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 Abstract 

Precision variable-rate sprayers regulate the spray dosage based on the canopy density of 

plants; hence a precise structural measurement is essential. Although a ground-based 

acquisition system mounted with laser sensors can accurately extract plant dimension, an 

indoor greenhouse environment presents several structural limitations in capturing 

multiple views of the canopy to prevent occlusions. Consequently, a mini-unmanned 

aerial vehicle (UAV) was chosen to mount the sensors allowing greater mobility and 

maneuverability. The system integrated UAV's control system, a 2D laser range sensor, a 

vision-based positioning system, an onboard microcomputer, and a ground computer 

using Robot Operating System (ROS). The study developed customized algorithms for 

autonomous UAV control independent of GPS signal availability, offline processing of 

point cloud, and graphical user interface (GUI) to simplify human-machine interaction. 

The autonomous navigation performance was evaluated in a GPS-denied environment by 

calculating the deviation, performing a second-order regression of the UAV position from 

a straight line reference, and evaluating variation in flight parameters. The deviation in 

positions reduced (88, 75, 60, 68 cm), and the coefficient of determination (R2) increased 

(0.971, 0.986, 0.998, 0.998) as the speed increased (0.6, 0.8, 1.0, and 1.2 m/s) and shorter 

duration flights were more stable. Additionally, the performance of UAV attitude control 

was evaluated using barometric height feedback and compared to more accurate range 
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sensor derived height feedback, both resulted in similar performance with overall 

deviation under 5 cm. The effect of propellers downdraft on plant measurement was 

evaluated by mounting aerial platform on a constant speed track and comparing the 

measurements under varying sensor inclinations, and propeller running with propeller 

turned off. The length and height measurements were stable beyond 40 cm of UAV with 

0° inclination, and width measurements had the least variation with 35° inclination within 

100 cm of UAV. 

Keywords: UAV, LiDAR, Guidance, Autonomous Control, Indoor Navigation, Altitude 

Control, Path Planning, Downdraft 
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 Chapter 1. Introduction 

 

1.1 Background 

Controlled Environment Agriculture (CEA) provides microclimate control to achieve 

optimum environmental conditions for crops, enabling year-round production capability, 

higher yield, and increased control over plant growth than open-field farming systems 

(Duarte-Galvan et al., 2012). Although these artificial conditions promote plant growth, it 

creates a conducive environment for pest infestation (Sammons et al., 2005). 

Consequently, extensive use of pesticides is a common practice among greenhouse 

growers. However, incorrect pesticide application rates can result in over or under 

applications, reducing efficiency in terms of economic costs, groundwater pollution, and 

impact on human health (Miranda-Fuentes et al., 2016). Moreover, pesticide overuse 

increases production costs and has adverse health effects, and excess runoff can lead to 

soil, ground, and surface water pollution (Abhilash and Singh, 2009; Sharma et al., 

2019). Exposure to pesticides can have a detrimental impact on human health, primarily 

due to the absorption of aerosols absorption through the skin, inhalation, and consuming 

food with pesticide residues (Hernández et al., 2003; Nuyttens et al., 2009). Additionally, 
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high humidity levels and air temperature of the greenhouse amplify pesticide exposure 

risk compared to the open-field application (Archibald et al., 1995). 

Handheld spraying is the most commonly used methodology in greenhouses due to its 

simplicity and adaptability to any greenhouse structure (Derksen et al., 2007). However, 

spray uniformity primarily depends on the skill of the operator. Considering the scale of 

commercial greenhouses, manual operation can be time-consuming and tedious, making 

it prone to errors and leading to economic losses and health hazards. The use of 

mechanized systems can help overcome these drawbacks (Pilarski et al., 2002; Sezen, 

2003; Henten et al., 2000). Nuyttens et al. (2004) compared the level of total body 

exposure in a greenhouse to pesticides using a handheld spray gun, a spray lance, a self-

propelled vehicle (Fumimatic), and a manually pulled trolley. Compared to the spray gun 

(100%), the mechanized Fumimatice had the least human exposure (1%) among the 

group. 

However, a mechanized system spraying can be inefficient at a constant rate since it 

cannot adjust its spray rate whether there are plants in the area or not, not with canopy 

variation in shape and size. Precise spray dose adjustments can result in a controlled 

pesticide application, reducing the overuse and its harmful effects (Gil et al., 2007; 

Llorens et al., 2011; Solanelles et al., 2006; Stajnko et al., 2012). Previous studies have 

shown that the plant geometry or canopy variation influences the spray rate; 

consequently, accurate determination of the plant dimensions has been a field of 

extensive research (Chen et al., 2012; Escolà et al., 2011; Gil et al., 2007; Rosell et al., 

2009; Siegfried et al., 2007; Walklate et al., 2002; Wei and Salyani, 2004). Gil et al. 
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(2007) showed that variable-rate sprayers with the capability of extracting plant structure 

had similar spray penetration and coverage to constant rate sprayers, whereas the spray 

consumption was 41.2% of constant rate sprayers. A variable-rate sprayer capable of 

synchronizing its spray rate with the variability of canopy characteristics has shown a 

significant reduction in pesticide losses compared to constant rate sprayers (Chen et al., 

2012, 2013; Jeon and Zhu, 2012).  

Sophisticated instruments such as cameras, ultrasonic sensors, radar sensors, and ranging 

sensors are mounted on a moving platform to extract plant structural information.  

However, the current research focuses on the greenhouse environment, which can limit 

the selection scope of the sensors and sensing platform. Most of the studies have focused 

on utilizing farm machines such as tractors as scanning platforms, which could be 

infeasible for a greenhouse environment due to limited maneuverability in enclosed space 

where greenhouse plants are tightly spaced. Hence it was necessary to investigate 

alternative mobile platforms suitable for greenhouse application. 

1.2 Objectives 

This research aimed to evaluate the feasibility of using an aerial sensing platform for 

plant characterization in the greenhouse environment. Specific objectives of this research 

- 

• Establish an aerial sensing platform including sensor selection, data collection, 

and map generation, 
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• Develop an autonomous flight control system for flight path planning and 

autonomous navigation, 

• Evaluate autonomous flight control performance along a single path 

• Document downdraft effect on the plant measurements 

1.3 Thesis Organization 

 This study investigates the challenges of the greenhouse environment and establishes a 

sensing platform capable of extracting the highest quality plant data. Chapter 2 

investigates the selection of sensing platforms based on existing works, followed by a 

review of indoor positioning systems to address the unavailability of GPS signals. 

Chapter 2 also focuses on path planning and automation of aerial platforms, followed by 

the limitation of the selected platform affecting the data quality. The final section of 

chapter 2 focuses on the sensor selection criterion. Chapter 3 discusses the materials and 

methods used to achieve the desired objectives. Chapter 4 evaluates the results of the 

experiments conducted, including the discussion. The final chapter (Chapter 5) presents 

the conclusion of the thesis and recommendations for future study.
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 Chapter 2. Literature Review 

2.1 Mobile Sensing Systems 

2.1.1 Irrigation boom based scanner 

Specific to the greenhouse application, a 2-D line scanner or LiDAR (Light Detection 

And Ranging) sensor was mounted on an irrigation/spray boom to extract dimensions of 

underlying crops (Yan et al., 2018). However, commercial greenhouses usually comprise 

multiple bays with separate sprayers, and such a design would require mounting the 

sensing platform and data acquisition system on each and every sprayer boom, making it 

undesirable.  

Moreover, due to the limited operating range of the LiDAR, its accuracy in measuring 

plant width deteriorated as the plants moved away from the LiDAR's mounting location. 

This limitation can be attributed to the shape and size of LiDAR's footprint, which is 

circular at the center and becomes more ellipsoidal as it moves away from the center, 

reducing the beam intensity and resulting in poorer resolution (Pang et al., 2011). The 

study also found that the measurement accuracy deteriorated as the spacing between the 

objects reduced, presenting a challenge while scanning tightly spaced greenhouse crops. 

It is primarily caused due to the inability of LiDAR to penetrate the farther plants and 

reach the ground. Since the LiDAR only captured a single perspective of the plants, it 

could not generate the plant's complete geometry, whereas previous studies have shown 
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that complete reconstruction of plants requires bidirectional scanning for complete 

reconstruction (Arnó et al., 2013; Rosell et al., 2009). Since the boom can travel only in 

forward/backward direction and lateral movement is restricted, it cannot overcome 

previously mentioned limitations. Although mounting multiple LiDARs on a single boom 

can overcome this limitation, it will increase the setup cost and require costly 

modification to existing greenhouse structures. Given the scale of commercial 

greenhouses, such a design will be economically and computationally infeasible. 

2.1.2 Unmanned Ground vehicles 

A more practical solution is using a mobile robot that can carry the sensing platform 

across the greenhouse, thereby eliminating multiple sensing platforms. Wheeled robots 

have been used in greenhouses for automated spraying to reduce manual effort and 

maintain accuracy, uniformity, and time efficiency for repetitive maintenance tasks. 

Grounded steel pipes and hot water pipes are ubiquitous for greenhouses, providing a 

path for rolling the wheeled robots (Gan-Mor et al., 1996; Rafiq et al., 2014; Sammons et 

al., 2005). Although pipes were spread across the greenhouse floor, Sammons et al. 

(2005) had to manually move the robot to the next row, making the process discontinuous 

and requiring manual effort to switch rows. Later works focused on developing robots 

that used self-localization techniques to estimate their relative greenhouse location 

allowing autonomous navigation (Durmus et al., 2016; Harik and Korsaeth, 2018; Hyuc 

Ko et al., 2014; Ko et al., 2015; Wu et al., 2020). Despite having the advantage of 

navigating along the crop boundary and high payload capacity, they cannot reach the 

crops far away from the boundary. Additionally, greenhouse growers utilize most of the 
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floor space for plants reducing the available pathways for navigating ground robots to 

scan the crops from multiple viewing angles. These limitations restrict the sensors ability 

to acquire high-quality data for plant characterization. 

2.1.3 Unmanned Aerial Vehicles 

Overcoming the mentioned limitations requires the sensing platform to navigate freely 

through the greenhouse dimensions. Consequently, a mini Unmanned Aerial Vehicle 

(UAV) has the potential to be used for this purpose (Roldán et al., 2015). The past decade 

has witnessed unprecedented growth in the UAV application in the field of agriculture, 

such as vineyard management (Campos et al., 2019; Comba et al., 2015, 2015; Nolan et 

al., 2015; Primicerio et al., 2012; Turner et al., 2011), forestry (Chisholm et al., 2013; 

Getzin et al., 2012; Merino et al., 2012; Rokhmana, 2015), and animal detection (Israel, 

2012; Ward et al., 2016). The primary reasons for the growth in UAV-based agriculture 

applications are their small size, affordable cost, and off-the-shelf availability. Moreover, 

UAVs are easy to transport, integrate with multiple sensors, and customize based on user 

requirements. The National Purchase Diary Panel (NPD) in 2017 reported that UAV sales 

were more than doubled for that year, increasing at a rate of 117% each year, and 

growing technology is comparable to the cellular revolution (Sylvester, 2018). 

 Previous studies have used a wide variety of UAV mounted sensors such as RGB 

cameras (Jannoura et al., 2015; Schirrmann et al., 2016), multispectral camera (Caturegli 

et al., 2016; Vega et al., 2015),  hyperspectral camera (Aasen et al., 2015; Uto et al., 

2013), thermal camera (Aasen et al., 2015; Santesteban et al., 2017), NIR cameras 

(Primicerio et al., 2012), and LiDAR (Lei et al., 2019; Liu et al., 2018; Zhou et al., 2020) 
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to monitor crop parameters with flight height ranging from over 100 m to under 6 m. 

Their low altitude stability allows users to inspect crops at a much closer range (6 – 4 m 

from the ground) than traditional satellite and aircraft-based sensing systems, allowing 

greater control and cheaper operating cost (Anthony, 2017; Christiansen et al., 2017). 

Specific to plant canopy characterization, UAV-borne LiDAR can capture different 

viewing geometries allowing complete construction of the scene compared to terrestrial 

scanning systems (Bareth et al., 2016) and overcoming the effect of occlusions, which is 

a primary limitation of boom-based scanners. Although these UAV-based platforms 

extract varying phenotyping traits such as plant biomass, yield, height, leaf area index 

(LAI), chlorophyll, nitrogen content, and water stress, they have not been widely tested 

for the complex indoor environment such as a greenhouse. Roldán et al. (2015) used 

mini-UAV (A.R. 2.0, Parrot, France) carrying analog sensors to measure greenhouse 

environmental parameters. This study aimed to develop an airborne sensory system that 

can travel through the greenhouse, eliminating the need to use multiple environment 

sensors to reduce the setup costs for commercial greenhouses. Although the UAV 

followed a pre-defined line using visual odometry and stopped at the squares printed on 

the ground to collect data, the study did not evaluate the UAV's navigational accuracy. 

Moreover, the study did not evaluate the sensors intended for extracting plant 

architectures. As plant canopy size information is important for many greenhouse 

operations, and GPS signals are significantly attenuated in metal framed structures such 

as greenhouses, it is of interest to investigate the parameters affecting the accuracy of 
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plant measurement and to evaluate performance of a non-GPS based local navigation 

system with the UAV. 

2.1.4 UAV selection criterion  

The first selection criterion involves looking at the basic design of the UAV, which is 

either fixed-wing or rotary-wing type. Due to the vertical takeoff and landing (VTOL) 

capability of fixed-wing UAV, they have better controllability with higher payload 

capacity, hoverable, and easier to maneuver in smaller environments (González-Jorge et 

al., 2017).  Haghighattalab et al. (2016) compared the performance of low-cost rotary-

wing quadcopter UAV (IRIS+, 3DR, USA) mounted with a digital camera (S100, Canon 

Inc., Japan) to industrial-grade fixed-wing UAV (eBee Ag, senseFly, Switzerland) 

carrying a multispectral camera. The former system had better performance due to its 

ability to operate at relatively lower altitudes and lower flight speed. The payload 

capacity is a crucial parameter and depends on the study's purpose, which can vary from 

developing a remote sensing platform, spraying applications, UAV swarms for a 

coordinated job, logistics operation and so forth. Since the objective of this study is to 

develop a remote sensing platform, the selected UAV should be able to house and carry a 

scanning sensor, environmental sensors, an onboard computer, and geopositioning 

sensors. 

The UAVs are further categorized based on size and weight. A rotary-wing UAV under 

25 kg is classified as small and as a mini-UAV if they range from few grams to several 

kilograms (Radoglou-Grammatikis et al., 2020). The size and weight play a critical role 

in the current study, where the goal is to choose the smallest possible platform as it will 
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be more maneuverable in tight environments such as greenhouses. Additionally, higher 

UAV weight would require more thrust from propellers to take off and hover, causing 

increased air-turbulence, adversely affecting the UAV stability in a closed environment 

than an open field, and causing arbitrary shape changes of the underlying plant. Based on 

the rotor configuration, rotary-wing UAVs are classified into quadcopters, hexacopter, 

and octocopter. Although increasing the propeller count improves the payload capacity 

and thrust, it increases the downdraft and turbulence underneath the UAV. Based on 

design parameters, a mini-quadrotor UAV fits the current requirement. 

Higher flight time is always a desirable trait; however, rotary-wing UAVs exhibit lower 

flight times than fixed-wing counterparts as they are more aerodynamic than rotary-wing 

UAVs. The flight times can be improved using larger or multiple batteries (González-

Jorge et al., 2017). Additionally, the flight path pattern affects the battery consumption by 

choosing a path with fewer turns reduces the braking and accelerating instances, thereby 

increasing the overall flight time (Christiansen et al., 2017). Flight autonomy allows the 

users to control UAV's movement by sending commands to electronic speed control 

(ESC) to manipulate the propeller speeds instead of manual control from remote control 

stick wherein precision control is subject to the pilot experience. If the geopositioning is 

available, the entire flight can be pre-programmed by setting the waypoints (GPS 

coordinates of fixed locations), and UAV can trace the path to these fixed points while 

collecting the data. However, in this study, since GPS signals are unavailable or too weak 

in an indoor environment, the standard waypoint methodology for automating UAV 

control can not be used, and other approaches need to be investigated. 
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2.2 Indoor Positioning System 

Most of the UAV-based studies have focused on open-field agriculture. In contrast, an 

indoor greenhouse environment can present several challenges such as unreliable GPS 

signals, static obstacles, limited air space, relatively lower flying altitude, and limited 

UAV payload capacity (Wang et al., 2013). The GPS signal suffers attenuation and 

multipath effect due to obstacles such as walls, ceiling, and other typical greenhouse 

structures. Moreover, the signal strength further reduces since no direct line of sight 

(LOS) between the satellite and the receiver is available. Consequently, the satellite 

signals become too weak to be decoded by the conventional GPS receiver (Nirjon et al., 

2014). Therefore, it is necessary to investigate and review the available Indoor 

Positioning Systems (IPS) to test their qualification with the UAV platform and 

greenhouse environment limitations. Extensive research has been done in the field of 

accurate indoor positioning using off the shelf technologies such as Bluetooth (Cantón 

Paterna et al., 2017; Neburka et al., 2016), radio frequency identification (Januszkiewicz 

et al., 2016; Pierlot and Droogenbroeck, 2014), WiFi (Fang et al., 2015; Ignjatovic et al., 

2013), ultrasonic(Ilkovicova, 2016; Nong et al., 2018), infrared (Hauschildt and 

Kirchhof, 2010; Januszkiewicz et al., 2016), and ultra-wideband (Mahfouz et al., 2008; 

Tiemann et al., 2015).  

2.2.1 Bluetooth 

A typical range of Bluetooth signal is 10-15 m, so to design a Bluetooth-based IPS, tags 

must be placed around the search area within this range and receiver on the mobile 
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platform. Faragher and Harle (2014) tested the positioning accuracy of Bluetooth Low 

Energy (BLE) beacons via fingerprinting (analyzing the radio signal strength pattern at 

any given location) methodology to track the smartphones attached to pedestrians 

walking along a corridor. The deployment of beacons was not uniform and based on the 

point of interest where users were expected to walk. The presence of obstacles reduces 

the signal strength, and fingerprinting accuracy deteriorates with time and surrounding 

changes. Although the positioning accuracy of BLE is in the range of few centimeters, 

the receiver must be within a meter of the transmitter and increasing this distance results 

in rapid increases in positional uncertainty. For instance, the uncertainty could reach 5 m 

at a distance of 10 m from the transmitter. Since the surrounding environment of a 

greenhouse can change on a regular basis and they are composed of wall-like structures, 

which can impede the signal strength 

 Bluetooth technology's advantage is its low cost, low power consumption, and small size 

of tags. BLE technology consumes even less power, extending the battery exhaustion 

period by months. Despite these advantages, Bluetooth suffers from location latency up 

to 10-30 s (Chawathe, 2009). For each new location, the system enters the discovery 

phase, where the mobile device (mounted with receiver tag) tries to detect the 

transmitting tags. This considerable delay is unacceptable for real-time applications. 

Additionally, the location accuracy of 2-3 m, presence of obstructions, and constantly 

changing surrounding environment (growers tend to relocate plants and other objects) 

makes it challenging to locate the UAV in the complex greenhouse environment. 
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2.2.2 Radio frequency identification system (RFID) 

RFID comprises at least one reader (with integrated antenna) mounted on the roving 

device and multiple transmitter tags spread around the search area. The reader 

continuously broadcasts radio signals that charge the nearby tags, and they send a 

response to the reader allowing the receiver to pinpoint its location relative to the tags. 

Since the radio signals can pass through obstructions, this system does not require direct 

LOS. Nevertheless, its strength gets attenuated, whose magnitude depends on the 

property of material, highest for steel, wood, and concrete (commonly found in a 

greenhouse environment). 

Saab and Nakad (2011) evaluated the positional accuracy of low-cost passive RFID tags 

by placing eight tags parallel to the travel path to maintain a constant distance of 2 m 

between the mobile platform and tags. Even though tests resulted in a 10 cm error 

(acceptable for our scenario), the system is highly constrained, and a change in flight path 

could affect the overall accuracy. Due to inherent drift in UAV and the user requirement, 

the UAV trajectory may change in every iteration. As a result, it is not feasible to 

maintain a constant distance between UAV carrying the receiver and tags. Additionally, 

high tag density (1 tag per 1.2 m) is impractical for commercial greenhouses, which 

would require a massive number of tags to cover the entire scan area effectively, and they 

must be pre-programmed with accurate location information. 

2.2.3 Wi-Fi LAN 

It is the most widely used IPS because of WLAN's (Wide Local Area Network)  

widespread availability in most indoor architecture. Yang and Shao (2015) evaluated the 
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performance of WiFi-based IPS using hybrid Time of Arrival (ToA)/Angle of Arrival 

(AoA) technique resulting in positioning accuracy of 2.2 m and 1 m at 20 MHz and 40 

MHz bandwidth, respectively. Compared to BLE, it requires a lesser number of 

transmitter tags. In addition to its cost-effective architecture, it does not require LOS 

(since it uses radio signals similar to RFID). Although the accuracy is very coarse (20-40 

m), it can be improved by increasing the number of wireless routers (accuracy depends 

on the number of routers in the search area). However, similar to RFID, the signals get 

attenuated by greenhouse architecture and have a high power consumption. Moreover, 

removal, addition, or relocation of Access Points (AP -router) affects the positioning 

accuracy and requires costly updates to databases (Hernández et al., 2017). 

2.2.4 Ultrasonic system 

Ultrasonic sound waves can also be used to determine the distance between the 

transmitter (tags spread across the area) and the receiver (mounted on the mobile 

platform) by transmitting both the ultrasonic and radio signals. Since the radio signal 

travels nearly at the speed of light, it is received instantly, telling the receiver which 

transmitter is currently transmitting. The ultrasonic signal (traveling with the speed of 

sound) received later calculates the relative distance between the transmitting tag and 

receiver. Medina et al. (2013) tested the accuracy of the ultrasonic sensor to measure the 

position of the receiver relative to the transmitters. Although the results show 

subcentimeter accuracy, the experiment was very constrained, and it did not evaluate the 

effects of a real-world system. The tests were conducted in an obstacle-free room (7 x 

5m) with four transmitters mounted on the ceiling's corners and the receiver placed on a 
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tripod-supported bench parallel to the ceiling. The receiver was moved parallel to the x 

and y-axis in steps of 10 cm (recording eight such positions), and each position was 

calculated by averaging 300 measurements. Experimenting in such ideal conditions 

disagrees with the real-world scenario where the motion is unconstrained in 3 dimensions 

and requires real-time positioning information wherein position can change significantly 

over 300 samples. The advantage of this system is its low cost. However, a direct LOS 

must be maintained since it employs sound waves, and multipath reflectance can lead to 

incorrect range estimation. The system is also sensitive to temperature changes, causing 

the range estimation to deviate by 2 mm in response to a 1ºC change in the temperature. 

2.2.5 Infrared (IR) 

IR is also a prevalent IPS technology wherein the mobile platform continuously transmits 

IR signals captured by an IR receiver placed at a precisely known location. Although it 

has a high accuracy of up to 1 cm, it needs direct LOS between the transmitter and 

receiver. Similar to ultrasonic waves, they get reflected from the indoor structures 

causing the multipath error. Additionally, the architecture is expensive and requires high 

maintenance costs. The IPS technologies mentioned above suffer from multipath error 

since the bandwidth of these signals is narrow. Consequently, they can fail to distinguish 

between the signal that reached directly and those received after reflecting from the 

obstructions.  

2.2.6 Ultrawideband (UWB) 

The wide frequency range of Ultrawideband (UWB) signals allows it to resolve multipath 

propagation errors. Tiemann et al. (2015) tested the UWB system accuracy to track the 
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UWB receiver node under two scenarios, first mounted on the arm moving along a 

circular trajectory and in the second case, mounted on a UAV (Firefly, Ascending 

Technologies, USA) hovering at a fixed location for 220 s. In both scenarios, the receiver 

node was tracked by eight transmitting nodes spread along a rectangular boundary (7.2 m 

x 4.8 m). The resulting positioning error in tracking circular trajectory was 10 and 20 cm, 

respectively, along the horizontal plane and 3D space. In the second case, UAV held its 

position in a radius of 50 cm.  

Further tests were conducted to test the repeatability of UAV (Bebop, Parrot, France) 

carrying UWB node to follow a pre-defined eight-shaped trajectory, and optical tracking 

provided the ground truth data (Tiemann and Wietfeld, 2017). This resulted in a 

positional error of 12.3 cm, 11.8 cm, and 28.8 cm along the x, y, and z-axis, respectively. 

Although UWB provides sub-centimeter positioning accuracy, the accuracy is greatly 

affected by the arrangement of transmitting tags (anchor constellation) which are 

evaluated by calculating Dilution of Precision (DOP), and a lower DOP is desirable. Both 

the studies involving Even though one constellation may result in low DOP for one flight 

pattern, changing the flight pattern (flight altitude, overlapping, and overall coverage) can 

result in a different DOP resulting in varying positional accuracy. Additionally, each 

node has its clock drift, which requires accurate clock synchronization for precise 

positioning. 

The greatest challenge with the technologies mentioned above (including UWB) is their 

tag-based architecture, which requires multiple receivers to be mounted at precisely 

known locations of the scan area, which tracks the transmitter on the roving platform. As 
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a result, increasing the operation area requires new tags, which increases the setup cost 

and computational complexity. Additionally, varying tag constellation can result in 

varying positioning accuracies, thereby making it site-specific, which means that a tag 

setup in one environment may not produce similar accuracy if the environment is 

changed or the flight path is changed.  

2.2.7 Visual odometry 

The review of multiple IPS technologies by Mainetti et al. (2014) suggests that vision-

based systems have the highest accuracy (except UWB) among the available 

technologies. However, their cost and complexity levels are relatively higher, but with 

improving computational capabilities, the processing algorithms are becoming very 

efficient. The most common types of vision-based systems have either a fixed camera 

system (Al Habsi et al., 2016; Liu and Paquin, 2018) or a mobile camera system (Iversen, 

2018; Lee et al., 2011; Li et al., 2019; Mustafah et al., 2012). In the former case, cameras 

are present at fixed locations, and they track the mobile device in the 3D environment. 

While in the latter case, the mobile platform carries the camera and tracks the 

environmental features to estimate the motion and orientation. The positioning is 

performed either by comparing the extracted feature with stored features (with precise 

location information) (Xiao et al., 2018; Xu et al., 2019) or by calculating translation and 

rotation of the same feature in subsequent images (Dong et al., 2019; Lee et al., 2011; 

Zhou et al., 2014). Feature matching returns estimated translation and rotation between 

two adjacent views, and this transformation matrix can be used to locate the mobile 

platform. 
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The mobile camera system has an advantage over the fixed camera system since it does 

not require any pre-setup of the unknown environment, like mounting the multiple 

cameras at fixed locations. The fixed camera system has a restricted area of operation, 

which is limited by the field of view of the mounted cameras. Moreover, motion capture 

systems have high complexity and high setup cost (Tiemann et al., 2015). Although the 

area of operation does not restrict the mobile camera system, the environment should 

have detectable features that can be tracked in subsequent images. For the mobile camera 

system, matching features with the stored feature is restrictive in terms of storage 

capacity. As the area of operation increases, it needs to store more distinctive features in 

the database. Consequently, the system requires a greater amount of time to iterate 

through the image database that can impact real-time operation.  

Stereo imaging can overcome this drawback, where features are detected in the first 

image (from left/right camera) and are tracked in the second image (from right/left 

camera). The disparity between the two images gives the coordinate data of the features. 

Thus, removing the need for storing the coordinates of features in a database (Iversen, 

2018; Li et al., 2019). Kise and Zhang (2008) tested the tractor's automated steering 

accuracy by calculating its position relative to the crop row using a tilted stereo-camera 

(STH-MD1, VidereDesign, USA) mounted at the height of 2.2 m. This resulted in a 

maximum error under 0.30 m/s and RMSE of 0.11 m/s while traveling in a speed range of 

0.70 to 1.10 m/s. Owing to the advantages of sub-centimeter accuracy, real-time 

operation, no pre-setup requirement, and unlimited range of operation (within certain 

altitude) makes it the most viable solution for UAV tracking (Achtelik et al., 2009; Lee et 
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al., 2011; Madison et al., 2007; Mustafah et al., 2012; Wu et al., 2016). Table 1 and Table 

2 (tables were split to accommodate in a single page) presents a summary of existing IPS 

technology, which suggests that mobile vision technology fits the airborne platform 

requirements navigating in a non-GPS environment. 

2.2.8 Comparison of technologies 

Table 1. Overview of existing IPS technology using Bluetooth, RFID, Wi-Fi, and Ultrasonic systems. 

Technology Range 

(m) 

Accuracy 

(cm) 

Advantages Limitations Previous works 

Bluetooth 10-15 200-300 Low Cost 

 

Low power 

consumption 

 

Small-sized 

tags 

High location 

latency 

 

Poor accuracy 

(Cantón Paterna 

et al., 2017; 

Chawathe, 

2009; Faragher 

and Harle, 

2014; Neburka 

et al., 2016) 

RFID 1-10 10 LOS not needed 

 

High accuracy 

High tag density 

 

Pre-programming 

tags with precise 

location 

information 

(Kim et al., 

2013; Ni et al., 

2003; Saab and 

Nakad, 2011) 

WiFi 20-50 10 Lower tag 

density 

 

Cost-effective 

 

LOS not needed 

High power 

consumption 

 

Signal attenuated 

by obstructions 

(Fang et al., 

2015; Meng et 

al., 2012; Wang 

et al., 2013; 

Yang and Shao, 

2015) 

Ultrasonic 2-10 1-10 Low Cost 

 

High accuracy 

LOS needed 

 

Multipath error 

 

Temperature-

sensitive 

(Itagaki et al., 

2012; Kim and 

Kim, 2013; 

Nong et al., 

2018) 
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Table 2. Overview of existing IPS technology using Infrared, UWB, and Mobile vision systems. 

Technology Range 

(m) 

Accuracy 

(cm) 

Advantages Limitations Previous works 

Infrared 1-5 1 High accuracy LOS needed 

 

Multipath error 

 

Expensive and 

high maintenance 

cost 

(Hauschildt and 

Kirchhof, 2010; 

Januszkiewicz 

et al., 2016; 

Pierlot and 

Droogenbroeck, 

2014) 

UWB 1-10 0.1 Very high 

accuracy 

Tag 

synchronization 

 

Temperature 

effects 

(Dabove et al., 

2018; Gigl et 

al., 2007; Yang 

et al., 2017) 

Mobile 

Vision 

NA 1 High accuracy 

 

No range 

restriction 

 

No initial setup 

Feature-rich 

environment 

 

Good lighting 

conditions 

(Dong et al., 

2019; Lee et al., 

2011; Mustafah 

et al., 2012; Xu 

et al., 2019) 

 

2.3 UAV Flight Control 

2.3.1 Path planning 

Developing the flight plan is essential for an airborne platform, which can vary 

depending on the user objectives, such as choosing the shortest path, reducing the 

maximum number of turn, avoiding obstacles, overlapping percentage, and so forth 

(Bortoff, 2000; Koch et al., 2019; Mangiameli et al., 2013; Szczerba et al., 2000). The 

objective of the current study is to overcome the limitation of boom-based scanning, 

resulting in reduced measurement accuracy of crops placed further away from LiDAR's 

center due to its limited operating range and improving data quality by merging data 

collected from multiple perspectives that provide more information about occluded 
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regions and increase point density. With the sensor mounted on the airborne platform, it 

is possible to divide the entire width into smaller segments of overlapping sets and fly the 

UAV along these pre-planned paths. Christiansen et al. (2017) found that flight path 

patterns can directly affect the accuracy of extracted point clouds and battery 

consumption. The mini quadcopter UAV (Matrice 100, DJI, China) was flown along two 

paths – the crop border and crop rows. Although the scanning along row resulted in much 

higher point cloud density, more heterogeneity, and better volume estimates, it consumed 

a higher battery and covered only a third area than the crop border scan. Since scanning 

along crop rows allowed greater permeation of LiDAR, it resulted in a higher number of 

points per unit area. However, the path had a higher number of turns, causing the UAV to 

decelerate, reorient and accelerate at each turn, consuming extra power for covering the 

same area. Sofonia et al. (2019) had similar findings regarding the influence of flight 

pattern and range on the spatial resolution of the point cloud. Consequently, the amount 

of time spent scanning the given area was proportional to density, whereas the distance to 

target and speed was inversely proportional to density. To achieve these objectives, it is 

necessary to pre-define UAV trajectory and path parameters such as distance, speed, 

orientation, altitude, and the number of individual scans needed. Additionally, the flight 

plan must also include the scan area's dimensions, which will define the length and 

number of flight paths needed to scan the area completely for high-quality data.  

2.3.2 Autonomous flight 

To accurately follow the pre-planned flight plan, it is necessary to automate the flight 

control. The primary need for autonomous flight is to reduce the human operator's 
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unintended inaccuracies and handle emergencies such as obstacle proximity, loss of 

communication, sensor failure, and undesired trajectory (Nonami et al., 2010). Manual 

piloting is more challenging than open areas; moreover, in the current study, since there 

is no real-time video transmission of the scanning area, it can be a challenge to estimate 

stopping/turning points (or waypoints). Additionally, it is challenging for a manual 

operator to maintain constant velocity between waypoints, affecting the point cloud data 

quality. Simultaneous Localization And Mapping (SLAM) algorithm has been widely 

used for real-time navigation and control, which requires a horizontally mounted LiDAR, 

and it localizes itself using the Laser Scan matching technique (Bachrach et al., 2009; 

Diosi and Kleeman, 2005; G. et al., 2017; Li et al., 2014). However, in our current 

system, LiDAR is mounted vertically downward to map the greenhouse floor crops. 

Using additional horizontally mounted LiDAR is outside the scope of the current study. 

Additionally, SLAM implementation is the computationally intensive and limited 

processing power of mini-onboard computer can present a challenge for real-time 

operation. Consequently, this research will evaluate using relative position information 

from a vision-based sensor to locate and navigate the UAV in the indoor environment.  

Furthermore, for controlling the real-time flight operations, it is necessary to develop a 

User Interface (UI) to communicate with the UAV onboard system and send flight 

commands from the ground station. This UI will also record, save, and transmit the flight 

data, which will eventually be used to analyze the flight performance. Another objective 

of the UI is to simplify the user-machine interaction and synchronize the sequence of 

operations, making it user-friendly and comprehensive. 
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2.4 Data Quality Factors 

Since the sensing platform is mounted on the UAV, its performance can be affected by 

the UAV platform itself (vibration and downdraft), flight parameters (travel speed, flight 

altitude), and sensing conditions (distance to target, off-nadir scanning, plant density). 

The following section discusses the influence of these factors on the output 

measurements and which conditions are suitable for improving data quality. 

2.4.1 Platform vibration 

Rotary wing UAVs control their movement by creating a difference in one propeller's 

rotational velocities with respect to another, which creates unsteady aerodynamic effects, 

ultimately leading to platform vibration (Verbeke et al., 2017). The primary vibration 

sources include high-speed rotation of propellers, the vibration of the center plate, 

extension arm, and payload. These vibrations can travel to the IMU sensors, affecting the 

accelerometer and gyroscope data, which could lead to flight instability (Li et al., 2015). 

It can also affect the quality of collected images and the performance of onboard optical 

positioning systems, which rely on the continuous registration of images resulting in 

erroneous positioning information (Dahlin Rodin et al., 2019). Radkowski and Szulim 

(2014) demonstrated that using four symmetrically-spaced blades or two propellers on a 

single motor can potentially eliminate the vibration. Anti-vibration mounts and dampers 

have been widely used to isolate the payload from the vibration sources (Changshuai et 

al., 2019; Tulldahl and Larsson, 2014; Wallace et al., 2012). Changshuai et al. (2019) 

subjected UAV carrying radar a Grms (root mean square acceleration) of 7.35g, 3.62g, 
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6.29g in x, y, z directions, respectively, in a frequency range of (4-2000 Hz). The study 

measured the acceleration response after mounting the payload on T-type dampers, which 

reduced to 1.73 g, 0.94g, 1.41 g in x, y, and z directions, respectively, which validated the 

ability of dampers to absorb the high-frequency vibrations originating from propellers.  

Li et al. (2017) investigated the performance of four dampers – silicone ball damper, 

silicone foam, Sorbothane sheet, and Kyosho zeal sheet in isolating the structural and 

motor vibration. The results showed that the Kyosho Zeal sheet reduced the vibration 

amplitudes by 97 % along the z-axis. Under extreme maneuvering, high flight speeds, 

and sudden accelerations, the magnitude of vibrations can become significant. However, 

in the current study, the UAV operation is limited to an indoor environment isolated from 

external wind and operating at very low speeds. Thus, the effect of vibration on the 

measurement accuracy of the sensor is neglected and can be part of future efforts. 

 

2.4.2 Fly altitude 

Since the range of LiDAR is limited, increasing flight altitude increases the distance to 

the target, thereby reducing the point cloud's spatial resolution (Sofonia et al., 2019). 

However, LiDAR mounted UAV must fly as low as possible to maintain its proximity 

with the crops. Airborne LiDAR system has been shown to improve height estimates at 

lower altitudes, reducing the RMSE from 14 to 6 cm as the altitude reduced from 1200 to 

700 m, respectively (García-Quijano et al., 2008). Previous studies have shown the ability 

of mini-UAV mounted LiDAR to estimate the crop height while flying close to the 

ground with an increased spatial resolution of measurements. Anthony et al. (2014) 
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measured corn height with 0.75 m row spacing using a small range LiDAR mounted on a 

mini-hexacopter (Firefly, Ascending technologies, USA) flying close to 4 m above the 

ground resulting in less than 4 cm measurement error. Christiansen et al. (2017b) used a 

2D LiDAR mounted on a quadrotor UAV (Matrice 100, DJI, China) to estimate winter 

wheat volume with a 0.12 m row spacing while flying at an altitude of 6 m above the 

ground. Although lower UAV altitude increases spatial resolution and point density, it 

also increases the downdraft from propellers, distorting the underlying plants 

(Christiansen et al., 2017). Additionally, lower flight altitude reduces LiDAR's field of 

view resulting in lesser coverage per flight. Consequently, it will require multiple flights 

with higher overlapping between adjacent flight paths to scan the same region.  

However, for indoor operation, the flight altitude is limited by overhead clearance of the 

area (greenhouse), and studies have not evaluated the impact on the measurement 

accuracy of UAV-borne LiDAR in such an environment. Nevertheless, Yan et al. (2018) 

evaluated the effect of varying LiDAR height (mounted on a constant speed track) on the 

width measurement of the artificial plants placed at proximity (within a detection height 

of 1 m). The study found that scanning below 0.75 m height significantly increased the 

measurement error along the width. This occurs due to the scanning pattern of the 

LiDAR, which throws light pulses along a circular arc. Consequently, the pulses are 

orthogonal at the center, but they become increasingly oblique as the target moves away 

from the LiDAR center. For the same plant setup (scene), decreased height limits the 

viewing range and makes scan lines more slanting, reducing their probability to reach the 

ground resulting in inaccurate measurements (Figure 1). 
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Figure 1. Decreasing LiDAR height reduces the field of view, and consequently, while scanning the same plant 

in both cases (a, b) for relatively lower height (H2 in (b)), the LiDAR is unable to reach the ground in case (b). 

2.4.3 Travel speed 

LiDAR sensors have limited and relatively low operating frequency; thus, varying travel 

speed has a measurable effect on the point cloud resolution (Addis et al., 2018; French et 
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al., 2016; Walter et al., 2019; Zhang and Grift, 2012). Zhang and Grift (2012) tested the 

accuracy of a tractor-mounted 2D laser range sensor in measuring crop height at varying 

travel speeds resulting in increased error from 3.7% to 6.5 % as the travel speed increased 

from 0.20 to 0.41 m/s. Thus the travel speed is often in proportion to LiDAR's specified 

scan rate. Addis et al. (2018) used a UTM-30LX (Hokuyo Automatic USA) laser sensor 

mounted on a sliding rail at the height of 1.65 m, looking vertically downward for 

measuring the width and height of artificial trees under varying travel speeds. The 

increasing travel speed (0.3 to 0.9 m/s) increased the RMSE of width measurement (11 to 

160 mm) but did not significantly affect the height measurement. The study also found 

that under low travel speeds, the RMSE in the width and height measurements did not 

vary with increasing horizontal distance (1.8 m -2.2 m). However, at a higher travel speed 

(0.9 m/s), RMSE in the measurement of both parameters increased significantly with the 

detection distance (horizontal distance). Consequently, maintaining low travel speeds is 

desirable for higher point density and thereby better measurement estimation.  

2.4.4 Downdraft effect 

Downdraft or downwash creates a turbulent downward airstream due to the movement of 

rotor blades, which can cause the underlying plants to deform or deflect, resulting in 

shape changes compared to the rest state (under no downdraft condition).  Consequently, 

extracting the deformed plant shape can result in an incorrect estimation of their 

dimensions. Thus, it is necessary to identify the effect of the downdraft on the canopy 

structure and mitigate it. Previous studies have conducted three-dimensional 

computational fluid dynamics (CFD) simulations to analyze the distribution of flow fields 
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around a multirotor UAV (Ni et al., 2017; Roldán et al., 2015; Wen et al., 2019; Wu et 

al., 2019; Yang et al., 2017; Yao et al., 2019; Zhang et al., 2016; Zheng et al., 2018). The 

flow fields distributions along the vertical plane suggested that the downdraft effect is 

maximum beneath the rotors and significantly lower underneath the UAV abdomen. The 

distribution of flow fields along the horizontal plane is symmetrical around the UAV's 

center. The magnitude of air turbulence along the horizontal and vertical plane reduces as 

the distance between target and UAV center increases. Consequently, increasing distance 

to the target  (either vertical distance, i.e., UAV altitude or horizontal distance) can 

minimize the impact of downdraft. However, the increasing distance from the target will 

deteriorate the measurement accuracy of ranging sensors due to their limited operating 

range. 

To reduce the impact of downdraft on plant measurements, it is necessary to determine 

the region of influence of downdraft thereby, identifying the methodologies to avoid this 

region. Ni et al. (2017) investigated the magnitude and region of the air velocity under a 

quadrotor UAV (Phantom, DJI, China) while hovering 1.3 m from the ground. The 

maximum air velocity underneath the UAV dropped from 1.2 to 0.87 m/s as the vertical 

distance from the UAV increased from 0.4  to 1.2 m indicating that air velocity reduced 

with increasing vertical distance from the UAV. Additionally, the area of influence 

gradually spread with the increased vertical distance, specifically at 1.2 m, where the 

radius of the flow field was 0.60 m. Similar results were found for a hexacopter (SLK-5, 

Xian Wideworldz Aviation Science and Technology Limited Corp, China) hovering at 

3.5 m, wherein the high-speed regions were concentrated around propellers reaching a 
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maximum value of 10 m/s underneath the propellers (Yang et al., 2017). As the vertical 

distance increased to 3.4 m, the magnitude of air velocity reduced significantly to less 

than 5 m/s, and the distribution became uniform with a maximum radius of 1.2 m. Wu et 

al. (2019) measured the wind velocity underneath a hexacopter hovering at 2.6 m at three 

different ground heights 1.0, 0.75, and 0.4 m. The velocity range reduced with increasing 

distance from UAV recorded as 2.5-5.0 m/s, 2.0-3.0 m/s and 1.8-2.5 m/s. 

As evident from the findings, the plants falling within the downdraft region would 

experience structural deformity resulting in incorrect estimation of dimension. However, 

the downdraft is concentrated to a fixed region whose magnitude reduces considerably 

with increasing vertical or horizontal distance from the UAV center. Consequently, the 

simplest solution is to scan the canopy at the maximum possible altitude; however, the 

maximum flight height is limited due to the greenhouse's structural limitations and sensor 

range. Another solution is to mount the sensor outside the region of the downdraft. Ni et 

al. (2017) mounted two multispectral crop growth sensors at the ends of a 1.5 m carbon 

fiber rod passing through the UAV center, thereby pushing the sensors outside the 

downdraft region. The NDVI (Normalized difference vegetation index) and RVI (Ratio 

Vegetation Index) values obtained from the UAV borne platform were linearly related to 

a commercial spectrometer output with R2 values of 0.82 and 0.77, respectively. 

However, such a design is susceptible to vibration, and the sensors mounted at the ends 

of the rod will experience significant vibration, which can deteriorate the data quality. 

Yao et al. (2019) improved the existing design by using a damping rod to absorb the 

vibration. The crop growth sensors were mounted at three different horizontal distances 
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from UAV's center – 0 m, 0.3 m, and 0.6 m. For the first distance, the sensor field of 

view was entirely inside the unstable region, and in the second distance, they covered 

both the stable and unstable regions. Whereas in the last case, they were entirely inside 

the stable region. The R2 of RVI value was considerably higher (0.81) for the last case 

than the first two cases (0.63 and 0.66, respectively) compared to the handheld 

spectrometer. 

2.4.5 Off-nadir scanning 

Although these results demonstrate improved measurements as the sensors move outside 

the downdraft region, such design will affect the UAV maneuverability and stability and 

limit the navigational space. An alternative to mounting the sensor outside the downdraft 

region is to move the scanning plane of the LiDAR. Instead of mounting it vertically 

downward, which will scan crops directly beneath the rotors, mounting it at an angle (off-

nadir) such that the scanning plane hits the crops outside the unstable region can reduce 

the downdraft effect on measurement accuracy. Although off-nadir scanning can focus on 

the targets outside the unstable region, it introduces certain limitations that can affect the 

point cloud quality. 

Increasing the off-nadir scan angle increases LiDAR footprint diameter, consequently 

decreasing height estimation precision (Pang et al., 2011). Typically, the LiDAR 

footprint is circular at the nadir, becoming more elliptical as it moves away from the 

zenith, and at 30º, the area of the footprint is 54% greater than that at the nadir point 

(Sheng, 2008). As the footprint increases, the returning wave's intensity decreases, 

reducing the LiDAR's measurement accuracy. 
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The viewable gap fraction (VGF), or fraction of land visible from above, is greatly 

influenced by the sensors' viewing angle, which is largest at nadir and decreases as it 

moves to off-nadir (Liu et al., 2008). Compared to nadir, the VGF was less than half 

when scanning at 30˚ off-nadir angle. A similar effect can be experienced by the 

greenhouse crops placed on the ground, wherein a plant can obstruct the laser pulses to 

hit the bottom portion of the plant present in the next row. This effect is not significant 

during an overhead scan since it can extract the top view of the canopy allowing it to 

distinguish adjacent plant rows. However, scanning densely packed plant rows at an 

oblique angle increases the probability of obstructing laser pulses from reaching the next 

crop row with increasing mounting angles and row densities.  

Figure 2 illustrates the effect of varying LiDAR mounting angles (θ) and UAV altitude 

(h) on the location of the scanning plane (L) (relative to the UAV center), affecting its 

ability to hit the ground and distinguish adjacent rows (shown by three plants). Equation 

(1) describes the mathematical relation between three parameters. In both cases (Figure 2 

(a), (b)), the UAV altitude is equal (2 m) but with a varying LiDAR mounting angle of 

20˚ and 35˚, respectively. For an off-nadir angle of 20˚, the scanning plane moved 0.72 m 

ahead of the UAV center, requiring a minimum row spacing of 0.09 m to avoid 

obstruction from the previous plant row. Although increasing the mounting angle to 35˚ 

(at the same UAV altitude) moves the scanning plane further away to 1.4 m from the 

UAV center, the same plant's minimum row spacing requirement doubled to 0.18 m. 

Additionally, with increasing angle, distance to same target increases (r2 > r1 ), and beam 

spot area increases resulting in reduced accuracy. Consequently, the choice of mounting 
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angle is a tradeoff between the impact of propeller movement and the limited operational 

range of LiDAR. The impact of varying UAV altitudes at the same LiDAR mounting 

angle is depicted in Figure 2 (b) and Figure 2 (c), which shows that increasing the UAV 

altitude at a given mounting angle (35˚) pushes the scanning plane further away from the 

UAV center; however it does not affect the spacing between adjacent plant rows. 

 
 

 𝐿 = ℎ × tan 𝜃 (1) 

 Where, ′𝐿′ is the distance of scanning plane ahead of UAV's center  

             ′ℎ′ is the UAV altitude 

             ′𝜃′ is the LiDAR mounting angle with respect to nadir 
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Figure 2. (a), (b) Impact of varying LiDAR mounting angle for UAV scanning same plant (0.25 m high) at an 

altitude of 2.0 m from the ground. Case (a) and (b) with a mounting angle of 20˚ and 35˚ scan ahead by 0.72 m 

and 1.4 m and require a row spacing of 0.09 m and 0.18 m. (b), (c) Impact of varying UAV altitudes at the same 

mounting angle (35˚). Case (b) and (c) with UAV altitudes of 2.0 m and 1.0 m move the scanning plane ahead 

by 1.4 m and 0.7 m, respectively. However, the row spacing requirement is the same for both cases. 

(a) 

(b) 

(c) 
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2.5 Sensing Platform Design 

2.5.1 Greenhouse climate sensing 

Although the climatic conditions in a greenhouse are controlled, they are more rigorous 

than open farms, and the sensors must meet those specifications. Specifically, 

greenhouses have relatively higher operating temperatures (up to 38ºC) and higher 

relative humidity than outdoor environments (Sammons et al., 2005). Thus, the selected 

sensor should have a relatively higher tolerance in ambient temperature and humidity 

ranges. 

 Owing to the structural limitation of greenhouses, they have limited overhead space 

compared to open farms, and as a result, the sensing range is limited to few meters. 

Consequently, a sensor with a relatively smaller operational range (in few meters) is more 

suitable. However, the plants are more densely packed than those in an open farm, 

requiring a high precision sensor. Even though the greenhouse environment is insulated 

from natural climatic conditions such as rain or duststorm, they often operate a spraying 

system to water the crops or apply pesticides and have some dust particles. These 

conditions may hinder or affect sensors' accuracy; consequently, they should have some 

protective enclosure to prevent hazardous materials from entering the sensor's internal 

parts. Therefore, it is necessary to choose a sensor with a suitable IP (Ingress Protection) 

rating to protect the sensor. Although cost is not a primary limiting factor, selecting a 

lower-cost sensor improves the system's economic feasibility for its use in commercial 

greenhouses. 
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2.5.2 Plant sensing 

The primary objective of this study is to generate high-quality 3D point cloud data of the 

greenhouse crops, which will serve as input data for intelligent sprayers for analyzing 

plant health and plant growth. Multiple sensors and previous work focus on collecting 

plant structural information; the following section discusses the most relevant sensing 

mechanism for extracting plant structural properties. 

2.5.2.1 Camera-based system 

The camera imaging technique is a prevalent methodology in extracting structural 

information using various methods such as structure from motion, depth imaging, IR 

(Infrared) imaging, airborne imaging, thermal imaging, and satellite imaging. 

The optical flow technique requires translating a single photometric camera along a crop 

row to obtain overlapping image sequences of the scene, and comparing the non-invariant 

features in the successive images generates the point cloud data (Jay et al., 2015). Since 

in a greenhouse, multiple plants of similar structures are tightly stacked in a single row, 

features in the current image can pair with multiple features (instead of one distinct 

feature) in the previous image leading to incorrect point cloud comparison. Developing 

point cloud data from 2D image data is a tedious process that requires determining SIFT 

(Scale-Invariant Feature Transform) between adjacent images (Lowe, 1999), followed by 

bindle adjustment (Triggs et al., 2000) to refine the visual reconstruction and dense 

reconstruction by matching non-feature points. Differently, LiDAR scan sensors only 

require simple assembling of the individual scan lines. 
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 Additionally, developing high-density point cloud data from the image requires low 

altitude (1-1.2 m) extraction to maintain acceptable resolution for image matching (Jay et 

al., 2015). The study acquired plant images at the height of 1 m using a single lens 

camera (Canon 500D, 1176 x 784 pixel resolution) to estimate plant height (savoy 

cabbage, sunflower, cauliflower, and brussels sprout), resulting in an overall RMSE of 

1.1 cm. However, at such low altitudes, UAV's downdrafts can cause significant shape 

distortion of the underlying plants, reducing the accuracy of image matching. 

 

Jin et al. (2017) analyzed the sowing density of winter wheat using a single camera (Sony 

ILCE 5100L, 6024 x 4024-pixel resolution)  mounted on a hexacopter at three varying 

altitudes  (3 m, 5 m, and 7 m) with an average row spacing of 16.4 cm. The increased 

UAV altitude from 3 m to 5 m resulted in an increased RMSE error of 27.3, 52.4, and 

77.8 plants/m2. The density estimation performance was influenced by the spatial 

resolution of extracted images, which requires low altitude flight for higher image 

resolution. Furthermore, the study did not evaluate the impact of UAV's downdraft 

measurement accuracy of the plant dimension, which can cause significant shape 

distortion in the underlying plants affecting that increases with decreasing altitude. Jay et 

al. (2015) concluded that external wind poses a major obstacle in rendering plant 

structure through a single camera as the plant position can change in subsequent images.  

Single camera-based extraction requires a high overlapping percentage (around 80%) 

between adjacent flight paths (Jin et al., 2017; Moeckel et al., 2018), thereby reducing the 

coverage area per flight. In addition to side overlap, the images also require a high frontal 
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overlap. Jay et al. (2015) acquired crop images at every 4 cm using a manually moved 

ground vehicle at an altitude of 1.2 m. For a commercial greenhouse, extracting images at 

this frequency will consume a considerable portion of the onboard computer's limited 

memory space, and for overlapping scans, the memory requirement will multiply. 

Another source for plant data extraction is the 3D Time of Flight (TOF) cameras, which 

measure the phase shift of the reflected light with respect to incident light for each pixel, 

with a wavelength of 850 nm (Hemming et al., 2014; Klose et al., 2011).  Klose et al. 

(2011) compared the performance of high-resolution (200 x 200) CamCube 3.0 

(PMDTechnologies) and lower-resolution IFM Efector 3D (50 x 64) in measuring plant 

height. The study found that measuring the height of standard boxes at 1 m/s resulted in 

an error of 30 cm and 5 cm with CamCube and IFM, respectively. This error can be 

attributed to motion blur.  Additionally, the study measured distance to a whiteboard 

under varying illuminations and found that TOF imaging is sensitive to variation in light 

intensity; consequently, increased light intensity (from 3000 lux -halogen to 50000 lux -

direct sunlight) resulted in an increasing error in the measured distance of 4 cm. 

Specifically for greenhouse crops, the system's measurement accuracy would vary as the 

intensity of supplemental lighting changes. Moreover, TOF cameras have a high weight 

range – 510 gm (SR-4000, Mesa Imaging AG) and 1438 gm (CamCube 3.0, 

PMDTechnologies), which can be a limiting factor for UAV platform, and they require a 

warmup time of up to 40 minutes to achieve measurement stability (Piatti and Rinaudo, 

2012). 
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Stajnko et al. (2004) used thermal imaging to estimate the number and diameter of 

orchard apples. The accuracy in estimating fruit count varied with its growing stages, 

which increased as the fruit ripened. The accuracy in diameter measurement had a similar 

pattern resulting in lower accuracy during the vegetative period. The study could not 

distinguish the fruits from the leaves, which were growing deep into the canopy. 

Furthermore, the accuracy depends on the time of the day, which was conducted in the 

late afternoon when the temperature gradient between fruit and background is highest. 

The thermal camera weight was over 2.26 kg, which is not a feasible payload for a mini-

UAV. 

Despite the ease of use, they suffer from certain disadvantages. Typically, stereovision 

offers less accuracy than the laser-based system and requires appropriate calibration to 

generate acceptable results (Rosell and Sanz, 2012). The extraction process is complex 

and requires highly overlapping images, making it extremely resource-intensive and 

time-consuming to process larger scanned areas. The output resolution is influenced by 

the image quality, which can be affected by varying lighting conditions and downdraft 

effect from propellers, as discussed earlier 

2.5.2.2 Ultrasonic sensor 

Ultrasonic sensors emit 5 to 10  ultrasonic sound waves every second, and measure the 

time taken by the returning wave to calculate the distance to the target. This distance 

information can estimate the target's structure and has been widely used in multiple 

studies(Gil et al., 2007; Moltó et al., 2000; Tumbo et al., 2002; Zaman et al., 2005, 2006). 
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The studies used multiple ultrasonic sensors mounted on a vertical bar to extract plant 

height information, and such a design is impractical for a UAV platform. Additionally, 

operating multiple sensors at the same time can cause interference leading to faulty 

readings. (Tumbo et al., 2002) compared the accuracy of the laser scanner and ultrasonic 

sensor in measuring the canopy volume with manual measurement. The results showed 

that the laser scanner had higher accuracy in estimating the volume of partially or fully 

defoliated trees than ultrasonic sensors. This is because laser scanning sensors have much 

higher sensing speeds than ultrasonic sensors.  As discussed before, using multiple 

sensors may lead to interference, and it also increases the computational load and 

maintenance cost. The major drawback of ultrasonic sensors is their large divergence 

angle, limiting the resolution and accuracy of measurements; additionally, multiple 

sensors are required to extract data of the region of interest (Rosell and Sanz, 2012). 

2.5.2.3 LiDAR sensor 

LiDAR releases light beams to targets and calculates the distance from analyzing the 

returning wave. The working principle is either based on the Time of Flight principle 

(time taken by the reflected wave to reach the laser sensor) or by calculating the phase 

shift of the returning wave compared to the incident light source (Rosell and Sanz, 2012). 

The three most common platforms used for LiDAR-based extraction are Airborne laser 

scanning (ALS), Terrestrial laser scanning (TLS), and Mobile laser scanning (MLS). 

ALS uses an aircraft to carry a LiDAR at high altitudes whose precise location and 

orientation are calculated from DGPS (Differential GPS) and IMU (Inertial Measurement 
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Unit), respectively. The range values obtained from the reflected objects generate a 

georeferenced point cloud. ALS has been used for landscape characterization (Anderson 

et al., 2016), classification of tree species (Lin and Hyyppä, 2016), and studies of the 

surface properties such as surface structure, slope, reflectivity, and roughness (Hug et al., 

2004). In agriculture, it has been used for estimating the vegetation height and density 

from the height data (Lindberg et al., 2012). A significant limitation of ALS is its 

inability to characterize the below canopy biomass(Hilker et al., 2010).  

TLS is a stationary scanning methodology wherein the scanner is mounted on a tripod. 

TLS is typically useful for surveying small areas and generating a detailed point cloud of 

the regions having a radius in tens of meters. TLS requires a clear LOS between the 

scanner and target, and occlusion occurs where laser beams are blocked before reaching 

the object of interest. Multiple scans from different perspective angles is an approach to 

reduce the occlusion challenge, and it requires numerous background targets to register 

multiple-view point cloud data (Moorthy et al., 2008). Keightley and Bawden (2010) 

used TLS based approach to estimate vine volume and compared it to analog volume 

(measured as the volume of water displaced by immersed vine). The measurement 

accuracy not only varied with the number of scans but also with the viewing angle. The 

RMSE in volume measurement doubled from 2.15 liters to 4.23 liters as the number of 

scans reduced from 10 to 2. To test the effect of varying viewing angle, two scans with 

three viewing angles were taken with opposing (180˚ to each other) views resulted in 

different measurement errors (3.67 and 2.61 liters in RMSEs). TLS methodology was 

also implemented in the greenhouse environment to develop 3D geometry of tomato 
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crops by placing the tripod-mounted LiDAR in three different positions, along a 

circumference of 5.0 m radius circles with a spacing of 120º from each other (Hosoi et 

al., 2011). Each position took over 15 minutes to complete the scan, and the tests were 

conducted under windless conditions to make sure the canopies did not move in the 

successive scans.  

From the review of past studies, the drawbacks of the TLS are evident despite their high 

accuracy. Firstly, as the scan area increases, the number of stationary scans required also 

increases. Secondly, it requires multiple references with precise coordinate information to 

stitch the separate scans into a single scan. Additionally, it requires manual effort to 

create the entire setup, which is time taking and prone to error. Typically for an indoor 

environment, each scan captures only a small section of the entire canopy, and it would 

be impractical (in terms of time consumption) to scan the entire greenhouse.  

Furthermore, terrestrial LiDAR (3D-LiDAR) costs are very high (19,000 $ (ILRIS 3D, 

Optech Inc., Canda), which reduces its commercial viability (Maddern et al., 2015). 

MLS is similar to ALS but with a relatively smaller mobile platform traveling either on 

the ground or in the air at very low altitudes. The system requires a real-time accurate 

positioning system (GPS for outdoor systems and Indoor positioning system (IPS) for 

indoor systems) and orientation from the IMU. A robotic vehicle (either grounded or 

airborne) carries the scanner, and the system is typically useful for scanning areas in 

close range. The range of scanning area is limited by LiDAR's operating range and 

platform's navigation range (large – UAV, medium –ground vehicle, small – irrigation 

boom, or guided tracks). Compared to other LiDAR-based mapping methodologies, the 
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UAV-based LiDAR system meets the requirement of scanning flexible and larger regions 

(Lin, 2015). 

The MLS typically employs 2D LiDAR, which has the advantage of significantly lower 

weight, cost, and size than stationary (3D) LiDAR counterparts. As the name indicates, 

the 2D LiDAR scans only in two dimensions resulting in a line scan. The third dimension 

is added by moving the sensor perpendicular to its scanning plane, and continuous 

assembling of individual scan lines along the travel direction generates the point cloud 

(Sanz-Cortiella et al., 2011). Mobile mapping systems fill the void between terrestrial and 

airborne scanning, taking advantage of both systems (Barber et al., 2008).  
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Table 3. List of 2D LiDAR compatible with a mini-UAV platform 

Specifications Commercial LiDAR 

URG 04 LX UST 10 LX RPLIDAR 

A3 

TiM 561 Velodyne 

Puck Lite 

Power (W) 2.5 3.6 2.25 3 8 

Supply Voltage 

(V) 

5 12-24 5 9-28 9-18 

Scan Range (m) 5.6 10 25 0.05-10 100 

Weight (gm) 160 130 190 250 590 

Scan Rate (Hz) 10 40 10-20 15 5-20 

Angular 

Resolution 

(degree) 

0.3 0.25 0.34 0.33 0.1-0.4 

Scan Angle 

(degree) 

240˚ 270˚ 360˚ 270˚ 360˚ 

Communication CN1 (USB 

mini) 

Ethernet TTL Serial 

Port 

Ethernet Ethernet 

Dimension 

(mm) 

50x70 50x70 72x41 60x60x86 89x72 

Cost ($) 1080 1680 600 2100 4000 
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2.5.3 Climate sensors 

Greenhouses require precise measurement of several environmental parameters to 

maintain adequate climatic conditions for ensuring plant health and productivity. 

Measurements of these parameters allow growers to automate several greenhouse-related 

activities such as environmental monitoring by recording air temperature and humidity to 

control heating systems, ventilation, and foggers (Pahuja et al., 2013; Pawlowski et al., 

2009). Greenhouses are equipped with shading screens that control the incident solar 

radiation responsible for maintaining appropriate temperature and heat transfer operation 

(Pawlowski et al., 2009). Wireless Sensor Networks (WSN) have been widely used to 

measure environmental variables by deploying battery-powered sensors throughout the 

greenhouse (Akyildiz et al., 2001; Li et al., 2014; Matese et al., 2009). However, to 

operate each node, WSN requires an external battery, communication module, and 

controller whose operating cost can increase significantly with the area of operation 

(Ruiz-Larrea et al., 2016). Consequently, mobile robots can overcome this limitation by 

carrying the sensor set and collecting measurements of the region of interest. UGVs are 

useful for measuring ground properties such as soil temperature and humidity. On the 

other hand, UAVs have the ability to reach any point in three-dimensional space, making 

them suitable for collecting aerial measurements such as air temperature and humidity, 

solar radiation, CO2 concentration, and Photosynthetic Active Radiation (PAR). 

PAR constitutes a part of the radiation spectrum ranging from 400 nm to 700nm, which is 

utilized by crops to control photosynthetic activity. Most of the greenhouses employ 

supplementary lightings such as high-pressure sodium (HPS) lamps (Heuvelink and 
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Challa, 1989) and energy-efficient light-emitting diodes (LEDs) (Schwend et al., 2016) to 

maintain the daily light integral (DLI) requirement for continued photosynthesis. Barnard 

et al. (2014) developed an inexpensive PAR sensor (PARduino) using Licor PAR (LI-190 

SA, LI-COR Inc., USA) sensor. The low output signal of the PAR sensor was amplified 

by Universal Transconductance Amplifier (EME Systems, USA), powered by a 6 V 

battery, and data was logged on using Arduino (Pro Mini, Arduino). The sensor can be 

used as an alternative to existing research-grade data loggers.  

 Alternative to PARduino could be Quantum sensor from Apogee, which has similar 

standard deviations, and the cost could be 25% to 50% lesser when compared to 

PARduino but has a drawback of reduced spectral response near Infra-Red/Deep-Red 

region. Few variants of Apogee quantum sensors are self-powered, which could be 

helpful, considering the power consumption constraints of UAV. 

Similar to PAR, solar irradiance reaching the greenhouse crops affect the photosynthetic 

rate (S. Hemming et al., 2006), accumulation of biomass (Hatfield, 2014), and 

transpiration rate (Medrano et al., 2005). Moreover, in a greenhouse environment, the 

different cover materials can diffuse the incoming radiation invariably, affecting the 

radiation use efficiency (Cabrera et al., 2009). Consequently, measuring solar irradiance 

is critical for greenhouse crop monitoring. Thus, three climatic sensors (PAR, solar 

irradiance, temperature, and humidity) were selected for this study. The choice of 

selection depended on sensor weight, dimension, and power consumption. 
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2.5.4 UAV constraints 

UAV's flight time is primarily influenced by its payload and decreases significantly with 

increasing weight. Consequently, the selected sensor should have the lowest possible 

weight. As mentioned previously, due to indoor operation, a mini-UAV is suitable for the 

current study, whose payload is limited to a few kilograms (Vergouw et al., 2016). As a 

result, sensor weight becomes a crucial selection parameter. Like the payload, UAV's 

power supply is also limited, so choosing a low power-consuming sensor is essential for 

higher flight times, allowing it to scan a greater area in a single charge. Previous studies 

using LiDARs for plant structural reconstruction have shown reduced accuracy with 

increasing travel speed due to sparser (low-density) point cloud data. However, 

commercial UAVs are usually developed for their high-speed endurance, and unlike 

UGVs, traveling at low speed can be a challenge. Consequently, a higher frequency 

sensor is desirable to ensure accurate measurement with a high-speed platform. Chen et 

al.( 2019) developed an energy consumption model for a drone. The findings suggested 

that energy consumption (referred to as State of Charge or SOC) depends primarily on 

travel distance, payload, speed, and initial SOC of battery. The study simulated 

performance of the battery (Ultimate PX-04 LIPO, 1000 mAH) under varying parameters 

as mentioned before. The SOC had an inverse relationship with horizontal speed, making 

the low-speed operation less optimal from an energy standpoint. The results of energy 

consumption at varying speeds (2 m/s -8 m/s) showed that under the same conditions of 

payload (0.4 kg) and travel distance (1000 m), the SOC reduced to 0% with 2 m/s speed 

compared to 60%, 70%, and 80% when flying at 4, 6 and 8 m/s, respectively.  
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2.6 Conclusions of Literature Reviewed  

The analysis of available sensing platforms for greenhouse applications illustrates the 

limitation of navigating UGV and irrigation boom-mounted sensor to the region of 

interest and capturing multi-view data of crops. An aerial sensing platform is highly 

beneficial for greenhouse crop monitoring yet has several challenges. Absence or limited 

GPS signal availability inside a greenhouse requires a local positioning system to localize 

UAV position with centimeter grade accuracy. Existing tag-based architecture have a 

limited range of operation, needs pre-setup, require precise pre-positioning of transmitter 

tags, leads to costly database update with changing environment and varying tag 

architecture can lead to varied positional accuracy. However, an environment with good 

lighting conditions and feature-rich ground such as a greenhouse is most compatible 

(consistent) with stereovision odometry. Since for greenhouse application, UAV 

operating altitude is very low (within few meters above the ground), it ensures that stereo 

camera is able to track the greenhouse floor at all times resulting in centimeter grade 

positional accuracy. To overcome the drawback of occlusion in existing (UGV and 

boom-based) platforms and limited operating range of sensors, it is necessary to scan the 

crops from different perspectives and extract multi-view geometry. Consequently, precise 

path planning is needed to achieve this objective which can navigate the UAV through a 

set of overlapping parallel paths. Additionally, to address the UAV and sensor limitation, 

the plan must also include UAV altitude, speed, and scanning direction.  
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It can be challenging for a manual operator to accurately and precisely maintain (and 

repeat) the set parameters of the flight plan, thereby essentializing the autonomous 

navigation of the UAV. Moreover, manual flights can be susceptible to sudden variations 

in flight parameters (speed, altitude, and yaw orientation), impacting the point cloud 

quality. The propellers' movement creates a downward airflow field, which can affect the 

shape of the underlying plants, thereby affecting the measurement accuracy of plant 

dimensions. However, these effects reduce significantly as the target canopy moves away 

from the unstable (underneath the propeller) region. Consequently, scanning the plants 

outside the downdraft region can reduce the impact of downdraft on measurement errors, 

and instead of scanning vertically downwards, mounting the LiDAR at an off-nadir angle 

can move the scanning plane away from the unstable region. The limitations of matching 

distorted (under propeller downdraft) 2D plant images from a camera and the need for 

multiple ultrasonic sensors make the point cloud acquisition challenging for a low-

altitude UAV platform. Consequently, a high-frequency, low-cost, and lightweight 2D 

LiDAR mounted on an aerial platform meets the requirement of extracting plant 

dimensions in an indoor environment. 
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 Chapter 3. Materials and Methods 

3.1 Aerial Sensing Platform 

3.1.1 Hardware setup 

The aerial platform (Model DJI Matrice 100, SZ DJI Technology Co., Ltd., China) 

chosen for the test was a quadcopter with a 65 cm diagonal wheelbase and a maximum 

payload of 1000 g (excluding battery). A TB48D (SZ DJI Technology Co., Ltd., China)  

battery with a power output of 130 Watt-hr and weighing 676 g was used to power the 

UAV, resulting in 16 minutes and 28 minutes of flight time at full payload and no 

payload, respectively. However, the UAV model has the option of using two batteries at a 

time, which can improve the flight time to 40 minutes with no payload; this study used a 

single battery at a time. The propellers (length of 36 cm) were protected by guards to 

prevent the UAV from getting damaged in case of a crash. 

3.1.1.1 Positioning system 

The vision-based sensor (Model DJI Guidance, SZ DJI Technology Co., Ltd., China) 

used for positioning the UAV comprised five sensors, each with a stereo camera and 

stereo ultrasonic sensor for visual odometry and obstacle sensing, respectively. The 

system was chosen for its high positioning accuracy (up to 5 cm), wide operating range 

(0.2 m to 20 m), acceptable weight (325 g, within the payload capacity), compatibility 
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with the UAV platform, and advantage over existing IPS technologies explained earlier. 

The module was mounted beneath the UAV battery compartment. 

3.1.1.2 Plant measurement sensor 

The laser range sensor (Model UST-10LX, Hokuyo Automatic Co., Ltd., Japan) used for 

extracting ground truth data has a 270˚ field of view and angular resolution of 0.25˚, 

resulting in 1080 measurement points in a single sweep at a frequency of 40 Hz. It has an 

operating range of 0.06 m to 10 m (maximum range of 30.0 m)  with an accuracy of 40 

mm. It has the advantage of lightweight (130 g) and small dimensions (50 x 50 x 70 mm), 

allowing easy installation without obstructing the visual sensors. LiDAR was mounted on 

the UAV to face vertically downward, allowing it to scan objects on the ground from the 

top view. A set of three mounting kits were 3D printed for attaching the LiDAR at the 

gimbal mounting location of the UAV. Each had different viewing angles with respect to 

nadir – 0˚, 20˚, and 35˚ allowing the LiDAR to scan off-nadir. The off-nadir mounting 

kits attempted to collect plant information without been affected by downdraft when the 

UAV was directly above plants during flight. 

3.1.1.3 Data collection and flight control 

An external microcomputer (Model Odroid XU4, Hardkernel Co., Ltd., South Korea) was 

used as the onboard processor to connect all the sensors and peripherals. It was 

responsible for running specially designed algorithms written in C++ to control the UAV 

autonomously and store sensor data. To maintain communication between the ground 

computer and onboard computer (Odroid XU4) over LAN (Local Area Network), a USB 
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(Universal Serial Bus)-powered WiFi antenna (Model Odroid WiFi Module 5A, 

Hardkernel Co., Ltd., South Korea) was also used. The communication involved 

receiving flight commands and sending recorded sensor data to the ground computer. 

A Dell Lattitude 5590 laptop computer was used as the ground station with the following 

specifications – Intel® CoreTM i5-8565U CPU @ 1.70 GHz processor, 64-bit operating 

system, and 8 GB RAM. It served as an interface and communication channel for the 

onboard computer, allowing the user to control UAV operations remotely. It was used for 

performing offline processing to generate point cloud data from the sensory information 

received from the onboard computer. The ground station computer also generated a flight 

plan (or pattern) based on user inputs and greenhouse dimensions, and these patterns 

were eventually used to navigate the UAV through the indoor environment. 

3.1.1.4 System assembly 

The Guidance was mounted underneath the UAV such that the downward-facing sensor 

could track the ground movement. The remaining four Guidance sensors were mounted 

along the four directions, each looking forward, backward, left, and right of the UAV. 

Since the study did not employ any camera, the LiDAR was installed on the gimbal 

mounting position using 3D printed mounts. The downward-facing LiDAR provided scan 

data of the objects placed on the ground, which served as a reference for testing 

automated flights' repeatability. For simplicity, the onboard computer, Odroid, was 

mounted on the top of the battery compartment allowing easy connectivity with other 

peripherals. 
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Figure 3 shows the schematic used for interconnecting and powering the peripherals. A 

step-down converter (UBEC DC/DC Step-down (buck) converter, Adafruit, USA) was 

used to convert 22.2 V supply from UAV for powering Odroid at its operating voltage 

(5V). The UAV battery directly powered the other two sensors (LiDAR and Guidance). 

Although the UAV can communicate to the onboard computer using both USB and 

Universal Asynchronous Receiver Transmitter (UART) port, the USB port was chosen. 

However, with this communication architecture, all three USB ports of the onboard 

computer were occupied. Figure 4 shows the front view of the final unit. In the future, the 

UAV can be connected using the UART port, freeing one USB port to connect analog 

sensors via Arduino. Additionally, a RAM Steel Reinforced VESA plate with a ball 

(RAM Mounts, National Products Inc., USA) was attached at the top of the battery 

compartment to mount the UAV on a speed track. 
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Figure 3. Schematic of components, power supply (red), and communication channel (black). 

 

 
Figure 4. Front view of the aerial platform, showing the primary components. 

 

3.1.2 Software setup 

Since it was infeasible to manually access the onboard computer while the UAV is in 

flight, a Ground Control Station (GCS) was needed to maintain a communication link 

with the onboard computer using the available wireless local area network (WLAN). A 

MATLAB (version 9.8.0.1417392 (R2020a) Update 4) based program on GCS analyzed 
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the sensor data to generate a flight plan and greenhouse dimension data. MATLAB was 

also used as a statistical tool to analyze the flight data. 

Qt Creator (Qt Co. Ltd., version 4.11.0) is an open-source tool used to develop a 

graphical user interface to allow users to interact with the UAV. Qt takes greenhouse 

dimension inputs from MATLAB and generates a flight plan or trajectory depending on 

the data quality requirement. Qt was also used to develop a flight control console, which 

sends the flight control instructions to the onboard computer. Additionally, it allows users 

to record the sensor data and send it back to the GCS. 

Robot Operating System (ROS, version Melodic Morenia) running on Ubuntu 18.04 was 

used to integrate, record, and store the sensor data. ROS is a widely-used open source 

robotic control software that provides a wide array of built-in libraries, tools, and 

functions for interconnecting sensors to achieve the desired task or objective. Individual 

process or sensor data are treated as nodes (ROS nodes), and they communicate using 

ROS topics. The primary purpose of the ROS topic is to either publish data (send sensor 

data) or subscribe data (receive sensor data). Any node can subscribe to any topic 

allowing multiple sensors to communicate with each other allowing the user (developer) 

to create an interconnected network of sensors. Using this architecture, a C++-based 

flight control program was written in ROS to process flight commands received from 

GCS and navigate the UAV correspondingly. The real-time processes were complied on 

Odroid, referred to as Onboard Control System (OCS/OC) in this study. The primary 

purpose of OCS was to – (1) communicate with all the onboard peripherals and collect 

sensor data, (2) control UAV position through attitude control (pitch, roll, and yaw 
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orientation), and (3) transfer (recorded sensor data) and receive (flight command) data 

from GCS. 

3.1.3 Generating point cloud data map  

3.1.3.1 Raw data synchronization 

Based on user requirement, the aerial platform was manually flown (pitched) along the 

scanning area, and OCS recorded the following sensor data – (1) orientation and linear 

acceleration from IMU, (2) position and velocity from Guidance, and (3) range and 

intensity data from LiDAR. Post data collection, the flight data (recorded sensor data) 

was sent to GCS, which was processed by a custom program written in MATLAB to 

generate the 3-D map of the scanned area (Figure 5). Since each sensor data was recorded 

with a global timestamp and had a fixed frequency, they were combined using the nearest 

timestamp. 

3.1.3.2 Flight data selection 

Post synchronization, the flight path was filtered to remove the take-off and landing 

sections which were followed by the identification of pitched (forward motion) and rolled 

(lateral motion). Since the useful scan data was available only along the pitched portions, 

the final dataset was comprised of successive pitched portions. Furthermore, non-constant 

portions of the flight path caused instability in the scanning plane. In autonomous flight, 

the initial acceleration region and the deceleration region at the end of flight caused this 

error, so the algorithm identified and filtered these regions from the flight path data 

before processing them. 
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3.1.3.3 Geometrical distortion correction 

Since a 2-D LiDAR was used in this study, it was necessary to translate the 2-D 

coordinates along the traveling direction to generate 3-D data. For simplicity, the x and y-

axis were chosen as UAV's traveling and LiDAR's scanning direction, respectively. 

Unlike GPS coordinates, Guidance's positional coordinates were relative, which could 

change the axis of travel from one flight to the other, so it was necessary to identify the 

major axis of travel (either x or y) and transform it along the x-axis. The following steps 

were followed – (1) identify the major axis of UAV travel direction, (2) calculate its 

angle from the x-axis, and (3) rotate the flight path about the z-axis by equal and opposite 

magnitude. 

3.1.3.4 Identification and removal of flight instability  

The point cloud data quality was affected by the instability of the UAV platform. Three 

sources of error were identified and corrected, created by UAV drift along scanning axis, 

variation in altitude, and UAV heading variation. The drift correction was obtained by 

translating each point along the y-axis and altitude correction using Guidance-derived 

altitude as a reference and translating each point along the z-axis. The heading error was 

corrected by calculating the yaw error from the average yaw heading (entire flight path) 

from IMU at each UAV location and rotating each line by this error value. The same 

algorithm was used for generating point cloud data for both manual and autonomous 

flights. The entire process was repeated for each pitched portion. 
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Figure 5. Flowchart of offline processing program written in MATLAB. (a)  Read and synchronize multiple 

sensor data, (b) extract and align pitched flight portion, (c) get range data, (d) generate 3-D data and remove 

flight instability. 
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3.2 Autonomous Navigation 

3.2.1 User-defined flight area 

Since the UAV is navigating in a GPS denied environment, it must know the scan area's 

aerial parameters – length, width, height, and orientation. Figure 5 illustrates the 

flowchart of the offline processing of the manual flight data by the MATLAB-based 

algorithm to extract greenhouse information and get user requirements. Table 4 illustrates 

the parameters used for generating flight paths. The first four parameters are calculated 

by manually flying the UAV, wherein Guidance provided the dimension data, and the 

UAV heading was derived from IMU. The UAV was flown such that it pitched and rolled 

along the scan area's length and width, respectively. During the entire manual flight, the 

heading of the UAV was not changed and was oriented along the length. Consequently, 

measuring the pitched and rolled distance provided the length and width information of 

the covered area, and since the UAV heading was always fixed along the length, 

averaging yaw across the entire flight gave the heading direction information. The scan 

width and overlap percentage are necessary to determine the number of turns that UAV 

needs to perform while scanning the area, which primarily depends on the user's point 

cloud density requirement. Smaller scan width is desirable for higher accuracy; however, 

it is addressed by decreasing distance between adjacent flight paths and increasing flight 

trips needed to scan the same area. Similar to scan width, the higher overlap is essential 

for stitching adjacent scans, which allows a higher number of features for matching. With 

increasing overlap, the number of flight trips increases as well. Figure 18 shows the 
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removal of takeoff and landing sections followed by extraction of pitched and rolled 

portions of the flight. Averaging the blue path and green path (Figure 18(b)) gives the 

estimated length and width. 

Table 4. Greenhouse parameters needed for generating flight path. 

Parameter Value Unit 

Length Average distance of pitched portions m 

Width Average distance of rolled portions m 

Altitude Average height of each portion m 

Heading Average yaw of each portion radians 

Scan width User input, desired LiDAR scan width m 

Maximum speed User input, desired UAV speed m/s 

Flight Pattern User input, Figure 7 or Figure 8 
 

Overlapping percentage User input percent 
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Figure 6. Flowchart for extracting greenhouse dimension, orientation, and other related variables for 

generating flight path. 
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3.2.2 Automated flight route planning 

Previous study (Christiansen et al., 2017) has shown that flight path pattern affects the 

point cloud density, thereby affecting the estimated object volumes. Additionally, a 

review of past works has shown that flight altitude (Anthony, 2017; García-Quijano et al., 

2008; Sofonia et al., 2019) and travel speed (Addis et al., 2018; Yan et al., 2018; L. 

Zhang and Grift, 2012) have a significant impact on point cloud quality. Consequently, 

these parameters were pre-defined, and a flight plan was generated accordingly. Once 

these parameters are defined, the UAV is expected to precisely achieve, maintain and 

repeat these flight variables in every run, which could be challenging for a manual pilot. 

Moreover, variation (fluctuation) in these parameters during data extraction (aerial 

scanning) can affect the data quality of the scan, thereby necessitating the requirement of 

automating UAV navigation. 

The current study considered four flight patterns, as illustrated in Figure 7 and Figure 8. 

In pattern A (Figure 7(a)) and B (Figure 7(b)), the UAV moved along the greenhouse 

length and width, respectively. Since both patterns provide a different perspective of the 

scanning area and have varying battery consumption, it is necessary to assess flight 

parameters. The pattern C (Figure 8(a)), D (Figure 8(b)) is similar to patterns A, B, 

respectively, except that UAV makes 180˚ turn before the start of each pitch path. The 

reason for choosing patterns C and D is the off-nadir scanning. Although patterns C and 

D will consume extra battery compared to A and D, respectively, due to 180˚ yaw 

rotation, it will also capture the different viewing geometries of the object. However, for 
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this study, only single path travel was considered. The rolling distance and the total 

number of turns were calculated based on equations ((2) and (3)). 

 

 
𝑠ℎ𝑖𝑓𝑡 = (1 −

𝑜𝑣𝑒𝑟𝑙𝑎𝑝

100
) ∗ 𝑤𝑖𝑑𝑡ℎ𝐿𝑖𝐷𝐴𝑅 

 

(2) 

 Where, ′𝑠ℎ𝑖𝑓𝑡′ is the distance between two adjacent flight paths  

             ′𝑜𝑣𝑒𝑟𝑙𝑎𝑝′ is the percent overlap requirement  

              ′𝑤𝑖𝑑𝑡ℎ𝐿𝑖𝐷𝐴𝑅′ is the total scan width of the LiDAR 

 

 

 
 

 
𝑡𝑢𝑟𝑛𝑠 = 𝑟𝑜𝑢𝑛𝑑 (

𝑤𝑖𝑑𝑡ℎ𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 − 𝑤𝑖𝑑𝑡ℎ𝐿𝑖𝐷𝐴𝑅

𝑠ℎ𝑖𝑓𝑡
+ 1) 

 

(3) 

 Where, ′𝑡𝑢𝑟𝑛𝑠′is the total number of turns that UAV needs to make  

             ′𝑤𝑖𝑑𝑡ℎ𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒′ is the total width of the scanning area  

              ′𝑤𝑖𝑑𝑡ℎ𝐿𝑖𝐷𝐴𝑅′ is the total scan width of the LiDAR 

              ′𝑠ℎ𝑖𝑓𝑡′ is the distance between adjacent flight paths 
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Figure 7. (a),(b) illustrates the Flight pattern A, B  in which the UAV pitches along the length, the width of the 

scan area, respectively, without changing its heading (always facing along takeoff direction), and adjacent path 

pitch in the opposite direction. 

(a) 

(b) 



64 

 

 
 

 
Figure 8. (a), (b) illustrates the Flight pattern C, D  in which the UAV pitches along the length and width of the 

scan area, respectively, changing its heading by 180˚ between adjacent pitching paths such that pitch direction 

is always positive. 

3.2.3 Onboard flight control 

A custom ROS-based C++ program acquired flight commands from GCS and 

sequentially executed them to navigate the UAV along a pre-defined path autonomously 

on the onboard computer. Figure 9 illustrates the algorithm for autonomous flight control. 

The most common navigation methodology is to define waypoints (points of interest) on 

the map. However, the UAV is operating in a GPS denied environment, so neither global 

(a) 

(b) 



65 

 

coordinates were available to define the waypoints, nor any indoor maps were 

available/generated. Consequently, it was infeasible to implement position-based control, 

wherein UAV navigates to a pre-defined position based on 3D coordinates. As a result, 

flight attitude-based control was implemented wherein pitch and roll angle parameters 

were used to control the translation and yaw angle to maintain the  UAV heading. A 

positive and negative pitch angle moved the UAV forward and backward, whereas a 

positive and negative roll angle moved it right and left, respectively. The algorithm 

measured the difference between the desired value and current value, and the control 

signal was sent to minimize that difference. For instance, to navigate the UAV along the 

longitudinal axis of the scan area, it was pitched continuously at a fixed angle, altitude, 

and heading. The algorithm used each path's start point as the origin, and in each 

iteration, it calculated the current distance of the UAV from the origin. From this 

information, the remaining distance (desired length – current distance) was calculated, 

and the target pitch signal was sent until this value reached below the threshold (30 cm). 

The algorithm employs a simple on-off control methodology with an operating frequency 

around 38 Hz, which is limited by LiDAR operating frequency (since the algorithm waits 

for LiDAR-derived height, which is running at around 40 Hz.). The pitch angles were 

used to set the travel speeds of the UAV, which were experimentally determined by 

manually flying it at fixed velocities (real-time velocity from Guidance) and recording 

the corresponding pitch angles (from IMU). Table 5 shows the threshold parameters used 

in this control. The decision of sending commands was sequential, i.e., after takeoff, (1) 

orientation command is sent, (2) non-orientation (pitch) commands, (3) orientation 
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command, (4) non-orientation (roll) command, and then sequence is repeated depending 

on the number of turns, and after the end of the flight, UAV will land. If the path has no 

turns, UAV will (1) set orientation, (2) pitch, and (3) land. 

Table 5. Threshold parameters for the on-off proportional control of flight variables 

Parameter Dead band 

Distance 30 cm 

Heading 2º 

Altitude 20 cm 
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Figure 9. Flowchart of autonomous flight control program written C++ in ROS environment compiled by 

the onboard computer. 
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3.3 Autonomous Flight Evaluation 

3.3.1 Path tracking 

The accuracy of autonomous flights was evaluated by testing the UAV's ability to fly 

along a straight line. Consequently, a set of wooden logs placed on the floor served as a 

straight reference line against which UAV's drift was measured. The test was conducted 

in Student Activities Center, Agricultural Technical Institute, Wooster, Ohio, USA. The 

venue was chosen due to the enclosed environment and unavailability of GPS signal, 

allowing to test vision-based local navigation. Two sets of experiments were conducted, 

wherein the UAV was pitched forward along the test area's length (Figure 11(a)) and 

width (Figure 11(b)). In both cases, a set of wooden logs was placed on inverted grow 

pots elevating them to a height of 0.19 m from the ground extracted using LiDAR. This 

study evaluated navigational accuracy while traveling along a single path; testing the 

entire flight plan will be part of future efforts. As explained in the flight control algorithm 

(Figure 9), the UAV was continuously pitched at a fixed angle (based on target velocity) 

until the target distance was within the threshold resulting in an open-loop operation. 

To extract the UAV position in flight, the location of wooden logs was used as a 

reference. Once the flight plan was available from manual flight data, corresponding 

commands were generated to navigate the UAV autonomously along the wooden logs for 

a fixed distance (29 m and 22 m along length and width, respectively), at a fixed altitude 

(2.0 m) and four travel speeds (0.6, 0.8, 1.0, and 1.2 m/s). This resulted in 4 sets of flights 

along length and width; 6 replications of each set were taken, resulting in 48 datasets (24 
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along each direction). To compare autonomous and manual flights, similar 48 datasets 

were collected but using the manual remote control (RC) (Model GL658C C1, DJI). A 

cellphone device with flight software (DJI Assistant, version 2) was connected to the RC, 

displaying the UAV's real-time velocity (horizontal and vertical) and altitude from 

Guidance. This information was used to fly the UAV at set velocities (0.6, 0.8, 1.0, and 

1.2 m/s) and altitude (2.0 m). However, no information regarding horizontal position was 

available, which was estimated by visual observation.  

During each replication, the sensor data (IMU, Guidance, and LiDAR) was recorded and 

saved on the OCS. Post-flight completion, the sensor data was sent to GCS for offline 

analysis using a MATLAB-based program. For each dataset following operations were 

performed. (1) Extract the location of logs from point cloud data by filtering scan data 

that lay between .015 m and 0.30 m from the ground and limiting the LiDAR range 

within 6 m (Figure 10-section (c)). (2) Extract the UAV arm's location from the point 

cloud by selecting scan data that lay in the angular range of 35˚ to 45˚ (position of the left 

arm of  UAV with respect to LiDAR angular span 0˚-270˚) and within a radial distance of 

0.19 m from LiDAR (Figure 10-section (c)). (3) Both datasets were separately saved and 

evaluated. 

Two sets of analyses were performed – (a) evaluation of UAV drift, stability and pattern 

and (b) variation of flight parameters. In an ideal condition, wherein the UAV travels 

parallel to logs, the UAV location will lie on the y axis (y = 0 cm for entire flight duration 

from x = 0 to target distance). Consequently, UAV drift was evaluated by measuring the 

UAV position along the y-axis. For the first analysis, UAV's position relative to the log 
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was calculated using UAV's arm and log location from point cloud data. To evaluate the 

drift, the UAV landing spot (y coordinates) location (which is the end of each flight) was 

recorded and reported. To evaluate the stability and pattern of autonomous UAV flight, 

the flight data was sampled at 40 Hz along the travel direction (x-axis), and the 

corresponding y location of the UAV was recorded. The data was then binned every 10 

cm for further analysis. Following two evaluations were conducted – (a) UAV location 

for the entire path represented by the mean and standard deviation (among six replicates, 

shown by error bars) and (b) second-order regression model of the combined flight path 

and R2 value was reported. The evaluation included both the autonomous and manual 

flights traveling along the length and width of the test area. 

 For flight parameter analysis, the following parameters – speed variation, heading 

variation, distance to set speed, and total traveled distance during UAV pitching were 

analyzed for their repeatability and variation. 
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Figure 10. Flowchart of analyzing the accuracy of autonomous flights using wooden logs as a reference to 

evaluate UAV drift and linearity of the flight path. (a) Process manual flight data, (b) use this information to fly 

UAV autonomously, (c) extract UAV's arm and log location from point cloud data, and (d) analyze the 

extracted data. 



72 

 

 
 

 
Figure 11. Experimental set for evaluating the accuracy of autonomous flights. The wooden logs were placed 

along a straight line and elevated from the ground by a set of inverted pots. The UAV was placed adjacent to 

the logs and flown autonomously, and its relative position from logs was evaluated to calculate the drift under 

varying speeds. Logs were placed along (a) the width and (b) the length of the test area.  

(a) 

(b) 
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3.3.2 Altitude control 

3.3.2.1 Baseline for height measurement 

LiDAR is expected to be more accurate than Guidance, which calculates UAV height 

from barometric measurements. Hence, the purpose of this test was to evaluate the 

accuracy of LiDAR in measuring ground height, and the test was conducted in lab 

conditions at the Department of Food, Agricultural and Biological Engineering, Wooster, 

Ohio, USA. The sensing platform was mounted on a constant speed track (Paker 

Hannifin Corp, USA)  at the height of 130 cm (height of LiDAR from the ground), and it 

traveled 450 cm at three different speeds (0.4, 0.6, and 0.8 m/s). However, the ground 

was also covered with some artificial plants and standard objects (Figure 12) since the 

objective also included evaluating the downdraft effect discussed in the later section. To 

evaluate the performance, height data were binned at every 10 cm for both LiDAR and 

Guidance. The mean and standard deviation was calculated for both sensors at three 

different speed. 
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Figure 12. (a) Sensing platform mounted on a constant speed track with test objects on the ground (discussed in 

downdraft section). (b) View from LiDAR, since the ground was always visible (slightly to the left of LiDAR's 

center), it was possible to extract LiDAR-derived height. 

3.3.2.2 Altitude control performance 

Since greenhouses have limited overhead space and UAV has to fly at very low altitudes, 

it needs to maintain its set altitude to avoid colliding with the ground or overhead 

structures. Additionally, altitude variation changes the distance of the sensing platform 

(UAV) to the target canopy, causing variation in LiDAR-derived measurements within 

the same flight. Hence, it was necessary to evaluate the UAV's performance in reaching 

and maintaining its height under varying input altitudes. 

The current platform had two measurements to determine UAV altitude –height from 

barometric measurement (from Guidance) and range information from LiDAR. 

Consequently, the study evaluated the performance of altitude control under both 

(a) 

(b) 
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scenarios. Since the LiDAR returns range to the target it hits during a single sweep, it was 

possible to identify the floor's location in real-time and feed it back to the UAV control 

system. The test was performed in a lab environment with an empty floor (Student 

Activities Center, Agricultural Technical Institute, Wooster, Ohio, USA). However, it can 

be challenging to extract floor location if the ground was covered with plants. 

Nevertheless, in each LiDAR sweep, the vertical distance between LiDAR and floor is 

farther than the plants, and the floor can be tracked by observing the z component of 

LiDAR. Utilizing this concept, LiDAR's z-component was monitored in a 40˚ angular 

span (which can be increased), and the minimum among n ( = 10) highest values was 

considered as the distance from the floor. It was assumed that LiDAR would be able to 

see the ground in each sweep in the given angular span. In contrast, the Guidance-based 

altitude was directly available based on barometric pressure. 

A similar setup as the path tracking experiment was used for evaluating the altitude 

control performance; however, the setup did not have wooden logs on the floor to allow 

LiDAR to observe the entire floor without any obstructions. The UAV was flown at three 

different heights (2.8, 2.3, and 1.8 m) for a fixed speed (0.6 m/s) and a travel distance (20 

m). Six replications of each were taken, and both Guidance height and LiDAR-derived 

height were recorded, resulting in 36 datasets. Two analyses were conducted – (a) 

comparing Guidance height with LiDAR-derived ground height and (b) comparing the 

performance of altitude control algorithm using both LiDAR-based and Guidance-based 

feedback by calculating the UAV altitude variation in LiDAR height and Guidance 

height, respectively. Although the tests were conducted in an indoor environment, the 
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surrounding environment had open architecture with high ceilings, and the UAV was 

flying far away from the walls. However, flying the UAV in a greenhouse bay with 

enclosed architecture (hoop house)  can create turbulent air currents after bouncing from 

nearby walls, ceiling, and floor, affecting surrounding air pressure, resulting in variable 

altitude measurements from the barometric sensor of Guidance. 

3.4 Downdraft Effect on Plant Measurements 

As mentioned before, propellers' movement creates a downdraft current of air, affecting 

plant shape lying underneath the UAV. To measure its impact on measurement accuracy, 

plants' dimension was measured under propeller running and turned off conditions, 

respectively. The tests were conducted at the Department of Food, Agricultural and 

Biological Engineering, Wooster, Ohio, USA. The setup consisted of four sets of 

artificial plants (P1, P2, P3, and P4) of varying shapes and two sets of balls (B1 and B2) 

placed on pots. The object dimensions (length, width, and height) were manually 

measured using a laser measure (GLM40, Bosch, Germany) which served as a baseline. 

The measurements were taken by considering the distance between the farthest point 

along the length and width and between the highest point and ground for the height. 

Three replication of 5 objects from each group were taken (Table 6). 

 The plants were chosen based on their varying dimension and stiffness. P1 was relatively 

denser, compact, and short height; whereas, P4 was tallest and less rigid. P2 and P3 had 

similar structural characteristics with medium height and most flexibility (P2 was more 

flexible than P3). The objects with well-defined geometrical shapes (B1 and B2) were 
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chosen for reference as their measurement was expected not to be affected by the 

downdraft current. Additionally, placing the balls on the pots resembled a plant canopy. 

Comparatively, the surface of B1 was less reflective than B2; additionally, they had a 

smaller deviation in their actual diameter (Table 6). Consequently, B1 was chosen as a 

reference for the standard object. 

Eight objects of each kind were selected and placed at an increasing horizontal distance 

from UAV's center (origin), with the first object placed directly underneath the UAV. 

Within the row, plants were placed to avoid overlapping with adjacent plants, and 

spacing between adjacent rows was kept at 0.25 m (Figure 13(a)). The mean intra-row 

spacing varied for different rows due to varying object dimensions, which were as 

follows – 0.21, 0.24, 0.24, 0.25, 0.25, and 0.25 m for objects P1, P2, P3, P4, B1, and B2, 

respectively.  

The UAV was mounted on a constant speed track (Parker Hannifin Corp, USA) (Figure 

13(b)), allowing it to travel along a straight line at a fixed altitude. Based on the review of 

past literature, the following parameters were selected for downdraft evaluation – speed 

(0.4, 0.6, and 0.8 m/s), altitude (1.3 m), and viewing angle (off-nadir about pitching axis, 

0°, 20°, and 35°). The downdraft effect was isolated by measuring the plant dimension 

under propeller turned on and comparing it to propeller turned off measurements.  The 

following plant measurements were calculated – width (along the sensor scanning 

direction), length (along the travel direction), and height (normal to the ground). 

However, the movement of propellers and operating motors also create vibration effects 
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which were considered as an uncontrolled variable. In the future, the effect of vibration 

can be eliminated (or reduced) by using dampers. 

The plant measurements taken under the propeller off condition served as baseline data to 

compute the relative measurement error under the propeller on condition. Three 

parameters were calculated and reported – (a) comparing measurement error under 

propeller running with propeller turned off using root mean squared error (RMSE) as the 

statistical parameter (equation (4)), (b) evaluating measurement variability in repeated 

tests using the coefficient of variance (CV(%) using equation (5)) with propeller running 

and (c) comparing measurement error under propeller turned off with actual object 

dimension using root mean squared error (RMSE) as the statistical parameter (equation 

(6)).  

Two evaluations were conducted based on these results – (a) identifying the region of 

influence of propeller downdraft on plant measurements and (b) effect of changing 

viewing angle on the downdraft measurements. 
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𝑅𝑀𝑆𝐸𝑟𝑒𝑙 = √
∑ (𝑑𝑖 − 𝑑)2 6

𝑖=1

6
  

(4)  

 Where, ′𝑅𝑀𝑆𝐸𝑟𝑒𝑙′ is the root mean square error in measurement with 

propeller turned on compared to propeller turned off 

              ′𝑑𝑖′ is the dimension (height, width, length) of the object with 

propeller turned on 

             ′𝑑′ is the average dimension (height, width, length) of the 

object with propeller turned off 

 

 

 
𝐶𝑉 (%) =  

𝜎𝑖 × 100

𝑑̅
 

(5) 

 Where, ′𝑑𝑖′ is the dimension (height, width, length) of the object with 

propeller turned on 

             ′𝑑′ is the average dimension of the object with propeller turned 

off 
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𝑅𝑀𝑆𝐸𝑡𝑟𝑢𝑒 = √
∑ (𝑑𝑖 − 𝑑)2 6

𝑖=1

6
  

(6) 

 Where, ′𝑅𝑀𝑆𝐸𝑡𝑟𝑢𝑒′ is the root mean square error in measurement with 

propeller turned off compared to their actual measurements 

              ′𝑑𝑖′ is the dimension (height, width, length) of the object with 

propeller turned off 

             ′𝑑′ is the actual dimension (height, width, length) of the object 
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Table 6. Dimensions of test objects used for evaluating downdraft analysis. Standard deviations are in 

parenthesis. All the measurements are in mm. 

Group X 

(Length) 

Y 

(Width) 

Z 

(Height) 

Diameter Image 

P1 179 (5) 186 (6) 192 (5) - 

 

P2 161 (8) 
213 

(13) 
240 (6) - 

 

P3 168 (5) 206 (6) 249 (8) - 

 

P4 212 (8) 
240 

(16) 
283 (13) - 

 

B1 - - 296 (2) 176 (1) 

 

B2 - - 312 (8) 183 (6) 
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Figure 13. Plant setup for downdraft analysis. (a) Four kinds of artificial plants were selected, and two 

standard objects of known dimension. Each row was separated by 0.25 m. (b) The plant dimension was 

recorded at a fixed altitude of 1.5 m by the UAV carrying LiDAR mounted on a constant speed track. 

 

3.5 Plant measurement  

The point cloud data was extracted using the methodology explained previously (Figure 

5); however, the sensing platform was manually mounted, which could have an alignment 

error. Consequently, the 0° line of LiDAR (centerline) would not align with the z-axis, 

resulting in the entire scan being rotated at an angle about the x-axis. However, during 

the initial portion of the scan (1 m before the plant row P1), the entire floor was visible, 

which was used to calculate the average inclination of the floor. The entire scan was then 

(b) 

(a) 
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rotated by this angle about the x-axis to eliminate this manual error ensuring alignment 

with the z-axis. Additionally, the floor data was also removed by fitting a plane, and the 

resulting point cloud was then processed by the Clustering algorithm (developed by Uchit 

Nair, work is under review). The algorithm generated a convex hull structure enclosing 

nearby points, and it returned the dimension (length, width, height) of each object. 
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 Chapter 4. Results and Discussion 

4.1 Aerial Sensing Platform 

4.1.1 Hardware setup  

Table 7 illustrates the list of all primary components were used in this platform. The 

overall payload was about 908 gm, but this payload also included RAM mounting, which 

was used to mount the sensing platform to the constant speed track that weighed around 

410 gm. In all the autonomous flight tests conducted in the laboratory, the platform was 

carrying this payload. However, the tests conducted in the greenhouse using manual 

flights did not have this payload. 
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Table 7. List of primary hardware components of aerial platform. 

Component Weight (gm) 

Dimension 

(mm) 

Power (W) 

Matrice-100 2431 650 (Wheelbase) 130 Wh 

UST-10LX 130 50 x 50 x 70 3.6 

DJI Guidance 325 208 x 208 x 70 12 

Odroid-XU4 38 83 x 58 x20 20 

Wi-Fi module 5 36 x 19 x 9 - 

USB connector (x2) - - - 

LiDAR mount (x3) 28, 43, 56 61 x 61 x17 - 

UBEC buck converter - - - 

RAM mounting 410 120 x 120 - 

 

4.1.2 Software setup 

The sensor data were recorded using a custom ROS program run on Odroid XU-4. 

Primarily four ROS nodes were used:  1) UAV node to extract IMU (orientation and 

acceleration) data and control UAV operations, 2) Guidance node to extract position and 

velocity,  3) LiDAR node to extract range data and UAV height and 4) Flight Control 

node to execute autonomous flight. 
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Table 8. List of nodes running in ROS 

Sensor/Node Frequency 

(Hz) 

Output/Input Data 

IMU 100 

Orientation -Quaternion (w x y z) 

Linear acceleration - (ax ay az) 

Guidance 89 

Position (x y z) 

Velocity (vx vy vz) 

LiDAR 40 

Range [r]1x1080 

Intensity [I]1x1080 

UAV Height (z) 

Flight Control 38 Attitude (r p y) 

 

4.1.3 Generating point cloud data map 

To evaluate the working of the established aerial platform, it was manually flown in a 

commercial greenhouse (Cedar Lane Farms Inc, Wooster, Ohio, USA) which had a 

closed hoop-house architecture (Figure 14). This test aimed to record scan data and test 

the working of MATLAB-based algorithm to generate the 3-D model of crops. The 

algorithm combined LiDAR (range and intensity), Guidance (position and velocity), and 

IMU (heading) data to create a point cloud object of the entire dataset. It also identified 

and reduced the error due to UAV drift, heading instability, and altitude variation. To 

maintain homogeneity across all scans, the x-axis was chosen as travel direction (primary 
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axis of UAV travel), y-axis as the scanning direction (orientation of LiDAR scan lines), 

and the ground was maintained at z = 0 m. 

Figure 15(a) shows raw point cloud data that transformed LiDAR range data into 

cartesian coordinates followed by translating each point along the Guidance derived 

coordinates. In this step, the primary axis of travel was identified, oriented along the x-

axis. In the next step (Figure 15(b)), UAV drift was aligned along the y-axis, and each 

scan point was translated along these coordinates to eliminate the drift error. Its effect is 

evident in Figure 15(a-b), where the crop rows were curved due to UAV's movement 

along the scanning (y) axis. However, this caused the entire scan to rotate about the z-

axis. Consequently, the entire scan was aligned along the x-axis by calculating flightpath 

orientation (relative to the x-axis) and rotating the scan by the same angle in the opposite 

direction (Figure 15(c)). 

Figure 16 shows the effect of UAV altitude variation on the scan data quality. To 

illustrate this effect, only floor data has been shown. In the original scan (Figure 16(a)), 

the floor location is not aligned with the z = 0 m line. Additionally, when the UAV was at 

15 m from the origin, it gained some altitude, increasing the distance between LiDAR 

(mounted on UAV), which resulted in moving the entire scan away from the UAV. The 

scan was corrected by keeping the ground at zero levels using Guidance-derived height 

(Figure 16(b)). However, LiDAR-derived height was also available for correction (Figure 

16(c)), which is more accurate than barometric measurement (Guidance height), but it 

could be a challenge to detect floor in densely packed greenhouse floor. Currently, 

Guidance derived height has been used for height correction. 
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Finally, Figure 17 shows the effect of variation (fluctuation) in UAV heading on the data 

quality of the scan quality. In this particular set (Figure 17(a)), the initial UAV heading 

(shown in the red box) was incorrect (caused due to manual piloting error)  and slightly 

clockwise along the z-axis, which caused the LiDAR scanning plane to rotate with UAV 

and to result in inclined crop rows (relative to the y-axis). This was removed by rotating 

each scan line by heading error (relative to mean heading across the entire flight). 
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Figure 14. (a)Image of the greenhouse bay where UAV was flown manually to collect the crop data. (b) Image 

of UAV collecting sensor data. 

(a) 

(b) 
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Figure 15. (a) Raw scan generated by converting laser range data to cartesian coordinates and translating each scan line along the Guidance-derived UAV position. The 

two parallel lines centered around the 0 m line of scanning (y) axis are the UAV arms, indicating the UAV position. The red boxed region shows UAV drift's effect along 

the scanning axis, which caused the curving of the crop boundary. (b) Translate each point along the scanning axis (y-axis) to compensate for UAV drift. (c) ) 

Reorientation of the flightpath to align it with the travel (x) axis. 

 

   

UAV's 

arms 

Curved 

crop 

boundary 

Translate 

points along 

scan axis Align 

flightpath 

along x-axis 

(a) (b) (c) 
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Figure 16. (a) Representation of the height error in scan due variation in UAV altitude. At around 12 m -16 m from the origin (shown in the red box), UAV gained altitude, 

which pushed the greenhouse floor away along the z-axis. (b) UAV height data was available from Guidance which was used to correct this anomaly. (c)Using LiDAR-

derived height to correct the height error. 

 

 

 

(a) 

(b) 

(c) 
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Figure 17. (a) Representation of the effect of varying UAV heading. The figure shows the side view (y-z). The 

space between crop rows at 2.5 m from the origin (shown in the red box) is not straight due to a sudden UAV 

heading change. (b) Correction of the error caused to UAV heading variation resulting in crop rows aligned 

with scanning (y) axis, shown in the red box. 

4.2 Autonomous Navigation 

4.2.1 User-defined flight area 

The purpose of this operation was to define the flight area and extract its dimension and 

heading. Figure 18Figure 18 illustrates the result of the flightpath extraction algorithm 

(Figure 6) from manual flights. Post-removal of takeoff  (shown by a red diamond-shaped 

portion of Figure 18(a))and landing portions (shown by a green square-shaped portion of 

Figure 18(b)), pitched and rolled portions were isolated (Figure 18(b)). Averaging the 

distance of pitched (shown by orange square shaped segments Figure 18(b)) and rolled 

(a) 

(b) 
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portions (green shown by pink circular-shaped segment Figure 18(b)) gave the length and 

width. Averaging the altitude and yaw angle across the entire flight path (blue Figure 

18(a)) gave the UAV height and heading. 
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Figure 18. Plot of a manual flight flown across the boundary acquired from Guidance. (a) Identification and 

removal of takeoff and landing portions, (b) identifying pitched and rolled flight sections. The purpose of this 

manual flight is to define the flying area and extract dimension and heading information. 

 

(a) 

(b) 
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4.2.2 Automated flight route planning 

A graphical user interface (GUI) application was developed using Qt (Qt creator, 4.11.0, 

community version) to simplify the communication between the ground computer and 

onboard computer. Secure Shell (SSH) protocol was used to establish communication 

between the two systems using available WiFi networks in the test region. The OCS was 

configured to connect to the ground computer's hotspot automatically. 

4.2.2.1 GUI flight planner 

The Qt application generates flight path patterns using based on the MATLAB 

computation of the manual flights. Figure 19 shows a snapshot of the flight planner's 

main window. 
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Figure 19. Qt-based GUI console for generating flight plans and commands based on flight area dimensions 

and scanning parameters. (a) Five input buttons to perform the following operation (left to right) – (1) load 

greenhouse information and scanning parameters generated by processing the manual flight by MATLAB based 

program, (2) calculate output parameters based on current input parameters, (3) plot flight path on a 2D 

graph, (4) generate corresponding flight commands, (5) open UAV control console. (b) Input parameters 

displayed and editable to test under different conditions. (c) Output parameters. 

Section (a) at the top left corner, marked in the black box, is a collection of clickable 

icons that perform a sequential task of extracting a combined dataset from MATLAB 

output, generating flight parameters and commands, plotting the flight plan, and 

executing the plan. The first icon (  import) imported the greenhouse structural data 

generated from the MATLAB algorithm by extracting manual flight data and displays 

them in textboxes of section (b) (blue box) at the bottom left. The second icon (  

calculator) calculated flight parameters such as pitching distance, rolling distance, total 

number of flight turns, total distance to cover, measurement error along the width, and 

 

 

 

(a) 

(b) 

(c) 
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LiDAR scanning angle. The third icon (  plot) plotted the flight path on a 2D plane 

based on the input variables and allows users to visualize the effect of varying overlap 

percentages and patterns on the flight path.  

The fourth icon ( command) generated and exported the flight commands based on the 

flight path. Each flight command comprised roll angle, pitch angle, yaw heading, altitude, 

and distance data. The command sequence saved in the GCS was sequentially sent to and 

compiled by the onboard computer. The fifth icon ( launch) opened a customized 

flight control console allowing the UAV to compile the flight commands to navigate it in 

real-time and recording the sensor data for offline analysis. 

Section (b), marked in the blue box, displayed the input variables as imported by icon 1 

of section a. The first set of parameters were the greenhouse dimensions and orientation 

information, including length, width, height, and yaw orientation. The scan accuracy 

parameters were calculated based on user requirement, which sets the scan width and 

overlap percentage between adjacent flight paths. Finally, setting the flight parameters, 

namely pitch angle to control UAV's velocity, and pattern which allows scanning along 

the width (if the checkbox was clicked) and rotated UAV by 180˚(if the checkbox was 

clicked) after each roll command. Additionally, users can specify the UAV location 

relative to the test area, whether placed on the left or right corners. The location 

information was essential since it was used to compute rolling direction; if the UAV was 

on the left corner, it rolled right and vice versa. These values can be manually edited if 

the user wanted to test the UAV with different flight parameters.  
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Section (c), marked in the green box, displayed the primary flight information, the pitch 

distance, roll distance, number of turns, measurement error along the width, and 

minimum LiDAR scan angle to maintain the required overlap. The measurement error 

was the maximum width error calculated based on LiDAR's height and scan width.  

4.2.2.2 Flight planner's output 

The flight planner results were tested with two different overlap scenarios (60% and 

40%) and two scanning strategies (along the length and along the width of the scan area), 

resulting in four flight patterns (Figure 20). Since the greenhouse dimension was 20 x 8 

(L x W) m2 and LiDAR scan width (widthLiDAR) was 4 m, the UAV take-off position was 

2 m from the boundary and pitch distance (forward travel distance) of 20 m 

(=lengthGreenhouse) (Figure 20 (a)). For 60% overlap, the roll distance (sideway travel 

distance) was 1.6 m (equation (2)), resulting in 4 flightpaths (equation (3)). However, 

with 40% overlap (Figure 20 (b)), the roll distance increased to 2.4 m, allowing a 

complete scan in 3 turns rather than 4. Figure 20 ((c) and (d)) generated flight paths along 

the width, wherein the pitch distance was relatively smaller (=widthGreenhouse). However, 

the number of turns was significantly higher since the UAV had to roll along the 

lengthGreenhouse. 
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Figure 20. Plot of the flight path with different patterns and overlapping percentages – (a), (b) flying along 

greenhouse length with 60% and 40% overlap, respectively; (c),(d) flying along greenhouse width with 60% 

and 40% overlap, respectively. 

4.2.3 Onboard flight control application 

In order to implement onboard flight control (Figure 9), a Qt-based GUI application was 

developed and tested. This module allowed users to communicate with the sensors, 

perform UAV control actions, record data from sensors and export them to GCS by 

clicking designated icons that execute a set of Linux commands in the background. 

Figure 21 shows a snapshot of the module, and Table 9 and Table 10 describe the 

purpose of each icon. The GUI console was divided into four sections based on the 

operation sequence. Section (a) (Figure 21(a)) starts the sensors (initiates ROS node for 

each sensor), and once all sensor nodes are ready, the UAV is taken off. Section (b) 

(Figure 21(b)) starts autonomous UAV navigation (based on the flight plan) either using 

LiDAR height or Guidance height for altitude control. Section (c) (Figure 21(c)) 
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performs post-flight completion operations – land the UAV, stop recording sensor data, 

terminate all running nodes, and send recorded data to GCS. Section (d) (Figure 21(d)) 

was created to run tests on the constant speed track. It arms the motors and continuously 

thrusts the propellers (Hover button) until the UAV is in motion on the speed track. The 

disarm motors button forcefully stops the propellers, and it was used only for testing and 

safety reasons. Section (e) (Figure 21(e)) was used for setting parameters – (1) Hover 

time, which sets the duration (seconds) for which UAV will hover before executing the 

next command (pitch, roll, or orientation) and (2) Number of replicates, which sets the 

number replications taken in a given experiment and the OCS processes the set number of 

recorded sensor datasets and sends it to GCS. 

 
Figure 21. Flight control GUI application - (a) Sensor initialization and takeoff, (b) start autonomous flight 

either using LiDAR or Guidance sensor for altitude control, (c) end of flight operations (d) run propellers for 

downdraft tests, and (e) Parameter for hover time and number of replicates taken in the experiment. 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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Table 9. Operation performed by individual push buttons (1-9). The sequence of operations was based on the Id 

discussed in the appendix. 

Id Icon Purpose 

1 Start LiDAR 
Initiates LiDAR node to extract range and 

intensity data at 40 Hz 

2 Start Guidance 
Initiates Guidance node to extract position and 

velocity data at 85 Hz 

3 Start Drone 

Initiates UAV node 

Extract IMU data (100 Hz) 

Control UAV motors to follow flight 

commands 

4 Start Recording 
Start saving the data published by the three 

nodes 

5 Take Off 
To lift and hover the UAV at an altitude of 1.2 

m from the ground. 

6 Launch (LiDAR) 

Execute algorithm for sequentially sending 

and compiling flight commands to the 

onboard computer for navigating UAV along 

a pre-planned path. LiDAR height used for 

altitude control 

7 Launch (Guidance) 

Similar to the above step, using Guidance 

height for altitude control instead of LiDAR 

height. 

8 Land Land the UAV at the current spot. 

9 Stop Recording 

Stop saving the sensor data and export it as a 

timestamped file (.bag format) to a fixed 

location on the onboard computer. 



102 

 

 

 
Table 10. Operation performed by individual push buttons (10-16). The sequence of operations was based on 

the Id discussed in the appendix. 

Id Icon Purpose 

10 
Terminate 

Nodes 

Stop the running nodes (LiDAR, Guidance, 

and Drone). 

11 
Extract and 

send to GC 

Select the latest saved dataset based on the 

timestamp 

Extract individual sensor data. 

Convert to .txt format. 

Send it to GC. 

Delete the latest dataset and repeat the steps 

mentioned above until all the datasets are 

processed. 

12 Arm motors Arm the UAV motors. 

13 Disarm motors Disable the motor control. 

14 Hover 

Algorithm for running propellers on 

constant speed track by sending thrust 

commands. 

15 Hover Time 
Hover time (seconds) between subsequent 

UAV commands 

16 Num of files Number individual flight datasets. 
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4.2.4 Evaluation of autonomous flights 

4.2.4.1 UAV drift 

Figure 22 shows the variation in flightpath pattern, which was determined using only two 

UAV positions, takeoff, and landing, and landing point variation (Δy when UAV landed) 

along the y-axis under varying input conditions was reported. While flying along the 

length (Figure 22(a)), the magnitude of drift (Δy) was greater in autonomous mode than 

manual mode, which was consistent at around 200 cm. However, the deviations 

(represented by error bars) were relatively higher at the lowest speed (0.6 m/s), and 

higher speeds had lower and similar deviations. Additionally, under the autonomous 

mode, the offset was always negative (in the graph, y = 0 represents the location of 

reference, and the positive (y > 0) and negative region (y <0) represent the right and left 

of reference), indicating that UAV always drifted toward left and away from the 

reference. Compared to autonomous flight, manual flights had relatively smaller drift and 

were positive, resulting in a drift along the right of the reference. Whereas, offset along 

the width (Figure 22(b)) was relatively smaller than the length, excluding the case of the 

lowest speed (0.6 m/s), where the offset was considerably greater.  
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Figure 22. Offset in UAV's landing point along y-axis while flying along (a) length and (b) width at 4 different 

speeds in autonomous and manual mode. 

4.2.4.2 Stability and pattern 

Figure 23 shows the flight pattern (blue curve) under 4 different speeds while traveling 

along the length. The y = 0 line represents the log position, the negative region (y < 0) 

and positive region (y > 0) represent the left and right of the log. The effect of UAV 

speed is evident from the plots, which show that increasing speeds resulted in reduced 

deviations. Additionally, for a given speed, the deviation increased with travel distance. 

For manually flown flights (Figure 24), for a given speed, the UAV location was closer to 

the reference (blue line), and also the deviation relatively smaller compared to 

autonomous flights. 
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Figure 23. Effect of increasing UAV speed on autonomous navigation performance, while travelling for a fixed 

distance (2800 cm) along length at four different speeds - (a) 0.6 m/s, (b) 0.8 m/s, (c) 1.0 m/s, and (d) 1.2 m/s. 

(a) (b) 

(c) (d) 
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Figure 24. Effect of increasing UAV speed on manual flight performance, while travelling for a fixed distance 

(2800 cm) along length at four different speeds - (a) 0.6 m/s, (b) 0.8 m/s, (c) 1.0 m/s, and (d) 1.2 m/s. 

Similar results were obtained while flying along the width (Figure 25), wherein UAV 

always drifted left (y < 0) of the reference position (y = 0), the overall drift was smaller at 

higher speeds, and deviation also reduced with increasing speed. For manually flown 

flights (Figure 26), the deviation in flight pattern depended on the agility of the manual 

pilot. Specifically, for speed 0.8 m/s (Figure 26 (b)) and 1.0 m/s (Figure 26 (c)), due to 

initial heading error in some replicates, the UAV experienced comparatively higher 

deviation than the other two speeds. Although overall drift (from reference position) was 

smaller along the width, this can be attributed to the fact that UAV covered a smaller 

(a) (b) 

(c) (d) 
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distance along the width (2200 cm) than length (2800 cm). Consequently, operation time 

was higher, resulting in a higher error. 

  

  
Figure 25. Effect of increasing UAV speed on autonomous navigation performance, while travelling for a fixed 

distance (2200 cm) along width at four different speeds - (a) 0.6 m/s, (b) 0.8 m/s, (c) 1.0 m/s, and (d) 1.2 m/s 

 

(a) (b) 

(c) (d) 
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Figure 26. Effect of increasing UAV speed on manual flight performance, while travelling for a fixed distance 

(2800 cm) along width at four different speeds - (a) 0.6 m/s, (b) 0.8 m/s, (c) 1.0 m/s, and (d) 1.2 m/s. 

To further evaluate the flight pattern, a second-order regression was performed on the 

flight path. The results of which are shown in Figure 27 (while flying along the length) 

and Figure 28 (while flying along the width). For lengthwise flights, the R2 was 0.971, 

0.986, 0.998, and 0.998 for four respective speeds. Similar results were found while 

flying along the width with an R2 of 0.985, 0.981, 0.985, and 0.997 for the four different 

speeds. 

(a) (b) 

(c) (d) 
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Figure 27. Second order regression model of the autonomous UAV flightpath under different speeds - (a) 0.6 

m/s, (b) 0.8 m/s, (c) 1.0 m/s, and (d) 1.2 m/s travelling for a fixed distance (2800 cm) along length.R2 coefficient 

of determination the model mentioned in the legend. 

(a) (b) 

(c) (d) 
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Figure 28. Second order regression model of the autonomous UAV flightpath under different speeds - (a) 0.6 

m/s, (b) 0.8 m/s, (c) 1.0 m/s, and (d) 1.2 m/s travelling for a fixed distance (2400 cm) along width.R2 coefficient 

of determination the model mentioned in the legend. 

4.2.4.3 Flight parameters 

Since LiDAR accuracy is affected by platform stability, characterized by variation in 

speed, UAV orientation, and distance covered, this study analyzed the following flight 

parameters – (1) distance traveled by the UAV; (2) pitching speed, which is the average 

speed over the entire distance; (3) yaw orientation; (4) distance covered before reaching 

the pitching (stable) velocity called accelerated region; (5) variation of UAV heading and 

velocity within the flight (intra-flight parameters). 

(a) (b) 

(c) (d) 
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From Figure 29, it can be observed that for target distance of 2800 cm (along the length) 

and 2200 cm (along the width), the error in distance traveled was very small for 

autonomous mode, under 60 cm for both directions. However, deviation increased 

slightly with increasing speed. For manually controlled flight, since the end of the flight 

was determined by visual observation and since no real-time feedback for the horizontal 

distance, the variation in the traveled distance was greater than autonomous flights. 

Similar to travel distance, error in pitching speed was minimal for manual flights and 

autonomous flights under all the conditions (Figure 30). 
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Figure 29. Variation in total distance traveled under different speeds, flight mode, and directions. 
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Figure 30. Variation in pitching speed under different speeds, flight mode, and directions. 

Figure 31 shows the variation in the accelerated region. For the given target speed, the 

trend was similar along both directions (length and width) for the autonomous mode, 

which increased with higher target speeds. Since the UAV required higher time to 

achieve a higher set speed and the UAV was pitched at a fixed angle (for a given speed), 

the accelerated region increased with target speeds. However, for manual mode, variation 

of this parameter depended on the pilot's ability to pitch the UAV to reach the target 

speed, which can vary from one replication to another; thus, this parameter had greater 

variation than autonomous mode. 
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Figure 31. Variation in the distance to set velocity (DS) under different speeds, flight mode, and directions. 

As mentioned previously, LiDAR measurement accuracy is affected by its travel speed, 

and it is desirable to maintain a constant speed while scan data is collected since speed 

variation can result in variable spacing between adjacent scan lines, reducing the quality 

of scanned data. Figure 32 shows the variation of speed while the UAV was pitching. The 

autonomous mode showed a similar decreasing trend in speed variation with increasing 

target speed, indicating that higher speed resulted in more stable performance. However, 

the variation was slightly higher along length than width since the UAV traveled a larger 
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of manual mode was better in few cases than autonomous mode, it depended on the 

pilot's skill that can vary from one test to another, which is evident in the results. 

Additionally, it can have sudden speed variation due to the pilot's negligence.  

Similar to in-flight speed variation, heading variation also affects the LiDAR 

performance, and fluctuations in the heading can cause the scan lines to rotate along the 

z-axis, deteriorating the point cloud quality. Figure 33 shows the variation in UAV 

heading during travel. For autonomous flight, the variation was negligibly small, which 

was not affected by travel speed. However, similar to speed performance, the manual 

mode trend depended on the pilot. In few cases, when the initial heading had an error, it 

was manually adjusted during the flight resulting in higher error compared to autonomous 

flights. 
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Figure 32. Variation in the pitching speed during flight under different speeds, flight mode, and directions. 
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Figure 33. Variation in the UAV heading during flight under different speeds, flight mode, and directions 

 

4.2.5 LiDAR-derived ground height 

Figure 34, Figure 35, and Figure 36 show the results of ground height estimation using 

LiDAR and Guidance. The scales are different for both the senors, which is explained in 

the next paragraph. As evident from the results, the LiDAR-derived height was accurate, 

and measurements were not affected by increasing speeds. However, in all three cases, 

the LiDAR height was slightly ( < 1cm) lower from 400 cm to 450 cm (along the travel 

direction). It was the region where the speed track was decelerating to stop; consequently, 

the platform was slightly unstable, and LiDAR recorded those heights. Table 11 shows 
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0

1

2

3

4

5

40 60 80 100 120 140

H
ea

d
in

g
 (

d
eg

re
es

)

Inflight heading variation along length

Target Speed (cm/s) 

Auto

Manual

-1

0

1

2

3

4

5

40 60 80 100 120 140

H
ea

d
in

g
 (

d
eg

re
es

)

Inflight heading variation along width

Target Speed (cm/s) 

Auto

Manual

(a) 

(b) 



118 

 

that LiDAR-derived ground height was reliable as a reference for evaluating the altitude 

control of the UAV. 

The Guidance uses barometric data for height calculation, and every time the system is 

started, it takes the current height as a reference to calculate height variation. According 

to the supplier (DJI), the reference height is always set to zero. Since the sensing platform 

carrying the Guidance was mounted at a fixed height of 130 cm, which was never 

changed, the output height varied near zero. Consequently, the scales were different from 

LiDAR measurements. However, the variation in Guidance-derived height was relatively 

greater, ranging from 7 cm to 9 cm (Table 11). Further tests were conducted to evaluate 

the performance of Guidance-based and LiDAR-based altitude controls. This experiment 

suggested that LiDAR height could be considered as a reference for performance 

evaluation of Guidance's altitude control. Additionally, the height of the speed track was 

manually measured using a laser tape measure (GLM40, Bosch, Germany) at five 

different locations along the length, and it was found that the height of the last segment 

was beginning to drop slightly (1.772, 1.770, 1.772, 1.772, 1.769 m – they are not LiDAR 

mounting heights). Consequently, LiDAR also showed a drop in height in the last 

segment. 
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Figure 34. Variation of (a) LiDAR height and (b) Guidance height while traveling at 0.4 m/s. 

 
 

Figure 35. Variation of (a) LiDAR height and (b) Guidance height while traveling at 0.6 m/s. 

 

  
Figure 36. Variation of (a) LiDAR height and (b) Guidance height while traveling at 0.8 m/s. 
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Table 11. Variation in measurements of ground height using LiDAR (L) and Guidance (G)  while traveling at 

the height of 130 cm and three different speeds. 

Speed 

(m/s) 

Source Mean (SD) (cm) 

0.4 L 130 (0.2) 

G 13 (9.0) 

0.6 L 130 (0.2) 

G 6 (7.1) 

0.8 L 130 (0.2) 

G 4 (7.7) 

 

4.2.6 Altitude control 

The UAV was flown at three different heights (2.8, 2.3, and 1.8 m) for a fixed speed (0.6 

m/s) and a travel distance (20 m). Six replications of each were taken, and Guidance 

height and LiDAR-derived height were recorded, resulting in 36 datasets. Two 

parameters were analyzed: (a) initial and final offset and (b) the variation in altitude 

during the flight to determine which sensor had better performance for UAV altitude 

control. The initial and final offsets, the difference in initial corresponding measured 

UAV altitudes (Guidance derived altitude for Guidance-based control and LiDAR-

derived altitude for LiDAR-based control), and target height weres calculated at the 

takeoff point and landing point, respectively. Four parameters were reported for both 

offsets: maximum, mean, standard deviation (SD), and coefficient of variance (CV) in 

percent. All measurements were recorded in centimeters (cm). 

From Table 12, it is evident that the maximum initial offset for LiDAR-based control was 

lower than that of Guidance-based control in all three flight altitudes. However, looking 



121 

 

at the CV (%), Guidance-based control performance was better at high altitudes (280 cm) 

than that of LiDAR-based control. Its performance deteriorated at lower altitudes. In 

other words, LiDAR's performance improved with decreasing altitude, which is more 

desirable since greenhouses have limited overhead space requiring UAV to fly low. For 

the final offset, both systems performed best in the case of medium height (230 cm), with 

the least CV compared to other heights. For low altitude flight, Guidance based control 

performed better, whereas, for high altitude flight, LiDAR-based control was better. 

 

Table 12. Effect of varying target altitude and input source on the initial and final offset 

Input Initial offset (cm) Final offset (cm) 

Target 

height 

Input 

Source 
Max 

Mean 

(SD) 
CV (%) Max 

Mean 

(SD) 
CV (%) 

280 
L 7 4 (3) 64 7 3 (2) 77 

G 10 7 (2) 27 35 7 (11) 161 

230 
L 8 4 (2) 58 6 3 (2) 50 

G 21 10 (7) 74 9 7 (2) 30 

180 
L 8 6 (2) 33 18 8 (8) 102 

G 14 5 (5) 85 12 7 (3) 37 

 

To evaluate variation during entire flight, flight data were binned at every 50 cm, and 

height from both sensors was recorded. The mean and standard deviation among the 

replicates were reported for three different target altitudes for both the control modes. 

Table 13 shows the overall mean and standard deviation while flying for 2000 cm at three 

mentioned heights. The table also includes the mean offset in Guidance height 
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measurement compared to LiDAR. For evaluation of LiDAR-based control, LiDAR 

height was considered, and for Guidance-based control, Guidance height was considered.  

Comparing the results for target height of 280 cm for LiDAR-based and Guidance-based 

control (Figure 37 (a) and (b)) show that for deviation for LiDAR-based control (error 

bars shown in black) was very low throughout the entire flight. Although for Guidance-

based control, the deviations were low before 1400 cm (error bars shown in black), the 

deviations and offset from set height were relatively greater beyond 1400 cm. The UAV 

height stayed above the set height in both the cases and overall height and deviation for 

both systems were comparable, which were 283(2) cm and 285(5) cm for LiDAR-based 

and Guidance-based control, respectively. Similarly, for the 230 cm target height (Figure 

38 (a) and (b)), the UAV height was always above the set height, and Guidance-based 

control had a slightly higher offset and deviation (237 (5) cm) than LiDAR-based control 

(233 (2) cm). The results of altitude control at 180 cm had a similar performance for both 

systems (Figure 39 (a) and (b)), wherein the UAV remained above the set altitude with 

small deviations; overall UAV altitudes were 186(5) cm and 185(4) cm for LiDAR-based 

and Guidance-based control, respectively. The deviations in UAV altitude were due to a 

high threshold (20 cm); consequently, whenever the UAV lost the altitude below the 

threshold, it was given an upthrust (0.1 m/s). Reducing this threshold can reduce the 

altitude variation during flight. Performance of both the controls was comparable with the 

overall offset under 6 cm and 7 cm with LiDAR-based and Guidance-based control, 

respectively. 
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Figure 37. Variation of UAV altitude flying at 280 cm using (a) LiDAR feedback and (b) Guidance feedback. 

The figure shows the mean height and deviation among 6 replicates extracted at every 10 cm, and both 

Guidance height and LiDAR measured heights are reported with their deviations (error bars). 

 

  
Figure 38. Variation of UAV altitude flying at 230 cm using (a) LiDAR feedback and (b) Guidance feedback. 

The figure shows the mean height and deviation among 6 replicates extracted at every 10 cm, and both 

Guidance height and LiDAR measured heights are reported with their deviations (error bars). 

 

(a) (b) 

(a) (b) 
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Figure 39. Variation of UAV altitude flying at 180 cm using (a) LiDAR feedback and (b) Guidance feedback. 

The figure shows the mean height and deviation among 6 replicates extracted at every 10 cm, and both 

Guidance height and LiDAR measured heights are reported with their deviations (error bars). 

 

 
Table 13. Comparison of LiDAR (L) and Guidance (G) based altitude control at three target heights (280, 230, 

and 180 cm). The Guidance derived height was also reported along with LiDAR. The deviations are mentioned 

in the parenthesis. The range represents the range of height variation of the combined dataset. All 

measurements are in cm. 

Set 

Height 

Control 

mode 

LiDAR height Guidance height 

Mean (SD) Range Mean (SD) Range 

280 L 283 (2) 5 278 (10) 7 

G 291 (10) 10 285 (5) 13 

230 L 233 (2) 4 239 (17) 6 

G 231 (9) 9 237 (5) 8 

180 L 186 (5) 5 179 (10) 6 

G 197 (10) 5 185 (4) 6 

 

 

(a) (b) 
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4.3 Downdraft Effect On Plant Measurement 

For analysis, plant P2 was selected, and RMSE and variability analysis was conducted for 

single speed (0.4 m/s) under varying viewing angles (A1 = 0˚, A2 = 20˚, and A3 = 35˚). 

P2 was chosen because it resulted in more stable results, and the plant shape was more 

flexible than others (which were more rigid). B2 was chosen for analysis among standard 

objects because of its rough surface texture than B1, which was more reflective and could 

deflect the laser beams. With 0˚ mount, the error in height and length measurement of the 

plant was very small, under 12 mm (excluding the first plant for length). For length 

measurement, the error was not affected by increasing horizontal distance. However, 

error in height measurement increased slightly with increasing horizontal distance. Width 

measurement experienced the highest error reaching 25 mm, and it increased with 

increasing horizontal distance.  

Furthermore, it was expected that standard objects would not get affected by the 

downdraft. However, measurement error in the width increased with increasing 

horizontal distance, which was slightly smaller for higher viewing angles; the reason can 

be attributed to occlusion from the adjacent object along the scanning axis. With a 0º 

viewing angle, measurement error in height and length was very low and not affected by 

the horizontal distance. Even so, with higher viewing angles about the pitching axis, the 

error increased for both height and length. 

Using a higher viewing angle decreased the error in width measurement for nearby 

plants. However, length measurement error increased considerably with a higher viewing 
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angle. Whereas height measurement had a similar error pattern; however, farther plants 

had slightly less error than nadir scans. The increased error in length with a higher 

viewing angle can be attributed to a decreased probability of LiDAR hitting the trailing 

end of the plants (along travel direction); consequently, affecting measurement accuracy 

along the length. Nevertheless, with the width measurement, the number of LiDAR hits is 

higher in the first half (along travel direction); consequently, width estimation is better 

than the 0º angle. Although increasing the viewing angle moved the scanning plane away 

from the UAV's center, it affected the scanning performance of LiDAR 

Figure 40, Figure 41, and Figure 42 show the point cloud data of the same objects under 

three different viewing angles. The purpose of showing the front and rear view of the 

same scan is to explain the effect of higher viewing angles on the scan quality. For 0º 

viewing angle (Figure 40), since the LiDAR scanning plane is vertically downward, both 

views are symmetrical in terms of the number of points that LiDAR hits in the front and 

rear of the object. However, with a 20º viewing angle, the scanning plane is inclined 

forward; consequently, the number of hits on the trailing end of the objects is lower 

compared to the front end. This effect is more substantial with a 35º viewing angle. This 

disparity can cause the LiDAR to miss the object trailing end, resulting in higher error. 
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Figure 40. (a) Front and (b) rear view of the point cloud with 0º viewing angle. The UAV traveled from 0 m to 

2.5 m with propellers turned on. The front and rear view of 3rd plant in 3rd row (at 1 m ), indicated by red 

arrows, gets an equal number of hits due to vertically down-looking LiDAR. 

(a) 

(b) 

Both sides get equal LiDAR hits 
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Figure 41. (a) Front and (b) rear view of the point cloud with 20º viewing angle. The UAV traveled from 0 m to 

2.5 m with propellers turned on. The front section of 3rd plant in 3rd row (at 1 m ), indicated by red arrows, gets 

a relatively higher number of hits than the rear section. 

(a) 

(b) 

Front gets higher number of LiDAR hits 
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Figure 42. (a) Front and (b) rear view of the point cloud with 35º viewing angle. The UAV traveled from 0 m to 

2.5 m with propellers turned on. The front section of 3rd plant in 3rd row (at 1 m ), indicated by red arrows, gets 

a relatively higher number of hits than the rear section. 

 

4.3.1 Baseline evaluation 

The study used the clustering algorithm (developed by Uchit Nair, work under review) to 

extract the plant dimension information. However, it was necessary to evaluate the 

(a) 

(b) 
Front gets much higher LiDAR hits 



130 

 

performance of the algorithm, which was done by comparing the measurement obtained 

with the propeller turned to the actual dimensions (manually measured). 

From the results of height measurement error (Figure 43), all plants had a similar trend; 

however, the error magnitude was comparatively higher for plant P1 due to its smaller 

structure. For the standard objects, B1 had more stable measurements, which could be 

due to its comparatively less shiny and reflective surface than B2 (Figure 43(b)). 

However, results of width measurements show that the RMSE in width increased as the 

horizontal distance from LiDAR increased (Figure 44(a)), reaching a maximum value of 

57 mm. In contrast, the pattern was relatively stable for both the standard objects (Figure 

44(b)).  

Finally, from length measurements (Figure 45), all the plants had similar trends, which 

were not affected by the horizontal distance; however, they had slightly different 

magnitudes. P2 and P3, which had a similar structure and relatively lower error due to 

their broader and homogenous structures, which had a dense distribution of leaves along 

the boundary, resulted in a lesser chance of LiDAR missing to hit the plant edges. 

However, P4, which had a tower-like structure with sharp-edged leaves present at the 

plant boundary, had a greater chance that LiDAR could fail to hit these edges. These 

errors can reduce if travel speed is low, ensuring denser and closely spaced scan lines. 

Both the standard objects had a similar error pattern (Figure 45(b)). The experiment 

showed that the current clustering methodology had stable LiDAR-derived length and 

height measurements; however, errors in width measurements can be expected due to 

occlusion, which prevents the LiDAR from viewing the entire plant. 
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Figure 43. Measurement error (RMSE (mm)) in LiDAR-derived heights compared to manual measurements in 

(a) plants and (b) standard objects. 

 

  
Figure 44. Measurement error (RMSE (mm)) in LiDAR-derived widths compared to manual measurements in 

(a) plants and (b) standard objects. 

 

(a) (b) 

(a) (b) 
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Figure 45. Measurement error (RMSE (mm)) in LiDAR-derived lengths compared to manual measurements in 

(a) plants and (b) standard objects. 

4.3.2 Region affected by the downdraft 

4.3.2.1 Height 

The results of RMSE (Figure 46) in height measurement suggest that the region closer to 

the UAV ( < 40 cm) had a higher error magnitude. Whereas plants farther away (> 50 

cm) from UAV's center experienced a lower error. Measurement variation also resulted in 

similar trends wherein distant plants had a relatively smaller variation than plants closer 

to the UAV's center. However, P1 (red) showed a sudden rise in error at 120 cm from 

UAV, which can be explained by its shape and presence of multiple twigs at the top of 

the canopy, and the clustering algorithm used in this study relies on ordering scanned 

points from the highest to the lowest point. Due to the presence of multiple high points, 

the estimation could have varied among the replicates leading to an unexpected error. 

Both P2 (green) and P3 (blue) had very similar structures, resulting in comparable 

patterns. Both P2 and P3 were relatively less stiff and compact than the other two plants, 

and consequently, their shape was expected to be most affected under the downdraft, 

(a) (b) 



133 

 

which was evident from their pattern at 20 cm from UAV. P4 (orange) had a hierarchical 

structure with a single leaf at the highest point, and its structure was more rigid than 

others; thereby, the algorithm could reproduce a similar structure in each iteration. 

 

 

  
Figure 46. (a), (b) Measurement error (RMSE (mm)) and (b), (d) measurement variability (CV (%)) in the 

height of all plants and standard objects while scanning at a fixed height (1.3 m), speed (0.4 m/s) and viewing 

angle (0˚). 

4.3.2.2 Width 

Error in width measurements (Figure 47) for plants showed an increasing trend with 

horizontal distance from UAV, and a similar trend was observed for standard objects. 

The results did not reflect any particular region affected and the error was more 

(a) (b) 

(c) (d) 
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homogeneous (except for the plant P2 and P4 at the end of the row). The P4 (orange) had 

comparatively higher error than the rest of the plants due to its height and tower-like 

shape, unlike other plants with a wider top surface area. Specifically, for taller structures, 

the LiDAR can capture one-half (visible portion) of the canopy (along the width); 

however, the other half is occluded, leading to poorer width estimations. Moreover, taller 

plants have a higher probability of getting delinated from there rest state structure than 

shorter and broader plants, such as P1(red). P2 and P3 also had broader structures; 

however, as mentioned before, due to their tangible structure, they experience slightly 

higher errors than P1. 
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Figure 47. (a), (b) Measurement error (RMSE (mm)) and (b), (d) measurement variability (CV (%)) in the width 

of all plants and standard objects while scanning at a fixed height (1.3 m), speed (0.4 m/s) and viewing angle 

(0˚). 

 

 

4.3.2.3 Length 

From the results of length measurement (Figure 48), it can be observed that 

measurements were stable (RMSE < 24 mm)  throughout the entire distance from the 

UAV, excluding P1 at 120 cm, which experienced a sudden rise in error. The results 

suggested that length measurements were not greatly affected by the downdraft. 

(a) (b) 

(c) (d) 
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Figure 48. (a), (b) Measurement error (RMSE (mm)) and (b), (d) measurement variability (CV (%)) in the 

length of all plants and standard objects while scanning at a fixed height (1.3 m), speed (0.4 m/s) and viewing 

angle (0˚). 

From the above results of height and length measurements, it can be concluded that the 

region with 40 cm of the UAV center was affected by the downdraft, and the region 

beyond 50 cm had stable measurements. Consequently, excluding this region from 

measurements can reduce the effect of downdraft on measurement. However, the next 

section evaluates the effect of different viewing angles on the measurement of plant P2, 

and its purpose was to identify whether higher viewing angles could reduce the 

downdraft impact. 

(a) (b) 

(c) (d) 



137 

 

4.3.3 Effect of viewing angle 

4.3.3.1 Plant height 

The effect of downdraft on the plant height measurement (Figure 49(a)) was very low 

with the 0º viewing angle, and error was relatively stable beyond 50 cm. Increased 

viewing angle resulted in slightly higher errors, and it also increased with increasing 

horizontal distance. The measurement variation (Figure 49 (b))  in plant height was very 

stable with 0º angle (under 2%) and was not affected by increasing horizontal distance. 

Furthermore, higher viewing angles did not reduce the variability in measurements. 

The error was slightly higher for the standard object (Figure 49 (c)) than in the plant and 

within 8 mm, which was not affected by increasing horizontal distance. However, higher 

viewing angles resulted in increasing error with increasing horizontal distance. 

Nevertheless, the variability in measurement Figure 49(d))  was very low with 0º viewing 

angle (under 1.5%). Similar to the plant measurements, variability increased slightly with 

higher viewing angles. 
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Figure 49. (a), (c) Measurement error (RMSE (mm)) and (b), (d) measurement variability (CV (%)) in the 

height of plant and ball while scanning at a fixed height (1.3 m), speed (0.4 m/s) and three different viewing 

angles (0˚, 20˚, and 35˚). 

4.3.3.2 Plant width 

For 0˚ viewing angle, the error in measuring plant width (Figure 50(a)) was low within 50 

cm of the UAV (under 10 mm); however, it showed a sudden increase in error in the 

range of 70-100 cm from the UAV. The findings indicate that downdraft impact was 

relatively greater in this range. Using a higher viewing angle (35º) resulted in the least 

error for nearby plants (within 100 cm of the UAV). Moreover, the measurement 

variability (Figure 50 (b))  was also minimum and stable with the 35º viewing angle 

(a) (b) 

(c) (d) 
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(under 4.2%) excluding the last plant. The last object in the row can result in unexpected 

high errors since the clustering algorithm is susceptible to picking sparse points. This 

effect is even greater with a higher viewing angle (as shown in the point cloud data)  

However, the error in the standard object (Figure 50(c))  showed an increasing pattern 

with horizontal distance from UAV with 0º angle. The measurement variation (Figure 50 

(c)) had a similar pattern as plants, which was most stable with a 35º angle (under 7%). 
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Figure 50. (a), (c) Measurement error (RMSE (mm)) and (b), (d) measurement variability (CV (%)) in the width 

of plant and ball while scanning at a fixed height (1.3 m), speed (0.4 m/s) and three different viewing angles (0˚, 

20˚, and 35˚). 

4.3.3.3 Plant length 

Beyond 20 cm from the UAV with 0º viewing angle, the plant experienced a minimal 

error (under 12 mm) and did not vary with increasing horizontal distance (Figure 51(a)). 

However, with the same viewing angle, the plant underneath the UAV experienced the 

highest error (19 mm). The error increased considerably with increasing viewing angle, 

as the inclined scanning plane might have missed hitting the trailing edge of the plant row 

(along the travel direction, x-axis). The measurement variation Figure 51 (b)) also 

(a) (b) 

(c) (d) 
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showed a similar pattern as RMSE, wherein the variability increased with increasing 

viewing angle. 

For the standard object, the error due to downdraft was minimal with a 0º viewing angle, 

which stayed within 14 mm (Figure 51 (c)). Similar to the plant, higher viewing angles 

increased the error. The measurement variation (Figure 51 (d)) was stable with 0º 

viewing angle with maximum variation under 5%, and higher viewing angles led to 

increased variations in measurement. 
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Figure 51. (a), (c) Measurement error (RMSE (mm)) and (b), (d) measurement variability (CV (%)) in the 

length of plant and ball while scanning at a fixed height (1.3 m), speed (0.4 m/s) and three different viewing 

angles (0˚, 20˚, and 35˚). 

It can be concluded from the findings that both length and height measurements were 

stable with 0º viewing angle beyond 40 cm of the UAV, and higher viewing angles did 

not reduce the effect of downdraft on these measurements. However, using a higher 

viewing angle (35º) resulted in more stable measurements within 100 cm of the UAV in 

measuring the width. From the evaluation above two results, it can be concluded that the 

optimal way of scanning plants under downdraft is to exclude the 40 cm region while 

measuring length and height and use a higher viewing angle (35°) to calculate the width. 

(a) (b) 

(c) (d) 
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 Chapter 5. Conclusion and Recommendation for Future Study 

An aerial sensing platform was established for characterizing plants in a greenhouse 

environment. The reason for choosing a UAV platform over UGV or boom-based 

scanner was to reduce the effect of occlusion and overcome limited ground space for 

navigation in a greenhouse environment by extracting plant data from multiple views and 

reaching any point in three-dimensional space. This was achieved by integrating a 2D 

laser range sensor and a vision-based positioning system to a mini-UAV platform capable 

of generating a 3D map of an indoor environment. The study also developed a flight 

control system for generating flight plans and autonomous navigation of the sensing 

platform. A simplified GUI was developed to achieve this process and to suffice 

communication between the UAV onboard computer and ground computer. The 

performance of autonomous navigation was evaluated along a single path, including 

determination of UAV drift and pattern under different speeds and performance of 

altitude control under different flight altitudes. The study also aimed to evaluate the effect 

of propeller downdraft on the measurement accuracy of underlying plants under different 

sensor viewing angles. The study also conducted a review of existing mobile sensing 

systems to narrow the selection criterion of UAV, explored prevalent indoor positioning 

systems to overcome the limited availability of GPS signal in an indoor environment, and 
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obtain precise UAV location. The factors affecting the data quality of LiDAR-derived 

measurement on an aerial platform were investigated. 

A set of scans were recorded by manually flying the aerial platform in a commercial 

greenhouse to test its feasibility to generate the 3D map of the scanned region. A 

customized offline algorithm detected and eliminated the errors generated from flight 

instability due to loss or gain in altitude, drift along the scanning axis, variation in the 

heading, and geometrical distortion in the flight path. A set of experiments were 

conducted in a lab environment to evaluate the performance of autonomous flight along a 

single path against manual flights by measuring the UAV location relative to a linear 

array of wooden logs placed on inverted grow pots. The results indicated that deviation 

from the intended flight path reduced with increasing speed, and the coefficient of 

determination (R2) for the second-order model improved 0.971, 0.986, 0.998 and, 0.998 

and 0.985, 0.981, 0.985, and 0.997 along the length and width, respectively, as travel 

speed increased 0.6, 0.8, 1.0 and 1.2 m/s. 

The UAV was flown at different heights in a lab set up to assess the accuracy of 

Guidance-based (barometric height) altitude control, and LiDAR height was recorded. 

The results were compared to LiDAR-based altitude control as a baseline metric, which 

showed that Guidance had a greater positive offset (< 10 cm) and deviation (< 15 cm) 

than baseline offset (< 6 cm) and deviation (<6 cm). 

The effect of propeller downdraft on plant measurement was evaluated by scanning a set 

of artificial plants and standard objects with the sensing platform mounted on a constant 

speed track at three different LiDAR viewing angles (0˚, 20˚, and 35˚). The results 
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indicated that measurement error due to the downdraft effect was very low in height (< 6 

mm) and length (< 12 mm) beyond 50 cm and 20 cm from the UAV center, respectively, 

and nadir view resulted in the least error. However, downdraft effect on width 

measurement was least (< 10 mm) within 50 cm of the UAV with nadir view, and off-

nadir view (35˚) had better performance, resulting in stable measurements (< 13 mm) up 

to 100 cm from the UAV center. 

The current navigation algorithm is based on an on-off control strategy which can be 

improved by implementing a higher-order control system to reduce offset in altitude 

control. The altitude control tests using LiDAR were conducted in a lab environment with 

an empty floor. Real-time extraction of LiDAR-derived ground height can be tested to 

detect ground in a greenhouse environment, where the ground is mostly covered with 

plants. Thereby, Guidance based altitude control can be replaced by LiDAR-based 

control resulting in stable altitude performance. Improving the navigation accuracy for 

long-duration flights is desirable to scan larger areas at lower speeds to generate denser 

point clouds. 
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 Appendix A 

A.1 Connecting to UAV onboard computer 

Ensure all the peripherals are connected to the onboard computer, and the WiFi module is 

plugged in the USB port of the onboard computer. Insert the battery into the UAV and 

turn on the power. Connect the GC (Ground Computer) to the available WiFi network 

and enable its hotspot. The system was configured to connect automatically with the 

onboard computer. Once the connection is established, the information will be displayed 

on the hotspot connection window (Figure 52). 
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Figure 52. Hotspot window on GC displaying established connection with the onboard computer (odroid). 

Run the Aerial Sensing Platform application in Qt, which will open the main window; 

an explanation of each pushbutton is available in the results section (Figure 19). Overall 

sequence of operation – Get greenhouse dimension by processing manual flight data, 

generate the flight plan based on the dimension and user's accuracy requirement, create 

flight commands, fly the UAV autonomously and process the flight data to get the point 

cloud data. 

A.2 Extracting greenhouse dimension from manual flight 

• Fly manually along the greenhouse boundary. Take replicates to get a better 

estimate or fly multiple times along the boundary within a single flight (Follow 

section A.3 Sequence of operation for manual flights for the recording manual 

flight data). 
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• Only IMU (orientation and linear acceleration) and Guidance (position and linear 

velocity) data are required for this analysis. 

• Once data is available, send it to the ground computer for analysis and save in a 

dated folder, which can be later accessed in an orderly manner. 

• Run 'greenhouse_dimension.m' and the following window will appear 

 

Figure 53. Dialog box for calculating greenhouse dimension. 

• Enter the folder location where sensor data was saved, for example -  

'C:\Aditya\MATLAB\Final_codes\Main\data\SAC_final_flights\mar_9\manual_fli

ght\dimension' 
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• Enter the replicate number, followed accuracy requirement parameters such as – 

desired LiDAR scan width, UAV velocity, flight pattern, and overlapping 

percentage. 

• Clicking OK will generate the greenhouse dimension and information needed for 

flight planning. It will be saved in a fixed location as indicated by 'Output 

Location', which will be later accessed by Qt to generate the plan. 

 

 
Figure 54. Pitched and rolled portion of the manual flight used for calculating the greenhouse dimensions. 

 

A.2 Extracting the flight plan and generate commands 

• Click  (import) button to read the greenhouse dimension. 

• Click  (calculator) button to calculate the output parameter. 

• Click  (plot) button to plot the calculated flight path. 

• Click  (command) button to generate flight commands. 
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• Click  (launch) button to open flight control console. 

A.3 Sequence of operation for manual flights 

Once the flight control window is open, click the following pushbuttons (Id) described in 

Table 9 and Table 10– 

• 1, 2, and 3 to enable all sensors. 

• 5 and 6 to start saving sensor data and takeoff the UAV. 

• Fly along the scan boundary by pitching along the length and rolling along the 

width. Ensure that the UAV heading is always maintained along the length and 

make corrections if the heading is unstable. 

• 8 and 9 to land the UAV and stop recording. 

o Recorded sensor data will be saved in two locations on the onboard 

computer – (a) /home/odroid/lidar_data/temp_sensor_data and (b) 

/home/odroid/lidar_data/temp_sensor_data_bkp 

o Location (a) archives all flight records and location (Figure 55(a)). 

Location (b) keeps a record of current datasets (Figure 55(b)). 

• 10 and turn off the UAV. 

• Repeat step (1) to (6) for the number of times the user wants to scan the area. 

• After completing the required number of scans (n) in the last scan before turning 

off the UAV, extract current flight data. 

o Set 'Num of files' to n (number of replications taken for one set) 

o Click 'Extract and send to GC' (Id = 11) 
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o All the sensor data in location (b) will be processed (extract relevant 

sensor data, conversion from .bag to .txt format, creation of .zip file to 

combine all .txt file) and sequentially sent to fixed location of GC 

(C:\Aditya\Qt_file\Flight_command\UAV_odroid_data). 

o After the transfer of each dataset, it will be deleted from the onboard 

computer location (b). 

o After transferring all the recorded data, the information will be displayed 

on the Qt window (Figure 55(c)). 
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Figure 55. (a) Archive location on onboard computer to keep a record of older flights (timestamped)). (b) The 

current location saves the latest data, which are processed and deleted after completing an experiment. (c) 

Flight control window – set the num of files equal to the number of replicates taken in an experiment (shown in 

the red box), and post data transfer, the information is displayed in the Qt window (shown in the black box). 

(a) 

(b) 

(c) 
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• Finally, the datasets are placed in a dated folder which MATLAB processes to 

generate point cloud data and greenhouse dimension. Once this information is 

available, the flight control application is used to fly the UAV autonomously. 

A.4 Sequence of operation for autonomous flights 

Below mentioned are the sequence id for autonomous flight and data recording. 

• 4 to edit hover time (by default, it is set to 5 seconds). 

• 1, 2, and 3 to enable all sensors, followed by 4 and 5. 

• Click either 6 or 7 based on the type of altitude control to start the UAV flight. At 

the end of the last path, UAV will land, and the recording will stop automatically. 

(Currently, the auto-landing has been disabled to avoid UAV damage if the 

landing area is not clear). So, 8 to land the UAV post-flight completion. 

• 10 and turn off the UAV. Repeat the above steps for the required number of 

replications. 

• At the end of the experiment, specify the number of replication in 'Num of flight' 

input box and click 'Extract and send to GC' to send the recorded sensor data to 

GC. 
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 Appendix B 

B.1 Extracting manual point cloud data 

• Run 'manual_extraction.m', which will open a similar dialog box – 

 

Figure 56. Dialog box for manual flight processing. 

• Paste the folder location, for example - 

'C:\Aditya\MATLAB\Final_codes\Main\data\nov30\owen\T3' 
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• Select the process (1) extract entire point cloud, (2) extract wall location 

(assuming walls are within LiDAR's range < 10 m), (3) extract log position, or (4) 

flight statistics 

• Select the replication number range; by default, it processes 1st scan. Set the range 

as per requirement.  

• Select the LiDAR angle, range, and viewing angle (mounting angle). By default, 

Guidance is set as height source. 

• In the 'Enable yaw correction' type Y to remove error due to heading error. Figure 

57 shows the effect of geometrical distortion correction in the flight path. 

 

Figure 57. Geometrical distortion correction in the Guidance derived flight path. 

• Selecting the entire point cloud option (1) will generate point cloud data (Figure 

58) after error correction, which will be saved in the same folder location. 
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Figure 58. Output of point cloud data processing of manual flight 

 

 

B.2 Extraction of the reference logs 

• Run 'Complete_extraction.m', which will open the following window – 
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Figure 59. Dialog box for automated flight data processing with following inputs – (1) enter the location of the 

folder containing sensor data, (2) select the process, (3) select the number of replications to be processed, (4) 

set LiDAR scan angle and its maximum range, (5) the minimum UAV velocity before processing starts, (6) 

select the height source (1 for LiDAR and 2 for Guidance) and (7)scan range for density was used to calculate 

the point density within the given range of LiDAR (not evaluated). 

• Enter the sensor data location and select process (1) extract lumbar location. 

• Select the sensor for altitude correction either (1) LiDAR or (2) Guidance and 

click ok. Another dialog box will pop up asking the average z location of logs 

(which is pre-set by default); click ok to start the processing. 
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Figure 60. Approximate z location of logs 

• The output (Figure 61) shows the location of logs in blue (located near the 

ground), the location of the UAV right arm in red (located near z = 2.0 m), and 

the Guidance location in green. Figure 62 shows the corresponding point cloud 

data of the scan area from which the logs and UAV arm were extracted.  

 
Figure 61. Location of wooden logs (blue), UAV right arm (red), and Guidance position (green), which were 

extracted from the point cloud data of the scan. In the next step, the UAV arm position was calculated relative 

to the log position. 
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Figure 62. Corresponding point cloud data from which the wooden logs(bright blue) and UAV arm location 

(red) were extracted. The color variation is based on the relative height of the points. 

• Post location extraction, the UAV arm location is calculated relative to the log 

location. Run 'Nav_accuracy_by_part.m', to get flight parameters at fixed 

distance (10 cm for this study). This will extract the UAV location relative to the 

Wooden 

logs 

UAV 

arms 



178 

 

log position and calculate other flight parameters – speed, heading, LiDAR 

height, and Guidance height. 

 

 

Figure 63. Dialog box for 'Nav_accuracy_by_parts.m', enter the details as indicated by the prompt. The binning 

range was kept at 10 cm. 

• Run 'drift_statistics_by_parts.m' to plot flight data binned by distance. Figure 64 

shows the dialog box for the same, and the resulting plots (Figure 65) were 

displayed and saved in the same location as 'Folder location'. 
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Figure 64. Dialog box for 'drift_statistics_by_parts.m'. Enter the details as indicated by the prompts; it can also 

be used to visualize the variation in UAV speed, heading, LiDAR height, and Guidance height. However, for 

this study, only drift patterns were shown. 

 
Figure 65. Resulting plot showing the combined flight path (blue) and deviation (error bars) among the 

replicates along with the second-order regression model of the flight path. 
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B.3 Extracting altitude from LiDAR measurements 

• For the real-time altitude calculation from LiDAR measurements, two nodes were 

created in ROS (OCS) – (1) urg_node – to publish range and intensity data for the 

entire 270° sweep and (2) lidar_data – to calculate z component from the range 

data (the corresponding C++ code is mentioned below). The primary purpose of 

this code is to search in the 40° angular range from the LiDAR center, the point 

which corresponds to the ground (farthest z location). 

 

#include "ros/ros.h" 

#include <cstdlib> 

#include<sensor_msgs/LaserScan.h> 

#include<geometry_msgs/PointStamped.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <vector> 

#include <iostream> 

#include <math.h> 

ros::Publisher loc_pub; 

void chatterCallback(const sensor_msgs::LaserScan::ConstPtr& 

msg) 

{ 

  geometry_msgs::PointStamped loc;      // define location 

which will hold altitude data 

  int mid = 540, point_range = 80; //consider range of 160 

points from LiDAR's center which corresponds to 40° angle 

  float fact = 3.14159265 / 180 * 0.25; //convert point to 

rad (each degree comprise 4 points, so each point 

corresponds to 0.25 degree ) 

  std::vector< float > lid_arr; 

  for (int i= mid - point_range; i <= mid + point_range; 

i++) { 
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   if (msg->ranges[i] < 10) { 

    lid_arr.push_back(msg->ranges[i] * cos((i - 

mid) * fact)); //find the z component of range 

   }    

   sort(lid_arr.begin(), lid_arr.end(), 

std::greater<int>());//sort descending 

  } 

 

  loc.header.seq=msg->header.seq;   

  loc.point.z = *min_element(lid_arr.begin(), 

lid_arr.begin()+10); //choose the minimum among top 10 

elements 

  lid_arr.clear(); //clear the array for next iteration 

  loc_pub.publish(loc);  

} 

 

int main(int argc, char **argv) 

{ 

 

  ros::init(argc, argv, "lidar"); 

  ros::NodeHandle n; 

  ros::Subscriber sub = n.subscribe("/scan", 10, 

chatterCallback); 

  loc_pub= 

n.advertise<geometry_msgs::PointStamped>("/M100/",10); 

  /** 

   * ros::spin() will enter a loop, pumping callbacks.  With 

this version, all 

   * callbacks will be called from within this thread (the 

main one).  ros::spin() 

   * will exit when Ctrl-C is pressed, or the node is 

shutdown by the master. 

   */ 

   //ros::Rate rate(10); 

  std::cout << "LiDAR height available" << std::endl; 

   while(ros::ok()) 

   { 
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 ros::spin(); 

} 

  return 0; 

} 

 

• The autonomous control algorithm then called this node (lidar_data) to receive 

real-time altitude from LiDAR measurement and control the UAV altitude. 

 

B.4 Plant measurements 

• Run 'Speed_track.m' to extract point cloud data of the plant with ground removed. 

The code also corrects the mounting error of the drone on the speed track. Since 

the UAV was mounted manually, the 0º line of LiDAR was not vertical, causing 

the floor to tilt at an angle to the z-axis instead of being parallel. However, in the 

initial portion of the scan, the complete floor was visible and using this region, the 

floor angle was calculated. The entire scan was rotated by the same angle, making 

it parallel to the z-axis. 
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Figure 66. Dialog box for 'Speed_track.m' to extract point cloud data, post manual alignment error correction, 

and ground removal. The input prompts are self-explanatory and similar to previous dialog boxes. 

• Owing to mounting error (Figure 67), it can be seen that the original scan had an 

error of  25 mm (Δz = absolute (33-8 = 25) for the same scan line), wherein at a 

given location of the platform (x = 1.21 m), the scan line was not aligned with the 

z-axis. 
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Figure 67. Original scan wherein manual mounting led to alignment error between LiDAR 0° line (centerline) 

and z-axis, causing the floor to tilt by 25 mm (absolute(33-8) mm) about the x-axis. 

• This angle was calculated by averaging the inclination (slope = Δz/Δy) of 

individual scan lines for the portion where the entire floor was visible. The entire 

scan was rotated about the x-axis by this angle. Post correction (Figure 68), this 

error reduced to 5 mm (Δz = absolute (6-11) = 5 mm). 
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Figure 68. The output point cloud, post alignment correction along the z-axis, reduced the alignment error to 5 

mm (absolute(6-10) mm). 

• Finally, the code removed the ground data from the point cloud by fitting a plane 

along the z-axis and selecting the remaining dataset (Figure 69). 
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Figure 69. Ground removal from the point cloud by fitting a plane at the z-axis and selecting the remaining 

dataset. 

• Run 'Clustering_with_Changing_Threshold.m' to get the dimension of each 

object (by selecting appropriate threshold value ranging from 0.12 to 0.10), which 

was used for comparing plant data under propeller turned off and turned on. The 

dimension (height, width, length) of each object was grouped by its position and 

exported for comparison. The algorithm generated convex hull structures by 

clustering neighboring points (Figure 70). 
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Figure 70. Output of clustering algorithm which generated a set of convex hull structures by grouping the 

neighboring points. 

 


