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ABSTRACT

In applications such as networked monitoring and control systems, wireless sensor

networks, and autonomous vehicles, it is crucial for the destination node to receive

timely status updates so that it can make accurate decisions. For example, a moving

car with a speed of 65 mph will traverse almost 29 meters in 1 second, and hence,

stale information (regarding the location of surrounding vehicles, velocities, etc.) has

a dramatic serious impact on this situation. Age of information (AoI), or simply age,

has been used to measure the freshness of status updates. More specifically, AoI is

the age of the freshest update at the destination, i.e., it is the time elapsed since the

freshest received update was generated. It should be noted that optimizing traditional

network performance metrics, such as throughput or delay, does not attain the goal

of timely updating. For instance, it is well known that AoI could become very large

when the offered load is high or low. In other words, AoI captures the information

lag at the destination, and is hence more apt for achieving the goal of timely updates.

In this thesis, we leverage rigorous theory to develop low-complexity scheduling

algorithms that are apt for a wide range of information update systems. In particular,

we consider the following systems:

• Information update systems with stochastic packet arrivals: We con-

sider single and multihop networks with stochastic arrivals, where our goal is to

answer the following fundamental questions: (i) Which queueing discipline can

minimize the age? And (ii) under what conditions is the minimum age achiev-

able? Towards this goal, we design low-complexity scheduling policies to achieve
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(near) age-optimality in single and multihop networks with single source. The

achieved results that we present here hold under quite general conditions, in-

cluding (i) arbitrary packet generation and arrival processes, (ii) for minimizing

both the age processes in stochastic ordering and any non-decreasing functional

of the age processes, (iii) multi-server, single-hop networks with packet replica-

tions, and (iv) general multihop network topology.

• Information update systems with controlled packet generation: We

consider multi-source systems, where sources can control the generation of the

update packets. Our goal is to address the following information update sys-

tems: (i) We consider the system in which sources take turns to generate update

packets, and forward them to their destinations one-by-one through a shared

channel with random delay. There is a scheduler, that chooses the update order

of the sources, and a sampler, that determines when a source should gener-

ate a new sample in its turn. We aim to solve a challenging joint sampling

and scheduling optimization problem for minimizing AoI. Although the com-

plexity that is usually inherited in joint optimization problems, we are able to

develop low-complexity optimal scheduler-sampler pairs that minimize AoI, (ii)

since many information update devices are battery limited, scheduling policies

that prolong the battery-lifetime sometimes are just as crucial as those that

ensure information freshness. Towards that end, we consider the problem of

optimizing the freshness of status updates that are sent from a large number

of low-power sources to a common access point. We develop asynchronized

sleep-wake scheduling algorithm that minimizes AoI, subject to per-source bat-

tery lifetime constraints. Although the problem turns out to be non-convex, we

devise a low-complexity near-optimal solution.
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CHAPTER 1

INTRODUCTION

The ubiquity of mobile devices and applications has greatly boosted the demand for

real-time information updates, such as news, weather reports, email notifications,

stock quotes, social updates, mobile ads, etc. Also, timely status updates are crucial

in networked monitoring and control systems. These include, but are not limited

to, sensor networks used to measure temperature or other physical phenomena, and

surrounding monitoring in autonomous driving.

The growth in the demand for real-time information updates is expected to con-

tinue its astonishing march, driven by a plethora of applications that will affect every

aspect of our lives, from entertainment and autonomy to business and healthcare.

For example, in autonomous driving, real-time information related to traffic conges-

tion and road conditions is crucial to avoid collisions and reduce congestion. Thus,

a key challenge that has attracted a number of researchers is how to design efficient

systems in order to ensure freshness of information at the destination. To identify

the timeliness of the updates, a metric called the age of information (AoI), or simply

age, was defined in, e.g., [1–4]. At time t, if the packet with the largest generation

time at the destination was generated at time U(t), the age ∆(t) is defined as

∆(t) = t− U(t). (1.0.1)
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Figure 1.1: A sample path of the age process ∆(t), where si and ci are the generation
time and the delivery time of packet i, respectively.

Hence, age is the time elapsed since the freshest received packet was generated. As

shown in Fig. 1.1, the age increases linearly with time t but is reset to a smaller value

with the delivery of an even fresher packet.

Unlike traditional packet-based performance metrics, such as throughput and de-

lay, age is a destination-based metric. For example, consider the case when a flow of

information update packets are stored in a buffer and forwarded to a controller over

a communication medium. If the update rate is low, then the buffer is empty and

hence the delay is low. However, because the controller is updated infrequently, the

AoI is high. On the other hand, if the update rate is high, then the queueing delay at

the buffer is high, and so is the AoI because packets have to wait for a long time in

the buffer. Hence, while delay increases monotonically with the update rate, the AoI
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(or staleness) first decreases and then increases. Thus, AoI captures the information

lag at the destination, and is hence more apt for achieving the goal of timely updates.

In this dissertation, our goal has been to design low-complexity algorithms that

optimize the data freshness for variants of information update systems (e.g., systems

with stochastic packet arrivals, and systems with controlled packet generation).

1.1 Information Update Systems with Stochastic Packet Ar-

rivals

In recent years, a variety of approaches have been investigated to reduce the age

on systems with a stochastic arrival process. In [4–6], it was found in First-Come,

First-Served (FCFS) queueing systems that the time-average age first decreases with

the update frequency and then increases with the update frequency. The optimal

update frequency was obtained to minimize the age in FCFS systems. In [7–9], it

was shown that the age can be further improved by discarding old packets waiting in

the queue when a new sample arrives. Characterizing the age in Last-Come, First-

Serve (LCFS) queueing systems with gamma distributed service times was considered

in [10]. However, these studies cannot tell us: Which queueing discipline can minimize

the age? Under what conditions is the minimum age achievable? In this dissertation,

we aim to answer these two questions in single-hop networks with multiple servers

and multihop networks.

1.1.1 Single-Hop Networks

We begin with answering the aforementioned questions for a single-hop network with

a single source as illustrated in Fig. 1.2, where a sequence of update packets arrive at a

queue with m servers and a buffer size B. Each server can be used to model a channel

3



!"#$%&'$%(&)*"*"+,*--".+

/".0".+1

/".0".+2

/".0".+3

4&5(1%&6

*78'$"#

Figure 1.2: Single-source information update system.

in multi-channel communication systems [11], or a computer in parallel computing

systems [12]. The service times of the update packets are i.i.d. across servers and

the packets assigned to the same server. Let si be the generation time of the update

packet i at an external source, and ai be the arrival time of the update packet i at

the queue. Out-of-order packet arrivals are allowed, such that the packets may arrive

in an order different from their generation times, e.g., si < sj but aj < ai. Packet

replication [13–15] is considered in this network. In particular, multiple replicas of

a packet can be assigned to different servers, at possibly different service starting

time epochs. The first completed replica is considered as the valid execution of the

packet; after that, the remaining replicas of this packet are cancelled immediately

to release the servers. We propose a Last-Generated, First-Serve (LGFS) scheduling

policy, in which the packet with the earliest generation time is served with the highest

priority. We show that if the service times are i.i.d. exponentially distributed, the

preemptive LGFS policy is age-optimal in a stochastic ordering sense. If the service
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times are i.i.d. and satisfy a New-Better-than-Used (NBU) distributional property,

the non-preemptive LGFS policy is shown to be within a constant gap from the

optimum age performance. These age-optimality results are quite general: (i) They

hold for arbitrary packet generation times and arrival times (including out-of-order

packet arrivals), (ii) They hold for multi-server packet scheduling with the possibility

of replicating a packet over multiple servers, (iii) They hold for minimizing not only

the time-average age, but also for minimizing the age stochastic process and any

non-decreasing functional of the age stochastic process. The details of this part are

presented in Chapter 2.

1.1.2 Multihop Networks
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Figure 1.3: Information updates in single-source multihop networks.

Now, we answer the above questions for a multihop network represented by a

directed graph, as shown in Fig. 1.1.2, where the update packets are generated at an

external source and are then dispersed throughout the network via one or multiple

gateway nodes. The case of multiple gateway nodes is motivated by news spreading
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Preemption
type

Transmission
time
distribution

Network topology Policy Space Proposed policy
Optimality
result

Preemption is
allowed

Exponential General Causal policies Preemptive LGFS Age-optimal

Preemption is
allowed

New-Better-
than-Used

Each node has only
one incoming link

Causal policies
Non-preemptive
LGFS

Near age-optimal

Preemption is
not allowed

Arbitrary General
Work-conserving
causal policies

Non-preemptive
LGFS

Age-optimal

Table 1.1: Summary of age-optimality results in multihop networks.

in social media where news is usually posted by multiple social accounts or webpages.

Moreover, we suppose that the packet generation times at the external source and

the packet arrival times at the gateway node (gateway nodes) are arbitrary. This is

because, in some applications, such as sensor and environment monitoring networks,

the arrival process is not necessarily Poisson. For example, if a sensor observes an en-

vironmental phenomenon and sends an update packet whenever a change occurs, the

arrival process of these update packets does not follow a Poisson process. The packet

transmission times are independent but not necessarily identically distributed across

the links, and i.i.d. across time. Interestingly, we find that some low-complexity

scheduling policies can achieve (near) age-optimal performance in this setting. The

main results in multihop networks are summarized in Table 1.1 and the details are

presented in Chapter 3.

1.2 Information Update Systems with Controlled packet gen-

eration

There have been two major lines of research on age in single-source networks: One

direction is on systems with a stochastic arrival process (as we discussed earlier). The

second direction is for the case that the packet arrivals follow a sampling schedule
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that needs to be controlled to minimize AoI. We further investigate the latter case

and develop simple algorithms to optimize data freshness. Towards that end, we

consider the following information update systems:

1.2.1 Multi-source Information Update Systems

An important problem is how to jointly optimize packet generation and transmissions

to maximize data freshness in single source networks [16–19]. In this dissertation, we

consider a non-trivial generalization of [18, 19] and develop optimal sampling and

scheduling strategies for multi-source networks.

We consider random, yet discrete, transmission times such that a packet has to be

processed for a random period before delivered to the destination. In practice, such

random transmission times occur in many applications, such as autonomous vehicles.

In particular, there are many electronic control units (ECUs) in a vehicle, that are

connected to one or more sensors and actuators via a controller area network (CAN)

bus [20, 21]. These ECUs are given different priority, based on their criticality level

(e.g., ECUs in the powertrain have a higher priority compared to those connected

to infotainment systems). Since high priority packets usually have hard deadlines,

the transmissions of low priority packets are interrupted whenever the higher priority

ones are transmitted. Therefore, information packets with lower priority see a time-

varying bandwidth, and hence encounter a random transmission time.

Another example is the wireless sensor networks that are used for environmental

monitoring, human-related activities, etc. In such networks, sensor nodes may be

deployed in remote areas and information is gathered from these sensors by an access

point (AP) through a shared wireless channel [22]. Since this channel is influenced

by uncertain factors, the channel delay varies with time.

When the transmission time is highly random, one can observe an interesting
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Figure 1.4: Sampling and scheduling in a multi-source network.

phenomenon: It is not necessarily optimal to generate a new packet as soon as the

channel becomes available. This phenomenon was revealed in [16] and further ex-

plored in [18] and [19]. In the case of autonomous vehicles, many sensors may share

the same CAN bus. As a result, the decision maker needs to control both the sam-

pling times and service order of these sensors. The same observations are also applied

to wireless sensor networks.

This motivates us to investigate timely status updates in multi-source systems

with random transmission times, as depicted in Fig. 1.4. Sources take turns to

generate update packets, and forward the packets to their destinations one-by-one

through a shared channel with random delay. This results in a joint design problem

of scheduling and sampling, where the scheduler chooses the update order of the

sources, and the sampler determines when a source should generate a new packet in

its turn. We find that it is optimal to first serve the source with the highest age, and,

similar to the single-user case, it is not always optimal to generate packets as soon as

the channel becomes available. In Chapter 4, we provide details about the challenges

we face in this joint optimization problem and the methodology we use to overcome

them.
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1.2.2 Low-Power Information Update Systems

In a variety of information update systems, energy consumption is also a critical con-

cern. For example, wireless sensor networks are used for monitoring crucial natural

and human-related activities, e.g. forest fires, earthquakes, tsunamis, etc. Since such

applications often require the deployment of sensor nodes in remote or hard-to-reach

areas, they need to be able to operate unattended for long durations. Likewise, in

medical sensor networks, battery replacement/recharging involves a series of medi-

cal procedures, leading to disutility to patients. Hence, energy consumption must

be constrained in order to support a long battery life of 10-15 years [23]1. For net-

works serving such real-time applications, prolonging battery-life is crucial. Existing

works on multi-source networks, e.g., [26–36], focused exclusively on minimizing the

AoI and overlooked the need to reduce power consumption. This motivates us to

derive scheduling algorithms that achieve a trade-off between the competing tasks of

minimizing AoI and reducing the energy consumption in multi-source networks.

Additionally, some status-update systems consist of a large number (e.g., hun-

dreds of thousands) of densely packed wireless nodes, which are serviced by a single

access point (AP). Examples include massive machine-type communications [37]. The

dataloads in such “dense networks” [37,38] are created by applications such as home

security and automation, oilfield and pipeline monitoring, smart agriculture, animal

and livestock tracking, etc. This introduces high variability in the data packet sizes so

that the transmission times of data packets are random. Thus, scheduling algorithms

designed for time-slotted systems with a fixed transmission duration, are not appli-

cable to these systems. Besides that, synchronized scheduler for time-slotted systems

1The computations performed in [23] are based on the specifications of commercially used devices.
For example, the used transceiver is 2.4 GHz chipset from Chipcon, the CC2420 [24], and the used
microcontroller is the Motorola 8-bit microcontroller MC9508RE8 [25]. For more detail about the
supply voltage and current consumption, please see the aforementioned references.
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are feasible when there are relatively few sources and each source has sufficient en-

ergy. However, if there are a huge number of sources, the signaling overhead could

be quite high. Since, each source may have limited energy and low traffic rate, the

system could be highly inefficient. This motivates us to design asynchronized medium

access protocols that coordinate the transmissions of multiple conflicting transmitters

connected to a single AP.

Towards that end, we consider a wireless network with M sources that contend

for channel access and communicate their update packets to an AP. Each source is

equipped with a battery that may get charged by a renewable source of energy, e.g.,

solar. Moreover, each source utilizes carrier sensing to reduce collisions and adopt an

asynchronized sleep-wake scheme [39] under which the source generates and transmits

a packet if the channel is idle; and sleeps if either: (i) The channel is busy, (ii) it

has completed a packet transmission. This enables each source to save the precious

battery energy by switching off when it is unlikely to gain channel access for packet

transmissions. However, since a source cannot transmit during the sleep period, this

causes the AoI to increase. We carefully design the sleep-wake parameters to minimize

the weighted-sum peak age of the sources, while ensuring that the battery lifetime

constraint of each source is satisfied. When the sensing time (i.e., the time duration

of carrier sensing) is zero, this sleep-wake design problem can be solved by resorting

to a two-layer nested convex optimization procedure; however, for positive sensing

times, the problem is non-convex. In Chapter 5, we devise a low-complexity solution

to solve this problem and prove that, for practical sensing times that are short and

positive, the solution is within a small gap from the optimum AoI performance.
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1.3 Thesis Organization

The thesis is organized as follows: In Chapter 2, we develop low-complexity scheduling

policies that can achieve (near) age-optimality in single-source single-hop networks

for a variety of transmission time distributions including (i) exponential distribu-

tion, (ii) NBU distribution. We then extend these optimality results to multihop

networks in Chapter 3. In Chapter 4, we consider the problem of how to jointly

design the scheduler and sampler in multi-source networks. In Chapter 5, we design

asynchronous sleep-wake scheduling algorithms that can optimize the information

freshness while simultaneously meeting the energy requirements of battery operated

information sources. Finally, concluding remarks and possible future research direc-

tions are presented in Chapter 6.
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CHAPTER 2

SINGLE-HOP INFORMATION UPDATE SYSTEM WITH

STOCHASTIC ARRIVALS

2.1 Introduction

A series of works studied the age performance of scheduling policies in a single queue-

ing system with Poisson arrival process and exponential service time [4,5,7–9,40,41].

In [4,5], the update frequency was optimized to improve data freshness in First-Come,

First-Serve (FCFS) information-update systems. The effect of the packet manage-

ment on the age was considered in [7–9]. It was found that a good policy is to discard

the old updates waiting in the queue when a new sample arrives, which can greatly

reduce the impact of queueing delay on data freshness. In [40], the time-average age

was characterized for multiple sources Last-Come, First-Serve (LCFS) information-

update systems with and without preemption. In this study, it was shown that sharing

service facility among Poisson sources can improve the total age. Characterizing the

time average age for FCFS queueing system with two and infinite number of servers

was studied in [41]. The analysis in [41] showed that the model with infinite servers

has a lower age in conjunction with more wasting of network resources due to the

rise in the obsolete delivered packets. One open question in these studies on age

analysis [4, 5, 7–9, 40, 41] is whether the preemptive LCFS policy is age-optimal for

exponential service times. In this chapter, we provide a confirmative answer to this
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question, and further investigate age-optimality for more general system settings such

as arbitrary packet generation and arrival processes (including out-of-order packet ar-

rivals), multi-server networks, as well as packet replications over multiple servers.

In [42], the average age was characterized in a pull model, where a customer sends

requests to all servers to retrieve (pull) the interested information. In this model,

the servers carry information with different freshness level and a user waits for the

responses from these servers. The server updating process and the response times

were assumed to be Poisson and exponential, respectively.

Characterizing the age for a class of packet service time distributions that are more

general than exponential was considered in [6, 10, 43]. In [6], the age was analyzed

in multi-class M/G/1 and M/G/1/1 queues. The age performance in the presence

of errors when the service times are exponentially distributed was analyzed in [43].

Gamma-distributed service times was considered in [10]. The studies in [10,43] were

carried out for LCFS queueing systems with and without preemption.

In this chapter, we investigate scheduling policies that minimize the age of infor-

mation in single-hop queueing systems. We propose a Last-Generated, First-Serve

(LGFS) scheduling policy, in which the packet with the earliest generation time is

processed with the highest priority. Our key contributions in this chapter can be

summarized as follows:

• If the packet service times are i.i.d. exponentially distributed, then for arbi-

trary system parameters (including arbitrary packet generation times, packet

arrival times, number of servers, maximum replication degree1, and buffer

size), we prove that the preemptive LGFS with replication (prmp-LGFS-R)

policy minimizes the age stochastic process and any non-decreasing functional

1Maximum replication degree is the maximum number of replicas that can be created for a packet.
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of the age stochastic process among all policies in a stochastic ordering sense

(Theorem 2.3.1). Note that this age penalty model is very general. Many

age penalty metrics studied in the literature, such as the time-average age

[4, 5, 7–10, 16, 17, 40–42], and time-average age penalty function [18, 44], are

special cases of this age penalty model.

• We further investigate a more general class of packet service time distribu-

tions called New-Better-than-Used (NBU) distributions. We show that the

non-preemptive LGFS with replication (non-prmp-LGFS-R) policy is within

a constant age gap from the optimum average age, and that the gap is in-

dependent of the system parameters mentioned above (Theorem 2.3.2). Note

that policy non-prmp-LGFS-R with a given maximum replication degree can be

near age-optimal compared with policies with any maximum replication degree.

This result was not anticipated: In [15,45,46], it was shown that non-replication

policies are near delay-optimal and replication policies are far from the opti-

mum delay and throughput performance for NBU service time distributions.

From these studies, one would expect that replications may worsen the age

performance. To our surprise, however, we found that a replicative policy (i.e.,

non-prmp-LGFS-R) is near-optimal in minimizing the age, even for NBU service

time distributions.

• For a special case of the system settings where the update packets arrive in

the same order of their generation times and there is no replication, the prmp-

LGFS-R policy reduces to LCFS with preemption in service for a single-source

case in [40], and the non-prmp-LGFS-R when the buffer size is one reduces to

LCFS with preemption only in waiting for a single-source case in [40], or the

“M/M/1/2*” in [7, 8]. Hence, our optimality results are also established for

14



these LCFS-type policies. This relationship tells us that this policy can achieve

age-optimality in this case.

• Finally, we investigate the throughput and delay performance of the proposed

policies. We show that if the packet service times are i.i.d. exponentially

distributed, then the prmp-LGFS-R policy is also throughput and delay optimal

among all policies (Theorem 2.4.1). In addition, if the packet service times are

i.i.d. NBU and replications are not allowed, then the non-prmp-LGFS policy

is throughput and delay optimal among all non-preemptive policies (Theorem

2.4.2).

In a comparison with the existing works, our study stands as follows: For exponential

service times, while [42] considered the case where a user contacts servers to check

for updates, here we prove age-optimality in a multi-server queueing system where a

user sends the updates to a destination through the servers and packet replication is

considered. In addition, for NBU service time distributions, our study complements

the age analysis results in [6, 10, 43] by showing that non-preemptive LGFS (and

its special case non-preemptive LCFS) policies are near age-optimal. Similar to the

exponential case, these results for NBU service times hold for arbitrary packet general

and arrival processes, multiple server networks, and packet replication over multiple

servers. In addition, gamma distribution considered in [10, 43] is a special case of

NBU service time distributions.

To the best of our knowledge, these are the first optimality results on minimizing

the age-of-information in queueing systems. Moreover, this is the first study that

considers packet replication to minimize the age.
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2.2 Model and Formulation

This section describes a single-source single-hop network model as shown in Fig. 1.2,

and introduces necessary preliminary propositions, notations and definitions.

2.2.1 Notations and Definitions

For any random variable Z and an event A, let [Z|A] denote a random variable with

the conditional distribution of Z for given A, and E[Z|A] denote the conditional

expectation of Z for given A.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Rn, then we

denote x ≤ y if xi ≤ yi for i = 1, 2, . . . , n. We use x[i] to denote the i-th largest

component of vector x. A set U ⊆ Rn is called upper if y ∈ U whenever y ≥ x and

x ∈ U . We will need the following definitions:

Definition 2.2.1. Univariate Stochastic Ordering: [47] Let X and Y be two

random variables. Then, X is said to be stochastically smaller than Y (denoted as

X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition 2.2.2. Multivariate Stochastic Ordering: [47] Let X and Y be two

random vectors. Then, X is said to be stochastically smaller than Y (denoted as

X ≤st Y), if

P{X ∈ U} ≤ P{Y ∈ U}, for all upper sets U ⊆ Rn.

Definition 2.2.3. Stochastic Ordering of Stochastic Processes: [47] Let

{X(t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be two stochastic processes. Then, {X(t), t ∈
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[0,∞)} is said to be stochastically smaller than {Y (t), t ∈ [0,∞)} (denoted by {X(t), t ∈

[0,∞)} ≤st {Y (t), t ∈ [0,∞)}), if, for all choices of an integer n and t1 < t2 < . . . <

tn in [0,∞), it holds that

(X(t1), X(t2), . . . , X(tn))≤st (Y (t1), Y (t2), . . . , Y (tn)), (2.2.1)

where the multivariate stochastic ordering in (2.2.1) was defined in Definition 2.2.2.

2.2.2 Preliminary Propositions

The following propositions will be used throughout this chapter:

Proposition 2.2.1 ( [47], Theorem 6.B.3). Let X = (X1, X2, . . . , Xn) and Y =

(Y1, Y2, . . . , Yn) be two n-dimensional random vectors. If

X1 ≤st Y1,

[X2|X1 = x1] ≤st [Y2|Y1 = y1] whenever x1 ≤ y1,

and in general, for i = 2, 3, . . . , n,

[Xi|X1 = x1, . . . , Xi−1 = xi−1] ≤st [Yi|Y1 = y1, . . . , Yi−1 = yi−1]

whenever xj ≤ yj, j = 1, 2, . . . , i− 1,

then X ≤st Y.

Proposition 2.2.2 ( [47], Theorem 6.B.16.(a)). Let X and Y be two n-dimensional

random vectors. If X ≤st Y and q : Rn → Rk is any k-dimensional increasing

[decreasing] function, for any positive integer k, then the k-dimensional vectors q(X)

and q(Y) satisfy q(X) ≤st [≥st]q(Y).
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Proposition 2.2.3 ( [47], Theorem 6.B.16.(b)). Let X1,X2, . . .Xd be a set of in-

dependent random vectors where the dimension of Xi is ki, i = 1, 2, . . . , d. Let

Y1,Y2, . . .Yd be another set of independent random vectors where the dimension of

Yi is ki, i = 1, 2, . . . , d. Denote k = k1 +k2 + . . .+kd. If Xi ≤st Yi for i = 1, 2, . . . , d,

then, for any increasing function ψ : Rk → R, one has

ψ(X1,X2, . . .Xd) ≤st ψ(Y1,Y2, . . .Yd).

Proposition 2.2.4 ( [47], Theorem 6.B.16.(e)). Let X,Y, and Θ be random vectors

such that [X|Θ = θ] ≤st [Y|Θ = θ] for all θ in the support of Θ. Then X ≤st Y.

In the next proposition, =st denotes equality in law.

Proposition 2.2.5 ( [47], Theorem 6.B.30). The random processes {X(t), t ∈ [0,∞)}

and {Y (t), t ∈ [0,∞)} satisfy {X(t), t ∈ [0,∞)} ≤st {Y (t), t ∈ [0,∞)} if, and only if,

there exist two random processes {X̃(t), t ∈ [0,∞)} and {Ỹ (t), t ∈ [0,∞)}, defined

on the same probability space, such that

{X̃(t), t ∈ [0,∞)} =st {X(t), t ∈ [0,∞)},

{Ỹ (t), t ∈ [0,∞)} =st {Y (t), t ∈ [0,∞)},

and

P{X̃(t) ≤ Ỹ (t), t ∈ [0,∞)} = 1.

2.2.3 Queueing System Model

We consider a queueing system with m servers as shown in Fig. 1.2. The system

starts to operate at time t = 0. The update packets are generated exogenously to

the system and then arrive at the queue. Thus, the update packets may not arrive at
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the queue instantly when they are generated. The i-th update packet, called packet

i, is generated at time si, arrives at the queue at time ai, and is delivered to the

destination at time ci such that 0 ≤ s1 ≤ s2 ≤ . . . and si ≤ ai ≤ ci. Note that

in this chapter, the sequences {s1, s2, . . .} and {a1, a2, . . .} are arbitrary. Hence, the

update packets may not arrive at the system in the order of their generation times.

For example, in Fig. 2.1, we have s1 < s2 but a2 < a1. Let B denote the buffer size

of the queue which can be infinite, finite, or even zero. If B is finite, the packets that

arrive to a full buffer are either dropped or replace other packets in the queue. The

packet service times are i.i.d. across servers and the packets assigned to the same

server, and are independent of the packet generation and arrival processes. Packet

replication is considered in this model, where the maximum replication degree is r

(1 ≤ r ≤ m). In this model, one packet can be replicated to at most r servers and

the first completed replica is considered as the valid execution of the packet. After

that, the remaining replicas of this packet are cancelled immediately to release the

servers. Note that, the maximum replication degree r is fixed for a system; however,

the number of replicas that can be created for a packet may vary between 1 and r.

2.2.4 Scheduling Policy

A scheduling policy, denoted by π, determines the packet assignments and replications

over time; it also controls dropping or replacing packets when the queue buffer is full.

Note that the packet delivery time to the destination ci is a function of the scheduling

policy π, while the sequences {s1, s2, . . .} and {a1, a2, . . .} do not change according to

the scheduling policy. However, a policy π may have knowledge of the future packet

generation and arrival times. Moreover, we assume that the packet service times

are invariant of the scheduling policy and the realization of a packet service time is

unknown until its service is completed (unless the service time is deterministic).
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Define Πr as the set of all policies, that includes causal and non-causal policies,

when the maximum replication degree is r. Hence, Π1 ⊂ Π2 ⊂ . . . ⊂ Πm. Note

that causal policies are those policies whose scheduling decisions are made based only

on the history and current state of the system; while non-causal policies are those

policies whose scheduling decisions are made based on the history, current, and future

state of the system. We define several types of policies in Πr:

A policy is said to be preemptive, if a server can preempt a packet being pro-

cessed and switch to processing any other (including the preempted packet itself)

packet at any time; only one copy of the preempted packet can be stored back into

the queue if there is enough buffer space and sent at a later time when the servers are

available again 2. In contrast, in a non-preemptive policy, processing of a packet

cannot be interrupted until the packet is completed or cancelled 3; after completing

or cancelling a packet, the server can switch to process another packet. A policy is

said to be work-conserving, if no server is idle whenever there are packets waiting

in the queue.

2.2.5 Age Performance Metric

Let U(t) = max{si : ci ≤ t} be the largest generation time of the packets at the

destination at time t. The age-of-information, or simply the age, is defined as [1–4]

∆(t) = t− U(t). (2.2.2)

2If a preempted packet is served again, its service either starts over or it resumes the service from
the preempted point. In case of exponential service times, both scenarios are equivalent because
of the memoryless property.

3Recall that a packet is cancelled when a replica has completed processing at another server.
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Figure 2.1: A sample path of the age process ∆(t).

The initial state U(0−) at time t = 0− is invariant of the policy π ∈ Πr, where we

assume that s0 = U(0−) = 0. As shown in Fig. 2.1, the age increases linearly with

t but is reset to a smaller value with the arrival of a packet with larger generation

time. The age process is given by

∆ = {∆(t), t ∈ [0,∞)}. (2.2.3)

In this chapter, we introduce a non-decreasing age penalty functional g(∆) to

represent the level of dissatisfaction for data staleness at the receiver or destination.

Definition 2.2.4. Age Penalty Functional: Let V be the set of n-dimensional

Lebesgue measurable functions, i.e.,

V = {f : [0,∞)n 7→ R such that f is Lebesgue measurable}.
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A functional g : V 7→ R is said to be an age penalty functional if g is non-decreasing

in the following sense:

g(∆1) ≤ g(∆2), whenever ∆1(t) ≤ ∆2(t),∀t ∈ [0,∞). (2.2.4)

The age penalty functionals used in prior studies include:

• Time-average age [4, 5, 7–10, 16, 17, 40–42]: The time-average age is defined as

g1(∆) =
1

T

∫ T

0

∆(t)dt, (2.2.5)

• Time-average age penalty function [18, 44]: The average age penalty function

is

g3(∆) =
1

T

∫ T

0

h(∆(t))dt, (2.2.6)

where h: [0,∞)→ [0,∞) can be any non-negative and non-decreasing function.

As pointed out in [18], a stair-shape function h(x) = bxc can be used to char-

acterize the dissatisfaction of data staleness when the information of interest

is checked periodically, and an exponential function h(x) = ex is appropriate

for online learning and control applications where the demand for updating

data increases quickly with respect to the age. Also, an indicator function

h(x) = 1(x > d) can be used to characterize the dissatisfaction when a given

age limit d is violated.
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2.3 Age-Optimality Results of LGFS Policies

In this section, we provide age-optimality and near age-optimality results for multi-

server queueing networks with packet replication. We start by considering the expo-

nential packet service time distribution and show that age-optimality can be achieved.

Then, we consider the classes of NBU packet service time distributions and show that

there exist simple policies that can come close to age-optimality.

2.3.1 Exponential Service Time Distribution

We study age-optimal packet scheduling when the packet service times are i.i.d. expo-

nentially distributed. We start by defining the Last-Generated, First-Serve discipline

as follows.

Definition 2.3.1. A scheduling policy is said to follow the Last-Generated, First-

Serve (LGFS) discipline, if the last generated packet is served first among all pack-

ets in the system.

In the LGFS disciplines, packets are served according to their generation times

such that the packet with the largest generation time is served first among all packets

in the system. In contrast, in the LCFS disciplines, packets are served according to

their arrival times such that the packet with the largest arrival time is served first

among all packets in the system. Both disciplines are equivalent when the packets

arrive to the queue in the same order of their generation times.

In this chapter, we propose a policy called preemptive Last-Generated, First-

Serve with replication (prmp-LGFS-R). This policy follows the LGFS discipline.

When there is no replication (r = 1), the implementation details of prmp-LGFS-R

policy 4 are depicted in Algorithm 2.1.

4The decision related to dropping or replacing packets in the full buffer case does not affect the
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Algorithm 2.1: Prmp-LGFS-R policy when r = 1.

1 α := 0; // α is the smallest generation time of the packets under service

2 I := m; // I is the number of idle servers

3 Q := ∅; // Q is the set of distinct packets that are under service
4 while the system is ON do
5 if a new packet pi with generation time s arrives then

6 if I=0 then // All servers are busy
7 if s ≤ α then // Packet pi is stale
8 Store the packet in the queue;

9 else // Packet pi carries fresh information
10 Find packet pj ∈ Q with generation time α;
11 Preempt packet pj and store it back to the queue;
12 Assign packet pi to the idle server;
13 Q := Q ∪ {pi} − {pj};
14 else // At least one of the servers is idle
15 Assign packet pi to an idle server;
16 Q := Q ∪ {pi};
17 Update I;
18 α := min{si : i ∈ Q};
19 if a packet pl is delivered then
20 Q := Q− {pl};
21 if the queue is not empty then
22 Pick the packet with the largest generation time in the queue ph;
23 Assign packet ph to an idle server;
24 Q := Q ∪ {ph};
25 Update I;
26 α := min{si : i ∈ Q};

When there is a packet replication (r > 1), the prmp-LGFS-R policy acts as

follows. We replicate the packet with the largest generation time in the system on r

servers. Then, we replicate the packet with the second largest generation time in the

system on the remaining idle servers such that the total number of replicas does not

exceed r, and so on (i.e., the replicas of the packet with a larger generation time are

sent with a higher priority than those of the packet with a lower generation time). In

other words, since we may not have m = ar for some positive integer a, packets under

age performance of prmp-LGFS-R policy. Hence, we don’t specify this decision under the prmp-
LGFS-R policy in all related algorithms.

24



service may not be evenly distributed among the servers if all servers are busy. In this

case, we give the highest priority to the k (k = bm
r
c) packets under service with the

largest generation times and each one of them is replicated on r servers. The packet

under service with the smallest generation time is replicated on the remaining idle

servers (whose number is less than r). If m = ar for some positive integer a, then all

packets under service are evenly distributed among the servers and each one of them

is replicated on r servers. The implementation details of prmp-LGFS-R policy when

r ≥ 1 are depicted in Algorithm 2.2: This algorithm explains the procedures that

the prmp-LGFS-R policy follows in the case of packet arrival and departure events

as follows.

• Packet arrival event: If a new packet pi arrives, we first check whether this

new packet preempts an older packet that is being processed or not in Steps

6-19. After that, if packet pi is served, we specify the number of replicas that

we need to create for packet pi in Steps 21-26. In particular, if packet pi is

served, we have two possible cases.

Case 1: The generation time of packet pi is greater than the one with the

smallest generation time in the set Q (set Q is defined at the beginning of

the algorithm). In this case, we need to replicate packet pi on r idle servers.

Therefore, if the number of available servers (I) is less than r, we preempt

(r− I) more replicas of the packet with the smallest generation time in the set

Q and replicate packet pi on r servers. These procedures are depicted in Steps

21-23.

Case 2: The generation time of packet pi is the smallest one among the packets

in the set Q. In this case, packet pi is replicated on the available idle servers

such that the total number of replicas of packet pi does not exceed r, as depicted

in Steps 24-26.
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• Packet departure event: If a packet pl is delivered, we cancel all the re-

maining replicas of packet pl. Moreover, if the queue is not empty, we pick

the freshest packet in the queue and replicate it on the available idle servers

such that the total number of replicas of this packet does not exceed r. These

procedures are illustrated in Steps 29-39.

Note that the prmp-LGFS-R policy is a causal policy, i.e., its scheduling decisions

are made based on the history and current state of the system and do not require

the knowledge of the future packet generation and arrival times. Define a set of

parameters I = {B,m, r, si, ai, i = 1, 2, . . .}, where B is the queue buffer size, m is

the number of servers, r is the maximum replication degree, si is the generation time

of packet i, and ai is the arrival time of packet i. Let ∆π = {∆π(t), t ∈ [0,∞)} be

the age processes under policy π. The age performance of the prmp-LGFS-R policy

is characterized as follows.

Theorem 2.3.1. Suppose that the packet service times are exponentially distributed,

and i.i.d. across servers and the packets assigned to the same server, then for all I

and π ∈ Πr

[∆prmp-LGFS-R|I] ≤st [∆π|I], (2.3.1)

or equivalently, for all I and non-decreasing functional g

E[g(∆prmp-LGFS-R)|I] = min
π∈Πr

E[g(∆π)|I], (2.3.2)

provided the expectations in (2.3.2) exist.

Proof. See Appendix A.1.

Theorem 2.3.1 tells us that for arbitrary sequence of packet generation times
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Algorithm 2.2: Prmp-LGFS-R policy when r ≥ 1.

1 α := 0; // α is the smallest generation time of the packets under service
2 I := m; // I is the number of idle servers
3 Q := ∅; // Q is the set of distinct packets that are under service

4 k := bm
r
c; // k is the number of distinct packets that each one of them can be replicated

on r servers
5 while the system is ON do
6 if a new packet pi with generation time s arrives then
7 if I = 0 then // All servers are busy
8 if s ≤ α then // Packet pi is stale
9 Store packet pi in the queue;

10 else // Packet pi carries fresh information
11 Find packet pj ∈ Q with generation time α;
12 Preempt all replicas of packet pj ;
13 Packet pj is stored back to the queue;
14 Q := Q ∪ {pi} − {pj};
15 Update I;

16 else // At least one of the servers is idle
17 Q := Q ∪ {pi};
18 α := min{si : i ∈ Q};
19 if pi ∈ Q and generation time of packet pi > α and I < r then // Specify the

number of replicas of packet pi
20 Preempt (r − I) replicas of the packet with generation time α;
21 Replicate packet pi on r idle servers;

22 else if pi ∈ Q and generation time of packet pi = α then
23 Replicate packet pi on min{r, I} idle servers;

24 Update I;

25 if a packet pl is delivered then
26 Cancel the remaining replicas of packet pl;
27 Q := Q− {pl};
28 if the queue is not empty then
29 Pick the packet with the largest generation time in the queue ph;
30 Q := Q ∪ {ph};
31 Replicate packet ph on min{r, I} idle servers;
32 Update I;

33 α := min{si : i ∈ Q};

(s1, s2, . . .), sequence of packet arrival times (a1, a2, . . .), buffer size B, number of

servers m, and maximum replication degree r, the prmp-LGFS-R policy achieves

optimality of the age process within the policy space Πr. In addition, (2.3.2) tells

us that the prmp-LGFS-R policy minimizes any non-decreasing functional of the age
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process, including the time-average age (2.2.5) and time-average age penalty function

(2.2.6) as special cases. It is important to emphasize that the prmp-LGFS-R policy

can achieve optimality compared with all causal and non-causal policies in Πr. Also,

when the update packets arrive in the same order of their generation times and there

is no replication, the prmp-LGFS-R policy becomes LCFS with preemption in service

(LCFS-S) for a single-source case that was proposed in [40]. Thus, this policy can

achieve age-optimality in this case.

As a result of Theorem 2.3.1, we can deduce the following corollaries:

A weaker version of Theorem 2.3.1 can be obtained as follows.

Corollary 2.3.1.1. If the conditions of Theorem 2.3.1 hold, then for any arbitrary

packet generation and arrival processes, and for all π ∈ Πr

∆prmp-LGFS-R ≤st ∆π.

Proof. We consider the mixture over multiple sample paths of the packet generation

and arrival processes to prove the result. In particular, by using the result of Theorem

2.3.1 and Proposition 2.2.4, the corollary follows.

Corollary 2.3.1.2. Under the conditions of Theorem 2.3.1, if one packet can be

replicated to all m servers (i.e., r = m), then for all I, the prmp-LGFS-R policy

when r = m is an age-optimal among all policies in Πm.

Proof. This corollary is a direct result of Theorem 2.3.1.

It is important to recall that Π1 ⊂ Π2 ⊂ . . . ⊂ Πm. Therefore, Corollary 2.3.1.2

tells us that the prmp-LGFS-R policy when r = m achieves age-optimality compared

with all policies with any maximum replication degree.
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Corollary 2.3.1.3. If the conditions of Theorem 2.3.1 hold, then for all I, the age

performance of the prmp-LGFS-R policy remains the same for any queue size B ≥ 0.

Proof. From the operation of policy prmp-LGFS-R, its queue is used to store the

preempted packets and outdated arrived packets. The age process of the prmp-

LGFS-R policy is not affected no matter these packets are delivered or not. Hence,

the age performance of the prmp-LGFS-R policy is invariant for any queue size B ≥ 0.

This completes the proof.

The next corollary clarifies the relationship between the prmp-LGFS-R policy and

the LCFS-S policy.

Corollary 2.3.1.4. Under the conditions of Theorem 2.3.1, if the packets arrive to

the queue in the same order of their generation times and replications are not allowed,

then for all I, the LCFS-S policy is age-optimal, i.e., the LCFS-S satisfies (2.3.1)

and (2.3.2).

Proof. This corollary is a direct result of Theorem 2.3.1.

Simulation Results

We present some simulation results to compare the age performance of the prmp-

LGFS-R policy with other policies. The packet service times are exponentially dis-

tributed with mean 1/µ = 1. The inter-generation times are i.i.d. Erlang-2 distri-

bution with mean 1/λ. The number of servers is m. Hence, the traffic intensity is

ρ = λ/mµ. 5 The queue size is B, which is a non-negative integer.

Fig. 2.2 illustrates the time-average age versus ρ for an information-update system

with m = 1 server. The time difference (ai−si) between packet generation and arrival

5Throughout this chapter, the traffic intensity ρ is computed without considering replications (i.e.,
ρ is calculated when r = 1).
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Figure 2.2: Average age versus traffic intensity ρ for an update system with m = 1
server, queue size B, and i.i.d. exponential service times.

is zero, i.e., the update packets arrive in the same order of their generation times.

We can observe that the prmp-LGFS-R policy achieves a smaller age than the FCFS

policy analyzed in [4], and the non-preemptive LGFS policy with queue size B = 1

which is equivalent to “M/M/1/2*” in [7, 8] in this case. Note that in these prior

studies, the age was characterized only for the special case of Poisson arrival process.

Moreover, with ordered arrived packets at the server, the LGFS policy and LCFS

policy have the same age performance.
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2.3.2 NBU Service Time Distributions

The next question we proceed to answer is whether for an important class of distribu-

tions that are more general than exponential, age-optimality or near age-optimality

can be achieved. We consider the class of NBU packet service time distributions,

which are defined as follows.

Definition 2.3.2. New-Better-than-Used distributions: Consider a non-negative

random variable Z with complementary cumulative distribution function (CCDF)

F̄ (z) = P[Z > z]. Then, Z is New-Better-than-Used (NBU) if for all t, τ ≥ 0

F̄ (τ + t) ≤ F̄ (τ)F̄ (t). (2.3.3)

Examples of NBU distributions include constant service time, Gamma distribu-

tion, (shifted) exponential distribution, geometric distribution, Erlang distribution,

negative binomial distribution, etc.

Next, we show that near age-optimality can be achieved when the service times

are NBU. We propose a policy called non-preemptive LGFS with replication (non-

prmp-LGFS-R). The non-prmp-LGFS-R policy has the same main features of the

prmp-LGFS-R policy except that the non-prmp-LGFS-R policy does not allow packet

preemption. Moreover, under the non-prmp-LGFS-R policy, the fresh packet replaces

the packet with the smallest generation time in the queue when it has a finite buffer

size and full. The description of the non-prmp-LGFS-R policy is depicted in Algo-

rithm 2.3: This algorithm explains the procedures that the non-prmp-LGFS-R policy

follows in the case of packet arrival and departure events as follows.

• Packet arrival event: If a new packet pi arrives and all servers are busy, then

we have two cases.

Case 1: The buffer is full. In this case, packet pi is either dropped or replaces
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Algorithm 2.3: Non-prmp-LGFS-R policy.

1 δ := 0; // δ is the smallest generation time of the packets in the queue
2 I := m; // I is the number of idle servers

3 k := bm
r
c; // k is number of packets that each one of them can be replicated on r servers

4 while the system is ON do
5 if a new packet pi with generation time s arrives then
6 if I=0 then // All servers are busy
7 if Buffer is full then
8 if s > δ then // Packet pi carries fresh information
9 Packet pi replaces the packet with generation time δ in the queue;

10 else // Packet pi is stale
11 Drop packet pi;

12 else
13 Store packet pi in the queue;

14 Update δ;

15 else // At least one of the servers is idle
16 Replicate packet pi on min{r, I} idle servers;
17 Update I;

18 if a packet pl is delivered then
19 Cancel the remaining replicas of packet pl;
20 Update I;
21 Find packet pj that is replicated on (m− kr) servers;
22 if the queue is empty and packet pj exists then
23 Replicate packet pj on extra ((k + 1)r −m) idle servers;
24 else if the queue is not empty then
25 Pick the packet with the largest generation time in the queue ph;
26 if packet pj exists and generation time of packet pj > generation time of

packet ph then
27 Replicate packet pj on extra ((k + 1)r −m) idle servers;
28 Update I;

29 Replicate packet ph on min{r, I} idle servers;

30 Update I;
31 Update δ;

another packet in the queue depending on its generation time, as depicted in

Steps 7-12.

Case 2: The buffer is not full. In this case, packet pi is stored directly in the

queue, as depicted in Steps 13-15.

If there are idle servers, then packet pi is replicated on the available idle servers
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such that the total number of replicas of packet pi does not exceed r, as illus-

trated in Steps 17-20.

• Packet departure event: If a packet pl is delivered, we cancel all the re-

maining replicas of packet pl. Also, if there is a packet pj that is replicated on

fewer servers than r servers, then packet pj is replicated on extra ((k+1)r−m)

servers under two cases.

Case A: If the queue is empty, as depicted in Steps 24-26.

Case B: If the queue is not empty, but the generation time of packet pj is

greater than the largest generation time of the packets in the queue, as depicted

in Steps 27-32.

Finally, if the queue is not empty, the packet with the largest generation time in

the queue is replicated on the available idle servers such that the total number

of replicas of this packet does not exceed r, as illustrated in Step 33.

It is important to emphasize that the non-prmp-LGFS-R policy is a causal policy,

i.e., its scheduling decisions are made based on the history and current state of the

system and do not require the knowledge of the future packet generation and arrival

times. To show that policy non-prmp-LGFS-R can come close to age-optimal, we

need to construct an age lower bound as follows:

Let vi denote the earliest time that packet i has started service (the earliest

assignment time of packet i to a server), which is a function of the scheduling policy

π. Define a function ∆LB
π (t) as

∆LB
π (t) = t−max{si : vi(π) ≤ t}. (2.3.4)

The process of ∆LB
π (t) is given by ∆LB

π = {∆LB
π (t), t ∈ [0,∞)}. The definition of the
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Figure 2.3: The evolution of ∆LB
π and ∆π in a single server queue. We assume that

a1 > s1 and a2 > c1 > s2. Thus, we have v1 = a1 and v2 = a2.

process ∆LB
π (t) is similar to that of the age process of policy π except that the packet

completion times are replaced by their assignment times to the servers. In this case,

the process ∆LB
π (t) increases linearly with t but is reset to a smaller value with the

assignment of a fresher packet to a server under policy π, as shown in Fig. 2.3. The

process ∆LB
non-prmp-LGFS-R is a lower bound of all policies in Πm in the following sense.

Lemma 2.3.1. Suppose that the packet service times are NBU, and i.i.d. across

servers and the packets assigned to the same server, then for all I satisfying B ≥ 1,

and π ∈ Πm

[∆LB
non-prmp-LGFS-R|I] ≤st [∆π|I]. (2.3.5)

Proof. See Appendix A.2.
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We can now proceed to characterize the age performance of policy non-prmp-

LGFS-R. Let X1, . . . , Xm denote the i.i.d. packet service times of the m servers, with

mean E[Xl] = E[X] <∞. We use Lemma 2.3.1 to prove the following theorem.

Theorem 2.3.2. Suppose that the packet service times are NBU, and i.i.d. across

servers and the packets assigned to the same server, then for all I satisfying B ≥ 1

(a) We have

min
π∈Πm

[∆̄π|I] ≤ [∆̄non-prmp-LGFS-R|I] ≤ min
π∈Πm

[∆̄π|I] + E[X]. (2.3.6)

(b) If there is a positive integer a such that m = ar, then

min
π∈Πm

[∆̄π|I] ≤ [∆̄non-prmp-LGFS-R|I] ≤ min
π∈Πm

[∆̄π|I] + E[ min
l=1,...,r

Xl], (2.3.7)

where ∆̄π = lim sup
T→∞

E[
∫ T

0
∆π(t)dt]

T
is the average age under policy π.

Proof. See Appendix A.3.

Theorem 2.3.2 tells us that for arbitrary sequence of packet generation times

(s1, s2, . . .), sequence of packet arrival times (a1, a2, . . .), number of servers m, max-

imum replication degree r, and buffer size B ≥ 1, the non-prmp-LGFS-R policy is

within a constant age gap from the optimum average age among policies in Πm. It is

important to emphasize that policy non-prmp-LGFS-R with a maximum replication

degree r can be near age-optimal compared with policies with any maximum replica-

tion degree. Also, when the update packets arrive in the same order of their generation

times and there is no replication, the non-prmp-LGFS-R policy when B = 1 becomes

LCFS with preemption only in waiting (LCFS-W) for a single-source case in [40], or
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the “M/M/1/2*” in [7,8]. Thus, these policies can achieve near age-optimality in this

case. The following corollary emphasizes this relationship.

Corollary 2.3.2.1. Under the conditions of Theorem 2.3.2, if the packets arrive to

the queue in the same order of their generation times, replications are not allowed

(r = 1), and B = 1, then for all I, the LCFS-W policy and the “M/M/1/2*” policy

are near age-optimal, i.e., these policies satisfy (2.3.6).

Proof. This corollary is a direct result of Theorem 2.3.2.

Simulation Results

We now provide simulation results to illustrate the age performance of different poli-

cies when the service times are NBU. The inter-generation times are i.i.d. Erlang-2

distribution with mean 1/λ. The time difference (ai − si) between packet generation

and arrival is zero. The maximum replication degree r is either 1 or 4.

Fig. 2.4 plots the average age versus ρ for an information-update system with

m = 4 servers. The packet service times are the sum of a constant .25 and a

value drawn from an exponential distribution with mean .25. Hence, the mean

service time is 1/µ = .5. The “Age lower bound” curves are generated by using∫ T
0

∆LB
non-prmp-LGFS-R(t)dt

T
when r is 1 and 4, and B = 1 which, according to Lemma

2.3.1, are lower bounds of the optimum average age. We can observe that the gap

between the “Age lower bound” curves and the average age of the non-prmp-LGFS-

R policy when r = 1 and r = 4 is no larger than E[X] = 1/µ = .5, which agrees

with Theorem 2.3.2. This is a surprising result since it was shown in [15,45,46] that

replication policies are far from the optimum delay and throughput performance for

NBU service time distributions. Moreover, we can observe that the average age of the

prmp-LGFS-R policies blows up when the traffic intensity is high. This is because

the packet service times do not have the memoryless property in this case. Hence,
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Figure 2.4: Average age versus traffic intensity ρ for an update system with m = 4
servers, queue size B, maximum replication degree r, and i.i.d NBU service times.

when a packet is preempted, the service time of a new packet is probably longer than

the remaining service time of the preempted packet. Because the arrival rate is high,

packet preemption happens frequently, which leads to infrequent packet delivery and

increases the age, as observed in [7].

Fig. 2.5 plots the average age under gamma service time distributions with

different shape parameter K, where m = 4, B = ∞, and the traffic intensity

ρ = λ/mµ = 1.8. The mean of the gamma service time distributions is normalized

to 1/µ = 1. Note that the average age of the FCFS policy in this case is extremely

high and hence is not plotted in this figure. One can notice that packet replication

and preemption affect the age performance of the plotted policies. In particular, we
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parameter K, where m = 4 servers, queue size B = ∞, and maximum replication
degree r.

found that packet replication improves the age performance of the non-prmp-LGFS-

R policy when the shape parameter K ≤ 12.5, where the non-prmp-LGFS-R policy

for r = 4 outperforms the case of r = 1. This is because the variance (variability)

of the normalized gamma distribution is high for small values of K. Thus, packet

replication can exploit the diversity provided by the four servers in this case. For the

same reason, we can observe that packet replication improves the age performance

of the preemptive policies when K = 1, where the prmp-LGFS-R policy for r = 4

achieves the best age performance among all plotted policies. Another reason behind

the latter observation is that a gamma distribution with shape parameter K = 1

38



is an exponential distribution and hence is memoryless. Thus, packet preemption

improves the age performance in this case and age-optimality can be achieved by the

prmp-LGFS-R policy when r = m as stated in Theorem 2.3.1 and Corollary 2.3.1.2.

On the other hand, as the shape parameter K increases, the variance (variability)

of the normalized gamma distribution decreases. This, in turn, reduces the benefit

gained from the diversity provided by four servers and hence worsens the age perfor-

mance of the policies that use packet replication. Moreover, as can be seen in the

figure, preemption further worsens the age performance as the shape parameter K

increases, and the average age of the prmp-LGFS-R policies blows up in this case.

This is because of the reduction in the variability of the packet service time when

the shape parameter K increases as well as the loss of the memoryless property when

K 6= 1. Thus, preemption is not useful in this case.

2.3.3 Discussion

In this subsection, we discuss our results and compare it with prior works.

Preemption vs. Non-Preemption

The effect of the preemption on the age performance depends basically on the dis-

tribution of the packet service time. More specifically, when the packet service times

are exponentially distributed, preemptive policies (i.e., prmp-LGFS-R) can achieve

age-optimality (Theorem 2.3.1). This is because the remaining service time of a pre-

empted packet has the same distribution as the service time of a new packet. For

example, in Fig. 2.5, preemptive policies provide the best age performance when

K = 1 (gamma distribution with shape parameter K = 1 is an exponential distribu-

tion). It is important to notice that preemptive policies can achieve age-optimality

regardless of the value of ρ, even if the system is unstable when ρ > 1 (ρ = 1.8 in Fig.
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2.5). Thus, we suggest using preemption when the packet service times are exponen-

tially distributed. However, when the packet service times are NBU, we suggest to not

use preemption. This is because the service times are no longer memoryless. Hence,

when a packet is preempted, the service time of a new packet is probably longer than

the remaining service time of the preempted packet. As shown in Fig. 2.5, the age

of the preemptive LGFS policy grows to infinity at high traffic intensity for gamma

distributed service times with K > 1. Thus, we suggest using non-preemptive policies

(i.e., non-prmp-LGFS-R) instead when the packet service times are NBU.

Similar observations have been made in previous studies [10,40]. For exponential

service time distribution, Yates and Kaul showed in Theorem 3(a) of [40] that the

average age of the preemptive LCFS policy is a decreasing function of the traffic

intensity ρ in M/M/1 queues as ρ grows to infinite. This agrees with our study,

in which we proved that the preemptive LCFS policy is age-optimal for exponential

service times and general system parameters. For NBU service time distributions,

our study agrees with [10]. In particular, in [10, Numerical Results], the authors

showed that the non-preemptive LCFS policy can achieve better average age than

the preemptive LCFS policy. In this chapter, we further show that the non-prmp-

LGFS-R policy is within a small constant gap from the optimum age performance for

all NBU service time distributions, which include gamma distribution as one example.

In general, our study was carried out for system settings that are more general

than [40] and [10].

Replication vs. Non-Replication

The replication technique has gained significant attention in recent years to reduce

the delay in queueing systems [13–15]. However, it was shown in [15, 45, 46] that

replication policies are far from the optimum delay and throughput performance for
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NBU service time distributions. A simple explanation of this result is as follows: Let

X1, . . . , Xm be i.i.d. NBU random variables with mean E[Xl] = E[X] < ∞. From

the properties of the NBU distributions, we can obtain [47]

1

E[minl=1,...,mXl]
≤ m

E[X]
. (2.3.8)

Now, if Xl represents the packet service time of server l, then the left-hand side of

(2.3.8) represents the service rate when each packet is replicated to all servers; and the

right-hand side of (2.3.8) represents the service rate when there is no replication. This

gives insight why packet replication can worsen the delay and throughput performance

when the service times are NBU.

Somewhat to our surprise, we found that the non-prmp-LGFS-R policy is near-

optimal in minimizing the age, even for NBU service time distributions. The intuition

behind this result is that the age is affected by only the freshest packet, instead of all

the packets in the queue. In other words, to reduce the age, we need to deliver the

freshest packet as soon as possible. Obviously, we have

E[ min
l=1,...,m

Xl] ≤ E[X]. (2.3.9)

Thus, packet replication can help to reduce the age by exploiting the diversity pro-

vided by multiple servers. As shown in Fig. 2.5, we can observe that packet repli-

cation can improve the age performance. In particular, the age performance of the

non-prmp-LGFS-R policy with r = 4 is better than that of the non-prmp-LGFS-R

policy with r = 1 when K ≤ 12.5.
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2.4 Throughput-Delay Analysis

Recent studies on information-update systems have shown that the age-of-information

can be reduced by intelligently dropping stale packets. However, packet dropping may

not be appropriate in many applications such as (but not limited to):

• News feeds: In addition to the latest breaking news, the older news may be

relevant to the user as well (e.g., to provide context or outline a different story

that the user may have missed, etc.).

• Social updates: Users may need to be up to date with the freshest events and

social posts. Nonetheless, they may also be interested in the previous posts.

Thus, social applications need to update users with latest posts and previous

ones as well.

• Stock quotes: Although the latest price in the market is very important for

the traders, they may also use the history of the price change to predict the

short-term price movement and attempt to profit from this. Thus, both the

latest prices and historical price data are important in this case.

• Autonomous driving or sensor information: In such applications, while it

is important to receive the latest information, historical information may also

be relevant to exploit trends. For example, historical data on location infor-

mation can predict the trajectory, velocity, and acceleration of the automobile.

Similarly, certain types of historical sensed data may be useful to predict forest

fires, earthquakes, Tsunamis, etc.

In these applications, users are interested in not just the latest updates, but also

past information. Therefore, all packets may need to be successfully delivered. This
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motivates us to study whether it is possible to simultaneously optimize multiple per-

formance metrics, such as age, throughput, and delay. In the sequel, we investigate

the throughput and delay performance of the proposed policies. We first consider the

exponential service time distribution. Then, we generalize the service time distribu-

tion to the NBU distributions. We need the following definitions:

Definition 2.4.1. Throughput-optimality: A policy is said to be throughput-

optimal, if it maximizes the expected number of delivered packets among all policies.

The average delay under policy π is defined as

Davg(π) =
1

n

n∑
i=1

[ci(π)− ai], (2.4.1)

where the delay of packet i under policy π is ci(π)− ai.6

Definition 2.4.2. Delay-optimality: A policy is said to be delay-optimal, if it

minimizes the expected average delay among all policies.

Note that to maximize the throughput, we need to maximize the total number

of distinct delivered packets. Moreover, to minimize the expected average delay, we

need to minimize the total number of distinct packets in the system along the time.

Based on these two key ideas, we prove our results in the next subsections.

2.4.1 Exponential Service Time Distribution

We study the throughput and delay performance of the prmp-LGFS-R policy when

the service times are i.i.d. exponentially distributed. The delay and throughput

performance of the prmp-LGFS-R policy are characterized as follows:

6The lim sup operator is enforced on the right hand side of (2.4.1) if n→∞.
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Theorem 2.4.1. Suppose that the packet service times are exponentially distributed,

and i.i.d. across servers and the packets assigned to the same server, then for all I

such that B =∞, the prmp-LGFS-R policy is throughput-optimal and delay-optimal

among all policies in Πm.

Proof. We provide a proof sketch of Theorem 2.4.1. We use the coupling and forward

induction to prove it. We first consider the comparison between the prmp-LGFS-R

policy and an arbitrary work-conserving policy π. We couple the packet departure

processes at each server such that they are identical under both policies. Then, we

use the forward induction over the packet arrival and departure events to show that

the total number of distinct packets in the system (excluding packet replicas) and the

total number of distinct delivered packets are the same under both policies. By this,

we show that the prmp-LGFS-R policy has the same throughput and mean-delay

performance as any work-conserving policy (indeed, all work-conserving policies have

the same throughput and delay performance). Finally, since the packet service times

are i.i.d. across servers and the packets assigned to the same server, service idling

only postpones the delivery of packets. Therefore, both throughput and delay under

non-work-conserving policies will be worse. For more details, see Appendix A.4.

It is worth pointing out that when the packet service times are i.i.d exponentially

distributed, packet replication does not affect the throughput and delay performance

of the replicative policies. The reasons for this observation can be summarized as

follows. Because the packet service times are i.i.d. across the servers and the CCDF

F̄ is continuous, the probability for any two servers to complete their packets at the

same time is zero. Therefore, in the replicative policies, if one copy of a replicated

packet is completed on a server, the remaining replicated copies of this packet are

still being processed on the other servers; these replicated packet copies are cancelled

immediately and a new packet is replicated on these servers. Due to the memoryless

44



property of the exponential distribution, the service times of the new packet copies

and the remaining service times of the cancelled packets have the same distribution.

Thus, packet replication does not affect the throughput and delay performance of the

replicative policies.

2.4.2 NBU Service Time Distributions

Now, we consider a class of NBU service time distributions. We study the throughput

and delay performance of the non-prmp-LGFS-R policy when there is no replication.

The delay and throughput performance of the non-prmp-LGFS-R policy are charac-

terized as follows:

Theorem 2.4.2. Suppose that the packet service times are NBU, and i.i.d. across

servers and the packets assigned to the same server, then for all I such that B =∞

and r = 1, the non-prmp-LGFS-R policy is throughput-optimal and delay-optimal

among all non-preemptive policies in Π1.

We omit the proof of Theorem 2.4.2, because it is similar to that of Theorem

2.4.1.

2.5 Conclusions

In this chapter, we studied the age-of-information optimization in multi-server queues.

Packet replication was considered in this model, where the maximum replication

degree is constrained. We considered general system settings including arbitrary

arrival processes where the incoming update packets may arrive out of order of their

generation times. We developed scheduling policies that can achieve age-optimality

for any maximum replication degree when the packet service times are exponentially

distributed. This optimality result not only holds for the age process, but also for

45



any non-decreasing functional of the age process. Interestingly, the proposed policies

can also achieve throughput and delay optimality. In addition, we investigated the

class of NBU packet service time distributions and showed that LGFS policies with

replication are near age-optimal for any maximum replication degree.
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CHAPTER 3

MULTIHOP INFORMATION UPDATE SYSTEM WITH

STOCHASTIC ARRIVALS

3.1 Introduction

The demand for real-time information updates in multihop networks, such as the

IoT, intelligent transportation systems, and sensor networks, has gained increasing

attention recently. In intelligent transportation systems [48–50], for example, a vehi-

cle shares its information related to traffic congestion and road conditions to avoid

collisions and reduce congestion. Thus, in such applications, maintaining the age at a

low level at all network nodes is a crucial requirement. In some other information up-

date applications, such as emergency alerts and sensor networks, critical information

is needed to report in a timely manner, and the energy consumption of the sensor

nodes must be sufficiently low to support a long battery life up to 10-15 years [23]. Be-

cause of the low traffic load in these systems, wireless interference is not the limiting

factor, but rather battery life through energy consumption is. Furthermore, informa-

tion updates over the Internet, cloud systems, and social networks are of significant

importance. These systems are built on wireline networks or implemented based on

transport layer APIs. Motivated by these applications, we investigate information

updates over multihop networks that can be modeled as multihop queueing systems.

It has been observed in early studies on age of information analysis [7–10, 51]
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that Last-Come, First-Serve (LCFS)-type of scheduling policies can achieve a lower

age than other policies. The optimality of the LCFS policy, or more generally the

Last-Generated, First-Served (LGFS) policy, for minimizing the age of information in

single-hop networks was established in Chapter 2. However, age-optimal scheduling

in multihop networks remains an important open question.

There have been a few recent studies on the age of information in multihop net-

works [52–59]. The age is analyzed for specific network topologies, e.g., line or star

networks, in [52]. In [53], an offline optimal sampling policy was developed to min-

imize the age in two-hop networks with an energy-harvesting source. A congestion

control mechanism that enables timely delivery of the update packets over IP net-

works was considered in [54]. In [55], the author analyzed the average age in a

multihop line network with Poisson arrival process and exponential service times.

This analysis was later extended in [56] to include age moments and distributions.

The study in this chapter and [55,56] complement each other in the following sense:

Our results (i.e., Theorem 3.3.1) show that the LCFS policy with preemption in ser-

vice is age-optimal. However, we do not characterize the achieved optimal age, which

was evaluated in [55, 56]. The authors of [57] addressed the problem of scheduling

in wireless multihop networks with general interference model and multiple flows,

assuming that all network queues are adopting an FCFS policy. A similar network

model was considered in [58], where the optimal update policy was obtained for the

“active sources scenario”. In this scenario, each source can generate a packet at any

time, and hence, each source always has a fresh packet to send. The active sources

scenario in multihop networks was also considered in [59], where nodes take turns

broadcasting their updates, and hence each node can act either as a source or a relay.

In contrast to our study, the works in [57–59] considered a time-slotted system, where

a packet is transmitted from one node to another in one time slot.
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In this chapter, we minimize the age of a single information flow in interference-

free multihop networks. We develop simple scheduling policies that can achieve age-

optimality or near age-optimality in these networks. The following summarizes our

main contributions in this chapter:

• If preemption is allowed and the packet transmission times over the network

links are exponentially distributed, we prove that the preemptive LGFS policy

minimizes the age processes at all nodes in the network among all causal policies

in a stochastic ordering sense (Theorem 3.3.1). In other words, the preemptive

LGFS policy minimizes any non-decreasing functional of the age processes at all

nodes in a stochastic ordering sense. Note that the non-decreasing functional

of the age processes at all nodes represents a very general class of age metrics

in that it includes many age penalty metrics studied in the literature, such as

the time-average age [4,5,7–10,16,17,40], non-linear age functions [18,44], and

age penalty functional at single-hop network in Chapter 2.

• Although the preemptive LGFS policy can achieve age-optimality for exponen-

tial transmission times, it does not always minimize the age processes for non-

exponential transmission times. When preemption is allowed, we investigate

an important class of packet transmission time distributions called New-Better-

than-Used (NBU) distributions, which are more general than exponential. The

network topology we consider here is more restrictive in the sense that each

node has one incoming link only. We show that the non-preemptive LGFS pol-

icy is within a constant age gap from the optimum average age, and that the

gap is independent of the packet generation and arrival times, and buffer sizes

(Theorem 3.3.2). Our numerical result (Fig. 3.3) shows that the preemptive

LGFS policy can be very far from the optimum for non-exponential transmission

times, while the non-preemptive LGFS policy is near age-optimal.
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• If preemption is not allowed, then for arbitrary distributions of packet trans-

mission times, we prove that the non-preemptive LGFS policy minimizes the

age processes at all nodes among all work-conserving policies in the sense of

stochastic ordering (Theorem 3.3.3). Age-optimality here can be achieved even

if the transmission time distribution differs from one link to another, i.e., the

transmission time distributions are heterogeneous.

To the best of our knowledge, these are the first optimal results on minimizing the

age of information in multihop queueing networks with arbitrary packet generation

and arrival processes.

3.2 Model and Formulation

This section describes a single-source multihop network model as shown in Fig. 1.1.2.

Note that throughout this chapter, we will use the definitions and preliminary propo-

sitions provided in Chapter 2, Section 2.2.1.

3.2.1 Network Model

We consider a multihop network represented by a directed graph G(V ,L), where V

is the set of nodes and L is the set of links, as shown in Fig. 1.1.2 1. The number

of nodes in the network is |V| = N . The nodes are indexed from 0 to N − 1, where

node 0 acts as a gateway node. Define (i, j) ∈ L as a link from node i to node j,

where i is the origin node and j is the destination node. We assume that the links in

the network can be active simultaneously, which holds in the applications mentioned

in Section 3.1. The packet transmission times are independent but not necessarily

1For the simplicity of presentation, we focus on the network model with a single gateway node in
the rest of the chapter. However, it is not hard to see that our results also hold for networks with
multiple gateway nodes.
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identically distributed across the links, and i.i.d. across time. As will be clear later on,

we consider the following transmission time distributions: Exponential distribution,

NBU distributions, and arbitrary distribution. In addition, we consider two types of

network topology: general network topology and special network topology in which

each node has one incoming link. We note that this special network topology is

an extension of tandem queues. These different network settings are summarized in

Table 1.1.

The system starts to operate at time t = 0. The update packets are generated at

an external source, and are firstly forwarded to node 0, from which they are dispersed

throughout the network. Thus, the update packets may arrive at node 0 some time

after they are generated. The l-th update packet, called packet l, is generated at

time sl, arrives at node 0 at time al0, and is delivered to any other node j at time alj

such that 0 ≤ s1 ≤ s2 ≤ . . . and sl ≤ al0 ≤ alj for all j = 1, . . . , N − 1. Note that

in this chapter, the sequences {s1, s2, . . .} and {a10, a20, . . .} are arbitrary. Hence, the

update packets may not arrive at node 0 in the order of their generation times. For

example, packet l + 1 may arrive at node 0 earlier than packet l such that sl ≤ sl+1

but al0 ≥ a(l+1)0. We suppose that once a packet arrives at node i, it is immediately

available to all the outgoing links from node i. Moreover, the update packets are

time-stamped with their generation times such that each node knows the generation

times of its received packets. Each link (i, j) has a queue of buffer size Bij to store

the incoming packets, which can be infinite, finite, or even zero. If a link has a finite

queue buffer size, then the packet that arrives to a full buffer either is dropped or

replaces another packet in the queue.
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3.2.2 Scheduling Policy

We let π denote a scheduling policy that determines the following (at each link): i)

Packet assignments to the server, ii) packet preemption if preemption is allowed, iii)

packet droppings and replacements when the queue buffer is full. The sequences of

packet generation times {s1, s2, . . .} and packet arrival times {a10, a20, . . .} at node 0

do not change according to the scheduling policy, while the packet arrival times at

other nodes (i.e., alj for all l and j = 1, . . . , N − 1) are functions of the scheduling

policy π. We suppose that the packet transmission times over the links are invariant

of the scheduling policy and the realization of a packet transmission time at any link

is unknown until its transmission over this link is completed (unless the transmission

time is deterministic).

Let Π denote the set of all causal policies, in which scheduling decisions are made

based on the history and current information of the system (system information

includes the location, arrival times, and generation times of all the packets in the

system, and the idle/busy state of all the servers). we define several types of policies

in Π:

A policy is said to be preemptive, if a link can switch to send another packet at

any time; the preempted packets can be stored back into the queue if there is enough

buffer space and sent out at a later time when the link is available again. In contrast,

in a non-preemptive policy, a link must complete sending the current packet before

starting to send another packet. A policy is said to be work-conserving, if each

link is busy whenever there are packets waiting in the link’s queue.

3.2.3 Age Performance Metric

Let Uj(t) = max{sl : alj ≤ t} be the generation time of the freshest packet arrived at

node j before time t. The age of information, or simply the age, at node j is defined
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Figure 3.1: A sample path of the age process ∆j(t) at node j.

as [1–4]

∆j(t) = t− Uj(t). (3.2.1)

The process of ∆j(t) is given by ∆j = {∆j(t), t ∈ [0,∞)}. The initial state of Uj(t)

at time t = 0− is invariant of the scheduling policy π ∈ Π, where we assume that

Uj(0
−) = 0 = s0 for all j ∈ V . As shown in Fig. 3.1, the age increases linearly with t

but is reset to a smaller value with the arrival of a fresher packet. The age vector of

all the network nodes at time t is

∆(t) =(∆0(t),∆1(t), . . . ,∆N−1(t)). (3.2.2)
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The age process of all the network nodes is given by

∆ = {∆(t), t ∈ [0,∞)}. (3.2.3)

In this chapter, we introduce a general age penalty functional g(∆) to represent

the level of dissatisfaction for data staleness at all the network nodes.

Definition 3.2.1. Age Penalty Functional: Let V be the set of n-dimensional

functions, i.e.,

V = {f : [0,∞)n 7→ R}.

A functional g : V 7→ R is said to be an age penalty functional if g is non-decreasing

in the following sense:

g(∆1) ≤ g(∆2), whenever ∆1(t) ≤∆2(t),∀t ∈ [0,∞). (3.2.4)

The age penalty functionals used in prior studies include:

• Time-average age [4, 5, 7–10, 16, 17, 40]: The time-average age of node j is

defined as

g1(∆) =
1

T

∫ T

0

∆j(t)dt, (3.2.5)

• Non-linear age functions [18, 44]: The non-linear age function of node j is in

the following form

g3(∆) =
1

T

∫ T

0

h(∆j(t))dt, (3.2.6)
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where h : [0,∞) → [0,∞) can be any non-negative and non-decreasing func-

tion. As pointed out in [18], a stair-shape function h(x) = bxc can be used

to characterize the dissatisfaction of data staleness when the information of

interest is checked periodically, and an exponential function h(x) = ex is ap-

propriate for online learning and control applications where the desire for data

refreshing grows quickly with respect to the age. Also, an indicator function

h(x) = 1(x > d) can be used to characterize the dissatisfaction when a given

age limit d is violated.

• Age penalty functional in single-hop networks in Chapter 2: The age penalty

functional in Chapter 2 is a non-decreasing functional of the age process at one

node, which is a special case of that defined in Definition 3.2.1 with n = 1.

3.3 Main Results

In this section, we present our (near) age-optimality results for multihop networks.

We prove our results using stochastic ordering.

3.3.1 Exponential Transmission Times, Preemption is Allowed

We study age-optimal packet scheduling for networks that allow for preemption and

the packet transmission times are exponentially distributed, independent across the

links and i.i.d. across time2. We consider a LGFS scheduling principle which is

defined as follows.

2Although we consider exponential transmission times, packet transmission time distributions are
not necessarily identical over the network links, i.e., different links may have different mean
transmission times.
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Algorithm 3.1: Preemptive Last-Generated, First-Served policy at the link
(i, j).

1 αij := 0; // αij is the generation time of the packet being transmitted on the link

(i, j)

2 while the system is ON do
3 if a new packet with generation time s arrives to node i then
4 if the link (i, j) is busy then
5 if s ≤ αij then
6 Store the packet in the queue;
7 else // The packet carries fresher information than the

packet being transmitted.

8 Send the packet over the link by preempting the packet being
transmitted;

9 The preempted packet is stored back to the queue;
10 αij = s;

11 else // The link is idle.

12 The new packet is sent over the link;

13 if a packet is delivered to node j then
14 if the queue is not empty then
15 The freshest packet in the queue is sent over the link;

Definition 3.3.1. A scheduling policy is said to follow the Last-Generated, First-

Served discipline, if the last generated packet is sent first among all packets in the

queue.

We consider a preemptive LGFS (prmp-LGFS) policy at each link (i, j) ∈ L. The

implementation details of this policy are depicted in Algorithm 3.13.

Define a set of parameters I = {G(V ,L), (Bij, (i, j) ∈ L), sl, al0, l = 1, 2, . . .},

where G(V ,L) is the network graph, Bij is the queue buffer size of link (i, j), sl is the

generation time of packet l, and al0 is the arrival time of packet l to node 0. Let ∆π

3The decision related to packet droppings and replacements in full buffer case (at any link) doesn’t
affect the age performance of prmp-LGFS policy. Hence, we don’t specify this decision under the
prmp-LGFS policy.
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be the age processes of all nodes in the network under policy π. The age optimality

of prmp-LGFS policy is provided in the following theorem.

Theorem 3.3.1. If the packet transmission times are exponentially distributed, in-

dependent across links and i.i.d. across time, then for all I and π ∈ Π

[∆prmp-LGFS|I] ≤st[∆π|I], (3.3.1)

or equivalently, for all I and non-decreasing functional g

E[g(∆prmp-LGFS)|I] = min
π∈Π

E[g(∆π)|I], (3.3.2)

provided the expectations in (3.3.2) exist.

Proof sketch. We use a coupling and forward induction to prove it. We first consider

the comparison between the preemptive LGFS policy and any arbitrary policy π. We

couple the packet departure processes at each link of the network such that they are

identical under both policies. Then, we use the forward induction over the packet

delivery events at each link (using Lemma B.1.2) and the packet arrival events at node

0 (using Lemma B.1.3) to show that the generation times of the freshest packets at

each node of the network are maximized under the preemptive LGFS policy. By

this, the preemptive LGFS policy is age-optimal among all causal policies. For more

details, see Appendix B.1.

Theorem 3.3.1 tells us that for arbitrary sequence of packet generation times

{s1, s2, . . .}, sequence of arrival times {a10, a20, . . .} at node 0, network topology

G(V ,L), and buffer sizes (Bij, (i, j) ∈ L), the prmp-LGFS policy achieves optimality

of the joint distribution of the age processes at the network nodes within the pol-

icy space Π. In addition, (3.3.2) tells us that the prmp-LGFS policy minimizes any
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non-decreasing age penalty functional g, including the time-average age (3.2.5), and

non-linear age functions (3.2.6).

As we mentioned before, the result of Theorem 3.3.1 still holds for the multiple-

gateway model shown in Fig. 1.3(b). In particular, Lemma B.1.3 can be applied to

each packet arrival event at each gateway, and hence the result follows. It is also worth

pointing out that the arrival processes at the gateway nodes may be heterogeneous,

and they do not change according to the scheduling policy. A weaker version of

Theorem 3.3.1 can be obtained as follows.

Corollary 3.3.1.1. If the conditions of Theorem 3.3.1 hold, then for any arbitrary

packet generation and arrival processes at the external source and node 0, respectively,

and for all π ∈ Π

∆prmp-LGFS ≤st ∆π. (3.3.3)

Proof. We consider a mixture over the realizations of packet generation and arrival

processes (arrival process at node 0) to prove the result. In particular, by using the

result of Theorem 3.3.1 and Theorem 6.B.16.(e) in [47], the corollary follows.

3.3.2 New-Better-than-Used Transmission Times, Preemption is Allowed

Although the preemptive LGFS policy can achieve age-optimality when the trans-

mission times are exponentially distributed, it does not always, as we will observe

later, minimize the age for non-exponential transmission times. We aim to answer

the question of whether for an important class of distributions that are more general

than exponential, optimality or near-optimality can be achieved while preemption is

allowed. We here consider the classes of New-Better-than-Used (NBU) packet trans-

mission time distributions, which are defined as follows.
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Definition 3.3.2. New-Better-than-Used distributions [47]: Consider a non-

negative random variable X with complementary cumulative distribution function

(CCDF) F̄ (x) = P[X > x]. Then, X is New-Better-than-Used (NBU) if for all

t, τ ≥ 0

F̄ (τ + t) ≤ F̄ (τ)F̄ (t). (3.3.4)

Examples of NBU 4 distributions include constant transmission time, (shifted) ex-

ponential distribution, geometric distribution, Erlang distribution, negative binomial

distribution, etc. Recently, age was analyzed in single-hop networks for exponen-

tial transmission times with transmission error in [51], and for Gamma-distributed

transmission times in [10]. These studies did not answer the question of which policy

can be (near) age-optimal for non-exponential transmission times in single-hop net-

works. We provided a unified answer to identify the policy that is near age-optimal in

single-hop networks in Chapter 2. Since the question has remained open for multihop

networks, we here extend our investigation to answer this question in multihop net-

works and identify the near age-optimal policy for a more general class of transmission

time distributions.

We propose a non-preemptive LGFS (non-prmp-LGFS) policy. It is important to

note that under non-prmp-LGFS policy, the fresh packet replaces the oldest packet in

a link’s queue when the queue is already at its maximum buffer level (i.e., the queue

is already full). The implementation details of non-prmp-LGFS policy are depicted

in Algorithm 3.2.

4The word better in the terminology New-Better-than-Used refers to that a random variable
with a long lifetime is better than that with a shorter lifetime [47]. In our case, the random
variable is the transmission time, and longer transmission time is worse in terms of the age.
Thus, the word better here does not imply an improvement in the age performance.
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Algorithm 3.2: Non-preemptive Last-Generated, First-Served policy at the
link (i, j).

1 δij := 0; // δij is the smallest generation time of the packets in the queue (Bij)

2 while the system is ON do
3 if a new packet pi with generation time s arrives to node i then
4 if the link (i, j) is busy then
5 if Buffer (Bij) is full then
6 if s > δij then
7 Packet pi replaces the packet with generation time δij in

the queue;

8 else
9 Drop packet pi;

10 Set δij to the smallest generation time of the packets in the
queue (Bij);

11 else
12 Store packet pi in the queue;
13 Set δij to the smallest generation time of the packets in the

queue (Bij);

14 else // The link is idle.

15 The new packet is sent over the link;

16 if a packet is delivered to node j then
17 if the queue is not empty then
18 The freshest packet in the queue is sent over the link;

While we are able to consider a more general class of transmission time distribu-

tions, we are able to prove this result for a somewhat more restrictive network than

the general topology G(V ,L). The network here is represented by a directed graph

G ′(V ,L), in which each node j ∈ V\{0} has one incoming link. An example of this

network topology is shown in Fig. 3.2. We show that the non-prmp-LGFS policy

can come close to age-optimal into two steps: i) we construct an infeasible policy

which provides the age lower bound, ii) we then show the near age-optimality result

by identifying the gap between the constructed lower bound and our proposed policy
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Figure 3.2: Information updates over a multihop network, where each node in the
network (except the gateway) is restricted to receive data from only one node.

non-prmp-LGFS. The construction of the the infeasible policy and the lemma that

explains the age lower bound are presented in Appendix B.2.

We can now proceed to characterize the age performance of policy non-prmp-

LGFS among the policies in Π. Define a set of the parameters I ′ = {G ′(V ,L), (Bij, (i, j) ∈

L), sl, al0, l = 1, 2, . . .}, where G ′(V ,L) is the network graph with the new restriction,

Bij is the queue buffer size of the link (i, j), sl is the generation time of packet l, and

al0 is the arrival time of packet l to node 0. Define Hk as the set of nodes in the k-th

hop, i.e., Hk is the set of nodes that are separated by k links from node 0 5. Let ij,k

represent the index of the node in Hk that is in the path to the node j (for example,

in Fig. 3.2, i11,1 = 7 and i10,2 = 8). Define Xj as the packet transmission time over

the incoming link to node j. We use Lemma B.2.1 in Appendix B.2 to prove the

following theorem.

Theorem 3.3.2. Suppose that the packet transmission times are NBU, independent

5Node 0 is in H0.
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across links, and i.i.d. across time, then for all I ′ satisfying Bij ≥ 1 for each (i, j) ∈ L

min
π∈Π

[∆̄j,π|I ′] ≤ [∆̄j,non-prmp-LGFS|I ′] ≤

min
π∈Π

[∆̄j,π|I ′]+E[Xij,1 ]+2
k∑

m=2

E[Xij,m ],∀j ∈ Hk,∀k ≥ 1,

(3.3.5)

where ∆̄j,π = lim sup
T→∞

E[
∫ T

0
∆j,π(t)dt]

T
is the average age at node j under policy π.

Proof sketch. We use the infeasible policy and the lower bound process that are con-

structed in Appendix B.2 to prove Theorem 3.3.2 into three steps:

Step 1: We derive an upper bound on the time differences between the arrival

times (at each node) of the fresh packets under the infeasible policy and those under

policy non-prmp-LGFS.

Step 2: We use the upper bound derived in Step 1 to derive an upper bound on

the average gap between the constructed infeasible policy in Appendix B.2 and the

non-prmp-LGFS policy.

Step 3: Finally, we use the upper bound on the average gap together with Lemma

B.2.1 in Appendix B.2 to prove (3.3.5). For the full proof, see Appendix B.5.

Theorem 3.3.2 tells us that for arbitrary sequence of packet generation times

{s1, s2, . . .}, sequence of arrival times {a10, a20, . . .} at node 0, and buffer sizes (Bij ≥

1, (i, j) ∈ L), the non-prmp-LGFS policy is within a constant age gap from the

optimum average age among all policies in Π. Similar to Theorem 3.3.1, we can show

that the result of Theorem 3.3.2 still holds for the multiple-gateway model shown in

Fig. 1.3(b).

Remark 3.3.2.1. The reason behind considering the restrictive network topology

G ′(V ,L) is as follows: In the general network topology G(V ,L), a node can receive

update packets from multiple paths. As a result, the arrival time of a fresh packet
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at this node depends on the fastest path that delivers this packet to this node. This

fastest path may differ from one packet to another on sample-path. Thus, it becomes

challenging to establish an upper bound that is very close to the age lower bound (Steps

1 and 2 in the proof of Theorem 3.3.2) using sample-path and coupling techniques, in

this case.

3.3.3 General Transmission Times, Preemption is Not Allowed

Finally, we study age-optimal packet scheduling for networks that do not allow for

preemption and for which the packet transmission times are arbitrarily distributed,

independent across the links and i.i.d. across time. Since preemption is not allowed,

we are restricted to non-preemptive policies within Π. Moreover, we consider work-

conserving policies. We use Πnpwc ⊂ Π to denote the set of non-preemptive work-

conserving policies.

We consider the non-prmp-LGFS policy, where we show that it is age-optimal

among the policies in Πnpwc in the following theorem.

Theorem 3.3.3. If the packet transmission times are independent across the links

and i.i.d. across time, then for all I and π ∈ Πnpwc

[∆non-prmp-LGFS|I] ≤st [∆π|I], (3.3.6)

or equivalently, for all I and non-decreasing functional g

E[g(∆non-prmp-LGFS)|I] = min
π∈Πnpwc

E[g(∆π)|I], (3.3.7)

provided the expectations in (3.3.7) exist.
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Proof. The proof of Theorem 3.3.3 is similar to that of Theorem 3.3.1. The difference

is that preemption is not allowed here. See Appendix B.6 for more details.

It is interesting to note from Theorem 3.3.3 that, age-optimality can be achieved

for arbitrary transmission time distributions, even if the transmission time distri-

bution differs from a link to another. General service time distributions have been

considered in some recent age analysis on single-hop networks [6, 60]. Theorem 3.3.3

explains the age-optimal policies in these scenarios. Moreover, similar to Theorem

3.3.1, the result of Theorem 3.3.3 still holds for the multiple-gateway model shown

in Fig. 1.3(b).

Remark 3.3.3.1. It is worth observing that the results in Theorem 3.3.1, Theorem

3.3.2, and Theorem 3.3.3 hold for any link buffer sizes Bij’s. Hence, the buffer sizes

can be chosen according to the application. In particular, in some applications, such

as news and social updates, users are interested in not just the latest updates, but also

past news. Thus, in such application, we may need to have queues with buffer sizes

greater than one to store old packets and send them later whenever links become idle.

On the other hand, there are some other applications, in which old packets become

useless when the fresher packets exist. Thus, in these applications, buffer sizes can be

chosen to be zero (one) when we follow the prmp-LGFS (non-prmp-LGFS) scheduling

policy.

3.4 Numerical Results

We now present numerical results that validate our theoretical findings. The inter-

generation times at all setups are i.i.d. Erlang-2 distribution with mean 1/λ.

We use Fig. 3.3 to validate the results in Section 3.3.2. We consider the network in

Fig. 3.2. Fig. 3.3 illustrates the average age at node 5 under gamma transmission time
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Figure 3.3: Average age at node 5 under gamma transmission time distributions at
each link with different shape parameter β.

distributions at each link with different shape parameter β, where the buffer sizes are

either 1, 10, or 100. The mean of the gamma transmission time distributions at each

link is normalized to 0.2. The time difference (ai0−si) between packet generation and

arrival to node 0 is Zero. Note that the average age of the FCFS policy with infinite

buffer sizes is extremely high in this case and hence is not plotted in this figure. The

“Age lower bound” curve is generated by using

∫ T
0

∆LB
5,IP

T
when the buffer sizes are 1

which, according to Lemma B.2.1, is a lower bound of the optimum average age at

node 5. We can observe that the gap between the “Age lower bound” curve and the

average age of the non-prmp-LGFS policy at node 5 is no larger than 9E[X] = 1.8,

which agrees with Theorem 3.3.2. In addition, we can observe that prmp-LGFS
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policy achieves the best age performance among all plotted policies when β = 1.

This is because a gamma distribution with shape parameter β = 1 is an exponential

distribution. Thus, age-optimality can be achieved in this case by policy prmp-LGFS

as stated in Theorem 3.3.1. However, as can be seen in the figure, the average age

at node 5 of the prmp-LGFS policy blows up as the shape parameter β increases

and the non-prmp-LGFS policy achieves the best age performance among all plotted

policies when β > 2. The reason for this phenomenon is as follows: As β increases,

the variance (variability) of normalized gamma distribution decreases. Hence, when

a packet is preempted, the service time of a new packet is probably longer than the

remaining service time of the preempted packet. Because the generation rate is high,

packet preemption happens frequently, which leads to infrequent packet delivery and

increases the age. This phenomenon occurs heavily at the first link (link (0, 1)) which,

in turn, affects the age at the subsequent nodes.

We use Fig. 3.5 to validate the result in Section 3.3.3. We consider the network

in Fig. 3.4. The time difference between packet generation and arrival to node 0,

i.e., ai0 − si, is modeled to be either 1 or 100, with equal probability. Fig. 3.5 plots

the time-average age at node 3 versus the packets generation rate λ for the multihop
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Figure 3.5: Average age at node 3 versus packets generation rate λ for general packet
transmission time distributions.

network in Fig. 3.4. The plotted policies are FCFS policy, non-preemptive LCFS,

and non-preemptive LGFS policy, where the buffer sizes are either 1 or infinity. The

packet transmission times at links (0, 1) and (1, 3) follow a gamma distribution with

mean 1. The packet transmission times at links (0, 2), (1, 2), and (2, 3) are distributed

as the sum of a constant with value 0.5 and a value drawn from an exponential dis-

tribution with mean 0.5. We find that the non-preemptive LGFS policy achieves the

best age performance among all plotted policies. By comparing the age performance

of the non-preemptive LGFS and non-preemptive LCFS policies, we observe that the

LGFS scheduling principle improves the age performance when the update packets

arrive to node 0 out of the order of their generation times. It is important to note
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that the non-preemptive LGFS policy minimizes the age among the non-preemptive

work-conserving policies even if the packet transmission time distributions are het-

erogeneous across the links. This observation agrees with Theorem 3.3.3. We also

observe that the average age of FCFS policy with Bij =∞ blows up when the traffic

intensity is high. This is due to the increased congestion in the network which leads

to a delivery of stale packets. Moreover, in case of the FCFS policy with Bij = 1,

the average age is finite at high traffic intensity, since the fresh packet has a better

opportunity to be delivered in a relatively short period compared with FCFS policy

with Bij =∞.

3.5 Conclusion

In this chapter, we studied the age minimization problem in interference-free mul-

tihop networks. We considered general system settings including arbitrary network

topology, packet generation and arrival times at node 0, and queue buffer sizes. A

number of scheduling policies were developed and proven to be (near) age-optimal in

a stochastic ordering sense for minimizing any non-decreasing functional of the age

processes. In particular, we showed that age-optimality can be achieved when: i) pre-

emption is allowed and the packet transmission times are exponentially distributed,

ii) preemption is not allowed and the packet transmission times are arbitrarily dis-

tributed (among work-conserving policies). Moreover, for networks that allow for

preemption and the packet transmission times are NBU, we showed that the non-

preemptive LGFS policy is near age-optimal in a somewhat more restrictive network

topology.
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CHAPTER 4

AGE-OPTIMAL SAMPLING AND SCHEDULING IN

MULTI-SOURCE SYSTEMS

4.1 Introduction

An important line of research in age of information has considered the “generate-at-

will” model [16–19], in which the generation times (sampling times) of the update

packets are controllable. The work in [18, 19] motivated the usage of nonlinear age

functions from various real-time applications and designed sampling policies for opti-

mizing nonlinear age functions in single source systems. Our study here extends the

work in [18,19] to a multi-source system. In this system, only one packet can be sent

through the channel at a time. Therefore, a decision maker does not only consist of

a sampler, but also a scheduler, which makes the problem even more challenging.

The scheduling problem for multi-source networks with different scenarios was

considered in [26–29,32–34,36,61–66]. In [34], the authors found that the scheduling

problem for minimizing the age in wireless networks under physical interference con-

straints is NP-hard. Optimal scheduling for age minimization in a broadcast network

was studied in [29, 32, 62–64], where a single source can be scheduled at a time. In

addition, it was found that a maximum age first (MAF) service discipline is useful

for reducing the age in various multi-source systems with different service time dis-

tributions in [28,29,36,62,63]. In contrast to our study, the generation of the update
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packets in [28, 29, 32, 34, 36, 62–64] is uncontrollable and they arrive randomly at the

transmitter. Age analysis of the status updates over a multiaccess channel was con-

sidered in [26]. The studies in [27,33,65,66] considered the age optimization problem

in a wireless network with general interference constraints and channel uncertainty.

Our result in Corollary 4.3.3.1 suggests that if the packet transmission time is fixed

as in time-slotted systems [26–29,32–34,62–66], then it is optimal to sample as soon

as the channel becomes available. However, this is not necessarily true otherwise.

In this chapter, we consider a joint sampling and scheduling problem for opti-

mizing data freshness in multi-source systems. We use a non-decreasing age-penalty

function to represent the level of dissatisfaction of data staleness, where all sources

have the same age-penalty function. Sources take turns to generate update packets,

and forward them to their destinations one-by-one through a shared channel with ran-

dom delay. There is a scheduler, that chooses the update order of the sources, and

a sampler, that determines when a source should generate a new packet in its turn.

We aim to find the optimal scheduler-sampler pairs that minimize the total-average

age-penalty at delivery times (Ta-APD) and the total-average age-penalty (Ta-AP),

where Ta-AP is more challenging to minimize. To that end, the main contributions

of this chapter are outlined as follows:

• We formulate the optimal scheduling and sampling problem to optimize data

freshness in single-hop, multi-source networks. We show that our optimization

problem has an important separation principle: For any given sampler, we show

that the optimal scheduling policy is the Maximum Age First (MAF) scheduler

(Proposition 4.3.1). Hence, the optimal scheduler-sampler pair can be obtained

by fixing the scheduling policy to the MAF scheduler, and then optimize the

sampler design separately.

• We show that the MAF scheduler and zero-wait sampler, in which a new packet
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is generated once the channel becomes idle, are jointly optimal for minimizing

the Ta-APD (Theorem 4.3.1). We show this result by proving the optimality of

the zero-wait sampler for minimizing the Ta-APD, when the scheduling policy

is fixed to the MAF scheduler.

• Interestingly, we find that zero-wait sampler does not always minimize the Ta-

AP, when the MAF scheduler is employed. We show that the MAF scheduler

and the relative value iteration with reduced complexity (RVI-RC) sampler

are jointly optimal for minimizing the Ta-AP (Theorem 4.3.2). We take several

steps to prove the optimality of the RVI-RC sampler: When the scheduling pol-

icy is fixed to the MAF scheduler, we reformulate the optimal sampling problem

for minimizing the Ta-AP as an equivalent semi-Markov decision problem. We

use Dynamic Programming (DP) to obtain the optimal sampler. In particular,

we show that there exists a stationary deterministic sampler that can achieve

optimality (Proposition 4.3.2). We also show that the optimal sampler has a

threshold property (Proposition 4.3.3), that helps in reducing the complexity

of the relative value iteration (RVI) algorithm (by reducing the computations

required for some system states). This results in the RVI-RC sampler in Algo-

rithm 4.1.

• Finally, in Section 4.4, we devise a low-complexity threshold-type sampler via

an approximate analysis of Bellman’s equation whose solution is the RVI-RC

sampler. In addition, for the special case of a linear age-penalty function,

this threshold sampler is further simplified to the water-filling solution. The

numerical results in Figs. 4.4-4.9 indicate that, when the scheduler is fixed to

the MAF, the performance of these approximated samplers is almost the same

as that of the RVI-RC sampler.
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4.2 Model and Formulation

This section describes the multi-source network illustrated in Fig. 1.4, and introduces

necessary notations.

4.2.1 Notations

We use N+ to represent the set of non-negative integers, R+ is the set of non-negative

real numbers, R is the set of real numbers, and Rn is the set of n-dimensional real

Euclidean space. We use t− to denote the time instant just before t. Let x =

(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Rn, then we denote x ≤ y

if xi ≤ yi for i = 1, 2, . . . , n. Also, we use x[i] to denote the i-th largest component of

vector x.

4.2.2 System Model

We consider a status update system with m sources as shown in Fig. 1.4, where each

source observes a time-varying process. An update packet is generated from a source

and is then sent over an error-free delay channel to the destination, where only one

packet can be sent at a time. A decision maker controls the transmission order of the

sources and the generation times of the update packets for each source. This is known

as the “generate-at-will” model [16–18] (i.e., the update packets can be generated at

any time).

We use Si to denote the generation time of the i-th generated packet from all

sources, called packet i. Moreover, we use ri to represent the source index from

which packet i is generated. The channel is modeled as an FCFS queue with random

i.i.d. service time Yi, where Yi represents the service time of packet i, Yi ∈ Y , and

Y ⊂ R+ is a finite and bounded set. We also assume that 0 < E[Yi] < ∞ for all i.

We suppose that the decision maker knows the idle/busy state of the server through
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acknowledgments (ACKs) from the destination with zero delay. If an update packet

is generated while the server is busy, this packet needs to wait in the queue until its

transmission opportunity, and becomes stale while waiting. Hence, there is no loss

of optimality to avoid generating an update packet during the busy periods. As a

result, a packet is served immediately once it is generated. Let Di denote the delivery

time of packet i, where Di = Si + Yi. After the delivery of packet i at time Di, the

decision maker may insert a waiting time Zi before generating a new packet (hence,

Si+1 = Di + Zi)
1, where Zi ∈ Z, and Z ⊂ R+ is a finite and bounded set2.

At any time t, the most recently delivered packet from source l is generated at

time

Ul(t) = max{Si : ri = l, Di ≤ t}. (4.2.1)

Age of information, or simply the age, for source l is defined as [1–4]

∆l(t) = t− Ul(t). (4.2.2)

As shown in Fig. 4.1, the age increases linearly with t but is reset to a smaller

value with the delivery of a fresher packet. We suppose that the age ∆l(t) is right-

continuous. The age process for source l is given by {∆l(t), t ≥ 0}. We suppose that

the initial age values ∆l(0
−) for all l are known to the system. For notation simplicity,

we use ali to denote the age value of source l at time Di, i.e., ali = ∆l(Di)
3.

For each source l, we consider an age-penalty function g(∆l(t)) of the age ∆l(t).

1We suppose that D0 = 0. Thus, we have S1 = Z0.

2We suppose that we always have 0 ∈ Z.

3Since the age process is right-continuous, if packet i is delivered from source l, then ∆l(Di) is the
age value of source l just after the delivery time Di.
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∆l(t)
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D2

Figure 4.1: The age ∆l(t) of source l, where we suppose that the first and third
packets are generated from source l, i.e., r1 = r3 = l.
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The function g : [0,∞) → R is non-decreasing and is not necessarily convex or

continuous. We suppose that E[|
∫ a+x

a

g(τ)dτ |] < ∞ whenever x < ∞. It was

recently shown in [19] that, under certain conditions, information freshness metrics

expressed in terms of auto-correlation functions, the estimation error of signal values,

and mutual information, are monotonic functions of the age. Moreover, the age-

penalty function g(·) can be used to represent the level of dissatisfaction of data

staleness in different applications based on their demands. For instance, a stair-

shape function g(x) = bxc can be used to characterize the dissatisfaction for data

staleness when the information of interest is checked periodically, an exponential

function g(x) = ex can be utilized in online learning and control applications in

which the demand for updating data increases quickly with age, and an indicator

function g(x) = 1(x > q) can be used to indicate the dissatisfaction of the violation

of an age limit q.

4.2.3 Decision Policies

A decision policy, denoted by d, controls the following: i) the scheduler, denoted

by π, that determines the source to be served at each transmission opportunity π ,

(r1, r2, . . .), ii) the sampler, denoted by f , that determines the packet generation times

f , (S1, S2, . . .), or equivalently, the sequence of waiting times f , (Z0, Z1, . . .).

Hence, d = (π, f) implies that a decision policy d employs the scheduler π and the

sampler f . Let D denote the set of causal decision policies in which decisions are

made based on the history and current information of the system. Observe that D

consists of Π and F , where Π and F are the sets of causal schedulers and samplers,

respectively.
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After each delivery, the decision maker chooses the source to be served, and im-

poses a waiting time before the generation of the new packet. Next, we present our

optimization problems.

4.2.4 Optimization Problem

We define two metrics to assess the long term age performance over our status update

system in (4.2.3) and (4.2.4). Consider the time interval [0, Dn]. For any decision

policy d = (π, f), we define the total-average age-penalty at delivery times (Ta-APD)

as

∆avg-D(π, f) = lim sup
n→∞

1

n
E

[
m∑
l=1

n∑
i=1

g
(
∆l(D

−
i )
)]
, (4.2.3)

and the total-average age-penalty per unit time (Ta-AP) as

∆avg(π, f) = lim sup
n→∞

E
[∑m

l=1

∫ Dn

0
g (∆l(t)) dt

]
E [Dn]

. (4.2.4)

In this chapter, we aim to minimize both the Ta-APD and the Ta-AP separately. In

other words, we seek a decision policy d = (π, f) that solves the following optimization

problems:

∆̄avg-D-opt , min
π∈Π,f∈F

∆avg-D(π, f), (4.2.5)

and

∆̄avg-opt , min
π∈Π,f∈F

∆avg(π, f), (4.2.6)
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where ∆̄avg-D-opt and ∆̄avg-opt are the optimum objective values of Problems (4.2.5)

and (4.2.6), respectively. Due to the large decision policy space, the optimization

problem is quite challenging. In particular, we need to seek the optimal decision

policy that controls both the scheduler and sampler to minimize the Ta-APD and

the Ta-AP. In the next section, we discuss our approach to tackle these optimization

problems.

4.3 Optimal Decision Policy

We first show that our optimization problems in (4.2.5) and (4.2.6) have an important

separation principle: Given the generation times of the update packets, the Maximum

Age First (MAF) scheduler provides the best age performance compared to any other

scheduler. What remains to be addressed is the question of finding the best sampler

that solves Problems (4.2.5) and (4.2.6), given that the scheduler is fixed to the MAF.

Next, we present our approach to solve our optimization problems in detail.

4.3.1 Optimal Scheduler

We start by defining the MAF scheduler as follows:

Definition 4.3.1 ( [28,29,36,62,63]). Maximum Age First scheduler: In this sched-

uler, the source with the maximum age is served first among all sources. Ties are

broken arbitrarily.

For simplicity, let πMAF represent the MAF scheduler. The age performance of

πMAF scheduler is characterized in the following proposition:

Proposition 4.3.1. For all f ∈ F

∆avg-D(πMAF, f) = min
π∈Π

∆avg-D(π, f), (4.3.1)
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∆avg(πMAF, f) = min
π∈Π

∆avg(π, f). (4.3.2)

That is, the MAF scheduler minimizes both the Ta-APD and the Ta-AP in (4.2.3)

and (4.2.4) among all schedulers in Π.

Proof. One of the key ideas of the proof is as follows: Given any sampler, that controls

the generation times of the update packets, we only control from which source a

packet is generated. We couple the policies such that the packet delivery times are

fixed under all decision policies. In the MAF scheduler, a source with maximum

age becomes the source with minimum age among the m sources after each delivery.

Under any arbitrary scheduler, a packet can be generated from any source, which

is not necessarily the one with the maximum age, and the chosen source becomes

the one with minimum age among the m sources after the delivery. Since the age-

penalty function, g(·), is non-decreasing, the MAF scheduler provides a better age

performance compared to any other scheduler. For details, see Appendix C.1.

Proposition 4.3.1 is proven by using a sample-path proof technique that was re-

cently developed in [36]. The difference is that the authors in [36] proved the results

for symmetrical packet generation and arrival processes, while we consider here that

the packet generation times are controllable. We found that the same proof tech-

nique applies to both cases. Observe that, Proposition 1 holds when all sources are

equally prioritized. However, for the sources with different priorities (i.e. different

age-penalty functions), this result does not hold anymore. This is because the order

of the age-penalty values of various sources may change with time.

Proposition 4.3.1 helps us conclude the separation principle that the optimal sam-

pler can be optimized separately, given that the scheduling policy is fixed to the MAF
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(a) The age evolution of source 1.

Q21

Q22

Q23

tS3 D3

Z0

S1 D1

Y1 Z1

S2 D2

Y2 Z2 Y3

S4 D4

Z3 Y4

∆2(t)

Q20

a20 a21

a22

a23

(b) The age evolution of source 2.

Figure 4.2: The age processes evolution of the MAF scheduler in a two-sources in-
formation update system. Source 2 has a higher initial age than Source 1. Thus,
Source 2 starts service and Packet 1 is generated from Source 2, which is delivered at
time D1. Then, Source 1 is served and Packet 2 is generated from Source 1, which is
delivered at time D2. The same operation is repeated over time.

scheduler. Hence, the optimization problems (4.2.5) and (4.2.6) reduce to the follow-

ing:

∆̄avg-D-opt , min
f∈F

∆avg-D(πMAF, f), (4.3.3)

∆̄avg-opt , min
f∈F

∆avg(πMAF, f). (4.3.4)

By fixing the scheduling policy to the MAF scheduler, the evolution of the age

processes of the sources is as follows: The sampler may impose a waiting time Zi

before generating packet i + 1 at time Si+1 = Di + Zi from the source with the

maximum age at time t = Di. Packet i + 1 is delivered at time Di+1 = Si+1 + Yi+1

and the age of the source with maximum age drops to the minimum age with the

value of Yi+1, while the age processes of other sources increase linearly with time

without change. This operation is repeated with time and the age processes evolve
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accordingly. An example of age processes evolution is shown in Fig. 4.2. Next, we

seek the optimal sampler for Problems (4.3.3) and (4.3.4).

4.3.2 Optimal Sampler for Problem (4.3.3)

Now, we show that the MAF scheduler and the zero-wait sampler are jointly optimal

for minimizing the Ta-APD as follows:

Theorem 4.3.1. The MAF scheduler and the zero-wait sampler form an optimal

solution for Problem (4.2.5).

Proof. We prove Theorem 4.3.1 by proving that the zero-wait sampler is optimal for

Problem (4.3.3). In particular, we show that the Ta-APD is an increasing function

of the packets waiting times Zi’s. For details, see Appendix C.2.

Remark 4.3.1.1. The results in Proposition 4.3.1 and Theorem 4.3.1 hold even if Y

and Z are unbounded and uncountable sets. Indeed, the finiteness assumption of Y

and Z is only needed for the utilization of the DP technique in the next subsection.

4.3.3 Optimal Sampler for Problem (4.3.4)

Although the zero-wait sampler is the optimal sampler for minimizing the Ta-APD,

it is not clear whether it also minimizes the Ta-AP. This is because the latter metric

may not be a non-decreasing function of the waiting times as we will see later, which

makes Problem (4.3.4) more challenging. Next, we derive the Ta-AP when the MAF

scheduler is employed and reformulate Problem (4.3.4) as a semi-Markov decision

problem.

Reformulation of Problem (4.3.4)

We start by analyzing the Ta-AP when the scheduling policy is fixed to the MAF

scheduler. We decompose the area under each curve g(∆l(t)) into a sum of disjoint
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geometric parts. Observing Fig. 4.2 4, this area in the time interval [0, Dn], where

Dn =
n−1∑
i=0

Zi + Yi+1, can be seen as the concatenation of the areas Qli, 0 ≤ i ≤ n− 1.

Thus, we have

∫ Dn

0

g(∆l(t))dt =
n−1∑
i=0

Qli, (4.3.5)

where

Qli =

∫ Di+1

Di

g(∆l(t))dt =

∫ Di+Zi+Yi+1

Di

g(∆l(t))dt. (4.3.6)

For t ∈ [Di, Di+1), we have

∆l(t) = t− Ul(t) = t− (Di − ali), (4.3.7)

where (Di−ali) represents the generation time of the last delivered packet from source

l before time Di+1. By performing a change of variable in (4.3.6), we get

Qli =

∫ ali+Zi+Yi+1

ali

g(τ)dτ. (4.3.8)

Hence, the Ta-AP can be rewritten as

lim sup
n→∞

∑n−1
i=0 E

[∑m
l=1

∫ ali+Zi+Yi+1

ali
g(τ)dτ

]
∑n−1

i=0 E [Zi + Yi+1]
. (4.3.9)

4Observe that a special age-penalty function is depicted in Fig. 4.2, where we choose g(x) = x to
simplify the illustration.
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Using this, the optimal sampling problem for minimizing the Ta-AP, given that the

scheduling policy is fixed to the MAF scheduler, can be cast as

∆̄avg-opt , min
f∈F

lim sup
n→∞

∑n−1
i=0 E

[∑m
l=1

∫ ali+Zi+Yi+1

ali
g(τ)dτ

]
∑n−1

i=0 E [Zi + Yi+1]
. (4.3.10)

Since |
∫ ali+Zi+Yi+1

ali

g(τ)dτ | < ∞ for all Zi ∈ Z and Yi ∈ Y , and E[Yi] > 0 for all i,

∆̄avg-opt is bounded. Note that Problem (4.3.10) is hard to solve in the current form.

Therefore, we reformulate it. We consider the following optimization problem with a

parameter β ≥ 0:

Θ(β) , min
f∈F

lim sup
n→∞

1

n

n−1∑
i=0

E

[
m∑
l=1

∫ ali+Zi+Yi+1

ali

g(τ)dτ − β(Zi + Yi+1)

]
, (4.3.11)

where Θ (β) is the optimal value of (4.3.11).

Lemma 4.3.1. The following assertions are true:

(i). ∆̄avg-opt S β if and only if Θ(β) S 0.

(ii). If Θ(β) = 0, then the optimal sampling policies that solve (4.3.10) and (4.3.11)

are identical.

Proof. The proof of Lemma 4.3.1 is similar to the proof of [67, Lemma 2]. The

difference is that a regenerative assumption of the inter-sampling times is used to

prove the result in [67]; instead, we use the boundedness of the inter-sampling times

to prove the result. For the sake of completeness, we modify the proof accordingly

and provide it in Appendix C.3.

As a result of Lemma 4.3.1, the solution to (4.3.10) can be obtained by solving

(4.3.11) and seeking a β = ∆̄avg-opt ≥ 0 such that Θ(∆̄avg-opt) = 0. Lemma 4.3.1 helps

us to utilize the DP technique to obtain the optimal sampler. Note that without
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Lemma 4.3.1, it would be quite difficult to use the DP technique to solve (4.3.10)

optimally. Next, we illustrate our solution approach to Problem (4.3.11) in detail.

The solution of Problem (4.3.11)

Following the methodology proposed in [68], when β = ∆̄avg-opt, Problem (4.3.11) is

equivalent to an average cost per stage problem. According to [68], we describe the

components of this problem in detail below.

• States: At stage5 i, the system state is specified by

s(i) = (a[1]i, . . . , a[m]i), (4.3.12)

where a[l]i is the l-th largest age of the sources at stage i, i.e., it is the l-th

largest component of the vector (a1i, . . . , ami). We use S to denote the state-

space including all possible states. Notice that S is finite and bounded because

Z and Y are finite and bounded.

• Control action: At stage i, the action that is taken by the sampler is Zi ∈ Z.

• Random disturbance: In our model, the random disturbance occurring at

stage i is Yi+1, which is independent of the system state and the control action.

• Transition probabilities: If the control Zi = z is applied at stage i and the

service time of packet i + 1 is Yi+1 = y, then the evolution of the system state

from s(i) to s(i+ 1) is as follows:

a[m]i+1 = y,

a[l]i+1 = a[l+1]i + z + y, l = 1, . . . ,m− 1.

(4.3.13)

5From henceforward, we assume that the duration of stage i is [Di, Di+1).
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We let Pss′(z) denote the transition probabilities

Pss′(z)=P(s(i+1)=s′|s(i)=s, Zi=z), s, s′∈S. (4.3.14)

When s = (a[1], . . . , a[m]) and s′ = (a′[1], . . . , a
′
[m]), the law of the transition

probability is given by

Pss′(z) =


P(Yi+1 = y) if a′[m] =y and

a′[l] =a[l+1]+z+y for l 6=m;

0 else.

(4.3.15)

• Cost Function: Each time the system is in stage i and control Zi is applied,

we incur a cost

C(s(i), Zi, Yi+1) =
m∑
l=1

∫ a[l]i+Zi+Yi+1

a[l]i

g(τ)dτ − ∆̄avg-opt(Zi + Yi+1). (4.3.16)

To simplify notation, we use the expected cost C(s(i), Zi) as the cost per stage,

i.e.,

C(s(i), Zi) = EYi+1
[C(s(i), Zi, Yi+1)] , (4.3.17)

where EYi+1
is the expectation with respect to Yi+1, which is independent of s(i)

and Zi. It is important to note that there exists c ∈ R+ such that |C(s(i), Zi)| ≤

c for all s(i) ∈ S and Zi ∈ Z. This is because Z, Y , S, and ∆̄avg-opt are bounded.

In general, the average cost per stage under a sampling policy f ∈ F is given by

lim sup
n→∞

1

n
E

[
n−1∑
i=0

C(s(i), Zi)

]
. (4.3.18)
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We say that a sampling policy f ∈ F is average-optimal if it minimizes the average

cost per stage in (4.3.18). Our objective is to find the average-optimal sampling

policy. A policy f is called a stationary deterministic policy if Zi = q(s(i)) for all

i = 0, 1, . . ., where q : Rm+ → Z is a deterministic function. In the next proposition,

we show that there is a stationary deterministic policy that is average-optimal.

Proposition 4.3.2. There exist a scalar λ and a function h that satisfy the following

Bellman’s equation:

λ+ h(s) = min
z∈Z

(
C(s, z) +

∑
s′∈S

Pss′(z)h(s′)

)
, (4.3.19)

where λ is the optimal average cost per stage that is independent of the initial state

s(0) and satisfies

λ = lim
α→1

(1− α)Jα(s),∀s ∈ S, (4.3.20)

and h(s) is the relative cost function that, for any state o, satisfies

h(s) = lim
α→1

(Jα(s)− Jα(o)),∀s ∈ S, (4.3.21)

where Jα(s) is the optimal total expected α-discounted cost function, which is defined

by

Jα(s) = min
f∈F

lim sup
n→∞

E

[
n−1∑
i=0

αiC(s(i), Zi)

]
, s(0) = s ∈ S, (4.3.22)

where 0 < α < 1 is the discount factor. Furthermore, there exists a stationary

deterministic policy that attains the minimum in (4.3.19) for each s ∈ S and is

average-optimal.

85



Proof. According to [68, Proposition 4.2.1 and Proposition 4.2.6], it is enough to show

that for every two states s and s′, there exists a stationary deterministic policy f such

that for some k, we have P [s(k) = s′|s(0) = s, f ] > 0, i.e., we have a communicating

Markov decision process (MDP). Observe that the proof idea of this proposition is

different from those used in literature such as [63, 64], where they have used the

discounted cost problem to show their results and then connect it to the average cost

problem. For details, see Appendix C.4.

We can deduce from Proposition 4.3.2 that the optimal waiting time is a fixed

function of the state s. Next, we use the RVI algorithm to obtain the optimal sampler

for minimizing the Ta-AP, and then exploit the structure of our problem to reduce

its complexity.

Optimal Sampler Structure: The RVI algorithm [69, Section 9.5.3], [70, Page

171] can be used to solve Bellman’s equation (4.3.19). Starting with an arbitrary

state o, a single iteration for the RVI algorithm is given as follows:

Qn+1(s, z) = C(s, z) +
∑
s′∈S

Pss′(z)hn(s′),

Jn+1(s) = min
z∈Z

(Qn+1(s, z)),

hn+1(s) = Jn+1(s)− Jn+1(o),

(4.3.23)

where Qn+1(s, z), Jn(s), and hn(s) denote the state action value function, value func-

tion, and relative value function for iteration n, respectively. In the beginning, we

set J0(s) = 0 for all s ∈ S, and then we repeat the iteration of the RVI algorithm as

described before6.

6According to [69, 70], a sufficient condition for the convergence of the RVI algorithm is the ape-
riodicity of the transition matrices of stationary deterministic optimal policies. In our case,
these transition matrices depend on the service times. This condition can always be achieved
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The complexity of the RVI algorithm is high due to many sources (i.e., the curse

of dimensionality [71]). Thus, we need to simplify the RVI algorithm. To that end,

we show that the optimal sampler has a threshold property that can reduce the

complexity of the RVI algorithm. Define z?s as the optimal waiting time for state

s, and Y as a random variable that has the same distribution as Yi. The threshold

property in the optimal sampler is manifested in the following proposition:

Proposition 4.3.3. If the state s = (a[1], . . . , a[m]) satisfies EY

[
m∑
l=1

g(a[l] + Y )

]
≥

∆̄avg-opt, then we have z?s = 0.

Proof. See Appendix C.5.

We can exploit the threshold test in Proposition 4.3.3 to reduce the complexity of

the RVI algorithm as follows: The optimal waiting time for any state s that satisfies

EY

[
m∑
l=1

g(a[l] + Y )

]
≥ ∆̄avg-opt is zero. Thus, we need to solve (4.3.23) only for the

states that fail this threshold test. As a result, we reduce the number of computations

required along the system state space, which reduces the complexity of the RVI

algorithm. Note that ∆̄avg-opt can be obtained using the bisection method or any

other one-dimensional search method. Combining this with the result of Proposition

4.3.3 and the RVI algorithm, we propose the “RVI with reduced complexity (RVI-RC)

sampler” in Algorithm 4.1. In the outer layer of Algorithm 4.1, bisection is employed

to obtain ∆̄avg-opt, where β converges to ∆̄avg-opt.

Note that, according to [69, 70], J(o) in Algorithm 4.1 converges to the optimal

average cost per stage. Moreover, the value of u in Algorithm 4.1 can be initialized to

the value of the Ta-AP of the zero-wait sampler (as the Ta-AP of the zero-wait sampler

provides an upper bound on the optimal Ta-AP), which can be easily calculated.

by applying the aperiodicity transformation as explained in [69, Section 8.5.4], which is a simple
transformation. However, This is not always necessary to be done.
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Algorithm 4.1: RVI algorithm with reduced complexity.

1 given l = 0, sufficiently large u, tolerance ε1 > 0, tolerance ε2 > 0;
2 while u− l > ε1 do

3 β =
l + u

2
;

4 J(s) = 0, h(s) = 0, hlast(s) = 10ε2 for all states s ∈ S;
5 while max

s∈S
|h(s)− hlast(s)| > ε2 do

6 for each s ∈ S do

7 if EY

[
m∑
l=1

g(a[l] + Y )

]
≥ β then

8 z?s = 0;
9 else

10 z?s = argminz∈ZC(s, z) +
∑
s′∈S

Pss′(z)h(s′);

11 J(s) = C(s, z?s) +
∑
s′∈S

Pss′(z
?
s)h(s′);

12 hlast(s) = h(s);
13 h(s) = J(s)− J(o);

14 if J(o) ≥ 0 then
15 u = β;
16 else
17 l = β;

The RVI algorithm and Whittle’s methodology have been used in literature to

obtain the optimal age scheduler in time-slotted multi-source networks (e.g., [63,

64]). Since they considered a time-slotted system, their model belongs to the class

of Markov decision problems. In contrast, we consider random discrete transmission

times that can be more than one time slot. Thus, our model belongs to the class of

semi-Markov decision problems, and hence is different from those in [63,64].

In conclusion, an optimal solution for Problem (4.2.6) is manifested in the follow-

ing theorem:
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Theorem 4.3.2. The MAF scheduler and the RVI-RC sampler form an optimal

solution for Problem (4.2.6).

Proof. The theorem follows directly from Proposition 4.3.1, Proposition 4.3.2, and

Proposition 4.3.3.

Special Case of g(x) = x

Now we consider the case of g(x) = x and obtain some useful insights. Define

As =
m∑
l=1

a[l] as the sum of the age values of state s. The threshold test in Proposition

4.3.3 is simplified as follows:

Proposition 4.3.4. If the state s = (a[1], . . . , a[m]) satisfies As ≥ (∆̄avg-opt−mE[Y ]),

then we have z?s = 0.

Proof. The proposition follows directly by substituting g(x) = x into the threshold

test in Proposition 4.3.3.

Hence, the only change in Algorithm 4.1 is to replace the threshold test in Step

7 by As ≥ (∆̄avg-opt − mE[Y ]). Let yinf = inf{y ∈ Y : P[Y = y] > 0}, i.e., yinf is

the smallest possible transmission time in Y . As a result of Proposition 4.3.4, we

obtain the following sufficient condition for the optimality of the zero-wait sampler

for minimizing the Ta-AP when g(x) = x:

Theorem 4.3.3. If

yinf ≥
(m− 1)E[Y ]2 + E[Y 2]

(m+ 1)E[Y ]
, (4.3.24)

then the zero-wait sampler is optimal for Problem (4.3.11).

Proof. See Appendix C.6
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From Theorem 4.3.3, it immediately follows that:

Corollary 4.3.3.1. If the transmission times are positive and constant (i.e., Yi =

const > 0 for all i), then the zero-wait sampler is optimal for Problem (4.3.11).

Proof. The corollary follows directly from Theorem 4.3.3 by showing that (4.3.24)

always holds in this case.

Corollary 4.3.3.1 suggests that the designed schedulers in [26,27,29,32–34,62–66]

are indeed optimal in time-slotted systems. However, if there is a variation in the

transmission times, these schedulers alone may not be optimal anymore, and we need

to optimize the sampling times as well.

4.4 Low-complexity Sampler Design via Bellman’s Equation

Approximation

In this section, we try to obtain low-complexity samplers via an approximate analysis

for Bellman’s equation in (4.3.19). The obtained low-complexity samplers in this

section will be shown to have near optimal age performance in our numerical results

in Section 4.5. For a given state s, we denote the next state given z and y by

s′(z, y). We can observe that the transition probability in (4.3.15) depends only on

the distribution of the packet service time which is independent of the system state

and the control action. Hence, the second term in Bellman’s equation in (4.3.19) can

be rewritten as

∑
s′∈S

Pss′(z)h(s′(z, y)) =
∑
y∈Y

P(Y = y)h(s′(z, y)). (4.4.1)
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As a result, Bellman’s equation in (4.3.19) can be rewritten as

λ = min
z

(
C(s, z)+

∑
y∈Y

P(Y = y)(h(s′(z, y))−h(s))

)
. (4.4.2)

Although h(s) is discrete, we can interpolate the value of h(s) between the discrete

values so that it is differentiable by following the same approach in [72] and [73]. Let

s = (a[1], . . . , a[m]), then using the first order Taylor approximation around a state

v = (av[1], . . . , a
v
[m]) (some fixed state), we get

h(s) ≈ h(v) +
m∑
l=1

(a[l] − av[l])
∂h(v)

∂a[l]

. (4.4.3)

Again, we use the first order Taylor approximation around the state v, together with

the state evolution in (4.3.13), to get

h(s′(z, y)) ≈ h(v) + (y − av[m])
∂h(v)

∂a[m]

+
m−1∑
l=1

(a[l+1] − av[l] + z + y)
∂h(v)

∂a[l]

. (4.4.4)

From (4.4.3) and (4.4.4), we get

h(s′(z, y))− h(s) ≈ (y − a[m])
∂h(v)

∂a[m]

+
m−1∑
l=1

(a[l+1] − a[l] + z + y)
∂h(v)

∂a[l]

. (4.4.5)

This implies that

∑
y∈Y

P(Y = y)(h(s′(z, y))− h(s)) ≈(E[Y ]− a[m])
∂h(v)

∂a[m]

+

m−1∑
l=1

(a[l+1] − a[l] + z + E[Y ])
∂h(v)

∂a[l]

.

(4.4.6)
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Using (4.4.2) with (4.4.6), we can get the following approximated Bellman’s equation:

λ ≈ min
z

(
C(s, z)+(E[Y ]−a[m])

∂h(v)

∂a[m]

+
m−1∑
l=1

(a[l+1]−a[l]+z+E[Y ])
∂h(v)

∂a[l]

)
. (4.4.7)

By following the same steps as in Appendix C.5 to get the optimal z that minimizes

the objective function in (4.4.7), we get the following condition: The optimal z, for

a given state s, must satisfy

EY

[
m∑
l=1

g(a[l] + t+ Y )

]
− ∆̄avg-opt +

m−1∑
l=1

∂h(v)

∂a[l]

≥ 0 (4.4.8)

for all t > z, and

EY

[
m∑
l=1

g(a[l] + t+ Y )

]
− ∆̄avg-opt +

m−1∑
l=1

∂h(v)

∂a[l]

≤ 0 (4.4.9)

for all t < z. The smallest z that satisfies (4.4.8)-(4.4.9) is

ẑ?s = inf

{
t ≥ 0 : EY

[
m∑
l=1

g(a[l] + t+ Y )

]
≥ ∆̄avg-opt −

m−1∑
l=1

∂h(v)

∂a[l]

}
, (4.4.10)

where ẑ∗s is the optimal solution of the approximated Bellman’s equation for state s.

Note that the term
m−1∑
i=1

∂h(v)

∂a[i]

is constant. Hence, (4.4.10) can be rewritten as

ẑ?s = inf

{
t ≥ 0 : EY

[
m∑
l=1

g(a[l] + t+ Y )

]
≥ T

}
. (4.4.11)

This simple threshold sampler can approximate the optimal sampler for the original

Bellman’s equation in (4.3.19). The optimal threshold (T ) in (4.4.11) can be obtained

using a golden-section method [74]. Moreover, for a given state s and the threshold
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(T ), (4.4.11) can be solved using the bisection method or any other one-dimensional

search method.

Low-complexity Water-filling Sampler: Consider the case that g(x) = x, the

solution in (4.4.11) can be further simplified. Substituting g(x) = x into (4.4.10),

where the equality holds in this case, we get the following condition: The optimal z

in this case, for a given state s, must satisfy

As − ∆̄avg-opt +mz +mE[Y ] +
m−1∑
l=1

∂h(v)

∂a[l]

= 0, (4.4.12)

where As is the sum of the age values of state s. Rearranging (4.4.12), we get

ẑ∗s =

∆̄avg-opt −mE[Y ]−∑m−1
l=1

∂h(v)
∂a[l]

m
− As
m

+

. (4.4.13)

By observing that the term
m−1∑
i=1

∂h(v)

∂a[i]

is constant, (4.4.13) can be rewritten as

ẑ∗s =

[
T − As

m

]+

, (4.4.14)

The solution in (4.4.14) is in the form of the water-filling solution as we compare

a fixed threshold (T ) with the average age of a state s. The solution in (4.4.14)

suggests that this simple water-filling sampler can approximate the optimal solution

of the original Bellman’s equation in (4.3.19) when g(x) = x. Similar to the general

case, the optimal threshold (T ) in (4.4.14) can be obtained using a golden-section

method. We evaluate the performance of the approximated samplers in the next

section.
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Figure 4.3: Ta-APD versus the probability p for an update system with m = 3
sources, where g(x) = x.

4.5 Numerical Results

We present numerical results to evaluate our proposed solutions. We consider an

information update system with m = 3 sources. We use “RAND” to represent a

random scheduler, where sources are chosen to be served with equal probability. By

“Constant-wait”, we refer to the sampler that imposes a constant waiting time after

each delivery with Zi = 0.3E[Y ],∼ ∀i. Moreover, we use “Threshold” and “Water-

filling” to denote the proposed samplers in (4.4.11) and (4.4.14), respectively.

We set the transmission times to be either 0 or 3 with probability p and 1 − p,

respectively. Fig. 4.3 illustrates the Ta-APD versus the probability p, where we have

g(x) = x. As we can observe, with fixing the sampler to the zero-wait one, the MAF
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Figure 4.4: Ta-AP versus the probability p for an update system with m = 3 sources,
where g(x) = e0.1x − 1.

scheduler provides a lower Ta-APD than that of the RAND scheduler. Moreover, with

fixing the scheduling policy to the MAF scheduler, the zero-wait sampler provides a

lower Ta-APD compared to the constant-wait sampler. These observations agree

with Theorem 4.3.1. However, as we will see later, zero-wait sampler does not always

minimize the Ta-AP.

We now evaluate the performance of our proposed solutions for minimizing the

Ta-AP. We set the transmission times to be either 0 or 3 with probability p and 1−p,

respectively. Figs. 4.4, 4.5, and 4.6 illustrate the Ta-AP versus the probability p,

where we set the age-penalty function g(x) to be e0.1x − 1, x0.1, and x, respectively.

The range of the probability p is [0.4, 0.99] in Figs. 4.4, 4.5, and 4.6. When p = 1,
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where g(x) = x0.1.

E[Y ] = E[Y 2] = 0 and hence the Ta-AP of the zero-wait sampler (for any scheduler)

at p = 1 is undefined. Therefore, the point p = 1 is not plotted in Figs. 4.4, 4.5, and

4.6. For the zero-wait sampler, we find that the MAF scheduler provides a lower Ta-

AP than that of the RAND scheduler. This agrees with Proposition 4.3.1. Moreover,

when the scheduling policy is fixed to the MAF scheduler, we find that the Ta-AP

resulting from the RVI-RC sampler is lower than those resulting from the zero-wait

sampler and the constant-wait sampler. This observation suggests the following: i)

The zero-wait sampler does not necessarily minimize the Ta-AP, ii) optimizing the

scheduling policy only is not enough to minimize the Ta-AP, but we have to optimize

both the scheduling policy and the sampling policy together to minimize the Ta-AP.

In addition, as we can observe, the Ta-AP resulting from the threshold sampler in

Figs. 4.4 and 4.5, and the water-filling sampler in Fig. 4.6 almost coincides with the

Ta-AP resulting from the RVI-RC sampler.

We then set the transmission times to be either 0 or Ymax with probability 0.9 and
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Figure 4.6: Ta-AP versus the probability p for an update system with m = 3 sources,
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0.1, respectively. We vary the maximum transmission time Ymax and plot the Ta-AP

in Figs. 4.7, 4.8, and 4.9, where g(x) is set to be e0.1x − 1, x0.1, and x, respectively.

The scheduling policy is fixed to the MAF scheduler in all plotted curves. We can

observe in all figures that the Ta-AP resulting from the RVI-RC sampler is lower than

those resulting from the zero-wait sampler and the constant-wait sampler, and the

gap between them increases as the variability (variance) of the transmission times

increases. This suggests that when the transmission times have a big variation, we

have to optimize the scheduler and the sampler together to minimize the Ta-AP. We

also can observe that the Ta-AP of the threshold sampler in Figs. 4.7 and 4.8, and the

water-filling sampler in Fig. 4.9 almost coincides with that of the RVI-RC sampler.
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Figure 4.7: Ta-AP versus the maximum service time Ymax for an update system with
m = 3 sources, where g(x) = e0.1x − 1.

Finally, we consider a larger scale update system with m = 10. We model the

transmission time as a discrete Markov chain with a probability mass function P[Yi =

1] = 0.9 and P[Yi = 30] = 0.1, and a transition matrix

8
9

+ σ
9

1− 8
9
− σ

9

1− σ σ

 . (4.5.1)

Fig. 4.10 illustrates the Ta-AP versus the transition matrix parameter σ, where

g(x) = x. As we can observe, the (MAF, water-filling) policy provides the lowest

Ta-AP compared to all plotted policies. Also, when σ = 1, the transmission time

reduces to be a constant time. We can observe that, when the scheduling policy is
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Figure 4.8: Ta-AP versus the maximum service time Ymax for an update system with
m = 3 sources, where g(x) = x0.1.

the MAF, the Ta-APs achieved by the zero-wait and water-filling samplers are equal.

This agrees with Corollary 4.3.3.1.

4.6 Conclusion

In this chapter, we studied the problem of finding the optimal decision policy that

controls the packet generation times and transmission order of the sources to minimize

the Ta-APD and Ta-AP in a multi-source information update system. We showed

that the MAF scheduler and the zero-wait sampler are jointly optimal for minimizing

the Ta-APD. Moreover, we showed that the MAF scheduler and the RVI-RC sam-

pler, which results from reducing the computation complexity of the RVI algorithm,
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are jointly optimal for minimizing the Ta-AP. Finally, we devised a low-complexity

threshold sampler via an approximate analysis of Bellman’s equation. This threshold

sampler is further simplified to a simple water-filling sampler in the special case of

linear age-penalty function. The numerical results showed that the performance of

these approximated samplers is almost the same as that of the RVI-RC sampler.
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CHAPTER 5

LOW-POWER STATUS UPDATES VIA SLEEP-WAKE

SCHEDULING

5.1 Introduction

In this chapter, we consider the problem of optimizing the freshness of status updates

that are sent from a large number of low-power source nodes to a common access

point. The source nodes utilize carrier sensing to reduce collisions and adopt an

asynchronized sleep-wake scheduling strategy to achieve an extended battery lifetime

(e.g., 10-15 years). We use age of information (AoI) to measure the freshness of status

updates, and design the sleep-wake parameters for minimizing the weighted-sum peak

AoI of the sources, subject to per-source battery lifetime constraints.

Designing scheduling policies for minimizing AoI in multi-source networks has

recently received increasing attention, e.g., [26–35]. Of particular interest are those

pertaining to designing distributed scheduling policies [26–31]. The work in [26] con-

sidered a slotted ALOHA-like random access scheme in which each node accesses the

channel with a certain access probability. These probabilities were then optimized

in order to minimize the AoI. However, the model of [26] allows multiple interfering

users to gain channel access simultaneously, and hence allows for the collision. The

authors in [27] generalized the work in [26] to a wireless network in which the inter-

ference is described by a general interference model. The Round Robin or Maximum
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Age First policy was shown to be (near) age-optimal for different system models,

e.g., in [28–31, 36]. The aforementioned studies focused exclusively on minimizing

the AoI and overlooked the need to reduce power consumption. This motivates us to

derive scheduling algorithms that achieve a trade-off between the competing tasks of

minimizing AoI and reducing the energy consumption in multi-source networks.

Carrier sensing distributed medium access mechanisms, e.g., Carrier Sense Mul-

tiple Access (CSMA), have been widely adopted in many wireless networks; see [75]

for a recent survey. There has been an interest in designing CSMA-based scheduling

schemes that optimize the AoI [76, 77]. In [76], the authors designed an idealized

CSMA (similar to that in [78]) to minimize the AoI with an exponentially distributed

packet transmission times. In [77], the authors designed a slotted Carrier Sense Mul-

tiple Access/Collision-Avoidance (CSMA/CA) (similar to that in [79]) to minimize

the broadcast age of information, which is defined, from a sender’s perspective, as

the age of the freshest successfully broadcasted packet. Contrary to these works, the

sleep-wake scheduling scheme proposed by us emphasizes on reducing the cumula-

tive energy consumption in multi-source networks in addition to minimizing the total

weighted AoI. Moreover, in our study, transmission times are not necessarily random

variables with some commonly used parametric density [76], or deterministic [77],

but can be any generally distributed random variables with finite mean. Our key

contributions in this chapter are summarized as follows:

• In our model, sources utilize an asynchronized sleep-wake scheduling strategy

to achieve an extended battery lifetime. We aim at designing the mean sleeping

period of each source, which controls its channel access probability, in order

to minimize the total weighted average peak age of the sources while simulta-

neously meeting per-source battery lifetime constraints. Although, the afore-

mentioned optimization problem is non-convex, we devise a solution. In the
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regime for which the sensing time is negligible compared to the packet transmis-

sion time, the proposed solution is near-optimal (Theorem 5.3.1 and Theorem

5.3.2). Our near-optimality results hold for general distributions of the packet

transmission times.

• We propose an algorithm that can be easily implemented in many practical

control systems. In particular, our solution requires the knowledge of only two

variables in its implementation. These two variables are functions of the network

parameters. An implementation procedure to compute these two variables is

provided.

• As the ratio between the sensing time and the packet transmission time reduces

to zero, we show that the age performance of our proposed algorithm is as good

as that of the optimal synchronized scheduler (e.g., for time-slotted systems).

5.2 Model and Formulation

This section describes the sleep-wake scheduling model under consideration as well

as the energy model.

5.2.1 Network Model and Sleep-wake Scheduling

Consider a wireless network composed of M source nodes, each observing a time-

varying signal. The sources generate update packets of the observed signals and

send the packets to an access point (AP) over a shared spectrum band. If multiple

sources transmit packets simultaneously, a packet collision occurs and these packet

transmissions fail.

The sources use a sleep-wake scheduling scheme to access the shared spectrum,

where each source switches between a sleep mode and a transmission mode over
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Figure 5.1: Illustration of the sleep-wake cycles. In Cycles 1-2, we have successful
packet transmissions. Let S1 and S2 represent the remaining sleeping times of Sources
1 and 2, respectively, after a successful transmission. Then, a collision occurs in Cycle
3 because the difference between wake-up times of Sources 1 and 2 is less than ts,
i.e., S1 − S2 < ts. As we can observe, each cycle consists of an idle period before a
transmission/collision event.

time, according the following rules: Upon waking from the sleep mode, a source first

performs carrier sensing to check whether the channel is occupied by another source,

as illustrated in Figure 5.1. The time duration of carrier sensing is denoted as ts,

which is sufficiently long to ensure a high sensing accuracy. If the channel is sensed

to be busy, the source enters the sleep mode directly; otherwise, the source generates

an update packet and sends it over the channel. The source hereafter goes back to

the sleep mode.

In the above sleep-wake scheduling scheme, if two sources start transmitting within

a time duration of ts, then their sensing periods are overlapping and they may not

be able to detect the transmission of each other. In order to obtain a robust system

design, we consider that they cannot detect each other’s transmission and a collision

occurs. Upon completing a packet transmission, sources switch to the reception

mode and wait for an acknowledgement (ACK) that indicates the outcome of their
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transmissions (successful transmission or collision). They then go back to the sleep

mode.

A sleep-wake cycle, or simply a cycle, is defined as the time period between the

ends of two successive packet transmission or collision events. Each cycle consists of

an idle period and a transmission/collision period1. As depicted in Figure 5.1, the

packet transmissions in Cycles 1-2 are successful, but a collision occurs in Cycle 3

because Sources 1 and 2 wake up within a short duration ts.

We use Tj, j ∈ {1, 2, . . .} to represent the time incurred by the j-th packet trans-

mission or collision event, which includes transmission/collision time and feedback

delays. For example, in Figure 5.1, T1 is the time duration of the packet transmis-

sion event by Source 1, while T3 is the time duration of the collision event between

Source 1 and 2. We assume that the Tj’s are i.i.d. for all transmission and colli-

sion events, with a general distribution. This assumption does not hold in practice.

Nonetheless, NS-3 simulation results in Section 5.5.2 show that this assumption has

a negligible impact on the performance of the proposed algorithm. When there is no

confusion, we omit the subscript j of Tj for simplicity, and use T to denote the trans-

mission/collision time, which is assumed to have a finite mean, i.e., E[T ] <∞. The

sleep periods of source l are exponentially distributed random variables with mean

value E[T ]/rl and are independent across sources and i.i.d. across time. Notice that,

the sleep period parameter rl > 0 has been normalized by the mean transmission time

E[T ]. Let r = (r1, . . . , rM) be the vector comprising of these sleep period parameters.

1To make the sleep-wake scheduling problem solvable analytically, we make several approximations.
For example, in 802.11b frame structure, there exists a Short Inter-frame Space (SIFS) between
the packet transmission frame and the ACK frame (i.e., the CTS frame). If another source wakes
up during the SIFS, then it may not detect the transmission/ACK frames, leading to unexpected
collisions. In our analytical model, such collision events are omitted. In other words, we suppose
that each cycle must start with an idle period, where all sources are in the sleep mode, followed
by a transmission/collision period. NS-3 simulation results will be provided in Section 5.5.2 to
show that these approximations have a negligible impact on the age performance of our solution.
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5.2.2 Total Weighted Average Peak Age

Let Ul(t) represent the generation time of the most recently delivered packet from

source l by time t. Then, the age of information, or simply the age, of source l is

defined as [4]

∆l(t) = t− Ul(t), (5.2.1)

where ∆l(t) is right-continuous. As shown in Figure 5.2, the age increases linearly

with t, but is reset to a smaller value upon the delivery of a fresher packet. Observe

that a small age ∆l(t) indicates that the AP has a fresh status update packet that

was generated at source l recently. Hence, it is desirable to keep ∆l(t) small for all

the sources.

t

∆l(t)

tl,1 t′l,1 t′l,2tl,2 tl,3 t′l,3

Il,3

∆peak
l,1

∆peak
l,2

∆peak
l,3

T2l

Figure 5.2: The age ∆l(t) of source l.
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Let us introduce some notations and definitions. Let il be the index of the i-

th delivered packet from source l. We use tl,i and t′l,i to denote the generation and

delivery times, respectively, of the i-th delivered packet from source l, such that

t′l,i − tl,i = Til .
2 Let Il,i = t′l,i − t′l,i−1 denote the i-th inter-departure time of source l,

which satisfies E[Il,i] = E[Il] for all i. The i-th peak age of source l, denoted by ∆peak
l,i ,

is defined as the AoI of source l right before the i-th packet delivery from source l.

As shown in Figure 5.2, i.e., we have

∆peak
l,i = ∆l(t

′−
l,i ), (5.2.2)

where t′−l,i is the time instant just before the delivery time t′l,i. One can observe from

Figure 5.2 that the peak age is [7]

∆peak
l,i = T(i−1)l + Il,i. (5.2.3)

Hence, the average peak age of source l is given by

E[∆peak
l ] = E[T ] + E[Il], (5.2.4)

where we omit the subscripts i and il as Il,i’s and Til ’s are i.i.d. across time. The

average peak age metric provides information regarding the worst case age, with the

advantage of having a simpler formulation than the average age metric [7]. Thus, it

is suitable for applications that have an upper bound restriction on AoI.

We now derive an expression for E[Il]. Let αl be the probability of the event that

the source l obtains channel access and successfully transmits a packet within a sleep-

wake cycle. As shown in [39], one can utilize the memoryless property of exponential

2A packet of a particular source is deemed delivered when the source receives the feedback.
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distributed sleep periods to get

αl =
rle

rl
ts

E[T ]

e
∑M

i=1 ri
ts

E[T ]
∑M

i=1 ri
. (5.2.5)

To keep the chapter self-contained, we provide the derivation of (5.2.5) in Appendix

D.1. Let Nl denote the total number of sleep-wake cycles between two subsequent

successful transmissions of source l. Because the probability that source l obtains

channel access and transmits successfully in a given cycle is αl, Nl is geometrically

distributed with mean
1

αl
. By this and (5.2.5), we get

E[Nl] =
e
∑M

i=1 ri
ts

E[T ]
∑M

i=1 ri

rle
rl

ts
E[T ]

. (5.2.6)

An inter-departure time duration of source l is composed of Nl consecutive sleep-wake

cycles. With a slight abuse of notation, let cyclel,k denote the duration of the k-th

sleep-wake cycle after a successful transmission of source l. Hence,

E[Il] = E

[
Nl∑
k=1

cyclel,k

]
. (5.2.7)

Note that cyclel,k’s are i.i.d. across time. Moreover, since the event (Nl = n)

depends only on the history, Nl is a stopping time [80]. Hence, it follows from Wald’s

identity [81] that

E[Il] = E[Nl]E[cycle], (5.2.8)

where E[cycle] is the mean duration of a sleep-wake cycle. Each cycle consists of an

idle period and a transmission/collision time, see Figure 5.1. Using the memoryless

property of exponential distribution, we observe that the idle period is the minimum
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of i.i.d. exponential random variables. Thus, it can be shown that the idle period in

each cycle is exponentially distributed with mean value equal to E[T ]/
M∑
i=1

ri, where

E[T ]/rl is the mean of sleep periods of source l. Hence, we have

E[cycle] =
E[T ]∑M
i=1 ri

+ E[T ]. (5.2.9)

Substituting the expressions for E[Nl] and E[cycle] from (5.2.6) and (5.2.9), respec-

tively, into (5.2.8), and (5.2.4), we obtain

E[∆peak
l ] =

e−rl
ts

E[T ]E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(
1 +

M∑
i=1

ri

)
+ E[T ]. (5.2.10)

In this chapter, we aim to minimize the total weighted average peak age, which is

given by

M∑
l=1

wlE[∆peak
l ] =

M∑
l=1

wle
−rl ts

E[T ]E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(
1+

M∑
i=1

ri

)
+

M∑
l=1

wlE[T ], (5.2.11)

where wl > 0 is the weight of source l. These weights enable us to prioritize the

sources according to their relative importance [27,33].

5.2.3 Energy Constraint

Each source is equipped with a battery that can possibly be recharged by a renew-

able energy source, such as solar. In typical wireless sensor networks, sources have a

much smaller power consumption in the sleep mode than in the transmission mode.

For example, if the sensor is equipped with the radio unit TR 1000 from RF Mono-

lithic [82, 83], the power consumption in the sleep mode is 15 µW while the power

consumption in the transmission mode is 24.75 mW. Motivated by this, we assume

that the energy dissipation during the sleep mode is negligible as compared to the
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power consumption in the transmission mode. Moreover, we assume that the sens-

ing time duration ts is much shorter than the transmission time and hence neglect

the energy consumed during channel sensing. In Section 5.5.2, we show that these

assumptions have a negligible effect on the performance of the proposed sleep-wake

scheduling algorithm. Under these assumptions, the amount of energy used by a

source is equal to the amount of energy consumed in packet transmissions and feed-

back receptions.

The energy constraint on source l is described by the following parameters: a)

Initial battery level Bl, which denotes the initial amount of energy stored in the

battery, b) Target lifetime Dl, which is the minimum time-duration that the source l

should be active before its battery is depleted, c) Average energy replenishment rate3

Rl, which is the rate at which the battery of source l receives energy from its energy

source. If source l does not have access to an energy source, then we have Rl = 0.

Define Pmax,l for source l as

Pmax,l =
Bl

Dl

+Rl, ∀l, (5.2.12)

where Pmax,l is the maximum allowable power consumption of source l such that the

target lifetime Dl is met.

For the sleep-wake scheduling mechanism under consideration, it has been shown

in [39] that the fraction of time in which source l is in the transmission mode is given

by

σl =
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl ts
E[T ]∑M

i=1 ri + 1
. (5.2.13)

3It is assumed that Rl is either known, or it can be estimated accurately.
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For the sake of completeness, the derivation of σl is provided in Appendix D.2. Let

Pavg,l denote the average power consumption of source l in the transmission mode.

Then the actual power consumption of source l, denoted by Pact,l, is given by

Pact,l = σlPavg,l, ∀l. (5.2.14)

For source l to achieve its target lifetime Dl, we must have

Pact,l ≤ Pmax,l, ∀l. (5.2.15)

Define bl , Pmax,l/Pavg,l as the target power efficiency of source l. By using

(5.2.13)-(5.2.14), the constraints in (5.2.15) can be rewritten as

σl =
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl ts
E[T ]∑M

i=1 ri + 1
≤ bl, ∀l. (5.2.16)

Because σl ≤ 1, if bl ≥ 1, then constraint (5.2.16) is always satisfied.

5.2.4 Problem Formulation

Our goal is to find the optimal sleep-wake parameters r that minimizes the total

weighted average peak age in (5.2.11), while simultaneously ensuring the energy con-

straints (5.2.16) for all sources. Dividing the objective function (5.2.11) by E[T ], we

obtain the following optimization problem: (Problem 1)

∆̄w-peak
opt , min

rl>0

M∑
l=1

wle
−rl ts

E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(
1 +

M∑
i=1

ri

)
+

M∑
l=1

wl

s.t.
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl ts
E[T ]∑M

i=1 ri + 1
≤ bl,∀l,

(5.2.17)
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where ∆̄w-peak
opt is the optimal objective value of Problem 1. We will use ∆̄w-peak(r)

to denote the objective value for given sleeping period parameters r. One can notice

from (5.2.17) that the optimal sleeping period parameters depend on the sensing time

ts and the mean transmission time E[T ] only through their ratio ts/E[T ]. This insight

plays a crucial role in subsequent analysis of Problem 1.

5.3 Main Results

When ts = 0, although Problem 1 is non-convex, it can be solved by defining an

auxiliary variable y =
M∑
i=1

ri + 1 and applying a nested optimization algorithm: In

the inner layer, we optimize rl for a given y. Then, we write the optimized objective

as a function of y. In the outer layer, we optimize y. It happens that the inner

and outer layer optimization problems are both convex. The details can be found in

Section 5.3.3.

However, this method does not work for positive sensing times ts > 0 and Problem

1 becomes non-convex. Hence, it is challenging to optimize r for positive ts. In this

section, we develop a low-complexity closed-form solution which is shown to be near-

optimal if the sensing time ts is short as compared with the mean transmission time

E[T ]. Our solution is developed by considering the following two regimes separately:

(i) Energy-adequate regime denoted as
M∑
i=1

bi ≥ 1, where the condition
M∑
i=1

bi ≥ 1

means that the sources have a sufficient amount of total energy to ensure that at least

one source is awake at any time, (ii) Energy-scarce regime represented by
M∑
i=1

bi < 1,

which indicates that the sources have to sleep for some time to meet the sources’

energy constraints.
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5.3.1 Energy-adequate Regime

In the energy-adequate regime
M∑
i=1

bi ≥ 1, our solution r? := (r?1, . . . , r
?
M) is given as

r?l = min{bl, β?
√
wl}x?,∀l, (5.3.1)

where x? and β? are expressed in terms of the parameters {bi, wi}Mi=1, ts/E[T ] as

follows:

x? =
−1

2
+

√
1

4
+

E[T ]

ts
, (5.3.2)

and β? is the unique root of

M∑
i=1

min{bi, β?
√
wi} = 1. (5.3.3)

The performance of the above solution r? is manifested in the following theorem:

Theorem 5.3.1 (Near-optimality). If
M∑
i=1

bi ≥ 1, then the solution r? (5.3.1) -

(5.3.3) is near-optimal for solving (5.2.17) when ts/E[T ] is sufficiently small, in the

following sense:4

∣∣∣∆̄w-peak(r?)− ∆̄w-peak
opt

∣∣∣ ≤ 2

√
ts

E[T ]
C1+o

(√
ts

E[T ]

)
, (5.3.4)

where

C1 =
M∑
i=1

wi
min{bi, β?

√
wi}

. (5.3.5)

4We use the standard order notation: f(h) = O(g(h)) means z1 ≤ lim
h→0

f(h)/g(h) ≤ z2 for some

constants z1 > 0 and z2 > 0, while f(h) = o(g(h)) means lim
h→0

f(h)/g(h) = 0.
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Proof. See Section 5.4.1.

From Theorem 5.3.1, we can obtain the following corollary:

Corollary 5.3.1.1 (Asymptotic optimality). If
M∑
i=1

bi ≥ 1, then the solution r?

(5.3.1) - (5.3.3) is asymptotically optimal for Problem 1 in (5.2.17) as ts/E[T ] → 0,

i.e.,

lim
ts

E[T ]
→0

∣∣∣∆̄w-peak(r?)− ∆̄w-peak
opt

∣∣∣ = 0. (5.3.6)

Moreover, the asymptotic optimal objective value of Problem 1 as ts/E[T ]→ 0 is5

lim
ts

E[T ]
→0

∆̄w-peak
opt =

M∑
i=1

[
wi

min{bi, β?
√
wi}

+ wi

]
. (5.3.7)

Proof. See Section 5.4.1.

5.3.2 Energy-scarce Regime

Now, we present a solution to Problem 1 in the energy-scarce regime
M∑
i=1

bi < 1, and

show it is near-optimal. The solution r? of the energy-scarce regime is again given by

(5.3.1), where x? and β? are

x? =
minl cl

1−∑M
i=1 bi

, β? =
M∑
i=1

1√
wi
, (5.3.8)

5Observe that, according to (5.3.7), the asymptotic optimal average peak age of source l is
(1/min{bl, β?√wl} + 1) which decreases with the weight wl. The weighted average peak age
is wl(1/min{bl, β?√wl}+ 1) which increases with wl. This phenomenon is reasonable and agrees
with our expectation.

115



and

cl =
2bl

(
1−∑M

i=1 bi

)2

Ql

, (5.3.9)

Ql =bl

(
1−

M∑
i=1

bi

)2

+

√√√√b2
l

(
1−

M∑
i=1

bi

)4

+ 4b2
l

(
1−

M∑
i=1

bi

)2( M∑
i=1

bi − bl
)

ts
E[T ]

.

(5.3.10)

The near-optimality of the proposed solution (i.e., r?) in the energy scarce regime is

explained in the following theorem:

Theorem 5.3.2 (Near-optimality). If
M∑
i=1

bi < 1, then the solution r? (5.3.1) and

(5.3.8) - (5.3.10) is near-optimal for solving (5.2.17) when ts/E[T ] is sufficiently small,

in the following sense:

∣∣∣∆̄w-peak(r?)− ∆̄w-peak
opt

∣∣∣ ≤ ts
E[T ]

C2+o

(
ts

E[T ]

)
, (5.3.11)

where

C2 =
M∑
l=1

wl

bl(1−
∑M

i=1 bi)

(
3

M∑
i=1

bi −min
j
bj

)
. (5.3.12)

Proof. See Section 5.4.2.

We obtain the following corollary from Theorem 5.3.2.

Corollary 5.3.2.1 (Asymptotic optimality). If
M∑
i=1

bi < 1, then (5.3.6) holds for

the solution r? (5.3.1) and (5.3.8) - (5.3.10). In other words, our proposed solution
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is asymptotically optimal for Problem 1 in (5.2.17) as ts/E[T ] → 0. Moreover, the

asymptotic optimal objective value of Problem 1 as ts/E[T ]→ 0 is

lim
ts

E[T ]
→0

∆̄w-peak
opt =

M∑
i=1

[
wi

min{bi, β?
√
wi}

+ wi

]

=
M∑
i=1

[
wi
bi

+ wi

]
.

(5.3.13)

Proof. See Section 5.4.2.

Interestingly, the asymptotic optimal objective values of Problem 1 in both regimes,

given by (5.3.7) and (5.3.13), are of an identical expression. However, in the energy-

scarce regime, we can observe that β?, which is defined in (5.3.8), always satisfies

min{bl, β?
√
wl} = bl for all l.

Remark 5.3.2.1. We would like to point out that the condition ts/E[T ] ≈ 0 is

satisfied in many practical applications. For instance, in a wireless sensor network

that is equipped with low-power UHF transceivers [84], the carrier sensing time is

ts = 40 µs, while the transmission time is around 5 ms. Hence, ts/E[T ] ≈ 0.008.

5.3.3 Discussion

In this subsection, we present a simple implementation of our proposed solution,

discuss the nested convex optimization method that can be used to solve Problem

1 when ts = 0, provide some useful insights about our proposed solution at the

limit point ts/E[T ] → 0, and provide a comparison with synchronized schedulers

performance.
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Implementation of Sleep-wake Scheduling

We devise a simple algorithm to compute our solution r?, which is provided in Al-

gorithm 5.1. Notice that r? has the same expression (5.3.1) in the energy-adequate

and energy-scarce regimes. We exploit this fact to simplify the implementation of

sleep-wake scheduling. In particular, the sources report wl and bl to the AP, which

computes β? and x?, and broadcasts them back to the sources. After receiving β? and

x?, source l computes r?l based on (5.3.1). In practical wireless sensor networks, e.g.,

smart city networks and industrial control sensor networks [85,86], the sensors report

their measurements via an access point (AP). Hence, it is reasonable to employ the

AP in implementing the sleep-wake scheduler.

Algorithm 5.1: Implementation of sleep-wake scheduler.

1 The AP gathers the parameters {(wi, bi)Mi=1, ts/E[T ]};

2 if
M∑
i=1

bi ≥ 1 then

3 The AP computes x?, β? from (5.3.2) and (5.3.3);
4 else
5 The AP computes x?, β? from (5.3.8) - (5.3.10);

6 The AP broadcasts x?, β? to all the M sources;
7 Upon hearing x?, β?, source l compute r?l from (5.3.1);

In the above implementation procedure, the sources do not need to know if the

overall network is in the energy-adequate or energy-scarce regime; only the AP knows

about it. Further, the amount of downlink signaling overhead is small, because only

two parameters β? and x? are broadcasted to the sources. Moreover, when the node

density is high, the scalability of the network is a crucial concern and reporting wl

and bl for each source is impractical. In this case, the AP can compute β? and x? by
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estimating the distribution of wl and bl, as well as the number of source nodes, which

reduces the uplink signaling overhead. Finally, when sources are not in the hearing

range of each other, hidden/exposed source problems arise. These problems are

challenging to solve analytically. However, this can be solved by designing practical

heuristic solutions based on the theoretical solutions. One design method was given

in [39].

The Nested Convex Optimization Method for ts = 0

If ts = 0, Problem 1 reduces to the following optimization problem:

∆̄w-peak
opt , min

rl>0

M∑
l=1

wl

(
1 +

∑M
i=1 ri

)
rl

+
M∑
l=1

wl

s.t. rl ≤ bl(
M∑
i=1

ri + 1),∀l.
(5.3.14)

Observe that the optimization problem in (5.3.14) is non-convex. To bypass this

difficulty, we use an auxiliary variable y =
M∑
i=1

ri + 1. Hence, we obtain the following

optimization problem for given y:

min
ri>0

M∑
i=1

[
wiy

ri
+ wi

]
(5.3.15)

s.t. rl ≤ bly,∀l, (5.3.16)

M∑
i=1

ri + 1 = y. (5.3.17)

The objective function in (5.3.15) is a convex function. Moreover, the constraints

in (5.3.16) and (5.3.17) are affine. Hence, Problem (5.3.15) is convex. Exploiting

(5.3.15), we solve (5.3.14) by using a two-layer nested convex optimization method:

In the inner layer, we optimize r for given y. After solving r, we will optimize y in
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the outer layer. This technique is used in the proof of Lemma 5.4.3 in Appendix D.4,

where the reader can find the detailed solution.

Asymptotic Behavior of The Optimal Solution

In the energy-adequate regime, the sleeping period parameter r?l of source l tends to

infinity as ts/E[T ] → 0, while the ratio r?l /r
?
i between source l and source i is kept

as a constant for all l and i. Hence, the sleeping time of the sources tends to zero.

Meanwhile, since ts/E[T ] → 0, the sensing time becomes negligible. The channel

access probability of source l in this limit can be computed as

lim
ts

E[T ]
→0
σ?l = min{bl, β?

√
wl}. (5.3.18)

Because of (5.3.3), lim
ts/E[T ]→0

M∑
i=1

σ?i = 1. Hence, the channel is occupied by the sources

at all time, without any time overhead spent on sensing and sleeping.

On the other hand, in the energy-scarce regime, the sleeping period parameter r?l

of source l converges to a constant value when ts/E[T ]→ 0, i.e., we have

lim
ts

E[T ]
→0
r?l =

bl

1−∑M
i=1 bi

. (5.3.19)

Since the cumulative energy is scarce, the sources necessarily need to stay idle for

some time in order to meet their target lifetime. Hence, sleep periods are imposed

for achieving the optimal trade-off between minimizing AoI and energy consumption.

Comparison with Synchronized Schedulers Performance

We would like to show that the performance of our proposed algorithm is asymp-

totically no worse than any synchronized (e.g., centralized) scheduler. Consider a
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scheduler in which the fraction of time during which source l transmits update pack-

ets is equal to al, where we have a = {al}Ml=1 and
M∑
i=1

ai ≤ 1. In this scheduler, only

one source is allowed to access the channel at a time, i.e., there is no collision (this

can be achieved either by a deterministic scheduler or by assigning a channel access

probability al for each source l after each packet transmission)6. We can perform an

analysis similar to that of Section 5.2.2, and show that the total weighted average

peak age of a synchronized scheduler is given by

M∑
i=1

[
wiE[T ]

ai
+ wi E[T ]

]
. (5.3.20)

Hence, the problem of designing an optimal synchronized scheduler that minimizes

the total weighted average peak age under energy constraints can be cast as

∆̄w-peak
opt-s , min

ai>0

M∑
i=1

[
wi
ai

+ wi

]
(5.3.21)

s.t. al ≤ bl, ∀l, (5.3.22)

M∑
i=1

ai ≤ 1, (5.3.23)

where we have divided the objective function by E[T ]. Next, we show that the

performance of our proposed algorithm converges to that of the optimal synchronized

scheduler when ts/E[T ]→ 0.

6Note that if

M∑
i=1

ai < 1, then it is possible that the scheduler decides not to serve any source after

the transmission of some packet. In this case, the scheduler waits for a random time that has the
same distribution as the transmission time T before deciding to serve another source.
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Corollary 5.3.2.2. For any (wi, bi)
M
i=1, we have

lim
ts

E[T ]
→0

∆̄w-peak
opt = ∆̄w-peak

opt-s . (5.3.24)

Proof. The proof is provided in Appendix D.7 which is listed at the end as it requires

some results from precedent appendixes.

Synchronized schedulers were recently studied in [33] for the case without energy

constraints, i.e., bl ≥ 1 for all l. According to Corollary 5.3.2.2, the channel access

probability of the synchronized scheduler in [33] is a special case of our solution

(5.3.18) where bl ≥ 1 for all l.

5.4 Proofs of the Main Results

In this section, we provide the proofs of Theorem 5.3.1, Corollary 5.3.1.1, Theorem

5.3.2, and Corollary 5.3.2.1.

5.4.1 The Proofs of Theorem 5.3.1 and Corollary 5.3.1.1

We prove Theorem 5.3.1 and Corollary 5.3.1.1 in three steps:

Step 1: We show that our solution r? (5.3.1) - (5.3.3) is feasible for Problem 1.

Lemma 5.4.1. If
M∑
i=1

bi ≥ 1, then the solution r? (5.3.1) - (5.3.3) is feasible for

Problem 1.

Proof. See Appendix D.3.

Hence, by substituting this solution r? into the objective function of Problem 1

in (5.2.17), we get an upper bound on the optimal value ∆̄w-peak
opt , which is expressed

in the following lemma:
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Lemma 5.4.2. If
M∑
i=1

bi ≥ 1, then

∆̄w-peak
opt ≤ ∆̄w-peak(r?) ≤

M∑
i=1

[
wie

x? ts
E[T ]
(
1 + 1

x?

)
min{bi, β?

√
wi}

+ wi

]
, (5.4.1)

where x?, β? are defined in (5.3.2), (5.3.3).

Proof. In Lemma 5.4.1, we showed that our proposed solution r? (5.3.1) - (5.3.3) is

feasible for Problem 1. Hence, we substitute this solution into Problem 1 to obtain

the following upper bound:

M∑
i=1

[
wie

x? ts
E[T ]
(
1 + 1

x?

)
e−min{bi,β?√wi}x? ts

E[T ]

min{bi, β?
√
wi}

+ wi

]
. (5.4.2)

Next, we replace e−min{bi,β?√wi}x?(ts/E[T ]) by 1 to derive another upper bound with a

simple expression, which is given by (5.4.1). This completes the proof.

Step 2: We now construct a lower bound on the optimal value of Problem 1.

Suppose that r = (r1, . . . , rM) is a feasible solution to Problem 1, such that rl > 0

and

[1− e−rl
ts

E[T ] ]
∑M

i=1 ri + rle
−rl ts

E[T ]∑M
i=1 ri + 1

≤ bl,∀l. (5.4.3)

Because [1−e−rl(ts/E[T ])]
M∑
i=1

ri+rle
−rl(ts/E[T ]) > rl for all l, r satisfies rl/(

M∑
i=1

ri+1) ≤ bl.

Hence, the following Problem 2 has a larger feasible set than Problem 1: (Problem
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2)

∆̄w-peak
opt,2 , min

rl>0

M∑
l=1

wle
−rl ts

E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(
1 +

M∑
i=1

ri

)
+

M∑
l=1

wl (5.4.4)

s.t. rl ≤ bl

(
M∑
i=1

ri + 1

)
, ∀l, (5.4.5)

where ∆̄w-peak
opt,2 is the optimal value of Problem 2. The optimal objective value of

Problem 2 is a lower bound of that of Problem 1. We note that the constraint set

corresponding to Problem 2 is convex. Thus, this relaxation converts the constraint

set of Problem 1 to a convex one, and hence enables us to obtain a lower bound for

the optimal value of Problem 1, which is expressed in the following lemma:

Lemma 5.4.3. If
M∑
i=1

bi ≥ 1, then

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M∑
i=1

[
wi

min{bi, β?
√
wi}

+ wi

]
, (5.4.6)

where β? is the root of (5.3.3).

Proof. See Appendix D.4.

Step 3: After the upper and lower bounds of ∆̄w-peak
opt were derived in Steps 1-2, we

are ready to analysis their gap. By combining (5.4.1) and (5.4.6), the sub-optimality

gap of the solution r? (5.3.1) - (5.3.3) is upper bounded by

∣∣∣∆̄w-peak(r?)−∆̄w-peak
opt

∣∣∣ ≤ M∑
i=1

wi

(
ex

? ts
E[T ] (1+ 1

x?
)−1

)
min{bi, β?

√
wi}

, (5.4.7)
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where x?, β? are defined in (5.3.2), (5.3.3). Next, we characterize the right-hand-

side (RHS) of (5.4.7) by Taylor expansion. For simplicity, let ε =
ts

E[T ]
. Using the

expression for x? from (5.3.2), we have

x?ε =− ε

2
+

√
ε2

4
+ ε =

ε

ε
2

+
√

ε2

4
+ ε

=
√
ε+ o(

√
ε). (5.4.8)

Moreover,

x? =− 1

2
+

√
1

4
+

1

ε
=

1
ε

1
2

+
√

1
4

+ 1
ε

=
1√
ε

+ o

(
1√
ε

)
. (5.4.9)

Substituting (5.4.8) and (5.4.9) in (5.4.7), we obtain

∣∣∣∆̄w-peak(r?)− ∆̄w-peak
opt

∣∣∣ ≤ M∑
i=1

wi[e
√
ε+o(

√
ε)(1 +

√
ε+ o(

√
ε))− 1]

min{bi, β?
√
wi}

=
M∑
i=1

wi[(1+
√
ε+o(

√
ε))(1+

√
ε+o(

√
ε))−1]

min{bi, β?
√
wi}

= 2
√
ε
M∑
i=1

wi
min{bi, β?

√
wi}

+ o(
√
ε), (5.4.10)

where the second inequality involves the use of Taylor expansion. This proves Theo-

rem 5.3.1.

We can observe that the gap
∣∣∣∆̄w-peak(r?)− ∆̄w-peak

opt

∣∣∣ in the energy-adequate regime

converges to zero at a speed of O(
√
ε), as ε→ 0. Further, both the upper and lower

bounds (5.4.1), (5.4.6), converge to
M∑
i=1

[(wi/min{bi, β?
√
wi}) + wi] as ts/E[T ] → 0.

Thus, this value is the asymptotic optimal objective value of Problem 1. This proves

Corollary 5.3.1.1.
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5.4.2 The Proofs of Theorem 5.3.2 and Corollary 5.3.2.1

Similar to Section 5.4.1, we prove Theorem 5.3.2 and Corollary 5.3.2.1 also in three

steps:

Step 1: We show that the proposed solution r? (5.3.1) and (5.3.8) - (5.3.10) is a

feasible solution for Problem 1.

Lemma 5.4.4. If
M∑
i=1

bi < 1, then the solution r? (5.3.1) and (5.3.8) - (5.3.10) is

feasible for Problem 1.

Proof. See Appendix D.5.

Now, we construct an upper bound on the optimal value of Problem 1 using our

proposed solution as follows:

Lemma 5.4.5. If
M∑
i=1

bi < 1, then

∆̄w-peak
opt ≤ ∆̄w-peak(r?) ≤

M∑
l=1

wl
bl
e
∑M

i=1 bix
? ts
E[T ]

(
1

x?
+

M∑
i=1

bi

)

+
M∑
l=1

wl,

(5.4.11)

where x? is defined in (5.3.8).

Proof. In Lemma 5.4.4, we showed that our proposed solution r? (5.3.1) and (5.3.8)

- (5.3.10) is feasible for Problem 1. Hence, we substitute this solution into Problem

1 to obtain the following upper bound:

M∑
l=1

wle
−blx? ts

E[T ]

bl
e
∑M

i=1 bix
? ts
E[T ]

(
1

x?
+

M∑
i=1

bi

)
+

M∑
l=1

wl. (5.4.12)

Next, we replace e−blx
? ts
E[T ] by 1 to derive another upper bound with a simple expres-

sion, which is given by (5.4.11). This completes the proof.
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Step 2: Similar to the proof in Section 5.4.1, we use the relaxed problem, Problem

2, to construct a lower bound as follows:

Lemma 5.4.6. If
M∑
i=1

bi < 1, then

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M∑
l=1

wl
bl
e
−

∑M
i=1 bi

1−
∑M

i=1
bi

ts
E[T ] +

M∑
l=1

wl. (5.4.13)

Proof. See Appendix D.6.

Step 3: We now characterize the sub-optimality gap by analyzing the upper

and lower bounds constructed above. By combining (5.4.11) and (5.4.13), the sub-

optimality gap of the solution r? (5.3.1) and (5.3.8) - (5.3.10) is upper bounded by

∣∣∣∆̄w-peak(r?)− ∆̄w-peak
opt

∣∣∣
≤

M∑
l=1

wl
bl

[
e
∑M

i=1 bix
? ts
E[T ]

(
1

x?
+

M∑
i=1

bi

)
−e

−
∑M

i=1 bi

1−
∑M

i=1
bi

ts
E[T ]

]
.

(5.4.14)

where x? is defined in (5.3.8). Next, we characterize the RHS of (5.4.14) by Taylor

expansion. For simplicity, let ε = ts/E[T ], Z = (
M∑
i=1

bi)/(1 −
M∑
i=1

bi), and kl =

(
M∑
i=1

bi−bl)/(1−
M∑
i=1

bi)
2. Using Taylor expansion, we are able to obtain the following:

min
l
cl = 1 +

(
min
l
kl

)
ε+ o(ε), (5.4.15)

1

minl cl
= max

l

1

cl
= 1 +

(
max
l
kl

)
ε+ o(ε). (5.4.16)
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Using (5.4.15), (5.4.16), x? from (5.3.8), and Taylor expansion again, we get

e
∑M

i=1 bix
?ε = 1 + Z

(
1 +

(
min
l
kl

)
ε+ o(ε)

)
ε+ o(ε)

= 1 + Zε+ o(ε),

(5.4.17)

1

x?
+

M∑
i=1

bi =
1−∑M

i=1 bi
minl cl

+
M∑
i=1

bi

= 1 +
(

max
l
kl

)(
1−

M∑
i=1

bi

)
ε+ o(ε),

(5.4.18)

e−Zε = 1− Zε+ o(ε). (5.4.19)

Substituting (5.4.17) - (5.4.19) into (5.4.14), we get (5.3.11). This proves Theorem

(5.3.2).

Moreover, we observe that the gap
∣∣∣∆̄w-peak(r?)− ∆̄w-peak

opt

∣∣∣ in the energy-scarce

regime converges to zero at a speed of O(ε), as ε → 0. Further, both the upper

and lower bounds (5.4.11), (5.4.13), converge to
M∑
i=1

[(wi/bi) + wi] as ts/E[T ] → 0.

Thus, this value is the asymptotic optimal objective value of Problem 1. This proves

Corollary 5.3.2.1.

5.5 Numerical and Simulation Results

We use Matlab and NS-3 to evaluate the performance of our algorithm. We use “age-

optimal scheduler” to denote the sleep-wake scheduler with the sleep period paramters

r?l ’s as in (5.3.1), which was shown to be near-optimal in Theorem 5.3.1 and Theorem

5.3.2. By “throughput-optimal scheduler”, we refer to the sleep-wake algorithm of [39]

that is known to achieve the optimal trade-off between the throughput and energy

consumption reduction. Moreover, we use “fixed sleep-rate scheduler” to denote the

sleep-wake scheduler in which the sleep period parameters rl’s are equal for all the
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sources, i.e., rl = k for all l, where the parameter k has been chosen so as to satisfy the

energy constraints of Problem 1. We also let ∆̄w-peak
un (r) denote the unnormalized total

weighted average peak age in (5.2.11). Finally, we would like to mention that we do

not compare the performance of our proposed algorithm with the CSMA algorithms

of [76,77] where the goal was solely to minimize the age. Since they do not incorporate

energy constraints, it is not fair to compare the performance of our algorithm with

them.

Unless stated otherwise, our set up is as follows: The average transmission time is

E[T ] = 5 ms. The weights wl’s attached to different sources are generated by sampling

from a uniform distribution in the interval [0, 10]. The target power efficiencies bl’s

are randomly generated according to a uniform distribution in the range [0, 1].

5.5.1 Numerical Evaluations

Fig. 5.3 plots the total weighted average peak age ∆̄w-peak
un (r) in (5.2.11) as a function

of the ratio
ts

E[T ]
, where the number of sources is M = 10. The age-optimal scheduler

is seen to outperform the throughput-optimal and Fixed sleep-rate schedulers. This

implies that what minimizes the throughput does not necessarily minimize AoI and

vice versa. Moreover, we observe that the total weighted average peak age of all

schedulers increases as the sensing time increases. This is expected since an increase

in the sensing time leads to an increase in the probability of packet collisions, which

in turn deteriorates the age performance of these schedulers.

We then scale the number of sources M , and plot ∆̄w-peak
un (r) in (5.2.11) as a

function of M in Fig. 5.4. While plotting, we normalize the performance by the

number of sources M . The sensing time ts is fixed at ts = 40 ∼ µs. The weights wl’s

corresponding to different sources are randomly generated uniformly within the range

[0, 2]. The age-optimal scheduler is shown to outperform other schedulers uniformly

129



0.05 0.1 0.15 0.2

2

2.5

3

3.5

4

Fixed sleep-rate scheduler

Throughput-optimal scheduler

Age-optimal scheduler

Figure 5.3: Total weighted average peak age ∆̄w-peak
un (r) in (5.2.11) versus the ratio

ts
E[T ]

for M = 10 sources.

for all values of M . Moreover, as we can observe, the average peak age of the sources

under age-optimal scheduler increases up to around 0.55 seconds only, while the

number of sources rises from 1 to 100. This indicates the robustness of our algorithm

to changes in the number of sources in a network.

In Fig. 5.5, we fix the value of M as 100 and the target power efficiencies at the

same value for all the sources, i.e., bl = b for all l. We then vary the parameter b

and plot the resulting performance. While plotting, we normalize the performance

by the number of sources M . We exclude the simulation of the throughput-optimal

scheduler for b < 0.01 since the sleeping period parameters that are proposed in [39]
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Figure 5.4: Total weighted average peak age ∆̄w-peak
un (r) in (5.2.11) versus the number

of sources M , where ∆̄w-peak
un (r) has been normalized by M while plotting.

are not feasible for Problem 1 in the energy-scarce regime, i.e., when
M∑
i=1

bi < 1. The

age-optimal scheduler outperforms the other schedulers. Moreover, its performance is

a decreasing function of b, and then settles at a constant value. This occurs because

our proposed solution in (5.3.1) is a function solely of the weights wl’s and β? when b

exceeds some value. Thus, the performance of the proposed scheduler saturates after

this value of b.

We now show the effectiveness of the proposed scheduler when deployed in “dense

networks” [37, 38]. Dense networks are characterized by a large number of sources

connected to a single AP. We fix M at 105 sources, and take the target lifetimes of the

sources to be equal, i.e., Dl = D for all l. The weights wl’s corresponding to different
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Figure 5.5: Total weighted average peak age ∆̄w-peak
un (r) in (5.2.11) versus the target

power efficiency b for M = 100 sources, where ∆̄w-peak
un (r) has been normalized by M

while plotting.

sources are generated randomly by sampling from the uniform distribution in the

range [0, 2]. We let the initial battery level Bl = 8 mAh for all l and the output voltage

is 5 Volt. We also let the energy consumption in a transmission mode to be 24.75

mW for all sources. We vary the parameter D and plot the resulting performance

in Fig. 5.6. While plotting, we normalize the performance by the number of sources

M . We exclude simulations for the throughput-optimal scheduler for values of D for

which the scheduler is infeasible, i.e., its cumulative energy consumption exceeds the

total allowable energy consumption. The age-optimal scheduler is seen to outperform

the others. As observed in Fig. 5.6, under the age-optimal scheduler, sources can be
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Figure 5.6: Total weighted average peak age ∆̄w-peak
un (r) in (5.2.11) versus the target

lifetime D for a dense network with M = 105 sources, where ∆̄w-peak
un (r) has been

normalized by M while plotting. Since the throughput–optimal scheduler is infeasible
for values of D greater than 18 years, we do not plot its performance for these values.

active for up to 25 years, while simultaneously achieving a decent average peak age

of around .2 hour, i.e., 12 minutes. This makes it suitable for dense networks, where

it is crucial that the sources are necessarily active for many years.

5.5.2 NS-3 Simulation

We use NS-3 [87] to investigate the effect of our model assumptions on the perfor-

mance of age-optimal scheduler in a more practical situation. We simulate the age-

optimal scheduler by using IEEE 802.11b while disabling the RTS-CTS and modifying

the back-off times to be exponentially distributed in the MAC layer. Our simulation
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Figure 5.7: The average actual lifetime versus the target lifetime D.

results are averaged over 5 system realizations. The UDP saturation conditions are

satisfied such that the source nodes always have packets to send.

Our simulation consists of a WiFi network with 1 AP and 3 associated source

nodes in a field of size 50m × 50m. We set the sensing threshold to -100 dBm

which covers a range of 110m. Thus, all sources can hear each other. The initial

battery level of each source is 60 mAh, where the output voltage is 5 Volt. For each

source, the power consumption in the transmission mode is 24.75 mW, and the power

consumption in the sleep mode is 15 µW. Moreover, all weights are set to unity, i.e.,

wl = 1 for all l.

Fig. 5.7 plots the average actual lifetime of the sources versus the target lifetime,

where we take the target lifetimes of all sources to be equal, i.e., Dl = D for all l.

134



0 20 40 60 80 100
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14
Age-optimal scheduler (from NS-3)

Age-optimal scheduler (theoretical)

Figure 5.8: Total weighted average peak age ∆̄w-peak
un (r) versus the target lifetime D.

As we can observe, the actual lifetime of the age-optimal scheduler always achieves

the target lifetime. This suggests that our assumptions (i.e., (i) omitting the power

dissipation in the sleep mode and in the sensing times, (ii) the average transmission

times and collision times are equal to each other) do not affect the performance of

the algorithm which reaches its target lifetime.

Fig. 5.8 plots the total weighted average peak age versus the target lifetime,

where again we take the target lifetimes of all sources to be equal, i.e., Dl = D for

all l. The age-optimal scheduler (theoretical) curve is obtained using (5.2.11), while

the age-optimal scheduler (from NS-3) curve is obtained using the NS-3 simulator.

As we can observe, the difference between the plotted curves does not exceed 2% of
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the age-optimal scheduler (theoretical) performance. This emphasizes the negligible

impact of our assumptions on the performance of our proposed algorithm.

5.6 Conclusions

We designed an efficient sleep-wake scheduling algorithm for wireless networks that

attains the optimal trade-off between minimizing the AoI and energy consumption.

Since the associated optimization problem is non-convex, in general we could not

hope to solve it for all values of the system parameters. However, in the regime

when the carrier sensing time ts is negligible as compared to the average transmission

time E[T ], we were able to provide a near-optimal solution. Moreover, the proposed

solution is in a simple form that allowed us to design an easy-to-implement algorithm

to obtain the solution. Finally, we showed that the performance of our proposed

algorithm is asymptotically no worse than that of the optimal synchronized scheduler,

as ts/E[T ]→ 0.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this dissertation, we investigated how we can improve data freshness in infor-

mation update systems. Our over-arching goal has been to design low-complexity

schedulers that can optimize data freshness in a variety of information update sys-

tems. To achieve this goal, we have made the following progress.

The first two chapters have focused on networks with stochastic packet arrivals.

We began with single-hop single-source information update systems. We showed that

LGFS-type of scheduling policies can achieve age optimality when the transmission

times are exponentially distributed. We also showed that LGFS-type of policies can

be near age-optimal for NBU transmission times. Interestingly, we allowed for packet

replication and, unlike throughput and delay, we showed that packet replication can

indeed improve the age. We then extended these optimality results to single-source

multihop networks.

The second part of this dissertation have focused on multi-source networks in

which packet generation is controllable. We started by designing optimal sampler-

scheduler pairs that achieve age-optimality in these networks. Despite the complexity

that is usually inherited in joint optimization problems, we are able to obtain the

optimal sampler-scheduler pair. The key idea was to show the separation principle of

the considered problem. In particular, we showed that the scheduler and the sampler

can be designed independently. We find that it is optimal to first serve the source
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with the highest age, and it is not always optimal to generate packets as soon as the

channel becomes available. We also derived low-complexity threshold samplers via

an approximate analysis of Bellman’s equation. We then shifted our focus to design

a low-power asynchronous sleep-wake scheduler that can optimize the data freshness

in large scale networks. It turned out that the associated optimization problem is

non-convex. Nonetheless, we were able to devise a low-complexity solution to solve

this problem and prove that, for practical sensing times that are short, the solution

is within a small gap from the optimum age performance. Our numerical and NS-3

simulation results show that our solution can indeed elongate the batteries lifetime

of information sources, while providing a competitive age performance.

6.0.1 Near-Term Future Research

Based on our preliminary research in Chapter 5, we can extend our study by relaxing

its main assumptions. In particular, we can consider the following extensions:

General Age Metrics

So far, we consider the average peak age as a performance metric in our study in

Chapter 5. However, the performance metric must capture the variation of the stale

information’s harmful impact from one application to another. Here comes the impor-

tance of using penalty functions of the age. For example, it was recently shown in [19]

that, under certain conditions, information freshness metrics expressed in terms of

auto-correlation functions, the estimation error of signal values, and mutual infor-

mation, are monotonic functions of AoI. Moreover, the age-penalty function can be

used to represent the level of dissatisfaction of data staleness in different applications

based on their demands. For instance, a stair-shape function (g(x) = bxc) can be
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used to characterize the dissatisfaction of data staleness when the information of in-

terest is checked periodically, and an exponential function can be utilized in online

learning and control applications in which the demand for updating data increases

quickly with age. It is known from the literature that what minimizes the average

peak age does not necessarily minimize the average penalty function of age and vise

versa. Thus, this extension is not straightforward. The difficulty lies in the fact that

the average penalty function of age has a more complex relationship with the control

action (sleeping period parameters r) than the peak age does. One possible approach

to handle this extension is to begin with our peak age near-optimal solution and quan-

tify its performance in terms of the age-penalty function g(x) = xk. Then, through

Taylor series expansion, this would quantify the performance of the age metric under

consideration.

General Interference Model

In Chapter 5, we assume that all nodes can hear each other. However, in practical

applications, we may have general interference model [88] with general interference

graph. We assume that the interference model is known in advance. In this model,

for each link l, there is a subset of links N(l) that interfere with link l, i.e., N(l) is the

set of links that cannot attempt transmission simultaneously with link l, and we may

have N(i) 6= N(j). This extension is not straightforward. The difficulty lies in the

fact that multiple links can be active simultaneously and not only one. One approach

to handle this is to consider a time-slotted system and employ the following modified

CSMA (MCSMA) algorithm: A time-slot is divided into a mini-slot and a data-slot,

where the former is dedicated for making channel access decision, and the latter is

dedicated for update packet transmission. At the beginning of each mini-slot, each

link l generates an exponentially distributed random number with a mean
1

rl
. Then,

139



in the mini-slot, links take turns to broadcast their generated numbers. The channel

access decision at each link is taken as follows. At the end of the mini-slot, each link l

gains access to the channel if its generated number is less than the received generated

numbers of its neighbors. Since the generated numbers are exponentially distributed,

the probability of two numbers to equal each other is zero, and hence the probability

of collision is zero. By this, we can handle a general interference model and our target

aims to control the parameters rl’s to minimize the average age-penalty function.

6.0.2 Long-Term Open Questions:

Many future applications will extensively rely on sharing real-time information in

networks with larger geographic areas. For example, in vehicle-to-vehicle (V2V) net-

works, vehicles exchange real-time information about the speed and positions of sur-

rounding vehicles to help in avoiding collisions and reducing traffic congestion. Due

to the large geographic scale of such networks, some nodes may not be directly con-

nected, and hence can be modeled as multihop networks. Moreover, due to the con-

stant change in the geographic locations of the nodes, the interference model cannot

be known ahead of time. This raises the question of how to optimize the data fresh-

ness in multihop networks with a time-varying graph? In particular, many challenges

will arise in such networks such as hidden terminal problems and relay mechanisms.

In the hidden terminal problem, some nodes may not hear the transmission of each

other, and hence collision rate increases. Moreover, nodes need to decide when to

relay the received messages or send their own packets. This adds another level of

difficulty to the design problem and new tools need to be used to solve them. Indeed,

a dynamic solution that can adapt to the network’s parameters (e.g., mean transmis-

sion times, network graph, channel model, etc.) is needed. Learning algorithms can
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be used to come up with such a solution. In fact, using machine learning to optimize

data freshness in such networks is a promising direction in this research area.
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APPENDIX A: PROOFS FOR CHAPTER 2

A.1 Proof of Theorem 2.3.1

We need to define the system state of any policy π:

Definition A.1.1. Define Uπ(t) as the largest generation time of the packets at the

destination at time t under policy π. Let αi,π(t) be the generation time of the packet

that is being processed by server i at time t under policy π, where we set αi,π(t) = Uπ(t)

if server i is idle. Then, at any time t, the system state of policy π is specified by

Vπ(t) = (Uπ(t), α[1],π(t), . . . , α[m],π(t)). Note that if there is a replication, we may

have α[i],π(t) = α[i+1],π(t) for some i’s. Without loss of generality, if h servers are

sending packets with generation times less than Uπ(t) (i.e., α[m],π(t) ≤ α[m−1],π(t) ≤

. . . ≤ α[m−h+1],π(t) ≤ Uπ(t)) or h servers are idle, then we set α[m],π(t) = . . . =

α[m−h+1],π(t) = Uπ(t). Hence,

Uπ(t) ≤ α[m],π(t) ≤ . . . ≤ α[1],π(t). (A.1.1)

Let {Vπ(t), t ∈ [0,∞)} be the state process of policy π, which is assumed to be right-

continuous. For notational simplicity, let policy P represent the prmp-LGFS-R policy.

Throughout the proof, we assume that VP (0−) = Vπ(0−) for all π ∈ Πr.

The key step in the proof of Theorem 2.3.1 is the following lemma, where we

compare policy P with any work-conserving policy π.
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Lemma A.1.1. Suppose that VP (0−) = Vπ(0−) for all work conserving policies π,

then for all I

[{VP (t), t ∈ [0,∞)}|I]≥st [{Vπ(t), t ∈ [0,∞)}|I]. (A.1.2)

We use coupling and forward induction to prove Lemma A.1.1. For any work-

conserving policy π, suppose that stochastic processes ṼP (t) and Ṽπ(t) have the

same stochastic laws as VP (t) and Vπ(t). The state processes ṼP (t) and Ṽπ(t)

are coupled in the following manner: If the packet with generation time α̃[i],P (t) is

delivered at time t as ṼP (t) evolves, then the packet with generation time α̃[i],π(t)

is delivered at time t as Ṽπ(t) evolves. Such a coupling is valid because the service

times are exponentially distributed and thus memoryless. Moreover, policy P and

policy π have identical packet generation times (s1, s2, . . .) and packet arrival times

(a1, a2, . . .). According to Proposition 2.2.5, if we can show

P[ṼP (t) ≥ Ṽπ(t), t ∈ [0,∞)|I] = 1, (A.1.3)

then (A.1.2) is proven. To ease the notational burden, we will omit the tildes on

the coupled versions in this proof and just use VP (t) and Vπ(t). Next, we use the

following lemmas to prove (A.1.3):

Lemma A.1.2. At any time t, suppose that the system state of policy P is {UP , α[1],P , . . . , α[m],P},

and meanwhile the system state of policy π is {Uπ, α[1],π, . . . , α[m],π}. If

UP ≥ Uπ, (A.1.4)
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then,

α[i],P ≥ α[i],π, ∀i = 1, . . . ,m. (A.1.5)

Proof. Let S denote the set of packets that have arrived to the system at the con-

sidered time t. It is important to note that the set S is invariant of the scheduling

policy. If S is empty, then since VP (0−) = Vπ(0−), Lemma A.1.2 follows directly.

Thus, we assume that S is not empty during the proof. We use s[i] to denote the i-th

largest generation time of the packets in S. Define k = bm
r
c. From the definition of

the system state, condition (A.1.1), and the definition of policy P , we have

α[i],P = max{s[j], UP}, ∀i = (j − 1)r + 1, . . . , jr, ∀j = 1, . . . , k,

α[i],P = max{s[k+1], UP}, ∀i = kr + 1, . . . ,m.

(A.1.6)

Since policy π is an arbitrary policy, the servers under policy π may not process the

packets with the largest generation times in the set S or policy π may replicate packets

with lower generation times more than those that have larger generation times in the

set S. Hence, we have

α[i],π ≤ max{s[j], Uπ}, ∀i = (j − 1)r + 1, . . . , jr, ∀j = 1, . . . , k,

α[i],π ≤ max{s[k+1], Uπ}, ∀i = kr + 1, . . . ,m.

(A.1.7)

where the maximization here follows from the definition of the system state. Since

the set S is invariant of the scheduling policy and UP ≥ Uπ, this with (A.1.6) and

(A.1.7) imply

α[i],P ≥ α[i],π, ∀i = 1, . . . ,m, (A.1.8)
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which completes the proof.

Lemma A.1.3. Suppose that under policy P , {U ′P , α′[1],P , . . . , α
′
[m],P} is obtained by

delivering a packet with generation time α[l],P to the destination in the system whose

state is {UP , α[1],P , . . . , α[m],P}. Further, suppose that under policy π, {U ′π, α′[1],π, . . . , α
′
[m],π}

is obtained by delivering a packet with generation time α[l],π to the destination in the

system whose state is {Uπ, α[1],π, . . . , α[m],π}. If

α[i],P ≥ α[i],π, ∀i = 1, . . . ,m, (A.1.9)

then,

U ′P ≥ U ′π, α
′
[i],P ≥ α′[i],π, ∀i = 1, . . . ,m. (A.1.10)

Proof. Since the packet with generation time α[l],P is delivered under policy P , the

packet with generation time α[l],π is delivered under policy π, and α[l],P ≥ α[l],π, we

get

U ′P = α[l],P ≥ α[l],π = U ′π. (A.1.11)

This, together with Lemma A.1.2, implies

α′[i],P ≥ α′[i],π, i = 1, . . . ,m. (A.1.12)

Hence, (A.1.10) holds for any queue size B ≥ 0, which completes the proof.

Lemma A.1.4. Suppose that under policy P , {U ′P , α′[1],P , . . . , α
′
[m],P} is obtained by

adding a packet to the system whose state is {UP , α[1],P , . . . , α[m],P}. Further, suppose
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that under policy π, {U ′π, α′[1],π, . . . , α
′
[m],π} is obtained by adding a packet to the system

whose state is {Uπ, α[1],π, . . . , α[m],π}. If

UP ≥ Uπ, (A.1.13)

then

U ′P ≥ U ′π, α
′
[i],P ≥ α′[i],π, ∀i = 1, . . . ,m. (A.1.14)

Proof. Since there is no packet delivery, we have

U ′P = UP ≥ Uπ = U ′π. (A.1.15)

This, together with Lemma A.1.2, implies

α′[i],P ≥ α′[i],π, i = 1, . . . ,m. (A.1.16)

Hence, (A.1.14) holds for any queue size B ≥ 0, which completes the proof.

Proof of Lemma A.1.1. For any sample path, we have that UP (0−) = Uπ(0−) and

α[i],P (0−) = α[i],π(0−) for i = 1, . . . ,m. According to the coupling between the system

state processes {VP (t), t ∈ [0,∞)} and {Vπ(t), t ∈ [0,∞)}, as well as Lemma A.1.3

and A.1.4, we get

[UP (t)|I] ≥ [Uπ(t)|I], [α[i],P (t)|I] ≥ [α[i],π(t)|I],

holds for all t ∈ [0,∞) and i = 1, . . . ,m. Hence, (A.1.3) follows which implies (A.1.2)

by Proposition 2.2.5. This completes the proof.
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Proof of Theorem 2.3.1. As a result of Lemma A.1.1, we have

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π, which implies

[{∆P (t), t ∈ [0,∞)}|I]≤st[{∆π(t), t ∈ [0,∞)}|I], (A.1.17)

holds for all work-conserving policies π.

For non-work-conserving policies, since the packet service times are i.i.d. expo-

nentially distributed, service idling only increases the waiting time of the packet in

the system. Therefore, the age under non-work-conserving policies will be greater.

As a result, we have

[{∆P (t), t ∈ [0,∞)}|I] ≤st [{∆π(t), t ∈ [0,∞)}|I], ∀π ∈ Πr.

Finally, (2.3.2) follows directly from (2.3.1) using the properties of stochastic

ordering [47]. This completes the proof.

A.2 Proof of Lemma 2.3.1

The proof of Lemma 2.3.1 is motivated by the proof idea of [15, Lemma 1]. For

notation simplicity, let policy P represent the non-prmp-LGFS-R policy. We need to

define the following parameters:

Define Γi and Di as

Γi = min{vj : sj ≥ si}, (A.2.1)
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Server 1
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Figure A.1: An illustration of vi, ci, Γi, and Di. There are 2 servers, and sj > si. There is

no packet with generation time greater than si that is assigned to any of the servers before

time vj . Packet j is assigned to Server 1 at time vj and delivered to the destination at

time cj ; while packet i is assigned to Server 2 at time vi and delivered to the destination at

time ci. The service starting time and completion time of packet j are earlier than those of

packet i. Thus, we have Γi = vj and Di = cj .

Di = min{cj : sj ≥ si}. (A.2.2)

where Γi and Di are the smallest assignment time and completion time, respectively,

of all packets that have generation times greater than that of packet i. An illustration

of these parameters is provided in Fig. A.1. Suppose that there are n update packets,

where n is an arbitrary positive integer, no matter finite or infinite. Define the vectors

Γ = (Γ1, . . . ,Γn), and D = (D1, . . . , Dn). All these quantities are functions of the

scheduling policy π.

Notice that we can deduce from (2.2.2) that the age process {∆π(t), t ∈ [0,∞)}

under any policy π is an increasing function of D(π). Moreover, we can deduce

from (2.3.4) that the process {∆LB
P (t), t ∈ [0,∞)} is an increasing function of Γ(P ).

According to Proposition 2.2.2, if we can show

[Γ(P )|I] ≤st [D(π)|I], (A.2.3)
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holds for all π ∈ Πm, then (2.3.5) is proven. Hence, (A.2.3) is what we need to show.

We pick an arbitrary policy π ∈ Πm and prove (A.2.3) using Proposition 2.2.1 into

two steps.

Step 1 : Consider packet 1. Define i∗ = arg min
i

ai, where si∗ ≥ s1. Since all

servers are idle by time ai∗ and policy P is work-conserving policy, packet i∗ will be

assigned to a server under policy P once it arrives. Thus, from (A.2.1), we obtain

[Γ1(P )|I] = [vi∗(P )|I] = ai∗ . (A.2.4)

Under policy π, the completion times of all packets must be no smaller than ai∗ .

Hence, we have

[ci(π)|I] ≥ ai∗ , ∀i ≥ 1. (A.2.5)

This with (A.2.2) imply

[D1(π)|I] ≥ ai∗ . (A.2.6)

Combining (A.2.4) and (A.2.6), we get

[Γ1(P )|I] ≤ [D1(π)|I]. (A.2.7)

Step 2 : Consider a packet j, where 2 ≤ j ≤ n. We suppose that there is no packet

with generation time greater than sj that has been delivered before packet j under
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policy π. We need to prove that

[Γj(P )|I,Γ1(P ) = γ1, . . . ,Γj−1(P ) = γj−1]

≤st [Dj(π)|I, D1(π) = d1, . . . , Dj−1(π) = dj−1]

whenever γi ≤ di, i = 1, 2, . . . , j − 1.

(A.2.8)

For notational simplicity, define Γj−1 , {Γ1(P ) = γ1, . . . ,Γj−1(P ) = γj−1} and

Dj−1 , {D1(π) = d1, . . . , Dj−1(π) = dj−1}. We will show that there is at least

one server under policy P that can serve a new packet at a time that is stochastically

smaller than the completion time of packet j under policy π. At this time, there are

two possible cases under policy P . One of them is that the idle server processes a

packet with generation time greater than sj. The other one is that the idle server pro-

cesses a packet with generation time less than sj or there is no packet to be processed.

We will show that (A.2.8) holds in either case.

As illustrated in Fig. A.2, suppose that u copies of packet j are replicated on

the servers l1, l2, . . . , lu at the time epochs τ1, τ2, . . . , τu in policy π, where vj(π) =

min
w=1,...,u

τw.1 In addition, suppose that server lw will complete serving its copy of packet

j at time αw if there is no cancellation. Then, one of these u servers will complete

one copy of packet j at time cj(π) = min
w=1,...,u

αw, which is the earliest among these u

servers. Hence, packet j starts service at time vj(π) and completes service at time

cj(π) in policy π. In policy P , let hw represent the index of the last packet that has

been assigned to server lw before time τw. Suppose that under policy P , server lw has

spent χlw (χlw ≥ 0) seconds on serving packet hw before time τw. Let Rlw denote the

remaining service time of server lw for serving packet hw after time τw in policy P .

Let Xπ
lw = αw − τw denote the service time of one copy of packet j in server lw under

1If u = 1, then either there is no replication or policy π decides not to replicate packet j.
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Figure A.2: Illustration of packet assignments under policy π and policy P . In policy π,

two copies of packet j are replicated on the server l1 and server l2 at time τ1 and τ2, where

vj(π) = min{τ1, τ2} = τ1. Server l2 completes one copy of packet j at time cj(π) = α2,

server l1 cancels its redundant copy of packet j at time cj(π). Hence, the service duration

of packet j is [vj(π), cj(π)] in policy π. In policy P , at least one of the servers l1 and l2

becomes idle before time cj(π). In this example, server l2 becomes idle at time θ(P ) < cj(π)

and a fresh packet k with sk ≥ sj starts its service on server l2 at time θ(P ).

policy π and XP
lw = χlw +Rlw denote the service time of packet hw in server lw under

policy P . The CCDF of Rlw is given by

P[Rlw > s] = P[XP
lw − χlw > s|XP

lw > χlw ]. (A.2.9)

Because the packet service times are NBU, we can obtain that for all s, χlw ≥ 0

P[XP
lw − χlw > s|XP

lw > χlw ] = P[Xπ
lw − χlw > s|Xπ

lw > χlw ] ≤ P[Xπ
lw > s]. (A.2.10)

By combining (A.2.9) and (A.2.10), we obtain

Rlw ≤st X
π
lw . (A.2.11)

Because the packet service times are independent across the servers, by Lemma 13
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(b) Case 2: Packet k is assigned to server l′

before the completion of packet hz.

Figure A.3: The possible cases to occur after the completion of packet hz.

of [15], Rl1 , . . . , Rlu are mutually independent. By Proposition 2.2.3 and (A.2.11), we

can obtain

min
w=1,...,u

τw +Rlw ≤st min
w=1,...,u

τw +Xπ
lw = min

w=1,...,u
αw. (A.2.12)

From (A.2.12) we can deduce that at least one of the servers l1, . . . , lu, say server lz,

becomes available to serve a new packet under policy P at a time that is stochastically

smaller than the time cj(π) = min
w=1,...,u

αw. Let θ(P ) denote the time that server lz

becomes available to serve a new packet in policy P . According to (A.2.12), we have

[θ(P )|I,Γj−1] ≤st [cj(π)|I, Dj−1]

whenever γi ≤ di, i = 1, 2, . . . , j − 1.

(A.2.13)

At time θ(P ), we have two possible cases under policy P :

Case 1: A fresh packet k is assigned at time θ(P ) to server lz under policy P such
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that sk ≥ sj, as shown in Fig. A.3(a). Hence, we obtain

[vk(P )|I,Γj−1] = [θ(P )|I,Γj−1] ≤st [cj(π)|I, Dj−1]

whenever γi ≤ di, i = 1, 2, . . . , j − 1.

(A.2.14)

Since sk ≥ sj, (A.2.1) implies

[Γj(P )|I,Γj−1] ≤ [vk(P )|I,Γj−1] (A.2.15)

Since there is no packet with generation time greater than sj that has been delivered

before packet j under policy π, (A.2.2) implies

[Dj(π)|I, Dj−1] = [cj(π)|I, Dj−1] (A.2.16)

By combining (A.2.14), (A.2.15), and (A.2.16), (A.2.8) follows.

Case 2: A packet with generation time smaller than sj is assigned to server lz or

there is no packet assignment to server lz at time θ(P ) under policy P . Since policy

P is a work-conserving policy, policy P serves the packet with the largest generation

time first, and the packet generation times (s1, s2, . . .) and arrival times (a1, a2, . . .)

are invariant of the scheduling policy, a packet k with sk ≥ sj must have been assigned

to another server, call it server l′, before time θ(P ), as shown in Fig. A.3(b). Hence,

we obtain

[vk(P )|I,Γj−1] ≤ [θ(P )|I,Γj−1] ≤st [cj(π)|I, Dj−1]

whenever γi ≤ di, i = 1, 2, . . . , j − 1.

(A.2.17)

Similar to Case 1, we can use (A.2.1), (A.2.2), and (A.2.17) to show that (A.2.8)

follows in this case.
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It is important to note that if there is a packet y with sy > sj and cy(π) < cj(π)

(this may occur if packet y preempts the service of packet j under policy π or packet

y arrives to the system before packet j), then we replace packet j by packet y in the

arguments and equations from (A.2.8) to (A.2.17) to obtain

[Γy(P )|I,Γj−1] ≤st [Dy(π)|I, Dj−1]

whenever γi ≤ di, i = 1, 2, . . . , j − 1.

(A.2.18)

Observing that sy > sj, (A.2.1) implies

[Γj(P )|I,Γj−1] ≤ [Γy(P )|I,Γj−1]. (A.2.19)

Since cy(π) < cj(π) and sy > sj, (A.2.2) implies

[Dj(π)|I, Dj−1] = [Dy(π)|I, Dj−1]. (A.2.20)

By combining (A.2.18), (A.2.19), and (A.2.20), we can prove (A.2.8) in this case too.

Now, substituting (A.2.7) and (A.2.8) into Proposition 2.2.1, (A.2.3) is proven. This

completes the proof.

A.3 Proof of Theorem 2.3.2

For notation simplicity, let policy P represent the non-prmp-LGFS-R policy.

Proof of Theorem 2.3.2.(a). We prove Theorem 2.3.2.(a) into two steps:

Step 1 : We will show that the average gap between ∆LB
P and ∆P is upper bounded

by E[X]. Recall the definitions of Γi and Di from (A.2.1) and (A.2.2), respectively.

Define di(P ) = Di(P ) − Γi(P ). We know that there is a packet k with sk ≥ si

that starts service at time Γi(P ) under policy P . Without loss of generality, suppose
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that a server l is processing a copy of packet k. Because of replications, packet

k completes service under policy P as soon as one of its replica completes service.

Hence, packet k is delivered at time ck(P ) that is no later than Γi(P ) + Xl under

policy P . This implies that ck(P ) − Γi(P ) ≤ Xl. From (A.2.2), we can deduce that

Di(P )− Γi(P ) ≤ ck(P )− Γi(P ) ≤ Xl. From this, we can obtain

E[di] ≤ E[X], ∀i. (A.3.1)

We now proceed to characterize the gap between ∆LB
P and ∆P . We use {G(t), t ∈

[0,∞)} to denote the gap process between ∆LB
P and ∆P . The average gap is given by

[Ḡ|I] = lim sup
T→∞

E[
∫ T

0
G(t)dt]

T
. (A.3.2)

Let τi denote the inter-generation time between packet i and packet i − 1 (i.e., τi =

si − si−1), where τ = {τi, i ≥ 1}. Note that, since the packet service times are

independent of the packet generation process, we have di’s are independent of τ .

Define N(T ) = max{i : si ≤ T} as the number of generated packets by time T . Note

that [0, sN(T )] ⊆ [0, T ], where the length of the interval [0, sN(T )] is

N(T )∑
i=1

τi. Thus, we

have

N(T )∑
i=1

τi ≤ T. (A.3.3)

The area defined by the integral in (A.3.2) can be decomposed into a sum of disjoint

geometric parts. Observing Fig. A.4, the area can be approximated to the concate-

nation of the parallelograms G1, G2, . . . (Gi’s are highlighted in Fig. A.4). Note that

the parallelogram Gi results after the generation of packet i (i.e., the gap that is

corresponding to the packet i occurs after its generation). Since the observing time T
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Figure A.4: The evolution of ∆LB
P and ∆P in a queue with 4 servers and r = 2.

is chosen arbitrary, when T ≥ si, the total area of the parallelogram Gi is accounted

in the summation

N(T )∑
i=1

Gi, while it may not be accounted in the integral

∫ T

0

G(t)dt.

This implies that

N(T )∑
i=1

Gi ≥
∫ T

0

G(t)dt. (A.3.4)

Combining (A.3.3) and (A.3.4), we get

∫ T
0
G(t)dt

T
≤
∑N(T )

i=1 Gi∑N(T )
i=1 τi

. (A.3.5)

Then, take conditional expectation given τ and N(T ) on both sides of (A.3.5), we
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obtain

E[
∫ T

0
G(t)dt|τ,N(T )]

T
≤ E[

∑N(T )
i=1 Gi|τ,N(T )]∑N(T )

i=1 τi
=

∑N(T )
i=1 E[Gi|τ,N(T )]∑N(T )

i=1 τi
, (A.3.6)

where the second equality follows from the linearity of the expectation. From Fig.

A.4, Gi can be calculated as

Gi = τidi. (A.3.7)

Substituting by (A.3.7) into (A.3.6), yields

E[
∫ T

0
G(t)dt|τ,N(T )]

T
≤
∑N(T )

i=1 E[τidi|τ,N(T )]∑N(T )
i=1 τi

=

∑N(T )
i=1 τiE[di|τ,N(T )]∑N(T )

i=1 τi
. (A.3.8)

Note that di’s are independent of τ . Thus, we have E[di|τ,N(T )] = E[di] ≤ E[X] for

all i. Substituting this into (A.3.8), yields

E[
∫ T

0
G(t)dt|τ,N(T )]

T
≤
∑N(T )

i=1 τiE[X]∑N(T )
i=1 τi

= E[X], (A.3.9)

by the law of iterated expectations, we have

E[
∫ T

0
G(t)dt]

T
≤ E[X]. (A.3.10)

Taking the lim sup of both side of (A.3.10) when T →∞, yields

lim sup
T→∞

E[
∫ T

0
G(t)dt]

T
≤ E[X]. (A.3.11)

Equation (A.3.11) tells us that the average gap between ∆LB
P and ∆P is no larger

than E[X].
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Step 2 : We prove (2.3.6). Since ∆LB
P is a lower bound of the age process of policy

P and the average gap between ∆LB
P and ∆P is no larger than E[X], we obtain

[∆̄LB
P |I] ≤ [∆̄P |I] ≤ [∆̄LB

P |I] + E[X], (A.3.12)

where ∆̄LB
P = lim sup

T→∞

E[
∫ T

0
∆LB
P (t)dt]

T
. From Lemma 2.3.1, we have for all I satisfying

B ≥ 1, and π ∈ Πm

[{∆LB
P (t), t ∈ [0,∞)}|I] ≤st [{∆π(t), t ∈ [0,∞)}|I], (A.3.13)

which implies that

[∆̄LB
P |I] ≤ [∆̄π|I], (A.3.14)

holds for all π ∈ Πm. As a result, we get

[∆̄LB
P |I] ≤ min

π∈Πm

[∆̄π|I]. (A.3.15)

Since policy non-prmp-LGFS-R is a feasible policy, we get

min
π∈Πm

[∆̄π|I] ≤ [∆̄P |I]. (A.3.16)

Combining (A.3.12), (A.3.15), and (A.3.16), we get

min
π∈Πm

[∆̄π|I] ≤ [∆̄P |I] ≤ min
π∈Πm

[∆̄π|I] + E[X], (A.3.17)

which completes the proof.

Proof of Theorem 2.3.2.(b). The proof of part (b) is similar to that of part (a). Define
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di(P ) = Di(P ) − Γi(P ). We know that there is a packet k with sk ≥ si that starts

service at time Γi(P ) under policy P . Since m = ar for a positive integer a, packet k

is processed by r servers in policy P . Let Sk ⊆ {1, . . . ,m} be the set of servers that

process packet k under policy P , which satisfies |Sk| = r. Because of replications,

packet k completes service under policy P as soon as one of its replica is completes

service. Hence, packet k is delivered at time ck(P ) = Γi(P ) + min
l∈Sk

Xl under policy

P . This implies that ck(P ) − Γi(P ) = min
l∈Sk

Xl. From (A.2.2), We can deduce that

Di(P )− Γi(P ) ≤ ck(P )− Γi(P ) = min
l∈Sk

Xl. From this, we can obtain

E[di] ≤ E[ min
l=1,...,r

Xl],∀i. (A.3.18)

Similar to part a, we use {G(t), t ∈ [0,∞)} to denote the gap process between ∆LB
P

and ∆P . The average gap is given by

[Ḡ|I] = lim sup
T→∞

E[
∫ T

0
G(t)dt]

T
. (A.3.19)

Following the same steps as in the proof of part (a), we can show that

lim sup
T→∞

E[
∫ T

0
G(t)dt]

T
≤ E[ min

l=1,...,r
Xl]. (A.3.20)

Equation (A.3.20) tells us that the average gap between ∆LB
P and ∆P is no larger

than E[ min
l=1,...,r

Xl]. This and the fact that ∆LB
P is a lower bound of the age process of

policy P , imply

[∆̄LB
P |I] ≤ [∆̄P |I] ≤ [∆̄LB

P |I] + E[ min
l=1,...,r

Xl]. (A.3.21)
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Similar to part (a), we can use (A.3.21) with Lemma 2.3.1 to show that

min
π∈Πm

[∆̄π|I] ≤ [∆̄P |I] ≤ min
π∈Πm

[∆̄π|I] + E[ min
l=1,...,r

Xl], (A.3.22)

which completes the proof.

A.4 Proof of Theorem 2.4.1

We follow the same proof technique of Theorem 2.3.1. We start by comparing policy

P (prmp-LGFS-R policy) with an arbitrary work-conserving policy π. For this, we

need to define the system state of any policy π:

Definition A.4.1. At any time t, the system state of policy π is specified by Hπ(t) =

(Nπ(t), γπ(t)), where Nπ(t) is the total number of distinct packets in the system at

time t (excluding packet replicas). Define γπ(t) as the total number of distinct packets

that are delivered to the destination at time t. Let {Hπ(t), t ∈ [0,∞)} be the state

process of policy π, which is assumed to be right-continuous.

To prove Theorem 2.4.1, we will need the following lemma.

Lemma A.4.1. For any work-conserving policy π, if HP (0−) = Hπ(0−) and B =∞,

then [{HP (t), t ∈ [0,∞)}|I] and [{Hπ(t), t ∈ [0,∞)}|I] are of the same distribution.

Suppose that {H̃P (t), t ∈ [0,∞)} and {H̃π(t), t ∈ [0,∞)} are stochastic processes

having the same stochastic laws as {HP (t), t ∈ [0,∞)} and {Hπ(t), t ∈ [0,∞)}. Now,

we couple the packet delivery times during the evolution of H̃P (t) to be identical

with the packet delivery times during the evolution of H̃π(t). Such a coupling is valid

because the service times are exponentially distributed, and hence, memoryless.

To ease the notational burden, we will omit the tildes henceforth on the coupled
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versions and just use {HP (t)} and {Hπ(t)}. The following two lemmas are needed to

prove Lemma A.4.1:

Lemma A.4.2. Suppose that under policy P , {N ′P , γ′P} is obtained by delivering a

packet to the destination in the system whose state is {NP , γP}. Further, suppose

that under policy π, {N ′π, γ′π} is obtained by delivering a packet to the destination in

the system whose state is {Nπ, γπ}. If

NP = Nπ, γP = γπ,

then

N ′P = N ′π, γ
′
P = γ′π. (A.4.1)

Proof. Because the packet service times are i.i.d. and the CCDF F̄ is continuous,

the probability for any two servers to complete their packets at the same time is zero.

Therefore, in policy P , if one copy of a replicated packet is completed on a server,

the remaining replicated copies of this packet are still being processed on the other

servers; these replicated packet copies are cancelled immediately and a new packet is

replicated on these servers. Since there is a packet delivery, we have

N ′P = NP − 1 = Nπ − 1 = N ′π,

γ′P = γP + 1 = γπ + 1 = γ′π.

Hence, (A.4.1) holds, which complete the proof.

Lemma A.4.3. Suppose that under policy P , {N ′P , γ′P} is obtained by adding a new

packet to the system whose state is {NP , γP}. Further, suppose that under policy π,
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{N ′π, γ′π} is obtained by adding a new packet to the system whose state is {Nπ, γπ}. If

NP = Nπ, γP = γπ,

then

N ′P = N ′π, γ
′
P = γ′π. (A.4.2)

Proof. Because B = ∞, no packet is dropped in policy P and policy π. Since there

is a new added packet to the system, we have

N ′P = NP + 1 = Nπ + 1 = N ′π.

Also, there is no packet delivery, hence

γ′P = γP = γπ = γ′π.

Thus, (A.4.2) holds, which complete the proof.

Proof of Lemma A.4.1. For any sample path, we have that NP (0−) = Nπ(0−) and

γP (0−) = γπ(0−). According to the coupling between the system state processes

{HP (t), t ∈ [0,∞)} and {Hπ(t), t ∈ [0,∞)}, as well as Lemma A.4.2 and A.4.3, we

get

[NP (t)|I] = [Nπ(t)|I], [γP (t)|I] = [γπ(t)|I],

holds for all t ∈ [0,∞). This implies that [{HP (t), t ∈ [0,∞)}|I] and [{Hπ(t), t ∈

[0,∞)}|I] are of the same distribution, which completes the proof.
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Proof of Theorem 2.4.1. As a result of Lemma A.4.1, [{γP (t), t ∈ [0,∞)}|I] and

[{γπ(t), t ∈ [0,∞)}|I] are of the same distribution. This implies that policy P and

policy π have the same throughput performance. Also, from Lemma A.4.1, we have

that [{NP (t), t ∈ [0,∞)}|I] and [{Nπ(t), t ∈ [0,∞)}|I] are of the same distribution.

Hence, policy P and policy π have the same delay performance. These imply that

policy P has the same throughput and delay performance as any work-conserving

policy.

Finally, since the service times are i.i.d., service idling only increases the waiting

time of the packet in the system. Therefore, the throughput and delay performance

under non-work-conserving policies will be worse. As a result, the prmp-LGFS-R

policy is throughput-optimal and delay-optimal among all policies in Πm (indeed, all

work-conserving policies with infinite buffer size B = ∞ have the same throughput

and delay performance, and hence, they are throughput-optimal and delay-optimal).
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APPENDIX B: PROOFS FOR CHAPTER 3

B.1 Proof of Theorem 3.3.1

Let us define the system state of a policy π:

Definition B.1.1. At any time t, the system state of policy π is specified by Uπ(t) =

(U0,π(t), U2,π(t), . . . , UN−1,π(t)), where Uj,π(t) is the generation time of the freshest

packet that arrived at node j by time t. Let {Uπ(t), t ∈ [0,∞)} be the state process

of policy π, which is assumed to be right-continuous. For notational simplicity, let

policy P represent the preemptive LGFS policy.

The key step in the proof of Theorem 3.3.1 is the following lemma, where we

compare policy P with any work-conserving policy π.

Lemma B.1.1. Suppose that UP (0−) = Uπ(0−) for all work conserving policies π,

then for all I,

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I]. (B.1.1)

We use coupling and forward induction to prove Lemma B.1.1. For any work-

conserving policy π, suppose that stochastic processes ŨP (t) and Ũπ(t) have the same

distributions with UP (t) and Uπ(t), respectively. The state processes ŨP (t) and Ũπ(t)

are coupled in the following manner: If a packet is delivered from node i to node j at

time t as ŨP (t) evolves in policy P , then there exists a packet delivery from node i
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to node j at time t as Ũπ(t) evolves in policy π. Such a coupling is valid since the

transmission time is exponentially distributed and thus memoryless. Moreover, policy

P and policy π have identical packet generation times (s1, s2, . . . , sn) at the external

source and packet arrival times (a10, a20, . . . , an0) to node 0. According to Theorem

6.B.30 in [47], if we can show

P[ŨP (t) ≥ Ũπ(t), t ∈ [0,∞)|I] = 1, (B.1.2)

then (B.1.1) is proven.

To ease the notational burden, we will omit the tildes in this proof on the coupled

versions and just use UP (t) and Uπ(t). Next, we use the following lemmas to prove

(B.1.2):

Lemma B.1.2. Suppose that under policy P , U′P is obtained by a packet delivery

over the link (i, j) in the system whose state is UP . Further, suppose that under

policy π, U′π is obtained by a packet delivery over the link (i, j) in the system whose

state is Uπ. If

UP ≥ Uπ, (B.1.3)

then,

U′P ≥ U′π. (B.1.4)

Proof. Let sP and sπ denote the generation times of the packets that are delivered

over the link (i, j) under policy P and policy π, respectively. From the definition of
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the system state, we can deduce that

U ′j,P = max{Uj,P , sP},

U ′j,π = max{Uj,π, sπ}.
(B.1.5)

Hence, we have two cases:

Case 1: If sP ≥ sπ. From (B.1.3), we have

Uj,P ≥ Uj,π. (B.1.6)

Also, sP ≥ sπ, together with (B.1.5) and (B.1.6) imply

U ′j,P ≥ U ′j,π. (B.1.7)

Since there is no packet delivery under other links, we get

U ′k,P = Uk,P ≥ Uk,π = U ′k,π, ∀k 6= j. (B.1.8)

Hence, we have

U′P ≥ U′π. (B.1.9)

Case 2: If sP < sπ. By the definition of the system state, sP ≤ Ui,P and sπ ≤ Ui,π.

Then, using Ui,P ≥ Ui,π, we obtain

sP < sπ ≤ Ui,π ≤ Ui,P . (B.1.10)

Because sP < Ui,P , policy P is sending a stale packet on link (i, j). By the definition

of policy P , this happens only when all packets that are generated after sP in the
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queue of the link (i, j) have been delivered to node j. Since sπ ≤ Ui,P , node i has

already received a packet (say packet w) generated no earlier than sπ in policy P .

Because sP < sπ, packet w is generated after sP . Hence, packet w must have been

delivered to node j in policy P such that

sπ ≤ Uj,P . (B.1.11)

Also, from (B.1.3), we have

Uj,π ≤ Uj,P . (B.1.12)

Combining (B.1.11) and (B.1.12) with (B.1.5), we obtain

U ′j,P ≥ U ′j,π. (B.1.13)

Since there is no packet delivery under other links, we get

U ′k,P = Uk,P ≥ Uk,π = U ′k,π, ∀k 6= j. (B.1.14)

Hence, we have

U′P ≥ U′π, (B.1.15)

which complete the proof.

Lemma B.1.3. Suppose that under policy P , U′P is obtained by the arrival of a new

packet to node 0 in the system whose state is UP . Further, suppose that under policy

π, U′π is obtained by the arrival of a new packet to node 0 in the system whose state
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is Uπ. If

UP ≥ Uπ, (B.1.16)

then,

U′P ≥ U′π. (B.1.17)

Proof. Let s denote the generation time of the new arrived packet. From the definition

of the system state, we can deduce that

U ′0,P = max{U0,P , s},

U ′0,π = max{U0,π, s}.
(B.1.18)

Combining this with (B.1.16), we obtain

U ′0,P ≥ U ′0,π. (B.1.19)

Since there is no packet delivery under other links, we get

U ′k,P = Uk,P ≥ Uk,π = U ′k,π, ∀k 6= 0. (B.1.20)

Hence, we have

U′P ≥ U′π, (B.1.21)

which complete the proof.

Proof of Lemma B.1.1. For any sample path, we have that UP (0−) = Uπ(0−). This,
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together with Lemma B.1.2 and Lemma B.1.3, implies that

[UP (t)|I] ≥ [Uπ(t)|I],

holds for all t ∈ [0,∞). Hence, (B.1.2) holds which implies (B.1.1) by Theorem 6.B.30

in [47]. This completes the proof.

Proof of Theorem 3.3.1. According to Lemma B.1.1, we have

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π, which implies

[{∆P (t), t ∈ [0,∞)}|I]≤st[{∆π(t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π.

Finally, transmission idling only postpones the delivery of fresh packets. There-

fore, the age under non-work-conserving policies will be greater. As a result,

[{∆P (t), t ∈ [0,∞)}|I]≤st[{∆π(t), t ∈ [0,∞)}|I],

holds for all π ∈ Π. This completes the proof.

B.2 Lower bound construction

Let vlj(π) denote the transmission starting time of packet l over the incoming link to

node j under policy π. We construct an infeasible policy which provides the age lower

bound as follows:

1- The infeasible policy (IP ) is constructed as follows. At each link (i, j), the
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packets are served by following a work-conserving LGFS principle. A packet l

is deemed delivered from node i to node j once the transmission of packet l starts

over the link (i, j) (this step is infeasible). After the transmission of packet l

starts over the link (i, j), the link (i, j) will be busy for a time duration equal

to the actual transmission time of packet l over the link (i, j). Hence, the next

packet cannot start its transmission over the link (i, j) until the end of this time

duration. We use vlj(IP ) to denote the transmission starting time of packet l

over the incoming link to node j under the infeasible policy (IP ) constructed

above.

One example of the infeasible policy IP is illustrated in Fig. B.1, where we

consider two hops of tandem queues. We use tlj to denote the time by which the

incoming link to node j becomes idle again after the transmission of packet l

starts. Since all links are idle at the beginning, packet 1 arrives to all nodes once

it arrives to node 0 at time a10 (this is because each packet is deemed delivered

to the next node once its transmission starts). However, each link is kept busy

for a time duration equal to the actual transmission time of packet 1 over each

link. Then, packet 2 arrives to node 0 at time a20 and finds the link (0, 1) busy.

Therefore, packet 2 cannot start its transmission until link (0, 1) becomes idle

again at time t11 (v21(IP ) = t11). Once packet 2 starts its transmission at time

t11 over the link (0, 1), it is deemed delivered to node 1 (a21(IP ) = v21(IP ) = t11)

and link (0, 1) is kept busy until time t21. At time t11, link (1, 2) is busy. Thus,

packet 2 cannot start its transmission over the link (1, 2) until it becomes idle

again at time t12. Once packet 2 starts its transmission over the link (1, 2) at

time t12, it is deemed delivered to node 2 (a22(IP ) = v22(IP ) = t12).

2- The age lower bound is constructed as follows. For each node j ∈ V, define a

178



! " #
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(b) A sample path of the packet arrival processes.

Figure B.1: An illustration of the infeasible policy in a Two-hop network.
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function ∆LB
j,IP (t) as

∆LB
j,IP (t) = t−max{sl : vlj(IP ) ≤ t}. (B.2.1)

The definition of the ∆LB
j,IP (t) is similar to that of the age in (3.2.1) except that

the packets arrival times to node j are replaced by their transmission starting

times over the incoming link to node j in the infeasible policy. In this case,

∆LB
j,IP (t) increases linearly with t but is reset to a smaller value with the trans-

mission start of a fresher packet over the incoming link to node j, as shown in

Fig. B.2. The process of ∆LB
j,IP (t) is given by ∆LB

j,IP = {∆LB
j,IP (t), t ∈ [0,∞)} for

each j ∈ V. The age lower bound vector of all the network nodes is

∆LB
IP (t) =(∆LB

0,IP (t),∆LB
1,IP (t), . . . ,∆LB

N−1,IP (t)). (B.2.2)

The age lower bound process of all the network nodes is given by

∆LB
IP = {∆LB

IP (t), t ∈ [0,∞)}. (B.2.3)

The next Lemma tells us that the process ∆LB
IP is an age lower bound of all policies

in Π in the following sense.

Lemma B.2.1. Suppose that the packet transmission times are NBU, independent

across links, and i.i.d. across time, then for all I ′ satisfying Bij ≥ 1 for each (i, j) ∈

L, and π ∈ Π

[∆LB
IP |I ′] ≤st [∆π|I ′]. (B.2.4)
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∆(t)

ts1v1 s2 v2

∆LB
j,IP (t)

∆j,π(t)

Figure B.2: The evolution of ∆LB
j,IP (t) and ∆j,π(t) at node j ∈ H1. For figure clarity,

we use v1 and v2 to denote v1j(IP ) and v2j(IP ), respectively. Also, we use a1 and a2 to

denote a1j(π) and a2j(π), respectively. We suppose that a10 > s1 and a20 > a1 > s2,

such that a10 = v1 and a20 = v2.
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Proof. Condition (3.3.4) is very crucial in proving Lemma B.2.1. In particular, (3.3.4)

implies that for NBU service time distributions, the remaining service time of a packet

that has already spent τ seconds in service is probably shorter than the service time

of a new packet (i.e., P[X > t+ τ |X > τ ] ≤ P[X > t], where X represents the service

time). This is used to show that the transmission starting times of the fresh packets

under policy IP are stochastically smaller than their corresponding delivery times

under policy π, and hence (B.2.4) follows. For more details, see Appendix B.3.

B.3 Proof of Lemma B.2.1

For notation simplicity, let policy IP represent the infeasible policy. We need to

define the following parameters: Recall that vlj denotes the transmission starting time

of packet l over the incoming link to node j and alj denotes the arrival time of packet

l to node j. We define Γlj and Dlj as

Γlj = min
q≥l
{vqj}, (B.3.1)

Dlj = min
q≥l
{aqj}, (B.3.2)

where Γlj and Dlj are the smallest transmission starting time over the incoming link

to node j and arrival time to node j, respectively, of all packets that are fresher than

the packet l. An illustration of these parameters is provided in Fig. B.3. Suppose that

there are n update packets, where n is an arbitrary positive integer, no matter finite

or infinite. Define the vectors Γj = (Γ1j, . . . ,Γnj), and Dj = (D1j, . . . , Dnj). Also,

a packet l is said to be an informative packet at node i, if all packets that arrive to

node i before packet l are staler than packet l, i.e., sl′ ≤ sl for all packets l′ satisfying

al′i ≤ ali. All these quantities are functions of the scheduling policy π (except the
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The incoming

link to node j

q timel
vlj aljΓlj = vqj Dlj = aqj

Figure B.3: An illustration of vlj , alj , Γlj and Dlj . We consider the incoming link to node

j, and sq > sl. The transmission starting time over this link and the arrival time to node

j of packet q are earlier than those of packet l. Thus, we have Γlj = vqj and Dlj = aqj .

packet arrival times (a10, a20, . . . , an0) to node 0 which are invariant of the scheduling

policy).

We can deduce from (3.2.1) that the age process ∆π under any policy π is increas-

ing in [D1(π), . . . ,DN−1(π)]. Moreover, we can deduce from (B.2.1) that the pro-

cess ∆LB
IP is increasing in [Γ1(IP ), . . . ,ΓN−1(IP )]. According to Theorem 6.B.16.(a)

of [47], if we can show

[Γ1(IP ), . . . ,ΓN−1(IP )|I ′] ≤st [D1(π), . . . ,DN−1(π)|I ′], (B.3.3)

holds for all π ∈ Π, then (B.2.4) is proven. Hence, (B.3.3) is what we need to show.

We pick an arbitrary policy π ∈ Π and prove (B.3.3) into two steps:

Step 1: We first show that, at any link (i, j), if the arrival times of the informative

packets at node i under policy IP are earlier than those of the informative packets at

node i under policy π, then the arrival times of the informative packets at node j under

policy IP are earlier than those of the informative packets at node j under policy π.

Observe that the vector Γi(IP ) represents the arrival times of the informative packets

at node i under policy IP (recall the construction of the infeasible policy IP and
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its age evolution in (B.2.1)), while the vector Di(π) represents the arrival times of

the informative packets at node i under policy π. Then, the previous statement is

manifested in the following lemma.

Lemma B.3.1. For any link (i, j) ∈ L, if (i) the packet transmission times are NBU,

and (ii) Γi(IP ) ≤ Di(π), then

[Γj(IP )|I ′] ≤st [Dj(π)|I ′], (B.3.4)

holds for all I ′ satisfying Bij ≥ 1.

Proof. See Appendix B.4

Step 2: We use Lemma B.3.1 to prove (B.3.3). Consider a node j ∈ Hk. We

prove (B.3.3) using Theorem 6.B.3 and Theorem 6.B.16.(c) of [47] into two steps:

Step A: Consider node ij,1. Observe that node ij,1 receives update packets from

node 0. Since the packet arrival times (a10, . . . , an0) to node 0 are invariant of the

scheduling policy, both conditions of Lemma B.3.1 are satisfied and we can apply it

on the link (0, ij,1) to obtain

[Γij,1(IP )|I ′] ≤st [Dij,1(π)|I ′]. (B.3.5)

Step B: Consider node ij,m, where 2 ≤ m ≤ k. We need to prove that

[Γij,m(IP )|I ′,Γij,1(IP )=γij,1 , . . . ,Γij,m−1
(IP )=γij,m−1

]

≤st[Dij,m(π)|I ′,Dij,1(π)=dij,1 , . . . ,Dij,m−1
(π)=dij,m−1

],

whenever γij,t ≤ dij,t , t = 1, . . . ,m− 1.

(B.3.6)

Since node ij,m receives update packets from node ij,m−1 and Γij,m−1
(IP ) ≤ Dij,m−1

(π)

in (B.3.6), both conditions of Lemma B.3.1 are satisfied in this case as well (in
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Link (i, j)

under policy π

Link (i, j)

under policy IP RIP θ(IP )

(a) Case 1: Link (i, j) sends packet k after the
time θ(IP ).

χ

p

Xπ
vpj(π) apj(π)
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Link (i, j)

under policy π

Link (i, j)

under policy IP RIP θ(IP )

(b) Case 2: Link (i, j) sends packet k before the
time IP .

Figure B.4: Illustration of packet transmissions under policy π and policy IP . In

policy π, link (i, j) starts to send packet p at time vpj(π) and will complete its trans-

mission at time apj(π). Hence, the transmission duration of packet p is [vpj(π), apj(π)]

in policy π. Under policy IP , link (i, j) is kept busy before time vpj(π) for a time

duration equal to the actual transmission time of packet h∗ and becomes available to

send a new packet at the time θ(IP ) < apj(π).

particular, for the link (ij,m−1, ij,m)), and we can use it to prove (B.3.6). By using

(B.3.5) and (B.3.6) with Theorem 6.B.3 of [47], we can show

[Γij,1(IP ), . . . ,Γij,k(IP )|I ′] ≤st [Dij,1(π), . . . ,Dij,k(π)|I ′]. (B.3.7)

Following the previous argument, we can show that (B.3.7) holds for all j ∈ V. Note

that the transmission times are independent across links. Using this with Theorem

6.B.3 and Theorem 6.B.16.(c) of [47], we prove (B.3.3). This completes the proof.

B.4 Proof of Lemma B.3.1

The proof of Lemma B.3.1 is motivated by the proof idea of [15, Lemma 1] and [89,

Lemma 2]. We prove (B.3.4) using Theorem 6.B.3 of [47] into two steps.

Step 1: Consider packet 1. Note that packet 1 may not be the first packet to arrive

at node i under policy IP . Thus, we use l∗ to denote the index of the first arrived

packet at node i under policy IP , where sl∗ ≥ s1. From the construction of the policy
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IP and (B.3.1), Γ1i(IP ) is the arrival time of the first arrived packet at node i under

policy IP . Since the link (i, j) is idle before the arrival of the first arrived packet at

node i, and policy IP is a work-conserving policy, packet l∗ will start its transmission

under policy IP over the link (i, j) once it arrives to node i (at time Γ1i(IP )). Thus,

from (B.3.1), we obtain

[Γ1j(IP )|I ′] = [vl∗j(IP )|I ′] = [Γ1i(IP )|I ′]. (B.4.1)

Observe that we have

[Γ1i(IP )|I ′] ≤ [D1i(π)|I ′]. (B.4.2)

Also, we must have

[D1i(π)|I ′] ≤ [D1j(π)|I ′], (B.4.3)

because a packet must spend a time over the link (i, j) (its transmission time over

the link (i, j)) before it is delivered from node i to node j under policy π. Combining

(B.4.1), (B.4.2), and (B.4.3), we get

[Γ1j(IP )|I ′] = [Γ1i(IP )|I ′] ≤ [D1i(π)|I ′] ≤ [D1j(π)|I ′]. (B.4.4)

Step 2: Consider a packet p, where 2 ≤ p ≤ n. We suppose that no packet with

generation time greater than sp has arrived to node j before packet p under policy π.
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We need to prove that

[Γpj(IP )|I ′,Γ1j(IP ) = γ1, . . . ,Γ(p−1)j(IP ) = γp−1]

≤st [Dpj(π)|I ′, D1j(π) = d1, . . . , D(p−1)j(π) = dp−1],

whenever γl ≤ dl, l = 1, 2, . . . , p− 1.

(B.4.5)

For notation simplicity, define Γp−1 , {Γ1j(IP ) = γ1, . . . ,Γ(p−1)j(IP ) = γp−1} and

Dp−1 , {D1j(π) = d1, . . . , D(p−1)j(π) = dp−1}. We will show that the link (i, j)

under policy IP can send a new packet at a time that is stochastically smaller than

the arrival time of packet p at node j under policy π. At this time, there are two

possible cases under policy IP . One of them is that the link (i, j) sends a packet with

generation time greater than sp. The other one is that the link (i, j) sends a packet

with generation time less than sp or there is no packet to be sent. We will show that

(B.4.5) holds in either case.

As illustrated in Fig. B.4, suppose that under policy π, link (i, j) starts to send

packet p at time vpj(π) and will complete its transmission at time apj(π). Under

policy IP , define h∗ = arg max
h
{vhj(IP ) : vhj(IP ) ≤ vpj(π)} as the index of the last

packet whose transmission starts over the link (i, j) before time vpj(π). Note that the

link (i, j) under policy IP is kept busy after time vh∗j(IP ) for a time duration equal

to the actual transmission time of packet h∗ over the link (i, j). Suppose that under

policy IP , link (i, j) is kept busy for χ (χ ≥ 0) seconds of the actual transmission

time of packet h∗ before time vpj(π). Let RIP denote the remaining busy period of

the link (i, j) under policy IP after time vpj(π) (this remaining busy period is due to

the remaining transmission time of packet h∗ after time vpj(π)). Hence, link (i, j)

becomes available to send a new packet at time vpj(π)+RIP . Let Xπ = apj(π)−vpj(π)

denote the transmission time of packet p under policy π and XIP = χ + RLB denote
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the actual transmission time of packet h∗. Then, the CCDF of RIP is given by

P[RIP > s] = P[XIP − χ > s|XIP > χ]. (B.4.6)

Because the packet transmission times are NBU, we can obtain that for all s, χ ≥ 0

P[XIP − χ > s|XIP > χ] = P[Xπ − χ > s|Xπ > χ]

≤ P[Xπ > s].

(B.4.7)

By combining (B.4.6) and (B.4.7), we obtain

RIP ≤st Xπ, (B.4.8)

which implies

vpj(π) +RIP ≤st vpj(π) +Xπ = apj(π). (B.4.9)

From (B.4.9), we can deduce that link (i, j) becomes available to send a new packet

under policy IP at a time that is stochastically smaller than the time apj(π). Let

θ(IP ) denote the time that link (i, j) becomes available to send a new packet under

policy IP . According to (B.4.9), we have

[θ(IP )|I ′,Γp−1] ≤st [apj(π)|I ′, Dp−1],

whenever γl ≤ dl, l = 1, 2, . . . , p− 1.

(B.4.10)

It is important to note that, since we have [Γpi(IP )|I ′] ≤ [Dpi(π)|I ′], there is a packet

with generation time greater than sp is available to the link (i, j) before time vpj(π)

under policy IP . At the time θ(IP ), we have two possible cases under policy IP :
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Case 1: Link (i, j) starts to send a fresh packet k with k ≥ p at the time θ(IP )

under policy IP , as shown in Fig. B.4(a). Hence we obtain

[vkj(IP )|I ′,Γp−1] = [θ(IP )|I ′,Γp−1] ≤st [apj(π)|I ′, Dp−1]

whenever γl ≤ dl, l = 1, 2, . . . , p− 1.

(B.4.11)

Since sk ≥ sp, (B.3.1) implies

[Γpj(IP )|I ′,Γp−1] ≤ [vkj(IP )|I ′,Γp−1]. (B.4.12)

Since there is no packet with generation time greater than sp that has been arrived to

node j before packet p under policy π, (B.3.2) implies

[Dpj(π)|I ′, Dp−1] = [apj(π)|I ′, Dp−1]. (B.4.13)

By combining (B.4.11), (B.4.12), and (B.4.13), (B.4.5) follows.

Case 2: Link (i, j) starts to send a stale packet (with generation time smaller than

sp) or there is no packet transmission over the link (i, j) at the time θ(LB) under policy

IP . Since the packets are served by following a work-conserving LGFS principle under

policy IP , and a packet with generation time greater than sp is available to the link

(i, j) before time vpj(π) under policy IP , the link (i, j) must have sent a fresh packet

k with k ≥ p before time θ(IP ), as shown in Fig. B.4(b). Hence, we have

[vkj(IP )|I ′,Γp−1] ≤ [θ(IP )|I ′,Γp−1] ≤st [apj(π)|I ′, Dp−1]

whenever γl ≤ dl, l = 1, 2, . . . , p− 1.

(B.4.14)

Similar to Case 1, we can use (B.3.1), (B.3.2), and (B.4.14) to show that (B.4.5)

holds in this case.
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Notice that if there is a fresher packet y with sy > sp and ayj(π) < apj(π) (this

may occur if packet y preempts the transmission of packet p under policy π or packet

y arrives to node i before packet p under policy π), then we replace packet p by packet

y in the arguments and equations from (B.4.5) to (B.4.14) to obtain

[Γyj(IP )|I ′,Γp−1] ≤ [Dyj(π)|I ′, Dp−1]

whenever γl ≤ dl, l = 1, 2, . . . , p− 1.

(B.4.15)

Observing that sy > sp, (B.3.1) implies

[Γpj(IP )|I ′,Γp−1] ≤ [Γyj(IP )|I ′,Γp−1]. (B.4.16)

Since ayj(π) < apj(π) and sy > sp, (B.3.2) implies

[Dpj(π)|I ′, Dp−1] = [Dyj(π)|I ′, Dp−1]. (B.4.17)

By combining (B.4.15), (B.4.16), and (B.4.17), we can prove (B.4.5) in this case

too. Finally, substitute (B.4.4) and (B.4.5) into Theorem 6.B.3 of [47], (B.3.4) is

proven.

B.5 Proof of Theorem 3.3.2

For notation simplicity, let policy P represent the non-prmp-LGFS policy and policy

IP represent the infeasible policy (the construction of the infeasible policy and the

age lower bound are provided in Appendix B.2). We will need the definitions that are

provided at the beginning of Appendix B.3 throughout this proof. Consider a node

j ∈ Hk with k ≥ 1. We prove Theorem 3.3.2 into three steps:

Step 1: We provide an upper bound on the time differences between the arrival
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Figure B.5: An illustration of Rlij,m and χlij,m . Packet l arrives to node ij,m−1 at time

alij,m−1
, while packet h with h < l is being transmitted over the link (ij,m−1, ij,m). After

the delivery of packet h to node ij,m at time ahij,m , packet k with k ≥ l is transmitted

over the link (ij,m−1, ij,m). The duration Rlij,m is the waiting time of packet l in the

queue of the link (ij,m−1, ij,m) until the packet k starts its transmission. The duration

χlij,m is the time spent by the link (ij,m−1, ij,m) on sending the packet h before the

time alij,m−1
.

times of the informative packets at node j under policy IP and those under policy P .

To achieve that, we need the following definitions. For each link in the path to node

j (i.e., (ij,m−1, ij,m) for all 1 ≤ m ≤ k), define Rlij,m = Γlij,m − Dlij,m−1
as the time

spent in the queue of the link (ij,m−1, ij,m) by the packet that arrives at node ij,m−1

at time Dlij,m−1
, until the first transmission starting time over the link (ij,m−1, ij,m)

of the packets with generation time greater than sl. If there is a packet that is being

transmitted over the link (ij,m−1, ij,m) at time Dlij,m−1
, let χlij,m (χlij,m ≥ 0) denote the

amount of time that the link (ij,m−1, ij,m) has spent on sending this packet by the time

Dlij,m−1
. These parameters (Rlij,m and χlij,m) are functions of the scheduling policy

π. An illustration of these parameters is provided in Fig. B.5. Note that policy P

is a LGFS work-conserving policy. Also, the packets under policy IP are served by

following a work-conserving LGFS principle. Thus, we can express Rlij,m under these
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policies as Rlij,m = [Xij,m − χlij,m |Xij,m > χlij,m ]. Because the packet transmission

times are NBU and i.i.d. across time, for all realization of χlij,m

[Rlij,m |χlij,m ] ≤st Xij,m , for m = 1, . . . , k, ∀l, (B.5.1)

which implies that

E[Rlij,m |χlij,m ] ≤ E[Xij,m ], for m = 1, . . . , k, ∀l, (B.5.2)

holds for policy P and policy IP . Define zl = Dlj(P )− Γlj(IP ). Note that, Γlj(IP )

represents the arrival time at node j of a packet p with sp ≥ sl under policy IP ,

and Dlj(P ) represents the arrival time at node j of a packet h with sh ≥ sl under

policy P . Therefor, zl’s represent the time differences between the arrival times of the

informative packets at node j under policy IP and those under policy P , as shown in

Fig. B.6. By invoking the construction of policy IP , we have Dlj(IP ) = Γlj(IP ) for

all l. Using this with the definition of Rlij,m, we can express Γlj(IP ) as

Γlj(IP ) = al0 +
k∑

m=1

[Rlij,m(IP )|χlij,m(IP )], (B.5.3)

where Γlj(IP ) is considered as the arrival time at node j of the first packet with

generation time greater than sl under policy IP . Also, we can express Dlj(P ) as

Dlj(P ) = al0 +
k∑

m=1

[Rlij,m(P )|χlij,m(P )] +
k∑

m=1

Xij,m . (B.5.4)

Observing that packet arrival times (a10, a20, . . .) at node 0 and the packet transmission

times are invariant of the scheduling policy π. Then, from the construction of policy

IP , we have [Rlij,1(IP )|χlij,1(IP )] = [Rlij,1(P )|χlij,1(P )] for all l (because all nodes in
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H1 receive the update packets from node 0). Using this with (B.5.3) and (B.5.4), we

can obtain

zl = Dlj(P )− Γlj(IP )

=
k∑

m=2

[Rlij,m(P )|χlij,m(P )] +
k∑

m=1

Xij,m

−
k∑

m=2

[Rlij,m(IP )|χlij,m(IP )]

≤
k∑

m=2

[Rlij,m(P )|χlij,m(P )] +
k∑

m=1

Xij,m = z
′

l .

(B.5.5)

Since the packet transmission times are independent of the packet generation process,

we also have z
′

l ’s are independent of the packet generation process. In addition, from

(B.5.2), we have

E[z
′

l ] ≤ E[Xij,1 ] + 2
k∑

m=2

E[Xij,m ]. (B.5.6)

Step 2: We use Step 1 to provide an upper bound on the average gap between

∆LB
j,IP and ∆j,P . This gap process is denoted by {Gj(t), t ∈ [0,∞)}. The average gap

is given by

[Ḡj|I ′] = lim sup
T→∞

∫ T
0
Gj(t)dt

T
. (B.5.7)

Let τl denote the inter-generation time between packet l and packet l − 1 (i.e., τl =

sl − sl−1), where τ = {τl, l ≥ 1}. Define N(T ) = max{l : sl ≤ T} as the number

of generated packets by time T . Note that [0, sN(T )] ⊆ [0, T ], where the length of the
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Figure B.6: The evolution ∆LB
j,IP and ∆j,P .

interval [0, sN(T )] is

N(T )∑
l=1

τl. Thus, we have

N(T )∑
l=1

τl ≤ T. (B.5.8)

The area defined by the integral in (B.5.7) can be decomposed into a sum of disjoint

geometric parts. Observing Fig. B.6, the area can be approximated by the concate-

nation of the parallelograms G1, G2, . . . (Gl’s are highlighted in Fig. B.6). Note that

the parallelogram Gl results after the generation of packet l (i.e., the gap that is cor-

responding to the packet l, occurs after its generation). Since the observing time T

is chosen arbitrary, when T ≥ sl, the total area of the parallelogram Gl is accounted
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in the summation

N(T )∑
l=1

Gl, while it may not be accounted in the integral

∫ T

0

Gf (t)dt.

This implies that

N(T )∑
l=1

Gl ≥
∫ T

0

Gj(t)dt. (B.5.9)

Combining (B.5.8) and (B.5.9), we get

∫ T
0
Gj(t)dt

T
≤
∑N(T )

l=1 Gl∑N(T )
l=1 τl

. (B.5.10)

Then, take conditional expectation given τ and N(T ) on both sides of (B.5.10), we

obtain

E[
∫ T

0
Gj(t)dt|τ,N(T )]

T
≤ E[

∑N(T )
l=1 Gl|τ,N(T )]∑N(T )

l=1 τl

=

∑N(T )
l=1 E[Gl|τ,N(T )]∑N(T )

l=1 τl
,

(B.5.11)

where the second equality follows from the linearity of the expectation. From Fig. B.6,

Gl can be calculated as

Gl = τlzl. (B.5.12)

substituting by (B.5.12) into (B.5.11), yields

E[
∫ T

0
Gj(t)dt|τ,N(T )]

T
≤
∑N(T )

l=1 E[τlzl|τ,N(T )]∑N(T )
l=1 τl

=

∑N(T )
l=1 τlE[zl|τ,N(T )]∑N(T )

l=1 τl
.

(B.5.13)
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Using (B.5.5), we obtain

E[
∫ T

0
Gj(t)dt|τ,N(T )]

T
≤
∑N(T )

l=1 τlE[zl|τ,N(T )]∑N(T )
l=1 τl

≤
∑N(T )

l=1 τlE[z
′

l |τ,N(T )]∑N(T )
l=1 τl

.

(B.5.14)

Note that z
′

l ’s are independent of the packet generation process. Thus, we have

E[z
′

l |τ,N(T )] = E[z
′

l ] ≤ E[Xij,1 ] + 2
k∑

m=2

E[Xij,m ] for all l. Using this in (B.5.14),

we get

E[
∫ T

0
Gj(t)dt|τ,N(T )]

T
≤
∑N(T )

l=1 τl(E[Xij,1 ] + 2
∑k

m=2 E[Xij,m ])∑N(T )
l=1 τl

≤ E[Xij,1 ] + 2
k∑

m=2

E[Xij,m ],

by the law of iterated expectations, we have

E[
∫ T

0
Gj(t)dt]

T
≤ E[Xij,1 ] + 2

k∑
m=2

E[Xij,m ]. (B.5.15)

Taking lim sup of both sides of (B.5.15) when T →∞, yields

lim sup
T→∞

E[
∫ T

0
Gj(t)dt]

T
≤ E[Xij,1 ] + 2

k∑
m=2

E[Xij,m ]. (B.5.16)

Equation (B.5.16) tells us that the average gap between ∆LB
f,IP and ∆f,P is no larger

than E[Xij,1 ] + 2
k∑

m=2

E[Xij,m ].

Step 3: We use the provided upper bound on the gap in Step 2 to prove (3.3.5).
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Since ∆LB
j,IP is a lower bound of ∆j,P , we obtain

[∆̄LB
j,IP |I ′] ≤ [∆̄j,P |I ′] ≤

[∆̄LB
j,IP |I ′] + E[Xij,1 ] + 2

k∑
m=2

E[Xij,m ],
(B.5.17)

where ∆̄LB
j,IP = lim sup

T→∞

E[
∫ T

0
∆LB
j,IP (t)dt]

T
. From Lemma B.2.1 in Appendix B.2, we

have for all I ′ satisfying Bij ≥ 1, and π ∈ Π

[∆LB
j,IP |I ′] ≤st [∆j,π|I ′], (B.5.18)

which implies that

[∆̄LB
j,IP |I ′] ≤ [∆̄j,π|I ′], (B.5.19)

holds for all π ∈ Π. As a result, we get

[∆̄LB
j,IP |I ′] ≤ min

π∈Π
[∆̄j,π|I ′]. (B.5.20)

Since policy P is a feasible policy, we get

min
π∈Π

[∆̄j,π|I ′] ≤ [∆̄j,P |I ′]. (B.5.21)

Combining (B.5.17), (B.5.20), and (B.5.21), we get

min
π∈Π

[∆̄j,π|I ′] ≤ [∆̄j,P |I ′] ≤

min
π∈Π

[∆̄j,π|I ′] + E[Xij,1 ] + 2
k∑

m=2

E[Xij,m ].

(B.5.22)
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Following the previous argument, we can show that (B.5.22) holds for all j ∈ V\{0}.

This proves (3.3.5), which completes the proof.

B.6 Proof of Theorem 3.3.3

This proof is similar to that of Theorem 3.3.1. The difference between this proof and

the proof of Theorem 3.3.1 is that policy π cannot be a preemptive policy here. We

will use the same definition of the system state of policy π used in Theorem 3.3.1.

For notational simplicity, let policy P represent the non-preemptive LGFS policy.

The key step in the proof of Theorem 3.3.3 is the following lemma, where we

compare policy P with an arbitrary policy π ∈ Πnpwc.

Lemma B.6.1. Suppose that UP (0−) = Uπ(0−) for all π ∈ Πnpwc, then for all I,

[{UP (t), t ∈ [0,∞)}|I]≥st [{Uπ(t), t ∈ [0,∞)}|I]. (B.6.1)

We use coupling and forward induction to prove Lemma B.6.1. For any work-

conserving policy π, suppose that stochastic processes ŨP (t) and Ũπ(t) have the same

distributions with UP (t) and Uπ(t), respectively. The state processes ŨP (t) and Ũπ(t)

are coupled in the following manner: If a packet is delivered from node i to node j

at time t as ŨP (t) evolves in policy prmp-LGFS, then there exists a packet delivery

from node i to node j at time t as Ũπ(t) evolves in policy π. Such a coupling is valid

since the transmission time distribution at each link is identical under all policies.

Moreover, policy π can not be either preemptive or non-work-conserving policy, and

both policies have the same packets generation times (s1, s2, . . . , sn) at the exterenal

source and packet arrival times (a10, a20, . . . , an0) to node 0. According to Theorem
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6.B.30 in [47], if we can show

P[ŨP (t) ≥ Ũπ(t), t ∈ [0,∞)|I] = 1, (B.6.2)

then (B.6.1) is proven.

To ease the notational burden, we will omit the tildes henceforth on the coupled

versions and just use UP (t) and Uπ(t).

Next, we use the following lemmas to prove (B.6.2):

Lemma B.6.2. Suppose that under policy P , UP (ν) is obtained by a packet delivery

over the link (i, j) at time ν in the system whose state is UP (ν−). Further, suppose

that under policy π, Uπ(ν) is obtained by a packet delivery over the link (i, j) at time

ν in the system whose state is Uπ(ν−). If

UP (t) ≥ Uπ(t), (B.6.3)

holds for all t ∈ [0, ν−], then

UP (ν) ≥ Uπ(ν). (B.6.4)

Proof. Let sP and sπ denote the packet indexes and the generation times of the de-

livered packets over the link (i, j) at time ν under policy P and policy π, respectively.

From the definition of the system state, we can deduce that

Uj,P (ν) = max{Uj,P (ν−), sP},

Uj,π(ν) = max{Uj,π(ν−), sπ}.
(B.6.5)

Hence, we have two cases:
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Case 1: If sP ≥ sπ. From (B.6.3), we have

Uj,P (ν−) ≥ Uj,π(ν−). (B.6.6)

By sP ≥ sπ, (B.6.5), and (B.6.6), we have

Uj,P (ν) ≥ Uj,π(ν). (B.6.7)

Since there is no packet delivery under other links, we get

Uk,P (ν) = Uk,P (ν−) ≥ Uk,π(ν−) = Uk,π(ν), ∀k 6= j. (B.6.8)

Hence, we have

UP (ν) ≥ Uπ(ν). (B.6.9)

Case 2: If sP < sπ. Let aπ represent the arrival time of packet sπ to node i under

policy π. The transmission starting time of the delivered packets over the link (i, j) is

denoted by τ under both policies. Apparently, aπ ≤ τ ≤ ν−. Since packet sπ arrived

to node i at time aπ in policy π, we get

sπ ≤ Ui,π(aπ). (B.6.10)

From (B.6.3), we obtain

Ui,π(aπ) ≤ Ui,P (aπ). (B.6.11)
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Combining (B.6.10) and (B.6.11), yields

sπ ≤ Ui,P (aπ). (B.6.12)

Hence, in policy P , node i has a packet with generation time no smaller than sπ by

the time aπ. Because the Ui,P (t) is a non-decreasing function of t and aπ ≤ τ , we

have

Ui,P (aπ) ≤ Ui,P (τ). (B.6.13)

Then, (B.6.12) and (B.6.13) imply

sπ ≤ Ui,P (τ). (B.6.14)

Since sP < sπ, (B.6.14) tells us

sP < Ui,P (τ), (B.6.15)

and hence policy P is sending a stale packet on link (i, j). By the definition of policy

P , this happens only when all packets that are generated after sP in the queue of the

link (i, j) have been delivered to node j by time τ . In addition, (B.6.14) tells us that

by time τ , node i has already received a packet (say packet h) generated no earlier

than sπ in policy P . By sP < sπ, packet h is generated after sP . Hence, packet h

must have been delivered to node j by time τ in policy P such that

sπ ≤ Uj,P (τ). (B.6.16)
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Because the Uj,P (t) is a non-decreasing function of t, and τ ≤ ν−, (B.6.16) implies

sπ ≤ Uj,P (ν−). (B.6.17)

Also, from (B.6.3), we have

Uj,π(ν−) ≤ Uj,P (ν−). (B.6.18)

Combining (B.6.17) and (B.6.18) with (B.6.5), we obtain

Uj,P (ν) ≥ Uj,π(ν). (B.6.19)

Since there is no packet delivery under other links, we get

Uk,P (ν) = Uk,P (ν−) ≥ Uk,π(ν−) = Uk,π(ν), ∀k 6= j. (B.6.20)

Hence, we have

UP (ν) ≥ Uπ(ν), (B.6.21)

which complete the proof.

Lemma B.6.3. Suppose that under policy P , U′P is obtained by the arrival of a new

packet to node 0 in the system whose state is UP . Further, suppose that under policy

π, U′π is obtained by the arrival of a new packet to node 0 in the system whose state

is Uπ. If

UP ≥ Uπ, (B.6.22)
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then,

U′P ≥ U′π. (B.6.23)

Proof. The proof of Lemma B.6.3 is similar to that of Lemma B.1.3, and hence is not

provided.

Proof of Lemma B.6.1. For any sample path, we have that UP (0−) = Uπ(0−). This,

together with Lemma B.6.2 and Lemma B.6.3, implies that

[UP (t)|I] ≥ [Uπ(t)|I],

holds for all t ∈ [0,∞). Hence, (B.6.2) holds which implies (B.6.1) by Theorem 6.B.30

in [47]. This completes the proof.

Proof of Theorem 3.3.3. According to Lemma B.6.1, we have

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I],

holds for all π ∈ Πnpwc, which implies

[{∆P (t), t ∈ [0,∞)}|I]≤st[{∆π(t), t ∈ [0,∞)}|I],

holds for all π ∈ Πnpwc. This completes the proof.
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APPENDIX C: PROOFS FOR CHAPTER 4

C.1 Proof of Proposition 4.3.1

We will need the following definitions: A set U ⊆ Rn is called upper if y ∈ U whenever

y ≥ x and x ∈ U .

Definition C.1.1. Univariate Stochastic Ordering: [47] Let X and Y be two

random variables. Then, X is said to be stochastically smaller than Y (denoted as

X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition C.1.2. Multivariate Stochastic Ordering: [47] Let X and Y be two

random vectors. Then, X is said to be stochastically smaller than Y (denoted as

X ≤st Y), if

P{X ∈ U} ≤ P{Y ∈ U}, for all upper sets U ⊆ Rn.

Definition C.1.3. Stochastic Ordering of Stochastic Processes: [47] Let

{X(t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be two stochastic processes. Then, {X(t), t ∈

[0,∞)} is said to be stochastically smaller than {Y (t), t ∈ [0,∞)} (denoted by {X(t), t ∈

[0,∞)} ≤st {Y (t), t ∈ [0,∞)}), if, for all choices of an integer n and t1 < t2 < . . . <
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tn in [0,∞), it holds that

(X(t1), X(t2), . . . , X(tn))≤st (Y (t1), Y (t2), . . . , Y (tn)), (C.1.1)

where the multivariate stochastic ordering in (C.1.1) was defined in Definition C.1.2.

Now, we prove Proposition 4.3.1. Let the vector ∆π(t) = (∆[1],π(t), . . . ,∆[m],π(t))

denote the system state at time t of the scheduler π, where ∆[l],π(t) is the l-th largest

age of the sources at time t under the scheduler π. Let {∆π(t), t ≥ 0} denote the

state process of the scheduler π. For notational simplicity, let P represent the MAF

scheduler. Throughout the proof, we assume that ∆π(0−) = ∆P (0−) for all π and the

sampler is fixed to an arbitrarily chosen one. The key step in the proof of Proposition

4.3.1 is the following lemma, where we compare the scheduler P with any arbitrary

scheduler π.

Lemma C.1.1. Suppose that ∆π(0−) = ∆P (0−) for all scheduler π and the sampler

is fixed, then we have

{∆P (t), t ≥ 0} ≤st {∆π(t), t ≥ 0} (C.1.2)

We use a coupling and forward induction to prove Lemma C.1.1. For any sched-

uler π, suppose that the stochastic processes ∆̃P (t) and ∆̃π(t) have the same stochas-

tic laws as ∆P (t) and ∆π(t). The state processes ∆̃P (t) and ∆̃π(t) are coupled such

that the packet service times are equal under both scheduling policies, i.e., Yi’s are

the same under both scheduling policies. Such a coupling is valid since the service

time distribution is fixed under all policies. Since the sampler is fixed, such a cou-

pling implies that the packet generation and delivery times are the same under both
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schedulers. According to Theorem 6.B.30 of [47], if we can show

P
[
∆̃P (t) ≤ ∆̃π(t), t ≥ 0

]
= 1, (C.1.3)

then (C.1.2) is proven. To ease the notational burden, we will omit the tildes on

the coupled versions in this proof and just use ∆P (t) and ∆π(t). Next, we compare

scheduler P and scheduler π on a sample path and prove (C.1.2) using the following

lemma:

Lemma C.1.2 (Inductive Comparison). Suppose that a packet with generation time

S is delivered under the scheduler P and the scheduler π at the same time t. The

system state of the scheduler P is ∆P before the packet delivery, which becomes ∆′P

after the packet delivery. The system state of the scheduler π is ∆π before the packet

delivery, which becomes ∆′π after the packet delivery. If

∆[i],P ≤ ∆[i],π, i = 1, . . . ,m, (C.1.4)

then

∆′[i],P ≤ ∆′[i],π, i = 1, . . . ,m. (C.1.5)

Lemma C.1.2 is proven by following the proof idea of [36, Lemma 2]. For the sake

of completeness, we provide proof of Lemma C.1.2 as follows:

Proof. Since only one source can be scheduled at a time and the scheduler P is the

MAF one, the packet with generation time S must be generated from the source with

maximum age ∆[1],P , call it source l∗. In other words, the age of source l∗ is reduced
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from the maximum age ∆[1],P to the minimum age ∆′[m],P = t−S, and the age of the

other (m− 1) sources remain unchanged. Hence,

∆′[i],P = ∆[i+1],P , i = 1, . . . ,m− 1,

∆′[m],P = t− S.
(C.1.6)

In the scheduler π, this packet can be generated from any source. Thus, for all cases

of scheduler π, it must hold that

∆′[i],π ≥ ∆[i+1],π, i = 1, . . . ,m− 1. (C.1.7)

By combining (C.1.4), (C.1.6), and (C.1.7), we have

∆′[i],π ≥ ∆[i+1],π ≥ ∆[i+1],P = ∆′[i],P , i = 1, . . . ,m− 1. (C.1.8)

In addition, since the same packet is also delivered under the scheduler π, the source

from which this packet is generated under policy π will have the minimum age after

the delivery, i.e., we have

∆′[m],π = t− S = ∆′[m],P . (C.1.9)

By this, (C.1.5) is proven.

Proof of Lemma C.1.1. Using the coupling between the system state processes, and

for any given sample path of the packet service times, we consider two cases:

Case 1: When there is no packet delivery, the age of each source grows linearly

with a slope 1.

Case 2: When a packet is delivered, the ages of the sources evolve according to

Lemma C.1.2.
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By induction over time, we obtain

∆[i],P (t) ≤ ∆[i],π(t), i = 1, . . . ,m, t ≥ 0. (C.1.10)

Hence, (C.1.3) follows which implies (C.1.2) by Theorem 6.B.30 of [47]. This com-

pletes the proof.

Proof of Proposition 4.3.1. Since the Ta-APD and Ta-AP for any scheduling policy

π are the expectation of non-decreasing functional of the process {∆π(t), t ≥ 0},

(C.1.2) implies (4.3.1) and (4.3.2) using the properties of stochastic ordering [47].

This completes the proof.

C.2 Proof of Theorem 4.3.1

The optimality of the MAF scheduler follows from Proposition 4.3.1. Now, we need

to show the optimality of the zero-wait sampler. We need to show that the Ta-APD

is an increasing function of the packets waiting times Zi’s. Define Kli as the number

of packets that have been transmitted since the last received service by source l before

time Di. Also, let γl be the index of the first delivered packet from source l.

For i > γl, the last service that source l has received before time D−i was at time

Di−Kli
. Since the age process increases linearly with time when there is no packet

delivery, we have

∆l(D
−
i ) = Di −Di−Kli

+ Yi−Kli
, i > γl, (C.2.1)

where Yi−Kli
is the service time of packet i−Kli. Note that Yi−Kli

is also the age value

of source l at time Di−Kli
, i.e., ∆l(Di−Kli

) = Yi−Kli
. Note that Di = Yi+Zi−1 +Di−1.
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Repeating this, we can express (Di −Di−Kli
) in terms of Zi’s and Yi’s, and hence we

get

∆l(D
−
i ) =

Kli∑
k=0

Yi−k +

Kli∑
k=1

Zi−k, i > γl. (C.2.2)

For example, in Fig. 4.2, we have ∆2(D−2 ) = Y1 + Z1 + Y2.

For i ≤ γl, ∆l(D
−
i ) is simply the initial age value of source l (∆l(0)) plus the

length of the time interval [0, Di). Hence, we have

∆l(D
−
i ) = ∆l(0) +Di, i ≤ γl. (C.2.3)

Again using Di = Yi + Zi−1 +Di−1 and the fact that D0 = 0, we get

∆l(D
−
i ) = ∆l(0) +

i∑
k=1

Yk +
i∑

k=0

Zk, i ≤ γl. (C.2.4)

In Fig. 4.2, For example, we have ∆1(D−1 ) = ∆1(0) + Z0 + Y1.

Substituting (C.2.2) and (C.2.4) into (4.2.3), we get

∆avg-D(π, f) = lim sup
n→∞

1

n
E

[
m∑
l=1

γl∑
i=1

g

(
∆l(0) +

i∑
k=1

Yk +
i∑

k=0

Zk

)
+

n∑
i=γl

g

(
Kli∑
k=0

Yi−k +

Kli∑
k=1

Zi−k

)]
.

(C.2.5)

Since the function g(·) is non-decreasing, (C.2.5) implies that the Ta-APD is a non-

decreasing function of the waiting times. This completes the proof.

C.3 Proof of Lemma 4.3.1

Part (i) is proven in two steps:
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Step 1: We will prove that ∆̄avg-opt ≤ β if and only if Θ(β) ≤ 0. If ∆̄avg-opt ≤ β,

there exists a sampling policy f = (Z0, Z1, . . .) ∈ F that is feasible for (4.3.10) and

(4.3.11), which satisfies

lim sup
n→∞

∑n−1
i=0 E

[∑m
l=1

∫ ali+Zi+Yi+1

ali
g(τ)dτ

]
∑n−1

i=0 E[Zi + Yi+1]
≤ β. (C.3.1)

Hence,

lim sup
n→∞

1
n

∑n−1
i=0E

[∑m
l=1

∫ ali+Zi+Yi+1
ali

g(τ)dτ−β(Zi+Yi+1)
]

1
n

∑n−1
i=0 E[Zi+Yi+1]

≤0. (C.3.2)

Since Zi’s and Yi’s are bounded and positive and E[Yi] > 0 for all i, we have 0 < lim inf
n→∞

1

n

n−1∑
i=0

E[Zi + Yi+1] ≤ lim sup
n→∞

1

n

n−1∑
i=0

E[Zi + Yi+1] ≤ q for some q ∈ R+. By this, we get

lim sup
n→∞

1

n

n−1∑
i=0

E

[
m∑
l=1

∫ ali+Zi+Yi+1

ali

g(τ)dτ−β(Zi+Yi+1)

]
≤ 0. (C.3.3)

Therefore, Θ(β) ≤ 0.

In the reverse direction, if Θ(β) ≤ 0, then there exists a sampling policy f =

(Z0, Z1, . . .) ∈ F that is feasible for (4.3.10) and (4.3.11), which satisfies (C.3.3).

Since we have 0 < lim inf
n→∞

1

n

n−1∑
i=0

E[Zi + Yi+1] ≤ lim sup
n→∞

1

n

n−1∑
i=0

E[Zi + Yi+1] ≤ q, we

can divide (C.3.3) by lim inf
n→∞

1

n

n−1∑
i=0

E[Zi + Yi+1] to get (C.3.2), which implies (C.3.1).

Hence, ∆̄avg-opt ≤ β. By this, we have proven that ∆̄avg-opt ≤ β if and only if Θ(β) ≤ 0.

Step 2: We need to prove that ∆̄avg-opt < β if and only if Θ(β) < 0. This statement

can be proven by using the arguments in Step 1, in which “≤” should be replaced by

“<”. Finally, from the statement of Step 1, it immediately follows that ∆̄avg-opt > β

if and only if Θ(β) > 0. This completes part (i).
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Part(ii): We first show that each optimal solution to (4.3.10) is an optimal so-

lution to (4.3.11). By the claim of part (i), Θ(β) = 0 is equivalent to ∆̄avg-opt = β.

Suppose that policy f = (Z0, Z1, . . .) ∈ F is an optimal solution to (4.3.10). Then,

∆avg(πMAF,f) = ∆̄avg-opt = β. Applying this in the arguments of (C.3.1)-(C.3.3), we

can show that policy f satisfies

lim sup
n→∞

1

n

n−1∑
i=0

E

[
m∑
l=1

∫ ali+Zi+Yi+1

ali

g(τ)dτ−β(Zi+Yi+1)

]
= 0. (C.3.4)

This and Θ(β) = 0 imply that policy f is an optimal solution to (4.3.11).

Similarly, we can prove that each optimal solution to (4.3.11) is an optimal solu-

tion to (4.3.10). By this, part (ii) is proven.

C.4 Proof of Proposition 4.3.2

According to [68, Proposition 4.2.1 and Proposition 4.2.6], it is enough to show that

for every two states s and s′, there exists a stationary deterministic policy f such that

for some k, we have

P [s(k) = s′|s(0) = s, f ] > 0. (C.4.1)

From the state evolution equation (4.3.13), we can observe that any state in S can

be represented in terms of the waiting and service times. This implies (C.4.1). To

clarify this, let us consider a system with 3 sources. Assume that the elements of
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state s′ are as follows:

a′[1] = y3 + z2 + y2 + z1 + y1,

a′[2] = y3 + z2 + y2,

a′[3] = y3,

(C.4.2)

where yi’s and zi’s are any arbitrary elements in Y and Z, respectively. Then, we

will show that from any arbitrary state s = (a[1], a[2], a[3]), a sequence of service and

waiting times can be followed to reach state s′. If we have Z0 = z1, Y1 = y1, Z1 = z1,

Y2 = y2, Z2 = z2, and Y3 = y3, then according to (4.3.13), we have in the first stage

a[1]1 = a[2] + z1 + y1,

a[2]1 = a[3] + z1 + y1,

a[3]1 = y1,

(C.4.3)

and in the second stage, we have

a[1]2 = a[3] + z1 + y2 + z1 + y1,

a[2]2 = y2 + z1 + y1,

a[3]2 = y2,

(C.4.4)

and in the third stage, we have

a[1]3 = y3 + z2 + y2 + z1 + y1 = a′[1],

a[2]3 = y3 + z2 + y2 = a′[2],

a[3]3 = y3 = a′[3].

(C.4.5)
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Hence, a stationary deterministic policy f can be designed to reach state s′ from state

s in 3 stages, if the aforementioned sequence of service times occurs. This implies

that

P [s(3) = s′|s(0) = s, f ] =
3∏
i=1

P(Yi = yi) > 0, (C.4.6)

where we have used that Yi’s are i.i.d.1 The previous argument can be generalized to

any number of sources. In particular, a forward induction over m can be used to show

the result, where (C.4.1) trivially holds for m = 1, and the previous argument can be

used to show that (C.4.1) holds for any general m. This completes the proof.

C.5 Proof of Proposition 4.3.3

We prove Proposition 4.3.3 into two steps:

Step 1: We first show that h(s) is non-decreasing in s. To do so, we show that

Jα(s), defined in (4.3.22), is non-decreasing in s, which together with (4.3.21) imply

that h(s) is non-decreasing in s.

Given an initial state s(0), the total expected discounted cost under a sampling

policy f ∈ F is given by

Jα(s(0); f) = lim sup
n→∞

E

[
n−1∑
i=0

αiC(s(i), Zi)

]
, (C.5.1)

where 0 < α < 1 is the discount factor. The optimal total expected α-discounted cost

1We assume that all elements in Y have a strictly positive probability, where the elements with
zero probability can be removed without affecting the proof.
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function is defined by

Jα(s) = min
f∈F

Jα(s; f), s ∈ S. (C.5.2)

A policy is said to be α-optimal if it minimizes the total expected α-discounted cost.

The discounted cost optimality equation of Jα(s) is discussed below.

Proposition C.5.1. The optimal total expected α-discounted cost Jα(s) satisfies

Jα(s) = min
z∈Z

C(s, z) + α
∑
s′∈S

Pss′(z)Jα(s′). (C.5.3)

Moreover, a stationary deterministic policy that attains the minimum in equation

(C.5.3) for each s ∈ S will be an α-optimal policy. Also, let Jα,0(s) = 0 for all s and

any n ≥ 0,

Jα,n+1(s) = min
z∈Z

C(s, z) + α
∑
s′∈S

Pss′(z)Jα,n(s′). (C.5.4)

Then, we have Jα,n(s)→ Jα(s) as n→∞ for every s, and α.

Proof. Since we have bounded cost per stage, the proposition follows directly from [68,

Proposition 1.2.2 and Proposition 1.2.3], and [90].

Next, we use the optimality equation (C.5.3) and the value iteration in (C.5.4) to

prove that Jα(s) is non-decreasing in s.

Lemma C.5.1. The optimal total expected α-discounted cost function Jα(s) is non-

decreasing in s.

Proof. We use induction on n in equation (C.5.4) to prove Lemma C.5.1. Obviously,

the result holds for Jα,0(s).
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Now, assume that Jα,n(s) is non-decreasing in s. We need to show that for any

two states s1 and s2 with s1 ≤ s2, we have Jα,n+1(s1) ≤ Jα,n+1(s2). First, we note

that, since the age-penalty function g(·) is non-decreasing, the expected cost per stage

C(s, z) is non-decreasing in s, i.e., we have

C(s1, z) ≤ C(s2, z). (C.5.5)

From the state evolution equation (4.3.13) and the transition probability equation

(4.3.15), the second term of the right-hand side (RHS) of (C.5.4) can be rewritten as

∑
s′∈S

Pss′(z)Jα,n(s′) =
∑
y∈Y

P(Y = y)Jα,n(s′(z, y)), (C.5.6)

where s′(z, y) is the next state from state s given the values of z and y. Also, according

to the state evolution equation (4.3.13), if the next states of s1 and s2 for given values

of z and y are s′1(z, y) and s′2(z, y), respectively, then we have s′1(z, y) ≤ s′2(z, y). This

implies that

∑
y∈Y

P(Y = y)Jα,n(s′1(z, y)) ≤
∑
y∈Y

P(Y = y)Jα,n(s′2(z, y)), (C.5.7)

where we have used the induction assumption that Jα,n(s) is non-decreasing in s.

Using (C.5.5), (C.5.7), and the fact that the minimum operator in (C.5.4) retains the

non-decreasing property, we conclude that

Jα,n+1(s1) ≤ Jα,n+1(s2). (C.5.8)

This completes the proof.

Step 2: We use Step 1 to prove Proposition 4.3.3. From Step 1, we have that
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h(s) is non-decreasing in s. Similar to Step 1, this implies that the second term

of the right-hand side (RHS) of (4.3.19) (
∑
s′∈S

Pss′(z)h(s′)) is non-decreasing in s′.

Moreover, from the state evolution (4.3.13), we can notice that, for any state s, the

next state s′ is increasing in z. This argument implies that the second term of the

right-hand side (RHS) of (4.3.19) (
∑
s′∈S

Pss′(z)h(s′)) is increasing in z. Thus, the

value of z ∈ Z that achieves the minimum value of this term is zero. If, for a given

state s, the value of z ∈ Z that achieves the minimum value of the cost function

C(s, z) is zero, then z = 0 solves the RHS of (4.3.19). In the sequel, we obtain the

condition on s under which z = 0 minimizes the cost function C(s, z).

Now, we focus on the cost function C(s, z). In order to obtain the optimal z that

minimizes this cost function, we need to obtain the one-sided derivative of it. The

one-sided derivative of a function q in the direction of ω at z is given by

δq(z;ω) , lim
ε→0+

q(z + εω)− q(z)

ε
. (C.5.9)

Let r(s, z, Y ) =
m∑
l=1

∫ a[l]+z+Y

a[l]

g(τ)dτ . Since r(s, z, Y ) is the sum of integration of a

non-decreasing function g(·), it is easy to show that r(s, z, Y ) is convex. According

to [18, Lemma 4], the function q(z) = EY [r(s, z, Y )] is convex as well. Hence, the

one-sided derivative δq(z;ω) of q(z) exists [91, p.709]. Moreover, since z → r(s, z, Y )

is convex, the function ε → [r(s, z + εω, Y ) − r(s, z, Y )]/ε is non-decreasing and

bounded from above on (0, θ] for some θ > 0 [92, Proposition 1.1.2(i)]. Using the

monotone convergence theorem [93, Theorem 1.5.6], we can interchange the limit
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and integral operators in δq(z;ω) such that

δq(z;ω) = lim
ε→0+

1

ε
EY [r(s, z + εω, Y )− r(s, z, Y )]

= EY
[

lim
ε→0+

1

ε
{r(s, z + εω, Y )− r(s, z, Y )}

]
= EY

[
lim
t→z+

m∑
l=1

g(a[l] + t+ Y )w1{ω>0} +

lim
t→z−

m∑
l=1

g(a[l] + t+ Y )w1{ω<0}

]

= lim
t→z+

EY

[
m∑
l=1

g(a[l] + t+ Y )w1{ω>0}

]
+

lim
t→z−

EY

[
m∑
l=1

g(a[l] + t+ Y )w1{ω<0}

]
, (C.5.10)

where 1E is the indicator function of event E. According to [91, p.710] and the

convexity of q(z), z is optimal to the cost function C(s, z) if and only if

δq(z;ω)− ∆̄avg-optω ≥ 0, ∀ω ∈ R. (C.5.11)

As ω in (C.5.11) is an arbitrary real number, considering ω = 1, (C.5.11) becomes

lim
t→z+

EY

[
m∑
l=1

g(a[l] + t+ Y )

]
− ∆̄avg-opt ≥ 0. (C.5.12)

Likewise, considering ω = −1, (C.5.11) implies

lim
t→z−

EY

[
m∑
l=1

g(a[l] + t+ Y )

]
− ∆̄avg-opt ≤ 0. (C.5.13)
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Since g(·) is non-decreasing, we get from (C.5.11)-(C.5.13) that z must satisfy

EY

[
m∑
l=1

g(a[l] + t+ Y )

]
− ∆̄avg-opt ≥ 0, if t > z, (C.5.14)

EY

[
m∑
l=1

g(a[l] + t+ Y )

]
− ∆̄avg-opt ≤ 0, if t < z. (C.5.15)

Subsequently, the smallest z that satisfies (C.5.14)-(C.5.15) is

z = inf

{
t ≥ 0 : EY

[
m∑
l=1

g(a[l] + t+ Y )

]
≥ ∆̄avg-opt

}
. (C.5.16)

According to (C.5.16), Since g(·) is non-decreasing, if EY

[
m∑
l=1

g(a[l] + Y )

]
≥ ∆̄avg-opt,

then z = 0 minimizes C(s, z). This completes the proof.

C.6 Proof of Theorem 4.3.3

We use the threshold test As ≥ (∆̄avg-opt − mE[Y ]), in Proposition 4.3.4, to prove

Theorem 4.3.3. We will show that the condition in (4.3.24) implies that As ≥

(∆̄avg-opt − mE[Y ]) holds for all states s ∈ S, and hence the zero-wait sampler is

optimal under this condition. From the state evolution (4.3.13), we can deduce that

for any state s ∈ S, we have

a[l] ≥ (m− l + 1)yinf, ∀l = 1, . . . ,m. (C.6.1)

This implies

As ≥
m∑
l=1

lyinf =
m(m+ 1)

2
yinf, ∀s ∈ S. (C.6.2)
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Moreover, it is easy to show that the total-average age of the zero-wait sampler, when

the scheduling policy is fixed to the MAF scheduler, is given by

∆̄0 =
m(m+1)

2
E[Y ]2 + m

2
E[Y 2]

E[Y ]
. (C.6.3)

Since ∆̄0 ≥ ∆̄avg-opt, we have

∆̄0 −mE[Y ] ≥ ∆̄avg-opt −mE[Y ]. (C.6.4)

Hence, if the following condition holds

m(m+ 1)

2
yinf ≥

m(m+1)
2

E[Y ]2 + m
2
E[Y 2]

E[Y ]
−mE[Y ], (C.6.5)

which is equivalent to

yinf ≥
(m− 1)E[Y ]2 + E[Y 2]

(m+ 1)E[Y ]
, (C.6.6)

then we have As ≥ (∆̄avg-opt − mE[Y ]) for all states s ∈ S. This implies that the

zero-wait sampler is optimal under this condition. This completes the proof.
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APPENDIX D: PROOFS FOR CHAPTER 5

D.1 Derivation of (5.2.5)

Define Sl as the residual sleeping period of source l after a sleep-wake cycle is over.

Due to the memoryless property of exponential distribution, since the sleeping period of

source l is exponentially distributed with mean value E[T ]/rl, Sl is also exponentially

distributed with mean value E[T ]/rl. According to the proposed sleep-wake scheduler,

source l gains access to the channel and transmits successfully in a given cycle if

Si ≥ Sl + ts for all i 6= l. Hence, we have

αl = P(Si ≥ Sl + ts, ∀i 6= l) (D.1.1)

(a)
= E[P(Si ≥ Sl + ts, ∀i 6= l|Sl)] (D.1.2)

(b)
= E

[∏
i 6=l

P(Si ≥ Sl + ts|Sl)
]

(D.1.3)

=

∫ ∞
0

[∏
i 6=l

e−ri
sl+ts
E[T ]

]
rl

E[T ]
e−rl

sl
E[T ]dsl (D.1.4)

=
rle

rl
ts

E[T ]

e
∑M

i=1 ri
ts

E[T ]
∑M

i=1 ri
, (D.1.5)

where (a) is due to P[A] = E[P(A|B)], and (b) is due to the fact that Sl is independent

for different sources.
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D.2 Derivation of (5.2.13)

Recall the definition of Sl at the beginning of Appendix D.1. Moreover, define Pl as

the probability that source l transmits a packet in a given cycle, regardless whether

packet collision occurs or not. For the sleep-wake scheduling mechanism the we are

utilizing here, source l transmits in a given cycle as long as no other source wakes up

before Sl − ts, i.e., Si ≥ Sl − ts for all i 6= l. Hence, we have

Pl = P(Si ≥ Sl − ts, ∀i 6= l) (D.2.1)

= P(Si ≥ Sl − ts, ∀i 6= l, Sl ≥ ts) + P(Sl < ts), (D.2.2)

where the first term in the RHS is given by

P(Si ≥ Sl − ts ≥ 0, ∀i 6= l) (D.2.3)

=E[P(Si ≥ Sl − ts ≥ 0, ∀i 6= l|Sl)] (D.2.4)

=E

[∏
i 6=l

P(Si ≥ Sl − ts ≥ 0|Sl)]
]

(D.2.5)

=

∫ ∞
ts

[∏
i 6=l

e−ri
sl−ts
E[T ]

]
rl

E[T ]
e−rl

sl
E[T ]dsl (D.2.6)

=e−rl
ts

E[T ]
rl∑M
i=1 ri

. (D.2.7)

Since Sl is exponentially distributed with mean value E[T ]/rl, we can determine the

second term in the RHS of (D.2.2) as follows:

P(Sl < ts) = 1− e−rl
ts

E[T ] . (D.2.8)
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Substituting (D.2.7) and (D.2.8) back into (D.2.2), we get

Pl = 1− e−rl
ts

E[T ] + e−rl
ts

E[T ]
rl∑M
i=1 ri

. (D.2.9)

Let αcol denote the collision probability in a given cycle. We have αcol = 1 −
M∑
i=1

αi,

because each cycle includes either a successful transmission or a collision. Moreover,

let E[Idle] denote the mean of the idle duration in a cycle. By the renewal theory in

stochastic processes [94], σl is given by

σl =
PlE[T ]

(
∑M

i=1 αi + αcol)E[T ] + E[Idle]
(D.2.10)

=
PlE[T ]

E[T ] + E[T ]∑M
i=1 ri

(D.2.11)

=
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl ts
E[T ]∑M

i=1 ri + 1
. (D.2.12)

D.3 Proof of Lemma 5.4.1

First of all, we need to show that (5.3.3) has a solution for β?.

Lemma D.3.1. Suppose that wl > 0, and bl > 0 for all l. If
M∑
i=1

bi ≥ 1, then (5.3.3)

has a unique solution on [0,max
l

(bl/
√
wl)]; otherwise, (5.3.3) has no solution.

Proof. It is clear that if
M∑
i=1

bi = 1, then β? satisfies (5.3.3) if and only if β? ≥

max
l

(bl/
√
wl). Hence, (5.3.3) has a unique solution on [0,max

l
(bl/
√
wl)] in this case.

We now focus on the case of
M∑
i=1

bi > 1. In this case, we have the following:
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• If β? = 0, then
M∑
i=1

min{bi, β?
√
wi} = 0.

• If β? = max
l

(bl/
√
wl), then

M∑
i=1

min{bi, β?
√
wi} > 1.

• The left hand side (LHS) of (5.3.3) is strictly increasing and continuous in β?

on [0,max
l

(bl/
√
wl)].

As a result, (5.3.3) has a unique solution on [0,max
l

(bl/
√
wl)] in this case as well.

Finally, if
M∑
i=1

bi < 1, then
M∑
i=1

min{bi, β?
√
wi} ≤

M∑
i=1

bi < 1. Hence, (5.3.3) has no

solution if
M∑
i=1

bi < 1. This completes the proof.

Since we have
M∑
i=1

bi ≥ 1, Lemma D.3.1 implies that (5.3.3) has a solution for β?.

Now, we are ready to prove Lemma 5.4.1. Consider the following constraints:

rl
ts

E[T ]

∑M
i=1 ri + rl∑M

i=1 ri + 1
≤ bl, ∀l. (D.3.1)

Since we have

1− e−rl
ts

E[T ] ≤ rl
ts

E[T ]
, (D.3.2)

e−rl
ts

E[T ] ≤ 1, (D.3.3)

then,

[1− e−rl
ts

E[T ] ]
M∑
i=1

ri + rle
−rl ts

E[T ] ≤ rl
ts

E[T ]

M∑
i=1

ri + rl. (D.3.4)
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Thus, if the constraints in (D.3.1) are satisfied for a given solution r, then the con-

straints of Problem 1 are satisfied as well. We can observe that the constraints in

(D.3.1) are equivalent to the following set of constraints:

rl ≤ bl
x+ 1

1 + ts
E[T ]

x
,∀l

M∑
i=1

ri = x.

(D.3.5)

Now, it is easy to show that if x ≤
√

E[T ]/ts, then x ≤ (x + 1)/[1 + (ts/E[T ])x].

Meanwhile, our proposed solution r? (5.3.1) - (5.3.3) satisfies
M∑
i=1

r?i = x?. Thus, if

we can show that x? ≤
√

E[T ]/ts, then

r?l = min{bl, β?
√
wl}x? ≤ blx

? ≤ bl
x? + 1

1 + ts
E[T ]

x?
, (D.3.6)

and the constraints in (D.3.5) hold for our proposed solution r?. What remains is to

prove that x? ≤
√

E[T ]/ts. We have

x? =
−1

2
+

√
1

4
+

E[T ]

ts
(D.3.7)

=

E[T ]
ts

1
2

+
√

1
4

+ E[T ]
ts

(D.3.8)

≤
E[T ]
ts√
E[T ]
ts

=

√
E[T ]

ts
. (D.3.9)

Hence, our proposed solution r? (5.3.1) - (5.3.3) satisfies (D.3.5), which implies

(D.3.1). This completes the proof.
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D.4 Proof of Lemma 5.4.3

By replacing e−rl(ts/E[T ])e
∑M

i=1 ri(ts/E[T ]) in (5.4.4) of Problem 2 by 1, we obtain the

following optimization problem:

min
rl>0

M∑
l=1

wl
rl

(
1 +

M∑
i=1

ri

)
+

M∑
l=1

wl (D.4.1)

s.t. rl ≤ bl

(
M∑
i=1

ri + 1

)
,∀l. (D.4.2)

Since e−rl(ts/E[T ])e
∑M

i=1 ri(ts/E[T ]) ≥ 1, Problem (D.4.1) serves as a lower bound of Prob-

lem 2, and hence a lower bound of Problem 1 as well. Define an auxiliary variable

y =
M∑
i=1

ri + 1. By this, we solve a two-layer nested optimization problem. In the

inner layer, we optimize r for a given y. After solving r, we will optimize y in the

outer layer. Now, fix the value of y, we obtain the following optimization problem

(the inner layer):

min
ri>0

M∑
i=1

[
wiy

ri
+ wi

]
(D.4.3)

s.t. rl ≤ bly,∀l, (D.4.4)

M∑
i=1

ri + 1 = y. (D.4.5)

The objective function in (D.4.3) is a convex function. Moreover, the constraints in

(D.4.4) and (D.4.5) are affine. Hence, Problem (D.4.3) is convex. We use the La-

grangian duality approach to solve Problem (D.4.3). Problem (D.4.3) satisfies Slater’s

conditions. Thus, the Karush-Kuhn-Tucker (KKT) conditions are both necessary and

sufficient for optimality [95]. Let γ = (γ1, . . . , γM) and µ be the Lagrange multipliers

associated with constraints (D.4.4) and (D.4.5), respectively. Then, the Lagrangian
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of Problem (D.4.3) is given by

L(r, γ, µ) =
M∑
i=1

[
wiy

ri
+ wi

]

+
M∑
i=1

γi(ri−biy) + µ

(
M∑
i=1

ri+1−y
)
.

(D.4.6)

Take the derivative of (D.4.6) with respect to rl and set it equal to 0, we get

−wly
r2
l

+ γl + µ = 0. (D.4.7)

This and KKT conditions imply

rl =

√
wly

γl + µ
, (D.4.8)

γl ≥ 0, rl − bly ≤ 0, (D.4.9)

γl(rl − bly) = 0, (D.4.10)

M∑
i=1

ri + 1 = y. (D.4.11)

If γl = 0, then rl =
√

(wly)/µ and rl ≤ bly; otherwise, if γl > 0, then rl = bly and

rl <
√

(wly)/µ. Hence, we have

rl = min

{
bly,

√
wly

µ?

}
, (D.4.12)

where by (D.4.5), µ? satisfies

M∑
i=1

min

{
biy,

√
wiy

µ?

}
+ 1 = y. (D.4.13)
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We can observe that µ? is a function of y. Because of that, we can define β?(y) =√
1/(yµ?), which is a function of y as well. Then, the optimum solution to (D.4.3)

can be rewritten as

rl = min{bl, β?(y)
√
wl}y,∀l, (D.4.14)

where β?(y) satisfies

M∑
i=1

min{bi, β?(y)
√
wi}+

1

y
= 1. (D.4.15)

Substituting (D.4.14) and (D.4.15) back in Problem (D.4.3), we get the following

optimization problem (the outer layer):

min
y>1

M∑
i=1

[
wi

min{bi, β?(y)
√
wi}

+ wi

]
(D.4.16)

s.t.
M∑
i=1

min{bi, β?(y)
√
wi}+

1

y
= 1. (D.4.17)

Problem (D.4.16) serves as a lower bound of Problem 2, and hence a lower bound of

Problem 1. We can observe that the objective function in (D.4.16) is decreasing in

β?(y). Moreover, (D.4.17) implies that β?(y) is strictly increasing in y if
M∑
i=1

bi ≥ 1.

As a result, y = ∞ is the optimal solution of Problem (D.4.16). At the limit, the

constraint (D.4.17) converges to (5.3.3). Since β? serves as a solution for (5.3.3), we

can deduce that lim
y→∞

β?(y) = β?. Thus, we have the following lower bound:

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M∑
i=1

[
wi

min{bi, β?
√
wi}

+ wi

]
. (D.4.18)

This completes the proof.
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D.5 Proof of Lemma 5.4.4

Because 1− e−x ≤ x, we can obtain

rle
−rl ts

E[T ] + [1− e−rl
ts

E[T ] ]
M∑
i=1

ri

= rl + [1− e−rl
ts

E[T ] ]

(
M∑
i=1

ri − rl
)

≤ rl + rl
ts

E[T ]

(
m∑
i=1

ri − rl
)
,

(D.5.1)

Hence, if r satisfies the constraint

rl + rl
ts

E[T ]

(∑M
i=1 ri − rl

)
∑M

i=1 ri + 1
≤ bl, (D.5.2)

then r also satisfies the constraint of Problem 1 in (5.2.17). Consider the following

set of solution indexed by a parameter c > 0:

rl = cul, ∀l, (D.5.3)

ul =
bl

1−∑M
i=1 bi

, ∀l (D.5.4)

We want to find a c such that the solution in (D.5.3) and (D.5.4) is feasible for

Problem 1. To achieve this, we first substitute the solution (D.5.3) and (D.5.4) into

the constraint (D.5.2), and get

cul + c2ul
ts

E[T ]

(∑M
i=1 ui − ul

)
c
∑M

i=1 ui + 1
≤ bl. (D.5.5)
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If equality is satisfied in (D.5.5), we can obtain the following quadratic equation for

c:

c2

[
ul

ts
E[T ]

(
M∑
i=1

ui−ul
)]

+c

(
ul−bl

M∑
i=1

ui

)
−bl = 0. (D.5.6)

The solution to (D.5.6) is given by cl in (5.3.9). Hence, rl = clul is feasible for the

constraint (D.5.2) for source l.

As feasibility for one source only is insufficient, we further prove that the solution

in (D.5.3) and (D.5.4) with c = min
l
cl is feasible for satisfying the energy constraints

of all sources l = 1, . . . ,M . To that end, let us consider the monotonicity of the LHS

of (D.5.5). By taking the derivative with respect to c, we get

ul
ts

E[T ]

(∑M
i=1 ui − ul

)(
c2
∑M

i=1 ui + 2c
)

+ ul

(c
∑M

i=1 ui + 1)2
> 0. (D.5.7)

Hence,

rl =
(

min
l
cl

)
ul, ∀l, (D.5.8)

is feasible for the energy constraints of all sources l = 1, . . . ,M . After some manipu-

lations, the solution in (D.5.4) and (D.5.8) are equivalently expressed as (5.3.1) and

(5.3.8) - (5.3.10). This completes the proof.

229



D.6 Proof of Lemma 5.4.6

By replacing e−rl(ts/E[T ])/rl by e−
∑M

i=1 ri(ts/E[T ])/[ bl(
M∑
i=1

ri + 1)] and e
∑M

i=1 ri(ts/E[T ]) by 1

in (5.4.4) of Problem 2, we obtain the following optimization problem:

min
rl>0

M∑
l=1

wle
−

∑M
i=1 ri

ts
E[T ]

bi
+

M∑
l=1

wl

s.t. rl ≤ bl

(
M∑
i=1

ri + 1

)
,∀l.

(D.6.1)

Since rl ≤ bl(
M∑
i=1

ri +1), we have

e−rl
ts

E[T ]

rl
≥ e−

∑M
i=1 ri

ts
E[T ]

bl

(∑M
i=1 ri + 1

) . (D.6.2)

Moreover, we have e
∑M

i=1 ri(ts/E[T ]) ≥ 1. Thus, Problem (D.6.1) serves as a lower

bound of Problem 2, and hence a lower bound of Problem 1 as well. By removing the

constant term
M∑
l=1

wl in the objective function of Problem (D.6.1) and then taking the

logarithm, Problem (D.6.1) is reformulated as

min
ri>0

log

(
M∑
i=1

wi
bi

)
−

M∑
i=1

ri
ts

E[T ]

s.t. rl ≤ bl

(
M∑
i=1

ri + 1

)
,∀l.

(D.6.3)

Obviously, Problem (D.6.3) is a convex optimization problem and satisfies Slater’s

conditions. Thus, the KKT conditions are are necessary and sufficient for optimality.

Let τ = (τ1, . . . , τM) be the Lagrange multipliers associated with the constraints of
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Problem (D.6.3). Then, the Lagrangian of Problem (D.6.3) is given by

L(r, τ) = log

(
M∑
i=1

wi
bi

)
−
(

M∑
i=1

ri
ts

E[T ]

)

+
M∑
i=1

τi

[
ri − bi

(
M∑
i=1

ri + 1

)]
.

(D.6.4)

Take the derivative of (D.6.4) with respect to rl and set it equal to 0, we get

−ts
E[T ]

+ τl(1− bl)−
∑
i 6=l

τibi = 0. (D.6.5)

This and KKT conditions imply

τl =
ts

E[T ](1− bl)
+

∑
i 6=l τibi

1− bl
, (D.6.6)

τl ≥ 0, rl − bl
(

M∑
i=1

ri + 1

)
≤ 0, (D.6.7)

τl

[
rl − bl

(
M∑
i=1

ri + 1

)]
= 0. (D.6.8)

Since
M∑
i=1

bi < 1, (D.6.6) implies that τl > 0 for all l. This and (D.6.8) result in

rl = bl

(
M∑
i=1

ri + 1

)
,∀l. (D.6.9)

Because
M∑
i=1

bi < 1, (D.6.9) has a unique solution, which is given by

rl =
bl

1−∑M
i=1 bi

, ∀l. (D.6.10)
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Hence, the solution to (D.6.1) and (D.6.3) is given by (D.6.10). Substitute (D.6.10)

into (D.6.1), we get the following lower bound:

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M∑
l=1

wle
−

∑M
i=1 bi

1−
∑M

i=1
bi

ts
E[T ]

bl
+

M∑
l=1

wl. (D.6.11)

This completes the proof.

D.7 Proof of Corollary 5.3.2.2

We start by solving Problem (5.3.21) for optimal a. Problem (5.3.21) is a convex

optimization problem and satisfies Slater’s conditions. Thus, the KKT conditions are

necessary and sufficient for optimality. Let λ = (λ1, . . . , λM) and ν be the Lagrange

multipliers associated with the constraints (5.3.22) and (5.3.23), respectively. Then,

the Lagrangian of Problem (5.3.21) is given by

L(a, λ, ν) =
M∑
i=1

[
wi
ai

+ wi

]

+
M∑
i=1

λi(ai − bi) + ν

(
M∑
i=1

ai − 1

)
.

(D.7.1)

Take the derivative of (D.7.1) with respect to al and set it equal to 0, we get

−wl
a2
l

+ λl + ν = 0. (D.7.2)
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This and KKT conditions imply

al =

√
wl

λl + ν
, (D.7.3)

λl ≥ 0, al − bl ≤ 0, (D.7.4)

λl(al − bl) = 0, (D.7.5)

ν ≥ 0,
M∑
i=1

ai − 1 ≤ 0, (D.7.6)

ν

(
M∑
i=1

ai − 1

)
= 0. (D.7.7)

If λl = 0, then we have al =
√
wl/ν and al ≤ bl. This implies that ν > 0 and hence

M∑
i=1

ai = 1, which holds when
M∑
i=1

bi ≥ 1.

If λl > 0, then we have al = bl and al ≤
√
wl/ν. In this case, we either have

ν > 0, which implies
M∑
i=1

ai = 1 and this holds when
M∑
i=1

bi ≥ 1; or ν = 0, which

implies
M∑
i=1

ai ≤ 1 and this holds when
M∑
i=1

bi ≤ 1.

From the above argument, the solution can be driven according to the following

two cases:

Case 1 (Energy-adequate regime (
M∑
i=1

bi ≥ 1)): In this case, the optimal

solution is given by

a?l = min

{
bl,

√
wl
ν?

}
, ∀l, (D.7.8)

where we must have ν? > 0, which implies
M∑
i=1

a?i = 1. Hence, ν? satisfies

M∑
i=1

min

{
bi,

√
wi
ν?

}
= 1. (D.7.9)
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By comparing (D.7.9) with (5.3.3), we can deduce that
√

1/ν? = β?, where β? satisfies

M∑
i=1

min{bi, β?
√
wi} = 1. (D.7.10)

Since
M∑
i=1

bi ≥ 1, (D.7.10) has a solution for β? as shown in Lemma D.3.1. Hence,

the solution to Problem (5.3.21) can be rewritten as

a?l = min{bl, β?
√
wl}, ∀l. (D.7.11)

Substituting (D.7.11) into (5.3.21), we obtain

∆̄w-peak
opt-s =

M∑
i=1

[
wi

min{bi, β?
√
wi}

+ wi

]
, (D.7.12)

which is equal to the asymptotic optimal objective value of Problem 1 in energy-

adequate regime in (5.3.7).

Case 2 (Energy-scarce regime (
M∑
i=1

bi < 1)): In this case, the optimal solution

is

a?l = bl, ∀l. (D.7.13)

Substituting by this into (5.3.21), we obtain

∆̄w-peak
opt-s =

M∑
i=1

[
wi
bi

+ wi

]
, (D.7.14)

which is equal to the asymptotic optimal objective value of Problem 1 in energy-scarce

regime in (5.3.13). This completes the proof.
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