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Abstract

A recent trend in the chemical process industries is the move toward designing safer,

greener processes, while also trying to maximize profit. Profit is a strong function of the

chosen design and the employed operation/control strategies, which have been traditionally

treated separately. This sequential strategy can lead to unnecessarily rigid designs that cannot

operate adequately under changes in the market, environment, or regulations that are sure to

happen over time. A class of methods, commonly referred to as integrated design and control

(IDC), have been developed to address this issue. The goal of IDC is to systematically

account for the effect of the “here-and-now” design decisions (fixed throughout the process

lifetime) on the “wait-and-see” control decisions (changed throughout operation) while

attempting to maximize profit. Since the selected control structure can be an arbitrary

function of the measurements, IDC is an extremely complicated multi-stage stochastic

optimization problem that cannot be solved in most realistic applications. As such, most

available IDC methods focus on simplified parameterizations of the control structure and a

small set of disturbance realizations. Although the resulting optimization problem is simpler

to solve, it comes at the cost of a (potentially large) drop in solution quality. The goal of this

thesis is to develop a unified and tractable framework that can provide accurate solutions to

IDC problems by combining high-quality controllers with state-of-the-art constrained black-

box optimization methods. In particular, we propose the use of design-dependent model

predictive controllers to select the control inputs at every operational period. This allows us
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to consistently determine high-quality control actions, even when the system has important

safety/quality constraints, significant multivariable interactions, and/or nonlinear/mixed-

integer dynamics. Since the resulting closed-loop simulations are computationally expensive,

we propose a Bayesian optimization (BO) method to sequentially select potential “good”

designs using a probabilistic machine learning-based surrogate model. We demonstrate the

effectiveness of the proposed BO framework on the design of a flexible building cooling

system under weather and demand uncertainties. We also discuss strategies to further reduce

the number of expensive closed-loop evaluations by taking advantage of computationally

cheaper low-fidelity approximations to the IDC cost function. We further demonstrate how

the multi-fidelity extension of BO allows us to much more efficiently handle year-long

planning horizons with key disturbances evolving at the hourly scale. Lastly, motivated by

these promising results, we discuss several potential directions for future work on grey-box

BO, which are methods that exploit additional sources of information to improve upon the

convergence rate of traditional BO methods, in the context of IDC problems.
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Chapter 1: Introduction

Chemical process design is an important area of chemical engineering as it largely

determines the operating conditions and the inherent safety of the process under different

conditions. Process control is a method used to monitor and adjust any process to maintain

quality and improve performance. Typically, process design and process control are proce-

dures that are performed sequentially. The equipment sizes and the operating conditions are

first estimated at steady state by optimizing the economics of the process. This procedure

is followed by evaluating the controllability of the process, by assessing the closed-loop

dynamic response of the process to various forms of uncertainty (e.g., external disturbances,

unknown parameters, or process faults and failures). A certain control performance has

to be achieved, which is accomplished by selecting control structures, algorithms and the

tuning parameters of the structures.

The underlying issue with the sequential procedure is the rigidity of the design, which

may result in dynamic constraint violations in presence of uncertainty. Any of these

violations result in a significant increase in the operating cost of the process. Over-design

results in a compromise with the capital cost to accommodate the uncertainty in the process.

Figure 1.1 illustrates the concept. Therefore, a key challenge is to develop a systematic

methodology to simultaneously address the process design and control in order to explicitly

account for process dynamics while optimizing the design of the system. The indicated
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approach results in designs (operating conditions and equipment sizes) expected to determine

a process which has dynamic feasibility in presence of process disturbances or any parametric

uncertainties, while being the most economically advantageous. This is because the method

adjusts the design of the plant to operate the plant within feasible limits according to the

system dynamics. The aforementioned procedure is called Integrated Design and Control

(IDC) and represents a broad class of problems to simultaneously tackle design and control

of a process under process disturbances and uncertainty.

Figure 1.1: Sequential versus Integrated Design and Control
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From this discussion, it is clear that IDC has a huge potential for overcoming the limita-

tions of the conventional sequential approach, which is especially important in emerging

next-generation processes that require a much higher degree of operational flexibility. This

thesis moves towards the development of an efficient solution approach for the challenging

IDC problem and showcases improvements over the current state of the art.

1.1 Review of Existing Solution Approaches

Typically, process design and process control are procedures that are performed sequen-

tially. But it was discovered 80 years ago, by Ziegler and Nichols [1], that the control

scheme of a system or a process is inherently dependent on the process design involved.

Since then, a lot of work has been done to integrate control into process design optimization

and a summary of a variety of different contributions is presented in Table 1.1. Initial efforts

to integrate process design and control were aimed at understanding the dependencies of

each mechanism on the other. One of the earliest concepts was to assess the controllability

of the process design, termed as "dynamic resilience" by Morari et al. [2, 3], which was

defined as "the maintenance of satisfactory performance despite adverse conditions", while

flexibility was defined as "the ability to handle alternately desirable operating conditions".

This work was a foundation for extensive research in the field. Development of dynamic

resiliency indices were based on (i) plant-model mismatch, (ii) constrained control vari-

ables, (iii) presence of time delays, and (iv) presence of right-half place zeros in the system

transfer function matrix. These indices helped identify more resilient designs in many

different types of systems including reactor networks [4, 5], separation systems [6] and heat

exchanger networks [7]. The main downside to these types of approaches is that they are

only applicable for a limited range of operation and thus do not directly address flexibility
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by considering many different operating conditions depending on the particular realizations

of the uncertainties. To address this issue, the notion of a flexibility index was introduced by

Swaney and Grossmann [8], which can be formulated as a two-stage robust optimization

problem. When only a discrete set of uncertainty scenarios are considered, the flexible

design problem reduces to a multiperiod design problem, which assumes perfect recourse to

the uncertainties and instantaneous equilibration to a steady-state in each period.

To more directly handle the generally nonlinear process dynamics, Mohideen et al. [61]

introduced a Mixed Integer Dynamic Optimization (MIDO) formulation for a multiperiod

design and control problem accounting for dynamic variations due to uncertain parameters

and disturbances. The uncertain parameters were picked from a range of discrete scenario

sets or events, while disturbances followed a user defined function. To demonstrate the

efficacy, the approach was tested on a mixing tank problem and a ternary distillation problem

and then compared against the conventional sequential approach. Bansal et al. [28, 29]

solved a dynamic optimization problem using the methodology with the intention to evaluate

the disturbance profile producing the worst case scenario. A prominent contribution to the

already burgeoning research interest in the simultaneous and design problem was integrating

a Proportional Integral (PI) controller in the design optimization problem. Walsh and

Perkins [23] proposed an integrated process design and PI control scheme, which was

applied to a wastewater neutralization case study. It was effective for a single input single

output (SISO) process, but it could not handle multiple input multiple output (MIMO)

processes without large and complex changes in the feedback loop structure. Luyben and

Floudas [19] developed a procedure to systematically assess the economic performance of

every input-output pair on the basis of the controllability indices they developed before [62],

within a multiple objective mixed integer non-linear programming (MINLP) problem. The
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Table 1.1: Contributions to the field of integrated design and control (IDC).

Topic Control policy Author (Year) Contribution

Controllability and
stability metrics

Morari & co-workers (1982) [9],
Perkins & co-workers (1991) [10],
Bogle & co-workers (1989, 2000) [11, 12],
Douglas & co-workers (1988) [13–15]

Controllability metrics
included as constraints or
objectives within the
optimization formulation

Two-stage flexible
process design

Pistikopolous & co-workers
(1994, 1997, 2001) [16–18],
Floudas & co-workers
(1994, 2000, 2001) [19–21],
Romagnoli & co-workers (1996) [22],
Perkins & co-workers (1994) [23],
Floudas & co-workers (1998) [24],
Exler & co-workers (2008) [25],
Asteasuain & co-workers (2006) [26],
Vega & co-workers (2009) [27].

Flexibility, feasibility, and
resilience considerations
in steady state (MI)NLP
optimization under scenario
approximation of uncertainties

MIDO PID

Pistikopoulos & co-workers (2000, 2002) [28, 29],
Ricardez-Sandoval & co-workers
(2008, 2012, 2016, 2017) [30–33],
Swartz & co-workers (2014) [34],
Biegler & co-workers (2008, 2018) [35, 36]

Substitutes explicit decision
rule and nominal disturbance
sequence and then converts
(MI)DO into (MI)NLP using
collocation or decomposition

Linear MPC

Pistikopoulos & co-workers
(2003, 2004, 2015g, 2017g) [37–41],
Ricardez-Sandoval & co-workers
(2011, 2013, 2014, 2015) [42–45],
Engell & co-workers (2004) [46],

DR-SO Adaptive thresholding

Hakizimana (2019) [47],
Zhang & co-workers (2016) [48],
Evins & co-workers (2015) [49],
Lambert & co-workers (2006) [50]

Substitutes decision rule for
control policy to derive
single-stage IDC problem
tackled via simulation
optimization method

Nonlinear MPC
Paulson & co-workers (2021) [51],
Li & co-workers (2017) [52]

Review articles

Sharifzadeh(2013) [53],
Gani and co-workers(2012) [54],
Vega and co-workers(2014) [55, 56],
Ricardez Sandoval and co-workers(2009) [57],
Pistikopolous and co-workers
(2004, 2016, 2019) [58–60]

procedure was tested on a heat-integrated distillation system and a reactor-separator-recycle

system. The aforementioned design and control frameworks using PI control can be used

for non-linear processes. But, the range of problems that can be solved are limited due

to the presence of plant-model mismatch (process is non-linear, control model is linear).
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Ricardez-Sandoval et al. [63] combined robust control tools with the back-off approach for

PI control integration in the design optimization problem. The Tennessee Eastman Process

was solved using the proposed approach [64].

There are many drawbacks of using PI control in the design optimization problem,

the biggest one being its inability to handle MIMO processes. PI controllers also cannot

handle any constraints that arise in a process due to environmental, operational or safety

considerations. Model Predictive Control (MPC) overcomes these limitations as it handles

the constraints using an explicit model of the process that is subject to a constrained dynamic

optimization problem. Brengel and Seider [65] were the first to integrate MPC in a non-

linear design optimization problem, resulting in a bi-level optimization with an economic

objective as the leader followed by the MPC formulation. This strategy was intractable for

complex systems, due to numerical calculations of the second derivatives, which is a huge

limitation of embedding MPC into the IDC problem. To tackle this limitation, Bemporad et

al. [66] suggested a novel strategy to treat the initial conditions as parameters which allowed

the derivation of piecewise affine control laws and called it multi-parametric MPC (mpMPC)

or explicit MPC. Sakizlis et al. [37] proposed a bi-level MIDO problem formulation for

design and control integration. The authors used the explicit nature of the mpMPC solution

to reduce the complexity of the bi-level problem to a single level optimization. Sanchez-

Sanchez and Ricardez-Sandoval [67] compared the MPC integrated framework to PI control

based integration framework, using a system of CSTR’s to assess the performance of each.

The MPC formulation achieved superior results with lower investment and operating costs,

proving its eminence. Vega and Lamanna [68] proposed a methodology for a multi-objective

IDC and showcased its performance on a waste water treatment plant. However, the problem

was still intractable for large-scale complex problems, as the MPC problem had to be
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solved at every iteration which consisted of repetitive linearizations along with solving a

multiparametric programming problem at every iteration. Diangelakis et al. [41] derived

a "design dependent offline controller" and integrated the control law in the high fidelity

model, which overcame the limitation of intractability by reducing the bi-level optimization

to a single design and control optimization problem. This approach was tested on a CSTR, a

mixing tank and a residential combined heat and power (CHP). Other works that use MPC

for the integrated design and control problem can be found here [44, 69–72]. Reviews in

IDC can be found here [53–55, 57–60].

1.2 Summary of Thesis Contributions

Although there has been a substantial amount of work on IDC as discussed in the

previous section, a unified, tractable, and generally applicable framework for tackling

optimal IDC problems has yet to be developed. The main aim of this thesis is to work toward

the development of such a framework by combining advances in machine learning and

optimization-based control strategies. The developed algorithms are tested on challenging

applications, with the goal of showcasing the strengths of our initial framework relative to

widely-used alternatives. We also highlight several important directions for future work that

would further improve this framework when deployed in practice.

Before discussing the details of the proposed IDC framework, we first summarize the

challenges with optimal IDC problems. As recently discussed in [47], optimal IDC problems

can be generally formulated as multistage stochastic programs (MSPs) where the term “stage”

refers to a single operational period. The following features, which are present in many

emerging applications, result in an intractable MSP formulation of the IDC problem:

(i) dynamics and uncertainties occur on much shorter timescales than the system lifetime;
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(ii) uncertainties are continuous random variables with potentially large variance;

(iii) key operational decisions are discrete, e.g., adaptive scheduling and unit commitment.

Features (i) and (ii) imply that a large number of operational periods and uncertainty

scenarios, respectively, must be considered in the MSP model. These are significant

challenges to overcome as MSPs are known to suffer from the curse-of-dimensionality [73]

due to the fact that the control decisions can be different for different uncertainty realizations.

Feature (iii), on the other hand, implies that the system model is nonlinear with mixed-integer

decisions. As such, scenario-based approximations to MSPs, which consists of co-optimizing

design decisions with control decisions for every stage and every scenario, easily results

in extremely large-scale mixed-integer nonlinear programs (MINLPs) that are far beyond

the capabilities of existing solution paradigms. Although the many different approximation

methods (Table 1.1) can be employed to reduce complexity, they can degrade the accuracy

of the IDC problem in exactly the ways that are important for realistically capturing the

operational flexibility of nonlinear systems under possibly multi-scale uncertainty.

The proposed IDC framework in this thesis is composed of two main components: a

high-quality decision rule (DR) that maps the measured data to the control decisions at

every time step and an efficient black-box optimization method that is used to co-optimize

the design variables and tuning parameters of the DR. The DR is essentially an offline

parametrization of the control decisions and, in light of feature (iii), should be some type of

an advanced controller that can flexibly handle scheduling and control decisions (that may

need to be made at different timescales). As we will discuss in more detail later in the thesis,

the model predictive control (MPC) paradigm is able to nicely serve this purpose since it

adaptively optimizes the predictions of an underlying dynamic system model. This implies

that MPC can straightforwardly handle multivariate nonlinear systems in the presence of
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constraints, general objective functions, and uncertainty [39–41, 44, 45, 52]. Another key

advantage of MPC, compared to other potential DRs, is that it can be parametrized by

relatively few dimensions whenever a reasonable process model is available. As such, the

MPC-based IDC problem is able to scale much more favorably with respect to the number

of operational periods and uncertainty scenarios than the original MSP.

The main challenge with MPC-based DRs are that they are implicitly defined by the

solution to an optimization problem at every time step, i.e., they are computationally inten-

sive and non-differentiable. Since we cannot rely on gradient-based optimization algorithms

to determine the optimal design variables, we must resort to black-box (or derivative-free)

simulation optimization. We can think of these methods as being composed of an outer

optimization over the relevant design variables and an inner stochastic closed-loop simu-

lation to approximately evaluate the expected value of the long-term operating cost in the

outer problem. Although many black-box simulation optimization methods are available,

we require an approach that performs as few expensive closed-loop simulations as possi-

ble so that an adequate design can be identified within a fixed amount of computational

resources. This precludes the use of many of the widely-used approaches, such as genetic

algorithms [74], particle swarm optimization [75, 76], partition-based methods [77] and

simulated annealing [78], as they require too many function evaluations to be practically

useful in the context of MPC-based IDC problems. As such, we focus on Bayesian opti-

mization (BO) that was specifically constructed to handle noisy observations of expensive

functions. Not only has BO been successfully applied to many problems in the past few

years including hyperparameter optimization in machine learning models [79], material

design and discovery [80], aircraft design [81], and automated controller tuning [82, 83],

but it has also been extended to handle fully black-box constraints that often appear in IDC
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problems. Therefore, the main goal of this thesis is to demonstrate how MPC-based DRs

and BO can be flexibly integrated to address IDC problems that exhibit the challenging

features (i)–(iii) above.

The remainder of this thesis is organized as follows. Chapter 2 provides a comprehensive

MSP formulation of optimal IDC problems and introduces the mathematical description of

DRs. Chapter 3 provides a detailed overview of the BO algorithm as well as how it can be

extended to accommodate black-box constraints1. The proposed framework is then applied

to the design of a flexible heating and cooling system for a building wherein we show how

both scheduling and control decisions can be made simultaneously with MPC. We also

compare the proposed framework to sequential design and control methods and find that

our method is able to find substantially better designs (in terms of lower cost and improved

constraint satisfaction). Chapter 4 develops a more realistic model of the building heating

and cooling system problem that incorporates solar power, battery storage, and grid support

over a year-long planning horizon with realistic disturbance models based on data obtained

from publicly available databases. Since the overall model is much more computationally

intensive (i.e., each simulation requires multiple hours to complete), we further extend BO

to take advantage of computationally cheaper approximations to better guide the search

process. We refer to this process as multi-fidelity BO, and demonstrate its ability to further

reduce the number of high-fidelity model evaluations to determine good and flexible designs.

Lastly, we summarize the main conclusions of the thesis and describe several important

avenues for future work in Chapter 5.

1Note that a comparison of BO to alternative black-box optimization methods is provided in Appendix A.
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Chapter 2: High-fidelity Approximations to Integrated Design and

Control Problems using Predictive Control-based Decision Rules

In this chapter, we provide a detailed and general formulation of the optimal integrated

design and control (IDC) problem. Even though the presented formulation is completely

intractable, it is useful to treat this as an ideal baseline so we can better understand any

employed approximations; as noted in Table 1.1 in the introduction, there are many different

approximations available and so we must be careful not to lose out on the critical features

of the problem needed to identify good designs. We then formally introduce the notion

of a decision rule (DR) and highlight how that simplifies the IDC problem. Lastly, we

describe the model predictive control (MPC) framework that is a particularly effective

DR as it relies on repeated optimization of dynamic predictions of the process. As such,

MPC can flexibly handle different types of dynamic systems, constraints, control objectives,

and uncertainties. The effectiveness of MPC as a DR, relative to alternatives such as

proportional-integral-derivative control, is demonstrated on a continuous reactor case study.

Note that some of the contents of this chapter have been adapted from a publication by

the author in the Proceedings of the 2021 American Control Conference [51].

Notation: Throughout this chapter, the sets of non-negative and positive integers are

denoted by N and N+ respectively. Non-negative real numbers are denoted by R≥0.

Given column vectors x and y, (x,y) = [x>,y>]> denotes vector concatenation. Let xi: j =
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(xi,xi+1, . . . ,x j) be the subsequence of {xi}i∈N from i to j. For S ⊂ Rns , the set of all

essentially bounded measurable maps from S into Rm is denoted by L∞(S,Rm).

2.1 Multistage Stochastic Programming Formulation of IDC

Consider the following time-varying nonlinear system under uncertainty

xk+1 = f (k,xk,uk,wk,d), (2.1)

where xk ∈X ⊂Rnx are the system states, uk ∈U ⊂Rnu are the control inputs, wk ∈W ⊂Rnw

are the uncertainties, and d ∈D⊂Rnd are the design variables. We are interested in a general

state-space multistage stochastic program (MSP) with T stages, which is affected by the

disturbance sequence ωωω = (w0, . . . ,wT ) with random variables wk that are revealed after

each stage k ∈ T = {0, . . . ,T − 1}. We assume the random sequence ωωω has probability

density pωωω : Ω→ R defined on the finite support set Ω =W ×·· ·×W .

The design variables d are the first-stage “here-and-now” decisions while the control

inputs act as recourse “wait-and-see” decisions that can adapt over time to particular uncer-

tainty realizations, i.e., uk(ωωω). We make no assumption about f : T ×X×U×W ×D→ X

or the recourse decisions uk(ωωω), which can both contain a mixture of continuous and dis-

crete states/inputs. Thus, f can be interpreted as a black-box function for which we only

need the ability to simulate (2.1) to compute {xk(ωωω)}T
k=0 for a fixed design d, uncertainty

sequence ωωω , and initial state x0(ωωω) = b0. We also assume the system is subject to joint

chance constraints

Pωωω{g(k,xk(ωωω),uk(ωωω),d)≤ 0} ≥ 1− ε, (2.2)

where Pωωω{A} denotes the probability of event A with respect to the random disturbance

sequence ωωω and ε ∈ [0,1] denotes the allowed probability of constraint violation. The
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function g(·) can again be anything, and will typically represent critical safety and/or quality

constraints. Although we specify the constraints in the form of (2.2), many different other

formulations could be considered including expectation-based constraints that are used in

Chapter 4. Because these constraints are potentially time-varying, they also can be used to

constraint the terminal state through proper selection of the g(·) functions.

Given the system dynamics (2.1) and constraints (2.2), we can formulate the integrated

design and control (IDC) problem in terms of the following MSP optimization problem

min
d∈D

uk∈L∞(Ω,U)

C(d)+Eωωω

{
T−1

∑
k=0

`(k,xk(ωωω),uk(ωωω),d)

}
,

s.t. xk+1(ωωω) = f (k,xk(ωωω),uk(ωωω),wk,d),

x0(ωωω) = b0, ∀ωωω ∈Ω,

Pωωω{g(k,xk(ωωω),uk(ωωω),d)≤ 0} ≥ 1− ε,

uk(ωωω) is non-anticipative,

∀k ∈ {0, . . . ,T −1}, (2.3)

where C : D→ R denotes the capital cost that is only a function of the design variables,

` : T ×X×U×D→R is the operating cost at each stage, Eωωω{·} denotes the expected value

with respect to the random disturbance sequence ωωω , and uk(ωωω) satisfying non-anticipativity

constraints implies that uk must be determined at time k based on previous knowledge of

w j with j < k, which is needed to model the fact that current decisions cannot depend on

future measurements. This can be explicitly stated by the constraint uk(ωωω) = uk(ω̂ωω) for all

ωωω, ω̂ωω ∈Ω with w0:k−1 = ŵ0:k−1. Therefore, the MSP (2.3) selects the first-stage decisions d

that simultaneously minimize the capital cost C(·) and expected value of the operating cost

(defined as the sum of stage-wise costs `S(·)) under optimal operations in each stage k ∈ T .
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The MSP as stated in (2.3) is intractable for several reasons. First, the set of functions

L∞(Ω,U) is infinite dimensional, as they can be arbitrary functions of ωωω . Second the proba-

bilistic operators Eωωω{·} and Pωωω{·} cannot be computed exactly except for in very special

and restrictive cases. Third, the relevant operational details and uncertainty realizations

often occur at time-scales that are significantly shorter than the lifetime of the system (e.g.,

the value of a next-generation energy storage system with a 10 year lifetime may critically

depend on its ability to respond to hourly variations in electricity pricing or renewable

power generation). Lastly, the dynamics are likely to include discrete operational decisions,

which results in a hybrid system with mixed-integer recourse decisions – leading to a very

challenging large-scale, non-convex, and non-smooth optimization problem.

As recently noted in [47], a promising approach to address some of the aforementioned

challenges is to approximate the recourse decisions uk(ωωω) with a parametrized decision

rule that directly enforces the non-anticipativity constraints and avoids the need to optimize

over infinite dimensional spaces. We focus on state feedback for simplicity. The DR

approximation is formally introduced next, which is followed by a discussion on the proposed

high quality MPC-based DR.

Remark 1. It is important to note that we have assumed that the disturbance sequence

is measurable in (2.1). This indirectly implies that the state is measurable as we could

always use the model and disturbance realizations to reconstruct the state at any time

k ∈ T . Throughout this thesis, we focus on the full state feedback case for simplicity of

exposition. However, the proposed framework can be straightforwardly extended to the

more general output feedback case by incorporating state and/or disturbance estimators.

This is a big advantage of the proposed framework, as alternative methods cannot easily be

extended to cases where the state is not measured. Interested readers are referred to [82]
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for initial results in this direction. In this case, however, additional tuning parameters in the

estimator(s) are introduced into the DR, which does increase the complexity of the black-box

optimization method discussed in Chapter 3.

2.2 Decision Rule Approximation Methods

We can formally define a decision rule (DR) as follows

uk(ωωω) = κ(k,xk(ωωω),wk,d,γ), (2.4)

where κ : T ×X×W×D×Γ→U is a fixed structure function that can depend on parameters

γ ∈ Γ⊂ Rnλ that can be optimized simultaneously with the first-stage design decisions d.

Although the fixed structure of κ potentially introduces some level of suboptimality, it

eliminates the need to optimize over the infinite dimensional space L∞(Ω,U) since κ

ensures the value of uk(ωωω) is fixed for each (ωωω,d,γ) ∈ Ω×D×Γ. Moreover, κ directly

enforces non-anticipativity of uk(ωωω) that eliminates the need to consider the infinite number

of non-anticipativity constraints in (2.3).

Let us define θ = (d,γ) ∈Θ = D×Γ as the concatenated vector of the design variables

and the DR parameters. With a slight abuse of notation, we define the sequence of the state

and control inputs by the following recursion

x0(ωωω,θ) = b0, (2.5)

uk(ωωω,θ) = κ(k,xk(ωωω,θ),wk,θ),

xk+1(ωωω,θ) = f (k,xk(ωωω,θ),uk(ωωω,θ),wk,θ),

for all admissible disturbance sequences and first-stage decisions (ωωω,θ) ∈ Ω×Θ. By

substituting these equations into (2.3), we can define the decision rule approximation (DRA)
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of the MSP as follows

min
θ∈Θ

C(θ)+Eωωω{O(ωωω,θ)}, (2.6)

s.t. Pωωω{Gk(ωωω,θ)≤ 0} ≥ 1− ε, ∀k ∈ {0, . . . ,T −1},

where the operating cost O(·) and chance constraint Gk(·) functions are given by

O(ωωω,θ) = ∑
T−1
k=0 `(k,xk(ωωω,θ),uk(ωωω,θ),θ), (2.7)

Gk(ωωω,θ) = g(k,xk(ωωω,θ),uk(ωωω,θ),θ). (2.8)

The optimization (2.6) is now a single-stage problem with a finite number of decisions θ ,

which is a large simplification of (2.3), particularly for problems in which the model includes

short-time scale operations over a long horizon. To ensure (2.6) provides a sufficiently good

solution, we have to define a high-quality DR in terms of a relatively small number of

parameters in order to make the problem remains tractable. We can broadly categorize DRs

as either explicit or implicit. Explicit DRs are defined by (often simple) analytic expressions

of the most recently measured state and uncertainty values. Two of the most commonly

used explicit DRs are logic-based operational policies (e.g., energy management policies

parametrized by thresholds in terms of the system state) and proportional-integral-derivative

(PID) controllers that are parametrized by a set of gains. An important limitation of most

explicit DRs is that they are not sufficiently expressive unless the parameters are adapted

over time, which leads to a significant increase in problem size and, thus, somewhat defeats

the purpose of using the DR in the first place. Implicit DRs, on the other hand, are typically

model-based control strategies that solve an underlying optimization problem to make

operational decisions – the word “implicit” here refers to the fact that the function κ(·) is

not known in closed-form. Due to their flexibility and potential to provide very accurate
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approximations to (2.3), we focus mostly on implicit DRs in this thesis, which are discussed

in more detail in the next section.

2.3 Implicit DRs via Design-dependent Model Predictive Control

Model predictive control (MPC) is one of the most widely-used methods for advanced

control of complex systems with multivariate interactions and safety-critical and/or quality

constraints [84, 85]. Although MPC was originally developed for steady-state tracking

problems, recent advances have enabled its application to a significantly broader class of

systems including those with nonlinear models, constraints, and objectives that can be used

to handle much more complicated physical equations as well as economic cost functions.

Recent work [86] has also discussed the incorporation of discrete control inputs within MPC

(which can be used to model higher level scheduling decisions such as turning a piece of

equipment on or off) by taking advantage of state-of-the-art mixed integer programming

methods. A general formulation of the finite-horizon MPC problem that must be solved at

every time stage k ∈ T is given by

min
xk+i|k,uk+i|k

θp−1

∑
k=0

ˆ̀θl
k+i(xk+i|k,uk+i|k,θdesign)+V̂

θ f
f ,k+θp

(xk+θp|k,θdesign), (2.9a)

s.t. xk+i+1|k = f̂ θm(k+ i,xk+i|k,uk+i|k, ŵk+i|k,θdesign), ∀k ∈ {0, . . . ,θp−1},
(2.9b)

ŵk+i+1|k = d̂θd
k+i(ŵk+i|k), ∀k ∈ {0, . . . ,θp−2},

(2.9c)

{xk|k, ŵk|k}= {xk(ωωω,θdesign),wk}, (2.9d)

g(k+ i,xk+i|k,uk+i|k, ŵk+i|k,θdesign)≤−θb, ∀k ∈ {0, . . . ,θp−1},
(2.9e)

uk+i|k ∈ U , ∀k ∈ {0, . . . ,θp−1},
(2.9f)

xk+θp|k ∈ X̂
θs
f ,k+θp

, (2.9g)
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where the notation ak+i|k denotes the predicted value of the variable a∈ {x,u, ŵ} at time k+ i

given information up until time k; recall that the first stage decisions θ = {θdesign,θmpc} are

composed of both the system design variables θdesign = d and the MPC-based DR parameters

θmpc = γ = {θp,θl,θ f ,θm,θd,θb,θs}. Here, (2.9a) is the total cost to be minimized that

is composed of a stage cost ˆ̀θl
k+i : X ×U ×Θ→ R (parametrized by θl) summed over

the prediction horizon θp and terminal cost V̂
θ f
f ,k+θp

: X ×Θ→ R (parametrized by θ f ).

Often, one will select the MPC stage cost ˆ̀θl
k+i(·) to be closely related (or identical) to the

IDC stage cost `(·), though additional parameters can be added to improve tuning. The

constraints (2.9b) define the predicted state sequence as a function of the predicted input and

estimated uncertainty values using approximate system model f̂ θm : T ×X ×U ×W×Θ→

X (parametrized by θm). This approximate model can be derived in a variety of different

ways including lumped parameter models derived from physics-based equations or black-box

system identification methods using simulated data from (2.1). It is important to note that

the approximate model should be constructed to depend on θdesign so that the MPC policy

responds to changes in the system design. The controller’s ability to automatically update

to different design specifications is a big advantage of MPC compared to most alternative

explicit DR representations. This design-dependent form of MPC is not traditionally

considered in the literature since the design variables are assumed to be fixed. The recursion

(2.9c) computes the predicted future disturbance sequence {ŵt+k|t}, while (2.9d) ensures

the initial state and disturbance at time t start from their most recently measured values.

The set of constraints in (2.9e) approximately enforce the system constraints (2.2) for the

predicted uncertainty values where θb ≥ 0 denote backoff parameters that are able to confer

strong robustness properties when properly designed [87] (with larger values implying a
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higher degree of conservatism). Hard input constraints are enforced via (2.9f) and terminal

constraints are represented in (2.9g) in terms of the set X θs
f (parametrized by θs).

The solution to the MPC optimization problem (2.9) is the optimal predicted state

sequence {x?k+i|k}
θp
i=0 and control input sequence {u?k+i|k}

θp−1
i=0 given the most recent state

xk(ωωω,θ) and disturbance wk measurement. The key idea in MPC is its receding horizon

implementation, which implies only the first input is supplied to the system at every time

k ∈ T ; then the next set of measurements are used to update the problem, which is solved

again at k+1. Thus, we can represent the MPC law as an implicit DR as follows

uk(ωωω,θ) = κ(k,xk(ωωω,θ),wk,θ) = u?k|k(xk(ωωω,θ),wk,θ). (2.10)

This receding horizon implementation is illustrated in Fig. 2.1. Note that the terminal cost

V̂
θ f
f ,k+θp

(·) and constraint set X̂ θs
f ,k+θp

can be chosen to ensure stability, constraint satisfaction,

and recursive feasibility of the MPC problem (2.9), at least for the nominal model as

discussed by Mayne [88]. In practice, however, these objects are difficult to construct for

nonlinear and mixed-integer models, which implies a more practical approach is to search

for optimal θmpc values that can more directly achieve the cost and constraint specifications

that appear in the original IDC problem (2.3).

Next, we provide an illustrative example that compares MPC to a PID control on a

nonlinear benchmark problem to highlight its advantages in terms of an enlarged feasible

region and improved performance.
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Figure 2.1: Receding horizon implementation of MPC. Here, the outputs are predicted over
a finite horizon, while only the first set of optimal input values are actually implemented.

2.4 Example: Comparison of MPC- and PID-based Decision Rules

Consider an isothermal continuously stirred tank reactor (CSTR) in which an elementary

exothermic second-order reaction is taking place that converts reactant A to the desired

product B, i.e.,

2A−→ B.

Under standard assumptions, the mass balance for species A can be written as

dCA

dt
=

F
VR

(CA0−CA)− k0e−
E

RT C2
A, (2.11)

where CA denotes the concentration of A in the reactor, F is the feed flow rate, VR is the

reactor fluid volume, k0 is the pre-exponential rate factor, E is the activation energy for the

reaction, R is the gas constant, and T is the reactor temperature. We assume a constant

sampling time of Ts = 0.01 hour. The model parameters can be found in Table 2.1.
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Table 2.1: Parameter values for CSTR case study

Parameter Value Unit
k0 2.115×106 L mol−1 s−1

E/R 6014 K
VR 1 m3

T 515 K
CA0 3.5 kmol m−3

The single control input is the feed flow rate F , implying that (2.11) is of the form (2.1)

with x←CA and u← F (note there are no design or uncertain variables in this example).

The initial state condition is assumed to be b0 = 0.1 kmol m−3. We also consider hard input

and state constraints of the following form

0≤ F ≤ 10 m3/s, (2.12)

0≤CA ≤ 4 kmol m−3. (2.13)

These constraints can be straightforwardly cast as (2.2) with ε = 1; the probability operator

can be trivially evaluated since there is no uncertainty considered in this example. We

assume that the operating cost is defined in terms of the deviation from a desired steady state

O(θ) =
T−1

∑
k=0

α(xk(θ)− xs)
2 +β (uk(θ)−us)

2, (2.14)

where T = 100, α = $1.74×104, β = $1×103, and (xs,us) = (0.3376 kmol m−3,5 m3/s).

Since we do not consider any design variables in the CSTR system, θ only represents the

controller tuning parameters in this case. Additionally, since there is no capital expenditure

required, the total cost is directly equal to the operating cost.
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First, we consider a PI controller for the DR structure (2.4). A discrete-time implemen-

tation of the PI controller can be expressed as

uk(θ) = us +Kcek +
Kc

τI

k

∑
i=1

eiTs, (2.15)

where ek = xs−xk is the error between the setpoint and the measured state at time step k ∈ T ,

Kc ∈ [1,70] is the proportional gain, and τI ∈ [0.001,1] is the integral time constant. The

DR parameters θ = (Kc,τI) in (2.15) are the proportional gain and integral time constant.

Without performing any detailed analysis on the CSTR model, we cannot easily determine

what range of parameters will lead to good performance, so we intentionally take a large

range of values to test. The closed-loop operating cost for the CSTR system (2.14) controlled

by the PI in (2.15) versus the tuning parameters θ ∈ Θ = [1,70]× [0.001,1] is shown in

Fig. 2.2. Note that θ values that lead to violation of the state constraints (2.13), i.e.,

infeasible operation are depicted as white regions in Fig. 2.2. We see that the cost O(θ) ∈

$[98.4,1489.7] varies substantially over the feasible θ ∈ Θ values. The feasible region is

also fairly complicated (non-convex), with the closed-loop system resulting in constraint

violations for all Kc ≥ 65 and τI ≤ 0.05. This highlights some of the complications of PID

controllers, even in the context of setpoint tracking, that can produce substantial variability

in cost and constraint satisfaction.

We now analyze an MPC DR-based structure of the form (2.10), which is based on the

solution to the optimization problem (2.9). We specify the stage cost as ˆ̀θl
k+i(xk,uk,θ) =

(xk− xs)
2 + θl(uk− us)

2 with ratio parameter θl ∈ [0.0005,0.2]. The terminal cost and

constraints are neglected, and the system model is a discretized version of (2.11). We also

treat the prediction horizon θp ∈ {4, . . . ,25} as a parameter in the MPC-based DR. The

optimization problem (2.9) is formulated in CasADi [89] in MATLAB R2019a and solved

using the nonlinear programming solver IPOPT [90]. The closed-loop operating cost for the
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Figure 2.2: Comparison of closed-loop cost for the CSTR over PID tuning parameters Kc
and τI . White regions denote parameters that lead to constraint violation.

CSTR system (2.14) controlled by MPC versus the tuning parameters θ = (θl,θp) ∈Θ =

[0.0005,0.2]×{4, . . . ,25} is shown in Fig. 2.3. Again, the white regions denote areas of

infeasible operation. Note that the cost O(θ) ∈ $[104.5,121.4] varies significantly less over

the feasible θ ∈ Θ values of the MPC-based DR compared to that of the PID-based DR.

Additionally, we see that only a relatively small part of the parameter region is infeasible

for small prediction horizons, which is a fairly intuitive response that could have been

forecast without running extensive simulations. These properties of MPC only become more

important as the nonlinearity and dimensionality of the system increases, which clearly

motivates the use of MPC as the DR throughout this thesis.

Although we have a way to simplify the IDC problem without introducing a substantial

degree of suboptimality using MPC, the DRA-based IDC problem (2.6) remains a challeng-

ing optimization problem that requires tailored solution methods to be developed. The next
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Figure 2.3: Comparison of closed-loop cost for the CSTR over MPC tuning parameters θl
and θp. White regions denote parameters that lead to constraint violation. Note that θp is
technically only defined at integer values, though the plot is shown on a continuous scale for
improved readability.

chapter introduces a particularly attractive algorithm for solving (2.6) that is mostly agnostic

to the specific DR employed (i.e., can be flexibly applied to any explicit or implicit DR that

does not add too many independent dimensions to θ ).

Remark 2. The case study in Section 2.4 is meant to demonstrate the added value of MPC

for constrained nonlinear systems. A key reason for why MPC performs so well is that we

have assumed no plant-model mismatch (i.e., a highly accurate model is available) and a

small number of states; this is often not the case in practice and can result in diminished

MPC performance. In more complex systems, such as complete chemical processing plants,

one cannot rely on a fully centralized MPC scheme. Thus, in practice, one often develops a

hierarchical control structure that is a combination of lower-level regulatory PID controllers

and a supervisory MPC layer that updates the setpoints to the fast-acting PID controllers
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at a slow enough timescale to ensure closed-loop stability. Interested readers are referred

to [91–93] for further details on plantwide control structures. Note that the black-box

optimization procedure described in Chapter 3 is capable of handling such complex (but

realistic) control structures whereas most alternative IDC methods (Table 1.1) would not be

applicable.
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Chapter 3: Practical Solutions to Decision Rule-based Integrated

Design and Control using Constrained Bayesian Optimization

In Chapter 2, we introduced the DR-IDC problem (2.6) which can be generally formu-

lated as a black-box optimization problem of the form

min
θ∈Θ

L(θ) s.t. Ck(θ)≥ 0, ∀k ∈ {0, . . . ,T −1}. (3.1)

where L(θ) = Eωωω{C(θ) +O(ωωω,θ)}, Ck(θ) = Pωωω{Gk(ωωω,θ) ≤ 0}− 1+ ε . This DRA-

based approximation to the IDC problem (2.6) is still intractable since the probabilistic

operators Eωωω{O(ωωω,θ)} and Pωωω{Gk(ωωω,θ) ≤ 0} are not finitely computable in general.

Thus, a common approach is to evaluate both L(θ) and Ck(θ) via stochastic simulations.

For fixed θ , this consists of simulating (2.5) for randomly generated ωωω to evaluate O(ωωω,θ)

and Gk(ωωω,θ), which are then used to estimate the objective and constraints. Using this

approach, we can then cast (2.6) as a simulation-based optimization problem involving an

“outer” optimization over only θ and an “inner” or “embedded” stochastic simulation needed

to evaluate L(θ) and Ck(θ). Monte Carlo (MC) sampling can then be used to approximate

the objective and constraints from the inner stochastic simulations as follows:

L(θ)≈ L̂K(θ) = K−1
∑

K
j=1C(θ)+O(ωωω j,θ), (3.2)

Ck(θ)≈ Ĉk,K(θ) =−1+ ε +K−1
∑

K
j=11(−∞,0)(Gk(ωωω

j,θ)), (3.3)
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where 1(a,b) : R→ R is the indicator function of the range (a,b), K is the number of

samples, and {ωωω1, . . . ,ωωωK} are independent and identically distributed (i.i.d.) samples of

the random vector ωωω ∼ pωωω . The MC approximations in (3.2) and (3.3) generate stochas-

tic/noisy observations for both the objective and the constraints since unique samples are

drawn from the uncertainty set at every closed-loop simulation For any sample size K,

Eωωω1,...,ωωωK{L̂K(θ)} = L(θ) and Eωωω1,...,ωωωK{Ĉk,K(θ)} = Ck(θ), i.e. these estimators are un-

biased [94]. According to the central limit theorem, as K increases, the variance of these

estimators decreases linearly in K towards zero. As such, the objective (3.2) and constraint

(3.3) estimates will be very accurate when a sufficiently large K is selected. However, since

the closed-loop simulations are often computationally expensive, we must keep K small and

thus it is crucial to select an optimization algorithm that can handle noisy observations.

In addition to expensive and noisy observations, another key feature of (3.1) is that

we cannot easily estimate derivatives of L(θ) and Ck(θ) that could be exploited by an

established gradient-based optimization algorithm. In fact, since O(ωωω, ·) and Gk(ωωω, ·) are

potentially discontinuous functions with respect to θ for some ωωω values, derivatives may

not even exist such that we need a fundamentally different approach for solving (3.1).

In the absence of gradient information, one usually must resort to so-called derivative-

free optimization (DFO) methods. DFO can be broadly categorized into stochastic and

deterministic approaches; an overview of this breakdown, along with example algorithms

within each category, is provided in Fig. 3.1.

Although there are many DFO methods with abilities to handle some of these charac-

teristics, most of them do not satisfy all of these requirements. For problems of low- to

medium-dimensionality, Bayesian optimization (BO) [95] methods have been found to be

particularly effective at handling these three important characteristics. The basic idea behind
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Derivative Free 
Optimization (DFO)

Deterministic DFO

Lipschitzian-based 
partitioning 
techniques

Surrogate-based 
search algorithms

Stochastic DFO

• Hit-and-run
• Simulated Annealing
• Genetic Algorithm
• Particle Swarm

• DIRECT Algorithm
• Branch-and-bound 

(BB) search

• Trust-region methods
• Branch & fit algorithm
• Radial basis function 

(RBF) methods
• Bayesian Optimization

Figure 3.1: Derivative Free Optimization algorithm classes and examples

BO is to train a probabilistic surrogate model given observations of the objective/constraints

and use this surrogate to optimize an acquisition function that is designed to tradeoff ex-

ploration of regions where the surrogate model is most uncertain and exploitation of the

model’s confidence in good solutions. An important challenge in these approaches is the

selection of the “right” type of surrogate model when little is known about the structure

of the objective. Gaussian process (GP) models [96] are a particularly attractive class of

surrogates since they are both probabilistic and non-parametric. Given a set of function

evaluations, a GP model can be easily derived by placing a prior over the set of possible

objective functions and updating this prior with the available data using Bayes’ rule.

The following section gives a detailed overview of the BO algorithm, along with relevant

modifications to accommodate unknown black-box constraints. See Appendix A for a
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detailed discussion on alternative DFO methods and their relationship to BO, as well as an

example demonstrating the effectiveness of BO.

Note that the case study in this chapter has been adapted from a publication by the author

in the Proceedings of the 2021 American Control Conference [51].

3.1 Overview of Gaussian Process Regression

This section provides a detailed overview of GP regression for general functions f :

Rnx → R from potentially noisy measurements

y = f (θ)+ ε (3.4)

where ε ∼ N (0,σ2
ε ) is a Gaussian noise term with variance σ2

ε . Effectively, GP’s are

an uncountable collection of random variables of which any finite subset have a joint

Gaussian distribution, i.e., generalizes the notion of multivariate Gaussian distributions to

“distributions over functions” [96]. A function f (·) is distributed as a GP in terms of their

mean function µ f (·) and covariance kernel k f (·, ·) such that f (·)∼ GP(µ f (·),k f (·, ·)). A

detailed overview of GP’s is presented next. For any pairs of input points θ ,θ ′ ∈ Rnθ , the

mean function and covariance kernel are defined as follows:

µ
f (θ) = E f { f (θ)}, (3.5)

k f (θ ,θ ′) = E f {( f (θ)−µ
f (θ))( f (θ ′)−µ

f (θ ′))}, (3.6)

where the expectation is taken over the function space. There are multiple covariance

functions available to choose from; in this work, we selected the Matérn 5/2 function [97]

k f (θ ,θ ′) = σ
2
(

1+
√

5r2 (θ ,θ ′)+
5
3

r2 (
θ ,θ ′

))
exp
{
−
√

5r2 (θ ,θ ′)

}
(3.7)

where, σ is the standard deviation and r is the Euclidean distance between θ and θ ′.

To update the GP prior, the function has to be evaluated at particular values of θ . Since
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evaluating (3.2) results in noisy observations, we model them as (3.4). Let y1:n = {y1, . . . ,yn}

denote n noisy observations from (3.4) computed at corresponding inputs θ1:n = {θ1, . . . ,θn}.

Then, y1:n and f (θ) at any test point θ are jointly Gaussian under the GP prior assumption

and can be represented with the following distribution[
y1:n
f (θ)

]
∼N

[ µ f (θ1:n)
µ f (θ)

]
,

[
k f (θ1:n,θ1:n)+σ2

ε In k f (θ1:n,θ)
k f (θ ,θ1:n) k f (θ ,θ)

] (3.8)

where the functions µ f (·) and k f (·, ·) have been overloaded to include element-wise op-

erations across their inputs. Therefore, the posterior distribution p( f (θ)|y1:n,θ1:n) of the

objective under all noisy observations is Gaussian due to properties of joint Gaussian random

variables, with the following expressions for mean and variance [98]:

µ
f

n (θ) = µ
f (θ)+ k f (θ1:n,θ)

(
k f (θ1:n,θ1:n)+σ

2
ε In

)−1(
y1:n−µ

f (θ1:n)
)

(3.9)

(σ f
n )

2(θ) = k f (θ ,θ)− k f (θ ,θ1:n)
(

k f (θ1:n,θ1:n)+σ
2
ε In

)−1
k f (θ1:n,θ) (3.10)

After obtaining the posterior distribution, the next step is to optimize the acquisition function

αn : Θ→ R to probe for the subsequent sampling point θn+1. Intuitively, the acquisition

function evaluates the utility of candidate points for the next evaluation of f (θ); therefore

θn+1 is selected by maximizing αn, where the index n indicates the implicit dependence on

the currently available data. Here the “data” refers to previous locations where f (θ) has

been evaluated, and the corresponding noisy outputs. Next, we discuss how this probabilistic

model can be combined with an acquisition function that is capable of trading off between

exploitation and exploration.

3.2 Expected Improvement with Constraints

Traditionally, BO has been limited to problems with known constraints; however, it

has been recently extended to handle black-box constraints. Several constrained BO (cBO)
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methods have been proposed in the literature (see, e.g., [99] for a detailed discussion).

Here, we focus on an intuitive strategy that builds upon one of the most popular acquisition

functions known as expected improvement (EI). Following [100], we define the constrained

improvement for any candidate design θ as

C-Improv(θ) = Feas(θ)max{0,η−L(θ)}= Feas(θ)Improv(θ) (3.11)

where Feas(θ) ∈ {0,1} is a feasibility indicator function that is 1 if Ck(θ) ≥ 0, and 0

otherwise, and η is the current incumbent value (can be chosen in various ways as dis-

cussed in more detail below). Because L(θ) and Ck(θ) are computationally expensive

to evaluate, we independently model them as GPs, i.e., L(·) ∼ GP(µL(·),kL(·, ·)) and

Ck(·) ∼ GP(µCk(·),kCk(·, ·)) for all k ∈ T . Due to these GP models, the constrained im-

provement (3.11) is a random quantity. Thus, we are interested in using the expected

constrained improvement as our acquisition function that can be derived as follows

EICn(θ) = En{C-Improv(θ)}

= En{Feas(θ)Improv(θ)}

= En{Feas(θ)}En{Improv(θ)}

=
T−1

∏
k=0

Prn{Ck ≥ 0}EIn(θ) =
T−1

∏
k=0

Φ

(
µ
Ck
n (θ)

σ
Ck
n (θ)

)
EIn(θ) (3.12)

where En{·} denotes the conditional expectation with respect to n observations of the

objective and constraint functions, Φ(·) is the standard Gaussian cumulative distribution

function, µ
Ck
n (θ) and σ

Ck
n (θ) are given by (3.9) for n observations of f = Ck, and EIn(θ) is

the standard (unconstrained) expected improvement function. As shown in Jones et al. [101],

EI can be derived analytically for GP models

EIn(θ) = σ
L
n (θ)(zLn (θ)Φ(zLn (θ))+φ(zLn (θ))), (3.13)
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where zLn (θ)= (η−µL
n (θ))/σL

n (θ); µL
n (θ) and σL

n (θ) are given by (3.9) for n observations

of f = L, and φ is the standard Gaussian probability density function.

In the unconstrained setting, the incumbent η can be simply selected as the minimum

current observation. When constraints are included, this definition must be updated to the

be the minimum feasible observation

η =

{
∞, if no points are feasible,

mini∈{1,...,n}L(θi) s.t. Ck (θi)≥ 0, ∀k ∈ T , otherwise.
(3.14)

In the presence of noise, however, this selection can be overly optimistic. A commonly used

alternative that we pursue here is to select the incumbent based on the minimum predicted

mean value subject to chance constraints

η = min
θ∈Θ

µ
L
n (θ) s.t.

T−1

∏
k=0

Φ

(
µ
Ck
n (θ)

σ
Ck
n (θ)

)
≥ 1−δ , (3.15)

where δ ∈ (0,1) is a tuning parameter typically set to δ = 0.05. This choice has been shown

to be much less sensitive to noisy measurements and, in fact, can be thought of a way to

filter out noise via the GP model. The complete cBO method is summarized in Algorithm 1,

and a simple illustration is provided in Fig. 3.2 [102]. Next, we apply the cBO algorithm

to a relevant case study to demonstrate its ability to handle the complex MPC-based DRs

discussed at length in Chapter 2.
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Algorithm 1 The EIC algorithm under the BO framework [103]

1: Initialize: Input space Θ; GP prior µ(·) and k(·, ·); number of MC evaluations K; and
maximum number of iterations N.

2: for n = 0 to N−1 do
3: Construct GP surrogate models for L(θ) and C(θ) given all available data using the

posterior mean and variance equations in (3.9) and (3.10).
4: Maximize the acquisition function to find θn+1 = argmaxθ∈Θ EICn(θ).
5: Perform expensive closed-loop simulations to evaluate the objective and constraints

using (3.2) and (3.3)
6: end for

Figure 3.2: Illustration of the Bayesian Optimization algorithm
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3.3 Case Study: Flexible Design of a Building Cooling System

3.3.1 System Description

The proposed IDC approach is applied to the design of a building cooling system,

adapted from [104]. An illustration of the overall system is provided in Fig. 3.3. The system

model (2.1) is the discretized version of the differential equation

m
dx
dt

=−kb(x−Tamb)+qamb−q+w, (3.16)

where x is the (average) building temperature, Tamb is the ambient outside air temperature,

qamb is the direct heating provided by the ambient, q is the cooling supplied by the chillers,

m = 10 is the constant building mass, kb is the building heat transfer coefficient, and w

is a random time-varying disturbance that is uniformly distributed between [−1,1]. We

assume a constant sample time of Ts = 1 hour and approximate the input q and time-varying

parameters Tamb and qamb as piecewise constant.

Zone,	T

qamb Ambient Tamb

q

Chiller	1

Chiller	2

Chiller	N

kb

Figure 3.3: Illustration of simple building cooling system.
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Let Nchiller denote the number of chillers that can be either on or off. We include another

discrete control input variable v to select how many chillers to activate at each sample time.

Since each active chiller must be within the range [qmin,qmax], we can formulate the input

constraints u = (q,v) ∈ U as

qminv≤ q≤ qmaxv, v ∈ {0,1, . . . ,Nchiller}, (3.17)

where q denotes the total cooling provided by all chillers. The number of chillers and heat

transfer coefficient are the design variables, i.e., θdesign = (kb,Nchiller) ∈ D = [0.1,10]×

{1, . . . ,5}. The capital cost function is given by

C(θ) = αHT k−0.8
b +αCHN1.8

chiller. (3.18)

where αHT = $2×105 and αCH = $3.482×102 are the costs of building material and chiller

equipment, respectively. Electricity is the main operating cost, which is given in terms of

the stage cost function `(k,x,u,d) = βρkq where β = $2.734×10−5 is a constant and ρk is

the (normalized) time-varying price of electricity. We are interested in 10 years of operation.

Since the constraints and disturbances are periodic, we can compute the stage cost ` over

a subset, e.g., T = 72 (3 days) and scale by 3650/3 to approximate the total cost over 10

years. In addition, we would like to enforce comfort constraints on the state

P{Tmin,k ≤ xk ≤ Tmax,k} ≥ 0.95, (3.19)

where Tmin,k and Tmax,k are time-varying lower and upper bounds on the building temperature,

respectively. The numerical values of the time-varying parameters (Tamb,qamb,ρ) are shown

in Fig. 3.4, which are 24-hour periodic.
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Figure 3.4: Nominal time-varying parameter values, which are 24-hr periodic.

3.3.2 Mixed Integer Model Predictive Control based decision rule

A particular case of interest in MPC is discrete-valued actuators, which allows for higher-

level decisions, such as switching a piece of equipment on or off, to be made optimally as

opposed to heuristically. The recent development of mixed-integer MPC (MIMPC) [104]

provides a useful framework for addressing such problems that involve combinations of

continuous-and discrete-valued actuators. Hence, the control inputs uk = (qk,vk) are selected

using a high-quality MIMPC controller (2.10), where we partitioned the control inputs into

their continuous uc(i) ∈ Rnc
u and discrete ud(i) ∈ {0,1}nd

u components above. The nominal

model f̂ θm used to derive this control law is the discretized version of (3.16) with w = 0. To

avoid infeasibilities in (2.9), we implement the temperature bounds using soft constraints,
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i.e.,

max(xk−Tmax,k,Tmin,k− xk)+θb ≤ εk, (3.20)

where εk ∈ R≥0 denotes the slack variables representing the magnitude of the constraint

violations and θb ∈ R≥0 is a backoff parameter in the DR that acts as an additional safety

margin for disturbances. The stage cost is then the sum of electricity costs and the state

constraint penalties

ˆ̀θl
k =ρkq+θsεk, (3.21)

where the penalty coefficient θs ∈ R≥0 is a DR parameter. We assume a constant prediction

horizon of θp = 10. We set the terminal cost V
θ f
f to zero and solve a single instance of the

optimal control problem (2.9) to obtain an optimal periodic profile of the state and the input

(xr,ur) with initial conditions x(0) free and added constraint x(0) = x(T ) for T = 24. We

then enforce a terminal equality constraint X θs
f (for stability purposes) on the MPC wherein

the state is required to converge to the optimal periodic cycle obtained.

3.3.3 Integrated design and control using constrained BO and com-
parison to various DFO solvers

Given the MIMPC-based DR with parameters θmpc = (θs,θb) ∈ [100,1000]× [0,0.25],

we can solve the DRA-based SO problem (3.1) using the constrained BO algorithm presented

in Section 3.1. The objective and constraint functions are estimated using (3.2) and (3.3),

respectively, with M = 1. Based on initial simulations, a feasible set of design decisions

θ 0
design = (kb,Nchiller,θs,θb) = (2.5,5,500,0.1) was found – L(θ 0) = $1.154× 105 was

estimated using 100 random ωωω values. The constrained BO algorithm was executed using

bayesopt in MATLAB R2019a for a total of 35 iterations, with the first 5 being randomly
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selected in addition to θ 0. Fig. 3.5 compares results obtained with the EIC acquisition

function to that of probability of improvement and random search. Because these algorithms

are stochastic, they were repeated for 10 different sets of random seed points. The EIC-based

constrained BO approach terminated with L(θ ?) = $7.597×104, which was the best point

found by any method. All 10 runs converged within a few percent of this point. Although

random search did find a similar point in 1 of the 10 runs, it resulted in significantly higher

variance with several runs producing virtually no improvement over the feasible seed point

θ 0. This demonstrates the value of a sequential data-driven optimization strategy that can

effectively use previous function evaluations to perform a targeted search of the design

space, regardless of their complexity or convexity/smoothness properties.
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Figure 3.5: The simple regret versus number of iterations n for three different acquisition
functions. Each approach was repeated for 10 sets of random seed points. The mean of
these 10 runs are shown in bold and the minimum and maximum values are shown with
asymmetric error bars.
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Figure 3.6: Closed-loop building temperature profiles over time for IDC (blue) and multi-
period design (red) for 100 uncertainty realizations.

To highlight the importance of considering an integrated form of the design and control

problem, we compare the results obtained from the constrained BO method above to that

of a sequential design and control method. In particular, we solve a multiperiod design

problem that can be thought of as a two-stage approximation of (2.3), as discussed in [105].

Since only two stages are considered, a steady-state version of the model is used with

the control inputs being treated as “wait-and-see” decisions that are able to adapt to the

set of time-varying uncertainty values (see Fig. 3.4). In addition, the multiperiod design

problem cannot account for time-varying temperature constraints so that we fix the upper and

lower bounds to mink∈T Tmax,k and maxk∈T Tmin,k, respectively. The restrictive constraints

and varying uncertainties result in an infeasible multiperiod design problem such that the

comfort constraints must be softened in order to obtain a solution. Under the resulting
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multiperiod design solution, we were unable to find DR parameters that satisfy constraints

(3.19). The building temperature profiles for the optimal IDC found using constrained BO

and the multiperiod design (with MIMPC-based DR using θs = 1000 and θb = 0.25) for

100 random ωωω realizations are shown in Fig. 3.6. We can clearly see that the IDC is able

to consistently satisfy the comfort constraints with high probability whereas the sequential

approach results in significant violation (regardless of the choice of θ ). This highlights the

limitations of the sequential method. Thus, we can conclude that integrating the design in

the control problem is very important in such problems with highly time-varying natures.
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Chapter 4: Multi-Fidelity Bayesian Optimization and Application to

Next-Generation Energy Systems

With the significant increase in global energy demand and the advent of next-generation

manufacturing and energy systems, such as combined heat and power (CHP) plants, smart

grids, and multi-product chemical plants, the necessity for a paradigm shift in energy

production and operations is paramount. This challenge is intensified by environmental

concerns resulting from the commonplace use of traditional energy sources, like fossil

fuels and its derivatives, which are large contributors to climate change. To enable this

shift into the next-generation, we need to be able to design flexible energy production

and manufacturing processes that are to respond/adapt to highly dynamic and uncertain

conditions in an optimal manner. The design of such advanced energy and manufacturing

systems requires an integrated design and control (IDC) approach.

In Chapter 3, we discussed a practical solution approach for the IDC problem using a

novel black-box optimization strategy called constrained Bayesian optimization (cBO). We

then showcased its performance on the flexible design of a building cooling system and

compared it to the conventional sequential design and control approach. In this chapter

however, we extend the notion of Bayesian optimization for IDC of large-scale advanced

energy systems which requires a minor but important change in the DR-IDC problem

formulation. In Chapter 2 we introduced the IDC problem formulation (2.3) which consisted
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of an objective consisting of the capital cost and the operating cost at each stage subject to

joint chance constraints (2.2). There are several ways to formulate these constraints, which

is highly-dependent on the problem at hand. For certain classes of energy systems, we can

instead formulate these constraints as expectation-type constraints

Eωωω

{
max{Gk(ωωω,θ),0}

}
= 0, (4.1)

where Gk(ωωω,θ) = g(k,xk(ωωω,θ),uk(ωωω,θ). These types of constraints are beneficial for a

couple of reasons. They avoid the need to tune the probability of violation as a parameter

and allow for an associated penalty whenever a violation occurs. An added advantage of

formulating the constraints as expectation-type constraints is that they can be softened when

they are not safety-critical for the process. Comfort constraints are prevalent in energy

systems (e.g., temperature of a building, price of electricity, etc.), which can be modeled in

the form of (4.1). In addition, when we soften these constraints, they can be easily pulled

into the expectation as follows

min
θ∈Θ

Eωωω

{
L(ωωω,θ)+

T−1

∑
k=0

v>k max{Gk(ωωω,θ),0}

}
, (4.2)

where L(ωωω,θ) = C(θ) +O(ωωω,θ) is the total capital plus operating cost and vk is the

Lagrange multiplier for the kth constraint. By the weak duality theorem, the solution to

(4.2) is a lower bound for the hard-constrained problem for any vk. Since the expected

constraint violation must be non-negative, we know that vk ≥ 0 for all k = 0, . . . ,T −1. The

main advantage of this formulation is that we only need to develop surrogate models of the

overall objective such that we can explore the use of more advanced multi-fidelity Bayesian

optimization methods in this chapter.

The contents of this chapter have been adapted from a journal publication by the author

that was submitted to a special issue in Optimal Control Methods and Applications [106].
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4.1 Multi-Fidelity Bayesian Optimization

This section focuses on a more efficient extension of traditional BO (Chapter 3) when

simpler approximate versions of the IDC problem can be developed. First, we reformulate

(4.2) as a maximization problem for simplicity of presentation

F? = max
θ∈Θ

F(θ) :=−Eωωω

{
L(ωωω,θ)+

T−1

∑
k=0

v>k max{Gk(ωωω,θ),0}

}
, (4.3)

Note that F in this chapter will refer to our performance function that we want to maximize

and should not be confused with the system dynamic or cost function f from the previous

chapters. The main bottleneck in the approach proposed in Chapter 3 is that the full closed-

loop system must be simulated M times at every iteration. An interesting idea for alleviating

this bottleneck is the use of series of approximate models for the objective, as opposed to

a single high-fidelity model. This is often referred to as multi-fidelity optimization in the

literature and has been successfully applied in the context of automated machine learning

[107–109]. Since the approximations are still correlated to the high-fidelity evaluation, we

can reasonably expect that these models may provide valuable information at a fraction

of the cost, which can be used to avoid “wasting” very expensive function evaluations on

particularly poor designs. This discussion motivates the following two questions, which we

look to (partially) answer in the next two sections:

1. Can we come up with a systematic procedure to decide at what fidelity and location

we should sample?

2. How should we construct lower-fidelity representations of the IDC performance

function in (4.3)?
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4.1.1 Setting up the Multi-Fidelity Problem

We address the first question using a multi-fidelity extension of the BO framework, which

we refer to as multi-fidelity BO (MFBO) for short. The main difference from the traditional

setup in Chapter 3 is that the function is unconstrained and we assume access to a set of

M− 1 successively accurate approximations, which we denote by F(1),F(2), . . . ,F(M−1),

to the true function of interest F(M) = F . In other words, Chapter 3 assumed that M = 1.

Following Kandasamy et al. [110], these approximations (also known as fidelities) must

satisfy two important conditions:

1. The functions F(1), . . . ,F(M−1)are approximations of F(M) with bounded error that

successively improves, i.e.,

‖F(m)−F(M)‖∞ ≤ ζ
(m), ∀m ∈ {1, . . . ,M}, (4.4)

where the bounds ζ (1) > ζ (2) > · · ·> ζ (M) = 0 are known.

2. The functions F(1), . . . ,F(M−1) are cheaper to evaluate than F(M), i.e., 0 < λ (1) <

λ (2) < · · ·< λ (M) where λ (m) denotes the computational cost of querying at fidelity

m ∈ {1, . . . ,M}.

Roughly speaking, these two conditions state that the approximations should become both

more accurate and more costly, as the level m increases. As opposed to just sampling

{xn}n≥0, the multi-fidelity version of the algorithm must determine a sequence of query-

fidelity pairs {(xn,mn)}n≥0 where, at any given time n, the algorithm can use information

from the previous n−1 query-observation-fidelity triples, i.e., {(θi,mi,yi)}n−1
i=1 . Note that,

similarly to (3.2), the observations are modeled as

yi = F(mi)(θi)+ εi, (4.5)
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where εi are independent noise realizations at every iteration i, with E{εi}= 0. Note that

the cases of interest are for M values that are fixed and relatively small (in the range of 2

to 4) and λ (1) values that are comparable to λ (M) – this implies that the approximations to

F(θ) remain fairly expensive and still require an intelligent BO-like procedure to optimize.

Let Λ denote the maximum allowed resources that can be used by the multi-fidelity

optimization procedure. The number of iterations taken until the resources have been

exhausted can be inferred from the evaluation cost of each fidelity above as follows

N = max{n≥ 1 : ∑
n
i=1 λ (mi) ≤ Λ}, (4.6)

for a given set of data {(θi,mi,yi)}i≥0 produced by some algorithm. It is important to

note that N is an implicit function of the initial data in this case. This means N cannot be

computed a priori and will be a random variable whenever the algorithm is seeded with

some randomly selected initial function evaluations.

4.1.2 MFBO using Upper Confidence Bounds

Given the posterior distribution (3.9), the next step is to choose an acquisition function

to probe for the subsequent sampling point, as discussed in Chapter 3. A popular choice

is Expected Improvement (EI) as the acquisition, but we choose a recent alternative that is

particularly relevant in this work, called GP-based upper confidence bound (GP-UCB), that

can be defined as follows [103]

αn(θ) = UCBn(θ) = µn(θ)+
√

βnσn(θ), (4.7)

where βn > 0 is some user-specified constant at each iteration n (typically chosen to be

βn = 0.2nθ log(2(n− 1)) [111]). The main intuition behind UCB is that the mean µn(θ)

encourages querying where we know F(θ) is high, while the standard deviation σn(θ)
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encourages querying at regions that we are most uncertain about F(θ). As such, the factor

βn directly controls the trade-off between exploration and exploitation.

The reason why GP-UCB is chosen over EI is that we cannot compute a single GP when

there are bound constraints between models and hence, we must condition on data only

at one fidelity to simplify the model. This restricts the computation of the expectation for

the full model, which makes it limiting to use EI. However, each GP is able to bound the

response at each fidelity, so it is then easy to use them to compute a set of M upper bounds.

We want to take the lowest of these M upper bounds as our acquisition, hence UCB is the

preferred choice of acquisition. Now that we have established the choice of the desired

acquisition, we can discuss the extension of the GP-UCB algorithm to the multi-fidelity

setting based on the algorithm presented by Kandasamy et al. [110]. The main idea is to

maintain an upper confidence bound for F(M) using the data available at all fidelity levels.

Due to the constraints (4.4), the posterior for any F(m) conditioned on all available data

is not Gaussian. Let µ
(m)
n (θ) and σ

(m)
n (θ) denote the posterior GP mean and standard

deviation for F(m) conditioned on only the previous data points available at the mth fidelity.

For a reasonably chosen βn value, we know that µ
(m)
n (θ)+

√
βnσ

(m)
n (θ) will upper bound

F(m)(θ) with high probability. Combining this with the bounds in (4.4), we know

ϕ
(m)
n (θ) = µ

(m)
n (θ)+

√
βnσ

(m)
n (θ)+ζ

(m), ∀m ∈ {1, . . . ,M}, (4.8)

represent a set of M upper bounds for F(M). The best upper bound is then given by

ϕn(θ) = min
m∈{1,...,M}

ϕ
(m)
n (θ). (4.9)

We use this upper confidence bound for our acquisition function, in place of the tradi-

tional single-fidelity GP-UCB in (4.7), meaning that our next query point is at θn+1 =

argmaxθ∈Θ ϕn(θ). To determine which fidelity to query, we find the smallest fidelity such

46



that the following inequality holds

√
βnσ

(m)
n (θn+1)≥ γ

(m), (4.10)

where γ(m) > 0 is a threshold value for all m ∈ {1, . . . ,M−1}. If this is not satisfied for any

m, then we query at mn+1 = M. The intuition behind (4.10) is that it is not worth spending

resources in a region where the function F(m) has a small amount of uncertainty since the

bound ζ (m) caps off how much we can learn about the true function. As such, smaller values

for γ(m) result in a larger number of queries at fidelity m to reduce the variance below this

threshold. A summary of the multi-fidelity GP-UCB (MF-GP-UCB) method is provided in

Algorithm 2.

Algorithm 2 The MF-GP-UCB algorithm [110]

1: Initialize: Input space Θ; specify GP priors {µ(m)(·),k(m)(·, ·)}M
m=1; bounds {ζ (m)}M

m=1;
thresholds {γ(m)}M

m=1; initial datasets D(m)
0 = /0 for all m = 1, . . . ,M; and maximum

allowed resources Λ.
2: for n = 0 to N−1 do . N is defined implicitly based on spent resources according to

(4.6).
3: for m = 1 to M do
4: Construct a GP surrogate model for F(m)(θ) given available data D(m)

n similar
to (3.9) . only needed if new data was added in previous iteration, otherwise can reuse
previous mean and covariance functions.

5: end for
6: Maximize the MF acquisition function to find θn+1 = argmaxθ∈Θ ϕn(θ).
7: Select fidelity level based on mn+1 = min{m :

√
βnσ

(m)
n (θn+1)≥ γ(m) or m = M}.

8: Query the function F(mn+1)(θn+1) to get observation yn+1.
9: Update D(m)

n+1←D
(m)
n ∪{(θn+1,yn+1)} and set D(m)

n+1←D
(m)
n for all m 6= mn+1.

10: end for

The γ(1), . . . ,γ(M−1) values are tuning parameters of the algorithm, which are needed to

ensure too much effort is not spent at the lower fidelities. This is achieved in practice by

setting γ(m) to small values for all m ∈ {1, . . . ,M−1}; however, if the algorithm does not
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query above fidelity m for more than λ (m+1)/λ (m) iterations, then γ(m)← 2γ(m). All of the

γ(m) values were initialized to 1% of the range of the observations from the initial queries.

Additionally, Algorithm 2 assumes that the bounds ζ (1), . . .ζ (M−1) are given, which is hardly

the case in most practical applications. In the available open-source implementation of

MF-GP-UCB, these M−1 values are converted into a single bound by making the following

stronger assumption

‖F(m)−F(m−1)‖∞ ≤ ζ , ∀m ∈ {2, . . . ,M}. (4.11)

Note that this satisfies (4.4) by setting (ζ (1), . . . ,ζ (M)) = ((M− 1)ζ , . . . ,ζ ). The value

of ζ is initialized to 1% of the range of the observations from the initial queries. In

addition, whenever we query at any fidelity m > 1, we check if thee following condition

holds |F(m)(θn+1)−µ
(m−1)
n (θn+1)|> ζ ; if so, then we also query at fidelity m−1. If the

difference between the evaluation at the two fidelity levels exceeds the current bound, i.e.,

|F(m)(θn+1)−F(m−1)(θn+1)|> ζ , then the bound is doubled ζ ← 2ζ . Lastly, we note that

the required resources λ (1), . . . ,λ (M) may not be known exactly, so that they must also be

estimated as the average computational cost for the initial set of queries at each fidelity level.

Simple regret bounds have been established for the multi-fidelity case shown in Algo-

rithm 2 [110]. The definition of the simple regret is as follows

S(Λ) =

 min
n:mn=M,∀n∈{1,...,N}

F?−F(M)(θn) if we have queried at the Mth fidelity,

+∞ otherwise.
(4.12)

The main remaining ingredient of the MF-GP-UCB algorithm is how to select the different

approximation methods to derive F(1), . . . ,F(M−1). Several different strategies for doing

this in the context of DR-based IDC problems are discussed next.
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4.2 Proposed Lower-Fidelity Models for DR-based IDC Problems

In this section, we discuss three broad approaches for deriving lower fidelity representa-

tions of the cost and constraint functions in the high-fidelity problem given by (4.3). Let λx

and λu denote the cost of determining the successor state in (2.1) and optimal control input

in (2.10), respectively, which are assumed to be roughly constant at each time step t ∈ T .

Then, the total cost of a the high-fidelity simulation is then approximately

λ
(M) ∼ (λx +λu)T. (4.13)

The first approach involves the development of dynamic reduced models (D-RM’s)

for (2.1) to speed up dynamic simulation of the overall system by reducing λx. Modern

simulation models can cover a wide range of length- and time-scales depending on the

system of interest. For example, physics-based building energy and micogrid simulators,

such as EnergyPlus [112] and HOMER Pro [113], require the solution to complex systems

of differential algebraic equations (DAEs) that can involve thousands to millions of state

variables. If we have access to the underlying DAE-based representation, then we are able

to apply physics-based reductions which yields a DAE with many fewer unknown variables,

often referred to as reduced-order D-RM where “order” refers to the number of effective

states variables. If we do not have access to an equation-oriented representation of (2.1),

then the main alternative is to construct a data-driven D-RM from transient input-output

data. This data can be generated from repeated simulation of the system under multiple

step changes in the input – system identification methods can then be used to build a

surrogate model for (2.1) in the form of, e.g., a Volterra series, neural network, or nonlinear

autoregressive moving average with exogenous input (NARMAX) model.No matter how
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the D-RM is built, we expect significant gains in simulation time whenever λx is large since

the evaluation of these simplified models can be done in a very efficient manner.

The second approach is based on reducing the complexity of the DR (i.e., lowering

λu) which, in this work, involves the repeated solution of the MPC optimization problem

(2.10) at every time step of the simulation. In cases that λu is large, there are several

strategies that can be employed to approximate (2.10) in order to develop a lower-fidelity

representation of the DR-based IDC problem (4.3). One of the most obvious strategies is

to reduce the prediction horizon θp, which directly reduces the number of variables that

need to be considered in the MPC optimization. Other general approximation strategies

include increasing the solver tolerance (or limiting the maximum number of iterations) as

well as replacing the cost, system, and/or constraints with convex approximations, so that the

resulting approximate optimization can be solved to global optimality using state-of-the-art

convex programming solvers.

The third and final approach derives a simplified representation of the time grid (i.e.,

reducing T ) using machine learning-based methods. As mentioned previously, one of the

key advantages of IDC is considering the transient response of the system to disturbances

that are inherently multi-scale in nature. This is an especially large challenge in the context

of energy systems where the design decisions last for years (or even decades), while the

operational decisions occur on the order of minutes to hours. As renewable energy integration

continues to increase in scope, the coupling between these different time scales will only

increase in importance. An emerging strategy to include short time scale phenomena in

long-term planning problems is to aggregate time-series data into representative periods,

which directly reduces the number of time steps T needed to complete one closed-loop

simulation. It is not uncommon to be able to represent an entire year (365 days) with a set
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of 5-10 days, which easily produces 1-2 orders of magnitude reduction in computational

cost [114]. Representative periods can be created using time series-based clustering methods

that have been developed within the machine learning community – the basic idea is to

group periods (usually days) into a small number of groups that are similar. A wide-variety

of clustering methods have been used for deriving representative periods, which includes

k-means, k-medoids, hierarchical, and dynamic time warping barycenter averaging (DBA)

clustering.

Note that the discussions provided in this section are not intended to be a compre-

hensive list of all possible reductions. The main goal is to highlight the many different

approximation avenues that are available in practically relevant DR-based IDC problems.

Furthermore, these different strategies can easily be combined to develop any sequence of

models that satisfy bounds above in (4.4). As such, we are not advocating any particular

approximation or sequencing strategy in this paper – we intend to study this topic more

in our future work. Here, we mainly want to highlight the value of lower-fidelity approxi-

mations and their impact in the context of Algorithm 2 on a case study defined in Section 4.3.

4.3 Case Study: Integrated Design and Control of a Building Heating-
Cooling System with Photovoltaic Power Generation, Battery Stor-
age and Grid Support

4.3.1 Description of System Model and IDC problem

We consider the design of a building heating and cooling (HC) system that is connected

to a photovoltaic (PV) array and battery energy storage device, with grid support, as depicted

in Figure 4.1. The main system design variables of interest are the battery capacity θ B
design

and the PV area θ PV
design. We also have three key control inputs ut = {uHC

t ,uB
t ,u

G
t } where
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uHC
t is the net heating energy supplied to the building (which will be positive when heating

and negative when cooling), uB
t is the energy sourced from the battery, and uG

t is the energy

sourced from the grid. As depicted in Figure 4.1, these variables must always satisfy an

energy balance uHC
t = uG

t + uB
t . We model the grid as an infinite reservoir, meaning that

energy may purchased and stored in the battery, used directly for the HC load, or drawn

from the battery and sold for profit. Positive values uG
t > 0 indicate electricity has been

purchased from the grid, while negative values uG
t < 0 indicate electricity is being sold to

the grid. All electricity lines are assumed to be limited to 1500 kWh.

𝑢!"

Battery(B)

Grid(G)

Solar Irradiation

External Temperature

Internal Heat Sources

Photovoltaic 
Cell(PV)

𝑢#

𝑤$

𝑤%&

𝑤'!"

Heating & Cooling 
System(HC)
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o Array Size(𝑑"#)

o Internal
Temperature(𝑥$%)

Figure 4.1: Schematic overview of solar-powered building heating and cooling system with
battery storage and grid support.

The building model is adapted from Gondhalekar et al. [115] that describes the dynamic

evolution of temperature inside of a single room in a larger office building and is composed
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of three states xHC
t = {xHC

t,1 ,x
HC
t,2 ,x

HC
t,3 } that represent the indoor building temperature, average

interior wall temperature and exterior wall temperature, respectively.

ẋHC
1 =

1
C1

[K3(xHC
2 − xHC

1 )+K1(wHC
1 − xHC

1 )+K4(xHC
3 − xHC

1 ) (4.14)

+ τ1wHC
2 +ηhuh +ηcuc +wHC

3 ],

ẋHC
2 =

1
C2

[K2(wHC
1 − xHC

2 )+K3(xHC
1 − xHC

2 )+wHC
2 ],

ẋHC
3 =

1
C3

[K4(xHC
1 − xHC

3 )],

The battery model is composted of a single state xB
t that represents the state-of-charge

(SOC) of the battery.

ẋB =
100

θ B
design

(
−uHC +uG +wB

)
, (4.15)

where xB is the SOC in percent. All parameters and variables for these models are defined

in Table 4.1. Although a simplified battery model was used here to reduce computational

burden in the extensive testing performed, the proposed DR-based IDC and MF-GP-UCB

approaches are generally applicable to sophisticated physics-based models including those

available in the Simulink toolbox that explicitly model chemistry-specific degradation rates.

All relevant parameters in the building and battery models, including the bounds on the

design variables and control inputs, are summarized in Table 4.2.

Several disturbances also enter into different components of the model . The PV can only

absorb so much energy from the sunlight based on the direct horizontal irradiance (DHI),

denoted by wPV
t . Only a fraction of the DHI can then be stored by the battery in every time

instance (assuming capacity is available), which is given by wB
t = θ PV

designwPV
t ηPV where

ηPV denotes the PV efficiency. The external temperature wHC
t,1 , direct normal irradiance

(DNI) wHC
t,2 , and internal heat sources wHC

t,3 also impact the system. Historical weather data
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Table 4.1: System model states, inputs, disturbances, and parameters

Symbol Description Units Value or Range
θ PV

design PV array size [m2] [0, 540]
θ B

design battery capacity [kWh] [0, 1300]

xHC
1 room air temperature [◦C] -

xHC
2 exterior wall temperature [◦C] -

xHC
3 interior wall temperature [◦C] -

xB state of charge [%] -
uHC net heating load [kW] [-1500,1500]
uG energy from grid [kW] [-1500,1500]
uB energy from battery [kW] [-1500,1500]
x̄B SOC upper bound [%] 95
xB SOC lower bound [%] 10
vB SOC violation penalty [$] 0
v̂B SOC violation penalty [$] 2×106

wHC
1 outside air temperature [◦C] [-23,35]

wHC
2 horizontal solar radiation [kW/m2] [0,1033]

wHC
3 internal heat sources [kW] [25,35]

ηh heating efficiency - 4
ηc cooling efficiency - 2
τ1 window radiation coefficient - 20
K1 heat conductivity [kW/◦ C] 16.48
K2 heat conductivity [kW/◦ C] 108.5
K3 heat conductivity [kW/◦ C] 5
K4 heat conductivity [kW/◦ C] 30.5
C1 heat capacity [kJ/◦ C] 9.356×105

C2 heat capacity [kJ/◦ C] 2.970×106

C3 heat capacity [kJ/◦ C] 6.695×105

πPV PV price per square meter [$/m2] 44
πB battery price per kWh [$/kWh] 13.6

for Columbus, Ohio was used to represent wPV
t , wHC

t,1 , and wHC
t,2 . The internal heat sources

wHC
t,3 , on the other hand, were modeled as a uniform random variable between the bounds

given in Table 4.1 whenever the time period satisfies t mod 24 ∈ {8, . . . ,18} (represents
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Table 4.2: Time-varying constraint, price, and penalty parameter values

Time-varying parameters Values in terms of daily time index, q = t mod 24 Units

q ∈ {0, . . . ,7} q ∈ {8, . . . ,18} q ∈ {19,20} q ∈ {21, . . . ,24}
xHC

t 30 26 30 30 [◦C]
xHC

t 19 21 19 19 [◦C]
vHC

t 10−4 10−2 10−4 10−4 [$ / ◦C]
v̂HC

t 102 103 102 102 [$ / ◦C]
πG

t 0.01 0.025 0.025 0.01 [$ / kWh]

business hours from 8am to 6pm) and zero otherwise. The overall system model can then

be cast in the form of (2.1) with states xt = {xHC
t ,xB

t }, control inputs ut = {uHC
t ,uB

t ,u
G
t },

disturbances wt = {wPV
t ,wB

t ,w
HC
t,1 ,w

HC
t,2 ,w

HC
t,3 }, and design variables θ = {θ B

design,θ
PV
design}

using a forward Euler discretization scheme with a 1 hour sampling time. We also assume a

fixed initial condition b0(θ) = {21◦C, 20◦C, 4◦C, 50%}.

The cost function in the IDC problem (2.3) is composed of capital and operating cost.

The capital cost function is the sum of the battery and PV costs, which is given by

C(θ) = π
B
θ

B
design +π

PV
θ

PV
design, (4.16)

where πB and πPV are the per unit costs of the battery and PV, respectively, reported in Table

4.1. The operating costs, on the other hand, are computed according to a fixed time-varying

electricity market structure

`s(k,xk,uk,wk,θ) = π
G
t uG

t , (4.17)

where πG
t is a time-varying price. We consider a one-year planning horizon that corresponds

to T = 8760 steps. Not only do we wish to minimize cost, but we also want to regulate

the internal temperature of the building to satisfy time-varying temperature constraints and
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respect physical SOC constraints. We can cast these as follows

g(k,xk,uk,wk,θ) =


xHC

t,1 − xHC
k,1

xHC
k,1 − xHC

k,1
xB

t − xB

xB− xB
k

 , (4.18)

where xHC
k,1 and xHC

k,1 are the time-varying upper and lower bounds for the internal building

temperature and xB and xB are the fixed upper and lower bounds for the SOC. As shown

in (4.2), the constraints are penalized in the objective function with weights v. Here, we

select the weights v to be time-varying for the temperature constraints, with higher penalties

incurred during business hours, and 0 for the SOC constraints. All relevant price and

constraint values are reported in Tables 4.1 and 4.2. Note that we have implicitly assumed

that we have access to an HC system that offers continuous modes of operation between

the maximum and minimum net energy input in our formulation of the system model. In

practice, several smaller HC units may be required to satisfy the load – if each unit has

a fixed duty cycle, then we would need to include discrete/integer decisions in the model

that represent, for example, turning on or off certain units in certain time periods. This

assumption was made for simplicity, but our framework can easily accommodate such

decision as shown in the previous case study.

4.3.2 Comparing MF-GP-UCB to Alternative Black-box Optimizers

We test out MF-GP-UCB on a deterministic version of (2.3). In particular, we assume

only nominal disturbance sequence ω̂ωω = {ŵ0, . . . , ŵT−1} and relax the non-anticipativity

constraints such that the control input profile can be optimized under this specific disturbance

realization. Under these assumptions, the ideal IDC problem (2.3) simplifies to the following
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finite-dimensional optimization

min
θ∈Θ,uk∈U

C(θ)+
T−1

∑
k=0

`s(k,xk(θ),uk, ŵk,θ)+ `T (xT (θ),θ), (4.19)

s.t. xk+1(θ) = f (k,xk(θ),uk, ŵk,θ), ∀k ∈ T , (4.20)

x0(θ) = b0(θ), (4.21)

g(k,xk(θ),uk, ŵk,θ)≤ 0, ∀k ∈ T , (4.22)

where θ = d since there is no need for a DR in this case as the control inputs are optimized

directly. For any fixed value of θ , (4.19) can be written as a large-scale linear program

based on the assumed system models (4.14) and (4.15) that can easily be represented in

the Yalmip [116] modeling environment and efficiently solved using Gurobi [117]. One

high-fidelity evaluation of (4.19) with fixed θ ∈ Θ and T = 8760 took approximately 1

minutes on a MacBook Pro with a 2.3 GHz Intel Core i9 and 16 GB of RAM.

To develop a low-fidelity model, we focus on k-means clustering approach for simplicity.

We consider one year worth of ambient temperature and solar irradiation data for Columbus,

Ohio from January 2015 to December 2015. Solar irradiation was represented by the

direct normal irradiance (DNI) and direct horizontal irradiance (DHI) values. Temperature,

DNI, and DHI profiles over this time period were obtained from the publicly available

National Solar Radiation Data Base [118] maintained by by the National Renewable Energy

Laboratory. Daily profiles for these quantities over this two-year period are shown in

Figure 4.2. To preserve any existing correlation between these quantities, the three datasets

are combined together into a 72-element vector before applying the k-means clustering

algorithm. To determine the “best” number of representative days, we successively run the

algorithm for increasing number of clusters k = 2,3, . . . ,20 and calculate the normalized

sum of squared errors between the clustered and actual days, as shown in Figure 4.3. In
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this case, we see that 5 representative days reduces the error to acceptable levels (below

10%). The resulting temperature, DNI, and DHI profiles for the 5 representative days

(corresponding to the centroid of the 5 clusters) are shown in Figures 4.2, along with the

fraction of the year that each day represents. We are now able to use these representative

days, weighted by their fraction of occurrence, as a lower-fidelity approximation of (4.3).

Evaluating the low-fidelity model, which is equivalent to (4.19) with T = 120 and ω̂ωω

replaced with the clustered disturbance sequences, reduced the computational cost by a

factor of 50 (estimated as the average over ten separate runs at each fidelity level). As

such, we were able to set the cost values to λ (1) = 0.02 and λ (2) = 1, with λ (2) representing

the high-fidelity cost that we normalize to 1. We set our total budget to Λ = 12, which

corresponds to 12 equivalent high-fidelity evaluations. Note that 4 out of the 12 maximum

budget units are allocated to a set of evaluations at randomly sampled points, which are

needed to construct an initial GP as well as estimate the bounds in (4.4).

We compare the MF-GP-UCB algorithm to three alternatives; note that we focus on

the BO framework since this has already been demonstrated to be effective in reasonably

low-dimensional spaces compared to alternatives (see Appendix A for further discussion).

The three alternatives are single-fidelity GP-UCB, expected improvement (EI), and random

search. The EI approach was implemented using bayesopt [119] within the Matlab Op-

timization Toolbox, while the others were executed in an open-source implementation of

MF-GB-UCB available at: https://github.com/kirthevasank/mf-gp-ucb. We use

simple regret (4.12) as our performance metric to compare these different methods. Due to

the random initialization, simple regret is a random variable and thus it is not informative to

show results for a single initialization. Instead, we repeat each experiment 10 times to esti-

mate the average simple regret for each algorithm – error bars are computed by estimating
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Figure 4.2: Clustering one year of weather data into 5 representative days using k-means
clustering. The top, middle, and bottom rows represent DHI, DNI, and temperature, re-
spectively, while the left and right columns represent the year-long and clustered data,
respectively. The fraction of occurrence for each representative day in the year is shown
next to each curve in (f).

the confidence intervals as 1.96 times the standard deviation divided by the square root of

the number of repeats.
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Figure 4.3: Elbow plot showing how well the disturbance dataset for the case study in
Section 4.3 is represented as a function of the number of clusters.

The expected simple regret versus fraction of the maximum budget spent for all four

algorithms is shown in Figure 4.4. We clearly see that MF-GB-UCB converges faster than

the other methods and does particularly well for budget fractions between 0.5 and 0.8. It is

interesting to note that random search actually outperformed the single-fidelity GP-UCB

approach in this case. We believe this is due to a relatively small sample size of 10 repeats

and the tendency for GP-UCB to over explore. EI, on the other hand, does result in similar

quality solutions at the end of the budget; however, it does considerably worse at smaller

budgets, which suggests significantly worse anytime performance. To demonstrate that

MF-GP-UCB was able to identify good designs, we analyze the solution in more detail for

the median of the 10 repeats. The year-long sequence of the day-averaged control trajectories

are shown in Figure 4.5. Although we see that the average net heating is higher during the

summer than winter, there is no clear trend in these results, which highlights the need to
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Figure 4.4: The simple regret S(Λ) versus fraction of budget spent for four different
optimizers. Each approach was repeated for 10 sets of random seed points. The mean of
these 10 runs are shown in bold and confidence intervals shown with error bars.

consider short time-scale phenomena when dealing with highly variable disturbances. Based

on these daily averaged profiles, we selected three consecutive summer and winter days to

plot at the hourly scale in Figure 4.6. From this figure, we can see the cyclic nature of the

state and control profiles from day to day as well as strong seasonal effects that result in

vastly different control strategies.
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Figure 4.5: Year-long trajectory of the daily average control strategy during business hours
(8am to 6pm) for the MF-GP-UCB solution to (4.19). Days 5-8 and 177-180 are highlighted
in red, and are shown in detail in Figure 4.6 to highlight the differences in winter versus
summer operation
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Figure 4.6: State and control trajectories for three consecutive days in winter (blue) and
summer (red) corresponding to Figure 4.5.
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Chapter 5: Conclusions and Future Work

5.1 Summary of Contributions

This thesis focuses on the development of practical and efficient approaches for solving

complex and expensive optimization problems derived from integrated design and control

(IDC) models under uncertainty. Such IDC formulations are needed to help enable the shift

to next-generation manufacturing and energy systems that can flexibly respond to highly

dynamic and uncertain conditions arising from a variety of sources including the increased

integration with renewable energy technologies. However, realistic representations of IDC

problems are challenging to solve because they are naturally formulated as large-scale,

non-convex, and non-smooth optimization problems that cannot be tractably solved using

currently available methods. These properties will occur whenever the following details

are considered in the IDC problem: (i) relevant dynamics and uncertainties occur on much

shorter timescales than the system’s lifetime, (ii) many uncertainties are best described by

continuous variables with large variance, and (iii) key operational decisions are discrete

such as unit commitment or adaptive scheduling. Although several approximation methods

that result in more tractable solution methods have been developed, as outlined in Table 1.1,

they may lead to highly sub-optimal designs that miss out on key IDC features.

In this thesis, we propose an efficient, flexible, and accurate IDC solution framework that

is able to overcome the aforementioned issues. The proposed framework is composed of two
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important concepts: (i) approximating the complex recourse decisions using a high-quality

decision rule (DR) derived from an advanced nonlinear model predictive control (MPC)

law and (ii) applying an efficient constrained simulation-based optimization approach to

co-optimize the design variables and DR parameters. Relative to existing solution methods,

this thesis does not make any simplifications to the operational details of the IDC problem

and uses a nonlinear (potentially mixed-integer) MPC-based DR that can make very accurate

operational decisions at every time step. Furthermore, we take advantage of Bayesian

optimization (BO) strategies that can be used to optimize objective functions (subject to

unknown constraints) that take a long time to evaluate. Through the use of BO, we can

flexibly handle any choice of (non-differentiable) DR as well as any type of system model

including expensive high-fidelity simulators with multiple interacting components that can

be written and stored in different programming languages and/or computing platforms.

Chapter 2 considers the exact formulation of the IDC problem as a multi-stage stochastic

program (MSP) that is intractable in realistic cases. In particular, the MSP looks to minimize

the sum of the capital cost and the expected operating cost computed over the system

lifetime subject to probabilistic constraints on the system state. The evaluation of the

expected operating cost requires specific choices of the uncertainty realizations along with

control decisions that are specified by a DR. Roughly speaking, a DR is a function that maps

the measured data to the control inputs at every operational period and thus provides an

offline parametrization of the control decisions at every operational period. Although certain

DRs, such as logic-based or proportional-integeral-derivative (PID) controllers, may result

in a simpler optimization problem, they can result in highly sub-optimal control actions. We

demonstrated this loss in performance on a continuously stirred tank reactor (CSTR) case

study that showed significantly higher operational cost and a reduced feasible region when
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compared to an MPC controller. Lastly, we discuss how to incorporate MPC into the IDC

problem by developing a design-dependent MPC law that can adapt to any choice of the

design variables by updating the prediction model and relevant tuning parameters.

In Chapter 3, we address the remaining challenge of how to optimize the DR-based

IDC problem, which remains intractable due to the presence of probabilistic operators

(e.g., expected value) and the absence of derivative information. These features, along with

the computationally expensive closed-loop simulations needed to evaluate the objective

and constraints, lead us to the choice of BO to tackle the DR-based IDC problem in a

fully simulation-based manner. BO constructs a surrogate model for the objective and

constraints and quantifies the uncertainty in these surrogates using a Bayesian machine

learning algorithm known as Gaussian process (GP) regression. It then defines an acquisition

function using the GP surrogate models to decide the next optimal sample location – this

process is repeated sequentially until the available budget has been exhausted. We provide

a detailed discussion on the implementation of BO and how it can be extended to handle

unknown constraint functions, which appear in the IDC problem. We demonstrate the

effectiveness of the proposed method for design of a flexible building cooling system. Since

the system involves several chiller sub-units, we develop a mixed-integer MPC control

strategy that simultaneously selects the number and amount of cooling in each chiller, which

is needed to reject time-varying weather, price, and occupation disturbances. Not only

does the BO method quickly find designs near the globally optimal solution, we observe

significant improvements over sequential optimization-based design and control strategies.

Chapter 4 discusses a novel multi-fidelity extension of BO that is able to leverage a series

of computationally cheaper (lower-fidelity) approximations to the “exact” IDC problem. The

multi-fidelity BO (MFBO) looks to further reduce the time needed to identify good designs
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by using bounds on the quality and estimates of the costs of the approximations. Using

these bounds, MFBO sequentially selects the next design and fidelity level that should be

evaluated. In the chapter, we discuss three major ways to derive low-fidelity approximations

of the DR-based IDC problem including simplifications to the system model, DR, and

number of simulation time steps. To demonstrate the effectiveness of MFBO, we compare it

to traditional BO on the design of a building heating and cooling system with solar power

generation, battery storage, and grid support. We consider several sources of uncertainty,

including weather and demand conditions, that can vary at the hour scale over a year-long

planning horizon. We found that MFBO consistently found better solutions with fewer

expensive function evaluations than alternative methods, especially when the budget is very

limited (10 or less total high-fidelity runs). Additionally, we found that MFBO was able

to suitably handle random forecast errors in the key disturbances and reduce constraint

violations by tuning backoff values in the MPC-based DR. Lastly, we analyzed the impact

on the sequence of approximations impacted the convergence of MFBO. We found that

the relative accuracy and computational cost of the fidelities play an important role in the

performance of MFBO in the early iterations (with less accurate, cheaper models being

preferred), while the differences in performance tended to shrink as the budget increased.

5.2 Suggestions for Future Work

The proposed IDC framework in this thesis, which is based on a combination of MPC-

based decision rules and simulation-based BO, showed promising results on multiple case

studies. Due to its flexibility, the framework could be directly applied to complex system

models arising in many different application areas. However, it is important to note that the

underlying black-box assumption of BO does fundamentally limit the rate of convergence
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to a global solution. Thus, this thesis leaves room for improvement in the efficiency of the

“outer” BO algorithm by exploiting additional information relevant to the structure of IDC

problems. We broadly refer to algorithms that supplement the assumption of black-box

functions as grey-box BO. We discuss specific examples of grey-box BO below, which

represent some of the interesting and important directions for future work. Note that the

MFBO approach presented in Chapter 4 can be thought of as a type of grey-box BO method.

Extending BO to high-dimensional problems: As we move toward IDC of realistic

systems that involve a collection of many interacting sub-units, the number of independent

design variables can become very large. Additionally, as the complexity of the system

increases, the complexity of the MPC controller must also increase, which could result in

a large number of tuning parameters. Even when the number of MPC tuning parameters

remains small, the overall size of the problem can greatly increase when these parameters

are not fixed at all times but are allowed to adapt to different external conditions (e.g.,

seasonal changes throughout the year). In these cases, the dimensionality of the BO

problem can easily become on the order of hundreds to thousands of variables, which is

beyond the capabilities of the traditional BO approaches implemented in this thesis (most

successful BO applications consider less than 20 independent design variables [120]). Thus,

a critical direction for future work is enabling BO to work in high-dimensional inputs spaces

θ ∈Θ⊂ Rnθ . This is a very difficult problem, especially under the assumption that all nθ

dimensions are important/sensitive, since exponentially more evaluations of θ would be

needed to ensure good coverage of Θ as nθ increases.

Two directions that have been pursued in the literature to overcome this challenge are:

low-dimensional embeddings and trust regions. The basic motivation for low-dimensional
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embedding methods comes from the simple observation that, in various engineering prob-

lems, many of the dimensions do not significantly change the objective function. These

types of problems can be said to have a low effective dimensionality (i.e., δ = T (θ) with

T : Rnθ →Rnδ and nδ � nθ ) that can be exploited by the BO procedure by working within a

low-dimensional space δ ∈ ∆. The key open challenge is how to select the embedding trans-

formation T , dimensionality nδ , and constraint set ∆. This problem is addressed in [121]

by using random linear embeddings δ = Aθ where A ∈ Rnδ×nθ is a random matrix with

independent Gaussian elements and the effective dimension nδ is assumed to be known.

As opposed to selecting a fixed embedding, one can also update the choice of T at every

iteration using supervised dimensionality reduction techniques. One such example of this

is the SEGOKPLS algorithm [122] that uses a Kriging partial least squares (KPLS) model

in place of the standard GP, which was capable of solving a 50 dimensional problem with

only ∼ 100 objective function evaluations. Trust region methods, on the other hand, focus

on constructing a local surrogate model and so do not need to make any assumption about

the effective dimensionality of the problem. The size of the trust region either shrinks or

expands at each iteration depending on the progress made in terms of quality of the objective

function. Although established local convergence results exist for trust region methods,

they rely on fully linear models constructed using some form of interpolation that means

the number of evaluations at each iteration scales with the input dimension. Thus, future

work could attempt to combine the powerful local guarantees of trust regions with the global

exploration power of BO. One example in this direction is TuRBO [123], which is a recently

developed trust region BO algorithm that runs several independent models in parallel. An

implicit multi-arm bandit approach is then used to decide which local model should be
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allocated samples at each iteration. Incorporating these ideas within the IDC framework

proposed in this thesis will be an important step for further widening its applicability.

Improving constraint handling methods in BO: As is the case in much of the DFO

literature, BO was originally formulated for problems with simple (known) constraints.

However, as discussed in Chapter 3, BO has been extended to handle black-box constraints

using the notion of expected improvement with constraints (EIC). Several alternative con-

straint handling methods have been developed, as discussed in [99], which categorized

them as either implicit or explicit. In implicit methods, a new merit-based objective func-

tion is defined that simultaneously accounts for the effects of the unknown objective and

constraints. This includes EIC [100] and the augmented Lagrangian BO (ALBO) method

in [124]. Explicit methods, on the other hand, develop a constrained acquisition optimiza-

tion wherein the feasible region is constructed in terms of the GP model of the constraints.

This includes the SEGO algorithm [125] and the more recent extension using upper trust

bounds [126]. Although we observed good performance with EIC on our IDC case studies,

it is an open question as to which method is best-suited to this class of problems. Addi-

tional simulation-based experiments are needed to characterize the performance of these

approaches on realistic IDC problems – with the hope of identifying a strategy that works

“best” in this context. In addition to experiment-driven exploration, it would also be useful

to understand the convergence properties of these different constrained BO methods, as this

would help practitioners make good choices depending on the problem characteristics.

Integrating input-dependent noise models with GP regression: As discussed in

Chapter 3, the Monte Carlo-based estimators in (3.2) and (3.3) generate noisy observations

for the objective and constraints. For any function f (θ) = Eωωω{F(θ ,ωωω)} with MC estimator
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yK = 1
K ∑

K
i=1 F(θ ,ωωω(i)), we know that yK satisfies the central limit theorem (CLT):

√
K(yK− f (θ))⇒N (0,σ2

f (θ)),

where σ2
f (θ) denotes the variance of the function F(θ ,ωωω) for any fixed θ ∈Θ and⇒ denotes

convergence in distribution. We see that the measurement error process is asymptotically

normal with variance that converges to zero as K→ ∞. Due to the expensiveness of the

closed-loop simulations, however, we must select K to be very low, meaning we are not

able to invoke the central limit theorem in practice. As long as the effect of the uncertainty

ωωω is not too large, we have found that the assumption yK = f (θ)+ ε where ε ∼N (0,σ2
ε )

works well in practice. Future work is needed to more systematically address this issue by

developing more detailed input-dependent (also known as heteroscedastic) noise models, as

discussed in [127]. The main idea is to develop another GP model for the noise variance

that can be simultaneously estimated with the GP model for f . Since this representation

no longer remains a GP, it can be challenging to incorporate it into a BO framework. An

interesting alternative is to use the so-called most likely heteroscedastic GP model in [128],

which develops a simplified procedure that retains the overall GP structure for f .

Exploiting composite functions: Throughout this thesis, we have considered the objec-

tive and constraints to be black-box (fully unknown). Although this allowed our framework

to be generally applied, this generality does come at the cost of performance (in the form

of convergence rate). In most practical engineering problems, only a portion of the model

is unknown and, in such cases, it is more accurate to represent the model in a grey-box

form. A particularly relevant representation of grey-box models is in the form of composite

functions that are of the form f (θ) = g(θ ,h(θ)) where g(·) represents the known part of

the model and h(·) represents the unknown part of the model (and could provide a vector

of outputs). Recent work [99] has shown that significant improvements in regret can be
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achieved by exploiting this composite structure whenever available. In the context of IDC

problems, y = (y1, . . .yT ) = h(θ) could represent the set of closed-loop simulation outputs

over t ∈ {1, . . . ,T} needed to evaluate the operating cost for a given set of design values θ

and g(θ ,y) =C(θ)+∑
T
t=1 `(yt) could be the total cost composed of the capital cost C(θ)

and sum of the stage costs `(yt) over time with the functions C and ` being known. One

challenge with this representation would be the need to construct a large number of GP

models, i.e., one for each component of y, so an interesting open question is how best to

exploit this structure in a computationally efficient manner.
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Appendix A: Derivative Free Optimization

A.1 Introduction & Classification

Advancements in black box optimization or DFO algorithms haven been fueled by

increasing interest in applications ranging from problems in science [129–131] to engineer-

ing/process design [132–135]. Lets define a function f : Rn→ R with constraints c(x)≥ 0

with c : Rn→ Rm bounded in a domain of interest. This function is computationally expen-

sive to evaluate and may or may not be accompanied by noise. With the assumption that the

derivatives of f and c are neither numerically computable nor distinctively available due

to discontinuity, DFO algorithms and their computational implementations are the desired

choice for optimizing such functions. DFO algorithms automate the process of naively

searching for better solutions with trial and error with mathematical convergence theory to

guide the exploration to an optimal solution.

DFO algorithms can be broadly broken into 2 approaches; deterministic and stochastic.

Stochastic DFO methods can be broadly classified into evolutionary or population-based

algorithms like hit and run algorithms [136,137], simulated annealing [78], genetic algorithm

(GA) [74] and particle swarm (PSO) [75, 76]. We will not focus on these methods here

as they inherently rely on substantial objective function calls, which are expensive to

evaluate, leading to prohibitively large computation times along with lacking convergence
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results. Deterministic derivative free optimization algorithms can be broken down into

two subcategories, namely, Lipschitzian-based partitioning techniques and surrogate-based

search algorithms.

A.1.1 Lipschitzian-based partitioning techniques

Lipschitzian-based methods build and drive a pseudo-function of the original objective

function to its optimal to construct an underestimate. If the underestimator is constructed in

a piecewise fashion, it is possible to find the global optimum of the original problem. Lets

define L > 0 as a Lipschitz constant of f . By definition,
∣∣ f (x)− f (y)

∣∣≤ L‖x− y‖ for all x,

y in the domain of f . With knowledge of L, we can evaluate extreme points of the domain

and then construct linear underestimators [77]. Then, we can evaluate the underestimator

at the minimum point and further partition the search space to construct another piecewise

underestimator. The two major drawbacks of implementing this algorithm are: unknown

Lipschitz constant for black-box functions and the exponential increase in number of

function evaluations with partitions, as there are 2n extreme points of a n−dimensional

hypercube. The two algorithms based on Lipschitz partitioning, discussed next, address

these challenges.

The DIRECT algorithm The first extension to Shubert’s algorithm [77] was the DI-

RECT algorithm (DIvide a hyperRECTange), proposed by Jones et al. [101], where the

function evaluations were computed at the centre of the partitions instead of the extreme

points. This method also modified the selection criteria of the partitions, hyperrectangles in

this case, depending on the rate of decrease of the objective function value. The DIRECT

algorithm also gave convergence guarantees for general constrained problems.
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Branch-and-bound (BB) search BB determines the upper and lower extremes of the

optimum by sequentially partitioning the search space [138]. The inferior partitions of the

search space are iteratively eliminated during the search.

A.1.2 Surrogate-based search algorithms

An alternative to partition-based DFO methods are surrogate-based optimization algo-

rithms that look to replace the true (unknown) functions with data-driven models that can be

efficiently optimized.. The surrogate-based search algorithms initially sample the search

space and build a rudimentary surrogate model, since a high-fidelity surrogate is unavailable

for the given black box functions. The surrogate model is iteratively optimized, evaluated

and then updated to steer/direct the optimization of the original function. These methods

can be further divided into local search and global search methods.

Trust-region methods are popular local search methods that utilize a simple, smooth

surrogate model with the assumption that it is accurate around a region about the current

iterate, denoted as the ’trust’ region. A linear surrogate model was proposed by Powell [139]

within a trust-region method. This method considered a radius parameter for the trust region

that decreased monotonically with every iteration, but included only those which satisfied

geometric conditions of the interpolation points. Further progress in trust-region methods

was using a quadratic model as the surrogate [140, 141], which had an added advantage of

being able to capture the curvature of the underlying function, as opposed to the linear model.

Although, local search methods are effective for local optimization with strong convergence

properties, we are interested in methods that evaluate the global optimum. Some global

search methods are outlined next.

75



Global search methods overcome the limitation of reaching only a local optimum of

the function. They utilize a similar approach of optimizing a surrogate model and then

evaluating and updating it, but the surrogate model is developed initially for the entire

domain and then dynamically refined over iterations through partitioning. Radial basis

functions use an interpolating radial function based model to approximate f . Radial basis

function were conceptualized for DFO applications by Powell [142]. There are multiple

algorithms based on radial basis functions presented and analyzed in literature [143–145]

along with extensions to constrained problems in optimization [146] and proof of global

convergence.

Branch-and-fit optimization methods combine randomization with surrogate modeling

for global optimization. Huyer and Neumaier [147] proposed this algorithm where quadratic

models are fitted around the best known feasible solution and linear models are used for

other evaluated points. On optimizing these models, we obtain candidate points in the search

space to evaluate. If the number of candidates are insufficient to fit the models, then random

points are generated.

Although all the methods outlined above are effective for optimizing various black box

functions, they have a few drawbacks: (1) local search methods are not able to attain global

optimum, (2) rate of convergence and number of function evaluations are dependent on

the initialization, and (3) they cannot account for noisy surrogate models - assume only

deterministic models and hence cannot handle uncertainty. These drawbacks motivate the

utilization of Bayesian Optimization (BO), a global surrogate-based search method for black

box optimization. the main advantages of BO are the ability to optimally select the next

sample point that systematically tradeoffs exploration and exploitation and is able to handle

noisy function evaluations.
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Figure A.1: Expected simple regret for the 2d Himmelblau test function, with approximate
confidence region shown via error bars, estimated from 10 independent realizations.

It is useful to compare the performance of BO to several alternative methods mentioned

previously to highlight its advantages with respect to a reduced number of function eval-

uations on a benchmark global optimization problem. We consider a highly nonlinear

and multi-modal composite objective function with only box-constraints on the decision

variables, called the Himmelblau function [148]:

min
x

f (x) = x2 +(x1 + x2
2−7)2 (A.1)

s.t. −5≤ x1,x2 ≤ 5,

We optimize this function using all four DFO methods mentioned above and use simple

regret as the performance metric, defined as

Sn = (l?n− l?true), (A.2)
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where `?n = mini=1,...,n f (x(i)), the incumbent solution which is the minimum function eval-

uation observed up until iteration n and l?true = minx∈X f (x) is the global optimum of the

optimization problem. The regret acts as a measure of difference between the current

best sample at each iteration n of the algorithm versus the global optimum. The simple

regret is a non-negative number that will only equal zero whenever the global minimum

has been exactly identified. Since simple regret is a random variable due to the random

initialization, it is not informative to show results of a single experiment. Hence, we repeat

each experiment 10 times for 40 iterations each and use the average simple regret to show-

case the performance of each algorithm. The BO algorithm was executed using bayesopt

in MATLAB R2019a, and compared against GA, PSO and DIRECT algorithms that are

representative algorithms in the categories mentioned previously, executed using the Global

Optimization Toolbox in MATLAB R2019a. Fig. A.1 shows the expected simple regret over

the 10 replications for the Himmelblau function. Error bars showcase the confidence region

estimated as the standard deviation divided by the square root of the number of replications.

We see that BO outperforms all other tested DFO algorithms by upto 2 orders of magnitude.

It converges consistently to the best point across all the methods while the others result in

several runs producing virtually no improvement after certain number of iterations. This

strongly motivates the choice of BO as the DFO algorithm for the IDC problem.
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