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Abstract 

The use of autonomous vehicles (AV) for public passenger transport has rapidly grown in 

the past few year within the mobility industry. They provide a flexible solution that can help reduce 

traffic congestion, energy consumption, safety, among many others. In 2020, the Smart Columbus 

Initiative (SCI) deployed two level-four autonomous shuttles to help solve the first mile/last-mile 

mobility challenge in Linden Residential Area. This thesis focuses on providing a realistic 

simulation platform for this real-life scenario. The environment use the CARLA (Car Learning to 

Act) simulator as a backbone and provides co-simulations such as SUMO (Simulation of Urban 

Mobility) for a more realistic traffic simulation and Autoware for a realistic autonomous driving 

stack. Multiple traffic scenarios are provided, including NHTSA’s (National Highway Traffic 

Safety Administration) pre-crash scenarios, to test the safety and decision-making of the shuttles 

[1]. An evaluation and rating scheme is also introduced and illustrated using autonomous driving 

in the Linden Residential Area soft environment. 
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Chapter 1: Introduction 
 

1.1 Introduction to Autonomous Shuttles 

Autonomous Vehicles (AV) are starting to revolutionize urban mobility around the globe. 

Several cities around the United States (US) have already launched pilot programs involving 

autonomous shuttles. These types of intelligent transportation systems are expected to 

accommodate different needs and connect residents to different resources. Between 2014 and 

2017, more than $80 billion were invested in the AV industry [2]. Companies like May Mobility 

and EasyMile are some of the startups that are providing cities like Columbus circulates with low-

speed self-driving shuttles. These vehicles, usually, travel a fixed route as circulates and are 

equipped with a sensor stack that allows them to sense the environment, plan, and act accordingly 

to achieve a specific task. The level of automation will depend on how close they perform the tasks 

compared to humans. Currently, there are six levels or tiers of autonomous driving capabilities 

recognized by the Society of Automotive Engineers (SAE) and the NHTSA which range from no 

autonomation (the human performs all driving tasks) to full automation (the vehicle performs all 

driving tasks) [3].  

1.2 Background 

Due to the nature of urban environments, autonomous shuttles are forced to interact with other 

vehicles, pedestrians, static objects, etc. Thus, there is a big concern when it comes to safety. They 

must pass a series of safety and operational tests before operating in real life. How can we be sure 

that the system is safe enough? There are millions of things than can make a system fail. On 

February 20 of 2020, for example, one of the Linden LEAP (Linden Empowers All People) self-

driving shuttles had an incident where a sudden unexpected stop at the very low speed of about 7 
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mph caused a passenger to fall to the floor and later got medical attention [4]. It was determined 

that a deviation in the steering of the shuttle was the culprit [4]. Something simple, yet powerful 

enough to cause harm to the passengers. This incident is just one of millions that happens every 

year. In fact, a publication from NHTSA accounted for approximately 6,170,000 police reported 

crashes involving 10,945,000 vehicles with an estimated loss of $120 billion dollars in the United 

States alone based on 2004 General Estimates Systems (GES) statistics [1]. The report provided 

37 pre-crash scenario topologies for light vehicles such as minivans, passenger cars, light pickup 

trucks, etc. Pre-crash scenarios describe vehicle movements and critical events that occur 

immediately prior the accidents [1]. The scenarios include Control Loss With Prior Vehicle Action, 

Vehicles (s) Turning – Same Direction, Lead Vehicle Decelerating, to name a few [1]. In August 

2019, a new report updated the 2007 pre-crash scenario in terms of typology and crash 

characteristics that accounted for new emerging crash avoidance technology [5]. Table 1 depicts 

Yearly Average Statistics based on 2011-2015 Fatality Analysis Reporting System (FARS) and 

GES. 
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Table 1.1: Yearly Average Statistic – Scenario Groups Based [5] 

 

Based on the NHTSA National Motor Vehicle Crash Causation Survey (NMVCCS), the final 

cause of 94% of crashes are due to driver errors [6]. It is often assumed that AVs should decrease 

this number by taking out the human driver factor [6]. However, only a third, 33.1%, of crashes 

could likely be preventable by AVs if they are not designed and developed with the sufficient 

capabilities [6]. Autonomous vehicles are not exempt from the type of pre-crash scenarios 

presented in the NHTSA report. They will be presented with challenging scenarios and they must 

be able to overcome them, more so when the task in hand involves passengers. 

1.3 Objectives and Scope 

Autonomous vehicles are about developing and testing systems that can respond to the millions 

of scenarios that a vehicle can handle in a safely manner. This is where simulations come in. They 
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enable companies and individuals to cut development time and reduce costs. We can say that 

simulations will never be the same as road testing but that is outside the scope of this thesis. 

Simulations enable us to assess different aspects of a system and validate them. This thesis aims 

to provide a simulation environment that enables researchers, students, and people from the 

industry to study, test and develop algorithms in a real-life based environment. Providing all kinds 

of scenarios that autonomous shuttles can face throughout their journey. Scenarios includes 

turning, obstacle avoiding, pedestrians, roundabouts, and many others. To achieve this we used 

CARLA, an open-source simulator for autonomous driving research. 
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1.4 Thesis Outline 

The thesis is divided as follows: 

• Chapter 1 introduces autonomous shuttles and the scope of this thesis. 

• Chapter 2 talks about the tools that were used to build the environment and the steps to 

create it. 

• Chapter 3 discusses everything related to traffic scenarios and how they were incorporated 

in the work done in this thesis in more depth. 

• Chapter 4 examines the ways in which autonomous agents can be evaluated and 

benchmarked using the work done in this thesis.  

• Chapter 5 goes through the metrics and scores that can be obtained from the benchmarking 

tools. 

• Chapter 6 discusses the contributions of this thesis and the next steps. 
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Chapter 2: Simulation Environment 

Simulation has proved to be effective in the self-driving vehicles world. It enables developers 

to virtually test different scenarios in a cost-effective way. The perks of being able to test 

algorithms and analyze their performance are infinite. This chapter will cover some of the tools 

used to create and develop the simulation environment. Other tools will be discussed later. 

2.1 CARLA Simulator 

CARLA is an open-source simulator specifically created for autonomous driving applications. 

It supports the development and testing of autonomous driving algorithms in a wide range of areas 

such as computer vision, path planning, motion, controls, etc. CARLA is based on Unreal Engine 

4 which is a state-of-the-art, real-time, open-source game engine with photorealistic graphics [7]. 

The simulator follows the client-server model. The server manages the simulator itself and the 

client manages the logic of the actors and the world. The simulator comes with a Python API that 

allows developers to control different aspects of the simulation such as weather, traffic, Non-Player 

Characters (NPCs), etc. as shown in Figure 2.1. A screenshot of CARLA simulated environment 

is shown in Figure 2.2. 
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Figure 2.1: Basic structure of CARLA [8]. 

 

 

 

 
Figure 2.2: CARLA simulator [9]. 
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2.2 RoadRunner 

RoadRunner is a software that lets you easily customize 3D scenes for simulating and testing 

autonomous driving systems [8]. It provides tools to create custom roads, junctions, traffic signals 

and more. To make the environment more realistic, you can insert traffic signs, foliage, and props. 

The program supports the visualization and importing of LIDAR (Light Detection and Ranging) 

point clouds, Geographic Information System (GIS) data, etc. Scenes can be exported in a wide 

range of formats such as FBX, GLTF, USD and be used in other programs such as CARLA, Unreal 

Engine, LG Silicon Valley Lab (LGSVL) simulator, Unity, etc. In terms of the underlying road 

network, it can be exported as an OpenDrive file. Figures 2.3 and 2.4 show RoadRunner’s GUI 

(Graphical User Interface), respectively. 

 

 

Figure 2.3: Linden’s map in RoadRunner with GIS enabled. 
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Figure 2.4: Linden’s map in RoadRunner with GIS disabled. 
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2.3 ASSURE Mapping Tool 

ASSURE mapping tool is a simple tool for viewing and editing road network maps utilized by 

autonomous vehicles [9]. It can be used via Docker, open-source software that enables OS-level 

(Operating System) virtualization in the form of containers, or by direct installation [10]. The built-

in editor enables the user to add or modify different map semantics such as lanes, waypoints, road 

lines, traffic lights, etc. ASSURE allows to convert between different file formats such as 

OpenPlanner, OpenDrive, Lanelet2, etc. Figure 2.5 depicts the ASSURE mapping tool interface. 

 

 

 

Figure 2.5: ASSURE mapping tool interface. 
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2.4 Autoware 

Autoware, as illustrated in Figure 2.6, is an open-source software for self-driving vehicles [11]. 

It provides a set of modules that includes sensing, perception, planning, decision, and actuation. 

Some of the capabilities are object detection, localization and mapping, lane detection, sensor 

fusion, etc. Autoware is well-suited for urban cities but can be used for highways, freeways, 

geofenced areas and more. It also provides ROS support. The usage of Autoware will be discussed 

in sections 2.6.2 and 4.4.2. It is being introduced now because some tools from Autoware were 

used to obtain certain autonomous maps needed for the simulation. 

 

 

 

Figure 2.6: Autoware’s architecture [12] 
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2.5 SUMO Traffic Simulator 

Simulation of Urban Mobility (SUMO) is another open-source microscopic traffic simulator 

that allows modelling traffic systems [12].  SUMO allows you to integrate automated vehicles and 

manage the traffic in terms of speed, traffic lights, and other behavior. Also, it provides support 

for microscopic simulation; where you can control vehicles, pedestrians, and public transport 

explicitly. The simulator offers various Application Program Interfaces (APIs) to remotely control 

the simulation. This feature enables CARLA to perform a co-simulation and exploit both 

simulator’s capabilities simultaneously. Figure 2.7 show SUMO’s GUI. 

 

 

Figure 2.7: SUMO co-simulation interface 
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2.6 Simulation Environment Building Pipeline 

The process of building the environment was quite tedious due to the of lack of proper 

documentation. This section of the thesis will cover the process of building the map from scratch 

to using it for simulation purposes. Additionally, it will explain how each tool was used, hoping to 

serve as a guide for future map modeling intended to be used on CARLA simulator or any other 

supported tool. 

2.6.1 Building the Environment 

The first step of the process was to obtain the (GIS) data of the area of interest, Linden, from 

the United States Geological Survey (USGS) website [13]. The data collected was elevation, 

imagery, and point cloud data. After collecting the data it was imported into RoadRunner to build 

the actual map. The imagery was used as a blueprint to place all the roads, intersections, markings, 

etc. The roads include the main Linden shuttle route, depicted in Figure 2.8, and surrounding 

streets for a more realistic simulation. The tools provided by RoadRunner were easy to use and 

allowed the creation of custom junctions, parking, and sidewalks without difficulty. After tracing 

all the roads, the map was exported as a Filmbox (.fbx) and as OpenDrive (.xodr) file and imported 

into a CARLA build from source. Doing it this way allowed us to use the assets from CARLA and 

populate the map with buildings, cars, props, etc. Other free assets from the Unreal Engine 

Marketplace were used to make the environment more realistic in terms of foliage, props, and 

structures. Figures 2.8 and 2.9 show the main route of Linden autonomous shuttle and an example 

roundabout of Linden, respectively. 
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Figure 2.8: Main Linden autonomous shuttle route [14] 

 

 

Figure 2.9: A roundabout from the Linden map. 
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2.6.2 Autonomous Driving Map Files 

Up to this point, the Linden map can be used in the simulator with no issues whatsoever. 

However, to be able to use the Autoware agent in our custom environment, we needed two other 

high-definition maps apart from the OpenDrive file. These are Lanelets (.osm) and Aisan vector 

map (collection of .csv). Lanelets describe drivable environments from geometrical and 

topological perspectives [14]. The maps are represented by lanelet elements, interconnected road 

segments characterized by left and right bounds, which compose the road network with lanes, 

roads, and intersections [14]. On the other hand, the Aisan vector map is a proprietary mapping 

format developed by Aisan Technology Company. The version of Autoware that was used for this 

thesis, version 1.13, utilized the Aisan format internally as a default option. Table 2.1 shows all 

the necessary files for both the Lanelet and Aisan formats. The process to obtain both map formats 

was straightforward: 

1) Use ASSURE Mapping Tool to convert the OpenDrive file to Lanelet. 

2) Use an internal Autoware tool, lanelet2aisan [15], to convert the Lanelet file to Aisan. 

Lanelet Files Aisan Files 

linden.osm 

area.csv 

dtlane.csv 

intersection.csv 

lane.csv 

line.csv 

node.csv 

point.csv 

wayarea.csv 

whiteline.csv 

 
Table 2.1: Files generated for each file format. 
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2.6.3 Point Cloud Map 

Linden’s point cloud map generation was a simple process. We used a package from 

CARLA’s ROS bridge called carla_pcl_recorder that allows you to drive around the map, either 

manually or with autopilot and record the environment using a soft Light Detection and Ranging 

(LIDAR) sensor [16]. This package creates a subscriber node that receives messages of type 

PCLPointCloud2, which holds the raw data that is processed in a series of steps. First, it is 

converted to the PointCloud<PointT> template, that is, the base class in Point Cloud Library 

(PCL) for storing groups of 3D points [17]. Second, the point cloud is transformed by a 3D offset 

and a quaternion. Finally, the point cloud map is saved to disk as a binary file. This process is 

repeated for every sensor reading.  

After driving around the map while recording the point cloud, we ended up with thousands 

of single .pcd files. We used the pcl_concatenate_points_pcd command from pcl_tools, which is 

part of Point Cloud Library, to generate a single point cloud from these .pcd files [18]. After that, 

we used the pcl_voxel_grid command to remove duplicate points. This process must be repeated 

every time a major update is done to the map (e.g. adding new buildings). Figures 2.10 and 2.11 

show a close-up screenshot and visualization of the point cloud map, respectively. 

 

 

 

 



 

17 

 

 

Figure 2.10: Close-up screenshot of the recorded point cloud map. 

 

 

Figure 2.11: Visualization of the whole point cloud map. 
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Chapter 3: Traffic Scenarios 

Autonomous shuttles are about human safety. Ethically, morally, and legally, the systems 

should and must be robust to a certain degree. For this purpose, it is a key factor that simulations 

provide the tools or means to test complex traffic scenarios. The base simulation platform is 

provided by CARLA. The realistic road network is provided by RoadRunner. The microscopic 

simulation is provided by SUMO. 

3.1 Pre-Crash Typology 

To evaluate agents in the Linden environment, multiple scenarios were defined and other were 

already defined in CARLA. Most of the traffic scenarios are based on the NHTSA pre-crash 

topology [1], [5]. This allows us to concentrate the evaluation and testing of agents in high 

occurring scenarios. The scenarios are grouped into nine (9) pre-crash scenario groups: control 

loss, road departure, animal, pedestrian, pedal cyclist, lane change, opposite direction, rear-end, 

and crossing paths [5]. Each scenario has different characteristics that help to quantify the 

contributing factors of a crash. Table 3.1 depicts these characteristics. This thesis, the traffic 

scenarios focus on characteristics that can affect an autonomous agent. For example, you will not 

find a traffic scenario with alcohol involvement, age, gender, etc. contributing factors for obvious 

reasons. 
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Table 3.1: Traffic scenarios characteristics [5] 

 

3.2 ScenarioRunner 

ScenarioRunner is a module from CARLA that allows developers to define and execute custom 

traffic scenarios within the simulator [19]. The scenarios can be defined either through a Python 

interface or the OpenScenario standard [19]. ScenarioRunner can be used to replicate specific 

conditions to evaluate agents on it. Custom metrics can be defined to facilitate the evaluation and 

validation of agents. The module lets you run single scenarios and route-based scenarios. This is 

useful if you want to benchmark specific segments of a route or the complete route itself. The 

following subsections will describe each of the traffic scenarios currently supported by our custom 

map. 
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3.2.1 Scenario I – Control Loss 

Description: the ego-vehicle is going straight and loses control due to wet road conditions or 

something in the road. The ego-vehicle must regain control of the vehicle and continue to a target 

point to finish the scenario execution. In this scenario, noise is added to the steering and throttle 

data (jittered) to simulate the slippery road or object bump. Figure 3.1 show how the scenario looks 

like. 

Road geometry: rural area.  

Weather conditions: wet, rainy, cloudy.  

Vehicle speed: variable. 

  

 

 

Figure 3.1:  Vehicle loses control due to a bump in the road. 
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3.2.2 Scenario II – Follow Leading Vehicle 

Description: there are two variations of this scenario: dynamic obstacle in front of the leading 

vehicle and no obstacle. In both cases, the ego-vehicle must follow the leading vehicle and act 

accordingly. The leading vehicle will drive until reaching the next intersection. The scenario will 

end when the ego-vehicle is close to the other actor or via timeout. The leading vehicle can be 

configured to be a car, motorcycle, or bicycle. Figure 3.2 show the scenario. 

Road geometry: approaching intersection. 

Weather conditions: daylight, clear conditions.  

Vehicle speed: variable. 

 

 

Figure 3.2: FollowLeadingVehicle traffic scenario. 
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3.2.3 Scenario III – Object Avoidance 

Description: There are two variations of this scenario: static object and dynamic object. In both 

cases the ego-vehicle encounters an obstacle on the road and must act accordingly (e.g. avoidance 

maneuver). The execution of the scenario will finish either when the ego-vehicle reaches a target 

point or a timeout. Figure 3.3 shows the ego vehicle and a static object. 

Road geometry: urban area (approaching intersection), rural area (straight-road). 

Weather conditions: variable.  

Vehicle speed: variable. 

 

 

 

Figure 3.3: ObstacleAvoidance traffic scenario. 
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3.2.4 Scenario IV – Unsignalized Intersection 

 Description: The ego-vehicle reaches an unsignalized intersection, stops, and must negotiate with 

other vehicles to cross it. Both actors are spawned when the scenario starts. The ego-vehicle must 

reach a certain region to trigger the other vehicle to start moving. The other vehicle will start to 

accelerate and try to meet the ego-vehicle at a certain point. When the ego-vehicle reaches another 

trigger region, the other vehicle will accelerate and continue its path. Finally, the ego-vehicle must 

negotiate and pass the intersection. Figure 3.4 show an instance of this scenario. 

Road geometry: rural, low-speed road. 

Weather conditions: daylight, clear conditions.  

Vehicle speed: variable. 

                                    

Figure 3.4: UnsignalizedIntersection traffic scenario. 
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3.2.5 Scenario V – Roundabout 

Description: The ego-vehicle enters a roundabout and must go out through a specific exit while 

acting accordingly with other cars on it. The scenario execution is finished when the ego-vehicle 

reaches a target point or via timeout. Figure 3.5 show an instance of this scenario. 

Road geometry: rural, low-speed road. 

Weather conditions: variable.  

Vehicle speed: around 10 mph or more. 

 

 

Figure 3.5: Roundabout traffic scenario. 
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Chapter 4: Benchmarks and Use Cases 

Benchmarking an autonomous shuttle system allows companies and developers to test and 

validate agents in a structured way. The information gathered can be used to analyze performance 

of autonomous agents and find weakness or potential safety issues. This chapter will focus on 

different ways or tools that can be used to examine the algorithms in the Linden simulation 

environment.  

4.1 Sensors 

For vehicles to drive autonomously they must have a way to perceive what is around them. 

They do it by using a variety of sensors that allows them to “see” the environment. The most 

widely used autonomous vehicle sensors are camera, radar, and lidar, among others. This type of 

system enables cars to visualize the surroundings and detect speed and distance of nearby and 

distant objects [20]. CARLA already provides a variety of sensors that can be attached to a vehicle. 

This section discusses the most important sensors and how they work. The benchmarks will follow. 

4.1.1 RGB Camera Sensor 

As the name suggests, this sensor acts as a regular RGB (Red, Green, Blue) camera. Camera 

attributes included, but not limited to, are field of view, image size, camera sensitivity, aperture, 

focal distance, etc. Also, different post-processing effects can be applied such as vignette, grain 

jitter, lens flares, etc. Figure 4.1 and Table 4.1 show the camera output and output attributes of this 

sensor, respectively. 
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Figure 4.1: RGB camera image. 

 

 

 

 
Table 4.1: RGB camera output attributes [15]. 

 

 

 

 

 

 

 

 

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

width int Image width in pixels.

height int Image height in pixels.

fov float Horizontal field of view in degrees.

raw_data bytes Array of BGRA 32-bit pixels.
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4.1.2 Depth Camera Sensor 

The depth camera has the same attributes as the RGB camera. However, this sensor captures 

the raw data from the scene or environment and codifies the distance of each pixel to create a depth 

map. CARLA provides color converters that let you convert the distance from RGB format to 

grayscale, distance codified in [0,1] float values. Figure 4.2 and Table 4.2 show the camera output 

and output attributes of this sensor, respectively. 

 

 

  

 
Figure 4.2: Depth camera before and after conversion. 

 

 

 

 

 

 

Table 4.2: Depth camera output attributes [15]. 

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

width int Image width in pixels.

height int Image height in pixels.

fov float Horizontal field of view in degrees.

raw_data bytes Array of BGRA 32-bit pixels.
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4.1.3 Semantic Segmentation Camera Sensor 

The semantic segmentation camera sensor classifies every object according to predefined 

tags (e.g. vegetation, vehicles, etc.). The image is provided with the tag encoded in the red channel, 

that is, a pixel with a value x in the R channel belongs to a type of object with tag x . For example, 

vegetation would be encoded as (107, 142, 35). CARLA provides a simple way to use the 

CityScapes palette. Figure 4.3 and Table 4.3 show the camera output and output attributes of this 

sensor, respectively. 

 

 
Figure 4.3: Semantic segmentation camera output image. 

 

 

 
Table 4.3: Semantic segmentation camera output attributes [15]. 

 

Sensor data attribute Type Description

fov float Horizontal field of view in degrees.

frame int Frame number when the measurement took place.

height int Image height in pixels.

raw_data bytes Array of BGRA 32-bit pixels.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

width int Image width in pixels.
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4.1.4 GNSS Sensor 

The Global Navigation Satellite System (GNSS) sensor provides the current latitude and 

longitude position by calculating the metric position of the vehicle with the initial geo reference 

location offered by the OpenDrive map. Basic attributes include noise bias and noise standard 

deviation of the latitude, longitude, and altitude. Table 4.4 show the output attributes of this sensor. 

 

 
 

Table 4.4: GNSS output attributes [15]. 

 

4.1.5 IMU Sensor 

The Inertial Measurement Unit (IMU) sensors provides data from the actor’s accelerometer, 

gyroscope, and compass. Basic attributes are noise bias and noise standard deviation of the 

accelerometer and gyroscope. Table 4.5 show the output attributes of this sensor. 

 

 
 

Table 4.5: IMU output attributes [15]. 

 

 

 

 

 

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

latitude double Latitude of the actor.

longitude double Longitude of the actor.

altitude double Altitude of the actor.

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

accelerometer carla.Vector3D Measures linear acceleration in m/s^2.

gyroscope carla.Vector3D Measures angular velocity in rad/sec.

compass float Orientation in radians. North is (0.0, -1.0, 0.0) in UE.
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4.1.6 LIDAR Sensor 

This sensor simulates and actual rotating LIDAR using ray-casting. Virtual light rays are 

casted from the sensor’s viewpoint to find points of collisions. Lasers are added on each cannel in 

the vertical Field of View (FOV). The rotation is equivalent to the horizontal angle that the sensor 

rotated in a frame. Each LIDAR measurement will contain all the points captured during a 1/FPS 

(Frame Per Seconds) interval. Attributes includes channels, range, points per second, rotation 

frequency, upper and lower FOV, and more. Table 4.6 show the output attributes of this sensor. 

 
 

 

Table 4.6: LIDAR output attributes [15]. 

 

4.1.7 Radar Sensor 

This sensor translates a 2D point map of elements from a conic view. The data provided 

contains the polar coordinates, distance, and velocity of each measure point. Table 4.7 and Table 

4.8 show the output attributes of this sensor and the radar detection measurement, respectively. 

 

 

 

 
Table 4.7: Radar output attributes [15]. 

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

horizontal_angle float Angle (radians) in the XY plane of the LIDAR in the current frame.

channels int Number of channels (lasers) of the LIDAR.

get_point_count(channel) int Number of points per channel captured this frame.

raw_data bytes Array of 32-bits floats (XYZI of each point).

Sensor data attribute Type Description

raw_data carla.RadarDetection The list of points detected.
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Table 4.8: Radar detection attributes [15]. 

 

 

4.1.8 Collision Sensor 

This sensor is not a typical sensor. It registers an event whenever the actor collisions against 

anything in the world (e.g. cars, pedestrians, trees, etc.). Unlike the previous sensors, this one does 

not have any configurable attribute. Table 4.9 shows output data of this sensor. This sensor is 

useful for evaluation of AV driving algorithms. 

 

 
Table 4.9: Collision output attributes [15] 

 

4.1.9 Lane Invasion Sensor 

This sensor, as the collision sensor, is not a typical sensor. It registers an event whenever an 

actor, in this case, ego vehicle, cross a lane marking. The OpenDrive map definition is used to 

determine if the actor invaded or crossed to another lane. The sensor will detect that an actor 

crossed a lane even if it is invisible (e.g. no lane marking). Like the collision sensors, this one does 

RadarDetection attributes Type Description

altitude float Altitude angle in radians.

azimuth float Azimuth angle in radians.

depth float Distance in meters.

velocity float Velocity towards the sensor.

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

actor carla.Actor Actor that measured the collision (sensor's parent).

other_actor carla.Actor Actor against whom the parent collided.

normal_impulse carla.Vector3D Normal impulse result of the collision.
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not have any configurable attribute too. Table 4.10 show the output attributes of this sensor. This 

sensor like the previous one is also useful for evaluating AV driving algorithms. 

 

 

 

Table 4.10: Lane invasion output attributes [15]. 

  

4.2 CARLA Benchmark 

Autonomous Driving (AD) agents in CARLA can be evaluated through the ScenarioRunner 

module that was briefly covered in Chapter 3. This section will discuss that module in-depth and 

how it can be used or adapted for the simulation environment built in this thesis. Note that this 

thesis will only focus on the Python interface since it was the method used to define the Linden 

scenarios. 

4.2.1 Scenarios General Architecture 

The general structure of a scenario is depicted in Figure 4.4. It is composed of actors, a 

scenario tree and other stuff needed for the simulation. The actors can range from ego-vehicle(s), 

pedestrians, other vehicles (e.g. pre-defined traffic, follow a leading car, etc.).  The scenario tree 

is a behavior tree of type py_tress[21]. This type of tree is used for decision making engines for 

different fields. In the ScenarioRunner case, it is used to define different actions or behaviors, 

conditions, criteria, triggers, etc. 

 

 

Sensor data attribute Type Description

frame int Frame number when the measurement took place.

timestamp double Simulation time of the measurement in seconds since the beginning of the episode.

transform carla.Transform Location and rotation in world coordinates of the sensor at the time of the measurement.

actor carla.Actor Vehicle that invaded another lane (parent actor).

crossed_lane_markings list(carla.LaneMarking) List of lane markings that have been crossed.
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Figure 4.4: General structure of a basic scenario, adapted from [22]. 

 

4.2.2 Scenario Definition and Implementation 

Scenarios from CARLA’s ScenarioRunner module have two main components: a scenario 

configuration of type .xml and an associated Python class. The .xml defines parameters such as 

initial ego vehicle location, orientation, type of vehicle, and other actors in the scenario. Actors 

refer to other vehicles, pedestrians, and objects. The associated Python class implements the 

behaviors and test criteria of the scenario. Behaviors refer to what happens when, where, and how. 

For example, two cars approaching the same intersection at the same time. Test criteria refer to 

pass or fail tests such as collisions, route completion, outside route lanes, actor speed above 
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threshold, etc. Figures 4.5 and 4.6 depict examples of both components, that is, the .xml definition 

and the associated Python class, respectively. 

  

 

 

 

 
 

Figure 4.5: Associated .xml of the UnsignalizedIntersection scenario. 

 

 

 

 
 

Figure 4.6: Associated Python class of the UnsignalizedIntersection scenario. 
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4.2.3 CARLA Agent Definition 

The autonomous agents that control the ego vehicle are defined via a Python class. The agent 

class inherits from the AutonomousAgent base class and must overwrite three function. Figure 4.7 

shows the basic structure of an agent. The functions to overwrite are the followings: 

• setup – all necessary setup 

• sensors – define the sensors configuration to be used by your agent. 

• run_step – function that is executed every tick of the simulation for the agent to 

return a control command based on the provided data. 

 

 
Figure 4.7: Basic structure of  a ScenarioRunner’s autonomous agent. 
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4.2.4 Metrics Module 

Apart from the scenarios test criteria, the traffic scenarios can be evaluated using the Metrics 

module provided by CARLA [23]. This module relies on the CARLA recorder which allows one 

to record and reenact any simulation. The saved data includes actor’s creation and destruction, 

traffic lights states, vehicles states, pedestrian states, light states, etc. [24]. Here, vehicle and 

pedestrian states refer to position, orientation, and velocity. This module allows users to define 

their own metrics and obtain the results from the simulation files, instead of having to play the 

simulation repeatedly. Different queries can be made from the recording file such as get all 

collisions, velocities from a specific actor, applied controls, transforms, etc.  

4.3 BASU Benchmark 

BASU, bus in Japanese, is a custom benchmark tailored towards autonomous shuttles, 

specifically for the Linden route. It is a lightweight tool that simplifies the setup of simulation and 

usage of co-simulations like SUMO. This section will discuss the architecture and usage of the 

BASU benchmark. 

 

4.3.1 BASU Architecture 

BASU is composed of three main components: an agent, the managers, and utilities. The 

agent is the one to be evaluated by the benchmark and the managers take care of the simulation. 

Utilities are shared resources used internally. The main reason of using managers is to separate 

different aspect of the simulation. Figure 4.8 show BASU’s architecture. The BaseManager is an 

abstract class that defines the basic structure of a manager. All the other managers inherit from this 

class as follows: 
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• AgentsManager – manages the agent to be evaluated in term of instantiation and 

configuration validation. 

• MetricsManager – manages the output metrics of the simulation. It calculates the 

scores and output them into the console, text or json file. 

• RecordingManager – manages the recording of the simulation, that is recording the 

events for future evaluation, playback, and analysis.  

• RoutesManager – manages the parsing of the route to be followed, the criteria to be 

tested (e.g. check for collisions) and watch the status of the simulation (e.g. if vehicle 

reached the destination, timeouts, etc.). 

• SensorsManager – manages all the sensors used by the agents. That is, the setup of 

the sensors, parsing the data from the sensors, and more. 

• TrafficManager – manages everything related to the traffic. It oversees spawning the 

Non-controllable Players (NPC) either using CARLA’s own TrafficManager module 

or through SUMO. 
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Figure 4.8: BASU benchmark architecture. 

 

 

 

 

 



 

39 

 

4.3.2 BASU Agent Definition 

BASU’s agents follows the same structure of a ScenarioRunner’s agent with a few 

modifications. It was done this way to ease the implementation when switching between 

benchmarks, that is,  CARLA’s benchmark and BASU. Figure 4.9 show a sample agent class.  

There are four functions to be overwritten:  

• setup – setup all necessary parts for the agent 

• run_step – executed every step of the simulation. 

• config – configure the simulation in terms of route to be tested, sensors, etc. 

• get_initial_route_locations – returns the initial plan as a list of waypoints. 

 

Figure 4.9: Basic structure of a BASU agent class. 



 

40 

 

4.4 Co-simulations 

Co-simulations allows the joint simulation between different standalone sub-simulators [25]. 

They are independent and behave like a black box [25]. It is assumed that each sub-simulator 

provides some sort of API that lets another program to control them. CARLA has already 

developed different co-simulations features with PTV-VISSIM, SUMO and Autoware. This 

section covers SUMO and Autoware co-simulations and how they can be used alongside the 

Linden environment. Section 4.4.1 introduces the of software that is used by Autoware. 

4.4.1 Robot Operating System 

The Robot Operating System (ROS) is an open-source framework initially targeted towards 

robotics development, but not limited to it. As the name stands, it is not an actual operating system 

(OS) but a collection of tools and libraries. ROS has many layers and functionalities such as 

hardware abstraction, communication over the network, inter-process communication, 

visualization and more [26].  AVs can take advantage of the ROS ecosystem by using the many 

open-source projects such as communications frameworks, algorithms such as perception and 

navigation, and tools for visualization. On that line, ROS can be used with CARLA through the 

carla-ros-bridge package [27]. This package brings functionalities such as sensors information 

exchange, AD agents,  actors spawning, etc. For this thesis, this package was mainly used to record 

Linden’s point cloud map. 
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4.4.2 Autoware 

Autoware is not a co-simulation in the sense that was talked before because it is not an actual 

simulator. As discussed in section 2.4, Autoware is an open-source software used for self-driving 

cars. In this case, the Autoware agent is provided as a ROS package which allows it to be run on 

CARLA [28]. Figure 4.10 show a basic diagram of how Autoware interacts with CARLA through 

the carla-ros-bridge. To enable the agent to be used in Linden, the following must be done: 

1) Modify Autoware’s Docker, software platform that simplifies building and deploying 

software, to be able to inject external files. 

2) Generate point cloud map, Lanelet2 (.osm) and Aisan (collection of .csv) autonomous 

driving maps, as seen in section 2.6.2 and 2.6.3. 

3) Move the files to specific directories inside the container. 

Figures 4.11 and 4.12 show Autoware’s interface and the Autoware’s agent spawned in the map 

created in this thesis, respectively. 

 

 

Figure 4.10: Simplified diagram of carla-autoware bridge. 
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Figure 4.11: Autoware’s agent interface. 

 
Figure 4.12: Autoware’s agent car in Linden’s map. 
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4.4.3 SUMO 

Unlike Autoware, SUMO is an actual simulator. As discussed in section 2.5, SUMO is an 

open-source traffic simulator. It enables us to spawn and control NPCs in CARLA directly from 

SUMO. There are two ways to run the co-simulation: run a synchronization with a previously 

created simulation or spawn NPCs controlled by SUMO with random paths. The first one requires 

a configuration file (.sumocfg) that defines the simulation’s network, routes, time and more. The 

second one can be run without a previous simulation, but the NPCs will follow random routes. The 

SUMO co-simulation can also be run through the BASU benchmark via arguments. Figures 4.13 

and 4.14 show the SUMO co-simulation and the NPCs spawned in the simulator, respectively. 

 

 

Figure 4.13: SUMO co-simulation. 
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Figure 4.14: Vehicles from SUMO spawned in the map. 

 

4.5 Resources Utilization 

Running CARLA is a very computationally expensive process, especially when using multiple 

sensors and spawning a high number of NPCs. It gets even worse when using SUMO and/or 

Autoware at the same time. Mid to high end CPUs and GPUs are required to get a good number 

of Frame Per Seconds (FPS) and better performance. The overheads becomes more apparent when 

using larger maps like Linden. Recommended specs are Intel i7, i9, i10 9th-11th or AMD Ryzen 7, 

9, +16 GB RAM memory, NVIDIA RTX 2070/2080 and RTX 30X0, Ubuntu 18.04. 
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Chapter 5: Evaluation and Metrics 

Evaluating the proficiency of autonomous agents is the last step of the development cycle. 

They help to understand every aspect of the algorithms; to characterize them. This chapter will 

focus on the evaluations and metrics that can be obtained from the benchmarks and co-simulations 

in the Linden environment. 

5.1 Evaluation 

Assessing every aspect of driving is crucial for the safety of people. We want to save lives and 

prevent vehicle-related crashes. In autonomous driving, generally, we are interested in evaluating 

the autonomous agent and the impact they have in the transportation system. The first one is more 

related to the algorithms and performance of the agent. The second one focuses on the impact the 

agent has at a macro scale such as safety, mobility, environment, etc. In this thesis, we focus mainly 

on the agent’s evaluation. However, the work can be extended to support the macro evaluation 

either by implementing the required metrics or via the already provided co-simulations. 

5.2 Metrics 

This section will cover the individual metrics that are used to compute the driving score of an 

autonomous agent for a simulation. 

5.2.1 Infractions 

Following the CARLA leaderboard, infractions are divided in two categories: collisions and  

traffics infractions. Collisions are categorized into three sub-types: with pedestrians, with vehicles, 

and with static objects. Each of them adds a penalty to the total driving score. Traffic infractions 

are related to running a red light or stop sign, and speeding. In this thesis, we only focus on stops 
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signs since there are no traffic lights in the environment. The penalty of each infraction is outlined 

below. Note that they can be adjusted based on the user needs. 

• Collisions with pedestrians: 0.50 

• Collisions with other vehicles: 0.60 

• Collisions with static objects: 0.65 

• Running a stop sign: 0.80 

• Speeding: 0.80 

5.2.2 Lane Invasion 

Lane invasion accounts for the times a vehicle crosses a lane marking or invades another 

lane. Discrepancies may arise when crossing lanes that are not visible in the map but are available 

in the OpenDrive file, which is the case of Linden [29]. This metric is not considered in the 

calculation of the driving score since lane invasion can occur for reasons that do not necessarily 

says anything about the agent itself (e.g. crossing to another lane). Nevertheless, is included in the 

output report as an individual metric. 

5.2.3 Route deviation 

Route deviation considers the actual path of the vehicle versus the initial plan. This metric 

determines the percentage that the autonomous vehicles was outside the planned route. This is 

done by comparing the arc length of the initial planned path and the actual path the agent took. It 

is assumed that both paths have the same start and final coordinates. Evasive maneuvers can affect 

the route deviation score since the car is going “out of the way”. Therefore, this score should be 

thresholded to not affect or penalize the overall score if that type of event occurs. Figure 5.2 shows 

multiple examples of the initial plan versus the actual path that agents took.  



 

47 

 

5.2.4 Disengagements 

Disengagement is the action when a human driver takes control over the autonomous vehicle. 

We can calculate the number of miles driven and the frequency at which the disengagements 

occurs. For example, if a company traveled 628,839 miles across all its deployed vehicles and the 

total disengagements number was 21, then the miles per disengagement (mpd) would be 

29,9444.69 mpd. To perform a disengagement, the user must manually disengage the autopilot 

(e.g. agent) using the HUD. This metric can be misleading if not used properly, but that is out of 

the scope of this thesis.  

5.3 Driving Score 

Taking the metrics discussed in section 5.2 into account, we can obtain an overall score to 

understand different aspects of the agents. The main score is an aggregate of all the infractions 

committed (e.g. running a stop, collisions, etc.) and path following completeness. The infraction 

penalty is a geometric series with a base score of 1.0 and it is affected by a penalty coefficient for 

every occurrence. The coefficient will vary depending on the type of infraction. Equation (5.1) 

shows the infraction penalty formula and is based upon the infraction penalty equation of 

CARLA’s leaderboard challenge [30]. 

 

 

𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = ∏ (𝑝𝑖)
#𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑗

𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒

𝑗
(5.1) 
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The path following score is based on the closeness of the agent’s actual path with respect to 

the initial plan. The first step is to calculate the arc length of each path. The arc length is the 

distance between two points along a curve. If we divide the whole path or curve into smaller parts, 

we can approximate the corresponding lengths and add them up each segment. Equation (5.2) and 

(5.3) show the arc length formula and the path following score formula for the path y=y(x), 

respectively [31]. In Equation (5.3), 𝐿𝐴  is the length of the actual path and 𝐿𝐼 is the length of the 

initial path. 

 

𝐿 =  ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥 
𝑎

𝑏

(5.2) 

 

𝑝𝑎𝑡ℎ 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = min (1.0,
𝐿𝐴

𝐿𝐼
) (5.3) 

 

Finally, to calculate the overall score of the simulation we make use of the weighted average. 

A weighted average is the average of a data set that gives more importance to a certain number 

than other. The calculation is equal to the sum of the product of the data xi times the weight wi 

divided by the sum of all the weights. Here, w are the weights and x are the infractions and path 

following scores. Equations 5.4 and 5.5 shows the formula and expanded formula of the weighted 

average method [32]. The sum of the weight must be equal to 1. 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =  𝑥̅ =  
∑ 𝑤𝑖 ∙  𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖 
𝑛
𝑖=1

∗ 100 (5.4) 

 

𝑥̅ =  
𝑤1 𝑥1 +  𝑤2 𝑥2 + ⋯ +  𝑤𝑛 𝑥𝑛

𝑤1 +  𝑤2 + ⋯ + 𝑤𝑛 
∗ 100 (5.5) 
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Note that other metrics (e.g. lane invasion) are reported but are not part of the overall score 

formula. The agents can get a score between 0 (bad) and 1.0 (good). The overall driving score 

should give developers an idea of how the agent is performing. However, all the metrics should be 

considered when assessing the safety and efficiency of the agents. For example, as mentioned 

before, lane invasion does not count toward the total score. Nevertheless, a high number of lane 

invasions may indicate an underlying problem of the agent. 

5.4 BASU and Metrics Module 

Apart from the driving score discussed in the previous section, we can make use of the Metrics 

module described in section 4.2.4 too. The users can enable the recording feature, via command 

line argument in BASU’s benchmark and then use the Metrics module to get additional metrics of 

interest. For example, we can get the distance of the ego-vehicle to the center of a lane throughout 

the whole simulation. In case you want to query a metric with respect to another actor, you need 

the other actor’s ID or role name beforehand. Figure 5.1 shows an example plot of the distance to 

the center lane of the ego-vehicle. 

 

 

 

 

 



 

50 

 

 

 

Figure 5.1: Distance to center lane example 

 

5.5 Simulation Runs 

Simulations were performed to showcase the metrics, driving score, and plots provided by 

BASU. The task was for agents to drive the predefined route depicted in Figure 5.2. This short 

route was chosen because it contains roundabouts, stop signs, and turns. Agents were tested in 

clear sunset weather conditions. Four autonomous agents were tested: basic, behavioral, forward, 

and human. The basic and behavioral agents are part of CARLA and were adapted to work in 

BASU. The forward agent was a dummy agent that only drove forward. The last agent was a 

human that controlled the ego-vehicle using the keyboard. 
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Before discussing the results, we must mention that running a stop sign was not considered in 

the driving score for this tests due to a bug in CARLA’s agents that causes them to either stop 

permanently or not detect the stop sign at all. The weights used for these simulator runs were 0.8 

and 0.2 for the penalty score and path following score, respectively. The basic agent was able to 

follow the initial plan successfully with no infractions and a driving score of 0.996. The behavioral 

agent was initially following the path successfully but, to show how each sub score affects the 

overall score, at some point we purposely deviated the car from the path and collided it with an 

object. The driving score for this agent was 0.216 because of that. The forward agent, as expected, 

did not follow the path quite well and eventually collided with an object, obtaining a driving score 

of 0.452. The human agent, like the basic agent, drove quite well and obtained a driving score of 

0.604. Figure 5.2 shows plots of the agent’s actual or followed path versus the initial plan. Table 

5.1 shows more detailed metrics and scores. 

From Table 5.1, we can observe how each metric affects the overall driving score. For example, 

the basic and human agents got approximately the same scores, but their driving scores differs by 

0.236. If we observe their infraction score, we can see that the human got penalized for the 

occurrence of multiple speeding infractions. This allows you to see what aspect of the agent needs 

refining. 
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Figure 5.2: Test route. Agents drove from point A to point B. 

 

 

Table 5.1: Simulations results with w1 (infraction weight) = 0.8 and w2 (path following weight = 0.2 

 

Agent Collisions Speeding Infraction Score Path Following Score Driving Score

Basic 0 0 1 0.98 0.996

Behavioral 1 1 0.13 0.56 0.216

Forward 1 1 0.52 0.18 0.452

Human 0 3 0.51 0.98 0.604

0 (BAD) - 1.0 (GOOD)
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Figure 5.3: Path following plots 
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Chapter 6: Contributions and Future Work 

This thesis covered every aspect of the process of building a simulation environment for 

simulating and testing self-driving vehicles from the tools that were used to build the map to how 

it can be used for different purposes relating autonomous vehicles. This chapter will talk about the 

overall contributions of this thesis and the future direction the work done here could go. 

6.1 Contributions 

First, this thesis created a simulation environment based on a real-life scenario. The map was 

created from scratch using RoadRunner for the road layout and populated with buildings, props, 

and vegetation in UE4/CARLA. To make the environment as close as possible to the original, 

Google Maps 3D and Street View features were used side by side with CARLA. 

Second, this thesis provided a modified version of ScenarioRunner from CARLA and BASU 

benchmarking tool. The former enables the pre-defined traffic scenarios from ScenarioRunner to 

be used in Linden and define new ones (e.g. roundabout). The latter one is a custom benchmarking 

framework that allows developers to evaluate AD agent in pre-defined routes and provides 

different metrics and driving scores. 

Finally, this thesis enables support for SUMO co-simulation and Autoware’s open-source 

autonomous driving agent. SUMO can be co-simulated either directly through BASU or by itself. 

On the other hand, the necessary map files such as point cloud map, Lanelet and Aisan were 

generated to support Autoware’s agent in Linden. Lastly, a detailed documentation of the project 

was created and is available in the project Github’s repository. 
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6.2 Future Work 

This project can be exploited and enhanced in many ways. Modelling new buildings that look 

more like the actual buildings found in the Linden area is one way to go. The ones placed in the 

environment are similar but not an exact copy. More complex traffic scenarios can be defined or 

implemented to increase the testing of the agents. In terms of BASU, more features can be added 

such as new evaluation metrics, cooperative driving support, and OpenScenario support. 

6.3 Final Words 

The work done is this thesis aims to provide a realistic environment from which developers 

and members from the ADL can benefit from. Maybe it will be used for safety assessment? 

Evaluate perception algorithms? Analyze traffic? Autonomous shuttles seems to be the future of 

our transportation system and this thesis seeks to be part of it. 
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Appendix A: Source Codes 

A.1 BASU 

BASU source code is available upon request. 

 

  

Figure A.1: Main file snapshot 

 

A.2 ScenarioRunner 

The modified version of ScenarioRunner is available upon request. 
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Appendix B: Maps 

B.1 RoadRunner 

RoadRunner map files are available upon request. 

 

B.2 Linden’s CARLA Map Package 

Linden’s UE4/CARLA map is available upon request. 

 

 

Figure B.1: UE4/CARLA editor, build from source. 
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Appendix C: BASU 

C.1 Directory Structure 

Figure C.1 shows the file structure of BASU. The agents folder contains sample agents that 

make use of CARLA’s autonomous agents. The co-simulations folder contains files necessary for 

the SUMO co-simulation. The config folder contains sample sensors configurations. The data 

folder contains specific vehicle types needed for the SUMO co-simulation. The managers folders 

contains all the managers of the benchmark. The routes folder contains debugging routes and 

Linden’s shuttle main route. Finally, the utils folder contains different scripts used on different 

part of the benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: BASU file structure 
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C.2 Heads Up Display (HUD) 

Simulations in BASU can be visualizing by enabling the --hud flag. The HUD includes 

information related to the simulation, agent settings, and sensors readings. Figure C.2 depicts how 

the HUD looks like and the information it provides. 

 

Figure C.2: BASU HUD 

 


