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Abstract 

Objective: This thesis aims to identify novel relationships between modifiable physical 

and health variables, Alzheimer’s disease (AD) biomarkers, and cognitive function in a 

cohort of older adults with mild cognitive impairment (MCI).  

Methods: Metrics of cardiometabolic risk (e.g., body mass index), stress (e.g., cortisol), 

inflammation (e.g., c-reactive protein), neurotrophic/growth factors (e.g., brain-derived 

neurotrophic factor), and AD (e.g., plasma tau) were assessed in 154 MCI participants 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) at baseline (mean age = 

74.1; sd =7.5; mean education = 16.0; sd = 2.9). Of these 154 participants, 126 had 2-year 

follow-up data available for analyses (mean age = 74.0; sd = 7.6; mean education = 16.0; 

sd = 2.9). Participants also completed a comprehensive neuropsychological battery. 

Individual test scores and composite scores of memory and executive function published 

by ADNI were assessed. Partial least squares correlation (PLSC), an unbiased and 

flexible multivariate technique, was employed to examine cross-sectional associations 

among these physiological variables and cognition. Partial least squares regression 

(PLSR), a multivariate technique that defines optimal combinations of variables that best 

predict an outcome, was used to identify which, if any, of these physiological variables 

are important in predicting memory or executive function at 2-year follow-up. 
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Results: The PLSC analysis revealed a latent variable describing a unique combination 

of AD biomarkers, neurotrophic/growth factors, education, and stress that were 

significantly associated with specific domains of cognitive function, including episodic 

memory, executive function, processing speed, and language, representing 45.2% of the 

covariance in the data. Age, BMI, and tests of basic attention and premorbid IQ were not 

significant. The PLSR analyses revealed that baseline metrics of cardiometabolic 

function, inflammation, and AD biomarkers were important in predicting memory and 

executive function performance at 2-year follow-up. Baseline education was important in 

predicting memory but not executive function performance at 2-year follow-up. Our two 

best models predicted 65.1% and 63.7% of the variance in memory and executive 

function respectively at 2-year follow-up. 

Conclusion: Our data-driven analysis highlights the significant cross-sectional 

relationships between metrics associated with AD-pathology, neuroprotection, and 

neuroplasticity primarily with tasks requiring higher order cognitive abilities (episodic 

memory, executive function, verbal fluency), rather than cognitive tasks that do not 

require mental manipulation (premorbid IQ and basic attention). Baseline metrics of 

cardiometabolic function, inflammation, and AD pathology were statistically important in 

predicting future memory and executive function performance at 2-year follow-up, 

suggesting that variables associated with neuroprotection and neuroplasticity (such as 

brain-derived neurotrophic factor and platelet-derived growth factor) may hold relatively 

less importance in predicting future cognition.
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Chapter 1: Background 

By the year 2050, the older adult population in the United States is estimated to 

reach 87.3 million, doubling the population of adults over 65 years of age in 2012 (Rios, 

2014). The risk of Alzheimer’s disease (AD) increases with age, and the number of AD 

cases is projected to double by 2050 (“2019 Alzheimer’s disease facts and figures,” 

2019). The rapid increase in age and AD-related cognitive impairment will place 

a considerable burden on caregivers, healthcare systems, and the economy. Multiple 

aspects of cognition, such as episodic memory (memory for specific personal past 

events), executive function (ability to plan, inhibit responses, and sustain attention), and 

processing speed (ability to quickly and efficiently respond to stimuli) decline with age 

(Buckner, 2004; Salthouse, 2010; Tromp, Dufour, Lithfous, Pebayle, & Després, 2015). 

To date, there is no cure for age- or Alzheimer’s-related cognitive decline, highlighting 

the need to identify variables that are most strongly associated with current and future 

cognition. Therefore, determining variables that could serve as targets for intervention to 

attenuate cognitive decline, particularly among those with Mild Cognitive Impairment 

(MCI), who are at the greatest risk for AD, will be important in maintaining 

independence and quality of life in our aging population.   

Previous research indicates there is substantial variability in aging, and multiple 

factors have been shown to accelerate or mitigate cognitive decline or conversion to 
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dementia. For instance, prior literature has explored cardiometabolic and pro-

inflammatory variables, which typically have negative associations with cognition 

(Femminella, Taylor-Davies, Scott, & Edison, 2018; Gao et al., 2018; Yaffe et al., 2004). 

Neurotrophic/growth factors, which are typically associated with neuroprotection and 

neuroplasticity, also have been explored in the context of cognitive decline and aging, 

with studies reporting largely positive associations between neurotrophic/growth factors 

and cognition (Lista & Sorrentino, 2010; Miranda, Morici, Zanoni, & Bekinschtein, 

2019). Additionally, multiple plasma and cerebrospinal fluid (CSF) biomarkers have been 

associated with both AD pathology and cognition (Chiu et al., 2014; Diniz, Pinto, & 

Forlenza, 2008). However, these lines of literature typically explore single variables in 

these domains or a small group of variables in a single domain (such as multiple CSF 

biomarkers associated with AD pathology), rather than an array of physiological 

variables spanning multiple physiological domains. The following subsections briefly 

outline the current literature regarding cognition and its associations with cardiometabolic 

and inflammatory variables, neurotrophic factors and growth factors, and AD biomarkers, 

with a focus on studies that explore participants with MCI or without dementia.  

Cardiometabolic, Stress, and Inflammation Variables 

Recent studies have shown that modifiable cardiometabolic variables such as 

body mass index (BMI), cholesterol, and blood pressure are related to poorer cognitive 

performance at baseline and follow-up in MCI participants (Femminella et al., 2018). 

Several studies have related metabolic syndrome (definition of which differs by study, 

but typically involves high abdominal adiposity or obesity, high blood pressure, high 
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cholesterol, and dyslipidemia, or high amounts of triglycerides, cholesterol or fat 

phospholipids) to future cognitive decline (Yaffe et al., 2004) and MCI progression (Gao 

et al., 2018). More specifically, in older adults without dementia, triglycerides were 

negatively associated with executive function, even after controlling for other risk factors 

such as total cholesterol and APOE 𝜀4 status (Parthasarathy et al., 2017). However, a 

recent systematic review of 25 research studies exploring metabolic syndrome 

demonstrated that only excess glucose was consistently associated with cognition in older 

adults, and that the relationship between metabolic syndrome and cognition revealed 

heterogenous results (Assuncao, Sudo, Drummond, De Felice, & Mattos, 2018). 

Metabolic syndrome has also been related to inflammation and cognitive function 

(Yaffe et al., 2004). In a study by Yaffe and colleagues assessing older adults in their 70s 

without dementia, those with metabolic syndrome and high inflammation 

(operationalized as levels of CRP and IL-6) had an increased likelihood of cognitive 

impairment when compared to those without metabolic syndrome and with low 

inflammation. Participants with metabolic syndrome and high inflammation also had 

greater 4-year decline on the Mini Mental State Examination (MMSE) when compared to 

those without metabolic syndrome (Yaffe et al., 2004). In other work, CRP has been 

associated with MCI or very early dementia diagnoses (Bennett et al., 2013).  

Recent literature has also explored how insulin (a biomarker associated with 

cardiometabolic function and inflammation) is related to cognition in aging (Hooshmand 

et al., 2019). In a study by Hooshmand and colleagues assessing a group of older adults 

without dementia, higher serum insulin at baseline was associated with poorer 
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performance on measures of global cognition at 7-year follow-up, even after controlling 

for demographics and other cardiovascular risk factors (Hooshmand et al., 2019). 

However, other work has shown that high insulin may actually be a protective factor later 

in life and potential risk factor during middle-age (Lee et al., 2019). A related analyte, 

glucose, was explored in a different study with older adult women without dementia, 

which found that higher fasting plasma glucose was associated with a higher probability 

of cognitive dysfunction (Neergaard et al., 2017). Hyperglycemia (high glucose levels) 

also showed consistent negative relationships with cognition in a recent systematic 

review (Assuncao et al., 2018). Research also suggests that cortisol, a marker of stress or 

hypothalamic-pituitary-adrenal-axis activity, is related to cognition in older adulthood 

(Udeh-Momoh et al., 2020). In a study assessing those with subjective or mild cognitive 

impairment, higher total cortisol levels were found to be associated with poorer overall 

cognitive performance, even after controlling for levels of AD biomarkers (Sindi et al., 

2017).  

Neurotrophic Factors and Growth Factors  

Additionally, there is a largely separate line of literature regarding 

neurotrophic/growth factors and how they relate to brain health and cognition. For 

instance, brain-derived neurotrophic factor (BDNF) has been associated with brain 

plasticity and low BDNF levels are related to memory impairment in multiple 

neurological disorders, including AD (Miranda et al., 2019). Multiple studies have 

suggested that BDNF plays a mediating role in the benefits of exercise on memory (Lista 

& Sorrentino, 2010; Stillman, Cohen, Lehman, & Erickson, 2016). A related growth 
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factor, vascular endothelial growth factor (VEGF) has also been posited as a potential 

candidate for the mechanisms behind the benefits of exercise on memory (Lista & 

Sorrentino, 2010). VEGF is associated with angiogenesis, or the creation of new blood 

vessels (Lista & Sorrentino, 2010). Increasing vascularization of the brain increases 

blood flow, which we would expect to have a positive effect on the cognitive aging 

process (Lista & Sorrentino, 2010). Other work has shown that participants with 

frontotemporal dementia had significantly elevated levels of VEGF when compared to 

controls (Taipa et al., 2019).  

Multiple other blood-based neurotrophic/growth factors have been related to AD 

and cognition. For instance, recent work explored levels of insulin-like growth factor 

binding protein 2 (IGFbp) in a large cohort of older adults who were cognitively normal, 

had MCI, or AD, and found that a one unit increase in IGFbp was associated with an 

increased likelihood in belonging to the MCI or AD group rather than the cognitively 

normal group (McLimans, Webb, Anantharam, Kanthasamy, & Willette, 2017). 

However, this study also found that higher IGFbp was associated with better cognitive 

outcomes in those who had two APOE 𝜀4 alleles (McLimans et al., 2017). Other research 

has shown that epidermal growth factor (EGF) may be a novel biomarker in diagnosing 

AD, as previous research has found significantly elevated levels of EGF in platelets of 

AD patients when compared to MCI participants and healthy controls (Hochstrasser, 

Ehrlich, Marksteiner, Sperner-Unterweger, & Humpel, 2012). Additionally, a related 

growth factor, heparin-binding epidermal growth factor-like growth factor (HB-EGF-

like-GF) has been shown to be neuroprotective against cell death in animal literature 
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(Shim & Madsen, 2018) and was determined to be an AD-related biomarker in human 

research exploring healthy control, MCI, and AD participants (P. F. Meyer, Savard, 

Poirier, Morgan, & Breitner, 2019). Recent research has also shown that platelet-derived 

growth factor bb (PDGF), an analyte associated with neuronal survival, is expressed at 

higher levels in those who were resilient to AD (Barroeta-Espar et al., 2019), and that 

higher PDGF was associated with slower cognitive decline at 1-year follow-up in those 

with AD (Taipa et al., 2019). 

AD Biomarkers  

Other blood and CSF based biomarkers have been shown to be associated with 

cognition and AD risk. For instance, one study showed that in those with MCI or early 

AD, plasma tau was significantly elevated when compared to healthy controls, and was 

negatively associated with performance in episodic memory visual reproduction, and 

verbal fluency (Chiu et al., 2014). Meta-analytic research has also shown that CSF levels 

of tau and Aß1-42 are consistently associated with impaired cognition (Diniz et al., 2008). 

Specifically, when a diagnosis of MCI was made at baseline, meta-analyses demonstrated 

that high CSF total tau (t-tau), high phosopho-tau-181 (p-tau181) and low CSF Aß1-42  

helped to predict conversion to AD when compared to control participants (Diniz et al., 

2008). However, other research has shown that the relationship between CSF Aß1-42 and 

cognition may differ depend on an individual’s APOE 𝜀4 allele status, as authors found 

that CSF Aß1-42 was associated with memory performance only in those who were APOE 

𝜀4 positive (Thorvaldsson et al., 2010). CSF Aß1-42 was not associated with memory in 

those who were APOE 𝜀4 negative (Thorvaldsson et al., 2010). Additionally, other work 
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has shown that CSF levels of Aß1-42, t-tau, and p-tau181 were not significantly associated 

with cognition (assessed by total score on the mini mental state examination) in those 

with amnestic mild cognitive impairment (Vemuri et al., 2009). 

Current Gap in the Literature 

As described, these three groups of variables and their link to cognition are often 

examined in isolation or in small groups across different studies, rather 

than simultaneously and within the same study. One exception is a study conducted by 

Meyer and colleagues (2019), which assessed neurotrophic/growth factors, inflammatory 

indicators, and AD biomarkers in cognitively normal, MCI, and AD participants. 

Machine learning techniques were used to create predictor weights for both CSF proteins 

and AD biomarkers, which were subsequently used in three separate regression models 

predicting general cognitive function. They found that CSF protein and AD biomarkers 

accounted for 31% and 26% of the variance in cognitive scores respectively (P.-F. Meyer, 

Savard, Poirier, Morgan, & Breitner, 2019). However, this study did not examine metrics 

associated with cardiometabolic risk, which are linked to cognition and dementia risk, 

and did not assess specific domains of cognitive function, which are known to be 

differentially impacted by aging and AD.  

Thesis Rationale and Hypotheses 

To address this gap in the literature, the present study had two aims: 

Aim 1: To address a gap in the literature by using a multivariate analysis to map 

 associations between domain-specific cognitive function and multiple AD 



8 
 

 biomarkers, neurotrophic/growth factors, inflammatory markers, and 

 cardiometabolic metrics in older adults with MCI . 

Aim 2: To use multivariate analysis to identify which of these physiological 

 variables can best predict memory or executive function at a 2-year follow-up.  

To address our first goal, we implemented a partial least squares correlational 

(PLSC) analysis, an unbiased and flexible multivariate technique for defining latent 

variables in a dataset, that does not require assigned predictor and outcome variables, but 

rather maps shared covariance between two sets of data (Abdi & Williams, 2013). Latent 

variables in PLSC refer to linear combinations of manifest variables that share significant 

amounts of covariance (Abdi & Williams, 2013). PLSC analysis was preferred to other 

multivariate or data-driven statistical approaches because it does not attempt to predict an 

outcome, making it an ideal fit for this cross-sectional data and the exploratory nature of 

our research question. Additionally, unlike multiple linear regression, PLSC analysis is 

well equipped to deal with a large number of variables, or with multiple collinear 

variables (Van Roon, Zakizadeh, & Chartier, 2014). Additionally, data do not need to be 

normally distributed (Van Roon et al., 2014). Thus, PLSC analysis was employed to 

identify and parse novel relationships across these identified physiological domains and 

current cognition in a cohort of older adults with MCI.  

To address our second goal, partial least squares regression (PLSR) analysis, a 

statistical technique that predicts dependent variable(s) from a set of independent 

variables, was employed to identify which, if any, of these physical, health, and AD 

variables (matrix 1 in PLSC, with the addition of 2 AD biomarker variables: CSF t-



9 
 

tau/Aß1-42 and p-tau181/Aß1-42 and additional demographic variables) are important in 

predicting composite scores of memory and executive function after 2 years in a group of 

MCI participants. PLSR creates latent variables, or components, that maximize the 

covariance between the independent and dependent variables. This is followed by a 

regression step, where the latent variables (referred to as components) created from the 

predictor variables are used to predict the outcome(s) (Krishnan, Williams, McIntosh, & 

Abdi, 2011).  There are several advantages of PLSR, including its ability to handle highly 

collinear data and work well with many predictor variables (Van Roon et al., 2014).  

The goal of the present was to extend the literature by simultaneously 

examining multiple modifiable physical, health, and AD biomarkers in a single 

study while using multiple multivariate analysis approaches to identify 

novel relationships with current and future cognition in older adults with MCI. To 

accomplish this, data on modifiable health factors (such as those associated with 

cardiometabolic health: BMI, cholesterol), stress (e.g., cortisol), inflammation (e.g., 

CRP), neuroprotection (e.g., BDNF) and AD biomarkers (e.g., CSF Aß1-42, plasma tau) 

were obtained from the Alzheimer’s Disease Neuroimaging Initiative Phase 1 (ADNI1). 

Cardiometabolic, stress, and inflammatory variables were examined in light of previous 

research suggesting that these variables are associated with cognition and are potentially 

modifiable by lifestyle or pharmacological interventions. Cardiometabolic, stress, and 

inflammatory variables were limited to what was available and passed quality control 

procedures in ADNI1. Previous research has also shown that certain neurotrophic/growth 

factors (such as BDNF, VEGF, and Insulin-like growth factor 1) are potentially 
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modifiable through physical exercise and are associated with neuroprotection (Lista & 

Sorrentino, 2010; Miranda et al., 2019). Thus, all other growth factors that passed quality 

control in ADNI1 were added into this multivariate analysis, to assess how other growth 

factors associated with neuroprotection may or may not relate to cognition in older adults 

with MCI. Lastly, prior research has also shown potential relationships among plasma 

and CSF AD biomarkers and cognition in older adults (Chiu et al., 2014; Diniz et al., 

2008; Matura et al., 2019). Thus, all plasma and CSF AD biomarkers available in ADNI1 

were added to this multivariate analysis as well, in order to assess the relative importance 

of AD biomarker variables when other modifiable cardiometabolic, stress, and 

inflammatory variables as well as modifiable and non-modifiable neurotrophic/growth 

factors are simultaneously considered. Results from these analyses will contribute to the 

multivariate cognitive aging literature by providing information on the associations 

between these physiological variables and domain-specific cognitive function (PLSC 

analysis, Aim 1) as well as the relative importance of these different types of 

physiological variables in predicting future memory and executive function performance 

(PLSR analyses, Aim 2). These findings have the potential to inform future 

recommendations for older adults to delay cognitive aging, particularly for 

cardiometabolic and inflammatory variables, which research has shown can be modified 

by exercise or other lifestyle changes.  
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Chapter 2: Methods 

Participants 

Participants with a diagnosis of MCI from the ADNI1 cohort were included in the 

current study. Full participant inclusion/exclusion criteria are available in the ADNI 

Procedures Manual, 2010, and are summarized here:  

1. Hachinski scale score less than or equal to 4 (commonly used to diagnose 

degenerative or vascular dementia)  

2. Age between 55-90 years  

3. Stability of permitted medications for 4 weeks  

4. Geriatric depression scale less than 6  

5. Vision and hearing adequate for neuropsychological testing  

6. Good general health with no diseases precluding enrollment  

7. 6th grade education or work history  

8. Fluency in English or Spanish  

ADNI1 criteria for MCI diagnosis were:  

1. Mini Mental State Examination (MMSE; a measure of global cognitive 

functioning) scores between 24 and 30 inclusive  

2. Clinical Dementia Rating of 0.5 (a measure of dementia severity) 

3. Subjective memory complaint by subject or study partner  
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4. Abnormal memory function shown by scoring below education adjusted 

scores on the Wechsler Memory Scale-Revised (WMS-R) Logical Memory 

II (which assesses immediate and delayed episodic memory)  

5. Sufficiently preserved general cognition and functional performance not 

meeting criteria for a diagnosis of AD at the time of the screening visit   

Participants with missing data for any variables of interest were excluded, as 

complete data were necessary for PLSC analysis. One participant classified as MCI with 

an MMSE score of 23 and one participant with an extremely high and improbable 

triglycerides value were excluded. The final analysis for the PLSC included 154 MCI 

participants (age: 54.4 – 88.3 years; Mean = 74.1 years; SD = 7.5 years; education: 6 – 20 

years; Mean = 16.0 years; SD = 2.9 years; 51 females; 150 White, 2 Asian, 2 Black; 152 

Non-Hispanic; 2 Hispanic; 67 APOE 𝜀4 negative). Of those 154, 126 had composite 

neuropsychological data available for follow-up analyses at 2 years (age: 55.1 – 88.3; 

Mean = 73.99; SD = 7.57; education: 6 – 20 years; Mean = 15.98; SD = 2.94; 43 females; 

122 White, 2 Asian, 2 Black; 124 Non-Hispanic; 2 = Hispanic; 55 APOE 𝜀4 negative). 

Other ADNI cohorts (ADNIGO, ADNI2, and ADNI3) were excluded from the analysis 

as these data sets did not include numerous biomarkers of interest (e.g., neurotrophic and 

growth factors were not available). Study procedures were approved by site-specific 

Institutional Review Boards and all participants and/or authorized representatives 

provided written informed consent consistent with the Declaration of Helsinki. 
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Neuropsychological Assessment 

For the cross-sectional PLSC analysis, neuropsychological data were obtained 

from screening (MMSE and WMS-R Logical Memory II) and baseline visits (all other 

tests). Average time between appointments was 41.3 days. Nineteen raw scores from the 

tests described below were included in the PLS analysis (see Table 1). The following 

cognitive domains were assessed:  

Episodic Memory –WMS-R Logical Memory I (immediate recall; number of 

story details correctly recalled), WMS-R Logical Memory II (delayed recall; 

number of story details correctly recalled), Rey Auditory Verbal Learning Test 

List 1 (RAVLT; number of words correctly recalled), RAVLT List B (number of 

words correctly recalled on the interference list); RAVLT List 6 (number of 

words correctly recalled on the original list after interference); and RAVLT 30-

minute delay recall (number of words correctly recalled on the original list).  

Working Memory –Digit Span Forward (length of the longest digit span correctly 

recalled).  

Executive Function – Digit Span Backward (length of the longest digit span 

correctly recalled), Trail Making Test (Trail B; number of seconds to correctly 

complete the trail).  

Processing Speed – Trail Making Test (Trail A; number of seconds to correctly 

complete the trail), Digit Symbol Substitution Test (number of correctly drawn 

symbols). 
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Visuospatial Ability – Clock Drawing Test (Clock Drawing; Clock Copy; number 

of clock details correctly drawn or copied).  

Language – Category Fluency (number of words produced in the correct category 

for Animals and Vegetables), The Boston Naming Test (number of drawings 

correctly named).  

Premorbid IQ – American National Adult Reading Test (number of words 

incorrectly pronounced).  

Global Cognition –MMSE (total score), Alzheimer’s disease Assessment Scale 

(ADAS-COG; total score).  

Neuropsychological Composite Scores 

 For the PLSR analyses, composite scores published by ADNI were 

examined. Composite measures of memory and executive function were made 

available by ADNI for baseline, 6, 12, 18, 24, 36, 48 and 60 month follow-up 

assessments (Crane et al., 2012; Gibbons et al., 2012). For PLS regression 

analyses, these composite scores of memory and executive function were 

employed rather than individual cognitive tests used in the PLSC analysis. For the 

memory composite score, factor analytic methods and item response theory were 

used to create a composite score comprised of a weighted set of the following 

scores from the ADNI neuropsychological battery: RAVLT List 1, List 2, List 3, 

List 4, List 5, List 6, List B, delayed recall and recognition; ADAS Trial 1, Trial 

2, Trial 3, Recall, Recognition Present, Recognition Absent; MMSE Ball, Flag, 

and Tree items; Logical Memory Immediate and Delay (for further details, please 
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see Crane et al., 2012). This memory composite accounted for version differences 

for the RAVLT and ADAS and was determined to have good validity (Crane et 

al., 2012). Additionally, the composite memory score was found to be better at 

detecting change than total RAVLT recall (number of items remembered, lists 1 

through 5), and was found to be superior to or equivalent in predicting conversion 

from MCI to AD when compared to other individual cognitive test scores (Crane 

et al., 2012). For the executive function composite score, the same statistical 

techniques were employed, and the following scores from the ADNI 

neuropsychological battery were included in this weighted composite: Category 

Animals, Category Vegetables, Trails A, Trails B, Digit Span Backward, Digit 

Symbol Substitution Test, Clock Circle, Symbol, Number, Hands, and Time (for 

further details, please see Gibbons et al., 2012). This executive function 

composite score was found to be the equivalent or better than individual executive 

function measures in predicting future cognition, and was found to be the best 

predictor of conversion from MCI to AD when compared to all of the individual 

test scores (Gibbons et al., 2012).  

Cardiometabolic, Stress, and Inflammation Variables 

 BMI (kg/m2), systolic blood pressure (mmHg), diastolic blood pressure (mmHg), 

pulse rate (per minute), cholesterol (mg/dL), triglycerides (mg/dL), and serum glucose 

(mg/dL) data were obtained. Insulin (uIU/mL), cortisol (ng/mL), CRP (ug/mL), and 

interleukin-6 receptor (ng/mL) data were assessed from fasting plasma blood samples; 
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these data were normalized and checked for the defined least detectable dose during the 

quality control process.  

Growth Factors and Neurotrophic Factors 

IGF-bp (ng/mL), EGF (pg/mL), HB-EGF-like-GF (pg/mL), hepatocyte growth 

factor (ng/mL), PDGF (pg/mL), BDNF (ng/mL), and VEGF (pg/mL) were analyzed. 

Data were normalized and checked for the defined least detectable dose during the 

quality control process. Certain growth factors and neurotrophic factors of interest (such 

as Insulin-like growth factor 1, Ciliary Neurotrophic Factor) were omitted from the 

present analysis if more than 10% of values in our set of participants (not all available 

data from ADNI1) were imputed due to not meeting threshold for a least detectable 

dose.   

AD biomarkers 

Plasma Apolipoprotein E (apoE; ug/mL), plasma tau (pg/mL), CSF total tau (t-

tau; pg/mL), CSF Phospho-tau (181; p-tau181; pg/mL), and CSF Aß1-42 (pg/mL) were also 

examined. Only values within the given ranges were included for analyses: Aß1-42 200 – 

1700 pg/mL, p-tau181 8 – 120 pg/mL, and t-tau 80 -1300 pg/mL, as these are the reported 

technical limits. Ratios of both CSF tau biomarkers compared with CSF Aß1-42 levels 

were also calculated (p-tau181/Aß1-42  and t-tau/ Aß1-42). These two ratios were only 

examined in PLSR analyses.   
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Data Processing and Analysis Aim 1 (PLSC to examine cross-sectional relationship 

between cognition and multiple physical, health, and AD biomarker variables)  

ADNI1 data were scrubbed using RStudio. Raw data files for all blood- and CSF-

based biomarkers were checked for imputed values. To ensure data integrity, all analytes 

with >10% imputed values were removed. Participants who had missing data or invalid 

data as indicated by the ADNI manual were excluded.  

The PLS Command line package (Version 6, 2013) was downloaded from the 

open source PLS User Guide: http://pls.rotman-baycrest.on.ca/source/ and run 

in MATLAB (Version 2019b). A cross-covariance matrix between demographic (age, 

education), physical, health, and AD data (matrix 1) and cognitive data (matrix 2) was 

created and factorized using singular value decomposition into mutually orthogonal 

singular vectors (Abdi & Williams, 2013). The PLSC algorithm uses these singular 

vectors to create latent variables that express the largest amount of information common 

to both input matrices (Krishnan, Williams, McIntosh, Abdi, 2014). Thus, the latent 

variables described refer to the pattern of covariance between physical, health, and AD 

variables (matrix 1) and cognitive function (matrix 2). The PLSC algorithm outputs as 

many latent variables as there are behavioral variables (19).  

We then determined the p-value for all 19 latent variables using permutation 

analyses. Permutation samples are created using our input dataset. Matrix 2 variables are 

randomly shuffled within participants, while matrix 1 variables remain intact. The PLSC 

model is re-run on each of these permutation samples, creating a distribution that can be 

used to determine a p-value for each latent variable (Krishnan, Williams, McIntosh, & 
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Abdi, 2011). Latent variables were determined as statistically significant if the latent 

variable had a p-value of < 0.05 after 1500 permutations of the data (Abdi & Williams, 

2013). Reliability of a latent variable was assessed through split-half resampling, a 

procedure that determines the reliability of the associations described between the two 

matrices of data (physical, health, AD and cognitive) within a given latent variable 

(Kovacevic, Abdi, Beaton, & McIntosh, 2013). Latent variables are considered reliable if 

both sides of the data meet criteria for significance (p < 0.05; Kovacevic et al., 2013). 

Physical, health, and AD variables with a bootstrap ratio (BSR) with an absolute value 

greater than or equal to 1.96 (corresponding to p ≤ 0.05), determined by 1000 

resamplings with replacement of the data, were considered reliable contributors to the 

latent variables. Cognitive measures were considered to significantly contribute to the 

latent variable if their correlation with the latent variable was significantly different than 

zero (p < 0.05). Using these cutoffs, patterns of physical, health, AD variables, and 

cognitive scores that account for significant amounts of covariance in the data were 

determined (see Table 1 for variables included in the analysis).  

Data Processing and Analysis Aim 2 (PLSR to identify predictors of cognition at 2-

year follow-up)  

 ADNI1 data scrubbed in the PLSC analysis were used for the PLSR analyses. A 

subset of the 154 participants run the PLSC were examined: those who had 

neuropsychological data at 2-year follow-up. This resulted in a dataset with 126 

participants (see participants section for details). This 2-year (24-month) timepoint was 
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chosen over other timepoints (such as 36, 48, or 60 months) in order to maintain the 

maximum number of participants in the analysis.      

 PLSR scripts were adapted from Abdi, 2010, and downloaded from the author’s 

source: www.utdallas.edu/~herve and run in MATLAB (Version 2019b). The built in 

PLSR MATLAB function, “plsregress” was also employed. PLSR combines techniques 

from principle components analysis and multiple regression. Its goal is to create a latent 

variable that models a set of input variables (matrix X), while best predicting an outcome 

variable (Y matrix). In this analysis, physical, health, and AD variables were the X matrix 

(the physiological variables assessed in the PLSC, plus CSF p-tau181/Aß1-42 and t-tau/Aß1-

42  biomarker ratios). PLSR can be run with multiple Y-outcomes. However, this 

complicates interpretation of the analysis: PLSR optimizes for all Y outcomes 

collectively, considering them part of a single covariance pattern, which did not align 

with Aim 2 of this study. Therefore, separate PLSR analyses were run per cognitive 

domain where either composite memory or executive function at 2-year follow-up were 

the Y matrix, or response variable. These analyses were done to examine how 

contributions of baseline physiological variables differed in predicting memory or 

executive function at 2-year follow-up.        

 In PLSR analyses, orthogonal factors are created by the PLSR model that 

maximize the covariance between each X variable and the best predictive power of Y. In 

our analysis, PLSR finds a model that best predicts either future composite memory or 

future executive function from a weighted subset of physical, health, and AD variables. 

To do this, the X and Y matrices are imported and z-scored to have a mean of 0 and 
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standard deviation of 1. Next, an optimal number of components was selected to improve 

performance and generalizability. [Unlike PLSC, the number of LVs for PLSR can be 

varied between 1 and the number of X variables inputted to make the regression model 

more generalizable to other datasets and less prone to overfitting.] A “leave one out” 

cross-validation procedure, also called a jackknife, was completed (Krishnan, McIntosh, 

Abdi, 2011). In this procedure, each observation is removed in turn from X and Y, and a 

PLSR model is re-created for each of the remaining observations. The model created by 

the remaining observations and outcome variable is used to predict the left-out 

observation. The predicted observations are stored in a new matrix and a predicted 

residual estimated sum of squares (PRESS) value is created to measure the quality of the 

prediction.  This procedure is repeated and iteratively uses a different number of LVs 

(from one to the number of X predictors), and the PRESS value is calculated for each 

possible number of LVs. The optimal number of components for the PLSR model is 

chosen based on the PRESS value (See Table 3 for model summaries). Next, the 

regression model is run using the chosen number of components and the “plsregress” 

function. To create a robust and reliable PLSR model, bootstrapping with replacement 

was employed. A built-in bootstrap function in MATLAB (bootstrp) was used and 1500 

bootstrapped PLSR models were run. Bootstrapping allows us derive standard errors for 

each regression coefficient in the model nonparametrically (Efron and Tibshirani, 1986). 

Standard errors were used to derive 95% confidence intervals for the regression 

coefficients (also called beta values) per X matrix variable. Next, variable importance on 

projection (VIP) scores were calculated for every X matrix variable (Kuceyski et al., 



21 
 

2018). A built-in MATLAB function, “bsxfun” was used to calculate the VIP score, using 

outputs from the “plsregress” function. Beta values indicate the strength and 

directionality of a given X matrix variable with the outcome; a higher value absolute 

value means that variable has a stronger relationship with the outcome (Kosse, De Groot, 

Vuillerme, Hortobágyi, & Lamoth, 2015). The VIP score summarizes the contribution an 

X matrix variable makes to the model, as it represents a combination of the loadings and 

weights for each X matrix variable in the PLSR model (Eriksson et al., 2009).  Variables 

with a VIP score > 0.8 are considered important to the PLS model (Kuceyeski et al., 

2018a). Thus, the VIP score informs us of the importance of that variable, and the beta 

value indicates the directionality of that important variable in regards to the outcome. 

Thus, variables that had VIP scores > 0.8 (meaning they were significantly important to 

the model) that also had beta values that did not have confidence intervals that crossed 

the x-axis (meaning that variable was significantly predictive of the outcome) were 

retained for each model (Kosse et al., 2015; Viala et al., 2007). Literature reporting PLSR 

analyses often use either VIP scores or beta values to decide which variables are retained 

in a given model (Kosse et al., 2015; Kuceyeski et al., 2018a; Viala et al., 2007). 

However, one study used both criteria (Vervoort, Vuillerme, Kosse, Hortobágyi, & 

Lamoth, 2016) . Given the lack of consensus in the literature, a more conservative 

approach to only include variables that met both the VIP and beta value criteria were 

retained in the final PLSR models. Lastly, the “plsregress” function then outputs the 

percent variance explained by the PLSR model for the X matrix, as well as the Y 
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response (composite memory or executive function at 2 years). Four PLSR models were 

run: 

1. Predictor variables (X-matrix): Physical, health, and AD variables at baseline (for 

full list of variables entered into the analysis, please see Table 2) 

Outcome variable (Y response): composite memory at 2-year follow-up 

2. Predictor variables (X-matrix): Physical, health, and AD variables at baseline (for 

full list of variables entered into the analysis, please see Table 2), composite 

memory at baseline 

Outcome variable (Y response): composite memory at 2-year follow-up 

3. Predictor variables (X-matrix): Physical, health, and AD variables at baseline (for 

full list of variables entered into the analysis, please see Table 2) 

Outcome variable (Y response): composite executive function at 2-year follow-up 

4. Predictor variables (X-matrix): Physical, health, and AD variables at baseline (for 

full list of variables entered into the analysis, please see Table 2), composite 

executive function at baseline  

Outcome variable (Y response): composite executive function at 2-year follow-up 

To compare two models with the same outcome (either composite memory or executive 

function), Akaike Information Criterion (AIC) scores were calculated using the following 

equations:  

 Residual Sum of Squares = Sum (Yresidual2) 

 AIC = N x log(Residual Sum of Squares/N) + 2(k -1) 

 Where, N = number of subjects, k = number of input variables. 
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 AIC scores represent the quality or fit of a given model while considering the 

number of input variables and model complexity (Portet, 2020). The change in AIC can 

be used to compare two or more models, but the actual AIC value is meaningless (Portet, 

2020). When looking at two or more models, the model with the lowest AIC is 

considered the best fit, and anything with a AIC change < 2 indicates substantial evidence 

for that model, a change in AIC between 2 and < 7 shows there is less support for that 

model, and a change in AIC > 10 indicates that the model is unlikely to be better 

(Kuceyeski et al., 2018b).  

 

. 
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Chapter 3: Results 

Results Aim 1 (PLSC to examine cross-sectional relationship between cognition and 

multiple physical, health, and AD biomarker variables)   

Three significant latent variables (all values p < 0.01) were identified. Latent 

Variable 1 (LV1; Figure 1) accounted for 45.2% of the crossblock covariance. LV1 was 

considered reliable, as it met criteria for split-half reliability (all values p < 0.05; 

Kovacevic et al., 2013). For LV1, neurotrophic/growth factors, AD biomarkers, a stress 

biomarker, and education were significantly associated with performance across multiple 

cognitive domains. Specifically, HB-EGF-like-GF, PDGF, BDNF, plasma tau, CSF t-tau, 

CSF p-tau181, CSF Aß1-42, cortisol, and education were significantly associated with 

performance on measures of episodic memory (WMS-R Logical Memory immediate and 

delayed recall, RAVLT List 1 and List B), processing speed (Trail A and Digit Symbol 

Substitution Test), executive function (Trail B), visuospatial ability (Clock Drawing), 

verbal fluency (Category Fluency Animals, Category Fluency Vegetables), language 

(Boston Naming Test), and global cognition (MMSE, ADAS-COG). All significant 

cognitive tests had equal contributions to LV1, as they all had error bars (representing 

95% confidence intervals) overlapping with one another (Figure 1). Better performance 

on this subset of cognitive measures was associated with increased neurotrophic/growth 

factor levels, less AD pathology, lower levels of stress, and higher education (for 
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individual BSRs, see Figure 1). Of these variables, CSF AD biomarkers and education 

had the highest BSRs, revealing that these variables had the strongest associations with 

cognition, followed by growth factors such as HB-EGF-like-GF, PDGF, and BDNF, as 

well as a stress biomarker, cortisol. 

LV2 and LV3 were also significant, accounting for 17.2% and 11.9% of the 

crossblock covariance respectively. For LV2, IL-6 receptor, neurotrophic/growth factors, 

and AD biomarkers were significantly associated with performance in measures of 

delayed episodic memory. Specifically, lower IL-6 receptor, BDNF, PDGF, CSF t-tau 

and CSF p-tau181 and higher hepatocyte growth factor and CSF Aß1-42 were associated 

with better performance on WMS-R Logical Memory delayed recall and RAVLT 30-

minute delayed recall (see Figure 3 for details). However, LV2 did not meet criteria for 

split-half reliability (matrix 2 had a value of p > 0.05), and many cognitive outcomes had 

correlations with 95% confidence intervals close to crossing the x-axis (0), and thus 

should be interpreted with caution. For LV3, lower levels of cardiometabolic variables 

and insulin-like growth factor binding protein, older age, and higher education were 

associated with better performance in executive function (longest digit span backward 

length), working memory (longest digit span forward length), and premorbid IQ 

(ANART), and worse performance in episodic memory (RAVLT List B; see Figure 4 for 

details). LV3 met criteria for split-half reliability (all values p <0.05). However, the 

significant cognitive outcomes in LV3 have correlations with 95% confidence intervals 

close to crossing the x-axis (0), and LV3 accounts for a relatively low percentage of the 
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overall crossblock covariance; thus, the relationships reported within LV3 should be 

interpreted with abundant caution. 

Results Aim 2 (PLSR to identify predictors of cognition at 2-year follow-up)   

 PLSR analyses were used to determine the relationship between 30 different 

physiological and demographic variables and cognition (composite memory or executive 

function) at 2-year follow-up. Results from all four PLSR analyses are summarized in 

Figures 5, 6, 7 and 8 and Table 3. Descriptive statistics for the 126 participants included 

in the analysis are in Table 2. Models 1 and 2 explored memory performance at 2-year 

follow-up. Models 3 and 4 explored executive function performance at 2-year follow up. 

Models 1 and 3 included physiological and demographic variables as input variables. 

Models 2 and 4 added baseline cognition (memory and executive function, respectively) 

into the X-matrix variables, to see how results would differ when performance at baseline 

could contribute to the model.  

 Model 1 explored memory performance at 2-year follow-up and included 

physiological and demographic variables as input variables. In Model 1, ten predictor 

variables were considered important to the model (VIP > 0.8) and had beta values that 

were significantly different from 0 (95% confidence interval for the beta value did not 

cross the x-axis). Variables meeting both of these criteria demonstrate that they are 

important to the model, and significantly contribute to predicting the outcome variable. 

Systolic blood pressure, triglycerides, EGF, CSF p-tau/Aß1-42, and CSF t-tau/Aß1-42  were 

negatively associated with memory performance at 2-year follow-up. Insulin, IL-6 

receptor, HB-EGF-like-GF, education, and CSF Aß1-42 were positively associated with 
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memory performance at 2-year follow-up. Model 1 predicted 37% of the variance in 

memory performance at 2-year follow-up, and overall identified a pattern in the data 

suggesting that baseline levels of multiple modifiable cardiometabolic variables, 

inflammatory markers, growth factors, AD biomarker variables, and education were 

important in predicting future memory performance. 

 Model 2 explored memory performance at 2-year follow-up and included 

physiological variables, demographic variables, as well as baseline memory performance 

as input variables. In Model 2, five predictor variables were considered important to the 

model (VIP > 0.8) and had beta values that were significantly different from 0 (95% 

confidence interval for the beta value did not cross the x-axis). CSF t-tau/Aß1-42  was 

negatively associated with memory performance at 2-year follow-up. IL-6 receptor, 

education, CSF Aß1-42 and baseline memory performance were positively associated with 

memory performance at 2-year follow-up. Of note, all variables except for memory 

performance at baseline overlapped with model 1 and maintained the same directionality. 

Model 2 predicted 65% of the variance in memory performance at 2-year follow-up, and 

overall identified a pattern suggesting that baseline levels of inflammation, AD 

biomarkers, education, and baseline memory were important in predicting future memory 

performance.  

 Model 3 explored executive function performance at 2-year follow-up and 

included physiological and demographic variables as input variables. In Model 3, ten 

predictor variables were considered important to the model (VIP > 0.8) and had beta 

values that were significantly different from 0 (95% confidence interval for the beta value 
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did not cross the x-axis). Systolic blood pressure, CSF t-tau, and CSF t-tau/Aß1-42  were 

negatively associated with executive function performance at 2-year follow-up. Insulin, 

IL-6 receptor, HB-EGF-like-GF, CSF Aß1-42, CSF p-tau181, CSF ptau181/Aß1-42  and 

APOE 𝜀4 allele status were positively associated with memory performance at 2-year 

follow-up. Model 3 predicted 43% of the variance in executive function at 2-year follow-

up, and overall identified a pattern suggesting that baseline levels of cardiometabolic, 

inflammatory and AD biomarker variables were important in predicting future executive 

function performance.  

 Model 4 explored executive function performance at 2-year follow-up and 

included physiological and demographic variables, as well as baseline executive function 

performance as input variables. In Model 4, five predictor variables were considered 

important to the model (VIP > 0.8) and had beta values that were significantly different 

from 0 (95% confidence interval for the beta value did not cross the x-axis). Systolic 

blood pressure and CSF t-tau/Aß1-42  were negatively associated with executive function 

performance at 2-year follow-up. IL-6 receptor, CSF Aß1-42, and baseline executive 

function performance were positively associated with executive function performance at 

2-year follow-up. Of note, all variables except for executive function performance at 

baseline overlapped with model 3 and maintained the same directionality. Model 4 

predicted 64% of the variance in executive function at 2-year follow-up, and overall 

identified a pattern suggesting that baseline levels of cardiometabolic variables, 

inflammatory variables, AD biomarkers and executive function were important in 

predicting future executive function performance.  
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Chapter 4: Discussion  

Discussion Aim 1 (PLSC to examine cross-sectional relationship between cognition 

and multiple physical, health, and AD biomarker variables) 

 To summarize, we identified a latent variable (LV1) that accounted for a large 

amount of crossblock covariance, revealing a pattern in the data suggesting that increased 

neurotrophic/growth factor levels, less AD pathology, lower stress, and higher education 

are associated with better performance largely on tasks associated with higher order 

cognitive abilities (episodic memory, executive function, processing speed, verbal 

fluency) as well as metrics of global cognition (Figure 1). Direct measures of basic 

attention (e.g., longest sequence recalled for digit span forward) and premorbid IQ were 

not significantly associated with this pattern. This pattern suggests that markers of 

neuroprotection, neuroplasticity, stress, and AD pathology may hold relatively less 

importance for cognitive metrics that do not require mental manipulation. Interestingly, 

modifiable cardiometabolic risk factors (such as BMI, cholesterol, etc.), which are often 

associated with cognition in older adults (Farooqui, Farooqui, Panza, & Frisardi, 2012; 

Yaffe et al., 2004), did not contribute to the pattern described. Chronological age also did 

not significantly contribute to the pattern described for LV1. This discussion mainly 

focuses on LV1, which accounted for the most cross-block variance and met criteria for 

split-half reliability. 

Our results extend the literature by showing a novel association between HB-

EGF-like-GF and cognition. Specifically, better cognitive performance was associated 
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with higher levels of plasma HB-EGF-like-GF in LV1. Previous research has shown that 

this growth factor may have neuroprotective properties, as infusions of HB-EGF-like-GF 

in rats one day post-stroke were associated with neuroprotection against cell death (Shim 

& Madsen, 2018). Moreover, in rats with cypermethrin exposure (a pesticide associated 

with AD neuropathology), exogenous administration of HB-EGF-like-GF inhibited 

cypermethrin-induced accumulation of Aß1-42 and p-tau in the frontal cortex and 

hippocampus, and led to decreases in learning and memory deficits caused by 

cypermethrin exposure (Maurya, Mishra, Abbas, & Bandyopadhyay, 2016). Our finding 

is consistent with animal models demonstrating HB-EGF-like-GF’s potential 

neuroprotective role (Maurya et al., 2016; Shim & Madsen, 2018). To our knowledge, a 

link between HB-EGF-like-GF and human cognition has not been reported. However, in 

one study exploring older adults who were cognitively normal or had MCI, higher levels 

of CSF HB-EGF-like-GF were associated with decreased levels of CSF Aß1-42 and 

increased levels of CSF t-tau, which is contrary to our finding (P. F. Meyer et al., 2018), 

as our results suggest that HB-EGF-like-GF may be associated with potential cognitive 

benefits. This unique finding necessitates additional research in order to clarify the role of 

HB-EGF-like-GF in human cognition. 

Our LV1 findings for two other neurotrophic/growth factors, BDNF and PDGF, 

support previous research showing positive assocations between these two 

neurotrophic/growth factors and cognition. Higher levels of BDNF were associated with 

better cognitive performance (on WMS-R Logical Memory immediate and delayed 

recall, RAVLT List1 and List B, Trail A and Digit Symbol Substitution Test, Trail B, 



31 
 

Clock Drawing, Category Fluency Animals and Vegetables, Boston Naming Test, 

MMSE, and ADAS-COG), consistent with the putative role of BDNF in neuroprotection 

(Lista & Sorrentino, 2010; Miranda et al., 2019). For LV1, higher PDGF was also related 

to better cognitive performance, which is consistent with studies showing higher levels of 

PDGF were associated with reduced cognitive decline (Taipa et al., 2019). However, it 

should be noted that the relationship between PDGF and cognition was not entirely 

consistent. For LV2, lower levels of PDGF were associated with better performance on 

WMS-R Logical Memory delayed recall and RAVLT delayed recall (although LV2 

should be interpreted with caution).    

AD biomarkers exhibited some of the strongest associations with cognition in 

LV1. Lower levels of plasma tau were associated with higher cognitive performance, 

supporting previous research demonstrating that plasma tau levels in those with MCI 

were negatively associated with episodic memory and verbal fluency performance (Chiu 

et al., 2014). Lower levels of CSF t-tau and CSF p-tau181 were associated with better 

cognitive performance, consistent with recent work (Nathan et al., 2017). Lower levels of 

CSF Aß1-42 were correlated with lower cognitive scores, a pattern similar to recent 

findings revealing that low CSF Aß1-42 levels were associated with cognitive impairment 

in participants with MCI (Matura et al., 2019). Increased levels of CSF t-tau and CSF p-

tau181, and lower CSF Aß1-42 in those with MCI are all associated with increased risk of 

converting to dementia (Diniz et al., 2008). These associations between AD biomarkers 

and cognition contribute to our understanding of cognitive decline in MCI, demonstrating 
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that AD biomarkers are associated with a broad range of cognitive domains (see Figure 

1). 

Our results also demonstrate that cortisol, a marker of stress or hypothalamic-

pituitary-adrenal-axis activity, had negative associations with cognition. Lower levels of 

cortisol were associated with higher cognitive performance, which is consistent with 

recent research demonstrating that cognitively normal older adults with elevated cortisol 

and CSF Aß1-42  were at a higher risk of clinical progression to MCI or AD (Udeh-

Momoh et al., 2020).  Interestingly, this relationship remained, even when controlling for 

cognitive reserve (Udeh-Momoh et al., 2020). Our results align with this finding, and 

contribute to the literature by demonstrating that lower cortisol was significantly 

associated with positive cognitive outcomes in an MCI group.  

Regarding demographic variables, higher education was associated with superior 

cognitive performance in LV1, consistent with the well-documented role of education as 

a source of cognitive reserve (Stern, 2013). Surprisingly, chronological age did not 

significantly contribute to the pattern of covariance in LV1. This null finding was 

unexpected as multiple episodic memory and executive function tasks significantly 

contributed to LV1, and these cognitive domains typically decline with age (Buckner, 

2004; Tromp et al., 2015). However, cognitive aging studies often do not include any 

array of physiological and health metrics. These data suggest neurotrophic/growth 

factors, AD biomarkers, stress, and education may better predict performance on tasks of 

episodic memory, executive function, processing speed, visuospatial ability, verbal 

fluency, language and global cognition than chronological age.  
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Variables associated with cardiometabolic function (such as BMI, blood pressure, 

triglycerides) also did not significantly contribute to LV1. Similar to age, this null finding 

was also unexpected as several previous research studies show that cardiometabolic 

variables are associated with memory, executive function, and global cognition in older 

adults (Levine et al., 2020; Parthasarathy et al., 2017; Rouch et al., 2019; Yaffe et al., 

2004). However, none of these studies simultaneously explored markers of 

neuroprotection or AD biomarkers. Thus, our findings suggest that neurotrophic/growth 

factors, AD biomarkers, stress, and education might have relatively stronger associations 

with the above identified cognitive domains. This finding aligns with previous research 

suggesting that metrics of cardiometabolic function are associated with executive 

function and not memory performance (Parthasarathy et al., 2017; Philippou, 

Michaelides, & Constantinidou, 2018). Thus, it’s possible that the multiple significant 

variables associated with memory in LV1 explain this null finding.  

 Overall, these findings emphasize that markers of neuroprotection, 

neuroplasticity, stress, and AD significantly contribute to episodic memory, executive 

function, and processing speed in older adults with MCI. Our results suggest that 

modifiable variables, such as BDNF and cortisol, which research has shown can be 

changed with physical exercise, may serve as potential targets for future interventions to 

slow cognitive impairment and progression to dementia (Lista & Sorrentino, 2010; Baker 

et al., 2011).  
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Discussion Aim 2 (PLSR to identify predictors of cognition at 2-year follow-up)  

Predicting Memory Performance at 2-Year Follow-Up:  

 Two PLSR models were examined to predict memory performance at 2-year 

follow-up (models 1 and 2; Figures 5 and 6 respectively). In model 1, baseline levels of 

multiple modifiable cardiometabolic variables, inflammatory markers, growth factors, 

AD biomarker variables, and education were identified as important in predicting 37% of 

the variance in memory performance at 2-year follow-up. In model 2, baseline memory 

was added as an input variable. An inflammatory marker, AD biomarkers, education, and 

baseline memory were identified as important in predicting 65% of the variance in 

memory performance at 2-year follow-up.  

 In model 1, baseline levels of a novel biomarker, EGF, were considered an 

important predictor that was negatively associated with memory at 2-year follow-up. This 

finding is inconsistent with prior research showing significantly elevated levels of EGF in 

platelets of AD patients compared to MCI and healthy control participants (Hochstrasser 

et al., 2012). Research has also shown that EGF is one of the proteins in a five-protein 

signature demonstrating 96% accuracy in predicting clinical AD, although levels of EGF 

associated with AD were not specified (Ravetti & Moscato, 2008). Additionally, animal 

literature has shown that exogenous administration of EGF mitigated memory and spatial 

deficits in APOE 𝜀4 positive mice with advanced cognitive impairment, suggesting 

potential neuroprotective benefits (Zaldua et al., 2020). Baseline levels of HB-EGF-like-

GF, a related analyte, were considered an important predictor, but was positively 

associated with memory at 2-year follow-up. This result is consistent with animal 
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literature discussed in Aim 1, which suggest that this growth factor may have 

neuroprotective properties (Maurya et al., 2016; Shim & Madsen, 2018). However, this 

finding does not align with research exploring older adults, where higher levels of CSF 

HB-EGF-like-GF were associated with decreased levels of CSF Aß1-42 and increased 

levels of CSF t-tau, as our results from both Aim 1 and model 1 suggest this growth 

factor may be neuroprotective. Thus, further research should explore the association 

between both EGF and HB-EGF-like-GF and human cognition.  

 Two modifiable cardiometabolic variables, systolic blood pressure and 

triglycerides, were important to model 1 and were negatively associated with memory at 

2-year follow up. This aligns with findings from a recent study that assessed a cumulative 

mean measure of systolic blood pressure in a large cohort of participants without 

dementia or stroke, where authors found that mean cumulative systolic blood pressure 

was related to significantly faster declines in memory (average follow-up was 10 years; 

Levine et al., 2020). These associations also are consistent with literature indicating that 

older adults without dementia with metabolic syndrome (which includes high blood 

pressure and triglycerides) were at a higher risk of cognitive impairment compared to 

those without metabolic syndrome (Yaffe et al., 2004). However, this result contrasts 

research demonstrating that triglycerides were negatively associated with executive 

function, but not memory, as triglycerides were considered a variable important in 

predicting memory in model 1 but did not meet criteria for importance in models 3 and 4 

predicting executive function (Parthasarathy et al., 2017). Additionally, in middle-aged 

adults 32 – 62 years old at baseline, hypertension was associated with poorer global 
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cognition at 10-year follow-up, of which assessments of immediate and delayed episodic 

memory were included, which is also in line with our finding (Rouch et al., 2019).  

 Model 1 also showed that higher levels of insulin were positively associated with 

memory performance at 2-year follow-up. This aligns with research showing that insulin-

resistant older adult participants without dementia had decreased odds of incident 

dementia or AD at 3-year follow-up, suggesting that high insulin may actually be a 

protective factor later in life and a risk factor during middle-age (Lee et al., 2019). In 

contrast, this relationship is inconsistent with other research conducted in older adults 

without dementia indicating that high fasting insulin was associated with poorer memory 

and increased risk of AD (Luchsinger, Tang, Shea, & Mayeux, 2004). An additional 

marker related to inflammation, IL-6 receptor, was positively associated with memory 

performance at 2 years. IL-6 receptor is considered an anti-inflammatory marker that 

promotes neurogenesis when bound to IL-6 (Barroeta-Espar et al., 2019). Other findings 

support the notion that IL6-r may be protective against AD (Angelis, Scharf, Mander, 

Vajda, & Christophidis, 1998). In one study, levels of IL-6 receptor were compared in 

AD patients and controls, and AD patients had significantly lower IL-6 receptor when 

compared to control subjects, although sample sizes were small (Angelis et al., 1998). 

This finding aligns with our model showing a positive association between this receptor 

and future memory, suggesting it has potential neuroprotective benefits.  

 Several other variables that were considered important in predicting memory 

performance at 2-year follow-up in model 1 were AD biomarkers. CSF Aß1-42 was 

positively associated with follow-up memory performance, consistent with recent 
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literature reporting that higher CSF Aß1-42 levels were correlated with higher cognitive 

scores in participants with MCI and a decreased risk of converting to dementia (Diniz et 

al., 2008; Matura et al., 2019). CSF p-tau181/Aß1-42  and CSF t-tau/Aß1-42  ratios were both 

negatively associated with memory at follow-up, which is also consistent with recent 

findings showing that lower CSF p-tau181/Aß1-42  ratios were associated with longitudinal 

declines in episodic memory in those with MCI and AD (Prakash, Mckenna, Gbadeyan, 

Andridge, & Scharre, 2020).  Recent research also demonstrated that a CSF t-tau/Aß1-42 

ratio of below 0.33 was associated with more rapid clinical progression (both functional 

and cognitive) over a follow-up of two years in those with MCI (Hansson et al., 2018). 

This relationship between AD biomarkers and future memory performance bolsters 

previous PLSC cross-sectional analyses presented earlier in the thesis, such that several 

AD biomarkers were associated with multiple domains of cognition, including episodic 

memory, in LV1 (see Figure 1). Education was also considered important in the PLSC 

analysis, and had a significant positive association with memory at 2-year follow-up in 

model 1, aligning with literature showing that those with higher education can have 

slower trajectories of cognitive decline due to cognitive reserve (Stern, 2013).  

 For model 2, baseline memory performance was added to the predictors to see 

how this would affect predictions of memory at 2-year follow-up. EGF, the two variables 

associated with cardiometabolic function (systolic blood pressure and triglycerides), and 

CSF p-tau181/Aß1-42 were not considered important in model 2. Baseline memory and four 

of the variables considered important in model 1 were considered also important in model 

2 and maintained the same directionalities reported in model 1 (see Figure 6). 
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Additionally, baseline memory performance had an expected positive association with 

memory performance two years later. Thus, when baseline memory is also considered as 

a predictor among other physiological variables, AD biomarkers, inflammation, and 

education continue to be important and significantly predictive of memory at 2-year 

follow-up, while cardiometabolic variables carry relatively less importance.   

 When interpreting the AIC values for models 1 and 2 (see Table 3), the ∆AIC 

(change in AIC) indicates that model 2 has a superior fit when compared to model 1 (i.e., 

it is better at predicting memory performance at 2 years). Thus, findings from model 1 

should be interpreted with more caution than those reported within model 2. 

Predicting Executive Function Performance at 2-Year Follow-Up  

 Two PLSR models were examined to predict executive function performance at 

2-year follow-up (models 3 and 4; Figures 7 and 8 respectively). In model 3, multiple 

modifiable cardiometabolic variables, inflammatory markers, AD biomarker variables, 

and education were statistically important in predicting 43% of the variance in executive 

function at 2-year follow-up. In model 4, baseline executive function was added as an 

input variable, and several of the same modifiable cardiometabolic, inflammatory, and 

AD biomarker variables, as well as baseline executive function, were identified as 

important in predicting 64% of the variance in executive function performance at 2-year 

follow-up.  

 For model 3, a unique biomarker, HB-EGF-like-GF, was considered an important 

predictor that was positively associated with executive function at 2-year follow-up. This 

finding aligns with prior animal research showing HB-EGF-like-GF may have 
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neuroprotective effects and thus likely positive associations with cognition, as described 

in the discussion of Aim 2, model 1 and Aim 1 (Maurya et al., 2016; Shim, Joon W., 

Madsen, 2018). However, as detailed in the PLSC analysis discussion, the association 

between HB-EGF-like-GF and human cognition is sparsely reported, and the single study 

we found reported that CSF levels of HB-EGF-like-GF were associated with AD 

pathology (lower levels of CSF Aß1-42 and increased levels of CSF t-tau) in cognitively 

normal and MCI participants, contrasting our results suggesting that high HB-EGF-like-

GF is predictive of better executive function (P. F. Meyer et al., 2018). The unique 

findings in both the PLSC and PLSR analyses necessitate additional research to clarify 

how plasma HB-EGF-like-GF relates to human cognition in those with MCI. 

 Systolic blood pressure was also considered important in predicting executive 

function performance at 2-year follow up. Consistent with model 1, this variable was 

negatively associated with executive function at 2-year follow-up. This aligns with 

research findings discussed in model 1, where high blood pressure was associated with 

faster declines in executive function and was associated with poorer cognition (Levine et 

al., 2020; Rouch et al., 2019). In a different study exploring community dwelling older 

adults, metabolic syndrome (assessed as a single latent variable where blood pressure was 

included) was found to be negatively associated with executive function, however this 

relationship was not maintained when age and education were controlled for (Philippou et 

al., 2018). 

 Two markers associated with inflammation, IL-6 receptor and insulin, were also 

important predictors of executive function at 2-year follow-up in model 3. To our 
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knowledge, no studies have specifically reported a relationship between IL-6 receptor and 

executive function in older adults. However, IL-6 receptor is considered an anti-

inflammatory marker with neuroprotective properties as described in the discussion of 

model 1 (Angelis et al., 1998; Barroeta-Espar et al., 2019). Thus, the positive relationship 

between IL-6 receptor and executive function found herein is consistent with the notion 

that IL-6 receptor may confer neuroprotection. Insulin, which is also associated with 

inflammation, was important to model 3 and had positive associations with executive 

function at 2-years, consistent with the directionality reported in model 1. As discussed 

for model 1, recent research has hypothesized that high insulin later in life may actually 

be protective in developing dementia or AD (Lee et al., 2019). Additionally, in a small 

pilot study exploring post-menopausal middle aged women at risk for AD, those with 

higher levels of fasting plasma insulin had small but statistically significant differences in 

executive function, where those in the higher plasma insulin group had higher levels of 

executive function (Kenna et al., 2013). 

 Several AD biomarkers were important in predicting executive function in model 

3 as well. CSF t-tau and CSF t-tau/Aß1-42 ratios had negative associations with executive 

function, aligning with literature reporting worse performance on tasks of memory and 

sustained attention in those with higher CSF t-tau and t-tau/Aß1-42 ratios in subjects with 

MCI (Nathan et al., 2017). CSF Aß1-42 was positively associated with executive function, 

consistent with research showing that low CSF Aß1-42 was associated with poorer 

cognition in those with MCI but not in healthy controls (Matura et al., 2019). However, 

this finding contrasts findings showing that low CSF Aß1-42 was associated with multiple 
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tasks of memory, but not executive function (measured by a task of sustained attention), 

in participants with MCI (Nathan et al., 2017). These reported associations also 

supplement our cross-sectional PLSC findings, where lower CSF t-tau and higher CSF 

Aß1-42 were associated with multiple domains of cognition, including executive function.  

 In contrast, CSF p-tau181 and CSF p-tau181/Aß1-42 ratios had positive associations 

with executive function at 2-year follow-up in model 3. These relationships contrast 

literature showing that higher CSF p-tau181/Aß1-42 ratios predicted declines in executive 

function longitudinally in healthy control, MCI, and AD participants (Prakash et al., 

2020). The reported association between CSF p-tau181 and cognition also contrasts 

findings showing that higher levels of CSF p-tau181 were associated with poorer 

performance on a task of executive function (spatial working memory) in MCI 

participants (Nathan et al., 2017). This also contrasts findings showing that those who 

were MCI at baseline and converted to AD two years later had higher CSF p-tau181 at 

baseline when compared to those who remained MCI at 2-year follow-up (Brys et al., 

2009). The PLSR analyses also had a larger percentage of men (66%, see participants 

section for details). Recent research has shown that CSF AD biomarker profiles may 

differ in women and that women may be at a higher risk for AD (Koran, Wagener, & 

Hohman, 2017). Thus, this relationship could be due the high percentage of men, as well 

as potentially different AD biomarker profiles that  could be observed as a function of 

sex. Lastly, there were 390 participants diagnosed with MCI that also had the ADNI 

executive function composite score and CSF AD biomarker data available (Gibbons et 

al., 2012). Approximately one third of this sample was included in Aim 2 analyses (N = 
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126), as this was the number of participants that also had other biomarkers of interest 

available at baseline (such as cardiometabolic variables, neurotrophic/growth factors). 

Gibbons and colleagues assessed levels of p-tau181 in the original 390 participant sample, 

and found that 70% of the sample had high levels of p-tau181 (p-tau181 > 23 pg/ml; 

(Gibbons et al., 2012). Thus, another potential explanation for this finding might be that 

the subset of 126 participants in this study disproportionately of the 30% of participants 

with lower p-tau, lending potential explanation to the unexpected relationship found with 

both p-tau181 and p-tau181/Aß1-42 ratios and executive function in model 3.  

 APOE 𝜀4 allele status also had positive associations with executive function at 2-

year follow-up in model 3. It is well known that APOE 𝜀4 allele status puts older adults 

at an elevated risk of AD (O’Donoghue, Murphy, Zamboni, Nobre, & Mackay, 2018). 

Thus, a positive association between number of alleles (which would indicate greater risk 

of AD) and executive function is inconsistent with what we would expect given the 

current state of the literature (O’Donoghue et al., 2018). There are several potential 

explanations for this unexpected finding. It is possible that certain characteristics of 

APOE 𝜀4 positive and negative participants played a role in this result. For instance, it’s 

possible that participants who were APOE 𝜀4 allele positive had overall higher education 

on average. Alternatively, those with one or more APOE 𝜀4 alleles might have been a 

group of participants that were threshold for meeting criteria for an MCI verses a 

cognitively normal diagnosis at baseline. On the other hand, APOE 𝜀4 negative 

participants might have been a group that consisted of a greater number of people who 

were closer to the threshold for an AD diagnosis, yet still met criteria for MCI at baseline.  
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 For model 4, systolic blood pressure, IL-6 receptor, CSF t-tau/Aß1-42, and CSF 

Aß1-42 were all important variables in predicting executive function 2-year follow-up. All 

four of these variables overlapped with and maintained the same directionality as those 

described in model 3. Baseline executive function also was an important predictor in 

model 4 and had an expected positive association with executive function at 2-year 

follow-up. Of note, when baseline executive function was included in model 4, a greater 

percent variance in future cognition was accounted for, and variables that were going in 

directions that were not always consistent with the literature were no longer significant in 

model 4. Additionally, similar to comparisons of models 1 and 2, the AIC value (see 

Table 3) indicates that model 4 is superior to model 3 in predicting executive function 

performance at 2-year follow-up. Thus, findings from model 3 should be interpreted with 

more caution than those reported within model 4.  
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Chapter 5: Summary 

The goal of the present study was to address a gap in the literature regarding the 

relative importance of different types of physiological variables with known associations 

with cognition, and how they relate to current and future cognition when considered 

simultaneously in a multivariate analysis. Our findings from Aim 1 revealed that 

variables largely associated with neuroprotection, AD pathology and education were 

significantly associated with episodic memory, executive function, processing speed, 

verbal fluency, and global cognition. Age and metrics of cardiometabolic risk were not 

significant in LV1 in this cross-sectional analysis. Findings from Aim 2 revealed that 

when these same markers were entered into a PLSR analysis to predict memory at 2-year 

follow-up, metrics of cardiometabolic risk, inflammation, AD biomarkers, and education 

were considered important predictors of memory performance 2 years later (models 1 and 

2; see Figures 5 and 6). Results were similar when executive function at 2-year follow-

up was the Y-outcome: metrics of cardiometabolic risk, inflammation, and AD 

biomarkers were considered important in predicting executive function at 2-year follow-

up. However, education was not an important predictor for the executive function PLSRs 

(models 3 and 4; see Figures 5 and 6). These findings suggest that education may have 

relatively more importance in predicting future memory rather than executive function 

performance, and that neurotrophic/growth factors associated with neuroprotection may 

have stronger associations with current rather than future cognition. On the other hand, 

AD biomarkers were significant in all analyses in Aims 1 and 2, suggesting that CSF AD 

biomarkers may be promising targets for assessments of risk or resilience to future 
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decline. Likewise, these analyses suggest that education may be a good indicator of 

current and future memory performance, but may not provide the cognitive reserve 

needed to maintain executive function abilities over time.  

Limitations 

 This present study had limitations. This study sample was not representative of all 

older adults in the United States, as the 154 participants assessed in Aim 1 and the 126 

participants assessed in Aim 2 were predominately white, non-Hispanic, and highly 

educated. Thus, these findings may not be generalizable to a more diverse and/or less 

educated sample. Some physiological variables such as Insulin-like Growth Factor 1 and 

Interleukin-6 did not pass ADNI’s internal quality control processes, precluding inclusion 

in our analysis. Other neuropsychological variables, such as those assessing cognitive 

flexibility, were not included in the ADNI neuropsychological battery. Overall, the ADNI 

neuropsychological battery had more measures assessing memory rather than executive 

function. This was also shown by the ADNI executive function composite score, which 

heavily sampled from individual scores on clock drawing (Gibbons et al., 2012). Thus, it 

is possible the relationships identified herein might differ if the ADNI 

neuropsychological battery had a wider range of executive function measures in both its 

individual tests and composite executive function score. Other variables, such as sex or 

APOE 𝜀4 status, were not included in the Aim 1 PLSC analysis because it is generally 

not recommended to include binarized variables (sex) or those with limited variability 

(APOE 𝜀4 genotype: only 3 possible values: 0, 1, or 2 alleles) in a PLSC analysis (a 

variable with low variance is problematic for the calculation of correlation coefficients 
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and can lead to faulty bootstrap resampling, thus complicated interpretation of results). 

For Aim 2, follow-up data for MCI participants with the physical, health, AD, and 

cognitive data of interest were limited at more extended timepoints of 3, 4, and 5-year 

follow-up. Thus, a 2-year follow up was chosen in order to include as many participants 

as possible from the original PLSC analysis completed in Aim 1. The statistical analysis 

chosen for Aim 2 also comes with limitations, in that there is no way to directly compare 

models with different y-outcomes. AIC scores can be used to assess model fit when the y-

outcome is the same, however, two models with different outcomes cannot be compared 

because actual AIC scores are meaningless, and only the change in AIC from one model 

to another can be interpreted. Thus, we were not able to assess whether or not the 

identified physiological variables were better at predicting memory or executive function 

performance. 

Future Directions 

 To build off these findings, future work should explore both the cross-sectional 

and longitudinal associations between these physiological domains and brain health by 

exploring neuroimaging data. For instance, research exploring diffusion tensor imaging 

could answer questions regarding the associations between these physiological domains 

and structural connectivity, while research exploring resting-state functional 

neuroimaging could answer questions about functional connectivity and its associations 

to these physiological variables. Follow-up analyses should also explore how these 

relationships may differ in cognitively healthy older adults, or in cognitively healthy 

middle-aged adults. This research would allow us to move toward identifying those at 



47 
 

risk for cognitive decline at earlier stages, as well as target those who might be best fit for 

a lifestyle intervention. Lastly, the PLSR analyses completed as part of Aim 2 can be 

used to inform future PLS discriminant analyses, which would allow us to see if the 

variables considered important in predicting future memory or executive function are also 

able to effectively discriminate between MCI participants who remain MCI verses those 

who convert to AD at 2-year follow-up.  
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Figure 1. Correlation Profile and Bootstrap Ratios for Latent Variable 1. 
The correlation between each cognitive test variable to the identified physical, health, and 
AD variables listed in panel B. Significant variables have 95% confidence intervals (error 
bars) that do not cross the x-axis (0). B. Each Physical, Health, and AD Variable’s 
contribution to LV1 represented by their bootstrap ratios, indicating directionality with 
significant cognitive tests represented in A (for instance, performance on logical memory 
immediate was positively correlated with levels of brain-derived neurotrophic factor, and 
had a negative correlation with CSF tau). Error bars represent 95% confidence intervals. 
Variables with bootstrap ratios > |1.96| (equivalent to a p-value of < 0.05) are considered 
significant contributors to the LV and are indicated by *.  (KEY PANEL A: ADAS-
COG = Alzheimer’s Disease Assessment Scale, Cognitive Subsection; ANART = 
American National Adult Reading Test; MMSE = Mini Mental State Examination; 
RAVLT = Rey Auditory Verbal Learning Test; KEY PANEL B: APOE = 
apolipoprotein E; BDNF = brain-derived neurotrophic factor; BMI = body mass index; 
CSF = cerebrospinal fluid; HB-EGF-like-GF = heparin-binding epidermal growth factor-
like growth factor; IGF = insulin-like growth factor; P-tau = phospho-tau 181; VEGF = 
vascular endothelial growth factor). 
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Figure 2. Scatterplots of Participant Brain Scores Against Selected Cognitive Tests.  
Each participant’s Digit Symbol Substitution raw score (Panel A) and WMS-R Logical 
Memory Delayed Recall raw score (Panel B) are plotted against their individual 
physical/health/AD score (representing how well an individual’s physical/health/AD 
variables contribute to the overall pattern in LV1). 
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Figure 3. Correlation profile and bootstrap ratios for Latent Variable 2.  
A. The correlation between each cognitive test variable to the identified physical, health, 
and AD variables listed in panel B. Significant variables have 95% confidence intervals 
(error bars) that do not cross the x-axis (0). B. Each Physical, Health, and AD Variable’s 
contribution to LV2 represented by their bootstrap ratios, indicating directionality with 
significant cognitive tests represented in A (for instance, performance on logical memory 
delayed was positively correlated with CSF Aß1-42, and had a negative correlation with 
CSF tau). Error bars represent 95% confidence intervals. Variables with bootstrap ratios 
> |1.96| (equivalent to a p-value of < 0.05) are considered significant contributors to the 
LV and are indicated by *. (KEY PANEL A: ADAS-COG = Alzheimer’s Disease 
Assessment Scale, Cognitive Subsection; ANART = American National Adult Reading 
Test; MMSE = Mini Mental State Examination; RAVLT = Rey Auditory Verbal 
Learning Test; KEY PANEL B: APOE = apolipoprotein E; BDNF = brain-derived 
neurotrophic factor; BMI = body mass index; CSF = cerebrospinal fluid; HB-EGF-like-
GF = heparin-binding epidermal growth factor-like growth factor; IGF = insulin-like 
growth factor; P-tau = phospho-tau 181; VEGF = vascular endothelial growth factor). 
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Figure 4. Correlation profile and bootstrap ratios for Latent Variable 3.  
A. The correlation between each cognitive test variable to the identified physical, health, 
and AD variables listed in panel B. Significant variables have 95% confidence intervals 
(error bars) that do not cross the x-axis (0). B. Each Physical, Health, and AD Variable’s 
contribution to LV3 represented by their bootstrap ratios, indicating directionality with 
significant cognitive tests represented in A (for instance, performance on digit span 
backward was positively correlated with education, and had a negative correlation with 
BMI). Error bars represent 95% confidence intervals. Variables with bootstrap ratios > 
|1.96| (equivalent to a p-value of < 0.05) are considered significant contributors to the LV 
and are indicated by *. (KEY PANEL A: ADAS-COG = Alzheimer’s disease 
Assessment Scale, Cognitive Subsection; ANART = American National Adult Reading 
Test; MMSE = Mini Mental State Examination; RAVLT = Rey Auditory Verbal 
Learning Test; KEY PANEL B: APOE = apolipoprotein E; BDNF = brain-derived 
neurotrophic factor; BMI = body mass index; CSF = cerebrospinal fluid; HB-EGF-like-
GF = heparin-binding epidermal growth factor-like growth factor; IGF = insulin-like 
growth factor; P-tau = phospho-tau 181; VEGF = vascular endothelial growth factor). 
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Figure 5. Beta Values (Absolute) and Variable Importance on Projection Scores, PLSR 
Model 1.  
All physical, health, and AD variables (X-matrix variables) included in PLSR model 1 
are on the x-axis. Bars represent absolute values of the beta values. Variables with 
positive beta values, to the right of the vertical dashed gray line, are associated with 
better composite memory at 2-year follow-up. Variables with negative beta values, to the 
left of the vertical dashed gray line, are associated with poorer composite memory at 2-
year follow-up. VIP values are represented by the red dashed line. Variables considered 
statistically important to the model have VIP scores > 0.8. Variables with a VIP > 0.8 and 
an original beta value with a 95% confidence interval that did not include 0 were 
considered significant predictors the model, and are highlighted in dark blue. (KEY: 
APOE = apolipoprotein E; BDNF = brain-derived neurotrophic factor; BMI = body mass 
index; CSF = cerebrospinal fluid; HB-EGF-like-GF = heparin-binding epidermal growth 
factor-like growth factor; IGF = insulin-like growth factor; P-tau = phospho-tau 181; VIP 
= Variable Importance on Projection; VEGF = vascular endothelial growth factor).
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Figure 6. Beta Values (Absolute) and Variable Importance on Projection Scores, PLSR 
Model 2.  
All physical, health, and AD variables (X-matrix variables) included in PLSR model 2 
are on the x-axis. Bars represent absolute values of the beta values. Variables with 
positive beta values, to the right of the vertical dashed gray line, are associated with 
better composite memory at 2-year follow-up. Variables with negative beta values, to the 
left of the vertical dashed gray line, are associated with poorer composite memory at 2-
year follow-up. VIP values are represented by the red dashed line. Variables considered 
statistically important to the model have VIP scores > 0.8. Variables with a VIP > 0.8 and 
an original beta value with a 95% confidence interval that did not include 0 were 
considered significant predictors in the model, and are highlighted in dark blue. (KEY: 
APOE = apolipoprotein E; BDNF = brain-derived neurotrophic factor; BMI = body mass 
index; CSF = cerebrospinal fluid; HB-EGF-like-GF = heparin-binding epidermal growth 
factor-like growth factor; IGF = insulin-like growth factor; P-tau = phospho-tau 181; VIP 
= Variable Importance on Projection; VEGF = vascular endothelial growth factor).
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Figure 7. Beta Values (Absolute) and Variable Importance on Projection Scores, PLSR 
Model 3.  
All physical, health, and AD variables (X-matrix variables) included in PLSR model 3 
are on the x-axis. Bars represent absolute values of the beta values. Variables with 
positive beta values, to the right of the vertical dashed gray line, are associated with 
better composite executive function at 2-year follow-up. Variables with negative beta 
values, to the left of the vertical dashed gray line, are associated with poorer composite 
executive function at 2-year follow-up. VIP values are represented by the red dashed line. 
Variables considered statistically important to the model have VIP scores > 0.8. Variables 
with a VIP > 0.8 and an original beta value with a 95% confidence interval that did not 
include 0 were considered significant predictors in the model, and are highlighted in dark 
blue. (KEY: APOE = apolipoprotein E; BDNF = brain-derived neurotrophic factor; BMI 
= body mass index; CSF = cerebrospinal fluid; HB-EGF-like-GF = heparin-binding 
epidermal growth factor-like growth factor; IGF = insulin-like growth factor; P-tau = 
phospho-tau 181; VIP = Variable Importance on Projection; VEGF = vascular endothelial 
growth factor). 
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Figure 8. Beta Values (Absolute) and Variable Importance on Projection Scores, PLSR 
Model 4. 
All physical, health, and AD variables (X-matrix variables) included in PLSR model 4 
are on the x-axis. Bars represent absolute values of the beta values. Variables with 
positive beta values, to the right of the vertical dashed gray line, are associated with 
better composite executive function at 2-year follow-up. Variables with negative beta 
values, to the left of the vertical dashed gray line, are associated with poorer composite 
executive function at 2-year follow-up. VIP values are represented by the red dashed line. 
Variables considered statistically important to the model have VIP scores > 0.8. Variables 
with a VIP > 0.8 and an original beta value with a 95% confidence interval that did not 
include 0 were considered significant predictors in the model, and are highlighted in dark 
blue. (KEY: APOE = apolipoprotein E; BDNF = brain-derived neurotrophic factor; BMI 
= body mass index; CSF = cerebrospinal fluid; HB-EGF-like-GF = heparin-binding 
epidermal growth factor-like growth factor; IGF = insulin-like growth factor; P-tau = 
phospho-tau 181; VIP = Variable Importance on Projection; VEGF = vascular endothelial 
growth factor). 
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Table 1. Participant Demographic, Neuropsychological, Physical, Health, and AD 
Biomarker Data Entered into the PLSC Analysis (N=154).  
KEY: ADAS-COG = Alzheimer’s disease Assessment Scale, Cognitive Subsection; 
ANART = American National Adult Reading Test; MMSE = Mini Mental State Exam; 
CSF = Cerebrospinal Fluid; RAVLT = Rey Auditory Verbal Learning Test; WMS-R = 
Weschler Memory Scale – Revised. 
Demographic Variables Physical, Health, and AD Variables  
  Unit Mean (SD)   Unit Mean (SD) 
Age Years 74.1 (7.5) Body Mass Index  kg/m2     25.8 (3.7) 

Education Years 16.0 (2.9) Seated Systolic 
Blood Pressure 

mmHg
  134.1 (17.8) 

Race N/A 

N = 150 
White; N =2 
Asian; N = 2 

Black 

Seated Diastolic 
Blood Pressure 

mmHg
  74.2 (9.7) 

Ethnicity N/A 

N = 152 
Non-

Hispanic; N 
= 2 Hispanic 

Seated Pulse Rate  
Per 

minute
  

64.2 (9.5) 

Neuropsychological Variables Serum Glucose  mg/dL  101.8 (31.7)   
WMS-R Logical 
Memory  
Immediate Recall  

Number of story 
details correctly 

recalled  
6.9 (3.2) Triglycerides  mg/dL 

  
151.0 

(102.5) 

WMS-R Logical 
Memory Delay 
Recall  

Number of story 
details correctly 

recalled   
3.7 (2.7) Cholesterol  mg/dL 

  198.7 (39.8) 

RAVLT List 1  
Number of words 

correctly 
recalled   

4.0 (1.4) Insulin* + uIU/m
L  0.3 (0.3) 

RAVLT List 6  
Number of words 

correctly 
recalled    

3.4 (3.0) C-reactive 
Protein*+ ug/mL  0.1 (0.5) 

RAVLT List B  
Number of words 

correctly 
recalled    

3.6 (1.4) Cortisol*+ ng/mL  2.2 (0.1) 

RAVLT Delay 
Recall  

Number of words 
correctly 

recalled     
2.5 (3.0) Interleukin-6 

Receptor* + ng/mL  1.5 (0.1) 

Longest Digit 
Span Forward  

Length of longest 
digit span 
correctly 
recalled  

6.5 (1.1) 
Insulin-like 
Growth Factor 
Binding Protein*+ 

ng/mL  2.0 (0.2) 
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Table 1 Continued 

Longest Digit 
Span Backward 

Length of longest 
digit span 

correctly recalled  
4.6 (1.1) 

Vascular 
Endothelial 
Growth Factor* + 

pg/mL
  2.8 (0.1) 

Trail Making 
Test, Trail B 
Score**  

Seconds to 
correctly complete 

the trail    

135.8 
(73.5) 

Epidermal Growth 
Factor* + 

pg/mL
  1.6 (0.6) 

Digit Symbol 
Substitution Score 

Number of 
correctly drawn 

symbols  
36.7 (10.8) 

Heparin-binding 
Epidermal- 
Growth-Factor-
like Growth Factor 
*+ 

pg/mL
  1.9 (0.4) 

Clock Drawing 
Score  

Number of clock 
details correctly 
drawn based on 

verbal command   

4.1 (1.1)  
Hepatocyte 
Growth Factor*+ 

ng/mL
  0.6 (0.1) 

Clock Copy Score 

Number of clock 
details correctly 

drawn when visual 
clock stimulus is 

present   

4.6 (0.8) 
Platelet-derived 
Growth Factor 
BB* + 

pg/mL
  3.2 (0.5) 

Category 
Fluency: Animals 

Number of words 
produced in the 

correct category  
15.7 (4.7) Apolipoprotein E* 

+ 
ug/mL

  1.7 (0.2) 

Category 
Fluency: 
Vegetables 

Number of words 
produced in the 

correct category   
10.7 (3.4) Tau+  pg/mL

   2.8 (1.7) 

Boston Naming 
Test Total 
Correct 

Number of 
drawings correctly 

named  
25.8 (3.9) Aß1-42 (CSF) pg/mL

   
742.0 

(337.3) 

ANART Errors**  
Number of words 

incorrectly 
pronounced    

14.5 (9.9) Total tau (CSF) pg/mL
   

311.6 
(129.7) 

MMSE Total score 26.9 (1.8) P-tau181 (CSF) pg/mL
   31.1 (15.1) 

ADAS-COG**  Total Score  11.7 (4.6)    
    

*these values are normalized  **higher scores = poorer performance   +plasma levels 
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Table 2. Participant Demographic, Neuropsychological, Physical, Health, and AD 
Biomarker Data Entered into the PLSR Analyses (N=126).  
KEY: CSF = Cerebrospinal Fluid 

Physical, Health, and AD Variables  

  Unit Mean (SD)   Unit Mean (SD) 

Body Mass Index  kg/m2  26.0 ( 3.8) 
Vascular 
Endothelial 
Growth Factor* + 

pg/mL  
2.8 (0.1) 

Seated Systolic Blood 
Pressure mmHg  134.4 (18.1) Epidermal Growth 

Factor* + pg/mL  1.5 (0.6) 

Seated Diastolic Blood 
Pressure mmHg  

73.4 (9.3) Heparin-binding 
Epidermal- 
Growth-Factor-like 
Growth Factor *+ 

pg/mL  

1.9 (0.4) 

Seated Pulse Rate  Per 
minute  

64.5 (9.2) Hepatocyte Growth 
Factor*+ ng/mL  

0.6 (0.1) 

Serum Glucose  mg/dL  
102.6 (34.0) Platelet-derived 

Growth Factor 
BB* + 

pg/mL  
3.2 (0.4) 

Triglycerides  mg/dL   157 (106.1) Apolipoprotein E* + ug/mL  1.7 (0.2) 

Cholesterol  mg/dL   198.8 (38.7) Tau+  pg/mL   2.8 (1.8) 

Insulin* + uIU/mL  0.3 (0.3) Aß1-42 (CSF) pg/mL   733.1 
(337.6) 

C-reactive Protein*+ ug/mL  0.04 (0.5) Total tau (CSF) pg/mL   308.4 
(120.4) 

Cortisol*+ ng/mL  2.2 (0.1) P-tau181 (CSF) pg/mL   30.7 (13.7) 
Interleukin-6 
Receptor* + ng/mL  1.5 (0.1) P-tau181/Aß1-42 

(CSF)  Ratio 0.1 (0.03) 
Insulin-like Growth 
Factor Binding 
Protein*+ 

ng/mL  
2.0  (0.2) Total tau/Aß1-42 

(CSF)  Ratio 0.5 (0.3) 
Brain-derived 
Neurotrophic 
Factor*+ 

ng/mL  
0.3 (0.4) 

APOE e4 status  
Number 
of 
alleles  0.7 (0.7) 

                 Continued
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Table 2 Continued 

Demographic Variables 

  Unit Mean (SD)   Unit Mean 
(SD) 

Age Years 74.0 (7.6) Education Years 16.0 
(2.9) 

Time between 
appointments Months 24.8 (1.2) Sex N/A N/A 

Race N/A 

N = 122 
White; N =2 
Asian; N = 2 

Black 

Ethnicity  N/A 

N = 124 
Non-

Hispanic; 
N = 2 

Hispanic 

Neuropsychological Variables 

  Unit Mean (SD)   Unit Mean 
(SD) 

ADNI Composite 
Memory Baseline Z-scores 

-0.1 (0.6) ADNI Composite 
Executive Function 
Baseline 

Z-
scores 

-0.1 (0.1) 

ADNI Composite 
Memory 24 Months Z-scores 

-0.3 (0.8) ADNI Composite 
Executive Function 
24 Months 

Z-
scores 

-0.3 (1.0) 

*these values are normalized  **higher scores = poorer performance   +plasma levels 
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Table 3. Summary statistics for all four PLSR models run.  
KEY: AIC = Akaike Information Criterion 
Model Number of 

Components 
AIC (∆AIC) Percent Variance 

Explained in X 
Percent Variance 
Explained in Y  

1 3 -0.04 (72.73) 25.55 36.91 
2 3 -72.77 (0) 25.45 65.14 
3 9 -11.71 (55.84) 50.76 42.49 
4 3 -67.55 (0) 25.99 63.66 
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