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Abstract 

Lung cancer is leading cause of cancer-related deaths in the United States with 5-

year survival rate of 18.6%. This is due to late detection of lung cancer and problems in 

screening for lung cancer. Indeterminate pulmonary nodules (IPNs) are pulmonary 

nodules size between 7-20mm diameter solid nodules. 90% of IPNs are incidentally 

found and they are hard to diagnosis due to their small size and current diagnosis 

methods such as CT, PET scans and biopsy involve high exposure to radiation or 

invasive and could lead to complications. 

The majority of lung cancer patients have non-small cell lung cancer (NSCLC) 

and 64% of these patients exhibit driver mutations such as epithelial growth factor 

receptor (EGFR), anaplastic lymphoma kinase (ALK) and Ras mutations. These patients 

have shown to have improved survival rate if they are treated with targeted therapies 

directed against the driver mutations. Although these patients initially show strong 

response to targeted therapies, most patients develop resistance to these targeted 

treatments through secondary point mutation and epithelial to mesenchymal transition 

(EMT).  

The lung is a dynamic organ where alveolar epithelial cells are normally exposed 

to significant mechanical forces (i.e. ~8% cyclic strain, transmural pressure and shear 

stress) while primary lung tumor cells experience a 40-fold decrease in these mechanical 
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forces/strain. Although biomechanical factors in the tumor microenvironment have been 

shown to be a significant driver of cancer progression, there is limited information about 

how biophysical forces alters drug sensitivity in lung adenocarcinoma cells. Based on the 

known importance of mechanical forces/strain on lung injury and repair and the 

significant difference in cyclic strain applied to normal and cancer cells in the lung, we 

hypothesized that cyclic mechanical strain would activate important oncogenic pathways 

and alter drug sensitivity. Although local mechanical properties of the lung tumor may be 

an important prognostic factor, there is currently no way to non-invasively assess local 

lung mechanical properties. 

Magnetic resonance electrography (MRE) is a non-invasive imaging technique 

that uses shear wave propagation to measure mechanical stiffness of soft tissues. Dr. 

Kolipaka’s lab has developed an MRE protocol that can measure temporally and spatially 

varying changes in lung tissue stiffness from normal adults. Furthermore, MRE has been 

used to quantify a 3-fold increase in lung tissue stiffness in fibrotic patients compared to 

normal controls. However, MRE has not been used to evaluate the stiffness profile of 

tumors within in lung cancer patients. 

 Therefore, in this study, we test the hypothesis that the mechanical forces present 

within lung tumor microenvironment plays an important role in tumor progression and 

therapeutic response. Based on this hypothesis, we propose to 1) define different 

biophysical forces present in lung tumor microenvironment 2) investigate role of 

biomechanical forces in drug response and migratory behavior on the lung 

adenocarcinoma cells in-vitro and 3) verify and identify the biomechanical forces in 
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patients with using the non-invasive imaging (i.e. MRE) and finite element modeling 

(FEM). 

The overall goal of this study is to both obtain a better understanding of how 

dynamic biomechanical forces in the lung tumor microenvironment affect tumorigenesis 

and therapeutic response and to establish a clinically-relevant methodology to non-

invasively assess local tumor mechanical properties in patients with IPN. Using finite 

element modeling of idealized lung model with tumor, the study have shown that the 

there are heterogeneous strains and stresses present – low strain in stiff center of tumor, 

high strain and strain gradient in the peritumoral region. Using this a novel in-vitro 

system was developed to deliver non-uniform deformation. Our study has shown that 

high strain and strain gradient led to increase in migration and increase in response to 

drug therapy. Furthermore, in this study, novel non-invasive technique was developed 

using MRE and FEM. This technique highlighted the importance of the heterogeneity 

spatial stiffness is important in characterizing strain magnitude and spatial strain gradient 

in normal, CF and IPN patients.  
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Chapter 1. Introduction 

Lung Cancer 

Lung cancer is the leading cause of cancer related deaths in the United States. In 

2018, there was estimated to be 234,030 newly diagnosed lung cancer and 154,050 

estimated deaths1. Lung cancer’s five-year survival rate is 18.6% which is very low 

compared to other types of leading cancers such as colorectal (64.5%), breast (89.6%) 

and prostate (98.2%)2. This low survival rate is due to late detection from lack of proper 

screening – only 16% of lung cancer cases are diagnosed at early stage when the cancer is 

pre-metastatic and localized within the lungs2. Although, early detection through 

screening could increase the lung cancer survival rate, there is currently an ongoing 

debate regarding the cost-effectiveness and risks associated with lung cancer screening.  

The American Cancer Society recommends yearly screening for individuals 

between 55 to 74 years old with smoking history of 30 pack year. Lung cancer screening 

is done through low dose computed tomography (LDCT) where early detection can 

reduce lung cancer mortality by 14 to 20% in high-risk populations3. Although early 

screening reduces mortality rate for lung cancer, LDCT still has risks for radiation 

exposure, false positive and false negative findings and overdiagnosis3.  

Indeterminate pulmonary nodules (IPN) are small lung nodules with diameter 

between 6-20mm in size that are found incidentally through computed tomography (CT) 
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scans. 90% of IPN are incidentally found when patients are undergoing CT scans. 

Although majority of the IPNs are benign, current diagnosing tools are not optimal4. 

Current Fleischner Society 2017 Guidelines5 look at the nodule size and risk factors (i.e. 

age, gender, family/smoking history) to determine if the patients need further follow-up. 

If the patients are in low-risk group – young age, no smoking history, no family history – 

following guidelines are followed. If the nodules are < 6mm in size the nodule is most 

likely benign and there is no need for routine follow up. Nodule size between 6-8 mm 

they recommend follow-up CT within 6-12 months and afterwards 18-24 months. If there 

is change in size within these monitoring period, the patients undergo positron emission 

tomography (PET)/CT scan and/or biopsy to determine if the nodule is benign or 

malignant. For nodule size >8mm, follow-up CT at 3 months and PET scan and/or biopsy 

is required. 

For high-risk patients – older age, with smoking history and with positive family 

history – different guideline is followed. If nodule size is <6mm, CT follow-up in 12 

months is recommended. For nodule size between 6-8mm, they recommend follow-up 

CT within 6-12 months and afterwards 18-24 months. For nodule size >8mm, follow-up 

CT at 3 months and PET scan and/or biopsy is required. With these imaging guidelines if 

there is increase in risk for lung cancer as discussed above based on size and risk factors, 

patients undergo further imaging through PET scan and/or biopsy through bronchoscopy 

or fine needle biopsy5. However, these imaging and biopsy methods are not very efficient 

in identifying the lung cancer at proper stage. Figure 1 shows the current prediction 

model for diagnosis IPN and future optimal diagnosis. Current prediction models only 
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can define 21% as low probability and 15% of patients as high probability. 64% of 

current patients with IPN undergo unnecessary PET scan and or biopsy4. Optimally, as 

show in Figure 1, the goal is to reduce the red box percentage from 64% to 35% to reduce 

the number of patients with IPN to undergo invasive biopsy. In order for this to happen, 

we need better ways to determine the IPN to low and risk group to reduce the number of 

people undergoing invasive biopsy. 

 

Figure 1. Current IPN diagnosis guideline and future prediction models. Adapted from 

Massion, P.P. (2014), Cancer Prev, 7 (12): 1173-8.   

 

Furthermore, 80-85% of lung cancers are non-small cell lung cancer (NSCLC). 

For the stage I, II, IIIA patients, surgical resection is the first line therapy which is often 

accompanied by adjuvant treatments such as chemotherapy, radiation and/or targeted 

therapy. However, 40% of the diagnosed patients are at stage IV, and cytotoxic 
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chemotherapy is the first-line therapy6. Among NSCLC patients, 64% exhibit driver 

mutations such as epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase 

(ALK) and Ras7. Patients with identified mutations are often treated with targeted 

therapies which have shown to improve patient survival in NSCLC8. Within NSCLC 

patients, 10-15% exhibit EGFR mutation, 10-25% Ras mutation and 3-7% ALK 

mutations9. Although EGFR and ALK have established targeted therapies such as 

elrotinib or gefitinib and crizotinib respectively, patients develop resistance to these 

targeted therapies due to the development of point mutations and chromosomal 

rearrangements10, 11. Although some 3rd generation therapies, including osimertinib, can 

target these secondary point mutations, drug/chemotherapy resistance continues to be a 

significant problem in the pulmonary oncology field and there is a clinical need for 

biomarkers that better predict response to targeted therapies. 

 

 

Cancer Metastasis and Biomechanics 

 Cancer metastasis is the cause of 90% of cancer-related fatalities. It is marked by 

detachment of cancer cells from primary tumor site and invasion into blood circulation12. 

The cells survive in the circulatory system and extravasate into different locations and 

initiate tumor growth (Figure 2).  Epithelial-mesenchymal transition (EMT) is a 

biological process where the cells lose the epithelial-like characteristics and become more 

motile is one mechanism by which cancer cells in the primary site gain invasive 

potential13-16. Furthermore, recent studies have shown evidence that biophysical forces 



5 

 

present in tumor microenvironment causes cancer cells to become more motile and 

influence EMT process17-21.  

 

Figure 2. Process of metastasis Process of metastasis Process of metastasis a) cancer at 

primary site b) metastatic cells invade out of tumor border and can enter c) lymphatic 

system or d) directly into blood circulation. The cells in circulation survive and e) 

extravasate into other organs. f) some cells may remain dormant for over years and/or g) 

progress into colonization of the site. Adapted from Steeg, P. S. (2003), Nat Rev Cancer, 

3(1): 55-63. 
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Myoferlin (MYOF) is a membrane vesicle trafficking protein. Knocking down 

MYOF have shown to reverse EMT in highly metastatic MDA-MB231 breast cancer 

cells and results in significant decrease in migration and invasion22, 23. Overexpression of 

MYOF expression was found in breast cancer which plays important role in controlling 

EGFR degradation24. In lung cancer, increased MYOF expression correlates with worse 

outcomes25.  Although there is correlation between lung cancer and MYOF expression, 

currently there is limited in understanding of how MYOF alters EMT signaling and cellar 

biomechanics to alter migratory potential and EGFR expression changes. 

 The tumor microenvironment (TME) is very complex. TME consists of various 

cell types such as fibroblasts, endothelial cells, pericytes, immune cells and inflammatory 

cells. Cross talks between different cell types activate and differentiate the cells to 

promote tumor growth and progression. Immune cells such as T-cell, B-cell, tumor 

associated macrophages are present within TME to cross talk between the cancer cells 

and stromal cells. They produce chemokines induces cell signaling in various cells 

present within the TME such as endothelial cells and pericytes stimulating process for 

angiogenesis26. Furthermore, cancer-associated fibroblasts (CAFs) are myofibroblasts 

that are present in TME27 and they are derived from multiple precursors in TME such as 

endothelial cells, smooth muscle cells, mesenchymal stem cells28-30. These CAFs secrete 

chemokines and growth factors such as TGF-β to promote EMT31. In addition CAFs play 

important role in secretion and remodeling of extra cellular matrix (ECM) of TME31.  

 Majority of the ECM proteins such as collagen, fibronectin, laminins, 

proteoglycans and polysaccharides are produced by CAFs. Increased deposition of these 
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ECM proteins and increased crosslinking of collagen and elastin leads to increased matrix 

stiffness of TME. As the tumor progresses the ECM constantly undergoes remodeling 

through matrix metalloproteinase (MMP). MMPs play important role in breaking ECM 

degradation for tumor cell migration and matrikine production. This further triggers 

extracellular matrix renewal and increased cellular proliferation32. As shown in Figure 3, 

dense tumor mass causing compressive stress within the interior of the tumor and 

circumferential tension on the periphery of tumor33. Studies have shown that increased 

solid stress in lung cancer causes increased migration in 2D34, 35. Furthermore, tumor 

progression is marked by increase in deposition type I collagen and fibronectin and 

remodeling of ECM and leads to increased stiffness and decrease in ECM stiffness as you 

migrate away from the tumor edge.  

 Change in matrix stiffness have shown to affect cell motilities in several 2D 

studies36, 37. Another study has shown that there is increase in contractility and force 

generation in breast, prostate and lung cancer with increase in stiffness38. Not only the 

stiffness of the ECM plays important role in inducing cell motility but also the orientation 

of the fibers direction play important role in cell migration in TME. Study have shown 

that more malignant tumor had irregular invasive boundaries marked by radial alignment 

of the collagen fibers39 that can lead to structure guided cell motility40. Collectively, these 

previous studies demonstrate that there are various biophysical mechanical forces that are 

present in tumor microenvironment which play an important role in tumor motility and 

drive metastasis. TME is complex and has shown evidence there are spatial 

heterogeneities in ECM that play important role in cancer migration and progression. 
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Lung microenvironment introduces additional complexity to lung cancer TME through 

externally applied loads that are temporally and spatially heterogeneous. 

 

 

 

Figure 3. Tumor microenvironment and biomechanical forces. 1) highly dense tumor 

from increased proliferation results in tumor stress 2) ECM becomes more dense and 

stiffer 3) towards the edge of the tumor microenvironment matrix becomes reorganized 4) 

fluid pressure increases resulting in angiogenesis 5) increased lymphatic drainage and 

gradient 6) increased interstitial flow induces myofibroblast differentiation 8) and 

chemokine secretion. Adapted from Shieh, A. C. (2011), Annals of Biomed Eng, 39(5): 

1379-1389. 

 

 

Lung Biomechanics 

Lung is a highly dynamic mechanical organ. The primary function of the lungs is 

gas exchange, bringing in oxygen (O2) into the body and removing carbon dioxide (CO2). 
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Changes in the pressure within the lungs drive the inhalation and exhalation of the air. 

Figure 4 shows normal negative pressure ventilation. During inhalation, the diaphragm 

contracts, the chest wall muscles contracts to expand the lungs. This causes a drop in air 

pressure within the lungs that drives the air from the outside to enter the lungs. After 

proper gas exchange in the alveoli, the body begins the exhalation process where the 

chest wall muscles and diaphragm relaxes back into the normal position and chest 

contracts back to normal called elastic recoil. The pressure within the lungs increases and 

push the air out from the lungs.  

 

 

Figure 4. Schematic for normal breathing. Left image shows the inhalation process 

where negative pressure from chest expansion and diaphragm drives air to enter the lung. 

Right image is the process of exhalation where positive pressure from relaxation of chest 

and diaphragm drives the pressure out. Adapted from 

https://openstax.org/books/anatomy-and-physiology 

https://openstax.org/books/anatomy-and-physiology
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Figure 5. Respiratory zone of the respiratory system. Air comes through the bronchioles 

and lead to alveolar sac where the gas exchange occurs. Adapted from 

https://openstax.org/books/anatomy-and-physiology 

 

As the cyclic breathing pattern repeats at the macroscopic level as discussed 

above, the microstructures within the respiratory zone, including the alveoli, are 

constantly undergoing cyclic deformation. As the air enters into the bronchioles, alveolar 

sac and to individual alveoli, the walls the of each alveolus undergo elastic stretch 

(Figure 6). Breathing results in cyclic inflation/deflation and deformation of lung tissue 

and exposes cells in the lung microenvironment to cyclic tensile strains (i.e. stretching 

deformations) 41.  Previous studies have found that normal breathing exerts 4-10% cyclic 

strains on normal alveolar epithelial cells at the frequency of 0.2 Hz (12 breaths/min)42, 43. 

Several studies have demonstrated that these normal physiological strains promote 

homeostatic cellular responses including surfactant production, epithelial cell 

https://openstax.org/books/anatomy-and-physiology
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proliferation and differentiation and prostacyclin production 44-47. However, the degree of 

tissue deformation and tensile strain is highly dependent on the local stiffness of lung 

tissue and altered tissue stiffness and/or lung compliance during several pulmonary 

disorders may significantly alter the degree of tensile strain in the lung. As a result, 

developing non-invasive tools that can monitor changes in the lung’s biomechanical 

properties during disease is a major area of research. 

 

 

Figure 6. Alveolar sac and forces present A) shows the surface forces that are present on 

each alveolus B) cyclic strain that each alveolar epithelial cell experience is shown. 

Adapted from Waters, C.M. (2012). Compr Physiol, 2(1): 1-29. 

 

 

 

 

Several respiratory diseases involve changes in the lung’s extracellular matrix 

(ECM) composition/structure results which alters lung tissue stiffness and inhibits normal 

lung function. For example, degradation of the ECM during COPD leads to parenchymal 

destruction, enlarged alveoli, decreased lung stiffness and reduced elastic recoil during 
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exhalation48. Conversely, excessive matrix production and deposition during pulmonary 

fibrosis leads to increased lung stiffness and reduced lung expansion during inhalation49. 

Modulation of the ECM during lung cancer can also lead to increased lung stiffness50 

while excessive mucus production can elevate lung stiffness during cystic fibrosis 51. 

Importantly, at the cellular level, altered substrate/tissue stiffness has been shown to 

directly modulate cellular function52-54 and regulate the mechano-transduction processes 

that lead to fibrosis55.  

In addition to changes in tissue stiffness, it has been recently recognized that 

changes in tensile strain magnitude and the development of spatial gradients in strain may 

also influence the cellular mechanobiology processes that contribute to lung disease. For 

example, excessive mechanical strain during artificial ventilation and during impaired 

alveolarization can exacerbate lung injury and inflammation56 and can cause epithelial 

and endothelial cell injury and dysfunction42, 57. Furthermore, the heterogenous spatial 

distribution of strain within the deforming lung58, 59 will lead to significant spatial 

gradients in strain and these spatial strain gradients have been shown to alter fibroblast 

orientation and contractility60, 61. Therefore, developing non-invasive tools that can 

quantify regional lung stiffness is an important clinical need. 

 

 

Models to Study Lung Mechanics 

Different models have been developed to study the mechanics of the lungs – in-

vitro, in-vivo and computational modeling. For in-vitro models, stretching devices have 

been developed to study the effect of cyclic tension on lung epithelial and endothelial 
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cells as occurs during both normal and abnormal ventilation. Numerous studies have 

applied cyclic deformation on lung carcinoma cells A549 or alveolar type I/II cells  by 

seeding monolayer of cells on an elastic polydimethylsiloxane (PDMS) membrane and 

putting on cyclic forces ranging from 10-30% uniaxially via using compression device 

(Figure 7 A) 45, 46, 62, 63 and biaxially vacuum pump (Figure 7 B)64-66. Figure 7 A works by 

putting PDMS membrane on membrane chamber with sliding blocks on each end. The 

compression motor device then moves that derives the chamber to slide laterally on each 

end applying uniaxial deformation. Figure 7 B is Flexcell system and it works by using 

vacuum pump to pull down on silicone membrane against circular post which applies 

biaxial deformation on the membranes. Major limitation with these stretching systems is 

that 2D monolayer of cells does not recapitulate the 3D mechanical environment of the 

lung.  

Another form of 2D in-vitro system is a Lung-on-a-chip device that mimics the 

physiology of breathing67-72. This device allows you to coculture different cell types 

generally lung epithelial cells on one side of the PDMS membrane representing gas 

interface of the alveolar sacs and endothelial cells on the opposite side of the PDMS 

membrane representing the liquid interface of the blood vessel. The lung on a chip allows 

you to mechanically stimulate the device as well as create separate liquid and gas 

interface to model the gas exchange apparatus (Figure 7 C). Although these lung-on-a-

chip systems better recapitulate the microenvironment compared to 2D cell culture 

experiments, they still lack vascular network, immune cells and other stromal cells73.  
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Figure 7. Schematic of current in vitro models A) Stretching device using the pump. 

Adapted from Lutz, A. (2020), FASEB J, 34(8):11227-11242. B) stretching device using 

the vacuum pump to pull down on the membrane. Adapted from Schmitt, S. (2012), 

Assay Drug Dev Technol, 10(2): 137-47. C) lung-on-a-chip model displaying air and 

liquid interface and stretching. Adapted from Huh, D. (2010), Science, 328(5986):1. 

 

 To overcome the limitations of in-vitro model, in-vivo studies have been carried 

out in the animal models. Study of lung mechanics are performed on but not limited to 
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mice, rats, pigs, and goats74-79. Animal studies are conducted by putting the animals under 

anesthesia and connecting them to mechanical ventilator. For example, for mouse studies, 

needle is inserted into trachea which is connected to computer-controlled small ventilator. 

Using controlled ventilation, pressure-volume curves, tissue dampening, tissues 

elastance, hysteresivity can be calculated using animal models79. Hysteresivity is a 

material property of tissue that measures the ratio of energy dissipated per cycle over the 

stored potential energy at maximum stretch80. The ventilated tissues can also be further 

analyzed for tissue stiffness, protein expression studies, etc. Different cell types are 

present in animal model allows direct measurements of tissue stiffness and expression 

with the presence of other cell types (i.e. immune cells). However, there are limitations 

where they have found that even different animal model properties, the lung mechanics 

differ79. Meaning that the animal models do not properly recapitulate the anatomy of 

human lungs. Furthermore, the animal models lack the ability to precisely control the 

mechanical forces that occur that will not allow look at regional mechanical 

deformations. 

 Direct measurements of lung deformation in-vivo in human can be obtained by 

using imaging techniques and computational modeling. CT-based techniques have been 

used to document heterogenous lung deformation in-vivo58. 4-dimensional computed 

tomography (4DCT) takes sequential images using 3-dimential computed tomography 

(3DCT ). Using image registration, the 4DCT images can be used to calculate volumetric 

strain by aligning structures and calculating regional deformation that occurs during 

breathing. Although the use of 4DCT allows for measurement of volumetric strain, it 
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does not offer information on the directionality of the deformation. Furthermore, 4DCT 

relies heavily on the structural landmarks. If there are any lung abnormalities or injury, 

lack of landmark may lead to challenges. In addition to imaging, finite element models 

have been used to study lung breathing motion, gravitational effect on human lung 

deformation81, and lung tumor motion simulation82. These computational models take the 

3DCT or 4DCT images, recreate the geometry and simulate breathing to calculate 

regional deformation within the lungs. However, main limitation of these computational 

models assume homogenous stiffness distributions82-86 and therefore cannot capture the 

spatial variations in lung deformation observed in-vivo. 

 

 

Magnetic Resonance Elastography 

 Elastography is non-invasive technique that is used to measure soft tissue 

stiffness. The elastography works by introducing vibration and the images of the organs 

are taken through various conventional imaging modes such as ultrasound, computed 

tomography (CT) and magnetic resonance imaging (MRI). The images are taken at each 

phase, the propagating waves are processed to estimate their wavelengths and calculate 

stiffness of the tissues with assumption of isotropy, homogeneity and incompressibility of 

the materials 87. Numerous studies have been done using ultrasound elastography (UE) to 

study different lung diseases88-91, and especially in primary lung tumor UE have found 

that there is 40-fold decrease in lung deformation in the region of tumor91. And although 

mechanical differences of different lung disease can be detected with UE, depth of 
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measurement is shallow and offers limited information. There are several studies using 

CT elastography on lungs92-94. However, the problem still remains using CT will expose 

patients to high dose of radiation and risk further complication. 

 

 

 

Figure 8. Schematic for MRE scan on lungs. MR compatible driver is placed at the apex 

of the lung and the vibrations is introduced by the active driver. Adapted from Fakhouri, 

F. (2019), NMR in Biomedicine, 32(7): e4102. 

 

Magnetic resonance elastography (MRE) is noninvasive imaging method that uses 

phase-contract (PC) magnetic resonance imaging (MRI) to measure shear stiffness in 

various organs such as lungs, pancreas, liver and breast95-99. MRE works by placing a 

driver that introduces mechanical vibrations (Figure 8). The external vibrations are then 

synchronized to motion-encoding gradients (MEG) to calculate the displacement fields in 

the MR images which then can be used to obtain stiffness maps87. MRE has been 

previously used in lungs to study lung stiffness where during total lung capacity (TLC) 

was significantly higher than the mean lung stiffness during residual volume (RV)95. 
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MRE is a direct measure of lung tissue stiffness and can also resolve spatial and temporal 

variations in lung stiffness with higher depth and resolution and without risk of radiation 

exposure.  

 

Biomechanics in Lung Cancer 

Lung cancer microenvironment is very complex. Like any tumor, lung cancer 

TME becomes complex with varying cancer cells, immune cells and stromal cells but 

also with increase ECM deposition and remodeling by CAFs lead to 1) compressive 

forces within the stiff center of tumor 3) circumferential tension on the periphery of 

tumor 2) heterogenous stiffness TME that has high to low varying stiffnesses33. And there 

have been studies done on lung cancer cells that increased solid stress causes increased 

migration in 2D34, 35. However, currently there are not a lot of in-vitro studies that look at 

dynamics of the lung environment in lung cancer. In addition to the forces that are 

present in tumor environment, as discussed lung is dynamic organ constantly undergoing 

inflation and deflation.  As a result, the lung cancer will have additional dynamic 

deformation (i.e. cyclic strain) that they are experiencing. Although the heterogenous 

changes in mechanical properties (i.e. tissue stiffness) during lung cancer likely lead to 

spatially heterogenous change in mechanical tension/stretch, previous studies have only 

investigated the effect of homogenous tension on lung cancer cell dynamics. As a result, 

it is not known how heterogenous mechanical tension influences cancer cell 

migration/proliferation or response to therapy. 
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Concluding Remarks 

 Lung cancer is complex due to complexity of tumor microenvironment as well as 

mechanically dynamic lung environment. There are evidences that shows that lung cancer 

has spatial and temporal heterogeneous mechanical properties. Despite the current 

progress made in the lung cancer field in trying to understand how stiffness and 

mechanical strain affect cancer progression, the models that are present in the field still 

lacks at comprehensively analyzing lung cancer progression under heterogenous 

mechanical properties. Therefore, this field will benefit from investigation into 

characterizing heterogeneous mechanical properties of the lung cancer and understanding 

their role in tumor progression.  

 

 

Contributions of this Dissertation 

 This dissertation describes the development and implementation of in-vitro and 

in-vivo finite element modeling models to characterize the mechanical properties present 

within the lung cancer microenvironment. This dissertation also uses this mechanical 

characterization information to develop novel in-vitro systems that better recapitulate the 

heterogenous mechanical environment that develops during lung cancer and uses these 

systems to better understand the role of heterogeneity in tumor progression, cancer cell 

migration and drug resistance. Furthermore, developing new tool of combining MRE and 

finite element modeling to characterize and quantify heterogenous strain and strain 

gradient distributions in IPN patients.  
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Chapter 2 The goal of the study is to develop a novel in-vitro system that better 

recapitulates the mechanical environment that develops during lung cancer and uses and 

idealized computational models of lung deformation to develop that in-vitro system. 

Furthermore, the second goal is to use the in-vitro system to understand how complex 

heterogenous changes in mechanical strain influence cancer cell migration and response 

to therapy. The finite element modeling of idealized lung model with tumor showed that 

there are heterogeneous strains and stresses present – low strain in stiff center of tumor, 

high strain and strain gradient in the peritumoral region. Using this, we have developed 

novel in-vitro system to generate non-uniform deformation. High strain and strain 

gradient led to increase in migration and increase in response to drug therapy. 

Furthermore, we have studied the effect of myoferlin (MYOF) protein as a therapeutic 

method and found MYOF knock down shows decrease in migration and increase in 

sensitivity to drug therapy. 

Chapter 3 the goal of the study is to integrate these magnetic resonance 

elastography (MRE) stiffness measurements to into a novel FEM of lung deformation and 

quantify heterogenous strain and strain gradient distributions. Comparing FEM lung 

deformation with uniform average stiffness with MRE heterogeneous stiffness models, 

we have found that although the uniform FEM models was able to capture strain 

measurement, there was lack of variation in the values and failed to capture the changes 

in strain gradient within the model. After verifying the importance of heterogeneity in 

understanding lung deformation, this novel FEM technique to analyze the strain and 

strain distribution in cystic fibrotic (CF) patients. In CF patients the CF consolidation 
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areas were stiffer than other part of the lung and showed decrease in strain and smaller 

variation in strain gradient values. 

Chapter 4 the goal of this study was to develop new diagnosing tool using MRE 

and FEM to investigate mechanical differences between benign and malignant pulmonary 

nodules. For this study we have recruited indeterminate pulmonary nodule (IPN) patients 

that have undergone diagnosis of the nodule to quantify heterogenous stiffness, strain and 

strain gradient distributions in benign and malignant nodules to compare and understand 

the different spatial gradients in tensile strain. We have seen increased stiffness and low 

strain and high strain gradient in malignant nodule patients.  
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Chapter 2. Using Computational and Experimental Tools to Understand How 

Heterogenous Changes in Lung Cancer Mechanics Influence Cancer Cell Migration and 

Resistance to Therapy 

 

The results of this study is under manuscript preparation and to be submitted in the 

Journal of Biomechanics, Reference:  

Cho, Y., Shukla, V., Englert, J. & Ghadiali, S.N. Understanding the non-uniform  

deformation in lung cancer migration. Journal of Biomechanics, (2021).  

 

Introduction 

 Lung cancer is leading cause of cancer related death in the United States in both 

male and females. 80-85% of lung cancers are non-small cell lung cancer (NSCLC). For 

the stage I, II, IIIA patients, surgical resection is the first line therapy which is often 

accompanied by adjuvant treatments such as chemotherapy, radiation and/or targeted 

therapy. However, 40% of the diagnosed patients are at stage IV, and cytotoxic 

chemotherapy is the first-line therapy6. Among NSCLC patients, 64% exhibit driver 

mutations such as epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase 

(ALK) and Ras7. Patients with identified mutations are often treated with targeted 

therapies which have shown to improve patient survival in NSCLC8. Within NSCLC 

patients, 10-15% exhibit EGFR mutation, 10-25% Ras mutation and 3-7% ALK 

mutations9. Although EGFR and ALK have established targeted therapies such as 

erlotinib or gefitinib and crizotinib respectively, patients develop resistance to these 

targeted therapies due to intrinsic mechanisms (i.e. K-Ras and N-Ras mutations), 
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secondary point mutations (T790M) or epithelial to mesenchymal transition (EMT) 10, 11, 

100. Although some 3rd generation therapies, including osimertinib, can target these 

secondary point mutations, drug/chemotherapy resistance continues to be a significant 

problem in the pulmonary oncology field and there is a clinical need for biomarkers that 

better predict response to targeted therapies.  

 Biophysical factors play an important role in tumor development and progression. 

Increased tissue stiffness promotes tumor growth101 whereas interstitial flows promotes 

cell migration and invasion102. Importantly, growth induced mechanical stress and the 

resulting tissue deformation have been shown to alter tumor growth, invasion and 

metastasis33, 103, 104. The lung is one of the most dynamically mechanical organs where 

non-cancerous alveolar epithelial cells are normally exposed to high levels of mechanical 

stress (i.e. 15% cyclic strain). In contrast, primary lung tumor cells may experience a 40-

fold decrease in this cyclic mechanical stress91. However, it is not known how 

biophysical forces present in lung tumor microenvironment alters oncogenic signaling 

and/or the response to targeted therapies/chemotherapeutics in NSCLC cells.  

Myoferlin (MYOF) is a membrane vesicle trafficking protein. Knocking down 

MYOF have shown to reverse EMT in highly metastatic MDA-MB231 breast cancer 

cells and results in significant decrease in migration and invasion22, 23. Overexpression of 

MYOF expression was found in breast cancer which plays important role in controlling 

EGFR degradation24. In lung cancer, increased MYOF expression correlates with worse 

outcomes25.  Although there is correlation between lung cancer and MYOF expression, 
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currently there is limited in understanding of how MYOF alters EMT signaling and cellar 

biomechanics to alter migratory potential and EGFR expression changes. 

Therefore, we hypothesize that mechanical forces in lung tumor environment play 

a critical role in tumor progression and response to therapeutics.  In this study, we will 

use erlotinib resistant lung cancer cell lines – A549 with K-Ras mutation and H1299 with 

N-Ras – to1) use computational models to characterize how the local mechanical stress 

and strain field change as a function of tumor stiffness, 2) develop in-vitro models that 

can capture these changes in strain field and investigate how they influence A549 and 

H1299 migration/proliferation and drug resistance and then 3) investigate how silencing 

MYOF influences migration/proliferation and drug resistance 
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Methods 

Computational Modeling 

 A finite element (FE) model of the lung was generated using the COMSOL 

Multiphysics software package. The adult lung geometry was generated by importing 

Chia Shiang Lin’s 3D CAD model for Solidworks (uploaded in June, 2014, 

www.3dcadbrowser.com/ ) to COMSOL. The normal lung tissue was modeled as a 

homogeneous, compressible Neo-Hookean hyperelastic material82.The time-dependent 

equations governing tissue deformation solved in COMSOL were 

ρ
𝜕2𝒖

𝜕𝑡2 = ∇ ∙ (𝐹𝑆)𝑇 𝐹 = 𝐼 + ∇𝒖 𝑆 =
𝜕𝑊

𝜕𝜖
𝜀 =

1

2
(𝐹𝑇𝐹 − 𝐼)  (1) 

where ρ is tissue density, u is the displacement field, F is the deformation gradient, I is 

the identity tensor, S is the second Piola-Kirchhoff stress tensor, W is the strain energy 

density and ε is the strain tensor. We implemented following for Neo-Hookean 

hyperelastic material properties 

 

𝑊 = 
1

2
𝜇(𝐼1 − 3) − 𝜇 ln(𝐽𝑒𝑙) +

1

2
𝜆(ln(𝐽𝑒𝑙))

2         (2) 

 

Here, I1 is the first invariants of the isochoric elastic right Cauchy-Green tensor, J is the 

elastic volume ratio with an equivalent Young’s modulus (E) of 6 kPa, poisson’s ratio (ν) 

of 0.2 with Lamé parameters λ and µ were as follows: 

 

𝜆 =
𝐸

3(1 − 2𝑣)
    (3)                𝜇 =

𝐸

2(1 + 𝑣)
   (4) 

http://www.3dcadbrowser.com/
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The tumor with diameter of 1cm was placed within the lung with varying stiffness of 3 to 

36 kPa. The spherical tumor modeled as linear, elastic, isotropic material as follows: 

 

ρ
𝜕2𝒖

𝜕𝑡2 = ∇ ∙ (𝐹𝑆)𝑇 𝐹 = 𝐼 + ∇𝒖 𝜀 =
1

2
(𝐹𝑇𝐹 − 𝐼)      (5) 

 

Intercostal area was fixed with fixed constraint and the cyclic pressure were loaded on the 

outer wall of the lungs (Figure 9 A). Negative sinusoidal pressure breathing was 

simulated with breathing frequency of 0.2 Hz. Physics-controlled normal element size 

mesh was generated (Figure 9 B). 

 

Figure 9. COMSOL idealized lung model set up. A) shows geometry and boundary 

conditions of the model B) shows mesh of the model 
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Cell culture 

Human lung adenocarcinoma cell lines, A549 (ATCC® CCL-185™) and NCI-

H1299 (ATCC® CRL-5803™), were used for the following studies. A549 cells were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% 

Fetal Bovine serum (FBS) and 1% antibiotic-antimycotic. NCI-H1299 cells were 

maintained in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 

10% Fetal Bovine serum (FBS) and 1% antibiotic-antimycotic. Knocking down MYOF 

expression on A549 and H1299 were performed with Lipofectamine 2000 using siRNA 

sequence (CCTCTACTCTTTGCCGAACTA, Sigma-Aldrich). In order to confirm 

transfection success, cells were also transfected with fluorescently tagged negative 

control siRNA (SCI001, Sigma-Aldrich) as shown in Figure 10.  

 

 

Figure 10. Florescence image of negative control siRNA A) A549 scramble negative 

control B) H1299 scramble negative control. 
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Stretching 

 Cells were seeded on ProNectin coated Bioflex culture plates (Flexcell) overnight. 

Once the cells were properly attached and seeded onto the plates, Flexcell® Tension 

Systems were used to stretch the plate membrane. Loading posts were placed beneath the 

membrane to ensure equibiaxial strain. Oscillatory stretch was implemented and applied 

an equibiaxial strain magnitude of 0-18% for the frequency of 0.2 Hz for 24hrs (Figure 

11).  

 

Figure 11. Schematic of Bioflex Flexcell® Tension Systems. Monolayer of cells seeded 

on the membrane. The vacuum pulls down on the membrane against the loading post, 

exerting equibiaxial strain on the cells. Adapted from http://www.flexcellint.com. 

 

 For non-uniform strain, a 12mm diameter circular glass coverslip was glued onto 

the bottom of the flexcell membrane with a silicone sealant (Figure 12 A). Oscillatory 

stretch was applied over a range of equibiaxial strain magnitudes 0-18% with a frequency 

of 0.2 Hz for 24hrs. In order to confirm the non-uniform strain, 2mm x 2mm dot grid was 

marked on Flexcell membrane (Figure 12 B). Before and after stretch image of the grid 

http://www.flexcellint.com/
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was imported into MatLab. Custom written MatLab code that uses nearest neighbor 

algorithm was used to find neighboring dots and displacement between each dots were 

calculated for the whole grid. The following strain tensor (ε) equation was used in 

cylindrical coordinates to calculate the strain field:  

 

𝜀 =
1

2
[∇�⃑� + (∇�⃑� )𝑇]        (6) ,              

𝜕𝑢𝑟

𝜕𝑟
= √(

𝜕𝑢𝑥

𝜕𝑥
)
2

+ (
𝜕𝑢𝑦

𝜕𝑦
)

2

    (7) 

 

 

Figure 12. Non-uniform deformation system setup. A) schematic of the vacuum stretch 

(red arrows) pulling down on the Flexcell membrane with or without glass stiff center.    

B) shows representative images of the 16% cyclic strain with or without stiff center. 
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Cell Cluster Migration 

 Cells were seeded in clusters to be able to track migration dynamics over a 24 

hour time period. A 10 µL droplet of cell clusters with a concentration of 2,000 cells/ µL 

were seeded on the ProNectin coated Bioflex culture plates (Flexcell) overnight. Once the 

monolayer of clusters were formed, the wells were flooded with respective media and 0 

hr time point phase contrast images of the clusters were taken using an Olympus IX81 

inverted microscope (Olympus Corporation, Tokyo, Japan). After the clusters were 

exposed to oscillatory stretch as described above, the 24hr time point phase contrast 

images of the were taken. The NIH image processing software ImageJ was used to 

manually trace the outline of the clusters to measure area (A) and perimeter (P) for both 0 

and 24hr time point images. Relative area change was calculated as 

 

𝐴𝑟𝑒𝑙 =
(𝐴𝑡=24ℎ𝑟 − 𝐴𝑡=0ℎ𝑟)

𝐴𝑡=0ℎ𝑟
⁄     (8) 

 

and used to measure the migration of the clusters. Furthermore, the circularity (C) of the 

clusters were calculated as 𝐶 = 4𝜋𝐴
𝑃2⁄  to measure the invasive potential of the clusters. 

Similar to relative area change, relative circularity change was calculated as 

 

𝐶𝑟𝑒𝑙 =
𝐶𝑡=24ℎ𝑟 − 𝐶𝑡=0ℎ𝑟

𝐶𝑡=0ℎ𝑟
⁄ .     (9) 
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Live-Cell Migration Assay 

 A wound assay was performed on transfected A549 and H1299 cells. Cell 

suspensions of 400 cell/µL were seeded at 50 µL in each chambers of a wound assay 

insert (Ibidi®, Martinsried, Germany) which allow formation of well-defined “wound 

edge” (Figure 13). Once the monolayer of cells is formed within the inserts, the inserts 

are removed and placed on the live-cell imaging system to track cell migration patterns in 

real time. Phase contrast images were taken by Zeiss Axiovert 200M microscope, every 5 

minutes over a time period of 24 hrs. From each image 30 individual cells migratory 

trajectory were traced using ImageJ. Ibidi Chemotaxis and Migration Tool  

(Ibidi.com/software/chemotaxis_and_migration_tool).For each data point, the total 

distance traveled and average velocity were analyzed to access the migration. Following 

equation was used to calculate velocity (v):  

 

𝑣 =
1

𝑛
∑ [

1

𝑚
∑

𝑑𝑖+1
𝑗

−𝑑𝑖
𝑗

∆𝑡

𝑚
𝑖=1 ]𝑛

𝑗=1         (10) 

 

where n is the total number of cells per experiment (approximately 30 cells), m is the 

number of time intervals for each cell (for these sets of experiments, it was 289 time 

interval over the period of 24hrs). j is the specific cell, i is timepoint. Therefore 𝑑𝑖
𝑗
 

represents cell j at timepoint i.  
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Figure 13. Schematic of Ibidi® wound assay insert and setup. Once the cells are seeded 

the inserts are lifted, and the wound edge is formed as shows. Adapted from 

www.ibidi.com.  

 

 

Erlotinib and IC50 Study 

 Erlotinib hydrochloride (Sigma-Aldrich, cat#: SML2156) was used for the drug 

resistance study. To determine the appropriate concentration of the Erlotinib for each cell 

type, half maximal inhibitory concentration (IC50) studies were conducted. IC50 is a 

quantitative measure of how much drug is needed to inhibit the proliferation cells by 

50%. The cells were cultured and exposed to different magnitude of strain 0-15% cyclic 

strain over 72hrs with Erlotinib concentrations 0-20 µM. To measure the proliferation of 

the cells, Vybrant MTT cell proliferation assay was used to quantify cell proliferation. 

IC50 values were calculated by plotting logarithmic values of concentration of Erlotinib 

against the proliferation. Using the graph, we calculated the Erlotinib concentration at 

50% proliferation. For the migration studies using Erlotinib, the 5 times and 10 times less 

the concentration IC50 for controls were used.  

 

http://www.ibidi.com/
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Western Blot Analysis 

 Expressions of EGFR, MYOF, EMT markers (E-cadherin, vimentin) were 

analyzed via western blot. Cells were seeded and exposed to 0-8% cyclic strain for 48hrs 

and sample were collected and prepared. After measuring the protein content using BCA 

assay, the samples were diluted to achieve 30µg total protein for each sample. Loading 

buffer (0.3M Tris-HCL-pH6.8, 25% glycerol, 10% SDS, 5% β-mercaptoethanol and 

0.1% bromophenol blue) was added and loaded onto pre-cast 4-12% Bis-Trist gels from 

NuPAGE Novex along with Precision Plus Protein Kaleidoscope Standards (Bio-Rad, 

Hercules CA). Gels were run using an electrophoresis system (Invitrogen, Grand Island 

NY). Once gels were done running, pure Nitrocellulose Membranes (0.45μm) (Bio-Rad, 

Hercules CA) was used for transfer of the gels. The transferred membranes were then 

blocked with 5% milk in 1x tris buffered saline (TBS) with 0.1% Tween-20 (GE 

Healthcare, Piscataway NJ). Membranes were probed for EGFR antibody (4267, Cell 

Signaling Technology, 1:1,000 dilution), MYOF antibody (MABT828, Sigma Aldrich, 

1:1,000 dilution), E-cadherin (EP700Y, Abcam, 1:500 dilution), vimentin (V6630, 

Sigma-Aldrich, 1:1,000 dilution) and as control anti-β-Actin antibody (A5316, Sigma, 

1:5000 dilution). 

 

Immunostaining 

 The cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% 

Triton-X 100 in PBS. The EGFR antibody (4267, Cell Signaling Technology, 1:200 

dilution) was used and incubated at room temperature for 90 minutes. Secondary 
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antibody anti-mouse IgG were diluted in PBS at 1:500 dilution and 4',6-diamidino-2-

phenylindole (DAPI) (1:5,000) for nuclear counterstain. The images were taking using 

Zeiss Axiovert 200M microscope. 

 

Statistical analysis 

GraphPad Prism 9 (GraphPad Software, San Diego, CA USA) was used for 

statistical analysis. Normality and outliers were tested for each data set using Shapiro-

Wilk test at α = 0.05. The outliers were removed from the dataset by using ROUT at 

Q=5%. One-way ANOVA was performed detect statistical difference with p ≤ 0.05. 
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Results 

Idealized Computational Modeling  

The idealized FEM model of lung inflation/deflation with an imbedded tumor that 

is stiffer than the surrounding tissue is shown in Figure 9A. This model indicates that the 

presence of a stiff tumor may dramatically alters the strain and strain gradient values 

within and surrounding the tumor. As shown in Figure 14, we first determined how 

changes in tumor stiffness (Young’s modulus) influences the Von Misses stress within a 

cross-section of the lung. The Von Misses stress is a measure of tensile force per unit 

area and results indicate that under normal tidal respiration, this stress varies from 0 to 75 

N/m2 with an average value of 38 N/m2. However, when the tumor has a low stiffness 

3kPa, Von Misses stress within the tumor had average stress of 50 N/m2. In addition, as 

the stiffness of tumor increases, the average Von Misses tensile stress within the tumor 

also increases to 100 N/m2 when the tumor is very stiff, i.e. 36kPa. The region between 

the tumor and the normal lung, peritumoral region (blue highlighted region), exhibited 

significant spatial gradients in the stress field with spike increases that go up to 450 N/m2 

and drops down to normal stress values. The representative images show that for low 

tumor stiffness (Figure 14B) shows more directional stress in the direction of lung 

expansion whereas the tumor with high stiffness (Figure 14C) shows the disruption in the 

stress direction where we see normal forces pointing to the apex of the lung. 
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Figure 14. von mises stress in the tumor region in idealized lung model. A) The graph 

shows the stress cross section of the lung in normal (white) and tumor (green) region with 

varying tumor stiffness from 3 to 36 kPa. The bottom two images show representative 

images of B) low tumor stiffness of 3 kPa and of C) high tumor stiffness of 36 kPa. 

As shown in Figure 15, the model also indicates that changes in tumor stiffness 

alters the tensile strain within a cross sectional area of the lung. Here, we plot 1st principle 

strain which is the strain in a plane normal to a plane in which the shear strain is zero. 

The 1st principle strain is related to the maximum tensile strain in the system. The strain 

values show that although the normal lung experiences about 6% tensile strain, these 

strain values deviate from this baseline significantly in the region near the tumor 
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(indicated by green highlighted region) as is a function of tumor stiffness. The higher the 

tumor stiffness, the lower the values of the strains within the tumor region. However, the 

most interesting part of the strain graph was that in the peritumoral region (highlighted by 

blue) there is a sharp increase strain over the 6% baseline value and there are very high 

spatial gradients in strain in the peritumoral region. As result, this idealized 

computational model of lung deformation during tidal ventilation indicates that the 

development of a stiff tumor region leads to a highly heterogenous stress and strain field. 

Although previous investigators have investigated how homogenous changes in tensile 

strain influence cancer cell migration72, 105, to our knowledge no previous studies have 

investigated how heterogeneous strain fields as demonstrated by the computational model 

influence cancer cell migration. Therefore, the remainder of this chapter seeks to develop 

a novel in-vitro system that recapitulates the heterogenous strain field predicted by the 

computational models. Specifically, we seek to develop an in-vitro model that simulates 

the stiff tumor region and generate significant spatial gradients in tensile strain. 
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Figure 15. Idealized lung model showing A) the strain values in the cross-sectional area 

showing normal (white) and tumor region (green). Right images show representative 

image of strain of tumors at B) low stiffness, 3kPa and at C) high stiffness, 36 kPa. 

 

 

 

Effect of Uniform Strain on Lung Cancer Cell Migration 

 Before investigating the effect of heterogenous strain on cancer cell migration, we 

used established platforms (i.e. the Flexercell Tension system) to investigate how the low 

strains that develop within the tumor and the high strains that develop in the peritumoral 

region influence lung cancer migration and proliferation. Figure 16A,B shows the effect 

of 0% cyclic strain (control) and uniform cyclic deformation of 8% and 18% cyclic strain 

on migration and circularity for A549 and H1299 cells. A549 cells shows significant 

increase in migration with increase in cyclic strain magnitude (Figure 16A). This 

indicates that for A549 increase in cyclic strain in the peritumoral region may stimulate 
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increased migratory and invasive potential. Figure 16C shows representative image for 

A549. H1299 cells on the other hand showed no significant change in migration size with 

8% cyclic strain and significant decrease in migration for 18% cyclic strain (Figure 16B). 

For changes in circularity, the 18% cyclic strain had significant decrease in circularity in 

H1299. This indicates although the cyclic strain may decrease the motility of the cells, 

they increase the invasive potential at high strain 18% cyclic strain.  

To investigate if the relative changes in cell cluster size is due to increases in cell 

proliferation, MTT proliferation assays were conducted on A549 and H1299 after 24 

hours of 8% and 18% cyclic strain. Figure 16D shows that although there is a significant 

decrease in proliferation between 8% and 18% cyclic strain in A549, there is no other 

significant changes in proliferation. This demonstrates the increase in migration cluster 

size shown in Figure 16A,B are not due to increase in proliferation. 
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Figure 16. Study of uniform cyclic strain of 8% and 18% on migration and proliferation 

after 24hrs on A549 and H1299. A) Relative area change and circularity change in A549. 

Shows significant increase in migration and changes in circularity with 8% and 18% 

cyclic strain. B) Relative area change and circularity change in H1299. Significant 

decrease in migration and significant changes in circularity with 18% cyclic strain. C) 

shows representative image of cluster migration for A549. D) proliferation analysis on 

A549 and H1299 under 8% and 18% cyclic strain. Significant decrease in proliferation 

with 18% cyclic strain for A549 otherwise not significantly different. (n=14, * p<0.05, ** 

p<0.01, *** p<0.001, **** p<0.0001 by one-way ANOVA) 

 

 

Generating Non-Uniform Deformation Strain Field 

 To simulate the increased stiffness with the tumor region, a glass coverslip was 

glued to the center of a flexcell membrane prior to the application of vacuum pressure.  
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As shown schematically in Figure 12A, without the glass coverslip, the membrane will 

theoretically deformation uniformly in the radial direction to generate a homogenous 

tensile strain field. However, with the glass coverslip, which is significantly less 

deformable, the application of vacuum pressure will theoretical generate large radial 

strains near the periphery of the well and very low strains in the coverslip region and thus 

a large spatial gradient in tensile strain. To confirm these theoretical predictions and to 

characterize the generated strain fields both with and without glass coverslips, a 2mm x 

2mm dot grid was marked on Flexcell membrane (Figure 12 B) and displacement of the 

dots during the application of vacuum pressure was monitored and converted into a radial 

strain field as described in the Methods section. As shown in Figure 17 A,B  the non-

glass coverslip system shows the expected uniform strain of ~8% (Figure 17 A) and is 

consistent with the setting used in the flexcell program. However, the inclusion of a stiff 

center leads to a highly non-uniform strain field. Specifically, application of vacuum 

pressure that would normal produce a uniform 8% oscillatory strain field, led to a strain 

field in which there is very low strain in the glass coverslip region (~1%) and a gradual 

increase in the strain from the stiff center to outer area to reach ~8% strain (Figure 17 B). 

Similar homongenous and heterogenous strain field patterns were observed when the 

vacuum pressure was increase to producing 16% uniform strain when there is no stiff 

center (Figure 17 C) whereas with stiff center there is gradual increase in the strain from 

the stiff center to outer area to reach ~14% strain on the outer edge (Figure 17 D). It is 

important to note that under 16% stretch conditions, the stiff center generates higher 

gradient of non-uniform deformation. We also note that lower strains at the edge of the 
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map under 16% strain is due to edge effects associated with the movement of dots at the 

edge out of the field of view and are therefore consider to be measurement artifacts. 

 

Figure 17. The top most image shows the setup of vacuum stretch (red arrows) pulling 

down on the Flexcell membrane with or without stiff center. Non-uniform strain 

deformation generated with glass coverslips. Left two images show without stiff center 

and right two images are with stiff center. Top two images are with 8% oscillatory strain 

and bottom two are with 16% oscillatory strain. 

 

 

 

Effect of Non-uniform Deformation on Lung Cancer Cell Migration 

 To analyze the effect of strain gradient on the cluster migration, the clusters of 

cells for A549 and H1299 were seeded inside, middle (on the edge of stiff center), and 
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outside of stiff center as shown in Figure 18. After 24 hrs of migration we see that for 8% 

cyclic strain, there was significant increase in migration for A549 with clusters seeded on 

the middle (edge) and outside of the stiff center (Figure 19 A) but there was no 

significant different in circularity (Figure 19 B). This demonstrates that under low 

gradient cyclic strain (8%) there is increase in migratory potential (increase in cluster 

size) with increasing strain but cells lack invasive potential (no changes in circularity). 

Under 16% cyclic strain after 24 hrs we see only significant increase in migration for the 

outer clusters (Figure 19 C) whereas there was significant change in circularity with 

middle and outer clusters (Figure 19 D). Under high gradient cyclic strain (16%), there is 

higher gradient of strain. The cells only showed migratory potential at maximum strain 

on the cluster on the outside of the stiff center which showed increased cluster size but 

increase in strain gradient showed increase in invasive potential (decrease in circularity).  

 

 

Figure 18. Schematic of non-uniform strain migration study. The clusters of cells (A549 

or H1299) were seeded inside (blue dots), middle (green dots), and outside (red dots) of 

the glass stiff center on membrane.  
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Figure 19. Effect of strain gradient on migration for A549 after 24hrs. Control for each 

experiment were cells that were not exposed to any strain – 0%. A) relative size change 

under 8% cyclic strain gradient. Significant increase in size change in clusters middle and 

outside B) relative circularity change under 8% cyclic strain gradient. No significant 

change. C) relative size change under 8% cyclic strain gradient. There is significant 

increase in migration for outer clusters. D) relative circularity change under 8% cyclic 

strain gradient shows significant changes in circularity in middle and outside clusters. 

(n=12, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 by one-way ANOVA) 

 

 

The H1299 showed different migration patterns under similar conditions (Figure 

20). After 24 hrs of migration we see that for 8% cyclic strain, there was no significant 

increase in area change (Figure 20 A) but there was significant change in circularity for 

clusters seeded on the outside of the stiff center (Figure 20 B). This demonstrates that 

under low gradient cyclic strain (8%) there is increase in invasive potential for clusters 

exposed to highest strain. Under 16% cyclic strain after 24 hrs we see only significant 

decrease in migration for clusters in the stiff center (Figure 20 C) whereas there was 

significant change in circularity with the outer clusters (Figure 20 D). For H1299, the 

cells do not show as much migratory potential with increase in strain but at high strain 

gradient they show increase in invasive potential. 
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Figure 20. Effect of strain gradient on migration for H1299 after 24hrs. Control for each 

experiment were cells that were not exposed to any strain – 0%. A) relative size change 

under 8% cyclic strain gradient. No significant change. B) relative circularity changes 

under 8% cyclic strain gradient. Significant changes in circularity for outer clusters. C) 

relative size change under 8% cyclic strain gradient. There is significant decrease in 

migration for inner clusters. D) relative circularity change under 8% cyclic strain gradient 

shows significant changes in circularity in outside clusters. (n=12, * p<0.05, ** p<0.01 

by one-way ANOVA) 

 

 

Effect of Uniform Strain on Lung Cancer Cell Drug Resistance 

 In addition to cancer cell migration, we also explored how exposure to cyclic 

tensile strain may alter the sensitivity of lung cancer cells to targeted 

pharmaceuticals/drug treatment. We specifically investigate how cyclic tensile strain 

altered the IC50 of A549 and H1299 cells during Erlotinib treatment. The IC50 of the 

A549 without strains is 7.32 µM and H1299 without strain is 12.27 µM. Figure 21A 

shows that with increase in cyclic strain, there is significant decrease in the IC50 

concentration for both A549 and H1299. Decrease in IC50 means that the cells are 

becoming more sensitive to the drug treatment. Expression of EGFR was quantified using 

western blot to understand why cyclic strain might be making the cells more sensitive to 
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Erlotinib. We observed an increase in EGFR expression with increasing cyclic strain as 

shown in Figure 21 B. The immunostaining was done to probe for EGFR localization 

changes with cyclic strain as shown in Figure 21C. The immunostaining shows that 

without cyclic strain the EGFR expression is more localized to the cell membrane where 

we see increased florescence in the periphery of the cells. With 18% cyclic strain there is 

more increased localization of EGFR to cytoplasm area of the cells where we see 

increased florescence within the cells. Localization of EGFR in cytoplasm may indicate 

that there is decrease in EGFR recycling where the receptors end up in endosomes within 

the cytoplasm. Furthermore, the cluster migration studies under cyclic strain were 

repeated with addition of 5x and 10x less of IC50 concentration. Figure 21D although 8% 

cyclic tensile strain increased cell migration and cluster size, 5x and 10x Erlotinib IC50 

treatment was effective at preventing this increase in cell migration.  
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Figure 21. Effect of uniform cyclic strain on Erlotinib A) IC50 study under 0-8% cyclic 

strain shows significant decrease in IC50 concentration with increase in strain. B) western 

blot analysis shows increase in EGFR expression with increase in strain C) 

immunostaining for EGFR with control (no stretch) and 18% cyclic strain. At high cyclic 

strain, the EGFR are more localized in the cytoplasm. D) migration study shows 

significant increase with cyclic strain that is inhibited by addition of Erlotinib. (n=6, * 

p<0.05, ** p<0.01, *** p<0.001 by one-way ANOVA) 

 

 

 

Effect of Myoferlin (MYOF) on Lung Cancer Cell Migration 

 Although it is clear that mechanical factors such as cyclic tensile strain can alter 

lung cancer cell migration and resistance to therapy, we also sought to determine how 

novel treatment that alter cellular biomechanics may alter lung cancer cell migration and 
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resistance to therapy. Specifically, previous investigators have demonstrated that 

silencing a membrane repair protein known as Myoferlin (MYOF) alters the 

biomechanical properties of breast cancer cells and results in a significant change in triple 

negative breast cancer cell migration. Here, we sought to determine if silencing MYOF 

can also alter lung cancer cell migration. We first determine the effectiveness of the 

knocking down Myoferlin (MYOF) expression in A549 and H1299 using standard 

western blot techniques and specifically probed for both MYOF expression level as well 

as epithelial-to-mesenchymal marker (EMT) E-cadherin. As shown in Figure 22, there is 

no changes in MYOF expression in negative controls (A549/H1299 scrambles) but we 

see about 2-fold decrease in MYOF expression with si-RNA MYOF (siMYOF). 

Furthermore, we see marked increase in E-cadherin for siMYOF.   

 
Figure 22. Western Blot analysis of myoferlin (MYOF), and E-Cadherin expression on 

control, scramble, siMYOF A549 and H1299 cells. There is a significant decrease in 

MYOF expression with siRNA knockdown which resulted in two-fold increase in E-

Cadherin levels. 
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 Once the effectiveness of siRNA MYOF transfection has been confirmed the cells 

were used to study effect of MYOF on migration for A549 and H1299. The Ibidi wound 

scratch assays were performed and individual cells were tracked over 24 hr period. Figure 

23 A, B shows that both A549 and H1299 with MYOF expression knocked down there is 

significant decrease in distance that they traveled and velocity. The representative image 

of the cell tracks (Figure 23 C) show that H1299 control has wider range of movements 

compared to H1299 siMYOF tracks that show reduced range of cell tracks. This confirms 

that in lung cancer cells MYOF protein plays important function in migration of the cells. 
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Figure 23. Migration distance and velocity for n = 30 control and siMYOF A) A549 and 

B) H1299 cells. There is significant decrease in migration distance and velocity with 

MYOF expression knockdown. C) These are representative images of the individual cell 

tracking for A549 control and siMYOF. D) These are representative images of the 

individual cell tracking for H1299 control and siMYOF. (n=30, *** p<0.001, **** 

p<0.0001 by t-test) 
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Effect of MYOF on Erlotinib Resistance 

 In addition to migration, we also sought to determine if siliencing MYOF alters 

resistance to erlotinib therapy. As confirmation of the previous erlotinib studies done in 

cyclic strain studies, the erlotinib IC50 of the A549 and H1299 controls were caculated in 

the separate experiment. For this A549 control is 6.76 µM and H1299 control is 14.00 

µM which is similar to IC50 values conducted previously (Figure 21 A). When MYOF 

expressions were knocked down, there is significant decrease in IC50. For A549, IC50 

dropped to 4.19 µM and for H1299 it dropped to 9.56 µM as shown in Figure 24A. There 

was no significant difference with negative controls, A549 and H1299 scrambles, 

meaning that the changes in sensitivity is not due to transfection process.  

 The Figure 24 C shows western blot analysis of EGFR expression changes. 

Quantification of MYOF proteins show that transfection process was successful at 

knocking down the MYOF expressions in both A549 and H1299. Compared to controls, 

there was increase in EGFR expression in siMYOF cells. Looking at localization of the 

EGFR, EGFR expressions are on the cell membrane in controls for both A549 and 

H1299. When the MYOF protein is knocked down, the EGFR are more localized in the 

cytoplasm (Figure 24 D). 

 Using the IC50 concentrations from Figure 24 A were used to determine the 

concentration of erlotinib for the migration study. The erlotinib concentrations of 10 

times and 5 times less than the IC50 values were used for the study. Figure 25 shows that 

the similar to the migration studies observed from before, siMYOF A549 and H1299 

showed decreased migration. With lower concentration of erlotinib, there is no significant 
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difference in migration. With higher concentration of erlotinib, we see significant 

decrease migration. However, knockdown MYOF expression in addition to erlotinib 

treatment does not in  further decreases in cell migration. 

 
Figure 24. IC50 and EGFR expression analysis on control and siMYOF A549 and H1299 

cells. A) IC50 study shows there is significant decrease in IC50 (µM) with decrease in 

MYOF expression for both A549 and H1299 cells. B) shows representative IC50 curve of 

A549 control. C) western blot of EGFR and MYOF expression. The graph shows that 

knocking down MYOF expression leads to increase in EGFR expression.                       

D) immunostaining for EGFR with control and siMYOF. When the MYOF protein is 

knocked down, the EGFR are more localized in the cytoplasm. (* p<0.05, ** p<0.01 one-

way ANOVA). 
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Figure 25. Effect of MYOF and Erlotinib on A549, H1299 migration. A) Migration 

distance and velocity for control and siMYOF A549 cells with two different 

concentrations of erlotinib (0.68 µM, 1.35 µM). B) Migration distance and velocity 

control and siMYOF H1299 cells with two different concentrations of Erlotinib (1.4 µM, 

2.5 µM). (n=20, * p<0.05, *** p<0.001 one-way ANOVA). 
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Discussion 

Cancer metastasis is cause of 90% of cancer-related fatalities. It is marked by 

detachment of cancer cells from primary tumor site and invasion into blood circulation12. 

The cells survive in the circulatory system and extravasate into different location for 

tumor growth. Epithelial-mesenchymal transition (EMT) where the cells lose the 

epithelial-like characteristics and become more motile has been one of the theories as to 

why cancer cells in primary site gain invasive potential13-16. Furthermore, recent studies 

have shown evidence that biophysical forces present in tumor microenvironment causes 

cancer cells to become more motile17-21. Studies have shown that increased solid stress in 

lung cancer causes increased migration in 2D34, 35. Another study has shown that there is 

increase in contractility and force generation in breast, prostate and lung cancer with 

increase in stiffness38. Collectively, these previous studies show that there are various 

biophysical mechanical forces that are present in tumor microenvironment that plays 

important role in tumor motility and drive metastasis. However, these studies have not 

looked at non-uniform deformation their role in migration. 

 Our study has used combination of computation modeling and in-vitro system to 

understand mechanical forces present in the lung tumor environment and analyze those 

stress in migration and drug resistance. Idealized lung modeling (Figure 14, Figure 15) 

demonstrated that there are numerous forces present in lung tumor microenvironment. 

Figure 26 shows the summary, where the within the stiff center of the tumor there is low 

cyclic strain. On the edge of the tumor there is high cyclic strain that gradients down to 

normal cyclic strain experienced by the normal lung tissues. There have been studies 
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done looking at different magnitudes of cyclic strain on lung cancer cell and how they 

influence cellular processes106, 107.  Furthermore, it has been recently recognized that 

changes in tensile strain magnitude may also influence the cellular mechanobiology 

processes108, 109. However, to our knowledge people have not looked at the effect of strain 

gradient in lung cancer.  

 
Figure 26. Schematic of biomechanical forces present in lung tumor microenvironment. 

There is low cyclic strain the stiff center of the tumor and high cyclic strain on the edge. 

There is strain gradient from the edge of the tumor to normal lung tissue.  

 

 

 Overall A549 and H1299 showed different migration patterns. For A549, there 

was increase in cluster size and decrease in circularity with increase in strain (Figure 

16A). This indicates the cells are becoming more motile and invasive with higher strain. 
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The pattern for migration and invasiveness were similar when the non-uniform 

deformation was applied. With the addition of the stiff center, there is a gradual increase 

in strain (from inside clusters to outside clusters). We see similar pattern as we have seen 

in the uniform strain migration study, where we see increase in cluster size and decrease 

in circularity with gradual increase in strain (Figure 19). On the other hand, H1299 

showed different pattern where with increase in strain applied, there was decrease in size 

change. The circularity of H1299 decreased at higher magnitude of uniform strain (Figure 

16B), indicating that the cyclic strain does not affect the motility of the H1299 but 

increases the invasive potential of the cells. Similar pattern was observed with H1299 

under non-uniform deformation where you see decrease in migration and circularity with 

high cyclic strain (Figure 20).  

The mechanism of why these two cell lines exhibits different migration in 

response to uniform and non-uniform cyclic strain are unknown. However, the 

differences between the two cell lines may be due to the fact that they carry different Ras 

mutations. Different Ras isoforms have known to have different cellular functional 

properties110. Studies have demonstrated that the K-Ras mutation was more effective in 

stimulating cell motility compared to other Ras isoforms111, 112. This is consistent with 

our study where A549 which carries K-Ras mutation had higher increase in cell motility 

with increase in cyclic strain compared to H1299 with N-Ras mutation.  

 Interestingly, the EGFR expression changes with cyclic strain demonstrated 

similar pattern for both A549 and H1299. With increase in cyclic strain magnitude both 

cell types expressed more EGFR and became more sensitive to erlotinib treatment 
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(Figure 21). This means that the high tumor stiffness leads to increased drug resistance 

and as the cancer cells experience more cyclic strain, they become more sensitive to the 

treatment.  

In-vivo it is hard to induce mechanical strain in localized area in the lung as a 

therapeutic approach. Therefore, as a therapeutic approach we have investigated the role 

of Myoferlin (MYOF) in EGFR regulation. MYOF is a membrane vesicle trafficking 

protein that have shown to decrease migration and invasion in in highly metastatic MDA-

MB231 breast cancer cells22, 23. Overexpression of MYOF expression was found in breast 

cancer which plays important role in controlling EGFR degradation24. In lung cancer, 

increased MYOF expression correlates with worse outcomes25. Similar to findings in 

breast cancer, knocking down MYOF expression resulted in decreased migration (Figure 

23). In addition, reduced MYOF expression showed similar trend with cells exposed to 

high cyclic strain where there was increased expression of EGFR and therefore became 

more sensitive to erlotinib treatment (Figure 24).  

The effect of cyclic strain and MYOF expression have effect on erlotinib 

sensitivity, EGFR expression and localization for both A549 and H1299. Figure 27 shows 

possible downstream mechanisms that are being affected that leads cyclic strain and 

MYOF expression to have similar effect in EGFR regulation. Studies have shown that 

increased EGFR trafficking leads to more resistance to drug therapy113.  Increased cyclic 

strain or decreased MYOF expression may decrease EGFR recycling that increases the 
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number of activated endosomal EGFR. Increased phosphorylated EGFR leads to higher 

erlotinib response. Further investigation needs to be done to confirm the theory. 

 

 

Figure 27. Relationship with cyclic strain, MYOF and EGFR pathway. The pathway 

shows the effect of cyclic strain and MYOF expression on EGFR trafficking that could 

affect the effectiveness of Erlotinib.  

 

 

 Through this study we have demonstrated there are heterogenous strain present in 

lung tumor microenvironment using computational modeling 1) low strain in stiff tumor 

center 2) high strain at the edge of tumor 3) strain gradient in the peritumoral region. We 

have created 2D in-vitro system to assess how heterogeneous strains affect lung cancer 

cell migration and drug resistance. We have found that high cyclic strain results in more 

migratory potential in lung cancer cell lines and they become more responsive to drug 
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therapy. Studies on MYOF expression have shown that knocking down MYOF 

expression in lung cancer cells can be a therapeutic approach by increasing sensitivity of 

the lung cancer cells to treatment. This chapter showed importance of heterogeneous 

mechanical properties in cancer cell migration and drug resistance. For the rest of the 

dissertation, we aim to develop imaging protocols that could detect these heterogenous 

strain fields as a biomarker or maybe early indicator of cancer development. 
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Chapter 3. Using Magnetic Resonance Elastography and Computational Modeling to 

Evaluate Heterogeneous Lung Biomechanical Properties during Cystic Fibrosis 

 

The results of this study is under manuscript preparation and to be submitted in NMR in 

Biomedicine. Reference:  

 

Cho, Y., Fakhouri, F., Englert, J., Kolipaka, A. & Ghadiali, S.N. Computational Using 

Magnetic Resonance Elastography and Computational Modeling to Evaluate 

Heterogeneous Lung Biomechanical Properties during Cystic Fibrosis. NMR in 

Biomedicine. (2021).  

 

 

Introduction 

Respiratory disease is a leading cause of death worldwide where lower respiratory 

tract infections, chronic obstructive pulmonary disease (COPD), lung cancer, and 

tuberculosis accounts for 9.5 million deaths annually114. In addition, the total number of 

deaths due to chronic respiratory diseases has increased 18% in the last three decades 

(1990-2017) and mortality rates for interstitial lung disease and pulmonary sarcoidosis 

has also increased115. The lung is a dynamic mechanical organ and under normal 

physiological conditions, contraction of diaphragmatic muscles during inspiration and 

chest wall relaxation during expiration results in cyclic inflation/deflation and 

deformation of lung tissue41. In healthy subjects, expansion of lung tissue during 

inspiration exposes cells in the lung microenvironment to cyclic tensile strains (i.e. 

stretching deformations) and several investigators have demonstrated that these normal 
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physiological strains (~5-10% magnitude) promote homeostatic cellular responses 

including surfactant production, epithelial cell proliferation and differentiation and 

prostacyclin production44-47. However, the degree of tissue deformation and tensile strain 

is highly dependent on the local stiffness of lung tissue and altered tissue stiffness and/or 

lung compliance during several pulmonary disorders may significantly alter the degree of 

tensile strain in the lung. As a result, developing non-invasive tools that can monitor 

changes in the lung’s biomechanical properties during disease is a major area of research. 

Several respiratory diseases involve changes in the lung’s extracellular matrix 

(ECM) composition/structure results which alters lung tissue stiffness and inhibits normal 

lung function. For example, degradation of the ECM during COPD leads to parenchymal 

destruction, enlarged alveoli, decreased lung stiffness and reduced elastic recoil during 

exhalation48. Conversely, excessive matrix production and deposition during pulmonary 

fibrosis leads to increased lung stiffness and reduced lung expansion during inhalation49. 

Modulation of the ECM during lung cancer can also lead to increased lung stiffness50 

while excessive mucus production can elevate lung stiffness during cystic fibrosis 51. 

Importantly, at the cellular level, altered substrate/tissue stiffness has been shown to 

directly modulate cellular function52-54 and regulate the mechano-transduction processes 

that lead to fibrosis55. Therefore, developing non-invasive tools that can quantify regional 

lung stiffness is an important clinical need. 

In addition to changes in tissue stiffness, it has been recently recognized that 

changes in tensile strain magnitude and the development of spatial gradients in strain may 

also influence the cellular mechanobiology processes that contribute to lung disease. For 
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example, excessive mechanical strain during artificial ventilation and during impaired 

alveolarization can exacerbate lung injury and inflammation56 and can cause epithelial 

and endothelial cell injury and dysfunction42, 57. Furthermore, the heterogenous spatial 

distribution of strain within the deforming lung58, 59 will lead to significant spatial 

gradients in strain and these spatial strain gradients have been shown to alter fibroblast 

orientation and contractility60, 61. Interestingly, although CT-based techniques have been 

used to document heterogenous lung deformation in-vivo58, the heterogenous stiffness 

profiles that may lead to these spatial strain gradients has not been well quantified. In 

addition, most computational models of lung deformation assume homogenous stiffness 

distributions82-84 and therefore cannot capture the spatial variations in lung deformation 

observed in-vivo. In this study, we develop a novel technique that uses Magnetic 

Resonance Elastography (MRE) and Finite Element Modeling (FEM) to non-invasively 

assess regional lung stiffness (i.e. shear modulus), strain magnitude and spatial strain 

gradients and then apply this technique to assess biomechanical properties in healthy and 

Cystic Fibrosis (CF) human subjects. 

MRE is noninvasive imaging method that uses phase-contract (PC) magnetic 

resonance imaging (MRI) to measure shear stiffness in various organs such as lungs, 

pancreas, liver, and breast 95-99. Our group has previously used MRE to quantify lung 

stiffness in human subjects and have demonstrated that mean lung stiffness at total lung 

capacity (TLC) was significantly higher than the mean lung stiffness at residual volume 

(RV)95. Unlike previous studies which used inverse techniques to estimate lung stiffness 

from CT-based measurements of lung deformation92, 116, MRE is a direct measure of lung 
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tissue stiffness and can also resolve spatial and temporal variations in lung stiffness. 

Cystic fibrosis (CF) is autosomal recessive disease that is due to mutation of the cystic 

fibrosis transmembrane conductance regulator (CFTR) which leads to dysregulated 

chloride transport117. CF manifests in multiple organs and in the lungs leads to mucus 

accumulation, persistent bacterial and viral infection and scar tissue/cyst formation118. 

Since mucus accumulation and scar tissue formation likely lead to altered tissue stiffness, 

the first goal of this study is to use MRE to non-invasively measure heterogenous 

distributions of lung tissue stiffness in human CF patients. We then integrate these MRE 

stiffness measurements to into a novel FEM of lung deformation during the respiratory 

cycle and quantify heterogenous strain and strain gradient distributions. We hypothesize 

that accounting for spatial stiffness patterns will lead to higher strain gradients and that 

computational models which use homogenous properties underestimate these strain 

gradients. We also hypothesize that CF patients will exhibit higher stiffness/shear moduli, 

reduced strain magnitude and reduced strain gradients compared to measurements 

obtained in normal human adult volunteers. 
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Methods 

Magnetic Resonance Elastography 

Six normal adult volunteers n = 6 (age 24-29 yrs, 3 male, 3 female) and three 

cystic fibrosis patients (1 male and 2 females; 21-35 years old) were scanned after 

obtaining written informed consent and this study was approved by the Ohio State 

University Institutional Review Board (IRB). All images were obtained on a 1.5 T MRI 

scanner (Avanto, Siemens Healthcare, Erlangen, Germany) and all subjects were 

positioned supine and headfirst into the scanner. For MRE scans, mechanical vibrations 

at a frequency of 50 Hz were introduced separately into the right and left lungs using an 

acoustic speaker system. The passive driver was placed anteriorly on the apex of the right 

lung once and then on the left lung in a second scan. The mechanical driver system also 

consists of an active speaker which was placed outside the scanner room. The active and 

passive drivers were connected via a plastic tube.  

 

 

Image Acquisition 

MRE: A modified spin echo-echo planar imaging (SE-EPI) MRE sequence was 

used to acquire five axial slices of the lung. To minimize T2* effects and to achieve a 

relatively adequate MRE signal in the lungs, a SE based sequence was used. 

Additionally, to achieve a good signal in the lung, the shortest achievable TE of 11.6 ms 

was used. The sequence parameters are: field of view (FOV): 40x40cm2; repetition time 

(TR): 400ms; acquisition matrix: 128x64 interpolated to 256x256; slice thickness: 10mm; 
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voxel size 1.56x1.56x10mm; echo train length: 9 (i.e. 7 shots to fully cover a single k-

space); and 4 MRE phase offsets. For MRE, a 1:1 motion encoding gradient (MEG) was 

split into two unipolar lobes around the 180° refocusing pulse to achieve the minimum 

possible TE. Each Motion Encoding Gradient (MEG) lobe has a period of 2 ms (i.e. 250 

Hz combined). In-plane and through plane mechanical motion were encoded with a 26 

second breath hold for each. Scans were collected in two different breath hold states, 

residual volume (RV) and total lung capacity (TLC).  

 

Lung Density: The lung’s density (LD) changes during respiratory cycle as 

described previously95, 96, 119-121 and quantifying lung density is essential for accurately 

estimating lung stiffness. In this study, lung density scans were performed using a fast 

GRE sequence119, 120 with TR of 10 ms. To calculate T2* for RV, four different TEs of 

1.07 (minimum TE achievable by the sequence), 1.5, 2, and 2.5ms were selected. Due to 

the low density of the lung at TLC relative to RV, the two shortest TEs were selected (i.e. 

1.07 and 1.5ms) because of the rapid decay of the signal at TLC119, 120. This scan involved 

a single breath hold for each, RV and TLC. A whole-body coil was used with the 

following parameters: FOV: 50x50cm2, slice thickness: 10mm, acquisition matrix: 

64x64, and number of averages: 4.  

 

Image Analysis 

Shear Stiffness: Both left and right lungs were included in this study by first 

drawing a region of interest (ROI) on each one of the 5 slices. Second, to eliminate 
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longitudinal and reflected waves, a 4th order Butterworth bandpass directional filter was 

applied in 8 directions with cutoff values of 4-40 waves/FOV at RV and 4-40 waves/FOV 

at TLC122. Filter cutoff values were selected based on the number of pixels manually 

measured in a wavelength. Third, lung shear stiffness was calculated for each slice 

individually by using 2D direct inversion123 implemented in MRElab (Mayo Clinic, 

Rochester, Minnesota, USA). Finally, the resultant stiffness maps were median filtered 

(3x3 kernel)124, 125 and 95th percentile126 outliers were eliminated to remove noise 

imbedded in the lung’s stiffness maps.  

 

Lung Density: Lung density was estimated relative to a Gadolinium-doped water 

phantom that was placed on the volunteers’ chest during lung density scans119, 120. The 

MR signal received from the phantom, which is mostly water, was considered as a good 

representation of lung’s signal without any air. Therefore, an absolute measure of lung’s 

density can be estimated relative to the Gadolinium-doped water phantom. First, the 

mean signal of the lungs (S) at a given TE (i.e. 1.07, 1.5, 2, 2.5 ms) was measured and the 

initial signal (I0) of the lung for each pixel in the ROI of the whole lung 

 

𝑆 = 𝐼0𝑒
𝑇𝐸∗𝑇2∗

       (1) 

 

The resultant initial signal of the lung (I0) was then used to calculated lung density in 

each pixel by 
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𝐿𝐷 = 𝐼0 ∗ 𝐶𝐹 ∗ 𝐼𝑝ℎ      (2) 

 

where Iph is the mean signal of the Gadolinium-doped water phantom, and CF is a 

correction factor. Due to the long decay constants of the phantom in comparison to the 

lung, a correction factor (CF) had to be determined to correct for the steady state signal 

that the phantom might reach at a TR of 10ms. By using the same fast GRE sequence, the 

CF was obtained by scanning the phantom twice with two different TRs of 10ms and 6 

seconds. Then the CF was obtained by dividing mean phantom signal at TR = 6 seconds 

by mean phantom signal at TR = 10ms which resulted in a CF of 1.873119-121. 

 

 

Finite Element Modeling 

MRE measurements of shear stiffness at RV were used to develop n=6 normal 

and n=3 cystic fibrosis patient-specific 3D FEM of lung deformation during normal tidal 

volume breathing. First, for each normal and CF subject, an outline of the lung in each 

axial MR scan was obtained using ImageJ and a custom written MatLab code that uses 

the non-uniform rational basis splines (NURBS) Toolbox127 was used to create a 3D 

geometry of the lung section scanned during the MRI protocol (Figure 29 A). Due to 

processing of the stiffness maps as described in MRE methods, the size of the MRE shear 

stiffness maps were smaller than the lung geometry outlines. As a result, separate inner 

outlines were drawn using the MRE measurements (Figure 29 B) and used to create an 

inner 3D geometry using NURBS. The outer and inner 3D geometries were imported into 
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the COMSOL multi-physics finite element package where the outer geometry was used 

for boundary conditions specification while the inner geometry allowed for (Figure 29 C) 

for direct specification of spatial distributions in shear modulus (G). Specifically, the 

MRE measurements of shear modulus obtained in each plane (Figure 1B) were 

interpolated using a 3D linear interpolation function and this function was used to 

directly specify shear modulus in the inner region. For these studies, the shear modulus in 

the outer region was assumed to be equal to the average shear modulus within the entire 

model. The resulting model was then meshed with quadratic tetrahedral elements (Figure 

29 C) and the Solid Mechanics module in COMSOL was used simulate lung tissue 

deformation during normal tidal volume respiration by specifying appropriate material 

models and boundary conditions. 

The time-dependent equations governing tissue deformation solved in COMSOL 

were: 

 

ρ
𝜕2𝒖

𝜕𝑡2 = ∇ ∙ (𝐹𝑆)𝑇 𝐹 = 𝐼 + ∇𝒖 𝑆 =
𝜕𝑊

𝜕𝜖
𝜀 =

1

2
(𝐹𝑇𝐹 − 𝐼)  (3) 

 

where ρ is tissue density, u is the displacement field, F is the deformation gradient, I is 

the identity tensor, S is the second Piola-Kirchhoff stress tensor, W is the strain energy 

density and ε is the strain tensor. Previous studies indicate that finite element models of 

lung deformation that utilize a two-parameter Mooney-Rivlin hyperelastic material model 

yielded the highest accuracy in capturing experimentally measured motion of lung tumors 

82. Therefore, in this study we implemented this material model by specifying: 
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𝑊 = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼2 − 3) + 𝜅(𝐽 − 1)2 𝑐1 = 𝑐2 =
𝐺

4
𝜅 =

2𝐺(1+𝑣)

3(1−2𝑣)
   (4) 

 

Here, I1 and I2 are the first and second invariants of the isochoric elastic right Cauchy-

Green tensor, κ is the bulk modulus and J is the elastic volume ratio. The shear modulus, 

G, was either specified as a constant value or specified based on MRE measurements as 

described above. Since the lung has been modeled with a range of Poisson’s ratios, 0.2 – 

0.5 82, 85, 86, 128, we conducted a sensitivity analysis using values from Table 1 to 

determine how varying ν in this range influenced strain and strain gradient magnitudes. 

Figure 28 indicate that strain/strain gradients magnitudes are insensitive to changes in ν 

and therefore for all models in this study we specified ν=0.2 since that is the most 

common value used in the literature82. 

 

Parameter Description Value Range 
Baseline 

Parameter Value 

v Poisson's Ratio 0.2 to 0.5 0.2 

Es Spring Stiffness 800 to 8e10 Pa 8 kPa 

Go Outer Lung Shear Stiffness 500 to 10000 Pa 3000 Pa 

P Boundary Load 100 to 1000 Pa 1000 Pa 

Table 1. Biomechanical parameter values used for sensitivity analysis. 
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Figure 28. Sensitivity analysis using the values from Table 1 looking at strain and strain 

gradient. A) Poisson’s ratio (ν) B) spring stiffness (Es) C) outer lung shear stiffness (Go) 

D) boundary load (P). 
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To simulate lung deformation during the respiratory cycle, several boundary 

conditions and loads were applied to the model (Figure 29 D). Because the patient 

specific geometries only represent the section of the lung scanned during the MRE 

protocol, a rolling/sliding boundary condition was applied to the upper and lower 

surfaces to restrict apical/basal movement to be in-plane only. To account for the 

restriction of lung deformation due to organs/tissues in the mediastinum cavity, we 

applied a spring foundation boundary condition to the mediastinal surfaces of the lung. 

Specifically, a restoring force that is linearly related to the local deformation field was 

applied and the spring constant in the normal and shear/tangential directions was 

specified as 

 

𝑘𝑛 =
𝐸(1−𝑣𝑡)

𝑑𝑠(1+𝑣𝑡)(1−2𝑣𝑡)
𝑘𝑠 =

𝐺𝑡

𝑑𝑠
𝐺𝑡 =

𝐸

2(1+𝑣𝑡)
               (5) 

 

Where tissue stiffness was set to E=800kPa, Poisson’s ratio to 𝑣𝑡=0.4 and tissue 

thickness to 𝑑𝑠=10 cm. These values allowed for medial movement of the lungs without 

affecting the strain magnitudes within the inner region of interest. To simulate negative 

pressure ventilation, a sinusoidal vacuum pressure was applied to the outer surfaces of the 

lung section and in this study, we used a vacuum pressure that ranged from 0 to a 

maximum vacuum pressure of -Π with a sinusoidal wave with frequency of 0.2 Hz. The 

maximum vacuum pressure Π was determined for each patient specific model and was 

based on the resultant volume ratio. Specifically, for an average normal adult, inspiration 

leads to an increased lung volume of ~0.5L (i.e. the tidal volume) about a the functional 
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residual capacity which is ~3L129. As a result, normal tidal ventilation results in a volume 

ratio change of 3.5L/3L= 1.167. As a result, Π was determined for in each patient specific 

model to give a volume ratio change of 1.167 and the average maximum vacuum 

pressure in normal adults was for uniform models were 751.8 ± 47.3 Pa and for 

heterogeneous models were 7338.5 ± 38.1 Pa. Since, CF patients have a 50% decreased 

tidal volume as compared to normal subjects130, Π was set in these models to achieve a 

volume ratio change of 1.083 and this resulted in an average maximum vacuum pressure 

in CF subjects of 467.7 ± 29.0 Pa. 
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Figure 29. Flowchart of the lung finite element simulation. A) acquiring patient specific 

heterogeneous MRE stiffness maps B) reconstructing lung geometry using imageJ and 

MatLab C) outlines and stiffness maps are imported in to COMOSL Multiphysics and 

following boundary conditions are added D) Meshing of the lungs and the mesh 

convergence study E) representative simulated model showing displacement map and 

strain map. 
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Results 

MRE Assessment of Stiffness in Normal and CF Patients 

The magnitude image shows four snapshots of wave propagation for healthy 

volunteer and CF patient at RV (Figure 30A). Shorter wavelengths (distance from red to 

blue region) demonstrated in the healthy volunteer subjects compared to CF patients 

indicate that the normal volunteers have lower stiffness lungs. The calculated shear 

stiffness maps of the normal and CF volunteers further show the stiffness differences. 

Further analysis of the shear stiffness calculation shows that there is no significant 

difference between the normal and CF volunteers in both RV and TLC (Figure 30B). 

However, the CF consolidation regions are significantly stiffer than the normal lung. 

Figure 2C shows the representative distribution of the shear stiffness data calculated from 

the MRE measurement. The shear stiffness MRE measurements offer mechanical 

information of the normal and CF volunteer lungs however we do not clearly see the 

difference in stiffness values. 
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Figure 30. Magnetic resonance elastography data A) Wave image and shear stiffness 

map of normal and CF patient B) Shear stiffness (kPa) of normal, CF patients whole lung 

and CF region during residual volume and total lung capacity C) Shear stiffness (Pa) 

histogram distribution of normal and CF patient CF patients whole lung and CF 

consolidation. 
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Influence of Heterogenous Mechanical Properties on Computational Simulations and 

Tensile Strain Magnitude and Distribution 

In this study, we sought to determine the relative importance of incorporating 

heterogenous mechanical properties into computational models of lung deformation and 

specifical sought to investigate if the assumption of homogeneous mechanical properties 

significantly influences the magnitude and distribution of tensile strain and spatial 

gradients of strain within the lung. Prior to simulating lung deformation with either 

homogeneous and heterogenous mechanical properties in all adult subjects, a mesh 

convergence study was conducted to determine an adequate mesh density/size. For this 

study, a representative adult geometry was meshed with different sized and therefore 

number of quadratic elements and the output of strain was plotted as a function of the 

number of elements and the degrees of freedom (Figure 29 D). Results indicate that an 

average of 22,799 elements with 115,00 degrees of freedom yields a sufficiently accurate 

solution. Therefore, all models in this study were meshed with a similar number of 

elements and the average number of degrees of freedom used in the adult models was 

115,520+15,538.76.  
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Figure 31. Comparing strain of uniform and MRE based normal lung models. A) sample 

strain map and histogram distribution of uniform and MRE based normal lung models. B) 

Graph of mean value of strain. There is no significance difference in mean of strain.  C) 

Graph of variance of strain. MRE based lung models have significantly higher variance 

than uniform lung models by one-way repeated measures ANOVA *** p<0.001. 

 

Figure 31 shows the strain of the lung models created by using average uniform 

stiffness and MRE calculated stiffness. As expected, the uniform stiffness lung model 

showed even distribution map and unimodal histogram (Figure 31 A) compared to MRE 

based models where there is wider distribution of strain. The average strain of uniform 

and MRE stiffness-based lung model were not significantly different (Figure 31 B). 

However, comparing the strain variance across the normal volunteers, there is significant 



78 

 

difference in strain variance between the normal and MRE based stiffness models. 

Further analyzing the strain gradient of the two different models of the normal volunteers 

there is distinctive difference between uniform and MRE based models (Figure 32).  The 

color map of strain gradient shows that the model with MRE based stiffness have more 

diverse distribution of strain gradient as is evident in the histogram distribution (Figure 

32 A). The Figure 32 B shows the average strain gradient of normal uniform lung models 

were significantly lower than that of lung models with MRE stiffness. The variance of the 

strain gradient across the different normal volunteers demonstrated that models with 

MRE stiffness measurements had more variability between the patient population. The 

normal models made with uniform stiffness and MRE based stiffness demonstrated that 

the mechanical characteristics are more prominent with spatial accuracy in stiffness. 
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Figure 32. Comparing strain gradient of uniform and MRE based normal lung models. 

A) sample strain gradient map and histogram distribution of uniform and MRE based 

normal lung models. B) Graph of mean strain gradient. There is significance difference in 

strain gradient by one way repeated measures ANOVA  ***p<0.001.  C) Graph of 

variance of strain gradient. MRE based lung models have significantly higher variance 

than uniform lung models by one way repeated measures ANOVA * p<0.05. 

 

Computational Analysis of Strain Magnitude in Normal and Cystic Fibrosis Lungs 

The comparison of average values of strain and strain gradient between normal 

and CF patients showed more distinctive differences. Figure 33 shows the strain 

measurements of the normal and CF volunteers. The strain of the normal volunteers were 

significantly higher than CF volunteer lungs (Figure 33 A,D). The variability of the strain 

measurements were significantly higher in normal volunteers as shown in Figure 33 B,C.  



80 

 

 

Figure 33. Comparing strain of normal and CF lung models A) Graph of mean of log 

value of strain. There is significance in strain by nested 1-way ANOVA ***p<0.0001. B) 

The graph of variance shows that there is higher variation in normal compared CF 

patients by ANOVA *p<0.001. C) Sample histograms of strain D) sample strain map of 

normal and CF lung models. 
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Computational Analysis of Strain Gradients in Normal and Cystic Fibrosis Lungs 

The strain gradient measurement further characterized the CF consolidation 

regions within the lungs. The strain gradient was significantly different between normal 

and CF patients as expected but furthermore, the strain gradient values were significantly 

smaller in the region of CF consolidation (Figure 34 A, D). The variability between the 

patients in normal and CF volunteers were not significantly different (Figure 34 B,C). 
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Figure 34. Comparing strain of normal and CF lung models A) Graph of mean of log 

value of strain gradient. There is significance in strain gradient by by nested 1-way 

ANOVA ***p<0.001, ** p<0.01, * p<0.05. B) The graph of variance shows that there is 

no significant difference. C) Sample histograms of strain gradient D) sample strain 

gradient map of normal and CF lung models. 
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Discussion 

Respiratory disease is a leading cause of death worldwide it accounts for 9.5 

million deaths114. The lung is a dynamic mechanical organ undergoing constant cyclic 

inflation/deflation and deformation of lung tissue during normal physiology of 

breathing41.  The degree of tissue deformation and tensile strain is highly dependent on 

the local stiffness of lung tissue and altered tissue stiffness and/or lung compliance during 

several pulmonary disorders may significantly alter the degree of tensile strain in the 

lung. CT-based techniques have been used to document heterogenous lung deformation 

in-vivo58, the heterogenous stiffness profiles that may lead to these spatial strain gradients 

has not been well quantified. In addition, most computational models of lung deformation 

assume homogenous stiffness distributions82-84 and therefore cannot capture the spatial 

variations in lung deformation observed in-vivo. In our study, we have developed a novel 

technique that uses MRE and FEM to non-invasively assess regional lung stiffness (i.e. 

shear modulus), strain magnitude and spatial strain gradients. 

 Comparing FEM models ran with uniform stiffness and MRE heterogeneous 

stiffness demonstrated that there is more variation in values with the latter models. The 

uniform stiffness FEM models were able to closely predict the strain values (Figure 31) 

where there was no significant difference in strain values compared to the models with 

heterogeneous MRE stiffness. However, it was clear that variation between different 

normal volunteers were more apparent in FEM models with heterogeneous stiffness 

(Figure 31). This highlights importance in having heterogeneous stiffness in FEM to 

properly understand patient to patient difference. Furthermore, strain gradient analysis 
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further highlights the importance of the heterogeneous stiffness properties. There was 

significant difference in strain gradient and variation in strain gradient (Figure 32). The 

heterogeneous stiffness properties are able to capture patient to patient variability more 

than the average uniform stiffness FEM models. Current in-vitro models are limited to 

studying uniform oscillatory strain45, 46, 62-66.  However, this FEM study suggests to 

understand the heterogeneous properties of the lung environment, investigating the effect 

of strain gradient is important. 

 There was no significant difference in MRE shear stiffness between normal and 

the CF patient lungs without consolidation. However, the MRE shear stiffness was able 

to detect the difference in CF consolidated regions (Figure 30B). The increased stiffness 

in the CF consolidation area suggest that  the regions of mucus accumulation, persistent 

bacterial and viral infection and scar tissue/cyst formation118 alter regional tissue 

stiffness. The further analysis of CF using FEM further confirms the finding from MRE 

shear stiffness. The CF consolidation higher stiffness with uniform distribution. The CF 

consolidation resulted in low strain and strain gradient values with very low variation 

(Figure 33, Figure 34) compared to normal volunteer lungs and CF lungs without 

consolidation. This study demonstrated that we are able to assess different mechanical 

characteristics in CF. 

 Through this study we have developed a novel technique that uses MRE and FEM 

to non-invasively assess regional lung stiffness (i.e. shear modulus), strain magnitude and 

spatial strain gradients. We were able to confirm that integrating heterogeneity MRE 

stiffness into FEM gives us more patient to patient variability and further gives us 
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information of strain magnitude and spatial strain gradients. Using the technique to study 

CF patients gave further validation that heterogeneity stiffness is important in 

characterizing and studying mechanical properties in lung disease. Furthermore, this 

study highlights limitation of current in-vitro systems studying only uniform deformation 

and calls for need of investigating the strain gradient in in-vitro studies. 
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Chapter 4: Development of Novel Screening Tool for Indeterminate Pulmonary Nodules 

Using Magnetic Resonance Elastography and Finite Element Modeling 

 

The results of this study is under manuscript preparation and to be submitted in the NMR 

in Biomedicine, Reference:  

Cho, Y., Fakhouri, F., Englert, J., Kolipaka, A. & Ghadiali, S.N. Using Mechanical  

Properties for Early Diagnosis for Indeterminate Pulmonary Nodules. NMR in 

Biomedicine. (2021).  

 

 

 

Introduction 

 

Lung cancer is the leading cause of cancer related deaths in the United States. In 

2018, there was estimated to be 234,030 newly diagnosed lung cancer and 154,050 

estimated deaths1. Lung cancer’s five-year survival rate is 18.6% which is very low 

compared to other types of leading cancers such as colorectal (64.5%), breast (89.6%) 

and prostate (98.2%)2. This low survival rate is due to late detection from lack of proper 

screening – only 16% of lung cancer cases are diagnosed at early stage when the cancer is 

pre-metastatic and localized within the lungs2. Although, early detection through 

screening could increase the lung cancer survival rate, there is currently an ongoing 

debate regarding the cost-effectiveness and risks associated with lung cancer screening.  

The American Cancer Society recommends yearly screening for individuals 

between 55 to 74 years old with smoking history of 30 pack year. Lung cancer screening 
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is done through low dose computed tomography (LDCT) where early detection can 

reduce lung cancer mortality by 14 to 20% in high-risk populations3. Although early 

screening reduces mortality rate for lung cancer, repetitive scans through LDCT has risks 

for radiation exposure, false positive and false negative findings and overdiagnosis3.  

Problem with early detection is mainly with small pulmonary nodules that are 

hard to diagnose. Indeterminate pulmonary nodules (IPN) are small lung nodules with 

diameter between 6-20mm in size that are found incidentally through computed 

tomography (CT) scans. 90% of IPN are incidentally found when patients are undergoing 

CT scans. Although majority of the IPNs are benign, current diagnosing tools are not 

optimal4. Current Fleischner Society 2017 Guidelines5 look at the nodule size and risk 

factors (i.e. age, gender, family/smoking history) to determine if the patients need further 

follow-up. If there is increase in risk for lung cancer, patients undergo further imaging 

through PET scan and/or biopsy through bronchoscopy or fine needle biopsy5. Not only 

repetitive imaging methods will expose patients to high radiation but also biopsy methods 

are highly invasive and can lead to complications.  

Lung is dynamically biophysical organ where normal alveolar epithelial cells 

experience ~4-10% cyclic strain42, 43 and ultrasound elastography (UE) has shown that 

there is 40-fold decrease in cyclic strain in primary lung tumor91. Although 

biomechanical factors are significant part of the lung, there is limited information about 

different mechanical characteristics in lung tumor. Magnetic resonance electrography 

(MRE) is a non-invasive imaging technique that uses shear wave propagation to measure 

mechanical stiffness of soft tissues. Goal of the study was to: 1) characterize lung nodule 
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stiffness profiles using magnetic resonance and elastography (MRE) 2) develop finite 

element modeling incorporating heterogeneous stiffness maps to further investigate strain 

magnitude and spatial strain gradients of benign and malignant pulmonary nodules. 
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Methods 

Patient Recruitment 

 Seven patients with 10 indeterminate pulmonary nodules (IPN) were recruited for 

this study (6 males and a female; 54.5±16.8 years old). All the 10 IPN have undergone 

PET scan or biopsy, three were malignant and 7 were benign nodules. Following criteria 

was used for recruitment of the IPN patients: 1) Size:  > 1 cm in diameter, 2) Location: 

nodules located close to heart, large blood vessels were excluded from the study, 3) 

Status: patients have not undergone chemotherapy/radiation therapy. The exclusions 

were based on the resolution of the current magnetic resonance (MRE) technique and 

reduce any disturbance in the mechanical properties of the tumor. The IPN patients were 

scanned after obtaining written informed consent approved by The Ohio State University 

Institutional Review Board (IRB). 

 

 

 

Magnetic Resonance Elastography 

 MRE was performed using a single shot spin echo-EPI (SE-EPI) sequence on 

a1.5T MRI scanner (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany).  

Two active speaker systems with three passive drivers were used to generate adequate 

vibration at a frequency of 50 Hz to both lungs. Single shot SE-EPI sequence was used 

for this study to eliminated heart and lung motion artifacts to allow wider range of 

detection for the lung nodules. The shortest possible TE of 15ms was used where the 

sequence parameters were: field of view (FOV) 450 x 450 mm2, repetition time (TR) 

1020ms, slice thickness 10mm, acquisition matrix 64 x 64 interpolated to 256 x 256, 
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voxel size 1.76 x1.76x10 mm3, and 4 MRE phase offsets. As shown in (Figure 35), the 

sequence had two unipolar Motion Encoding Gradient (MEG) lobes around the 180° 

refocusing pulse to further reduce TE. Each MEG lobe has a period of 2.27 ms and both 

lobes were applied to read, phase, and slice gradients to encode in-plane and through 

plane motion in separate breath holds at residual volume (RV).  

 

 

Figure 35. Pulse sequence diagram of SE-EPI MRE sequence. The unipolar MEGs 

(shaded in blue), which have 2 ms duration, are placed around the 180º refocusing pulse. 

They are also used as crushers to ensure minimum possible TE (i.e. 11.6 ms) and to avoid 

stimulated echoes. The MEGs alternate in polarity every TR, in which positive MEGs are 

shaded in blue and negative MEGs are the blue dashed lines. 
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Lung Density 

The lung’s density (LD) changes during respiratory cycle as described 

previously95, 96, 119-121 and quantifying lung density is crucial for accurately estimating 

lung stiffness. In this study, lung density scans were performed using a fast GRE 

sequence119, 120 with TR of 10 ms. To calculate T2* for RV, four different TEs of 1.07 

(minimum TE achievable by the sequence), 1.5, 2, and 2.5ms were selected. Due to the 

low density of the lung at TLC relative to RV, the two shortest TEs were selected (i.e. 

1.07 and 1.5ms) because of the rapid decay of the signal at TLC119, 120. This scan involved 

a single breath hold for each, RV and TLC. A whole-body coil was used with the 

following parameters: FOV: 50x50cm2, slice thickness: 10mm, acquisition matrix: 

64x64, and number of averages: 4.  

 

 

Shear Stiffness Calculation 

Region of interest (ROI) were drawn on the whole lung for each slices of the lung 

and to eliminate longitudinal and reflected waves, 4th order Butterworth bandpass 

directional filter was applied in 8 directions with cut off values of 4-20waves/FOV95, 122. 

Shear stiffness was then calculated by using 2D direct inversion123 implemented in 

MRElab (Mayo Clinic, Rochester, Minnesota, USA). The stiffness maps were median 

filtered (3x3 kernel)124, 125 to remove noise embedded in the lung stiffness maps. To 

compare the shear stiffness between IPN and contralateral healthy lung tissue within a 

patient, an ROI was drawn on the IPN. Then the ROI of the same size was used to select 

region in the contralateral lung control. The ROI in contralateral lungs were equidistance 
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away from the outer lung. The location of the ROI on the contralateral lung was 

calculated by calculating relative distance ratio of the nodule relative to the outer lung 

and taking the same ratio on the contralateral lung.  

 

 

Finite Element Modeling 

Similar method was carried out for FEM of the IPN patients as the FEM models 

from chapter 3.  First, for each normal and IPN subject, an outline of the lung in each 

axial MR scan was obtained using ImageJ and a custom written MatLab code that uses 

the non-uniform rational basis splines (NURBS) Toolbox127 was used to create a 3D 

geometry of the lung section scanned during the MRI protocol. The MRE measurements 

of shear modulus obtained in each plane were interpolated using a 3D linear interpolation 

function and this function was used to directly specify shear modulus in the inner region. 

The sphere size equal to that if each IPN were drawn in each of the lungs (Figure 36). 

Similar to the ROI drawn for the MRE studies, identical spheres were drawn on the 

contralateral lung equidistance away from the outer wall of the lungs (Figure 36). The 

model was then meshed with quadratic tetrahedral elements and the Solid Mechanics 

module in COMSOL was used simulate lung tissue deformation during normal tidal 

volume respiration by specifying appropriate material models and boundary conditions. 
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Figure 36. Image of representative indeterminate pulmonary nodule FEM model. 

Showing the location of the IPN and control region area in the contralateral lung. 

 

 

 

The time-dependent equations governing tissue deformation solved in COMSOL 

were: 

 

ρ
𝜕2𝒖

𝜕𝑡2 = ∇ ∙ (𝐹𝑆)𝑇 𝐹 = 𝐼 + ∇𝒖 𝑆 =
𝜕𝑊

𝜕𝜖
𝜀 =

1

2
(𝐹𝑇𝐹 − 𝐼)  (1) 

 

where ρ is tissue density, u is the displacement field, F is the deformation gradient, I is 

the identity tensor, S is the second Piola-Kirchhoff stress tensor, W is the strain energy 

density and ε is the strain tensor. Previous studies indicate that finite element models of 

lung deformation that utilize a two-parameter Mooney-Rivlin hyperelastic material model 

yielded the highest accuracy in capturing experimentally measured motion of lung tumors 

82. Therefore, in this study we implemented this material model by specifying: 



94 

 

 

𝑊 = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼2 − 3) + 𝜅(𝐽 − 1)2 𝑐1 = 𝑐2 =
𝐺

4
𝜅 =

2𝐺(1+𝑣)

3(1−2𝑣)
   (2) 

 

I1 and I2 are the first and second invariants of the isochoric elastic right Cauchy-Green 

tensor, κ is the bulk modulus and J is the elastic volume ratio. The shear modulus, G, was 

either specified as a constant value or specified based on MRE measurements as 

described above. As indicated in chapter 3, for Poisson’s ratio ν=0.2 was used since these 

FEM lung models were independent of Poisson’s ratio and that is the most common value 

used in the literature82. 

 

 

Figure 37. Boundary conditions of the FEM set up for IPN. Boundary load was applied 

on the outer lung boundary. Spring constant in the mediastinum cavity to restrict lung 

movement. Roller condition on top and bottom of the lung. 
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To simulate lung deformation during the respiratory cycle, several boundary 

conditions and loads were applied to the model (Figure 37). Because the patient specific 

geometries only represent the section of the lung scanned during the MRE protocol, a 

rolling/sliding boundary condition was applied to the upper and lower surfaces to restrict 

apical/basal movement to be in-plane only. To account for the restriction of lung 

deformation due to organs/tissues in the mediastinum cavity, we applied a spring 

foundation boundary condition to the mediastinal surfaces of the lung. Specifically, a 

restoring force that is linearly related to the local deformation field was applied and the 

spring constant in the normal and shear/tangential directions was specified as 

 

𝑘𝑛 =
𝐸(1−𝑣𝑡)

𝑑𝑠(1+𝑣𝑡)(1−2𝑣𝑡)
𝑘𝑠 =

𝐺𝑡

𝑑𝑠
𝐺𝑡 =

𝐸

2(1+𝑣𝑡)
               (3) 

 

Where tissue stiffness was set to E = 800kPa, Poisson’s ratio to 𝑣𝑡  = 0.4 and tissue 

thickness to 𝑑𝑠=10 cm. These values allowed for medial movement of the lungs without 

affecting the strain magnitudes within the inner region of interest. To simulate negative 

pressure ventilation, a sinusoidal vacuum pressure was applied to the outer surfaces of the 

lung section and in this study, we used a vacuum pressure that ranged from 0 to a 

maximum vacuum pressure of -Π with a sinusoidal wave with frequency of 0.2 Hz. The 

maximum vacuum pressure Π was determined for each patient specific model and was 

based on the resultant volume ratio. Specifically, for an average normal adult, inspiration 

leads to an increased lung volume of ~0.5L (i.e. the tidal volume) about a the functional 
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residual capacity which is ~3L129. As a result, normal tidal ventilation results in a volume 

ratio change of 3.5L/3L= 1.167. As a result, Π was determined for in each patient specific 

model to give a volume ratio change of 1.167 and the average maximum vacuum 

pressure were 696.7 ± 144 Pa. 

 

 

Post Data Analysis 

 The data analysis was down in three ways. First, the data were analyzed by 

looking at the average value of shear modulus (G), strain (ε) and strain gradient (∇𝜀) of 

IPN and control (contralateral side). Second, the average value of shear modulus (G), 

strain (ε) and strain gradient (∇𝜀) were calculated for malignant and benign nodules. 

Third, to account for patient-to-patient differences, relative difference in shear modulus 

(G), strain (ε) and strain gradient (∇𝜀) of pulmonary nodules were normalized to 

contralateral region of the lung. 

 

𝐺𝑟𝑒𝑙 =
𝐺𝑐𝑜𝑛𝑡−𝐺𝐼𝑃𝑁

𝐺𝑐𝑜𝑛𝑡
      (4) 

𝜀𝑟𝑒𝑙 =
𝜀𝑐𝑜𝑛𝑡−𝜀𝐼𝑃𝑁

𝜀𝑐𝑜𝑛𝑡
      (5) 

∇𝜀𝑟𝑒𝑙 =
∇𝜀𝑐𝑜𝑛𝑡−∇𝜀𝐼𝑃𝑁

∇𝜀𝑐𝑜𝑛𝑡
     (6) 
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Statistical Analysis 

GraphPad Prism 9 (GraphPad Software, San Diego, CA USA) was used for 

statistical analysis. Normality and outliers were tested for each data set using Shapiro-

Wilk test at α = 0.05.  Non -parametric t-test was conducted to test the difference. 
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Results 

Comparison of IPN and Control 

 The comparison between the indeterminate pulmonary nodules and controls 

(region in contralateral lung) of shear stiffness, strain and strain gradient show there is no 

significant difference (Figure 38). Figure 38A shows the median of the shear stiffness of 

the IPN is not significantly different than that of control. Similarly, for strain (Figure 38 

B) and strain gradient (Figure 38 C) there were no significant difference value of strain 

and strain gradient between IPN and their contralateral lungs. This may be partially due 

to low sample size of each patient population. Furthermore, grouping malignant nodules 

and benign nodules together may be diluting the difference between the nodules and 

controls. Therefore, we carried out further analysis on comparing properties of the 

malignant and benign nodules. 

 

 

Figure 38. Comparison median values of IPN and control (region in contralateral lungs) 

of A) shear stiffness, B) strain, and C) strain gradient. 
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Comparison of the Malignant and Benign Nodules 

 Further analysis was conducted to compare the differences of mechanical 

properties (ie. stiffness, strain and strain gradient) in malignant and benign nodules.  

Figure 39 show representative image of the MRE stiffness and density map of the 

malignant and benign nodules. There is marked high stiffness in the malignant nodule 

(Figure 39 A) compared to benign nodules (Figure 39 B). Similarly, these representative 

images show there is high density in the malignant nodule (Figure 39 C) than benign 

nodule (Figure 39 D). 

 

 

Figure 39. Representative images of MRE stiffness map and lung density map of 

malignant and benign nodule. Red circles highlight the regions with pulmonary nodules. 

A) Stiffness map of malignant nodule show high stiffness B) lung density map of 

malignant nodule shows high density in the area C) benign nodule stiffness map shows 

low stiffness D) lung density map of the benign nodule shows normal range of lung 

density. 
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  Similarly, the representative images of the strain and strain gradient analysis 

through FEM shows differences between malignant and benign nodules. Malignant 

nodule shows low strain (Figure 40 A) and for strain gradient it is hard to determine if the 

gradient is changing much in the region. The benign nodules show similar strain (Figure 

40 C) and strain gradient (Figure 40 D) values to the normal region of the lungs. 

 

 

Figure 40. Representative images of FEM analysis of strain and strain gradient map of 

malignant and benign nodule. Red circles highlight the regions with pulmonary nodules. 

A) Malignant nodule shows low strain B) strain gradient value it is hard to determine C) 

benign nodule shows similar strain values as the normal region D) strain gradient values 

of benign nodules show similar values to the normal region. 

 

  

Figure 41 shows comparison of malignant and benign nodules without 

normalization to the contralateral lungs. There was very high variability in the stiffness 
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values of the malignant nodules and as a result it was hard to detect any differences in the 

shear stiffness values between malignant and benign nodules (Figure 41 A). Interestingly, 

looking at strain and strain gradient values, we see a trend in these two datasets. Strain 

evaluation of the malignant and benign nodule show that there is lower strain in the 

malignant nodules (Figure 41 B). This may be due to the fact that the malignant nodules 

may be stiffer than the benign nodules. Furthermore because of this low strain in the 

region, when looking at strain gradient, within the malignant nodules there seems to be 

high strain gradient compared to benign nodules (Figure 41 C).  Although there was no 

significant difference detected between malignant and benign nodules due to low sample 

size, there is a trend that malignant nodules are marked by lower strain and high gradient.  

 

 
Figure 41. Comparison of malignant and benign nodules (without normalization to 

contralateral lungs) of A) shear stiffness B) strain C) strain gradient. There is no 

significant difference but there is trend in low strain and high strain gradient in malignant 

nodules. 
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Comparison of Malignant and Benign Nodules with Normalization 

 

 Although it is interesting to observe the trend in strain and strain gradient between 

the malignant and benign nodules, there is need for normalization of the nodules to the 

contralateral lungs. Figure 42 shows normalized comparison of malignant and benign 

nodules to the control (region in contralateral region of the lung) to account for patient-

to-patient difference. The normalization of shear stiffness values show that the malignant 

nodules may be stiffer compared to benign nodules (Figure 42 A). Furthermore, both 

strain ( B)and strain gradient values (Figure 42 C) show that there may be difference 

between malignant and benign nodules.  

 

 

Figure 42. Comparison of malignant and benign nodules (with normalization to 

contralateral lungs) of A) shear stiffness B) strain C) strain gradient. There is no 

significant difference but there is trend in all shear stiffness, strain and strain gradient 

values.  
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Discussion  

 Lung cancer is leading cause of cancer related in the United States. Lung cancer’s 

five-year survival rate is 18.6% which is very low compared to other types of cancer due 

to late detection from lack of proper screening2. Indeterminate pulmonary nodules (IPN) 

further pose a problem to early detection of lung cancer due to lack of proper guideline of 

managing and diagnosing IPN patient population. Current diagnosing tools – CT scan 

and PET scans expose patients to high amount of radiation and biopsy is invasive and 

could lead to complications. This calls for better markers and tools for managing and 

diagnosing pulmonary nodules.  

Our work has shown the new technique of using MRE, non-invasive imaging 

system, with FEM could be a new diagnosing tool for IPN. Although the patient sample 

size were small, our work has shown that there is trend of high shear stiffness ( Figure 

42A), low strain (Figure 41 B) and high strain gradient (Figure 41 C) in the malignant 

nodules. This may be due to the fact that as the tumor progresses, there is increased in 

proliferation and recruitment of cells that makes the tumor more compact as well as there 

is increase remodeling of deposition of extracellular matrix131, 132. This leads to increased 

tumor stiffness. This explains why the malignant nodules exhibit higher shear stiffness in 

our study and result in low strain and high strain gradient.  

Although the increased stiffness maybe related to nodule being malignant, there 

could be other implications. The benign nodules can exhibit higher shear stiffness if they 

contain calcification or tissues scarring. Calcification of the nodules can be both 

malignant and benign133.  Calcification in malignant nodules may be mainly due to 
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primary cancer and metastatic bone cancer133.  However, majority of the nodule 

calcification is from benign causes such as pulmonary hamartoma (benign lung tumor) or 

granuloma from infection in the lungs133.  Problem with the calcification in the nodules 

can be resolved by analyzing the nodules with CT images to identify the calcification.  

Pulmonary fibrosis is caused by inflammatory response in response to lung injury 

by other disease such as pneumonia, exposure to toxins, autoimmune disease134. During 

pulmonary fibrosis, excessive matrix production and deposition leads to increased lung 

stiffness49.  These are some examples that having high shear stiffness in lung nodules 

does not necessarily mean that the nodule is malignant. Therefore, we need to continue 

the analysis of different types of lung nodules to observer if we can better characterize 

mechanical properties of different lung nodules.  

Another limitation for our study is that in our study we have not included any 

nodules of size smaller that 1cm. The current resolution of the MRE technique we are 

using is low and cannot detect the mechanical properties below 1 cm. Therefore, we need 

to further investigate in increasing spatial resolution of MRE technique by increasing 

vibrational frequency of the drivers greater than 50 Hz.  

Despite these limitations addressed in the discussion, this study is promising that 

shows that the lung has heterogeneous mechanical properties such as shear stiffness, 

strain and strain gradient. This study has demonstrated the different mechanical marker 

can be characterized using MRE imaging in combination with FEM. The identification of 

different mechanical markers can be a promising diagnosing tool for IPN patients. 
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Relying on the non-invasive method to follow the IPN patients is promising in reducing 

complications of current diagnosing tools. 
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Chapter 5: Conclusions and Future Directions 

  

Lung cancer is leading cause of cancer-related deaths in the United States. U.S 

with 5-year survival rate of 18.6%. This low survival rate is due to late detection from 

lack of proper screening2 and they develop resistance to drug therapy. Indeterminate 

pulmonary nodules (IPNs) are pulmonary nodules size between 7-20mm diameter solid 

nodules. 90% of IPNs are incidentally found and they are hard to diagnosis due to their 

small size and current diagnosis methods such as CT, PET scans and biopsy involve high 

exposure to radiation or invasive and could lead to complications.  

The majority of lung cancer patients have non-small cell lung cancer (NSCLC) 

and 64% of these patients exhibit driver mutations such as epithelial growth factor 

receptor (EGFR), anaplastic lymphoma kinase (ALK) and Ras mutations. These patients 

have shown to have improved survival rate if they are treated with targeted therapies 

directed against the driver mutations. Although these patients initially show strong 

response to targeted therapies, most patients develop resistance to these targeted 

treatments through secondary point mutation and epithelial to mesenchymal transition 

(EMT).  

The lung is a dynamic organ where alveolar epithelial cells are normally exposed 

to significant mechanical forces (i.e. ~8% cyclic strain, transmural pressure and shear 

stress) while primary lung tumor cells experience a 40-fold decrease in these mechanical 
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forces/strain. Although biomechanical factors in the tumor microenvironment have been 

shown to be a significant driver of cancer progression, there is limited information about 

how biophysical forces alters drug sensitivity in lung adenocarcinoma cells. Based on the 

known importance of mechanical forces/strain on lung injury and repair and the 

significant difference in cyclic strain applied to normal and cancer cells in the lung, we 

hypothesized that cyclic mechanical strain would activate important oncogenic pathways 

and alter drug sensitivity.  

Magnetic resonance electrography (MRE) is a non-invasive imaging technique 

that uses shear wave propagation to measure mechanical stiffness of soft tissues. Dr. 

Kolipaka’s lab has developed an MRE protocol that can measure temporally and spatially 

varying changes in lung tissue stiffness from normal adults. Furthermore, MRE has been 

used to quantify a 3-fold increase in lung tissue stiffness in fibrotic patients compared to 

normal controls. However, MRE has not been used to evaluate the stiffness profile of 

tumors within in lung cancer patients. 

 In this dissertation we test the hypothesis that the mechanical forces present 

within lung tumor microenvironment plays an important role in tumor progression and 

therapeutic response. Based on this hypothesis, we propose to 1) define different 

biophysical forces present in lung tumor microenvironment 2) investigate role of 

biomechanical forces in drug response and migratory behavior on the lung 

adenocarcinoma cells in-vitro and 3) verify and identify the biomechanical forces in 

patients with using the non-invasive imaging (i.e. MRE) and finite element modeling 

(FEM). 
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In chapter 2, the goal of the study is to develop a novel in-vitro system that better 

recapitulates the mechanical environment that develops during lung cancer and uses and 

idealized computational models of lung deformation to develop that in-vitro system. 

Furthermore, the second goal is to use the in-vitro system to understand how complex 

heterogenous changes in mechanical strain influence cancer cell migration and response 

to therapy. The finite element modeling of idealized lung model with tumor showed that 

there are heterogeneous strains and stresses present – low strain in stiff center of tumor, 

high strain and strain gradient in the peritumoral region. Using this, we have developed 

novel in-vitro system to generate non-uniform deformation. High strain and strain 

gradient led to increase in migration and increase in response to drug therapy. 

Furthermore, we have studied the effect of myoferlin (MYOF) protein as a therapeutic 

method and found MYOF knock down shows decrease in migration and increase in 

sensitivity to drug therapy. 

In chapter 3, the goal of the study is to integrate these magnetic resonance 

elastography (MRE) stiffness measurements to into a novel FEM of lung deformation and 

quantify heterogenous strain and strain gradient distributions. Comparing FEM lung 

deformation with uniform average stiffness with MRE heterogeneous stiffness models, 

we have found that although the uniform FEM models was able to capture strain 

measurement, there was lack of variation in the values and failed to capture the changes 

in strain gradient within the model. After verifying the importance of heterogeneity in 

understanding lung deformation, this novel FEM technique to analyze the strain and 

strain distribution in cystic fibrotic (CF) patients. In CF patients the CF consolidation 
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areas were stiffer than other part of the lung and showed decrease in strain and smaller 

variation in strain gradient values. 

In chapter 4, the goal of this study was to develop new diagnosing tool using 

MRE and FEM to investigate mechanical differences between benign and malignant 

pulmonary nodules. For this study we have recruited indeterminate pulmonary nodule 

(IPN) patients that have undergone diagnosis of the nodule to quantify heterogenous 

stiffness, strain and strain gradient distributions in benign and malignant nodules to 

compare and understand the different spatial gradients in tensile strain. We have seen 

increased stiffness and low strain and high strain gradient in malignant nodule patients.  

Collectively, through this dissertation, we were able to show that there is 

heterogeneous mechanical characteristics – 1) low strain in stiff tumor 2) high magnitude 

of strain 3) strain gradient – that are present in lung microenvironment. High strain and 

strain gradient affect the cell migration and response to drug therapy. We have developed 

new technique that integrates MRE heterogenous stiffness into FEM to be able to 

characterize the mechanical properties indifferent lung disease.  

 

 

 



110 

 

Future Directions 

 In chapter 2, we were not able to further investigate into the relationship between 

cyclic strain and MYOF. Therefore, we hope to carry out experiments to further 

investigate the therapeutic application of MYOF by carrying out experiments looking at 

the effect of cyclic strain and non-uniform deformation on MYOF.  

For chapter 3 of the dissertation, we have only compared the uniform stiffness 

FEM models with heterogeneous FEM models of the normal volunteers. Our future study 

includes, comparing the uniform average stiffness of the CF patients with the 

heterogeneous stiffness models to further validate the use of spatial heterogeneity is 

important in characterizing mechanical properties of the lung. 

For chapter 4, we hope to continue the recruitment of the IPN patients to continue 

to understand the different mechanical characteristic between benign and malignant 

nodules. Furthermore, it would be interesting to conduct comparison analysis on patients 

that have not yet undergone biopsy/chemotherapy with patients that have gone 

biopsy/chemotherapy. This is to understand if any process of biopsy and chemotherapy 

would alter the mechanical properties of the nodule. Another future study for this chapter 

is to increase the resolution of the MRE technique to be able to have higher resolution for 

smaller nodules < 6mm.  
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