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Abstract 

Multiple Sclerosis is a common, neurodegenerative disorder characterized by the 

accumulation of gray and white matter lesions within the central nervous system and 

presenting with progressive disability within the physical, sensory, and cognitive domains. 

Understanding the relationship between cognitive dysfunction, which affects an estimated 

70% of people with multiple sclerosis (PwMS), and overall disease burden (commonly 

measured by the Expanded Disability Status Scale; EDSS) is exceedingly important for 

informing research interventions to preserve patient quality of life. The current study utilized 

resting-state fMRI to derive connectome-based predictive models (CPM) of two cognitive 

domains affected in PwMS (information processing speed and working memory) and 

determine the contribution of model-derived metrics in explaining variance associated with 

EDSS. We were able to successfully derive a model of processing speed (rs= .41, p= .03), but 

not working memory, perhaps due to processing speed deficits emerging earlier and more 

prominently in PwMS. fMRI-derived processing speed metrics uniquely accounted for 

13.19% of the variance in explaining EDSS. In contrast, behavioral performance on 

processing speed measures, working memory measures, and calculated total lesion volume 

did not explain a significant amount of variance in EDSS, suggesting that functional 

connections associated with processing speed ability may importantly contribute to patient 

disease burden. This work therefore supports the hypothesis that models of MS disease 

burden may benefit from functional inputs in addition to structural and behavioral ones, 

though future work is needed to establish the mechanisms of MS-related disease processes on 

functional connections, cognition, and disease.  

Keywords: functional connectivity, multiple sclerosis, cognition  
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Chapter 1. Introduction 

 

 

1.1 Multiple Sclerosis: Prevalence, Etiology and Diagnostic Criteria 

 

Multiple Sclerosis (MS) is the most common inflammatory disease of the central 

nervous system (CNS) in young and middle-aged adults, affecting an estimated 1,000,000 

people in the United States alone (Reich et al., 2018; Wallin et al., 2019). Notably, estimates 

of disease prevalence since 2010 appeared to increase at a rate of 2.3% per year, largely 

believed to be the result of increased longevity in people with MS (PwMS) due to advances 

in pharmacological treatments (Wallin et al., 2019). However, despite these treatment 

advances, MS is a neurological disease that continues to be significantly disruptive to both 

individuals with MS and society as a whole, due to the disease’s early presentation and wide 

range of sensory, physical and cognitive deficits. The median age-of-onset of MS is 30 years 

old, when individuals are set to contribute substantially to both the workforce and their 

families (Dendrou et al., 2015; Wallin et al., 2012). The resulting economic burden is 

estimated to be approximately $10 billion dollars annually, due to a combination of 

healthcare costs and the eventual loss of these people to the job pool as physical and 

cognitive disability progresses, reducing patient independence and quality of life (Reich et 

al., 2018). 
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Similar to other complex auto-immune and neurodegenerative disorders, MS is 

believed to be caused by an interaction between genetic susceptibility and environmental 

factors, with the genetic components explaining approximately 30% of the variance in 

disease risk, making it a disease difficult to predict and detect (Dendrou et al., 2015). Many 

environmental factors have been associated with increased prevalence of MS - most 

compellingly, a history of exposure to the Epstein-Barr virus, history of infectious 

mononucleosis, history of smoking- and to a lesser degree- biomarkers associated with low 

vitamin D (Belbasis et al., 2015). Additionally, there exists a female to male ratio of 2.8:1 

that is poorly understood, as well as a decreasing, but currently preserved, geographic 

gradient whereby MS prevalence decreases from north to south in the United States (Wallin 

et al., 2019) and worldwide (Simpson et al., 2011). Taken together, these correlations suggest 

a neuro-inflammatory basis of disease but give little hope of identifying a single catalyst on 

which to target preventative interventions.   

Clinically, MS can be conceptualized as consisting of three disease stages, usually 

following a progressive presentation: 1) a first incidence in which lesions are present but 

clinical symptoms may or may not be; 2) a relapsing form of the disease in which 

unpredictable episodes of clinical symptoms occur, on average, once every 2 years, and are 

followed by varying levels of recovery; and finally, 3) a progressive form in which clinical 

symptoms slowly but steadily worsen without remissive periods (Ransohoff et al., 2015). 

Due to its slow progression, the diagnosis of MS is often delayed (Brownlee et al., 2017) and 

consideration of MS as a diagnosis usually occurs after a sudden, first episode of 

neurological symptoms, accompanied by the confirmed presence of MRI-visible white matter 

lesions (Thompson et al., 2018). A single presentation of clinical symptoms, even 
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accompanied by a single lesion on MRI, is not sufficient to meet diagnostic criteria of MS. 

Instead, diagnosis of MS firstly requires the elimination of other possible diagnoses, given 

that there is significant risk of MS pharmacological treatments exacerbating the course of 

other, similarly presenting diseases (Brownlee et al., 2017). Following this, diagnosis 

requires evidence of dissemination of lesions in space as well as in time, requiring both more 

than one lifetime episode as well as the presence of lesions in more than one location in the 

CNS (Thompson et al., 2018).  

Further complicating diagnosis, some people with pathology and symptoms 

consistent with an MS episode do not progress to a relapsing or progressive form of disease. 

In these cases, the presence of a single, lifetime episode is referred to as Clinically Isolated 

Syndrome (CIS). Onset of CIS as well as conversion to clinically definite MS is considered 

idiopathic, however, several factors influence the likelihood of later conversion to MS. Of 

these, the number of white matter lesions on MRI at first attack is most predictive of 

conversion to full MS, followed by the degree of temporary neurological disability observed 

in initial episodes (Tintore et al., 2015). In terms of conversion prevention, receiving prompt 

diagnosis of CIS, and initializing treatment before a second attack is more associated with 

reduced risk of conversion to full MS than either lesion location or demographic factors 

(Tintore et al., 2015). Together, these findings suggest that early and accurate detection and 

understanding of MS disease pathology and associated symptoms, especially when these 

symptoms are mild, is a key clinical endeavor that is hindered by the disease’s heterogenous 

presentation.  

However, even with appropriate care, the majority of those initially diagnosed with 

CIS do experience a progression of the disease to clinically definite MS, with disease 
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progression most often following the prototypical relapsing-remitting multiple sclerosis 

(RRMS) subtype (Gaetani et al., 2018). RRMS is characterized by periods of active disease, 

in which demyelination and neurologic dysfunction progress rapidly for a time-limited period 

and are then followed by a remissive state of remyelination and varying degrees symptom 

remission. The ability of the CNS to fully repair and recover function after multiple, 

compounding relapses is limited. Therefore, over time these two alternating processes of 

relapse and repair are associated with progressive disconnection of structural and functional 

information pathways in the brain and body, altering communication within and between 

networks that support many physiological and cognitive processes.  

Between 5 and 25 years after diagnosis with RRMS, PwMS usually convert to the 

third stage of the disease (Inojosa et al., 2019), known as secondary progressive multiple 

sclerosis (SPMS). Rather than aggressive and rapid disease progression followed by full-to-

partial recovery, SPMS is characterized by a slow and steady advancement of 

neurodegeneration and lesion spread, coupled with a linear and unrelenting loss of function. 

This disease stage, more so than RRMS, is associated with increased levels of disability and 

decline in quality of life (Huijbregts et al., 2004; Patti et al., 2007). Approximately 10-15% 

of people with MS present immediately with this progressive form, which is known as 

primary progressive multiple sclerosis (PPMS), and as such experience a rapid decline over a 

short time course with little hope of recovery (Ransohoff et al., 2015; Reich et al., 

2018). Regardless of time course and initial presentation, over the MS disease course 

disability compounds and disease burden increases in several domains of functioning that 

varies between patients, but can include cognitive, physical, and sensory deficits.  
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Due to heterogeneity of symptoms and variance in disease time course, progression of 

MS has been quantified in a variety of ways, including: the number, severity, and frequency 

of relapses in the early disease stages; structural measures of neurodegeneration such as total 

lesion volume; and self-reported or clinician-assessed disease burden. In particular, the 

Extended Disability Status Scale (EDSS) is widely used clinically as a measure that 

quantifies disease burden of individuals in any stage of disease (Kurtzke, 1983). The EDSS is 

scored on a scale of 0 – 10 in half point increments, with higher scores corresponding to 

higher levels of disability. The scale assesses eight key ‘functional systems’ often affected by 

MS: pyramidal function (limb motility and muscle weakness); cerebellar function (balance, 

tremors, coordination, ataxia); brainstem function (speech, swallowing, nystagmus); sensory 

function (numbness, loss of sensation); bowel and bladder function; visual function; cerebral 

functions (memory, problem solving, attention, processing speed); and other, a dichotomous 

indicator of whether other symptoms are present and believed to be attributable to MS. Given 

the heterogenous presentation of MS across these functional systems and the lack of a 

reliable biomarker of disease progression, the EDSS is currently considered the gold standard 

for MS disease assessment and monitoring, and commonly serves as a clinical endpoint for 

pharmacological and behavioral interventions (Meyer-Moock et al., 2014).  

Notably, total lesion volume, defined as the percentage of white matter lesions 

observed on a T2 FLAIR image, has also been used commonly as a marker of disease 

progression in this population (Sormani & Bruzzi, 2013). In contrast to EDSS, which may be 

thought of as representing the cumulative, experienced symptoms of MS, total lesion volume 

has been used as a marker of disease pathology itself. 
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1.2 Multiple Sclerosis: Proposed Pathophysiological Mechanisms of Decline 

 

It is currently unknown whether events internal or external to the CNS initially trigger 

MS disease pathology; the auto-immune response and infiltration of lymphocytes may be the 

response to an unknown process or infection within the CNS which triggers 

neurodegeneration as well as a peripheral autoimmune response (Dendrou et al., 2015). 

Alternatively, the peripheral autoimmune response and infiltration of lymphocytes into the 

CNS may itself be the triggering event that drives focal lesions and neurodegeneration 

(Dendrou et al., 2015). Regardless of etiology, what has been discovered about the 

pathophysiology of MS has resulted in a lesion-centric approach to conceptualizations of MS 

and has shaped not only MS diagnostic decision-making, but many aspects of disease 

monitoring, treatment, and goals of pharmaceutical interventions.  

The clinical stages of MS are differentiated not only by their presentation of 

symptoms, but by the progression and characteristics of their lesions and the activity of the 

body’s autoimmune response. Kuhlmann et al. proposed a lesion classification system that 

differentiates between active, mixed active/inactive, and inactive lesions in order to better 

distinguish between disease stages (Kuhlmann et al., 2017). By their definition, active lesions 

contain macrophages in the majority or entirety of the lesion, mixed lesions are characterized 

by macrophages only in the border of the lesion and cell loss in the center of the lesion and 

inactive lesions lack macrophages nearly completely (Kuhlmann et al., 2017).  

Systematic dissection of 182 MS brains from the Netherlands Brain Bank led to the 

investigation of 7562 MS lesions and demonstrated that there is significant inflammatory 
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lesion activity in progressive MS: 78% had at least one mixed active lesion present, and 57% 

of all lesions were either active or mixed (Luchetti et al., 2018). Furthermore, there was a 

correlation between disease burden and higher proportion of active/mixed to inactive lesions 

as well as total lesion load (Luchetti et al., 2018). People with progressive MS compared to 

RRMS had a higher lesion load and a lower incidence of remyelinated lesions. Of these, men 

had a higher proportion of active/mixed to inactive lesions compared to females across all 

disease stages (Luchetti et al., 2018). 

In addition to the heterogeneity found in lesion presentation and characteristics across 

disease stages, lesions are also disseminated unpredictably in space. Areas of cortical 

demyelination may be guided by regions with low flow of CSF, such as the brain’s sulci, 

while other studies have found that focal white matter (WM) lesions occurred more 

commonly in areas with high venous density, as well as the watershed regions of the brain 

characterized by low arterial blood flow (Haider et al., 2016). This proclivity may explain 

some of the shared presentation of symptoms across individuals, however, in general there is 

great variability regarding the location and progression of symptoms, resulting in an 

unpredictable disease course that is difficult to diagnose, predict, and treat.  

Additional data from autopsy studies and the examination of active lesions has 

resulted in two conclusions. First, data strongly suggests that that tissue injury is likely 

mediated by lymphocytes, and second, inflammation continues to drive the process of 

demyelination in all disease phases (Lassmann, 2018). However, these disease processes do 

differ between disease stages; RRMS is thought to be particularly characterized by the influx 

of immune cells into the CNS from the peripheral immune system, resulting in 

neuroinflammation as well as the formation of new lesion damage which may or may not be 
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repaired (Baecher-Allan et al., 2018). Contrastingly, in the progressive stage of the disease 

this influx is reduced and instead there are pathological processes within the CNS that 

primarily continue to drive inflammation (Baecher-Allan et al., 2018). Therefore, progressive 

MS is characterized by a marked reduction or absence of the formation of new focal white 

matter lesions and inflammatory blood brain barrier penetration, and instead the slow growth 

of pre-existing lesions (Lassmann & Bradl, 2017). Unique to this stage, mixed lesions form 

that slowly expand in size, and in the absence of the attempts at cellular repair found in early 

disease, become areas of complete cell death (Frischer et al., 2015). Notably, these 

“smoldering” plaques are more common in men than women for unknowns reasons, and men 

also have a smaller proportion of inactive plaques in older age, though an equal proportion of 

successfully-remyelinating lesions (Frischer et al., 2015). 

This complex but striking disease course of inflammatory white matter lesions has 

become hallmark of MS, despite evidence that in addition to lesion pathology, the disease is 

characterized by other, significant but subtle changes that have gone largely unaddressed in 

clinical disease monitoring and treatment (Sormani et al., 2009). Despite this, treatment of 

MS has made significant advances in the past 25 years even by focusing primarily on 

limiting the accumulation of white matter lesions. Currently, there are approximately one 

dozen FDA-approved therapeutic drugs that target immune response and the inflammatory 

component of the disease in its relapsing-remitting stage. These pharmacological treatments 

are likely responsible for the observed delayed time to disability and lower relapse rate in 

current MS cohorts compared to previous ones (Baecher-Allan et al., 2018). However, these 

treatments work by reducing the burden of the inflammatory lesions typical of RRMS and 

have little effect on the secondary mechanisms that seem to drive the progressive stage of 
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disease (Ontaneda et al., 2017). Thus, even with accurate and early detection and treatment 

that may slow the accumulation of new lesions, MS still progresses through a set of 

secondary mechanisms as well as slowly expanding plaques from unprevented attacks. In 

addition, despite the success of pharmacological methods at delaying disease-related physical 

(Claflin et al., 2019) and cognitive (Landmeyer et al., 2020) changes in RRMS, these 

treatments extend the already dominating amount of time PwMS spend in the relapsing-

remitting stage of disease (Ransohoff et al., 2015; Reich et al., 2018) and do not fully prevent 

the presentation of these symptoms nor the accumulation of disability in these domains. Due 

to these two gaps in treatment efficacy, a need still exists for a biomarker of disease 

progression, as well as methodological investigation into the ways in which disease 

pathology results in the accumulation of symptoms and relationship of those symptoms to 

overall disease burden.   

Given that lesion accumulation and volume are considered the primary pathological 

features in MS, MRI-based biomarkers that utilize structural images have been the subject of 

much interest, with the hope that they would allow for monitoring of disease progression and 

further understanding of the mechanisms of symptom progression. However, given the 

complexity of disease pathology in MS - which may include focal demyelination, neuro-

inflammation, widespread neurodegeneration, as well as the body’s attempt to re-myelinate 

and compensate for these insults - there is also interest in functional MRI-based biomarkers 

which may be able to reflect the sum impact of these interacting processes. This is especially 

true as researchers move beyond the historical focus on MS-related physical decline and 

attempt to understand the relationship between MS-related disease processes and the decline 

of complex cognitive functions, such as working memory and information processing.   
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1.3 Cognitive Dysfunction in People with Multiple Sclerosis 

 

Along with gray and white matter lesions, dysfunction of normal-appearing brain 

tissue, neurodegeneration, and inflammation, people with RRMS present most notably with 

decline in the sensory/motor, cognitive, and mood domains (Prakash et al., 2008). Although 

cognitive deficits have been associated with the progression of MS since Charcot first 

described the disease in 1877, motor deficits and physical disability have historically served 

as the primary measure of disease progression (Charcot, 1877; Sumowski et al., 2018a), until 

Rao and colleagues brought renewed interested to the prevalence of cognitive dysfunction 

(Stephen M. Rao, Leo, Bernardin, et al., 1991; Stephen M. Rao, Leo, Ellington, et al., 1991). 

Current estimates indicate cognitive impairment affects up to 70% of PwMS, with 

approximately 40-50% experiencing mild to moderate deficits, and 10-20% experiencing 

severe deficits (Hämäläinen, 2016). As such, cognition has received increased attention due 

to the predictive nature of the relationship between cognitive dysfunction and current quality 

of life  (Benedict et al., 2005), as well as future disease progression (Moccia et al., 2016; 

Zipoli et al., 2010) and relationship to disease subtype (Sumowski et al., 2018). In particular, 

MS-research suggests that processing speed and working memory may be two domains that 

are particularly important for their contribution to more complex cognition-dependent 

behaviors (Berrigan et al., 2013), playing a foundational or supportive role in many behaviors 

and activities that are essential for preserved quality of life. For example, Rao and colleagues 

suggested that processing speed and working memory are important for the maintenance of 

social relationships, self-sufficiency, and mental well-being (Stephen M. Rao, Leo, Ellington, 
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et al., 1991), and other have shown their importance for retaining employment, and therefore 

financial independence (Macaron et al., 2020). 

Information processing speed, measured as reaction time in simple matching or 

identification tasks and often conceptualized as the speed with which information is able to 

be processed by the brain, is perhaps the most notable cognitive domain affected in PwMS 

(Brochet & Ruet, 2019; Costa et al., 2017). Rao and colleagues first described slowed 

processing speed in PwMS in 1989, demonstrating that compared to healthy controls, PwMS 

had slower reaction times on tasks such as the Sternberg Paradigm, in which participants are 

presented with and asked to memorize a set of digits and respond yes/no to whether each 

number in a series of digits presented on a screen is member of that initial set (S. M. Rao et 

al., 1989). Since then, the study of information processing speed in MS has grown 

considerably, and importantly, researchers have increasingly utilized tasks that attempt to 

isolate processing speed from related cognitive domains, such as working memory and 

episodic memory. These tasks, such as the Symbol Digit Modalities Test, and the Symbol 

Search and Coding tasks as found in the Weschler Processing Speed Index, require 

participants to match symbols and provide an oral or written response (Costa et al., 2017; 

Wechsler, 1981).  

Working memory deficits, while less commonly observed than processing speed 

deficits, are also widely reported in MS (DeLuca et al., 2004). Working memory, defined as 

the system used for temporary storage and manipulation of information subserving more 

complex cognitive tasks (Baddeley & Hitch, 1974; Baddeley, 2000), and the tasks most 

commonly used to measure it, can be decomposed into the following core components: the 

maintenance process of sensory information; the process of actively manipulating that 
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information; and the speed with which these processes can be performed. The most valid 

measures of working memory, such as the N-back task, the Paced Auditory Serial Addition 

Task (PASAT), and the Weschler Working Memory Index (WMI) address all three processes 

in some way. As a component of the Weschler Adult Intelligence Scale, the WMI is a 

neuropsychological test of digit span and item manipulation within a time limit (Wechsler, 

1981). During the N-back, participants must maintain and continuously update their memory 

for constantly changing visual stimuli while making a match/no match judgment under time 

pressure – though it is important to note that the N-back relies on recognition memory and 

not recall (Kirchner, 1958). The PASAT, and its visual counterpart, the PVSAT, consists of 

the presentation of a series of single digit numbers and requires addition of each new number 

to the previous, requiring maintenance, manipulation and quick information processing 

(Gronwall, 1977; Fos et al., 2000). While the N-back has most commonly been used with 

healthy populations (Van Essen et al., 2012), the PASAT/PVSAT has been demonstrated to 

be particularly sensitive to disease-related changes to working memory function in patients 

with multiple sclerosis ( D’Esposito et al., 1996; DeLuca et al., 2004; Chiaravalloti & 

DeLuca, 2008; Genova et al., 2009). 

 

 

1.4 Attempts at a Structural Imaging-based Biomarker of Cognitive Impairment and Disease 

Burden 

 

Due to the important role that processing speed and working memory play in quality 

of life for PwMS, and due to the integral role MRI already plays in the diagnosis and 
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monitoring of MS, neuroimaging work in PwMS has consistently sought an imaging-based 

biomarker with which to detect, monitor and predict cognitive symptoms of the disease, and 

to understand the relationship between cognitive symptoms and disease progression.  

Several studies have linked features of structural MRI – white matter lesion volume, 

volumetric measures of atrophy and degeneration, and microstructural damage – to risk of 

future cognitive decline (Calabrese et al., 2012; Deloire, 2012; Filippi, Preziosa, et al., 2013). 

Much of the focus on associating MRI-detectable markers with disease progression have 

focused on T2-weighted hyperintense lesions, likely due to diagnostic criteria of clinically 

definite MS that requires this imaging sequence to evaluate the presence of these lesions 

disseminated in space and time (Louapre, 2018). Supporting this line of thought, white matter 

lesions appear to be an important predictor of conversion from CIS to clinically definite MS. 

For instance, in a large cohort study including 1058 CIS patients followed on average for 17 

years, the presence of greater than 10 lesions at baseline MRI had a hazard ratio of 11.3 

compared to 5.1 for those with fewer than 10 lesions (Tintore et al., 2015). In addition, the 

development of multiple white matter lesions within the first year of CIS increased the risk of 

not only developing RRMS, but also of developing SPMS (Brownlee et al., 2017). In RRMS, 

two meta-analyses of 23 and 31 randomized, double-blind, controlled clinical trials indicated 

that a relapsing episode in the following 12-24-month period from diagnosis is most strongly 

predicted by increasing lesion count and lesion volume accumulation over a six-month period 

(N. De Stefano et al., 2010; Sormani et al., 2009; Sormani & Bruzzi, 2013). 

Many large studies have also sought to investigate the relationship between white 

matter lesions, disability, and cognitive impairment. Notably, in a five-year longitudinal 

study of 312 PwMS, white matter lesion volume at initial measurement predicted change in 
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overall disease burden as measured by the Expanded Disability Status Scale (EDSS), and 

also predicted cognitive status at the 5-year follow-up (Calabrese et al., 2012). In 721 PwMS, 

T2 lesion volume was a significant predictor of processing speed, and processing speed was 

in turn a significant predictor of employment status, independent of age and physical 

disability (Macaron et al., 2020). In another study of 997 PwMS, T2-measured lesion volume 

was strongly and negatively correlated with processing speed (Spearman’s rank correlation 

of -.44) and outperformed all other evaluated MRI metrics, including whole brain fraction, 

thalamic volume, and cervical spinal cord cross sectional area volume (Nicola De Stefano et 

al., 2015). Similar results correlating T2 lesion volume with EDSS and processing speed 

have also been found in smaller samples of 20-40 PwMS (Mike et al., 2011; Randolph et al., 

2005; Stankiewicz et al., 2011). 

 Attempts to correlate lesion volume with measures of working memory specifically 

have not been as promising, and some studies that have investigated both processing speed 

and working memory have corroborated the first relationship and either failed to find the 

second completely (Fulton et al., 1999) or, while indicative of a possible relationship, failed 

to reach statistical significance (Papadopoulou et al., 2013). However, other larger studies of 

597 PwMS have found that lesion volume predicted impaired processing speed and working 

memory at a nine-year follow-up (Patti et al., 2015), perhaps because working memory 

deficits emerge later in the disease course (Brochet & Ruet, 2019), or perhaps because the 

weaker relationship requires larger sample sizes.  

Despite this, lesion volume does not fully account for either disease progression or 

cognitive impairment. There are also several studies that have shown no meaningful 

relationship between lesion volume and either disability or cognitive decline (Filippi, Agosta, 
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et al., 2013; Healy et al., 2017) termed the ‘clinicoradiological paradox’ (Louapre, 2018). As 

such, more recent methods have focused both on more advanced structural methods requiring 

specialized MRI sequences that highlight cortical lesions, as well as utilizing high-resolution 

imaging of 7T scanners that can identify pathological tissue that appears normal on low 

resolution images, so-called “normal-appearing” gray and white matter. However, the 

potential improved clinical utility of these methods is limited by their availability and ease of 

acquisition. More importantly, even with these specialized sequences and increased 

resolution, these methods are still currently not sensitive enough for detection of cortical 

lesions in normal-appearing matter to be consistently reliable (Louapre, 2018). Recent 

investigations combining T1w and T2w MRI with diffusion tensor imaging have revealed 

that structural parameters are numerous and may be differentially important for prediction of 

cognition and disability dependent on the specific domain of interest (Tóth et al., 2019) and 

may differ by disease subtype (Eijlers et al., 2018), making the goal of realizing a structural 

MRI biomarker not an impossible task, but an arduous one - and one that is potentially cost- 

and time-prohibitive in a clinical setting. 

Additionally, while structural measures of disease burden may reflect important 

information regarding disease progression and even remyelination, they may not fully 

account for individual variation in functional reserve. By contrast, functional neuroimaging 

could ideally provide a proxy measure of the functioning of the brain, reflecting both disease 

progression and the brain’s ability to ‘rewire’ in a compensatory way. There is evidence to 

suggest that functional connectivity is supported by underlying structural connections 

(Greicius, 2008; Hermundstad et al., 2013; Honey et al., 2009), and therefore structural 

damage may also be reflected in changes to brain function. The use of connectivity fMRI 
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may provide additional insight into disease-related cognitive risk over and above traditional 

methods quantifying lesion load and neurodegeneration, or even increases and decreases in 

localized activity, and instead may be able to reflect the sum impact of these multifactorial 

structural insults. In addition, functional MRI may allow for the prediction of cognitive 

domains that are not easily correlated with structural measures of disease burden, such as 

working memory. Given that cognitive dysfunction in MS is likely multifactorial (white 

matter lesions, but also widespread neurodegeneration, neuroinflammation, and damage to 

white and gray matter than appears normal on standard MRI), the study of functional brain 

imaging to assess the effective impact of this wide array of disease-related pathology has 

become of increased interest. In particular, recent work has attempted to use graph theory to 

model the relationship between disease progression and the functional organization of the 

brain.  

 

 

1.5 A Graph Theoretical Approach to Functional Neuromarkers in MS 

 

Functional connectivity can be defined as the co-activation of neuronal signals 

between two distinct brain regions. Typically, functional connectivity networks are defined 

as either spontaneous or task evoked. Whereas task-evoked networks were first described in 

terms of coordinated signal changes in response to a specific activity or stimulus (Kwong, 

2012; Ogawa et al., 1998), spontaneous functional connectivity in the absence of a specific 

stimulus was first described by Biswal et. al in participants who were asked to rest and think 

of nothing in particular (1995). Rather than finding a lack of connectivity in the absence of a 
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directed behavior, Biswal and colleagues observed strong functional connections between an 

a-priori “seed” region in the motor cortex and other regions of the brain (Biswal et al., 

1995). Initial reaction to the observation of this and other resting-state networks that followed 

was to suggest that this co-activation was the result of high frequency cardiac and respiratory 

noise aliasing back into the range of the bold response (van den Heuvel & Hulshoff Pol, 

2010). However, in the two and a half decades since, the presence of multiple “resting state” 

networks have been widely replicated even when controlling for the influence of artifacts 

(Buckner et al., 2008; Fox & Raichle, 2007; van den Heuvel & Hulshoff Pol, 2010). 

Evidence that these resting-state functional connectivity patterns are reflective of neuronal 

signal is threefold: first, these signals are observed between regions with overlapping 

function and neuroanatomy; second, the frequency component of these resting-state signals 

appear to be dominated by low, not high, frequencies; and third, studies have shown 

associations between resting-state connectivity signals and direct electrophysiological 

neuronal recordings (van den Heuvel & Hulshoff Pol, 2010).  

To this day, the fact that rs-fMRI does not evoke cognition-relevant signal in the 

same way that task-fMRI, in which participants engage in a behavior of interest during fMRI 

acquisition, does appear to suggest weaker brain-behavior correlations (Greene et al., 2018). 

However, several advantages to the use of resting-state fMRI, especially in clinical 

applications, exist (Fox & Greicius, 2010). Resting-state fMRI allows for the measurement of 

more than one network simultaneously - and these networks are reliably observed - most 

notably, the default mode network, the somatosensory network, the frontoparietal control 

network, an auditory network, a language network, and the dorsal and ventral attention 

networks (Lee et al., 2013). Additionally, evidence suggests that these resting-state networks 
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are inherently tied to the structural organization and connections of the brain (Greicius, 2008; 

Hermundstad et al., 2013; Honey et al., 2009). That resting-state networks have been 

associated with the surrounding structure of the brain’s white matter is of key importance for 

the study of neurodegenerative diseases with white matter lesion pathology.  

In addition, the ease with which resting-state fMRI can be collected has resulted in 

wider implementation in clinical research applications than task-fMRI (Smitha et al., 2017), 

with some large open access protocols collecting only resting-state fMRI. Even in endeavors 

that do collect task-fMRI, the expensive and time-consuming nature of MRI work 

necessitates limiting the collection of task-fMRI to a few, carefully chosen cognitive domains 

and measurements. There is, as of yet, no consensus on which cognitive task best measures 

each cognitive domain within the research community, nor which cognitive domains are 

most crucial to collect, given that this varies greatly depending on the question of interest. 

Resting-state fMRI, however, has applicability to a wide range of questions pertaining to 

multiple cognitive domains of interest, and is ubiquitously collected, allowing for 

investigations with larger, more varied datasets and populations.  

In calculating functional connectivity at rest, several options exist to detect these 

networks. Most commonly: a “seed based approach” in which a region of interest, either 

informed by prior literature or the results of a localization task, is chosen and used to identify 

a network by isolating other regions that are functionally connected to that seed; an 

Independent Components Analysis (ICA) technique, which decomposes the time series data 

into groups of regions with similar signals across time (Fox et al., 2005); and graph theory 

methods (Rubinov & Sporns, 2010): a typically whole-brain approach which conceptualizes 

the brain as a network. 
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In this last case, the study of functional networks at rest offers the opportunity to 

study the inherent architecture of the brain using a mathematical approach in which the brain 

is conceptualized as a graph. The advantage of this approach, as compared with others, is that 

it allows for a more comprehensive characterization of the whole brain as a system of 

interconnected networks (Bassett & Sporns, 2017). In a graph theoretical framework, regions 

of the brain, typically voxels or larger regions of interest as defined by an atlas, are treated as 

vertices, or nodes, and the functional or structural connections between them are represented 

by either a binary or a weighted value, known as an edge. Using this method, all of the 

connections of the brain are represented by a functional connectivity matrix of these edge 

values, where each cell of the matrix represents the relationship between two nodes in the 

brain (Fornito et al., 2016). The values of these edges are themselves flexible, allowing for 

varying amounts of information. In the case of a binary matrix, values of 1 represent 

connected nodes, whereas values of 0 suggest nodes not connected functionally. In the case 

of a functional graph, this could reflect whether a functional connection meets a predefined 

threshold of significance; in the case of a weighted matrix, the values of the cell can 

represent the strength of that connection between nodes. Conceptualizing the connectivity of 

the brain in this way allows for the calculation of several metrics that further our 

understanding about how the brain is organized overall, but also how the sub-networks 

within it are organized. Commonly, these metrics have been used to examine both features 

shared by groups, but also to identify differences between individuals and groups as a 

function of individual differences, age, and disease.   

Network measures, such as measures of network centrality, segregation, and 

integration, can characterize the functional organization of the brain and be used to both 
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reveal disease-related abnormal brain organization and be linked to disease status and 

cognition. Network centrality identifies the key nodes in a network based on some criteria of 

interest, and measures of segregation and integration are complementary metrics of the 

communication between nodes and groups of nodes, often referred to as modules (Sporns, 

2018). 

 Graph theory studies in MS have to date been limited, but have described a pattern of 

local reorganization and long-range disconnection, and a resulting decrease in global 

efficiency of information transfer (Fleischer et al., 2019). Investigations into resting-state 

network changes have revealed decreases in local and global efficiency in people with 

relapsing-remitting MS (Rocca et al., 2016; Shu et al., 2016), with one study demonstrating 

that overall connectivity strength could be used to differentiate PwMS from people with CIS 

with an accuracy of 77% (Liu et al., 2017). Others have found increased network centrality in 

the DMN in cognitively impaired PwMS compared to both healthy controls and cognitively 

preserved PwMS (Eijlers et al., 2017). Particularly relevant to the current study, Gamboa et 

al. (2017) investigated working memory performance in people in the early stages of MS or 

CIS with low to no disability and found increased modularity compared to healthy controls, 

which correlated negatively with working memory; modularity was also used to classify 

PwMS from CIS with 75% accuracy. Impairment on a working memory task has also been 

associated with increased brain segregation, and processing speed associated with small 

worldedness and global efficiency (Welton et al., 2020). PwMS with cognitive impairment 

have also demonstrated a significant correlation between lower path length and better 

processing speed (Hawkins et al., 2020). In another study, a support vector machine built 

using graph theory metrics successfully capitalized on local efficiency and node strength 
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metrics to differentiate PwMS from healthy controls, and to differentiate those who were 

cognitively impaired from those who were cognitively preserved (Solana et al., 2019).  

Together, these studies have resulted in a proposed model of cognitive dysfunction 

whereby the impact of disease-related structural changes to network efficiency are moderated 

by resilience or compensation of the network as measured by its retained modularity 

(Fleischer et al., 2019; Schoonheim et al., 2013, 2015). According to this model, at some 

point during disease progression with accumulating increased tissue damage, network 

resilience eventually reaches a breaking point, resulting in a collapse of information transfer 

efficiency and catalyzing steep increases in cognitive, and other, deficits (Fleischer et al., 

2019; Schoonheim et al., 2015).  

Thus, the association of graph theory metrics with clinical and cognitive variables has 

done much to advance our understanding of how metrics of brain organization correlate with 

both MS disease and cognitive changes. It has also led to theoretical models of disease-

catalyzed network collapse and cognitive decline and has shown to have some utility in the 

classification of disease subtypes. However, the field still lacks research into the 

development of whole-brain functional neuromarkers that are specific to particular cognitive 

domains, rather than descriptive of general brain organization. The development of 

individual markers of processing speed and working memory, for example, would allow for 

investigations into how functional processes that support these domains are affected in MS, 

and how those functional processes relate to disability.  
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1.6 Connectome-based Predictive Modeling Techniques for Network Derivation 

 

            Machine learning, broadly defined, is a subset of artificial intelligence techniques that 

can be used in conjunction with large or highly dimensional datasets to identify and 

characterize signal within that data (unsupervised learning), or to make individual-level 

classifications or predictions by mapping data onto a target variable (supervised learning). 

Whereas the former category has long been used by fMRI researchers interested in defining 

the spatial or hierarchical organization of the brain (Khosla et al., 2019), the latter is of 

special interest to clinical researchers who may wish to make brain-behavior associations and 

predict clinically relevant variables in patient populations (Bzdok & Meyer-Lindenberg, 

2018).  

            Despite variation in the purpose and implementation of these techniques and their 

increasing application in clinical research, supervised machine learning in the neuroimaging 

domain has been limited by the vast array of methods and a lack of understanding regarding 

their implementation. In general, these techniques require that a researcher make a series of 

choices, each with critical consequences. Typically, these steps and the associated choices 

are: 1) evaluation method, 2) feature selection and optimization, 3) algorithm 

implementation, and 4) performance metric.  

            Connectome-based predictive modeling (CPM; Xilin Shen et al., 2017) is one recent 

methodological framework that allows for the creation of a whole-brain, data-driven 

functional network of behaviorally-relevant and domain-specific edges, and generates a 

model of the relationship between graph theory metrics in these edges and the domain of 

interest, which is then tested on novel individuals. It is an implementation of a supervised 
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machine learning procedure that: 1) utilizing cross-validation, 2) selects edges that are 

significantly correlated with behavior across members of the training set, 3) takes the average 

connectivity strength from thresholded edges to predict behavior using linear regression, and 

4) evaluates the model by correlating predicted and observed behavioral scores.  

Although the generalizability of these models is generally unknown without repeated 

validation on separate, external datasets, the ‘internal validation’ procedure provides a first 

step toward the potential development of a biomarker of behavior and allows researchers to 

explore within-sample associations of domain-specific connectivity and clinical or behavioral 

variables.  Thus, the network of significant edges resulting from the CPM method may have 

potential use in the monitoring and prediction of clinical outcomes.  

In comparison to other techniques, the use of machine learning techniques introduces 

several advantages, such as the generation of more generalizable and reliable models 

(Scheinost et al., 2019; Sripada et al., 2019) and a less stringent approach to correcting for 

multiple comparisons during feature selection through the use of cross validation (Shen et al., 

2017). Whereas univariate functional connectivity methods that examine the reliability of 

individual edges across multiple sessions has poor reliability, multivariate methods that 

examine the reliability of all edges simultaneously result in significant improvements to 

reliability (Noble et al., 2017, 2019). The test-retest reliability of resting state fMRi has direct 

relevance to the prediction of cognitive measures because reliability sets an upper limit on 

validity (Noble et al., 2017). Thus, an unreliable measure cannot be used for reliable 

prediction because too much of the signal varies from measurement to measurement.  

CPM in particular has been shown to produce reliable and generalizable models 

across constructs, first demonstrated through the derivation of networks and models 
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predictive of fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 

2015). The model built to predict sustained attention has been shown to generalize to an 

ADHD population (Rosenberg et al., 2015), as well as a separate sample of younger and 

older adults (Fountain-Zaragoza et al., 2019). Researchers have also successfully derived 

models of working memory in younger adults that generalized to older adults with and 

without Alzheimer’s disease (Avery et al., 2019) and people with multiple sclerosis 

(Manglani et al., in prep). Additionally, the CPM technique has been used successfully in a 

broad array of disciplines to derive functional connectivity models of temperament (Jiang et 

al., 2018), stress (Goldfarb et al., 2020), processing speed in older adults (M. Gao et al., 

2020), cognition in a sample of older adults with mild cognitive impairment and Alzheimer’s 

disease (Lin et al., 2018), and cognitive decline in breast cancer patients (Henneghan et al., 

2020), in a list that is quickly growing.  

An additional advantage of CPM over many supervised and unsupervised learning 

techniques is the preservation of select features, in this case edges, that are important for 

prediction, and dichotomizing edges into those that are positively and negatively related to 

the target variable. This allows researchers to avoid worrisome ‘black box’ prediction, where 

the mapping of inputs to outputs is unintelligible and potentially driven by confounds.  CPM 

additionally provides a binary or weighted mask of relevant edges that can be checked 

against previous knowledge but also treated as a data-driven whole-brain approach to explore 

the contribution of all edges, potentially revealing new information about the relationship 

between functional connectivity and behavior.  

For example, CPM has revealed that connectivity of frontoparietal, medial frontal, 

DMN and motor nodes may mediate age-related differences in sustained attention (Fountain-
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Zaragoza et al., 2019), that predicting processing speed in older adults may rely on within-

network connectivity of the motor and visual networks (M. Gao et al., 2020), and that 

contributions of hippocampal and PFC connectivity may be larger than those of the basal 

ganglia, amygdala and cingulate gyrus for predicting temperament (Jiang et al., 2018). CPM 

itself can also be used in a hypothesis-driven way through the use of a specific atlas or the 

restriction of looking at a particular region that has historically been linked to the target 

variable, such as investigating the relationship between hippocampal connectivity and stress  

(Goldfarb et al., 2020).  

 Thus, CPM’s transparency, interpretability, and ease of implementation make it an 

appealing technique when compared to methods that maximize predictive accuracy, often 

beyond what CPM is capable of (Dadi et al., 2019), but which inform the researcher little 

about how prediction is being achieved. As the neuroimaging community continues to strive 

toward translational applications of machine learning to clinical populations, potentially 

informing treatments and standard of care, interpretability is an important ethical 

consideration. Black box machine learning methods that maximize prediction without 

researcher oversight open themselves to the possibility of relying on information that is 

spuriously related to target variables, potentially introducing bias into the medical decision-

making process.  

 One key advantage to the application of CPM to an MS population is the potential 

development of a domain-specific, fMRI-based predictor of disease progression and 

cognitive decline. Structural methods such as volumetric and lesion-based approaches lend 

themselves well to interpretable data-reduction to single metrics that can be used to track and 

predict disease progression and cognitive decline. Aforementioned studies indicate that 
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increases in lesion load volume and atrophy is predictive of future disease progression and 

cognitive status. Likewise, graph theory approaches to functional connectivity allow us to 

characterize the organization of the human brain and relate decreases in a modular structure 

to disease progression and cognitive status. However, a gap remains in identifying 

biomarkers specific to cognitive domains of interest, such as processing speed and working 

memory in PwMS. CPM allows researchers to identify networks to serve as clinical markers 

specific to these cognitive domains, and potentially aid in the prediction of behavioral 

change.  

For this reason, the current study aimed to investigate whether CPM could be used to 

develop domain-specific functional connectivity neuromarkers of working memory and 

processing speed as measured by the Wechsler Adult Intelligence Scale, in which these 

domains are separable and non-overlapping. Currently, associations of disease and behavior 

in research with PwMS tend to rely on tasks that tax multiple cognitive domains 

simultaneously, such as the Paced Auditory Serial Addition Test, Symbol-Digit Modalities 

Test, and the N-back task.  The prediction of multiple cognitive domains simultaneously 

could potentially increase predictive power, but they do not allow for the examination of 

differential onset of cognitive dysfunction in PwMS. Additionally, use of the WAIS-IV is 

common among healthy controls, allowing for contextualization of cognitive decline in 

PwMS within the larger population.  
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1.7 Specific Aims 

 

The long-term goal of this work is to develop fMRI-based neuromarkers of cognitive 

functioning in people with MS that can be employed to understand progression of disease 

course as well as serve as surrogate endpoints in clinical trials targeting cognitive 

improvements. To achieve that goal, the overall objective of the current study was to build a 

whole-brain model of functional connectivity that is predictive of working memory 

functioning and processing speed in people with MS.  Our main hypothesis is that these two 

resting-state models, derived to predict cognitive functioning in two key domains impacted in 

those with MS, will additionally predict disease status in this population. Using an existing 

dataset in our laboratory, we will build the WM-fc and PS-fc models to predict working 

memory and processing speed, respectively. The rationale for the proposed study is to 

employ functional MRI to develop neuromarkers that are non-invasive, accurate, and 

accessible to detect and monitor cognitive status and disease burden in those with MS. To 

accomplish our objective, the main hypothesis will be tested in accordance with the 

following two specific aims: 

 

1. Derive whole-brain based markers of functional connectivity using 

performance on validated measures of cognitive functioning (WM-fc and PS-

fc). Employing connectome-based predictive modeling that captures the co-activity 

of the entire brain during resting-state fMRI to build predictive models, we aimed 

to first derive whole-brain models of functional connectivity in order to determine 

in-sample fit for working memory abilities and processing speed in our sample of 
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individuals with MS. Our hypothesis was that the use of the multivariate predictive 

modeling approach, codifying interactions across the entire brain, would 

significantly predict working memory and processing speed in people with MS.  

2. Determine the validity of the WM-fc and PS-fc models in explaining variance 

in measures of disease status. In order to assess the potential clinical utility of 

functional neuromarkers of cognition for predicting disease status compared to 

structural and cognitive measures, we aimed to build a multiple linear regression 

model with CPM-derived metrics from functional connectivity, lesion load, and 

cognitive performance on WMI and PSI to predict EDSS. Given the established 

associations between cognitive functioning and metrics of disease status, we 

hypothesized that our connectome models of working memory and processing 

speed functioning would be associated with total lesion volume and EDSS scores, 

but that metrics from the functional MRI markers of cognition would account for 

unique variance in EDSS compared to total lesion volume and cognitive 

performance scores.  

 

 

 

  



 29 

 

 

 

Chapter 2. Method 

 

The current analyses were completed using a dataset intended to test the association 

between physical activity and working memory performance in people with multiple 

sclerosis. The current analyses utilized resting-state functional magnetic resonance imaging 

(rs-fMRI) data, processing speed and working memory subtests of the Wechsler Adult 

Intelligence Scale (WAIS-IV; Wechsler, 1981), calculations of whole-brain lesion volume, 

and the Expanded Disability Status Scale (Kurtzke, 1983). 

 

2.1 Sample Recruitment and Screening 

 

 Participants in this dataset were recruited from the Columbus, Ohio area through a 

combination of outreach through The National Multiple Sclerosis Society website, the 

established Clinical Neuroscience Lab database of people with MS, as well as flyers 

distributed throughout the community and in nearby medical and MS treatment centers. 

Inclusionary criteria required that eligible participants be 30-59 years of age, score greater 

than a 23 on the Mini-mental Status Exam (Folstein et al., 1975), have a corrected vision of 

at least 20/40, score less than or equal to 19 on the Beck Depression Inventory II (Beck, A. 

T., Steer, R. A., & Brown, 1996), be right-handed, have an Expanded Disability Status Scale 

score of between 0 and 5.5, be free of comorbid neurological or psychiatric disorders, be 
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relapse and corticosteroid use free for 30 days prior to enrollment, have a clinically definite 

diagnosis of relapsing-remitting MS, and have no contraindication to the MR environment. 

Eligible participants who consented to study participation completed neuropsychological 

assessment and a neuroimaging session. Additionally, they completed a 7-day physical 

activity monitoring in service of the parent study’s original aims, which is of no direct 

relevance to the current thesis. This study was approved by the Ohio State University 

Institutional Review Board.  

 

 

2.2 Neuropsychological Assessment  

 

 

 In the week prior to the neuroimaging visit, participants completed the Working 

Memory (WMI) and Processing Speed (PSI) indices from the WAIS-IV.  

 Processing Speed Index: The Processing Speed Index from WAIS-IV is composed of 

two subtests that measure an individual’s ability to complete time-dependent graphomotor 

tasks by visually inspecting and categorizing symbols. In the symbol search subtest, 

individuals scan rows of symbols attempting to identify and mark those that match a set of 

target symbols. In the Coding subtest, individuals use a symbol-digit key to transcribe as 

many symbols with their corresponding digit as they can within a time limit. The dependent 

variable was the age-corrected Processing Speed Index score.  

 Working Memory Index: The Working Memory Index from WAIS-IV is likewise 

composed of two subtests that measure the ability to hold and manipulate numbers, testing, 

among other things, attention, encoding, and mental manipulation abilities. In the Digit Span 
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subtest, participants are asked to listen to an increasingly large set of numbers and repeat 

them, either in reverse or chronological order. In the Arithmetic subtest, individuals are 

orally administered mathematical word problems, requiring that they both attend to and 

retain the information in the problem and manipulate the information in their head. The 

dependent variable was the age-corrected Working Memory Index score.  

 

 

2.3 Clinical Variables 

 

 Expanded Disability Status Scale 

 The EDSS is an MS-specific, self-report questionnaire intended to quantify the total 

disease burden of the disease and provide a method to measure disease progression over time 

(Kurtzke, 1983). The scale ranges from 0 to 10 in half point increments, with higher numbers 

representing higher levels of disease burden (Figure 2). Scores from 1 to 5.5 represent 

individuals who have retained the ability to walk without aid, and additionally assesses for 

dysfunction across eight systems: muscle weakness and/or impaired limb function; balance 

and coordination issues, tremors, ataxia; speech and swallowing function and nystagmus; 

numbness or sensory issues; bladder or bowel dysfunction; visual dysfunction; memory and 

cognitive dysfunction, and any other deficit observed. EDSS scores above 5.5 apply to 

individuals with impaired walking ability, and primarily scores the severity of this 

impairment.  
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2.4 Neuroimaging Data Acquisition  

 

Each participant underwent a 75-minute scan, collecting both structural and 

functional MRI data on a Siemens 3 Tesla Trio scanner with a 32-channel head coil. For the 

structural scans, a high-resolution 1-mm voxel T1-weighted image (TR = 1950ms, TE = 

4.44ms, flip angle = 12°, field of view = 256 x 232 x 176mm3, slice thickness = 1.00mm3, 

voxel size standard = 1.0-mm3, 176 sagittal slices acquired interleaved), and a T2-weighted 

Fluid Attenuated Inversion Recovery (FLAIR) image (TR = 14000ms, TE = 7.3ms, flip angle 

= 120°, field of view = 350 x 263 x 350mm3, slice thickness = 2.00mm, voxel size standard = 

0.8 x 0.8 x 2.0-mm3, 60 slices acquired interleaved). In addition to several task sequences 

outside the scope of the present study, a 15-minute, 450 volume resting-state scan was 

collected (TR = 2000 ms, TE = 30 ms, flip angle = 73°, field of view = 220 x 200 x 116mm3, 

slice thickness = 3.4mm3, voxel size = 3.4mm3, 34 slices acquired interleaved), in which 

participants were asked to fixate on a white cross presented on a black screen while thinking 

of nothing in particular. All data was converted from DICOM to Nifti format using the Brain 

Imaging Data Structure (BIDS; Gorgolewski et al., 2016), and image quality and subject in-

scanner motion was assessed using a validated quality control pipeline (MRIQC; Esteban et 

al., 2017).  

 

2.5 Neuroimaging Data Preprocessing 

 

 All preprocessing of structural and functional images was completed using the 

fMRIPrep pipeline version 1.4.1 (Esteban et al., 2019) which uses Nipype 1.2.0 (K. 
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Gorgolewski et al., 2011). fMRIPrep completes minimal preprocessing utilizing an array of 

tools from various analysis software packages, including brain extraction, motion correction, 

field unwarping, normalization, and bias field correction (Esteban et al., 2019).  

 

Total Lesion Volume 

 Due to the fact that structural MRI images from PwMS have T2w, and sometimes 

T1w, visible lesions that may interfere with standard preprocessing steps such as 

segmentation and normalization (Battaglini et al., 2012), we included in the analysis pipeline 

a high-resolution lesion map which fMRIprep utilized to fill lesion locations with signal from 

non-lesion matter. To create this lesion map, T2 images were first brain extracted using 

FSL’s BET tool, and then imported to the Xinapse Systems Jim 6.0 software (Xinapse 

Systems, 2011), where two independent raters (ICC = .968, p< .01) manually identified white 

matter lesions by marking lesion voxels in each slice of the T2 images. This manual lesion 

map was then combined with an automated lesion finding tool segmentations in the Jim 

software that uses prior knowledge of MS lesions from 300 expert manual lesion to create an 

additional lesion probability map (Xinapse Systems, 2011). These two lesion maps, the 

manual and the automated, were algorithmically combined giving equal weight to each, to 

create a final, semi-automated lesion map. Total lesion volume measure in cubed centimeters 

was calculated in the Jim software, and utilized in the regression analysis predicting EDSS. 

Using FSL, the lesion map was converted to high-resolution space in order to be used for 

lesion filling of the T1w image in fMRIprep, a procedure which improves segmentation and 

registration of the T1w image to standard space by refilling lesion spaces with the intensity 

values from normal-appearing, non-lesion white matter.  
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Preprocessing of Structural Data 

 The T1 image was first corrected for intensity non-uniformity with the ANTs 

N4BiasFieldCorrection function, and then skull-stripped with the ANTs antsBrainExtraction 

tool (ANTs 2.2.0; Avants et al., 2011). The lesions in the T1w image were identified and 

filled with surrounding voxel intensities in order to improve subsequent registration and 

segmentation. Spatial normalization was performed using ANTs’ antsRegistration tool, using 

nonlinear registration for alignment of the T1w image to standard space 

(MNI152NLin2009cAsym). Brain tissue in the T1 was segmented into cerebrospinal fluid 

(CSF), white-matter (WM), and gray-matter (GM) using FSL’s (FSL 5.0.9; Jenkinson et al., 

2012) fast tool (Zhang et al., 2001), and then Freesurfer (FreeSurfer 6.0.1;Fischl, 2012) was 

used to refine these segmentations using both the T1w and FLAIR image.  

  

Preprocessing of rs-fMRI 

 For the single BOLD resting-state run, a single reference image and a skull-stripped 

version of this image was generated, and the susceptibility distortion was estimated from the 

fieldmap image using a custom methodology from fMRIPrep. The sequence was corrected 

for susceptibility distortion using the fieldmap image. The BOLD reference image was co-

registered to the T1w reference using Freesurfer’s bbregister tool (FreeSurfer 6.0.1;Greve & 

Fischl, 2009), using nine degrees of freedom. Head motion was estimated in relation to the 

BOLD reference and corrected for using FSL’s mcflirt (FSL 5.0.9;(Jenkinson et al., 2002), 

and then slice-timing corrected using AFNI’s 3dTshift (Cox, 1996, 2012). Volumes that 
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exceeded a .5 mm FD cutoff were considered high motion outliers and included as regressors 

in the following step.  

After data preprocessing, the first 5 volumes of the functional data were excluded to 

allow for the stabilization of the BOLD signal. A final regression step was implemented 

using the signal.clean function in the Nilearn Python package (Abraham et al., 2014) to 

implement high pass temporal filtering at .01 Hz, as well as the regression of 36 motion 

parameters (WM/CSF/global timecourses, 6 rigid body motion parameters, their temporal 

derivatives, and their quadratic term), high motion confound volumes, and mean signal from 

the WM, CSF, and global signal. No spatial smoothing was performed, given recent work 

suggesting smoothing may reduce between subject differences in graph theory metrics 

(Alakörkkö et al., 2017).  

 

 

2.6 Prediction of Processing Speed Index and Working Memory Index 

 

Connectivity Matrices 

 Connectome-based predictive modeling was used to examine the explained variance 

in processing speed and working memory from resting-state functional connectivity. After 

nuisance regression of the time-series from each node of the Shen atlas (X. Shen et al., 2013), 

each time-series was correlated with every other time-series to create a 268 by 268 functional 

connectivity matrix for each participant, with each edge representing the degree of 

correlation between two nodal time-series. Given the small sample size of this study, nodes 
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were removed from every individual’s connectivity matrix if they were missing in any 

participant.  

One potential confound in functional connectivity analyses is the influence of in-

scanner head motion, which can create the spurious appearance of functional connections 

between nodes. In addition to motion correction at the preprocessing stage, to examine the 

potential influence of residual motion during rs-fMRI on CPM models, a three-step 

procedure was followed.  

First, for each subject’s processed rs-fMRI data, a mean framewise displacement 

measure was calculated by taking the average absolute temporal derivative of 6 motion 

parameters (3 translational and 3 rotational) from volume to volume in the motion-corrected 

data (Power et al., 2012). This post-processed mean FD therefore represented the remaining 

motion in each participant’s resting-state timeseries. Processed mean FD was Pearson 

correlated with PSI and WMI, respectively, to determine the overlap between behavioral data 

and subject motion. Second, participants who averaged a processed FD of above .15 were 

determined to have excessive motion and excluded from analyses. This cutoff has been 

widely used in CPM analyses and was selected a priori in order to balance the tradeoff 

between sample size and clean data. Third, a CPM was built specifically to predict motion. 

This allowed us to: a) determine whether exclusion of high motion subjects reduced the 

influence of residual motion on CPM models, and b) identify the sample-specific mean FD 

cutoff required to reduce motion artifact such that it is no longer sufficient to predict subject-

level motion from functional connectivity and compare it to our a priori cutoff of .15.   
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Network Derivation and Model-Building 

 Networks and models were built separately for PSI and WMI utilizing a leave-one-

out cross validation approach (Figure 1). For PSI and WMI respectively, participants were 

divided into a training set, consisting of n-1 participants, and a testing set, consisting of the 

left out individual. Within each cross-validation iteration, each edge in the functional 

connectivity matrix across all individuals was Spearman correlated with the behavioral input 

while statistically controlling for processed motion scores, and thresholded at a significance 

level of p <.01, creating a set of edges significantly correlated with behavior. These edges 

were separated into two distinct networks: a high network, consisting of all edges positively 

correlated with behavior, and a low network, consisting of all edges negatively correlated 

with behavior.  

Within each of these networks, connectivity values in all selected edges were 

averaged to form a summary statistic. The validity of averaging the edge connectivity values 

into a single score was evaluated by comparing the correlation of the most predictive edge in 

the entire network with behavior to the correlation of the summary strength scores with 

behavior. Three regression models were formed by regressing behavioral scores onto the 

high and low summary statistics for the n-1 individuals. Using the training-set network, 

summary strength scores were then calculated for the left out individual and inserted into the 

linear model in order to produce an estimated behavioral score from the unseen individual’s 

data.  

This procedure was repeated for every individual such that every individual’s data 

was left out of model training once, and thus received an estimated behavioral score. 

Estimated scores from the high and low models were correlated with observed behavioral 
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scores to assess model fit. To assess the robustness of any significant models, and to 

calculate a final p-value for each correlation between observed and estimated scores, 

permutation testing was performed by shuffling the behavioral scores such that they were no 

longer matched with the brain matrix from the same individual. CPM was shuffled and run 

1000 times, creating a null distribution of rho values representing the accuracy of the CPM 

models observable by chance. Our true model’s rho value was placed into this distribution to 

determine the likelihood that it occurred due to chance.  

After model derivation, network edges in significant models were evaluated by 

examining region location and participation 10 canonical networks: cerebellar; medial 

frontal; frontoparietal; default mode; motor; visual I; visual II; association; salience; 

subcortical. Using the following formula, the contribution of within and between network 

connections was calculated as the ratio of the proportion of model edges from network A to 

B, to the proportion of total edges in the brain from network A to B. This allowed us to 

examine the relative contribution of networks in our final models by controlling for overall 

network size.  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴,𝐵 =
𝑚𝐴,𝐵/𝑚𝑡𝑜𝑡𝑎𝑙

𝐸𝐴,𝐵/𝐸𝑡𝑜𝑡𝑎𝑙
 

 

 

Examination of Model Assumptions 

As CPM relies on a linear regression of behavioral scores onto functional 

connectivity summary strength scores, the relationship between network connectivity and 

PSI and WMI, respectively, was evaluated post-derivation for linearity, normality, 

homoscedasticity by examining the residuals and estimated Y values derived for each subject 
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during cross-validation. These assumptions may be categorized into primary, which when 

violated affects the meaning of the statistics applied, and secondary, which when violated 

does not change the interpretation of the statistics but may not accurately reflect population 

inference (Hayes, 2005). Linearity, the only primary assumption of linear regression, was 

evaluated visually, by constructing a detrended scatterplot of the residuals of estimated Y 

(model-estimated PSI and WMI scores) against summary strength scores. In addition, 

variance accounted for by the simple linear model was compared to variance accounted for 

by the introduction of a second degree and third-degree polynomial to determine whether the 

relationship between connectivity and behavior was better explained by a curvilinear model.  

The secondary assumption of conditional normality of the estimation errors assumes 

that the model’s errors in estimation are normally distributed at every value of estimated Y. 

This was assessed by visual inspection for normality by plotting a histogram of the 

frequencies of the residuals, however, the possibility of non-normal estimation errors was 

proactively accounted for by the use of permutation testing to determine the final p-values, 

given that permutation testing makes no assumption about the shape of the error distribution 

and is therefore valid regardless of its shape.  

Homoscedasticity is the secondary assumption that the conditional estimation errors 

are equally variable for all estimated Y values in the population. This was examined by 

visually inspecting a plot of the residuals against the estimated Y values, as well as non-

visually by computing the Pearson correlation between estimated Y and the absolute value of 

the residuals.  
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2.7 Association of Functional Connectivity with Disease Course 

 

 Functional connectivity models determined to have successfully identified a brain-

behavior relationship were evaluated for overlap with clinical disease measures by 

correlating summary strength scores with EDSS. Additionally, the explanatory power of 

functional connectivity and total lesion volume in predicting EDSS were examined by 

creating a multiple linear regression model that utilized summary strength scores from WMI 

and PSI models and lesion load as predictor variables in the prediction of EDSS. The unique 

contribution of each of these variables was assessed by completing a semi-partial correlation 

for each of the three predictor variables.  
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Chapter 3. Results 

 

3.1 Sample Demographics, Neuropsychological and Clinical Variables 

 

Of the 44 individuals who participated in the study, 39 completed the neuroimaging 

portion of the study and were included in these analyses. The demographic characteristics of 

this sample can be found in Table 1, which consisted of 31 females and 8 males with an 

average age of 45.95 years (SD = 7.62), an average of 16.37 years of education (SD = 2.37). 

With regards to race and ethnicity, 33 participants identified as ‘White’, 3 identified as 

‘Black or African American’, 2 identified as ‘Other’, and 1 responded ‘Prefer not to 

Answer’; no participants identified as ‘Hispanic’. The average duration of disease was 11.39 

years (SD = 8.42), with a mean EDSS score of 3.74 (SD = 1.13). Mean WAIS-IV PSI 

percentile score was 98.92 (SD = 12.81) and mean WMI percentile score was 104.10 (SD = 

15.62), indicating a cognitively normal sample. 

Although MS study samples vary in clinical and demographic factors, making 

comparison between samples difficult, compared to similar neuroimaging studies with 

relapsing-remitting MS samples, our study had a comparable patient sample size (Bonavita et 

al., 2015; Faivre et al., 2016; Finke et al., 2015; Gamboa et al., 2014; Leonardi et al., 2013; 

Sbardella et al., 2015; Shu et al., 2016), and was similar in average age (Bonavita et al., 

2015; Castellazzi et al., 2018; Finke et al., 2015), and disease duration (Finke et al., 2015; 
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Sbardella et al., 2015). Our sample had approximately 3 more years of education, a larger 

female to male ratio (Cruz-Gómez et al., 2014; Faivre et al., 2016; Finke et al., 2015; 

Leonardi et al., 2013; Sbardella et al., 2015) and had a higher average EDSS score 

(Castellazzi et al., 2018; Cruz-Gómez et al., 2014; Finke et al., 2015; Leonardi et al., 2013) 

than many similar neuroimaging samples. Race and ethnicity in our sample could not be 

adequately compared to similar studies due to infrequent reporting of these variables.  

After excluding subjects with an average mean FD head motion estimate of  > .15, an 

exploratory analysis in the final sample of 33 was performed to examine the relationship 

between clinical, demographic, and neuropsychological variables by correlating PSI scores, 

WMI scores, disease burden (EDSS), disease duration, education, total lesion volume (TLV), 

and motion estimates during rs-fMRI measured as mean framewise displacement (mean FD) 

(Table 2). A significant negative correlation was found between disease duration and PSI 

scores, r (33) = -.35, p < .05, such that longer disease duration was associated with worse PSI 

scores. In addition, a positive relationship was observed between motion and disease burden, 

r (33) = -.36, p = .04, such that higher average motion was associated with higher self-

reported disease burden. Several notable relationships were examined but did not reach 

significance in this sample: total lesion volume was inversely correlated with both PSI 

scores, r (33) = -.34, p = .06, and WMI scores, r (33) = -.34, p =.05, with higher total lesion 

volume associated with lower PSI and WMI scores. In addition, there was no significant 

association between WMI scores and education level, r (33) = .30, p =.09, or WMI scores 

and in-scanner motion, r (33) = -.30, p =.09.  
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3.2 Neuroimaging Results 

 

Network Derivation and Model Performance 

 Twenty-one nodes were excluded from the analyses prior to network derivation due 

to insufficient brain coverage in at least one individual. These nodes consisted of 15 

cerebellar nodes, 2 brainstem nodes, 2 prefrontal nodes, and 2 temporal nodes, resulting in a 

247 x 247 symmetrical connectivity matrix for inclusion in the main analysis. Within each 

iteration of the separate PSI and WMI cross-validation loops, edges were correlated with 

assessment scores, forming 33 iterations of behavioral networks and 33 iteration of models. 

During PSI derivation, the number of edges in the model-building iterations ranged from 

168-227 in the high network, and 133-179 in the low network. The low-PSI model was found 

to successfully predict processing speed (correlation between predicted and estimated scores: 

rs (33) =.41, p = .02), however the high network was not significantly able to predict 

processing speed performance, rs (33) =.03, p = .86 (Figure 2). During WMI derivation, the 

number of edges in the model-building iterations ranged from 111-157 in the high network, 

and 148-214 in the low network. Neither the high nor the low networks were able to 

successfully predict working memory scores (high model: rs (33) =-.15, p = .40; low model: 

rs (33) =.13, p = .48) (Figure 2). The only significant model, the low PSI CPM, survived 

permutation testing suggesting low likelihood of this model occurring due to chance, p = .03 

(Figure 2). 

  

Regression Model Assumptions 

 The high and low models within each round of cross validation were assessed for PSI 

and WMI individually in order to examine model assumptions of the regression between 
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summary strength scores and behavior, including linearity, normality, and homoscedasticity 

(Figure 5). For PSI high and low models, visual inspection of the residuals showed no 

discernable trend, nor visible homoscedasticity, suggesting a linear model was appropriate 

(Figure 5 b). The absolute value of the residuals and the predicted value of Y were correlated 

and demonstrated no significant relationship for any of the networks. A histogram plot of the 

residuals showed a normal distribution, satisfying the requirement for normality (Figure 5 a). 

Testing whether the relationship between summary scores and PSI would be better modeled 

by a curvilinear relationship using 2nd and 3rd degree polynomial terms, we found no change 

in nonsignificant models. For the significant low network, a 2nd degree polynomial term 

improved the captured variance in PSI scores but decreased statistical significance due to the 

added degree of freedom, rs (33) =.48, p < .05. For the WMI high network, visual 

examination of the residuals indicated a slight negative trend (Figure 5 b), indicating a linear 

model may not be appropriate. A second order polynomial term increased the captured 

variance of WMI scores, but still failed to reach significance, rs (33) =.32, p = 0.20 (Table 6). 

Upon visual inspection, normality of the residuals for the WMI high network was also 

questionable (Figure 5 a). The low WMI network appeared to be normal, linear and have 

appropriate homoscedasticity.   

  

Network Topology Predictive of Worse Processing Speed 

In order to characterize edges utilized during cross-validation, edges that were 

significantly correlated with behavior in every iteration of the cross-validation loop were 

identified for each of the processing speed and working memory network derivations. For 

PSI, we found 71 common edges in the high network, and 58 in the low network, accounting 
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for .23% and .19% of total available edges, respectively. For WMI, we found 46 edges in the 

high network, and 72 in the low network, .15% and .23% of available edges in the whole 

matrix.  

 The anatomical and network localization of the significant, low-PSI network was then 

assessed (Table 2). The 58 edges in the common low-PSI network showed slightly greater 

involvement of the right hemisphere than the left with the largest number of contributions 

originating from the left and right prefrontal regions (Figure 3). Contribution of the 10 

canonical networks was assessed by dividing these edges into the networks they participate 

in and examining the within and between network connections relative to the expected 

contribution given the number of edges in those networks (Figure 4). This analysis revealed 

that prediction in the low-PSI CPM was driven by edges in several different networks. By 

raw count, the network consisted primarily of within network connections in the cerebellar, 

medial frontal, subcortical, and motor networks, as well as increased between-network 

connectivity between the cerebellar and subcortical networks, cerebellar and frontoparietal 

networks, subcortical and frontoparietal networks, salience and motor networks, visual I and 

motor networks, visual I and DMN, and frontoparietal and medial frontal networks. Relative 

to the number of edges located in each of these networks, the greatest relative contributions 

were from within network connections in the cerebellar, subcortical, and motor networks, in 

descending order. The greatest relative contributions from between network connections 

were from connections between cerebellar and subcortical, cerebellar and frontoparietal 

networks, visual I and DMN, motor and DMN, in descending order (Figure 6).  

 

Processing Speed Model Metrics Correlate with Measures of Disease Burden 
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 Summary scores estimated for each individual during model derivation for the 

significant low-PSI network were significantly correlated with EDSS, r (33) =.38, p = .03, 

suggesting that functional connectivity within edges negatively correlated with processing 

speed were also associated with increased disease burden. Neither PSI cognitive performance 

scores, rs (33) = -.13, p = .48, WMI cognitive performance scores, rs (33) = -.20, p = .27, nor 

total lesion volume, rs (33) = .15, p = .40, were significantly associated with disease burden.  

In order to determine the unique contribution of functional connectivity, lesion 

accumulation, and cognitive performance in the prediction of current disease burden, we built 

a multiple linear regression model using summary strength scores from the successful 

processing speed derivation, total lesion volume, and cognitive performance on the WAIS-IV 

PSI and WMI subtests (Table 4). Combined, TLV, WMI, PSI, and the PSI-CPM summary 

strength scores accounted for 18.2% of the variance in EDSS. Of this, PSI-CPM summary 

strength scores uniquely accounted for a significant amount, 13.19%, of variance in EDSS. 

Cognitive performance as measured by the PSI uniquely accounted for .58% of variance in 

EDSS, WMI uniquely accounted for 3.54% of variance in EDSS, and lesion volume uniquely 

accounted for a miniscule .002% of variance in EDSS. The shared variance accounted for by 

lesion volume, PSI, WMI, and PSI-CPM summary strength scores was only 1.02%. As a 

final analysis, a model was built to predict EDSS using WMI, PSI and TLV, but not CPM 

summary strength scores. This model accounted for only 5% of the variance in EDSS, 

meaning that including CPM summary strength scores resulted in an increase of 13.20%.  
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Motion Correction   

In-scanner motion was Pearson correlated with WMI and PSI in the full sample, 

which failed to find a relationship between motion and neuropsychological assessment scores 

(correlation between mean FD and PSI, r (39) = -.30, p = .06; correlation between mean FD 

and WMI, R(39)= -.24, p= .14). Six participants were excluded a priori for having average 

motion estimates greater than .15mm, resulting in a final sample of 33, after which the 

correlation between motion and behavior was r (33) = .10, p =.55 for PSI, and r (33) = -.030, 

p = .09 for WMI (Table 2).  

 As an additional check for the potential confounding role of motion during model 

derivation in this low-motion sample of 33 participants, a CPM model was built specifically 

to predict motion estimates using rs-functional connectivity. We found that enough motion 

artifact remained in the data to result in a highly predictive model (correlation between 

predicted and observed mean FD scores: r (33) = .72, p < .001). As an exploratory analysis, 

models were iteratively built to remove high-motion subjects in descending order in an 

attempt to determine an ideal motion cutoff. At n = 27, corresponding to a processed mean 

FD cutoff of > .1097, CPM could no longer be used to predict motion. The ability to predict 

motion decreased steadily with the removal of high motion subjects, suggesting that 

removing high-motion individuals does reduce the chance of predictive models being 

influenced by motion artifact. Due to the residual motion in the sample indicated by the 

successful prediction of mean FD using CPM, motion was subsequently statistically 

controlled for during the feature selection stage of the processing speed and working memory 

CPM derivation by using a partial correlation to select edges that remained significantly 
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associated with cognitive scores even after removing the variance accounted for by mean FD 

scores.  
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Chapter 4. Discussion 

 

Current conceptualization of multiple sclerosis is as a common, idiopathic and 

unrelenting inflammatory disease, afflicting young and middle-aged adults with progressive 

structural damage to the central nervous system (Baecher-Allan et al., 2018; Dendrou et al., 

2015; Lassmann, 2018; Wallin et al., 2019). Pharmacological treatments fail to fully prevent 

disease progression (Amato et al., 2019; Baecher-Allan et al., 2018; Claflin et al., 2019; 

Ontaneda et al., 2017), and thus PwMS experience a complex disease course characterized by 

MRI-visible white matter lesions, dysfunction of “normal-appearing” gray and white matter, 

neuroinflammation, and the body’s own attempts to repair this damage (Calabrese et al., 

2012; Louapre, 2018; Tintore et al., 2015). Together, these factors result in a highly 

unpredictable and heterogenous disease that challenges the standard clinical goals of 

diagnosis, symptom monitoring, identification of mechanisms of decline, and evaluation of 

treatment efficacy. Previous research has attempted to use structural and functional MRI to 

quantify individual disease burden as a means to address these clinical goals, particularly 

focusing on lesion accumulation. These studies have revealed that although lesion 

accumulation is often correlated with impaired processing speed as well as increased EDSS, 

this relationship is not unequivocal (Calabrese et al., 2012; Filippi, Preziosa, et al., 2013; 

Healy et al., 2017; Louapre, 2018; Mike et al., 2011; Patti et al., 2015; Randolph et al., 2005; 

Stankiewicz et al., 2011). And whereas a graph theoretical approach to functional 

connectivity has led researchers to propose that structural damage, including but not limited 
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to lesion accumulation, negatively impacts network efficiency and interacts with 

compensatory mechanisms in a way that may theoretically explain the heterogenous and 

unpredictable nature of MS symptomatology (Fleischer et al., 2019; Schoonheim et al., 

2015), to date, the development of functional neuromarkers is in its infancy and their 

usefulness above and beyond structural measures of disease burden have not been 

sufficiently investigated. The present study demonstrated that a successful model of 

processing speed, but not working memory, could be derived from resting-state fMRI and 

used to create a preliminary network of processing speed specific to this population.  

Additionally, we demonstrated that metrics summarized from this processing speed network 

explained significant variance in disease burden that was unique to, and in excess of, 

variance explained by either total lesion volume or neuropsychological assessment scores of 

processing speed and working memory.  

 

 

4.1 Success and Composition of PSI and WMI CPM Networks 

 

 Connectome-based predictive modeling is a technique that builds upon traditional 

whole-brain graph theory approaches by allowing for the derivation of domain-specific 

networks of cognition. Previous work has used CPM in healthy adults to derive unique 

networks for domains such as fluid intelligence (Finn et al., 2015), attention (Rosenberg et 

al., 2015), processing speed (M. Gao et al., 2020), and working memory (Avery et al., 

2019). Especially relevant to the current study, recent work by Gao et al. has used resting 

state functional connectivity and CPM to predict processing speed in 99 healthy older 

adults, successfully deriving two distinct networks of fast and slow processing speed, 
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respectively (M. Gao et al., 2020). A neuromarker of working memory has also successfully 

been derived from resting-state functional connectivity to predict n-back performance in a 

large sample of 502 healthy young adults, though this neuromarker was outperformed by a 

task-based model (Avery et al., 2019). These and other findings have suggested that CPM 

neuromarkers built on task data may be more predictive and have better generalizability to 

external data (Greene et al., 2018). Despite this, resting state functional connectivity has 

long been considered better-suited for use in clinical populations, given its high signal-to-

noise ratio, the ability to apply it flexibly to multiple constructs, and its ease of collection in 

a wide array of populations (Fox & Greicius, 2010). However, the application of CPM to 

neurological disease has thus far been limited when compared to its use in healthy adults, 

though it has demonstrated some success in predicting cognitive impairment in cancer 

patients and older adults with MCI and Alzheimer’s disease (Henneghan et al., 2020; Lin et 

al., 2018; Prakash et al., in prep) and psychological disorders such as anxiety, depression 

and disordered sleep (Giancardo et al., 2018; Ju et al., 2020; Ren et al., 2021). 

Encouragingly, however, recent work has demonstrated networks derived during CPM may 

have potential utility as clinical markers of treatment response in depression (Ju et al., 

2020), opening a new field of domain-specific neuromarkers in patient populations. 

 Given the success of predictive model derivation in healthy adults, and the 

advantages of the method’s whole-brain approach to functional connectivity, we 

hypothesized that we would be able to successfully derive processing speed and working 

memory networks in people with relapsing-remitting multiple sclerosis. In our current 

study, we were successfully able to derive a low-processing speed network and use that 

network to build a model to infer WAIS-IV processing speed scores in PwMS using resting-
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state fMRI data, and a leave-one-out cross validation procedure to assess model fit. Our 

successful processing speed model was one that relied on edges negatively correlated with 

processing speed scores, and thus the resulting network is one representing a set of edges 

where increased connectivity in this sample of PwMS is indicative of slower processing 

speed. Our observed correlation between predicted and observed scores was moderately 

strong and survived permutation testing. Similar to the findings of Gao et al., we observed 

that our low-PSI network outperformed our high-PS network in the internal validation 

procedure, and that our correlation between observed and predicted processing speed scores 

was comparable (MS low-PSI network rs = .41; older adult slow-PS network rs = .42) (M. 

Gao et al., 2020).  

 When correcting for network size, this slow-PS network contained primarily 

within-network connections in cerebellar, subcortical, motor, and medial frontal networks, 

and between-network connections between the cerebellar and subcortical networks, 

cerebellar and frontoparietal networks, visual I and DMN, as well as motor and DMN. 

Within-network cerebellar connections were especially overrepresented, followed by 

between-network connections from cerebellar-to-frontoparietal networks, and within-

network connections in the sub-cortical network. Other overrepresented network 

connections included Visual I-to-DMN, motor-to-DMN, frontoparietal-to-subcortical, and 

cerebellar-to-visual II (Figure 6). In comparison, the slow-PS CPM network identified by 

Gao et al. in healthy older adults demonstrated a strong contribution of within-network 

connections in the motor cortex, and between-network connections from motor-to-visual II 

and motor-to-frontoparietal networks (M. Gao et al., 2020). Differences in these two 
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networks may be due in part to edges associated with slowed processing speed in MS being 

related to MS pathology. 

  If this is the case, then high-probability lesion sites that are common to many 

PwMS, such as the cerebellum (Calabrese et al., 2010), should be highly represented, as 

they were in our sample. Notably, cerebellar lesions and degeneration have also previously 

been tied to deficits in reaction time tasks (Molinari et al., 1997) and processing speed in 

aging adults (Eckert et al., 2010) and PwMS (Moroso et al., 2017; Savini et al., 2019) . This 

may in part explain the high contribution of within-cerebellar connections contributing to 

our network and would suggest that lesion accumulation is in fact an important metric of 

disease burden, but one that may not be adequately or ideally measured by whole brain total 

volume. 

 Despite the successful derivation of a low-PSI network, we were unable to derive a 

high-PS network in this sample. In addition, our second hypothesis was that we would be 

able to successfully derive a resting-state working memory network in PwMS, which we 

were also unable to do. Deriving a network of working memory in PwMS would similarly 

have allowed us to examine the contribution of working memory to disease burden and 

compare this to processing speed. Research has suggested that processing speed deficits 

appear earlier in the MS disease course than working memory deficits (Brochet & Ruet, 

2019), and research into these cognitive domains has led others to propose that working 

memory is supported by processing speed (Fry & Hale, 1996) and therefore working 

memory deficits may emerge directly as a result of processing speed deficits. Given that we 

were unable to derive either a high or low working memory model, these relationships could 

not be examined.  
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4.2 Assessing Predictors of Disease Burden 

 

 Given that processing speed is a core deficit observed in PwMS (DeLuca et al., 

2004), identifying a population-specific network of processing speed allowed us to examine 

the role of this cognitive domain in overall disease burden. The second aim of this study 

attempted to establish whether a neuromarker of processing speed might have clinical 

utility, which we examined by associating metrics derived from this marker with disease 

burden as measured by the EDSS. We hypothesized that metrics derived from our 

successful predictive models would account for unique variance compared to total lesion 

volume and neuropsychological assessment scores, given that changes in functional 

connectivity may theoretically reflect the impact of lesions on networks supporting 

cognitive functions. In line with our hypothesis, we found that indeed functional 

connectivity metrics accounted for 13.19% of the variance in EDSS using linear regression.  

 Notably, and unexpectedly, total lesion volume did not account for a significant 

amount of variance in predicting EDSS, despite marginal associations of total lesion volume 

with PSI and WMI scores in our sample. Our failure to find a relationship between EDSS 

and total lesion volume fits into a literature of mixed findings, with several large studies 

previously finding evidence of associations between lesion volume and EDSS (Calabrese 

Mike 2011, Randolph 2005, Stankiewicz 2011) and several studies failing to do so (Fillipi, 

Agosta 2013, Healy 2017). This paradox can likely be explained due to issues already 

discussed, particularly that total lesion volume is likely an imperfect measure of pathology, 
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exacerbated by diversity in lesion location, the compensatory factors of functional networks, 

and heterogeneity of disease course (Louapre, 2018).  

 Importantly, we also included performance on the WAIS-IV PSI and WMI as 

covariates in our model to explain variance in EDSS, given that neuropsychological 

assessment is clinically used to monitor disease progression in MS and other disorders and 

has some practical advantages compared to fMRI (Ruet & Brochet, 2020). We did not 

observe that performance on either of these tests explained variance in disease burden. This 

finding was also unexpected, but important, given that the National MS Society has 

suggested the use of repeated cognitive testing in PwMS to monitor disease progression and 

evaluate treatment (Kalb et al., 2018). Our findings here suggest instead that although 

structural damage begets functional changes, these functional changes reflect the degree of 

damage to cognitive systems resulting from MS pathology, and that these functional 

changes may be more relevant to predicting disease burden than either structural damage or 

cognitive test performance.  

 

 

4.3 Limitations and Future Directions 

 

 Together, these findings might suggest that for cognitive outcomes and overall 

disease burden, total lesion volume may be less important than a nuanced understanding of 

the relationship between lesion location and the resulting impact of lesions to the integrity 

of networks that support cognition. Previous work has demonstrated that functional 

networks are constrained by structural white matter connections (Honey, 2008), and 

therefore white matter integrity is likely to be directly related to the integrity of functional 
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networks. In PwMS, recent work has suggested that in individuals with structural damage to 

regions associated with the DMN, cognitive rehabilitation response is moderated by 

integrity of functional networks (Fuchs, 2020). This suggests first, that the impact of 

structural damage may be differential depending on the location of that damage, and second, 

that structural damage is moderated by functional reserve. Thus, as is supported by our 

results, functional connectivity is likely to contribute unique predictive variance to models 

of disease. However, our analysis did not investigate the impact of lesions dependent on 

their location. Future work would benefit from incorporating diffusion weighted imaging to 

examine this relationship, as well as the relationship between local structural damage and 

the impact on local and diffuse functional networks.  

 In addition, the current study proposed to examine the feasibility of implementing 

CPM to derive processing speed and working memory networks in a MS sample, and to 

determine whether metrics from those networks were associated with overall disease 

burden. Our findings are limited to this sample and cannot be generalized to the MS 

population as a whole without further work replicating this finding. In particular, two of our 

findings may limit the replicability of this experiment. First, our successful low-PSI 

network contained only 58 edges common across all individuals in the sample, whereas 

previous working memory, attention and processing speed CPM papers have reported that 

number to be in the hundreds (Avery et al., 2019; M. Gao et al., 2020; Rosenberg et al., 

2015). Despite this, the high degree of correlation between the low-PSI network metrics and 

EDSS, and the disproportionate representation of certain canonical networks suggest that 

these edges were not selected by chance. One explanation for the low number of network 

edges is that the MS disease course introduces significant functional heterogeneity as a 
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result of the observed heterogenous and unpredictable structural damage. CPM is a method 

that seeks commonalities across individuals, and thus its implementation in PwMS might be 

hampered by processes that result in the need for functional reorganization. Future work 

would benefit from the use of longitudinal studies to determine the progression and nature 

of change in functional networks as the disease course progresses. We would hypothesize 

that processing speed and working memory networks would be intact and homogenous in 

pre-symptomatic individuals and become increasingly heterogenous with increased disease 

severity.  An important future direction is to examine how focal white matter damage 

impacts whole-brain connectivity that supports cognitive functions. Creating joint structural 

and functional models and modeling the interaction between structure and function could 

account for inter-individual differences in disease presentation. 

 Another limiting factor in functional connectivity analyses is the potential 

confounding role of head motion, which is known to be a problem in both traditional 

functional connectivity techniques (Power et al., 2012) and CPM (Horien et al., 2018). It is 

possible that the failed derivations and low number of common edges was due to excessive 

noise introduced by participant motion. PwMS may be more prone to in-scanner motion 

than healthy adults given that tremors are a feature of the disease (Koch et al., 2007), and to 

address this we implemented rigorous motion controls, including: the regression of 36 

motion parameters and high motion volumes during nuisance regression; exclusion of 

participants with an average framewise displacement greater than .15; and, controlling for 

motion during the edge selection step of CPM. Despite controlling extensively for motion 

artifact in this study, an important future direction would be to replicate these analyses in a 

larger sample with even stricter motion exclusion criteria. However, it should be noted that 
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translational models that utilize functional connectivity will not be useful to clinicians of 

MS and other clinical populations if they are only able to be derived from, and applied to, 

low-motion patients. Therefore, another key future direction is the development of 

additional methodology that accounts for motion in the preprocessing and model building 

stages.  

 Additionally, although the sustained attention CPM network originally derived in 

Rosenberg et al. (2015) consisted of a sample of 25 healthy adults and has been validated in 

predicting ADHD symptoms in a sample of young adults (Rosenberg et al., 2015) as well as 

Stroop task performance in older adults (Fountain-Zaragoza et al., 2019), most recent 

connectome-based predictive models in the literature have been derived on larger samples 

of closer to 100+ individuals. Models derived on smaller samples are likely to be less 

generalizable (Poldrack et al., 2020), though they are still useful for investigating 

relationships between variables within a single sample, as we do here. Future work would 

benefit from examining the variance accounted for by lesion volume and functional metrics 

in larger samples of PwMS to determine if these relationships hold. Relatedly, given the low 

prevalence of MS in the general population, recruitment for MS studies is a challenge for 

researchers, and thus data sharing and collaboration will be a necessary direction in this 

field, given the need for using large, open access datasets in these advanced methods.  

 A final limitation in this study exists within the network derivation method itself. 

CPM aims to account for multiple comparisons in the edge selection step by utilizing cross-

validation (Finn, 2015). However, recent work, not yet peer reviewed, has experimented 

with the CPM method, and proposed several methods for improving feature selection and 

generalizability (O’Connor et al., 2020). Additionally, recent work published after the aims 
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of the current study were completed have utilized ridge and lasso regression in order to 

remedy this and account for the collinearity of edges (S. Gao et al., 2019). Future work in 

CPM would benefit from examining how different feature selection methods may be more 

or less suitable for different populations and samples, however, these methods may be less 

successful in small sample sizes such as those commonly found in pilot studies such as this 

one. In our current study, the low number of edges but the high relevance of those edges to 

disease burden suggests that our network itself may be sample-specific, but the relationship 

demonstrated between whole-brain functional connectivity, lesion volume, processing 

speed, and disease burden in PwMS may itself be highly replicable and of imminent 

importance to the MS literature.  

 

 

4.4 Conclusions 

 

The current study aimed to use connectome-based predictive modeling - a 

methodology that has been used widely in healthy and various clinical populations to identify 

functional connections associated with behavioral, physiological, and cognitive constructs - 

to derive resting-state, whole-brain functional neuromarkers of processing speed and working 

memory performance in individuals with relapsing-remitting multiple sclerosis, and to assess 

the potential use of this population and cognitive domain specific neuromarker as a method 

to explain variance in overall MS disease burden.  We were able to derive a network of 

processing speed in a sample of people with relapsing-remitting multiple sclerosis, but not a 

working memory network. Additionally, this processing speed network demonstrated some 

clinical utility by predicting significant unique variance in patient disease burden, while total 
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lesion volume and neuropsychological processing speed and working memory assessment 

scores did not. Although the small number of edges in this derived network likely limits its 

use as a true neuromarker, together, these results suggest that the use of functional 

neuromarkers in addition to structural measures may in fact be a promising line of study in 

certain clinical populations, potentially able to reflect not the amount of disease progression 

as measure by structural damage, but rather the net impact of that damage on disease burden 

given individual variation in functional reserve. Multiple sclerosis is a disease marked by a 

high prevalence rate, consequential and disruptive symptoms, and idiopathic onset, and the 

high likelihood of progression to significant disability. The current study suggests that 

whole-brain approaches that include cerebellar regions are vital to future investigations of the 

mechanisms of the MS-disease processes and their effects on physical, sensory and cognitive 

processing. Future research could address the limitations of the current study by replicating 

this analysis on a larger sample and incorporating multimodal imaging (diffusion, task-fMRI, 

etc.) to increase model accuracy and generalizability. 
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Appendix A. Tables and Figures 

 

 

Table 1. Demographic variables for the full MRI sample  

  
n M SD Range 

Demographics     

    Age  39 45.95 7.62 30-58 

    Sex  39 - - - 

         Female  31 - - 

         Male  8 - - 

    Education 39 16.37 2.37 12-23 

    Race 39    

         White  33 - - 

         Black  3 - - 

         Other  2 - - 

         Prefer not to answer  1 - - 

    Ethnicity 39    

        Non-Hispanic  33 - - 

        Hispanic  0 - - 

        Prefer not to answer  6 - - 

     

Clinical Characteristics  
   

    EDSS 39 3.74 1.13 0-5.5 

    Disease Duration 39 11.39 8.42 .25-35 

    Lesion Volume 39 21.83 cm3 12.65 cm3 2.91-44.17cm3 

     

Neuropsychological  
   

    Processing Speed (PSI) 39 98.92 12.81 76-127 

    Working Memory (WMI) 39 104.10 15.62 69-136  
     

Note.  EDSS = Expanded Disability Status Scale (Kurtzke, 1983). WAIS-IV PSI = 

Processing Speed Index standardized score, WMI = Working Memory Index standardized 

score (Wechsler, 1981). 
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Table 2. Correlations for Study Variables in the Final Sample 

 

 

Variable 

 

n 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

1. PSI 

Scores 

 

33 

 

 - 

 

- 

 

- 

 

- 

 

- 

 

- 

 

2.WMI 

Scores 

 

33 

r = .25 

p = .17 

 

- 

 

- 

 

- 

 

- 

 

- 

 

3. EDSS 

 

33 

r = -0.13 

p = 0.48 

r = -.20 

p = .27 

 

- 

 

- 

 

- 

 

- 

 

4. Disease 

Duration 

 

33 

r = -.35* 

p < .05 

r = .02 

 p = .91 

r = .25 

p = .16 

 

- 

 

- 

 

- 

 

5. Education 

 

33 

r = .03 

p= .86 
r = .30⊥ 

p = .09⊥ 

r = -.03 

p = .85 

r = .10 

p = .56 

 

- 

 

- 

 

6. TLV 

 

33 
r = -.34⊥ 

p= .056⊥ 

r = -.34⊥ 

p = .05⊥ 

r = .15 

p = .40 

r = .24 

p = .19 

r = -.05 

p = .80 

 

- 

 

7. Mean FD 

 

33 

r = -.10 

p = .55 
r = -.30⊥ 

p = .09⊥ 

r = .36* 

p = .04 

r = .14 

p = .43 

r = -.17 

p = .34 

r = -.28 

p = .12 

Note: Values listed are WAIS-IV PSI = Processing Speed Index standardized score, WMI = 

Working Memory Index standardized score (Wechsler, 1981). EDSS = Extended Disability 

Status Scale (Kurtzke, 1983). Mean FD = Mean Framewise Displacement (Power et al., 

2011). * p < .05, ⊥ p < .01 
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Table 3. Edges common to all models in derivation of low-PSI network 

 
Edge Region Network connection Region Network 

1 R prefrontal SAL - R prefrontal FP 

2 R prefrontal MF - R motor Mot 

3 R prefrontal FP - R motor Mot 

4 R insula Mo - R parietal VI 
5 R parietal SAL - R parietal Mot 

6 R parietal FP - R temporal Vas 

7 R prefrontal DMN - R occipital VI 

8 R prefrontal DMN - R occipital VI 

9 R temporal Vas - R limbic SAL 
10 R prefrontal FP - R cerebellum CBL 

11 R cerebellum FP - R cerebellum SAL 

12 R subcortex SC - R subcortex SC 

13 R parietal VAs - R subcortex SC 

14 R parietal FP - R subcortex SC 
15 R prefrontal FP - R subcortex SC 

16 R prefrontal FP - R subcortex SC 

17 R temporal Mot - L prefrontal DMN 

18 R prefrontal SAL - L motor Mot 

19 L prefrontal MF - L motor FP 
20 R motor Mot - L motor Mot 

21 R prefrontal MF - L motor Mot 

22 L prefrontal DMN - L insula Mot 

23 R insula Mot - L parietal VI 

24 L prefrontal MF - L temporal MF 
25 L prefrontal SAL - L temporal MF 

26 L parietal MF - L temporal MF 

27 R temporal MF - L temporal FP 

28 R cerebellum CBL - L temporal FP 

29 L temporal MF - L temporal FP 
30 R cerebellum CBL - L temporal MF 

31 L temporal MF - L temporal MF 

32 R parietal VAs - L temporal Mot 

33 R cerebellum CBL - L temporal FP 
34 R temporal Vas - L temporal Mot 

35 R limbic SC - L temporal Vas 

36 R parietal Mot - L temporal Mot 

37 R prefrontal FP - L occipital Vas 

38 R prefrontal DMN - L occipital VI 
39 R insula Mot - L occipital VI 

40 L prefrontal SAL - L limbic SC 

41 L temporal MF - L limbic SC 

42 R limbic Mot - L limbic SAL 

43 R prefrontal 'MF - L limbic SC 
44 R brainstem CBL - L cerebellum CBL 

45 R brainstem CBL - L cerebellum VII 

46 R brainstem CBL - L cerebellum VII 

47 R occipital VII - L cerebellum SAL 

48 R cerebellum CBL - L cerebellum SAL 
49 R brainstem CBL - L cerebellum CBL 

50 R brainstem CBL - L cerebellum CBL 

51 R cerebellum CBL - L subcortex SC 

52 L cerebellum VII - L subcortex SC 

53 R cerebellum CBL - L subcortex SC 
54 R occipital VII - L brainstem SC 

55 R cerebellum CBL - L brainstem SC 

56 L subcortex SC - L brainstem SC 

57 L cerebellum CBL - L brainstem CBL 

58 L prefrontal SAL - L brainstem CBL 

Note: ‘CBL’ = Cerebellar. ‘MF’ = Medial Frontal. ‘FP’ = Frontoparietal. ‘DMN’ = Default 

Mode Network. ‘Mot’ = Motor. ‘VI’ = Visual 1. ‘VII’ = Visual 2. ‘VAs’ = Visual 

Association. ‘SAL’ = Salience. ‘SC’ = Subcortical.  
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Table 4. Predicting EDSS from Cognitive Scores, Total Lesion Volume, and low-PSI Metrics 

 

 

 Model 1  Model 2 

 

Variable 

 

B 

 

95% CI 

 

p 

  

B 

 

95% CI 

 

p 

 

Constant 

 

5.33 

 

[0.56 10.10] 

 

.03 

  

3.97 

 

[-0.73 8.67] 

 

.09 

 

PSI 

 

-.01 

 

[-0.04 0.03] 

 

.75 

  

.01 

 

[-0.28 0.04] 

 

.66 

 

WMI 

 

-.01 

 

[-0.04 0.02] 

 

.43 

  

-.02 

 

[-0.04 0.01] 

 

.28 

 

TLV 

 

.01 

 

[-0.06 0.09] 

 

.69 

  

-.00 

 

[-0.08 0.07] 

 

.98 

 

Low-PSI CPM 

 

- 

 

 

- 

 

- 

  

22.89* 

 

[0.71 45.06] 

 

.04* 

        

R2  .05    

 

.18  

F  .52    

 

1.55  

Delta R2  - 

 

   .13 

 

 

 

Note: n=33. CI = confidence interval. Only the metrics derived from the PSI-CPM network 

reached statistical significance as a predictor of EDSS. EDSS = Extended Disability Status 

Scale (Kurtzke, 1983). TLV = Total Lesion Volume. PSI = Processing Speed Index 

standardized score, WMI = Working Memory Index standardized score (Wechsler, 1981). 

Low-PSI CPM = metrics derived from connectome-based predictive modeling of slow 

processing speed.  * p < .05 
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Figure 1. Connectome-based Predictive Modeling. 

 

 

Note. Schematic visual of connectome-based predictive modeling (CPM).  
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Figure 2. Expanded Disability Status Scale 

 

 

Note. This study included exclusion criteria that limited EDSS to a score of 5.5. EDSS = 

Extended Disability Status Scale (Kurtzke, 1983). Figure adapted from 

[https://www.epresspack.net/temso/media-backgrounder-multiple-sclerosis-a-serious-and-

unpredictable-neurological-disease//] 

 

 

 

 

 

 

 

 



 92 

 

 

Figure 3. In-sample Fit of Processing Speed and Working Memory Models  

 

 

Note. Visual depiction of the in-sample fit for the network of edges negatively correlated 

with WAIS-IV Processing Speed Index. Histograms depict the null distribution CPM results 

after breaking the brain-behavior relationship for permutation testing, with red line 

indicating where the true model falls.  PSI = Processing Speed Index standardized score, 

WMI = Working Memory Index standardized score (Wechsler, 1981). 
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Figure 4. Edges Common to All Iterations of the low-PSI Network by Macroscale Brain  

 

Region 

 

 

 

Note. This visual depicts the involvement of the anatomical distribution of the low-PSI 

network, using regions from the Shen atlas (Xilin Shen et al., 2017) 
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Figure 5. Edges Common to All Iterations of the low-PSI Network by Canonical Network 

 

 

 

Note. Network localization of the low-PSI network. This visual depicts the involvement of 

the 10 canonical networks. ‘CBL’ = Cerebellar. ‘MF’ = Medial Frontal. ‘FP’ = 

Frontoparietal. ‘DMN’ = Default Mode Network. ‘Mot’ = Motor. ‘VI’ = Visual 1. ‘VII’ = 

Visual 2. ‘VAs’ = Visual Association. ‘SAL’ = Salience. ‘SC’ = Subcortical.  
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Figure 6. Contributions of Inter- and Intra- Network Connections Relative to Network Size 

 

 
 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐴,𝐵 =
𝑙𝑜𝑤𝑃𝑆𝐼𝐴,𝐵/𝑙𝑜𝑤𝑃𝑆𝐼𝑡𝑜𝑡𝑎𝑙

𝐸𝐴,𝐵/𝐸𝑡𝑜𝑡𝑎𝑙
 

 

Note. Contributions of within and between network connections were calculated as the ratio 

of the proportion of model edges from network A to B, to the proportion of total edges in the 

brain from network A to B.  ‘CBL’ = Cerebellar. ‘MF’ = Medial Frontal. ‘FP’ = 

Frontoparietal. ‘DMN’ = Default Mode Network. ‘Mot’ = Motor. ‘VI’ = Visual 1. ‘VII’ = 

Visual 2. ‘VAs’ = Visual Association. ‘SAL’ = Salience. ‘SC’ = Subcortical. 
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Figure 7. Assessing Linear Model Assumptions 

 

 

Note. (a) Normality is assessed by ensuring the residuals are evenly centered around 0. All 

network’s residuals were centered around 0 and normally distributed by visual inspection. 

(b) Homoscedasticity and linearity were assessed by examining the relationship between the 

residuals and summary strength scores. Only the high WMI network demonstrated a 

significant negative trend, suggesting this relationship may not be linear; homoscedasticity 

appeared to be violated as the model consistently underestimated the WMI score of 

participants with higher summary strength scores. PSI = Processing Speed Index 

standardized score, WMI = Working Memory Index standardized score (Wechsler, 1981). 
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