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Abstract

This thesis contains two different projects on toric geometry. The first project describes
the operational K-theory introduced by D. Anderson and S. Payne in [3] for toric varieties,
via the introduction of a ring of Grothendieck weights. We prove several properties of
Grothendieck weights, which combinatorially characterize them in low dimensions. The
second project introduces generalized Rogers-Szegd polynomials, which depend on the data
of a smooth lattice polytope P. For P an interval these specialize to the polynomials studied
in [39]. We prove a g¢-series identity for these functions involving certain ¢g-hypergeometric
functions introduced in [25] and separately in [32]. The identity is a g-deformation of the
well-known identity of Brion [9] in Ehrhart theory, and is proved via equivariant K-theory
on quasimap spaces. We finish by proving some combinatorial properties of generalized

Rogers-Szegd polynomials.
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Chapter 1

Introduction

This thesis contains the results of two mostly disjoint projects on different aspects of the
K-theory of toric varieties. In the first, consisting of material from [37] we consider the
operational K-theory opK°(X) introduced by D. Anderson and S. Payne in [3]. This theory
has close ties to the Grothendieck group of coherent sheaves, and chief among the results
from the first project of this thesis is a presentation of latter, for complete toric varieties
of dimension up to three. Besides this, we provide a combinatorial formula for products of
classes in opK°(X), as well as formulae for maps between operational K-theory and other

invariants. As a corollary we deduce a result about vector bundles on toric surfaces.

The second part consists of work from [4], which is joint with Dave Anderson. We
take our inspiration from the well-known identity by M. Brion on lattice point generating
functions of polytopes, which was first proved using equivariant K-theory on the associated
toric variety. We find, by calculating a limit of holomorphic Euler characteristics of certain
line bundles on quasimap spaces, a g-analogue of the lattice point generating function of
a polytope. We study the behavior of these functions and prove a g-analogue of Brion’s
identity for these functions. We remark that in certain cases these functions coincide with

q-Whittaker functions as introduced in [20] and linked to quasimap spaces of flag varieties
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in [8].
Both of the following chapters will heavily use the notation of toric varieties and K-
theory. Here we establish our conventions and recall some basic propositions that we will

need to refer to.

1.1 Fans from toric varieties

Let T be an algebraic torus over C. For the purposes of this thesis, a toric variety is a normal
complex algebraic variety with a T-action and a dense orbit. This elementary assumption
leads to a rich combinatorial theory which we outline below. By modding out by a generic
stabilizer, we can assume that T embeds as the (open) dense orbit. All varieties from here
onwards will be toric varieties unless otherwise stated. By and large we follow the conventions
of [13] and [15].

Let M = Homyy 4 (T, C*) be the character lattice of T, and N = Homyg, 4, (C*, T) the
cocharacter lattice. There is the natural pairing ( , ) : M x N — Homgg g, (C*,C*) = Z
given by composition of maps, that makes M and N dual to each other. We let Mg and Ny
denote M ®z R and N ®7 R respectively.

Definition 1.1.1. A cone in a real vector space is a convex subset closed under scaling
by positive real numbers. A cone is rational polyhedral if it is the intersection of finitely
many closed half-spaces defined over Q. A cone is strongly convez if it does not contain any
non-trivial linear subspaces of the ambient vector space. If C' is a cone and F' is a linear
form such that F(C) = 0, then {F = 0} is a supporting hyperplane of C, and {F =0} n C
is a face of C.

We say a convex set C'is a cone with vertex v if the translation C' — v is a cone in the

sense defined above.

Given a toric variety X, we obtain a set of strongly convex rational polyhedral cones in



Ny in the following manner. Since a cocharacter n = n(t) is a function from C* to 7', we
can define the set N° as the subset of n(t) € N such that lim, ,gn(t) is well-defined in X.
We can partition N° into equivalence classes N2, defined by the condition that n(t),n’ (t)
are equivalent when lim,_on(t) = lim,_on (t).

Now, it is standard notation to let greek letters refer to cones, so let « itself denote the
closure of the cone generated by N;. Given X, we denote the set of all cones obtained in

this way by A. The set A is an instance of a polyhedral fan.

Definition 1.1.2. A polyhedral fan A is a finite set of polyhedral cones in a real vector

space such that
o for ain A, any face of « is also in A, and
e for a, B in A, the intersection a n [ is a face of both « and f.

One may also start with a strongly convex rational polyhedral fan A (meaning a poly-
hedral fan with strongly convex rational cones) in Ng, and obtain a toric variety: given a
rational polyhedral cone a, the dual cone ¥ in My is the subset of all m such that m(a) = 0.
The lattice points M n «V form a finitely-generated semigroup S,, and U, = Spec C[S,]
is an affine variety. As « varies in A, the affine varieties U, glue together to form a toric
variety X. The procedure described here to obtain a toric variety from a fan is inverse to
the one described above to obtain a fan from a toric variety.

Inside U,, there is a T-invariant closed orbit O,. The closure of O, in X is a T-invariant
subvariety denoted by V(«). In fact, V(«) is also a toric variety, and if we denote the
stabilizer of O, by Tp,, we may naturally identify the dense torus of V(«) with the quotient
T, = T/Tp,. The character lattice for T, is M, = a’t c M. We denote the Z-span of lattice
points in @ by N, and denote the quotient by N, = N/N® = M. The lattice N, can
be identified with the lattice of one-parameter subgroups of T,,. We use {,) to denote the
pairing between M, and N,. We denote by A(k) the set of all k-dimensional cones in A. If
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a is a face of 3, we write a < 3. If @ < 8 and « is maximal among cones contained in 3, we
write o < . When a < 3, the image of 8 in N, is a cone which we denote by 8. If a < £,

is a ray, whose primitive generator we denote by vg,, or vg if a = {0}.
Y g Y Ug, B

Proposition 1.1.3. There is a correspondence between strongly convex rational polyhedral
fans in Ng and toric varieties which compactify T'. For such a fan A and toric variety X,
there is a containment-reversing bijection between cones in A and T-invariant subvarieties

of X. The k-dimensional cone o corresponds to the codimension-k T-invariant subvariety

V(a).

For further details, see the excellent references on toric varieties [13] and [15]. We estab-
lish the not-very-standard convention here that we exclusively use p to denote 1-dimensional

cones, and o to denote maximal cones.

We will also need the notion of multiplicity. The Hilbert-Samuel multiplicity of a variety
X along a subvariety Y is a measure of how singular X is along Y. If A is the local ring
of X along Y and .# the maximal ideal, then A > .# > .#% > ... is a filtration. The
leading term of the Hilbert polynomial of the associated graded module is a polynomial in
t of degree d = dim(X) — dim(Y’). Then, d! times the leading term is the Hilbert-Samuel
multiplicity, see [16, Section 4.3].

If g is a simplicial cone with extremal rays generated by vy, ..., v, its multiplicity is
mult(8) := [N? : Zvy + ... + Zvg]. If a < 8, let mult,(3) denote the multiplicity of 3 in
Ng, so mult(8) = multey(8). Geometrically, mult,(3) is the Hilbert-Samuel multiplicity
of Us n V(a) along V(B). In the appendix, we show how to write a relative multiplicity

mult, (5) in terms of usual multiplicities.



1.2 Polytopes and ample line bundles

Given a polytope P in Mg, let A denote its corresponding inward normal fan in Ng. The
fan A consists of cones Cr for each face F' of P. The cone CF is defined as the set of n € Np
satisfying (n,mp — mpy = 0, for mp and mp arbitrary elements of P and F respectively. If
P has rational vertices, its inward normal fan is rational as well, and if P is full-dimensional,
the cones in its normal fan are strongly convex.

Unless specified otherwise, a “polytope in M” is a full-dimensional polytope in Mg with
vertices in M. Given a polytope P in M, the corresponding normal fan A is rational, and
we can define a toric variety X. The polytope P also induces a T-invariant divisor Dp on
X: if F is a facet of P, then CF is a ray in A. Let vg be the primitive element of N in Cp,
and let ar be the smallest number such that ap + (vp, my = 0 for m any element of P. Then
set Dp = > . ap[V(CFr)], where the sum is over all facets of P.

From this divisor we obtain a corresponding invertible sheaf &(Dp) on X. Viewed as a
subsheaf of the sheaf of rational functions on X, &(Dp) is generated on the affine open Ug,
by the rational function corresponding to any m € F. The following proposition addresses

the sheaf cohomology groups H(X, 0(Dp)).

Proposition 1.2.1. The invertible sheaf € (Dp) is ample, and H°(X, 0(Dp)) has a basis
over C corresponding to m € P. Fori >0, H (X, 0(Dp)) vanishes.

The proposition is a consequence of basic theorems about sheaf cohomology of toric

divisors. See e.g. [13, Chapter 9]

1.3 K-theory

The Grothendieck ring of vector bundles on an algebraic variety X is denoted by K°(X). It

is generated as an abelian group by isomorphism classes of vector bundles, modulo relations
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[F] = [E] + [G] for exact sequences 0 - E — F — G — 0. The product of classes [F]
and [F'] is the class of the tensor product [ ® F']. For an arbitrary morphism of algebraic
varieties f : Y — X and a vector bundle E on X, there is the pullback vector bundle f*FE
on Y, which induces a map f*: K°(X) — K°(Y).

There is also the Grothendieck ring of perfect complexes K°

per(X), which is generated

by complexes locally quasi-isomorphic to a finite complex of vector bundles, but we will not
use this.

The Grothendieck group of coherent sheaves on X is denoted by K,(X), and defined in
the same manner as K°(X), replacing “vector bundle” with “coherent sheaf” For f : Y — X
proper and ¢ coherent on Y, there is a pushforward f,[¥¢] = >, (-1)[R' f.¥]. For [ :Y —
X flat and .# coherent on X there is a pullback f*[.Z] = [f*Z].

Though for coherent sheaves & and .# the tensor product & ® .# is coherent, a naively
defined product is not well-defined on equivalence classes of coherent sheaves. In the next
chapter we discuss this further.

If X is smooth, then K°(X) and K,(X) are isomorphic as groups (see, e.g. [44, Chapter
I1, Theorem 8.2], but otherwise this is not true. For example, it is an easy exercise that for X
the nodal rational curve over C, the Picard group of X is uncountable. The same is then true
for K°(X), which has a surjection onto Pic(X) via the map given by determinant bundles,
e.g. [44, Chapter I]). On the other hand, the Grothendieck group K,(X) is finitely generated

(by the pushforwards of structure sheaves of T-invariant subvarieties, for example).



Chapter 2

Operational K-theory

The Grothendieck group of coherent sheaves may be defined for any algebraic variety X.
When X is smooth, the group K,(X) has a product: for two sheaves .# and ¢ in X, the
product of classes [.Z] and [¢] in K,(X) is the sum > ,(—1) [T org, (F,%¥)]. Unfortunately,
such a product on K,(X) cannot be defined when X is singular, as there is no longer any
reason for this sum to be finite. Instead, one may consider one of many different Grothendieck
rings which agree with K,(X) when X is smooth: though the ring of vector bundles K°(X),

and the ring of perfect complexes K°,  .(X) are natural to define geometrically, they can

per f
be uncountably generated [25] even for projective simplicial toric varieties. The operational
K-theory ring opK°(X) in contrast is finitely generated for projective toric varieties as a

consequence of [3, Theorem 1.3]. It is also an A'—homotopy invariant, like the homotopy

K-theory of [43], but unlike K°(X) and K

perf(X). Thus, there is reason to expect it should

be more tractable to describe. We give a short introduction to operational K-theory in

section 2.1 and refer to [3] for details.

We fix a complete toric variety X over C, and A its polyhedral fan. By [3, Theorem
1.6], the torus-equivariant operational K-theory opKj7(X) can be described by the ring

of piecewise exponential functions on A, but this theory does not necessarily surject onto
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opK°(X) (see Example 2.5.5), so the question of describing the latter remains. Describing
opK°(X) is the focus of this chapter.

Here is one application we provide: it is already known that op K$(X) — opK°(X) is not
always surjective for complete toric varieties. In [2, Theorem 1.7], the authors demonstrate
that there is a nonsimplicial toric 3-fold for which the rank of opK7(X)g is strictly smaller
than the rank of opK*°(X)g, by using an operational Riemann-Roch theorem. However,
this approach cannot work to show non-surjectivity if the image of opK7(X) has finite
index inside opK°(X) (for example, when X is simplicial). In Example 2.5.5, we use our
description of opK*°(X) and of the map opK3(X) — opK°(X) to demonstrate that there is
a toric surface such that the image of opK57(X) has finite index inside op/K°(X). This is the
first example of nonsurjectivity where the toric variety X is simplicial. We remark that in
both cases the non-surjectivity of operational groups implies that the forgetful map of vector
bundles K7.(X) — K°(X) is also not surjective, as noted in [2].

We would also like to mention some reasons external to K-theory that motivate why one
might want to study opK°(X). The K-theoretic story addressed here echoes work on the
Chow groups A.(X). In [18], Fulton and Sturmfels showed that when X is complete the
operational Chow ring A*(X) is isomorphic to a ring of balanced Z-valued functions on A
called Minkowsk: weights, with a displacement rule for calculating products. This is now well-
known in the context of tropical geometry, in which Minkowski weights appear as an instance
of weighted, balanced polyhedral complexes, and the displacement rule is a special case of
the intersection product for tropical cycles [1]. If one desires a K-theoretic analogue to the
methods of tropical geometry, a first step would be to determine the K-theoretic analogue
of Minkowski weights. Additionally, a description of opK°(X) for projective simplicial toric
varieties has a straightforward interpretation in terms of Ehrhart theory, see Proposition
2.1.4.

To motivate our results on opK*°(X), note that one way to frame the main theorem of

[18] is that they define Minkowski weights as the set of Z-valued functions on A which satisfy
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a balancing condition, and prove that (1) this ring of functions is isomorphic to A*(X), as
a group and (2) the product on Minkowski weights which is compatible with that of A*(X)
can be calculated by a displacement rule.

In contrast, we start by defining a ring of Z-valued function on A which describes
opK°(X) tautologically. We call the elements of this ring Grothendieck weights, denoted
by GW(A), because they can naturally be identified with linear forms on the Grothendieck
group K,(X). On the other hand, what sort of balancing conditions elements of GW(A)
should satisfy will not be clear to us a priori. Nonetheless, we provide several results in this
direction, which in lower dimensions lead to a combinatorial balancing-condition character-
ization along the lines of Minkowski weights.

In higher dimensions, the problem becomes more difficult, primarily because our approach
to characterizing Grothendieck weights relies on finding expressions for Todd classes of toric
varieties in terms of T-invariant subvarieties. Though there is an extensive literature on how
to do this [7, 10, 31, 35, 36], the coefficients of such an expression depend on various choices
made in rewriting self-intersections of toric divisors D; in terms of square-free monomials.

We continue our study of the ring of Grothendieck weights by addressing how to compute
products. Let ¢,d : A — 7Z be Grothendieck weights, and let § : X — X x X be the diagonal
map. By applying [3, Proposition 6.4], the natural map K,(X)® K,(X) — K.(X x X)
is an isomorphism. Since the classes of pushforwards of structure sheaves [0y ()] generate
Ko(X), any element of K,(X x X) has an expression >}, scn Ma,5[Ov(a)] ® [Ov(s)]. Then,
our Theorem 2.4.2 is a K-theoretic analogue of [17, Theorem 4], which reduces the problem
of calculating products to calculating the coefficients m, g. In the context of Chow groups
and Minkowski weights, an elegant method to calculate such coefficients was provided in [18,
Theorem 4.2], via a displacement rule. In K-theory we explain one approach to doing this
in subsection 2.4.5.

After our results on the structure of GW(A), we move to the maps it has to and from

other well-known fan-based invariants in section 2.5. There is a map from Minkowski weights
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to GW(A) that corresponds to the operational Riemann-Roch transformation as described in
2], we describe how to calculate the map from an expression for the Todd class. Additionally,
we describe the forgetful map from opK5.(X) — opK°(X) referenced above, via an explicit
formula for the map from piecewise exponential functions on A to GW(A). Our approach
here follows the results of Katz and Payne in [27].

In the literature, there are other descriptions of the K-theory of toric varieties, and
we address briefly how they relate to the work present in this thesis. In the smooth case
the equivariant operational K-theory ring can be identified with the ring of T-equivariant
vector bundles K7.(X). In this context Vezzosi and Vistoli show in [41] that K2(X) and
also higher K-groups can be descibed via the Stanley-Reisner ring. The non-equivariant
theory can then be described as a quotient of the Stanley-Reisner ring. To calculate a map
to GW(A), one can simply choose a representative in K2 (X) and compute its localization
to obtain a piecewise exponential function. Then, the map to GW(A) can be computed via

the description we provide.

2.1 Definitions of operational K-theory and GW(A)

A class ¢ in opK°(X) is a collection (cf)f of endomorphisms of K,(Y') for each f:Y — X.
The collection (cf); must be compatible, in the sense that the maps must commute with
proper pushforwards, flat pullbacks, and Gysin homomorphisms. Addition and multiplica-

tion are defined coordinate-wise, meaning

(cr)s + (dp)g = (g +df)y, and

(cp)y - (dp)y = (cyody)y

For further details, we refer the reader to [3, Section 4]. Amazingly, the product is commuta-

tive if X admits a resolution of singularities (via the Kimura sequence [3, Proposition 5.4]).
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Since we have assumed X is complete, there is the following theorem, which is a special case

of [3, Theorem 6.1] that we need:

Theorem 2.1.1. The natural map from opK°(X) to K.(X)Y sending (cf)¢ to x(cra(—)) is

an tsomorphism.
We make the following definition,

Definition 2.1.2. Let the set of Grothendieck weights on A, denoted by GW(A), be all

Z-valued functions on A of the form ¢, where the value of ¢ on « is determined by

¢7(a) = f([Ov)]),

where f is a linear form on K,(X).

In other words, elements of GW(A) are obtained from elements of K,(X)" by recording
the value of a form on the classes [0y (,)]. Since these classes generate K (X), it follows
that GW(A) is isomorphic to both K,(X)Y and opK°(X). The interesting question is then
how to characterize which functions on A are Grothendieck weights, or alternatively, finding
generating sets for the relations that hold between the classes [0y ()] modulo torsion. To

be precise:

Definition 2.1.3. Let Relk_(x) be the kernel of the map from Z* — K,(X) that sends e,

to [Ov(w], and Relg, (x), the same kernel defined over Q.

To characterize which functions on A are Grothendieck weights is equivalent to finding
a generating set for Relg, X)o- First, we explain how one can equivalently define Relg, X)o
via Ehrhart theory. For a € A, let the corresponding face of P be denoted by F,. Also, we
recall that the Ehrhart polynomial Ehrp(t) of P is the polynomial determined by Ehrp(ty) =

|t0P M M|

11



Proposition 2.1.4. Let A be a projective simplicial fan and let X be the corresponding toric
variety. Let ¢pp : Q® — Q[t] be the map sending the tuple (ay)a to Y, @o Ehrp, (t). Then

RelKO(X)Q = ﬂ ker(gbp).

P normal
to A

Proof. The “c” direction is a translation of the well-known theorem of vanishing of higher
cohomology for ample line bundles on toric varieties: let Y 1 aa[Ov()] = 0 in K.(X)q,
and for P any lattice polytope with normal fan A let Dp denote the associated divisor. For

each ty = 0, we also have the divisor D;,p. Then

0 = x([0(Dp)] - (3] aa[Ovi])) = D] aax([0(Dip)lviw)]) = ), aa Ehr, (to),

aceA aEA aeA

where the last equality follows from Proposition 1.2.1. Thus the polynomial )} .\ ao Ehrg, (t)
has infinitely many roots, and so it must be 0.

Now we verify the other direction: Suppose, for any polytope P, that
D oen Go Ehrg, (t) = 0. Translating to geometry, this states (when ¢ = 1) that

0= Z aaX DP ’V(a ) =X ((Z @a[ﬁ\/(a)]> ' [ﬁ(DP)]> .
aceA aceA

Then, the result follows from the next lemma. ]

Lemma 2.1.5. Suppose A is a simplicial projective fan and X the corresponding toric

variety. If for x € Ko(X), we have x(x - [O(Dp)]) = 0 for all P with normal fan A, then
x=01in K.(X)g.

Proof. We write “deg” for the projection map from A*(X) to A°(X). When X is projective
it is well-known (e.g. [28, Theorem 1.4.23]) that ample divisors generate the Néron-Severi

space of divisors modulo numerical equivalence N.S(X)g (which is the same as A,,_1(X)g if
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X is toric). Additionally, on a complete toric variety A*(X) =~ A,(X)Y via ¢ — deg(cn —),
by [17, Theorem 3]. Thus, if for all c € A*(X), deg(cny) = 0, then y must be zero. Since X
is simplicial, A*(X)q is generated as an algebra by Chern classes of T-equivariant divisors,
which are in turn additively generated by T-equivariant ample line bundles. Thus, A*(X)g
is generated over Q by 1 and monomials in ¢;(0(Dp)) for P normal to A. Equivalently,
A*(X)q is generated by 1 and 1 + ¢,(€(Dp)) = ch(0(Dp)) for ch : K°(X) — A*(X)g
the Chern character map. Since ch is a ring homomorphism, ch(&(Dp))ch(0(Dg)) =
ch(0(Dp) ® O(Dq)). But 0(Dp) ® O(Dg) = O(Dp+g), for P + () the Minkowski sum of
P and Q. Thus, y is zero if deg(y) = 0 and

deg(ch(G(Dp)) ny) = 0.
for all P. By Riemann-Roch for algebraic schemes as in [16, Chapter 18],

deg(ch(G(Dp)) ny) = deg(7x(O(Dp) @ 75" (y))) = X(O(Dp) @ 75 ().

Since 7x is an isomorphism between K,(X)g and A,(X)g, the lemma and proposition are

proved. Il

2.2 Some properties of Grothendieck weights and low-

dimensional toric varieties

In this section we start by proving some properties of Grothendieck weights. For fans of di-
mension at most 3, these properties will be enough to characterize Grothendieck weights. In
constrast to the next section, the main theorem will not require substantial choices for
computing Todd classes. Recall that the Riemann-Roch transformation is a map 7x :

K. (X) — A.(X)qg, which becomes an isomorphism after tensoring K,(X) with Q. The
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map commutes with proper pushforwards, and for a vector bundle E|, there is the equality
Tx([E]) = ch(E) - td(X). For details regarding the Todd class td(X) for singular varieties
and this version of the Riemann-Roch theorem, see [16, Chapter 18].

First, we require some lemmas. The first one follows from pushing forward the Todd

class of a resolution (see, e.g. [14]).

Lemma 2.2.1. Let a be in A(k), and 7x : Ko(X) — A.(X)q the Riemann-Roch transfor-

mation. Then,

rx(Gviw) = [V(@)] + (2 %[vw)]) e
a<3
where c € (Ag(X) D ... D Ay_r—2(X))o-

Lemma 2.2.2. Let ), aqeq be an element of Relk, (x). Then, Y., ao = 0.

Proof. Letm: X — pt. Since Y, aa[Ov(a)] = 0in K. (X), the expression 7. (3], aa[Ov(a)])

[

0 as well. Since , agrees with the Euler characteristic and V() is toric, we know m,[ Oy ()]

[

1, so the lemma follows.

To proceed, we explain our basic strategy. If we choose a suitable lift of 7x to an

endomorphism of Q?, we obtain an isomorphism of exact sequences

0 —— Relg,(x)q > Q8 » Ko(X)g —— 0
0 —— Rela,(x)q > QA » Au(X)g —— 0,

and we can obtain a set of generators of Relg,(x), as the inverse images of generators of

Q

1

Rela, (x),- By Lemma 2.2.1, we can fix a lift 7 of 7x which maps e, to e, + Za<,8 5

eg+...,
leaving unspecified the coefficients of e, for v containing « as a face of codimension > 2.

Since the Chow groups are graded, Rely, X)g Splits as a direct sum @; Rely, (x),, and a

14



restatement of [18, Proposition 2.1(b)] is that Relys,(x) is generated by

> 1wy ng aves,

a<f3
as a varies among cones of codimension i + 1 and w varies in M(a) (so e.g. Rela,(x) is
trivial).

Now, let us demonstrate some propositions about Grothendieck weights.
Proposition 2.2.3. A Grothendieck weight is constant on maximal cones.

Proof. Though this can be shown directly from geometry, one method of proof that is more in
line with the next few propositions is to use the lift 7+ of the Riemann-Roch transformation
that we have chosen. We know by [18, Proposition 2.1(b)] cited above that Rely,(x) is
generated by e, — e, and its inverse image in Relg, (x), is simply e, — e, again. This

imposes that g(o) = g(o’) for any Grothendieck weight. ]
The second proposition is about relations between codimension 1 cones:

Proposition 2.2.4. Let g be a Grothendieck weight, o € A(n) any mazimal cone, and
a€ A(n—2). Then
> (9(B) = 9(0))vga = 0.

a<f

Proof. Rela,(x) contains », _,{(u,vgqyes for each u in M (). The inverse image of eg with

a<f
respect to 7y is eg — %egl — %egz for 01,09 the two maximal cones that contain (3. Since
€s — €4, is in Relg, (x), we can see that Za<ﬂ<u, vg,a)(e5 — €,) is also contained in Relg, (x).
This implies that >, _;(u,v5.4)(9(8) — g(c)) = 0 for each u € M(«), which is equivalent to

the Proposition. O

The third one, in the same pattern, is about relations between codimension 2 cones in

A.
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Proposition 2.2.5. Let g be a Grothendieck weight, o € A(n) any mazimal cone, and
ae€ A(n—3). Then

> (g(ﬁ) - @) Vg = 9(0) (Z(l =) %)Uﬁ,a> ,
a<f a<f3 B=vy

Proof. The element Za<5<u, ngayep is in Rela,(x), so the inverse image in Relg, (x), has the

form

Swne,— (N gea)+ Y aes

p<p o maximal
for some coefficients a,. We can change these generators by multiples of e, — e, to obtain

that the following is in Relg,(x),

Z<u np> Z _6,3)) ( Z ao)eoo

p< B o maximal

for any chosen maximal cone oy. Lemma 2.2.2 implies that

% o= =X (1-(3 5)

o maximal p=<pB

The presence of this element in Relg, (x) implies that a Grothendieck weight g must satisfy

S un o) = (3 La(3) (@) S - (3 o).

p=<pB p=<pB

which is equivalent to the condition in the proposition. Il

In fact, these conditions are enough to characterize Grothendieck weights in low dimen-

sions.
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Theorem 2.2.6. 1. A Z-valued function on the fan of P! is a Grothendieck weight if and

only if it is constant on mazimal cones.

2. A Z-valued function g on A the fan of a toric surface is a Grothendieck weight if and

only if it is constant on mazximal cones, and

for o any mazximal cone.

3. A Z-valued function g on A the fan of a toric threefold is a Grothendieck weight if and

only if it is constant on maximal cones and, still writing o for any maximal cone:

(a) Zp<6 (9(B) —g(0))vs, = 0 for any fized ray p, and
(D) Speay (900) = Lpea 252) 05 = 9(0) (Zpeay (1= Spea D).

Proof. In this range, Rela, (x) = Rela,x) @ Rely, (x) ®Rela,(x) (the last two factors may be

trivial) so the inverse images under 7; of the generators of Rel A;(x) generate Relg (x),- U

2.3 Balancing on simplicial fans

Since we have defined GW(A) so that it describes opK°(X), we now describe different
aspects of GW(A). First, we focus on the following, which is equivalent to the question of

finding explicit balancing condition characterizations of GW(A):

Question 2.3.1. Given A of arbitrary dimension, how can we calculate explicit generating

sets for Relg,(x),”

Citing the results of [18] again, we know generating sets for Rels,(x). By using the
Riemann-Roch transformation we can turn generators for Rely, (x) into ones for Relk, X)g

but the primary difficulty that must be addressed is how to choose a formula for the Todd
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class in terms of T-invariant subvarieties (this is intimately related to Danilov’s problem, see
[14, Section 11] and [7, 31, 36]). Though a canonical expression for 7x(€0x) as a polynomial
in toric divisors was found by Pommersheim in [35], one must make choices to write non-
squarefree monomials in terms of T-invariant subvarieties.

When A is simplicial, Pommersheim and Thomas introduced in [36] certain rational
numbers ¢7 for each cone a and ray p such that p < «, which depend on the choice of a
generic complete flag F, in Ng. These rational numbers will help us to write non-squarefree

monomials in terms of T-invariant subvarieties.

Definition 2.3.2. Let F, be a generic complete flag in Ng, so F; is an ¢-dimensional subspace
of Ng. Given a € A(k), and 7 from 1 to k, let v,, be the primitive element of the ray p; of a.
Then by genericity, F,_r4+1 N Q -« is 1-dimensional, and so it determines a vector (unique

up to scaling):

k
0 # thivﬂi € Fn—k+l N Q s O,

i=1

We only consider generic F, such that all {7 are non-zero.

We use these t in applying the following result from [36], which calculates an explicit
formula for monomials in the T-invariant divisors [V (p)] as a Q-linear combination of classes
of subvarieties [V («)]. For a cone 3, let P be the set of rays in 3. Let S be some set of rays
in A. For pe S, let a, be some positive integers and let [ denote the sum, )] pes @p- Then a

restatement of [36, Theorem 3] is:

Proposition 2.3.3.

ap __ Hpes(t;ﬂ))ap
pg[wp)] = M%;M muwmpcﬁtg[vw)]-

B contains all peS

Nominally, one would need to make more choices for every o in A to obtain an expression

for 7x(Oyv(a)). However, we make the following observation, which avoids this. For o € A
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and a generic flag F, in N, the images F}; ... C Fy_dim(a) in N, form a generic flag. Thus
for § a cone containing o and p a ray in [ not contained in «, there are also numbers tg.
We relate these to tg in the next proposition.

Proposition 2.3.4. Let a < 8 be simplicial cones in a fan A. Then for p in 8 not contained

mult(a+p) 8
mult(a) “P°

: B _
na, t; =
Proof. The unique vector in F,,_j.1 nQ- 3 is the image of the unique vector in F,,_;411 n Q- 3,

which in explicit terms is

Z tov, = > 10T,
p=B pcB
pEa
But the image of a primitive generator of a ray v, is not necessarily primitive, i.e. 7, = b,v;
for b, a positive integer. In fact, b, = [Zv; : Zv,] of subgroups of N,. If 7, : N — N, is
the quotient map, then 7 *(Zv;) = N***, and 7, '(Zv,) = N® + Zv,. Thus [Zv, : Zv,| =

[N**P o N* + Zuv,]|. Then we can decompose mult(« + p) as a product:

mult(a + p) = [N**P: Zuy + ... + Zug + Zv,|

=[NP N® + Zv,|[N® + Zv, : Zvy + ... + Lv, + Zv,].

But [N* + Zv, : Zvy + ... + Zvy + Zv,) = [N® : Zvy + ... Zvy] = mult(«). Thus [N**7 :

N® + Zv,| = %&x) = b,. Thus, we have

mult (o + p)
Z Z fy mult(« v

pcp pcp
pta pta

Since the primitive generators of the rays in 3 are the v5's, we are done by the definition of

B

b5 O
Now, we use these propositions to write 7x(0v(q)) explicitly. For each cone o € A

Brion and Vergne defined the (finite) subgroup G, < (C*)4m to be the kernel of the map
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(C*)dime T given by

(¢o)p = H Vp(Cp)-

pCa
For nested cones a < 3, we use the notation G for the analogous subgroup defined from

the data of 3 in the quotient fan. Namely:

Definition 2.3.5. Let G be the kernel of the map (C*)4™F#~dme — T, given by

(¢p)pcs — H vp(cp)-

PR e
pEa

Let k£ be the number of rays in the quotient fan A,. We define Ga_ to be the union
inside (C*)* of G over all § containing . For a ray p in  not contained in «, we denote
by af the character G — C* given by projection.

Using these numbers, we have the following proposition. Treating t)i as a variable with

degree 1 will refer to the degree 0 coefficient of a formal Laurent series v (t1,...,tx) by

’l/}(tl, NN 7tk>[0]7 ie. if

1 1 11 ¢ 1 1 s
w:(l—e—t)(1—e—s>:(¥+§+ﬁ+@(t2))<;+§+E+0(52)),

then

Proposition 2.3.6. For X a complete simplicial toric variety, the Riemann-Roch transfor-

mation has the form

e ([Grvi]) = Z Z 1—[ mult(ao + p)/ mult(a) [V(B)]

1— ag (g)e—mult(a-irp)tg IIllllt(ﬁ) '
[0]

a<pf QEGg pcB
pEFa

Proof. In section 4.2 of [10], the authors provide a formula for the Todd class of a complete
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simplicial toric variety. Applied to V(«), this gives:

[V (p)]
Z H —a )pe Vel

9eG A, peAG(

Since the Todd class commutes with proper pushfoward, we have

[V(p)]
= 2 H T

oG peAL —ag(g)e

Applying Proposition 2.3.3, we have

_ 1 [V(8)]
O; ;E 1— a%(g)e—tg multa(ﬁ)'
pea [0]

Using the formula for tg from the previous proposition, and the formula for mult,(3) from

the appendix, we obtain that the above is equal to

1 V(8
Z H m‘ﬂt(aﬂi)tﬁ [ ( )] mult(a) -

a<B \ pcp 1 — afj(g)e mult(a) mlﬂt( ) Hpc B mult(a+p)
pEa o}

_ mult(a+p),B
Due to the “degree 0”7 imposition, the mult(«) factor in the exponent e mili(e) ' can be

cancelled. Summing over g € G gives the proposition. [

Ezample 2.3.7. We use this proposition to calculate the ¢7 and Riemann-Roch matrix for
a weighted projective space X := PP(1,1,2,3). Recall that the fan of X has rays p; =
(1,0,0),p2 = (0,1,0),p3 = (0,0,1), and py; = (—1,—2,—3). The maximal cones are those
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generated by 3-element subsets of {p1, ps, p3, ps}. If our flag in Q? is given by

{0} < span{(a,b,c)} < span{(a,b,c), (d,e, f)} < Q3

where a,b, ¢, d, e, f are some numbers so that (d, e, f) is not a multiple of (a, b, c), then we

have expressions for ¢ written in Table 2.1.

Table 2.1: Example 2.3.7

Cone () ‘ Ray (p) ‘ to
0123 P1 a
P2 b
P3 c
0124 P1 a — C/3
P2 b—2¢/3
P4 —c/3
0134 P1 a — b/2
P3 c—3b/2
P4 —b/2
0234 P2 b—2a
P3 c—3a
P4 —a
Q19 p1 af —cd
P2 bf —ce
a3 p1 ae — bd
P3 ce —bf
a4 P1 3(ae — bd) + 2(ed — af) + (bf — ce)
P4 bf —ce
o3 P2 bd — ae
03 af —cd
Q4 P2 —(3(ae — bd) + 2(cd — af) + (bf — ce))
P4 af —cd
(34 03 3(ae — bd) + 2(ed — af) + (bf — ce)
n ae — bd
p p 1
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(67

o, one can write the Todd class of each subvariety in a uniform

After calculating these t
way with rational functions in ¢7 as coefficients. The column vector corresponding to the
image of [Ox] is on the last page. For the flag specified by (a,b,c) = (2,3,5), (d,e, f) =

(3,5,7), one obtains the Riemann-Roch matrix seen in Table 2.2.

Table 2.2: The Riemann-Roch matrix of Example 2.3.7

[VH]\W‘/H] ‘ X ‘ P1 ‘ P2 ‘ P3 ‘ P4 ‘ Q12 ‘ Q13 ‘ Q14 ‘ Q23 ‘ Q24 ‘ Q34 ‘ 0123 ‘ 0124 ‘ 0134 ‘ 0234
X 1 0 0 0 0 0Oy0j0}0}0]0]0O0 0 0 0
1 1/2 1 0 0 0 0j0jJ0]0]0]O0 0 0 0 0
P2 1/2 0 1 0 0 0|00 ]0]0]O0 0 0 0 0
P3 1/2 0 0 1 0 00} 0}j0]0]0]0O0 0 0 0
P4 1/2 0 0 0 1 0y0j0}j0]0]0]O0 0 0 0
12 29/48| 1/2 | 1/2 0 o |1lololo|lOo|O|O]O| OO
13 29/48| 1/2 0 1/2 0 0 1 010|100 0 0 0 0
14 -5/48 | 1/2 0 0 1/21 0] 0 1 0010 0 0 0 0
Qo3 5/12| 0 /2 |1/2| 0 |0ojo|o|1]0]O]O0|O]O]oO
o4 5/12| 0 1/2 0 |12/ 0|0]0|0]1]0] 0| 0] O0]oO
34 5/12| 0 0 /2 {12/0|0|0j0|O0]1] 0| 0] O0]oO
0123 31/72|79/180(59/120| 3/2 0 (1/2]1/2| 0 |1/2/ 0 | O 1 0 0 0
0124 1/8 | 41/60 |-11/60 0 1/12|1/2 0 |1/2| 0 |1/2]| O 0 1 0 0
0134 1/36 1/9 0 1/9 | 1/3(1/2]11/2| 0 | 0 |1/2| O 0 0 1 0
09234 5/12 0 11/24 (11/24|5/12| 0 | O | O |1/2|1/2|1/2] O 0 0 1

Definition 2.3.8. Let u,(5) be deag (Hpcﬁ mult(a+p)/ mult(e) ) . Then, the matrix
(0]

I gy o]

(11a(8)) g, defines an isomorphism from Q* to itself lifting the Riemann-Roch isomorphism
from Ko(X)g to Ax(X)g. Let v,(B) refer to the (5, )-th entry of the inverse of (14 (8)), so
< ([V(a)]) = Yia<p Va(B)[Ov(s)]. In particular, v,(a) = 1, and for A smooth and the ¢7 as

defined in 2.3.2 we can write:

a1 X Ko =1 \pea;~a;_1
ap=a,ap=0

w@) = Y (-1 H( I 1_;)
(0]

Finally, we can prove:



Theorem 2.3.9. For A a complete simplicial fan, a function g : A — Z is a Grothendieck
weight if and only if it satisfies

D vpa) > va()g(7) =0,
a=<f3 B=y

forall e A,ue M(a).

Proof. The result [18, Proposition 2.1] says that the expressions >}, (u,vgq)es generate
the kernel of the map Z* — A,(X) sending e, to [V (a)]. Denote this kernel by Rela, (x),-
Since 7x ([Ov(a)]) = 2a<p Ha(B)[V(B)], we have an isomorphism of exact sequences

0 —— Relx(x), > Q~ y Ko(X)g —— 0
0 —— Rela,(x)q > QA » Au(X)g —— 0,

where the map on the right is 7y, and the middle and left maps are given by sending e, to
Yia<p Ha(B)es. The inverse image of 3, 5(u, vg.a)€s € Rela,(x)g 18 D 5{U, V,0) Dis-, Vs(V)eEr,
so such relations generate Relg, (x),, and appropriate multiples of these relations generate a
finite index subgroup of Relx, (x). Dually, K,(X)" must then consist of linear forms sending
such expressions to 0, which implies that the relations in the theorem statement characterize

Grothendieck weights. ]
The following lemma explains how one can approach non-simplicial fans.

Lemma 2.3.10. Let A be an arbitrary fan and A’ a smooth refinement. Then g : A — 7 is
a Grothendieck weight if and only if the function on A" determined by o/ — g(&') for « the

smallest cone in A containing o is a Grothendieck weight on A'.

Proof. Let X’ and X be the corresponding toric varieties. Since A’ is a subdivision of A, we

have an induced T-equivariant birational morphism ¢ : X’ — X. If « is the smallest cone
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in A containing ', standard vanishing results for toric varieties imply that ¢.([Ov(an]) =

[Ov ()], so if we map e € Q4 to e, € Q?, we have a map of exact sequences:

0 —— RelKO(X’) > QA/ > KO(X/) — 0
0 —— Relg,(x) > Q4 » Ko(X) —— 0

All we need to do is to show that the kernel of the middle map surjects onto the kernel of the
last map. By the snake lemma, it is enough to show that Relg (x/) surjects onto Relg, (x).
We denote the projection map from Q? to Q21 by ;. Define a filtration on Relg,(x) by
Fi Relg,(x) = ﬂl>k ker ;. Then, for example, F}, Relg, (x) is just Relg, (x), and Fp Relg, (x)

are elements of the form e,, — e,, for oy, 09 maximal cones in A.

We show by induction that Fy Relk, x+ surjects onto Fy, Relg, (x). For k = 0 this is clear,

so we assume it is true for some ky. Let

S = Z A€o | + Z anta |,

aeA(n—ko—1) aeA(n—I)
I<ko

be in Fj,+1 Relg, (x). Then, in the Chow group > c ¢, —p,—1) @[V ()] = 0.

Let Rela,(x) be the kernel of the map Q2% — A4;(X) sending e, to [V(«a)], and
define Rely,(x7) similarly. Since ¢ is an envelope (meaning that ¢ is proper and every
subvariety of X is the birational image of some subvariety of X', see e.g. [34, Lemma
1]), the natural map from Rely, (x/y to Rela, (x) is surjective for any k, so we can find an
expression 0 = X /e nr(n_ o1y @[V ()] such the sum of an for all o subdividing a is aq.
Then 0 = 3 car(n—ko—1) aw Ty ([V(a/)]) so there is a relation r = DoleA (n—ko—1) Qar€ar + .o
which by the Riemann-Roch theorem is in Fjy, 11 Relg, (x) which does not quite map to s.

However, s and the image of 7 only differ by an element of Fj, Relg,(x). By our induction
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hypothesis we are done. O

Remark 2.3.11. We considered using a different set of generators for the Grothendieck group
in our definition of Grothendieck weights, e.g. ideal sheaves or canonical sheaves of invariant
subvarieties. However, the problem of combinatorially describing the relations between these

classes seems equally difficult.

2.4 Products

Grothendieck weights on A have a product induced by their isomorphism with opK°(X).
This relies on the following Kiinneth isomorphism, which is a special case of [3, Proposition

6.4].
Proposition 2.4.1. The natural map K.(X) ® K.(X) — K, (X x X) is an isomorphism.

The product of Grothendieck weights may be computed by calculating a decomposition
in K, (X x X) of the structure sheaf of the diagonal into structure sheaves of 7" x T-invariant
subvarieties. In a precise sense, this is a deformation of the case of Chow groups. Here is

the basic theorem, which is a K-theoretic analogue of [17, Theorem 4]:

Theorem 2.4.2. Let 6 : X — X x X be the diagonal map. Given an expression §,(z) =
D mia; ®b; with m; € Q, the product of classes f and g in opK°(X) evaluated on z satisfies:

X((f - 9)1a(2)) = ZmiX(fId(ai))X(gld(bi))-

Proof. To avoid putting an Id subscript under each operational class, we establish the con-
vention for this proof that the Id subscript is implied for all operational classes which appear.

For any morphism ¢ : Y — X f € opK°(X), and z € K,(Y), the identity

(¢*1)(2) = D x(f (wi))vs, ()
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holds, where 7, is the graph of ¢ and (74)(2) = D u; ® v; € Ko(X) ® Ko(Y). To prove
this, let m; and 75 be the projections from X x Y to X and Y. Then, one has the identities

Mo 07 = idy, ™ 074 = ¢. Also, operational classes satisfy a projection formula, so we have

(0% )(2) = idy+((9*F)(2)) = maxVsx (0571 )(2)) = T2u (77 f) (V55 2))-

Substituting our expression for 74«2 and using the fact that flat pull-back and operational

classes commute, we have

mox (7 ) (gn2)) = Tau((7FF) Qi @ 04)) = (Y f ) @ w3),

and finally
(Y ) @ vi) = D x(f ()i,

since higher direct images commute with flat pull-back. Then, in the context of the propo-

sition we apply (*) when ¢ = 0. Since f, g satisty f = 6*(id ® f), we obtain
(F - 9)(2) = flg(=)) = FQ max(a(bi))as) = ) mix(g(bi)) f (@),

to which we apply x to obtain the proposition. O

Remark 2.4.3. In fact, the proposition and proof as stated are valid for any complete variety

which is linear in the sense of [40)].

Corollary 2.4.4. Let f and g be Grothendieck weights and § : X — X x X be the diagonal

map. Given an expression 0.([Ov(a)]) = X5, ¢a4[Ov(5)] @ [Ov ()] with cs, € Q, we have

(f - 9)(@) = Y eay f(B)g(7).

By
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2.4.5 Decomposing diagonals and product formulas

To compute products, the data required is a suitable expression for 6,([0v()]). Outside
of the smooth case where one can use Poincaré duality, we do not know an easy way to
do this. Since we have already addressed how to explicitly describe the Riemann-Roch
transformation in Section 2.3, we apply it to finding an expression for 6,([Oy()]) in terms
of [Ov(s) | ®[Ovy].

Let A be a simplicial fan, and suppose that f and g in GW(A) are given. Their product
may be calculated explicitly via the formula in the next theorem. As in the case of Minkowski
weights, to undertake the calculation one must choose an auxiliary “displacement” vector in
N which we call v. Then for three cones a, 3, and v, we define m$ | in the same manner as

[18], by

0 iffn(y+v)=¢,
[N:Z-B+Z-~] otherwise.
Though it is suppressed in the notation, we emphasize that m3_ depends on the choice of v.

Theorem 2.4.6. The product weight h = f - g is given by

ha) = pa(B) > mie D, Qe F(C)g(n),

a<p B¢ <<
codim(~y)+ codim(e) e<n
=codim(B)

where o (B), vo(B) were defined in 2.3.8.

Proof. Recall that 0 : X — X x X is the diagonal map. Then, we have

0 ([Oviay]) = 0u(7x " (Tx ([Ov()])))



By [18, Theorem 4.2], we may use the m?he determined by our generic displacement vector

to decompose each J,([V(5)]), thus obtaining

D] ua(ﬁ)5*([V(ﬁ)])>

a<f

=7 | DB D mi V() x V(o)

a<f B=<,¢€
codim(vy)+codim(e)
=codim(f)
— B -1
=2 ma(B) D mi (V) x V(9D
Oé<6 ﬂ<’77€
codim(y)+codim(e)
=codim(f)
But then,
V() x V() = (VN ([V(e)])
= > Qe Ovieyevm]-
v=<¢
e<n
So, by Corollary 2.4.4 the theorem follows. [

We can use this theorem to show the following proposition and its corollary, which are

basic observations about the structure of GW(A).

Proposition 2.4.7. Let ¥ < A be fans. The set of Grothendieck weights on A that vanish
on the complement of ¥ forms an ideal in GW(A).

Proof. Suppose we have two weights f, g, such that f vanishes on the cones of A. Then in
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general there are some coefficients C' such that

(f-9)a) = > > ZCa,/éme,f(C)g(n)-
v<¢ i

a<p B<,€
codim(vy)+codim(e) €<7
=codim(f)

If @ is not in X, then since a < ¢ and ¥ is a fan, certainly ¢ is not in ¥. Thus f(¢) must be

0 for each term in the sum. O]

Corollary 2.4.8. The ring GW(A) is filtered by ideals I, consisting of functions that vanish

on cones of codimension less than k.

Ezxample 2.4.9. We calculate the product of the following Grothendieck weights: The first

c AN
d w
a 2¢c —d T 2z —w
b+ 3c—3d Y+ 3z — 3w

Figure 2.1: Two Grothendieck weights on the fan of a Hirzebruch surface

weight has value d on all maximal cones, and the second has value w. To calculate the
product, we need a Riemann-Roch matrix. As detailed in Section 3, we require a complete
flag. In two dimensions, this is merely the data of a vector, so we pick the vector (1,1). The
resulting Riemann-Roch matrix is shown in Figure 77.

We must also select a displacement vector v which specifies the values of mg_. If we

_ N a o _ 0 _ 0 _ .0 _
choose e.g. v = (5,1), then the non-zero m§_ are m, , =2,andm,  =mg, =m, o=
mPL — P1 — P2 — P2 — P3 — P3 — 2z = mP4 = 1. The

m m
P1,014 012,P1 p2,023 012,P2 P3,034 023,03 P4,034 014,04

resulting weight is

with a value of aw — 2bw — 8cw + 9dw + dx + 2cy — 2dy + 2bz + 6¢z — 8dz on the origin.
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1 000000O0O0O
210000000
> 01000000
> 00100000
100010000
%%%?01000
p 03300100
M iodiooon
60 2 2

Figure 2.2: The matrix for a lift of the Riemann-Roch transformation on the Hirzebruch
surface

cw + dz — dw bw + dy — dw

dw

2cw + 2dz — 3dw

bw + 3(cw — dz) — Tdw
Figure 2.3: The product weight

2.5 Maps to Grothendieck weights

The most straightforward relationship to describe is the map from Minkowski weights to

Grothendieck weights:

Proposition 2.5.1. There is an induced map T : MW*(A) — GW(A)g. For a simplicial
fan this sends a weight f € MW¥(A) to the function g, defined by

g(a) = > 1a(B)F(B).

a<f
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This is an immediate consequence of the formula the Riemann-Roch transformation 7x :
K. (X) — A.(X)g given in Proposition 2.3.6, since naturally MW*(A) =~ A,(X)" and
GW(A) = K, (X)V.

Remark 2.5.2. It is possible to use the previous proposition to algorithmically calculate
the inverse image under 7' of a Grothendieck weight. Let g € GW(A) be a Grothendieck
weight, and suppose that g € I;. Then, the function on A(n — k) obtained by restricting
g is a Minkowski weight: in the case g € Ixy1, g vanishes on cones of dimension n — k,
SO g|am—r) is uniformly 0. If g € I;\Ip41, then g|ap—r) satisfies the relation in Theorem
2.3.9 which simplifies to the condition that g|a(-x € MW*(A). Then, g — T(g|am-r) is
an element of GW(A)g, and is in (Ix41)g. One may repeat this process to obtain that
9 —T(glam-r) = T((9 = T(9|lam-))|lam-k-1)) € (Ik+1)g, and so on. After n — k iterates,
we obtain an identity of the form g — T(g|am—k)) — T((9 — T(g|am-m))|a@m—t-1)) — ... = 0.
Applying T~! produces a formula for T-1(g).

Now, for f e MW*(A) we say that an element g € GW(A) lifts f if g € I and g|am = f.
Suppose that f € MW*(A). Then for example, T(f) will be contained in (I})g and will
satisfy T'(f)|am = f, but will not generally be an element of GW(A). Our next proposition

is a sufficient condition for existence of lifts.

Let F; be the i-th piece of the dimension filtration on the Grothendieck group, meaning

that it is generated by coherent sheaves with support of dimension at most .

Proposition 2.5.3. Suppose F, is saturated as a subgroup of K.(X). Then every f €
MW*(A) has a lift in GW(A).

Proof. We have the exact sequence

0= Fy/Fyy — Ko(X)/Fyy — K.(X)/F, — 0.
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The long exact sequence obtained after applying (—)Y = Homg(—,Z) is:

0 ——— (K.(X)/F,)Y ————— (K.(X)/F1)" —————— (F}./Fi1)”

Exty, (Ko (X)/Fy, Z) — Exty(K.(X)/Fy_1,Z) — Exty(Fy/Fp_1, 7).

Let us consider the first few terms. (K,(X)/Fj_1)" may be naturally identified with the ideal
I, of Grothendieck weights which vanish on cones of codimension less than £, as defined in
Corollary 2.4.8. On the other hand, F}/F}_1 is the k-th piece of graded K-theory, and the
map Ay(X) — Fi/Fj_ sending [V'] to [0y ] is an isomorphism after tensoring with Q (see
[16, Chapter 18]). Thus, (F/Fy_1)Y =~ MWP¥(A). Thus the first few terms in the exact
sequence become:

0— Iy — I > MWF(A) — ...

Suppose that a Minkowski weight f € MW*(A) does not have a lift. Then, I cannot
surject onto MW¥(A). Thus, the group Ext}(K,(X)/Fy,Z) cannot be trivial. But this
group is isomorphic to the torsion subgroup of K,(X)/Fy, which is trivial if and only if Fj
is saturated as a subgroup of K,(X). O

The ring GW(A) also admits a map from PExp(A), which is the ring of continuous
functions on A that are given on each cone a € A by an exponential function e™, for
m € M. Anderson and Payne showed that this ring is naturally isomorphic to opK7(X),
and thus the map to GW(A) is induced by the forgetful map opK7(X) — opK°(X). We
will require K-theoretic equivariant multiplicities €/ (V' (), where p € X”. These have been
recently introduced in [2]. They satisfy > xr 6,(V(@))[ip«(0)] = [Ov(a)], Where iy, is the

pushforward in K7 along the inclusion of the fixed point p.
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Theorem 2.5.4. There is a commuting square

opK7(X(A)) —— PExp(A)

lforgetful lforgetful

opK°(X(A)) —— GW(A)

where the forgetful map from PExp(A) to GW(A) sends a piecewise-exponential function ¢
to the limit of the function

= Z 6{/((0)(V(a))f\a,

oeA(0)

as the argument of ¢ approaches 0 € N.

Proof. 1f ¢ is a piecewise exponential function, then via the isomorphism in [3, Theorem
6.1], ¢ corresponds to a R(T)-linear function ¢y, : KI'(X) — R(T). The function ¢y, can

be written explicitly via the projection formula:

Guin([Ov(@)]) = Gun( ) & (V(0)[ips()]),

= i%rdin( Y, eh (V()[G,)),
= > KV (@)isoun(G,]) = Y e (V()élo,

where o, is the maximal cone corresponding to p.

Then, the forgetful map from opK75.(X) to opK°(X) is induced by the projection X x
T — X, meaning it is the pullback from opK2(X) to opK7(X x T) =~ opK°(X). Via the
identification of op K7 (X) with R(T)-linear maps from K (X) to R(T), and opK°(X) with
K.(X)Y, the forgetful map sends ¢y, : KI'(X) — R(T) to the linear function on K,(X)
sending [0y ()] to the equivalence class in Z of ([ Oy («)]) (see the appendix of [2] for more
details). This is the same as taking the limit as the argument of ¢ approaches 0 € N. O
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Ezxample 2.5.5. We apply this theorem to the toric variety X with fan A in N = Z? generated
(£1,+1). This example and the following corollary are analogous to [27, Example 4.1 and
Theorem 1.5]. In this case, a generating set for PExp(A) over R(T) is given by the functions
in Figure 2.4.

1 0
1 11— et 1— "y
1 1—e*
0 0
(1 —e")(e” —eY) 0 1 — e*+y 0
0 1— ety

Figure 2.4: Generators for the ring of piecewise exponential functions on a toric surface

We go through the calculation for the piecewise exponential function at the top right:
since the equivariant multiplicity of a point is just 1, the value of the Grothendieck weight on
any maximal cone is just the value of the piecewise exponential function at 0. For the function
we are considering this is 0. For the ray p generated by (1,1), V(p) is a P!, and at the fixed
point corresponding to the maximal cone o generated by (1,1) and (1, —1) the character on
the tangent space is y — x, so the equivariant multiplicity is 1_@%,%,, by [2, Proposition 6.3].

At the other fixed point of V(p), the character is # — y, and so the multiplicity is 1_6%
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1 1 1 —1 0 1 0 0 0 1 0 0
1 2 2 <
1 1 1 1 0 —1 0 0 0 0 0 1

Figure 2.5: Images of those generators

The value of the Grothendieck weight on p is then the limit of ; 0 __ 4 1=

——= + == as ¥ and y

approach 0, which is 1. Similarly, one gets that the value of the Grothendieck weight on the
ray (1,—1) is —1. The balancing conditions for Grothendieck weights determine the values

on the other rays.

For the cone {0}, we will require the equivariant multiplicities €,(X). Since X is singular
at each fixed point, we can compute the equivariant multiplicity at the fixed point p corre-
sponding to o by resolving, e.g. by adding the ray (1,0), and then summing over the new

fixed points which map to p. One gets

1 1 1+¢€*
"X = Ao T T - A —e)

Let the fixed point corresponding to the cone generated by (—1,—1), (1,—1) be ¢, and the
fixed point corresponding to the cone generated by (—1,1) and (—1,—1) be r. Then

1+e¥
€(X) = (1— ew)u_— e—v)’
e.(X) = 1+e™®

(I— e v)(1—er?)
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By the last theorem, o must be sent to the limit of

(1—e"Y)(1+e") N (1 —e*)(1+ev) N (1—e"")(1+e?)
(I—emm)(1—emv)  (1—erV)(1—e™¥) (1—e™¥)(1—ev™)’

as the parameters x and y approach 0, which is 2.

In fact, this example shows the following (compare with [27, Theorem 1.5] and [2, The-

orem 1.7]):

Corollary 2.5.6. There exists a complete toric surface with a vector bundle with no finite

length resolution by T'-equivariant vector bundles.

Proof. In Example 2.5.5, the Z-linear span of the Grothendieck weights calculated does not
include the Grothendieck weight with 1 at the origin and 0 elsewhere, so PExp(A) does not
surject onto GW(A). Thus, the forgetful map from opK7(X) to opK°(X) is not surjective.
Since vector bundles induce linear forms on coherent sheaves by tensor product followed by

pushforward to a point, there is a commutative square:

K7 (X) —— opK7(X)

| |

K°(X) —— opK°(X)

We know from [3, Proposition 7.4] that the bottom map is surjective. Comparing the two
ways of traversing the diagram, one sees that the map K$(X) — K°(X) cannot be surjective.

This proves the corollary. O
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Chapter 3

Quantum K-theory and g-series

Our starting point in this chapter is an identity for the lattice point generating function of
a polytope P, proved by Brion in [9]. In the simplest case, when P is the interval [0, n],

Brion’s identity specializes to:

Lot ot = ——
r+...+a" =
l—2z 1—a"

o
Namely, we have on the left-hand side a sum of monomials over points inside P, and on the

right a sum of rational functions over vertices of P.

The main result of this chapter is a g-analogue of Brion’s identity. Let us introduce some

g-series notation: first, we have the ¢-Pochhammer symbol

|
—

n

(a;q)n = ‘ (1— aqi)a

S
Il
(=]

and the ¢g-binomial numbers

(n) I VN
k), (@@ @k
In fact, there is cancellation between the numerator and denominator of this expression, so

38



the ¢g-binomial numbers turn out to be in Z[q]. We also have the following sum, which is a

certain g-hypergeometric series

an

Pn(@:0) = ,;) (Y g ;07

Then, in the case that P = [0,n], our identity specializes to

(0O ()0 (i 2)

As in the case of Brion’s identity, we have a sum over lattice points in P on the left, and a

sum over vertices on the right. However, now the coefficients of the monomials 2% on the left
are rational functions in ¢, and the terms in the sum on the right are highly non-algebraic

functions. Nonetheless, the identity recovers Brion’s identity when ¢ is set to 0.

3.1 Brion’s Identity

Let us start out by stating Brion’s identity in more generality. Recall (1.1.1) that a cone C

in Ny is strongly convex if it does not contain a non-trivial linear subspace of Ng.

Definition 3.1.1. The lattice point generating function of a cone or polytope P in R"

is the sum

me(Z™nP)
o If P is a polytope, op is a Laurent polynomial.
o If P is a strongly convex rational polyhedral cone, op has a non-trivial radius of

convergence around some point in C" and in fact agrees with a unique element of

Frac(R(T)) (see [9, Section 2]).
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Ezxample 3.1.2. Let C' = [0,00). Then

1
1—xz

oolx)=1+x+2°+... =

Also, for p a vertex of a polytope P, we define the vertex cone K,P:

Definition 3.1.3. Let K,P be the convex cone with vertex p, generated by vectors of the

form w — p for w € P.

In Figure 3.1, we show P, a labelled vertex p, and the vertex cone K,P.

p p p K,P
Figure 3.1: A simplex and one of its vertex cones

Let V(P) denote the set of vertices of P. Then, Brion’s identity states:

Theorem 3.1.4. For P a polytope with rational vertices, we have the following identity in
Frac(R(T)).
op(z) = Y ok,p(x).

peV (P)

In this generality, the theorem can be found in [6, Chapter 9] where it is proved using
combinatorics, but it was originally proved for simple lattice polytopes in [9] using equivariant
K-theory. When P is a smooth lattice polytope, we can be a bit more explicit, so we can
later compare this directly with our g-analogue. For each vertex p, let I(p) < {1,...,r}
be the set of indices ¢ so that v; is an inward normal vector of a facet containing p. Then,
{vilie I(p)} is a basis for N. Let {u;(p)|i € I(p)} be the dual basis of M. The vector u;(p)

is the primitive vector along the edge of P containing p which is not contained in the facet
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defined by v;. Then
P
1 —am@). . (1—zuw®)’

UKPP(JU) = (

so when P is a smooth lattice polytope, Theorem 3.1.4 states that:

Y (1_%1@))“”“(1_&:%@)), (3.1.5)

uePnM peV (P)

3.2 The g-analogue

To state our g-analogue in general, recall that M is a lattice of rank n, and N = Hom(M, Z)
is the dual lattice. The corresponding real vector spaces are Mi and Ng. We write a polytope

P < My as an intersection of half-spaces, so
'
P = (Vfu|¢u,vi) > —ai)
i=1

where v; € N is the primitive inward normal vector defining the i-th facet of P.

The inward normal vectors vy, ..., v, determine a homomorphism Z" — N. Let A be the

kernel, and let 3: A — Z" be the inclusion. This induces a positive semigroup A, inside A

defined by A, = g71(ZL,).

We assume that the polytope is smooth, so that each vertex is contained in exactly n
facets, and the corresponding n primitive normal vectors form a basis for N. Furthermore, we
assume the polytope is radially symmetric, meaning that Y., v; = 0. These conditions can
be relaxed, but there are well-known families of polytopes which satisfy them—for example,

all generalized permutahedra are smooth and radially symmetric.

For each vertex p of a smooth polytope P, let I(p) and u;(p) be defined as in Section 3.1.
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For each d € A, and vertex p of P, we define

1 1
Jap = H (2w g—1; g1 H 11y

iel(p) 4 M(d)i J¢1(p) (g
Now we can state the main theorem.

Theorem 3.2.1. Let P be a smooth, radially symmetric polytope, realized as an intersection

of v half-spaces {u|{u,v;) = —a;}, with notation as above. Then

Z ( |al ) L (¢ 9)af Z TP Y gea, gz P @i )y,
usv) + agy .. (uy o) +ay ) (g; )%™ (2 ®): @)y - -+ (29 (P); q)

ue PN M peV(P)

where |a| = a1 + -+ + a, and V(P) is the set of vertices of P.

The left-hand side belongs to Z[¢|[M]; i.e., it is a Laurent polynomial in = and a poly-
nomial in g. The right-hand side is a formal power series in both = and ¢, and it seems (to
us) surprising that a ¢ — 1 limit exists, because each term has an essential singularity. The
q — 0 limit, on the other hand, recovers Brion’s formula in the smooth, radially symmetric
case - compare with 3.1.5.

The theorem follows from Theorem 3.6.8, which relaxes the requirement of radial sym-
metry. We prove this in Section 3.6. As in [9], the basic technique is localization in the
equivariant K-theory of a toric variety. Our main observation is that a canonical g-analogue
of the lattice point generating function is provided by the toric quasimap space, introduced
by Morrison-Plesser and Givental in the context of Gromov-Witten theory [21, 32]. These
spaces fit together to form an ind-variety contained in the toric arc scheme studied by
Arkhipov-Kapranov [5]. This infinite-dimensional scheme provides the geometric context for
the infinite products appearing in the theorem.

The left-hand side of (3) is the nth Rogers-Szegd polynomial. This is a classical family

of polynomials, which were shown to be orthogonal with respect to a certain measure on
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the circle by Szegé in 1926 [39]. Multivariate versions of them play a role in representation
theory and combinatorics [11, 26, 42]. In our context, they appear in the case where P
is a standard lattice simplex, so the corresponding toric variety is a projective space. In
polyhedral geometry, g-analogues of Ehrhart-theoretic quantities have appeared before (e.g.

[12]), but our work is in a different direction, see Remark 3.6.9.

3.3 Equivariant K-theory and the Atiyah-Bott formula

Here we review localization in equivariant K-theory and the Atiyah-Bott integration formula
for the Euler characteristic that we use in the proof of Theorem 3.6.3. The vocabulary we
use for localization is from [2], but in our restricted context the localization and integration
theorems that we use are quite old, see [33]. We assume that X be a smooth variety, so that
there is a natural isomorphism between the ring of vector bundles K°(X), and the group of
coherent sheaves K, (X).

For a group G, the G-equivariant K-theory Kg(X) is generated by isomorphism classes
of G-equivariant vector bundles on X, modulo relations from G-equivariant short exact
sequences. As in the case of non-equivariant K-theory, Kg(X) is a ring with respect to
tensor product. If X is a point, then a G-equivariant vector bundle on X is equivalent to
the data of a representation, and Kg(X) is also known as the representation ring R(G). For
G-equivariant proper morphisms f : X — Y, there is a pushforward f, : K&(X) — Ka(Y),
and for arbitrary G-equivariant maps f : X — Y, there is a pullback f* : K&(Y) — K& (X).
Since for any X, the map X — pt is G-equivariant, Kg(X) is always an R(G)-module via
pullback.

For the sake of simplicity, we impose that G = T is a torus, and further that X has
finitely many T-fixed points v, ..., ;. In particular, this implies that none of the characters
which appear in a decomposition of T,, X are zero in M. Let Frac(T) the fraction field of
R(T).
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Definition 3.3.1. Let ¢ : y < X be the inclusion of a smooth isolated fixed point. Then

we can define a class
1

X)= ——
63/( ) Z*l* [ﬁy] )
in Frac(T), called the K-theoretic equivariant multiplicity of y. (see [2, Section 6] for a more

general definition).

We add that this class agrees in our case with the class used in Chapter 2, Section 5.

Let i; be the inclusion iy : yx < X. Then:

Theorem 3.3.2 (Localization). Let ¢ : ® K3 (yx) — K3(X) be the natural map induced by
pushforward, and ¢ : K$(X) — @ K3 (yx) the natural map induced by pullback. Then over

Frac(T), ¢ and ) are isomorphisms.

Theorem 3.3.3 (Integration). Let f be the map from X to a point, and let [E] be the class

of a vector bundle on X. Then

F:[E] = Y i E] - €, (X).

k

Proof. The following diagram of proper maps commutes

N

{yla"'ayl}

This induces a commutative diagram between K-theory rings. The pushforward map from
SLK5(yr) = @ R(T) to K3 (pt) = R(T) is simply addition. Thus, if ¢~ ([E]) = (a1, ..., a),
f«[F] is simply a1 + ... + a;.

Thus, the theorem follows if we can show that ¢~ ([E]) = ([itE] - €,(X),...,[ifE] -
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€,(X)). But

ST E] -, (X, [ E) e, (X)) = Yol b2l (33
' " : " ; (i) * (k) [ Oy, ]

which maps to (iTE,...,ifE) under ¢ just as [E] does. Since ¢ is an isomorphism we are
done. [

3.4 The Cox construction

Our main theorem is proved by applying the Atiyah-Bott formula to toric quasimap spaces.
These spaces are naturally defined via the Cox construction of a toric variety, which we
summarize now. We impose that A is a smooth complete fan and enumerate the rays
A(1) = {p1,...,pr}. Each ray p; has a primitive generator v; € N.

Then, there is an exact sequence
B or
0>A>Z" - N—-DO0,

where Z" — N sends the ith standard basis vector to the primitive generator of the ith ray,
e; — v;. The kernel A is isomorphic to Z" ™.

Dualizing, one has an exact sequence
0->M-—->7Z"— B —0,

where B = Hom(A,Z). Let G < (C*)" be the subtorus corresponding to the surjection of
lattices Z" — B, so we have G = (C*)"" and T = (C*)"/G.

Now, we realize the toric variety X (A) as a GIT quotient of C" by G. Each subset
I < {1,...,r} determines a coordinate subspace F; = {ef = 0|i € I} < C", as well as a

collection of rays. Let Z(A) < C" be the union of those coordinate subspaces E; such that
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the corresponding set of rays {p; |i € I} is not contained in any cone of A. Then

X(4A) = (C"\z(4))/G.

Basic facts from toric geometry say that
B = Pic(X) = H*(X,Z)
and the cone of effective divisors is the image of ZZ in B. Dually,
A= HyX,Z),

and the cone of nef curves is the preimage of ZZ, under the embedding 8: A — Z". This

cone is written A, < A.

When X (A) is projective, a polytope P which is normal to the fan corresponds to the
line bundle &'(Dp) as described in section 1.2. Facets of P correspond to T-invariant divisors

of X, and vertices of P correspond to fixed points.

3.5 Quasimap spaces and the toric arc scheme

Next, we review the construction of the toric quasimap space; see [21, 32] for proofs and
details. We are interested in parametrizing maps f: P — X (A) of degree d, that is, f,[P'] =
din A = Hy(X). Let Homy(P!', X) be the space of such maps. To describe this space, one can
lift such maps to C", where they can be specified as an r-tuple of univariate polynomials. We
consider only degrees d lying in A, (which in general is properly contained in the semigroup

of all effective curves).
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For any r-tuple of nonnegative integers § = (d1,...,4d,), let
Cs = Clt]l<s, ® - @ Clt]<s,

where C[t]l<x = {f(t) = fO + fOt + ... + f®¢k} is the (k + 1)-dimensional space of
polynomials of degree at most k. (Sometimes it is useful to homogenize, making these

bivariate polynomials F'(s,t) of degree exactly equal to k.)

The vector space Cj has dimension 7 +3; + - - +6,, so the torus (C*)"*2% acts coordinate-

wise. The torus (C*)" embeds “diagonally”, so that

(Zla .. .,ZT) ’ (fl(t)7 s '7fr(t)> = (zlfl(t)7 e '7zrfr(t))'

So the subtorus G € (C*)" also embeds in (C*)"*2% . The quasimap space constructed below

is a GIT quotient of Cj by this action of G.

For any subset I < {1,...,7} let E} ; € C§ be the locus where the corresponding homoge-
neous polynomials {F;(s,t) |i € I} share a common factor. (Dehomogenizing, it is equivalent
to require that the {f;|i € I} share a common factor, or that at least two of the f; have

degree less than ¢; — since homogenizing produces a common factor of s.)

Let E;s < Cj be the locus where f; = 0 for each i € I, so Ejs5 < E}ﬁ. (Viewing
E; = C#I as a coordinate subspace and writing 6(f ) for the subsequence of ¢ omitting

. .. 7‘—#[
i € I, this is the same as Cd(i) )
Let
Z'(AN)s = JBrs and  Z(A)s = | Eus,
T T

both unions over [ such that {p; |i € I} is not contained in a cone of A.

Lemma 3.5.1. The space Homg(P!, X) is isomorphic to (Cha)\Z'(A)s)/G.
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The space of (toric) quasimaps is defined as

2(A)a = (Chq)\Z(A)p(a))/G-

By construction, it contains Homg4 (P!, X) as a dense open subset, since Z(A)ga) S Z'(A)(a)

is closed.

Lemma 3.5.2. The toric quasimap space 2(A)q is a toric variety of dimension n+ ), 5(d);,

smooth and complete whenever X (A) is.

Example 3.5.3. If X(A) = P", the coordinates on 2(A), may be written in a (d+1) x (n+1)

matrix: _ _
0 0

JO Lo

ORI

d d
|

(In general, one can write such coordinates in an array where the columns have unequal

heights: the ith column has height 5(d); + 1.)

Let us write Ty = (C*)"*28@: /G for the torus acting on 2(A),;. We are also interested
in actions by various subtori. Using (C*)" < (C*)"*28(@: as above, we have an inclusion of
T = (C*)"/G in Ty, so the same torus acting on X (A) also acts on Z(A)yz. On the other

hand, there is a loop rotation action of C* on (Cg( d) by

C' (fl(t)7' : '7f7“(t)) = (fl(c_lt)a s 7f7’(C_1t))a

and this descends to an action of C* on Z(A)y. So there is a subtorus T =T x C* < T
acting on 2Z(A),. Localization with respect to T will be the primary tool in proving the

main theorem.
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Lemma 3.5.4. The fized locus (2(A)g)C" by the loop rotation action is a union of compo-
nents Q(A)Eld/), for each decomposition d' < d (meaning d = d' + d" is a decomposition as a
sum of nef classes). Furthermore, there is a T-equivariant isomorphism Q(A)fid/) ~ X(A)

for all d'.

A basic observation the space Z2(A)y agrees with X (A), since the given constructions
become identical. The quasimap spaces 2(A), form a system of closed embeddings for d
varying over A, ¢ A = Hy(X,Z). Namely, given two such curve classes d’ < d, there is a
closed embedding 2(A)y — 2(A)4 induced by the inclusion Cj ;) — Cp ). We refer to
the limiting ind-variety as the toric polynomial space 2(A),. This ind-variety sits inside
an even larger space, the toric arc scheme of Arkhipov-Kapranov, see [5]. We review these

spaces next.

The toric arc scheme is constructed in nearly the same manner as 2(A),. Let
CL =Clldlo... o[

This space has an infinite-dimensional torus action given by scaling coordinates of the tuple

of power series. The torus (C*)" again embeds diagonally, so that

(2’1, .- 'aZT‘) : (fl(t)> .- 'vfr(t)) = (Zlfl(t)> .. 'azrfr(t))a

allowing G to act on Cl,. For I < {1,...,r}, let the locus Er,, < C, be defined as the

tuples where all the coefficients of f; vanish for all ¢ € I, and
Z(D)w = Er o,
T

where once again the union is over I such that {p;|i € I} is not contained in a cone of A.
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The Arkhipov-Kapranov toric arc scheme is
A°X = (CI\Z(A)y)/G.
For us, the most important torus action on A°X is by the product torus
T =C"x (C")"/G,

where the first factor acts by loop rotation. The quasimap space Z2(A), embeds as a finite-

dimensional subvariety into A°X, and the following diagram commutes:

The closed points of the ind-variety 2(A), (or equivalently, the union of closed points of
2(A)4 over all d € A;) correspond to the tuples of power series inside A°X where only
finitely many coefficients of any given power series are non-zero. In other words, the toric
polynomial space 2(A),, embeds into A°X as the subset consisting of power series which

are in fact polynomial.

Definition 3.5.5. Let D; be the T-invariant divisor corresponding to the ray p; in X. For
each k > 0 there are divisors D¥ in A°X and 2(A),, defined by the vanishing of the k-th
coefficient of f;(t). More generally, for a T-invariant divisor D = Y, ;D; on X, we let D°
be the divisor »}; a; D on 2(A),, and A°X.

Arkhipov and Kapranov observed that A°X admits a family of self-embeddings. Recall
S is the inclusion Hy(X,Z) < Z" defined in Section 3.5. An element d in the semigroup
A, corresponds to a one-parameter subgroup of G, and by composing with the inclusion

G — (C*)", we can write the image of d in Z" explicitly as the cocharacter (¢#@1 . ¢8(d)r)
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of (C*)".

Definition 3.5.6. For d € A, let ¢; : A°’X — A°X be the self-embedding

(i), .., @) = D i), .. 7D f(1).

This restricts to a self-embedding on the polynomial space 2(A), which we also denote by
€d.
These self-embeddings commute: in fact, €; 0 € = €4,4. They are evidently equivariant

with respect to the T-action.

3.6 Integration on quasimap spaces

Now, we study the geometry of the T-action on 2(A), leading to the proof of our main
theorem. From here on, our toric variety X = X (A) is projective, so A is the inward normal
fan of a polytope P.

We require some notation. Let .o/ be an oriented hyperplane arrangement in Mg, meaning
an arrangement of primitive vectors vy,...,v, and integers aq,...,a, such that the hyper-
plane H; € & is defined by

{u, vy = —a;. (3.6.1)

In particular, each hyperplane determines a positive and negative half-space, by replacing
the “="in (3.6.1) with “=” or “<.”

Given such an arrangement .« and any u € M, we let

g =] | L (3.6.2)

i=1 (q7 Q)<u,v¢>+ai

For a (smooth) polytope P, we consider the arrangement «/p = {Hy,..., H,}, where H;
are the supporting hyperplanes of P, defined by {(u,v;) = —a;. This data determines a line
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bundle € (3, a;D;) whose global sections are in natural bijection with the lattice points in P.
The same data also determines a line bundle €(}}; a; DY) on 2(A)y, (see Definition 3.5.5).

Theorem 3.6.3. The equivariant Euler characteristic is given by

XT <Q(A)w, 0 (Z aiD?>> = Z Getpu T

ueP

Proof. Since O(3; a;D;) is ample on X, the line bundle (3, a;D))|9(a), is nef on 2(A)y
(this can be checked against T-invariant curves), so Demazure vanishing (Proposition 1.2.1)

implies that

Xt <£(A)d, % (Z aiD?) |Q(A)d> = H’ (Q(A)d> 7 (Z aiD?) L@(A)d)

as classes in R(T). We want to calculate the limit of this class as a g-series.

Let f1,..., f, be coordinates on C", so the Coz ring of X is the polynomial ring on these
variables. By definition, a section of €(}, a;D;) is a rational function ¢ on X such that
div(¢) + >, a;D; is effective. A distinguished basis of T-eigenfunctions for such sections is
given by the monomials (Hl f;’i_ai), as the b; range over nonnegative integers such that
>.:(bi —a;)D; = 0 in Pic(X).

Similarly, for 2(A), we have Cox ring variables fi(j), forl<i<rand0<j<p(d), A

basis for sections of (3, a;DY)|9(a), consists of monomials

B(d)i
(H(ff“’)“f) - ( | H(ff”)bfﬁf)

%

such that the b; ; are non-negative, and ), ((fog bi ;) — ai> D; = 0in Pic(X). We need to
compute the characters of these sections.

Pick an element of our distinguished basis of sections of &'(D), that is, a character
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l.u

corresponding to a lattice point w in P, or equivalently a choice of b; > 0 satisfy-
ing the conditions > (b; — a;)e; = u € M. In this notation, recall that b, = (u,v;) + a;.
With these b; fixed, consider the sections (HZ( fi(o))_“i> : (Hz Hfi‘é)’( fi(j))biﬂf) such that
Zfi%) b;j = b;. The character of [, 7'~ is 2, as is that of Hi(fi(o))bi_‘“. So <]_L.(fi(0))_ai> :
<]_[Z Hffg( FY ))bivj> has character 2" [ [, ]_[fg))"(qj )bii. So the coefficient of z* in the graded

character of H° (2(A)4, (D)) is
B(d) 4
ST Ter
i j=0

the sum over b; ; > 0 such that fof}l bi; = {u,v;) + a;.
In the limit as d — o0, the upper bound disappears for the indices j of b; ;. The resulting
sum is over all choices of weakly increasing sequences 0 < ¢;1 < ¢;2 < -+ < ¢, for each @

from 1 to r, where the summand is the statistic
r  b;
[T Ta
i=1j=1

Holding all but one weakly increasing sequence fixed, we see that the whole sum must

factor into a product over i:

1> I~

=1 Oﬁciﬂlgci,gé...ﬁci,bi 7=1

b; Cii __ 1 :
But Zogci,lgciﬂgmgci,bi ]—[].21 9= e This proves the theorem. ]

In the radially symmetric case, we say more about these functions in Section 3.7. Now,
we will describe the T-fixed points of 2(A),, and decompose the corresponding tangent

spaces into characters of T.
Proposition 3.6.4. The T-fived points of 2(A)y are in bijection with pairs p € X and
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de A,.

Proof. The locus fixed by loop rotation is easy to determine. By definition, 2(A), is a union
of 2(A), as d varies over A, and the subvariety 2(A)y — 2(A)y is certainly C*-fixed.
To exhaust the C*-fixed components in Z(A), for higher d, it is enough to take the disjoint
union of €4(2(A),) over d € A, because e4(2(A)) = 2(A)W = 2(A)y © 2(A),. The
subvariety 2(A)g is T-equivariantly isomorphic to X, so its T-fixed points are in natural
bijection with those of X. The same holds for each copy of €4(2(A)g)), so the fixed points
are simply e4(x) for de A, and z € XT = 2(A),. O

Now, recall from the beginning of this chapter that for each vertex p of a smooth polytope
P, there is a subset I(p) < {1,...,r} so that the v; for i € I(p) are the inward normal vectors
of the facets containing p, and {u;(p)|i € I(p)} is the basis of M dual to {v;|i € I(p)}. We
defined

1 1
Jip = e
P H (xui(p)qfl; qil)ﬁ(d)i 1_[ .

—1 —1
iel(p) jer (4 s,

Proposition 3.6.5. Let y be the fized point in X corresponding to a verter p in P. The

equivariant multiplicity at €4(y) is equal to

(@) o
(¢: @)oo Hz’el(p)@ui(p)%@oo‘

Proof. Recall that for x € X a smooth fixed point and a decomposition of 77* X into non-

1

For an ind-

vanishing characters my, ..., m,, the equivariant multiplicity at p is [ |
variety, this still holds if the resulting product converges.

The tangent space to Z2(A)y at €4(y) splits into tangent and normal directions to the
closed embedding €;(2(A)y) — 2(A)y, meaning we have

Tea)2(D)oo = Tey()€a(2(A)oo) @ 47,y Nea(2(2)00) 2(A) o4 (3.6.6)
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where T, €a(2(A)x) is isomorphic as a T-representation to T, 2(A ).
First, we decompose T, 2(A)q:

In the arc scheme, we have coordinates on (C")*

;g
f1(1) fﬁl) ,

and the point y,
pPr - Dr

is contained in an affine open set in A°X with independent coordinates

7

L———— forie I(p) and k = 0,
Meron )~ (p)

L fori¢ I(p) and k > 1.

I
These are T-eigenfunctions which have characters
o cuPlgk forie I(p) and k = 0,
o ¢* fori¢ I(p)and k> 1.

Thus, the tangent space of y in 2(A)y (which we recall is the subset of A°X where
finitely many coordinates are non-zero) splits into a direct sum of the duals of the characters

listed above. This contributes

(q7q>® 2 (p)( UZ(p)7q)w
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Second, we note that 2(A)g[)ea(L2(A)w) = Q(A)&d), so there is an identification of the

following two bundles:

(A)w)N (2(8))0 2(B) o0 = N g p )00 2(Aa).

But this normal bundle on the right-hand side is easily computed:

r B(d)
NQ(A)'(id)Q(Ad) = @ @ qik ® ﬁ(D

i=1 k=1

where D; € X is the ith invariant divisor, and ¢~* denotes the trivial line bundle on X

with character ¢=*. For it N

€d

(2(8)) Z(A)o, we further restrict this to y. Then, &(D;)
restricts to () if i € I(p) or the trivial bundle otherwise. This contributes J;, to the
equivariant multiplicity at eg4(y).

]

Remark 3.6.7. Using some standard identifications, together with the fact that all our moduli
spaces compactifying maps P — X have rational singularities, one can show that J,, is a
specialization of the equivariant multiplicity of the fixed component Q(A) 9)__that is, the
contribution of this component to the Atiyah-Segal localization formula for x(@g(a),), with
respect to the C*-action on 2Z(A),; which rescales the source curve. This is the interpretation
of ¢ in the formula for J: it is the character of this C*-action. See [22, §2.2, §4.2]. When
X is Fano, the equivariant multiplicity referred to above is the d-th term of the K-theoretic

J-function in the quantum K-theory of X; see [23, 24].

Now, we are in a position to prove our main theorem:

Theorem 3.6.8. Let P be a smooth polytope, with notation as above. Then

N gt = 2 Y

wePAM <Q7 C])OO peV(P) deA, Hie[(p) (;Eui(p); Q)oo

ani B(d)i . Ja

).
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where ga, . 15 the rational function defined in (3.6.2), and V(P) is the set of vertices of P.

In the radially symmetric case, Theorem 3.2.1 follows immediately by multiplying both

sides by (¢; q)|a|, Where |a| = a; + - - - + a, as before.

Proof. The polytope P determines a toric variety X, a normal fan A, and a line bundle
0(3; a;D;). The left-hand side is simply x1(2(A)g, O(3; a;DY)), by Theorem 3.6.3.

The right-hand side comes by applying the Atiyah-Bott formula to compute the Euler
characteristic of (3}, a;D?). This is a sum over the T-fixed points €4(y) (where y € X7
corresponds to p € V(P)) of the product of the T-character of i, /O3, a; D?) and the equiv-
ariant multiplicity at €q4(y) in Kr(y), after completing with respect to ¢. Proposition 3.6.5

contributes the factor
Jap
()%™ T ierp (@) @)

present in each term. So it only remains to demonstrate that the restriction of &(3;; a;DY)
to e4(y) is 2P. As in the previous proposition, this can be done by picking coordinates around

€4(y) using the Cox ring. O

Remark 3.6.9. A g-analogue of Ehrhart polynomials was introduced by Chapoton [12]. The
q appearing in the rational function on the left of Theorem 3.6.8 is not related to the
q appearing in [12]. For him, the ¢ comes from specializing the lattice point generating
function of a polytope to a univariate polynomial in a parameter ¢q. For us, when ¢ is set to

0, we recover the usual lattice point generating functions.

3.6.10 Combinatorial interpretation of ¢g-series coefficients

In this section we relate the g-series coefficients (3.6.2) appearing in our main theorem to
a g-enumeration of lattice paths. As before, we let P be a lattice polytope in Mg, A

the corresponding inward normal fan in Ng. Let vy,...,v, € N be an enumeration of the
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primitive elements in the rays of A. Then, P is defined as the intersection of half-spaces
{u]<u,vi) = —as}.

Let us define the affine linear map ¢ : M — N by

$(m) = ¥ ((m,v;) + a;)v;.

)

Remark 3.6.11. If 3. a;v; = 0, the map ¢ : M — N is linear. This induces a fan on M pulled

back from the one on N.

Definition 3.6.12. We define a path to be a sequence of vectors (v;,, vi,, ..., ;) in A(1).
For & a path, let F(Z?) denote the number of inversions (vij,vij, such that j < j’ and
i; > ;) in &, and define the function f,,(¢) € Z[q| by

fem(q) =>4,
P

where the sum is over paths &2 with exactly {(m,v;) + a; steps in the direction of v;.
Proposition 3.6.13. The coefficient of ™ in (¢;q)y, o, - Xr(A°X, O3, a;D;)) is frm(q).

Proof. Both fpn(q) and the coefficient of 2™ in (¢;q)y; o, - Xr(A°X, O(3, apD;)) can be
identified with the ¢g-multinomial coefficient ( 2 ) . O

a1,a2;,...7 ¢

3.6.14 Jacobi Triple Product

Here we demonstrate that applying the main theorem in a degenerate case produces the
Jacobi triple product identity. Recall the g-hypergeometric series we introduced at the
beginning of this chapter:

nk

bn(x5q) = Z d

g el e
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Applying Theorem 3.6.3 to the case of the trivial bundle on A°P!. This produces the

identity

P <( ‘1) <bo(x;q)+(+¢o(xl;®>,

(Do \ (7500

or equivalently

(@)oo (2 Qoo (™" @)oo = (275 Q)oct0(w30) + (25 @)oo (25 q).

d+1

We use the identity (zq~';¢71)g = (—x)dq’( 2 >(1:’1q; q)q and divide by (1 —z) to obtain

that the triple product (¢)w(2q; q)w(x™1; q)e is equal to

Z Hl>d+11 e l)q(d;rl) ) —d—1 +Z [lizara (1 C]Z)q@;l)(_x)d.

d=0 d=0 (q I q )

Then, the classical Jacobi triple product identity, which states that

(@)oo (23 q)( =) g

deZ

follows from the next proposition:
Proposition 3.6.15.

Z Hz>d+1( xqi) qd(d+1)/2(_x)d _ Z qk:(k:—i-l)/Q(_x)k.

d=0 i= 1(1_q 1) k=0

Proof. We will require two more routine identities: the g-binomial identity states that

Z -

(q Q)i

We quickly remark that one way to prove this identity is to use the integration formula for

X(P¥, Opr), where P* has the torus action induced by the action on C*! with characters
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1,q,....q"
We also will need the identity

e/n 17 q’ q27 AR = )
( ) (45 @)n
see e.g. [38, Section 7.8]. Then, we can calculate:
]_L d ) en( d“, d+2,...)(—x)” d+1
Z > +1 q (d+1)/2 Z Z 1) q( 5 )(—Qi)d,
d=0 d>0n>0 B a
n d+1 n
= Z = @D ¢(3) g ("31) (_gyntd,
d>0n>0 q Q)
Using the substitution £ = n + d, we obtain
(n), (41 k 1 (k1)
n(d+1) (7 n+d __ ’ k
o ¢ g g2 () = -y g2/ ()",
;”;) La a4 @ ,;);0 ("¢ )¢ @r—d

whence the proposition (and the Jacobi triple product) follows via the g-binomial identity.

]

3.7 Action of g-difference operators on generalized Rogers-

Szegb polynomials

In this section, we study the action of a g-difference operator on the polynomial on the left-
hand side of our main theorem. Given a smooth, radially symmetric polytope P, written as

an intersection of half-spaces {u|{u,v;) = —a;}, we define

zv.

RSp(x;q) = ), i

S <<u,vl> + ayg,. ..

,(u, v + ar>q
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In a sense to be explained below, these are natural generalizations of the Rogers-Szego

polynomials in [39].

The polynomial RSp(x;q) is translation-invariant: for any v € M, RSp,,(x;q) = z* -
RSp(x;q). So we may assume one of the vertices of P is the origin, and choose a basis
Uy, ..., u, for M so that these are primitive vectors along the edges of P at the origin.
Writing x4, ..., x, for the variables corresponding to this basis, RSp lies in the polynomial

ring Z[xy, ..., T, ql.

The i® g-shift operator T}, acts on a function f(zy,...,z,) by

Tig: (1,0 @i, T0) = [0, .., Q5 .. Ty).

The associated g-difference operator is

Dig(f) = f = Tig(f):

Let us index the facets of P (of which there are r > n) so that for i from 1 to n,
the exponent of x; in z* is {(u,v;). By translating P, we have ensured that the numbers
ai,...,a, in the defining equations for P are all 0. Let P; be the polytope where the i-th
facet is moved one unit in. More precisely, we replace the defining equation {u | (u,v;) = 0}

with {u|{u,v;) = 1}.

Theorem 3.7.1. We have
D;(RSp) = (1 — ¢“NRSp,.
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Proof. This is a straightforward computation:

|al
DigRSp(r;q) = (
qltop uE;M A R ) A ) S T S R T

u
Di,qx )

(1 . q<vi,u>)xu7

- ue;M (<u, 0Dy (U0, ‘Ci'u Uy ey Uy U, ar)q
=(1-d") ), (<u, O3y aty 05 — 1!?‘.._,2%% ey + ar)qxu'

ueP;n M

The last line is the right side of the equality in the theorem statement. The change of
indexing in the last two lines is valid because for u € (P\F;) n M, the inner product {(v;, u)

vanishes, so (1 — ¢{%™) = 0. O

Now, let us also say what we can about applying the difference operator to the left-hand
side of our main theorem. If P is a polytope and p, q are vertices of P, then as in the earlier
sections of this thesis, we define the sets I(p),I(p’) < {1,...,r} so that the v; for i € I(q)
are the inward normal vectors of the facets containing p, {u;(p)|i € I(p)} is the basis of M
dual to {v; |7 € I(p)}, and define u;(p') similarly. Let x; be the variables corresponding to
the basis u;(p). We can write the p’-th term in the Atiyah-Bott sum as

x? ¢S B

. ui(p')- wilp') =1 — R )
Hlel(p/)(m 1 Q) ded, (Hie[(p’)<m iP)g1: g 1)5(d)i> (ngg(p/)(q g 1)ﬁ(d)j>

Then, for some fixed ig € I(p), we can calculate directly
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Proposition 3.7.2. We have

10,9 w (' Z
H (.’L’ Z(p);Q)OO deAy wi(p'), —1. —1 1 1
iel(p) [T @ s, || [T (@50 s,

iel(p') J¢1(P')
xp/ aniﬁ(d)i
T @@ 2.
Y 0 dEA+ 1 1
el () [T (@ a s,

JEL1(p)

D

1 q<pl7vi0>

[T @07 s0), [T @ a s
iel(p') i€l(p')

We now make an extended examination of the case of a lattice simplex. Let P, be the

convex hull of the origin and ke, ..., ke,, where e; are the standard basis vectors in Z".
The inward normal fan A has rays eq,...,e, and e¢g := —e; — - — e, and a maximal cone
generated by each subset of {eg,...,e,} of size n. The toric variety that corresponds to this

fan is P", which has divisors Dy, Dy, ..., D, given by the vanishing of the corresponding
coordinates. The polytope Py, corresponds to the line bundle Ly ,, = &(kDy).

The toric arc scheme A’P" is the infinite dimensional projective space with homogeneous

coordinates
B

fél) f}ll) ,

and we consider the line bundle

Ly = O(kDp),
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where Dj is defined by the vanishing of féo). By Theorem 3.6.3, we calculate that

X1(2(A)e, L

1 Z. .
2(A)) = N
& iml;ﬂn_k (6 9)io (D) - (G0)i " "

This is quite close to the Rogers-Szegd polynomials mentioned at the beginning of this

chapter:

Definition 3.7.3. The k-th Rogers-Szeg6 polynomial in n variables is the sum

k . .
RSy, = Z o I R AR
K 10,21y, q

0+21+...+in

Corollary 3.7.4. We have
(¢ 0)k - X7 (2(A)eo, Lip | 2(2)0s) = RSk

We must remark here that RS-polynomials are the t = 0 specialization of one-row Mac-
donald polynomials (see [26, Section 3]), so the remainder of this section also follows from
specializing the operators appearing in the theory of Macdonald polynomials as detailed in
[29, Chapter 5] and [30, Chapter VI]. However, we proceed without appealing to that theory.

Theorem 3.7.1 says that

1
;Di,qRSk,n = (1 - qk>RSk71,n~

From [26], there is a recursion:

Proposition 3.7.5 (Hikami recursion). Using the convention RSk, = 0 for k <0, we have

n+1 .
RS, = —11_1%6 T)RSk_1n
© ;( ) (¢; Q)i (@) RSy,



where ey is the k-th elementary symmetric polynomial in the terms 1,21, ..., x,.

Since

(¢ Vi1 1,
M RS, i = —— D' RS 10,
(g Q) b gl ke TR

we make the following definitions:

Definition 3.7.6. For 1 < i < n, we set

n+1 n
. el) e ()
R; = Z(_l) ! L1 Di,ql = 2(_1) 2 Di,q
=1 { =0 v
and
1
L,:=——D,;,.
(1—q)z;

By combining the previous proposition and the Hikami recursion, we obtain the following,

which appears in many places including [19] in the case of n = 1.
Proposition 3.7.7. We have

1— k
Ri(RSk-1n) = RSkn and  L;(RSkn) = : q

Rsk—l,n-

It follows that

3.8 Measures depending on ¢

We also wish to draw attention to the measure on the lattice points in P given by the g-series

coefficients. Namely, if 9, is the Dirac measure at u, we consider the measure:

pe(e) = ) (<u,v1> +ay, Ial w0y + ar)q(s“(x)’

uePnM

65



For ¢ = 1, this measure asymptotically limits to the restriction of a multivariate Gaussian
distribution, and for ¢ = 0, it specializes to uniform measure on lattice points. The fol-
lowing are some pictures of the associated ¢-gamma distributions for different values of q.
The polytope in the top row is the hexagon (i.e. 2-dimensional permutohedron) with ver-
tices +(9,0),4(0,9), £(9,9). The polytope in the bottom row is the simplex with vertices
(0,0),(9,0), and (0,9).

q=.8 hexagon

q=.2 simplex q=.5 simplex q=.8 simplex

Figure 3.2: Measures from generalized RS polynomials
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Appendix A

Multiplicities of cones

Given cones a < 3, let mult, () denote the multiplicity of 3 in N,. If & = {0} we obtain that
mult, (5) = mult(f) is the usual multiplicity of . The following lemma describes relative

multiplicities of simplicial cones in terms of usual multiplicities. Let a have rays p1, ..., px,

and 8 have rays pi, ..., Pk, Prits - - -5 PU

Lemma A.0.1. mult,(3) = mult(S3) Hl mult(a)

i=k+1 mult(a+p;)

Proof. To simplify notation, we assume that [ is a maximal cone. Then we have the following

diagram of exact sequences:

0 —— Wpyyo v, Uy ]I » N/ vpyy ooy vp) — 0

O—></Um,...,vﬁ> >NO¢ >Na/<vm,...,'l]m>—>0,

where the top and bottom quotient groups on the right have cardinality mult(f) and mult,(5)

respectively. We add the kernels and cokernels to the diagram:
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00— pys s 0y = Wy V) ————— A

0 —— (Wpyse vy Uy > N > N/ (pys o) —— 0
0 —— (Vprgs - - -+ V) > N, ¥ Nof{Vgry - U5r) —— 0
B > > 0 > 0

By the snake lemma, the sequence of kernels leading to cokernels is exact, so in fact A =~ B.
Thus mult(5) = mult,(5)|B|. The cardinality of B on the other hand is also easy to
determine: the image of (v, ..., v,) in Vs, ..., Vg s just Ty, .., 0. T, = byup,
the cardinality of the cokernel (i.e. B) is ]—[i:k +1bp,- But in the proof of Proposition 2.3.4,

mult(a+p

we saw b, = lt(a) ), which proves the claim. Il
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