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Abstract

This dissertation studies decentralized multi-agent collision avoidance and rein-

forcement learning (RL) for Markov Decision Process (MDP) with state-dependent

action constraints. The multi-agent collision avoidance problem is a fundamental

problem in robotics, and it can be generally defined as multiple robots navigating

in a shared environment while avoiding collisions with each other. It is well known

in the literature that multi-agent collision avoidance is challenging to solve, mainly

due to complex dynamics constraints, limited information for each agent, and strict

safety constraints.

We first propose a decentralized collision avoidance algorithm for heterogeneous

multi-agent systems by introducing the extended control obstacles (ECOs). Pairwise

state-dependent action constraints from ECOs are introduced to avoid pairwise colli-

sions, which provides strict safety guarantees for heterogeneous linear systems. The

overall collision avoidance algorithm for each agent is formulated as a simple convex

optimization, which can be solved in real-time. The proposed approach can handle

complicated scenarios with uncontrolled agents, nonlinear agents, and obstacles.

In the second part of this dissertation, we propose a fast RL-based decentral-

ized collision avoidance algorithm for general nonlinear agents with continuous action

space. To reduce online computation, we first decompose the multi-agent scenario and

solve a two agents collision avoidance problem via RL. When extending the trained
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policy to a multi-agent problem, safety is enforced by introducing state-dependent

action constraints from the optimal reciprocal collision avoidance (ORCA). The over-

all collision avoidance action could be found through a simple convex optimization in

real-time.

Inspired by the collision avoidance algorithms that incorporate state-dependent

action constraints, we study RL for continuous MDPs with and state-dependent action

constraints. We establish the convergence of fitted value iteration and fitted Q-value

iteration. We further extend the algorithms and the convergence result to the case

of monotone MDPs, where a function approximating class for the monotone MDPs

is identified.
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Chapter 1: Introduction

1.1 Overview

This dissertation studies the decentralized multi-agent collision avoidance and

RL algorithms for Markov Decision Processes (MDPs) with state-dependent action

constraints. Roughly speaking, the multi-agent collision avoidance problem can be

defined as multiple robots navigating in a shared environment while avoiding collisions

with each other and obstacles. The problem has recently gained much interest and

has many practical applications, including service robots, logistic robotics, search

and rescue, and self-driving vehicles. One of the most important criteria to evaluate

collision avoidance algorithms are safety, and it can be formulated as state-dependent

constraints in the action space. Inspired by this, we also study RL for MDPs with

state-dependent action constraints, continuous state space, and continuous action

space.

Many multi-agent collision avoidance algorithms have been proposed to solve the

aforementioned challenges. They could be categorized into centralized and decentral-

ized approaches. For centralized ones, all agents and the environment are considered

as a whole system, and one decision-maker is in charge of control for all agents [1, 2].

In practice, centralized approaches may encounter many issues. First, the centralized
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ones rely on fast communications between agents. They are very sensitive to trans-

mission delay. Second, if the decision-maker fails, the whole system would fail, and

collision could occur, which makes the system not reliable. Third, the centralized

approaches scale poorly to large-scale systems. The computation complexity usually

grows exponentially with respect to the number of agents. On the contrary, decen-

tralized approaches allow each agent to make decisions independently. They are less

sensitive to time delay, more robust to system failures, and could be easily extended

to large systems.

Though traditional collision avoidance problem for a single agent has been ex-

tensively studied in the literature, decentralized multi-agent collision avoidance still

remains a challenging problem. First, unlike the single agent problem, the environ-

ment of each agent is dynamically changing. Each agent needs to coordinate with

its nearby agents with limited communications or without communications. Second,

the safety constraints introduced for inter-agent collision avoidance are non-convex,

which makes the problem hard to solve from the perspective of optimizations. Third,

the dynamics constraints introduced by each agent can be complex. Fourth, in prac-

tical applications, each agent only has limited observation of other agents and the

environment. Usually, each agent is not able to predict the action of nearby agents

accurately. Fifth, the real-world scenarios are complicated: the dynamics of all the

agents may be different, some agents may not follow the same collision avoidance

policy.

Like many other studies in the literature, we consider the realistic case without

communications between agents. We first study the decentralized multi-agent colli-

sion avoidance problem. Two collision avoidance algorithms are proposed based on
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different settings. The first approach handles the realistic applications where the

multi-agent system is heterogeneous by introducing the ECO. This algorithm could

also handle complicated environments with nonlinear, uncontrolled agents and obsta-

cles. The second approach provides real-time collision avoidance for general nonlinear

agents by introducing RL, where the safety constraints are transformed into state-

dependent action constraints. Inspired by that, we also investigate the RL algorithms

for MDPs with state-dependent action constraints, continuous state space, and con-

tinuous action space, where convergence is established.

1.2 Literature Review

In this dissertation, two decentralized collision avoidance algorithms and RL algo-

rithms for MDPs with state-dependent action constraints are presented. A compre-

hensive literature review on related works is conducted in this section. A comparison

of common decentralized multi-agent collision avoidance is given in Table 1.1. Some

related centralized algorithms are also included for completeness. We compare these

algorithms from different perspectives: whether they are centralized or decentralized,

if they provide any safety guarantee, what model assumptions they have about each

agent. Note that for the safety property, ”safe if feasible” means safety is guaranteed

when all safety constraints can be satisfied.

The goal of multi-agent collision avoidance is to find a control trajectory for each

agent that avoids collisions with each other while driving it to its corresponding goal

state. For decentralized algorithms, the control of each agent depends on its goal

state, internal state, observations of other agents, and the environment.
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Decentralized multi-agent collision avoidance algorithms can be generally divided

into two categories. The first category adopts a hierarchical structure in design, where

a high-level planning module is used to guide each agent to its goal state, and a low-

level collision avoidance module is used to avoid collisions. The focus of this category

is the design of low-level collision avoidance controllers, which would only regulate the

control reference from the planning module when collision becomes impendent. This

category of algorithms includes some reachability approaches [3], reciprocal collision

avoidance [4, 5], barrier functions [6, 7, 8]. The second category considers planning

together with collision avoidance, this category includes potential functions [9], RL

algorithms [10], and geometric approach [11].

1.2.1 Reciprocal Collision Avoidance

The reciprocal collision avoidance (RCA) algorithms formulate the collision avoid-

ance problem as a simple convex optimization with linear constraints. It usually pro-

vides a fast online solution to avoid collisions. A pair of linear control constraints

are introduced to avoid collisions between two agents. The constraints in control

space are constructed via velocity obstacles [36] or control obstacles [12], which are

defined as a set of relative constant velocities or controls that would cause collisions

within a given time horizon. Two agents would not collide with each other within the

given time horizon if constant controls satisfying the constraints are applied. When

extended to multiple agents, each agent selects the closest control to the control ref-

erence from a high-level planning module by solving a simple convex optimization

with linear constraints induced by surrounding agents.
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Algorithm
Centralized or
Decentralized

Safety Model Assumption

Reciprocal Collision Avoidance

ORCA [5] decentralized Safe if feasible Single integrators

Generalized RCA [12] decentralized
Safe if feasible and
homogeneous linear

Homogeneous linear
or heterogeneous nonlinear

AVO [13] decentralized Safe if feasible Double integrators

CCO [14] decentralized Safe if feasible
Dynamics with

continuous constraints

LQR-obstacles [15] decentralized Safe if feasible Homogeneous linear

ORCA with MPC [16] decentralized Safe if feasible Double integrators

ORCA with
flatness-based MPC [16]

decentralized No Quadrotors

NH-ORCA [17] decentralized Safe if feasible
Nonlinear dynamics with

a velocity tracking controller

B-ORCA [18] decentralized Safe if feasible Unicycle

Reinforcement Learning

CADRL [19] decentralized No
Single integrator

with kinematic constraints

SA-CADRL [10] decentralized No
Single integrator

with kinematic constraints

GA3C-CADRL [20, 21] decentralized No
Single integrator

with kinematic constraints
GA3C-CADRL-NSL

[22]
decentralized No

Single integrator
with kinematic constraints

PPO with Multiple
Robots [23, 24]

decentralized No
Single integrator

with kinematic constraints

DeepMNavigate [25] centralized No
Single integrator

with kinematic constraints

Reachability Approach

Evasion-evasion [3] decentralized Safe for up to 3 agents Double integrators

Pursuit-evasion
with MIP [26]

centralized Safe for up to 3 agents Arbitrary

Safe sequential
planning [27, 28, 29]

centralized Yes
Arbitrary model
with disturbance

Barrier Functions

CBF [30, 7, 6, 31] decentralized Safe if feasible Double integrators

Potential Functions

DNF [9, 32] decentralized Yes Single integrators

Artificial Potential Functions [33] decentralized No Double integrators

Buffered Voronoi Cells

BVC [11] decentralized Yes Single integrators

PBVC [34] decentralized No Single integrators with noise

B-UVC [35] decentralized Safe with Probability Single integrators with noise

Table 1.1: A comparison of multi-agent collision avoidance algorithms.
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Among many velocity obstacle based approaches [37, 4, 5, 38], the optimal re-

ciprocal collision avoidance (ORCA) [5] is the most influential one. It assumes that

each agent could be modeled as a single integrator, and its velocity can directly be

controlled. Each agent could also observe the position and velocity of nearby agents.

Although ORCA provides fast online solutions for collision avoidance, the assumption

that velocity can be directly controlled limits its real-world applications. There are

many extensions of ORCA to other dynamics. They can be generally categorized into

two types. The first type of algorithms extends the definitions of velocity obstacles

to the control space. They usually assume that the control of nearby agents can be

observed. [12] summarizes some previous extensions of this type [5, 13, 14, 15], and

propose the generalized RCA algorithm to linear homogeneous dynamics. The gener-

alized RCA algorithm is based on the concept of control obstacles, which is a natural

extension of velocity obstacles to control space. The generalized RCA could also

be extended to nonlinear, nonhomogeneous dynamics by linearization, which would

introduce error and safety could no longer be guaranteed. Another type of ORCA ex-

tensions is to directly apply ORCA with fixed velocity tracking controllers [18, 39, 17].

The introduction of tracking controllers would cause the tracking error between the

nominal single integrators and real dynamics, which is compensated via enlarging the

agent radius by the tracking error in computation.

The RCA algorithms could provide fast solutions to multi-agent collision avoid-

ance. However, most of their applications are limited to certain simple dynamics.

Besides, it is generally hard to compute linear safety constraints for arbitrary lin-

ear systems. So far, most works are based on homogeneous linear dynamics, and the
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extensions to heterogeneous or nonlinear would add linearization error or extra conser-

vativeness. The optimization problem could become infeasible when the intersection

of multiple linear constraints is empty.

1.2.2 Reinforcement Learning

The development of modern computation tools and deep neural networks have

made reinforcement learning (RL) algorithms a popular tool to solve control prob-

lems with high dimensions and continuous control space in a model-free manner [40,

41, 42, 43]. The neural networks are usually used to approximate the value func-

tions or policies. Compared to traditional model-based approaches, RL could handle

complex systems with very high dimensions of state space and action spaces. The

online computation is very fast, since RL offloads online computation to the training

process. RL could also handle disturbance directly in their formulation. These are

very desirable properties for multi-agent collision avoidance problems with complex

dynamics. More and more researchers are using RL to solve multi-agent collision

avoidance problems [23, 24, 19, 10, 20, 44].

For RL-based decentralized multi-agent collision avoidance algorithms, one main

challenge is how to represent the state for RL training. Since the number of agents

in the environment could vary, it is not proper to directly concatenate the output of

nearby agents. To address this problem, the authors in [19] proposed to train a value

function with two agents, and then extend the obtained policy to the multi-agent

case by selecting the action that maximizes the minimum of pairwise value functions.

A symmetric neural network structure is adopted in [10], which makes all neighbors

of one agent have the same impact on the policy. Long short-term memory networks
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(LSTM) [45] are introduced in [20] to handle the varying number of agents. Raw

sensor data is used for part of state in [23, 24].

One key issue of RL-based approaches is difficulty in providing a safety guaran-

tee. Though different RL algorithms have been applied for collision avoidance, the

collision avoidance behavior is achieved by constructing reward functions that award

agents for reaching goals and penalize dangerous behaviors. Thus, there are no hard

constraints in terms of safety. Another issue is that most of the aforementioned stud-

ies are restricted to discrete action space, and require rather complex neural networks

with demanding training processes. Besides, they all assume that the velocities of

robots could be directly controlled, which limits their applications to robots with

more complex nonlinear dynamics. This issue originates from the inconsistency of

MDP assumptions. Though RL algorithms assume the environment to be an MDP,

this is not true in the training process of decentralized multi-agent collision avoid-

ance. Since the behaviors of surrounding agents would evolve with the policy or value

functions, the environment is no longer stationary.

1.2.3 Reachability Based Approaches

The most important aspect of evaluating a collision avoidance algorithm is safety,

and reachability analysis can provide a strict guarantee for safety [46]. In reachability

analysis, a backward reachable set (BRS) is usually computed, which can be defined

informally as a set of initial states start from which the agent could reach a target set.

If the target set is chosen to be the set of collisions, the complement of the BRS is

a safe set and control-invariant. There always exists at least one safe policy to avoid

collisions if the initial state is within the safe set.
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One common way to compute the BRS and the corresponding safe policy is via

Hamilton-Jacobi (HJ) reachability, where the collision avoidance problem is defined

as an optimal control problem [47, 3]. The collision avoidance problem between

two agents is formulated as an evasion-evasion game in [3], and the corresponding

policy to avoid collisions is computed analytically for double integrators dynamics.

The evasion-evasion game formulation provides the least conservative solution for

two agents collision avoidance, but safety could not be guaranteed when extended

to multiple agents. To alleviate the conflicts introduced by multiple agents, cen-

tralized extensions, such as mixed-integer programming [26] and sequential planning

algorithm [27, 28, 29] are introduced. In [26, 48], the collision avoidance problem

for two agents is formulated as a pursuit-evasion game. Though solutions from the

pursuit-evasion game formulation are more conservative compared to the evasion-

evasion formulation, they can handle more complex environments with uncontrolled

moving obstacles.

Though reachability could guarantee safety in relatively simple scenarios, its com-

putation burden always limits its applications to more complex dynamics or envi-

ronments. The computation complexity usually grows exponentially with respect to

the dimension of state space. Therefore, most of its applications are for very simple

dynamics, such as single or double integrators. To alleviate the computation burden,

it is common to decompose the collision avoidance into pairwise collision avoidance

problems. Safety is usually sacrificed, and a central coordinator becomes necessary

to handle conflicts when extended to multi-agent scenarios.
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1.2.4 Barrier Functions

Similar to the reachability analysis, the barrier function is a powerful tool to guar-

antee the safety of a multi-agent system by enforcing a safe set control-invariant [49].

But unlike reachability analysis, the barrier function does not require the safe set or

the corresponding policy to be calculated explicitly. Therefore, the barrier functions

could provide a faster solution. For control-affine systems, the Lie derivative of the

barrier functions introduces pairwise linear control constraints for two agents. Similar

to RCA algorithms, the pairwise linear control constraints from different neighbors

are considered, and the control problem is formulated as an optimization when ex-

tended to multiple agents [30, 7, 6, 31]. In the construction of barrier functions for

two agents, only the states of two agents are considered. This is less conservative

than RCA algorithms that usually requires both the state and control of an agent to

be observable.

Though the barrier function provides a fast online solution to the multi-agent

collision avoidance problem, its applications is limited to certain forms of control-

affine systems, such as double integrators, unicycles. Similar to Lyapunov functions,

there is no universal algorithm to construct barrier functions. The safe set could be

too small, and the policy to avoid collisions might be too conservative if the barrier

function is not properly constructed. Besides, the optimization problem could be

infeasible when the intersection of multiple linear constraints becomes empty.

1.2.5 Potential Functions

Potential functions handle the collision avoidance problems from the perspective

of optimization by controlling all agents move towards the opposite direction of their
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gradients. They are first designed for single agent collision avoidance [50], known as

the navigation function. Potential functions are usually constructed to drive all agents

to move towards their goal states while avoiding collisions [51]. Potential functions

are closely related to value functions [52] and Lyapunov functions [9] in the sense that

the goal state is the only global minimum that makes functions vanish.

To extend the navigation function to multiple agents, [53] proposed a centralized

algorithm for multi-agent formation control. It proposes a multi-agent navigation

function with similar convergence and safety properties as [54]. [9] proposes another

form of multi-agent navigation function for decentralized collision avoidance problem

with proved convergence and safety properties [32]. The sum of multi-agent naviga-

tion functions is shown to be a global Lyapunov function. The extension of navigation

functions to multi-agent systems provides an approach to handle collision avoidance

via optimization and Lyapunov theory. It can provide safety and convergence in a

decentralized manner. However, discussions have been mainly focused on single inte-

grators. Though [52] proposes a potential function for multi-agent collision avoidance

with general nonlinear dynamics, only equivalent conditions for safety and stability

are provided. The construction of navigation functions is limited to certain forms of

function.

Another trend of potential functions is to focus on practical applications instead

of strictly analysis for safety [33, 55, 56]. These approaches could easily incorporate

different types of obstacles, environments, and social norms. But there is no safety

guarantee or analysis, and they usually require tedious parameter-tuning to get good

performance.
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1.2.6 Buffered Voronoi Cells

The Buffered Voronoi Cell (BVC) [11] handles the decentralized multi-agent colli-

sion avoidance by segmenting the workspace into polyhedra. Each agent computes its

collision avoidance action by solving a receding horizon control problem with linear

constraints. The BVC originates from the concept of Voronoi Cells [57], which has

been widely applied to many robotics problems, such as path planning problems [58],

coverage control problems [59]. The BVC extends the concept of Voronoi Cells by

incorporating the size of each agent in the partitions in the workspace. It is has been

extended to single integrators dynamics with disturbances in localization [35, 34].

Similar to RCA approaches and barrier functions, pairwise linear constraints to avoid

pairwise collisions are introduced. Unlike those approaches, BVC only requires each

agent to observe the positions of nearby agents. However, the main discussions of the

BVC algorithms focus on single integrators dynamics, which limits their applications

in the real world.

1.3 A Preview of Main Results and Contributions

The main focus of this dissertation is decentralized multi-agent collision avoidance

and RL. Two decentralized multi-agent collision avoidance algorithm is proposed.

The first algorithm handles collision avoidance problems for heterogeneous systems

by introducing the extended control obstacle (ECO). The second one tackles collision

avoidance for general nonlinear agents with continuous action space by combining

ORCA and RL. The collision avoidance constraints are formulated as state-dependent

action constraints in both collision avoidance algorithms. Inspired by this, we develop

12



RL algorithms for MDPs with state-dependent action constraints and establish con-

vergence results. The algorithms and convergence are also extended to the case of

monotone MDPs.

Though real-world applications of collision avoidance algorithms require compli-

cated interactions between agents with different dynamics, the majority of decentral-

ized algorithms are designed for homogeneous systems. Therefore, the first part of

this dissertation focuses on collision avoidance of heterogeneous systems. Our work

is inspired by [12], which extends the definition of velocity obstacles to control space

and proposes control obstacles. We propose the extended control obstacle (ECO) and

the corresponding collision avoidance algorithm for heterogeneous systems. The ECO

is defined as a set of constant joint controls between two agents that could result in

collisions within a given time horizon. For linear systems, it can be computed as

a polyhedron or union of polyhedra. Given an ECO, the corresponding linear con-

straints can be computed independently by two agents, which can be achieved by

solving convex optimizations. The proposed collision avoidance algorithm works for

general heterogeneous systems. There is no limitation to the dimensions of action

space like [12]. This algorithm can also handle complex environments with nonlin-

ear agents, uncontrolled agents, and obstacles. The corresponding linear constraints

provide a strict safety guarantee for heterogeneous linear systems. The main compu-

tation processes can be formulated as convex optimizations, and our algorithm can

provide a real-time solution for collision avoidance.

In the second part of the dissertation, we propose a decentralized multi-agent

collision avoidance algorithm that combines RL and ORCA. One common issue of

most decentralized multi-agent collision avoidance algorithms is that they only work
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for specific dynamics or very simple dynamics. Though RL-based approaches are

applicable to general nonlinear dynamics in theory, in practice, they only work for very

simple dynamics where the velocity can be directly controlled. The non-stationary

environments make it hard for RL algorithms to converge if the dynamics are complex.

Moreover, RL-based approaches do not provide any safety guarantee. On the contrary,

the proposed RL-based algorithm solves the multi-agent collision avoidance problem

with a systematic consideration of safety. Our approach is designed for robots with

general nonlinear dynamics, where each agent can only observe the positions and

velocities of nearby robots. We first decompose our problem into a two agents collision

avoidance problem with continuous action spaces, and solve it using RL. Since we

only train the RL policy for two agents collision avoidance, the learning process of

our algorithm is much faster, and the neural network is much smaller. Then we handle

the multi-agent collision avoidance problem by solving a simple convex optimization

with safety constraints from the ORCA. The linear safety constraints from the ORCA

algorithm acts as state-dependent action constraints in the optimization to avoid

collisions. Unlike other RL-based approaches that assume velocities of robots could

be directly controlled, or other ORCA-based approaches that need specific models and

controllers, our approach works for general nonlinear systems with continuous action

spaces. The performance of the proposed approach is demonstrated via complex and

challenging tasks in simulations.

In the third part of the dissertation, we study RL algorithms for MDPs with

state-dependent action constraints. This work is inspired by our previous works on

collision avoidance, where the safety constraints are converted into state-dependent
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action constraints. We establish the convergence of fitted value iteration and fitted Q-

value iteration for continuous MDPs with state-dependent action constraints. Unlike

most fitted value iteration problems [60, 61, 62, 63], we assume the admissible action

set are state-dependent, which is more realistic in many applications. We establish the

Lipschitz continuity of value functions, and relax the absolute continuity assumptions

on the transition kernel of the MDPs [60, 63, 64]. We also extend the convergence

result to a sufficiently general class of monotone MDPs.

1.4 Organization and Notation

In Chapter 2, we study the collision avoidance algorithm for heterogeneous sys-

tems by introducing the extended control obstacle. In Chapter 3, we propose an

efficient RL-based algorithm to solve multi-agent collision avoidance problems with a

systematic consideration of safety. Our approach is designed for robots with general

nonlinear dynamics, where each agent can only observe the positions and velocities

of nearby robots. In Chapter 4, we establish the convergence of fitted value iteration

and fitted Q-value iteration for continuous-state continuous-action Markov decision

problems (MDPs) with state-dependent action sets. We further extend the algorithm

and the convergence result to the case of monotone MDPs. Chapter 5 concludes the

dissertation and discusses potential future research directions.

We use the following notational conventions throughout this dissertation. The set

of natural numbers and the set of non-negative integers are denoted by N and N0,

respectively. Cartesian product between sets A and B are denoted by A ×B. For

a set A , we use ∂ (A ) to represent its boundary. Given a set S , the set of bounded

measurable functions mapping from S to R is denoted by B(S ), and the set of
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continuous bounded functions endowed with supremum norm mapping from S to R

is denoted by Cb(S ).
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Chapter 2: Multi-Agent Collision Avoidance for

Heterogeneous Systems via Extended Control Obstacles

2.1 Introduction

In this chapter, we study the decentralized multi-agent collision avoidance prob-

lem for heterogeneous systems. Unlike the homogeneous multi-agent systems, the

existence of different dynamics makes the collision avoidance problem combinatorial

in nature. Therefore, it is very challenging to apply existing decentralized multi-agent

collision avoidance algorithms to heterogeneous systems. Though [6] claims barrier

functions can be applied to heterogeneous systems, the dynamics in that work is actu-

ally homogeneous with different action constraints. The reciprocal collision avoidance

algorithm proposed in [12] can also be applied to heterogeneous systems, but it comes

with many limitations and disadvantages. First, its theoretic development is based

on homogeneous linear systems. Linearization is necessary when the algorithm is

extended to heterogeneous systems, which would introduce linearization errors. Sec-

ond, the dimension of control must be the same as the dimension of the workspace,

which may not be true for many applications. Third, approximations are necessary

to compute linear safety constraints for linear systems, which would introduce extra

errors.
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To address the aforementioned issues, we propose a decentralized collision avoid-

ance algorithm for heterogeneous multi-agent systems by introducing the extended

control obstacle (ECO). The ECO can be generally defined as a set of constant joint

controls for two agents that may cause collisions within a time horizon. Unlike veloc-

ity obstacles or control obstacles that are defined in a relative control space, ECOs

are defined in a joint control space between two agents, which makes it suitable for

heterogeneous systems in theory. Pairwise linear constraints are introduced for each

pair of heterogeneous agents to avoid collisions, which can be computed via convex

optimizations. The overall collision avoidance algorithm for each agent is formulated

as an independent convex optimization that can be solved in real-time. The pro-

posed approach is applicable to general heterogeneous systems, and can also handle

scenarios with uncontrolled agents that do not follow the proposed collision avoid-

ance framework. The resulting collision avoidance strategy is verified via challenging

simulations over heterogeneous systems, which include single integrators, double in-

tegrators, unicycles, and kinematic bicycles. The main contributions are as follows.

• Heterogeneous Systems: We propose a collision avoidance algorithm for

general heterogeneous systems. Unlike [12], there are no limitations to the

dimension of control spaces.

• Unified Framework: The proposed collision avoidance algorithm can handle

complex scenarios with uncontrolled agents, nonlinear agents, and obstacles.

• Safety: The introduction of ECO and the corresponding linear constraints

provide strict safety guarantees for heterogeneous linear systems.
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• Real-Time Computation: Our algorithm can provide real-time control. The

main computation processes can be formulated as convex optimizations.

2.2 Problem Statement

2.2.1 Problem Setup

We consider a discrete time heterogeneous multi-agent system consisting of M

agents, indexed by M , {1, . . . ,M}. Each agent i ∈M is modeled by the following

nonlinear dynamics

sit+1 = f i(sit, a
i
t), (2.1a)

pit = gi(sit). (2.1b)

Here sit ∈ S i ⊆ Rni , ait ∈ A i ⊆ Rmi and pit ∈ Rd represent the state, control and

position of agent i at time t ≥ 0, respectively. The control space A i is assumed to be

a bounded convex set. The function f i(·, ·) : S i × A i → S i is the state transition

function and gi(·) : S i → Rd is the position projection function from state space to

physical workspace for agent i ∈ M. All agents share the same physical workspace,

and d = 2 or 3 typically. Each agent i ∈ M is modeled as a disc or a sphere with

radius ri > 0.

For a two agents system with agents i and j, let the joint state, control and

position at time t ≥ 0 be written as

si,jt , (sit, s
j
t) ∈ S i,j , S i ×S j,

ai,jt , (ait, a
j
t) ∈ A i,j , A i ×A j,

pi,jt , (pit,p
j
t) , gi,j(si,jt ) ∈ R2d.
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Here S i,j, A i,j represent the joint state space and control space respectively, and

gi,j(·) : S i,j → R2d is the position projection function from the joint state space to

the joint physical workspace R2d. Given an initial state si,j ∈ S i,j and an open

loop control ai,j(·) : N0 → A i,j, the corresponding state trajectory is denoted by

ξi,j(·; si,j, ai,j(·)) : N0 → S i,j.

Two agents collide with each other if the distance between them is not greater than

the sum of their radii. Equivalently, we say two agents collide at time t if si,jt ∈ O i,j.

Here O i,j is called the collision set, which is defined as

O i,j ,
{
si,j ∈ S i,j

∣∣∥∥[Id − Id] gi,j(si,j)
∥∥

2
≤ ri + rj

}
.

Given the collision set O i,j, we define the dangerous set Õ i,j as an polyhedron that

outer-approximate the collision set O i,j, i.e., O i,j ⊆ Õ i,j.

2.2.2 Problem Statement

The problem of multi-agent collision avoidance now could be defined as having

each agent i ∈ M compute a control ai ∈ A i given the current state si, such that it

would not collide with any other agent j:

ξi,j(1; si,j, ai,j) /∈ O i,j ∀i, j ∈M and i 6= j, (2.2)

here si,j = (si, sj)and ai,j = (ai, aj) represents the current joint state and joint control

of agents i and j.

The multi-agent collision avoidance problem (2.2) is challenging because each

agent i does not know the intentions of nearby agents j 6= i. Therefore, we develop

our algorithm based on the following assumptions:

Assumption 1. The following holds
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(i) At each time t ≥ 0, every agent i ∈M would receive a control reference ãit from

a high-level planning module.

(ii) Every agent i can identify the dynamics (2.1) of nearby agents j 6= i, as well as

the radius rj.

(iii) Every agent i can observe states sjt and controls ajt of each other agent j ∈ M

at each time t ≥ 0.

Note that Assumption 1 (i) implies that there exists a planning module that

provides the control reference, which may lead to collisions. Assumption 1 (ii) and (iii)

implies that each agent can observe the dynamics, state and control of nearby agents,

which are very common assumptions for reciprocal collision avoidance algorithms [5,

12].

2.3 The Extended Control Obstacles for Heterogeneous Sys-
tems

In this section, we propose a collision avoidance framework for heterogeneous

systems by introducing the concept of the Extended Control Obstacles (ECO).

2.3.1 Extended Control Obstacles

For a two agents system consisting of agents i and j, given its initial state si,j ∈

S i,j at time 0, the Extended Control Obstacle (ECO) at time t is defined as the set

of constant joint control that would drive the system into the dangerous set Õ i,j at

time t ∈ N, i.e.,

COi,j(t, si,j) ,
{

ai,j ∈ Rmi+mj

∣∣∣ξi,j(t; si,j, ai,j) ∈ Õ i,j
}
. (2.3)
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Then we define the Extended Control Obstacle (ECO) with Horizon N as the union

of COi,j(t, si,j) over all time t = 1, 2, . . . , N for some horizon N ∈ N

COi,jN (si,j) ,
⋃

t=1,2,...,N

COi,j(t, si,j)

=
{

ai,j ∈ Rmi+mj

∣∣∣∃t = 1, 2, . . . , N, s.t. ξi,j(t; si,j, ai,j) ∈ Õ i,j
}
.

(2.4)

By the definition of COi,jN (si,j), collisions between agents i and j would not occur

in the following N steps if they apply a constant joint control ai,j ∈ A i,j for the

following N steps such that

ai,j /∈ COi,jN (si,j). (2.5)

2.3.2 A Collisions Avoidance Framework for Heterogeneous
Systems

For decentralization, we need to decompose the constraint (2.5) into two indepen-

dent linear control constraints

ai ∈ Hi,j
i (si,j), (2.6a)

aj ∈ Hi,j
j (si,j), (2.6b)

where Hi,j
i (si,j) ⊆ Rmi and Hi,j

j (si,j) ⊆ Rmj are two polyhedra such that for set

Hi,j(si,j), which is defined as

Hi,j(si,j) , Hi,j
i (si,j)×Hi,j

j (si,j) ⊆ Rmi+mj , (2.7)

we have

Hi,j(si,j) ∩A i,j 6= ∅, (2.8a)

Hi,j(si,j) ∩ COi,jN (si,j) = ∅. (2.8b)
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ai

aj

COi,jN (si,j)

Hi,j(si,j)

A i,j

Figure 2.1: ECO and a set Hi,j(si,j) of form (2.7) that satisfies (2.8). The set
Hi,j(si,j) ∩ A i,j is a set of feasible joint control for agent i and j to avoid collisions
with each other.

Here (2.8a) implies that there exists feasible control in the set Hi,j(si,j), and (2.8b)

implies the control from Hi,j(si,j) would not cause collisions. As illustrated in Fig.

2.1, the set Hi,j(si,j) satisfying (2.8) is a set of safe joint control. It provides a pair of

linear constraints for agent i and j to avoid collisions. Such a Hi,j(si,j) always exists

if
(
COi,jN (si,j)

)c ∩A i,j 6= ∅.

To avoid collisions with all other agents j 6= i, each agent i would select a control

satisfying all linear constraints (2.6a) introduced by all other agent j, while trying

to follow the reference control ãit. Given the current joint state si,jt = si,j, each

agent i compute its control ait = ai every time step by solving the following convex
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Algorithm 1 A Collision Avoidance Framework for Heterogeneous Systems via ECO

Input: Initial time t = 0, the initial state si0 = siinitial, a control reference trajectory
ãi(·) : N0 → A i for each agent i ∈M, time horizon N ≥ 0

1: while True do
2: for i ∈M do
3: for j ∈M and j 6= i do
4: Observe current state si,jt = si,j

5: Compute the ECO COi,jN (si,j)
6: Compute the polyhedron Hi,j

i (si,j) such that (2.8) holds
7: end for
8: Compute the current control ai via (2.9)
9: Apply ai to agent i: ait = ai

10: end for
11: t← t+ 1
12: end while

optimization problem at each time step

ai = arg min
a∈Rmi

∥∥a− ãit
∥∥

2
(2.9a)

s.t. a ∈ A i ∩
⋂

j∈M, j 6=i

Hi,j
i (si,j). (2.9b)

The optimization (2.9) is a quadratic programming with convex constraints. The con-

straint (2.9b) represents a state-dependent action constraints. If A i is a polyhedron,

the constraint (2.9b) becomes linear inequality constraints.

The complete collision avoidance framework for heterogeneous systems is summa-

rized in Algorithm 1. For each agent i at each time step t, it needs to compute the

Hi,j(si,j) with respect to each other agent j 6= i, and solve the optimization (2.9) with

state-dependent constraints to avoid collisions. In the following sections, we discuss

how to compute the ECO COi,jN (si,j) and construct the corresponding polyhedron

Hi,j
i (si,j).
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2.4 Collision Avoidance for Heterogeneous Linear Systems

In this section, we propose a collision avoidance algorithm for heterogeneous linear

systems based on ECOs. For linear systems ,the dynamics (2.1) becomes the following:

sit+1 = Aisit +Biait + ci, (2.10a)

pit = Disit + ei, (2.10b)

where Ai ∈ Rni×ni , Bi ∈ Rni×mi , ci ∈ Rni , Di ∈ Rd×ni , and ei ∈ Rd, for each agent

i ∈M.

For a system consisting of two agents i and j, given an initial joint state si,j ∈

S i,j, and a constant control ai,j ∈ A i,j, the state trajectory could be written as the

following

ξi,j(t; si,j, ai,j) = Ai,jt si,j +Bi,j
t ai,j + ci,jt ,

where Ai,jt , Bi,j
t and ci,jt is given as

Ai,jt =

[
Ai

Aj

]t
∈ R(ni+nj)×(ni+nj),

Bi,j
t =

(
t−1∑
k=0

Ai,jk

)[
Bi

Bj

]
∈ R(ni+nj)×(mi+mj),

ci,jt =

(
t−1∑
k=0

Ai,jk

)[
ci

cj

]
∈ R(ni+nj).

2.4.1 ECO Computations for Linear Systems

Recall that we approximate the collision set O i,j by a dangerous set Õ i,j, which

is a polyhedron. We assume it could be written in the following form

Õ i,j =
{
si,j ∈ Rni+nj

∣∣Hos
i,j ≤ ho

}
,
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where Ho ∈ Rno×(ni+nj), and ho ∈ Rno for some no ∈ N. Fix t ∈ N, the ECO at time

t, COi,j(t, si,j), can be represented as a polyhedron with the following form

COi,j(t, si,j) =
{

ai,j ∈ Rmi+mj

∣∣∣Ai,jt si,j +Bi,j
t ai,j + ci,jt ∈ Õ i,j

}
=
{

ai,j ∈ Rmi+mj

∣∣∣HoB
i,j
t ai,j ≤ ho −Ho

(
Ai,jt si,j + ci,jt

)}
.

Given the ECO at time t, we could represent the ECO with horizon N , COi,jN (si,j),

as a union of N polyhedra

COi,jN (si,j) =
⋃

t=1,2,...,N

COi,j(t, si,j).

2.4.2 Linear Safety Constraints Computations

Given the current joint state si,j and the corresponding ECO COi,jN (si,j) of a two

agent linear system, we would like to compute the polyhedron Hi,j(si,j) of the form

(2.7) that makes (2.8) hold. Both agents i and j should be able to compute the cor-

responding Hi,j
i (si,j) and Hi,j

j (si,j) respectively, without communications with each

other. In this section, we propose an approach to compute the polyhedron Hi,j
i (si,j)

via convex optimizations. The returned Hi,j
i (si,j) is a half-space, and the correspond-

ing control constraint for each agent i is one single linear constraint.

Recall that COi,jN (si,j) is a union of multiple polyhedra. In order to get Hi,j(si,j)

that makes (2.8b) hold, we introduce convex hulls. Let COi,jN (si,j) be defined as the

convex hull of COi,jN (si,j) ∩A i,j,

COi,jN (si,j) , conv
(
COi,jN (si,j) ∩A i,j

)
,

which can be computed by both agents i and j. If both agents i and j can find

Hi,j
i (si,j) and Hi,j

j (si,j) respectively, such that Hi,j(si,j) of form (2.7) satisfies

Hi,j(si,j) ∩ COi,jN (si,j) = ∅, (2.11)
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then (2.8b) holds. In order to make (2.8a) also hold, we try to make Hi,j(si,j) and

COi,jN (si,j) as close as possible while (2.11) holds. We achieve this by making Hi,j(si,j)

tangent to COi,jN (si,j) via the following nonconvex optimization:

x0 = arg inf
x∈Rmi+mj

‖x‖2 (2.12a)

s.t. āi,j + x ∈ ∂
(
COi,jN (si,j)

)
(2.12b)

āi,j + x /∈ ∂
(
A i,j

)
, (2.12c)

where āi,j = (āi, āj) ∈ A i,j is a joint control point that is known to both agents, and

āi ∈ A i, āj ∈ A j. For smoothness of the generated trajectories, we make āi,j = ai,jt−1

at each time t, i.e., the last joint control.

The optimization (2.12) seeks the shortest vector x0 from the joint control point

āi,j to the boundary of COi,jN (si,j). The constraint (2.12b) means that āi,j +x0 should

lie on the boundary of COi,jN (si,j) and the constraint (2.12c) implies that āi,j + x0

should not lie on the boundary of A i,j. Without constraint (2.12c), we may get x0

such that āi,j + x0 ∈ ∂ (A i,j) and constraint (2.8a) would be violated.

Given x0 = (xi0,x
j
0) with xi0 ∈ Rmi and xj0 ∈ Rmj . The set Hi,j

i (si,j) for agent i is

defined as a half-space

Hi,j
i (si,j) ,

{{
ai ∈ Rmi

∣∣(ai − āi − xi0)Txi0 ≥ 0
}

if āi,j ∈ COi,jN (si,j){
ai ∈ Rmi

∣∣(ai − āi − xi0)Txi0 ≤ 0
}

else
. (2.13)

Similarly, agent j calculates the half-space Hi,j
j (si,j) via solving the same optimization

(2.12). As illustrated in Fig. 2.2, the corresponding Hi,j(si,j) is tangent to COi,jN (si,j).

Though (2.12) is a non-convex optimization in general, it can be converted into

one convex optimization problem or a series of convex optimization problems. When

āi,j /∈ COi,jN (si,j), the optimization (2.12) is equivalently to find the shortest vector
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ai

aj

COi,jN (si,j)

COi,jN (si,j)

Hi,j
j (si,j)

Hi,j
i (si,j)

Hi,j(si,j)
āi,j

x0

A i,j

Figure 2.2: Linear Safety Constraints Computations for ECO. Given the solution x0

to the nonconvex optimization (2.12), we could construct the Hi,j(si,j) via (2.13).

The corresponding Hi,j(si,j) is tangent to COi,jN (si,j).

from āi,j to COi,jN (si,j), which is equivalent to the following quadratic programming

problem:

x0 = arg inf
x∈Rmi+mj

‖x‖2 (2.14a)

s.t. āi,j + x ∈ COi,jN (si,j). (2.14b)

When āi,j ∈ COi,jN (si,j), the optimization (2.12) can be converted into a series of

convex optimization problem. We assume the set COi,jN (si,j) could be written in the

following form:

COi,jN (si,j) =
{
ai,j ∈ Rmi+mj

∣∣Aecoai,j ≤ beco
}
∩A i,j,

where Aeco ∈ Rnc×(mi+mj) and beco ∈ Rnc for some nc ∈ N. Let Aeco =
[
aeco1 , . . . , aeconc

]T
and beco =

[
beco1 , . . . , beconc

]T
, with aecop ∈ Rmi+mj and becop ∈ R for p = 1, 2, . . . , nc. The
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p-th face of COi,jN (si,j) is defined as{
ai,j ∈ Rmi+mj

∣∣∣ (aecop )T ai,j = becop

}
∩ COi,jN (si,j)

for p = 1, 2, . . . , nc. Then the optimization (2.12) could be formulated as to find the

shortest one among all shortest vectors from āi,j to each face of COi,jN (si,j) that is not

a subset of ∂ (A i,j). The shortest vector from āi,j to the p-th face of COi,jN (si,j) could

be found via the following convex optimization problem.

xp = arg inf
w∈Rmi+mj

‖x‖2 (2.15a)

s.t. āi,j + x ∈ COi,jN (si,j) (2.15b)

(aecop )T
(
āi,j + x

)
= becop . (2.15c)

The complete algorithm to compute the half-spaceHi,j
i (si,j) given ECO is summarized

in Algorithm 2.

Algorithm 2 Linear Safety Constraints Computations

Input: The set COi,jN (si,j), the joint control space A i,j, a joint control point āi,j ∈
A i,j

Output: The half-space Hi,j
i (si,j)

1: Initialize x0 ← None

2: if āi,j /∈ COi,jN (si,j) then
3: x0 ← Solving optimization (2.14)
4: else
5: for p = 1, 2, 3, . . . , nc do

6: if The p-th face of COi,jN (si,j) is not a subset of ∂ (A i,j) then
7: xp ← Solving optimization (2.15)
8: if x0 is None or ‖x0‖2 > ‖xp‖2 then
9: x0 ← xp
10: end if
11: end if
12: end for
13: end if
14: Compute Hi,j

i (si,j) via (2.13)

29



Algorithm 3 Collision Avoidance Algorithm for Heterogeneous Linear Systems

Input: Initial time t = 0, the initial state si0 = siinitial, a control reference trajectory
ãi(·) : N0 → A i for each agent i ∈M, and the ECO time horizon N ∈ N

1: while True do
2: for i ∈M do
3: for j ∈M and j 6= i do
4: Observe si,jt = si,j

5: Compute the set COi,jN (si,j)
6: Compute Hi,j

i (si,j) via Algorithm 2
7: end for
8: Compute control ai via the optimization (2.9)
9: Apply control ai to agent i: ait = ai

10: end for
11: t← t+ 1
12: end while

2.4.3 Collision Avoidance for Heterogeneous Linear Systems

For each agent i ∈ M with current state si,j at each time t, it first compute

the half-space Hi,j
i (si,j) with respect to each other agent j ∈ M and j 6= i. The

linear control constraints induced by Hi,j
i (si,j) provides a strict safety guarantee for

each agent i. Then it computes its action ai to avoid collisions with all other agents

while trying to follow the reference control by solving the convex optimization (2.9)

with state-dependent constraints. The complete collision avoidance algorithm for

heterogeneous linear systems is summarized in Algorithm 3.

2.5 Uncontrolled Agents and Nonlinear Dynamics

Our previous discussions of the collision avoidance algorithm are based on the

assumption that all agents in the workspace have linear dynamics and follow the

same collision avoidance algorithm. However, this may not be true for some real-world

applications. Linear models may not be accurate enough to describe the dynamics of
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real robots, and there may exist uncontrolled agents in the environment that do not

follow the proposed framework. In this section, we extend the proposed algorithm to

heterogeneous nonlinear systems and multi-agent systems with uncontrolled agents.

2.5.1 Nonlinear Dynamics

To apply the proposed algorithm to an nonlinear agent, we approximate nonlinear

models of the form (2.1) with linear ones of the form (2.10). We linearize nonlinear

models via the first order Taylor expansion around the current state sit and the last

control ait−1 at each time t. We let Ai, Bi, ci, Di and ei in (2.10) be given as

Ai ,
∂f i(si, ai)

∂si

∣∣∣∣
si=sit,a

i=ai
t−1

,

Bi ,
∂f i(si, ai)

∂ai

∣∣∣∣
si=sit,a

i=ai
t−1

,

ci , f i(sit, a
i
t−1)− Aisit −Biait−1,

Di ,
∂gi(si)

∂si

∣∣∣∣
si=sit,a

i=ai
t−1

,

ei , gi(sit)−Disit

Given the linearized models of form (2.10), we could directly apply Algorithm 3 to

handle scenarios with nonlinear dynamics. To compensate for the linearization error,

we slightly enlarge the radius of each nonlinear agent during the construction of ECO.

2.5.2 Uncontrolled Agents and Obstacles

To apply the collision avoidance framework proposed in Section 2.3.2 to scenarios

with uncontrolled agents and obstacles, we would like to construct state-dependent

control constraints to avoid collisions for each controlled agent. First we consider the

collision avoidance problem between a controlled agent i and an uncontrolled agent j
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with current joint state si,j. We would like to find a half-space Hi,j
i (si,j) ⊆ Rmi , such

that no collision would occur if agent i apply any constant control ai ∈ Hi,j
i (si,j) while

agent j apply arbitrary constant control aj ∈ A j in the following N steps. Though

the uncontrolled agent j may not take constant control, the half-space Hi,j
i (si,j) at

least provides a safety guarantee for one time step. When extended to multi-agent

systems with both controlled and uncontrolled agents, each controlled agent i ∈ M

could still find a safe control via the convex optimization (2.9) with state-dependent

action constraints.

To construct such a half-space Hi,j
i (si,j), we define the Projected Extended Control

Obstacle (PECO) with horizon N ≥ 0 as

POi,jN (si,j) ,
{

ai ∈ Rmi

∣∣∣∃t = 1, 2, . . . , N, ∃aj ∈ A j, s.t. ξi,j
(
t; si,j, (ai, aj)

)
∈ Õ i,j

}
,

which is the set of constant control ai ∈ Rmi that could result in collisions if agent j

adopt some constant control aj ∈ A j. The set POi,jN (si,j) is called PECO because it

is the projection of the set COi,jN (si,j)∩ (Rmi ×A j) from Rmi+mj to Rmi . We further

assume the control space A j for agent j is a polyhedron. Like COi,jN (si,j), for agents

i and j with linear dynamics, POi,jN (si,j) is a union of multiple polyhedra.

We denote convex hull of POi,jN (si,j) ∩ A i by POi,jN (si,j). Given POi,jN (si,j), we

can find a half-space Hi,j
i (si,j) such that Hi,j

i (si,j) ∩ POi,jN (si,j) = ∅ via the following

non-convex optimization:

x0 = arg inf
x∈Rmi

‖x‖2 (2.16a)

s.t. āi + x ∈ ∂
(
POi,jN (si,j)

)
(2.16b)

āi + x /∈ ∂
(
A i
)
. (2.16c)
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POi,jN (si,j)

POi,jN (si,j)

Hi,j
i (si,j)

āi

x0

A i

Rmi

Figure 2.3: Linear Constraints Decomposition for PECO. Given the solution x0 to
the nonconvex optimization (2.16), we construct the Hi,j(si,j) via (2.17). The corre-

sponding Hi,j(si,j) is tangent to POi,jN (si,j).

Here āi = ait−1 is the last control of agent i. We seeks Hi,j
i (si,j) that are the closet

half-space to the last control ait−1 to make the generated trajectory smooth, while

making sure it provides strict safety guarantee. The optimization (2.16) is almost the

same as (2.12), and we could adopt Algorithm 2 to solve it by replacing COi,jN (si,j)

with POi,jN (si,j), and A i,j with A i.

Given x0, the half-space Hi,j
i (si,j) is given as

Hi,j
i (si,j) ,

{
{ai ∈ Rmi|(ai − āi − x0) · x0 ≥ 0} if āi ∈ POi,jN (si,j)

{ai ∈ Rmi|(ai − āi − x0) · x0 ≤ 0} else
. (2.17)

As illustrated in Fig. 2.3, the half-spaceHi,j
i (si,j) is tangent to POi,jN (si,j) and provides

a set of safe control for agent i to avoid collisions with uncontrolled agent j.

For a static or moving obstacle with constant velocity, we could approximate it

by one or several uncontrolled agents with linear dynamics and empty control space

A j. For multi-agent scenarios consisting of controlled and uncontrolled agents as well
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as static or moving obstacles, each controlled agent i could still adopt the proposed

algorithm to avoid collisions. The half-space Hi,j(si,j) with respect to each other

agent j is a state-dependent action constraints that guarantee safety.

2.6 Experiments and Results

We illustrate the performance of our algorithm via several challenging multi-agent

interactive scenarios with different robot dynamics.

2.6.1 Simulation Setup

The proposed collision avoidance algorithm is validated via multi-agent systems

with up to four different dynamics: single integrators, double integrators, unicycles,

and kinematic bicycles.

The dynamics of the single integrators is given as

ṗx = vx (2.18a)

ṗy = vy (2.18b)

where state s = [px, py]
T consists of coordinates of the agent position, and control

a = [vx, vy]
T is the velocity.

For the double integrators, their dynamics is given as

ṗx = vx (2.19a)

ṗy = vy (2.19b)

v̇x = ax (2.19c)

v̇y = ay (2.19d)
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Figure 2.4: Unicycle Model

where state s = [px, py, vx, vy]
T consists of the position and the velocity, and its control

a = [ax, ay]
T is acceleration. As illustrated in Fig. 2.4, the dynamics of a unicycle is

defined as

ṗx = v cos(ψ) (2.20a)

ṗy = v sin(ψ) (2.20b)

ψ̇ = w (2.20c)

v̇ = a (2.20d)

where state s = [px, py, ψ, v]T consists of position px and py, inertial heading ψ and

speed v. The control a = [w, a]T consists of yaw rate w and acceleration a.
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The dynamics of kinematic bicycle models is illustrated in Fig 2.5, it is defined as

ṗx = v cos(ψ + β) (2.21a)

ṗy = v sin(ψ + β) (2.21b)

ψ̇ =
v

lr
sin(β) (2.21c)

v̇ = a (2.21d)

β = tan−1

(
lr

lf + lr
tan δf

)
(2.21e)

where state s = [px, py, ψ, v]T consists of position px and py, inertial heading ψ and

speed v. We use β to represent the angle between velocity and the longitudinal axis

of the robot, and use lf , lr to represent the distance from the centroid to the front and

rear axles respectively. The control a = [δf , a]T consists of the front steering angle δf

and acceleration a.

Figure 2.5: Kinematic Bicycle Model
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To get the corresponding discrete time models, we apply a constant control ai

within a time step ∆t = 0.04 s for each agent i. The physical control space A i for

each agent i is a polyhedron. As for the planning module for each agent, we use

a simple PD controller that drives the corresponding agent to a goal position with

zero velocity. The dangerous set Õ i,j for each pair of agents i and j is a polyhedron

externally tangent to the collision set O i,j.

2.6.2 Simulation Results

We first test our approach in simple scenarios consisted of heterogeneous linear

systems. As shown in Fig 2.6, we compare the proposed approach with ORCA in a

simulation where one single integrator and one double integrator swap their positions.

To apply ORCA algorithm to the double integrator, we approximate it by a single

integrator and introduce a PD controller to track velocities from ORCA. Though

this simulation is relatively simple, the planning modules are designed to drive two

agents heading toward each other, and deadlock could easily occur. As illustrated in

Fig 2.6a, the proposed approach avoids collision successfully, and both agents reach

their goal positions. On the contrary, as shown in Fig 2.6b, deadlock occurs when

ORCA is applied. Though there is no collision, the double integrator pushes the

single integrator away from its goal position.

Then we demonstrate our approach with more complex tasks. As shown in 2.7, we

include a simulation that contains two single integrators and two double integrators.

The goal position of each agent is symmetric with the initial position about the origin.

The generated trajectories are smooth and collision-free, and all agents reach their

goal positions.
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(a) Trajectories generated by the proposed approach.

(b) Trajectories generated by the ORCA.

Figure 2.6: A simulation where one single integrator and one double integrator swap-
ping positions via the proposed approach. The single integrator is denoted by a solid
circle and the double integrator is denoted by a ring. Their goal positions are de-
noted by cross markers with the same colors as the agents themselves. The generated
trajectories are marked by dashed lines with corresponding colors.

We also test the proposed approach with more complex tasks that includes non-

linear dynamics: unicycle models and kinematic bicycle models. As shown in Fig.

2.8 and 2.9, the unicycles and bicycles are denoted by circles with black and white

arrows inside, respectively. The directions of arrows represent the initial headings
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Figure 2.7: A simulation that contains two single integrators and two double integra-
tors.

Figure 2.8: A simulation that contains four agents: a single integrator (solid circle),
a double integrator (ring), a unicycle (circle with black arrow), and a bicycle (circle
with white arrow).

of agents. The simulation illustrated by Fig. 2.8 includes four agents with different

dynamics, and the simulation illustrated by Fig. 2.9 contains eight agents with four

types of dynamics. The goal position of each agent is symmetric with respect to
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Figure 2.9: A simulation that contains eight agents with four types of dynamics.

the initial position about the origin. Though such symmetric settings could easily

lead to collisions and congestion, the proposed algorithm generates safe and smooth

trajectories that drive all agents to their goal positions.

Furthermore, we demonstrate our problem in a scenario that include an uncon-

trolled agent. As shown in Fig. 2.10, the black circle denotes an uncontrolled single
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Figure 2.10: A simulation that contains an uncontrolled agent. The black circle
represents an uncontrolled agent that moves toward its goal position directly.

integrator that moves toward its goal position directly. Each other agent need to

interact with the uncontrolled one to avoid collisions. It is clear from the figure that

all other agents bypass the uncontrolled one without collisions and reach their goals

successfully with smooth trajectories.

2.7 Conclusions

This chapter studies the decentralized collision avoidance algorithm for heteroge-

neous systems. We propose a decentralized multi-agent collision avoidance algorithm

for heterogeneous systems. The algorithm is based on the concept of the extended

control obstacles (ECO), which is defined as a set of constant joint control that could
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cause collisions for a two agents system. The introduction of ECO provides pairwise

linear control constraints that guarantee safety strictly for heterogeneous linear sys-

tems, which are state-dependent. The collision avoidance problem for each agent is

formulated as a convex optimization. The linear constraints can be easily obtained via

one convex optimization or a series of convex optimization. The proposed approach

can be easily extended and handle realistic scenarios that include nonlinear agents,

uncontrolled agents, and obstacles. The performance of the proposed approach is

demonstrated with realistic simulations.
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Chapter 3: Multi-agent Collision Avoidance for General

Nonlinear Agents via Reinforcement Learning

3.1 Introduction

In this chapter, we study the decentralized multi-agent collision avoidance for

general nonlinear systems. One promising direction is to apply RL algorithms for

collision avoidance, since many popular model-free RL algorithms have been devel-

oped [40, 41, 42, 43]. But there are several challenges to apply RL for decentralized

multi-agent collision avoidance. First, the environment is non-stationary for a de-

centralized problem. Since other agents are considered as part of the environment

and their control policy would evolve in the process of training, the environment is

changing from the perspective of each single agent. Thus, such RL-based collision

avoidance algorithms are hard to converge in the training process. Most existing

RL-based algorithms are restricted to discrete action spaces, and they assume the

velocities of each agent can be directly controlled. Second, the number of agents

involved in the planning period may be dynamically changing, which makes it hard

to represent the state for RL algorithms. Third, no safety guarantee is provided by

RL-based approaches. They only consider safety via the design of reward functions,

and there is no theoretic safety guarantee for collision avoidance.
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To address the aforementioned issues, we propose a fast multi-agent collision avoid-

ance algorithm for general nonlinear agents with continuous action space. We consider

realistic scenarios where each agent observes only the positions and velocities of nearby

agents. We first decompose the multi-agent scenario and solve a two agents collision

avoidance problem using reinforcement learning (RL). Since there are only one other

agent from the perspective of each agent in the training process, the evolvement of

environments is much slower. Thus the RL algorithm can converge in a faster way,

and can be applied to more complicated dynamics. Since there is just two agents in

the training process, the varying number of agents is no longer an issue. When ex-

tending the trained policy to a multi-agent problem, safety is ensured by introducing

linear constraints from the optimal reciprocal collision avoidance (ORCA). The over-

all collision avoidance action could be found through a simple convex optimization

with state-dependent control constraints in real-time. Realistic simulations based on

nonlinear bicycle agent models are performed with various challenging scenarios, in-

dicating a competitive performance of the proposed method in avoiding collisions,

congestion and deadlock with smooth trajectories. The main contributions of this

work are summarized below:

• General Nonlinear Agents: Unlike other RL-based approaches that assume

velocities of agents could be directly controlled, or other reciprocal collision

avoidance algorithms that need specific models and feedback controllers, our

approach works for general nonlinear systems with continuous action space.

• Improved Safety: Different from other RL-based approaches which only con-

sider safety in reward function design, our approach incorporates safety bounds
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systematically by introducing linear constraints obtained from ORCA. In Sec-

tion 3.4.3, we demonstrate the safety of our algorithm with complex and chal-

lenging tasks.

• Lightweight Structure: Through decomposing the problem into a two agents

collision avoidance problem, we significantly simplify the RL training task. The

learning process of our approach is much faster and the neural network is much

smaller when compared with other RL-based approaches.

3.2 Problem Formulation

We consider a discrete time heterogeneous multi-agent system consisting of M

agents, indexed byM , {1, . . . ,M}. It is assumed that each agent could be approx-

imated as a disc or sphere with the same radius r. Each agent i ∈ M is modeled by

the following nonlinear dynamics

sit+1 = f(sit, a
i
t), (3.1a)

yit = h(sit). (3.1b)

Here sit ∈ S ⊆ Rn and ait ∈ A ⊆ Rm represent the state, control of agent i at time

t ≥ 0, where S and A represent convex constraints in state space and action space,

respectively. The output of the system is yit = (pit,v
i
t), which consists of the position

pit ∈ Rd and velocity vit ∈ Rd of agent i, where d = 2 or 3 typically. The function

f(·, ·) : S ×A → S is the state transition function and g(·) : S → R2d is the output

function. For example, if the state sit comprises the position pit and the velocity vit

and some other information, then another agent j 6= i observes only the output of

the agent i, i.e., the position and the velocity. Given M total agents, for agent i, it
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could observe output of all other agents at each time t:

y−it ,
(
y1
t ,y

2
t , . . . ,y

i−1
t ,yi+1

t , . . . ,yMt
)
.

It is assumed that each agent has a goal state s̃i, which is the state they would

like to reach. Each agent knows its own state and goal state, and can observe output

from other agents. All the information agent i has at time t could be represented as

observation oit which is defined as

oit ,
(
sit, s̃

i,y−it
)
.

Given the observation, we would like to compute a control policy π that maps the

observation oit to its action ait for all agents. We parameterize the policy using variable

θ ∈ Rn, that is

ait = π(oit, θ) ∈ A . (3.2)

Given the policy π(·, θ), each agent should reach their goal state in the shortest

time without collisions. Then the collision avoidance problem could be formulated as

a multi-agent sequential decision making problem, given by

min
θ

1

M

M∑
i=1

∞∑
t=0

γtR(oit) (3.3a)

s.t. sit+1 = f(sit, a
i
t) ∀i ∈M, ∀t ∈ N (3.3b)

(pit,v
i
t) = h(sit) (3.3c)

ait = π(oit, θ) ∈ A (3.3d)

‖pit − pjt‖ > 2r, ∀i, j ∈M, i 6= j, ∀t ∈ N (3.3e)

si0 = siinitial, ∀i ∈M, (3.3f)
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where R(·) is a scalar reward function, and γ ∈ (0, 1] is the discount factor. The

reward function R(·) awards the agent for approaching the goal state and penalizes

for collisions with other agents, it will be further explained in Section 3.3.1. Equa-

tion (3.3b) and (3.3c) are due to nonlinear dynamics. Equation (3.3d) means that

all agents should follow the same policy, since all agents share the same dynamics

and are equivalent in this multi-agent collision avoidance problem. Inequalities (3.3e)

encode collision avoidance conditions. Each agent i has a given initial state siinitial,

which is expressed as the equality constraint (3.3f).

It is rather challenging to directly solve (3.3) in a centralized way. The optimiza-

tion is highly non-convex due to nonlinear equality constraints (3.3b) and (3.3c), and

non-convex inequality constraints (3.3e). Besides, each agent only has partial infor-

mation of surrounding agents. Instead of solving (3.3) directly, we handle the problem

by first solving a two agents collision avoidance problem via RL, and then transfer the

multi-agent collision avoidance problem into a simple convex optimization problem

with state-dependent safety constraints from ORCA.

3.3 Approach

This section presents an algorithm to solve the multi-agent collision avoidance

problem (3.3) which combines RL and ORCA. To reduce online computation and

make the training fast, we first solve a two agents collision avoidance problem using

deep RL. Many existing RL-based collision avoidance algorithms assume that agents

can directly control their velocities and require discretization of the action space.

Thus, they are only applicable to simple dynamics and can lead to unnatural trajec-

tories. Different from those studies, we formulate RL with continuous action space
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for general nonlinear agents. Our RL-based approach is faster than other RL-based

algorithms with a lightweight policy neural network. Given the trained policy, we

apply it to multi-agent problems by combing pairwise actions introduced by differ-

ent nearby agents. To avoid collisions, ORCA is introduced and we selects action

by solving a simple convex optimization problem with linear safety constraints. The

framework of our algorithm is shown in Fig. 3.1.

Figure 3.1: The Algorithm Framework for RL-based Multi-agent Collision Avoidance
Algorithm

3.3.1 Two Agents Collision Avoidance via Reinforcement Learn-
ing

For general policy-based RL algorithm, the policy is usually represented as a neural

network, with the state as input and the action or parameters of the action as output.

For the two agents collision avoidance problem with agents i and j, both of them have

their observations. With slight abuse of notation, we denote the observations of agent
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i and j by oij,t and oji,t, i.e.

oij,t =
(
sit, s̃

i,yjt
)
,

oji,t =
(
sjt , s̃

j,yit
)
.

State space in standard RL is now the observation space. We use a deterministic

policy, where the input of the neural network is the observation and output is the

action, that is aij,t = π̄(oij,t, θ̄). Here we use π̄(·, ·) to denote the policy neural network

and θ̄ to denote parameters of the network. Since there are only two agents, the

input dimension of the neural network is relatively small and the training can be

done efficiently.

The objective for each agent is to achieve the goal state in the shortest time while

avoiding collision with each other. The reward function is designed as follows:

R(oij,t) = (rg)
i
t + (rp)

i
t + (rc)

i
t (3.4)

For agent i at time t, the reward function is designed as the sum of three terms. The

first term (rg)
i
t is designed to encourage the agent for reaching the goal state,

(rg)
i
t =

{
rarrival if

∥∥sit+1 − s̃i
∥∥

2
< darrival

0 otherwise
, (3.5)

where darrival represents a small, positive threshold to determine whether agent i has

reached the goal state s̃i, and rarrival is a positive reward. The second term (rp)
i
t is

designed to award the agent approaching the goal state.

(rp)
i
t = −

∥∥sit+1 − s̃i
∥∥

2

‖si0 − s̃i‖2

. (3.6)

As the agent gets closer to the goal state, the reward becomes larger. The last term

(rc)
i
t is designed to penalize collisions with other agents,

(rc)
i
t =

{
rcollision if

∥∥pit+1 − pjt+1

∥∥
2
< 2r, ∀j 6= i

0 otherwise
, (3.7)
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where rcollision is a negative penalty for collisions.

Since all agents are homogeneous and cooperative, it is natural to assume that

both agents follow the same policy. Therefore, when updating the neural network, the

difference of parameters dθ̄ comes from the observation, action and reward trajectories

of both agents. Though different from standard single-agent RL, this modification

can be applied to nearly any deep RL framework. In our simulation, we use Evolution

Strategy (ES) as our training method.

3.3.2 Multi-agent Collision Avoidance with Improved Safety

For the multi-agent collision avoidance problem, each agent has more than one

neighbor agent. Given the trained policy π̄(·, θ̄) from two agents collision avoidance

problem, each nearby agent j of agent i would introduce an action aij,t for collision

avoidance. Multiple actions are combined into one action. Then we introduce state-

dependent linear constraints from the ORCA and handle the multi-agent collision

avoidance problem by solving a simple convex optimization.

For one agent i, each neighbor agent j results in an action from the trained policy,

aij,t , π̄(oij,t, θ̄), j 6= i and i, j = 1, . . . ,M . Intuitively, the actions introduced by closer

neighbors and approaching neighbors are more important. Therefore, we combine all

actions with distance and velocity-based weights:

ai,combt =

∑M
j=1,j 6=i w

i
j,ta

i
j,t∑M

j=1,j 6=i w
i
j,t

, (3.8)

wi
j,t =

e−αd
i
j,t

dij,t
. (3.9)

Here wi
j,t represents the weight determined by the pseudo-distance dij,t, and α is a

scaling parameter. Our design of weight wi
j,t is inspired by the artificial potential
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function proposed by [33]. The weight wi
j,t becomes infinite when dij,t = 0. The

pseudo-distance dij,t is determined by the relative position of agent j to agent i and

velocity of agent j. If agent i is behind the neighbor agent j, dij,t is the Euclidean

distance, otherwise it is defined as adjusted distance that scaled along the velocity of

agent j:

dij,t =


∥∥pji,t∥∥2

if (pji,t)
Tvjt > 0√

‖pj
i,t×v

j
t‖22+‖γj,t·(pj

i,t)
Tvj

t‖22
‖vj

t‖22
if (pji,t)

Tvjt ≤ 0
, (3.10)

γj,t = e−β‖v
j
t‖2 . (3.11)

Here pji,t represents the relative position of agent j to i, and γj,t represents the scaling

factor that defined by parameter β and vjt , i.e. the velocity of agent j. Such a design of

weights makes agent i to give priority to agent j that is approaching, and the weight

increases as agent j speeds up. This weighted combination approach is consistent

with human intuition. As human drivers, we would pay more attention to cars in

the vicinity and approaching. Given the combined action ai,combt , it is possible that

the agent i could still collide with nearby agents in complex multi-agent scenarios.

To guarantee safety, we introduce the well-known ORCA constraints and address the

multi-agent collision avoidance problem by solving a simple convex optimization.

Before introducing the convex optimization, we briefly review some key concepts in

the optimal reciprocal collision avoidance (ORCA) algorithm. The ORCA algorithm

is a distributed collision avoidance algorithm for continuous time system with single

integrators dynamics. Similarly to our assumption, ORCA assumes that each agent

i could be approximated by a disc with different radius ri. Each agent takes action

independently by observing the velocities vjt , positions pjt and radius rj of other

agents. Since ORCA is designed for agents with continuous time domain, with a
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little abuse of notation, here we use vit and pit to represent velocity and position

of agent i at continuous time t. We first consider a two agents collision avoidance

problem with a continuous time horizon T . For two agents i and j at time t, ORCA

returns a pair of linear constraints for velocities of the two agents independently:

(aiorca,j)
Tvit+τ + biorca,j ≥ 0, τ ∈ [0, T ], (3.12a)

(ajorca,i)
Tvjt+τ + bjorca,i ≥ 0, τ ∈ [0, T ]. (3.12b)

Here aiorca,j, ajorca,i ∈ Rd and biorca,j, b
j
orca,i ∈ R are determined by the current positions

pit, pjt , velocities vit, vjt and radius ri, rj, which are known to both agents. If both

constraints are satisfied, there would be no collision between agents i and j within

time horizon T . When ORCA is extended to the multi-agent problem, there would

be multiple linear constraints for each agent i,

Aiorcav
i
t+τ + biorca ≥ 0, τ ∈ [0, T ], (3.13)

where Aiorca ∈ RK×d and biorca ∈ RK , K is the number of nearby agents to be

considered. Note that K might be smaller than M − 1, which means we do not need

to consider all moving agents for collision avoidance of agent i. Given the maximal

speed vi,max of each agent i ∈ M, if the distance between agent i and j is greater

than (vi,max + vj,max)T , they would not collide within time horizon T . With properly

selected K, inequality (3.13) provides a safety guarantee of each agent i in velocity

space.

To avoid collisions for general nonlinear agents, we introduce the ORCA con-

straints (3.13) and transform them from velocity space to action space. Different from

ORCA, our approach is designed for discrete time systems. We first adapt (3.13) for

discrete time systems by letting T , N4t and use t to denote discrete time. Here N
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is a positive integer representing discrete time horizon, and 4t is the discretization

time step. The ORCA constraints could be written as

Aiorcav
i
t+d + biorca ≥ 0, d = 1, . . . , N. (3.14)

In practice, we update collision avoidance action ait at each time step t, thus it suffices

to consider the constraints (3.14) for only one step, leading to

Aiorcav
i
t+1 + biorca ≥ 0. (3.15)

Here Aiorca and biorca is determined by positions, velocities (and shared radius r) of

agent i and its closest K neighbor agents at time t. Safety is guaranteed if (3.15)

holds at each time step. To control the agent i for collision avoidance, we need to

convert the velocity constraints to state-dependent action constraints. We assume

the relationship between the current action ait and the velocity at next time step

vit+1 is linear or could be approximated by a linear mapping. For a general nonlinear

system, we could linearize the system around the current state and last action. This

relationship is approximated by

vit+1 ≈ Aiva
i
t + biv. (3.16)

By combing (3.15) and (3.16), we could obtain a safety constraints for the action ait,

Aiorca(A
i
va

i
t + biv) + biorca ≥ 0. (3.17)

If inequality (3.17) holds at each time step and the relationship between action ait

and the velocity vit+1 is exactly linear, it is strictly guaranteed that the agent i would

never collide with any other agents [5]. Rigorously speaking, the linearization for

nonlinear system can introduce small errors. However, in practice this can be worked

around by slightly enlarging the radius r in our approach.
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The combined action from RL (3.8) provides preferred action that would drive the

agent to reach the goal state, and the state-dependent constraints from (3.17) provides

safety constraints for the agent. To reach the goal while avoiding collisions, agent i

selects the action that is the closest to ai,combt while satisfying safety constraints (3.17)

and physical constraints:

ait = arg min
a∈Rm

∥∥∥a− ai,combt

∥∥∥2

2
(3.18a)

s.t. Aiorca(A
i
va + biv) + biorca ≥ 0 (3.18b)

a ∈ A . (3.18c)

Here (3.18a) is a quadratic cost function, (3.18b) are linear safety constraints from

ORCA, and (3.18c) is the convex physical constraints. The optimization prob-

lem (3.18) is a simple convex optimization and can be solved efficiently.

To sum up, given the trained policy π̄(·, θ̄) from the two agents collision avoid-

ance problem, we propose a decentralized multi-agent collision avoidance algorithm

by solving a simple convex optimization with state-dependent safety constraints from

ORCA. If the relationship between action and velocity is linear, the safety constraints

provide a strict safety guarantee. The overall algorithm is summarized in Algorithm 4.

In the next section, we demonstrate our algorithm via different challenging simula-

tions.

3.4 Simulations and Results

We illustrate the performance of our proposed method through several multi-agent

interactive scenarios.
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Algorithm 4 Reciprocal Collision Avoidance for General Nonlinear Agents using
Reinforcement Learning

1: Input: The trained policy π̄(·, θ̄) from the two agents collision avoidance problem,
the initial state siinitial, and the goal state of each agent s̃i, i = 1, . . . ,M

2: Initialization: si0 ← siinitial, t← 0
3: while not all agents reach goal states do
4: for i = 1, . . . ,M do
5: for j = 1, . . . ,M and j 6= i do
6: aij,t ← π̄(oij,t, θ̄)
7: end for
8: Combine actions, ai,combt via (3.8)
9: Select action ait by solving optimization (3.18)
10: Apply ait to agent i
11: end for
12: t← t+ 1
13: end while

3.4.1 Simulation Setup

Throughout this section, we adopt the nonlinear kinematic bicycle model [65]

operating in a two-dimensional Euclidean space. The state transition function is

given as (2.21).

Unlike other RL-based approaches [19, 10, 20, 66, 23] that assume that velocity

of each agent could be directly controlled, our approach is directly applicable to the

above nonlinear model with acceleration a and steering angle δf as control. As far

as we know, this is the first RL-based multi-agent collision avoidance algorithm that

directly works for kinematic bicycle model. As for ORCA-based approach, [18] is

designed for bicycle model by fixing a tracking controller and transferring the control

to velocity space. But like many other ORCA-based approaches, it requires a high-

level planning module to provide preferred velocity, which would greatly influence the

performance.
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To reduce redundancy and simplify training, we use a local coordinate for each

agent with x axis pointing towards the inertial heading of the vehicle in simulation.

The observation of agent i at time t is represented by concatenating the goal position,

velocity of agent i, positions and velocities of nearby agents in the local coordinate.

The dynamics (2.21) is discretized in time and all simulations operate with discretiza-

tion time step of 0.05 s (20 Hz).

3.4.2 Policy Training with RL

The policy for two-agent collision avoidance is trained following the described pro-

cedure in Section 3.3.1. We use a two-layer neural network with 16 neurons at each

layer. The network takes the observation of size 8 and predicts the control action of

size 2. Compared with other RL-based approaches [23, 24, 19, 10, 20, 44], this is a

significantly lightweight design of network architecture with a total of only 450 train-

ing parameters. On an eight-core i7-7700K CPU 4.20GHz machine, the empirically

optimal policy is obtained within 20 minutes of wall-clock time training. The policy

is then combined with the ORCA constraints to handle multi-agent interactions. It is

worth noting that all simulation results in 3.4.3 comes from the same trained policy.

3.4.3 Simulation Results

As shown in Fig. 3.2, we first test the proposed method in simple scenarios with up

to eight agents. The trajectory of each agent is represented by circles with the same

color, and the color gradually fades as the agent moves. The goal position of each

agent is symmetric with the initial position about the origin. It is worth emphasizing

that the three-agent interactive scene is inspired by a well-know deadlock scenario

of the classic ORCA method [67]. The symmetric setup of scenarios with four and
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Figure 3.2: Trajectories of three, four and eight agents

eight agents are also easy to result in conflicts of actions. Despite the difficulty,

our proposed approach successfully generates a set of smooth trajectories reaching

the target position for all the three scenarios without encountering any collision,

congestion or deadlock.

Figure 3.3: Trajectories of 42 agents. The left figure: the initial position of each
agent, different agents are marked by dots with different color. The middle figure:
the trajectory in the middle of the process. The right figure: complete trajectories.
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We now demonstrate our approach with a more complex task. As shown in

Fig. 3.3, we have 42 agents evenly distributed on a circle, with initial velocities point-

ing to the adjacent neighbor of each agent clockwise. The goal position of each

agent is symmetric with the initial position about the origin. Trajectories of different

agents are marked by different colors. It is clear from the figure that a set of safe

and smooth trajectories are generated with each agent first turning right to have the

heading more aligned with the target position, then passing the origin from the left

side with ORCA-constrained actions for collision avoidance.

Figure 3.4: Trajectories of 20 agents. The left figure: the initial position of each agent
is denoted by solid circle with different colors. The middle figure: the trajectory in
the middle of the process. The right figure: complete trajectories.

The next example is to demonstrate the capability of the proposed method in

a customized task that requires more sophisticated interactions with surrounding

agents. As shown in Fig. 3.4, initial positions are marked in the left figure as dots

with different colors. We have 20 agents that are evenly distributed on two co-centric

circles. For agents located on the large circle, the goal positions are located on the

small circle that aligns with the start position through the center, and vice versa.
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Such a task is more difficult than previous ones. In order to reach the goal position,

each agent is expected to have conflicts with agents initialized from both circles.

However, as shown in Fig. 3.4, trajectories generated by our approach is smooth and

safe.

Furthermore, recall the discussion in Section 3.3.2 where the combination of ac-

tions from trained policy could also drive the controlled agent to the unsafe state.

From Fig. 3.5, we select one agent and further illustrates how the ORCA constraints

alter the selected actions to enhance safety. As shown in Fig. (3.5a), when t = 6.95

s, the combined action of agent 1 would drive the agent forward to its left. However,

this would cause a collision with the agent (marked by dark blue) to its front left. To

avoid collision, the ORCA constraints revise the agent to a right turn with deceler-

ation. We can observe an obvious twist to the right from the position trajectory in

the left figure of Fig.(3.5b), which is marked by a black arrow. The example clearly

indicates the importance of having ORCA constraints in the proposed approach to

avoid collisions.

3.5 Conclusions

In this chapter, we propose a decentralized collision avoidance algorithm for gen-

eral nonlinear systems by combing the RL and ORCA. The proposed method consists

of two stages: first train a two-agent collision avoidance policy using RL; then com-

pute the overall multi-agent collision avoidance action by properly combining multi-

ple avoidance actions while respecting state-dependent safety constraints induced by

ORCA. Since the multi-agent collision avoidance problem is first decomposed into two

agents collision avoidance problems, the overall training process is much faster than
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(a) Positions, trajectory, actions when t = 6.95 s

(b) Positions, trajectory, actions when t = 7.45 s

Figure 3.5: Illustration of the importance of ORCA constraints through a 24 agents
example. The left column shows positions of all agents and trajectories of agent 1.
The right column shows combined actions and selected actions of agent 1.

other RL-based algorithms. The introduction of ORCA significantly improves sys-

tem safety. We demonstrate the proposed method through several collision avoidance

problems with kinematic bicycle agent models.
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Chapter 4: Fitted Value Iteration in Continuous Markov

Decision Processes with State-Dependent Action Sets

4.1 Introduction

In both Chapter 2 and 3, the collision avoidance requirement is incorporated as

state-dependent action constraints. In Chapter 3, RL algorithms are introduced to

solve a two agents collision avoidance problem. One natural extension of our previous

work is to apply RL algorithms to MDPs with state-dependent action constraints. In

this chapter, we study RL algorithms for MDPs with continuous state, continuous

action and state-dependent action constraints, and extends our work to monotone

MDPs.

Approximate dynamic programming (ADP) and Reinforcement Learning (RL)

algorithms have become powerful tools to solve MDPs with varying degree of ap-

proximations. Many RL algorithms [40, 68, 69, 70] have been developed for general

MDPs. In these “fitted” algorithms, the value functions are evaluated using certain

empirical means and function approximators are used to store the value functions

[60, 64, 71, 72, 61]. The proof of convergence of fitted algorithms follow from delicate

arguments under a variety of sufficient conditions. All of these algorithms can be
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viewed within the mathematical framework of iterated random operators over com-

plete separable metric spaces [73, 62, 74, 75]. Recently, the notion of probabilistic

fixed point of iterated random operators was introduced in [76] in the context of

empirical value iteration of finite MDPs. This was later extended to very general

settings in [62]. Besides, by exploiting some structural information about the MDP,

one can accelerate the convergence of ADP algorithms, as has been shown in [77, 78].

In this chapter, we investigate one such ADP algorithm, called fitted value iteration

and fitted Q-value iteration.

In this chapter, we leverage the main result of [62] to show that the fitted value

iteration and fitted Q-value iteration converges under fairly general conditions on the

MDPs with a universal function approximating class [79]. We further consider the

case where the optimal value function is monotone, which is a common class of MDPs

naturally arising in many fields such as economics, finance, and operations research,

among many others; see, for example, [80, Chapter 4.7], [81, Chapter 18], [77, 82],

and the references therein.

Our work is inspired by the Monotone-ADP algorithm for finite MDPs in [77],

where the authors proposed a monotone projection operator that preserves the mono-

tonicity of the value function. We extend their framework to continuous-state continuous-

action MDPs here. The key idea is to use monotone neural networks [83] to approxi-

mate the value functions at every step of the algorithm. The convergence of this new

algorithm follows immediately from our main result.

This work significantly generalizes some of the earlier work in a non-trivial manner

by leveraging the main result of [62]. The key contributions are:
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• State-Dependent Action Constraints: In most fitted value iteration prob-

lems [60, 61, 62, 63], the authors assume that all actions can be taken at all

states. This is incorrect in many resource constrained problems – for instance,

one cannot draw more energy from a battery than the state-of-charge of the

battery. Thus, we consider in this work that the admissible action set at every

state depends on that state.

• Lipschitz Continuity: Due to the admissible action set being state-dependent,

establishing the Lipschitz continuity of value function is non-trivial. We use [84]

to identify sufficient conditions under which the value function is Lipschitz.

• Relaxed Assumptions of MDPs: In [60, 63, 64], the authors make certain

absolute continuity assumptions on the transition kernel of the MDPs. We

believe that this is a strong assumption, since it rules out any deterministic

transitions in the MDPs. We relax this restriction under the mild assumption

of having a universal function approximating class (that is, this class is dense

in the space of continuous and bounded functions under supremum norm).

• Monotone MDPs: As a byproduct of the main result, we extend the conver-

gence result to a sufficiently general class of monotone MDPs.

4.2 Problem Formulation

Let (Ω,F ,P) be a standard probability space. We consider an infinite horizon

MDP with the state transition function

St+1 = f(St, At,Wt) t = 0, 1, . . . , (4.1)
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where St ∈ S ⊆ Rd, At ∈ Γ(St) ⊆ A ⊆ Rp and Wt ∈ W ⊆ Rl represents the state,

action, and exogenous noise at time t, respectively. It is assumed that {Wt}∞t=0 are

independent and identically distributed. Here Γ : S → 2A is a correspondence that

represents state-dependent action constraints, where 2A stands for the power set of

A . Let D , {(s, a) ∈ S ×A |a ∈ Γ(s)} be defined as the joint space of state and

action, and let c(·, ·) : D → R denote the one-stage cost function. We assume that

D ⊂ S ×A is a compact set.

A feasible policy π is defined as a measurable function π : S → A such that

π(s) ∈ Γ(s) for all s ∈ S . We use Π to denote the set of all feasible policies. Given a

discount factor γ ∈ (0, 1), our goal is to minimize the expectation of the discounted

accumulated cost by solving the following optimization:

v∗(s) = inf
π∈Π

E

[
∞∑
t=0

γtc(St, π(St))

∣∣∣∣∣S0 = s

]
, (4.2)

for all s ∈ S , and v∗ is called the optimal value function. It is equivalent to solve

the following optimization:

q∗(s, a) = inf
π∈Π

E
[
c(S0, A0) +

∞∑
t=1

γtc(St, π(St))

∣∣∣∣S0 = s, A0 = a

]
, (4.3)

for all (s, a) ∈ D , and q∗ is called the optimal Q function.

Under mild conditions [85], the optimal value function v∗ and the optimal Q

function q∗ can be obtained by iteratively applying the Bellman operators Hv and

Hq, respectively, which are defined as

[Hv(v)](s) , inf
a∈Γ(s)

[
c(s, a) + γE [v(f(s, a,W )]

]
,

[Hq(q)](s, a) , c(s, a) + γE
[

inf
a′∈Γ(f(s,a,W ))

q(f(s, a,W ), a′)

]
,
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where W has the same distribution as Wt. The iterative processes

vk+1 = Hv(vk),

qk+1 = Hq(qk)

are called the value iteration and Q-value iteration algorithm, respectively. Here k is

the index of iteration.

4.2.1 Empirical Bellman Operators

In high dimensional settings, computing the expectations in Bellman operators Hv

and Hq is computationally challenging. Thus, one often approximates the Bellman

operators by empirical Bellman operators Ĥk,n
v : Cb(S )→ Cb(S ) and Ĥk,n

q : Cb(D)→

Cb(D), respectively. Here n denotes the number of noise samples per iteration. Let

{Wk,i}ni=1 be independent samples of the noise at the iteration k. The empirical

Bellman operators Ĥk,n
v and Ĥk,n

q are defined as

[Ĥk,n
v (v)](s) , inf

a∈Γ(s)

[
c(s, a) + γ

1

n

n∑
i=1

v(f(s, a,Wk,i))
]
,

[Ĥk,n
q (q)](s, a) , c(s, a) + γ

1

n

n∑
i=1

inf
a′∈Γ(f(s,a,Wk,i))

q(f(s, a,Wk,i), a
′).

4.2.2 Fitted Value Iteration and Q-Value Iteration

For continuous state space S or action space A , function approximators are

necessary to store or represent the value functions or Q functions. Common function

approximating classes include non-parametric regression models [79], such as nearest

neighbor or kernel-based function approximators, and parametric regression models

[86], such as neural networks, support vector machines, or reproducing kernel Hilbert

spaces. In the aforementioned references, these function approximating classes have
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been shown to be universal, that is, these classes are dense in the space of continuous

and bounded functions under the supremum norm.

Let M̂k,m,l
v : Cb(S ) → Cb(S ) and M̂k,m,l

q : Cb(D) → Cb(D) denote the projection

operators, which take the output of empirical Bellman operators as input and outputs

a function in the chosen function approximating class. These operators are called

projection operators [60, 64, 63].

We construct the M̂k,m,l
v as follows: let Fl ⊆ Cb(S ) denote the function class of

the model, where l is the number of data points or parameters to define functions

in this function class; for example, l could be the number of parameters that define

a neural network. For a function v ∈ Cb(S ), the algorithm samples m uniformly

distributed states
{
sk,i
}m
i=1

. Then, the projection operator M̂k,m,l
v is defined as

M̂k,m,l
v (v) = arg min

f∈Fl

L
(
v, f
∣∣{sk,i}m

i=1

)
. (4.4)

Here, L
(
·, ·|
{
sk,i
}m
i=1

)
: Cb(S )×Fl → R is a loss function. One common example is

the mean squared error (MSE), which is defined as

L
(
v, f
∣∣{sk,i}m

i=1

)
=

1

m

m∑
i=1

(
v(sk,i)− f(sk,i)

)2
.

In a similar fashion, we can define the projection operator M̂k,m,l
q for projecting the

Q function by replacing the samples of states with samples of state-action pairs and

taking Fl to be a set of functions on D .

At each iteration k, we update the function approximator by combining the em-

pirical Bellman operators and projection operators, which are denoted by random

operators T̂ k,n,lv : Cb(S )→ Cb(S ) and T̂ k,n,lq : Cb(D)→ Cb(D) as follows

T̂ k,n,lv ,M̂k,n2(n),l
v ◦ Ĥk,n1(n)

v , (4.5)

T̂ k,n,lq ,M̂k,n2(n),l
q ◦ Ĥk,n1(n)

q , (4.6)
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where n2(n) an n1(n) are monotone functions of n. The fitted value iteration and

Q-value iteration algorithms are defined, respectively, as

v̂k+1,n,l = T̂ k,n,lv (v̂k,n,l), (4.7)

q̂k+1,n,l = T̂ k,n,lq (q̂k,n,l), (4.8)

where k ∈ N denotes the iteration index and v̂0,n,l or q̂0,n,l can be picked arbitrarily

in Cb(S ) or Cb(D). It is easy to observe that: (a) The operators T̂ k,n,lv and T̂ k,n,lq

are independent and identically distributed operators; (b) M̂k,m,l
v satisfies: for any

v1, v2 ∈ Cb(S ),∥∥∥M̂k,m,l(v1)− M̂k,m,l(v2)
∥∥∥
∞
≤
∥∥∥M̂k,m,l(v1)− v1

∥∥∥
∞

+ ‖v1 − v2‖∞

+
∥∥∥M̂k,m,l(v2)− v2

∥∥∥
∞
.

Assume that ∪∞l=1Fl is universal. Then, for any ζ > 0, there exists m0, l0 > 0 such

that ∥∥∥M̂k,m,l(v)− v
∥∥∥
∞
< ζ

for all l ≥ l0 and m ≥ m0 with high probability. Thus, we conclude that with high

probability, ∥∥∥M̂k,m,l(v1)− M̂k,m,l(v2)
∥∥∥
∞
≤ ‖v1 − v2‖∞ + 2ζ.

Thus, M̂k,m,l
v is a non-expansive operator with certain error for sufficiently large m, l

if ∪∞l=1Fl is universal.

4.3 Main Results

In this section, we present the convergence result for the proposed fitted value

iteration and fitted Q-value iteration algorithms in (4.8). We first identify some
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sufficient conditions on the MDP under which the optimal value function v∗ and the

optimal Q function q∗ are Lipschitz continuous. Then, we show that the proposed

algorithms converges to the optimal solution in an appropriate sense when some

reasonable conditions about the projection operators are met.

4.3.1 Lipschitz MDP

We first discuss the conditions about the MDP under which the optimal value

function and optimal Q function are Lipschitz. Given any metrics ρS and ρA for S

and A , respectively, we define a metric ρD over D as

ρD ((s, a), (s′, a′)) , ρS(s, s′) + ρA(a, a′).

For any two closed sets A1, A2 ⊆ A , we define the Hausdorff metric ρH as

ρH(A1,A2) , max

[
sup
a1∈A1

inf
a2∈A2

ρA(a1, a2), sup
a2∈A2

inf
a1∈A1

ρA(a1, a2)

]
.

We place the following assumptions on the MDP.

Assumption 2. The following holds:

(i) The state space S is compact, and the correspondence Γ : S → 2A is nonempty,

compact-valued, and there exists LD ≥ 0, such that for all s, s′ ∈ S , we have

ρH (Γ(s),Γ(s′)) ≤ LDρS(s, s′).

(ii) For every w ∈ W , the state transition function f(·, ·, w) is Lipschitz continuous

in (s, a) ∈ D with Lipschitz coefficient Lf (w) and LP ,
∫
Lf (w)P{dw} <∞.

(iii) The cost function c : D → R is Lipschitz continuous with Lipschitz coefficient

Lc.
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(iv) LD in i and LP in ii satisfies LP (1 + LD) < 1/γ .

Note that Assumption 2 (i) implies the correspondence Γ is Lipschitz under Ha-

susdorff metric ρH . With the above notations and assumption, we have the following

theorem for Lipschitz property.

Theorem 1. If Assumption 2 holds, then

(i) The Bellman operators Hv : Cb(S ) → Cb(S ) and Hq : Cb(D) → Cb(D) are

contraction operators with coefficient γ and fixed points v∗ and q∗, respectively.

(ii) v∗ and q∗ are Lipschitz continuous function with Lipschitz coefficient Lv∗ ≤
Lc(1+LD)

1−γLP (1+LD)
, Lq∗ ≤ Lc

1−γLP (1+LD)
, respectively.

The proof for Theorem 1 is given in Section 4.4.2. Note here that for the result of

Theorem 1 (i) to hold, the Lipschitz continuity of the correspondence Γ(·), transition

function f(·, ·, w) and cost function c(·, ·) can be replaced by a weaker assumption

that they are just continuous. The Lipschitz continuity established in Theorem 1 (ii)

is needed to establish the other main results in the sequel.

4.3.2 Fitted Value Iteration and Q-Value Iteration

In order to achieve the convergence result of the proposed algorithms, we also

need the following reasonable assumptions on the projection operators.

Assumption 3. The projection operator M̂k,m,l
v : Cb(S ) → Cb(S ) satisfies the fol-

lowings two conditions

(i) M̂k,m,l
v is non-expansive, i.e. for all v1, v2 ∈ Cb(S ), we have∥∥∥M̂k,m,l

v (v1)− M̂k,m,l
v (v2)

∥∥∥
∞
≤ ‖v1 − v2‖∞ + ζ̂k,m,l,
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where ζ̂k,m,l ≤ ζ̄ < ∞ almost surely and ζ̂k,m,l → 0 as m, l → ∞. ζ̄ > 0 is a

constant number.

(ii) For any ε > 0 and δ > 0, there exists M1 that may depends on v∗ such that

P
{∥∥∥M̂k,m,l

v (v∗)− v∗
∥∥∥
∞
> ε
}
< δ for all m ≥M1.

When the class of function approximators is dense in the space of optimal value

functions and Q functions, the above assumption can be easily satisfied. Then, we

have the following theorem where the convergence of the fitted value iteration algo-

rithm is established.

Theorem 2. If Assumptions 2 and 3 holds, then v∗ is a probabilistic fixed point of

T̂ k,n,lv , i.e. for any initial v0 ∈ Cb(S ) and κ > 0, we have

lim sup
l→∞

lim sup
n→∞

lim sup
k→∞

P
{∥∥v̂k,n,l − v∗∥∥∞ > κ

}
= 0.

where v̂0,n,l = v0 and v̂k+1,n,l = T̂ k,n,lv (v̂k,n,l) for k ≥ 0.

Similarly, for the Q function and projection operator M̂k,m,l
q , we have the following

assumption and theorem.

Assumption 4. The projection operator M̂k,m,l
q : Cb(D) → Cb(D) satisfies the fol-

lowings two conditions

(i) M̂k,m,l
q is non-expansive, i.e. for all q1, q2 ∈ Cb(D), we have

∥∥∥M̂k,m,l
q (q1)− M̂k,m,l

q (q2)
∥∥∥
∞
≤ ‖q1 − q2‖∞ + ζ̂k,m,l,

where ζ̂k,m,l ≤ ζ̄ <∞ almost surely and ζ̂k,m,l → 0 as m, l→∞.
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(ii) For any ε > 0 and δ > 0, there exists M2 that may depends on q∗ such that

P
{∥∥∥M̂k,m,l

q (q∗)− q∗
∥∥∥
∞
> ε
}
< δ for all m ≥M2.

Theorem 3. If Assumptions 2 and 4 holds, then q∗ is a probabilistic fixed point of

T̂ k,n,lq , i.e. for every initial q0 ∈ Cb(D) and κ > 0, we have

lim sup
l→∞

lim sup
n→∞

lim sup
k→∞

P
{∥∥q̂k,n,l − q∗∥∥∞ > κ

}
= 0,

where q̂0,n,l = q0 and q̂k+1,n,l = T̂ k,n,lq (q̂k,n,l) for k ≥ 0.

4.4 Proofs of the Main Results

In this section, the main results of our chapter are proved. We first briefly recall

some established results on the iterated random operators. Then, we establish a

lemma for the empirical Bellman operator. Finally, we present the complete proofs

of the main results.

4.4.1 Probabilistic Contraction Analysis of Iterated Random
Operators

In [76], the authors considered problem of convergence of iterated random opera-

tors over Euclidean spaces with supremum norm, and derived some sufficient condi-

tions so that the generated Markov chain converges to a certain point in probability.

This framework was generalized to iterated random operators over complete metric

spaces in [62], which we discuss next.

Assume that T : X → X is a contraction operator defined over a complete metric

space X with a unique fixed point x∗. The metric space is endowed by metric ρX .

In practice, T is usually approximated by a sequence of random operators {T̂ k,n}∞k=1
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to reduce the computation complexity. It is assumed that each T̂ k,n is generated by

n independent and identically distributed samples of one random variable. For all

x1, x2 ∈ X and n, k ∈ N, we assume that

ρX

(
T̂ k,n(x1), T̂ k,n(x2)

)
≤ γ̂k,nρX (x1, x2) + ζ̂k,n,

where γ̂k,n and ζ̂k,n are random variables taking values in the set [0, 1] and [0,∞),

respectively. Then we can generate a Markov chain
{
x̂k,n

}∞
k=1

by letting x̂k+1,n =

T̂ k,n(x̂k,n). The following result establishes the convergence in probability of x̂k,n to

the fixed point x∗ as k and n goes to infinity.

Assumption 5. The following holds:

(i) X is a complete metric space, and T is a contraction operator on X with a

contraction coefficient γ < 1 and unique fixed point x∗.

(ii) For each n ∈ N, {T̂ k,n}∞k=1 is a sequence of independent and identically dis-

tributed operators.

(iii) For any k ∈ N and δ ∈ (0, 1− γ),

lim
n→∞

P
{
γ̂k,n ≥ 1− δ

}
= 0

and γ̂k,n ≤ 1 almost surely for all n, k ∈ N.

(iv) For any k ∈ N and ε > 0,

lim
n→∞

P
{
ρX

(
T̂ k,n(x∗), T (x∗)

)
+ ζ̂k,n ≥ ε

}
= 0.

(v) There exists w̄ > 0 such that ρX

(
T̂ k,n(x∗), T (x∗)

)
+ ζ̂k,n ≤ w̄ almost surely for

all n, k ∈ N.
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We have the following result from [62, Theorem 1].

Theorem 4. If Assumption 5 holds, for all ε > 0, we have

lim
n→∞

lim sup
k→∞

P
{
ρ(x̂k,n, x∗) > ε

}
= 0.

For the problem in this chapter, Cb(S ) and Cb(D) corresponds to the metric space

X , T̂ k,n is replaced by T̂ k,n,lv and T̂ k,n,lq , and x∗ becomes v∗ and q∗. In what follows,

we prove that the random operators T̂ k,n,lv and T̂ k,n,lq defined in (4.5)-(4.6) satisfy

the Assumption 5. Thus, our empirical fitted value iteration and Q-value iteration

algorithms converges to the optimal value function or the optimal Q function of the

MDP by Theorem 4.

4.4.2 Proof of Theorem 1

Proof of (i): the proof for Hv being a contraction operators over Cb(S ) is given

in [87, Theorem 9.6 and Exercise 9.7 b]. Since Cb(S ) is a complete metric space, Hv

has a unique fixed point in Cb(S ). As shown by [85, Proposition 1.2.1], the unique

fixed point of Hv is v∗. The corresponding proof for q∗ is very similar to v∗, thus we

omit the proof here.

Proof of (ii): the conclusion for v∗ follows directly from [84, Theorem 4.1]. For q∗,

we can prove it based on the relationship between v∗ and q∗

q∗(s, a) = c(s, a) + γE [v∗(f(s, a,W ))] .

4.4.3 Proof of Theorem 2 and 3

Before proceeding to the proof of Theorem 2 and 3, we first provide the following

lemma for the empirical Bellman operators Ĥk,n
v and Ĥk,n

q .
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Lemma 1. If Assumption 2 holds, then

(i) The empirical Bellman operators Ĥk,n
v : Cb(S ) → Cb(S ) and Ĥk,n

q : Cb(D) →

Cb(D) are contraction operators with contraction coefficient γ.

(ii) For any ε > 0, we have the following holds:

lim
n→∞

P
{∥∥∥Ĥk,n

v (v∗)−Hv(v
∗)
∥∥∥
∞
≥ ε
}

= 0,

lim
n→∞

P
{∥∥∥Ĥk,n

q (q∗)−Hq(q
∗)
∥∥∥
∞
≥ ε
}

= 0.

Proof. See Appendix A.1.

Lemma 1, together with Assumption 3, implies Assumption 5 (i) - (iv) is satisfied.

To see that Assumption 5 (v) holds, note that ‖T̂ k,n,lv (v∗)− v∗‖∞ ≤ 2‖v∗‖∞+ ζ̄ <∞.

We now arrive at the conclusion using the result from Theorem 4, which completes

the proof for Theorem 2.

The proof of Theorem 3 is identical to the proof for Theorem 2, thus we omit it

here.

4.5 Extensions to Monotone MDP

In this section, we extend the proposed fitted value iteration algorithm to MDPs

with monotone optimal value functions. For this class, we discuss some neural net-

works based function approximators that are universal within the class of monotone

functions.

We use Θ(σ,K) to denote neural networks that consist of K hidden layers with

σ as the activation function, linear output layer with one neuron, and all weights are
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non-negative:

Θ(σ,K) =
{
θ : S → R

∣∣∣θ(s) = ZKσ(ZK−1σ(. . .

σ(Z0s+ z0) . . .) + zK−1) + zK , 0 � Zk ∈ Rnk+1×nk ,

zk ∈ Rnk+1 , for k = 1, . . . , K, nK+1 = 1
}
,

where 0 � Zk implies that every element of the matrix Zk is non-negative. By prop-

erly selecting the activation function σ, we enforce the non-negative neural network

to be monotone.

Lemma 2. If σ is monotone, then every θ ∈ Θ(σ,K) is a monotone function of S .

Proof. Each θ ∈ Θ is a composition of linear functions and activation function σ.

Since all weights are non-negative, the linear functions are monotone and the result

follows.

We now focus on MDPs where the optimal value function v∗ or the optimal Q

function q∗(·, a) with fixed a ∈ A is monotone. A function v ∈ B(S ) is monotone

if s, s′ ∈ S and s � s′ =⇒ v(s) ≤ v(s′). Here we use � to denote the usual

componentwise inequality relationship over the state space S .

We next identify some sufficient conditions under which v∗ and q∗(·, a) are mono-

tone functions.

Assumption 6. The following holds

(i) The correspondence Γ is monotone in the sense that for all s, s′ ∈ S such that

s � s′, we have Γ(s) ⊆ Γ(s′).

(ii) For each a ∈ A , the cost function c(·, a) is monotone, i.e. for all s, s′ ∈ S

such that s � s′, a ∈ Γ(s) and a ∈ Γ(s′), we have c(s, a) ≤ c(s′, a).
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(iii) For each a ∈ A and w ∈ W , the transition function f(·, a, w) is monotone,

i.e., for all s, s′ ∈ S satisfying s � s′, we have f(s, a, w) � f(s′, a, w) for all

a ∈ Γ(s), a ∈ Γ(s′) and w ∈ W .

Note here we assume the correspondence Γ, the cost function c, and the transition

function f are monotone with respect to state s. Then we have the following result.

Theorem 5. Under Assumption 2 and 6, the optimal value function v∗ is monotone,

and q∗(·, a) is monotone for each a ∈ A .

Proof. See Appendix A.2.

Having shown that the optimal value or the Q functions are monotone, we now

state a remarkable result from [83, Theorem 3.1] that identifies conditions when a

class of neural networks is dense in the set of monotone functions.

Theorem 6. For every continuous monotone function v : S ⊆ Rd → R with a

compact domain S , and for every ε > 0, if σ is sigmoid, there exists θ ∈ Θ(σ, d) such

that ‖θ − v‖∞ < ε.

It was empirically observed in [77] in the context of finite monotone MDP that

if the projection operator is designed in a way that the value functions retain mono-

tonicity throughout the simulation, then the convergence rate is superior. We can

provide an informal justification for the convergence property. Recall the definition

of the projection operator from (4.4). Let Fl be the set of neural networks with σ

as the activation function and l sufficiently large. Thus, Θ(σ, d) ⊂ Fl. Therefore, by

restricting the domain of the optimization in (4.4) to a smaller set, we automatically

regularize the projection operation. In the process, we do not lose the universal func-

tion approximation ability, as the optimal value function v∗ is close to some function
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in Θ(σ, d). This can improve the convergence rate of the fitted value iteration. We

will conduct a more rigorous analysis of the convergence rate in our future work.

4.6 Conclusions

In this chapter, we establish convergence of the fitted value iteration and Q-value

iteration algorithm for MDPs with state-dependent action sets. The key idea is to

formulate these algorithms as iterated random operators acting on certain complete

metric spaces. This allows us to derive the asymptotic consistency of the two ap-

proximate dynamic programming algorithms using the main result from [62]. Our

result significantly generalizes a similar result established in [60] in the context of

continuous-state finite-action MDP where all actions are admissible at every state.
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Chapter 5: Conclusions and Future Work

This dissertation studies multi-agent collision avoidance algorithms and RL algo-

rithms for MDPs with state-dependent action constraints. Two decentralized multi-

agent collision avoidance algorithms are proposed to handle different scenarios. The

first algorithm focuses on collision avoidance for heterogeneous multi-agent systems,

while the second one focuses on general nonlinear systems. The collision avoidance

constraints in both algorithms are formulated as state-dependent action constraints,

and RL algorithms are introduced in the second approach to handle collision avoid-

ance. Inspired by this, we study RL algorithms for continuous MDPs with state-

dependent action constraints. We establish the convergence of fitted value iteration

and fitted Q-value iteration, and extend the result to monotone MDPs.

In the first part of the dissertation, we propose a decentralized collision avoidance

algorithm for heterogeneous multi-agent systems based on the concept of the ECO.

The introduction of the ECO provides an efficient way to compute state-dependent

safety constraints for any pair of heterogeneous agents. Given an ECO, a pair of

linear safety constraints can be obtained via convex optimizations in real-time, which

provides a strict safety guarantee for linear systems. The overall collision avoidance

problem for each agent is formulated as a convex optimization that can be solved

efficiently. The proposed algorithm is a unified framework that can handle complex
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scenarios with nonlinear agents, uncontrolled agents, and obstacles. The performance

of this approach is demonstrated via realistic simulations. One potential future re-

search direction is to improve the persistent feasibility of the proposed algorithm. Like

most decentralized collision avoidance algorithms, our approach could be infeasible

in very dense scenarios. One promising direction is to combine our work with reach-

ability analysis and construct the dangerous set as a control-invariant set. Another

critical and practical future work is to apply our algorithms to real robots.

In the second part of the dissertation, a fast RL-based collision avoidance algo-

rithm is proposed for general nonlinear agents with continuous action space, where

each agent only observes positions and velocities of nearby agents. We first decom-

pose the multi-agent scenario and solve a two agents collision avoidance problem via

RL. Through the decomposition, we significantly simplify the RL training task. The

neural network is much smaller, and the training process is much faster compared

to other RL-based approaches. Unlike most RL-based approaches that rely on the

discretization of action spaces and assume velocities can be directly controlled, our

approach is applicable to general nonlinear agents. When extended to the multi-agent

problem, state-dependent action constraints from ORCA are introduced, and the col-

lision avoidance is formulated as a simple convex optimization. The state-dependent

action constraints provide improved safety performance compared to other RL-based

approaches. Realistic simulations based on nonlinear bicycle models are performed

with various challenging scenarios, indicating a competitive performance of the pro-

posed method in avoiding collisions, congestion, and deadlock with smooth trajecto-

ries. In the future, we would like to apply the proposed approach to systems with

more complex dynamics and validate our algorithm with real robots.
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In the third part of the dissertation, we focus on RL for continuous-state continuous-

action MDPs with state-dependent action constraints. This is inspired by our previ-

ous two works, which convert the collision avoidance requirement into state-dependent

action constraints. We establish the convergence of fitted value iteration and fitted

Q-value iteration algorithms. We also extend the algorithms and the convergence

result to the case of monotone MDPs. One potential future research direction is to

extend our work to monotone and convex MDPs. If we could identify a universal func-

tion approximating class specifically designed for monotone and convex MDPs, we

can easily migrate our algorithms and convergence results. Another important future

work is to validate the convergence of proposed algorithms and show an accelerated

convergence rate for monotone MDPs via simulations.
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Appendix A: Proofs

A.1 Proof of Lemma 1

The proof of part (i) is very similar to Theorem 1 (i), thus we omit it here. To

prove part (ii), we need to introduce some notations. Let gs,a(·) : W → R be defined

as gs,a(w) , v∗(f(s, a, w)) where (s, a) ∈ D . Let G be a collection of such functions

as G ,
⋃

(s,a)∈D gs,a(·). Note that we have

∥∥∥Ĥk,n
v (v∗)−Hv(v

∗)
∥∥∥
∞

= sup
s∈S

∣∣∣∣∣ inf
a∈Γ(s)

[
c(s, a) +

γ

n

n∑
i=1

v∗ (f(s, a,Wk,i))

]

− inf
a∈Γ(s)

[
c(s, a) + γ

∫
w∈W

v∗ (f(s, a, w))P {dw}
] ∣∣∣∣∣

≤γ sup
(s,a)∈D

∣∣∣∣∣ 1n
n∑
i=1

gs,a(Wk,i)−
∫
w∈W

gs,a(w)P {dw}

∣∣∣∣∣
=γ sup

g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Wk,i)−
∫
w∈W

g(w)P {dw}

∣∣∣∣∣ .
Then we have the following inequality for any ε > 0:

P
{∥∥∥Ĥk,n

v (v∗)−Hv(v
∗)
∥∥∥
∞
≥ ε
}
≤

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Wk,i)−
∫
w∈W

g(w)P {dw}

∣∣∣∣∣ ≥ ε

γ

}
. (A.1)
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To show the right side of (A.1) converges to 0 as n goes to infinity, we show that the

bracketing number of G is finite for each ε > 0. Since v∗(·) and f(·, ·, w) are Lipschitz

continuous function for every w ∈ W , for all (s1, a1), (s2, a2) ∈ D , we have

|gs1,a1(w)− gs2,a2(w)| ≤ Lv∗Lf (w)ρD ((s1, a1), (s2, a2)) .

According to [88, Theorem 2.7.11], the bracketing number of G is bounded by the

covering number of D . Since S is compact and Γ(·) is Lipschitz continuous, D is

bounded. Thus, the bracketing number of G is bounded for each ε > 0. Then by [88,

Theorem 2.4.1], we conclude that the right side of (A.1) converges to 0 as n goest to

infinity. For Ĥk,n
q , the proof is identical, so we omit it here.

A.2 Proof of Theorem 5

Let v0 ∈ Cb(S ) be a monotone function. Construct a sequence of function {vk}∞k=0

by letting vk+1 , Hv(vk). By Theorem 1, we have v∗ = limk→∞ vk.

Assume that vk ∈ Cb(S ) is monotone. Then, we have

vk+1(s) = [Hv(vk)](s)

= inf
a∈Γ(s)

[
c(s, a) + γE [vk(f(s, a,W )]

]
.

Since vk is monotone and f(s, a,W ) is monotone with respect to s, E [vk(f(s, a,W )] is

also monotone with respect to s, so is c(s, a) +γE [vk(f(s, a,W )]. For every s, s′ ∈ S

and s � s′, we have

c(s, a) + γE [vk(f(s, a,W )]

≤ c(s′, a) + γE [vk(f(s′, a,W )] .
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Recall by Assumption 6 that Γ(s) ⊆ Γ(s′). This yields

min
a∈Γ(s)

c(s, a) + γE [vk(f(s, a,W )]

≤ min
a∈Γ(s)

c(s′, a) + γE [vk(f(s′, a,W )]

≤ min
a∈Γ(s′)

c(s′, a) + γE [vk(f(s′, a,W )] .

This implies that vk+1 is monotone. This implies that if v0 ∈ Cb(S ) is monotone, v∗

is also monotone by the principle of mathematical induction. Since v∗ is monotone,

it is easy to establish that q∗(·, a) is also monotone.
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