominant heuristic for computational sprinting within a single long-running job is

to use the sprinting budget on different workload phases so as to minimize the execution

time. Profiling the workload phases is the very first step to develop phase-specific sprinting

policies. PUPIL [115] runs a wide range of offline experiments to build a model of phases’

execution to performance improvement. Coz [25] uses static program analysis to identify

phases and reduce training time to characterize per-phase benefits. Bailey et. al [5, 49]

also consider parallelism between phases and interactions when their executions overlap.

While the aforementioned studies achieve significant speedups for a given job compared to

phase-agnostic policies, they neglect the effects on a stream of arriving jobs, especially on

queuing delay.

The sprinting game [37] expands beyond a greedy policy by exploring the impact of

a sprint on the executing code and the future possibilities to sprint. A key observation

is that greedy approaches largely under-explore the capabilities of sprinting mechanisms,

highlighting the need to better consider the workload patterns and configure the sprinting

policies. Indeed, the sprinting game and our model-driven approaches explore the whole-

space of policies. The sprinting game presumes cost models per sprint. Our approach

enables such models based on response time.

3.5.2 Sprinting policies for server systems

When queries arrive independently, sprinting policies decide which jobs to accelerate

to meet service level objectives. Prior works have explored which jobs to accelerate.
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Jeon et. al [54, 55] use a model-driven approach to detect which web search queries will

have long response times. Queries expected to have slow response time are allowed to

execute on more cores, i.e., core scaling. We extend this work with robust models that

can characterize response time (1) in advance for planning, (2) under unseen conditions

and (3) for a range of sprinting mechanisms. The key intellectual difference is that our

modeling techniques do not use runtime data on queue length. However, as noted in [104],

our dependence on testing and varying runtime conditions can make our approach hard to

scale for warehouse workloads. In future work, we hope to explore passive approaches to

calibrate our model [92].

Verma et al. [103] compare techniques to evaluate workload packing in the presence

of bursts that presumably cause SLO violations. They found packing techniques that ex-

plore resource lean environments, e.g., by reducing sustained and sprint rate or sprinting

budget, avoid over valuing high utilization and reduce the number of resources stranded

by not fitting into fixed hardware. Our model-driven approach provides first steps toward

realizing such resource compaction techniques in the presence of computational sprinting.

Currently, our approaches are likely too heavyweight for cluster-scale sprinting. We tar-

get computational sprinting on single machines. We also do not consider heterogeneous

memory or processor cache speeds yet, but plan to do so in future work.

Wang et. al [105] use CPU throttling to sprint virtual machines from different tenants,

factoring in their sensitiveness to the price performance ratio. They showed that using

effective VM capacity modulation as a control knob in a leader-follower game can fulfill the

performance requirement of tenants and increase the profit of cloud providers. Such CPU

throttling is widely used by cloud providers. Section 3.3 uses our model-driven approach

to explore sprinting policies in this scenario.
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3.5.3 Model-driven approach

Queuing models can predict response time for server systems [91, 60]. However, these

models assume queuing delay and service time are independent. Interdependent queuing

and service times lead to complicated models [70]. Recent research have created models

for specific conditions and sprinting mechanisms, e.g., query replication [45, 76], admis-

sion control and dynamic voltage scaling [18]. Determining the optimal service rate for

servers [75] is a long standing difficult problem even for simple queuing systems because

of the interdependency between service rate and waiting time. Markov decision processes

offer an efficient mean to compute the optimal rules for systems whose arrival and service

processes have Markovian properties. Chen et. al [18] model the dynamic voltage scaling

problem of a single server as a discrete time Markov decision process by leveraging fluid

approximation. Gardner et. al [45] develop models to answer how to sprint a certain set

of jobs by replicating them and giving them more opportunities to access resources. While

their focus is on the average latency, Qiu et. al [76] use matrix analytics methods to model

the entire distribution of latency under different degrees of replication factors.

The immediate challenges to apply existing queuing models are twofold. First, how do

we map abstract queuing models to complex systems? Second, how do we parameterize

the model inputs? Motivated by the difficulty of using queuing models to predict actual

systems performance, IRONModel [100] argues the effectiveness of combining first-order

queuing models with statistical learning to capture the dynamics of non-fidelity regions

where the queuing models’ assumptions are violated.

Fisher et. al [41] present a solution to reduce peak CPU temperature for real-time

systems. They model peak temperature for a set CPU frequency based on schedulability

conditions. Thiele et. al [101] automate the calibration of these models to reduce simulation
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time. In some cases, their model explores policies that exceed the budget. Our approach

never explores policies that exceed the budget. Both [41] and [101] capture the system

behavior for fixed frequencies. Our model-driven approach models a system with dynamic

or static frequencies.

Our modeling techniques can predict the job response times for actual systems that host

complex workloads while being subject to given sprinting budgets. Combining the merits

of queuing simulator and random forest, we are able to accurately explore the large space

of system and workload configurations and identify near-optimal sprinting policies.
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3.6 Conclusion

Computational sprinting problems use short, targeted bursts in processing speed to re-

duce whole system response time. Sprinting policies control (1) which query executions

sprint, (2) how long they sprint, and (3) how much speedup they receive. However, subtle

changes to sprinting policies have complex, unexpected effects. This paper showed that

subtle changes in timeout settings (in either direction) can increase response time signif-

icantly. This paper proposes a model-driven approach, where sprinting policies are com-

pared based on their expected response time. We show that model-driven approaches are

plausible by creating an accurate performance model for computational sprinting policies.

The key aspects to our model are (1) profiling workload characteristics, (2) accounting

for dynamic runtime factors via machine learning, and (3) using effective sprint rate in-

stead of marginal sprint rate as input into first-principles queuing simulation. We validated

our model across multiple sprinting hardware, query semantics, and workload conditions.

Our model-driven approach outperforms state-of-the-art results and widely used ad-hoc

approaches.
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Chapter 4: Performance Modeling for Short-Term Cache Allocation

4.1 Introduction

Processor caches use SRAM cache lines to speed up main memory accesses. Mod-

ern processors can now allocate individual cache lines to specific workloads directly [53].

Such cache allocation can speed up workload execution, conserve cache lines during nor-

mal execution and enable workload collocation where multiple workloads share the CPU

cache [97]. For example, online services can allocate a few cache lines for most query exe-

cutions but allocate many lines to speedup targeted queries. However, if collocated services

contend for shared cache lines or if a workload is allocated too few lines, performance suf-

fers and response time goals, as stipulated in a service level objective (SLO), may not be

met [118, 69, 34].

Intel Cache Allocation Technology (CAT) supports dynamic cache allocation for the

last level cache (LLC). This enables short-term allocation wherein a workload gains tem-

porary access to cache lines during its execution [53]. Online services can use short-term

allocation to speed up slow queries and meet response time goals. Consider a social net-

working website [20]. A user query initiates processing across multiple Docker containers.

If the query is still being processed after 800 milliseconds, the query execution could be

in danger of violating response time goals. Short-term cache allocation policies may use
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a timeout mechanism to allocate additional cache lines to the remaining Docker contain-

ers, speeding up their execution. Of course, allocating additional cache to one workload

impacts other collocated workloads that share the cache [84]. Systems software can miti-

gate the slowdown by setting policies that manage how often workloads request short-term

cache allocation.

This paper presents a performance modeling approach that, given a short-term allo-

cation policy, predicts response time for collocated workloads. Our models can be used

to compare policies and uncover settings that yield low response time for each collo-

cated workload. Our approach combines workload profiling, machine learning and first-

principles modeling, extending prior approaches to model short bursts in computational

power [73, 52]. However, prior work did not consider a shared cache where a short burst

can speed up a target workload but also slow down collocated workloads. If collocated

workloads counter slowdowns by requesting short-term cache allocation more often, cache

contention increases and further degrades response time.

Our approach models effective cache allocation, i.e., speedup under a short-term allo-

cation policy normalized by the gross increase in resource allocation. Intuitively, effective

cache allocation captures the effect of additional cache lines on response time. It is sensi-

tive to dynamic runtime factors including cache usage during query execution, contention

with collocated workloads, and queuing delay from concurrent executions. These factors

can have large, non-linear effects [118]. For example, in some settings, we have observed

workloads that manage a 2X increase in LLC cache misses without significant increases

in response time. Linear models err on such settings by conflating cache usage counters

with the underlying processes affecting response time. In our approach, we use deep learn-

ing techniques to group combinations with similar effective cache allocation but potentially
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disparate cache usage. We also use representational learning to capture spatial relationships

between cache usage counters. Combined, deep and representational learning yield power-

ful, new machine-learning features that uncover hidden but recurrent patterns of contention

that capture the effects of cache allocation on response time better than hardware counters

alone.

Our approach profiles cache usage for each collocated workload in a test environment.

We use this data to train deep learning models of effective cache allocation. While deep

learning techniques normally perform best with large training sets, online services may be

collocated for only a short period [24], limiting time for profiling. A key challenge is to

devise novel modeling techniques that have low overhead, i.e., they model response time

well with limited profiling time. Specifically, our approach uses queuing theory principles

to convert effective cache allocation to response time. This lowers the complexity of the

deep-learning models and reduces profiling time.

We used Intel CAT tools [53] to implement short-term cache allocation by tracking

query executions at runtime. We used Deep Forests [120] for deep and representational

learning. We evaluated our modeling approach with a wide range of realistic online ser-

vices, including: (1) Apache Spark executing the k-means clustering algorithm using it-

erative, parallelized stages. (2) Redis, a widely used key-value store with fast response

time (<1 second) response. (3) Rodinia micro-benchmarks used to stress high perfor-

mance computers and individual processor components. And (4) Social, a realistic macro

benchmark that captures the workload of a social networking service. Social uses 36

micro-service components spread over 30 Docker containers. We collocated these ser-

vices on Xeon processors, allowing them to share LLC cache, and evaluated the accuracy

of our modeling approach to predict response time. We observed absolute percentage error
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(<12%). Our modeling approach reduced error by 4.1X and 1.6X compared to approaches

that eschew deep learning for simple linear regression and approaches that employ only

deep learning respectively. In terms of overhead, our approach profiled workloads for 30

minutes. We observed that lower (15 minutes) and higher (2.5 hours) overhead produced

14% and 8.6% error.

We used our models to explore short-term allocation policies in collocated settings. For

each service, we used our models to find policies with low response time. We compared

response time under our policies to static cache partitioning policies used widely in prac-

tice. Our policies lowered 95th-percentile response time by up to 2.6X. We also compared

our approach to static allocation, workload-aware cache partitioning [108] and IPC-driven

dynamic cache allocation [52]. Our approach sped up average response time by 1.3X,

1.3X and 1.2X respectively. Social networking, Redis and Spark workloads achieved up to

2X speedup. Finally, we used the concepts learned by our deep-learning models to clus-

ter workloads with similar cache behaviors and identified a complex interaction between

arrival rate, service time and timeout that affects response time for short-term allocation.

Clustering using only the hardware cache counters did not reveal the interaction.

This paper uses deep learning techniques to model and manage increasingly dynamic

processor caches. Our approach represents cache usage as a large, multi-dimensional vec-

tor, richly characterizing the entirety of query executions. Deep learning techniques allow

us to extract patterns hidden in these vectors. Our contributions are:

1. We consider short-term cache allocation, where dynamic cache allocation speeds up a

targeted query execution by providing access to shared cache lines. This mechanism

adds a temporal dimension to cache allocation.
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2. We present a modeling approach to predict response time for workload collocation and

cache allocation policies.

3. Our approach uses deep and representational learning to characterize the complex rela-

tionship between cache usage counters and response time.

4. We show that our model predicts response time well, can be used to find good policies,

and provides insight on key factors affecting performance.

This paper is organized as follows: Section 4.2 is a primer on dynamic cache allocation,

the targeted workload and system management goals. Section 4.3 presents the design of

our modeling approach. Section 4.4 describes our implementation. Section 4.5 evaluates

response time predictions, compares competing approaches and studies model-driven pol-

icy selection. Section 4.6 presents related work. Section 4.7 provides discussion and draws

conclusions.
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Fig. 4.1: Data path for dynamic cache allocation.

4.2 Cache Allocation Technology

Dynamic cache allocation manages which query executions can use cache lines at run-

time [97]. Figure 4.1 depicts digital logic for dynamic cache allocation. Memory accesses

trigger TLB translation, then the address is split into set (index), tag and offset. Cache

lines with matching sets are called ways. A cache hit occurs when a cache line in a way

stores a tag matching the memory address. On a miss, the cache installs the data read from

memory. Dynamic cache allocation controls write enable (WE) logic. In Figure 4.1, query

executions can write to contiguous cache ways defined by way offset and length. The first

allocation setting installs data to cache way 00 or 01. The second setting allows writes to

ways 00, 01 and 10.

The allocation policy decides which allocation setting applies. For static allocation,

systems software can map a process id to an allocation setting, creating classes of service.

For dynamic allocation, systems software can change settings at runtime.

Short-Term Cache Allocation for Online Services: Query executions that complete

slowly can hurt revenue for online services. Increasingly, online services use response
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time objectives to drive resource management [34]. LLC cache is a valuable resource that

reduces response time by reducing main memory lookups [90].

Online services can monitor query executions, flag slow executions and try to speed

them up. For example, computational sprinting methods use short, unsustainable bursts

from DVFS and core scaling [114, 37, 3]. Short-term cache allocation speeds up queries

by granting temporary access to additional cache lines, for example, by switching from

allocation setting 0 to 1 in Figure 4.1 for the remainder of a query execution.

Short-term allocation presents two competing goals: (1) slow query executions should

receive short-term cache allocation and (2) baseline response time for normal query execu-

tions should not be affected by short-term allocations for collocated workloads. To achieve

these goals, allocation settings should support (1) private LLC cache lines that ensure base-

line performance and cannot be accessed by collocated workloads and (2) shared lines that

can be allocated to speed up slow executions.

The Impact of Contiguous Cache Allocation: With Intel Cache Allocation Technology,

cache allocation settings must be contiguous. This design has important consequences if

collocated workloads reserve private cache for baseline performance.

Conjecture: Under contiguous allocation, private cache are disjoint.

Proof: Let A reflect the finite, set of cache allocation settings supported on a processor.

Each contiguous allocation can be represented as an order pair of offset and length (oa, la)

where 0≤ a < |A|. A short-term allocation policy is a pair of allocation settings (a,a, t)

where a timeout t triggers a temporary switch from default a to a′. The proofs below elide

the dynamic timeout t to simplify the notation for static analysis. Intuitively, private cache

lines must be allocated in a and a′. Further, collocated workloads can not access the private

cache lines in (a,a′). Equation 4.1 describes these properties for a cache line with offset v
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in the set of private cache lines V(a,a′).

v ∈V(a,a′)→ oa ≤ v < (oa + la)∧

oa′ ≤ v < (oa′+ la′)∧∀â ∈
[
A−a−a′

]
(v < oâ)∨ (v > oâ + lâ) (4.1)

To prove by contradiction that private cache are disjoint, assume there exists private cache

in short-term allocation
(

ā, ā′
)

that falls between private cache lines v0 and v1 ∈ V(a,a′).

The following must hold: ∃vc ∈ V(
ā,ā′

) : oa ≤ v0 ≤ oā ≤ vc < oā + lā < v1 < (oa + la).

However, by Equation 4.1, oā can not fall within [oa,oa + la). QED.

Conjecture: If all policies include private cache then short-term allocations share cache

with at most two other settings.

Sketch of the proof: Since private caches are disjoint and shared cache must immediately

precede or proceed private cache (due to contiguous allocation), it is not possible for two

private caches to both appear after (or before) an allocation’s private cache. One setting

can share cache lines preceding a private cache allocation and another can share lines after

the private cache.

Under contiguous allocation, 3 or more workloads can not share cache while also re-

serving private cache for baseline performance. This constrains the structure of cache shar-

ing. First, cache contention emerges from pairwise interactions of collocated workloads.

Second, the size of reserved and shared cache regions can affect performance. Also, we

observe that the mapping of service components to allocation settings affects performance.

With Intel Cache Allocation Technology, multiple OS processes and threads can map to

one allocation setting. In this context, private cache allocation ensures baselines perfor-

mance in aggregate for all processes mapped to the setting. Sharing cache in this way is
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Fig. 4.2: In stage 1, our approach collects cache usage data from each collocated workload
and measures effective cache allocation. In stage 2, profile data is used to train deep-
learning models. Finally, stage 3 models response time and explores policies.

also relevant to non-contiguous cache allocation because multiple workloads interact with

shared cache.

4.3 Design

It is hard to set timeout values for short-term allocation in collocated settings. Long

timeout settings decrease the frequency of short-term allocation and may reduce speedup

for each query. But, short timeout settings trigger short-term allocation more often, po-

tentially slowing down collocated workloads that share the cache lines used for short-term

allocation. In this paper, we present a model-driven approach to find a vector of timeouts

(one for each workload) that provides low response time for all collocated workloads. We

seek to characterize the speedup achieved by our approach compared to (1) baseline per-

formance, (2) static and dynamic cache partitioning approaches and (3) competing timeout

settings for short-term allocation.

Figure 4.2 outlines our modeling approach. Stages 1 and 2 collect profile data, employ

deep and representational learning techniques and train a model that characterizes effective
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cache allocation across policies. A key design challenge is to extract a large number of fea-

tures (i.e., multi-dimensional inputs) from online query executions. Performance counters

that capture cache usage data can produce training data with large input dimensions d but

profiling runs n is constrained in collocated settings (i.e., overhead), especially if workloads

are collocated for only short periods of time. Stage 3 integrates effective cache allocation

into discrete queuing theory simulation2 to predict response time. Effective cache alloca-

tion is a key intermediate metric that: (1) can be learned using small n and (2) integrates

with first principles models straightforwardly.

4.3.1 Stage 1: Profiling Cache Demands

As shown in Figure 4.2, our approach runs online services in a test environment, cap-

tures cache usage during each query execution and computes the slowdown caused by

collocation. In the test environment, we can control static runtime conditions, e.g., query

arrival rate, short-term allocation policies, query mix and workload type. Dynamic runtime

conditions, e.g., queue length, can not be controlled directly. Given runtime conditions,

a profiling run uses lightweight architectural performance counters to trace cache usage

during query execution. Depicted by the light gray box in Figure 4.2, our profiler samples

counters 12–60 times per minute during each query execution. We fill zero values to pad

traces and ensure profiles are equally sized.

Our design presumes a mechanism for request containers, wherein operating systems

track query executions across context. Early approaches relied on applications to label

2Our queuing theory simulator extends a G/G/k model by adjusting the service rate based on a short-term
allocation policy (i.e. we use a timeout and a resource budget to manage speedups.).
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queries before and after system calls [6], gaining precise accounting at the cost of pro-

gramming overhead. Recent work tracked query executions entirely in the operating sys-

tem, but relied on heuristics to transfer context during network activities. Our approach

samples architectural performance counters, a user-level process, making either approach

applicable.

We flatten cache usage for each query, making a long 1xK vector, comprising the fol-

lowing sub-components:

P = ¡
−−−→
static,

−−−−−→
dynamic,−−−−→query0, ...,

−−−−→queryN ,eff. allocation ¿

s.t.|P|= K
(4.2)

Effective Cache Allocation: It is well known that cache allocation can speed up work-

load execution and that cache contention can cause slowdown in collocated settings. Time

series analysis can reveal coincident spikes in last-level cache (LLC) accesses, i.e., con-

tention. However, in practice, the effects of cache contention vary greatly. The presence of

contention alone is insufficient to predict response time.

As a result, using contention alone to trigger short-term cache allocation may not pro-

vide much speedup. For example, collocations between memory-bound workloads can

tolerate larger spikes in LLC misses. Likewise, under low arrival rates, response time is

less sensitive to contention. Even though the effects of cache contention can be explained

intuitively, it is hard to find the exact runtime conditions where short-term allocation can

provide speedup. Dynamic factors, e.g., queuing delay, also affect the point in execution

where short-term cache is allocated. The time a query spends queuing can trigger the SLO

warning before execution or have a combined effect with service time that triggers it during

execution.
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Effective cache allocation (EA) is the ratio of (1) speedup from a short-term allocation

policy (STAP) and (2) increased resource allocation during short-term allocations, Equa-

tion 4.3. Here, servicetime reflects average processing time for query execution under

short-term allocation settings and timeout settings.

EA =

(
servicetime

(
W(a,a′,t)

)
servicetime

(
W(a,a,0)

))/

(
la′
la

)
(4.3)

Effective allocation varies depending on: (1) the amount of cache allocated, (2) the

frequency of short-term allocation requests and (3) contention from collocated executions.

Heavy cache contention drags effective allocation below 1, whereas low contention and

high data reuse produce values close to 1.

As shown in Figure 4.2, effective cache allocation aggregates response time for all

queries under a tested runtime condition. However, dynamic cache allocation has tem-

porary effects that can be amortized over long runs. Our profiling runs capture dynamic

runtime conditions during execution, allowing us to split long running tests into multiple

smaller measurements of effective cache allocation. This increases the number of rows (N)

in our profile data.

4.3.2 Stage 2: Deep Learning

Our profiling approach yields feature-rich images of collocated online services. The

effects of short-term allocation and cache contention are represented but hidden within

these profiles. Representational and deep learning techniques, widely used in artificial

intelligence, enhance multi-dimensional data by adding features that capture non-linear

patterns in the data.

73



Deep and representational learning improve many machine learning approaches, from

neural networks to support vector machines to decision trees. The design of our model can

be implemented with any underlying learning approach. Still, the proceeding discussion

may be influenced by our implementation based on deep forest [120].

Deep Learning: Machine learning uses historical (training) data to map input to a target

output. For this paper, input are runtime conditions and cache usage demands and tar-

get output is effective cache allocation. With multi-dimensional data, machine learning

struggles to find accurate mappings on training data that do not over fit test data. Deep

learning addresses this challenge by first mapping input to concepts, i.e., groups of input

with similar output attributes, and then mapping input and concepts to target output [62].

Figure 4.3 illustrates deep learning on our profile data. The input data comprises 3 fea-

tures (query arrival rate, timeout and last-level cache misses). Machine learning approaches

bound by these features look for settings where all matching input data exhibit anomalous

effective allocation. To avoid over fitting, at least 2 observed executions are required to

label a group of settings. The dotted lines surround settings that may be labeled anomalous

by classic machine learning. No setting achieves over 50% accuracy.

Deep learning first learns concepts. For example, the result of the machine learning

described above can be considered a concept. Concepts combine input data that seem far

away in the initial feature space, but produce similar outcomes (e.g., anomalous EA). Using

the concept as a feature, the deep learning approach can avoid over fitting and improve

accuracy.

Representational Learning: Convolutional neural networks have become the standard

bearer in computer vision. Representational learning, implemented via convolutions, un-

derlies their success. A convolution computes a kernel, i.e., a function defined over a set
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Fig. 4.3: Deep learning uncovers concepts that reveal rich patterns and avoid over fitting.

of features. These kernels produce new features for machine learning. In computer vision,

convolutions can capture the presence of simple object components, e.g., handles, eyes or

logos. In our context, convolutions capture correlated events that impact effective cache al-

location, e.g., an L1 miss and an LLC cache access or multiple LLC miss events happening

to collocated executions.

Figure 4.4 depicts representational learning. We define a square window size of 5x5 for

the kernel. We apply the kernel to profile data from 20 query executions where cache usage

was sampled 29 times per query. We slide the window across the whole data, computing

the kernel in each window. This yields 400 new features that can augment cache usage

data.

A convolution extracts spatial-temporal information from features. The spatial relation-

ship between features affects the effectiveness of the convolutional process. Structuring

features such that highly correlated features are close to each other in the data can increase
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the number of patterns extracted by representational learning. Our evaluation will compare

the impact of ordering features for spatial representation.

Simple Modeling Approaches Don’t Work: Deep and representational features are trans-

formations of data collected during profiling. A reader may ask why these transformations

are important. Can a non-linear but simple modeling approach, e.g., decision trees, replace

Stage 2 in our approach (Figure 4.2)?

Simple modeling approaches are prone to over fit for effective cache allocation, be-

cause these approaches tie concepts to rigid, inflexible representations. Consider a concept

that captures the availability of short-term cache resources. Key features would include ar-

rival rate, service time and timeout for each collocated workload. Simple models use hard

parameters to represent the concept, over fitting when hidden factors like micro-service

queuing delays affect response time. In contrast, deep learning approaches learn multiple

representations of each concept and prioritize the most robust representations. On train-

ing data, deep learning representations may be less accurate than a simple model, but they

generalize well, out performing under rigorous K-fold cross validation schemes.

In the evaluation section, we will show that simple modeling approaches are much less

accurate in predicting response time and yield allocation policies that perform worse than

our approach. We will also show that deep learning concepts can provide useful system

insights.

4.3.3 Stage 3: First Principles Modeling

We consider a system that uses a queue to store incoming requests. Requests are re-

moved from the queue and executed using a set of compute resources. First principles

queuing theory enables the modeling of distributions for queuing delay and response time.
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Fig. 4.4: Representational learning for spatial relationships.

This modeling is possible by representing the queuing problem as a Markovian process. A

Markov process assumes past events and future events are independent. Short-term cache

allocation breaks this fundamental assumption by creating interdependence between the

queuing delay and service rate. Traditional closed-form queuing models exploit interde-

pendence to compute average queue length and response time. However, enforcing similar

assumptions for short-term cache allocation produces diverging results between the empir-

ical data and the model output.

We overcome this limitation with a discrete event simulator that models the speed up af-

forded by short-term allocation. The simulator accepts the workload conditions, the cache-

allocation policy, queuing delay, and the effective cache allocation as input and generates

a simulation trace, i.e., processing needs, processing rate, short-term allocation processing

rate and arrival time. This structure pairs with an internal structure that captures simulated

events relative to the query, e.g., its current execution state, allocated cache, etc. Our full

implementation jumps multiple steps at time to the next execution event affecting a query

in the trace. When a query begins processing, the time waiting in the system (current time

minus arrival time) is checked at each step and compared to the response time warning. A
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total time exceeding the response time warning triggers a speed up for the remaining execu-

tion (i.e., short-term allocation processing rate). The simulator stops once a predetermined

number of queries complete. The response time for each query is computed from execution

events and the instantaneous queuing delay is outputted as dynamic condition feedback for

future simulations.
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4.4 Implementation

Our profiling system comprises software for runtime condition sampling, workload

generation, short-term allocation and query execution with performance counter track-

ing.Our first implementation used uniform random sampling without replacement to assign

settings. However, random sampling over sampled some settings. With limited time for

profiling, we turned to stratified sampling to cover a wide range of representative samples.

Specifically, our implementation randomly selected experiment settings as seeds. After ex-

ecuting seed experiments, we clustered them according to effective cache allocation and

computed the centroid settings for each cluster. We created random settings near each cen-

troid, executed them and updated cluster centroids. In our tests, stratified sampling reduced

profiling time by 67%.

A workload generator sent runtime conditions, collocation settings, and the cache-

allocation policy to our management software. Collocated executions ran in Docker con-

tainers bound to specific processor cores and ports. Configuration settings also defined

cache lines for default allocation, cache lines for short-term allocation and the timeout

settings for each collocated execution. The workload manager also sent queries at the con-

figured arrival rate. We implemented a proxy service for each collocated execution. Proxy

services queued queries waiting to access CPU resources.

Intel CAT was used to dynamically assign cache lines to process ids represented by

Docker images. During configuration, we defined two service classes on each processor

core: default allocation and a short-term allocation (see Figure 4.1). The proxy service

monitored the response time of each outstanding query. When the STAP timeout was trig-

gered, the class of service was switched. To keep the overhead low, if multiple queries were
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outstanding for the same online service, all had access to short-term cache. Upon comple-

tion of the targeted query, i.e., a reply was received by proxy, the service class switched

back to default.

We collected architectural performance counters related to cache usage throughout

query execution. Counters were sampled as frequently as once per second by process

id. The proxy service further differentiated counters by query execution. Cache usage

counters, response time and computed effective cache allocation were captured as profile

data.

4.4.1 Deep Forest

Deep and representational learning can be implemented in many machine learning al-

gorithms. We used deep forests [120]. Deep forests use an approach called cascading

to implement deep-learning atop random forests. Representational learning in deep for-

est uses random-forest kernels with sliding window inputs, an approach called multi-grain

scanning. In this section, we describe our application of deep forest for modeling effective

cache allocation from profile data.

Multi-Grain Scanning (MGS): Figure 4.5 depicts inference. First, cache usage profile

data is transformed to spatially correlated representational features. Each feature predicts

effective cache allocation. A random forest implements a convolutional kernel, mapping

the window to a predicted value. Before inference, deep forests train the random forest.

Sliding windows are computed and paired with corresponding effective cache allocation.

Classic machine learning algorithms for random forests and decision trees are then used to

create the forest.
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Fig. 4.5: Multi-grained scanning and cascading support deep and representational learning
in deep forests.

As seen in Figure 4.5, sliding windows are used to scan the raw features. Suppose there

is an input matrix of size 29 features x 20 query executions and a window size of 5x5.

Sliding the window for 1 feature across spatial-temporal data produces a 5x5-dimensional

feature matrix. A complete scan generates 400 (25x16) 5x5-dimensional feature matrices.

Multiple sliding windows can be used to extract different details from the features. Figure

4.5 shows 2 sliding windows scanning the raw data. The instances generated by 1 sliding

window are inputs to a random forest. Each instance has a corresponding predicted value
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that is concatenated to the transformed feature vector. The new representation of the fea-

tures is propagated to each layer in the cascaded structure. Instances generated by other

window sizes are transformed using an identical process but with a different random forest.

Deep Forest Cascades: Cascade Modeling is a form of deep learning. Deep learning learns

complicated functions by building representations that are expressed in terms of simpler

representations. This layering of representations is known as cascades. Cascade modeling

automatically learns representations at different levels of abstraction (e.g., colors-¿edges-

¿objects) which allow a model to directly map the input to the output of a complex function

without depending on human-crafted features. Each cascade is an ensemble of learners that

specializes in identifying certain patterns in the input. The output from one cascade acts as

additional information for the next ensemble of learners.

Deep forest employs a cascade structure where each level of cascade is an ensemble of

decision forests. Feature information processed by a cascade and the transformed features

are passed to the next cascade for further processing. Different type of forests are used to

encourage diversity. Diversity is important to ensemble models to avoid over fitting. Each

forest within a cascade level may contain 100s of trees. Some forests have random trees

while others have completely random trees. Each completely-random forest contain 100s

of completely-random trees, generated by randomly selecting a feature at each node for

split. Trees are grown until all leaves are pure, that is leaves contain 1 value for regression

or the same class for classification. Each random forest also contains 100s of trees. A tree

is generated by randomly selecting
√

f (where f is the number of input features) features

with the best gini value for split. This process is repeated for each node until pure leaves

are obtained.
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Each forest produces an estimate distribution function learned from training samples.

In Figure 4.5, a 29x20 feature sample is transformed to a 400x1 feature sample. The first

cascade level receives the extended feature data containing 580 original features plus 400

transformed features. The number of sliding windows determine how many layers are in a

cascade level. For example, using 2 sliding windows produces 2 separate feature vectors

that are passed in at different points in a cascade level. The first layer uses the samples with

580 original features plus 220 transformed features to make inferences. The outputs from

that layer are combined with the original samples and passed to the next layer. The second

layer has samples with 980 (580 + 400) features plus 4 concepts, where the additional

4 come from the 4 random forests from the first layer, and makes additional inferences.

The output from the second layer is 4 more concepts added onto samples from the second

sliding window. The final output from the first cascade level is 980 (580 + 400) features

plus 8 concepts, which is passed to the second level. This process is repeated for N levels.

The output from the cascade structure is passed to 4 more random forests where their results

are averaged to give the effective cache allocation.

Choosing Between Deep Forest and CNN: CNNs are widely used for deep and represen-

tational learning. There is a wide range of tools that simplify their use. However, CNNs are
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subject to random variation, especially on relatively small datasets and if hyper parameters

are not known. Through back propogation, neural networks overwrite prior weights during

the learning process which causes variability in accuracy and training time. In contrast,

deep forests are trained layer by layer, i.e., each layer appends to the results of prior layer.

As reported in Figure 4.6, we trained and evaluated CNNs and deep forests on profiled data

100 times. For the CNNs, we used TUNE [65] to find good hyper parameters. The best

training results for neural networks can outperform deep forests, but deep forests reliably

provide low error. The worst training results for neural networks can be twice as inaccurate

as deep forests. We chose deep forests for their stability. Note, our evaluation compared

only traditional CNNs. In future work, we will explore the reliability and accuracy trade-

off with more complicated neural network structures, e.g., residual and long short-term

memory (LSTM) networks.
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Query Execution Workloads

Wrk ID Description Cache Access Pattern

Jacobi Solves the Helmholtz equation

KNN K-neaest neighbors

Kmeans cluster analysis in data mining

Spkmeans Spark cluster analysis

Spstream Spark extract words from stream

BFS Breadth-first-search

Social

Redis

Memory intensive
Moderate cache misses
High data reuse
Low cache misses
High data reuse
Low cache misses
Higher cache misses
b/c of tasks execution
I/O intensive
High cache misses
Limited data reuse
Moderate cache misses

Social network implemented with
loosely-coupled microservices

Moderate data reuse
Moderate cache misses

YCSB: Session store recording
 recent actions

Low data reuse
High Cache misses

Table 4.1: Benchmarks used in our experiments.

Static Runtime Conditions for Each Online Service

Description Supported Settings

Collocated services 
sharing cache lines

Jacobi, NN, Kmeans, Spkmeans, 
Spstream, BFS, Social or Redis

Query inter-arrival rate
(rel. to service time) 

25% – 95% 

Timeout policy
(rel. to service time)

0% (always use shared cache) – 600% 
(never use short-term allocation)

Cache usage sampling 1 Hz – every 5 seconds

Table 4.2: Runtime conditions studied.

4.5 Evaluation

Table 4.1 shows the micro- and macro-benchmarks used in our evaluation. Collectively,

these benchmarks have diverse cache usage profiles, computational demands, parallelism,

and software composition. We ran experiments on an Intel Xeon E5-2683 processor with

16 cores, 40 MB of last-level cache and 64 GB main memory. For baseline performance,

we provisioned 2 cores and 2 MB LLC cache.

Social [42]: This realistic macro-benchmark composes 36 microservices running in 30

Docker containers and mimics the behavior of a social networking site where users are
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composing and posting messages. The service supports up to 2000 requests per second.

Baseline response time is 7.5 ms. All microservices in Social shared one short-term cache

allocation policy. As such, we use social to study the effect of 36 concurrent processes

sharing cache.

Spark Spkmeans and Spstream [106]: These benchmarks use the Apache Spark platform

for parallel data processing. They execute 16 concurrent threads. For Spkmeans, these

threads partition cluster assignment in the k-means algorithm. For Spstream, these threads

execute windowed word count. Like Social, all threads share allocation settings. The

k-means algorithm reuses cached data more often than windowed word count. The Spark

executor was configured with 1 thread which managed worker threads. The worker received

text from one raw network-stream that generated data at 10 MB/s. Baseline response time

for Spkmeans was 81 seconds. For Spstream, baseline response time was 1 second.

Redis: We used the YCSB benchmark suite to generate a realistic trace for Redis, a widely

used key-value store. Under this workload, Redis exhibits low data reuse and high cache

misses. There were 200,000 records comprising of 1KB of data. The baseline response

time for Redis is 1 ms per query.

Rodinia [17]: The Rodinia benchmarks used OpenMP, a shared memory multi-processing

API, to create parallel threads for Jacobi, KNN, Kmeans, and BFS. These benchmarks

were configured to run with 16 OMP threads. These benchmarks capture computational

demands in HPC environments. Note, Rodinia also includes a implementation of the k-

means algorithm that does not use the Spark platform. KNN and Kmeans exhibited high

cache hit rates. Jacobi and BFS are memory-intensive workloads with moderate cache miss

rates.
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For each experiment, we fully utilized processor cores by collocating 8 concurrent ser-

vices and allowing each service to use 2 cores and 2 MB LLC for baseline performance.

Recall, Intel CAT requires contiguous cache allocation. Proxy service scripts configured

pairwise shared cache lines. For example, if Jacobi is collocated with BFS, Jacobi could

reserve private cache lines #1 & #2 and BFS could reserve cache lines #5 & #6. During

short-term allocation, query executions for either or both services could use cache lines 3

& 4 in addition to their private cache. We defined query inter-arrival rate for each online

service relative to its average service time. Short-term allocation timeout was also defined

relative to the average service time. If the timeout was 150% and the average service time

was 100 seconds, the short-term allocation would trigger at 150 seconds.

We sampled L1 data cache stores and misses; L1 instruction cache stores and misses;

L2 requests, stores and misses; LLC loads, misses, stores; and other architectural counters

related to cache usage (29 in total). We used the official Deep Forest implementation [39].

Our Deep Forest contained 4 cascade layers with each layer hosting 4 random forests. Each

random forest was configured to have 100 estimators. The MGS component consisted of

4 sliding windows with window sizes 5x5, 10x10, 15x15, and 35x35. We used 1 random

forest per window with 50 estimators each.

We report two types of experiments. First, we investigate the accuracy of our modeling

approach. For given runtime conditions, we executed online services and measured aver-

age and 95th percentile response time. We compare the average response time against the

prediction from our modeling approach using the same runtime conditions. Note, that our

modeling approach could not use an observed profile from the runtime condition to train

the deep forest. We also compare our approach to competing modeling approaches using

the same methodology. The second type of experiment calibrated our model with training

87



Linear 
Reg.

Tree CNN Queue 
Model

0%
10%
20%
30%
40%
50%
60%

25th percentile median 95th percentile

ab
so

lu
te

 p
er

ce
nt

 e
rr

or
   

|p
re

d-
 o

bs
| /

 o
bs

Our 
Approach

(338%) (195%)

Fig. 4.7: Accuracy of response time predictions for our approach, simple models, CNN and
a queuing simulator.

data and then the computed expected response time for a wide range of randomly sampled

conditions. We examined the performance gains from having a model available.

4.5.1 Model Accuracy

We profiled 14,220 runtime conditions that included every pairwise collocation of our

benchmarks and a wide range of runtime conditions and timeout settings. Profile data was

separated into distinct training and testing sets. Testing data was not used during training

to ensure models accurately extrapolated to new, unseen conditions.

For our model, testing data outnumbered training data by 2 to 1, i.e., 33% training data

and 66% testing data. For competing models, we used 70% training data and 30% testing

data. We placed our approach at a disadvantage to ensure low profiling overhead. Later in

this section, we evaluate accuracy of our approach under high profiling overhead.

Accurate Response Time Prediction: In Figure 4.7, we used absolute percent error (accu-

racy) to compare our modeling approach against competing approaches. Our full modeling

approach achieved 11% median error and 12% error at the 95th percentile.

Figure 4.7 arranges competing approaches from simple to complex. First, we compared

to a linear regression model. As expected, this approach produced median error of 50%
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Fig. 4.8: (a) Accuracy of response time predictions for specific collocations. (b) Accu-
racy across processor cache sizes. (c) Evaluation of multi-grained scanning parameters
(sampling rate, spatial locality, window size and forest size).

and the 95th percentile error was greater than 300%. A decision tree model achieved 20%

median error and 95th percentile error above 100%.

Recall, our approach combines deep and representational learning with first-principles

queuing theory. In contrast, the CNN approach reported in Figure 4.7 uses only deep and

representational learning to map directly from runtime conditions to response time. We

used PyTorch to train a CNN. Unlike our model that is calibrated using only one colloca-

tion pairing, the CNN had access to all training data. Further, unlike our deep forest, the

CNN had many hyper parameters affecting accuracy. We used TUNE [65] to explore the

following hyper parameters: epoch, batch size, learning rate, number of neurons and drop

rate. The best setting, which we reported in Figure 4.7, achieved 26% median error. The

Queuing Model approach used only our queuing simulator as described in section 4.3.3.

This approach had 23% median error.

Generalization: Figure 4.8(a) details our model’s error for each workload in Table 4.1.

Collocated workloads are listed in parenthesis. To be sure, the targeted collocation set-

tings are not included in training for test. For example, the label jac(bfs) is the median
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error for predicting response time for Jacobi with BFS collocated, and bfs(jac) is the oppo-

site meaning. Our model predicted average response time with median error below 15%.

In Figure 4.8(b), we tested generalization across processor architectures. In addition to

our default platform (Xeon E5-2683), we ran experiments on an Intel Xeon 2650 (30 MB

LLC) and on a Xeon 2620 (20 MB LLC). In all cases, we fully utilized processor cores by

running workloads concurrently. We also changed collocation settings by allowing each

workload to reserve 3 MB and 4 MB of LLC respectively. In all cases, our median error

for response time prediction remained below 15%.

Profiling Time: We also studied profiling time and model accuracy. For collocated Apache

Spark workloads, profiling cache usage under a short-term allocation policy took 3 minutes.

We profiled 3 collocations in parallel. Our full model profiled workloads for 30 minutes

and acquired roughly 100 profiles for training and validation. However, longer profiling

time provided additional data and improved results. We observed that with 2.5 hours for

profiling, the median error fell to 8.6%. In general our approach was robust to reduced

profiling time because (1) the use of first-principles queuing simulation bounded model

error and (2) stratified sampling improved accuracy given limited samples. Our approach

can profile collocations briefly and still yield predictions that perform better than other

modeling techniques, as shown shown in Figure 4.7.

Implementation of Multi-Grain Scanning Strategy: Multi-grained scanning (MGS) learns

representational features from the cache usage trace. In Figure 4.8(c), we studied (1) the or-

ganization of performance counters in the cache usage trace, (2) the MGS window size and

(3) the sampling rate for cache usage data. Recall, multi-grained sampling exploits spatial

locality. In computer vision, spatial locality is inherent. However, for effective cache allo-

cation, performance counters may not be organized to exhibit spatial locality. Figure 4.8(c)
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compared two approaches to order cache usage traces. The first ordering randomly shuffled

performance counters, removing locality. The second ordering grouped counters by type

(spatial locality). For example, L1 load misses and L3 load misses for collocated service

A appeared close to each other in the cache usage trace whereas L1 store misses and L3

store misses for service B were a separate group. We also studied the effect of changing the

window size to quadruple the number of MGS features from 620 to 2480. We also com-

pared performance counter sampling rates of 0.5 Hz and 0.2 Hz. Finally, we also studied

the impact of the model size, defined as the number of estimators used in the deep forest

model. Estimators constrain the number of features included for representational and deep

learning.

Figure 4.8(c) shows median error in the predicted response time across MGS settings.

The categories at the bottom of the figure represent multi-grain settings used during re-

sponse time prediction. The ”X” directly below a bar plot indicates the settings applied to

achieve the corresponding response time error. Only 4 settings can be used for any bar, i.e.,

1 setting per category. The response time error for our model incurred a 2% increase by

collecting cache-counters at 1 sample every 5 seconds compared to every 2 seconds. Our

model error increased from 5% to 15%, if an spatial ordering among the cache-counters

was removed. A 4X decrease in window size doubled response time error, but also reduced

training time significantly. Lastly, we observed that using too few estimators (small forests)

yielded accuracy comparable to the Queue Model approach.
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4.5.2 Managing Short-Term Allocation

We used short-term cache allocation to speed up slow query executions. The short-term

allocation policy (STAP) set a timeout defined using Equation 4.4.

response time
exp. service time

> T (4.4)

Here, service time normalizes the timeout across workloads. Our model-driven approach

allowed us to explore settings for T under given collocation and runtime conditions. We

explored 25 settings for T for each pair of cache-sharing collocated workloads, i.e., 5 in-

dependent settings per workload. We set the query arrival rate to 90% of each workload’s

service time. Query inter-arrival times were exponential.

Recall, we seek a vector representing settings of T for each collocated workload. To

balance performance for each workload, we implemented a simple SLO-driven matching

policy. Step 1: we searched for settings of T where the response time was within 5% of

the lowest response time found across all settings for a target service. Step 2: we chose

policies that intersected both collocated services.

In Figure 4.9, we reported speedup from our model-driven approach against compet-

ing cache allocation approaches across multiple collocations. The competing allocation

approaches are described below:

1. No cache sharing: Each workload has access to only its private cache (i.e., baseline

performance). In Figure 4.9, all results are normalized to this default approach.

2. Static allocation: Services can (1) share cache lines fully or (2) use only private cache—

whichever yields best performance.
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3. Workload-aware allocation (dCat): Shared cache is allocated to the workload that

achieves the greatest speedup (i.e., throughput profiling with fixed workload phases).

Other collocated services use private cache to reduce contention [108].

4. Dynamic-allocation based on IPC (dynaSprint): Timeout T is used to allocate shared

cache for maximum performance, like our model-driven approach. However, the set-

tings found under low arrival rate are reused (ignoring queuing delay) under high arrival

rate.

5. Dynamic-allocation based on simple ML models: In this approach, we hide deep and

representational features from our full model, eliding stage 2. Here, settings for timeout

T represent error caused by using inaccurate, simple decision-tree models (see Fig-

ure 4.7).

In Figure 4.9, we reported speedup in 95th percentile response time across 6 collocation

settings that include Redis, Spark, Rodinia and micro-service workloads. Compared to the

default setting, our model-driven approach achieved median speedup of 2X, speeding up

the Spark Kmeans workload by up to 2.6X. Compared to state of the art approaches (dCat

and dynaSprint), our approach achieved speedup of 1.3X while speeding up the micro-

service social networking site and Redis by 1.38X and 1.4X respectively. Under heavy

arrival rate, Redis has low effective cache allocation with micro-services in Social. dy-

naSprint fails to capture increased variability in Social, leading to a poor timeout setting.

Further, Redis benefits greatly from additional cache lines. dCat allocates additional cache

lines to Redis to achieve a high speedup but does not speed up social. Our approach sets

a low timeout for Redis and moderate timeout for Social. This finds an excellent balance

by speeding up Redis but affording short-term allocation when Social suffers from high

queuing delay.
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In Figure 4.9, we also compared our full approach to an approach based on simple

models. Even though simple models yield greater absolute percentage error, the simple-

model approach produced comparable response time in 3 of the 6 collocation settings.

Deriving Useful System Insights: Figure 4.10 uses non-linear, dimensionality reduction

(t-distributed stochastic neighbor embedding-TSNE) to characterize response time across

5,000 collocation and runtime settings. Figure 4.10(a) uses data collected from our profil-

ing run, i.e., it does not use deep learning concepts. Response time, intuitively, correlates

with workload. However, we observed multiple settings where LLC cache misses were

comparable (within 5%) but response time differed by 2X or more. Dimensionality reduc-

tion expected similar response time in such cases (see points marked by X). Figure 4.10(b)

uses deep learning concepts for dimensionality reduction, we observed such settings were

separated. We observed that a key deep learning concept was weighted heavily: The avail-

ability of short-term cache resources. Underlying trees captured arrival rate, service rate

and timeout. While inaccurate by themselves, combined with representational data on L2

and LLC cache misses, the dimensionality reduction proved much more accurate. In gen-

eral, analysis with and without deep learning features can reveal important system traits

that simple models alone cannot.
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Fig. 4.9: Comparing speedup in 95th percentile response time for competing cache allo-
cation techniques. Data normalized to response time under no-sharing, static allocation
policy.
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4.6 Related Work

Cache allocation that considers workload needs can often improve performance com-

pared to workload agnostic allocation. Allocation policies determine how much cache to

allocate to each workload, especially when the LLC is shared. Prior work studied cache al-

location to reduce interference [2, 74, 116], maximize throughput [14, 23, 22, 51, 121, 61]

and improve tail latency [1, 2, 74, 22, 61]. Recently, dynamic cache allocation allows

systems software to assign cache at runtime [53]. This section outlines work on cache

management for online services and modeling approaches.

4.6.1 Cache Management for Online Services

Albonesi et al. [1] proposed the idea to disable select cache ways during periods of

low demand and re-enable them during intense memory periods. Their goal was to reduce

energy consumption with a small performance degradation. Our work uses a technique

that increases performance for a query execution by accessing additional cache shared with

collocated executions. We focus on reducing response time not reducing energy.

Xu et al. [108] presented a dynamic cache allocation approach for query executions

sensitive to noisy neighbors. Their dynamic approach offered a strong cache isolation while

maintaining a minimum performance bound. Our approach relaxes the cache isolation

requirement during periods when query executions are suffering performance loss.

Chen et al. [20] proposed a resource manager that dynamically adjusts resources in-

cluding cache for online services suffering from performance loss. While their solution

finds good online policies, their solution cannot explore policies a priori. Our work can

quickly explore collocation settings and policies online and offline after the profiling stage.

In contrast, Chen et al. requires performance feedback during online operation.
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Kulkarni et al. [61] proposed an online resource manager that uses machine learning

to determine the performance and power for a core and cache configuration. They find the

best configuration to reduce latency and increase throughput. Their work models collocated

workloads sharing the same ways. Our work models collocated workloads that have private

and shared cache ways.

4.6.2 Cache Modeling Approaches

First principles modeling can predict response time for a query’s execution as a func-

tion of the arrival and service time distributions [60]. However, modeling the effects of

cache on response time with first principles is challenging. The cache behavior is hard-

ware dependent which changes from one processor to the next. Collocating executions

further complicates this problem by introducing cache interference in the LLC [109, 38].

Prior works measure cache interference online [52, 67] and make decisions at an execu-

tion phase granularity while others characterize LLC performance [107] for each query

execution before making decisions.

Qureshi et al. [78] implemented utility based cache allocation at the hardware level.

This work ignores queuing delay since it is implemented below the software stack. Huang

et al. [52] presented a runtime software that managed cache allocations dynamically by

predicting cache-utility. Similarly, our work uses hardware performance counters to profile

cache-utility. However, we rely on offline profiling to collect the data needed for training

our model. We aggregate the effects of execution phases into a single factor, which enables

us to model performance for collocated executions under low and high query arrival rates.

El-sayed et al. [35] proposed a cache-sharing hybrid approach. They grouped work-

loads into clusters and allocated the cache among these clusters [86]. Workloads were
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clustered based on their cache-sharing compatibility. Our work allocates the same cache

allocation to multiple services. Our effective cache allocation represents the speedup expe-

rienced by the collocated executions and has a similar purpose to their clustering.
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4.7 Conclusion

Short-term cache allocation grants and then revokes access to processor cache lines

dynamically. Online services can use short-term cache allocation to speed up queries as

they execute, targeting queries likely to suffer high response time. However, when multi-

ple services collocate by sharing cache, their query executions can contend for short-term

allocation, causing recurring slowdowns that degrade response time. This paper presented

a model-driven approach to choose cache allocation policies that yield low response time

for collocated services. We used representational and deep learning techniques to extract

hidden features that capture the effect of short-term cache allocation on response time,

producing a novel performance modeling approach that accurately predicted average and

95th percentile response time. We showed that our approach can uncover short-term cache

allocation policies that yield 2.4X speedup.
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