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Abstract 

Air pollution is a great concern for public health, and it has been linked to impacts 

such as cardiovascular disease and premature death. Traditional air quality monitoring 

instruments are well-established for quantifying outdoor air pollution, but these 

instruments are expensive in terms of both capital and operation and maintenance costs. 

Conversely, low-cost air quality sensors have recently emerged in the market for air 

quality monitoring due to their inexpensive price and portability. Many researchers across 

government, academia, and industry have been working to evaluate these sensors in order 

to understand their performance. One major challenge is that the reliability (e.g., 

accuracy, robustness) and appropriate applications (e.g., exposure estimates, pattern 

detection) of these sensors are still uncertain. In this study, we explore the possibility of 

using low-cost gaseous sensors to characterize spatial patterns of air pollution in an urban 

area. We also evaluate factors influencing the performance of low-cost particle sensors 

within indoor environments.   

This thesis described the application of using low-cost gaseous sensors to 

characterize air pollution patterns in an urban area. Because regulatory air monitoring 

stations are sparsely distributed, they may be unable to detect spatial variability in air 

pollution. Consequently, we used low-cost sensors deployed on a transit bus to 

characterize this spatial variability on The Ohio State University campus. Carbon 
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monoxide, nitrogen dioxide, and ozone sensors were installed on bus and collected data 

over several days on different bus routes that follow a regular and repeated pattern. The 

repeated measurement from the sensors demonstrated a systematic underlying spatial 

pattern in these three air pollutants after accounting for temporal effects.  

To understand the detection of indoor particle emission events using low-cost 

particle sensors in indoor environments, we collocated the sensors with reference 

instruments in a real indoor environment for two and half months. During this time, we 

conducted 27 particle emission events of several different types (incense, candle, toast, 

spray, cooking, humidifier, and opening a window to introduce outdoor particles). All 

sensors demonstrated the ability to respond to different PM sources, although the 

magnitude of their responses varied. 

In laboratory experiments, we explored the concentrations between which low-

cost particle sensors can be expected to provide reliable data. We proposed definitions of 

upper and lower bounds of the functional range (i.e., the maximum and minimum particle 

concentrations bounding the range of reliable outputs) based on the relationship between 

a given sensor’s output and that of a reference instrument during controlled laboratory 

experiments. Our results show that the lower bound ranges from 3 to 15 µg/m3.  At 

greater concentrations, the sensors’ outputs begin to degrade between approximately 300 

– 3,000 µg/m3 (e.g., the detector appears to saturate). Therefore, some sensors will 

provide reliable information in most indoor environments (i.e., when operating within 

their functional ranges), but the use of these sensors in very clean indoor environments 

would be limited in effectiveness.  
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We evaluated how particle size and particle composition can affect the 

performance of low-cost particle sensors by conducting laboratory experiments with five 

different particle sources, including ammonium sulfate, propane-torch-generated soot, 

Arizona Test Dust, incense-generated particles, and burnt toast smoke. We attempted to 

separate the contribution of particle size and particle composition to the variance in the 

sensors’ outputs and found that particle size appears to have a more dominant effect than 

composition, although the interaction between size and composition appears to be more 

important than size or composition alone. 

Lastly, we investigated the impact of environmental conditions such as 

temperature and relative humidity on a particle sensors’ accuracy. In this study, we 

conducted a series of laboratory experiments in which temperature and relative humidity 

are varied in a precisely-controlled chamber within the range of values that might be 

expected for typical indoor environments. Using incense and burnt toast smoke as 

particle sources, we determined that temperature does not appear to have a significant 

effect on the magnitude of the sensors’ outputs, but relative humidity does, which 

suggests that the operation of these low-cost particle sensors likely requires a correction 

to account for this effect. 

In general, low-cost sensors have potential as an alternative approach for air 

quality monitoring under outdoor and indoor environments. Gaseous sensors have the 

potential to provide high spatial resolution data to identify air pollution spatial patterns in 

urban areas when deployed on mobile platforms. Particle sensors have the ability to 

detect different indoor emission events. However, the performance of particle sensors is 

impacted by multiple factors such as particle size, particle composition and 
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environmental factors. Therefore, additional work is needed to further understand these 

effects and to propose a proper calibration method that accounts for the influence of these 

variables.   
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Chapter 1. Introduction: An Overview of Air Quality Sensor Deployment 

1.1 Air quality and health  

 
Air pollutants are contaminants that can have harmful effect to human health and 

the environment. The United States Environmental Protection Agency (EPA) has set 

National Ambient Air Quality Standards (NAAQS) for six criteria air pollutants 

including carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide 

(SO2), lead, and particulate matter (PM) (Kolb, 2018). In this study we mainly focus on 

CO, NO2, O3 and PM. Unlike CO, NO2, and O3, which are gases, “PM is a complex 

mixture of many chemicals composed of extremely small solid particles and liquid 

droplets” (EPA,2019). There are two categories of PM, which are based on size, from a 

regulatory perspective. Particles with a diameter from 2.5 to 10 micrometers are 

considered as “coarse” particles and designated as PM10. These particles are released 

from anthropogenic and natural sources. Particles with less than 2.5 micrometers in 

diameter are considered as “fine” particles and designated as PM2.5. PM2.5 likely to be 

generated from combustion or atmospheric chemistry process (Kim et al., 2015). 

Air pollution is responsible for premature deaths, with an estimated 4 million 

premature deaths globally related to air pollution on an annual basis, including 

respiratory infections, heart disease and cancer among others (WHO, 2019). For example,  

exposure to high level NO2 and O3 may have a negative impact on the respiratory system, 
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leading to serious lung diseases after long-term exposure (Atkinson et al., 2018; Beckett, 

1991). The impact of PM is related to its size, which affects where it can deposit within 

the respiratory system. PM10 will likely deposit in the nose and throat and may lead to 

respiratory diseases (Kim et al., 2015). PM2.5 is able to penetrate deeper into the lungs, 

from which it may be absorbed into the blood stream, and consequently, lead to 

cardiovascular disease or lung cancer (Xing et al., 2016). Because of these adverse health 

impacts, air pollution monitoring is necessary and critical to assess human exposure and 

prevent exposure to high concentrations of air pollutant. 

In this study, we mainly focus on two locations that may pose higher health risk: 

near-road outdoor environments and indoor environments. Combustion processes are a 

major source of outdoor air pollution, e.g., from motor vehicles; from power plants and 

industry; and from forest fires. For example, CO, NO2 and O3 are generated directly or 

indirectly from traffic (Miller et al., 2020). Indoor air pollutants can also be generated 

from combustion sources (e.g., cooking, tobacco use, fireplaces), but some household 

products release gases that can form PM into the indoor environment (Singer et al., 

2006). 

1.2 Traditional approaches to air quality monitoring  

Air quality monitoring has been traditionally conducted by regulatory 

organizations. In the United States, this is overseen by federal and state EPAs, which 

mostly focuses on urban environments where there are high populations and/or large 

number of pollution sources. EPA monitoring instruments follow federal reference 

method (FRM) and federal equivalent method (FEM) requirements, and they represent 

“gold standards” for exposure assessment, air quality management, and policy 
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development (Munir et al., 2019). These instruments are deployed as networks 

throughout each state. For example, as shown in Figure 1.1, there are numerous 

monitoring stations in Ohio providing information on ambient O3 (as an “air quality 

index”). The distribution of the monitoring stations is relatively sparse, even within areas 

having a greater density of monitoring sites. For example, in Columbus Ohio, there are 

only two stations that monitor both O3 and PM concentration. The collected air quality 

data from outdoor monitoring stations are provided through online databases for the 

public to access. For example, O3 hourly AQI data are provided on the Ohio EPA’s 

website  (http://wwwapp.epa.ohio.gov/gis/mapportal/), and 24h PM data are provided 

through the Air Quality System database (https://www.epa.gov/outdoor-air-quality-data).   

 

  

 

Figure 1.1: Air quality map from Ohio EPA website shows the Ozone AQI in Ohio 
(http://wwwapp.epa.ohio.gov/gis/mapportal/) 
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As a result, this traditional monitoring provides accurate data, but it is insufficient 

to capture spatial differences that may exist between monitoring sites; for example, urban 

environments represent a complex array of pollution sources that may mix unequally due 

to differences in land use. In addition, if people are interested in exposure to air pollution 

within micro-environments in an urban area (e.g., the OSU Campus located within 

Columbus, Ohio), there is no empirical air quality information because there are no 

monitoring stations in this location. Similarly, traditional air quality monitoring provides 

data using either 1 h or 24 h time resolution; therefore it may fail to capture the rapid 

changes in air quality that may occur over shorter timescales. Moreover, these 

instruments are expensive in terms of both capital and operation/maintenance costs. One 

additional limitation is that these traditional monitors represent outdoor air, meaning that 

there is no direct method for estimating for indoor air pollution exposure, where people 

spend 90% of their time (Klepeis et al., 2001). Therefore, additional monitoring 

approaches are necessary in order to provide more complete exposure assessments for air 

pollution in both the outdoor and the indoor environment.  

1.3 Low-cost air quality sensors as an alternative  

 
Low-cost air quality sensors have been recently emerging in the market and can 

potentially provide information that can supplement traditional air quality monitoring due 

to their inexpensive price and portability (A. Lewis & Edwards, 2016). Advanced 

computer algorithms and wireless communication technology enable air quality sensors 

to become user-friendly in terms of usage and data visualization. The use of these sensors 

can enhance the spatial and temporal resolution on monitoring pollutants, which makes it 
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possible to assess the changes in air pollution over smaller spatial scales with higher 

temporal resolution.  

 

The US EPA defines two classes of low-cost sensors  (Morawska et al., 2018). 

The first is a “measuring component”, which always requires an additional data 

processing system (configured by the end-user) to make the raw signal usable. The 

second class is a “low-cost monitor”, which are pre-packaged systems available from 

manufacturers and are comprised of at least one measuring component and supporting 

components including data processing, a power source, and occasionally, a data display. 

To be considered as “low-cost”, the cost of a measuring component must be less than 100 

US dollars, and the cost of a low-cost monitor must be less than 1000 US dollars 

(Williams, Kilaru, et al., 2014). In this study, we use “bare sensor” in reference to 

“measuring component”, and use “integrated device” in reference to “low-cost monitor”.  

Because of their affordable price, low-cost sensors have become popular to 

measure personal exposure to air pollutants in both outdoor and indoor environments. For 

example, real time hourly air quality data (CO, SO2 and NO2) measured by low-cost 

sensors deployed on buses can be easily visualized through websites and even accessed 

from a smartphone (Varela et al., 2009). PM sensors have been used to assess personal 

exposure as individuals go about their daily routines (Steinle et al., 2013). Low-cost 

particle sensors have been used to create a network of PM data worldwide 

(https://www.purpleair.com/map), and these data have been used by numerous end-users 

to analyze air quality trends. Low-cost sensors can also be utilized in pollution source 

identification (Roberts et al., 2014) and warning systems (Kumar et al., 2015). However, 



 6 

previous studies on low-cost sensor have not fully explored factors influencing the 

sensors’ performance for certain applications and under some environmental conditions.  

 

1.3.1 Working mechanisms of low-cost sensors 

 
Briefly, low-cost gaseous sensors operate by detecting the interactions between 

the gaseous pollutant and material within the sensor, and low-cost particle sensors are 

based on particle interactions with light. Bare gaseous and particle sensors need to be 

integrated with a microcontroller (e.g., Arduino) or a single-board computer (e.g., 

Raspberry Pi) to receive signal from the sensor to calculate a concentration in real time. 

The following sections elaborate on how these sensors function. 

 

1.3.1.1 Gaseous sensor  
 

The widely used gaseous sensors on the market are electrochemical sensors and 

metal oxide semiconductor sensors. In a semiconductor sensor, the impedance capacity 

changes when the sensing layer contacts the target gas. In electrochemical sensors, the 

target gas reacts at an electrode, and an oxidation or reduction reaction generates a 

current which is proportional to the gas concentration (Hasenfratz, 2015). In this work, 

we use electrochemical gas sensors. The major components are the working electrode, the 

counter electrode, and an electrolyte solution. Figure 1.2 shows a schematic of the CO 

sensor (Alphasense CO-A4) used in this study. The reactions happening at the working 

electrode can be explained as: 
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                        CO + H2O → CO2 + 2H+ + 2e-              eq 1 

A chemical reaction at the counter electrode can be explained as: 

½ O2 + 2H+ + 2e-→ H2O                    eq 2 

 In general the reaction is: 

CO + ½ O2 → CO2                                eq 3 

The current generated between the working electrode and counter electrode is 

proportional to the concentration of CO. Other electrochemical sensors follow the same 

process but different chemical reactions. The generated current of electrons results in an 

electrical signal output, which can be converted to a gas-phase concentration of a target 

analyte through either the manufacturer-recommended calibration or a user-developed 

calibration against FEM/FRM reference instruments.  

 

 

Figure 1.2: Schematic of CO electrochemical sensor used in this study  
 
1.3.1.2 Particle sensor  
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Most commercially available PM sensors quantify particles based on the light 

scattered by the entire particle population rather than counting individual particles. Figure 

1.3 provides a diagram that represents what occurs within one particle sensor (Honeywell 

HPM), but this is similar for other light-scattering sensors. The sensors emit light from a 

small LED, and this light is scattered by particles that pass through the sensing zone. A 

photodetector detects the scattered light intensity at a certain angle, and this intensity is 

then translated into particle number or mass concentration through a calibration equation 

(Yu el al, 2017, Shao et al, 2017). Several PM sensors provide analog output (e.g., Sharp 

GP2Y1010AU0F and Shinyei PPD41), and the manufacturers provide calibration curves 

to translate the analog signal to particle concentration in the technical sheet. Other PM 

sensors provide digital output (e.g., PlantowerS5003 and Honeywell HPM) that includes 

the translation of signal from the photodetector into mass concentration through an 

internal data processing system.  

 

Figure 1.3: Schematic of low-cost particle sensor  
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1.4 Low-cost sensor evaluation and application  

 
Prior research studies for low-cost air quality sensors have focused on a variety of 

topics, but these studies can all be grouped into one of four broad categories: laboratory 

evaluations of gas sensors; laboratory evaluations of particle sensors; field studies with 

gas sensors; and field studies with particle sensors. These studies can be sub-categorized 

into specific research foci. (Table 1.1). Specific results from the studies listed in Table 1 

will be discussed in later sections. 

 

Table 1.1: Summary of previous studies on low-cost air quality sensors 

Category Focus of study  Literature paper 
Gas sensor (lab) Assess accuracy (EPA, 2010) 

(Mead et al., 2013) 
(Rai et al., 2017) 
(Karagulian et al., 2019)  

Assess temperature and 
RH effect  

(Piedrahita et al., 2014) 
(Lin et al., 2015) 
(Sun et al., 2016)  

Particle sensor 
(lab) 

Assess accuracy  (Austin et al., 2015) 
(Sun et al., 2016) 
(Polidori et al., 2016b) 
(Zamora et al., 2019) 

Assess size effect (Wang et al., 2015) 
(Manikonda et al., 2016) 
(Sousan et al., 2016) 
(Liu et al., 2017)  
(Zamora et al., 2019) 
(He et al., 2020) 
(Kuula et al., 2019) 

Assess composition effect (Wang et al., 2015) 
(Sousan et al., 2016) 
(Sousan et al., 2017) 
(Liu et al., 2017)  
(Zamora et al., 2019)  
(Hagan & Kroll, 2020) 

Assess temperature and 
RH effect 

(Wang et al., 2015)  
(Zamora et al., 2019) 
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(Tryner et al., 2020) 
(Bulot et al., 2020) 

Gas sensor (field) Mobile 
monitoring/pollution 
dynamic 

(Gil-Castiñeira et al., 2008) 
(Varela et al., 2009) 
(Wen et al., 2013) 
(Mead et al., 2013) 
(Patton et al., 2014)  
(Suriano et al., 2015) 
(Velasco et al., 2016) 
(Gao et al., 2016) 
(C. H. Yu et al., 2016) 
(Apte et al., 2017)  
(Jerrett et al., 2017) 
(Miller et al., 2020) 

 Compare with reference 
instrument 

(Moltchanov et al., 2015)  
(Castell et al., 2017) 

Compare with reference 
instrument (correction)   

(Masson et al., 2015) 
(Spinelle et al., 2015)  
(Sun et al., 2016) 
(Cross et al., 2017) 
(Sadighi et al., 2018) 
(Zimmerman et al., 2018) 
(Lim et al., 2019) 

Particle sensor 
(field)  

Compare with reference 
instrument  

(Mukherjee et al., 2017)  
(Mukherjee et al., 2017) 
(Kelly et al., 2017)  
(Zikova et al., 2017) 
(Zheng et al., 2018) 
(Badura et al., 2018) 
(Liu et al., 2019) 
(Sayahi et al., 2019) 

Compare with reference 
instrument (temperature 
and RH correction)   

(Holstius et al., 2014)  
(Han et al., 2017) 
(Hojaiji et al., 2017) 
(Mukherjee et al., 2019) 
(Crilley et al., 2019)  
(Malings et al., 2020) 

Personal exposure (Steinle et al., 2013) 
(A. C. Lewis et al., 2016)  
(Mazaheri et al., 2018) 
(Barkjohn et al., 2020) 

Indoor PM detection (Dacunto et al., 2015) 
(Patel et al., 2017) 
(Li et al., 2018) 
(Singer & Delp, 2018) 
(Curto et al., 2018) 



 11 

1.4.1 Laboratory evaluations of low-cost gaseous sensor  

 

Laboratory evaluations of gaseous sensors usually compare the sensor’s reported 

concentration (based on manufacturer calibrations) to a reference instrument or develop 

new calibrations using the raw signal output by the sensors. These laboratory experiments 

typically use either steady or transient concentrations by controlling the calibration gas 

flow into a testing chamber, and sensors and collocated reference instruments monitor the 

gas concentration simultaneously. Several studies use the calibration equation provided 

by the manufacturer (Christian Kjær Jensen, 2016; Gonzalez et al., 2019; Shum et al., 

2011) to convert raw signal output to concentration (pre-calibration) and compare the 

results to reference instruments. Other studies (EPA, 2010; Piedrahita et al., 2014) 

directly compared the sensors’ raw signal with a reference instrument in laboratory 

experiments and evaluated the relationship to develop their own calibration curve. There 

is often a linear relationship between sensors’ signal /concentration and the reference 

instrument. Typically, the slope, intercept and coefficient of determination (R2) from 

these estimated linear relationships are used to assess the accuracy and precision of the 

sensors. For gaseous sensors (CO, NO2 and O3), slope and intercept may vary slightly in 

the laboratory test under the same experimental conditions for different units of the same 

sensor model, yet R2 are typically greater than 0.9 for most of the laboratory studies 

(Mead et al., 2013; Piedrahita et al., 2014; Sun et al., 2016). Due to the excellent 

performance of gaseous sensor based on prior work, we did not conduct a rigorous 
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laboratory evaluation within this study beyond the development of calibration curves, and 

our focus is on field applications of these sensors.  

 

1.4.2 Laboratory evaluation for low-cost particle sensor  

 

Laboratory evaluation for particle sensor use approaches similar to those used to 

evaluate gaseous sensor. Either the sensors’ raw signal is compared directly to the 

reference instrument (Wang et al., 2015), or the concentration (through the manufacturer 

recommended calibration equation) is compared to the reference (Sun et al., 2016). 

Different than gas sensors, most particle sensors, especially those found in integrated 

devices, internally convert the electrical signal to provide particle number and/or particle 

mass concentration as an output (Sousan et al., 2017).   During the calibration process, a 

simple linear regression is applied to sensor raw/calibrated concentration with the 

reference instrument. R2, slope and intercept from this linear regression are considered to 

be the key indicators of particle sensors’ performance (Karagulian et al., 2019). Other 

research studies use calculated bias (Austin et al., 2015; Sousan et al., 2017) and root 

mean square error (Zheng et al., 2018) to evaluate sensors’ accuracy, and use coefficient 

of variation to evaluate sensors’ precision (Zamora et al., 2019).  

However, due to the complex interactions of the particles’ size and composition 

(which influences the particles’ complex refractive index) on light scattering, this 

regression relationship can vary significantly for the same sensor when monitoring 

different types of particles under different environmental conditions.  Previous research 
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has explored the effect that these two properties have on a particle sensor’s performance. 

Regarding particle composition, prior laboratory studies have used variety of particles 

source to evaluate these effects including  polystyrene latex spheres (Liu et al., 2017a; 

Northcross et al., 2013; Wang et al., 2015); salt particles (Sousan et al., 2017; Wang et 

al., 2015); Arizona Test Dust (Manikonda et al., 2016; Sousan et al., 2017); and oleic 

acid (Zamora et al., 2019). In these studies, the slopes of the regression fit between 

sensors’ output and the reference instruments varied for different particle sources. 

However, among these particle sources, particle size may co-vary with particle 

composition depending on the source of the particles. Thus, there is need to separate 

compostion and size effects. In Chapter 5 of this work, we describe experiments to de-

couple composition and size effects to better understand these impacts.  

Secondly, environmental factors may also significantly impact sensors’ 

performance. Changes in temperature and/or relative humidity (RH) may change the 

properties of the particles; for example, condensation of water vapor to the particles can 

both increase the size of the particles and alter the complex refractive index. Prior work 

has suggested that RH is a more important effect than temperature (Liu et al., 2017; 

Wang et al., 2015). However, these studies are lacking in repeatability for the same 

temperature and RH condition as they conducted one replicate at each temperature or RH 

condition. In addition, the evaluation of environmental effects has mainly been conducted 

using outdoor field tests (Budde et al., 2013; Han et al., 2017; Jayaratne et al., 2018), in 

which temperature and RH may be correlated, resulting in difficulties in de-coupling the 

effects of each and potentially affecting the conclusions. As for the indoor environment, 

temperature and RH may not necessarily be correlated because they can be controlled 
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independently (to some extent). Therefore, we apply an optimized experimental matrix 

spanning a range of temperature and RH conditions likely to be encountered in indoor 

environments to evaluate these two factors separately in Chapter 6.  

 

 

1.4.3 Field studies for gaseous sensor  

 

For field studies of gaseous sensors, researchers deployed sensors for both 

stationary and mobile monitoring. Under both approaches, various studies concluded that 

low-cost sensors can provide reliable data on outdoor air pollutants under different 

applications. To understand real-time air pollution spatial pattern in urban environment, 

researchers have used sensors for stationary air pollution monitoring (Spinelle et al., 

2014; Sun et al., 2016). These studies demonstrated that a network of stationary sensors 

can provide a method to detect spatial variations in air quality at a fine resolution in urban 

areas. However, stationary monitoring requires a dense sensor network (a large number 

of units) to capture this spatial variation, and this approach may be difficult to manage for 

long-term measurements without the right personnel. Consequently, others have explored 

the use of mobile monitoring to provide an alternative approach to investigate the spatial 

variations in air pollution . Several studies applied sensors on mobile platforms such as 

bicycles and cars (Apte et al., 2017; Mead et al., 2013; Miller et al., 2020; Moltchanov et 

al., 2015; Velasco et al., 2016), and they found spatial variations of air quality within the 

microenvironment sampled by their mobile sensors. However, these studies only included 
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one data collection period per day on the same route across several days, and therefore, 

are insufficient to capture diurnal temporal variations without a more labor-intensive 

approach. In this work, we explored the use of low-cost gas sensors deployed on a transit 

bus, which are common to any urban environment, because they follow a regular and 

repeated route, overcoming the spatial and temporal limitations that exist in various prior 

studies, in Chapter 2.  

 

1.4.4 Field studies for particle sensor 

 

Field studies for particle sensors include both indoor and outdoor monitoring. The 

majority of research to date has focused on outdoor applications, while only a few studies 

investigate the usage of these sensors for indoor environments. Chapters 3 though 6 focus 

on understanding the performance of particle sensors under realistic indoor environments. 

Indoor particle sources are different than outdoor sources. The composition of 

particles can be significantly different. For example, Geller et al (2002) found that 

organic carbon indoors is 77% higher than outdoors, while Long et al (2000) demonstrate 

that the indoor activity generates more ultrafine particles (< 0.1 microns). These 

differences in particle characteristics may affect the response of the particle sensors to the 

particles. Therefore, whether particle sensors can be reliable in detecting indoor particle 

concentrations remains under question. In Chapter 3, we address this question by 

evaluating particle sensors’ performance in the detection of various residential PM 

sources.   
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One further challenge is that indoor PM may be difficult for the particle sensors to 

detect when the concentrations are small (e.g., in a “clean room” environment or in a 

building with a high-efficiency particle filter).  Thus, the ability of particle sensors to 

detect low particle concentrations is important. However, there is no standardized 

definition for this metric for continuous PM monitoring by low-cost sensors (Wallace et 

al. 2011). Similarly, when an extremely-high particle concentration event occurs (e.g., 

some cooking events, indoor smoking), particle sensors need to be accurately report 

concentrations as well. Therefore, both the minimum and maximum limits of functional 

range, or equivalently, the limits of quantification (LOQ), need to be evaluated to 

determine a sensor’s usefulness in building applications. Chapter 4 evaluates both lower 

and upper LOQ for particle sensors under laboratory environment using different particle 

sources.  

 

1.5 Overview of objectives and contributions of chapters  

 
In this study, we explore the possibility of using low-cost gaseous sensors to 

characterize spatial patterns of air pollution in an urban area. We also evaluate factors 

influencing the performance of low-cost particle sensors within indoor environments.   

This section summarizes both the objectives and the main contributions of each chapter.  
 
      Chapter 2 objectives:  

1) Investigate how the air pollution varies in space across different bus route using 

low-cost sensors.  
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2) Determine whether a consistent, underlying spatial pattern exists after accounting 

for temporal variations.  

Chapter 2 contribution:  

      Among the research studies for monitoring on-road air pollutants, there is a lack of 

repeated mobile monitoring using low-cost sensors over the same locations; thus, 

spatial trends have not been sufficiently characterized.  We deployed low-cost 

gaseous sensors on a transit bus to monitor on-road traffic-related air pollutants, and 

we observed a consistent spatial pattern from this regular and repeated monitoring.  

Chapter 3 objectives: 

1) Assess the ability of low-cost particle sensor to detect different types of indoor 

particle emission events in a real indoor environment. 

2) Assess the consistency in performance of multiple instances of sensors from the 

same manufacturer. 

Chapter 3 contribution:  

      Low-cost particle sensors have been widely used for outdoor PM monitoring; only 

few studies focus on particle sensors and indoor applications. Indoor particles are 

diverse and often different than outdoor particles, and whether particle sensors can 

reliably detect indoor particle sources needs to be evaluated.  We are one of the few 

studies who utilized low-cost particle sensors to quantify residential particles in a 

semi-controlled manner. We find that particle sensors can identify various indoor 

particle sources; however, some factors may impact the sensor performance, 
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including particle size and particle composition, which are explored in the subsequent 

chapters.  

 

Chapter 4 objectives:  

1) Propose several definitions of an upper and lower bound of the range of particle 

concentrations between which a low-cost particle sensor can be expected to 

provide reliable data and assess the appropriateness of each.  

2) Quantify this range for several low-cost particle sensors under laboratory 

experiments using different particle sources.  

Chapter 4 contribution:  

      Particle sensors need to be able to detect both low and high particle concentrations 

indoors. Some indoor environments may be relatively particle-free, but the lower 

limit of the concentration that is detectable by these sensors has not yet been 

sufficiently characterized in previous work. Similarly, some indoor activities may 

create high particle concentrations (e.g., cooking, burning incense), and whether a 

particle sensor can detect and accurately report this high concentration needs to be 

investigated. We propose new methods to define lower and upper limits of the 

concentration between which the sensors can provide reliable data and find that some 

particle sensors can reliably quantify particles spanning very low (~5 μg m-3) and 

very high concentrations (~500 μg m-3) using proxies for indoor particle sources.  

 

Chapter 5 objectives:  
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1) Investigate the effects of particle composition on the sensors’ performance by 

conducting laboratory experiments using different particle sources. 

2) Evaluate the influence of particle size to sensors’ performance using size-selected 

particles between the range of 100 nm to 700 nm and distributions of particles 

with mass-median diameters ranging from ~200 nm to ~2 μm. 

3) Quantify how size and composition contribute to variability in the sensors’ 

response.  

Chapter 5 contribution:  

      From previous research, the performance of low-cost particle sensors appears to vary 

when sampling different particle sources, and in the majority of that work, particle 

composition was inherently related to particle size due to the experimental methods. 

In this study, we separate composition and size effects and provide supplemental 

information for the evaluation of the influence of particle size and particle 

composition on a sensor’s performance. We find that there was a source effect on the 

performance of sensors, and we quantify the influence that size, composition, and the 

interaction between size and composition have on the variance in the sensors’ output.  

 

Chapter 6 objectives: 

1) Investigate the relationship between temperature and low-cost particle sensors’ 

performance for the range of temperature expected in indoor environments.  

2) Investigate the relationship between RH and sensors’ performance for the range 

of RH expected in indoor environments.  
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Chapter 6 contribution: 

      Previous studies suggest that temperature may have an effect and that RH does have 

an effect on particle sensors’ performance. However, these studies either lack 

repeatability (i.e., there are few replicates of the experiments) under the same 

laboratory conditions or are based on outdoor sampling, where temperature and RH 

are often correlated. However, under indoor environments, temperature and RH may 

not be correlated because they can be controlled independently. In this study, we 

conducted laboratory experiments under optimized temperature and RH conditions 

and find that there is a significant linear relationship between the slopes of the linear 

fit between sensors and research grade instruments as RH varies, but no evidence that 

temperature has such an effect. 
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Chapter 2: Using Low-Cost Air Quality Sensors to Understand the Spatial Pattern of CO, 

NO2 and O3 over Urban Roadways  

 

2.1 Introduction 
 

Motor vehicles are a major source for urban air pollution that can have harmful 

effects on human health and the environment. The direct and indirect air emissions from 

motor vehicles include carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) 

as well as particulate matter (which will not be a focus here). These emissions are 

collectively referred to as traffic-related air pollution (TRAP) (Patton et al., 2014; C. H. 

Yu et al., 2016). To monitor the air quality impacts of TRAP and other air pollution, the 

Environmental Protection Agencies (EPA) conducts regulatory air pollution 

measurements at sparsely distributed monitoring stations, typically with a reporting 

interval of 1 hr. One limitation of this existing approach is that the sparse distribution of 

the regulatory monitors does not allow them to capture spatial changes of air pollution at 

a high resolution  (Morawska et al., 2018). High-resolution air pollution models at the 

urban scale have high computational requirements, given the large complexity of urban 

environments (Kumar et al., 2015); this complexity requires smaller step sizes in space 

(and possibly in time), which greatly increases the computational time of the model, 

implying that a purely model-based approach may be impractical to obtain. 

In this work, we consider low-cost air quality sensors as an approach to 

supplement the existing TRAP measurements. Low-cost air quality sensors may provide 
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an inexpensive solution for air quality monitoring with higher sampling frequency, but 

the ability of these sensors to provide reliable air pollution data in urban areas remains 

under evaluation.  

 

Various research studies have used mobile or stationary sensor platforms to 

monitor spatial and temporal variation of air pollution in urban areas. Several studies 

(Brienza et al., 2015; Guo et al., 2018; Jiao et al., 2016; Masson et al., 2015; Moltchanov 

et al., 2015; Roberts et al., 2014; Spinelle et al., 2014; Zimmerman et al., 2018) evaluate 

the sensors performance against collocated reference instruments or nearby monitoring 

stations in order to conduct in situ calibrations. Those studies found that the correlations 

between the sensors and the reference instruments are high, although some studies 

developed correction methods to account for biases related to temperature and relative 

humidity. However, even though low-cost sensors may provide an approach to overcome 

some of the spatial limitations faced by regulatory monitors, a high-density network of 

sensors may be required to capture location-specific features, e.g., at traffic intersections 

or within so-called “urban canyons”.  

 

In order to gain high spatial resolution monitoring while reducing the number of 

sensors deployed, researchers have used various transportation modes as the sensors’ 

platforms.   Mead et al. (2013) utilized CO, nitric oxide (NO), and NO2 sensors carried by 

pedestrians and observed variability of these pollutants over a small spatial scale during a 

short period of sampling time. Velasco et al. (2016) deployed O3 and particulate matter 

(PM) sensors on a public bike-sharing system and identified similar spatial pattern on the 
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same route over five consecutive days. In Yu et al. (2016)’s study, PM and CO were 

monitored by pedestrians carrying the sensor devices on two parallel streets at the same 

time across multiple days. They found CO and PM were significantly different between 

two parallel routes, and they also demonstrated significant differences between days.  

However, the measurements were only conducted once per day on each pass, so they lack 

information about temporal variations throughout the day. This may indicate that short-

term monitoring over small spatial scales are insufficient to provide information on air 

quality in urban environments. In addition, long-term monitoring by pedestrians and 

cyclists (Mead et al., 2013; Velasco et al., 2016; C. H. Yu et al., 2016) may become 

burdensome for the data collectors. A transit system, however, is a transportation mode 

that can provide routinely-collected, high-time-resolution data by repeatedly traversing a 

fixed route throughout a broad region. 

 

Therefore, to achieve high resolution of spatial and temporal coverage, we use a 

transit system to perform as the platform carrying air quality sensors because transit 

provides broader spatial coverage in a repeated pattern. Previous studies have used buses 

as the sensor platform in Europe. Gil-Castineira et al. (2008) mounted a carbon dioxide 

(CO2 ) sensor on a transit bus equipped with a GPS system with the objective of 

developing a real-time monitoring and dynamic mapping system in an open service 

website. Varela (2009) also deployed CO2, CO, NO2, and sulfur dioxide (SO2) sensors on 

buses and developed an air quality network capable of visualizing the air pollution data. 

However, these studies were mainly focused on visualizing the air quality data on a map 

for public use; our study focuses on the analysis of spatial patterns within the data.  
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2.2 Objectives 

 

This study aims to explore the possibility of using air quality sensors and a transit 

platform to measure on-road air pollution patterns. The goal is to characterize the patterns 

of CO, NO2 and O3 in an urban area by deploying low-cost sensors on a transit bus as a 

mobile platform. The objectives are to: 1) investigate how the air pollution varies in 

space along routes; and 2) determine whether a consistent, underlying spatial pattern 

exists after accounting for temporal variations with the low-cost sensors being used.  

 
 

2.3 Materials and method   

 
A custom-built sensor unit was fabricated through the assistance of other lab 

members using three low-cost gas sensors including a carbon monoxide (CO) sensor 

(Model CO-A4F, Alphasense Ltd), an ozone (O3) + nitrogen dioxide (NO2) sensor 

(Model OX-A431), and a standalone NO2 sensor (Model NO2-A43F). These sensors are 

electrochemical sensors. The target gas reacts at the working electrode, and the electrical 

charge generated by this chemical reaction is directly proportional to the concentration of 

the target gas. We used Raspberry Pi 2 as the data acquisition system to record and store 

time-stamped sensor data onto a 16GB micro-SD card via executable code written in the 

Python programming language; new sensor data were recorded every 3 seconds during 

operation. 
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The three gas sensors were calibrated against EPA-grade monitoring instruments 

including a Carbon Monoxide (CO) Analyzer (Teledyne Model T300, Teledyne API, San 

Diego, CA), Nitrogen Oxide (NOx) Analyzer (Model T200), and a Photometric Ozone 

(O3) Analyzer (Model T400). The CO and O3 analyzers detect the targeted air pollutants 

using a system based on the Beer-Lambert law (KS., 2014) for measuring target gas 

concentration, in which a light is passed through the sampling cell, and the quantity of 

light that is absorbed by the sample is proportional to the target gas concentration.  In the 

NOx analyzer, NOx concentration is determined from the light intensity that is generated 

from chemical reactions between NOx and O3.  

 

To calibrate the sensors, they were placed into a 0.71 m x 0.48 m x 0.38 m (0.130 

m3) enclosed chamber. First, we injected “zero air” (ProSpec Inc.) having “0” ppbv 

concentration of any air pollutant. We injected “zero air” to obtain a stable sensor signal 

for “0” ppbv. We then injected CO calibration gas (ProSpec Inc., 9.6 ppmv) from the 

inlet of the chamber and monitored the CO concentration from the outlet through a 

sampling port using a CO analyzer and a data logger. The output concentration from the 

CO analyzer and the signal from the CO sensors both increased during this process, 

following a linear relationship. We then converted the signal to concentration using a 

linear regression calibration equation (reference concentration = slope x sensors’ signal + 

intercept). This calibration was repeated multiple times for each individual sensor to 

obtain the values of slope and intercept; the average of the values from repeated 

calibration experiments for each individual sensor was then used to determine the 

calibration equation. We then used this calibration equation to convert the sensor’s signal 
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into concentration when it was deployed in the field. In all of these equations, y is the 

concentration of a given gas-phase pollutant and x is the digital signal obtained from the 

appropriate sensor.  

 

 

Table 2.1 Calibration equations for sensors deployed on bus 1105. Numerical values 
represent the average ± one standard deviation of the slopes and intercept among all 
repeated calibration experiments of each individual sensor. 

Sensors Calibration equations R2 

CO y = (0.0156 ± 0.001) x – 

2.574 ± 0.24 

0.92 ± 0.04 

NO2 y = (24.38 ± 3.21) x – 2201 

± 562 

0.62 ± 0.18 

O3 y = (15.68 ±2.32) x – 480.30 

± 24.42 

0.73 ± 0.09 

 

 

Figure 2.1: The air quality sensor unit installed on CABS bus 1105. 
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The air quality sensor unit was placed inside a 0.50 m x 0.25 m x 0.17 m (0.02 

m3) custom-built acrylic box (Figure 2.1) which allows air to flow through the sensor unit 

via openings in the leading and trailing edges. The design of the box can also reduce 

direct exposure to solar radiation because it is covered by a non-transparent paper on the 

three sides of the box; and the angled design on the front of the box can reduce entry of 

water in the event of rain.  The box is securely attached on the top of the bus (near the 

emergency exit) by screws. As the bus drives, the sensor unit is located upwind of the 

exhaust pipe, so it is unlikely that the sensors are simply sampling from the exhaust pipe 

under typical operation. The sensor unit was powered by a USB power bank 

(10,000mAh) that provided for at least 24 hours of operation.  
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Figure 2.2: OSU CABS bus routes map for CLN (red), BV (blue) and WC (purple) 
routes. The large green dot represents the starting point (distance = 0) for CLN and WC, 
and the large red dot represents the starting point for BV. 

 

We used the OSU Campus Area Bus Service (CABS) bus 1105 as our mobile air 

quality sensing platform. At the time of the data collection, OSU Campus Area Bus 

Service (CABS) served approximately 5 million passengers annually with seven major 

bus routes for the service of public transportation on and around OSU campus that 

traverse varied land uses including core academic campus, park-and ride facilities, a large 

medical campus, administrative facilities and residential and commercial neighborhoods. 

There are also numerous potential sources of TRAP including large surface parking lots 

and parking garages for employees and students, a state highway with multiple ramps that 

serves the campus, and a large medical campus that serves a large number of visitors on a 
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daily basis. Bus 1105 served three routes -- Campus Loop North (CLN), Buckeye Village 

(BV) and West Campus (WC), as depicted in Figure 2.2 -- during the period in which this 

study was conducted. The CLN route was approximately 28,300 ft (~8630 meter) and 

had a 35 min cycle time (the duration of one bus trip), the BV route was approximately 

34,500 ft (10,520 meter) and had a 25 min cycle time, and the WC route was 

approximately 26,420 feet (8,050 meter) long and had a 30 minutes cycle time. The 

sampling times common to all sampling days were 7:00 to 18:00, so we have removed 

data outside of that time window. 

 

In addition to the air quality sensor data, we also obtained location data through 

the Automatic Vehicle Location (AVL) system data. The AVL data provide time-

stamped information in the form of coordinates (latitude and longitude). The AVL data 

were processed by students in the Campus Transit Lab (CTL) to provide distances along 

the route with respect to the start points. Using AVL data, we can assign a specific 

location to a given record of air quality data. We used linear distance (X = x) from the 

beginning of the bus trips (X = 0) to identify the sensor’s location from the coordinate 

information. This linear distance also allows for separating sensors readings into bus trips 

(a bus trip is a complete traversal or a route by a bus, typically starting and ending from 

the same reference location, commonly the route’s terminal) because the linear distance 

begins anew for the next trip at the starting points shown in Figure 2.2.  
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Due to a large number of maintenance issues experienced by the bus on which we 

deployed the sensors, we have somewhat limited data – 5 days (total of 83 bus trips) for 

CLN, 3 days (total of 60 bus trips) for BV, and 5 days (total of 100 bus trips) for WC.  

 

2.4 Data analysis 

 

We conducted some data pre-processing prior to analysis. For example, some of 

the sensor data may be influenced by localized, transient pollution events (e.g., following 

a heavy-duty diesel truck on the road; being stopped at an intersection behind another 

transit bus). Thus, the data were smoothed using windows of 1,000 ft (305 meter) with a 

step size of 100 ft (30.5 meter) in order to dampen these effects; effectively, this 

approach was a running median. For example, on CLN route, the median value of CO 

between 0 to 1,000 ft is assigned at the mid-point (X = 500 ft) to define the first 

observation along the route; this process was repeated by stepping forward 100 ft and 

repeating until the upper bound of the window is reached at X = 28,300 ft. The result is a 

smoothed dataset that is gridded to 283 fixed locations (every 100 ft along the route) for 

all 83 bus trip vectors on CLN (i.e., a 283 by 83 matrix).  Similarly, we obtained matrices 

that are 264 by 100 for BV and 345 by 60 for WC. 

In order to visualize the spatial pattern as a function of locations and associated 

factors (e.g. traffic, land use) that impact the spatial pattern, the average of CO, NO2 and 

O3 concentration across all trips for each data matrix is plotted with distance (as is done 

in Figure 2.3 below).   

To determine if there is a consistent spatial pattern for the three air pollutants 

along each route, we computed the correlation coefficient between each pair of bus-trip 
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vectors of three air pollutant concentration on the three bus routes. The Pearson 

correlation coefficient is used to determine this correlation between gridded pollutant 

values for 1) all pairs of trips; 2) pairs of consecutive trips; and 3) the median value of 

50% of the trips randomly sampled from the population and the median value of the 

remaining trips. 

Considering the temporal effect, the median CO, NO2 and O3 value at each 

gridded location can be affected by day-to-day and time-of-day factors. For example, if 

the CO concentration on one day is substantially higher than the other days, this could 

raise the median CO concentration across all locations. To investigate the temporal effect, 

we calculate the average concentration for each trip and plot the concentration with the 

beginning of that trip on different sampling days. To partially control for these temporal 

effects, we compared the median value of each pollutant for each bus trip to the gridded 

locations on the same bus trip. To understand whether air quality values at some locations 

is significantly different than other locations across all trips, a proportion is used to 

represent this information.  

At a specific location (distance from the beginning of the bus trip), we determine 

if a given pollutant value is greater than the median value for that trip; the proportion is 

then calculated as the number of times that the pollutant value is greater than the median 

value across all trips, divided by the total number of trips. Under the null hypothesis (of 

systematic spatial pattern), the probability that the concentration value at a location on 

any given trip would be above the trip median is 0.5.  To test the significance of this 

proportion for all locations, the following equation is used: 

                                                            " = 	 !"	!!
$(#$%&)%!(

             eq.2.1                                                
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In the equation, P0 is the proportion under the null hypothesis (in this case is 50%), n is 

the total number of bus trips, and z, the z-score, is determined from a z-table at a 

significance level of 0.05. The value of P (the sample proportion) can then be calculated 

as proportions that are statistically different from the hypothesized proportion at 5% 

significance level. 

 

2.5 Results and discussion  

 
In this study, we are interested to determine the spatial pattern of three air 

pollutants over the three transit routes by using low-cost sensors deployed on one bus as 

it traverses each of the three routes. We first visualize the spatial pattern of each pollutant 

on each route, and we subsequently analyze the consistency of these spatial patterns. We 

then investigate the general underlying spatial pattern for each pollutant on each route.  

2.5.1 Characterizing spatial variations  

 

Figure 2.3 shows the mean CO concentration values at each grid point over all 

bus trips as a function of route distance from the beginning of the route on CLN, BV and 

WC respectively. Mean concentrations of CO clearly varied with location on a given 

route. Local maxima and minima of mean CO concentrations across all trips for all routes 

suggests a strong spatial pattern, which may be associated with land use. For example, on 

CLN, the built environment at 18,000 ft is comprised of a large parking lot and several 

parking garages for employees and visitors to the OSU Medical Center, and this location 

is adjacent to an off-ramp to State Route 315; both of these factors may contribute to 



 33 

generally higher CO concentrations at this location. On the contrary, the location at 

22,000 ft on CLN is near the north end of Cannon Drive, in close proximity to green 

space and the Olentangy River; although it is adjacent to a large surface parking lot, this 

is primarily used by OSU staff and students, so we expect traffic to only be heavier 

during the morning and afternoon rush hours. In addition, CO spatial patterns are 

different among three routes because of difference in sampling days, land use and traffic 

patterns. For BV and WC, more local maxima (where the CO concentration is high) and 

local minima (where the CO concentration is low) for CO were observed compared to 

CLN, potentially indicating more local features influencing the CO on these routes, 

which may be related to different land use, traffic patterns, and intersection control. For 

example, the location at 6,000 ft on BV and WC both show a local maximum for CO; this 

is located near a signalized intersection near OSU’s Agricultural Campus area, with bus 

stops on both sides of the road and several nearby parking lots.  

Similar figures to Figure 2.4 for NO2 and O3 concentration on CLN, BV and WC 

routes are provided in Figure 2.6 to Figure 2.11. However, the spatial pattern of NO2 and 

O3 cannot be clearly explained by land use and traffic pattern. For example, there is no 

local maximum in NO2 at 18,000ft on the CLN route (a local maximum for CO), while 

O3 has a local maximum at 22,000 ft on CLN (a local minimum for CO). The spatial 

pattern of NO2 and O3 may not be explained by the traffic pattern as CO, because CO is 

directly emitted from vehicles, but O3 is formed through atmospheric chemistry; NO2 

may be directly emitted or formed in the atmosphere through chemical reactions. 

Moreover, NO2 and O3 can also be depleted due to atmospheric chemistry or reactive 

uptake on surfaces. However, we cannot fully explain the atmospheric chemistry that 
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may have occurred due to a lack of the complementary measurements that would be 

required for this. 

 

 

 

 
 
Figure 2.3: Mean CO (n = 83, 60,100 respectively for CLN (a), BV (b) and WC (c)) in 
ppm as a function of route distance from the beginning of bus route 
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2.5.2 Investigating an underlying spatial pattern  

 

To investigate whether an underlying spatial pattern existed throughout the bus 

routes for each of three pollutants, the correlation coefficient was computed between each 

pair of the trip vectors within each route. The median, mean, standard deviation, 10% 

percentile, and 90% percentile of the correlation values for all pairwise comparisons 

across all trips on each route and for each pollutant are presented in the Table 2.2. Both 

the mean and median correlation coefficient of all bus trips are close to zero (ranging 

between 0.001 and 0.09 across all routes and pollutants), suggesting that a small positive 

correlation may exist, on average. Moreover, the absolute values of both the 10th and 

90th percentiles are relatively low. These low correlation coefficients suggest that no 

spatial pattern is consistent across all trips. However, correlations from these pairwise 

comparisons across all trips are likely influenced by temporal variations due to time-of-

day and day-to-day effects. For example, Figure 2.4 demonstrates that a time-of-day 

temporal pattern exists for CO. Therefore, the comparison between, e.g., an 8:00 trip and 

a 14:30 trip on the same day, is likely not appropriate due to the likelihood of different 

traffic patterns and different meteorological conditions. These differences may be 

amplified if comparing an 8:00 trip to one day to a 14:30 trip on a different day. 
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Table 2.2: Summary statistics of correlations between all pairs of bus-trip vectors. N is 
the total number of bus trips sampled on each route.  

 
 CLN (N = 83) BV (N = 60) WC (N = 100) 

All pairs 
of bus 
trips 

CO NO2 O3 CO NO2 O3 CO NO2 O3 

Mean  0.055 0.040 0.043 0.020 0.022 0.031 0.090 0.043 0.041 

Median 0.048 0.040 0.039 0.011 0.001 0.015 0.076 0.034 0.036 

Standard 
deviation 

0.199 0.282 0.250 0.179 0.272 0.252 0.234 0.210 0.230 

10th 
quantile  

-0.196 -0.340 -0.284 -0.207 -0.306 -0.253 -0.199 -0.228 -0.203 

90th  
quantile 

0.311 0.419 0.371 0.254 0.357 0.323 0.402 0.402 0.390 

Sample 
size 

3403 3403 3403 1770 1770 1770 4950 4950 4950 

 
 
 
  To remove these day-to-day effects and reduce the time-of-day effects, the sample 

size was reduced to only consider consecutive trip vectors occurring on the same day 

(Table 2.3) in the correlation analysis. For example, the air pollutant concentration during 

the approximately 30 minute cycle time between consecutive bus trips (e.g., trip n and 

trip n+1) at a certain location is likely to have more similar traffic and meteorological 

conditions, and hence, a more consistent underlying spatial pattern, than any two 

randomly-selected trips from a given route. The statistics in Table 2.3 show that the 
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correlations between consecutive pairs of bus-trip vectors are generally higher than those 

presented in Table 2.2. However, both the mean and the median values are still relatively 

low in magnitude (ranging from 0.07-0.31). The large value of the standard deviation and 

the large difference between the 90 percentile and 10 percentile values may indicate the 

presence of some variability that affects the systematic location patterns. This may be due 

to changes in the spatial pattern during the 30-minute time window. The correlation for 

CO is slightly higher than for NO2 and O3 for consecutive bus trip vectors, which may 

indicate a more similar spatial pattern for this pollutant compared to NO2 and O3.  

 
 
Table 2.3: Summary statistics of correlations between all pairs of consecutive bus-trip 
vectors on same day. N is the total number of bus trips sampled on each route. 

  
 CLN (N = 83) BV (N = 60) WC (N = 100) 

consecutive CO NO2 O3 CO NO2 O3 CO NO2 O3 

Mean  0.272 0.187 0.172 0.137 0.068 0.114 0.321 0.162 0.186 

Median 0.309 0.200 0.173 0.126 0.050 0.101 0.279 0.144 0.222 

Standard 
deviation 

0.246 0.278 0.279 0.161 0.257 0.241 0.341 0.250 0.271 

10th quantile  -0.078 -0.180 -0.208 -0.070 -0.197 -0.171 -0.023 -0.139 -0.213 

90th quantile 0.580 0.420 0.525 0.374 0.487 0.473 0.657 0.517 0.493 

Sample size 78 78 78 57 57 57 95 95 95 
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In order to further reduce the presence of variability caused by temporal effects, 

we investigated average spatial profiles and adopted a random sampling method to 

generate “representative” trips. We divided the bus trips for a given route into two groups 

by randomly selecting half of the trip vectors, calculating a mean vector for both the first 

set and the second set of bus trips. We then computed the correlation coefficient between 

these two mean vectors. This process was repeated 5,000 times. While this could result in 

repeats in the selected trip vectors, there are roughly 1017 unique combinations for 

selecting 30 trips out of 60 for BV (the lowest sample size); thus, the probability of a 

repeat is effectively negligible. However, two selected sets share many trips in common.  

The summary statistics of this process (Table 2.4) demonstrates that the mean 

correlation coefficient substantially increases and that even the 10-percentile value shows 

strong positive correlation for most of the air pollutants. For these randomly subsampled 

bus trip vectors, the large positive correlation statistics indicate strong spatial pattern 

consistency for air pollutants when the temporal effects have been minimized through 

this averaging process.   
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Table 2.4: Summary statistics of correlations between all pairs of subsampled vectors. N 
is the total number of bus trips sampled on each route. 

 
 CLN (N = 83) BV (N =60) WC (N = 100) 

Random 
50% 

CO  NO2  O3  CO  NO2  O3 CO NO2 O3 

Mean  0.832 0.485 0.656 0.648 0.552 0.634 0.867 0.632 0.718 

Median 0.845 0.561 0.664 0.659 0.596 0.673 0.874 0.641 0.732 

Standard 
deviation 

0.053 0.208 0.131 0.129 0.401 0.158 0.046 0.085 0.086 

10th 
quantile  

0.764 0.133 0.508 0.480 0.261 0.482 0.806 0.521 0.601 

90th  
quantile 

0.890 0.688 0.796 0.812 0.667 0.792 0.920 0.738 0.811 

Sample 
size 

5000 5000 5000 5000 5000 5000 5000 5000 5000 

 
 

2.5.3 Identifying temporal patterns  

 

From the analysis described in previous section, there appears to be temporal 

effects that influenced our analysis of underlying spatial patterns, but in that analysis, it is 

not clear whether these were driven by time-of-day or day-to-day differences in the 

measurements. In this section, we investigate the presence of temporal patterns for all 

three air pollutants (CO, O3, and NO2).  

Figure 2.4 represents the trip-averaged values of CO, NO2 and O3 for each 

sampling day, using the start time of each bus trip (the timestamp associated with X= 0) 
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to represent the trips’ time-of-day. These results suggest that both day-to-day effects and 

time-of-day effects exist in the data.  

Consistent time-of-day patterns of CO were identified in Figure 2.4a, in which 

higher mean CO concentrations were observed in the morning, noon and afternoon likely 

due to heavier traffic activity during those times (e.g., am and pm rush hours and lunch 

hour). The generally decreasing trend of CO in Figure 2.4a (e.g., negative slopes are 

obtained for a linear regression on 3 of the 5 days) is likely related to dilution induced by 

an expansion of the atmospheric boundary layer; at night, the boundary layer tends to be 

more shallow, resulting in a smaller volume for mixing, but during the day, the boundary 

layer height increases, largely due to daytime warming of the surface. NO2 shows a 

similar pattern (Figure 2.4b) to CO, with morning, noon and afternoon peaks.  NO2 also 

has a generally decreasing trend (again, 3 of the 5 days have a negative slope), which 

may be related to atmospheric dilution and/or atmospheric chemistry. However, O3 has a 

general increasing trend (5 out of 5 positive slopes) from the morning to the afternoon 

(Figure 2.4c).  The lowest O3 concentration occurred around 7 AM and increased steadily 

throughout the day; O3 is produced during the daytime when volatile organic compounds 

(VOCs) and NOx are exposed to sunlight, and the O3 subsequently will react away 

overnight. The temporal trend of NO2 and O3 in this study are consistent with Sadighi et 

al. (2018) where they use stationary monitoring instruments to detect diurnal trend of 

NO2 and O3 near a road way. Consequently, our results suggest that low-cost sensors 

deployed on transit buses are able to capture the diurnal trend in these air pollutants. 

Temporal patterns of CO, NO2 and O3 on BV, and WC routes were shown in Figure 2.12 

to Figure 2.17. The temporal trends for CO, NO2 and O3 on BV and WC are consistent 
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with the temporal trends on CLN route. In BV and WC, CO and NO2 show a general 

decreasing trend with local peak at morning, noon and afternoon. O3 show a general 

increasing trend with peak in the later afternoon. This suggests that the temporal patterns 

are consistent and that they are not affected by the spatially-different sampling locations 

across the different routes.  

 

 
 

Figure 2.4: Average CO, NO2 and O3 (N =83) on CLN route for each trip with time of 
day. The y-axis in the top panel ranges from 0.5 to 1 ppm to allow for better 
visualization. 
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2.5.4 Identify features of spatial pattern after removing temporal effects 

 

As mentioned in the previous section, temporal effects exist both within days and 

across days. To partially control for the large day-to-day and time-of-day variation when 

investigating the underlying spatial pattern of air pollutants, the gridded air pollutant 

values are compared to the median value of each trip. As discussed in data analysis 

section, the median value of each trip was used as a representative air pollution level for a 

given trip. The proportions of times that the CO values at each gridded location is greater 

than the median CO values for the corresponding bus trips are presented with distance for 

all locations in Figure 2.5.  We used " = 	 !"	!!
$(#$%&)%!(

	(equation	2.1)	to test the significance 

of these proportion values to investigate an underlying spatial pattern accounting for 

temporal differences. The confidence interval (CI) of [0.4 0.6] can be calculated with a 

significance level of 5%, which is presented in Figure 2.5 by dashed horizontal lines. If 

the calculated proportion at any location falls outside out of these confidence intervals, 

this suggests that a significant spatial pattern is likely to exist.  The result in Figure 2.5, 

50 gridded 100-ft intervals along the route (17% of the 283 total) are above and 68 of 

these intervals (24% of the 283 total) are below this CI. From this calculation, a 5% 

significance level implies that roughly 5% of locations would be above or below this 

interval under the null hypothesis of no systematic spatial pattern. However, 

approximately 42% of locations are outside this interval, which indicates a statistically 

significant location-specific pattern after controlling for the temporal effect.  
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Figure 2.5: Proportion of times CO values at a location (each 100ft) are greater than 
median of all CO values on the same bus trip  

 

Table 2.5 summarizes the calculated proportions for the three pollutants (CO, 

NO2 and O3) across all three routes (CLN, BV and WC). For all three pollutants, more 

than 5% of the locations are above or below the thresholds for each of the three routes. 

This indicates that a location-specific pattern can be observed for these pollutants on all 

routes.  By comparing the proportion of the same pollutant on three routes, we observe 

that there are more locations outside the 5% significant CI on CLN but fewer locations on 

BV and WC (except CO on WC). This may indicate that the spatial variation is more 

evident in CLN than BV and WC due to the characteristics of the route itself (e.g., traffic 

activity, built environment). By comparing the proportion of the three pollutants on the 

same route, CO tends to have more locations outside the 5% significant CI than NO2 and 

O3, with an exception of the BV route. This may indicate that the variation of CO has a 

more stable underlying pattern than NO2 and O3, because CO emission are more related 
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to direct traffic emissions and are less influenced by atmospheric chemistry than NO2 and 

O3.  

 

 

 

Table 2.5: Number of locations (percentage) falling outside the confidence interval for 
CO, NO2 and O3 on CLN, BV and WC route 

 
CLN (# of location = 283) 
 
  

BV (# of location = 264) 
 
  

WC (# of location = 345) 
 
   

CO NO2 O3 CO NO2 O3 CO NO2 O3 

<lower 68 
(24%) 

53  
(19%) 

50 
(18%) 

50 
(15%) 

29  
(7%) 

72 
(6%) 

63  
(23%) 

34 
(13%) 

43 
(16%) 

>highe
r 

50 
(17%) 

62 
 (21%) 

70 
(25%) 

26 
(8%) 

24 
 (8%) 

21 
(20%) 

85 
 (31%) 

53 
(20%) 

50 
(19%) 

<lower
&  
>highe
r 

118 
(42%) 

115 
(41%) 

120 
(43%) 

76 
(22%) 

53 
(15%) 

93 
(27%) 

148 
(54%) 

87 
(33%) 

93 
(35%) 

 
2.6 Conclusion  

 

In this study, spatial air pollution patterns were observed by using low-cost air 

quality sensors deployed on a transit bus. The mean concentration of CO along three bus 

routes suggested that these spatial patterns can be detected even on a relatively small 

spatial scale (i.e., the OSU campus). This spatial pattern may be associated with land use, 

the built environment, and traffic activity. The spatial pattern of NO2 and O3 also 

suggested a location-specific dependency, but the patterns may not be directly related to 

traffic activity. We lack information to fully explain the spatial variations of NO2 and O3 

on these routes. 
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 To investigate the consistency of the spatial pattern of each pollutant, correlation 

coefficients between any two of individual bus trip vectors were calculated. Low 

correlation coefficient in this pair-wise comparison was likely related to a temporal 

effect. After averaging bus trip vectors through a random subsampling method to for 

temporal effects, strong correlations were obtained, indicating consistent spatial pattern.  

The temporal pattern of CO, NO2 and O3 on three routes show day-to-day and 

time-of-day variation. After removing this temporal effect, for the three pollutants on the 

three routes, greater than 5% of locations are outside the 0.05 confidence intervals for 

each route and for each pollutant, which indicated underlying spatial pattern independent 

of time. In summary, low-cost sensor deployed on transit buses as  sensing platforms has 

potential to provide long-term observations of air pollution in an urban area, and 

therefore, provide a means to explore the consistency of the underlying spatial pattern.   

 

2.7 Future work  

In the future, we could expand sensors installation to more buses to create a 

denser air quality network in an urban area to confirm and strengthen the results arrived 

at in this study and eventually to provide more extensive and reliable information.  

Air pollution models base on sensors’ network have been studied (Hankey and 

Marshall 2015, Apte et al 2017, Hasenfratz et al 2015). These models require high spatial 

resolution data which can be obtained from low-cost sensors. In a future study, we could 

build upon these efforts to develop models in order to further understand air pollution 

patterns within an urban environment. Such models could provide predictions of air 

quality in areas based on sensors’ data as well as explore which land-use factors may 

contribute to elevated air pollution.   
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2.8 Additional Tables and Figures 

 
 

 
 
 
Figure 2.6: Average NO2 concentration in CLN route as a function of route distance from 
the beginning of bus route 

 

 
Figure 2.7: Average NO2 concentration in BV route as a function of route distance from 
the beginning of bus route 
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Figure 2.8: Average NO2 concentration in WC route as a function of route distance from 
the beginning of bus route 

 
 

 
 
Figure 2.9:Average O3 concentration in CLN route as a function of route distance from 
the beginning of bus route 
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Figure 2. 10: Average O3 concentration in BV route as a function of route distance from 
the beginning of bus route 

 
 
 

 
Figure 2.11: Average O3 concentration in WC route as a function of route distance from 
the beginning of bus route 
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Figure 2.12: Average CO (n =60) on BV route for each trip with time of day  

 
 
 

 
Figure 2.13: Average NO2 (n =60) on BV route for each trip with time of day  
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Figure 2.14: Average O3 (n =60) on BV route for each trip with time of day  

 

 
Figure 2.15: Average CO (n =100) on WC route for each trip with time of day  
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Figure 2.16: Average NO2 (n =100) on WC route for each trip with time of day  
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Figure 2.17: Average O3 (n =100) on WC route for each trip with time of day  
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Chapter 3: Response of eight low-cost particle sensors and consumer devices to typical 

indoor emission events in a real home (ASHRAE 1756-RP)1 

3.1 Introduction 

Recent improvements in the performance of commercially-available low-cost air 

quality sensors are preparing the way for large changes in air quality monitoring and 

control of indoor environments (Karami et al., 2018; Morawska et al., 2018; Schieweck et 

al., 2018). Specifically, the ability to measure particulate matter concentration using only 

low-cost devices (<$20 for a bare sensor or <$250 for a packaged device) has undergone 

great improvements in recent years, but many shortcomings have been identified. 

Numerous studies have evaluated different aspects of the performance of these sensors 

(Kelly et al., 2017; Nieuwenhuijsen et al., 2018; Zikova et al., 2017). We focus on the two 

aspects of performance with which this paper is concerned, namely the ability of the 

sensors to detect indoor particle emission events and the consistency between different 

sensors from the same manufacturer.   

 

3.1.1 Event detection 

 

Different studies have defined emission events in different ways. Wallace et al 

(2006) defined the beginning of an event as an increase of 7 µg m-3 above the baseline 

 
1 This chapter is a published paper at https://doi.org/10.1080/23744731.2019.1676094 
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concentration and the end as the running average falling below 10 µg m-3 and the time rate 

of change in concentration becoming negative. Similarly, Chan et al. (2018) defined events 

as a 10 µg m-3 increase above the baseline concentration. Event start time was defined as 

the time when there are three consecutive measurements that have zero or positive change 

from the previous measurement, and the end time was defined as three consecutive 

measurements with zero or negative change from the previous measurement.  

Several studies have investigated the ability of low-cost particle sensors to register 

indoor emission events and to recover to the correct background concentration after an 

event. Singer & Delp (2018) evaluated response to indoor sources including dust, toast, 

incense, and cooking in a laboratory.  They found some sensors can track rapid changes in 

concentrations with accuracy close to that of research-grade instruments, while some miss 

events completely. Performance was particularly poor for events that emitted mostly 

particles smaller than 0.3 µm. Similarly, Manikonda et al (2016) used Arizona Test Dust 

to evaluate low-cost particle sensors and reported peak concentrations 30% higher than 

reference instruments in some sensors and 50% less in others. Zikova et al. ( 2017) tested 

66 low-cost sensors and compared them to a reference instrument in an indoor residential 

setting for 3 days. The reference instrument identified two peaks exceeding 20 µg m-3, and 

in both instances, the average of the 66 sensors was greater than the concentrations reported 

by the reference instrument.  
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3.1.2 Consistency between multiple instances of a single sensor model 

 

Several studies collocated multiple sensors of the same model to evaluate 

consistency. Mukherjee et al (2017) showed that one type of particle sensor demonstrated 

very high manufacturing consistency throughout the test period in an outdoor environment 

(R2 = 0.99) while other types had greater discrepancies. Polidori et al. (2016a) tested 

sensors in triplicate to determine their intra-model variability, and showed intra-model 

variability greater than 20% in some cases. Zikova et al.  (2017) showed varying 

performance among 66 low-cost sensors. Manikonda et al. ( 2016) tested several sensors 

and found that one model reported similar concentrations during particle events, while 

another model differed by 30% between the duplicates. 

 

3.2 Objectives 

In this study, we subject several low-cost particle sensors from several manufacturers 

to typical emission events in a real home and compare their response with research-grade 

instrument response.  Our objectives in this work were to:   

1. Assess ability of low-cost sensors to characterize different types of typical indoor 

particle emission events in a real indoor environment. 

2. Assess the consistency of multiple instances of sensors fabricated by the same 

manufacturer. 

3. Investigate the effect of averaging time on apparent performance. 
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3.3 Devices Tested 

We evaluated eight commercial products: three bare sensors (BS) and five 

integrated devices (ID). We tested multiple instances of each as indicated in Table 3.1.  

Bare sensors are small sensors usually less than 10 cm along their longest edge. Their 

output is an electrical signal that must be then translated into usable information by the end 

user or device in which it is housed. Conversely, integrated devices contain one or more 

sensors, housing, and storage/communication capability. All sensors (both BS and ID) 

tested in this study operate using a light scattering principle. Light is generated by a light-

emitting diode, then often focused by one or more lenses, and scattered by suspended 

particles in the air stream. A photodetector detects light scattered by the particle stream and 

this signal is converted to either number of particles in the stream or an estimate of mass 

concentration. Particles are introduced into the sensor either by natural convective flows 

caused by a resistor (e.g., BS2) or by forced advection driven by a fan inside the sensor 

(e.g., BS1 and BS3).   

 

We refer to these sensors and devices by the designations listed in Table 3.1 from here 

forward.  Table 3.1 also includes manufacturer-reported detectable size range, sampling 

time, data acquisition and communication method. No specific product names are used in 

order to be compliant with the ASHRAE Commercialism Policy.  We briefly describe each 

sensor as well as two reference instruments: a scanning mobility particle sizer (SMPS) and 

an aerodynamic particle sizer (APS) in Additional Tables and Figures. 
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Table 3.1. Specifications of tested integrated sensors and bare sensors

Sensor No. of  
Units 

Cost 
(USD) 

Mass Concentration Range 
(µg m-3) Size Communication 

(Output Method) Sampling time Bare sensors 
used 

ID1 1 $699 0-500 PM1, 2.5, 10 Cloud-based storage 1 min unknown 

ID2 3 $200 0-1000  PM1, 2.5, 10 Bluetooth, Wi-Fi 
Serial connector 1 s BS3 

ID3 3 $290 Number concentration  PM0.5-2.5, 
PM>2.5 

Serial connector, 
software 1 min unknown 

ID4 2 N/A 0 -1000 PM1, 2.5, 10 Serial connector ~900 milliseconds BS3 

ID5 3 $299 0 -1000 PM1, 2.5, 10 SD card storage, Wi-Fi 80 s BS3 

BS1 2 $30 0 -1000 PM 2.5, 10 Serial connector 
(UART) 2 s N/A 

BS2 3 $15 0 -500 N/A Serial connector 
(Analog) 1 s N/A 

BS3 2 $25 0 -1000 PM1, 2.5, 10 Serial connector 
(UART) ~ 900 milliseconds N/A 
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3.4 Experimental Methodology 

 

We deployed the BS and ID, along with the SMPS and APS as reference 

instruments, in an on-campus building. The reference instruments are counting the aerosol 

particles while the low-cost particle sensors are using aggregated light scattering to attempt 

to deduce how many particles there are, so we consider that the instruments are more 

accurate than the low-cost particle sensors. This building is a test house that includes a 

working kitchen, dining and living areas, two bedrooms, and a bathroom. We mimicked 

operation in a typical residence by conducting indoor particle-generating activities such as 

cooking, burning incense, lighting candles, spraying room deodorizer, and opening 

windows to promote outdoor-to-indoor penetration.  All of the reference instruments, ID, 

and BS were located in the living room, marked with an X in Figure 3.1.  ID and BS were 

placed inside a cage with three elevated wire racks to allow for air flow.  All bare sensors 

were operated with a microcontroller (e.g., Arduino) using a program written in the C 

language.  This program also recorded the data into a real-time output file. We used a serial 

communication software to access all data from sensors’ serial connectors. SMPS and APS 

data were merged using an approach similar to Khlystov et al. (2004b), and we use the 

notation “SMPS+APS” to indicate combined data. Particle mass concentrations were 

calculated by integrating across the entire combined particle size distribution, assuming 

spherical particles and a particle density of 1 g cm-3. Although these assumptions may not 

be strictly true for all particle sources, it is common in the absence of known particle shapes 

and densities (L. Wallace, 2007) . 
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Figure 3.1: Sensors and reference instrument inside the test house 

 

The sources were generated either in the living room or in the adjacent open 

kitchen. Concentrations naturally decayed in the room via air exchange with the outdoor 

environment, gravitational settling, and other loss mechanisms. During this testing, we 

used multiple sources (27 total events) every one or two days over approximately three 

months. Detailed information about particle sources can be found in Table 3.2. For each 

event, the start time was defined as the time after we introduced the PM source and 

measured concentration increased for five consecutive data points.  The end time was 

defined as the time at which the concentration decreased for five consecutive data points 

and fell below 10 µg m-3.  

In Table 3.2, each event is described. The mode of the particle size distribution is 

determined from the combined SMPS and APS (SMPS+APS) data, where we can observe 

that the mass-mode particle sizes are different for different PM source types. Most sources 
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have only one size mode that is fairly repeatable. Room spray always has a size mode of 

8-9 µm. Burning toast always provides a mode in the range of 300-500 nm. Similarly, 

burning candles always generate particles with a mode of 300-700 nm. Burning incense 

mostly generates 200-300 nm particles, but it also frequently has a larger mode that may 

be related to differences in the combustion process (e.g., “smouldering” rather than 

“flaming”). Opening a window can also have two modes, around 300 nm and 2 µm; this 

may be because both coarse particles from a nearby gravel road and fine particles from a 

nearby highway can enter the house through the window.  

 
Table 3.2. List of emission events, duration, and particle size information. 

 

Date Time Duration 
Time(min) PM source Mode of Averaged Particle Size 

Distribution during Event 

09/25 11:05-13:20 135 Burning incense 300 nm 

09/28 11:15-13:00 105 Open door 345 nm 

09/28 15:50-16:30 40 Deodorizer 9.3 µm 

10/02 9:30-11:00 90 Open window 2.4 µm 

10/02 11:30 -13:00 90 Burning candle 290 nm 

10/03 11:05-13:00 115 Open window 346 nm 

10/05 11:20-13:00 100 Cooking 135 nm, 2.5 µm 

10/08 10:20-10:40 20 Open window 300 nm 
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Date Time Duration 
Time(min) PM source Mode of Averaged Particle Size 

Distribution during Event 

10/09 12:00-13:00 60 Burning incense 180 nm, 700 nm, 8 µm 

10/11 10:45-11:20 35 Burning toast 445 nm 

10/12 12:50-13:05 15 Deodorizer 8.1 µm 

10/16 11:46-15:20 214 Burning incense 200 nm, 600 nm 

10/18 11:40-12:00 20 Burning candle 370 nm 

10/19 10:25-11:40 75 Open window 271 nm, 7.2 µm 

10/19 16:20-17:20 60 Deodorizer 7.7 µm 

10/23 11:20-16:20 300 Burning toast 500 nm 

10/25 11:36-12:20 44 Deodorizer 7.6 µm 

10/30 11:10-15:20 250 Burning incense 253 nm, 630 nm 

11/10 13:33-15:20 107 Deodorizer 7.7 µm 

11/13 11:47-15:00 193 Humidifier 200 nm 

11/16 11:47-12:53 66 Deodorizer 8.1 µm 

11/20 11:40-12:40 60 Deodorizer 8.3 µm 

11/30 11:36-12:00 24 Burning candle 496 nm 

12/03 11:45-13:00 75 Burning candle 700 nm 
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Date Time Duration 
Time(min) PM source Mode of Averaged Particle Size 

Distribution during Event 

12/06 11:35-12:20 45 Burning toast 543 nm 

12/07 13:23-17:00 217 Burning toast 325 nm 

12/11 13:23-15:34 131 Burning toast 472 nm 

 
The output data from ID and BS were mostly recorded at 0.5 or 1 Hz (based on the 

sensor capability) using serial communication software with corresponding computer time 

logged. The raw data included text files and comma-separated variable files. We used a 

script to post-process the raw data. The raw data had timestamps to enable time alignment 

among all sensors (if needed), and the aligned data were then averaged into 1 minute bins 

to align with the SMPS+APS. The 1-minute time series data were processed using a 

moving averaging method with a window of 30 minutes and step size of 1 minute.   

Performance is most often quantified in the literature with R2, slope, intercepts, 

linearity, or an integrated approach. In most cases, a linear regression analysis is the most 

commonly used method to evaluate sensor accuracy (Brauer, 2010; Budde & Beigl, 2016; 

Holstius et al., 2014; D. Liu et al., 2017; Northcross et al., 2013; Zheng et al., 2018). In 

this study, we have focused primarily on R2, slope and intercepts to quantify relationship 

between the sensors and reference instruments.  We also use two other metrics, ratio of 

integrated mass concentrations over event duration and peak concentration ratios, to 

quantify the ability of sensors to capture events. 
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3.5 Results 

In the following section we present the results of the field study.  First, we present 

an overall summary of low-cost sensor response and reference-grade instrument response. 

We then characterize the integrated response of the low-cost devices and compare to 

reference-grade instruments in order to assess the low-cost sensors’ ability to quantify 

exposure.  We then distinguish the response of each sensor by source type. Lastly, we 

compare multiple instances of devices from the same manufacturer to assess the 

consistency of performance among devices from the same manufacturer.   

 

3.5.1 Event Detection 

 
Figure 3.2 shows the typical response of sensors and reference instruments to 

different event types, both as a time series of all sensors and the average mass size 

distribution. 

 

Figure 3.2a1 shows performance during incense-burning events. All ID and BS detect the 

event, possibly because this event generates a mass concentration of particles greater than 

500 µg m-3. They also all recover to the background concentration. All ID and BS follow 

trends similar to the SMPS+APS, but the magnitude of the response varies with some 

responses greater and some less than the reference instruments. Figure 3.2a2 shows the 

averaged particle mass size distribution during this event.  Burning incense has a multi-

modal particle mass distribution, with peaks at 180 nm, 700 nm, and 8 µm.  
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In Figure 3.2b1, burning toast also generates high mass concentrations approaching 

500 µg m-3. Similar to the incense burning event, BS1 and BS3 record greater mass 

concentrations than the SMPS+APS. ID4, ID1, ID5 are closer to SMPS+APS. ID2, ID3, 

and BS2 show only 50% of the mass concentration of the SMPS+APS, consistent with the 

incense burning event. From Figure 3.2b2, a unimodal size distribution is observed during 

this event with a mass mode diameter at 445 nm.  

 

All ID and BS display similar trends when the window is opened (Figure 3.2c1), 

despite much lower mass concentrations; the peak mass concentration from the 

SMPS+APS is 27 µg m-3.  Opening a window can produce increased concentrations of 

both fine and coarse particles, depending on nearby outdoor sources. However in this event, 

higher concentrations of smaller particles with a mass mode at 346 nm can be observed in 

Figure 3.2c2. This indicates that most sensor types respond even under relatively low 

particle mass concentrations and for relatively small particle sizes. 

 

The response of ID and BS to the deodorizing spray is different than other events, 

as shown in Figure 3.2d1. There was a sharp increase in concentrations shortly after the 

spray was introduced. ID3, BS1 and BS2 showed higher mass concentrations than the 

SMPS+APS. Figure 3.2d2 demonstrates that during spray events only coarse particles with 

a mode at 8 µm were produced. The relatively poor performance of the low-cost sensors 

for this source may be due to uneven mixing of spray particles and the relatively fast 

settling of these particles and/or challenges associated with sampling these relatively large 
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particles. The performance of the sensors may also be different for liquid particles, 

although they did respond relatively well to humidifier-generated particles. 

 

Figure 3.2e1 shows sensors’ response to the burning candle event. All sensors 

exhibited similar behavior. Burning a candle produced mass concentrations less than 15 

µg m-3. Figure 3.2e2 demonstrates that burning the candle produced particles with a size 

mode around 300 nm.  

 

During the cooking event shown in Figure 3.2f1, all sensors display similar trends 

except for ID5. All show lower mass concentration than the SMPS+APS. From Figure 

3.2f2, a bimodal size distribution is again observed during this event with mass mode 

diameters of 135 nm and 2.5 µm.  

 

The humidifier generated a mass concentration greater than 200 µg m-3 (Figure 

3.2g1), with a mass mode at 200 nm.  All sensors responded to the humidifier with 

varying magnitudes of response, and each recovered to background concentrations. 
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Figure 3.2: Typical response of sensors and reference instruments to different event types 

 
Figure 3.3 shows the ratio of integrated mass concentration over the events to the 

SMPS+APS for each device and for each PM source, which provides a metric describing 

how well a given sensor estimates time-integrated exposure. In general, there is large 
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variability both among different sensor types and between different particle sources, 

ranging from close to zero to more than three. For example, the deodorizing spray almost 

always resulted in the lowest ratio for a given sensor. However, most of the sensors (except 

for BS2) have ratios greater than 0.5 for most of the events. Surprisingly, even though BS3 

is used in ID2, ID4, and ID5, the integrated devices have lower mass ratios; this may be 

related to particle losses in the housing of the IDs, but it could be related to some other 

mechanism that we have not identified.  

 

Figure 3.4 shows the ratio of the maximum particle mass concentration as output 

by a sensor during an event to the maximum concentration as reported by the SMPS+APS 

for that event, aggregated across all events of a given type.  Results are similar to Figure 

3.3. Most devices show ratios greater than 0.5 for most sources, indicating that most 

sensors reliably detect most indoor events.  Deodorizing spray is an exception, and the 

cooking event falls within 0.3 - 0.5 for most sensors. Again, we see that even though BS3 

is used in ID2, ID4, and ID5, the integrated devices have lower peak ratios. Differences in 

Figure 3 and 4 likely exist because the “decay rate” that a given sensor captures for a given 

event differs from that of the SMPS+APS (e.g., Figure 3.2). This is particularly pronounced 

when looking at ID1 in the burning toast event, with a peak ratio greater than 1 but an 

integrated mass ratio less than 1.  
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Figure 3.3: Ratio of integrated mass concentration over the events to the SMPS+APS for 
each device and for each PM source 
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Figure 3.4: Ratio of the maximum particle mass concentration as output by a sensor 
during an event to the maximum concentration as reported by the SMPS+APS for that 
event 

 

The denominators of the ratios presented in Figures 3.3 and 3.4 may be influenced 

by our assumption that all particles have a density of 1 g cm-3. If the true density of the 

particles was greater than 1 g cm-3, then we have under-estimated the mass concentration 

using the SMPS+APS, while if the true density of the particles was less than 1 g cm-3, then 

we have over-estimated the mass concentration using the SMPS+APS. Consequently, these 

ratios could shift up or down based on the “true” density of the particles. However, the 

numerator for each sensor will also effectively treat density as a constant, which is 

embedded in the manufacturer calibration for each sensor. Therefore, there is some 
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uncertainty in Figures 3.3 and 3.4, but we cannot quantify this due to the unknown source 

for the manufacturer calibration and the unknown true densities of the particles that we 

generated. 

However, we have explored using densities different from 1 g cm-3 (taken from the 

literature) for various particle events in Additional Tables and Figures. Briefly, literature 

results suggest that the density of particles generated from incense and candle burning, 

meat cooking, toast, and urban aerosols (as a proxy for opening the window) are greater 

than 1 g cm-3, while the density of particles generated by a humidifier is less than 1 g cm-

3. Therefore, in Figures B.3.3 and B.3.4, the bars for each of these sources shift up or down 

accordingly with the change in the assumed density in the conversion of SMPS+APS 

number concentration to mass concentration. While this affects the magnitude of the values 

reported, it does not change our general conclusions. 

 

3.5.2 Correlation of time series response by source type 

 
We now present an analysis of the time series response of the low-cost devices and 

their correlation with reference instruments.  Figure 3.5 shows the 1-minute-averaged data 

from ID4, BS3 and BS2 compared to the SMPS+APS when exposed to seven different PM 

sources. Also included in Figure 3.5 are solid black 1:1 lines showing the behavior of a 

“perfect” sensor. In each row of Figure 3.5, the left panel shows the entire mass 

concentration range for both sensors and the reference instruments during this event, while 

the right panel shows the subset of the same data with mass concentration < 100 !g/m3 for 
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both sensors and the reference instruments. We present these three representative examples 

here and include plots of the response of the other devices tested in Figure 3.5. 

 

Figure 3.5: ID4, BS3 and BS2 compared to the SMPS+APS when exposed to seven 
different PM sources 

 

In Figure 3.5, we highlight several features of the responses of the sensors tested.  

First, some sensors showed responses very similar to reference instruments, but only under 

certain circumstances.  Namely, there is a range of concentrations in which response is very 

similar to the reference instruments but most responses deviate from a linearly proportional 

response at some higher concentration.  For example, this is evident in Figure 3.5a in which 

the ID4 deviation from linearity for toast occurs at approximately 500 µg m-3. It should be 
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noted that this deviation from linearity is source-specific.  For example, there is an 

observable drift from linearity for ID4 that occurs around 80 µg m-3 when incense is the 

source.   

 

The slope of the response line is also very source-specific in most cases.  For BS3, 

we see the slope of response during cooking events, spray events, and incense deviate 

substantially from that of, for example, toast. Scatter around the linear response curve is 

also somewhat greater for this particular sensor.  This may have consequences for 

application in indoor environments in that a simple linear calibration of many sensors 

available on the market would only be valid under certain event types. 

 

Lastly, several sensors under several event types had responses that were very 

weak, or correlated very poorly to reference instruments.  This is evident in the graphs for 

sensor BS2 for most events, and in the response of most sensors to spray, incense and 

cooking events.  Hypotheses for why this occurs include that the optical properties of liquid 

particles emitted during spray and cooking events may deviate greatly from those with 

which the sensor was calibrated, and spatial variations within the room for some sources 

(we suspect that this is the case for incense) may mean that the response of the sensor is 

highly dependent on location. 

 

A numerical quantification of the information in these plots is given in Table 3.3 as 

the parameters defining linear regression between sensors and reference instrument. For an 

ideal sensor, the slope should be equal to “1”, and the intercept should equal to “0”. We 
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used t-test to determine if the slope is significantly different than 1 and if the intercept is 

significantly different than 0 (both at a 5% significance level). However, before we tested 

if the slopes are different than “1”, we first tested if the slopes are significantly different 

than “0”. The vast majority of the slopes are significantly different than “0”, strengthening 

our claim that the sensors can be used for event detection. Sensors with a linear relationship 

(i.e., slopes significantly different than zero and also different than one) can be corrected 

using a multiplication factor. Next we test if the slopes are significantly different than “1”. 

From Table 3.3, we observed that the slopes are significantly different than “1” for the 

majority of the sources and for the majority of the sensors. With an exceptions of ID5, 

which have slopes that not significantly different than “1” for burning candle, humidifier 

and open window events, and ID4 have slopes that are not significantly different than “1” 

for humidifier and open window events.  Regarding the intercepts, the majority of these 

are significantly different than zero, suggesting an offset in the sensors’ responses when 

the reference instruments are reading a concentration approaching 0 μg m-3.  
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Table 3.3: Linear regression coefficient for all events of all sensors (Values with # for 
slope indicate that this coefficient is not significantly different than “0”. Values with * for 
slope indicate that this coefficient is not significantly different than “1”,  and the p-value 
is provided in parentheses. Values with * for intercept indicate that this coefficient is not 
significantly different than “0”, and the p-value is provide in parentheses.)  

PM 
Emission 
Type 

 ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 

Incense R2 0.30 0.12 0.07 0.23 0.14 0.31 0.23 0.20 
slope 0.20 0.10 0.10 0.24 0.32 0.91* 

(0.96) 
0.06# 0.33 

intercept 66.41 54.55 25.22 74.16 98.32 82.61 10.95 48.37 
Candle  R2 0.30 0.20 0.66 0.47 0.43 0.36 0.05# 0.47 

slope 0.21 0.20 1.41 0.53 1.10* 
(0.78) 

0.17 0.02 0.69 

intercept 18.08 13.43 -1.72* 
(0.76) 

11.70 19.47 18.92 5.72 3.02 

Toast R2 0.62 0.91 0.89 0.92 0.92 0.94 0.90 0.78 
slope 0.53 0.50 0.72 0.78 0.78 1.89 0.18 1.20 
intercept 72.72 34.20 -7.93* 

(0.09) 
60.28 38.11 40.08 6.06* 

(0.08) 
13.82 
 

Spray R2 0.01 0.34 0.43 0.30 0.003 0.43 0.30 0.50 
slope 0.02# 0.04 0.25 0.06 0.001# 0.15 0.03# 0.12 
intercept 22.72 14.04 54.32 13.91 0.004* 

(0.98) 
36.95 7.00 12.34 

Cooking R2 0.30 0.30 0.06 0.87 0.41 0.77 0.70 0.74 
slope 0.21 0.26 0.02 0.36 0.02 0.43 0.09# 0.16 
intercept 18.08 11.06 24.83 2.11* 

(0.51) 
12.05 16.87 4.46 3.13* 

(0.47) 
Humidifier R2 0.92 0.92 0.91 0.92 0.97 0.87 0.67 0.95 

slope 0.61 0.57 0.53 1.02* 1.02* 
(0.76) 

1.86 0.12 1.18* 
(0.72) 

intercept 17.62 13.57 0.27* 
(0.30) 

1.05* 
(0.14) 

3.99 7.29 6.78 -6.29 

Open 
Window 

R2 0.90 0.94 0.81 0.94 0.91 0.95 0.31 0.89 
slope 0.97* 

(0.04) 
0.71 0.58 0.85* 

(0.94) 
0.95* 
(0.99) 

1.51 0.19 0.56 

intercept 0.60 -1.23 -0.54 -1.68 0.98 1.02 7.08 -1.88 
Background  R2 0.34 0.49 0.48 0.49 0.45 0.52 0.43 0.41 

slope 0.27 2.56 0.35 0.40 0.42 0.93* 
(0.42) 

0.08 0.60 

Intercept  3.21 0.27* 
(0.04) 

1.23 1.96 4.43 4.62 2.34 0.06* 
(0.75) 
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3.5.3 Manufacturing consistency   

 

Table 3.4 shows linear regression models and fit metrics between 1-minute data of 

all possible combinations of sensor pairs in our study. ID2, ID4, ID5, BS1 and BS3 

demonstrate very high consistency between the same sensors, as seen by slopes and R2 

values closer to one. However, the correlations between the ID3 and BS2 pairs are 

relatively low.  We do not speculate on the mechanism for these discrepancies or lack 

thereof, but our results are consistent with previous studies indicating that some sensor 

types may have high intra-model variability (D. Liu et al., 2017; Manikonda et al., 2016; 

Morawska et al., 2018; Mukherjee et al., 2017; Zheng et al., 2018; Zikova et al., 2017). 

 

Table 3.4. Linear regression and correlation between sensors from the same 
manufacturer. The “underscore” notation represents duplicates of the same sensor type 
(e.g., we tested three of ID2, three of ID3). (Kumar et al., 2016; Wang et al., 2015) 

X Axis sensor Y Axis sensor Least square R
2
 Reduced major axis r 

ID2-1 ID2-2 Y = 0.937 x + 0.20 0.97 Y = 0.950x+ 0.142 0.97 

ID2-1 ID2-3 Y = 0.974 x+ 0.828 0.96 Y= 0.992x + 0.728 0.95 

ID2-2 ID2-3 Y = 1.03x + 0.65 0.99 Y = 1.044x + 0.620 0.98 

ID3-1 ID3-2 Y = 0.797x + 1.425 0.64 Y = 1.00x + 0.402 0.62 

ID3-1 ID3-3 Y = 0.692x + 0.440 0.80 Y = 0.773x – 0.014 0.81 

ID3-2 ID3-3 Y = 0.626x + 0.560 0.65 Y = 0.779x – 0.351 0.62 



 76 

X Axis sensor Y Axis sensor Least square R
2
 Reduced major axis r 

ID4-1 ID4-2 Y = 1.065x – 0.298 0.99 Y = 1.070x – 0.327 0.99 

ID5-1 ID5-2 Y = 1.012x – 0.116 0.99 Y = 1.0144x – 0.1007 0.99 

ID5-2 ID5-3 Y = 0.95x – 0.094 0.98 Y = 0.9671 – 0.0317 0.96 

ID5-1 ID5-3 Y = 0.981x + 0.075 0.98 Y = 0.9896x – 0.0446 0.99 

BS2-1 BS2-2 Y = 0.95x + 11.70 0.77 Y = 1.080x + 11.167 0.75 

BS2-1 BS2-3 Y = 1.31x + 11.76 0.36 Y = 2.183x + 7.921 0.34 

BS2-2 BS2-3 Y = 1.36x – 3.73 0.45 Y = 2.02x – 13.992 0.45 

BS1-1 BS1-2 Y = 0.974x + 0.452 0.93 Y = 1.00x - 0.046 0.93 

BS3-1 BS3-2 Y = 0.927x + 0.69 0.91 Y =0.968x - 0.245 0.92 

 
 

3.5.4 Effect of Averaging Time 

 

Lastly, we investigate the effect of averaging time on the apparent performance of 

low-cost sensors as compared to the reference instruments.  To do this, we took the time 

series of all data taken over the course of the 2.5 month investigation and averaged it over 

different lengths of time.  In Figure 3.6, we then plot the coefficient of determination of 

the linear fit of the data of each low-cost sensor and the reference instruments versus the 

time over which the data was averaged.  For example, 10-minutes on the abscissa implies 

data was averaged over ten minutes and then compared to similar reference instrument data 



 77 

averaged over the same time period. We used 1 minute, 10 minutes, 30 minutes, 1 hour, 6 

hours, 12 hours and 24 hours as the averaging times to examine the correlation between 

sensors and the reference instruments.  While the longer averaging times are well beyond 

the length of an event, they may give some insight into how these sensors may function as 

indicators of overall air quality in a given building, assuming they are calibrated correctly.  

We show the same information with two different abscissas for clarity.  We see that for all 

devices there exists a distinct time scale at which apparent performance begins to decline 

rapidly.  Using this R2 metric this occurs for most sensors at an approximately one-hour 

averaging time.  This may point to a possible time scale at which control decisions could 

be executed with sensors in their current form. 

  

Figure 3.6: Coefficient of determination R2 of the linear fit of the data of each low-cost 
sensor and the reference instruments versus the time over which the data was averaged 
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3.6 Discussion and Conclusion 

In this study we evaluated three BS and five ID along with a SMPS and APS as 

reference instruments in a test house subjected to seven typical indoor particle-generating 

activities over two and half months.  In general, the consumer devices showed large 

variability as quantified by several metrics.  Specifically: 

• All events tested in this work resulted in measurable and significant responses of 

all devices tested, although magnitude of responses varied widely. 

• The ratios of the integrated signals and peak signals to the reference instruments 

over the course of an event range from near zero to three.  

• All low-cost products showed responses less than reference instruments for spray 

and cooking events, with peak and integrated ratios less than 0.5. Correlations 

between reference instruments and low-cost products for these events were also 

lower than for other events.  Incense burning also resulted in lower 

concentrations, possibly due to large spatial variations.  

•  We did not witness an inability of any sensor to return to baseline concentrations 

after an event. 

• While some devices showed nearly linear response to multiple types of particle 

emission events, the slope of the linear response varied significantly, meaning 

simple linear calibration may only be appropriate for certain event types. 

• Most sensors showed a distinct functional range of mass concentrations in which 

response was linear and consistent.  The boundaries of this range varied 

significantly between products. 
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• Intra-model consistency was generally good for the sensors used, with five 

models showing intra-model correlations, R2, of 0.92-0.99, while two models had 

significantly lower intra-model consistency (R2 = 0.34-0.75). It should be noted 

that the small sample size measured precludes any statistically significant 

conclusions from being drawn from this data. 

• When assessing sensor performance over the entire experimental campaign, it 

appears averaging time affects apparent performance dramatically, as is consistent 

with previous work.  In the experiments done in this work, at a time scale of 

approximately one hour, correlation to reference device performance appears to 

decrease significantly. It should be noted that much of the data used to find this 

correlation was under low-concentration conditions, and emission event 

frequency was not necessarily representative of the operation of a real home.  We 

do not assert a mechanism for this apparent decline in performance at shorter time 

scales. 

 

Further laboratory studies will examine the size-specific response of these sensors to 

different PM source, and also evaluate the response of these sensors to particles of different 

composition in Chapter 5.  
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3.7 Additional Tables and Figures 

 
Devices Tested 

BS1 uses a fan to drive the intake and exhaust of particles. Particles enter through 

the sensing area and pass through a light beam produced using a laser as the light source 

and a lens positioned across from a photodetector.  As particles pass through, the sensor 

light intensity varies, and the photodetector then produces a 32-byte signal, from which, 4 

bytes are used in a proprietary algorithm process to produce serial outputs for particle 

sensors for PM 2.5 and PM10. BS1 has a sampling time of 2 second.  

  

BS2 uses a thermal resistor to drive particle flow through the detector area, 

comprised of LED and photodetector both utilizing individual lenses to magnify the light 

intensity. The LED is turned on for 280µs and then switched off for 40µs. The light 

intensity will differ based on particle density, which in turn effects the voltage output read 

by the photodetector. The intensity of the voltage between pulsed widths is used to interpret 

sensor outputs, which can be assessed using a manufacture calibration curve to produce 

total PM mass density (µg/m3). BS2 has a sampling time of 1 second. 

 

 

 



 81 

BS3 uses a fan to drive airflow and also includes a laser-based light source and a 

photodetector. It produces a 32-byte digital signal in which 12 -bytes are used in a 

proprietary algorithm to provide serial output of number concentration for particles in 

different size ranges (>0.3, >0.5, >1.0, >2.5, >5 and > 10 µm). The mass concentration can 

then be calculated in those size bins by assuming a particle density.  BS3 has a sampling 

time of approximately 900 milliseconds.  

 

Integrated devices combine bare sensors and a microcontroller in a compact enclosure, and 

they nearly always provide PM mass concentration.   

 

ID1 has a variety of unique measures such as cellular, Wi-Fi, and Bluetooth 

capabilities. ID1 implements a cloud-based system for continuous long-term monitoring 

with a wireless device monitoring PM1, PM2.5, PM10, CO2, CH2O, VOCs, Temperature, 

humidity and pressure. ID1 has a sampling time of 1 minute.  

 

ID2 communicates over Wi-Fi and Bluetooth, and a serial connector. It also has 

weather-resistant features. It requires an Android device to configure the device. 

Measurements are transmitted to an Android app and can be added to a map. ID2 has a 

sampling time of 1 minute.  

 

ID3 detects two size ranges: PM0.5-2.5 and PM2.5-10. It uses a fan to drive the airflow, 

and baffles to direct the particles into a beam trap that incorporates a laser and a 

photodetector. ID3 has its own software which can visualize the time series plot of particle 
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number concentration. It also communicates via a serial connector. ID3 has a sampling 

time of 1 minute.  

 

ID4 has two BS3 inside the enclosure. It uses serial communication to provide 

number concentration of > 0.3, > 0.5, > 1.0, > 2.5, > 5 and > 10 µm. It also provides PM1, 

PM2.5 and PM10 mass concentration. Because ID4 is still in development, it has a sampling 

time of approximately 900 milliseconds, similar to BS3.  

 

ID5 also uses two BS3 inside a weather resistant enclosure. It communicates with 

Wi-Fi, and it has a built-in 16 GB microSD card to store the data and a real-time clock for 

offline logging. The output data structure is similar to ID4 but the sampling time is 80 s.  

 

In terms of the cost of IDs and BSs, Most IDs have a price in the range of $200-

$300. BSs have a price in the range of $15-$30. In terms of size resolution, ID1, ID2, ID4, 

ID5 and BS3 all provide mass concentration for PM1, PM2.5, and PM10. Among them, ID4, 

ID5 and BS3 also present number concentration over different size bins. ID3 only provides 

two channels (PM0.5-2.5, > PM2.5) of number concentration. Similarly, BS1 only provides 

mass concentration in two size bins (PM2.5, PM10). BS2 only presents overall mass 

concentration of PM2.5.  

 

We co-located two reference instruments with the low-cost devices in all 

experiments.  These are described below: 

Scanning Mobility Particle Sizer  
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A Scanning Mobility Particle Sizer system contains several components. In the first 

step, sometimes optional, an aerosol sample passes through an impactor, which removes 

particles larger than a certain diameter. In the second step, the aerosols pass through a 

neutralizer, which establishes an equilibrium charge distribution on the particles; in this 

work, we used a soft X-ray diffusion charger to impart this charge distribution. In the third 

step, the particles enter a Differential Mobility Analyzer (DMA) where the aerosols are 

classified according to their electrical mobility. When a given voltage is applied to the center 

of the DMA, only a specific particle diameter will be able to exit the column; by scanning 

through a range of voltages between roughly 10 V and 10,000 V, a distribution of particle 

diameters can be characterized. The final component is a Condensation Particle Counter, 

which counts the particles and provides a particle number concentration.  

In this work, our typical scan time was 60 seconds between voltages corresponding 

to roughly 18 to 532 nm. Figure A3-1 provides sample data for a single scan through the 

voltages as a histogram of 95 size “bins” (x-axis). The y-axis is a normalized concentration 

(dN/dlogDp), which represents the number concentration of particles dN between diameter 

Dp,n and Dp,n+1; hence, the units on the y-axis are #/cm3/nm. 
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Figure 3.7: Example SMPS data for a single scan when monitoring particles 

 

Aerodynamic Particle Sizer Spectrometer  
 

The Aerodynamic Particle Sizer spectrometer combines the technology of light 

scattering measurement and time-of-flight measurement technology.  It accelerates the 

particles into the detection area, where two partially overlapping laser beams are emitted 

causing particles to generate two peak electrical signals. Analyzing the length between the 

two peaks gives aerodynamic size information, by measuring the time when particle 

traverse between the laser beams. By analyzing the intensity of the peak, it provides the 

particle size and concentration information because the intensity of the electrical signal is 

proportional to the particle concentration. The measured particle aerodynamic size is range 

from 523 nm to 19.8 µm.  
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Response of individual sensors to multiple types of particle emission events 
 

We show the response of the sensors and integrated devices not already presented 

in the body text in Figure 3.8.  Responses are color-coded by particle emission event type. 

Also included are 1:1 solid lines showing the behavior of a “perfect” sensor. In each row 

of Figure 3.8, the left panel shows the entire mass concentration range for both sensors and 

the reference instruments during this event, while the right panel shows the subset of the 

same data with mass concentration < 100 !g/m3 for both sensors and the reference 

instruments.  
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Figure 3.8: ID1, ID2, ID3, ID5 and BS1 compared to the SMPS+APS when exposed to 
seven different PM sources 
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Responses using a different density for each particle sources 
 

 

In order to convert the output of reference instruments to a mass concentration that 

could then be compared to the output of the low-cost sensors (given as a mass concentration 

for all but one sensor), we first assumed a density of 1 g/cm3 for all particle sources.  This 

is the assumption for all data reported in the body of this article.  In order to assess the 

effect of this assumption, we analysed the same data using particle density values 

previously reported in the literature.  In cases where multiple values were reported for the 

same source, we averaged the reported values. This gave the following density values: 

• Incense:  1.19g/cm3 ( Ji, Bihan, Ramalho, Martinon, & Nicolas, 2010; Singer & 

Delp, 2018).  

• Candle: 1.25 g/cm3 (Rissler et al., 2013; B. C. Singer & Delp, 2018; Vu et al., 

2017).  

• Cooking meat: 1.006 g/cm3 (Pan & Singh, 2001).  

• Burning toast: 1.28 g/cm3 (B. C. Singer & Delp, 2018).  

• Humidifier: 0.94 g/cm3 (Umezawa et al. 2013; Singer and Delp 2018).  

• Urban aerosol during window opening: 1.5g/cm3 (Rissler et al., 2013; P. Taylor et 

al., 2010).  

• Deodorizer spray is hypothesized to be 1g/cm3.  

 

Figure 3.9 shows the ratio of integrated mass concentration over each event as 

measured by the low-cost sensor to that measured by the SMPS+APS, which provides a 
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metric describing how well a given sensor estimates time-integrated exposure. Most of the 

ratios of integrated mass of sensors to the SMPS and APS decreased compared to Figure 

3, which assumed particle density equal to 1g/cm3.  

Figure 3. 10 shows the ratio of the maximum particle mass concentration as output by 

a sensor during an event to the maximum concentration as reported by the SMPS+APS for 

that event and aggregated across all events of a given type after using different densities 

for different events.  Similar to Figure 3.9, most of the ratios decreased while the ratio for 

humidifier increased.   

   

 

Figure 3.9: Ratio of integrated mass concentration over the events to the SMPS+APS for 

each device and for each PM source  
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Figure 3.10:  Ratio of the maximum particle mass concentration as output by a sensor 
during an event to the maximum concentration as reported by the SMPS+APS for that 
event 
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Chapter 4: Examining the functional range of commercially available low-cost airborne 

particle sensors and consequences for monitoring of indoor air quality in residences2 

 
 

4.1 Introduction 
 

Interest in low-cost sensors for indoor environmental monitoring and control of 

ventilation and air cleaning systems in smart buildings has increased recently.  Many such 

devices are available from several manufacturers, and performance of such devices has 

been widely documented.  In particular, low-cost particle sensors that measure airborne 

particle concentrations with only a small light-emitting diode and a small photocell are 

available from more than a dozen manufacturers and have been studied extensively in 

laboratory and field studies for both outdoor and indoor applications. 

However, the conclusions drawn from the various studies investigating 

performance of these low-cost particle sensors vary.  In some cases the conclusions are in 

direct contradiction with those of other investigations.  Several mechanisms have been 

identified as a cause of the variation in performance of these sensors.  These include effects 

of humidity(Han et al., 2017; Jayaratne et al., 2018; McMurry & Stolzenburg, 1989; Rai et 

al., 2017; Wang et al., 2015), ambient light, particle composition(Northcross et al., 2013; 

Sousan et al., 2017; Wang et al., 2015), manufacturing consistency(Polidori et al., 2016b; 

Zikova et al., 2017) , particle size effects (D. Liu et al., 2017; B. C. Singer & Delp, 2018; 

 
2 This chapter is a published paper at https://doi.org/10.1111/ina.12621 
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Sousan et al., 2016; Wang et al., 2015),  and drift or degradation over time (Crilley et al., 

2018; Polidori et al., 2016b; M. D. Taylor et al., 2016).  

One effect that has not been sufficiently investigated is the effect of the 

concentration of particulate matter in the environments in which these sensors operate.  In 

other words, we assume that as with any sensor, there is a distinct functional range in which 

these low-cost particle sensors function well, and both a low-concentration and high-

concentration range in which performance declines significantly. Wang et al (Wang et al., 

2015)showed evidence indicating a decrease of slope of sensor response as at 

concentrations as low as 160 µg/m3 and a saturated signal near 5000 µg/m3. Austin et al 

(2015)  defined the upper limit of functional range as the concentration at which a 10 

increase in the reference monitor (APS) resulted in less than 0.2 change in the Lo Pulse 

occupancy of the Shinyei PPD42NS sensors.  Most manufacturers report a lower bound of 

operating range of “0 μg/m3”, but we seek to assess whether this is truly zero or if the lower 

limit is actually some non-zero value. We hypothesize that the definition of this functional 

range is important in understanding the performance of these devices, and that failure to 

take this functional range into account can explain some of the variance in reported 

performance and variance in preliminary observations we previously made in the field.  

 

For these reasons we pursue three objectives over the course of an experimental 

campaign and associated simulations in this work: 

1. Put forward a definition of an upper and lower bound of a range in which a low-

cost particle sensor can be expected to perform comparably to more expensive 

instruments. 



 92 

2. Define this range for several widely available low-cost sensors and integrated 

devices. 

4.2 Materials and Methods 

 
4.2.1 Sensors Tested 

 
We tested three bare sensors (BSs) and five integrated devices (IDs) in this work.  

We define bare sensors as small stand-alone sensors measuring approximately five 

centimeters along their longest edge that output an electrical signal only, which then must 

be interpreted by the device in which it is housed or by its user via additional hardware.  

We define an integrated device as a packaged off-the-shelf consumer product that includes 

at least one bare particle sensor, a means of communication and/or storage, housing, and 

in some cases other sensors, a user interface, and/or an auxiliary fan or fans.   

Table 4.1 lists the bare sensors tested in this work along with some relevant 

information (including number tested), while Table 4.2 provides the same information for 

the integrated devices.  We have provided the manufacturer and model names in the spirit 

of reproducibility; no endorsement by the authors or the sponsor should be inferred. In this 

work, we make no efforts to calibrate these sensors; rather, we are simply using them “off-

the-shelf” in order to mimic how they might be used in a typical residential or commercial 

setting. 
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Table 4.1: Bare sensors tested, along with information from the manufacturer and prior 
testing reported in the literature 

 

*different version of sensor from same manufacturer tested in previous work 

 

 
 

 

 

 

 

 

 

 

Sens
or 

Type 
(Manufacturer) 

Cos
t 

Intake Manufacture
r 

Reported 
Range 

Use in 
Integrated 
Device(s) 

Previous Studies No. 
of 

Units 

BS1 HPMA115S0 
(Honeywell) 

$30 Fan 0 μg/m3 to 
1000 μg/m3 

None  2 

BS2 GP2Y1010AU0
f (Sharp) 

$15 Resist
or 

0 μg/m3 to 
500 μg/m3 

Used in 
commercially 

available 
devices that 

were not 
tested in this 

work 

(Budde et al., 
2013; Hojaiji et 
al., 2017; Liu et 

al., 2017; Sousan 
et al., 2016; 
Wang et al., 

2015; Weekly et 
al., 2013*) 

 
 

3 

BS3 PMS5003 
(Plantower) 

$25 Fan Effective 
0 μg/m3 to 
500 μg/m3 

Max 
0 μg/m3 to 
1000 μg/m3 

ID2, 
ID4; 
ID5 

(Jayaratne et al., 
2018; Kelly et 

al., 2017*; 
Zheng et al., 

2018*) 
 

2 
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Table 4.2: Integrated devices tested, along with information from the manufacturer and 
prior use reported in the literature 

 

Sensor Type Cost Sensor Previous Studies No. of Units 
ID1 AirThinx N/A unknown  1 

ID2 Airbeam2 $200 Previous 
version of 

BS3 

(B. C. Singer & Delp, 2018; 
Sousan et al., 2017) 

3 

ID3 Dylos 
DC1100 

PRO 

$290 unknown (Han et al., 2017; Hojaiji et 
al., 2017; Jiao et al., 2016*; 

Manikonda et al., 2016; 
Northcross et al., 2013; 

Polidori et al., 2016; Sousan 
et al., 2016*; Steinle et al., 

2013) 

3 

ID4 TSI 
Bluesky 

N/A Dual BS3  2 

ID5 Purple 
Air II 

$229 Dual BS3 (Polidori et al., 2016*; Singer 
& Delp, 2018) 

3 

 

*different version of sensor from same manufacturer tested in previous work 
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4.2.2 Experimental Methodology 

 
We conducted two phases of experimental work.  In the first phase, we first placed 

all sensors into a 0.71 m x 0.48 m x 0.38 m (0.130 m3) enclosed chamber.  We then closed 

the chamber and injected as close to “zero air” as we were able to achieve by filtering room 

air with HEPA and activated carbon filters.  We achieved a particle number concentration 

less than 200 #/cm3 during these experiments in all cases but were not able to achieve 

exactly zero, most likely due to some re-suspension within the chamber and/or possible 

generation by the sensors themselves.  We maintained these conditions in the chamber for 

two hours during which concentrations were logged for each device either through its 

native storage or through interfacing with micro-computers in the case of the bare sensors.  

As a reference, we also characterized particles in the chamber through a sampling port 

using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer 

(APS).  For each device we then define the limit of detection (LOD) according to the 

International Union of Pure and Applied Chemistry (IUPAC) definition for an “instrument 

detection limit”, where LOD = Mblank + 3σblank. Mblank is the average mass concentration for 

a given sensor under “zero air” conditions and σblank is the standard deviation for these 

conditions. This is similar to the definition used by others (Northcross et al., 2013; L. A. 

Wallace et al., 2011; Wang et al., 2015). 

In the second phase of experiments we subjected both the low-cost devices and the 

APS and SMPS to decay tests by injecting one of three different particle sources into the 

chamber, closing the chamber, and recording the concentration as it decayed in the 

chamber. We used incense, atomized ammonium sulfate [(NH4)2SO4] particles (solution 
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concentration of 10 g/L), and burnt toast smoke as the three particle sources in these decay 

tests. For each source, we generated a high concentration and passed them through a 

diffusion drier prior to entering the chamber. We then removed the source, letting the 

concentration in the chamber naturally decay (mainly via extraction of chamber air by the 

reference instruments) until all sensors’ concentration reached near zero.  The only sinks 

within the chamber were gravitational settling, deposition on chamber walls and sensors, 

and removal of chamber air by the reference instruments. We repeated these decay 

experiments four times for each source. The average temperature across all experiments 

was 26.01 ± 0.34 °C, and the relative humidity was 20.89 ± 4.36 %.  

Because the low-cost devices and reference instruments had different sampling and 

averaging frequencies, we then averaged all data into one-minute bins to allow direct 

comparison between all events.  SMPS and APS data were merged using the approach of 

Khlystov (2004).  We assumed a spherical shape for particles from incense (C. C. Yu & 

Hung, 1995), for atomized (NH4)2SO4 particles (Zelenyuk et al., 2006), and for burnt toast 

smoke (Lattimer, 2008). To convert SMPS+APS data to mass concentrations, we assumed 

the density of (NH4)2SO4  particles is 1.77g/cm3 (Zelenyuk et al., 2006),  that of particles 

generate by incense is 1.06 g/cm3 (B. C. Singer & Delp, 2018), and toast is 0.94 g/m3 (B. 

C. Singer & Delp, 2018). An example of the averaged sensor data compared to merged 

SMPS and APS data is provided in Figure 4.1. 
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Figure 4.1: a) Response of low-cost device compared to SMPS and APS during the decay 
test. b) Magnified view of data from panel a) for concentrations < 50 µg/m3. 

 

By looking at Figure 4.1b closely we can see that below some low concentration, 

which we refer to here forward as the lower limit of quantification (LOQ), the signal from 

the low-cost sensor becomes nearly constant and no longer responds to changes in chamber 

concentration as detected by the reference.  We defined a “running R2” metric to understand 

at what concentration the correlation between reference instrument and low-cost device 

breaks down.  This running R2 method is analogous to a running mean using a window of 

10 minutes and a step size of 1 minute.  The concentration at which this running R2 falls 

below a certain threshold, say 0.8, is a possible definition of the LOQ which we sought to 

establish.  

Similar to running R2, we also defined a “running slope” metric to evaluate the 

linearity of the relationship between reference instrument and low-cost devices. The 

running slope is also calculated from the linear regression using a window of 10 minutes 
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and a step size of 1 minute data between the sensors and the reference. By calculating a 

running slope, we can gain some insights into the concentration at which sensor response 

deviates from linearity and the point at which the sensor begins to approach saturation; 

these two points are candidates for definitions of the upper bound of the sensors’ function 

range (UB). Visually, this UB appears to occur at roughly 500 μg/m3 in Figure 1a, but we 

wanted a quantitative definition for this value. Austin et al (Austin et al., 2015) previously 

suggested defining the UB as the concentration at which a 10 increase in the reference 

monitor (APS)  resulted in less than 0.2 change in the Lo Pulse occupancy of the Shinyei 

PPD42NS sensors.   
 

 

 

4.3 Results 

 
We first examined the effect of averaging time on the apparent limit of 

quantification of the sensors.  In Figure 4.2 we show the concentration at which the 

coefficient of determination between ID1 and the reference instruments falls below 0.8, as 

a function of the number of points averaged.  In other words we average the sensor 

concentrations at different time intervals (one point is one minute of sampling) and analyze 

the effect on apparent limit of quantification.  We see that apparent limit of quantification 

is a strong function of averaging time at averaging times less than approximately ten 

minutes.  Similar phenomena were measured by others (Budde et al., 2013; Zheng et al., 

2018). This ten-minute threshold was consistent for all sensors tested.  For this reason, we 

adopt the convention of averaging data over ten minutes for the remainder of this work. 
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Figure 4.2: Effect of averaging time (or equivalently the number of data points used-each 
point is at one minute time resolution) on the apparent limit of quantification as defined 
as the concentration at which R2 falls below 0.8. 

 

We give two examples of typical sensor response in terms of running R2 in Figures 

4.3 and 4.4.  Figures 4.3 and 4.4 show the running R2 for a given sensor as a function of 

the reference instrument mass concentration. The abscissa value is the centroid of the range 

over which the running R2 is calculated.  The sensor in Figure 4.3 (BS2) shows a distinct 

drop in performance occurring around a concentration of approximately 30 µg/m3.  This 

concentration is greater than what is expected in many indoor environments, suggesting 
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the readings of at least some commercially-available low-cost sensors do not correlate with 

actual particle concentrations for many situations of interest. 

This behavior was recorded for nearly all low-cost devices tested, although the 

concentration at which this sharp drop in performance occurred varied widely. For at least 

one device the drop occurred at a concentration less than 5 µg/m3, as shown in Figure 4.4, 

suggesting good performance even at very low concentrations. Similar plots are given for 

other devices in Additional Tables and Figures.   

 

Figure 4.3: Relationship between running R2 and reference particle mass concentration 
for BS2. The sensor mass concentration is provided as the right y-axis. Vertical lines 
relate R2 and the reference mass concentration, while horizontal lines relate the reference 
mass concentration with the sensor mass concentration.  
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Figure 4.4: Relationship between running R2 and reference particle mass concentration 
for ID4. The sensor mass concentration is provided as the right y-axis. Vertical lines 
relate R2 and the reference mass concentration, while horizontal lines relate the reference 
mass concentration 
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Table 4.3: Limit of Quantification when using threshold of R2 = 0.7, 0.8 and 0.9 for the three sources (average of 4 repeated 
experiments for the same source ± standard deviation) using 10 points using the reference instrument concentration: 

 Incense (µg/m3) (NH4)2SO4 (µg/m3) Toast (µg/m3) 

R2 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

ID1a 2.20±0.59 2.71±0.87 8.48±4.04 2.60±0.35 3.62±0.34 8.47±1.02 3.50±0.43 4.02±0.63 8.75±1.93 

ID2c 2.78±0.69 3.69±1.12 5.74±2.12 3.26±0.84 3.87±1.03 4.94±1.62 4.32±0.38d 4.13±0.53d 5.06±0.72d 

ID3c 2.16±0.46 2.66±0.52 4.03±1.08 3.53±0.77d 4.03±0.64d 5.02±0.79d 2.67±0.93d 3.83±1.80d 4.01±1.16d 

ID4b 3.13±1.50d 3.35±1.86d 5.50±2.34d 4.12±0.49 4.73±1.05 5.90±0.70 2.85±1.01 3.69±1.18 5.75±1.04 

ID5c 2.85±1.49d 3.81±1.72d 4.50±1.28d 3.82±0.64 4.70±1.66 6.55±1.30 4.01±1.04 4.70±1.19 7.19±2.80 

BS1b 2.28±0.83d 2.30±0.42d 4.43±2.51d 8.72±4.21d 12.75±3.30d 13.67±3.72d 7.75±2.62d 10.33±4.42d 13.00±6.35d 

BS2c 13.90±7.60d 15.57±8.30d 24.05±9.18d 6.36±2.34d 9.38±1.64d 11.42±2.41d 10.75±5.33d 12.35±5.44d 16.93±4.35d 

BS3b 3.15±1.01d 4.41±1.42d 6.12±2.27d 4.30±1.46 4.51±1.42 4.58±1.39 4.02±0.91 5.29±1.45 6.30±1.41 

Footnote a: only one unit was tested in this study over four replicate experiments. Therefore, the values represent the average of four experiments. 

Footnote b: Two units were tested in this study over four replicate experiments. Values represent the average of eight (two x four) experiments. 

Footnote c: Three units were tested in this study over four replicate experiments. Values represent the average of twelve (three x four) experiments. 

Footnote d: For at least one experiment, the running R2 is always greater than  0.95. These values are excluded from the average. 
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Table 4.4: Limit of Quantification using threshold of R2 = 0.7, 0.8 and 0.9 for the three sources (average of 4 repeated 
experiments for the same source ± standard deviation) using 10 points using the sensor concentration:  

 Incense (µg/m3)  (NH4)2SO4 (µg/m3)  Toast (µg/m3)  LOD 

R2 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9  

ID1a 0.75±0.55 1.35±1.00 2.23±1.51 1.35±0.48 1.72±0.57 2.22±2.31 2.05±0.54 2.12±0.55 8.87±1.58 0.41 

ID2c 1.42±0.60 2.18±0.80 3.74±1.71 1.55±0.43 2.25±0.23 4.26±1.77 2.21±0.56d 2.52±0.54d 4.95±1.13d 0.78 

ID3c 0.89±0.29 1.37±0.73 2.71±1.84 1.57±0.75d 2.03±0.94d 3.49±2.73d 1.02±0.97d 1.30±1.23d 2.33±1.97d 1.61 

ID4b 1.08±0.79d 1.46±0.85d 3.00±2.90d 0.81±0.26 1.01±0.30 1.75±0.58 1.62±0.58 1.92±0.57 4.05±1.63 0.14 

ID5c 2.70±2.42d 3.46±2.66d 4.90±2.79d 1.32±0.96 1.76±1.06 2.95±2.25 3.91±1.22 4.50±1.89 7.16±2.43 1.12 

BS1b 6.00±2.00d 7.46±3.03d 7.74±2.43d 5.80±2.28d 8.13±2.45d 9.75±2.09d 7.08±3.29d 9.60±3.78d 11.9±4.72d 4.01 

BS2c 7.71±1.72d 9.30±2.23d 11.51±2.37d 7.00±2.94d 8.16±2.56d 13.33±5.06d 16.71±4.15d 19.75±6.27d 24.12±8.14d 2.03 

BS3b 1.19±0.41d 1.68±0.57d 2.57±0.89d 0.84±0.38 1.08±0.49 1.98±1.33 0.76±0.62 1.20±0.99 2.57±1.79 1.42 

LOD was calculated from LOD = Mblank + 3σblank under “zero air” test (CPC number < 200 #/cm3), where Mblank is the average mass concentration for a 

given sensor under “zero air” conditions and σblank is the standard deviation for these conditions 

Footnote a: only one unit was tested in this study over four replicate experiments. Therefore, the values represent the average of four experiments. 

Footnote b: Two units were tested in this study over four replicate experiments. Values represent the average of eight (two x four) experiments. 

Footnote c: Three units were tested in this study over four replicate experiments. Values represent the average of twelve (three x four) experiments. 

Footnote d: For at least one experiment, the running R2 is always greater than  0.95. These values are excluded from the average. 
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Table 4.3 shows the concentration as recorded by the reference instruments at 

which the running R2 falls below each of three different thresholds (R2=0.7, 0.8, 0.9) for 

each of three different sources, for each device tested. Table 4 gives the same information, 

but uses the sensor concentration as the reference. In other words, Table 4.3 provides values 

of LOQ using the actual concentration, while Table 4.4 provides values using the 

concentration that the sensor thinks is the actual concentration; these values differ because 

we did not conduct any calibrations of the sensors for this work. 

To investigate whether the degradation to the running R2 is influenced by the 

evolution of the particle size distribution in our chamber, we generated time series of the 

mode diameters and geometric standard deviations for each replicate of each source 

(Figures 4.22-4.27). From these figures, there appears to be no evidence that an evolving 

particle size distribution influenced our observations, so the changes in running R2 appear 

to be related only to concentration decay. 

We next present the results from the experimental investigation of the upper bound 

of the functional range by looking at the “running slope” of the relationship between one 

low-cost device response and the reference instrument response, as shown in Figure 4.5.  

A “perfect” sensor would have a slope of exactly 1 regardless of concentration.  We 

expected that for each sensor there was a certain concentration at which this slope would 

begin to deviate from one, namely to move toward zero at which point the signal from the 

sensor can be considered saturated.  
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Figure 4.5: BS2 response during one decay test using toast as the PM source  
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Figure 4.6: ID4 response during one decay test using incense as the PM source  

 

We considered four definitions for the UB of the functional range as shown in Figure 

4.5 and subsequent figures:  

1) the concentration at which the derivative of the slope exceeds a certain threshold 

(e.g. 0.05) (the point at which the response deviates from linearity),  

2) the concentration at which the slope continues to decrease for 5 consecutive points 

(the point at which the response deviates from linearity),   

3) the concentration at which the slope is in the range of  0 ± 0.1 (the point at which 

sensor response is saturated), and 

4) the manufacturer-reported maximum operating concentration. 
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In Figure 4.5, we see the running slope is approximately stable at 0.25 between 100-

2,300 µg/m3. We see clearly that at 2300 µg/m3 the relationship ceases to be near linear 

and we see a sharp drop in the slope (definitions 1 and 2 of UB). The sensor response starts 

to become saturated at approximately 4,000 µg/m3 (definition 3 of UB).  It is worth noting 

that each of these definitions of the UB is greater than that reported by the manufacturer 

for this particular sensor.  While the magnitude of the response of this particular sensor is 

approximately 25% of the reference instrument response, a simple linear calibration could 

convert this response to an accurate reading over a substantial range.  On the other hand, 

Figure 6 shows another typical pattern of response (ID4).  In this case the running slope is 

nearly continuously changing between very low concentrations and the point at which the 

signal becomes saturated, which does not occur until approximately 15,000 µg/m3. 

Table 4.5 shows the UB for each sensor tested, defined as the reference instrument 

mass concentration when each of the four definitions of UB is satisfied, with the 

corresponding sensor-reported mass concentration shown in parentheses. As is evident in 

Table 4.5, Definition 1 gave greater concentrations than Definition 2 for most devices. 

Except for BS2 and BS3, all devices deviated from linearity below 1000 µg/m3. The 

saturation point for all sensors was greater than 10,000 µg/m3 except for BS2, and these 

concentrations were all greater than the manufacturer maximum range. In Table 4.5, the 

concentration for toast particles were generally higher than the other sources for all sensors. 

This suggests that the sensors’ functional ranges may behave differently for distinct particle 

sources, but a complete analysis of particle composition effects is outside the scope of this 

work.   
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Table 4.5: Four definitions of upper detection limit using incense as the PM source.  
(concentrations are given as “reference instrument mass concentration" (sensor mass 
concentration))  

I: incense, T: Toast, A: Ammonium sulfate 

  
1: |dslope|  > 0.05 
(deviation from 

linearity) 

2: five consecutive 
decreasing slopes 
(deviation from 

linearity) 

3: saturation point 
(slope within 0 ± 0.1) 

before this point 

4:Manuf. 
reported 

maximum 
range 

ID1
a 

I 
T
A 

2063±53(1340±14) 
3579±538(2741±223) 
2310±248(910±162) 

440±47(339±12) 
2689±312(1559±23) 
488±142(321±84) 

16347±124(3894±124) 
28723±552(2908±424) 

slope always <0.1 
N/A 

ID2
c 

I 
T
A 

1251±198(1369±132) 
2723±362(1623±182) 
921± 268 (602±172) 

441±127(366±62) 
2639±634(1352±142) 

472±157 (482±66) 

16394±328(4821±437) 
14923±739(6379±274) 

slope always <0.1 
≥ 1000 

ID3
c 

I 
T
A 

703±13(584±42) 
3448±166(1321±98) 
1191±68 (634±20) 

1021±127(831±115) 
7429±426(4722±163) 

921 ± 37 (342±48) 

11562±263(3844±153) 
32041±163(2548±134) 

slope always <0.1 
N/A 

ID4
b 

I 
T
A 

1972±49(982±34) 
4535±142(2012±132) 

852±152(624±78) 

711±82(527±52) 
2421±105(1259±85) 

592±72 (494±79) 

16923±102(2713±153) 
21923±268(4282±183) 
8921± 276(1723±184) 

≥ 1000 

ID5
c 

I 
T
A 

2258±82 (2713±731) 
5283±73(2934±92) 
856± 72(921±74) 

362±15 (620±47) 
1862±36 (1376±53) 
305±32 (437±33) 

19263±1243 
(6342±1356) 

17230±537(4326±273) 
slope always <0.1 

≥ 1000 

BS1
b 

I 
T
A 

1441±15(2002±14) 
1626±178(2001±2) 
1527±93(1612±94) 

496±102(732±93) 
1021±148(723±39) 
368±155(605±88) 

2662± 82(2007±8) 
3062±83(2012±5) 
5016±173(2006±3) 

2000 

BS2
c 

I 
T
A 

1416±219(201±54) 
2401±172(300±52) 
1097±681(163±102) 

2671±193(393±107) 
2691±152(437±47) 
1253±98(152±58) 

4821± 52(522± 8) 
4611±225(517±7) 
4392±135(522±2) 

500 

BS3
b 

I 
T
A 

3025±215(1715±43) 
4501±209(1621±231) 
1302±167(492±59) 

2202±291(1521±236) 
4301±992(1736±342) 

789±193(281±74) 

18236±1423(7001±2332
) 

31356±7091(13302±373
2) 

slope always <0.1 

≥ 1000 

Footnote a: only one unit was tested in this study over four replicate experiments.  
Therefore, the values represent the average of four experiments. 
Footnote b: Two units were tested in this study over four replicate experiments.  
Values represent the average of eight (two x four) experiments. 
Footnote c: Three units were tested in this study over four replicate experiments.  
Values represent the average of twelve (three x four) experiments. 
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4.4 Conclusions and future work 

 
In order to establish the functional range of commercially available low-cost particle 

sensors, we tested five types of commercial integrated devices (ID) and three types of 

“bare” low-cost PM sensors (BS) by exposing them to a range of concentrations of particles 

generated by three different sources. The following are the conclusions of these 

experiments: 

• The time interval over which sensor output is averaged has a profound effect on the 

apparent limit of quantification at times less than approximately ten minutes.  The 

apparent limit of quantification approached 70 µg/m3 at averaging times less than 

five minutes, suggesting these commercially available devices are not able to give 

reliable information at such time scales. It also suggest that ten minutes may be the 

shortest time scale at which control decisions in buildings might be made based on 

signals from these low-cost particle sensors. 

• We propose a definition of limit of quantification as the concentration at which the 

coefficient of determination between a given sensor’s output and that of a reference 

instrument during a decay test falls below 0.8. Experiments show that this lower 

bound ranges from approximately 3-15 µg/m3 among sensors tested for ten-minute 

sampling times. For those sensors have lower bound of limit of quantification less 

than 5 can be potentially used in a clean indoor environments (e.g., typical office 

building or non-kitchen locations in residences).  

• We also proposed three definitions of the upper bound of the functional range based 

on the slope of a linear regression between the sensors and the reference instrument.    
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• Most experimentally derived definitions were greater than manufacturer-reported 

maximums for the sensors tested. 

• The two definitions for sensor output deviation from linearity agreed reasonably 

well in most cases and were approximately 300-3,000 µg/m3 for the sensors tested.  

• Sensor responses became saturated at approximately 3,000-30,000 µg/m3. 

This work was done on a subset of the commercially available sensors and integrated 

devices and may or may not be representative of the entire market, although care was taken 

to select sensors that have generated interest in the indoor air community.  In general, most 

of the tested sensors show low concentrations for their lower bound (roughly 3 µg/m3), 

which indicates that these sensors can effectively detect the low particle concentration 

expected for indoor environments. However, there is a need for technical progress in 

manufacturing advanced low-cost PM sensors to be able to reliably conduct measurements 

in the cleanest indoor environments (<3 µg/m3).   

Furthermore, results from this chapter indicate that the sensors may respond differently 

to different PM sources. In Chapter 5, we will use the same PM source including 

(NH4)2SO4, incense and toast as used in this chapter, and will add other PM sources such 

as Arizona Test Dust and Polystyrene Latex spheres to study a variety of different particle 

compositions; moreover, we will also explore the influence of particle size, which is 

inherently different for many of the sources in Chapters 3 and 4.   



 111 

 

 

 

4.5 Additional Tables and Figures 

Table 4.6: Bare sensor information 

 
 

 

Table 4.7: Integrated device information  

Sensor Communication  Features  
ID1  Cellular, WiFi, and Bluetooth, 

cloud-based storage.  
Also provides CO2, CH2O, VOCs, 
temperature, humidity, and pressure.  

ID2 Cellular networks, WiFi, 
Bluetooth, serial connector.  

Weather resistant, casts to crowd-sourced 
mapping utility  

ID3  Internal storage, serial connector.   

ID4  Serial connector.  
ID5  SD card, serial connector, and 

WiFi.  
Also provides temperature, humidity, and 
pressure.  

 

 

 

Sensor Signal-to-Output Conversion 
Process 

Intended Indoor Environment Features 

BS1 Light → photodiode → volt signal → 
photoelectric converter→ 32-bytes 

→ MCU(4-bytes) → PM mass 
density 

Air conditioners, air quality 
monitors, environmental 

monitoring, air cleaners, air 
quality detectors 

20,000 hours of 
stable operation 
and continuous 

use 
BS2 Light → photodiode → volt signal → 

amplified → volt signal → 
photoelectric converter → 32-bytes 

→ MCU → PM mass density 

Detecting dust in air, air purifier, 
air conditioner, air monitors, and 

distinguishing between smoke 
and house dust 

 

BS3 Light → phototransistor → volt 
signal → amplified → photoelectric 
converter → 32-bytes → MCU(12-
bytes) → number concentrations → 

PM mass density 

Can be in instruments related to 
the concentration of suspended 

particles in the air or other 
environmental improvement 

equipment 

Six-sided 
shielding using an 
anti-interference 

material. 
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Figure 4.7: Running R2 as a function of reference instrument concentration as measured 
for ID1. 
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Figure 4.8: Running R2 as a function of reference instrument concentration as measured 
for ID2. 
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Figure 4.9: Running R2 as a function of reference instrument concentration as measured 
for ID3.  
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Figure 4.10: Running R2 as a function of reference instrument concentration as measured 
for ID4. 
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Figure 4.11: Running R2 as a function of reference instrument concentration as measured 
for ID5. 
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Figure 4.12: Running R2 as a function of reference instrument concentration as measured 
for BS1. 
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Figure 4.13: Running R2 as a function of reference instrument concentration as measured 
for BS3. 
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Figure 4.14: Running R2 as a function of reference instrument concentration as measured 
for BS2. 
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Figure 4.15: Running slope as a function of reference instrument concentration as 
measured for ID1.  
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Figure 4.16: Running slope as a function of reference instrument concentration as 
measured for ID2. 
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Figure 4.17: Running slope as a function of reference instrument concentration as 
measured for ID4. 
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Figure 4.18: Running slope as a function of reference instrument concentration as 
measured for ID5. 
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Figure 4.19: Running slope as a function of reference instrument concentration as 
measured for BS1. 
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Figure 4.20: Running slope as a function of reference instrument concentration as 
measured for BS2. 

 
 



 126 

 
Figure 4.21: Running slope as a function of reference instrument concentration as 
measured for BS3. 
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Figure 4.22: Mode size of particle during incense decay test (all 4 replicated tests)  
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Figure 4.23: Geometric standard deviation of particle during incense decay test (all 4 
replicated tests)  
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Figure 4.24: Mode size of particle during (NH4)2SO4 decay test (all 4 replicated tests)  
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Figure 4.25: Geometric standard deviation of particle during (NH4)2SO4 decay test (all 4 
replicated tests)  
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Figure 4.26: Mode size of particle during toast decay test (all 4 replicated tests)  
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Figure 4.27: Geometric standard deviation of particle during toast decay test (all 4 
replicated tests)  
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Simulation Results (Matthew Young conducted the simulation analysis)  
 

In Figures 4.28 and 4.29 we show the results of the Monte Carlo analysis with 1,000 

iterations (homes) simulated for each value of LOQ or UB.  We see first in Figure B22 that 

according to this analysis, the effect of the upper bound on the deviation of the sensor-

reported concentration from reality is minimal.  For most sensors, the error was minimal- 

less than 10% in more than 95% of homes analyzed.  Sensor ID3 is not shown because it 

exhibited a UB greater than our simulated range.  

This suggests that the commercially available low-cost sensors analyzed in this 

work operate consistently at great enough concentrations for use in indoor environments. 

The definition of the sensor’s UB was five consecutive decreasing slopes (deviation from 

linearity) averaged for each of the sources tested (incense, toast, ammonium sulfate).  

The results are more varied in regards to the lower bound of the functional operating 

range, LOQ.  The definition of the LOQ was the average concentration at which R2 fell 

below 0.8 for each of the sources tested. For the worst-performing sensor we see that 

greater than 50% error is expected in more than 10% of homes according to this analysis.   

In general, we find that the upper bound on the functional range results in minimal 

inaccuracy in exposure output, and the limitation on lower bound can result in as much as 

a 50% error in approximately 10% of U.S. homes. Therefore, all of the sensors tested likely 

have some utility for monitoring indoor PM exposure, although a subset will not provide 

accurate outputs in environments with lower PM concentrations. 
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Figure 4.28: Percent of iterations (each iteration is one particular home) in which the 
exposure in a typical week as reported by a sensor with a particulate sensor saturation 
concentration exceeds each of three limits (5%, 10%, 25%).  The sensor saturation 
concentrations for each sensor tested are also plotted.  In this case sensor saturation 
concentration is defined as the average of the saturation concentration measured under 
exposure to three different sources. Sensor ID3 exhibited a sensor saturation 
concentration greater than our simulated range. 
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Figure 4.29: Percent of iterations (each iteration is one particular home) in which the 
exposure in a typical week as reported by a sensor with a particular limit of quantification 
exceeds each of three limits (10%, 25%, 50%).  The sensor limits of quantification for 
each sensor tested are also plotted.  In this case limit of quantification is defined as the 
average of the limits of quantification (R2=0.8) measured under exposure to three 
different sources. 
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Chapter 5: Laboratory evaluation of the effects of particle size and composition on the 

performance of integrated devices containing Plantower particle sensors3  

 
 
5.1 Introduction  

 
Particulate matter (PM) is well-established as an airborne pollutant of concern, 

causing respiratory, lung, and cardiovascular diseases [e.g,, Guo et al. (2018)]. Recently, 

low-cost particle sensors have grown in popularity for estimating human exposure to 

ambient PM. Many of these sensors are nephelometers. In nephelometry, light is scattered 

by the particles as they pass through the sensor, and the scattered light intensity is 

quantified by a photodetector; the sensor then outputs an electrical signal, which can be 

related to a particle number or mass concentration using a calibration equation. Therefore, 

the accuracy of a given sensor may be related to the degree by which the particles scatter 

light. For example, the light scattering efficiency of a given particle is dependent on the 

particle’s complex refractive index, its diameter, and the wavelength of incident light [e.g., 

Bohren and Huffman (Bohren & Huffman, 1983)]. These dependencies on both the 

particle’s complex refractive index and diameter imply that low-cost particle sensors may 

respond differently when the particle composition and/or the particle size distribution is 

varied. We provide an overview of some previous work here. 

 

3 This chapter represents a draft manuscript, which was revised and published at 
https://doi.org/10.1080/02786826.2021.1905148 
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Regarding particle composition, Wang et al. (2015) observed that their sensors’ 

output was greater for organic particles compared to inorganic salt particles, and the 

authors comment that these differences could be due to a greater proportion of light 

scattered by the organics than the inorganics.  Similarly, Northcross et al. (2013) reported 

that the response of a Dylos sensor to three different particles sources (wood smoke, 

polystyrene latex spheres, ammonium sulfate) differed, as they observed different slopes 

in the sensor’s response relative to a reference instrument. Sousan et al. (2016) and Liu et 

al. (2017) observed similarly variable responses for the Sharp GP2Y sensor using a variety 

of test aerosols. Liu et al. (2017) commented that the variable outputs related to different 

particle compositions may be due to differences in the sensors’ optical chambers and 

calibration methods; in other words, a sensor’s response to a given particle source may be 

related to the specific calibration material, an idea central to Hagan and Kroll (Hagan & 

Kroll, 2020). 

 

The effects of particle size on a sensors’ response has also been discussed in the 

literature.  Both Wang et al. (2015) and Han et al. (2017) observed an increase in the slope 

between their tested sensors and the reference instruments with increasing particle size. 

Moreover, Sousan et al. (2016) found that the detection efficiency of the Dylos 1700 sensor 

was less than 5% for 0.3 µm particles, but increased to 60% for 1.3 µm and approximately 

100% for particles larger than 3 µm. Conversely, Manikonda et al. (2016) found that the 

Dylos sensor overestimated PM10 when challenged with cigarette smoke but 

underestimated the concentration for PM2.5, while Zamora et al. (2019) demonstrated that 
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Plantower sensors were most accurate for PM1 (particle diameter < 1 µm) with worse 

performance for PM2.5 (particle diameter < 2.5 µm ) and PM10 (particle diameter < 10 µm). 

Interestingly, He et al. (2020) demonstrate that the Plantower sensor may be more accurate 

for 200 nm particles than 1 μm particles (cf., their Figure 8).  

 

From previous studies, it is clear that both size and composition affect sensor 

performance. However, the trends are not completely consistent, which may be 

complicated by the difficulty in de-coupling size and composition effects for indoor 

sources (e.g., combustion sources may generate sub-micron particles, while dust 

resuspension may generate super-micron particles). To better understand size and 

composition effects, we conducted experiments in which we subjected five low-cost 

sensors, some of which have not previously been tested in such ways, to various particle 

sources, including both monodisperse and polydisperse aerosol populations.  

 The specific aims of our study were to 1) contribute to the body of knowledge 

relating to the relationship between particle composition and sensor performance; 2) probe 

the effect of particle size using monodisperse test aerosols; and 3) distinguish between size 

and composition effects and determine which effect is responsible for the variance in sensor 

performance.  

 

5.2 Materials and Methods 

5.2.1 Devices Tested 

We tested a variety of optical particle sensors in this work, all of which contain at least 

one Plantower sensor. Consequently, each sensor outputs information related to PM1, 
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PM2.5, and PM10. Details on each sensor and integrated device is provided in Table 5.1. 

The designation “BS” refers to the bare sensor, while “ID” refers to integrated devices 

containing the sensor.  As in our previous work (Zou, Young, Chen, et al., 2020; Zou, 

Young, Wickey, et al., 2020), we used a TSI Scanning Mobility Particle Sizer (SMPS) 

Model 3938, comprised of a Model 3081 long DMA and a model 3775 Condensation 

Particle Counter (CPC), and an TSI Aerodynamic Particle Sizer (APS) Model 3321 as 

reference instruments.  

 

Table 5.1. Summary of test sensors in this studya  

Sensor Type Cost Sensor 
No. of 
Units 

Mass Conc. 
Range 

(µg m-3) 

ID1 AirThinx 
IAQ $699 BS3 1 0 - 500 

ID2 Airbeam2 $200 Previous version of 
BS3 3 0 -1000 

 
ID4 TSI Bluesky N/A Dual BS3 2 0 - 1000 
ID5 Purple Air II $229 Dual BS3 3 0 - 1000 
BS3 PMS5003  $25 N/A 2 0 - 1000 

a: To be consistent with our previous studies (Zou, Young, Chen, et al., 2020; Zou, Young, Wickey, et al., 
2020), we use the same identification for the sensors as in those papers. ID3, BS1, and BS2 are excluded 
from the present work; ID3 does not contain a Plantower sensor, and BS1 and BS2 are produced by other 
manufacturers. All three of those report particle concentrations with less sizing information than any of those 
included in this work.  
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5.2.2 Experimental Methodology 

 

Figure 5.1. General experimental set up for decay tests. All sensors were co-located in the 
same chamber, labeled as “Sensors”. For some experiments, the SMPS was split into a 
fixed-voltage DMA for size-selection upstream of that chamber and a CPC downstream 
of the chamber for particle counting.  

 
We conducted three phases of experimental work to investigate how composition 

and size influence the sensors’ responses, in order to try to de-couple these effects. We did 

not control for temperature or relative humidity in these experiments, but across all 

experiments, temperature was 26.0 ± 0.3 oC and relative humidity was 20.9 ± 7.5% within 

the chamber.  

 

In the first experimental phase, we placed all sensors into a 0.71 m x 0.48 m x 0.38 

m (0.130 m3) enclosed chamber (labeled as “Sensors” in Figure 5.1).  We generated 

particles by atomizing aqueous ammonium sulfate [(NH4)2SO4] solutions and operating a 
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propane torch, modified such that it produced greater quantities of soot. We dried the 

particles using a diffusion drier and then introduced the dried particles into a fixed-voltage 

DMA to introduce monodisperse particles (100, 200, 300, 400, 500, 600, 700 nm) into the 

chamber containing the sensors. The CPC was used to measure particle number 

concentrations downstream of the chamber. We converted CPC number concentrations to 

mass concentrations using values of particle density from the literature (see Data Analysis 

section) and assuming spherical particles. Typical mass concentrations of the size-selected 

particles ranged between 10 – 200 μg m-3 during these experiments. For each particle 

source, the experiments were conducted in triplicate for each particle size. 

 

In the second phase, decay tests similar to Zou et al. (Zou, Young, Chen, et al., 

2020) were conducted in a sealed Modular Blast Cabinet (Eastwood Inc.) with dimensions 

of 0.77 m x 0.52 m x 0.71 m and a 0.55 m x 0.25 m viewing window on the top. Coarse 

Arizona Test Dust (ATD; Powder Technology, Inc.) was placed in the bottom of the 

chamber and resuspended using the cabinet’s blast gun, which was operated using HEPA-

filtered and activated-carbon-denuded compressed air. Initial concentrations within the 

cabinet after the resuspension process were approximately 100 – 200 µg m-3, and the 

concentration was allowed to naturally decay over the duration of the experiment.  We 

repeated these decay experiments four times.  

 

In the third phase, we re-examined earlier experiments from Zou et al. (Zou, Young, 

Chen, et al., 2020) in which three different particle sources were introduced into the 0.130 

m3 chamber. Those experiments used incense, atomized (NH4)2SO4 solution, and burnt 
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toast smoke as the particle sources, but we also conducted new experiments using the 

modified propane torch as an additional source for this work. For each source, we generated 

a high concentration of particles (~100 – 1000 µg m-3) in a separate chamber and dried the 

particles through a diffusion drier prior to introducing them to the chamber containing the 

sensors. After removing the particle source, the concentration inside the chamber naturally 

decayed to near zero. We repeated these decay experiments four times for each source.  

 

5.2.3 Data Collection and Pre-Processing 

The bare Plantower sensor was operated with an external microcontroller (i.e., 

Arduino) using a script written in the C programming language; this script also recorded 

the data in real-time into an output file. The output data from sensors were recorded at 1 

Hz (based on the sensor capabilities) using serial communication software (Coolterm) with 

time logged from the computer clock. We received data from the integrated devices 

through cloud-based connectivity (e.g., ID1), serial communication (e.g., ID2, ID4) and 

SD card storage (e.g., ID5). Timestamps of data from the integrated devices vary based on 

the specific product and range between 1 and 80 seconds.  

 

 We averaged or interpolated the sensor data into 1-minute time intervals to match 

the sampling interval of the SMPS. SMPS and APS data were merged using the approach 

of Khlystov et al. (2004) and then converted from number distributions to mass 

distributions by assuming a spherical shape and assumed densities as follows: (NH4)2SO4  

is 1.77 g cm-3 (Zelenyuk et al., 2006); incense is 1.06 g cm-3 (Cheng et al., 1995; B. C. 

Singer & Delp, 2018); toast is 0.94 g cm-3 (B. C. Singer & Delp, 2018); propane torch is 
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1.9 g cm-3 (Khalizov et al., 2012); and ATD is 2.7 g cm-3 (B. C. Singer & Delp, 2018; 

Teipel et al., 2008).  

 

Mass concentrations of PM1, PM1-2.5 and PM2.5-10 of the reference instrument were 

calculated by integrating the merged size distribution from the SMPS and APS. Here, we 

use PM1 to represent the integrated mass concentration for all diameters less than 1 µm, 

PM1-2.5 to represent 1 µm to 2.5 µm, and PM2.5-10 to represent 2.5 µm to 10 µm. We 

performed similar calculations with data from the sensors, as they report PM1, PM2.5, and 

PM10. For the sensor data, PM1-2.5 is the difference between PM2.5 and PM1, and PM2.5-10 

is the difference between PM10 and PM2.5.  

 
5.2.4 Data Analysis 

 
Two often-used metrics in the evaluation of low-cost sensors are the coefficient of 

determination (R2) of the linear regression between the low-cost PM sensor output and the 

reference instrument output (Karagulian et al., 2019) and the slope of this linear regression 

(Karagulian et al., 2019; Rai et al., 2017), both of which we used in this study. R2 describes 

the correlation between the two outputs, and slope provides information on the relative 

magnitude of the outputs.  R2 and slope were calculated from least-squares linear regression 

models between the sensors and the reference instruments.  

 

We first examined all slopes and R2 values derived for the different sensors by 

pooling together the results from all experiments for each model to evaluate the similarities 

between the sensors. We then combined all sensors to investigate the composition and size 
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effects in order to try to discern a general trend in slopes and R2 values. To do this, we used 

statistical tests applied to the slopes and R2 values for each experimental condition (e.g., 

300 nm (NH4)2SO4 particles, 700 nm propane torch particles). The most useful of statistical 

test was Welch’s t-test, a modification of the Student’s t-test, which is typically used to test 

whether two populations with unequal variance and unequal sample size, such as the data 

analyzed in this work, have significantly unequal means. Therefore, the Welch’s t-test was 

used to quantify whether the slopes and R2 values varied significantly among different 

particle size bins, difference particle composition, and different sensor models.  

 

We also conducted effect size calculations based on n-way analysis of variance. 

This was used to determine the contribution of particle size, particle composition, and their 

interaction to overall variability in the sensor outputs. We quantified fractional variance in 

the slopes explained by a given independent variable (ω2) following: 

 

!! =	$$% − (( − 1)+$,$$- ++$, 					,/. 5.1 

 

where SSB is sum of squares due to one of the independent variables, SST is the total sum 

of squares, MSE is mean square error, and a is the number of the total number of 

independent variables (i.e., size, composition, interaction).  
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5.3 Results and Discussion 

5.3.1 Effect of Sensor Model 

Before we investigated the effects of composition and size, we first examined the 

differences across different sensor models.  As mentioned previously, all devices tested in 

this work are equipped with BS3 or a similar version of this Plantower sensor. The slopes 

and R2 values from linear regressions between sensors and the reference instruments were 

calculated for each instance of each model and for each PM source. We combined all slopes 

for all particle sizes and compositions for each sensor type as box-and-whiskers in Figure 

2 (left y-axis). Superimposed on this are the average R2 value across all instances of each 

sensor (open circles; right y-axis).  One notable observation is that the medians of the slope 

for all sensors are close to 1. This suggests that sensors may provide fairly accurate 

measurements in environments with a variety of particle sources.  Slight differences may 

exist due to the proprietary algorithms that the manufacturers of the devices use to process 

and output raw data from BS3; alternatively, the difference could be related to the form 

factor of the integrated devices or some less obvious cause. Regardless, all of these sensors 

show relatively high average R2 (0.68 – 0.72), implying good consistency in performance 

across this Plantower sensor “family”.  
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Figure 5.2. Slope and R2 for each sensor combine all PM sources and all sizes. Boxes 
represent 25th and 75th percentiles, and whiskers represent the 1st and 99th percentiles, 
while markers represent the mean ± standard deviation with respect to R2. 

 
In order to establish this relationship quantitatively, and perhaps eliminate sensor 

model as a significant variable, we used Welch’s t-test to examine the difference in slope 

between any two combinations of different sensors types. Table 5.2 summarizes the p-

values calculated from each set of slopes from each type of sensors showed in Figure 5.3. 

Perhaps unsurprisingly given Figure 5.2, BS3 was shown to be significantly different than 

ID1, ID2, and ID4 at a 95% confidence level. Across the four IDs, the only statistical 

difference existed between the ID1/ID2 and ID1/ID5 pair. These differences, again, may 

be related to how each ID processes the raw signal and/or the form factor of the ID. 

However, we argue that although statistical differences exist, these may be irrelevant from 

a practical standpoint. Under this approximation of similarity, we combine the data across 

all sensors to investigate the composition and size effects in the following sections.  
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Table 5.2. p-values calculate from Welch’s t-test (0.05 significant level) using the slopes 
for each type of sensors. 

 ID1 
(n=29) 

ID2 
(n =87) 

ID4 
(n= 58) 

ID5 
(n = 87) 

BS3 
(n = 58) 

 slope R2 slope R2 slope R2 slope R2 slope R2 
ID1 -- -- 0.006 0.532 0.055 0.623 0.003 0.781 0.001 0.686 
ID2 -- -- -- -- 0.320 0.682 0.156 0.592 0.012 0.695 
ID4 -- -- -- -- -- -- 0.847 0.523 0.004 0.823 
ID5 -- -- -- -- -- -- -- -- 0.196 0.446 

 

5.3.2 Effect of Particle Source  

We first provide an overview of the effect of particle source on sensor performance 

by combining all sensors across all particle size bins in Figure 5.3, considering slopes and 

R2 values. The median slope is less than 1 (0.8) for the propane torch, but greater than 1 

for incense, toast, and dust (1.3-1.5). It also appears as if sources with more homogenous 

composition (e.g., (NH4)2SO4, ATD) have less variability compared to sources likely to 

have a more heterogeneous composition. For example, the interquartile ranges for slope 

and error bars in R2 are larger for both incense and toast compared (NH4)2SO4 and ATD. 

Consequently, the t-test results in Table 5.3 suggest that particle source does have a 

significant effect on sensor response, although one pair exhibit no statistical difference 

(incense/toast).   
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Figure 5.3. Slope and average R2 for each PM sources combining all sensors and all sizes. 
Boxes, whiskers, and markers represent the same values as in Figure 2. 

 
Table 5.3. p-values calculate from Welch’s t-test (0.05 significant level) using the slopes 
for each sources.  

 
Propane 

torch 
(n = 33) 

(NH4)2SO4 

(n = 33) 
Incense 
(n =33) 

Toast 
(n = 33) 

ATD 
(n =33) 

 slope R2 slope R2 slope R2 slope R2 slope R2 
Propane 

torch -- -- 0.001 0.391 0.0006 0.801 <0.0001 0.848 <0.0001 0.672 

(NH4)2SO4 -- -- -- -- 0.031 0.361 0.001 0.512 0.034 0.151 
Incense -- -- -- -- -- -- 0.592 0.355 0.028 0.334 
Toast -- -- -- -- -- -- -- -- 0.013 0.601 
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Table 5.4. Average mass median diameter and geometric standard deviation for each PM 
source test, based on the merged SMPS + APS data. 

 
 Mass median diameter Geometric standard deviation 
 Mode 1 Mode 2 Mode 1 Mode 2 

Incense - trial 1 153 nm 6.11 µm 1.85 1.25 
Incense - trial 2 117 nm 7.91 µm 1.76 1.30 
Incense - trial 3 189 nm 8.03 µm 1.98 1.33 
Incense - trial 4 130 nm 6.93 µm 1.89 1.29 
Toast - trial 1 132 nm 6.90 µm 1.92 1.21 
Toast - trial 2 130 nm 6.88 µm 1.90 1.20 
Toast - trial 3 131 nm 7.36 µm 1.95 1.28 
Toast - trial 4 126 nm 8.21 µm 2.01 1.26 

(NH4)2SO4 - trial 1 494 nm n/a 1.53 n/a 
(NH4)2SO4 - trial 2 486 nm n/a 1.53 n/a 
(NH4)2SO4 - trial 3 468 nm n/a 1.45 n/a 
(NH4)2SO4 - trial 4 490 nm n/a 1.49 n/a 

Propane torch - trial 1 318 nm n/a 1.58 n/a 
Propane torch - trial 2 309 nm n/a 1.52 n/a 
Propane torch - trial 3 272 nm n/a 1.48 n/a 
Propane torch - trial 4 285 nm n/a 1.53 n/a 

ATD - trial 1 2.7 µm* n/a 1.85 n/a 
ATD - trial 2 2.01 µm* n/a 1.44 n/a 
ATD - trial 3 1.24 µm* n/a 1.35 n/a 
ATD - trial 4 1.33 µm* n/a 1.34 n/a 

*Larger ATD particles likely settled out of the air prior to sampling. There is not strong evidence (e.g., Figure 
3) that the reference instruments under-sampled these particles. Incense and toast include two modes in the 
size distribution, while other sources only have single mode. 
 

One complication in investigating the source effect with Figure 5.3 is that the size 

distributions for each particle source are different indicated by mass mean diameter and 

geometric standard deviation (Table 5.4). For example, both incense and toast generated 

bimodal mass distributions, with mass median diameters between ~100 – 200 nm and ~6 

– 8 μm, while the propane torch particles had a single mode, with a mass median diameter 

of ~300 nm. The similarities between the particle size distributions is likely part of the 

reason why we found no statistical differences between incense and toast particles in Table 

5.3; moreover, burning incense and toast may have similar combustion conditions (e.g., 

smoldering or pyrolysis), resulting in similar particle composition and optical properties. 

There are no apparent similarities in the size distributions for any other sources. 
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Consequently, we next focused on the effect of particle size. To do so, we 

apportioned the results into three size bins (PM1, PM1-2.5, and PM2.5-10), shown in Figure 5. 

4. For PM1 (Figure 4a), the slopes for incense and toast are generally greater than the other 

four PM sources: the median values for incense and toast are approximately two times 

greater than the slopes for propane torch and (NH4)2SO4.  Moreover, the mean R2 for 

incense, toast and propane torch are approximately 0.7-0.8, which is generally lower than 

the R2 for (NH4)2SO4 and ATD. The reason may partially be due to the fact that (NH4)2SO4 

and ATD (mostly silica and alumina) are sources of relatively homogeneous composition, 

whereas we expect the composition of incense, toast, and propane torch particles to be a 

mixture of organic and elemental carbon; moreover, the mixing state of these carbonaceous 

materials in those particles is unknown. In combination, heterogeneity may cause more 

variability in the sensors’ output, but assessing the sensors’ response to mixtures of 

particles is outside the scope of this work.  

 

Conversely, in Figure 5.4b and 5.4c, there was no obvious difference in 

composition for PM1-2.5 or PM2.5-10. Incense again has the greatest variation in slopes, but 

in general, the difference of the median slopes between all sources are in the range of 0.5. 

The mean R2 values in each panel are all consistent, so even if differences in magnitude 

exist across different aerosol sizes or compositions for the sensors, the influence on the 

correlation to the reference instruments is consistent.  
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Figure 5.4. As in Figure 3, but with the data split into three size bins: (a) PM1, (b) PM1-2.5 
and (c) PM2.5-10.  

We again used Welch’s t-test to quantify the differences in slope among any 

combination of particle sources. Tables 5.5-5.7 summarize the p-values calculated from 

each set of slopes from different particle sources shown in Figure 5.4. For PM1, the results 

were similar to those in Table 5.3, in that the only statistically similar pair was incense and 

toast. Conversely, for PM1-2.5 and PM2.5-10, the only statistically-significant differences 
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existed for pairs of sources including the propane torch. This result may be partially 

explained by Hagan and Kroll (2020), who use Mie theory to demonstrate that absorbing 

particles (e.g., soot) are more likely to result in sensor measurements that are biased low, 

relative to a “true” value.  

 
Table 5.5. p-values calculate from Welch’s t-test (0.05 significant level) for PM1 using 
slopes and R2 
 

 
Propane 

torch 
(n = 11) 

(NH4)2SO4 
(n = 11) 

Incense 
(n =11) 

Toast 
(n = 11) 

ATD 
(n =11) 

 slope R2 slope R2 slope R2 slope R2 slope R2 
Propane 

torch -- -- 0.003 0.061 <0.0001 0.990 <0.0001 0.802 <0.0001 0.111 

(NH4)2SO4 -- -- -- -- <0.0001 0.025 <0.0001 0.021 0.004 0.121 
Incense -- -- -- -- -- -- 0.631 0.752 0.0001 0.047 
Toast -- -- -- -- -- -- -- -- 0.0004 0.053 

 
Table 5.6. p-values calculate from Welch’s t-test (0.05 significant level) for PM1-2.5 using 
slopes and R2 
 

 Propane torch 
(n = 11) 

(NH4)2SO4 

(n = 11) 
Incense 
(n =11) 

Toast 
(n = 11) 

ATD 
(n =11) 

 slope R2 slope R2 slope R2 slope R2 slope R2 
Propane torch -- -- 0.023 0.117 0.014 0.381 0.004 0.004 0.01 0.002 

(NH4)2SO4 -- -- -- -- 0.523 0.392 0.329 0.428 0.031 0.185 
Incense -- -- -- -- -- -- 0.858 0.398 0.207 0.055 
Toast -- -- -- -- -- -- -- -- 0.263 0.051 

 
Table 5.7. p-values calculate from Welch’s t-test (0.05 significant level) for PM2.5-10 using 
slopes and R2 
 

 
Propane 

torch 
(n = 11) 

(NH4)2SO4 
(n = 11) 

Incense 
(n =11) 

Toast 
(n = 11) 

ATD 
(n =11) 

 slope R2 slope R2 slope R2 slope R2 slope R2 
Propane 

torch   0.044 <0.0001 0.531 0.009 0.018 0.004 0.134 0.683 

(NH4)2SO4     0.248 0.008 0.942 0.251 0.631 <0.0001 
Incense       0.228 0.241 0.251 0.253 
Toast         0.689 0.001 
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5.3.3 Effect of Particle Size  

The statistically-significant differences in between particle sources appear to have 

been driven by differences in particle size, especially since this effect appears to go away 

for PM1-2.5 and PM2.5-10 when we split the data into the three size fractions, as in Figure 5.4 

and Tables 5.5-5.7. Moreover, our own Mie theory simulations based on Cappa et al. 

(Cappa et al., 2012) suggest that particle diameter, rather than complex refractive index (as 

a proxy for composition), is a stronger driver for variability in light scattering by particles 

(Figure 5.7).  

 

Therefore, we further investigate the effect of particle size on sensor performance 

by combining data across all sensors for all particle sources (i.e., assuming that sensor 

model differences and composition effects are negligible relative to the size effects). The 

result of this is presented in Figure 5 as a box-and-whisker plot. The median slopes increase 

with increasing particle size from 100 nm to 700 nm before roughly plateauing between 

700 nm and PM2.5-10. These results are generally consistent with the “transfer functions” 

reported in He et al. (2020) for the Plantower 5003 sensor. Moreover, predictions of light 

scattering efficiency from Mie theory suggest a maximum as diameters approach 1 μm 

(Figure 5.8), suggesting that our observations are similar to this theoretical framework. 
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Figure 5.5. Slope and average R2 for each particle size, combining data across all sources 
and sensors. Boxes, whiskers, and markers represent the same values as in Figures 2-5. 

 
Similar to the pattern in measured slopes, the R2 values show a generally increasing 

trend from 0.34 to 0.83 between 100 nm and PM1-2.5, but it sharply decreases to 0.48 for 

PM2.5-10; this trend is consistent with the study from Taylor (2016). We suspect that this 

degradation in R2 is  related to difficulties in sampling the larger particles, because of their 

relatively large inertia.  

 

We again used Welch’s t-test to examine the differences in slope between different 

size bins in Figure 5.5. Among any pair of size combinations, p-values are less than 0.05, 

indicating a significant size effect (not tabulated here). This effect of particle size on sensor 

performance is consistent with previous findings (Han et al., 2017; Zamora et al., 2019; 
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Liu et al., 2017; Manikonda et al., 2016; Rai et al., 2017; Sousan et al., 2016; Wang et al., 

2015). 

   
5.3.4 Decoupling Composition from Size 

We next sought to analyze whether a composition effect existed independent of the 

size effect.  As an illustrative example, in Figure 5.6 we present a summary of all results 

for a single sensor model (ID2).  The slopes generally increase from 100 nm to 700 nm yet 

mostly remain below 1 for all sources; moreover, there is no obvious composition effect 

observed between 100 and 700 nm. However, for PM1, the composition effect becomes 

more apparent. For example, the slope for incense is approximately 3 times greater than 

the slope for (NH4)2SO4 for this size bin. For the larger size bins (PM1-2.5 and PM2.5-10), the 

slopes decrease slightly, and the apparent composition effects remain. Similar figures are 

provided for the other sensor models in the Additional Tables and Figures (see Figure 5.9 

to Figure 5.12). While differences between the individual sensors exist, the general trends 

remain.  
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Figure 5.6. Slopes from experiments across different size bins for each particle source for 
ID2. Different solid markers represent different sensor instances. 

 
 To estimate the contribution of size, composition, and their interaction to the 

variance in the sensor output, we calculated ω2 for each independent variable for each 

sensor. These results are presented in Table 5.8 using the slopes from each unique 

experiment as the dependent variable (i.e., data from Figure 5.6 was used in the calculation 

for ID2). This analysis of our empirical results suggests that particle size is a more 

important factor than its composition, with size typically accounting for roughly twice the 

variance than composition. However, the interaction between size and composition is 

clearly the dominant variable, which highlights the difficulty in discerning the effects of 

size and composition independently; this is perhaps not entirely surprising because light 

scattering by particles depends on both of these variables. Furthermore, this dominance by 

the size/composition interaction may suggest that identifying the source of the particles 
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may be a critical need for improved accuracy and that sensor calibrations with different 

sources based on the sensor’s intended location for deployment may be necessary. 

 
Table 5.8. Percent contribution to variance (ω2) in the sensor output based on n-way 
analysis of variance.  

 Size (%) Composition (%) Size & composition  
interaction (%) 

ID1 5.6 3.5 10.2 
ID2 9.1 5.6 12.4 
ID4 13.2 6.0 20.8 
ID5 12.3 6.3 19.8 
BS3 9.2 5.5 17.5 

 

5.4 Conclusions 

In this study, we conducted laboratory experiments to evaluate size and 

composition effects on the performance of a Plantower particle sensor and four integrated 

devices that incorporate it. These efforts included experiments with five particle sources, 

and a subset of those experiments included monodisperse aerosols. Our major findings are:  

 

1) There is an apparent source effect on the performance of the sensors, which appears 

to be related to particle size. For example, when combining all particle sizes, the 

median slopes for incense, toast, and ATD particles were roughly 1.5, while the 

median value for propane torch and (NH4)2SO4 particles were closer to unity 

(Figure 5.3). When separated into the different size fractions (Figure 5.4), the 

median for the PM1 size fraction for incense and toast particles increases to roughly 

2.5, while the values for the PM1-2.5 and PM2.5-10 size fractions are more similar to 

the other three particle sources.  
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2) The sensors could generally detect particles as small as 100 nm. For example, the 

median slope across all sensors and sources for our monodisperse particle tests was 

roughly 0.5 for 100 nm particles (Figure 5.5). However, measurements at this small 

size were generally less precise, e.g., R2 was roughly 0.35 ± 0.25 (mean ± standard 

deviation) for 100 nm particles, which is likely related to poor scattering 

efficiencies of those particles at the wavelength of light in the sensor.  

3) While the means were statistically different, the median slopes were roughly unity 

for 500 – 700 nm monodisperse particles and for the PM1-2.5 and PM2.5-10 size 

fractions (Figure 5.5). The median value for the PM1 fraction was roughly 1.5, 

likely related to the apparent source effect. 

4) The mean R2 values gradually increased from roughly 0.55 for 200 nm particles to 

roughly 0.70 for 700 nm particles and were greater than 0.80 for the PM1 and PM1-

2.5 size fractions. There was a dramatic decrease in mean R2 for the PM2.5-10 size 

fraction (mean value of roughly 0.50), likely due to some combination of the 

difficulty in sampling these larger particles and the wave-like nature of scattered 

light by larger particles. 

5) To decouple the competing effects of size and composition on the sensors’ 

performance, we conducted an n-way analysis of variance to quantify the 

proportion of variance in the slopes that could be associated with size alone, 

composition alone, and the interaction between size and composition. Particle size 

alone explained roughly 6 – 13% of the variance, while particle composition alone 

explained roughly 3 – 6%. The interaction between particle size and composition 
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was clearly the dominant term as it was associated with roughly 10 – 21% of the 

variance. 

  

 Our results, along with other recent literature, demonstrate the need for 

improvements to calibration procedures and/or post-processing algorithms that consider 

the size and composition of the particles to improve sensor accuracy. For example, solid 

fuel combustion appears to consistently result in concentrations that are biased high [e.g., 

~50% high for burning incense in our results and in Singer and Delp (2018); factor of ~2 

high for wildfire smoke in Delp and Singer (2020) and Holder et al. (2020)], but for many 

particle sources, the discrepancies are not as extreme. This may imply the need for a 

database of source-specific correction factors that can be applied to Plantower-based 

sensors to improve exposure estimates, although our results show that composition alone 

explains the lowest fraction of the variance. 

 

 Accounting for particle size has the potential to remove roughly 10% of the 

variance in the sensor data, and in fact, Li et al. (2020) proposed the need for a size-specific 

calibration factor. For example, our results suggest that measurements of 200 nm particles 

may need to be increased by a factor of two, while measurements of 700 nm may need to 

be reduced by roughly 10%. Practically speaking, it is not this simple because real-world 

aerosol populations are rarely monodisperse, and while Plantower-based sensors do 

provide six channels of information across different particle sizes, He et al. (2020) 

comment that the sensors “always show a monotonically decreasing particle size 

distribution with increasing diameter …, regardless of the actual particle size distribution.” 
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Therefore, the particle size distribution may need to be obtained through some external 

measurement in order to apply an accurate size-resolved correction equation. 

 

 However, our results suggest that accounting for either particle size or composition 

in isolation may be insufficient, since the interaction term between these two variables 

accounts for the largest fraction of the variance. Conceivably, a numerical post-processing 

algorithm, such as the framework developed in Hagan and Kroll (2020), could account for 

both isolated variables and their interaction. One challenge with this approach is that the 

complex refractive index and the particle size distribution are required inputs, and these 

input terms may be unknown a priori. While assumptions could be made regarding the 

input variables, incorrect assumptions could result in more, rather than less, error in the 

post-processed data.  
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5.5 Additional Tables and Figures 

 

D.1 Mie theory modeling 
 
 To understand how particle diameter and composition may affect a sensor’s 

response, we provide Mie theory simulations using code based on Cappa et al. (Cappa et 

al., 2012). In our simulations, we fix the wavelength of light to 650 nm, the approximate 

wavelength of the Plantower sensor (Hagan & Kroll, 2020), an input particle diameters 

range from 10 nm to 20 μm. We consider a range of complex refractive indices (n = m + 

ik), varying m between 1.3 and 2.0 and varying k between 10-6 and 100.  

 

 Simulation results are presented in Figures 5.7 and 5.8. In the left panel of Figure 

5.7, we provide contours of predicted scattering efficiency as a function of particle diameter 

and real refractive index (m) with k = 10-6; in the right panel, we fix m = 1.55 and vary the 

imaginary refractive index. In both cases, the predicted scattering efficiency is a much 

stronger function of particle diameter than the refractive index term. For example, at a fixed 

particle diameter, the scattering efficiency is roughly constant in either panel. This is 

presented in a slightly different manner in Figure 5.8, which includes five different curves 

corresponding to m ranging between 1.45 and 1.65. Although each curve is distinct, the 

underlying dependency as a function of particle diameter is roughly the same, and the 

majority of the variation can be attributed to the so-called “interference” and “ripple” 

structures (Bohren & Huffman, 1983). The maximum scattering efficiency is roughly 

consistent with our results in Figure 5.5 in the main text. 
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Figure 5.7: Mie theory simulations for variable real refractive index with the imaginary term 
fixed at 10-6 (left panel) and for variable imaginary refractive index with the real term fixed at 
1.55 (right panel). Contours represent predicted scattering efficiencies. 

 

 

 

Figure 5.8: Mie theory simulations for non-absorbing particles with varying refractive indices. In 
all cases, there is a maximum in scattering efficiency between roughly 700 – 900 nm. 
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Individual Size/Composition Results 
 

 The following figures are analogous to Figure 5.6 in the main text. They include 

data for the other sensors tested. 

  

 

 

 

Figure 5.9: Slopes from decay tests using six different PM source for ID1 for different size bin  
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Figure 5.10: Slopes from decay tests using six different PM source for ID4 for different size bin 

 

 

Figure 5.11: Slopes from decay tests using six different PM source for ID5 for different size bin 
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Figure 5.12: Slopes from decay tests using six different PM source for BS3 for different size bin 
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Chapter 6 A systematic investigation on the effects of temperature and relative humidity 

on the performance of eight low-cost particle sensors and devices4 

 

6.1 Introduction 

 
One promising area within the field of smart buildings is in smart monitoring, 

maintenance, and control of indoor environments.  Low-cost air quality sensors can 

conceivably be used to ensure optimal operation of building air quality control systems and 

enable decision making based on reliable monitoring data. Chief among the airborne 

pollutants of interest for monitoring with these sensors is airborne particulate matter (PM).  

The link between PM exposure and numerous negative health outcomes is well established. 

Exposure to PM is linked to cardiovascular and respiratory disease (U.S. EPA 2018) and 

the majority of this exposure occurs indoors for Westerners, as this is where we spend the 

vast majority of our time (Klepeis, et al. 2011).  Indoor sources of PM include combustion 

activities, outdoor penetration, mold, and airborne formation from gases emitted from 

cleaning products, furniture, or other building products (Li, Qingmei and Zhang 2017).   

Numerous low-cost particle sensors have become commercially available recently 

for as little as $6 and may provide an inexpensive means to help assess and control PM 

exposure. These sensors usually consist of a light source (typically, a small LED) that is 

scattered by a stream of particles passing by it, and a small photoreceptor receiving this 

scattered light signal. Researchers have conducted many investigations of one or more 

 
4 This chapter is a published paper at https://doi.org/10.1016/j.jaerosci.2020.105715 
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aspects of the performance of these sensors, and mechanisms for deviation in performance 

from that of more expensive reference instruments have been identified.  One of these 

mechanisms is the changes that occur at different psychrometric conditions.  

There is little evidence that temperature has a substantial effect on the accuracy of 

low-cost sensors, within a reasonable range of temperatures, despite the fact that some 

sensors introduce air into the sensor via thermally-induced buoyancy via a resistive heater 

located within the sensor. Budde et al. (2013) noted a correlation between the output from 

a Sharp GP2Y sensor, which utilizes buoyancy-driven air, and temperature when each 

instance (one instance equals one unique sensor; multiple instances were tested in the 

study) of the sensor was held at a constant concentration of 0 µg/m3, but this effect was 

slight. Zamora et al. (2019) conducted field and laboratory evaluations of the low-cost 

Plantower PMS A003 sensor, which contains a small internal fan to drive air flow, and 

found no observable effect of temperature on LCPMS performance. 

With regards to humidity, though, several studies concluded that relative humidity 

(RH) has an impact on sensor performance. Badura et al. (2018) suggested four 

mechanisms may be responsible: hygroscopic growth leading to changes in particle 

diameter (Crilley et al., 2018); changes in the refractive index of particles, which can affect 

light scattering; moisture interference with electrical components, up to and including 

failure (Wang et al., 2015) and scattering of sensor LED light by moisture itself, which 

may occur at extreme RH (Jayaratne et al., 2018).  

Several laboratory studies have measured relationships between RH and sensor 

output. Zamora et al. (2019) discovered that the accuracy of Plantower PMS A003 

decreased at RH greater than 50%. Wang et al. (2015) found that the Sharp GP2Y sensor’ 
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output increased as RH increased. Similar phenomena have been measured in the field. 

Han et al (2017) found that the PM2.5 and PM10 concentration were correlated to RH. 

Feenstra et al  (2019)  found increasing positive bias error for 12 particle sensors during 

field base monitoring as RH increased. Liu et al (2019) also noticed increase of sensor error 

at higher RH level (greater than 80% RH) for outdoor particle monitoring.  Jayaratne et al. 

(2018) found that the Plantower PMS1003 mass concentration increased by 80% with RH 

increase from 78-89 % during field monitoring. In general, these studies all provide 

evidence that sensor output depends on RH.  

In contrast, several studies concluded that neither temperature nor RH affect 

sensors’ performance.  Badura et al. (2018) tested 5 sensors in outdoor environments with 

temperatures ranging from -8 °C to +36 °C and RH ranging from 27% to 94% but found 

no effect. Malings et al. (2020) found little RH effect and attributed this to the plastic shell, 

which enclosed their sensors, trapping heat and reducing RH. Bulot et al. (2019) found that 

neither RH nor temperature had an influence on performance of multiple sensors in a 

school. 

With these previous studies in mind, we conducted a series of experiments by 

varying temperature and humidity in a precisely controlled chamber, with eight different 

brands of low-cost particle sensors, some of which have not yet been tested in publicly 

available studies.  Our primary objective in these investigations was to quantify the 

relationship between temperature and relative humidity for the range expected in building 

applications and the output of eight low-cost sensor models (relative to a reference 

instrument), some of which have not been previously analyzed in this manner. 
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6.2 Methodology 

 
6.2.1 Sensors Tested 

 
We tested three bare sensors and five integrated devices. We define bare sensors as 

small sensors, usually less than 10 cm along their longest edge, which output an electrical 

signal (analog or digital), that then must then be translated into something understandable 

by its users and/or by other devices. The bare sensors we are testing are exclusively optical 

sensors. Bare sensors tested as well as relevant specifications are given in Table 6.1. We 

refer to bare sensors as “BS” from here forward. Multiple instances were tested for each 

type of BS as shown in Table 6.1.  

We refer to packaged devices that utilize bare sensors and fulfill the necessary 

conversion from raw sensor outputs to produce concentrations as “integrated devices”. 

Many also offer built-in features such as Bluetooth or Wi-Fi connectivity, SD card storage, 

temperature and relative humidity sensors, other pollutant sensors, and/or compatibility 

with other smart devices like thermostats. Most of the integrated devices targeted towards 

residential consumers fall into the $200 – $300 price range. Bare sensors are incorporated 

into each of the integrated devices we are also testing. Specifications for the integrated 

devices tested are given in Table 6.2. We refer integrated devices as “ID” from here 

forward. Multiple instances were tested for each type of ID except for ID1, as shown in 

Table 6.2.  
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Table 6.1. Bare Sensors Tested 

 

 

*different version of sensor from same manufacturer tested in previous work

Sensor  Cost Signal-to-Output 
Conversion Process 

Intake Manufacturer  
Reported 
Range  

Use in 
Integrated 
Sensor(s)  

Intended Indoor 
Environment  

Previous 
Studies  

No. of 
Units 
Tested 

Honeywell HPM  
(BS1) 

     $30 Light → photodiode → 
volt signal → 
photoelectric converter→ 
32-bytes → MCU(4-
bytes) → PM mass 
density  

Fan 0 μg/m3 to 
1000 μg/m3  

None  Air conditioners, air 
quality monitors, 
environmental 
monitoring, air 
cleaners, air quality 
detectors  

 2 

Sharp 
GP2Y1010AU0F 
(BS2)  

    $15 Light → photodiode → 
volt signal → amplified 
→ volt signal → 
photoelectric converter 
→ 32-bytes → MCU → 
PM mass density  

Resistor 0 μg/m3 to 500 
μg/m3  

Foobot, 
AirAssure, 
UB Air 
Sense  

Detecting dust in air, 
air purifier, air 
conditioner, air 
monitors, and 
distinguishing between 
smoke and house dust  

(Budde et 
al., 2013) 
(Weekly et 
al., 2013*) 
(Wang et 
al., 2015) 
(Hojaiji et 
al., 2017) 
(Liu et al., 
2017a) 
(Sousan et 
al., 2016) 
 

3 

Plantower 
PMS5003  
(BS3) 

$25 Light → phototransistor 
→ volt signal → 
amplified → 
photoelectric converter 
→ 32-bytes → MCU(12-
bytes) → number 
concentrations → PM 
mass density  

Fan Effective  
0 μg/m3 to 500 
μg/m3  
Max  
0 μg/m3 to 
1000 μg/m3  

TSI 
Bluesky, 
Purple Air 
II, AirBeam  

Can be in instruments 
related to the 
concentration of 
suspended particles in 
the air or other 
environmental 
improvement 
equipment  

(Kelly et 
al., 2017*)  
(Zheng et 
al., 2018) 
(Jayaratne 
et al., 
2018) 
(Zamora et 
al., 2019) 

2 
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Table 6.2. Integrated Devices Tested 

 

Sensor Cost  Communication  Sensor  Features  Previous 
Studies  

No. of 
Units 
Tested 

AirThinx  
(ID1) 

N/A  Cellular, WiFi, and 
Bluetooth. Uses 
Netronix© cloud-based 
storage.  

Plantower  Also provides CO2, formaldehyde, 
VOC, temperature, humidity, and 
pressure.  

 1 

AirBeam2  
(ID2) 

$200  Cellular networks, WiFi, 
Bluetooth, serial 
connector.  

Plantower 
PMS7003  

Weather resistant, AirCasting App is 
managed by HabitatMap, a 501(c)(3) 
raising awareness about the impact of 
the environment on human health  

(Sousan et al., 
2017) 
(B. C. Singer & 
Delp, 2018) 
 

3 

Dylos 
DC1100 
PRO  
(ID3) 

$290  Internal storage, serial 
connector.  

Dylos  The Dylos also uses its own computer 
program to interpret sensor readings 
that are stored internally.  

(Northcross et 
al., 2013)  
(Williams, 
Kaufman, et al., 
2014) 
(Steinle et al., 
2013) 
(Polidori et al., 
2016b) 

(Manikonda et 
al., 2016)  
(Jiao et al., 
2016*) 
(Sousan et al., 
2016*) 
(Han et al., 
2017*)  
(Hojaiji et al., 
2017) 
 

3 
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Sensor Cost  Communication  Sensor  Features  Previous 
Studies  

No. of 
Units 
Tested 

TSI 
BlueSky  
(ID4) 

N/A  Serial connector. Dual 
Plantower 
PMSA003 

  2 

Purple Air 
II  
(ID5) 

$229  SD card, serial connector, 
and WiFi.  

Dual 
Plantower 
PMS5003  

Also provides temperature, RH, and 
pressure.  

(Polidori et al., 
2016b) 
(B. C. Singer & 
Delp, 2018)  
(Feenstra et al., 
2019) 
 

3 

*different version of sensor from same manufacturer tested in previous work
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6.2.2 Experimental Setup 

 

We subjected each of these sensors as well as reference instruments to particle 

sources in a series of environmental conditions and particle sources.  A schematic of the 

experimental setup is shown in Figure 6.1. The low-cost sensors were placed inside a 

chamber with dimensions of 46” (L) x 62” (W) x 35” (H) (1.17 m x1.57 m x 0.89 m), built 

out of 4” (0.10 m) thick rigid insulation, labeled “Testing Chamber” in Figure 6.1. These 

sensors were elevated on wire racks to allow adequate airflow around them, similar to the 

setup in Zou et al. (2020a). A photograph of the interior of the testing chamber (insulation 

chamber) is given in Figure 6.2.  Throughout all experiments, air was drawn from the 

testing chamber by our reference instruments: a TSI Scanning Mobility Particle Sizer 

(SMPS) Model 3938, which included a Model 3081 long DMA and a model 3775 

Condensation Particle Counter (CPC); and a TSI Aerodynamic Particle Sizer (APS) Model 

3321, as in previous work (Zou, Young, Chen, et al., 2020; Zou, Young, Wickey, et al., 

2020). To avoid any additional bias, we did not pass the particles through a diffusion drier 

prior to detection by the SMPS and APS (i.e., the sensors and the reference instruments are 

both detecting “wet” particles). 

Temperature and RH were controlled in the testing chamber by siphoning air from 

an automatically controlled four cubic foot (0.11 m3) environmental chamber (ESPEC Inc.; 

labeled as “Controlled Environmental Chamber” in Figure 1) and injecting the conditioned 

air into the chamber housing the sensors through a pump.  This was done rather than testing 

sensors directly in the conditioned chamber in order to prevent deposition of particles onto 

the evaporator and heating coils in the conditioned chamber. The flow rate of air pumped 
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into the testing chamber from the controlled environmental chamber was set to 6 L/min via 

two critical orifices in order to equal the flow rate drawn by the reference instruments.  A 

thermistor and thin film capacitance humidity sensor (Fisher Scientific Traceable ±0.4 °C, 

±1.5% RH) were placed inside the testing chamber to record psychrometric conditions.  

 

Figure 6.1: Schematic of the experimental setup 
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Figure 6.2: Photograph of interior of insulation testing chamber with sensors on racks. 

6.2.3 Experimental Protocol 

 

Twenty-five decay tests were conducted under different temperature and RH 

conditions, listed in Table 6.3. These conditions represent an optimized experimental 

matrix that simultaneously ensured good statistical properties in the outputs, covered the 

range of conditions in which we were interested for indoor environments, and included  

some repeated experimental conditions in order to evaluate the consistency of any 

response. Unlike outdoor investigations of temperature and RH effects, this optimized 

design resulted in temperature and RH effects that were uncorrelated. 

We used incense and burnt toast smoke as two representative indoor particle 

sources.  To generate incense particles, we used stick incense (sandalwood flavor), igniting 

it with a direct flame and then blowing out the flame to allow slow smoldering of the stick 
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to produce more smoke particles. We then put the stick into the source chamber prior to 

transfer into the testing chamber. To generate burnt toast smoke, we used a toaster to heat 

the bread several times until smoke was generated and placed the toaster inside the source 

chamber. Once the concentration reached a high concentration (roughly 100 to 1000 μg 

m-3), the source was removed from the source chamber, and the particle concentration in 

the testing chamber was allowed to naturally decay. At the beginning of each test, we 

generated a high concentration of particles in yet another chamber, labeled “Source 

Chamber” in Figure 6.1, and pumped the particle-laden air into the testing chamber.  We 

then stopped injecting the source, and let the concentration in the chamber naturally decay 

(mainly via extraction of chamber air by the reference instruments) until all sensors’ 

concentration reached near zero.  The only sinks within the chamber were gravitational 

settling, deposition on chamber walls and sensors, and removal of chamber air by the 

reference instruments. This procedure is similar to the decay tests conducted in Zou, 

Young, Chen, et al. (2020). Particle generation and behavior in the chamber was repeatable 

under similar chamber conditions. We provide one example of two repeated experiments 

with same T and RH condition in Additional Tables and Figures Figure 6.10; while there 

is some noise in the mass mode particle diameter, both the estimated mass concentration 

and the duration of the experiment are fairly consistent. 

 

 

 

 

 



 177 

 

 

Table 6.3. Experimental conditions for decay tests  

Run T [oC] 
RH 

[%] 
 Run T [oC] 

RH 

[%] 
 Run T [oC] 

RH 

[%] 

1 20 40  10 30 15  19 40 30 

2 30 60  11 40 30  20 25 10 

3 20 60  12 35 75  21 40 40 

4 30 90  13 35 45  22 40 30 

5 30 30  14 20 25  23 20 25 

6 30 90  15 27 75  24 15 30 

7 20 90  16 30 30  25 15 20 

8 22.5 75  17 40 90     

9 40 60  18 27.7 45     
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6.2.4 Data Analysis 

 
Because the low-cost devices and reference instruments had different sampling and 

averaging frequencies, we averaged all data into one-minute bins to allow direct 

comparison between all events.  SMPS and APS data were merged using the approach of 

Khlystov et al. (2004).   We assumed a spherical shape for particles from both sources (L. 

Wallace, 2007). To convert SMPS+APS data to mass concentrations, we assumed that the 

dry density of particles generated by incense was 1.06 g/cm3 (Cheng et al., 1995; B. C. 

Singer & Delp, 2018),  and toast is 0.94 g/cm3 (B. C. Singer & Delp, 2018).  Because both 

of these material densities are close to that of water (~1 g/cm3), the hygroscopic uptake of 

water will have negligible effects on calculated wet particle mass concentrations (< 3% 

error for aerosol water contents up to 50%).  

To evaluate the effect of temperature and RH on the sensors’ outputs, we needed to 

establish a metric for describing accuracy.  Most research on low-cost sensors evaluates 

sensors’ performance by comparing low-cost sensor output to that of research grade 

instruments (Rai et al., 2017). Two often-used metrics are the coefficient of determination 

(R2) of the linear regression between the low-cost PM sensor output and the reference 

instrument output (Karagulian et al., 2019) and the slope of this linear regression 

(Karagulian et al., 2019; Rai et al., 2017), both of which are used in this study. R2 describes 

the correlation between the two outputs and the slope provides an indication of how the 

sensor concentration varies with changing reference instrument concentration. An ideal 

sensor would, therefore, have both R2 and slope of unity. Each slope and R2 that we present 

represent one decay test using one instance of the same type of sensor.  
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We sought to establish the relationship between T/RH and the slopes of the linear 

regression between the sensors and the reference instruments.  In order to do this, we fit a 

linear, a quadratic and a two-factor interaction model for T/RH and slopes. We determined 

that a single-variable linear regression is more appropriate than a quadratic model or a two-

factor interaction model for capturing this relationship. Model fitting parameters can be 

found in the Additional Tables and Figure (Table 6.6). 

 

6.3 Results and discussion 

 

In this section, we first present results illustrating the effect of each variable in isolation, 

and then we attempt to quantify the relative importance of each variable in determining 

sensor performance. Finally, we apply our correction algorithm to sensor outputs and 

assess the improvement.  

 

6.3.1 Temperature effects 

 

In Figure 6.3, we show an illustrative example of the response of one sensor’s (ID2) 

response to incense during four decay tests under the same RH but different temperature 

conditions (panel a) and three repeated trials at 40 oC and 30% RH (panel b). The markers 

represent the average across three instances of this sensor, and the error bars represent the 

standard deviation among different instances of the same sensor. We highlight two features 

of Figure 6.3 that are generally true for most sensors tested: 

1. Results of repetitions of experimental conditions track each other well (Figure 

6.3b). 
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2. There is an apparent difference in data at different temperatures, but the results for 

one temperature for a given sensor type mostly falls within one standard deviation 

of the results for other temperatures especially at concentration lower than 100 

µg/m3, suggesting temperature may not be a significant determining variable for 

sensor output (Figure 6.3a). 

 

Figure 6.3: Example decay tests conducted under same RH but different temperature 

conditions (Figure 6.3 (a)) and repeated experiment conditions (Figure 6.3 (b)) using 

incense as the PM sources for the three ID2 sensors. Markers represent the mean, and 

error bars represent the standard deviation.  

 

 

In order to quantify this second conclusion, we fit a linear regression to data from 

each experiment to obtain the slope and R2 for that particular experiment (i.e., one 

combination of temperature and RH from Table 6.3).  We then regressed 1) the slopes of 

all experiments and 2) the R2 values of all experiments to the temperatures at which they 

were performed, to determine if temperature had a significant effect on slope or R2 across 

the different experiments. We use p-value of the slope to indicate if the slopes are equal to 
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“0” at 0.01 significance level. An example of this is provided in Figures 6.4 and 6.5 for 

ID2 using incense as the particle source. In Figures 6.4 and 6.5, individual points are the 

R2 and slope values (y-axis), respectively, from each experiment, as a function of the 

temperature at which the experiment was conducted (x-axis). The markers in Figures 6.4 

and 6.5 are color-coded by RH.  

The p-value of the resulting linear model shown in Figure 6.4 is 0.26 and its R2 is 

practically zero, indicating very low confidence that effect of temperature on the sensors’ 

correlation to the references instruments is distinguishable from pure chance.  We show 

similar results for all sensors tested in Table 6.4.  

In Figure 6.5, we show the results of similar hypothesis testing for the effect of 

temperature on slope of the linear regression between low-cost sensor output and that of 

reference instruments.  Again, although there is an apparent increasing trend in the derived 

slopes with increasing temperature, the p-value (0.61) suggests that this is not significantly 

different from zero. Table 6.4 shows that the p-values for all instance of sensors are greater 

than 0.01, implying that there may be no relationship between temperature and slopes 

between sensors and instruments.   
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Figure 6.4: The relationship between temperature and the R2 value from linear regression 

of each experiment for all three instances of ID2 and the reference instruments 

(SMPS+APS) 
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Figure 6.5: The relationship between temperature and slopes from linear regression of 

each experiment for all three instances of ID2 and the reference instruments 

(SMPS+APS). Error bars represent the standard error of the slope from linear regression. 
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Table 6.4: Slope, Standard error (SE), and p-values of a linear regression between Temperature and R2 or slopes of individual 
experiments, using incense and toast as the source. Multiple entries for a given sensor represent different instances of that 
sensor 

   Incense Toast 

Comparison T vs. R2 T vs. slope T vs. R2 T vs. slope 

Sensor slope SE p-value slope SE p-value Slope SE p-value slope SE p-value 

ID1 0.008 0.005 0.281 0.005 0.012 0.126 -0.005 0.005 0.345 -0.001 0.012 0.988 

ID2 0.005 
0.007 
0.005 

0.004 
0.006 
0.005 

0.246 
0.352 
0.165  

-0.003 
0.004 
0.001 

0.007 
0.006 
0.006 

0.960 
0.504 
0.827 

0.001 
0.001 
0.002 

0.005 
0.001 
0.001 

0.832 
0.943 
0.901 

0.001 
0.010 
0.008 

0.007 
0.009 
0.008 

0.825 
0.891 
0.903 

ID3 0.009 
0.007 
0.006 

0.004 
0.005 
0.005 

0.065 
0.073 
0.039  

0.002 
0.001 
-0.003 

0.005 
0.004 
0.005 

0.788 
0.942 
0.396 

-0.007 
-0.005 
-0.002 

0.008 
0.003 
0.004 

0.268 
0.268 
0.549 

0.005 
0.004 
-0.001 

0.009 
0.008 
0.007 

0.593 
0.385 
0.435 

ID4 0.007 
0.003 

0.006 
0.004 

0.211 
0.235 

0.009 
0.016 

0.009 
0.010 

0.299 
0.096 

-0.007 
-0.001 

0.005 
0.001 

0.272 
0.136 

-0.004 
-0.001 

0.010 
0.011 

0.559 
0.867 

ID5 0.007 
0.004 
0.004 

0.007 
0.006 
0.006 

0.100 
0.059 
0.069 

0.021 
0.023 
0.020 

0.012 
0.017 
0.009 

0.078 
0.058 
0.043 

-0.004 
-0.006 
-0.001 

0.005 
0.004 
0.004 

0.634 
0.190 
0.328 

-0.001 
0.001 
0.001 

0.015 
0.013 
0.001 

0.963 
0.981 
0.891 

BS1 -0.004 
-0.007 

0.004 
0.002 

0.182 
0.281 

0.001 
0.010 

0.018 
0.002 

0.455 
0.558 

0.003 
0.005 

0.006 
0.005 

0.461 
0.765 

0.013 
0.001 

0.017 
0.021 

0.99 
0.436 

BS2 0.006 
0.003 
0.003 

0.006 
0.004 
0.003 

0.983 
0.948 
0.979 

0.028 
0.010 
0.033 

0.029 
0.018 
0.009 

0.278 
0.404 
0.834 

-0.016 
-0.007 
-0.007 

0.009 
0.007 
0.007 

0.520 
0.379 
0.168 

0.001 
0.003 
0.001 

0.003 
0.002 
0.005 

0.227 
0.879 
0.382 

BS3 0.002 
0.003 

0.006 
0.004 

0.567 
0.695 

-0.016 
-0.002 

0.008 
0.009 

0.835 
0.161 

-0.007 
-0.004 

0.006 
0.004 

0.13 
0.41 

-0.006 
-0.004 

0.001 
0.013 

0.777 
0.469 
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6.3.2 RH effect  

 

 

 

Figure 6.6: Example decay tests conducted under same temperature but different RH 
conditions (Figure 6.6 (a)) and repeated experiment condition (Figure 6.6 (b))using 
incense as the PM sources (ID2 sensors). Markers represent the mean, and error bars 
represent the standard deviation.  

 

 

In Figure 6.6 we present results analogous to those in Figure 6.3, but with fixed 

temperature (at 20 oC) and varying RH between experiments, with two repeated trials at 

25% RH in Figure 6.6b. Unlike in Figure 6.3, the differences between different experiments 

do not appear to agree within measurement uncertainty: the experiments at 90% RH had 

the greatest slope, followed by 60% RH, 40% RH, and 25% RH. Similar results were 

observed for all of the other sensors (see Table 6.7-6.12 in the Additional Tables and 

Figures). 

Similar to the temperature experiments, we also evaluated how RH affects sensor 

performance by considering the relationship of RH to slope and R2.  Example results are 
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shown in Figures 6.7 and 6.8, and Table 6.5 provides a summary across all sensors.  Figure 

6.7 demonstrates the relationship between RH and R2 for ID2 and suggests there is no 

statistically significant relationship between the RH and R2 (p-values are all greater than 

0.01) for this sensor. This trend holds true for all sensors tested (Table 6.5), with a single 

exception of one instance of one sensor (ID3) for one particular source (incense), which 

may indicate a problem with that one specific instance of that sensor.  This suggests that 

although several previous works have shown a relationship between sensor performance 

and RH conditions, the correlation to reference instrument outputs does not seem to be 

significantly affected for the sensors and conditions tested. 

We sought to clarify this further by looking at not just the correlation, but the 

magnitude of the low-cost sensor response, as quantified by the slope of the regression 

between the sensor signal and that of the reference instrument.  Interestingly, as shown in 

Figure 6.8, RH has a clear, statistically-significant effect (p-value < 0.01) on the slope of 

the regression line between ID2 and the reference instruments for incense as the particle 

source.  That is, the output from the sensor increased with increasing RH, which is 

consistent with previous studies (Han et al., 2017; Zamora et al., 2019; Liu et al., 2017b; 

Morawska et al., 2018; Wang et al., 2015).  

Again, this trend holds true for other sensors tested, as shown in Table 6.5.  Every 

sensor tested showed a significant effect for RH when subjected to toast smoke. 

Interestingly, several sensors showed no statistically-significant effect on RH versus slope 

for incense particles at 99% confidence level, but for toast smoke all sensors showed a 

significant effect; any potential explanation for this is purely speculative, so we do not 

elaborate here.  
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Figure 6.7: The relationship between RH and the R2 value from linear regression of each 
experiment for all three instances of ID2 and the reference instruments (SMPS+APS) 
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Figure 6.8: The relationship between RH and slopes from linear regression of each 
experiment for all three instances of ID2 and the reference instruments (SMPS+APS). 
Error bars represent the standard error of the slope from linear regression. 



 189 

Table 6.5: Slope, Standard error (SE), and p-values of linear regression between RH and R2, RH and slope using incense and 
toast as the PM sources. Multiple entries for a given sensor represent different instances of that sensor.  

                                              
   incense toast 

Comparison RH vs. R2 RH vs. slope RH vs. R2 RH vs. slope 

Sensor slope SE p-value slope SE p-value slope SE p-value slope SE p-value 

ID1 -0.001 0.001 0.310 0.008 0.003 0.010 0.001 0.002 0.593 0.015 0.003 1.5e-5 

ID2 -0.002 
-0.001 
-0.001 

0.002 
0.002 
0.002 

0.950 
0.203 
0.832 

0.005 
0.005 
0.001 

0.002 
0.001 
0.002 

0.003 
0.008 
0.010 

0.001 
0.001 
-0.001 

0.001 
0.001 
0.001 

0.722 
0.836 
0.635 

0.008 
0.014 
0.010 

0.002 
0.001 
0.002 

1.4e-4 
3.8e-4 
5.0e-5 

ID3 -0.001 
0.003 
0.002 

0.002 
0.001 
0.002 

0.990 
0.832 
0.037 

-0.001 
-0.001 
-0.001 

0.002 
0.001 
0.001 

0.575 
0.623 
0.452 

0.001 
0.001 
-0.001 

0.003 
0.001 
0.001 

0.834 
0.938 
0.539 

0.007 
0.004 
0.012 

0.002 
0.003 
0.003 

5.0e-4 
0.008 
0.006 

ID4 0.001 
0.001 

0.002 
0.002 

0.391 
0.132 

0.008 
0.009 

0.002 
0.003 

0.025 
0.015 

0.001 
-0.001 

0.002 
0.001 

0.429 
0.643 

0.014 
0.017 

0.004 
0.004 

4.1e-4 
1.3e-4 

ID5 -0.001 
-0.001 
0.001 

0.002 
0.001 
0.001 

0.623 
0.894 
0.559 

0.011 
0.010 
0.010 

0.003 
0.003 
0.002 

0.036 
0.002 
0.007 

0.001 
0.001 
-0.001 

0.001 
0.002 
0.002 

0.864 
0.471 
0.792 

0.015 
0.013 
0.020 

0.004 
0.001 
0.004 

1.6e-4 
1.0e-4 
2.8e-4 

BS1 -0.001 
-0.001 

0.001 
0.002 

0.469 
0.963 

0.001 
0.011 

0.001 
0.005 

0.024 
0.036 

-0.002 
0.001 

0.002 
0.001 

0.956 
0.992 

0.002 
0.021 

0.005 
0.001 

1.9e-4 
0.008 

BS2 -0.001 
0.001 
0.001 

0.002 
0.002 
0.001 

0.990 
0.981 
0.879 

0.012 
0.023 
0.007 

0.008 
0.005 
0.003 

0.032 
0.052 
0.012  

0.003 
0.002 
-0.001 

0.003 
0.003 
0.002 

0.265 
0.483 
0.167 

0.004 
0.002 
0.002 

0.001 
0.002 
0.001 

0.006 
0.007 
0.004 

BS3 -0.001 
0.001 

0.001 
0.002 

0.962 
0.932 

0.008 
0.009 

0.002 
0.002 

0.007 
0.008 

-0.001 
0.001 

0.002 
0.001 

0.990 
0.981 

0.012 
0.014 

0.003 
0.004 

2.1e-4 
0.006 
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6.3.3 Variability between Sensors, Sources, and Repeated Experiments  

 
 Our matrix of sensors combined with two particle sources and some repeated 

experimental conditions enables the investigation of variability in the relative response of 

the sensors to the reference instruments.  

Variability between Experimental Conditions 
 
To investigate the cause of the variability among experiments, we conducted an n-way 

analysis of variance (ANOVA) using input values from Tables 6.7 and Table 6.10. Table 

6.7 and Table 6.10 include the average slopes from the linear regression between the 

sensors and the reference instrument under the 25 pairs of T/RH conditions for both incense 

and burnt toast smoke particles.  The dependent variables were the slopes, and independent 

variables were the sensor used, the particle source, T, and RH. We then calculated the 

proportion of variance (ω2): 

!! =	$$% − (( − 1)+$,$$- ++$, 					,/.		6.1 

where SSB is the sum of squares due to a given independent variable, a is the number of 

independent variables, MSE is the mean square error, and SST is the total sum of squares. 

Results of this analysis suggest that the sensor model, particle source, T, and RH accounted 

for 15.2%, 4.7%, 5.3%, and 11.1% of the variability, respectively.  

These n-way ANOVA results suggest that the type of sensor used has the largest 

contribution to overall variance in our results, suggesting that although the sensors are all 

nephelometers, the form factor, wavelength of light, processing algorithm, and other 

“operating” differences can result in large variability. The results for RH and particle 
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source are consistent with our previous results in Chapter 5, suggesting that variations in 

the sensors’ response can occur as RH varies or as the particle source varies. Variations in 

T account for roughly 5% of the variability in the slopes, which is inconsistent with our 

results in, e.g., Figure 6.5; however, there is some noise in, e.g., Figure 6.8, for a given RH. 

Therefore, T may account for a small, yet statistically insignificant, role in affecting the 

sensors’ outputs.  

6.3.3.1 Variability in Repeated Experiments 
 

To quantify differences between repeated T and RH pairs (e.g., Experiments 14 and 

23 in Table 6.3), we calculated the relative difference in the slopes for each sensor if there 

were two replicates or the relative standard deviation between the slopes if experiments 

were conducted in triplicate. These results are presented in Table E.6.8, separated by 

particle source. Generally, the results are more stable when T < 40 oC, which could be 

related to the fact that the sensor manufacturers tend to report 40 oC as the upper bound of 

the sensors’ working temperature; this fact could also contribute to the fractional variance 

for T in our n-way ANOVA results.  

Some of this variability may be related to instance-to-instance variability for a 

given sensor, which can be estimated using results from Additional Tables and Figures 

Table 6.7 and 6.8, Table 6.10 and Table 6.11. For example, ID3 tends to have high 

variability in Table 6.7, and it also tends to have high “relative standard error” for both 

incense and toast smoke. In fact, we identified both ID3 and BS2 as having lower 

“manufacturer consistency” in previous work (Zou, Young, Wickey, et al., 2020).  This 

instance-to-instance variability may also be part of the explanation for the large fraction of 
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“random” error in our n-way ANOVA (i.e., the error that cannot be explained by our 

independent variables). 

6.3.3.2 Variability in Plantower-Based Sensors 
 

Because four of our integrated devices incorporated some version of a Plantower 

sensor (ID1, ID2, ID4, and ID5), we investigated whether there were any systematic trends 

between those devices and BS3. To visualize this, we present the ratio of the slope from an 

integrated device to the slope from the bare sensor for a given experiment in Figure 6.9. 

Qualitatively, there is considerable noise among individual experiments (markers in the 

figure). To quantify these differences, we conducted significance testing. None of the 

slopes of the best-fit lines shown in the figure were significantly different from zero at a 

99% confidence level. We also tested the mean values of the ratios presented in Figure 6.9 

to determine if they were significantly different from unity. For ID1 and ID4, these means 

were not significantly different from unity at a 99% confidence level; however, for ID2 

and ID5, they were significantly different. Consequently, our data suggests that while 

different form factors and proprietary algorithms can result in discrepancies between these 

Plantower-based sensors, but none of them appears to be disproportionately influenced by 

RH, relative to each other. 
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Figure 6.9. The relationship of the ratio of slopes between the integrated devices 
containing a Plantower sensor and the bare Plantower 5003 sensor (BS3) as a function of 
RH: a) ID1; b) ID2; c) ID4; and d) ID5. Note the different scales on the y-axes. 

 

6.4 Conclusion  

 
In this study we conducted an optimized matrix of twenty-five decay tests under 

different temperature and RH conditions using two common challenge sources and 

simultaneous measurement with reference instruments.  Analysis of results showed a few 

interesting results:  

1) No statistically significant relationship between temperature and low-cost sensor 

output emerged for any sensor tested in the range of 15 oC to 40 oC, suggesting this 
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variable may not be a large contributor to sensor performance degradation for 

indoor environments and likely does not need to be taken into consideration.  This 

is largely in line with previous research on the subject. 

2) Similarly, no significant relationship between the correlation of low-cost sensor 

output and humidity emerged from the tests conducted in the range of 10 % to 90 

%.  This suggests that while the magnitude of sensor output may change with 

humidity, the signal remains correlated to that of reference instruments and a simple 

calibration may improve performance. 

3) There is a significant linear relationship between RH and the relative response of 

the low-cost particle sensors. This may be related to changes in the particles’ 

complex refractive index as hygroscopic growth occurs, thus affecting the light-

scattering measurements by the low-cost sensors.   

4) In our n-way ANOVA, the sensor model appears to be the largest source of 

variability, implying that sensors produced by different manufacturers perform 

differently. Moreover, the agreement between the Plantower-based sensors (ID1, 

ID2, ID4, ID5, and BS3) is variable; however, none of these sensors are 

disproportionately affected by variations in RH.   

For indoor particle sensor’s application, there may be a need to monitoring 

temperature and RH for the correction on the sensor’ output to provide more accurate 

measurement. For the correction of RH, Malings et al. (2020)  and Tryner et al. (Tryner et 

al., 2020) both developed physics-based correction equations for low-cost particle sensors 

to account for uptake of water by particles at elevated RH. In this study, we did not explore 

the use of these correction equations for our sensors’ data, since those corrections used 
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dried particles to obtain their reference concentrations, which our reference instruments 

sampled the humidified particles. 

 

 

 

6.5 Additional Tables and Figures 

 

 Model Development and Statistical Tests 
 

We sought to establish the significance of each variable of interest in determining 

the accuracy of the low-cost sensors.  In order to do this, we fit linear and quadratic and 

two-factor interaction models for temperature and RH separately, with forms given below.   

Linear models: 

 1a: 2 = 3" + 3# ∙ 56 

 1b:	2 = 3" + 3! ∙ -  

Non-linear model (quadratic): 

 2a: 2 = 3" + 3# ∙ 56 + 3$ ∙ 56! 

 2b: 2 = 3" + 3! ∙ - + 3% ∙ -! 

Two-factor-interaction model: 

 3: 2 = 3" + 3# ∙ 56 + 3! ∙ - + 3& ∙ 56 ∙ - 

The intent of this exercise was not to develop a predictive model, but to quantify the 

significance of each independent variable in determining sensor performance. Thus for 

each model, we calculated p-values as an indicator of the significance of the relationship 

between two environmental factors and sensor performance. For each model we calculated 
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adjusted R2 values to adjust for the number of variables. we presents the result in Table 

6.5. Adjusted R2 are provided because it adjusts for the number of variables. Generally, we 

observed that the R2/adjust R2 of linear model for T and RH are lower than the quadratic 

model and the two-factors-interaction model for most of the sensors, highest R2/ adjusted 

R2 are observed for two-factors-interaction model.  The reason of increase of R2/adjusted 

R2 is partially because quadratic model and the two-factor-interaction model are adding 

more variables, but the coefficient for these two models are not statistically significant. 

Thus, we believe that the linear model is more appropriate model than quadratic model and 

the two-factors-interaction model.  

 

Table 6 6: Summary of model coefficients using linear, non-linear and two-factor interaction 
model to evaluate the relationship between sensor performance and temperature/RH from decay 
test using incense as the PM source (data from Table 6.7-6.12. The following equation were used 
to fit models (co-c5 are the coefficients for models, R2 is the coefficient of determination, p is p-
values for the coefficients for c1-c5). 

 
Sensor type  co c1 c2 c3 c4 c5 R2 R2adj p 

Airthinx 1a 0.696 0.008     0.22 0.14 ü 
 1b 0.481  0.021    0.10 0.06 û 
 2a 0.634 0.011  -2.8e-5   0.18 0.10 û 
 2b -0.921  0.129  -1.8e-3  0.15 0.07 û 
 3 0.858 -0.008 -0.005   5e-5 0.30 0.19 û 

Airbeam-1 1a 0.314 0.006     0.35 0.33 ü 
 1b 0.207  0.143    0.19 0.15 ü 
 2a -0.115 0.027  -1.9e-4   0.50 0.45 ü 
 2b 0.170  0.017  -4.2e-5  0.19 0.12 û 
 3 -0.045 -0.007 0.013   -2.8e-5 0.49 0.42 û 

Airbeam-2 1a 0.466 0.004     0.28 0.25 ü 
 1b 0.384  0.010    0.16 0.12 û 
 2a 0.267 0.014  -9.2e-5   0.33 0.27 û 
 2b 0.207  0.023  -2.3e-4  0.16 0.09 û 
 3 0.166 0.006 0.011    0.40 0.31 û 

Airbeam-3 1a 0.463 0.003     0.16 0.12 ü 
 1b 0.321  0.010    0.16 0.13 ü 
 2a 0.215 0.015  -1.2e-4   0.24 0.17 û 
 2b 0.209  0.051  -6.9e-4  0.20 0.13 û 
 3 0.393 0.001 -0.002   -1.5e-5 0.31 0.21 û 

Dylos-1 1a 0.282 -0.001     0.01 0.03 û 
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Sensor type  co c1 c2 c3 c4 c5 R2 R2adj p 
 1b 0.176  0.001    0.003 -0.02 û 
 2a 0.237 0.001  -2.0e-5   0.01 -0.04 û 
 2b -0.726  0.070  -0.001  0.01 -0.07 û 
 3 0.046 0.003 0.008   -1.4e-5 0.03 0.008 û 

Dylos-2 1a 0.305 -1.9e-4     0.001 -0.10 û 
 1b 0.285  3.7e-4    0.001 -0.04 û 
 2a 0.024 0.002  -2.8e5   0.005 -0.04 û 
 2b -0.600  0.06  -0.001  0.01 -0.08 û 
 3 0.071 0.005 0.008   -1.8e-5 0.02 0.01 û 

Dylos-3 1a 0.339 -0.004     0.01 -0.11 û 
 1b 0.413  -0.003    0.03 -0.03 û 
 2a 0.306 8.9e-4  -1e-5   0.01 -0.01 û 
 2b -0.314  0.051  -9.6e-5  0.02 -0.07 û 
 3 0.126 0.006 0.007  -2.5e-5  0.11 0.06 û 

TSI-1 1a 0.714 0.007     0.30 0.28 ü 
 1b 0.787  0.010    0.05 0.03 û 
 2a 0.392 0.023  -1.4e-4   0.34 0.31 û 
 2b 0.297  0.047  -6.3e-4  0.05 -0.03 û 
 3 0.575 0.005 0.005   6e-5 0.33 0.23 û 

TSI-2 1a 0.635 0.009     0.37 0.35 ü 
 1b 0.630  0.016    0.11 0.07 û 
 2a 0.392 0.026  -1.5e-4   0.42 0.36 û 
 2b -0.177  0.072  -9.8e-4  0.13 0.05 û 
 3 0.878 0.004 -0.008   6e-5 0.49 0.42 û 

PurpleAir-1 1a 0.740 0.011     0.32 0.29 ü 
 1b 0.659  0.021    0.12 0.08 û 
 2a 0.773 0.009  1.4e-4   0.32 0.26 û 
 2b 0.213  0.052  -5.8e-4  0.13 0.05 û 
 3 0.850 0.005 -0.002   4.9e-4 0.43 0.36 û 

PurpleAir-2 1a 0.776 0.009     0.27 0.24 ü 
 1b 0.575  0.022    0.16 0.12 û 
 2a 0.450 0.025  -1.4e-4   0.30 0.23 û 
 2b 0.616  0.197  -5.4e-5  0.16 0.08 û 
 3 0.850 -0.005 -0.002   4.9e-4 0.43 0.35 û 

PurpleAir-3 1a 0.833 0.009     0.32 0.29 ü 
 1b 0.701  0.020    0.15 0.11 û 
 2a 0.828 0.009  -2.2e-6   0.32 0.26 û 
 2b -0.005  0.074  -9.3e-4  0.17 0.09 û 
 3 0.721 0.004 5.6e-4   2.8e-4 0.44 0.36 û 

Honeywell-1 1a 0.047 0.001     0.18 0.14 ü 
 1b 0.065  0.001    0.02 -0.01 û 
 2a 0.024 0.002  -1e-5   0.18 0.11 û 

 2b -0.141  0.017  -2.7e-5  0.07 
-

0.001 
û 

 3 0.042 1.7e-4 1.6e-4   1.6e-5 0.20 0.08 û 
Honeywell-2 1a 0.541 0.011     0.17 0.13 ü 

 1b 0.792  0.010    0.01 -0.02 û 
 2a 0.026 0.036  -2.3e-4   0.20 0.13 û 
 2b -0.824  0.133  -0.002  0.03 -0.03 û 
 3 0.527 0.007 6e-4   1.3e-4 0.18 0.06 û 

Sharp-1 1a 0.614 0.022     0.27 0.24 ü 



 198 

Sensor type  co c1 c2 c3 c4 c5 R2 R2adj p 
 1b 0.907  0.028    0.04 0.004 û 
 2a 0.642 0.021  1.2e-5   0.27 0.20 û 
 2b -0.207  0.112  -0.001  0.04 -0.03 û 
 3 0.672 0.008 -7e-3   4.7e-4 0.30 0.19 û 

Sharp-2 1a 0.823 -0.002     0.28 0.25 ü 
 1b 0.492  0.007    0.12 0.08 û 
 2a 1.059 -0.013  1e-4   0.29 0.22 û 
 2b 1.834  -0.094  0.001  0.15 0.04 û 
 3 1.105 -0.014 -0.009   4.1e-4 0.37 0.28 û 

Sharp-3 1a 0.809 1e-4     0.001 
-

0.002 
û 

 1b 0.719  0.003    0.06 0.02 û 
 2a 0.829 -7e-3  8.9e-6   0.003 0.001 û 
 2b 0.861  -0.007  1.9e-4  0.07 0.03 û 
 3 0.702 0.003 2e-4   -6e-3 0.06 0.03 û 

Plantower-1 1a 0.559 0.008     0.38 0.36 ü 
 1b 0.963  -3e-4    <0.001 -0.04 û 
 2a 0.663 0.003  4e-4   0.39 0.33 û 
 2b -0.771  0.131  -0.002  0.17 0.09 û 
 3 0.247 0.017 0.011   -3.3e-5 0.43 0.35 û 

Plantower-2 1a 0.553 0.008     0.48 0.46 ü 
 1b 1.314  -0.011    0.08 0.04 û 
 2a 0.792 -0.002  1e-4   0.51 0.47 û 
 2b -0.770  0.146  -0.002  0.34 0.28 û 
 3 0.925 0.013 -0.011   -2e-4 0.62 0.57 û 

Note:  
ü for p-value indicates that the p-value for coefficient a,b,c,d,and e for that model are less than 0.01 
û for p-value indicates that the p-values for coefficient a,b,c,d,and e for that model are all greater than 0.01 
p-value for m are not provided in the table because all p-value for m are less than 0.01 
 
 
Results of linear regressions for individual experiments 

Table 6.7: Average slopes from linear regression between sensor and reference instrument under 
25 temperature and RH conditions using incense  

Test # T RH ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 
1 15.00 20.00 1.08 0.57 0.16 1.03 0.86 0.26 0.91 0.64 
2 15.00 30.00 0.42 0.87 0.07 0.46 0.75 0.36 0.73 0.74 
3 20.00 25.00 0.56 0.36 0.53 0.66 0.84 0.68 1.11 0.90 
4 20.00 25.00 1.10 0.19 0.16 1.22 1.37 0.45 1.05 1.06 
5 20.00 40.00 0.05 0.60 0.26 0.75 0.80 0.27 1.25 0.61 
6 20.00 60.00 1.02 0.94 0.22 1.26 1.25 1.04 1.95 1.22 
7 20.00 90.00 0.74 1.62 0.41 1.00 1.17 0.55 1.83 1.27 
8 22.50 75.00 1.71 0.67 0.24 1.57 1.56 0.51 1.35 1.20 
9 25.00 10.00 0.91 0.32 0.21 0.95 1.20 0.04 1.04 0.83 
10 27.00 75.00 1.40 0.79 0.31 1.05 1.34 1.66 3.61 1.50 
11 27.70 45.00 1.09 0.74 0.31 1.19 1.28 0.48 1.47 1.21 
12 30.00 15.00 0.48 0.38 0.19 0.26 0.23 0.17 0.70 0.59 
13 30.00 30.00 1.26 0.98 0.35 0.80 1.46 0.74 1.20 1.03 
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14 30.00 30.00 2.10 1.07 1.13 1.02 1.16 1.39 1.85 1.03 
15 30.00 60.00 1.10 0.75 0.25 1.26 1.10 0.51 1.00 0.77 
16 30.00 90.00 1.07 0.59 0.15 1.21 1.49 0.68 1.50 1.56 
17 30.00 90.00 1.60 0.88 0.26 1.60 2.03 0.75 1.70 1.63 
18 35.00 45.00 0.47 0.58 0.12 1.25 0.79 0.31 0.76 0.50 
19 35.00 75.00 2.10 0.71 0.28 1.78 2.01 0.40 1.83 1.24 
20 40.00 30.00 0.60 0.30 0.20 0.60 0.78 0.44 0.75 0.67 
21 40.00 30.00 0.86 0.68 0.12 0.89 1.16 0.13 1.00 0.52 
22 40.00 30.00 1.23 0.83 0.31 1.24 1.51 0.57 1.57 0.80 
23 40.00 40.00 1.24 0.84 0.29 1.41 2.16 1.05 2.24 0.89 
24 40.00 60.00 1.66 0.91 0.20 1.49 1.51 0.49 1.51 0.95 
25 40.00 90.00 1.65 0.95 0.17 1.35 1.89 1.22 2.73 0.84 

 
Table 6.8: Average standard error for the slopes from linear regression between sensor and 
reference instrument under 25 temperature and RH conditions using incense. 

 
Test # T RH ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 

1 15.00 20.00 1.08 0.07 0.10 0.00 0.07 0.30 0.10 0.06 
2 15.00 30.00 0.42 0.08 0.06 0.16 0.05 0.47 0.26 0.18 
3 20.00 25.00 0.56 0.07 0.09 0.03 0.09 0.79 0.09 0.02 
4 20.00 25.00 1.10 0.18 0.06 0.02 0.04 0.55 0.04 0.08 
5 20.00 40.00 0.05 0.08 0.18 0.11 0.05 0.31 0.59 0.10 
6 20.00 60.00 1.02 0.02 0.03 0.00 0.09 1.26 0.17 0.14 
7 20.00 90.00 0.74 0.25 0.18 0.44 0.21 0.64 0.46 0.08 
8 22.50 75.00 1.71 0.05 0.05 0.10 0.07 0.59 0.55 0.01 
9 25.00 10.00 0.91 0.28 0.10 0.03 0.15 0.02 0.03 0.13 
10 27.00 75.00 1.40 0.06 0.03 0.04 0.17 1.92 1.88 0.00 
11 27.70 45.00 1.09 0.02 0.16 0.06 0.22 0.56 0.11 0.04 
12 30.00 15.00 0.48 0.13 0.09 0.04 0.11 0.24 0.23 0.07 
13 30.00 30.00 1.26 0.08 0.11 0.00 0.10 0.87 0.24 0.01 
14 30.00 30.00 2.10 0.09 0.21 0.14 0.22 1.60 0.75 0.02 
15 30.00 60.00 1.10 0.06 0.14 0.01 0.06 0.63 0.30 0.13 
16 30.00 90.00 1.07 0.03 0.05 0.59 0.07 0.80 0.06 0.05 
17 30.00 90.00 1.60 0.07 0.02 0.03 0.12 0.85 0.62 0.04 
18 35.00 45.00 0.47 0.11 0.06 0.02 0.15 0.36 0.21 0.13 
19 35.00 75.00 2.10 0.04 0.06 0.13 0.10 0.46 0.10 0.06 
20 40.00 30.00 0.60 0.11 0.08 0.04 0.06 0.54 0.40 0.02 
21 40.00 30.00 0.86 0.05 0.08 0.05 0.07 0.12 0.10 0.09 
22 40.00 30.00 1.23 0.07 0.06 0.03 0.05 0.66 0.64 0.45 
23 40.00 40.00 1.24 0.01 0.05 0.06 0.19 1.25 1.25 0.14 
24 40.00 60.00 1.66 0.07 0.05 0.10 0.05 0.57 0.54 0.08 
25 40.00 90.00 1.65 0.05 0.07 0.16 0.08 1.42 1.67 0.20 
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Table 6.9: Average R2 from linear regression between sensor and reference instrument under 25 
conditions using incense.  

 
Test # T RH ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 

1 15.00 20.00 0.92 0.76 0.60 0.96 0.75 0.89 0.85 0.96 
2 15.00 30.00 0.55 0.79 0.78 0.75 0.63 0.84 0.76 0.80 
3 20.00 25.00 0.98 0.23 0.89 0.63 0.98 0.86 0.73 0.54 
4 20.00 25.00 0.99 0.00 0.71 0.95 0.96 0.92 0.90 0.95 
5 20.00 40.00 0.66 0.77 0.59 0.77 0.73 0.80 0.81 0.73 
6 20.00 60.00 0.99 0.79 0.58 0.96 0.89 0.92 0.90 0.97 
7 20.00 90.00 0.60 0.44 0.76 0.75 0.77 0.49 0.82 0.79 
8 22.50 75.00 0.93 0.92 0.90 0.95 0.96 0.91 0.72 0.99 
9 25.00 10.00 0.99 0.00 0.53 0.72 0.98 0.61 0.83 0.94 
10 27.00 75.00 0.97 0.95 0.58 0.96 0.61 0.74 0.66 0.97 
11 27.70 45.00 0.49 0.57 0.48 0.83 0.79 0.44 0.39 0.53 
12 30.00 15.00 0.97 0.95 0.68 0.51 0.60 0.46 0.65 0.99 
13 30.00 30.00 0.95 0.55 0.90 0.92 0.91 0.77 0.85 0.73 
14 30.00 30.00 0.97 1.00 0.65 0.21 0.95 0.49 0.94 0.99 
15 30.00 60.00 1.00 0.44 0.86 0.72 0.81 0.34 0.69 0.71 
16 30.00 90.00 0.64 0.45 0.81 0.78 0.87 0.67 0.57 0.57 
17 30.00 90.00 0.98 0.95 0.86 0.94 0.92 0.95 0.88 0.92 
18 35.00 45.00 0.39 0.94 0.74 0.66 0.60 0.48 0.61 0.33 
19 35.00 75.00 0.93 0.89 0.70 0.99 0.97 0.16 0.95 0.99 
20 40.00 30.00 0.96 0.77 0.88 0.96 0.91 0.91 0.93 0.99 
21 40.00 30.00 0.97 0.84 0.89 0.99 0.94 0.62 0.86 0.58 
22 40.00 30.00 0.99 0.95 0.86 0.97 0.99 0.83 0.93 0.91 
23 40.00 40.00 0.97 0.88 0.90 0.95 0.95 0.91 0.93 0.98 
24 40.00 60.00 0.99 0.93 0.86 0.99 0.96 0.81 0.94 0.98 
25 40.00 90.00 0.98 0.80 0.86 0.96 0.92 0.91 0.96 0.96 
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Table 6.10: Average slopes from linear regression between sensor and reference instrument 
under 25 temperature and RH conditions using burnt toast smoke. 

Test # T RH ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 
1 15.00 20.00 0.36 0.23 0.12 0.54 0.69 0.39 0.02 0.33 
2 15.00 30.00 0.44 0.34 0.36 0.43 0.51 0.73 0.04 0.30 
3 20.00 25.00 0.62 0.50 0.16 0.67 0.74 1.00 0.07 0.76 
4 20.00 25.00 0.98 0.79 0.53 1.18 1.39 1.94 0.18 1.39 
5 20.00 40.00 0.38 0.36 0.19 0.47 0.55 0.82 0.02 0.26 
6 20.00 60.00 1.71 0.85 0.21 1.74 1.46 1.30 0.07 1.21 
7 20.00 90.00 0.38 0.32 0.18 0.42 0.49 0.81 0.04 0.25 
8 22.50 75.00 0.59 0.53 0.56 0.55 0.87 1.21 0.19 0.96 
9 25.00 10.00 0.61 0.41 0.28 0.85 0.95 1.81 0.15 0.98 
10 27.00 75.00 0.24 0.31 0.02 0.32 0.49 0.34 0.11 0.20 
11 27.70 45.00 0.47 0.51 0.37 0.37 0.72 0.82 0.14 0.37 
12 30.00 15.00 0.47 0.44 0.30 0.41 0.60 0.68 0.08 0.80 
13 30.00 30.00 0.26 0.48 0.15 0.28 0.61 0.33 0.02 0.21 
14 30.00 30.00 1.40 0.84 0.26 1.26 2.26 1.42 0.16 0.84 
15 30.00 60.00 1.38 NaN 0.18 1.54 2.13 2.49 0.21 1.47 
16 30.00 90.00 2.10 1.49 1.28 1.62 1.89 2.41 0.31 2.26 
17 30.00 90.00 0.49 0.77 0.09 0.67 0.97 0.58 0.03 0.54 
18 35.00 45.00 0.73 0.89 0.42 0.61 0.66 1.19 0.12 0.55 
19 35.00 75.00 0.28 0.35 0.31 0.68 0.30 0.52 0.24 0.85 
20 40.00 30.00 0.42 0.30 0.12 0.30 0.51 0.26 0.01 0.04 
21 40.00 30.00 0.69 0.50 0.16 0.73 0.85 0.85 0.05 0.47 
22 40.00 30.00 0.38 0.47 0.50 0.65 0.79 0.90 0.19 0.52 
23 40.00 40.00 0.83 0.76 0.38 0.84 1.46 2.29 0.28 0.77 
24 40.00 60.00 0.98 0.69 0.42 0.84 1.23 2.34 0.35 0.80 
25 40.00 90.00 1.02 0.87 0.52 0.93 1.41 2.24 0.29 0.53 
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Table 6.11: Average standard error for slopes from linear regression between sensor and 
reference instrument under 25 temperature and RH conditions using burnt toast smoke. 

Test # T RH ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 
1 15.00 20.00 0.36 0.00 0.16 0.21 0.23 0.01 0.01 0.09 
2 15.00 30.00 0.44 0.04 0.18 0.04 0.14 0.08 0.01 0.06 
3 20.00 25.00 0.62 0.10 0.07 0.17 0.18 0.00 0.02 0.02 
4 20.00 25.00 0.98 0.12 0.38 0.02 0.15 0.02 0.10 0.18 
5 20.00 40.00 0.38 0.05 0.07 0.04 0.08 0.02 0.02 0.07 
6 20.00 60.00 1.71 0.34 0.02 0.33 0.15 0.01 0.03 0.02 
7 20.00 90.00 0.38 0.03 0.06 0.03 0.16 0.02 0.01 0.06 
8 22.50 75.00 0.59 0.05 0.05 0.22 0.10 0.04 0.07 0.00 
9 25.00 10.00 0.61 0.07 0.06 0.01 0.02 0.04 0.04 0.00 
10 27.00 75.00 0.24 0.20 0.01 0.11 0.11 0.08 0.16 0.06 
11 27.70 45.00 0.47 0.07 0.13 0.24 0.25 0.10 0.11 0.04 
12 30.00 15.00 0.47 0.09 0.08 0.03 0.17 0.11 0.04 0.02 
13 30.00 30.00 0.26 0.40 0.12 0.02 0.21 0.01 0.01 0.03 
14 30.00 30.00 1.40 0.03 0.08 0.06 0.20 0.02 0.05 0.04 
15 30.00 60.00 1.38 NaN 0.06 0.08 0.16 0.59 0.08 0.07 
16 30.00 90.00 2.10 0.06 0.07 0.46 0.60 0.08 0.05 0.06 
17 30.00 90.00 0.49 0.28 0.13 0.12 0.02 0.28 0.02 0.08 
18 35.00 45.00 0.73 0.56 0.02 0.17 0.07 0.07 0.08 0.06 
19 35.00 75.00 0.28 0.07 0.45 0.12 0.09 0.02 0.31 0.00 
20 40.00 30.00 0.42 0.04 0.19 0.14 0.07 0.12 0.01 0.03 
21 40.00 30.00 0.69 0.14 0.07 0.18 0.11 0.37 0.00 0.04 
22 40.00 30.00 0.38 0.30 0.41 0.29 0.36 0.14 0.15 0.45 
23 40.00 40.00 0.83 0.12 0.13 0.00 0.73 0.09 0.02 0.10 
24 40.00 60.00 0.98 0.23 0.45 0.21 0.82 0.02 0.50 0.10 
25 40.00 90.00 1.02 0.09 0.40 0.01 0.08 0.14 0.10 0.05 
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Table 6.12: Average R2 from linear regression between sensor and reference instrument under 
25 conditions using burnt toast smoke. 

 
Test # T RH ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 

1 15.00 20.00 0.78 0.75 0.73 0.91 0.91 0.43 0.50 0.90 
2 15.00 30.00 0.94 0.97 0.94 0.99 0.95 0.95 0.81 0.94 
3 20.00 25.00 0.99 0.95 0.95 0.95 0.95 0.96 0.95 0.95 
4 20.00 25.00 0.91 0.93 0.86 0.95 0.92 0.94 0.97 0.96 
5 20.00 40.00 0.96 0.94 0.95 0.98 0.94 0.94 0.94 0.99 
6 20.00 60.00 0.93 0.94 0.94 0.96 0.96 0.57 0.92 0.97 
7 20.00 90.00 0.96 0.97 0.95 0.95 0.95 0.99 0.98 0.94 
8 22.50 75.00 0.99 0.99 0.95 0.96 0.98 0.99 1.00 0.99 
9 25.00 10.00 0.97 0.95 0.96 0.99 0.98 0.54 0.30 0.96 
10 27.00 75.00 0.97 0.94 0.54 0.96 0.97 0.98 0.92 0.94 
11 27.70 45.00 0.98 0.97 0.89 0.94 0.98 0.95 0.97 0.95 
12 30.00 15.00 0.95 0.98 0.93 0.84 0.94 0.89 0.97 0.93 
13 30.00 30.00 0.98 0.91 0.94 0.98 0.59 0.99 0.96 0.95 
14 30.00 30.00 0.43 0.71 0.55 0.63 0.88 0.25 0.29 0.53 
15 30.00 60.00 0.92 NaN 0.88 0.93 0.76 0.94 0.89 0.88 
16 30.00 90.00 0.95 0.96 0.93 0.92 0.94 0.95 0.62 0.80 
17 30.00 90.00 0.99 0.95 0.62 0.95 0.96 0.95 0.21 0.99 
18 35.00 45.00 0.93 0.95 0.95 0.98 0.82 0.80 0.89 0.92 
19 35.00 75.00 0.18 0.70 0.55 0.57 0.98 0.43 0.27 0.92 
20 40.00 30.00 0.58 0.95 0.74 0.90 0.95 0.83 0.29 0.21 
21 40.00 30.00 0.98 0.95 0.66 0.94 0.95 0.93 0.40 0.86 
22 40.00 30.00 0.95 0.95 0.87 0.97 0.85 0.99 0.94 0.98 
23 40.00 40.00 0.96 0.97 0.91 0.95 0.98 0.99 0.78 0.99 
24 40.00 60.00 0.99 0.96 0.87 0.97 0.99 0.98 0.98 0.96 
25 40.00 90.00 0.99 0.97 0.86 0.96 0.95 1.00 0.78 0.99 
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Table 6.13: Repeatability of experimental conditions. If n = 2, the value represents the relative 
difference, while if n = 3, the value represents the relative standard deviation. All values are 
expressed as percentages (%). 

Source T 
(oC) 

RH 
(%) n ID1 ID2 ID3 ID4 ID5 BS1 BS2 BS3 

Incense 

20 25 2 16.2 15.4 26.8 14.8 11.9 10.1 1.4 4.1 
30 30 2 12.5 2.2 26.3 6.1 5.7 15.2 10.6 0.0 
30 90 2 9.9 9.8 13.4 6.9 7.6 2.4 3.1 1.0 
40 30 3 35.3 45.2 45.4 35.2 31.7 59.5 37.9 21.1 

Toast 

20 25 2 11.3 11.2 26.8 13.7 15.2 16.0 22.0 14.7 
30 30 2 34.3 13.6 13.4 31.8 28.7 31.1 38.9 30.0 
30 90 2 31.0 15.9 43.4 20.7 16.0 30.6 41.1 30.7 
40 30 3 33.9 25.4 80.3 40.8 25.3 53.1 98.0 76.8 

 
 
 

 
Figure 6.10: Sample data for two decay tests at 30 oC and 90% RH using incense as the particle 
source. Left panel: Estimated mass concentrations for the combined SMPS+APS (SMPS) and 
both instances of the bare Plantower sensor (pl1 and pl2). Right panel: Mass mode diameter from 
the SMPS+APS size distributions.   
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Figure 6.11: The relationship between RH and slopes from linear regression of each experiment 
during incense decay tests for ID1 (one instance) and the reference instruments (SMPS+APS). 
Error bars represent the standard error of the slope from linear regression. 
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Figure 6.12: The relationship between RH and slopes from linear regression of each experiment 
during burning toast decay tests for ID1 (one instance) and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. 
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Figure 6.13: The relationship between RH and slopes from linear regression of each experiment 
during burning toast decay tests for all three instances of ID2 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from three instances.  
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Figure 6.14: The relationship between RH and slopes from linear regression of each experiment 
during incense decay tests for both instances of ID4 and the reference instruments (SMPS+APS). 
Error bars represent the standard error of the slope from linear regression. The linear regression 
line is fit to all the slopes from two instances.  
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Figure 6.15: The relationship between RH and slopes from linear regression of each experiment 
during burning toast decay tests for both instances of ID4 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from two instances.  
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Figure 6.16: The relationship between RH and slopes from linear regression of each experiment 
during incense decay tests for all three instances of ID5 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from three instances.  
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Figure 6.17: The relationship between RH and slopes from linear regression of each experiment 
during burning toast decay tests for all three instances of ID5 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from three instances.  
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Figure 6.18: The relationship between RH and slopes from linear regression of each experiment 
during incense decay tests for all three instances of BS1 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from three instances.  
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Figure 6.19: The relationship between RH and slopes from linear regression of each experiment 
during burning toast decay tests for all three instances of BS1 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from three instances.  
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Figure 6.20: The relationship between RH and slopes from linear regression of each experiment 
during incense decay tests for all two instances of BS2 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from two instances.  
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Figure 6.21: The relationship between RH and slopes from linear regression of each experiment 
during burning toast decay tests for all two instances of BS2 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from two instances.  
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Figure 6.22: The relationship between RH and slopes from linear regression of each experiment 
during incense decay tests for all two instances of BS3 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from two instances.  
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Figure 6.23: The relationship between RH and slopes from linear regression of each experiment 
during burning toast tests for all two instances of BS3 and the reference instruments 
(SMPS+APS). Error bars represent the standard error of the slope from linear regression. The 
linear regression line is fit to all the slopes from two instances.  
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Chapter 7: Summary and future studies 

 

7.1 Summary 

Low-cost air quality sensors are emerging technologies on the market, and their 

relatively inexpensive prices and portability make them more accessible for residential or 

commercial use than traditional air monitoring instruments. However, uncertainties in their 

performance remain. This study focused on the use of low-cost gaseous sensors to 

characterize spatial patterns in an urban area and the evaluation of factors that affect low-

cost particle sensors’ performance.   

In this thesis, Chapter 2 describes the field application of low-cost gaseous sensors 

for outdoor monitoring. We deployed sensors on a transit bus to monitor on-road traffic-

related air pollution. Through the regular and repeated traversals along routes made by the 

bus, we obtained sensor data to explore the consistency of the spatial and temporal patterns 

observed for different air pollutants. Although our efforts were a pilot-scale study, they 

suggest that an air quality monitoring network using sensors deployed on transit buses may 

be a promising application for characterizing the underlying spatial and temporal pattern 

of air pollution within urban areas.  

Chapter 3 focuses on the field application of using low-cost particle sensor within 

an emulated indoor residential environment. We investigated the ability of particle sensors 

to detect residential particle emission events and found that all of sensors could respond to 

each events. However, the magnitude of the response by sensors varied for different 

particle sources. The results of this study can provide information regarding how well the 
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sensors may characterize exposure to real-world indoor particles. Our simultaneous 

characterization of the particle size distributions of these (and other) particle sources 

suggested that the size of the particles can affect the sensors’ performance. We further 

evaluated this effect of particle size as well as particle composition as summarized 

subsequently in Chapter 5.    

In Chapter 4, we proposed a definition for the limits of quantification (i.e., the 

maximum and minimum particle concentrations between which reliable data may be 

obtained) for each of the tested low-cost particle sensors through controlled laboratory 

experiments. Experiments show that the lower bound (minimum) range from 3 to 15 µg/m3 

and higher bound (maximum) range from 300 to 3,000 µg/m3 for the sensors tested. We 

found that these limits (both upper and lower bound) may be unlikely to affect most of the 

sensors’ performance for most indoor environments. However, lower R2 values between 

the reference instruments and some of the sensors were observed for “background” 

conditions during the experiments described in Chapter 3, which is likely attributable to 

the particle concentration falling below the sensors’ lower limit of quantification, implying 

that they may not provide high-quality data when particle concentrations are low. 

Chapter 5 describes the effects of particle size and particle composition on the 

performance of low-cost particle sensors. We conducted laboratory experiments to separate 

these two factors and found that particle size appears to have a more dominant effect on 

the sensors' response to the particles than composition, although the interaction between 

size and composition is more dominant than size or composition alone. This implies that if 

the sampled particles within a given environment are substantially different than the 

calibration particles, the sensor’s output may be inaccurate. Results from this chapter can 
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also, in part, explain why the slopes and R2 between the sensors and the reference 

instruments were highly variable for different particle sources, as described in Chapter 3. 

This implies that accurate exposure assessments may be difficult when indoor particle 

sources vary. 

Chapter 6 investigates how two environmental factors, temperature and relative 

humidity (RH), affect the performance of low-cost particle sensors. We conducted 

laboratory experiments under different temperature and RH conditions within the range 

that might be expected for the indoor environment. We found that there is a statistically 

significant, positive linear relationship between the slopes of the linear fit between sensors’ 

measurements and research-grade instruments’ measurements as RH varies. This indicates 

that RH may result in a positive bias to the sensors’ reported particle concentrations (likely 

related to changes to the particles’ diameters or refractive indices). We obtained no strong 

evidence that temperature has a significant effect on the sensors’ performance. These 

results may suggest the need for a co-located RH sensor that is deployed alongside the low-

cost particle sensors to enable corrections for this RH effect, either in near-real-time or 

during data post-processing.  

In general, low-cost gaseous sensors can provide higher spatial air quality 

measurements in outdoor environments, and low-cost particle sensors can provide 

information about indoor air quality that is largely unmonitored. Even if a low-cost particle 

sensor cannot provide accurate measurements within the indoor environment, they appear 

to have utility for event detection, or in other words, as an indicator that particles have been 

emitted within a given environment.  For those particle sensors that can provide fairly 

accurate measurements, they may have utility in exposure studies.  
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7.2 Future studies 

 
There is still work that needs to be done to better understand applications and 

limitations of low-cost sensors for air quality monitoring. In Chapter 2, we learned that 

low-cost sensors deployed on a transit bus can provide high resolution spatial 

measurements. This approach may have practical utility in future applications, but 

additional work is required to providing data to support air pollution modeling and air 

quality information services. One extension of the work in Chapter 2 could be the inclusion 

of a particle sensor to provide information about PM concentrations as well as the gas-

phase pollutants.  

In the context of our evaluation of particle sensors in Chapters 4 through 6 along 

with other literature, there does not appear to be a standard approach for evaluating the 

particle sensors, which may explain why discrepancies exist among different studies. 

Therefore, a standard procedure for the evaluation of the sensors may be necessary. Such 

a standard protocol should be developed for the calibration and evaluation of these sensors 

in order to understand biases that may exist (and their causes) and to improve the accuracy 

of a given sensor through robust calibrations. For example, a calibration protocol should 

be followed by the manufacturer when testing all types of sensors. The protocol should 

explain how the calibration was conducted including details related to the testing 

environment, testing period and concentration levels; this should also prescribe a specific 

reference instrument (or instruments) for calibration. Requiring such a transparent standard 

protocol would also improve quality assurance and quality control by encouraging the 
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manufacturers to test their sensors, which should reduce discrepancies, like we observed 

in Chapter 3 and others have reported previously, across sensors from the same 

manufacturer.  

Correction methods for data post-processing for low-cost sensor are necessary to 

provide accurate measurements.  As discussed in Chapter 5 and Chapter 6, several factors 

including particle size, particle composition and RH affect the sensors’ performance. Our 

study only focused on the evaluation of how these factors affect sensor performance, as we 

did not develop correction methods as an outcome of our work. Further studies are needed 

to provide robust correction methods for these factors (size, composition, RH) 

simultaneously in order to provide more accurate data by reducing systematic biases.  For 

example, experiments (similar to the decay tests from Chapter 4 and Chapter 5) can be 

conducted by perturbing five variables: particle size, particle composition, RH, 

temperature and sensor type. A multiple regression model can be developed for the 

calibrations as in previous studies (Malings et al., 2020; Si et al., 2019), in which the 

dependent variable is the reference instrument concentration and the independent variables 

are the low-cost sensor’s concentration, particle size, particle composition, relative 

humidity, temperature and sensor type. This model may have similar functional form 

across different sensors, but the coefficients for the calibration equations may be different 

for each sensor. This model can also demonstrate which variable(s) can significantly affect 

the sensors’ performance and provide a means of evaluating how the interaction between 

any two variables affects the sensors’ performance. The outcome of the correction would 

to be that low-cost particle sensors will require a co-located RH sensor to account for the 

RH effects, and another recommendation may be to use low-cost optical particle counters 
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to account for particle size effects. RH sensors are relatively inexpensive, and while 

inexpensive optical particle counters may cost ~$1,000, this is still much lower in cost than 

the reference instruments that we used in this study. 

The ideas discussed above are focused on enhancing the utility of low-cost gaseous 

sensors in the outdoor environment and on improving confidence in the data collected by 

low-cost particle sensors within the indoor environment. This dissertation has further 

demonstrated the potential of low-cost sensors to be deployed as supplemental 

measurements for regulatory monitoring, on transit systems to provide higher resolution 

spatiotemporal data, and in buildings to provide air quality measurements that are largely 

non-existent indoors. These applications can lead to a number of beneficial outcomes, 

including changing human behavior (e.g., avoid air pollution “hotspots”), providing data 

for personal exposure and epidemiologic studies evaluating air quality models, and aiding 

in the understanding of the atmospheric transport of air pollutants (e.g., smoke from 

wildland fires). In addition, networks of low-cost sensors may provide data that enable the 

development statistical models which could provide air quality forecasts.  
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