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Abstract

This thesis contains two different projects on toric geometry. The first project describes

the operational K-theory introduced by D. Anderson and S. Payne in [3] for toric varieties,

via the introduction of a ring of Grothendieck weights. We prove several properties of

Grothendieck weights, which combinatorially characterize them in low dimensions. The

second project introduces generalized Rogers-Szegő polynomials, which depend on the data

of a smooth lattice polytope P . For P an interval these specialize to the polynomials studied

in [39]. We prove a q-series identity for these functions involving certain q-hypergeometric

functions introduced in [25] and separately in [32]. The identity is a q-deformation of the

well-known identity of Brion [9] in Ehrhart theory, and is proved via equivariant K-theory

on quasimap spaces. We finish by proving some combinatorial properties of generalized

Rogers-Szegő polynomials.
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Chapter 1

Introduction

This thesis contains the results of two mostly disjoint projects on different aspects of the

K-theory of toric varieties. In the first, consisting of material from [37] we consider the

operational K-theory opK˝pXq introduced by D. Anderson and S. Payne in [3]. This theory

has close ties to the Grothendieck group of coherent sheaves, and chief among the results

from the first project of this thesis is a presentation of latter, for complete toric varieties

of dimension up to three. Besides this, we provide a combinatorial formula for products of

classes in opK˝pXq, as well as formulae for maps between operational K-theory and other

invariants. As a corollary we deduce a result about vector bundles on toric surfaces.

The second part consists of work from [4], which is joint with Dave Anderson. We

take our inspiration from the well-known identity by M. Brion on lattice point generating

functions of polytopes, which was first proved using equivariant K-theory on the associated

toric variety. We find, by calculating a limit of holomorphic Euler characteristics of certain

line bundles on quasimap spaces, a q-analogue of the lattice point generating function of

a polytope. We study the behavior of these functions and prove a q-analogue of Brion’s

identity for these functions. We remark that in certain cases these functions coincide with

q-Whittaker functions as introduced in [20] and linked to quasimap spaces of flag varieties
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in [8].

Both of the following chapters will heavily use the notation of toric varieties and K-

theory. Here we establish our conventions and recall some basic propositions that we will

need to refer to.

1.1 Fans from toric varieties

Let T be an algebraic torus over C. For the purposes of this thesis, a toric variety is a normal

complex algebraic variety with a T-action and a dense orbit. This elementary assumption

leads to a rich combinatorial theory which we outline below. By modding out by a generic

stabilizer, we can assume that T embeds as the (open) dense orbit. All varieties from here

onwards will be toric varieties unless otherwise stated. By and large we follow the conventions

of [13] and [15].

Let M “ Homalg.gp.pT,C˚q be the character lattice of T, and N “ Homalg.gp.pC˚,Tq the

cocharacter lattice. There is the natural pairing x , y : M ˆ N Ñ Homalg.gp.pC˚,C˚q – Z

given by composition of maps, that makes M and N dual to each other. We let MR and NR

denote M bZ R and N bZ R respectively.

Definition 1.1.1. A cone in a real vector space is a convex subset closed under scaling

by positive real numbers. A cone is rational polyhedral if it is the intersection of finitely

many closed half-spaces defined over Q. A cone is strongly convex if it does not contain any

non-trivial linear subspaces of the ambient vector space. If C is a cone and F is a linear

form such that F pCq ě 0, then tF “ 0u is a supporting hyperplane of C, and tF “ 0u X C

is a face of C.

We say a convex set C is a cone with vertex v if the translation C ´ v is a cone in the

sense defined above.

Given a toric variety X, we obtain a set of strongly convex rational polyhedral cones in

2



NR in the following manner. Since a cocharacter n “ nptq is a function from C˚ to T , we

can define the set N˝ as the subset of nptq P N such that limtÑ0nptq is well-defined in X.

We can partition N˝ into equivalence classes N˝
α, defined by the condition that nptq, n

1

ptq

are equivalent when limtÑ0nptq “ limtÑ0n
1

ptq.

Now, it is standard notation to let greek letters refer to cones, so let α itself denote the

closure of the cone generated by N˝
α. Given X, we denote the set of all cones obtained in

this way by ∆. The set ∆ is an instance of a polyhedral fan.

Definition 1.1.2. A polyhedral fan ∆ is a finite set of polyhedral cones in a real vector

space such that

• for α in ∆, any face of α is also in ∆, and

• for α, β in ∆, the intersection α X β is a face of both α and β.

One may also start with a strongly convex rational polyhedral fan ∆ (meaning a poly-

hedral fan with strongly convex rational cones) in NR, and obtain a toric variety: given a

rational polyhedral cone α, the dual cone α_ inMR is the subset of allm such thatmpαq ě 0.

The lattice points M X α_ form a finitely-generated semigroup Sα, and Uα “ SpecCrSαs

is an affine variety. As α varies in ∆, the affine varieties Uα glue together to form a toric

variety X. The procedure described here to obtain a toric variety from a fan is inverse to

the one described above to obtain a fan from a toric variety.

Inside Uα, there is a T -invariant closed orbit Oα. The closure of Oα in X is a T -invariant

subvariety denoted by V pαq. In fact, V pαq is also a toric variety, and if we denote the

stabilizer of Oα by TOα , we may naturally identify the dense torus of V pαq with the quotient

Tα “ T {TOα . The character lattice for Tα is Mα “ αK Ă M . We denote the Z-span of lattice

points in α by Nα, and denote the quotient by Nα “ N{Nα – M_
α . The lattice Nα can

be identified with the lattice of one-parameter subgroups of Tα. We use x, y to denote the

pairing between Mα and Nα. We denote by ∆pkq the set of all k-dimensional cones in ∆. If

3



α is a face of β, we write α ă β. If α ň β and α is maximal among cones contained in β, we

write α ă̈ β. When α ă β, the image of β in Nα is a cone which we denote by β. If α ă̈ β,

β is a ray, whose primitive generator we denote by vβ,α, or vβ if α “ t0u.

Proposition 1.1.3. There is a correspondence between strongly convex rational polyhedral

fans in NR and toric varieties which compactify T . For such a fan ∆ and toric variety X,

there is a containment-reversing bijection between cones in ∆ and T -invariant subvarieties

of X. The k-dimensional cone α corresponds to the codimension-k T -invariant subvariety

V pαq.

For further details, see the excellent references on toric varieties [13] and [15]. We estab-

lish the not-very-standard convention here that we exclusively use ρ to denote 1-dimensional

cones, and σ to denote maximal cones.

We will also need the notion of multiplicity. The Hilbert-Samuel multiplicity of a variety

X along a subvariety Y is a measure of how singular X is along Y . If A is the local ring

of X along Y and M the maximal ideal, then A Ą M Ą M 2 Ą . . . is a filtration. The

leading term of the Hilbert polynomial of the associated graded module is a polynomial in

t of degree d “ dimpXq ´ dimpY q. Then, d! times the leading term is the Hilbert-Samuel

multiplicity, see [16, Section 4.3].

If β is a simplicial cone with extremal rays generated by v1, . . . , vk, its multiplicity is

multpβq :“ rNβ : Zv1 ` . . . ` Zvks. If α ă β, let multαpβq denote the multiplicity of β in

Nα, so multpβq “ multt0upβq. Geometrically, multαpβq is the Hilbert-Samuel multiplicity

of Uβ X V pαq along V pβq. In the appendix, we show how to write a relative multiplicity

multαpβq in terms of usual multiplicities.
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1.2 Polytopes and ample line bundles

Given a polytope P in MR, let ∆ denote its corresponding inward normal fan in NR. The

fan ∆ consists of cones CF for each face F of P . The cone CF is defined as the set of n P NR

satisfying xn,mP ´mF y ě 0, for mP and mF arbitrary elements of P and F respectively. If

P has rational vertices, its inward normal fan is rational as well, and if P is full-dimensional,

the cones in its normal fan are strongly convex.

Unless specified otherwise, a “polytope in M” is a full-dimensional polytope in MR with

vertices in M . Given a polytope P in M , the corresponding normal fan ∆ is rational, and

we can define a toric variety X. The polytope P also induces a T -invariant divisor DP on

X: if F is a facet of P , then CF is a ray in ∆. Let vF be the primitive element of N in CF ,

and let aF be the smallest number such that aF ` xvF ,my ě 0 for m any element of P . Then

set DP “
ř

F aF rV pCF qs, where the sum is over all facets of P .

From this divisor we obtain a corresponding invertible sheaf OpDP q on X. Viewed as a

subsheaf of the sheaf of rational functions on X, OpDP q is generated on the affine open UCF

by the rational function corresponding to any m P F . The following proposition addresses

the sheaf cohomology groups H ipX,OpDP qq.

Proposition 1.2.1. The invertible sheaf OpDP q is ample, and H0pX,OpDP qq has a basis

over C corresponding to m P P . For i ą 0, H ipX,OpDP qq vanishes.

The proposition is a consequence of basic theorems about sheaf cohomology of toric

divisors. See e.g. [13, Chapter 9]

1.3 K-theory

The Grothendieck ring of vector bundles on an algebraic variety X is denoted by K˝pXq. It

is generated as an abelian group by isomorphism classes of vector bundles, modulo relations

5



rF s “ rEs ` rGs for exact sequences 0 Ñ E Ñ F Ñ G Ñ 0. The product of classes rEs

and rF s is the class of the tensor product rE b F s. For an arbitrary morphism of algebraic

varieties f : Y Ñ X and a vector bundle E on X, there is the pullback vector bundle f˚E

on Y , which induces a map f˚ : K˝pXq Ñ K˝pY q.

There is also the Grothendieck ring of perfect complexes K˝
perf pXq, which is generated

by complexes locally quasi-isomorphic to a finite complex of vector bundles, but we will not

use this.

The Grothendieck group of coherent sheaves on X is denoted by K˝pXq, and defined in

the same manner as K˝pXq, replacing “vector bundle” with “coherent sheaf.” For f : Y Ñ X

proper and G coherent on Y , there is a pushforward f˚rG s “
ř

ip´1qirRif˚G s. For f : Y Ñ

X flat and F coherent on X there is a pullback f˚rF s “ rf˚F s.

Though for coherent sheaves E and F the tensor product E b F is coherent, a naively

defined product is not well-defined on equivalence classes of coherent sheaves. In the next

chapter we discuss this further.

If X is smooth, then K˝pXq and K˝pXq are isomorphic as groups (see, e.g. [44, Chapter

II, Theorem 8.2], but otherwise this is not true. For example, it is an easy exercise that for X

the nodal rational curve over C, the Picard group of X is uncountable. The same is then true

for K˝pXq, which has a surjection onto PicpXq via the map given by determinant bundles,

e.g. [44, Chapter I]). On the other hand, the Grothendieck group K˝pXq is finitely generated

(by the pushforwards of structure sheaves of T -invariant subvarieties, for example).

6



Chapter 2

Operational K-theory

The Grothendieck group of coherent sheaves may be defined for any algebraic variety X.

When X is smooth, the group K˝pXq has a product: for two sheaves F and G in X, the

product of classes rF s and rG s in K˝pXq is the sum
ř

ip´1qirT orOX
pF ,G qs. Unfortunately,

such a product on K˝pXq cannot be defined when X is singular, as there is no longer any

reason for this sum to be finite. Instead, one may consider one of many different Grothendieck

rings which agree with K˝pXq when X is smooth: though the ring of vector bundles K˝pXq,

and the ring of perfect complexes K˝
perf pXq are natural to define geometrically, they can

be uncountably generated [25] even for projective simplicial toric varieties. The operational

K-theory ring opK˝pXq in contrast is finitely generated for projective toric varieties as a

consequence of [3, Theorem 1.3]. It is also an A1´homotopy invariant, like the homotopy

K-theory of [43], but unlike K˝pXq and K˝
perf pXq. Thus, there is reason to expect it should

be more tractable to describe. We give a short introduction to operational K-theory in

section 2.1 and refer to [3] for details.

We fix a complete toric variety X over C, and ∆ its polyhedral fan. By [3, Theorem

1.6], the torus-equivariant operational K-theory opK˝
T pXq can be described by the ring

of piecewise exponential functions on ∆, but this theory does not necessarily surject onto
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opK˝pXq (see Example 2.5.5), so the question of describing the latter remains. Describing

opK˝pXq is the focus of this chapter.

Here is one application we provide: it is already known that opK˝
T pXq Ñ opK˝pXq is not

always surjective for complete toric varieties. In [2, Theorem 1.7], the authors demonstrate

that there is a nonsimplicial toric 3-fold for which the rank of opK˝
T pXqQ is strictly smaller

than the rank of opK˝pXqQ, by using an operational Riemann-Roch theorem. However,

this approach cannot work to show non-surjectivity if the image of opK˝
T pXq has finite

index inside opK˝pXq (for example, when X is simplicial). In Example 2.5.5, we use our

description of opK˝pXq and of the map opK˝
T pXq Ñ opK˝pXq to demonstrate that there is

a toric surface such that the image of opK˝
T pXq has finite index inside opK˝pXq. This is the

first example of nonsurjectivity where the toric variety X is simplicial. We remark that in

both cases the non-surjectivity of operational groups implies that the forgetful map of vector

bundles K˝
T pXq Ñ K˝pXq is also not surjective, as noted in [2].

We would also like to mention some reasons external to K-theory that motivate why one

might want to study opK˝pXq. The K-theoretic story addressed here echoes work on the

Chow groups A˚pXq. In [18], Fulton and Sturmfels showed that when X is complete the

operational Chow ring A˚pXq is isomorphic to a ring of balanced Z-valued functions on ∆

called Minkowski weights, with a displacement rule for calculating products. This is now well-

known in the context of tropical geometry, in which Minkowski weights appear as an instance

of weighted, balanced polyhedral complexes, and the displacement rule is a special case of

the intersection product for tropical cycles [1]. If one desires a K-theoretic analogue to the

methods of tropical geometry, a first step would be to determine the K-theoretic analogue

of Minkowski weights. Additionally, a description of opK˝pXq for projective simplicial toric

varieties has a straightforward interpretation in terms of Ehrhart theory, see Proposition

2.1.4.

To motivate our results on opK˝pXq, note that one way to frame the main theorem of

[18] is that they define Minkowski weights as the set of Z-valued functions on ∆ which satisfy

8



a balancing condition, and prove that (1) this ring of functions is isomorphic to A˚pXq, as

a group and (2) the product on Minkowski weights which is compatible with that of A˚pXq

can be calculated by a displacement rule.

In contrast, we start by defining a ring of Z-valued function on ∆ which describes

opK˝pXq tautologically. We call the elements of this ring Grothendieck weights, denoted

by GWp∆q, because they can naturally be identified with linear forms on the Grothendieck

group K˝pXq. On the other hand, what sort of balancing conditions elements of GWp∆q

should satisfy will not be clear to us a priori. Nonetheless, we provide several results in this

direction, which in lower dimensions lead to a combinatorial balancing-condition character-

ization along the lines of Minkowski weights.

In higher dimensions, the problem becomes more difficult, primarily because our approach

to characterizing Grothendieck weights relies on finding expressions for Todd classes of toric

varieties in terms of T -invariant subvarieties. Though there is an extensive literature on how

to do this [7, 10, 31, 35, 36], the coefficients of such an expression depend on various choices

made in rewriting self-intersections of toric divisors Di in terms of square-free monomials.

We continue our study of the ring of Grothendieck weights by addressing how to compute

products. Let c, d : ∆ Ñ Z be Grothendieck weights, and let δ : X Ñ XˆX be the diagonal

map. By applying [3, Proposition 6.4], the natural map K˝pXq b K˝pXq Ñ K˝pX ˆ Xq

is an isomorphism. Since the classes of pushforwards of structure sheaves rOV pαqs generate

K˝pXq, any element of K˝pX ˆ Xq has an expression
ř

α,βP∆mα,βrOV pαqs b rOV pβqs. Then,

our Theorem 2.4.2 is a K-theoretic analogue of [17, Theorem 4], which reduces the problem

of calculating products to calculating the coefficients mα,β. In the context of Chow groups

and Minkowski weights, an elegant method to calculate such coefficients was provided in [18,

Theorem 4.2], via a displacement rule. In K-theory we explain one approach to doing this

in subsection 2.4.5.

After our results on the structure of GWp∆q, we move to the maps it has to and from

other well-known fan-based invariants in section 2.5. There is a map from Minkowski weights

9



to GWp∆q that corresponds to the operational Riemann-Roch transformation as described in

[2], we describe how to calculate the map from an expression for the Todd class. Additionally,

we describe the forgetful map from opK˝
T pXq Ñ opK˝pXq referenced above, via an explicit

formula for the map from piecewise exponential functions on ∆ to GWp∆q. Our approach

here follows the results of Katz and Payne in [27].

In the literature, there are other descriptions of the K-theory of toric varieties, and

we address briefly how they relate to the work present in this thesis. In the smooth case

the equivariant operational K-theory ring can be identified with the ring of T -equivariant

vector bundles K˝
T pXq. In this context Vezzosi and Vistoli show in [41] that K˝

T pXq and

also higher K-groups can be descibed via the Stanley-Reisner ring. The non-equivariant

theory can then be described as a quotient of the Stanley-Reisner ring. To calculate a map

to GWp∆q, one can simply choose a representative in K˝
T pXq and compute its localization

to obtain a piecewise exponential function. Then, the map to GWp∆q can be computed via

the description we provide.

2.1 Definitions of operational K-theory and GWp∆q

A class c in opK˝pXq is a collection pcf qf of endomorphisms of K˝pY q for each f : Y Ñ X.

The collection pcf qf must be compatible, in the sense that the maps must commute with

proper pushforwards, flat pullbacks, and Gysin homomorphisms. Addition and multiplica-

tion are defined coordinate-wise, meaning

pcf qf ` pdf qf “ pcf ` df qf , and

pcf qf ¨ pdf qf “ pcf ˝ df qf .

For further details, we refer the reader to [3, Section 4]. Amazingly, the product is commuta-

tive if X admits a resolution of singularities (via the Kimura sequence [3, Proposition 5.4]).

10



Since we have assumed X is complete, there is the following theorem, which is a special case

of [3, Theorem 6.1] that we need:

Theorem 2.1.1. The natural map from opK˝pXq to K˝pXq_ sending pcf qf to χpcIdp´qq is

an isomorphism.

We make the following definition,

Definition 2.1.2. Let the set of Grothendieck weights on ∆, denoted by GWp∆q, be all

Z-valued functions on ∆ of the form ϕf , where the value of ϕf on α is determined by

ϕf pαq “ fprOV pαqsq,

where f is a linear form on K˝pXq.

In other words, elements of GWp∆q are obtained from elements of K˝pXq_ by recording

the value of a form on the classes rOV pαqs. Since these classes generate K˝pXq, it follows

that GWp∆q is isomorphic to both K˝pXq_ and opK˝pXq. The interesting question is then

how to characterize which functions on ∆ are Grothendieck weights, or alternatively, finding

generating sets for the relations that hold between the classes rOV pαqs modulo torsion. To

be precise:

Definition 2.1.3. Let RelK˝pXq be the kernel of the map from Z∆ Ñ K˝pXq that sends eα
to rOV pαqs, and RelK˝pXqQ the same kernel defined over Q.

To characterize which functions on ∆ are Grothendieck weights is equivalent to finding

a generating set for RelK˝pXqQ . First, we explain how one can equivalently define RelK˝pXqQ

via Ehrhart theory. For α P ∆, let the corresponding face of P be denoted by Fα. Also, we

recall that the Ehrhart polynomial EhrP ptq of P is the polynomial determined by EhrP pt0q “

|t0P X M |.
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Proposition 2.1.4. Let ∆ be a projective simplicial fan and let X be the corresponding toric

variety. Let ϕP : Q∆ Ñ Qrts be the map sending the tuple paαqα to
ř

αP∆ aα EhrFαptq. Then

RelK˝pXqQ “
č

P normal
to ∆

kerpϕP q.

Proof. The “Ă” direction is a translation of the well-known theorem of vanishing of higher

cohomology for ample line bundles on toric varieties: let
ř

αP∆ aαrOV pαqs “ 0 in K˝pXqQ,

and for P any lattice polytope with normal fan ∆ let DP denote the associated divisor. For

each t0 ě 0, we also have the divisor Dt0P . Then

0 “ χprOpDt0P qs ¨ p
ÿ

αP∆

aαrOV pαqsqq “
ÿ

αP∆

aαχprOpDt0P q|V pαqsq “
ÿ

αP∆

aα EhrFαpt0q,

where the last equality follows from Proposition 1.2.1. Thus the polynomial
ř

αP∆ aα EhrFαptq

has infinitely many roots, and so it must be 0.

Now we verify the other direction: Suppose, for any polytope P , that
ř

αP∆ aα EhrFαptq “ 0. Translating to geometry, this states (when t “ 1) that

0 “
ÿ

αP∆

aαχpOpDP q|V pαqq “ χ

˜˜

ÿ

αP∆

aαrOV pαqs

¸

¨ rOpDP qs

¸

.

Then, the result follows from the next lemma.

Lemma 2.1.5. Suppose ∆ is a simplicial projective fan and X the corresponding toric

variety. If for x P K˝pXq, we have χpx ¨ rOpDP qsq “ 0 for all P with normal fan ∆, then

x “ 0 in K˝pXqQ.

Proof. We write “deg” for the projection map from A˚pXq to A0pXq. When X is projective

it is well-known (e.g. [28, Theorem 1.4.23]) that ample divisors generate the Néron-Severi

space of divisors modulo numerical equivalence NSpXqQ (which is the same as An´1pXqQ if

12



X is toric). Additionally, on a complete toric variety A˚pXq – A˚pXq_ via c Ñ degpcX ´q,

by [17, Theorem 3]. Thus, if for all c P A˚pXq, degpcX yq “ 0, then y must be zero. Since X

is simplicial, A˚pXqQ is generated as an algebra by Chern classes of T -equivariant divisors,

which are in turn additively generated by T -equivariant ample line bundles. Thus, A˚pXqQ

is generated over Q by 1 and monomials in c1pOpDP qq for P normal to ∆. Equivalently,

A˚pXqQ is generated by 1 and 1 ` c1pOpDP qq “ chpOpDP qq for ch : K˝pXq Ñ A˚pXqQ

the Chern character map. Since ch is a ring homomorphism, chpOpDP qq chpOpDQqq “

chpOpDP q b OpDQqq. But OpDP q b OpDQq “ OpDP`Qq, for P ` Q the Minkowski sum of

P and Q. Thus, y is zero if degpyq “ 0 and

degpchpOpDP qq X yq “ 0,

for all P . By Riemann-Roch for algebraic schemes as in [16, Chapter 18],

degpchpOpDP qq X yq “ degpτXpOpDP q b τ´1
X pyqqq “ χpOpDP q b τ´1

X pyqq.

Since τX is an isomorphism between K˝pXqQ and A˚pXqQ, the lemma and proposition are

proved.

2.2 Some properties of Grothendieck weights and low-

dimensional toric varieties

In this section we start by proving some properties of Grothendieck weights. For fans of di-

mension at most 3, these properties will be enough to characterize Grothendieck weights. In

constrast to the next section, the main theorem will not require substantial choices for

computing Todd classes. Recall that the Riemann-Roch transformation is a map τX :

K˝pXq Ñ A˚pXqQ, which becomes an isomorphism after tensoring K˝pXq with Q. The
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map commutes with proper pushforwards, and for a vector bundle E, there is the equality

τXprEsq “ chpEq ¨ tdpXq. For details regarding the Todd class tdpXq for singular varieties

and this version of the Riemann-Roch theorem, see [16, Chapter 18].

First, we require some lemmas. The first one follows from pushing forward the Todd

class of a resolution (see, e.g. [14]).

Lemma 2.2.1. Let α be in ∆pkq, and τX : K˝pXq Ñ A˚pXqQ the Riemann-Roch transfor-

mation. Then,

τXpOV pαqq “ rV pαqs `

˜

ÿ

αă̈β

1

2
rV pβqs

¸

` c,

where c P pA0pXq ‘ . . . ‘ An´k´2pXqqQ.

Lemma 2.2.2. Let
ř

α aαeα be an element of RelK˝pXq. Then,
ř

α aα “ 0.

Proof. Let π : X Ñ pt. Since
ř

α aαrOV pαqs “ 0 inK˝pXq, the expression π˚p
ř

α aαrOV pαqsq “

0 as well. Since π˚ agrees with the Euler characteristic and V pαq is toric, we know π˚rOV pαqs “

1, so the lemma follows.

To proceed, we explain our basic strategy. If we choose a suitable lift of τX to an

endomorphism of Q∆, we obtain an isomorphism of exact sequences

0 RelK˝pXqQ Q∆ K˝pXqQ 0

0 RelA˚pXqQ Q∆ A˚pXqQ 0,

and we can obtain a set of generators of RelK˝pXqQ as the inverse images of generators of

RelA˚pXqQ . By Lemma 2.2.1, we can fix a lift τ: of τX which maps eα to eα `
ř

αă̈β
1
2
eβ ` . . . ,

leaving unspecified the coefficients of eγ for γ containing α as a face of codimension ě 2.

Since the Chow groups are graded, RelA˚pXqQ splits as a direct sum ‘i RelAipXqQ , and a
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restatement of [18, Proposition 2.1(b)] is that RelAipXq is generated by

ÿ

αă̈β

xu, nβ,αyeβ,

as α varies among cones of codimension i ` 1 and u varies in Mpαq (so e.g. RelAnpXq is

trivial).

Now, let us demonstrate some propositions about Grothendieck weights.

Proposition 2.2.3. A Grothendieck weight is constant on maximal cones.

Proof. Though this can be shown directly from geometry, one method of proof that is more in

line with the next few propositions is to use the lift τ: of the Riemann-Roch transformation

that we have chosen. We know by [18, Proposition 2.1(b)] cited above that RelA0pXq is

generated by eσ ´ eσ1 , and its inverse image in RelK˝pXqQ is simply eσ ´ eσ1 again. This

imposes that gpσq “ gpσ1q for any Grothendieck weight.

The second proposition is about relations between codimension 1 cones:

Proposition 2.2.4. Let g be a Grothendieck weight, σ P ∆pnq any maximal cone, and

α P ∆pn ´ 2q. Then
ÿ

αă̈β

pgpβq ´ gpσqqvβ,α “ 0.

Proof. RelA1pXq contains
ř

αă̈βxu, vβ,αyeβ for each u in Mpαq. The inverse image of eβ with

respect to τ: is eβ ´ 1
2
eσ1 ´ 1

2
eσ2 for σ1, σ2 the two maximal cones that contain β. Since

eσ ´ eσi
is in RelK˝pXq, we can see that

ř

αă̈βxu, vβ,αypeβ ´ eσq is also contained in RelK˝pXq.

This implies that
ř

αă̈βxu, vβ,αypgpβq ´ gpσqq “ 0 for each u P Mpαq, which is equivalent to

the Proposition.

The third one, in the same pattern, is about relations between codimension 2 cones in

∆.
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Proposition 2.2.5. Let g be a Grothendieck weight, σ P ∆pnq any maximal cone, and

α P ∆pn ´ 3q. Then

ÿ

αă̈β

˜

gpβq ´
ÿ

βă̈γ

gpγq

2

¸

vβ,α “ gpσq

˜

ÿ

αă̈β

p1 ´
ÿ

βă̈γ

1

2
qvβ,α

¸

.

Proof. The element
ř

αă̈βxu, nβ,αyeβ is in RelA2pXq, so the inverse image in RelK˝pXqQ has the

form
ÿ

ρ

xu, nρypeρ ´ p
ÿ

ρă̈β

1

2
eβqq `

ÿ

σ maximal
aσeσ

for some coefficients aσ. We can change these generators by multiples of eσ ´ eσ1 to obtain

that the following is in RelK˝pXqQ ,

ÿ

ρ

xu, nρypeρ ´ p
ÿ

ρă̈β

1

2
eβqq ` p

ÿ

σ maximal
aσqeσ0

for any chosen maximal cone σ0. Lemma 2.2.2 implies that

ÿ

σ maximal
aσ “ ´

ÿ

ρ

xu, nρyp1 ´ p
ÿ

ρă̈β

1

2
qq.

The presence of this element in RelK˝pXq implies that a Grothendieck weight g must satisfy

ÿ

ρ

xu, nρypgpρq ´ p
ÿ

ρă̈β

1

2
gpβqqq “ gpσq

ÿ

ρ

xu, nρyp1 ´ p
ÿ

ρă̈β

1

2
qq,

which is equivalent to the condition in the proposition.

In fact, these conditions are enough to characterize Grothendieck weights in low dimen-

sions.
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Theorem 2.2.6. 1. A Z-valued function on the fan of P1 is a Grothendieck weight if and

only if it is constant on maximal cones.

2. A Z-valued function g on ∆ the fan of a toric surface is a Grothendieck weight if and

only if it is constant on maximal cones, and

ÿ

ρP∆p1q

pgpρq ´ gpσqq vρ “ 0,

for σ any maximal cone.

3. A Z-valued function g on ∆ the fan of a toric threefold is a Grothendieck weight if and

only if it is constant on maximal cones and, still writing σ for any maximal cone:

(a)
ř

ρă̈β pgpβq ´ gpσqq vβ,ρ “ 0 for any fixed ray ρ, and

(b)
ř

ρP∆p1q

´

gpρq ´
ř

ρă̈α
gpαq

2

¯

vρ “ gpσq

´

ř

ρP∆p1qp1 ´
ř

ρă̈α
1
2
qvρ

¯

.

Proof. In this range, RelA˚pXq – RelA0pXq ‘RelA1pXq ‘RelA2pXq (the last two factors may be

trivial) so the inverse images under τ: of the generators of RelAipXq generate RelK˝pXqQ .

2.3 Balancing on simplicial fans

Since we have defined GWp∆q so that it describes opK˝pXq, we now describe different

aspects of GWp∆q. First, we focus on the following, which is equivalent to the question of

finding explicit balancing condition characterizations of GWp∆q:

Question 2.3.1. Given ∆ of arbitrary dimension, how can we calculate explicit generating

sets for RelK˝pXqQ?

Citing the results of [18] again, we know generating sets for RelA˚pXq. By using the

Riemann-Roch transformation we can turn generators for RelA˚pXq into ones for RelK˝pXqQ ,

but the primary difficulty that must be addressed is how to choose a formula for the Todd
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class in terms of T -invariant subvarieties (this is intimately related to Danilov’s problem, see

[14, Section 11] and [7, 31, 36]). Though a canonical expression for τXpOXq as a polynomial

in toric divisors was found by Pommersheim in [35], one must make choices to write non-

squarefree monomials in terms of T -invariant subvarieties.

When ∆ is simplicial, Pommersheim and Thomas introduced in [36] certain rational

numbers tαρ for each cone α and ray ρ such that ρ Ă α, which depend on the choice of a

generic complete flag F‚ in NQ. These rational numbers will help us to write non-squarefree

monomials in terms of T -invariant subvarieties.

Definition 2.3.2. Let F‚ be a generic complete flag in NQ, so Fi is an i-dimensional subspace

of NQ. Given α P ∆pkq, and i from 1 to k, let vρi be the primitive element of the ray ρi of α.

Then by genericity, Fn´k`1 X Q ¨ α is 1-dimensional, and so it determines a vector (unique

up to scaling):

0 ‰

k
ÿ

i“1

tαρivρi P Fn´k`1 X Q ¨ α,

We only consider generic F‚ such that all tαρ are non-zero.

We use these tαρ in applying the following result from [36], which calculates an explicit

formula for monomials in the T -invariant divisors rV pρqs as a Q-linear combination of classes

of subvarieties rV pαqs. For a cone β, let Pβ be the set of rays in β. Let S be some set of rays

in ∆. For ρ P S, let aρ be some positive integers and let l denote the sum,
ř

ρPS aρ. Then a

restatement of [36, Theorem 3] is:

Proposition 2.3.3.

ź

ρPS

rV pρqsaρ “
ÿ

βP∆plq s.t.
β contains all ρPS

ś

ρPSptβρqaρ

multpβq
ś

ρĂβ t
β
ρ

rV pβqs.

Nominally, one would need to make more choices for every α in ∆ to obtain an expression

for τXpOV pαqq. However, we make the following observation, which avoids this. For α P ∆
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and a generic flag F‚ in N , the images F1 Ă . . . Ă Fn´dimpαq in Nα form a generic flag. Thus

for β a cone containing α and ρ a ray in β not contained in α, there are also numbers tβρ .

We relate these to tβρ in the next proposition.

Proposition 2.3.4. Let α ă β be simplicial cones in a fan ∆. Then for ρ in β not contained

in α, tβρ “
multpα`ρq

multpαq
tβρ .

Proof. The unique vector in Fn´k`1XQ ¨β is the image of the unique vector in Fn´k`1XQ ¨β,

which in explicit terms is
ÿ

ρĂβ

tβρvρ “
ÿ

ρĂβ
ρĆα

tβρvρ.

But the image of a primitive generator of a ray vρ is not necessarily primitive, i.e. vρ “ bρvρ

for bρ a positive integer. In fact, bρ “ rZvρ : Zvρs of subgroups of Nα. If πα : N Ñ Nα is

the quotient map, then π´1
α pZvρq “ Nα`ρ, and π´1

α pZvρq “ Nα ` Zvρ. Thus rZvρ : Zvρs “

rNα`ρ : Nα ` Zvρs. Then we can decompose multpα ` ρq as a product:

multpα ` ρq “ rNα`ρ : Zv1 ` . . . ` Zvk ` Zvρs

“ rNα`ρ : Nα ` ZvρsrNα ` Zvρ : Zv1 ` . . . ` Zvk ` Zvρs.

But rNα ` Zvρ : Zv1 ` . . . ` Zvk ` Zvρs “ rNα : Zv1 ` . . .Zvks “ multpαq. Thus rNα`ρ :

Nα ` Zvρs “
multpα`ρq

multpαq
“ bρ. Thus, we have

ÿ

ρĂβ
ρĆα

tβρvρ “
ÿ

ρĂβ
ρĆα

tβρ
multpα ` ρq

multpαq
vρ.

Since the primitive generators of the rays in β are the vρ’s, we are done by the definition of

tβρ .

Now, we use these propositions to write τXpOV pαqq explicitly. For each cone α P ∆

Brion and Vergne defined the (finite) subgroup Gα Ă pC˚qdimα to be the kernel of the map
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pC˚qdimα Ñ T given by

pcρqρ ÞÑ
ź

ρĂα

vρpcρq.

For nested cones α ă β, we use the notation Gα
β for the analogous subgroup defined from

the data of β in the quotient fan. Namely:

Definition 2.3.5. Let Gα
β be the kernel of the map pC˚qdimβ´dimα Ñ Tα given by

pcρqρĂβ
ρĆα

ÞÑ
ź

ρĂβ
ρĆα

vρpcρq.

Let k be the number of rays in the quotient fan ∆α. We define G∆α to be the union

inside pC˚qk of Gα
β over all β containing α. For a ray ρ in β not contained in α, we denote

by aαρ the character Gα
β Ñ C˚ given by projection.

Using these numbers, we have the following proposition. Treating tqi as a variable with

degree 1 will refer to the degree 0 coefficient of a formal Laurent series ψpt1, . . . , tkq by

ψpt1, . . . , tkqr0s, i.e. if

ψ “

ˆ

1

1 ´ e´t

˙ ˆ

1

1 ´ e´s

˙

“

ˆ

1

t
`

1

2
`

t

12
` Opt2q

˙ ˆ

1

s
`

1

2
`

s

12
` Ops2q

˙

,

then

ψr0s “
1

4
`

1

12

ˆ

t

s
`
s

t

˙

.

Proposition 2.3.6. For X a complete simplicial toric variety, the Riemann-Roch transfor-

mation has the form

τXprOV pαqsq “
ÿ

αăβ

ÿ

gPGα
β

¨

˚

˝

ź

ρĂβ
ρĆα

multpα ` ρq{multpαq

1 ´ aαρ pgqe´multpα`ρqtβρ

˛

‹

‚

r0s

rV pβqs

multpβq
.

Proof. In section 4.2 of [10], the authors provide a formula for the Todd class of a complete
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simplicial toric variety. Applied to V pαq, this gives:

τV pαqprOV pαqsq “
ÿ

gPG∆α

ź

ρP∆αp1q

rV pρqs

1 ´ aαρ pgqe´rV pρqs
.

Since the Todd class commutes with proper pushfoward, we have

τXprOV pαqsq “
ÿ

gPG∆α

ź

ρP∆αp1q

i˚
rV pρqs

1 ´ aαρ pgqe´rV pρqs
.

Applying Proposition 2.3.3, we have

i˚
ź

ρP∆αp1q

rV pρqs

1 ´ aαρ pgqe´rV pρqs
“

ÿ

αăβ

¨

˚

˝

ź

ρĂβ
ρĆα

1

1 ´ aαρ pgqe´tβρ

˛

‹

‚

r0s

i˚rV pβqs

multαpβq
,

“
ÿ

αăβ

¨

˚

˝

ź

ρĂβ
ρĆα

1

1 ´ aαρ pgqe´tβρ

˛

‹

‚

r0s

rV pβqs

multαpβq
.

Using the formula for tβρ from the previous proposition, and the formula for multαpβq from

the appendix, we obtain that the above is equal to

ÿ

αăβ

¨

˚

˝

ź

ρĂβ
ρĆα

1

1 ´ aαρ pgqe´
multpα`ρq

multpαq
tβρ

˛

‹

‚

r0s

rV pβqs

multpβq
ś

ρĂβ
ρĆα

multpαq

multpα`ρq

.

Due to the “degree 0” imposition, the multpαq factor in the exponent e´
multpα`ρq

multpαq
tβρ can be

cancelled. Summing over g P Gα
β gives the proposition.

Example 2.3.7. We use this proposition to calculate the tαρ and Riemann-Roch matrix for

a weighted projective space X :“ Pp1, 1, 2, 3q. Recall that the fan of X has rays ρ1 “

p1, 0, 0q, ρ2 “ p0, 1, 0q, ρ3 “ p0, 0, 1q, and ρ4 “ p´1,´2,´3q. The maximal cones are those
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generated by 3-element subsets of tρ1, ρ2, ρ3, ρ4u. If our flag in Q3 is given by

t0u Ĺ spantpa, b, cqu Ĺ spantpa, b, cq, pd, e, fqu Ĺ Q3,

where a, b, c, d, e, f are some numbers so that pd, e, fq is not a multiple of pa, b, cq, then we

have expressions for tαρ written in Table 2.1.

Table 2.1: Example 2.3.7

Cone pαq Ray pρq tσρ

σ123 ρ1 a
ρ2 b
ρ3 c

σ124 ρ1 a ´ c{3
ρ2 b ´ 2c{3
ρ4 ´c{3

σ134 ρ1 a ´ b{2
ρ3 c ´ 3b{2
ρ4 ´b{2

σ234 ρ2 b ´ 2a
ρ3 c ´ 3a
ρ4 ´a

α12 ρ1 af ´ cd
ρ2 bf ´ ce

α13 ρ1 ae ´ bd
ρ3 ce ´ bf

α14 ρ1 3pae ´ bdq ` 2pcd ´ afq ` pbf ´ ceq
ρ4 bf ´ ce

α23 ρ2 bd ´ ae
ρ3 af ´ cd

α24 ρ2 ´p3pae ´ bdq ` 2pcd ´ afq ` pbf ´ ceqq

ρ4 af ´ cd
α34 ρ3 3pae ´ bdq ` 2pcd ´ afq ` pbf ´ ceq

ρ4 ae ´ bd
ρ ρ 1
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After calculating these tαρ , one can write the Todd class of each subvariety in a uniform

way with rational functions in tσρ as coefficients. The column vector corresponding to the

image of rOXs is on the last page. For the flag specified by pa, b, cq “ p2, 3, 5q, pd, e, fq “

p3, 5, 7q, one obtains the Riemann-Roch matrix seen in Table 2.2.

Table 2.2: The Riemann-Roch matrix of Example 2.3.7

rV p´qsz
rOV p´qs X ρ1 ρ2 ρ3 ρ4 α12 α13 α14 α23 α24 α34 σ123 σ124 σ134 σ234

X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ1 1/2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ2 1/2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ρ3 1/2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ρ4 1/2 0 0 0 1 0 0 0 0 0 0 0 0 0 0
α12 29/48 1/2 1/2 0 0 1 0 0 0 0 0 0 0 0 0
α13 29/48 1/2 0 1/2 0 0 1 0 0 0 0 0 0 0 0
α14 -5/48 1/2 0 0 1/2 0 0 1 0 0 0 0 0 0 0
α23 5/12 0 1/2 1/2 0 0 0 0 1 0 0 0 0 0 0
α24 5/12 0 1/2 0 1/2 0 0 0 0 1 0 0 0 0 0
α34 5/12 0 0 1/2 1/2 0 0 0 0 0 1 0 0 0 0
σ123 31/72 79/180 59/120 3/2 0 1/2 1/2 0 1/2 0 0 1 0 0 0
σ124 1/8 41/60 -11/60 0 1/12 1/2 0 1/2 0 1/2 0 0 1 0 0
σ134 1/36 1/9 0 1/9 1/3 1/2 1/2 0 0 1/2 0 0 0 1 0
σ234 5/12 0 11/24 11/24 5/12 0 0 0 1/2 1/2 1/2 0 0 0 1

Definition 2.3.8. Let µαpβq be
ř

gPGα
β

ˆ

ś

ρĂβ
ρĆα

multpα`ρq{multpαq

1´aαρ pgqe´multpα`ρqt
β
ρ

˙

r0s

. Then, the matrix

pµαpβqqβ,α defines an isomorphism from Q∆ to itself lifting the Riemann-Roch isomorphism

from K˝pXqQ to A˚pXqQ. Let ναpβq refer to the pβ, αq-th entry of the inverse of pµαpβqq, so

τ´1
X prV pαqsq “

ř

αăβ ναpβqrOV pβqs. In particular, ναpαq “ 1, and for ∆ smooth and the tαρ as

defined in 2.3.2 we can write:

ναpβq “
ÿ

α0ňα1ň...ňαk
α0“α,αk“β

p´1qk

¨

˝

k
ź

l“1

˜

ź

ρPαl∖αl´1

1

1 ´ e´t
αl
ρ

¸

r0s

˛

‚.

Finally, we can prove:
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Theorem 2.3.9. For ∆ a complete simplicial fan, a function g : ∆ Ñ Z is a Grothendieck

weight if and only if it satisfies

ÿ

αă̈β

xu, vβ,αy
ÿ

βăγ

νβpγqgpγq “ 0,

for all α P ∆, u P Mpαq.

Proof. The result [18, Proposition 2.1] says that the expressions
ř

αă̈βxu, vβ,αyeβ generate

the kernel of the map Z∆ Ñ A˚pXq sending eα to rV pαqs. Denote this kernel by RelA˚pXqQ .

Since τXprOV pαqsq “
ř

αăβ µαpβqrV pβqs, we have an isomorphism of exact sequences

0 RelKpXqQ Q∆ K˝pXqQ 0

0 RelA˚pXqQ Q∆ A˚pXqQ 0,

where the map on the right is τX , and the middle and left maps are given by sending eα to
ř

αăβ µαpβqeβ. The inverse image of
ř

αă̈βxu, vβ,αyeβ P RelA˚pXqQ is
ř

αă̈βxu, vβ,αy
ř

βăγ νβpγqeγ,

so such relations generate RelK˝pXqQ , and appropriate multiples of these relations generate a

finite index subgroup of RelK˝pXq. Dually, K˝pXq_ must then consist of linear forms sending

such expressions to 0, which implies that the relations in the theorem statement characterize

Grothendieck weights.

The following lemma explains how one can approach non-simplicial fans.

Lemma 2.3.10. Let ∆ be an arbitrary fan and ∆1 a smooth refinement. Then g : ∆ Ñ Z is

a Grothendieck weight if and only if the function on ∆1 determined by α1 Ñ gpα1q for α the

smallest cone in ∆ containing α1 is a Grothendieck weight on ∆1.

Proof. Let X 1 and X be the corresponding toric varieties. Since ∆1 is a subdivision of ∆, we

have an induced T -equivariant birational morphism ϕ : X 1 Ñ X. If α is the smallest cone
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in ∆ containing α1, standard vanishing results for toric varieties imply that ϕ˚prOV pα1qsq “

rOV pαqs, so if we map eα1 P Q∆1 to eα P Q∆, we have a map of exact sequences:

0 RelK0pX 1q Q∆1

K˝pX 1q 0

0 RelK0pXq Q∆ K˝pXq 0.

All we need to do is to show that the kernel of the middle map surjects onto the kernel of the

last map. By the snake lemma, it is enough to show that RelK˝pX 1q surjects onto RelK˝pXq.

We denote the projection map from Q∆ to Q∆pn´lq by πl. Define a filtration on RelK˝pXq by

Fk RelK˝pXq “
Ş

ląk kerπl. Then, for example, Fn RelK˝pXq is just RelK˝pXq, and F0RelK˝pXq

are elements of the form eσ1 ´ eσ2 for σ1, σ2 maximal cones in ∆.

We show by induction that Fk RelK˝pX 1q surjects onto Fk RelK˝pXq. For k “ 0 this is clear,

so we assume it is true for some k0. Let

s “

¨

˝

ÿ

αP∆pn´k0´1q

aαeα

˛

‚`

¨

˚

˚

˝

ÿ

αP∆pn´lq
lďk0

aαeα

˛

‹

‹

‚

,

be in Fk0`1RelK˝pXq. Then, in the Chow group
ř

αP∆pn´k0´1q aαrV pαqs “ 0.

Let RelAkpXq be the kernel of the map Q∆pn´kq Ñ AkpXq sending eα to rV pαqs, and

define RelAkpX 1q similarly. Since ϕ is an envelope (meaning that ϕ is proper and every

subvariety of X is the birational image of some subvariety of X 1, see e.g. [34, Lemma

1]), the natural map from RelAkpX 1q to RelAkpXq is surjective for any k, so we can find an

expression 0 “
ř

α1P∆1pn´k0´1q aα1rV pα1qs such the sum of aα1 for all α1 subdividing α is aα.

Then 0 “
ř

α1P∆1pn´k0´1q aα1τ´1
X 1 prV pα1qsq so there is a relation r “

ř

α1P∆1pn´k0´1q aα1eα1 ` . . .

which by the Riemann-Roch theorem is in Fk0`1RelK˝pXq which does not quite map to s.

However, s and the image of r only differ by an element of Fk0 RelK˝pXq. By our induction
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hypothesis we are done.

Remark 2.3.11. We considered using a different set of generators for the Grothendieck group

in our definition of Grothendieck weights, e.g. ideal sheaves or canonical sheaves of invariant

subvarieties. However, the problem of combinatorially describing the relations between these

classes seems equally difficult.

2.4 Products

Grothendieck weights on ∆ have a product induced by their isomorphism with opK˝pXq.

This relies on the following Künneth isomorphism, which is a special case of [3, Proposition

6.4].

Proposition 2.4.1. The natural map K˝pXq b K˝pXq Ñ K˝pX ˆ Xq is an isomorphism.

The product of Grothendieck weights may be computed by calculating a decomposition

in K˝pXˆXq of the structure sheaf of the diagonal into structure sheaves of T ˆT -invariant

subvarieties. In a precise sense, this is a deformation of the case of Chow groups. Here is

the basic theorem, which is a K-theoretic analogue of [17, Theorem 4]:

Theorem 2.4.2. Let δ : X Ñ X ˆ X be the diagonal map. Given an expression δ˚pzq “
ř

imiai b bi with mi P Q, the product of classes f and g in opK˝pXq evaluated on z satisfies:

χppf ¨ gqIdpzqq “
ÿ

i

miχpfIdpaiqqχpgIdpbiqq.

Proof. To avoid putting an Id subscript under each operational class, we establish the con-

vention for this proof that the Id subscript is implied for all operational classes which appear.

For any morphism ϕ : Y Ñ X, f P opK˝pXq, and z P K˝pY q, the identity

pϕ˚fqpzq “
ÿ

χpfpuiqqvi, (*)
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holds, where γϕ is the graph of ϕ and pγϕq˚pzq “
ř

ui b vi P K˝pXq b K˝pY q. To prove

this, let π1 and π2 be the projections from X ˆ Y to X and Y . Then, one has the identities

π2 ˝ γϕ “ idY , π1 ˝ γϕ “ ϕ. Also, operational classes satisfy a projection formula, so we have

pϕ˚fqpzq “ idY ˚ppϕ˚fqpzqq “ π2˚γϕ˚ppγ˚
ϕπ

˚
1fqpzqq “ π2˚ppπ˚

1fqpγϕ˚zqq.

Substituting our expression for γϕ˚z and using the fact that flat pull-back and operational

classes commute, we have

π2˚ppπ˚
1fqpγϕ˚zqq “ π2˚ppπ˚

1fqp
ÿ

ui b viqq “ π2˚p
ÿ

fpuiq b viq,

and finally

π2˚p
ÿ

fpuiq b viq “
ÿ

χpfpuiqqvi,

since higher direct images commute with flat pull-back. Then, in the context of the propo-

sition we apply (*) when ϕ “ δ. Since f, g satisfy f “ δ˚pid b fq, we obtain

pf ¨ gqpzq “ fpgpzqq “ fp
ÿ

i

miχpgpbiqqaiq “
ÿ

i

miχpgpbiqqfpaiq,

to which we apply χ to obtain the proposition.

Remark 2.4.3. In fact, the proposition and proof as stated are valid for any complete variety

which is linear in the sense of [40].

Corollary 2.4.4. Let f and g be Grothendieck weights and δ : X Ñ X ˆX be the diagonal

map. Given an expression δ˚prOV pαqsq “
ř

β,γ cβγrOV pβqs b rOV pγqs with cβγ P Q, we have

pf ¨ gqpαq “
ÿ

β,γ

cβγfpβqgpγq.
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2.4.5 Decomposing diagonals and product formulas

To compute products, the data required is a suitable expression for δ˚prOV pαqsq. Outside

of the smooth case where one can use Poincaré duality, we do not know an easy way to

do this. Since we have already addressed how to explicitly describe the Riemann-Roch

transformation in Section 2.3, we apply it to finding an expression for δ˚prOV pαqsq in terms

of rOV pβqs b rOV pγqs.

Let ∆ be a simplicial fan, and suppose that f and g in GWp∆q are given. Their product

may be calculated explicitly via the formula in the next theorem. As in the case of Minkowski

weights, to undertake the calculation one must choose an auxiliary “displacement” vector in

N which we call v. Then for three cones α, β, and γ, we define mα
β,γ in the same manner as

[18], by

mα
β,γ “

$

’

&

’

%

0 if β X pγ ` vq “ H,

rN : Z ¨ β ` Z ¨ γs otherwise.

Though it is suppressed in the notation, we emphasize that mα
β,γ depends on the choice of v.

Theorem 2.4.6. The product weight h “ f ¨ g is given by

hpαq “
ÿ

αăβ

µαpβq
ÿ

βăγ,ϵ
codimpγq`codimpϵq

“codimpβq

mβ
γ,ϵ

ÿ

γăζ
ϵăη

νγpζqνϵpηqfpζqgpηq,

where µαpβq, ναpβq were defined in 2.3.8.

Proof. Recall that δ : X Ñ X ˆ X is the diagonal map. Then, we have

δ˚prOV pαqsq “ δ˚pτ´1
X pτXprOV pαqsqqq

“ τ´1
X

˜

ÿ

αăβ

µαpβqpδ˚prV pβqsqq

¸

.
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By [18, Theorem 4.2], we may use the mβ
γ,ϵ determined by our generic displacement vector

to decompose each δ˚prV pβqsq, thus obtaining

τ´1
X

˜

ÿ

αăβ

µαpβqδ˚prV pβqsq

¸

“τ´1
X

¨

˚

˚

˚

˚

˝

ÿ

αăβ

µαpβq
ÿ

βăγ,ϵ
codimpγq`codimpϵq

“codimpβq

mβ
γ,ϵrV pγq ˆ V pϵqs

˛

‹

‹

‹

‹

‚

“
ÿ

αăβ

µαpβq
ÿ

βăγ,ϵ
codimpγq`codimpϵq

“codimpβq

mβ
γ,ϵτ

´1
X prV pγq ˆ V pϵqsq.

But then,

τ´1prV pγq ˆ V pϵqsq “τ´1prV pγqsqτ´1prV pϵqsq

“
ÿ

γăζ
ϵăη

νγpζqνϵpηqrOV pζqˆV pηqs.

So, by Corollary 2.4.4 the theorem follows.

We can use this theorem to show the following proposition and its corollary, which are

basic observations about the structure of GWp∆q.

Proposition 2.4.7. Let Σ Ă ∆ be fans. The set of Grothendieck weights on ∆ that vanish

on the complement of Σ forms an ideal in GWp∆q.

Proof. Suppose we have two weights f, g, such that f vanishes on the cones of ∆. Then in
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general there are some coefficients C such that

pf ¨ gqpαq “
ÿ

αăβ

ÿ

βăγ,ϵ
codimpγq`codimpϵq

“codimpβq

ÿ

γăζ
ϵăη

Cα,β,γ,ϵ,
ζ,η

fpζqgpηq.

If α is not in Σ, then since α ă ζ and Σ is a fan, certainly ζ is not in Σ. Thus fpζq must be

0 for each term in the sum.

Corollary 2.4.8. The ring GWp∆q is filtered by ideals Ik consisting of functions that vanish

on cones of codimension less than k.

Example 2.4.9. We calculate the product of the following Grothendieck weights: The first

2c ´ d

c b

b ` 3c ´ 3d

d

a 2z ´ w

z y

y ` 3z ´ 3w

w

x

Figure 2.1: Two Grothendieck weights on the fan of a Hirzebruch surface

weight has value d on all maximal cones, and the second has value w. To calculate the

product, we need a Riemann-Roch matrix. As detailed in Section 3, we require a complete

flag. In two dimensions, this is merely the data of a vector, so we pick the vector p1, 1q. The

resulting Riemann-Roch matrix is shown in Figure ??.

We must also select a displacement vector v which specifies the values of mα
β,γ. If we

choose e.g. v “ p5, 1q, then the non-zero mα
β,γ are m0

ρ1,ρ4
“ 2, and m0

ρ2,ρ3
“ m0

0,σ34
“ m0

σ12,0
“

mρ1
ρ1,σ14

“ mρ1
σ12,ρ1

“ mρ2
ρ2,σ23

“ mρ2
σ12,ρ2

“ mρ3
ρ3,σ34

“ mρ3
σ23,ρ3

“ mρ4
ρ4,σ34

“ mρ4
σ14,ρ4

“ 1. The

resulting weight is

with a value of aw ´ 2bw ´ 8cw ` 9dw ` dx ` 2cy ´ 2dy ` 2bz ` 6cz ´ 8dz on the origin.
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0
1
2

1 0 0 0 0 0 0 0
1
2

0 1 0 0 0 0 0 0
1
2

0 0 1 0 0 0 0 0
1
2

0 0 0 1 0 0 0 0
5
12

1
2

1
2

0 0 1 0 0 0
1
12

0 1
2

1
2

0 0 1 0 0
41
60

0 0 1
2

1
2

0 0 1 0
´11

60
1
2

0 0 1
2

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Figure 2.2: The matrix for a lift of the Riemann-Roch transformation on the Hirzebruch
surface

2cw ` 2dz ´ 3dw

cw ` dz ´ dw bw ` dy ´ dw

bw ` 3pcw ´ dzq ´ 7dw

dw

Figure 2.3: The product weight

2.5 Maps to Grothendieck weights

The most straightforward relationship to describe is the map from Minkowski weights to

Grothendieck weights:

Proposition 2.5.1. There is an induced map T : MW˚p∆q Ñ GWp∆qQ. For a simplicial

fan this sends a weight f P MWkp∆q to the function g, defined by

gpαq “
ÿ

αăβ

µαpβqfpβq.

31



This is an immediate consequence of the formula the Riemann-Roch transformation τX :

K˝pXq Ñ A˚pXqQ given in Proposition 2.3.6, since naturally MW˚p∆q – A˚pXq_ and

GWp∆q – K˝pXq_.

Remark 2.5.2. It is possible to use the previous proposition to algorithmically calculate

the inverse image under T of a Grothendieck weight. Let g P GWp∆q be a Grothendieck

weight, and suppose that g P Ik. Then, the function on ∆pn ´ kq obtained by restricting

g is a Minkowski weight: in the case g P Ik`1, g vanishes on cones of dimension n ´ k,

so g|∆pn´kq is uniformly 0. If g P IkzIk`1, then g|∆pn´kq satisfies the relation in Theorem

2.3.9 which simplifies to the condition that g|∆pn´kq P MWkp∆q. Then, g ´ T pg|∆pn´kqq is

an element of GWp∆qQ, and is in pIk`1qQ. One may repeat this process to obtain that

g ´ T pg|∆pn´kqq ´ T ppg ´ T pg|∆pn´kqqq|∆pn´k´1qq P pIk`1qQ, and so on. After n ´ k iterates,

we obtain an identity of the form g ´ T pg|∆pn´kqq ´ T ppg ´ T pg|∆pn´kqqq|∆pn´k´1qq ´ . . . “ 0.

Applying T´1 produces a formula for T´1pgq.

Now, for f P MWkp∆q we say that an element g P GWp∆q lifts f if g P Ik and g|∆pkq “ f .

Suppose that f P MWkp∆q. Then for example, T pfq will be contained in pIkqQ and will

satisfy T pfq|∆pkq “ f , but will not generally be an element of GWp∆q. Our next proposition

is a sufficient condition for existence of lifts.

Let Fi be the i-th piece of the dimension filtration on the Grothendieck group, meaning

that it is generated by coherent sheaves with support of dimension at most i.

Proposition 2.5.3. Suppose Fk is saturated as a subgroup of K˝pXq. Then every f P

MWkp∆q has a lift in GWp∆q.

Proof. We have the exact sequence

0 Ñ Fk{Fk´1 Ñ K˝pXq{Fk´1 Ñ K˝pXq{Fk Ñ 0.
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The long exact sequence obtained after applying p´q_ “ HomZp´,Zq is:

0 pK˝pXq{Fkq_ pK˝pXq{Fk´1q
_ pFk{Fk´1q

_

Ext1ZpK˝pXq{Fk,Zq Ext1ZpK˝pXq{Fk´1,Zq Ext1ZpFk{Fk´1,Zq.

Let us consider the first few terms. pK˝pXq{Fk´1q
_ may be naturally identified with the ideal

Ik of Grothendieck weights which vanish on cones of codimension less than k, as defined in

Corollary 2.4.8. On the other hand, Fk{Fk´1 is the k-th piece of graded K-theory, and the

map AkpXq Ñ Fk{Fk´1 sending rV s to rOV s is an isomorphism after tensoring with Q (see

[16, Chapter 18]). Thus, pFk{Fk´1q_ – MW kp∆q. Thus the first few terms in the exact

sequence become:

0 Ñ Ik`1 Ñ Ik Ñ MWkp∆q Ñ . . . .

Suppose that a Minkowski weight f P MWkp∆q does not have a lift. Then, Ik cannot

surject onto MWkp∆q. Thus, the group Ext1ZpK˝pXq{Fk,Zq cannot be trivial. But this

group is isomorphic to the torsion subgroup of K˝pXq{Fk, which is trivial if and only if Fk

is saturated as a subgroup of K˝pXq.

The ring GWp∆q also admits a map from PExpp∆q, which is the ring of continuous

functions on ∆ that are given on each cone α P ∆ by an exponential function em, for

m P M . Anderson and Payne showed that this ring is naturally isomorphic to opK˝
T pXq,

and thus the map to GWp∆q is induced by the forgetful map opK˝
T pXq Ñ opK˝pXq. We

will require K-theoretic equivariant multiplicities ϵKp pV pαqq, where p P XT . These have been

recently introduced in [2]. They satisfy
ř

pPXT ϵppV pαqqrip˚pOpqs “ rOV pαqs, where ip˚ is the

pushforward in KT
˝ along the inclusion of the fixed point p.
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Theorem 2.5.4. There is a commuting square

opK˝
T pXp∆qq PExpp∆q

opK˝pXp∆qq GWp∆q

–

forgetful forgetful

–

where the forgetful map from PExpp∆q to GWp∆q sends a piecewise-exponential function ϕ

to the limit of the function

α Ñ
ÿ

σP∆p0q

ϵKV pσqpV pαqqf |σ,

as the argument of ϕ approaches 0 P N .

Proof. If ϕ is a piecewise exponential function, then via the isomorphism in [3, Theorem

6.1], ϕ corresponds to a RpT q-linear function ϕlin : KT
˝ pXq Ñ RpT q. The function ϕlin can

be written explicitly via the projection formula:

ϕlinprOV pαqsq “ ϕlinp
ÿ

pPXT

ϵKp pV pαqqrip˚pOpqsq,

“ i˚XTϕlinp
ÿ

pPXT

ϵKp pV pαqqrOpsq,

“
ÿ

pPXT

ϵKp pV pαqqi˚pϕlinprOpsq “
ÿ

pPXT

ϵKp pV pαqqϕ|σp ,

where σp is the maximal cone corresponding to p.

Then, the forgetful map from opK˝
T pXq to opK˝pXq is induced by the projection X ˆ

T Ñ X, meaning it is the pullback from opK˝
T pXq to opK˝

T pX ˆ T q – opK˝pXq. Via the

identification of opK˝
T pXq with RpT q-linear maps from KT

˝ pXq to RpT q, and opK˝pXq with

K˝pXq_, the forgetful map sends ϕlin : KT
˝ pXq Ñ RpT q to the linear function on K˝pXq

sending rOV pαqs to the equivalence class in Z of ψprOV pαqsq (see the appendix of [2] for more

details). This is the same as taking the limit as the argument of ϕ approaches 0 P N .
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Example 2.5.5. We apply this theorem to the toric variety X with fan ∆ in N “ Z2 generated

p˘1,˘1q. This example and the following corollary are analogous to [27, Example 4.1 and

Theorem 1.5]. In this case, a generating set for PExpp∆q over RpT q is given by the functions

in Figure 2.4.

11

1

1

1 ´ ex´y1 ´ ex`y

0

1 ´ e2x

0p1 ´ ex`yqpex ´ eyq

0

0

01 ´ ex`y

0

1 ´ ex`y

Figure 2.4: Generators for the ring of piecewise exponential functions on a toric surface

We go through the calculation for the piecewise exponential function at the top right:

since the equivariant multiplicity of a point is just 1, the value of the Grothendieck weight on

any maximal cone is just the value of the piecewise exponential function at 0. For the function

we are considering this is 0. For the ray ρ generated by p1, 1q, V pρq is a P1, and at the fixed

point corresponding to the maximal cone σ generated by p1, 1q and p1,´1q the character on

the tangent space is y ´ x, so the equivariant multiplicity is 1
1´ex´y , by [2, Proposition 6.3].

At the other fixed point of V pρq, the character is x ´ y, and so the multiplicity is 1
1´ey´x .
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11

1

1

1 11

1 1

00

0

0

2

´11

´1 1

00

0

0

2

00

0 0

00

0

0

´1

10

1 0

Figure 2.5: Images of those generators

The value of the Grothendieck weight on ρ is then the limit of 0
1´ey´x ` 1´ex´y

1´ex´y as x and y

approach 0, which is 1. Similarly, one gets that the value of the Grothendieck weight on the

ray p1,´1q is ´1. The balancing conditions for Grothendieck weights determine the values

on the other rays.

For the cone t0u, we will require the equivariant multiplicities ϵppXq. Since X is singular

at each fixed point, we can compute the equivariant multiplicity at the fixed point p corre-

sponding to σ by resolving, e.g. by adding the ray p1, 0q, and then summing over the new

fixed points which map to p. One gets

ϵppXq “
1

p1 ´ eyqp1 ´ ex´yq
`

1

p1 ´ e´yqp1 ´ ex`yq
“

1 ` ex

p1 ´ ex`yqp1 ´ ex´yq
.

Let the fixed point corresponding to the cone generated by p´1,´1q, p1,´1q be q, and the

fixed point corresponding to the cone generated by p´1, 1q and p´1,´1q be r. Then

ϵqpXq “
1 ` e´y

p1 ´ ex´yqp1 ´ e´x´yq
,

ϵrpXq “
1 ` e´x

p1 ´ e´x´yqp1 ´ ey´xq
.
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By the last theorem, α must be sent to the limit of

p1 ´ ex´yqp1 ` exq

p1 ´ ex`yqqp1 ´ ex´yq
`

p1 ´ e2xqp1 ` e´yq

p1 ´ ex´yqp1 ´ e´x´yq
`

p1 ´ ex`yqp1 ` e´xq

p1 ´ e´x´yqp1 ´ ey´xq
,

as the parameters x and y approach 0, which is 2.

In fact, this example shows the following (compare with [27, Theorem 1.5] and [2, The-

orem 1.7]):

Corollary 2.5.6. There exists a complete toric surface with a vector bundle with no finite

length resolution by T -equivariant vector bundles.

Proof. In Example 2.5.5, the Z-linear span of the Grothendieck weights calculated does not

include the Grothendieck weight with 1 at the origin and 0 elsewhere, so PExpp∆q does not

surject onto GWp∆q. Thus, the forgetful map from opK˝
T pXq to opK˝pXq is not surjective.

Since vector bundles induce linear forms on coherent sheaves by tensor product followed by

pushforward to a point, there is a commutative square:

K˝
T pXq opK˝

T pXq

K˝pXq opK˝pXq

.

We know from [3, Proposition 7.4] that the bottom map is surjective. Comparing the two

ways of traversing the diagram, one sees that the mapK˝
T pXq Ñ K˝pXq cannot be surjective.

This proves the corollary.
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Chapter 3

Quantum K-theory and q-series

Our starting point in this chapter is an identity for the lattice point generating function of

a polytope P , proved by Brion in [9]. In the simplest case, when P is the interval r0, ns,

Brion’s identity specializes to:

1 ` x ` . . . ` xn “
1

1 ´ x
`

xn

1 ´ x´1
.

Namely, we have on the left-hand side a sum of monomials over points inside P , and on the

right a sum of rational functions over vertices of P .

The main result of this chapter is a q-analogue of Brion’s identity. Let us introduce some

q-series notation: first, we have the q-Pochhammer symbol

pa; qqn “

n´1
ź

i“0

p1 ´ aqiq,

and the q-binomial numbers
ˆ

n

k

˙

q

“
pq; qqn

pq; qqkpq; qqn´k

.

In fact, there is cancellation between the numerator and denominator of this expression, so
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the q-binomial numbers turn out to be in Zrqs. We also have the following sum, which is a

certain q-hypergeometric series

ϕnpx; qq “

8
ÿ

k“0

qnk

pq´1; q´1qkpx; q´1qk
.

Then, in the case that P “ r0, ns, our identity specializes to

ˆ

n

0

˙

q

`

ˆ

n

1

˙

q

x ` . . . `

ˆ

n

n ´ 1

˙

q

xn´1 `

ˆ

n

n

˙

q

xn “
pq; qqn
pq; qq8

ˆ

ϕnpx; qq

px; qq8

` xn
ϕnpx´1; qq

px´1; qq8

˙

.

As in the case of Brion’s identity, we have a sum over lattice points in P on the left, and a

sum over vertices on the right. However, now the coefficients of the monomials xi on the left

are rational functions in q, and the terms in the sum on the right are highly non-algebraic

functions. Nonetheless, the identity recovers Brion’s identity when q is set to 0.

3.1 Brion’s Identity

Let us start out by stating Brion’s identity in more generality. Recall (1.1.1) that a cone C

in NR is strongly convex if it does not contain a non-trivial linear subspace of NR.

Definition 3.1.1. The lattice point generating function of a cone or polytope P in Rn

is the sum

σP pxq “
ÿ

mPpZnXP q

xm.

• If P is a polytope, σP is a Laurent polynomial.

• If P is a strongly convex rational polyhedral cone, σP has a non-trivial radius of

convergence around some point in Cn and in fact agrees with a unique element of

FracpRpT qq (see [9, Section 2]).
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Example 3.1.2. Let C “ r0,8q. Then

σCpxq “ 1 ` x ` x2 ` . . . “
1

1 ´ x
.

Also, for p a vertex of a polytope P , we define the vertex cone KpP :

Definition 3.1.3. Let KpP be the convex cone with vertex p, generated by vectors of the

form w ´ p for w P P .

In Figure 3.1, we show P , a labelled vertex p, and the vertex cone KpP .

p
P

p KpP
Figure 3.1: A simplex and one of its vertex cones

Let V pP q denote the set of vertices of P . Then, Brion’s identity states:

Theorem 3.1.4. For P a polytope with rational vertices, we have the following identity in

FracpRpT qq.

σP pxq “
ÿ

pPV pP q

σKpP pxq.

In this generality, the theorem can be found in [6, Chapter 9] where it is proved using

combinatorics, but it was originally proved for simple lattice polytopes in [9] using equivariant

K-theory. When P is a smooth lattice polytope, we can be a bit more explicit, so we can

later compare this directly with our q-analogue. For each vertex p, let Ippq Ď t1, . . . , ru

be the set of indices i so that vi is an inward normal vector of a facet containing p. Then,

tvi | i P Ippqu is a basis for N . Let tuippq | i P Ippqu be the dual basis of M . The vector uippq

is the primitive vector along the edge of P containing p which is not contained in the facet
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defined by vi. Then

σKpP pxq “
xp

p1 ´ xu1ppqq . . . p1 ´ xunppqq
,

so when P is a smooth lattice polytope, Theorem 3.1.4 states that:

ÿ

uPPXM

xu “
ÿ

pPV pP q

xp

p1 ´ xu1ppqq . . . p1 ´ xunppqq
. (3.1.5)

3.2 The q-analogue

To state our q-analogue in general, recall that M is a lattice of rank n, and N “ HompM,Zq

is the dual lattice. The corresponding real vector spaces areMR and NR. We write a polytope

P Ď MR as an intersection of half-spaces, so

P “

r
č

i“1

tu | xu, viy ě ´aiu

where vi P N is the primitive inward normal vector defining the i-th facet of P .

The inward normal vectors v1, . . . , vr determine a homomorphism Zr Ñ N . Let A be the

kernel, and let β : A Ñ Zr be the inclusion. This induces a positive semigroup A` inside A

defined by A` “ β´1pZr
ě0q.

We assume that the polytope is smooth, so that each vertex is contained in exactly n

facets, and the corresponding n primitive normal vectors form a basis forN . Furthermore, we

assume the polytope is radially symmetric, meaning that
řr

i“1 vi “ 0. These conditions can

be relaxed, but there are well-known families of polytopes which satisfy them—for example,

all generalized permutahedra are smooth and radially symmetric.

For each vertex p of a smooth polytope P , let Ippq and uippq be defined as in Section 3.1.
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For each d P A` and vertex p of P , we define

Jd,p “

¨

˝

ź

iPIppq

1

pxuippqq´1; q´1qβpdqi

˛

‚

¨

˝

ź

jRIppq

1

pq´1; q´1qβpdqj

˛

‚.

Now we can state the main theorem.

Theorem 3.2.1. Let P be a smooth, radially symmetric polytope, realized as an intersection

of r half-spaces tu | xu, viy ě ´aiu, with notation as above. Then

ÿ

uPPXM

ˆ

|a|

xu, v1y ` a1, . . . , xu, vry ` ar

˙

q

xu “
pq; qq|a|

pq; qqr´n
8

ÿ

pPV pP q

xp
ř

dPA`
q

ř

ai βpdqi ¨ Jd,p

pxu1ppq; qq8 ¨ ¨ ¨ pxunppq; qq8

,

where |a| “ a1 ` ¨ ¨ ¨ ` ar and V pP q is the set of vertices of P .

The left-hand side belongs to ZrqsrM s; i.e., it is a Laurent polynomial in x and a poly-

nomial in q. The right-hand side is a formal power series in both x and q, and it seems (to

us) surprising that a q Ñ 1 limit exists, because each term has an essential singularity. The

q Ñ 0 limit, on the other hand, recovers Brion’s formula in the smooth, radially symmetric

case - compare with 3.1.5.

The theorem follows from Theorem 3.6.8, which relaxes the requirement of radial sym-

metry. We prove this in Section 3.6. As in [9], the basic technique is localization in the

equivariant K-theory of a toric variety. Our main observation is that a canonical q-analogue

of the lattice point generating function is provided by the toric quasimap space, introduced

by Morrison-Plesser and Givental in the context of Gromov-Witten theory [21, 32]. These

spaces fit together to form an ind-variety contained in the toric arc scheme studied by

Arkhipov-Kapranov [5]. This infinite-dimensional scheme provides the geometric context for

the infinite products appearing in the theorem.

The left-hand side of (3) is the nth Rogers-Szegő polynomial. This is a classical family

of polynomials, which were shown to be orthogonal with respect to a certain measure on
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the circle by Szegő in 1926 [39]. Multivariate versions of them play a role in representation

theory and combinatorics [11, 26, 42]. In our context, they appear in the case where P

is a standard lattice simplex, so the corresponding toric variety is a projective space. In

polyhedral geometry, q-analogues of Ehrhart-theoretic quantities have appeared before (e.g.

[12]), but our work is in a different direction, see Remark 3.6.9.

3.3 Equivariant K-theory and the Atiyah-Bott formula

Here we review localization in equivariant K-theory and the Atiyah-Bott integration formula

for the Euler characteristic that we use in the proof of Theorem 3.6.3. The vocabulary we

use for localization is from [2], but in our restricted context the localization and integration

theorems that we use are quite old, see [33]. We assume that X be a smooth variety, so that

there is a natural isomorphism between the ring of vector bundles K˝pXq, and the group of

coherent sheaves K˝pXq.

For a group G, the G-equivariant K-theory K˝
GpXq is generated by isomorphism classes

of G-equivariant vector bundles on X, modulo relations from G-equivariant short exact

sequences. As in the case of non-equivariant K-theory, K˝
GpXq is a ring with respect to

tensor product. If X is a point, then a G-equivariant vector bundle on X is equivalent to

the data of a representation, and K˝
GpXq is also known as the representation ring RpGq. For

G-equivariant proper morphisms f : X Ñ Y , there is a pushforward f˚ : K˝
GpXq Ñ K˝

GpY q,

and for arbitrary G-equivariant maps f : X Ñ Y , there is a pullback f˚ : K˝
GpY q Ñ K˝

GpXq.

Since for any X, the map X Ñ pt is G-equivariant, K˝
GpXq is always an RpGq-module via

pullback.

For the sake of simplicity, we impose that G “ T is a torus, and further that X has

finitely many T -fixed points y1, . . . , yl. In particular, this implies that none of the characters

which appear in a decomposition of TyiX are zero in M . Let FracpT q the fraction field of

RpT q.

43



Definition 3.3.1. Let i : y ãÑ X be the inclusion of a smooth isolated fixed point. Then

we can define a class

ϵypXq “
1

i˚i˚rOys
,

in FracpT q, called the K-theoretic equivariant multiplicity of y. (see [2, Section 6] for a more

general definition).

We add that this class agrees in our case with the class used in Chapter 2, Section 5.

Let ik be the inclusion ik : yk ãÑ X. Then:

Theorem 3.3.2 (Localization). Let ϕ : ‘kK
˝
T pykq Ñ K˝

T pXq be the natural map induced by

pushforward, and ψ : K˝
T pXq Ñ ‘kK

˝
T pykq the natural map induced by pullback. Then over

FracpT q, ϕ and ψ are isomorphisms.

Theorem 3.3.3 (Integration). Let f be the map from X to a point, and let rEs be the class

of a vector bundle on X. Then

f˚rEs “
ÿ

k

ri˚kEs ¨ ϵykpXq.

Proof. The following diagram of proper maps commutes

X

ty1, . . . , ylu pt.

This induces a commutative diagram between K-theory rings. The pushforward map from

‘kK
˝
T pykq – ‘kRpT q to K˝

T pptq “ RpT q is simply addition. Thus, if ϕ´1prEsq “ pa1, . . . , alq,

f˚rEs is simply a1 ` . . . ` al.

Thus, the theorem follows if we can show that ϕ´1prEsq “ pri˚1Es ¨ ϵy1pXq, . . . , ri˚l Es ¨
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ϵylpXqq. But

ϕpri˚1Es ¨ ϵy1pXq, . . . , ri˚l Es ¨ ϵylpXqq “
ÿ

k

pikq˚p
ri˚kEs

pikq˚pikq˚rOyks
q, (3.3.4)

which maps to pi˚1E, . . . , i
˚
l Eq under ψ just as rEs does. Since ψ is an isomorphism we are

done.

3.4 The Cox construction

Our main theorem is proved by applying the Atiyah-Bott formula to toric quasimap spaces.

These spaces are naturally defined via the Cox construction of a toric variety, which we

summarize now. We impose that ∆ is a smooth complete fan and enumerate the rays

∆p1q “ tρ1, . . . , ρru. Each ray ρi has a primitive generator vi P N .

Then, there is an exact sequence

0 Ñ A
β
ÝÑ Zr Ñ N Ñ 0,

where Zr Ñ N sends the ith standard basis vector to the primitive generator of the ith ray,

ei ÞÑ vi. The kernel A is isomorphic to Zr´n.

Dualizing, one has an exact sequence

0 Ñ M Ñ Zr Ñ B Ñ 0,

where B “ HompA,Zq. Let G Ď pC˚qr be the subtorus corresponding to the surjection of

lattices Zr Ñ B, so we have G – pC˚qr´n and T “ pC˚qr{G.

Now, we realize the toric variety Xp∆q as a GIT quotient of Cr by G. Each subset

I Ď t1, . . . , ru determines a coordinate subspace EI “ te˚
i “ 0 | i P Iu Ď Cr, as well as a

collection of rays. Let Zp∆q Ď Cr be the union of those coordinate subspaces EI such that
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the corresponding set of rays tρi | i P Iu is not contained in any cone of ∆. Then

Xp∆q “ pCrzZp∆qq{G.

Basic facts from toric geometry say that

B – PicpXq – H2pX,Zq

and the cone of effective divisors is the image of Zr
ě0 in B. Dually,

A – H2pX,Zq,

and the cone of nef curves is the preimage of Zr
ě0 under the embedding β : A ãÑ Zr. This

cone is written A` Ď A.

When Xp∆q is projective, a polytope P which is normal to the fan corresponds to the

line bundle OpDP q as described in section 1.2. Facets of P correspond to T -invariant divisors

of X, and vertices of P correspond to fixed points.

3.5 Quasimap spaces and the toric arc scheme

Next, we review the construction of the toric quasimap space; see [21, 32] for proofs and

details. We are interested in parametrizing maps f : P1 Ñ Xp∆q of degree d, that is, f˚rP1s “

d in A “ H2pXq. Let HomdpP1, Xq be the space of such maps. To describe this space, one can

lift such maps to Cr, where they can be specified as an r-tuple of univariate polynomials. We

consider only degrees d lying in A` (which in general is properly contained in the semigroup

of all effective curves).
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For any r-tuple of nonnegative integers δ “ pδ1, . . . , δrq, let

Cr
δ “ Crtsďδ1 ‘ ¨ ¨ ¨ ‘ Crtsďδr

where Crtsďk “ tfptq “ f p0q ` f p1qt ` ¨ ¨ ¨ ` f pkqtku is the pk ` 1q-dimensional space of

polynomials of degree at most k. (Sometimes it is useful to homogenize, making these

bivariate polynomials F ps, tq of degree exactly equal to k.)

The vector space Cr
δ has dimension r`δ1`¨ ¨ ¨`δr, so the torus pC˚qr`

ř

δi acts coordinate-

wise. The torus pC˚qr embeds “diagonally”, so that

pz1, . . . , zrq ¨ pf1ptq, . . . , frptqq “ pz1f1ptq, . . . , zrfrptqq.

So the subtorus G Ď pC˚qr also embeds in pC˚qr`
ř

δi . The quasimap space constructed below

is a GIT quotient of Cr
δ by this action of G.

For any subset I Ď t1, . . . , ru let E 1
I,δ Ď Cr

δ be the locus where the corresponding homoge-

neous polynomials tFips, tq | i P Iu share a common factor. (Dehomogenizing, it is equivalent

to require that the tfi | i P Iu share a common factor, or that at least two of the fi have

degree less than δi — since homogenizing produces a common factor of s.)

Let EI,δ Ď Cr
δ be the locus where fi ” 0 for each i P I, so EI,δ Ď E 1

I,δ. (Viewing

EI “ Cr´#I as a coordinate subspace and writing δpÎq for the subsequence of δ omitting

i P I, this is the same as Cr´#I

δpÎq
.)

Let

Z 1p∆qδ “
ď

I

E 1
I,δ and Zp∆qδ “

ď

I

EI,δ,

both unions over I such that tρi | i P Iu is not contained in a cone of ∆.

Lemma 3.5.1. The space HomdpP1, Xq is isomorphic to pCr
βpdqzZ

1p∆qβpdqq{G.
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The space of (toric) quasimaps is defined as

Qp∆qd “ pCr
βpdqzZp∆qβpdqq{G.

By construction, it contains HomdpP1, Xq as a dense open subset, since Zp∆qβpdq Ď Z 1p∆qβpdq

is closed.

Lemma 3.5.2. The toric quasimap space Qp∆qd is a toric variety of dimension n`
ř

βpdqi,

smooth and complete whenever Xp∆q is.

Example 3.5.3. If Xp∆q “ Pn, the coordinates on Qp∆qd may be written in a pd`1qˆpn`1q

matrix:
»

—

—

—

—

—

—

–

f
p0q

0 ¨ ¨ ¨ f
p0q
n

f
p1q

0 ¨ ¨ ¨ f
p1q
n

... ...

f
pdq

0 ¨ ¨ ¨ f
pdq
n

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

(In general, one can write such coordinates in an array where the columns have unequal

heights: the ith column has height βpdqi ` 1.)

Let us write Td “ pC˚qr`
ř

βpdqi{G for the torus acting on Qp∆qd. We are also interested

in actions by various subtori. Using pC˚qr ãÑ pC˚qr`
ř

βpdqi as above, we have an inclusion of

T “ pC˚qr{G in Td, so the same torus acting on Xp∆q also acts on Qp∆qd. On the other

hand, there is a loop rotation action of C˚ on Cr
βpdq by

ζ ¨ pf1ptq, . . . , frptqq “ pf1pζ
´1tq, . . . , frpζ

´1tqq,

and this descends to an action of C˚ on Qp∆qd. So there is a subtorus T “ T ˆ C˚ Ď Td

acting on Qp∆qd. Localization with respect to T will be the primary tool in proving the

main theorem.
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Lemma 3.5.4. The fixed locus pQp∆qdqC
˚ by the loop rotation action is a union of compo-

nents Qp∆q
pd1q

d , for each decomposition d1 ď d (meaning d “ d1 ` d2 is a decomposition as a

sum of nef classes). Furthermore, there is a T -equivariant isomorphism Qp∆q
pd1q

d – Xp∆q

for all d1.

A basic observation the space Qp∆q0 agrees with Xp∆q, since the given constructions

become identical. The quasimap spaces Qp∆qd form a system of closed embeddings for d

varying over A` Ă A “ H2pX,Zq. Namely, given two such curve classes d1 ď d, there is a

closed embedding Qp∆qd1 ãÑ Qp∆qd induced by the inclusion Cr
βpd1q ãÑ Cr

βpdq. We refer to

the limiting ind-variety as the toric polynomial space Qp∆q8. This ind-variety sits inside

an even larger space, the toric arc scheme of Arkhipov-Kapranov, see [5]. We review these

spaces next.

The toric arc scheme is constructed in nearly the same manner as Qp∆qd. Let

Cr
8 “ Crrtss ‘ . . . ‘ Crrtss.

This space has an infinite-dimensional torus action given by scaling coordinates of the tuple

of power series. The torus pC˚qr again embeds diagonally, so that

pz1, . . . , zrq ¨ pf1ptq, . . . , frptqq “ pz1f1ptq, . . . , zrfrptqq,

allowing G to act on Cr
8. For I Ă t1, . . . , ru, let the locus EI,8 Ď Cr

8 be defined as the

tuples where all the coefficients of fi vanish for all i P I, and

Zp∆q8 “
ď

I

EI,8,

where once again the union is over I such that tρi|i P Iu is not contained in a cone of ∆.
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The Arkhipov-Kapranov toric arc scheme is

Λ0X “ pCr
8zZp∆q8q{G.

For us, the most important torus action on Λ0X is by the product torus

T “ C˚ ˆ pC˚qr{G,

where the first factor acts by loop rotation. The quasimap space Qp∆qd embeds as a finite-

dimensional subvariety into Λ0X, and the following diagram commutes:

Qp∆qd1

Qp∆qd Λ0pXq.

The closed points of the ind-variety Qp∆q8 (or equivalently, the union of closed points of

Qp∆qd over all d P A`) correspond to the tuples of power series inside Λ0X where only

finitely many coefficients of any given power series are non-zero. In other words, the toric

polynomial space Qp∆q8 embeds into Λ0X as the subset consisting of power series which

are in fact polynomial.

Definition 3.5.5. Let Di be the T -invariant divisor corresponding to the ray ρi in X. For

each k ě 0 there are divisors Dk
i in Λ0X and Qp∆q8 defined by the vanishing of the k-th

coefficient of fiptq. More generally, for a T -invariant divisor D “
ř

i aiDi on X, we let D0

be the divisor
ř

i aiD
0
i on Qp∆q8 and Λ0X.

Arkhipov and Kapranov observed that Λ0X admits a family of self-embeddings. Recall

β is the inclusion H2pX,Zq ãÑ Zr defined in Section 3.5. An element d in the semigroup

A` corresponds to a one-parameter subgroup of G, and by composing with the inclusion

G ãÑ pC˚qr, we can write the image of d in Zr explicitly as the cocharacter ptβpdq1 , . . . , tβpdqrq
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of pC˚qr.

Definition 3.5.6. For d P A`, let ϵd : Λ0X Ñ Λ0X be the self-embedding

pf1ptq, . . . , frptqq ÞÑ ptβpdq1f1ptq, . . . , tβpdqrfrptqq.

This restricts to a self-embedding on the polynomial space Qp∆q8 which we also denote by

ϵd.

These self-embeddings commute: in fact, ϵd ˝ ϵd1 “ ϵd`d1 . They are evidently equivariant

with respect to the T-action.

3.6 Integration on quasimap spaces

Now, we study the geometry of the T-action on Qp∆q8, leading to the proof of our main

theorem. From here on, our toric variety X “ Xp∆q is projective, so ∆ is the inward normal

fan of a polytope P .

We require some notation. Let A be an oriented hyperplane arrangement inMR, meaning

an arrangement of primitive vectors v1, . . . , vr and integers a1, . . . , ar such that the hyper-

plane Hi P A is defined by

xu, viy “ ´ai. (3.6.1)

In particular, each hyperplane determines a positive and negative half-space, by replacing

the ““” in (3.6.1) with “ě” or “ď.”

Given such an arrangement A and any u P M , we let

gA ,u “

r
ź

i“1

1

pq; qqxu,viy`ai

. (3.6.2)

For a (smooth) polytope P , we consider the arrangement AP “ tH1, . . . , Hru, where Hi

are the supporting hyperplanes of P , defined by xu, viy “ ´ai. This data determines a line
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bundle Op
ř

i aiDiq whose global sections are in natural bijection with the lattice points in P .

The same data also determines a line bundle Op
ř

i aiD
0
i q on Qp∆q8 (see Definition 3.5.5).

Theorem 3.6.3. The equivariant Euler characteristic is given by

χT

˜

Qp∆q8,O

˜

ÿ

i

aiD
0
i

¸¸

“
ÿ

uPP

gAP ,u x
u.

Proof. Since Op
ř

i aiDiq is ample on X, the line bundle Op
ř

i aiD
0
i q|Qp∆qd is nef on Qp∆qd

(this can be checked against T-invariant curves), so Demazure vanishing (Proposition 1.2.1)

implies that

χT

˜

Qp∆qd, O

˜

ÿ

i

aiD
0
i

¸

|Qp∆qd

¸

“ H0

˜

Qp∆qd, O

˜

ÿ

i

aiD
0
i

¸

|Qp∆qd

¸

as classes in RpT q. We want to calculate the limit of this class as a q-series.

Let f1, . . . , fr be coordinates on Cr, so the Cox ring of X is the polynomial ring on these

variables. By definition, a section of Op
ř

i aiDiq is a rational function ϕ on X such that

divpϕq `
ř

i aiDi is effective. A distinguished basis of T -eigenfunctions for such sections is

given by the monomials
`
ś

i f
bi´ai
i

˘

, as the bi range over nonnegative integers such that
ř

ipbi ´ aiqDi “ 0 in PicpXq.

Similarly, for Qp∆qd we have Cox ring variables f pjq

i , for 1 ď i ď r and 0 ď j ď βpdqi. A

basis for sections of Op
ř

i aiD
0
i q|Qp∆qd consists of monomials

˜

ź

i

pf
p0q

i q´ai

¸

¨

˜

ź

i

βpdqi
ź

j“0

pf
pjq

i qbi,j

¸

such that the bi,j are non-negative, and
ř

i

´

p
řβpdqi

j“0 bi,jq ´ ai

¯

Di “ 0 in PicpXq. We need to

compute the characters of these sections.

Pick an element of our distinguished basis of sections of OpDq, that is, a character
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xu corresponding to a lattice point u in P , or equivalently a choice of bi ě 0 satisfy-

ing the conditions
ř

pbi ´ aiqei “ u P M . In this notation, recall that bi “ xu, viy ` ai.

With these bi fixed, consider the sections
´

ś

ipf
p0q

i q´ai

¯

¨

´

ś

i

śβpdqi
j“0 pf

pjq

i qbi,j
¯

such that
řβpdqi

j“0 bi,j “ bi. The character of
ś

i f
bi´ai
i is xu, as is that of

ś

ipf
p0q

i qbi´ai . So
´

ś

ipf
p0q

i q´ai

¯

¨
´

ś

i

śβpdqi
j“0 pf

pjq

i qbi,j
¯

has character xu
ś

i

śβpdqi
j“0 pqjqbi,j . So the coefficient of xu in the graded

character of H0 pQp∆qd, OpD0qq is

ÿ ź

i

βpdqi
ź

j“0

pqjqbi,j ,

the sum over bi,j ě 0 such that
řβpdqi

j“0 bi,j “ xu, viy ` ai.

In the limit as d Ñ 8, the upper bound disappears for the indices j of bi,j. The resulting

sum is over all choices of weakly increasing sequences 0 ď ci,1 ď ci,2 ď ¨ ¨ ¨ ď ci,bi for each i

from 1 to r, where the summand is the statistic

r
ź

i“1

bi
ź

j“1

qci,j .

Holding all but one weakly increasing sequence fixed, we see that the whole sum must

factor into a product over i:

r
ź

i“1

ÿ

0ďci,1ďci,2ď...ďci,bi

bi
ź

j“1

qci,j .

But
ř

0ďci,1ďci,2ď...ďci,bi

śbi
j“1 q

ci,j “ 1
pq;qqbi

. This proves the theorem.

In the radially symmetric case, we say more about these functions in Section 3.7. Now,

we will describe the T-fixed points of Qp∆q8, and decompose the corresponding tangent

spaces into characters of T.

Proposition 3.6.4. The T-fixed points of Qp∆q8 are in bijection with pairs p P XT and
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d P A`.

Proof. The locus fixed by loop rotation is easy to determine. By definition, Qp∆q8 is a union

of Qp∆qd as d varies over A`, and the subvariety Qp∆q0 ãÑ Qp∆q8 is certainly C˚-fixed.

To exhaust the C˚-fixed components in Qp∆qd for higher d, it is enough to take the disjoint

union of ϵdpQp∆q0q over d P A`, because ϵdpQp∆q0q “ Qp∆q
pdq

d Ă Qp∆qd Ă Qp∆q8. The

subvariety Qp∆q0 is T -equivariantly isomorphic to X, so its T -fixed points are in natural

bijection with those of X. The same holds for each copy of ϵdpQp∆q0qq, so the fixed points

are simply ϵdpxq for d P A` and x P XT “ Qp∆q0.

Now, recall from the beginning of this chapter that for each vertex p of a smooth polytope

P , there is a subset Ippq Ď t1, . . . , ru so that the vi for i P Ippq are the inward normal vectors

of the facets containing p, and tuippq | i P Ippqu is the basis of M dual to tvi | i P Ippqu. We

defined

Jd,p “

¨

˝

ź

iPIppq

1

pxuippqq´1; q´1qβpdqi

˛

‚

¨

˝

ź

jRIppq

1

pq´1; q´1qβpdqj

˛

‚.

Proposition 3.6.5. Let y be the fixed point in X corresponding to a vertex p in P . The

equivariant multiplicity at ϵdpyq is equal to

ˆ

1

pq; qq8

˙r´n
Jd,p

ś

iPIppqpx
uippq; qq8

.

Proof. Recall that for x P X a smooth fixed point and a decomposition of T ˚
xX into non-

vanishing characters m1, . . . ,mn, the equivariant multiplicity at p is
ś

i
1

1´xmi
. For an ind-

variety, this still holds if the resulting product converges.

The tangent space to Qp∆q8 at ϵdpyq splits into tangent and normal directions to the

closed embedding ϵdpQp∆q8q ãÑ Qp∆q8, meaning we have

TϵdpyqQp∆q8 “ TϵdpyqϵdpQp∆q8q ‘ i˚ϵdpyqNϵdpQp∆q8qQp∆q8, (3.6.6)
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where TϵdpyqϵdpQp∆q8q is isomorphic as a T-representation to TyQp∆q8.

First, we decompose TyQp∆q8:

In the arc scheme, we have coordinates on pCrq8

»

—

—

—

–

f
p0q

1 ¨ ¨ ¨ f
p0q
r

f
p1q

1 ¨ ¨ ¨ f
p1q
r

... ...

fi

ffi

ffi

ffi

fl

,

and the point y,
»

—

—

—

–

p1 ¨ ¨ ¨ pr

0 ¨ ¨ ¨ 0
... ...

fi

ffi

ffi

ffi

fl

,

is contained in an affine open set in Λ0X with independent coordinates

• f
pkq
i

ś

jRIppqpf
p0q
j q

´xuippq,vjy , for i P Ippq and k ě 0,

• f
pkq
i

f
p0q
i

for i R Ippq and k ě 1.

These are T-eigenfunctions which have characters

• euippqqk, for i P Ippq and k ě 0,

• qk, for i R Ippq and k ě 1.

Thus, the tangent space of y in Qp∆q8 (which we recall is the subset of Λ0X where

finitely many coordinates are non-zero) splits into a direct sum of the duals of the characters

listed above. This contributes

ˆ

1

pq; qq8

˙r´n
1

ś

iPIppqpx
uippq; qq8

to the equivariant multiplicity at ϵdpyq.

55



Second, we note that Qp∆qd
Ş

ϵdpQp∆q8q “ Qp∆q
pdq

d , so there is an identification of the

following two bundles:

i˚
Qp∆q

pdq
d

NϵdpQp∆qq8
Qp∆q8 “ N

Qp∆q
pdq
d

Qp∆dq.

But this normal bundle on the right-hand side is easily computed:

N
Qp∆q

pdq
d

Qp∆dq “

r
à

i“1

βpdqi
à

k“1

q´k b OpDiq,

where Di Ď X is the ith invariant divisor, and q´k denotes the trivial line bundle on X

with character q´k. For i˚ϵdpyqNϵdpQp∆q8qQp∆q8, we further restrict this to y. Then, OpDiq

restricts to euippq if i P Ippq or the trivial bundle otherwise. This contributes Jd,p to the

equivariant multiplicity at ϵdpyq.

Remark 3.6.7. Using some standard identifications, together with the fact that all our moduli

spaces compactifying maps P1 Ñ X have rational singularities, one can show that Jd,p is a

specialization of the equivariant multiplicity of the fixed component Qp∆q
pdq

d —that is, the

contribution of this component to the Atiyah-Segal localization formula for χpOQp∆qdq, with

respect to the C˚-action on Qp∆qd which rescales the source curve. This is the interpretation

of q in the formula for J: it is the character of this C˚-action. See [22, §2.2, §4.2]. When

X is Fano, the equivariant multiplicity referred to above is the d-th term of the K-theoretic

J-function in the quantum K-theory of X; see [23, 24].

Now, we are in a position to prove our main theorem:

Theorem 3.6.8. Let P be a smooth polytope, with notation as above. Then

ÿ

uPPXM

gAP ,u x
u “

1

pq; qqr´n
8

ÿ

pPV pP q

xp
ÿ

dPA`

q
ř

ai βpdqi ¨ Jd,p
ś

iPIppqpx
uippq; qq8

,
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where gAP ,u is the rational function defined in (3.6.2), and V pP q is the set of vertices of P .

In the radially symmetric case, Theorem 3.2.1 follows immediately by multiplying both

sides by pq; qq|a|, where |a| “ a1 ` ¨ ¨ ¨ ` ar as before.

Proof. The polytope P determines a toric variety X, a normal fan ∆, and a line bundle

Op
ř

i aiDiq. The left-hand side is simply χTpQp∆q8,Op
ř

i aiD
0
i qq, by Theorem 3.6.3.

The right-hand side comes by applying the Atiyah-Bott formula to compute the Euler

characteristic of Op
ř

i aiD
0
i q. This is a sum over the T-fixed points ϵdpyq (where y P XT

corresponds to p P V pP q) of the product of the T-character of i˚ϵdpyqOp
ř

i aiD
0
i q and the equiv-

ariant multiplicity at ϵdpyq in KTpyq, after completing with respect to q. Proposition 3.6.5

contributes the factor
Jd,p

pq; qqr´n
8 ¨

ś

iPIppqpx
uippq; qq8

present in each term. So it only remains to demonstrate that the restriction of Op
ř

i aiD
0
i q

to ϵdpyq is xp. As in the previous proposition, this can be done by picking coordinates around

ϵdpyq using the Cox ring.

Remark 3.6.9. A q-analogue of Ehrhart polynomials was introduced by Chapoton [12]. The

q appearing in the rational function on the left of Theorem 3.6.8 is not related to the

q appearing in [12]. For him, the q comes from specializing the lattice point generating

function of a polytope to a univariate polynomial in a parameter q. For us, when q is set to

0, we recover the usual lattice point generating functions.

3.6.10 Combinatorial interpretation of q-series coefficients

In this section we relate the q-series coefficients (3.6.2) appearing in our main theorem to

a q-enumeration of lattice paths. As before, we let P be a lattice polytope in MR, ∆

the corresponding inward normal fan in NR. Let v1, . . . , vr P N be an enumeration of the
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primitive elements in the rays of ∆. Then, P is defined as the intersection of half-spaces

tu | xu, viy ě ´aiu.

Let us define the affine linear map ϕ :M Ñ N by

ϕpmq “
ÿ

i

pxm, viy ` aiqvi.

Remark 3.6.11. If
ř

i aivi “ 0, the map ϕ :M Ñ N is linear. This induces a fan onM pulled

back from the one on N .

Definition 3.6.12. We define a path to be a sequence of vectors pvi1 , vi2 , . . . , vikq in ∆p1q.

For P a path, let F pPq denote the number of inversions (vij , vij1 such that j ă j1 and

ij ą ij1) in P, and define the function fmpqq P Zrqs by

fP,mpqq “
ÿ

P

qFρ̃pPq,

where the sum is over paths P with exactly xm, viy ` ai steps in the direction of vi.

Proposition 3.6.13. The coefficient of xm in pq; qqř

i ai
¨ χTpΛ0X,Op

ř

i aiDiqq is fP,mpqq.

Proof. Both fP,mpqq and the coefficient of xm in pq; qqř

i ai
¨ χTpΛ0X,Op

ř

i aEDiqq can be

identified with the q-multinomial coefficient
`

ř

i ai
a1,a2,...

˘

q
.

3.6.14 Jacobi Triple Product

Here we demonstrate that applying the main theorem in a degenerate case produces the

Jacobi triple product identity. Recall the q-hypergeometric series we introduced at the

beginning of this chapter:

ϕnpx; qq “

8
ÿ

k“0

qnk

pq´1; q´1qkpx; q´1qk
.
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Applying Theorem 3.6.3 to the case of the trivial bundle on Λ0P1. This produces the

identity

1 “
1

pq; qq8

ˆ

1

px; qq8

ϕ0px; qq `
1

px´1; qq8

ϕ0px
´1; qq

˙

,

or equivalently

pqq8px; qq8px´1; qq8 “ px´1; qq8ϕ0px; qq ` px; qq8ϕ0px´1; qq.

We use the identity pxq´1; q´1qd “ p´xqdq´pd`1
2

qpx´1q; qqd and divide by p1´xq to obtain

that the triple product pqq8pxq; qq8px´1; qq8 is equal to

ÿ

dě0

ś

iěd`1p1 ´ x´1qiq

pq´1; q´1qd
qp

d`1
2

qp´xq´d´1 `
ÿ

dě0

ś

iěd`1p1 ´ xqiq

pq´1; q´1qd
qp

d`1
2

qp´xqd.

Then, the classical Jacobi triple product identity, which states that

pqq8pxq; qq8px´1; qq8 “
ÿ

dPZ

qdpd`1q{2p´xqd,

follows from the next proposition:

Proposition 3.6.15.

ÿ

dě0

ś

iěd`1p1 ´ xqiq
śd

i“1p1 ´ q´1q
qdpd`1q{2p´xqd “

ÿ

kě0

qkpk`1q{2p´xqk.

Proof. We will require two more routine identities: the q-binomial identity states that

k
ÿ

d“0

1

pq´1; q´1qdpq; qqk´d

“ 1.

We quickly remark that one way to prove this identity is to use the integration formula for

χpPk,OPkq, where Pk has the torus action induced by the action on Ck`1 with characters
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1, q, . . . , qk.

We also will need the identity

enp1, q, q2, . . .q “
qp

n
2
q

pq; qqn
,

see e.g. [38, Section 7.8]. Then, we can calculate:

ÿ

dě0

ś

iěd`1p1 ´ xqiq

pq´1; q´1qd
qdpd`1q{2p´xqd “

ÿ

dě0

ÿ

ně0

enpqd`1, ed`2, . . .qp´xqn

pq´1; q´1qd
qp

d`1
2

qp´xqd,

“
ÿ

dě0

ÿ

ně0

1

pq´1; q´1qdpq; qqn
qnpd`1qqp

n
2
qqp

d`1
2

qp´xqn`d.

Using the substitution k “ n ` d, we obtain

ÿ

dě0

ÿ

ně0

1

pq´1; q´1qdpq; qqn
qnpd`1qqp

n
2
qqp

d`1
2

qp´xqn`d “
ÿ

kě0

k
ÿ

d“0

1

pq´1; q´1qdpq; qqk´d

qp
k`1
2

qp´xqk,

whence the proposition (and the Jacobi triple product) follows via the q-binomial identity.

3.7 Action of q-difference operators on generalized Rogers-

Szegő polynomials

In this section, we study the action of a q-difference operator on the polynomial on the left-

hand side of our main theorem. Given a smooth, radially symmetric polytope P , written as

an intersection of half-spaces tu | xu, viy ě ´aiu, we define

RSP px; qq “
ÿ

uPPXM

ˆ

|a|

xu, v1y ` a1, . . . , xu, vry ` ar

˙

q

xu.
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In a sense to be explained below, these are natural generalizations of the Rogers-Szegő

polynomials in [39].

The polynomial RSP px; qq is translation-invariant: for any u P M , RSP`upx; qq “ xu ¨

RSP px; qq. So we may assume one of the vertices of P is the origin, and choose a basis

u1, . . . , un for M so that these are primitive vectors along the edges of P at the origin.

Writing x1, . . . , xn for the variables corresponding to this basis, RSP lies in the polynomial

ring Zrx1, . . . , xn, qs.

The ith q-shift operator Ti,q acts on a function fpx1, . . . , xnq by

Ti,q : fpx1, . . . , xi, . . . , xnq ÞÑ fpx1, . . . , qxi, . . . , xnq.

The associated q-difference operator is

Di,qpfq “ f ´ Ti,qpfq.

Let us index the facets of P (of which there are r ą n) so that for i from 1 to n,

the exponent of xi in xu is xu, viy. By translating P , we have ensured that the numbers

a1, . . . , an in the defining equations for P are all 0. Let Pi be the polytope where the i-th

facet is moved one unit in. More precisely, we replace the defining equation tu | xu, viy ě 0u

with tu | xu, viy ě 1u.

Theorem 3.7.1. We have

Di,qpRSP q “ p1 ´ q|a|qRSPi
.
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Proof. This is a straightforward computation:

Di,qRSP px; qq “
ÿ

uPPXM

ˆ

|a|

xu, v1y, . . . , xu, viy, . . . , xu, vny, . . . , xu, vry ` ar

˙

q

Di,qx
u,

“
ÿ

uPPXM

ˆ

|a|

xu, v1y, . . . , xu, viy, . . . , xu, vny, . . . , xu, vry ` ar

˙

q

p1 ´ qxvi,uyqxu,

“ p1 ´ q|a|q
ÿ

uPPiXM

ˆ

|a| ´ 1

xu, v1y, . . . , xu, viy ´ 1, . . . , xu, vny, . . . , xu, vry ` ar

˙

q

xu.

The last line is the right side of the equality in the theorem statement. The change of

indexing in the last two lines is valid because for u P pP zPiq X M , the inner product xvi, uy

vanishes, so p1 ´ qxvi,uyq “ 0.

Now, let us also say what we can about applying the difference operator to the left-hand

side of our main theorem. If P is a polytope and p, q are vertices of P , then as in the earlier

sections of this thesis, we define the sets Ippq, Ipp1q Ď t1, . . . , ru so that the vi for i P Ipqq

are the inward normal vectors of the facets containing p, tuippq | i P Ippqu is the basis of M

dual to tvi | i P Ippqu, and define uipp1q similarly. Let xi be the variables corresponding to

the basis uippq. We can write the p1-th term in the Atiyah-Bott sum as

xp
1

ś

iPIpp1qpx
uipp1q; qq8

ÿ

dPA`

q
ř

ai βpdqi

´

ś

iPIpp1qpx
uipp1qq´1; q´1qβpdqi

¯ ´

ś

jRIpp1qpq
´1; q´1qβpdqj

¯ .

Then, for some fixed i0 P Ippq, we can calculate directly
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Proposition 3.7.2. We have

Di0,q
xp

1

ź

iPIpp1q

pxuipp
1q; qq8

ÿ

dPA`

q
ř

ai βpdqi

¨

˝

ź

iPIpp1q

pxuipp
1qq´1; q´1qβpdqi

˛

‚

¨

˝

ź

jRIpp1q

pq´1; q´1qβpdqj

˛

‚

“
xp

1

ź

iPIpp1q

pxuipp
1q; qq8

ÿ

dPA`

q
ř

ai βpdqi

¨

˝

ź

jRIpp1q

pq´1; q´1qβpdqj

˛

‚

¨

¨

˚

˚

˚

˚

˚

˚

˝

1
¨

˝

ź

iPIpp1q

pxuipp
1qq´1; q´1qβpdqi

˛

‚

´
qxp1,vi0y

¨

˝

ź

iPIpp1q

pxuipp
1qq´1; q´1qβpdqi´xuipp1q,vi0y

˛

‚

˛

‹

‹

‹

‹

‹

‹

‚

We now make an extended examination of the case of a lattice simplex. Let Pk,n be the

convex hull of the origin and ke1, . . . , ken, where ei are the standard basis vectors in Zn.

The inward normal fan ∆ has rays e1, . . . , en and e0 :“ ´e1 ´ ¨ ¨ ¨ ´ en, and a maximal cone

generated by each subset of te0, . . . , enu of size n. The toric variety that corresponds to this

fan is Pn, which has divisors D0, D1, . . . , Dn given by the vanishing of the corresponding

coordinates. The polytope Pk,n corresponds to the line bundle Lk,n “ OpkD0q.

The toric arc scheme Λ0Pn is the infinite dimensional projective space with homogeneous

coordinates
»

—

—

—

–

f
p0q

0 ¨ ¨ ¨ f
p0q
n

f
p1q

0 ¨ ¨ ¨ f
p1q
n

... ...

fi

ffi

ffi

ffi

fl

,

and we consider the line bundle

LΛ
k,n “ OpkD0

0q,
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where D0
0 is defined by the vanishing of f p0q

0 . By Theorem 3.6.3, we calculate that

χTpQp∆q8, L
Λ
k,n|Qp∆q8

q “
ÿ

i0`i1`...`in“k

1

pq; qqi0pq; qqi1 . . . pq; qqin
xi11 . . . x

in
n .

This is quite close to the Rogers-Szegő polynomials mentioned at the beginning of this

chapter:

Definition 3.7.3. The k-th Rogers-Szegő polynomial in n variables is the sum

RSk,n “
ÿ

i0`i1`...`in“k

ˆ

k

i0, i1, . . . , in

˙

q

xi11 . . . x
in
n .

Corollary 3.7.4. We have

pq; qqk ¨ χTpQp∆q8, L
Λ
k,n|Qp∆q8

q “ RSk,n.

We must remark here that RS-polynomials are the t “ 0 specialization of one-row Mac-

donald polynomials (see [26, Section 3]), so the remainder of this section also follows from

specializing the operators appearing in the theory of Macdonald polynomials as detailed in

[29, Chapter 5] and [30, Chapter VI]. However, we proceed without appealing to that theory.

Theorem 3.7.1 says that

1

xi
Di,qRSk,n “ p1 ´ qkqRSk´1,n.

From [26], there is a recursion:

Proposition 3.7.5 (Hikami recursion). Using the convention RSk,n “ 0 for k ă 0, we have

RSk,n “

n`1
ÿ

l“1

p´1ql´1 pq; qqk´1

pq; qqk´l

elpxqRSk´l,n
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where ek is the k-th elementary symmetric polynomial in the terms 1, x1, . . . , xn.

Since
pq; qqk´1

pq; qqk´l

RSk´l,n “
1

xl´1
i

Dl´1
i,q RSk´1,n,

we make the following definitions:

Definition 3.7.6. For 1 ď i ď n, we set

Ri :“
n`1
ÿ

l“1

p´1ql´1 elpxq

xl´1
i

Dl´1
i,q “

n
ÿ

l“0

p´1ql
el`1pxq

xli
Dl

i,q

and

Li :“
1

p1 ´ qqxi
Di,q.

By combining the previous proposition and the Hikami recursion, we obtain the following,

which appears in many places including [19] in the case of n “ 1.

Proposition 3.7.7. We have

RipRSk´1,nq “ RSk,n and LipRSk,nq “
1 ´ qk

1 ´ q
RSk´1,n.

It follows that

rLi, RispRSk,nq “ qkRSk,n.

3.8 Measures depending on q

We also wish to draw attention to the measure on the lattice points in P given by the q-series

coefficients. Namely, if δu is the Dirac measure at u, we consider the measure:

µP pxq “
ÿ

uPPXM

ˆ

|a|

xu, v1y ` a1, . . . , xu, vry ` ar

˙

q

δupxq.
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For q “ 1, this measure asymptotically limits to the restriction of a multivariate Gaussian

distribution, and for q “ 0, it specializes to uniform measure on lattice points. The fol-

lowing are some pictures of the associated q-gamma distributions for different values of q.

The polytope in the top row is the hexagon (i.e. 2-dimensional permutohedron) with ver-

tices ˘p9, 0q,˘p0, 9q,˘p9, 9q. The polytope in the bottom row is the simplex with vertices

p0, 0q, p9, 0q, and p0, 9q.

q=.2 hexagon q=.5 hexagon q=.8 hexagon

q=.2 simplex q=.5 simplex q=.8 simplex

Figure 3.2: Measures from generalized RS polynomials
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Appendix A

Multiplicities of cones

Given cones α ă β, let multαpβq denote the multiplicity of β in Nα. If α “ t0u we obtain that

multαpβq “ multpβq is the usual multiplicity of β. The following lemma describes relative

multiplicities of simplicial cones in terms of usual multiplicities. Let α have rays ρ1, . . . , ρk,

and β have rays ρ1, . . . , ρk, ρk`1, . . . , ρl:

Lemma A.0.1. multαpβq “ multpβq
śl

i“k`1
multpαq

multpα`ρiq
.

Proof. To simplify notation, we assume that β is a maximal cone. Then we have the following

diagram of exact sequences:

0 xvρ1 , . . . , vρly N N{xvρ1 , . . . , vρly 0

0 xvρk`1
, . . . , vρly Nα Nα{xvρk`1

, . . . , vρly 0,

where the top and bottom quotient groups on the right have cardinalitymultpβq andmultαpβq

respectively. We add the kernels and cokernels to the diagram:
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0 xvρ1 , . . . , vρky xvρ1 , . . . , vρky A

0 xvρ1 , . . . , vρly N N{xvρ1 , . . . , vρly 0

0 xvρk`1
, . . . , vρly Nα Nα{xvρk`1

, . . . , vρly 0

B 0 0 0.

–

By the snake lemma, the sequence of kernels leading to cokernels is exact, so in fact A – B.

Thus multpβq “ multαpβq|B|. The cardinality of B on the other hand is also easy to

determine: the image of xvρ1 , . . . , vρly in xvρk`1
, . . . , vρly is just xvρk`1

, . . . , vρly. If vρ “ bρvρ,

the cardinality of the cokernel (i.e. B) is
śl

i“k`1 bρi . But in the proof of Proposition 2.3.4,

we saw bρ “
multpα`ρq

multpαq
, which proves the claim.
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