

CARLA-based Simulation Environment for Testing and Developing Autonomous Vehicles in

the Linden Residential Area

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the

Graduate School of The Ohio State University

By

Pedro Jezel Fernandez Narvaez

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2021

Thesis Committee

Prof. Dr. Levent Guvenc, Advisor

Prof. Dr. Bilin Aksun-Guvenc

Copyrighted by

Pedro Jezel Fernandez Narvaez

2021

ii

Abstract

The use of autonomous vehicles (AV) for public passenger transport has rapidly grown in

the past few year within the mobility industry. They provide a flexible solution that can help reduce

traffic congestion, energy consumption, safety, among many others. In 2020, the Smart Columbus

Initiative (SCI) deployed two level-four autonomous shuttles to help solve the first mile/last-mile

mobility challenge in Linden Residential Area. This thesis focuses on providing a realistic

simulation platform for this real-life scenario. The environment use the CARLA (Car Learning to

Act) simulator as a backbone and provides co-simulations such as SUMO (Simulation of Urban

Mobility) for a more realistic traffic simulation and Autoware for a realistic autonomous driving

stack. Multiple traffic scenarios are provided, including NHTSA’s (National Highway Traffic

Safety Administration) pre-crash scenarios, to test the safety and decision-making of the shuttles

[1]. An evaluation and rating scheme is also introduced and illustrated using autonomous driving

in the Linden Residential Area soft environment.

iii

Dedication

This thesis is dedicated to my partner, mother, and grandmother.

iv

Acknowledgment

I want to thank everyone who directly or indirectly helped me achieve a higher education degree.

Thanks to my mentor, Dr. Levent Guvenc, for providing me with the necessary guidance

throughout my entire research.

It was an honor to be part of the Automated Driving Lab (ADL) and be able to work with the

people that are part of it. Specially, I want to thank Karina Meneses for her suggestions and input

on my work.

Finally, I want to thank my partner, mother, and grandfathers for their support on everything.

v

Vita

Education

August 2019 - May 2021 M.S. Electrical and Computer Engineering

The Ohio State University

August 2013 – December 2018 B.S. Computer Engineering

University of Puerto Rico, Mayaguez Campus

Experience

January 2021 - May 2021 GRA-GTA

Automated Driving Lab

The Ohio State University

May 2020 – August 2020 Software Engineer Intern

Qualcomm - Columbus, OH

August 2019 – May 2020 GEM Fellow

The Ohio State University

May 2019 – August 2019 Software Engineer Intern

Qualcomm - San Diego, CA

June 2018 – August 2018 Software Engineer Intern

Qualcomm - San Diego, CA

June 2017 – August 2017 Software Engineer Intern

Honeywell Aerospace – Aguadilla, PR

Fields of Study

Major field: Electrical and Computer Engineering.

vi

Table of Contents

Abstract ..ii

Dedication ... iii

Acknowledgment .. iv

Vita ... v

Table of Contents .. vi

List of Tables ... ix

List of Figures ... x

Chapter 1: Introduction .. 1

1.1 Introduction to Autonomous Shuttles ... 1

1.2 Background ... 1

1.3 Objectives and Scope .. 3

1.4 Thesis Outline ... 5

Chapter 2: Simulation Environment ... 6

2.1 CARLA Simulator... 6

2.2 RoadRunner ... 8

2.3 ASSURE Mapping Tool ... 10

2.4 Autoware ... 11

2.5 SUMO Traffic Simulator .. 12

2.6 Simulation Environment Building Pipeline .. 13

2.6.1 Building the Environment ... 13

2.6.2 Autonomous Driving Map Files .. 15

2.6.3 Point Cloud Map ... 16

vii

Chapter 3: Traffic Scenarios .. 18

3.1 Pre-Crash Typology .. 18

3.2 ScenarioRunner ... 19

3.2.1 Scenario I – Control Loss ... 20

3.2.2 Scenario II – Follow Leading Vehicle .. 21

3.2.3 Scenario III – Object Avoidance .. 22

3.2.4 Scenario IV – Unsignalized Intersection ... 23

3.2.5 Scenario V – Roundabout ... 24

Chapter 4: Benchmarks and Use Cases ... 25

4.1 Sensors .. 25

4.1.1 RGB Camera Sensor .. 25

4.1.2 Depth Camera Sensor ... 27

4.1.3 Semantic Segmentation Camera Sensor .. 28

4.1.4 GNSS Sensor.. 29

4.1.5 IMU Sensor ... 29

4.1.6 LIDAR Sensor ... 30

4.1.7 Radar Sensor ... 30

4.1.8 Collision Sensor ... 31

4.1.9 Lane Invasion Sensor .. 31

4.2 CARLA Benchmark .. 32

4.2.1 Scenarios General Architecture .. 32

4.2.2 Scenario Definition and Implementation ... 33

4.2.3 CARLA Agent Definition .. 35

4.2.4 Metrics Module .. 36

4.3 BASU Benchmark ... 36

4.3.1 BASU Architecture .. 36

4.3.2 BASU Agent Definition .. 39

4.4 Co-simulations .. 40

4.4.1 Robot Operating System... 40

4.4.2 Autoware .. 41

viii

4.4.3 SUMO .. 43

4.5 Resources Utilization .. 44

Chapter 5: Evaluation and Metrics ... 45

5.1 Evaluation.. 45

5.2 Metrics ... 45

5.2.1 Infractions ... 45

5.2.2 Lane Invasion .. 46

5.2.3 Route deviation .. 46

5.2.4 Disengagements ... 47

5.3 Driving Score .. 47

5.4 BASU and Metrics Module ... 49

5.5 Simulation Runs .. 50

Chapter 6: Contributions and Future Work .. 54

6.1 Contributions ... 54

6.2 Future Work .. 55

6.3 Final Words ... 55

Bibliography .. 56

Appendix A: Source Codes .. 59

Appendix B: Maps ... 60

Appendix C: BASU ... 61

ix

List of Tables

Table 1.1: Yearly Average Statistic – Scenario Groups Based [5] .. 3

Table 2.1: Files generated for each file format. ... 15

Table 3.1: Traffic scenarios characteristics [5] .. 19

Table 4.1: RGB camera output attributes [15]. .. 26

Table 4.2: Depth camera output attributes [15]. .. 27

Table 4.3: Semantic segmentation camera output attributes [15]. ... 28

Table 4.4: GNSS output attributes [15]. .. 29

Table 4.5: IMU output attributes [15]. ... 29

Table 4.6: LIDAR output attributes [15]. .. 30

Table 4.7: Radar output attributes [15]. ... 30

Table 4.8: Radar detection attributes [15]. ... 31

Table 4.9: Collision output attributes [15] ... 31

Table 4.10: Lane invasion output attributes [15]. .. 32

Table 5.1: Simulations results with .. 52

x

List of Figures

Figure 2.1: Basic structure of CARLA [8] .. 7

Figure 2.2: CARLA simulator [9].. 7

Figure 2.3: Linden’s map in RoadRunner with GIS enabled. ... 8

Figure 2.4: Linden’s map in RoadRunner with GIS disabled.. 9

Figure 2.5: ASSURE mapping tool interface. ... 10

Figure 2.6: Autoware’s architecture [12] ... 11

Figure 2.7: SUMO co-simulation interface ... 12

Figure 2.8: Main Linden autonomous shuttle route [14] ... 14

Figure 2.9: A roundabout from the Linden map. ... 14

Figure 2.10: Close-up screenshot of the recorded point cloud map. ... 17

Figure 2.11: Visualization of the whole point cloud map.. 17

Figure 3.1: Vehicle loses control due to a bump in the road. ... 20

Figure 3.2: FollowLeadingVehicle traffic scenario. .. 21

Figure 3.3: ObstacleAvoidance traffic scenario. ... 22

Figure 3.4: UnsignalizedIntersection traffic scenario. ... 23

Figure 3.5: Roundabout traffic scenario. ... 24

Figure 4.1: RGB camera image. .. 26

Figure 4.2: Depth camera before and after conversion. ... 27

Figure 4.3: Semantic segmentation camera output image. .. 28

Figure 4.4: General structure of a basic scenario, adapted from [22]. ... 33

xi

Figure 4.5: Associated .xml of the UnsignalizedIntersection scenario. 34

Figure 4.6: Associated Python class of the UnsignalizedIntersection scenario. 34

Figure 4.7: Basic structure of a ScenarioRunner’s autonomous agent. 35

Figure 4.8: BASU benchmark architecture. ... 38

Figure 4.9: Basic structure of a BASU agent class. ... 39

Figure 4.10: Simplified diagram of carla-autoware bridge.. 41

Figure 4.11: Autoware’s agent interface. ... 42

Figure 4.12: Autoware’s agent car in Linden’s map. .. 42

Figure 4.13: SUMO co-simulation. ... 43

Figure 4.14: Vehicles from SUMO spawned in the map. .. 44

Figure 5.1: Distance to center lane example .. 50

Figure 5.2: Test route. Agents drove from point A to point B. ... 52

Figure 5.3: Path following plots .. 53

1

Chapter 1: Introduction

1.1 Introduction to Autonomous Shuttles

Autonomous Vehicles (AV) are starting to revolutionize urban mobility around the globe.

Several cities around the United States (US) have already launched pilot programs involving

autonomous shuttles. These types of intelligent transportation systems are expected to

accommodate different needs and connect residents to different resources. Between 2014 and

2017, more than $80 billion were invested in the AV industry [2]. Companies like May Mobility

and EasyMile are some of the startups that are providing cities like Columbus circulates with low-

speed self-driving shuttles. These vehicles, usually, travel a fixed route as circulates and are

equipped with a sensor stack that allows them to sense the environment, plan, and act accordingly

to achieve a specific task. The level of automation will depend on how close they perform the tasks

compared to humans. Currently, there are six levels or tiers of autonomous driving capabilities

recognized by the Society of Automotive Engineers (SAE) and the NHTSA which range from no

autonomation (the human performs all driving tasks) to full automation (the vehicle performs all

driving tasks) [3].

1.2 Background

Due to the nature of urban environments, autonomous shuttles are forced to interact with other

vehicles, pedestrians, static objects, etc. Thus, there is a big concern when it comes to safety. They

must pass a series of safety and operational tests before operating in real life. How can we be sure

that the system is safe enough? There are millions of things than can make a system fail. On

February 20 of 2020, for example, one of the Linden LEAP (Linden Empowers All People) self-

driving shuttles had an incident where a sudden unexpected stop at the very low speed of about 7

2

mph caused a passenger to fall to the floor and later got medical attention [4]. It was determined

that a deviation in the steering of the shuttle was the culprit [4]. Something simple, yet powerful

enough to cause harm to the passengers. This incident is just one of millions that happens every

year. In fact, a publication from NHTSA accounted for approximately 6,170,000 police reported

crashes involving 10,945,000 vehicles with an estimated loss of $120 billion dollars in the United

States alone based on 2004 General Estimates Systems (GES) statistics [1]. The report provided

37 pre-crash scenario topologies for light vehicles such as minivans, passenger cars, light pickup

trucks, etc. Pre-crash scenarios describe vehicle movements and critical events that occur

immediately prior the accidents [1]. The scenarios include Control Loss With Prior Vehicle Action,

Vehicles (s) Turning – Same Direction, Lead Vehicle Decelerating, to name a few [1]. In August

2019, a new report updated the 2007 pre-crash scenario in terms of typology and crash

characteristics that accounted for new emerging crash avoidance technology [5]. Table 1 depicts

Yearly Average Statistics based on 2011-2015 Fatality Analysis Reporting System (FARS) and

GES.

3

Table 1.1: Yearly Average Statistic – Scenario Groups Based [5]

Based on the NHTSA National Motor Vehicle Crash Causation Survey (NMVCCS), the final

cause of 94% of crashes are due to driver errors [6]. It is often assumed that AVs should decrease

this number by taking out the human driver factor [6]. However, only a third, 33.1%, of crashes

could likely be preventable by AVs if they are not designed and developed with the sufficient

capabilities [6]. Autonomous vehicles are not exempt from the type of pre-crash scenarios

presented in the NHTSA report. They will be presented with challenging scenarios and they must

be able to overcome them, more so when the task in hand involves passengers.

1.3 Objectives and Scope

Autonomous vehicles are about developing and testing systems that can respond to the millions

of scenarios that a vehicle can handle in a safely manner. This is where simulations come in. They

4

enable companies and individuals to cut development time and reduce costs. We can say that

simulations will never be the same as road testing but that is outside the scope of this thesis.

Simulations enable us to assess different aspects of a system and validate them. This thesis aims

to provide a simulation environment that enables researchers, students, and people from the

industry to study, test and develop algorithms in a real-life based environment. Providing all kinds

of scenarios that autonomous shuttles can face throughout their journey. Scenarios includes

turning, obstacle avoiding, pedestrians, roundabouts, and many others. To achieve this we used

CARLA, an open-source simulator for autonomous driving research.

5

1.4 Thesis Outline

The thesis is divided as follows:

• Chapter 1 introduces autonomous shuttles and the scope of this thesis.

• Chapter 2 talks about the tools that were used to build the environment and the steps to

create it.

• Chapter 3 discusses everything related to traffic scenarios and how they were incorporated

in the work done in this thesis in more depth.

• Chapter 4 examines the ways in which autonomous agents can be evaluated and

benchmarked using the work done in this thesis.

• Chapter 5 goes through the metrics and scores that can be obtained from the benchmarking

tools.

• Chapter 6 discusses the contributions of this thesis and the next steps.

6

Chapter 2: Simulation Environment

Simulation has proved to be effective in the self-driving vehicles world. It enables developers

to virtually test different scenarios in a cost-effective way. The perks of being able to test

algorithms and analyze their performance are infinite. This chapter will cover some of the tools

used to create and develop the simulation environment. Other tools will be discussed later.

2.1 CARLA Simulator

CARLA is an open-source simulator specifically created for autonomous driving applications.

It supports the development and testing of autonomous driving algorithms in a wide range of areas

such as computer vision, path planning, motion, controls, etc. CARLA is based on Unreal Engine

4 which is a state-of-the-art, real-time, open-source game engine with photorealistic graphics [7].

The simulator follows the client-server model. The server manages the simulator itself and the

client manages the logic of the actors and the world. The simulator comes with a Python API that

allows developers to control different aspects of the simulation such as weather, traffic, Non-Player

Characters (NPCs), etc. as shown in Figure 2.1. A screenshot of CARLA simulated environment

is shown in Figure 2.2.

7

Figure 2.1: Basic structure of CARLA [8].

Figure 2.2: CARLA simulator [9].

8

2.2 RoadRunner

RoadRunner is a software that lets you easily customize 3D scenes for simulating and testing

autonomous driving systems [8]. It provides tools to create custom roads, junctions, traffic signals

and more. To make the environment more realistic, you can insert traffic signs, foliage, and props.

The program supports the visualization and importing of LIDAR (Light Detection and Ranging)

point clouds, Geographic Information System (GIS) data, etc. Scenes can be exported in a wide

range of formats such as FBX, GLTF, USD and be used in other programs such as CARLA, Unreal

Engine, LG Silicon Valley Lab (LGSVL) simulator, Unity, etc. In terms of the underlying road

network, it can be exported as an OpenDrive file. Figures 2.3 and 2.4 show RoadRunner’s GUI

(Graphical User Interface), respectively.

Figure 2.3: Linden’s map in RoadRunner with GIS enabled.

9

Figure 2.4: Linden’s map in RoadRunner with GIS disabled.

10

2.3 ASSURE Mapping Tool

ASSURE mapping tool is a simple tool for viewing and editing road network maps utilized by

autonomous vehicles [9]. It can be used via Docker, open-source software that enables OS-level

(Operating System) virtualization in the form of containers, or by direct installation [10]. The built-

in editor enables the user to add or modify different map semantics such as lanes, waypoints, road

lines, traffic lights, etc. ASSURE allows to convert between different file formats such as

OpenPlanner, OpenDrive, Lanelet2, etc. Figure 2.5 depicts the ASSURE mapping tool interface.

Figure 2.5: ASSURE mapping tool interface.

11

2.4 Autoware

Autoware, as illustrated in Figure 2.6, is an open-source software for self-driving vehicles [11].

It provides a set of modules that includes sensing, perception, planning, decision, and actuation.

Some of the capabilities are object detection, localization and mapping, lane detection, sensor

fusion, etc. Autoware is well-suited for urban cities but can be used for highways, freeways,

geofenced areas and more. It also provides ROS support. The usage of Autoware will be discussed

in sections 2.6.2 and 4.4.2. It is being introduced now because some tools from Autoware were

used to obtain certain autonomous maps needed for the simulation.

Figure 2.6: Autoware’s architecture [12]

12

2.5 SUMO Traffic Simulator

Simulation of Urban Mobility (SUMO) is another open-source microscopic traffic simulator

that allows modelling traffic systems [12]. SUMO allows you to integrate automated vehicles and

manage the traffic in terms of speed, traffic lights, and other behavior. Also, it provides support

for microscopic simulation; where you can control vehicles, pedestrians, and public transport

explicitly. The simulator offers various Application Program Interfaces (APIs) to remotely control

the simulation. This feature enables CARLA to perform a co-simulation and exploit both

simulator’s capabilities simultaneously. Figure 2.7 show SUMO’s GUI.

Figure 2.7: SUMO co-simulation interface

13

2.6 Simulation Environment Building Pipeline

The process of building the environment was quite tedious due to the of lack of proper

documentation. This section of the thesis will cover the process of building the map from scratch

to using it for simulation purposes. Additionally, it will explain how each tool was used, hoping to

serve as a guide for future map modeling intended to be used on CARLA simulator or any other

supported tool.

2.6.1 Building the Environment

The first step of the process was to obtain the (GIS) data of the area of interest, Linden, from

the United States Geological Survey (USGS) website [13]. The data collected was elevation,

imagery, and point cloud data. After collecting the data it was imported into RoadRunner to build

the actual map. The imagery was used as a blueprint to place all the roads, intersections, markings,

etc. The roads include the main Linden shuttle route, depicted in Figure 2.8, and surrounding

streets for a more realistic simulation. The tools provided by RoadRunner were easy to use and

allowed the creation of custom junctions, parking, and sidewalks without difficulty. After tracing

all the roads, the map was exported as a Filmbox (.fbx) and as OpenDrive (.xodr) file and imported

into a CARLA build from source. Doing it this way allowed us to use the assets from CARLA and

populate the map with buildings, cars, props, etc. Other free assets from the Unreal Engine

Marketplace were used to make the environment more realistic in terms of foliage, props, and

structures. Figures 2.8 and 2.9 show the main route of Linden autonomous shuttle and an example

roundabout of Linden, respectively.

14

Figure 2.8: Main Linden autonomous shuttle route [14]

Figure 2.9: A roundabout from the Linden map.

15

2.6.2 Autonomous Driving Map Files

Up to this point, the Linden map can be used in the simulator with no issues whatsoever.

However, to be able to use the Autoware agent in our custom environment, we needed two other

high-definition maps apart from the OpenDrive file. These are Lanelets (.osm) and Aisan vector

map (collection of .csv). Lanelets describe drivable environments from geometrical and

topological perspectives [14]. The maps are represented by lanelet elements, interconnected road

segments characterized by left and right bounds, which compose the road network with lanes,

roads, and intersections [14]. On the other hand, the Aisan vector map is a proprietary mapping

format developed by Aisan Technology Company. The version of Autoware that was used for this

thesis, version 1.13, utilized the Aisan format internally as a default option. Table 2.1 shows all

the necessary files for both the Lanelet and Aisan formats. The process to obtain both map formats

was straightforward:

1) Use ASSURE Mapping Tool to convert the OpenDrive file to Lanelet.

2) Use an internal Autoware tool, lanelet2aisan [15], to convert the Lanelet file to Aisan.

Lanelet Files Aisan Files

linden.osm

area.csv

dtlane.csv

intersection.csv

lane.csv

line.csv

node.csv

point.csv

wayarea.csv

whiteline.csv

Table 2.1: Files generated for each file format.

16

2.6.3 Point Cloud Map

Linden’s point cloud map generation was a simple process. We used a package from

CARLA’s ROS bridge called carla_pcl_recorder that allows you to drive around the map, either

manually or with autopilot and record the environment using a soft Light Detection and Ranging

(LIDAR) sensor [16]. This package creates a subscriber node that receives messages of type

PCLPointCloud2, which holds the raw data that is processed in a series of steps. First, it is

converted to the PointCloud<PointT> template, that is, the base class in Point Cloud Library

(PCL) for storing groups of 3D points [17]. Second, the point cloud is transformed by a 3D offset

and a quaternion. Finally, the point cloud map is saved to disk as a binary file. This process is

repeated for every sensor reading.

After driving around the map while recording the point cloud, we ended up with thousands

of single .pcd files. We used the pcl_concatenate_points_pcd command from pcl_tools, which is

part of Point Cloud Library, to generate a single point cloud from these .pcd files [18]. After that,

we used the pcl_voxel_grid command to remove duplicate points. This process must be repeated

every time a major update is done to the map (e.g. adding new buildings). Figures 2.10 and 2.11

show a close-up screenshot and visualization of the point cloud map, respectively.

17

Figure 2.10: Close-up screenshot of the recorded point cloud map.

Figure 2.11: Visualization of the whole point cloud map.

18

Chapter 3: Traffic Scenarios

Autonomous shuttles are about human safety. Ethically, morally, and legally, the systems

should and must be robust to a certain degree. For this purpose, it is a key factor that simulations

provide the tools or means to test complex traffic scenarios. The base simulation platform is

provided by CARLA. The realistic road network is provided by RoadRunner. The microscopic

simulation is provided by SUMO.

3.1 Pre-Crash Typology

To evaluate agents in the Linden environment, multiple scenarios were defined and other were

already defined in CARLA. Most of the traffic scenarios are based on the NHTSA pre-crash

topology [1], [5]. This allows us to concentrate the evaluation and testing of agents in high

occurring scenarios. The scenarios are grouped into nine (9) pre-crash scenario groups: control

loss, road departure, animal, pedestrian, pedal cyclist, lane change, opposite direction, rear-end,

and crossing paths [5]. Each scenario has different characteristics that help to quantify the

contributing factors of a crash. Table 3.1 depicts these characteristics. This thesis, the traffic

scenarios focus on characteristics that can affect an autonomous agent. For example, you will not

find a traffic scenario with alcohol involvement, age, gender, etc. contributing factors for obvious

reasons.

19

Table 3.1: Traffic scenarios characteristics [5]

3.2 ScenarioRunner

ScenarioRunner is a module from CARLA that allows developers to define and execute custom

traffic scenarios within the simulator [19]. The scenarios can be defined either through a Python

interface or the OpenScenario standard [19]. ScenarioRunner can be used to replicate specific

conditions to evaluate agents on it. Custom metrics can be defined to facilitate the evaluation and

validation of agents. The module lets you run single scenarios and route-based scenarios. This is

useful if you want to benchmark specific segments of a route or the complete route itself. The

following subsections will describe each of the traffic scenarios currently supported by our custom

map.

20

3.2.1 Scenario I – Control Loss

Description: the ego-vehicle is going straight and loses control due to wet road conditions or

something in the road. The ego-vehicle must regain control of the vehicle and continue to a target

point to finish the scenario execution. In this scenario, noise is added to the steering and throttle

data (jittered) to simulate the slippery road or object bump. Figure 3.1 show how the scenario looks

like.

Road geometry: rural area.

Weather conditions: wet, rainy, cloudy.

Vehicle speed: variable.

Figure 3.1: Vehicle loses control due to a bump in the road.

21

3.2.2 Scenario II – Follow Leading Vehicle

Description: there are two variations of this scenario: dynamic obstacle in front of the leading

vehicle and no obstacle. In both cases, the ego-vehicle must follow the leading vehicle and act

accordingly. The leading vehicle will drive until reaching the next intersection. The scenario will

end when the ego-vehicle is close to the other actor or via timeout. The leading vehicle can be

configured to be a car, motorcycle, or bicycle. Figure 3.2 show the scenario.

Road geometry: approaching intersection.

Weather conditions: daylight, clear conditions.

Vehicle speed: variable.

Figure 3.2: FollowLeadingVehicle traffic scenario.

22

3.2.3 Scenario III – Object Avoidance

Description: There are two variations of this scenario: static object and dynamic object. In both

cases the ego-vehicle encounters an obstacle on the road and must act accordingly (e.g. avoidance

maneuver). The execution of the scenario will finish either when the ego-vehicle reaches a target

point or a timeout. Figure 3.3 shows the ego vehicle and a static object.

Road geometry: urban area (approaching intersection), rural area (straight-road).

Weather conditions: variable.

Vehicle speed: variable.

Figure 3.3: ObstacleAvoidance traffic scenario.

23

3.2.4 Scenario IV – Unsignalized Intersection

 Description: The ego-vehicle reaches an unsignalized intersection, stops, and must negotiate with

other vehicles to cross it. Both actors are spawned when the scenario starts. The ego-vehicle must

reach a certain region to trigger the other vehicle to start moving. The other vehicle will start to

accelerate and try to meet the ego-vehicle at a certain point. When the ego-vehicle reaches another

trigger region, the other vehicle will accelerate and continue its path. Finally, the ego-vehicle must

negotiate and pass the intersection. Figure 3.4 show an instance of this scenario.

Road geometry: rural, low-speed road.

Weather conditions: daylight, clear conditions.

Vehicle speed: variable.

Figure 3.4: UnsignalizedIntersection traffic scenario.

24

3.2.5 Scenario V – Roundabout

Description: The ego-vehicle enters a roundabout and must go out through a specific exit while

acting accordingly with other cars on it. The scenario execution is finished when the ego-vehicle

reaches a target point or via timeout. Figure 3.5 show an instance of this scenario.

Road geometry: rural, low-speed road.

Weather conditions: variable.

Vehicle speed: around 10 mph or more.

Figure 3.5: Roundabout traffic scenario.

25

Chapter 4: Benchmarks and Use Cases

Benchmarking an autonomous shuttle system allows companies and developers to test and

validate agents in a structured way. The information gathered can be used to analyze performance

of autonomous agents and find weakness or potential safety issues. This chapter will focus on

different ways or tools that can be used to examine the algorithms in the Linden simulation

environment.

4.1 Sensors

For vehicles to drive autonomously they must have a way to perceive what is around them.

They do it by using a variety of sensors that allows them to “see” the environment. The most

widely used autonomous vehicle sensors are camera, radar, and lidar, among others. This type of

system enables cars to visualize the surroundings and detect speed and distance of nearby and

distant objects [20]. CARLA already provides a variety of sensors that can be attached to a vehicle.

This section discusses the most important sensors and how they work. The benchmarks will follow.

4.1.1 RGB Camera Sensor

As the name suggests, this sensor acts as a regular RGB (Red, Green, Blue) camera. Camera

attributes included, but not limited to, are field of view, image size, camera sensitivity, aperture,

focal distance, etc. Also, different post-processing effects can be applied such as vignette, grain

jitter, lens flares, etc. Figure 4.1 and Table 4.1 show the camera output and output attributes of this

sensor, respectively.

26

Figure 4.1: RGB camera image.

Table 4.1: RGB camera output attributes [15].

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

width int Image width in pixels.

height int Image height in pixels.

fov float Horizontal field of view in degrees.

raw_data bytes Array of BGRA 32-bit pixels.

27

4.1.2 Depth Camera Sensor

The depth camera has the same attributes as the RGB camera. However, this sensor captures

the raw data from the scene or environment and codifies the distance of each pixel to create a depth

map. CARLA provides color converters that let you convert the distance from RGB format to

grayscale, distance codified in [0,1] float values. Figure 4.2 and Table 4.2 show the camera output

and output attributes of this sensor, respectively.

Figure 4.2: Depth camera before and after conversion.

Table 4.2: Depth camera output attributes [15].

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

width int Image width in pixels.

height int Image height in pixels.

fov float Horizontal field of view in degrees.

raw_data bytes Array of BGRA 32-bit pixels.

28

4.1.3 Semantic Segmentation Camera Sensor

The semantic segmentation camera sensor classifies every object according to predefined

tags (e.g. vegetation, vehicles, etc.). The image is provided with the tag encoded in the red channel,

that is, a pixel with a value x in the R channel belongs to a type of object with tag x . For example,

vegetation would be encoded as (107, 142, 35). CARLA provides a simple way to use the

CityScapes palette. Figure 4.3 and Table 4.3 show the camera output and output attributes of this

sensor, respectively.

Figure 4.3: Semantic segmentation camera output image.

Table 4.3: Semantic segmentation camera output attributes [15].

Sensor data attribute Type Description

fov float Horizontal field of view in degrees.

frame int Frame number when the measurement took place.

height int Image height in pixels.

raw_data bytes Array of BGRA 32-bit pixels.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

width int Image width in pixels.

29

4.1.4 GNSS Sensor

The Global Navigation Satellite System (GNSS) sensor provides the current latitude and

longitude position by calculating the metric position of the vehicle with the initial geo reference

location offered by the OpenDrive map. Basic attributes include noise bias and noise standard

deviation of the latitude, longitude, and altitude. Table 4.4 show the output attributes of this sensor.

Table 4.4: GNSS output attributes [15].

4.1.5 IMU Sensor

The Inertial Measurement Unit (IMU) sensors provides data from the actor’s accelerometer,

gyroscope, and compass. Basic attributes are noise bias and noise standard deviation of the

accelerometer and gyroscope. Table 4.5 show the output attributes of this sensor.

Table 4.5: IMU output attributes [15].

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

latitude double Latitude of the actor.

longitude double Longitude of the actor.

altitude double Altitude of the actor.

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

accelerometer carla.Vector3D Measures linear acceleration in m/s^2.

gyroscope carla.Vector3D Measures angular velocity in rad/sec.

compass float Orientation in radians. North is (0.0, -1.0, 0.0) in UE.

30

4.1.6 LIDAR Sensor

This sensor simulates and actual rotating LIDAR using ray-casting. Virtual light rays are

casted from the sensor’s viewpoint to find points of collisions. Lasers are added on each cannel in

the vertical Field of View (FOV). The rotation is equivalent to the horizontal angle that the sensor

rotated in a frame. Each LIDAR measurement will contain all the points captured during a 1/FPS

(Frame Per Seconds) interval. Attributes includes channels, range, points per second, rotation

frequency, upper and lower FOV, and more. Table 4.6 show the output attributes of this sensor.

Table 4.6: LIDAR output attributes [15].

4.1.7 Radar Sensor

This sensor translates a 2D point map of elements from a conic view. The data provided

contains the polar coordinates, distance, and velocity of each measure point. Table 4.7 and Table

4.8 show the output attributes of this sensor and the radar detection measurement, respectively.

Table 4.7: Radar output attributes [15].

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

horizontal_angle float Angle (radians) in the XY plane of the LIDAR in the current frame.

channels int Number of channels (lasers) of the LIDAR.

get_point_count(channel) int Number of points per channel captured this frame.

raw_data bytes Array of 32-bits floats (XYZI of each point).

Sensor data attribute Type Description

raw_data carla.RadarDetection The list of points detected.

31

Table 4.8: Radar detection attributes [15].

4.1.8 Collision Sensor

This sensor is not a typical sensor. It registers an event whenever the actor collisions against

anything in the world (e.g. cars, pedestrians, trees, etc.). Unlike the previous sensors, this one does

not have any configurable attribute. Table 4.9 shows output data of this sensor. This sensor is

useful for evaluation of AV driving algorithms.

Table 4.9: Collision output attributes [15]

4.1.9 Lane Invasion Sensor

This sensor, as the collision sensor, is not a typical sensor. It registers an event whenever an

actor, in this case, ego vehicle, cross a lane marking. The OpenDrive map definition is used to

determine if the actor invaded or crossed to another lane. The sensor will detect that an actor

crossed a lane even if it is invisible (e.g. no lane marking). Like the collision sensors, this one does

RadarDetection attributes Type Description

altitude float Altitude angle in radians.

azimuth float Azimuth angle in radians.

depth float Distance in meters.

velocity float Velocity towards the sensor.

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

actor carla.Actor Actor that measured the collision (sensor's parent).

other_actor carla.Actor Actor against whom the parent collided.

normal_impulse carla.Vector3D Normal impulse result of the collision.

32

not have any configurable attribute too. Table 4.10 show the output attributes of this sensor. This

sensor like the previous one is also useful for evaluating AV driving algorithms.

Table 4.10: Lane invasion output attributes [15].

4.2 CARLA Benchmark

Autonomous Driving (AD) agents in CARLA can be evaluated through the ScenarioRunner

module that was briefly covered in Chapter 3. This section will discuss that module in-depth and

how it can be used or adapted for the simulation environment built in this thesis. Note that this

thesis will only focus on the Python interface since it was the method used to define the Linden

scenarios.

4.2.1 Scenarios General Architecture

The general structure of a scenario is depicted in Figure 4.4. It is composed of actors, a

scenario tree and other stuff needed for the simulation. The actors can range from ego-vehicle(s),

pedestrians, other vehicles (e.g. pre-defined traffic, follow a leading car, etc.). The scenario tree

is a behavior tree of type py_tress[21]. This type of tree is used for decision making engines for

different fields. In the ScenarioRunner case, it is used to define different actions or behaviors,

conditions, criteria, triggers, etc.

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

actor carla.Actor Vehicle that invaded another lane (parent actor).

crossed_lane_markings list(carla.LaneMarking) List of lane markings that have been crossed.

33

Figure 4.4: General structure of a basic scenario, adapted from [22].

4.2.2 Scenario Definition and Implementation

Scenarios from CARLA’s ScenarioRunner module have two main components: a scenario

configuration of type .xml and an associated Python class. The .xml defines parameters such as

initial ego vehicle location, orientation, type of vehicle, and other actors in the scenario. Actors

refer to other vehicles, pedestrians, and objects. The associated Python class implements the

behaviors and test criteria of the scenario. Behaviors refer to what happens when, where, and how.

For example, two cars approaching the same intersection at the same time. Test criteria refer to

pass or fail tests such as collisions, route completion, outside route lanes, actor speed above

34

threshold, etc. Figures 4.5 and 4.6 depict examples of both components, that is, the .xml definition

and the associated Python class, respectively.

Figure 4.5: Associated .xml of the UnsignalizedIntersection scenario.

Figure 4.6: Associated Python class of the UnsignalizedIntersection scenario.

35

4.2.3 CARLA Agent Definition

The autonomous agents that control the ego vehicle are defined via a Python class. The agent

class inherits from the AutonomousAgent base class and must overwrite three function. Figure 4.7

shows the basic structure of an agent. The functions to overwrite are the followings:

• setup – all necessary setup

• sensors – define the sensors configuration to be used by your agent.

• run_step – function that is executed every tick of the simulation for the agent to

return a control command based on the provided data.

Figure 4.7: Basic structure of a ScenarioRunner’s autonomous agent.

36

4.2.4 Metrics Module

Apart from the scenarios test criteria, the traffic scenarios can be evaluated using the Metrics

module provided by CARLA [23]. This module relies on the CARLA recorder which allows one

to record and reenact any simulation. The saved data includes actor’s creation and destruction,

traffic lights states, vehicles states, pedestrian states, light states, etc. [24]. Here, vehicle and

pedestrian states refer to position, orientation, and velocity. This module allows users to define

their own metrics and obtain the results from the simulation files, instead of having to play the

simulation repeatedly. Different queries can be made from the recording file such as get all

collisions, velocities from a specific actor, applied controls, transforms, etc.

4.3 BASU Benchmark

BASU, bus in Japanese, is a custom benchmark tailored towards autonomous shuttles,

specifically for the Linden route. It is a lightweight tool that simplifies the setup of simulation and

usage of co-simulations like SUMO. This section will discuss the architecture and usage of the

BASU benchmark.

4.3.1 BASU Architecture

BASU is composed of three main components: an agent, the managers, and utilities. The

agent is the one to be evaluated by the benchmark and the managers take care of the simulation.

Utilities are shared resources used internally. The main reason of using managers is to separate

different aspect of the simulation. Figure 4.8 show BASU’s architecture. The BaseManager is an

abstract class that defines the basic structure of a manager. All the other managers inherit from this

class as follows:

37

• AgentsManager – manages the agent to be evaluated in term of instantiation and

configuration validation.

• MetricsManager – manages the output metrics of the simulation. It calculates the

scores and output them into the console, text or json file.

• RecordingManager – manages the recording of the simulation, that is recording the

events for future evaluation, playback, and analysis.

• RoutesManager – manages the parsing of the route to be followed, the criteria to be

tested (e.g. check for collisions) and watch the status of the simulation (e.g. if vehicle

reached the destination, timeouts, etc.).

• SensorsManager – manages all the sensors used by the agents. That is, the setup of

the sensors, parsing the data from the sensors, and more.

• TrafficManager – manages everything related to the traffic. It oversees spawning the

Non-controllable Players (NPC) either using CARLA’s own TrafficManager module

or through SUMO.

38

Figure 4.8: BASU benchmark architecture.

39

4.3.2 BASU Agent Definition

BASU’s agents follows the same structure of a ScenarioRunner’s agent with a few

modifications. It was done this way to ease the implementation when switching between

benchmarks, that is, CARLA’s benchmark and BASU. Figure 4.9 show a sample agent class.

There are four functions to be overwritten:

• setup – setup all necessary parts for the agent

• run_step – executed every step of the simulation.

• config – configure the simulation in terms of route to be tested, sensors, etc.

• get_initial_route_locations – returns the initial plan as a list of waypoints.

Figure 4.9: Basic structure of a BASU agent class.

40

4.4 Co-simulations

Co-simulations allows the joint simulation between different standalone sub-simulators [25].

They are independent and behave like a black box [25]. It is assumed that each sub-simulator

provides some sort of API that lets another program to control them. CARLA has already

developed different co-simulations features with PTV-VISSIM, SUMO and Autoware. This

section covers SUMO and Autoware co-simulations and how they can be used alongside the

Linden environment. Section 4.4.1 introduces the of software that is used by Autoware.

4.4.1 Robot Operating System

The Robot Operating System (ROS) is an open-source framework initially targeted towards

robotics development, but not limited to it. As the name stands, it is not an actual operating system

(OS) but a collection of tools and libraries. ROS has many layers and functionalities such as

hardware abstraction, communication over the network, inter-process communication,

visualization and more [26]. AVs can take advantage of the ROS ecosystem by using the many

open-source projects such as communications frameworks, algorithms such as perception and

navigation, and tools for visualization. On that line, ROS can be used with CARLA through the

carla-ros-bridge package [27]. This package brings functionalities such as sensors information

exchange, AD agents, actors spawning, etc. For this thesis, this package was mainly used to record

Linden’s point cloud map.

41

4.4.2 Autoware

Autoware is not a co-simulation in the sense that was talked before because it is not an actual

simulator. As discussed in section 2.4, Autoware is an open-source software used for self-driving

cars. In this case, the Autoware agent is provided as a ROS package which allows it to be run on

CARLA [28]. Figure 4.10 show a basic diagram of how Autoware interacts with CARLA through

the carla-ros-bridge. To enable the agent to be used in Linden, the following must be done:

1) Modify Autoware’s Docker, software platform that simplifies building and deploying

software, to be able to inject external files.

2) Generate point cloud map, Lanelet2 (.osm) and Aisan (collection of .csv) autonomous

driving maps, as seen in section 2.6.2 and 2.6.3.

3) Move the files to specific directories inside the container.

Figures 4.11 and 4.12 show Autoware’s interface and the Autoware’s agent spawned in the map

created in this thesis, respectively.

Figure 4.10: Simplified diagram of carla-autoware bridge.

42

Figure 4.11: Autoware’s agent interface.

Figure 4.12: Autoware’s agent car in Linden’s map.

43

4.4.3 SUMO

Unlike Autoware, SUMO is an actual simulator. As discussed in section 2.5, SUMO is an

open-source traffic simulator. It enables us to spawn and control NPCs in CARLA directly from

SUMO. There are two ways to run the co-simulation: run a synchronization with a previously

created simulation or spawn NPCs controlled by SUMO with random paths. The first one requires

a configuration file (.sumocfg) that defines the simulation’s network, routes, time and more. The

second one can be run without a previous simulation, but the NPCs will follow random routes. The

SUMO co-simulation can also be run through the BASU benchmark via arguments. Figures 4.13

and 4.14 show the SUMO co-simulation and the NPCs spawned in the simulator, respectively.

Figure 4.13: SUMO co-simulation.

44

Figure 4.14: Vehicles from SUMO spawned in the map.

4.5 Resources Utilization

Running CARLA is a very computationally expensive process, especially when using multiple

sensors and spawning a high number of NPCs. It gets even worse when using SUMO and/or

Autoware at the same time. Mid to high end CPUs and GPUs are required to get a good number

of Frame Per Seconds (FPS) and better performance. The overheads becomes more apparent when

using larger maps like Linden. Recommended specs are Intel i7, i9, i10 9th-11th or AMD Ryzen 7,

9, +16 GB RAM memory, NVIDIA RTX 2070/2080 and RTX 30X0, Ubuntu 18.04.

45

Chapter 5: Evaluation and Metrics

Evaluating the proficiency of autonomous agents is the last step of the development cycle.

They help to understand every aspect of the algorithms; to characterize them. This chapter will

focus on the evaluations and metrics that can be obtained from the benchmarks and co-simulations

in the Linden environment.

5.1 Evaluation

Assessing every aspect of driving is crucial for the safety of people. We want to save lives and

prevent vehicle-related crashes. In autonomous driving, generally, we are interested in evaluating

the autonomous agent and the impact they have in the transportation system. The first one is more

related to the algorithms and performance of the agent. The second one focuses on the impact the

agent has at a macro scale such as safety, mobility, environment, etc. In this thesis, we focus mainly

on the agent’s evaluation. However, the work can be extended to support the macro evaluation

either by implementing the required metrics or via the already provided co-simulations.

5.2 Metrics

This section will cover the individual metrics that are used to compute the driving score of an

autonomous agent for a simulation.

5.2.1 Infractions

Following the CARLA leaderboard, infractions are divided in two categories: collisions and

traffics infractions. Collisions are categorized into three sub-types: with pedestrians, with vehicles,

and with static objects. Each of them adds a penalty to the total driving score. Traffic infractions

are related to running a red light or stop sign, and speeding. In this thesis, we only focus on stops

46

signs since there are no traffic lights in the environment. The penalty of each infraction is outlined

below. Note that they can be adjusted based on the user needs.

• Collisions with pedestrians: 0.50

• Collisions with other vehicles: 0.60

• Collisions with static objects: 0.65

• Running a stop sign: 0.80

• Speeding: 0.80

5.2.2 Lane Invasion

Lane invasion accounts for the times a vehicle crosses a lane marking or invades another

lane. Discrepancies may arise when crossing lanes that are not visible in the map but are available

in the OpenDrive file, which is the case of Linden [29]. This metric is not considered in the

calculation of the driving score since lane invasion can occur for reasons that do not necessarily

says anything about the agent itself (e.g. crossing to another lane). Nevertheless, is included in the

output report as an individual metric.

5.2.3 Route deviation

Route deviation considers the actual path of the vehicle versus the initial plan. This metric

determines the percentage that the autonomous vehicles was outside the planned route. This is

done by comparing the arc length of the initial planned path and the actual path the agent took. It

is assumed that both paths have the same start and final coordinates. Evasive maneuvers can affect

the route deviation score since the car is going “out of the way”. Therefore, this score should be

thresholded to not affect or penalize the overall score if that type of event occurs. Figure 5.2 shows

multiple examples of the initial plan versus the actual path that agents took.

47

5.2.4 Disengagements

Disengagement is the action when a human driver takes control over the autonomous vehicle.

We can calculate the number of miles driven and the frequency at which the disengagements

occurs. For example, if a company traveled 628,839 miles across all its deployed vehicles and the

total disengagements number was 21, then the miles per disengagement (mpd) would be

29,9444.69 mpd. To perform a disengagement, the user must manually disengage the autopilot

(e.g. agent) using the HUD. This metric can be misleading if not used properly, but that is out of

the scope of this thesis.

5.3 Driving Score

Taking the metrics discussed in section 5.2 into account, we can obtain an overall score to

understand different aspects of the agents. The main score is an aggregate of all the infractions

committed (e.g. running a stop, collisions, etc.) and path following completeness. The infraction

penalty is a geometric series with a base score of 1.0 and it is affected by a penalty coefficient for

every occurrence. The coefficient will vary depending on the type of infraction. Equation (5.1)

shows the infraction penalty formula and is based upon the infraction penalty equation of

CARLA’s leaderboard challenge [30].

𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = ∏ (𝑝𝑖)
#𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑗

𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒

𝑗
(5.1)

48

The path following score is based on the closeness of the agent’s actual path with respect to

the initial plan. The first step is to calculate the arc length of each path. The arc length is the

distance between two points along a curve. If we divide the whole path or curve into smaller parts,

we can approximate the corresponding lengths and add them up each segment. Equation (5.2) and

(5.3) show the arc length formula and the path following score formula for the path y=y(x),

respectively [31]. In Equation (5.3), 𝐿𝐴 is the length of the actual path and 𝐿𝐼 is the length of the

initial path.

𝐿 = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥
𝑎

𝑏

(5.2)

𝑝𝑎𝑡ℎ 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = min (1.0,
𝐿𝐴

𝐿𝐼
) (5.3)

Finally, to calculate the overall score of the simulation we make use of the weighted average.

A weighted average is the average of a data set that gives more importance to a certain number

than other. The calculation is equal to the sum of the product of the data xi times the weight wi

divided by the sum of all the weights. Here, w are the weights and x are the infractions and path

following scores. Equations 5.4 and 5.5 shows the formula and expanded formula of the weighted

average method [32]. The sum of the weight must be equal to 1.

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = �̅� =
∑ 𝑤𝑖 ∙ 𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

∗ 100 (5.4)

�̅� =
𝑤1 𝑥1 + 𝑤2 𝑥2 + ⋯ + 𝑤𝑛 𝑥𝑛

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛
∗ 100 (5.5)

49

Note that other metrics (e.g. lane invasion) are reported but are not part of the overall score

formula. The agents can get a score between 0 (bad) and 1.0 (good). The overall driving score

should give developers an idea of how the agent is performing. However, all the metrics should be

considered when assessing the safety and efficiency of the agents. For example, as mentioned

before, lane invasion does not count toward the total score. Nevertheless, a high number of lane

invasions may indicate an underlying problem of the agent.

5.4 BASU and Metrics Module

Apart from the driving score discussed in the previous section, we can make use of the Metrics

module described in section 4.2.4 too. The users can enable the recording feature, via command

line argument in BASU’s benchmark and then use the Metrics module to get additional metrics of

interest. For example, we can get the distance of the ego-vehicle to the center of a lane throughout

the whole simulation. In case you want to query a metric with respect to another actor, you need

the other actor’s ID or role name beforehand. Figure 5.1 shows an example plot of the distance to

the center lane of the ego-vehicle.

50

Figure 5.1: Distance to center lane example

5.5 Simulation Runs

Simulations were performed to showcase the metrics, driving score, and plots provided by

BASU. The task was for agents to drive the predefined route depicted in Figure 5.2. This short

route was chosen because it contains roundabouts, stop signs, and turns. Agents were tested in

clear sunset weather conditions. Four autonomous agents were tested: basic, behavioral, forward,

and human. The basic and behavioral agents are part of CARLA and were adapted to work in

BASU. The forward agent was a dummy agent that only drove forward. The last agent was a

human that controlled the ego-vehicle using the keyboard.

51

Before discussing the results, we must mention that running a stop sign was not considered in

the driving score for this tests due to a bug in CARLA’s agents that causes them to either stop

permanently or not detect the stop sign at all. The weights used for these simulator runs were 0.8

and 0.2 for the penalty score and path following score, respectively. The basic agent was able to

follow the initial plan successfully with no infractions and a driving score of 0.996. The behavioral

agent was initially following the path successfully but, to show how each sub score affects the

overall score, at some point we purposely deviated the car from the path and collided it with an

object. The driving score for this agent was 0.216 because of that. The forward agent, as expected,

did not follow the path quite well and eventually collided with an object, obtaining a driving score

of 0.452. The human agent, like the basic agent, drove quite well and obtained a driving score of

0.604. Figure 5.2 shows plots of the agent’s actual or followed path versus the initial plan. Table

5.1 shows more detailed metrics and scores.

From Table 5.1, we can observe how each metric affects the overall driving score. For example,

the basic and human agents got approximately the same scores, but their driving scores differs by

0.236. If we observe their infraction score, we can see that the human got penalized for the

occurrence of multiple speeding infractions. This allows you to see what aspect of the agent needs

refining.

52

Figure 5.2: Test route. Agents drove from point A to point B.

Table 5.1: Simulations results with w1 (infraction weight) = 0.8 and w2 (path following weight = 0.2

Agent Collisions Speeding Infraction Score Path Following Score Driving Score

Basic 0 0 1 0.98 0.996

Behavioral 1 1 0.13 0.56 0.216

Forward 1 1 0.52 0.18 0.452

Human 0 3 0.51 0.98 0.604

0 (BAD) - 1.0 (GOOD)

53

Figure 5.3: Path following plots

54

Chapter 6: Contributions and Future Work

This thesis covered every aspect of the process of building a simulation environment for

simulating and testing self-driving vehicles from the tools that were used to build the map to how

it can be used for different purposes relating autonomous vehicles. This chapter will talk about the

overall contributions of this thesis and the future direction the work done here could go.

6.1 Contributions

First, this thesis created a simulation environment based on a real-life scenario. The map was

created from scratch using RoadRunner for the road layout and populated with buildings, props,

and vegetation in UE4/CARLA. To make the environment as close as possible to the original,

Google Maps 3D and Street View features were used side by side with CARLA.

Second, this thesis provided a modified version of ScenarioRunner from CARLA and BASU

benchmarking tool. The former enables the pre-defined traffic scenarios from ScenarioRunner to

be used in Linden and define new ones (e.g. roundabout). The latter one is a custom benchmarking

framework that allows developers to evaluate AD agent in pre-defined routes and provides

different metrics and driving scores.

Finally, this thesis enables support for SUMO co-simulation and Autoware’s open-source

autonomous driving agent. SUMO can be co-simulated either directly through BASU or by itself.

On the other hand, the necessary map files such as point cloud map, Lanelet and Aisan were

generated to support Autoware’s agent in Linden. Lastly, a detailed documentation of the project

was created and is available in the project Github’s repository.

55

6.2 Future Work

This project can be exploited and enhanced in many ways. Modelling new buildings that look

more like the actual buildings found in the Linden area is one way to go. The ones placed in the

environment are similar but not an exact copy. More complex traffic scenarios can be defined or

implemented to increase the testing of the agents. In terms of BASU, more features can be added

such as new evaluation metrics, cooperative driving support, and OpenScenario support.

6.3 Final Words

The work done is this thesis aims to provide a realistic environment from which developers

and members from the ADL can benefit from. Maybe it will be used for safety assessment?

Evaluate perception algorithms? Analyze traffic? Autonomous shuttles seems to be the future of

our transportation system and this thesis seeks to be part of it.

56

Bibliography

[1] W. G. Najm, J. D. Smith, and M. Yanagisawa, “Pre-crash scenario typology for

crash avoidance research,” no. DOT-VNTSC-NHTSA-06-02, Apr. 2007, [Online].

Available: https://rosap.ntl.bts.gov/view/dot/6281.

[2] C. F. K. and J. Karsten, “Gauging investment in self-driving cars,” Brookings, Oct.

16, 2017. https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/

(accessed Feb. 28, 2021).

[3] NHTSA, “Automated Vehicles for Safety,” NHTSA, Sep. 07, 2017.

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety (accessed Jan.

22, 2021).

[4] Smart Columbus, “Putting Safety Management Plan into Practice: Smart Columbus’

Response to Linden LEAP Self-driving Shuttle Incident | SmartColumbus,” Smart

Columbus. https://smart.columbus.gov/playbook-asset/connected-electric-autonomous-

self-driving-shuttle-incidentvehicles/smart-columbus-response-to-linden-leap- (accessed

Jan. 22, 2021).

[5] E. D. Swanson, F. Foderaro, M. Yanagisawa, W. G. Najm, and P. Azeredo,

 “Statistics of Light-Vehicle Pre-Crash Scenarios Based on 2011–2015 National

Crash Data,” no. DOT HS 812 745, Aug. 2019, [Online]. Available:

https://rosap.ntl.bts.gov/view/dot/41932.

[6] A. S. Mueller, J. B. Cicchino, and D. S. Zuby, “What humanlike errors do

autonomous vehicles need to avoid to maximize safety?,” J. Safety Res., vol. 75, pp. 310–

318, Dec. 2020, doi: 10.1016/j.jsr.2020.10.005.

[7] UE4, “Unreal Engine,” Unreal Engine. https://www.unrealengine.com/en-US/ (accessed

Mar. 02, 2021).

[8] MathWorks, “RoadRunner.” https://www.mathworks.com/products/roadrunner.html

(accessed Mar. 02, 2021).

[9] H. Darweesh, hatem-darweesh/assuremappingtools. 2021.

[10] Docker Team, “Docker.” https://www.docker.com/ (accessed Apr. 22, 2021).

[11] Autoware Team, “Autoware-AI/autoware.ai: Open-source software for self-driving

vehicles.” https://github.com/Autoware-AI/autoware.ai (accessed Mar. 02, 2021).

[12] Eclipse Team, “Eclipse SUMO - Simulation of Urban MObility,” Eclipse SUMO -

Simulation of Urban MObility. https://www.eclipse.org/sumo/ (accessed Mar. 02, 2021).

57

[13] “USGS, advanced national map explorer interface.”

https://apps.nationalmap.gov/downloader/#/ (accessed Mar. 25, 2021).

[14] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map representation for

autonomous driving,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings, Jun.

2014, pp. 420–425, doi: 10.1109/IVS.2014.6856487.

[15] Autoware Team, “lanelet_aisan_converter,” GitLab.

https://gitlab.com/autowarefoundation/autoware.ai/utilities/-

/tree/392a0465359d51f63fb877170a330912d71a0537/lanelet_aisan_converter (accessed

Mar. 02, 2021).

[16] “ros-bridge/PclRecorder.cpp at master · carla-simulator/ros-bridge.”

https://github.com/carla-simulator/ros-

bridge/blob/master/pcl_recorder/src/PclRecorder.cpp (accessed Mar. 31, 2021).

[17] “Point Cloud Library (PCL): pcl::PointCloud< PointT > Singleton Reference.”

https://pointclouds.org/documentation/singletonpcl_1_1_point_cloud.html (accessed

Mar. 31, 2021).

[18] PCL Team, “Point Cloud Library,” Point Cloud Library.

https://pointcloudlibrary.github.io/ (accessed Apr. 22, 2021).

[19] CARLA Team, “Home - CARLA ScenarioRunner.” https://carla-

scenariorunner.readthedocs.io/en/latest/ (accessed Mar. 04, 2021).

[20] Katie Burke, “How Does a Self-Driving Car See? | NVIDIA Blog,” The Official NVIDIA

Blog, Apr. 16, 2019. https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-

car-see/ (accessed Mar. 11, 2021).

[21] “Py Trees — py_trees 2.1.4 documentation.” https://py-trees.readthedocs.io/en/devel/

(accessed Mar. 23, 2021).

[22] “Introducing ScenarioRunner,” Google Docs.

https://drive.google.com/file/u/1/d/1zgoH_kLOfIw117FJGm2IVZZAIRw9U2Q0/view?

usp=sharing&usp=embed_facebook (accessed Mar. 23, 2021).

[23] “Metrics module - CARLA ScenarioRunner.” https://carla-

scenariorunner.readthedocs.io/en/latest/metrics_module/ (accessed Mar. 25, 2021).

[24] “Recorder - CARLA Simulator.” https://carla.readthedocs.io/en/latest/adv_recorder/

(accessed Mar. 25, 2021).

[25] OSP, “Co-simulation,” Open Simulation Platform.

https://opensimulationplatform.com/co-simulation/ (accessed Mar. 05, 2021).

58

[26] Adnan Ademovic, “An Introduction to Robot OS,” Toptal Engineering Blog.

https://www.toptal.com/robotics/introduction-to-robot-operating-system (accessed Mar.

01, 2021).

[27] CARLA Team, carla-simulator/ros-bridge. CARLA, 2021.

[28] CARLA Team, carla-simulator/carla-autoware. CARLA, 2021.

[29] CARLA Team, “Sensors reference - CARLA Simulator.”

https://carla.readthedocs.io/en/latest/ref_sensors/ (accessed Mar. 11, 2021).

[30] “CARLA Autonomous Driving Leaderboard.” https://leaderboard.carla.org/ (accessed

Mar. 31, 2021).

[31] E. W. Weisstein, “Arc Length.” https://mathworld.wolfram.com/ArcLength.html

(accessed Mar. 31, 2021).

[32] “GNU Scientific Library — GSL 2.6 documentation.”

https://www.gnu.org/software/gsl/doc/html/ (accessed Apr. 05, 2021).

59

Appendix A: Source Codes

A.1 BASU

BASU source code is available upon request.

Figure A.1: Main file snapshot

A.2 ScenarioRunner

The modified version of ScenarioRunner is available upon request.

60

Appendix B: Maps

B.1 RoadRunner

RoadRunner map files are available upon request.

B.2 Linden’s CARLA Map Package

Linden’s UE4/CARLA map is available upon request.

Figure B.1: UE4/CARLA editor, build from source.

61

Appendix C: BASU

C.1 Directory Structure

Figure C.1 shows the file structure of BASU. The agents folder contains sample agents that

make use of CARLA’s autonomous agents. The co-simulations folder contains files necessary for

the SUMO co-simulation. The config folder contains sample sensors configurations. The data

folder contains specific vehicle types needed for the SUMO co-simulation. The managers folders

contains all the managers of the benchmark. The routes folder contains debugging routes and

Linden’s shuttle main route. Finally, the utils folder contains different scripts used on different

part of the benchmark.

Figure C.1: BASU file structure

62

C.2 Heads Up Display (HUD)

Simulations in BASU can be visualizing by enabling the --hud flag. The HUD includes

information related to the simulation, agent settings, and sensors readings. Figure C.2 depicts how

the HUD looks like and the information it provides.

Figure C.2: BASU HUD

