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Abstract

The aim of this dissertation is three-fold: (i) we construct a natural highly homotopy coherent

operad structure on the derivatives of the identity functor on structured ring spectra which

can be described as algebras over an operad O in spectra, (ii) we prove that every connected

O-algebra has a naturally occurring left action of the derivatives of the identity, and (iii)

we show that there is a naturally occurring weak equivalence of highly homotopy coherent

operads between the derivatives of the identity on O-algebras and the operad O.

Along the way, we introduce the notion of N-colored operads with levels which, by con-

struction, provides a precise algebraic framework for working with and comparing highly

homotopy coherent operads, operads, and their algebras. We also show that similar tech-

niques may be used to provide a new description of an operad structure for the Goodwillie

derivatives of the identity in spaces and describe an explicit comparison map from spaces to

algebras over such operad.
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Chapter 1

Introduction

Algebraic topology has its roots in constructing, computing and understanding the deeper

structure of three main invariants classically associated to a topological space X: homotopy

groups ⇡⇤X, homology groups H⇤X, and cohomology groups H⇤X. While not always an

easy task, computing homology and cohomology groups can often be done in purely algebraic

terms given a nice enough presentation of your space X. Homotopy groups on the other hand

are more elusive. Elements of the n-th homotopy group ⇡nX are represented by maps from

the n-dimensional sphere Sn into your space of choice X, up to continuous deformation (i.e.,

homotopy). In this elusiveness lies a more finessed invariant of spaces, as the homotopy

groups often hold deeper information which homology and cohomology can not distinguish.

The tradeo↵ then is that homotopy groups are generally much more di�cult to compute, even

providing a full description of the homotopy groups of the 2-sphere S2 is an exceptionally

di�cult problem and still not fully understood.

Stable homotopy groups

As a result, it can be useful to know even an approximation of the homotopy groups of a

space. The stable homotopy groups ⇡s

⇤
X of a space X are one such approximation. It follows

1



from the Freudenthal suspension theorem [47, Corrolary 4.24] that if X is a k-connected

space1 that ⇡nX ⇠= ⇡s

n
X for n  2k; i.e., that the stable homotopy groups agree with

the homotopy groups in a “stable range”. Stable homotopy groups are an instance of the

homotopy groups of a more general type of algebro-topological object called a spectrum (see,

e.g. [36], [51]) which is akin to a chain complex of spaces. Many computations involving

spectra can be carried out by more formal algebra than their space-level compatriots, and as

such the stable homotopy groups of a space are often significantly computable than ordinary

homotopy groups.

But how are the stable homotopy groups constructed? The reader familiar with homology

theory will recall that there is always an isomorphism

H⇤X ⇠= H⇤+1(⌃X) (1.0.1)

where ⌃X denotes the suspension of a spaceX (which may be modelled as the smash product

in spaces of the 1-sphere and X, ⌃X = S1
^X). Freudenthal’s suspension theorem tell us

that, unlike homology groups, the homotopy groups of a space only obey this isomorphism

inside the stable range, i.e., ⇡nX ⇠= ⇡n+1(⌃X) for n  2k when X is k-connected. However,

in spaces the smash product ^ admits a right adjoint Y 7! ⌦Y = Map(S1, Y )2. Using the

identification ⇡n+1(⌃X) ⇠= [Sn+1, S1
^ X], the isomorphism above is obtained by applying

the n-th homotopy group functor to the point-set level map ⌘X : X ! ⌦⌃X. Iterating this

map builds the stabilization QX of a topological space X as the following colimit whose

maps are given by ⌦n⌘⌃nX

QX := ⌦1⌃1X = colim(X ! ⌦⌃X ! ⌦2⌃2X ! ⌦3⌃3X ! · · · ).

1
This means that the groups ⇡nX for n  k are trivial

2
The latter here is topologized by the compact-open topology, though ⌦Y can more easily be thought of

as the space of loops in Y based at ⇤ 2 Y .
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The stable homotopy groups are obtained then as the ordinary homotopy groups of QX,

i.e.,

⇡s

⇤
X := ⇡⇤(QX).

What’s more is that, in the language of Goodwillie’s calculus of homotopy functors, the

functor Q may be thought of as a first order—or linear—approximation to the identity

functor on based topological spaces. This strikes the question: What does linearity mean in

this context?

Linear functors

Inspiration may be taken again from homology. Again, the familiar reader may recall that

homology groups satisfy excision [47, Theorem 2.20] which gives rise to a strong computa-

tional tools such as the Mayer-Vietoris sequence [47, §2.22]. An equivalent statement is that

any pushout square

A //

✏✏

C

✏✏

B // D

of CW complexes (where all of the maps are cellular inclusions) be taken to a pullback square

of groups

H⇤A //

✏✏

H⇤C

✏✏

H⇤B // H⇤D.

By setting C and D to be the cone on A, and D = ⌃A, the isomorphism (1.0.1) follows from

a simple calculation.

The functor Q satisfies a related homotopical condition: that any homotopy pushout

3



square of spaces

X //

✏✏

W

✏✏

Y // Z

be taken to a homotopy pullback square

QX //

✏✏

QW

✏✏

QY // QZ.

Such functors are called excisive, or more specifically 1-excisive. In [43], Goodwilllie shows

that any functor F : Top
⇤
! Top

⇤
which preserves weak homotopy equivalences admits a

universal such 1-excisive approximation, P1F , by means of a comparison map F ! P1F

(which, under suitable niceness conditions on F should induce an isomorphism in a “stable

range” of homotopy groups when evaluated on suitably connected spaces). Indeed, the

universal 1-excisive approximation to the identity functor on Top
⇤
is the stable homotopy

functor Q.

Let Spt denote (a model for) the category of spectra symmetric monoidal with respect to

the smash product ^, for which the sphere spectrum S is the unit3. The term linear can be

justified by observing that any 1-excisive functor Spt ! Spt is of the form X 7! E ^X for

fixed spectrum E4. A 1-excisive functor F : Top
⇤
! Top

⇤
such that F (⇤) ' ⇤ will similarly

always factor through the the usual stabilization adjunction (⌃1,⌦1) between Top
⇤
and

Spt,

Top
⇤

⌃1

//

Spt
⌦1

oo ,

as F ' ⌦1 eF⌃1 such that eF is a 1-excisive functor on spectra. In particular, the universal

3
Such as the symmetric spectra of [51], or S-modules of [36].

4
At least when restricted to finite spectra X.
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1-excisive approximation is the usual stabilization of F ,

P1F (X) ' colimn⌦
nF (⌃nX)

and the spectrum which classifies gP1F is called the first derivative of F [41].

The Taylor tower

In fact, Goodwillie shows more. In [43], he constructs a Taylor tower of n-excisive or

“polynomial of degree at most n” functors, PnF , along with and natural transformations

Pn+1F ! PnF (for n � 0), of the form

F ! · · ·! PnF ! Pn�1F ! · · ·! P1F ! P0F.

These functors PnF play a role analogous to the Taylor polynomials pnf associated to an

infinitely di↵erentiable function f : R! R in ordinary calculus and analysis. The formula

pnf(x)� pn�1f(x) =
f (n)(0)

n!
xn

has a homotopical analog in that the “di↵erence” (in this case, homotopy fiber) between PnF

and Pn�1F is measured by a certain spectrum with action by the n-th symmetric group ⌃n

denoted @nF (the n-th derivative of F ) as an equivalence of the form

DnF (X) := hofib(PnF (X)! Pn�1F (X)) ' ⌦1(@nF ^ ⌃
1X^n)h⌃n .

The subscript h⌃n above denotes that homotopy orbits have been taken with respect to the

⌃n action on @nF and on ⌃1X^n (via permutation of factors).

Under suitable niceness conditions on F and the input space X, the Taylor tower may be

used to tell us something about the homotopy type of F (X). For instance, the Taylor tower

5



of the identity on Top
⇤
will converge to the homotopy type of its input when evaluated on

simply-connected spaces. That is, for 1-connected X 2 Top
⇤
, the natural map

X ! lim
n!1

PnIdTop⇤(X)

is a weak homotopy equivalence. As such, the Taylor tower of the identity provides a useful

canonical resolution of a space which begins with the stabilization QX. Moreover, this

resolution is “controlled” by the symmetric sequence of derivatives @⇤IdTop⇤ = {@nIdTop⇤}n�1

Much work has gone into understanding Taylor towers and Goodwillie derivatives in

recent decades, both for functors of spaces and spectra and also in more general contexts

(see, for instance, [66], [11], [60, §6]). Johnson [52] and Arone-Mahowald [7] give a descrip-

tion of the layers DnIdTop⇤ in terms of Spanier-Whitehead duals to the n-th partition poset

complex—essentially, a pointed space built from the combinatorics of partitions of the set

{1, . . . , n}. For instance, the 2-nd partition poset complex is just S0 with trivial ⌃2 action,

and so

D2IdTop⇤(X) ' ⌦1 Map(S0,⌃1X^2)⌃2 ' Q⌦X^2
⌃2
.

Similarly, @2IdTop⇤ ' ⌦S, a desuspension of the sphere spectrum, with trivial ⌃2 action.

Spectral Lie algebras

Using this description, Ching [22] has shown that the symmetric sequence of Goodwillie

derivatives @⇤IdTop⇤ = {@nIdTop⇤}n�1 can be given a natural operad structure. In fact, this

operad fits nicely into a broader story of Koszul duality as described by [40], [39], [38]. The

partition poset models described by [52], [7] for @⇤IdTop⇤ indeed show that the derivatives of

the identity in spaces are Koszul dual to the commutative cooperad5 in Spt, and as such is

often referred to as the Spectral Lie operad (as the Lie operad in chain complexes in similarly

5
See Appendix B for our treatment of cooperads
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dual to the commutative cooperad [40]). This spectral Lie operad additionally plays central

rule in describing a chain rule for derivatives as shown by Arone-Ching [2]: that is, an

equivalence of symmetric sequences

@⇤F �@⇤IdTop⇤ @⇤G ' @⇤(FG)

for functors F,G : Top
⇤
! Top

⇤
(here � denotes the composition product, see 2.1.6).

More generally, the operad of Goodwillie derivatives plays a crucial role in describing the

homotopy theory of the category of based spaces. Heuts [50] (see also [12]) has further shown

that certain “chromatic localizations” M f

n
of Top

⇤
can be characterized by the category of

algebras over @⇤IdTop⇤ in T (n)-local spectra. As such, it is often anticipated that similar

techniques may be used to better understand other categories in which one can do functor

calculus. A widely recognized slogan of functor calculus that the Goodwillie derivatives of

the identity on a suitable model category C should come equipped with a canonical operad

structure which tells us something about C. One such example, and the focus of our first

main theorem, is when C is a category of algebras over a (reduced) operad O in spectra.

Operads and structured ring spectra

First, some background: Operads [62], [17] are combinatorial tools for describing spaces (or

spectra) X which admit a pairing X ^ X ! X and unit map S ! X that may be only

associative or commutative up to coherent homotopies (such as the structure found on an

n-fold loop space ⌦nY [62]) and have played an increasingly common and powerful role in

homotopy theory. Common examples of interest are associative, commutative, or En-ring

spectra (for 1  n  1)—the latter of which interpret between highly homotopy associative

(E1 or A1) and highly homotopy commutative (E1) ring spectra and enjoy a rich structure

on the (co)homology theories they represent. For an operad O in spectra, we write Alg
O

for the category of algebras over O. An object X 2 Alg
O

is a spectrum X together with

7



associative and unital action maps of the form

O[n] ^⌃n X^n
! X (n � 0)

We will require that our operads be reduced in that the 0-ary operations described by O

are trivial (i.e., O[0] = ⇤). Such condition guarantees that our O-algebras are nonunital ; a

condition that can naturally arises when working with augmented rings.

Pereira [66] shows that the constructions and main results of [43] readily extend to func-

tors between categories of algebras over operads in spectra. Many other authors are respon-

sible for early work which suggests this should be possible including Kuhn [57], McCarthy-

Minasian [64], Basterra-Mandell [9], and Harper-Hess [46]. Our work relies heavily on the

constructions of Kuhn-Pereira [55] for describing the Taylor tower of certain functors on

Alg
O
.

1.1 Main theorems

Our first main result, Theorem 1.1.1(a) as follows, is that the Goodwillie derivatives of the

identity in the category of algebras over a reduced operad O in spectra can be given a

naturally occurring “highly homotopy coherent” operad structure.

Theorem 1.1.1. Let O be an operad in spectra such that O[n] is (�1)-connected for n � 1

and O[0] = ⇤. Then,

(a) The derivatives of the identity in Alg
O
can be equipped with a natural highly homotopy

coherent operad structure.

(b) Moreover, with respect to this structure, @⇤IdAlgO is equivalent to O as highly homotopy

coherent operads.

8



It has been known for some time that O[n] is a model for @nIdAlgO . Part (b) of Theorem

1.1.1 in particular answers a long standing conjecture which appears in [2] (and also answered

in the context of 1-operads by Ching in [26]), a main di�culty of which is describing an

intrinsic operad structure on the derivatives of the identity which may be compared with

that of the operad O.

The proofs of parts (a) and (b) to Theorem 1.1.1 may be found in Sections 6.1.1 and 6.1.3,

respectively. Our technique is to avoid working with the identity directly by replacing it with

the Bousfield-Kan cosimplicial resolution provided by the stabilization adjunction (Q,U) for

O-algebras. The strong cartesianness estimates of Blomquist [14] (see also Ching-Harper

[27]) allow us to then express @⇤IdAlgO as the homotopy limit of the cosimplicial diagram

(showing only coface maps)

@⇤(QU)•+1 =
⇣
@⇤(UQ) //

// @⇤(UQ)2
//

//

//

@⇤(UQ)3 · · ·
⌘

(1.1.2)

whose terms @⇤(QU)k+1 may be readily computed by an O-algebra analogue of the Snaith

splitting. We thus obtain a natural cosimplicial resolution C(O) of the derivatives of the

identity such that @⇤IdAlgO ' holim�C(O) which furthermore may be identified as the TQ

resolution of O as a left O-module. Our approach is influenced by the work of Arone-

Kankaanrinta [6] wherein they use the cosimplicial resolution o↵ered by the stabilization

adjunction between spaces and spectra to analyze the derivatives of the identity in spaces

via the classic Snaith splitting.

We induce a highly homotopy coherent operad structure (i.e., A1-operad) on @⇤IdAlgO by

constructing a pairing of the resolution C(O) with respect to the box product ⇤ for cosim-

plicial objects (see Batanin [10]). Thus, we extend to the monoidal category of symmetric

sequences a technique utilized in McClure-Smith [65]: specifically, that if X is a ⇤-monoid

in cosimplicial spaces or spectra then Tot(X) is an A1-monoid (with respect to the closed,

symmetric monoidal product for spaces or spectra).
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There are some subtleties that arise in that (i) the box product is not as well-behaved

when working with the composition product � of symmetric sequences, and (ii) the extra

structure encoded by � leads us to work with N-colored operads to express A1-monoids with

respect to composition product. As such, one of the main developments of this thesis is that

of N-colored operads with levels (i.e., Nlev-operads) as useful bookkeeping tools designed

to algebraically encode operads (i.e., strict composition product monoids) and “fattened-

up” operads as their algebras. Within this framework of Nlev-operads we can also describe

algebras over an A1-operad.

Remark 1.1.3. In the statement of Theorem 1.1.1 the phrase “naturally occuring” means that

we refrain from endowing @⇤IdAlgO with the operad structure from O directly. Rather, we

produce a method for intrinsically describing operadic structure possessed by the derivatives

of the identity that should carry over to other model categories suitable for functor calculus.

In particular, the constructions of such an operad structure on the derivatives of the identity

should:

(i) Recover the (A1-) operad structure endowed on @⇤IdTop⇤ described by Ching in [22].

(ii) Endow the derivatives of an suitably nice homotopy functor6 F : Alg
O
! Alg

O0 with

a natural (@⇤IdAlg
O0
, @⇤IdAlgO)-bimodule structure (which is in turn equivalent to an

(O0,O)-bimodule) suitable for describing a chain rule (as in Arone-Ching [2]) with a

view toward running the machinery of [3].

(iii) Be fundamental enough to describe an operad structure on @⇤IdC and chain rule for a

suitable model category C (e.g., one in which one can do functor calculus).

In fact, item (i) is the subject of our second main result, Theorem 1.1.4 below. Items

(ii) and (iii) are the subject of current work, and we defer a discussion to our progress along

with some conjectural remarks to Section 6.3.
6
For instance, we should expect this to be possible for functors which are finitary and simplicial
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Theorem 1.1.4. The symmetric sequence @⇤IdTop⇤ is a highly homotopy coherent operad.

One of our main interests in operads is in what structure is described on their algebras.

Ching further shows that the homology of @⇤IdTop⇤ gives a “Lie operad” [22], which is Koszul

dual to the commutative cooperad [40] (see also [39]). The operad @⇤IdTop⇤ of spectra is

similarly Koszul dual to the commutative cooperad in spectra (as in [38]) and so is often

referred to as the spectral Lie operad.

In addition, we prove the following theorem (Theorem 1.1.5). As the commutative co-

operad in Spt is also an operad, Theorem 1.1.5 may be thought of as an amplified version

of the classic result from commutative algebra which states that the primitives of a Hopf

algebra naturally form a Lie algebra (see, e.g. [1]).

Theorem 1.1.5. The derived primitives (Definition B.3.5) of a commutative coalgebra7 in

spectra admit a natural action by @⇤IdTop⇤.

The above theorem is also not necessarily new. For a finite commutative coalgebra Y ,

the derived primitives Prim(Y ) is equivalent to TQ(Y _)_ (see Example B.3.6)—where here

Y _ = Map(Y, S) is the Spanier-Whitehead dual—and the latter is known to admit an action

by @⇤IdTop⇤ (e.g. as in [22], [12], [50]). However, our constructions provide an easy to

use, algebraic alternative to the pioneering operad structure on @⇤IdTop⇤ found in [22]. In

particular, we expect our approach to allow us to show that the Goodwillie derivatives of the

identity in a suitable model category C come equipped with a canonical operad structure,

induced in a similar way (see 6.3.6).

1.1.6 Outline of the argument

Our main tool is to utilize the Bousfield-Kan cosimplicial resolution with respect to the

stabilization. For the context of O-algebras in Theorem 1.1.1, this relies on a result of

7
For us, coalgebra means coalgebra with divided powers (see, e.g. [38]).
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Basterra [8], that the stabilization of an O-algebra X is naturally equivalent to its topological

Quillen homology spectrum TQ(X) (see Section 2.3). Topological Quillen homology may be

thought of as the derived indecomposables quotient for structured ring spectra described as

algebras over a (reduced) operad, and arises as the left derived functor of the left adjoint in

Alg
O

Q
//

Alg
J
' ModO[1].

U

oo

Here, J denotes a suitable replacement of ⌧1O, the truncation of O above level 1 (see Section

2.3), U denotes the forgetful functor along the map of operads O ! J (which also provides

trivial operations from O[n] on a J-algebra for n � 2), and Q is the O-algebra analog of the

indecomposables quotient R/R2 for R a nonunital commutative ring in classical algebra.

Using the strong connectivity estimates o↵ered by Blomquist’s higher stabilization the-

orems [14, §7], we first show that @⇤IdAlgO is equivalent to holim� @⇤(UQ)•+1 (see (1.1.2)).

Similarly to Arone-Kankaanrinta [6], in which they compute the n-excisive approximations

(resp. n-th derivatives) of the identity functor on Top
⇤
in terms of the n-excisive approxi-

mations (resp. n-th derivatives) of iterates of stabilization ⌦1⌃1 by means of the Snaith

splitting, we then analyze the terms @⇤(UQ)k+1 via an analog of the Snaith splitting in Alg
O
.

Essentially a statement about the Taylor tower of the associated comonad QU , the Snaith

splitting in Alg
O
permits equivalences of symmetric sequences

@⇤(QU) ' |Bar(J,O, J)| ' J �h
O
J =: B(O)

as (J, J)-bimodules (here, �h denotes the derived composition product). By iterated appli-

cations of the splitting, we may compute

@⇤(UQ)k+1
' B(O) �J · · · �J B(O)| {z }

k

' J �O · · · �O J| {z }
k+1

= C(O)k

12



and moreover that @⇤(UQ)•+1
' C(O) as cosimplicial symmetric sequences. Here, C(O) is

given by

J //

// J �O J
//

//

//

J �O J �O J
//

//

//

//

J �O J �O J �O J · · ·

with coface map di induced by inserting O ! J at the i-th position (see Remark 3.3.11 along

with (2.3.4)).

Note, B(O) is (at least up to homotopy) a cooperad with a coaugmentation map J !

B(O), and our C(O) is essentially a rigid cosimplicial model for the cobar construction

on B(O). In particular, this allows us to bypass referencing any particular model for the

comultiplication on B(O) (e.g., that of Ching [22], see also Section 3.3.4).

We construct a pairing m : C(O)⇤C(O)! C(O) with respect to the box product (Defi-

nition 4.1.1) of cosimplicial symmetric sequences via compatible maps of the form (induced

by the operad structure maps J � J ! J)

mp,q : J �O · · · �O (J| {z }
p+1

� J) �O · · · �O J| {z }
q+1

! J �O · · · �O J �O · · · �O J| {z }
p+q+1

along with a unit map u : I ! C(O), where I denotes the constant cosimplicial symmetric

sequence on I. Our argument is then to induce an A1-monoidal pairing on @⇤IdAlgO —

modeled as TotC(O) — via m and u (compare with McClure-Smith [65]).

One di�culty which arises is that the composition product of symmetric sequences is

not as well-behaved of a product as, say, cartesian product of spaces or smash product of

spectra. Thus, we do not obtain m as a strictly monoidal pairing on the level of cosimplicial

diagrams. In resolving this issue we introduce a specialized category of N-colored operads

with levels (i.e., Nlev-operads) designed specifically to overcome these technical subtleties

of the composition product. As a result, a large portion of this document is dedicated to

carefully developing the framework of Nlev-operads and their algebras.

With these details in tow it is then possible to produce an A1-operad structure on
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@⇤IdAlgO . Let Tot denote restricted totalization Totres (see Section 2.2.2), we then obtain an

A1-monoidal pairing

TotC(O) � TotC(O)! TotC(O)

described as an algebra over a certain Nlev-operad which is a naturally “fattened-up” re-

placement of the Nlev-operad whose algebras are strict operads (see Definition 5.4.2 along

with Propositions 5.4.5 and 5.4.23). Moreover, the coaugmentation O ! C(O) provides a

comparison between O and @⇤IdAlgO which we show yields an equivalence of A1-operads,

thus resolving the aforementioned conjecture.

Our method for proving Theorems 1.1.4 and 1.1.5 is similar. We make use of the mod-

els for @nIdTop⇤ as the Spanier-Whitehead dual of the n-th partition poset complex Par(n)

(Definition 3.4.5),

@nIdTop⇤ ' Map(Par(n), S), (n � 1).

We then show that Map(Par(n), S) can be modeled as the totalization of the cobar reso-

lution C(S)[n] on the commutative cooperad of spectra. Essentially, C(S)[n] has p-simplices

given by the p-fold composition S�p[n], where S is the reduced symmetric sequence with

S[n] = S (with trivial ⌃n action) for n � 1. We show that the cosimplicial symmetric

sequence C(S) admits a natural ⇤̊-monoid structure (see [29, Definition 5.6]) induced, es-

sentially, by the canonical isomorphisms S�p
� S�q ⇠= S�p+q. This ⇤̊-monoid structure then

induces the desired “highly homotopy coherent” operad structure on @⇤IdTop⇤ upon passing

to totalization.

We similarly show that the derived primitives may be calculated as the totalization of

a certain cosimplicial spectrum C(Y ). In particular, C(Y ) is precisely the dual notion of

derived indecomposables which underlies the construction of topological Quillen homology

for O-algebras. We show that C(Y ) is a ⇤̊-module over the cobar resolution C(S) and that

this module structure induces an action of @⇤IdTop⇤ on the derived primitives upon passing

to totalization.
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1.1.7 Comparison to the operad structure constructed by Ching

We expect the operad structure on @⇤IdTop⇤ described in this document is equivalent to that

constructed by Ching in [22]. In particular, our main technical lemma (Lemma 6.2.1) is

reminiscent of the “tree ungrafting” arguments found in [22], and our notion of ⇤̊-monoid

is similar to Ching’s notion of “pre-cooperad” in [24]. However, despite these similarities,

the author is not aware of an explicit comparison between the two constructions, nor to the

third description o↵ered in [26].

1.1.8 Organization of this document

This document is organized into seven Chapters and features two appendices A and B.

Chapter 2 is devoted to the required background for working with operads and their

algebras in spectra as well as stabilization and topological Quillen homology of structured

ring spectra.

Chapter 3 gives a brief overview of Goodwillie’s calculus of homotopy functors and also

describes the our main objects of interest, specifically, the Goodwillie derivatives of the

identity functor.

Chapter 4 introduces the box product for cosimplicial diagrams and o↵ers some technical

remarks for extending this product to the category of cosimplicial symmetric sequences.

Chapter 5 introduces our notion of N-colored operads with levels (i.e. Nlev-operads) and

describes a model for “fattened-up operads” which we will employ.

Chapter 6 contains proofs of our main theorems on the deriavtives of the identity in

structured ring spectra and in the category of pointed topological spaces, and also includes

some conjectural remarks on extending our techniques to a more general setting.

Appendix A contains a deferred proof of a particular model for the n-excisive approxi-

mations to certain functors of structured ring spectra. Appendix B contains the necessary

background for (a particular model of) cooperads and their coalgebras.
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Chapter 2

Operads and their algebras

We work in the category algebras over a reduced operad in a closed, symmetric monoidal

category of spectra (Spt,^, S). For convenience we will use the category of S-modules as in

Elmendorf-Kriz-Mandell-May [36] and refer to such objects as spectra. The main technical

benefit of working with S-modules is that all spectra will be fibrant (and thus TotX of

a levelwise fibrant diagram will already correctly model holim�X ), though we note that

similar results should hold in the category of symmetric spectra by utilizing suitable fibrant

replacement monads.

We observe that Spt is a cofibrantly generated, closed symmetric monoidal model category

(see, e.g., [2, Definition 1.12]) and write MapSpt(X, Y ) for the internal mapping object of

Spt. When it is clear from context we write Map for MapSpt. We let Top denote the category

of compactly generated Hausdor↵ spaces. In [36], it is shown that Spt admits a tensoring of

Top
⇤
which may be extended to Top by first adding a disjoint basepoint. In particular for

K 2 Top, X, Y 2 Spt there are natural isomorphisms

hom(K+ ^X, Y ) ⇠= hom(X,MapSpt(K+, Y )).

Though we will not make explicit use of it, we define a simplicial tensoring of Spt via
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K ^X := |K| ^X for K 2 sSet⇤ and X 2 Spt.

2.1 Symmetric sequences

Let (C,⌦,1) be a closed symmetric monoidal category and write MapC for the mapping

object in C. When C is clear from context we write Map for MapC. We will require that C

be cocomplete, and write ��� for the initial object of C; particular categories of interest are

Spt and Top
⇤
.

Recall that a symmetric sequence in C is a collection X[n] 2 C for n � 0 such that X[n]

admits a (right) action by ⌃n. We let SymSeqC denote the category of symmetric sequences

in C and action preserving morphisms. A symmetric sequence X is reduced if X[0] = ���

(some authors require in addition that X[1] ⇠= 1, however we omit this condition). When C

is clear from context we will simply write SymSeq. Note that SymSeq comes equipped with

a monoidal product �, the composition product (also called circle product) defined as follows

(see also [67] or [44]).

2.1.1 The composition product of symmetric sequences

For X, Y 2 SymSeq we define X � Y at level k by

(X�Y )[k] =
a

n�0

X[n]⌦⌃n Y ⌦̌n[k]. (2.1.2)

Here, ⌦̌ denotes the tensor of the symmetric sequences (e.g., as in [44]). For n, k � 0, Y ⌦̌n[k]

is computed as

a

k
⇡
�!n

Y [⇡1]⌦ · · ·⌦Y [⇡n] ⇠=
a

k1+···+kn=k

⌃k ·⌃k1
⇥···⇥⌃kn

Y [k1]⌦ · · ·⌦Y [kn]
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where ⇡ runs over all surjections k = {1, . . . , n}! {1, . . . , n} = n and we set ⇡i := |⇡�1(i)|

for i 2 n. The composition product admits a unit I given by I[1] = 1 and I[k] = ��� otherwise.

For our purposes, we find it convenient to work with with a slightly modified version of the

composition product for reduced symmetric sequences. Let X, Y 2 SymSeq be reduced. Let

(k1, . . . , kn) denote a sequence of integers k1, . . . , kn � 1 (allowing for repetition of entries)

and set Sumk

n
to be the collection of orbits (k1, . . . , kn)⌃n such that

P
n

i=1 ki = k.

Definition 2.1.3. Given k1, . . . , kn � 1 we define H(k1, . . . , kn) as the collection of block

permutation matrices ⌃k1 ⇥ · · ·⇥⌃kn  ⌃k, along with the ⌃pi permutations of those blocks

such that kj = di.

Remark 2.1.4. We observe that orbits (k1, . . . , kn)⌃n are in bijective correspondence to par-

titions k = d1p1 + · · · + dmpm where 1  d1 < · · · < dm and pi � 1. Given an orbit

(k1, . . . , kn)⌃n let 1  d1  · · · dm be the distinct entries of multiplicity pi. We note that

there is an isomorphism (here, ⌃on

m
denotes the wreath product ⌃m o ⌃n := ⌃⇥n

m
o ⌃n)

H(k1, . . . , kn) ⇠= ⌃
op1
d1
⇥ · · ·⇥ ⌃opm

dm
.

Moreover H(k1, . . . , kn) admits a natural ⌃n action by permutation of elements ki and

the induced map H(k1, . . . , kn)! H(k�(1), . . . , k�(n)) is an isomorphism for all � 2 ⌃n.

Though we will not need this fact, we remark that H(k1, . . . , kn) may be identified with

the stabilizer of the ⌃k action on partitions of {1, . . . , k} into sets of size k1, . . . , kn (see, e.g.,

[23, §1.12]).

For k � 0 we set ⌃[k] :=
`

�2⌃k
1.

Remark 2.1.5. The composition product X � Y may be equivalently written as

(X�Y )[k] ⇠=
a

n�0

a

(k1,...,kn)⌃n2Sum
k
n

⌃[k]⌦H(k1,...,kn) X[n]⌦ Y [k1]⌦ · · ·⌦ Y [kn]. (2.1.6)
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Here, the action of H(k1, . . . , kn) on ⌃[k] is induced by that on ⌃k and the action on X[n]⌦

Y [k1]⌦ · · ·⌦ Y [kn] is given as follows (see also Ching [23, 1.13])

• ⌃p1 ⇥ · · ·⇥ ⌃pm  ⌃n acts on X[n]

• for i = 1, . . . ,m, ⌃opi
di

acts on the factors Y [kj] such that kj = di by

(i) permuting the pi factors Y [di]

(ii) acting by corresponding ⌃di factor on each Y [di].

We also make the following definition for the nonsymmetric composition product X �̂Y

(note that our definition di↵ers from [45])

(X �̂Y )[k] :=
a

n�0

a

(k1,...,kn)⌃n2Sum
k
n

X[n]⌦ Y [k1]⌦ · · ·⌦ Y [kn]. (2.1.7)

Note that �̂ is not associative, our primary use for �̂ will be as a bookkeeping tool for

indexing the factors involved in expanding iterates of � from the left (as in Section 5).

2.1.8 Operads as monads

An operad in C is a symmetric sequence O which is a monoid with respect to �, i.e., there are

maps O � O ! O and I ! O which satisfy additional associativity and unitality relations

(see, e.g., Rezk [67]). An operad is reduced if O[0] = ⇤. We will only consider reduced

operads in this document, and interpret operad to mean reduced operad unless otherwise

specified.

Any symmetric sequence M gives rise to a functor M � (�) on C given as follows (note

X⌦0 = 1)

X 7!M � (X) =
_

n�0

M [n]⌦⌃n X⌦n.
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If O is an operad, then the associated functor O � (�) is a monad on C which we will

frequently conflate with the operad O. We let AlgC
O
denote the category of algebras for the

monad associated to an operad O in C.

2.2 Some assumptions and notation for structured ring

spectra

When C = Spt and O is an operad of spectra, then Alg
O

= Alg
Spt

O
is a pointed simplicial

model category (see, e.g., [28, §7]) when endowed with projective model structure from Spt.

For a further overview of notation and terminology we refer the reader to [44, §3] or [67, §2].

2.2.1 Assumptions on O

From now on in this document we assume thatO is a reduced operad in Spt which obeys some

mild cofibrancy conditions that are satisfied if, e.g., O arises via the suspension spectra of a

cofibrant operad in spaces. In particular, we require that the underlying symmetric sequence

of O[n] be ⌃-cofibrant (see, e.g., [2, §9]) and that the terms O[n] be (�1)-connected for all

n � 1.

2.2.2 Use of restricted totalization

We systematically interpret Tot of a cosimplicial diagram to mean restricted totalization (see

also [28, §8])

Tot := Totres ⇠= MapSpt

�res (�•,�) :=
�
MapSpt(�•,�)

��res

.

Here, � denote the usual simplicial category of finite totally-ordered sets [n] := {0 < 1 <

· · · < n} and order preserving maps, �res
⇢ � is the subcategory obtained by omitting

degeneracy maps, and �• denotes the usual cosimplicial space of topological n-simplices. For
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convenience, if C• is cosimplicial object, we will write TotC• instead of the more technically

correct Tot(C•
|�res).

Diagrams shaped on �res are referred to as restricted cosimplicial diagrams. Importantly

the inclusion �res
! � is homotopy left cofinal8 and so if C• is a cosimplicial diagram in

Alg
O

which is levelwise fibrant (as opposed to the stronger condition of Reedy fibrancy),

there are equivalences

holim� C•
' holim�res C•

' TotC•.

2.2.3 Truncations of O

For n � 0 we define ⌧n : SymSeq ! SymSeq to be the n-th truncation functor given at a

symmetric sequence M by

(⌧nM)[k] =

8
><

>:

M [k] k  n

⇤ k > n

with natural transformations ⌧n ! ⌧n�1. We let in be the fiber of ⌧n ! ⌧n�1, i.e., inM [k] = ⇤

for k 6= n and inM [n] = M [n] in which case we say inM is concentrated at level n.

ForM = O the truncations ⌧nO assemble into a tower of (O,O)-bimodules which receives

a map from O of the form

O ! · · ·! ⌧3O ! ⌧2O ! ⌧1O. (2.2.4)

The tower (2.2.4) is well studied and plays a central role in examining the homotopy com-

pletion of a structured ring spectrum as in [46]. Note as well that O ! ⌧1O is a map of

operads and there is a well-defined composite ⌧1O ! O ! ⌧1O which factors the identity

on ⌧1O.

8
The main property we are interested in here is that such functors induce equivalences on homotopy

limits.
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2.2.5 Change of operad adjunction

Associated to a map f : O ! O
0 of operads there is a Quillen adjunction of the form (see,

e.g., [67])

Alg
O

f⇤
//

Alg
O0

f
⇤

oo

in which the left adjoint f⇤ is given by the (reflective) coequalizer

f⇤(X) := O
0
�O (X) = colim

⇣
O

0
�O � (X)

//

// O
0
� (X)

⌘

and the right adjoint f ⇤ is the forgetful functor along f . If f is a levelwise equivalence then

the above adjunction is a Quillen equivalence and furthermore the left derived functor Lf⇤

may be calculated via a simplicial bar construction as follows (see, e.g., [44])

Lf⇤(X) := O
0
�
h

O
(X) ' |Bar(O0,O, Xc)|.

2.3 Stabilization of structured ring spectra

In order to have a well-defined calculus of functors on Alg
O
it is necessary to understand the

stabilization of the category of such algebras. Note that Alg
O
is tensored over simplicial sets

(see, e.g., [28, §7]) and thus one can define Sp(Alg
O
), the category of Bousfield-Friendlander

spectra of O-algebras, which is Quillen equivalent to the category of left O[1]-modules,

ModO[1] (see, e.g., [9] or [66, §2]).

The stabilization map for O-algebras is thus equivalent to the left adjoint of (2.2.5) with

respect to the map of operads O ! ⌧1O, i.e.,

⌃1

AlgO
X ' ⌧1O �O (X)
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for O-algebras X. By analogy, ⌦1

AlgO
gives an O[1]-module trivial O-algebra structure above

level 2. Moreover, if O[1] ⇠= S, then the stabilization of Alg
O
is equivalent to the underlying

category Spt.

As in [28], we replace ⌧1O by a “fattened-up” operad J to produce an iterable model for

TQ-homology with the right homotopy type. That is, let J be any factorization

O
h
�! J

g

�! ⌧1O

in the category of operads, where h is a cofibration and g a weak equivalence. There are

then change of operads adjunctions

Alg
O

Q
//

Alg
J

U

oo

g⇤
//

Alg
⌧1O

g
⇤

oo

⇠= ModO[1] (2.3.1)

such that (g⇤, g⇤) is a Quillen equivalence and, notably, U preserves cofibrant objects (see

[46, 5.49]). We refer to the pair (Q,U) as the stabilization adjunction for O-algebras and

use Alg
J
as our model for the stabilization of Alg

O
.

2.3.2 TQ-homology

The total left derived functor LQ(X) =: TQ(X) is called the TQ-homology spectrum of

X and the composite RU(LQ(X)) is the TQ-homology O-algebra of X. We note that the

TQ-homology spectrum of X may be calculated in the underlying category Spt as

LQ(X) ' |Bar(J,O, Xc)| ' |Bar(⌧1O,O, Xc)|.

For simplicity, we will assume the O-algebras we work with are cofibrant by first replacing

X by Xc, where (�)c denotes a functorial cofibrant replacement in Alg
O
.
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2.3.3 The Bousfield-Kan resolution with respect to TQ

Associated to the stabilization adjunction for O-algebras (Q,U) there is a comonad K := QU

on Alg
J
. Given Y a K-coalgebra, we let C(Y ) denote the cosimplicial object Cobar(U,K, Y ).

For X 2 Alg
O
, let X ! C(X) := C(QX) be the coaugmented cosimplicial object given

below

X !
⇣
UQ(X) //

// (UQ)2(X)
//

//

//

(UQ)3(X) · · ·
⌘

(2.3.4)

⇠=
⇣
J �O (X) //

// J �O J �O (X)
//

//

//

J �O J �O J �O (X) · · ·
⌘

Coface maps di in (2.3.4) are induced by inserting O ! J at the i-th position, i.e.,

J �O · · · �O J ⇠= J �O · · · �O O �O · · · �O J ! J �O · · · �O J �O · · · �O J

and codegeneracy maps sj are induced by J �O J ! J �J J ⇠= J at the j-th position.

Remark 2.3.5. The totalization of the diagram (2.3.4) above is called the TQ-completion of

an O-algebra X, defined by

X^

TQ
:= TotC(X) ' holim�C(X).

It is known that X ' X^

TQ
for any 0-connected O-algebra X (see, e.g., [27]).

2.3.6 Cubical diagrams

Let P(n) denote the poset of subsets of the set {1, . . . , n}. A functor Z : P(n) ! C is

called an n-cube in C or also an n-cubical diagram. We use the following notation P0(n) :=

P(n) \ {;} and P1(n) := P(n) \ {{1, . . . , n}} and refer to diagrams shaped on either P0(n)

or P1(n) as punctured n-cubes. The total homotopy fiber of an n-cube Z, denoted tohofibZ,
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is defined to be the homotopy fiber of the natural comparison map

�0 : Z(;)! holimP0(n) Z.

If the comparison �0 is a weak equivalence (resp. k-connected) we say that Z is homotopy

cartesian (resp. k-cartesian).

Dually, the total homotopy cofiber of Z is the homotopy cofiber of the comparison map

�1 : hocolimP1(n) Z ! Z({1, . . . , n})

which we denote by tohocofibZ. If �1 is a weak equivalence (resp. k-connected) we say that

Z is homotopy cocartesian (resp. k-cocartesian). We note that the total homotopy fiber

(resp. cofiber) of a cube may be calculated by iterated homotopy fibers (resp. cofibers), see

e.g., [11, 3.2].

Example 2.3.7 (Coface n-cube). Let Z�1 d
0

�! Z
• be a coaugmented cosimplicial object. There

are associated coface n-cubes Zn whose subfaces encode the relation on coface maps (see,

e.g., Ching-Harper [28, §2.3]). We demonstrate Z2 and Z3 below

Z
�1 d

0
//

d
0

✏✏

Z
0

d
0

✏✏

Z
0 d

1
// Z

1

Z
�1 d

0
//

d
0

✏✏

d
0

""

Z
0

d
0

!!

d
0

✏✏

Z
0 d

1
//

d
1

✏✏

Z
1

d
1

✏✏

Z
0 d

1
//

d
0

""

Z
1

d
0

!!

Z
1 d

2
// Z

2
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2.3.8 Higher stabilization for O-algebras

For k � 0, let �k denote the full subcategory of � comprised of sets [`] 2 � for `  k

(note ��1 = ;). There are inclusions of categories

; = ��1
!�0

!�1
! · · ·!�k

! · · ·!�

and moreover holim� Y may be computed as limit of the tower {holim�k Y } (see, e.g., [28,

§8.11] for a detailed write-up). There is a natural homotopy left cofinal inclusion P0(n) !

�n�1 which, in particular, allows us to model the comparison X ! holim�n�1 C(X) via

the map �0 (see Section 2.3.6) for the coface n-cube associated to X ! C(X).

By careful examination of the connectivities of these maps, Blomquist is able to obtain

the following strong convergence estimates as a corollary to [14, 7.1] (see also Dundas [33]

and Dundas-Goodwillie-McCarthy [34]).

Proposition 2.3.9. Let O be an operad in Spt whose entries are (�1)-connected, X 2

Alg
O

k-connected, and C(X) as in (2.3.5). Then, for any n � 0 the induced map X !

holim�n�1 C(X) is (k + 1)(n+ 1)-connected.

These estimates show, in particular, if X is 0-connected then X
⇠
�! X^

TQ
(see also Ching-

Harper [27]).
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Chapter 3

An overview of functor calculus

Functor calculus was introduced by Goodwillie in a landmark series of papers [41, 42, 43]

as a means of analyzing homotopy functors to or from Top
⇤
or Spt. Since, the theory been

recognized as a general phenomenon which, in particular, relates a suitable model category

to its stabilization. We refer the reader to [5] for an overview and exposition of some recent

applications of the theory.

In what follows we consider functors F : C! D between suitable pointed simplicial model

categories C and D. Our main examples are when C,D are either Top
⇤
, Spt or when C,D are

categories of structured ring spectra described as algebras over reduced operads in spectra.

We refer the reader to Pereira [66] for a more detail on functor calculus in categories of

structured ring spectra.

3.1 The Taylor tower

Definition 3.1.1. A functor F : C ! D is n-excisive if F takes any strongly cocartesian

(n+ 1)-cube in C to a cartesian (n+ 1)-cube in D.

Note, when n = 1 this is precisely the excisive condition discussed in the introduction,
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as a strongly cocartesian 2-cube is just a homotopy pushout cube.

Example 3.1.2. One nugget of intuition for the above definition is that n-excisive functors

are “determined” by their values on n+1 points, similar to polynomial functions f : R! R,

as follows. Let X 2 Top
⇤
and let X be the strongly cocartesian (n + 1)-cube in Top

⇤
with

X (;) = X and X ({k}) = CX, the cone on X with X (;)! X ({k}) the usual inclusion, for

1  k  n+ 1. A functor F : Top
⇤
! Top

⇤
being n-excisive in particular asks that F (X ) be

a cartesian (n+1)-cube in Top
⇤
. Unravelling definitions, this tells us that F (X) = F (X (;))

be recovered by the homotopy limit of the cube F (X|P0(n+1)); which is in turn determined

by the values of F (⇤) ' F (CX) = F (X ({k})) for 1  k  n+ 1.

A central construction in functor calculus is that of the Taylor tower (sometimes referred

to also as the Goodwillie tower) of n-excisive approximations associated to a functor F : C!

D as follows

DnF

✏✏

F // · · · // PnF // Pn�1F // · · · // P0F.

(3.1.3)

The functor PnF is called the n-th excisive approximation to F and is initial in the

homotopy category of n-excisive functors receiving a map from F . In this work, all of our

approximations are based at the zero object ⇤ 2 C, though approximations based at arbitrary

spaces Y 2 Top
⇤
are described in [43]. The functor DnF is called the n-th homogeneous layer

and is defined as

DnF := hofib(PnF ! Pn�1F ).

Note that P0F is a constant functor taking value F (⇤). We call F reduced if F (⇤) ' ⇤

and note that for reduced functors we have P1F ' D1F . Recipes for constructing PnF are

provided in [43] for functors of Top
⇤
and Spt, and [66] for functors of structured ring spectra.
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3.1.4 Analytic functors

If F satisfies additional connectivity conditions on certain cubical diagrams (e.g., if F is

suitably stably n-excisive for all n as in [42, 4.1]) we call F analytic, or more specifically

⇢-analytic: a key feature being that an analytic functor F may be recovered as the homotopy

limit of the tower (3.1.3) on ⇢-connected inputs X, i.e.,

F (X) ' holimn PnF (X).

For instance, the identity functor on Top
⇤
is 1-analytic by the higher Blakers-Massey

theorems (see, e.g., [42, §2]) and the analogous results for structured ring spectra of Ching-

Harper [27] demonstrate that the identity functor on Alg
O
is 0-analytic.

3.1.5 Cross e↵ects and derivatives

Let Sn(X1, . . . , Xn) denote the n-cube

T 7!
_

t/2T

Xt, for T 2 P(n).

The n-th cross e↵ect of G is the n-variable functor defined by

crn G(X1, . . . , Xn) := tohofibG(Sn(X1, . . . , Xn)).

Our work concerns the derivatives of a functor F , which are certain spectra which classify

the homogeneous layers DnF (under some mild conditions on F ) and are computable via

cross e↵ects. We recall first that a functor G is n-homogeneous if G is n-excisive and PkG ' ⇤

for k < n and that G is finitary if G commutes with filtered homotopy colimits.

A major triumph of functor calculus is the classification of n-homogeneous functors.
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Proposition 3.1.6 below is summarized from Goodwillie [43] (for functors of spaces and spec-

tra) and highlights the relevant properties of the homogeneous layers DnF and derivatives

@nF associated to a functor F .

Proposition 3.1.6. Let F : Top
⇤
! Top

⇤
be a homotopy functor and n � 1. Then:

• DnF is n-homogeneous.

• DnF naturally factors through Spt as DnF ' ⌦1
� DnF � ⌃1 such that DnF is n-

homogeneous.

• DnF is characterized by a spectrum with (right) ⌃n-action, @nF called the n-th deriva-

tive of F , and there is an equivalence9

DnF (X) ' ⌦1(@nF ^⌃n (⌃1X)^n).

• The spectrum @nF may be calculated via cross e↵ects [43, §3] as

@nF ' crn DnF (S, . . . , S)

with ⌃n-action given by permutting the inputs S.

3.2 Functor calculus in categories of structured ring

spectra

We have a similar proposition for functors of structured ring spectra, summarized from [66].

For notational convenience we let fTQ denote the composite g⇤TQ ' ⌧1O �hO (�).

9
ForX which have the homotopy type of a finite CW-complexes; or on an arbitrary spaceX if F commutes

with filtered colimits (i.e., F is finitary).
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Proposition 3.2.1. Let F : Alg
O
! Alg

O
be a homotopy functor, X 2 Alg

O
, and n � 1.

Then:

(i) DnF is n-homogeneous.

(ii) There are n-homogeneous functors DnF and fDnF such that the following diagram com-

mutes

Alg
O

Q
//

DnF

✏✏

Alg
J

g⇤
//

DnF

✏✏

ModO[1]

fDnF

✏✏

Alg
O

Alg
JU

oo ModO[1]
g
⇤

oo

(3.2.2)

(iii) There is a (J, J)-bimodule @⇤F , whose n-th entry @nF is called the n-th Goodwillie

derivative of F , and such that there are equivalences of underlying spectra

DnF (X) ' in(@⇤F ) �h
J
(TQ(X))

(iv) DnF is characterized by an (O[1],⌃n oO[1])-bimodule10 e@nF which has underlying spec-

trum equivalent to that of @nF .

(v) There are equivalences of underlying spectra

DnF (X) ' ( e@nF ^LO[1]^n
fTQ(X)^

L
n)h⌃n '

e@nF ^L⌃noO[1]
fTQ(X)^

L
n. (3.2.3)

(vi) The n-th derivative may be calculated via n-th cross e↵ects crn as

@nF ' e@nF ' crn fDnF (O[1], . . . ,O[1])

with right ⌃n oO[1]-action granted by permuting the inputs.

10
That is, a left module over O[1] and right module over ⌃n oO[1] (see Definition 3.2.7 for the definition

of the wreath product ⌃n oO[1])
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Remark 3.2.4. The above equivalence (3.2.3) hold in general for finite cell O-algebras X

and, if F further is finitary (i.e., F commutes with filtered homotopy colimits), then the

equivalences may be extended to arbitrary O-algebras X. The notation ^L and �h denote

the derived smash product and circle product, respectively. We will often omit the latter

notation and understand our constructions to be implicitly derived.

The careful reader might note that the n-th Goodwillie derivative of F is only defined

up to weak equivalence, and so the choice @nF vs. e@nF for functors of structured ring

spectra may seem a pedantic distinction. For our purposes, this distinction is beneficial to

the readibility of several of the upcoming proofs. Further, there are equivalences

Lg⇤@nF ' e@nF and @nF ' Rg⇤ e@nF,

and for concreteness, the model for the derivatives of the identity we employ is as a (J, J)-

bimodule, TotC(O) (see (3.3.12)).

Of note is that the choice of DnF (resp. fDnF ) may be made functorial in F by a

straightforward modification of the argument presented in [2, 2.7]. In particular if F is

finitary, then for any Y 2 ModO[1] we have

fDnF (Y ) ' e@nF ^⌃noO[1] Y
^n. (3.2.5)

3.2.6 A note on wreath products

We use ⌃n oO[1] to denote the twisted group ring (i.e., wreath product) (⌃n)+ ^O[1]^n. We

recall some pertinent details of wreath products of ring spectra below.

Definition 3.2.7. Given a ring spectrum R we define

⌃n oR := ⌃n·R
^n ⇠= (⌃n)+ ^R

^n
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with multiplication given by

(� ^ x) ^ (⌧ ^ y) 7! �⌧ ^ x�(y).

Our main use of such objects stems from the following proposition (see also [58, Lemma

14], [55, §2]). Note that a right ⌃n oR-module is a (right) ⌃n object via the unit map I ! R.

Proposition 3.2.8. Let R be a ring spectrum, X a left R-module and M a right R-module

with n commuting actions of R (i.e., right R^n-module). Then, there is an isomorphism

(M ^R^n X^n)⌃n
⇠= M ^⌃noR X^n.

Remark 3.2.9. The right-hand equivalence of (3.2.3) is an instance of this equivalence. Of

note is that if X is a cofibrant O-algebra, then TQ(X) is cofibrant in ModO[1] and therefore

Proposition 3.2.8 provides that TQ(X)^n is a cofibrant as a left ⌃n oO[1]-module.

In addition, the (O[1],⌃n o O[1])-bimodule structure on the derivatives e@nF for all n �

1 induces (⌧1O, ⌧1O)-bimodule structure on the symmetric sequence e@⇤F which is further

compatible with the (J, J)-bimodule structure on @⇤F via the (g⇤, g⇤) adjunction. In the

simplified case that O[1] ⇠= S, an (S,⌃n o S)-bimodule is just a spectrum with a right action

by ⌃n and (3.2.3) reduces to an equivalence of underlying spectra

DnF (X) ' e@nF ^⌃n
fTQ(X)^n.

3.2.10 Taylor towers of certain functors AlgO ! AlgO0

Let O, O
0 be reduced operads in spectra and M be a cofibrant (O0,O)-bimodule with

M [0] = ⇤ whose terms are (�1)-connected. We define a functor FM : Alg
O
! Alg

O

0 at
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X 2 Alg
O
by the simplicial bar construction

FM(X) = |Bar(M,O, X)| 'M �h
O
(X). (3.2.11)

Note FM is finitary and the left O0 action on M induces a left O0 action on FM(X). The

following proposition may be summarized from Harper-Hess [46] and Kuhn-Pereira [55, §2.7]

and further provides a model for the Taylor tower of functors FM . For completion, we sketch

proofs of the relevant details.

Proposition 3.2.12. Let M and FM be as described above. Then there are equivalences

(natural in M)

(i) PnFM ' ⌧nM �hO (�)

(ii) DnFM ' inM �hO (�) ' inM �hJ (TQ(�))

(iii) fDnFM(�) 'M [n] ^L⌃noO[1] (�)
^n

(iv) e@nFM 'M [n]

such that the Taylor tower for FM is equivalent to

inM �hO (�)

✏✏

FM
// · · · // ⌧nM �hO (�) // ⌧n�1M �hO (�) // · · · // ⌧1M �hO (�).

Proof. We will write � for �h and ^ for ^L. The equivalence (i) is proved in Appendix A (see

also [66, 4.3]). For (ii) we note that morphisms ⌧nM ! ⌧n�1M give rise to the comparison

maps on excisive approximations PnFM

qn
�! Pn�1FM and moreover the fiber sequence

inM ! ⌧nM ! ⌧n�1M
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identifies inM �O (�) with the fiber of qn. Moreover, as the right O-action on inM factors

through ⌧1O there are then equivalences of underlying spectra

DnFM(X) ' (inM �⌧1O ⌧1O) �O (X)

' inM �⌧1O (⌧1 �O (X)) ' inM �J (TQ(X)).

Note that (iii) follows from the observation that any Y 2 ModO[1]

inM �⌧1O (Y ) 'M [n] ^⌃noO[1] Y
^n.

The proof of (iv) follows from the equivalence crn F ' crn F between cross-e↵ects and

co-cross-e↵ects of functors landing in a stable category as in Ching [23] (see also McCarthy

[63]), where latter is defined dually to crn as follows

crn G(X1, . . . , Xn) = tohocofib

 
P(n) 3 T 7! G

 
Y

t2T

Xt

!!
.

In particular, taking co-cross-e↵ects will commute with ^⌃noO[1] and so

crn fDnFM ' crn(M [n] ^⌃noO[1] (�)
^n) 'M [n] ^⌃noO[1] crn((�)

^n).

Via the computation crn((�)^n) ' (⌃n)+ ^ (�)^n we then obtain

e@nFM 'M [n] ^⌃noO[1] (⌃n oO[1]) 'M [n].

Definition 3.2.13. For functors of the form FM we take as our models for PnFM , DnFM and

e@nFM those from Proposition 3.2.12. A map M !M 0 of cofibrant (O,O)-bimodules induces

natural transformations PnFM ! PnFM 0 andDnFM ! DnFM 0 , and also that e@nFM !
e@nFM 0
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is equivalent to M [n]!M 0[n].

3.2.14 The Taylor tower of the identity on AlgO

Note that for M = O, the functor FO is equivalent to the identity via O �O (�) ' IdAlgO .

Moreover, there are natural transformations IdAlgO ! ⌧nO �O (�) provided by the unit map

of the change of operads adjunction (Section 2.2.5) applied to the map of operads O ! ⌧nO.

The Taylor tower of the identity in Alg
O
then is equivalent to

inO �O (�)

✏✏

IdAlgO
// · · · // ⌧nO �O (�) // ⌧n�1O �O (�) // · · · // ⌧1O �O (�)

(3.2.15)

This tower (3.2.15) has previously been studied by Harper-Hess [46] in relation to homo-

topy completion of O-algebras (see also Kuhn [56] and McCarthy-Minasian [64]). Moreover,

Ching-Harper provide Alg
O
analogues of the higher Blakers-Massey theorems in [27] which

in particular show that IdAlgO is 0-analytic. That is, for 0-connected X the following com-

parison map is an equivalence

X ! holimn ⌧nO �O (X).

As a corollary to Proposition 3.2.12, we obtain equivalences of underlying spectra (see

also [46])

DnIdAlgO(X) ' inO �O (X) ' O[n] ^⌃noO[1]
fTQ(X)^n

and also observe that e@nIdAlgO ' O[n] as a (O[1],⌃noO[1])-bimodule for all n � 1. Therefore,

with a view toward the operad structure on @⇤IdTop⇤ constructed by Ching in [22] we are

lead to the following question, found in Arone-Ching [2]: Is it possible to endow @⇤IdAlgO

with a naturally occurring operad structure such that @⇤IdAlgO ' O as operads?
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A key idea to our approach is taken from Arone-Kankaanrinta [6] where they show

that @⇤IdTop⇤ may be better understood by utilizing the cosimplicial resolution from the

stabilization adjunction (⌃1,⌦1) by means of the Snaith splitting. Within the realm of

0-connected O-algebras, the (Q,U) adjunction between Alg
O
and Alg

J
(the latter, recall, is

Quillen equivalent to ModO[1]) is the exact analogue of stabilization. We provide an Alg
O

analogue of the Snaith splitting in Section 3.3.1.

3.3 A model for derivatives of the identity in AlgO

The aim of this section is to describe specifically the model for the derivatives of the identity

we employ, as Tot of a certain cosimplicial symmetric sequence C(O) which may be motivated

as the totalization of the cosimplicial object arising from a calculation of the n-th derivative

of (QU)k via the Snaith splitting in Alg
O
. We are further motivated by work of Arone-

Kankaanrinta [6] which utilizes the Snaith splitting in spaces (3.4.12) to provide a model for

the derivatives of the identity in spaces.

3.3.1 The Snaith splitting in AlgO

There is an analogous result for O-algebras, wherein the adjunction (⌃1,⌦1) is replaced by

(Q,U) from (2.3.1). Let B(O) be the (J, J)-bimodule

B(O) = J �h
O
J ' |Bar(J,O, J)|

and note that given Y 2 Alg
J
cofibrant there is a zig-zag of equivalences.

QU(Y )
⇠
 � |Bar(J,O, Y )|

⇠
�! |Bar(J,O, J)| �J (Y ) = B(O) �J (Y ).
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The Alg
O
Snaith splitting is then the equivalence

QU(Y ) ' B(O) �J (Y ). (3.3.2)

Remark 3.3.3. At first blush, (3.3.2) may not seem like a proper “splitting” in the style of

the classic Snaith splitting for Top
⇤
(see Section 3.4.12), which declares an equivalence

⌃1⌦1⌃1X '
_

k�1

⌃1X^k

h⌃k

for X 2 Top
⇤
. This is more an artifact of our use of Alg

J
for the stabilization of Alg

O
. Indeed,

given instead eY 2 ModO[1], the associated comonad arising from the adjunction (g⇤Q,Ug⇤)

between Alg
O
and ModO[1] has a natural splitting

g⇤QUg⇤(eY ) '
_

k�1

eB(O)[k] ^O[1]ok
eY ^k

such that eB(O) ' B(O) via

eB(O) = ⌧1O �
h

O
⌧1O ' |Bar(⌧1O,O, ⌧1O)| ' |Bar(J,O, J)| ' B(O).

3.3.4 Cooperad structure on B(O)

It is known that B(O) (resp. eB(O)) is a coaugmented cooperad, at least in the homo-

topy category of spectra (see, e.g., Ching [22] for the topological case, Lurie [60, §5] for an

1-categorical approach, or Ginzburg-Kapranov [40] for the chain complexes case) via the

natural comultiplication

J �h
O
J ' J �h

O
O �

h

O
J ! J �h

O
J �h

O
J ' (J �h

O
J) �J (J �h

O
J).
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We would like to say that the Alg
O
Snaith splitting allows one to immediately recognize

@⇤IdAlgO as the cobar construction on B(O), however the splittings provided seem to be too

weak to justify this claim (a similar problem is enocuntered in Arone-Kankaanrinta [6] for

the classic Snaith splitting). As such, one benefit of our work is that we do not require any

more rigid cooperad structure on B(O) to produce our model for @⇤IdAlgO .

Also of note is that the Alg
O
Snaith splitting may be interpreted to say that any Y 2 Alg

J

(resp. eY 2 ModO[1]) is naturally a divided power coalgebra over B(O) (resp. eB(O)), at least

in the homotopy category, and that the functor X 7! TQ(X) underlies the left-adjoint to

the conjectured Quillen equivalence (i.e., Koszul duality equivalence) between nilpotent O-

algebras and nilpotent divided power B(O)-coalgebras from Francis-Gaitsgory [38] (which

has since been partially resolved by Ching-Harper [28]).

3.3.5 Interaction of the stabilization resolution with Taylor towers

We now provide the explicit model we employ for @⇤IdAlgO . Our argument is essentially to

show that one can “move the @⇤ inside the holim” on the right hand side of (2.3.4) by higher

stabilization and then use the Alg
O
Snaith splitting to recognize the resulting diagram. Let

us write Id for IdAlgO .

Proposition 3.3.6. Let k � n � 1, then PnId
⇠
�! holim�k�1 Pn((UQ)•+1).

Proof. The estimates from Proposition 2.3.9 su�ce to show that the map

ck : Id! holim�k�1 C(�)

agrees to order n on the subcategory of 0-connected objects (see [43, 1.2]) in which case

Pn(ck) is an equivalence via [43, 1.6]. Further,

Pn(holim�k�1 C(�)) ' holim�k�1 Pn((UQ)•+1)
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as Pn(�) commutes with very finite11 homotopy limits by construction (cf. Section 2.3.8).

Since Dn(�) and @n(�) are built from Pn(�) by very finite homotopy limits, Proposition

3.3.6 extends to an equivalence on homogeneous layers and derivatives as well. Moreover,

the restriction map

holim� Pn((UQ)•+1)! holim�k�1 Pn((UQ)•+1)

is an equivalence for k � n � 1 as the objects as a corollary to the higher stabilization

estimates from Proposition 2.3.9 (resp. for Dn and @n).

Let M be an (O,O)-bimodule. For notational convenience, for k � 1, we set

M (k) = M �O · · · �O M| {z }
k

. (3.3.7)

Note that J (k) is a cofibrant (O,O)-bimodule with (UQ)k+1(X) = J (k+1)
�O (X). By Propo-

sition 3.2.12, there are then equivalences

PnId
⇠
�! holim�k�1

⇣
Pn(UQ) //

// Pn((UQ)2)
//

//

//

Pn((UQ)3) · · ·
⌘

' holim�k�1

⇣
⌧nJ (1)

�O (�) //

// ⌧nJ (2)
�O (�)

//

//

//

⌧nJ (3)
�O (�) · · ·

⌘

and

DnId
⇠
�! holim�k�1

⇣
Dn(UQ) //

// Dn((UQ)2)
//

//

//

Dn((UQ)3) · · ·
⌘

' holim�k�1

⇣
inJ (1)

�O (�) //

// inJ (2)
�O (�)

//

//

//

inJ (3)
�O (�) · · ·

⌘

11
Recall that a very finite homotopy limit is one taken over a diagram whose nerve has only finitely many

nondegenerate simplices, and that such homotopy limits will commute with filtered homotopy colimits.

Homotopy limits over n-cubes and punctured n-cubes are very finite
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whenever k � n � 1.

Note there is an equivalence of restricted diagrams

(⌧nJ
(•+1)

�O (�))|�k�1 ' Pn((UQ)•+1)|�k�1

(resp. (inJ (•+1)
�O (�))|�k�1 ' Dn((UQ)•+1)|�k�1) by first replacing the coface k-cube

associated to

Id! (UQ)•+1

by the k-cube Zk (see (3.3.8) below) and then applying ⌧n (resp. in) objectwise.

{P(k) 3 T 7! Zk(T ) = (Z1 �O · · · �O Zk) �O (�)} such that Zi =

8
><

>:

J i 2 T

O i /2 T
(3.3.8)

We then use the corresponding models for fDn from Proposition 3.2.12 and compute the

n-th derivatives via cross e↵ects to obtain equivalences

e@nId
⇠
�! holim�k�1

⇣
e@n(UQ) //

// e@n((UQ)2)
//

//

// e@n((UQ)3) · · ·
⌘

(3.3.9)

' holim�k�1

⇣
(⌧1O)(1)[n] //

// (⌧1O)(2)[n]
//

//

//

(⌧1O)(3)[n] · · ·
⌘
.

for k � n � 1.

Example 3.3.10. We sketch this process for k = n = 2. Note, there is an isomorphism of

square diagrams of the form

Id
d
0
//

d
0

✏✏

UQ

d
0

✏✏

UQ d
1
// UQUQ

⇠=

(O �O O) �O (�) d
0
//

d
0

✏✏

(O �O J) �O (�)

d
0

✏✏

(J �O O) �O (�) d
1
// (J �O J) �O (�).
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Taking 2-homogeneous layers, we obtain an equivalence of homotopy pullback squares

D2Id
d
0

//

d
0

✏✏

D2(UQ)

d
0

✏✏

D2(UQ) d
1
// D2(UQUQ)

'

i2(O �O O) �O (�) d
0
//

d
0

✏✏

i2(O �O J) �O (�)

d
0

✏✏

i2(J �O O) �O (�) d
1
// i2(J �O J) �O (�).

The associated lifts fD2(�) to functors on ModO[1] from Proposition 3.2.12 then fit into a

homotopy pullback square

fD2Id
d
0

//

d
0

✏✏

(O �O ⌧1O)[2] ^O[1]o2 (�)
^2

d
0

✏✏

(⌧1O �O O)[2] ^O[1]o2 (�)
^2 d

1
// (⌧1O �O ⌧1O)[2] ^O[1]o2 (�)

^2

which by taking cross e↵ects cr2 then provides an equivalence of homotopy pullback squares

e@2Id d
0

//

d
0

✏✏

e@2(UQ)

d
0

✏✏

e@2(UQ) d
1
//
e@2(UQUQ)

'

e@2Id

d
0

✏✏

d
0

// ⌧1O[2]

d
0

✏✏

⌧1O[2] d
1
// (⌧1O �O ⌧1O)[2]

'

@2Id

d
0

✏✏

d
0

// J [2]

d
0

✏✏

J [2] d
1
// (J �O J)[2].

Remark 3.3.11. It follows then that @⇤Id is obtained as holim� C(O) ' TotC(O), where

C(O) is the following cosimplicial diagram (showing only coface maps)

C(O) =
⇣
J �O O //

// J �O J �O O
//

//

//

J �O J �O J �O O · · ·

⌘
(3.3.12)

⇠=
⇣
J //

// J �O J
//

//

//

J �O J �O J · · ·

⌘
,

with coface maps as in (2.3.4), i.e., C(O) = J (•+1). In other words C(O) provides a rigidifi-

cation of the diagram @⇤(UQ)•+1 whose terms are a priori defined only up to homotopy.
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3.4 The Taylor tower of the identity functor in spaces

The Taylor tower of the identity is a central object of homotopy theory. From the definitions

in [43], is not hard to show

P1IdTop⇤(X) ' D1IdTop⇤(X) ' ⌦1⌃1(X) (3.4.1)

the stabilization of a space X. The higher Blakers-Massey theorems [42, 2.1] show that Id

is 1-analytic and therefore the Taylor tower of the identity in Top
⇤
o↵ers an interpolation

between a simply connected space X ' holimn PnIdTop⇤(X) and its stabilization ⌦1⌃1X.

The equivalences from (3.4.1) show that the first derivative of IdTop⇤ is just the sphere

spectrum S. Johnson [52] and later Arone-Mahowald [7] give a description of the higher ho-

mogeneous layers and derivatives of IdTop⇤ in terms of the partition poset complex (Definition

3.4.5). Specifically, they show

DnIdTop⇤(X) ' ⌦1

⇣
Map

�
Par(n),⌃1X^n

�
h⌃n

⌘
(3.4.2)

and similarly

@nIdTop⇤ ' Map(Par(n), S) (3.4.3)

for all n � 1. In particular, the n-th derivative of IdTop⇤ is just the Spanier-Whitehead dual

to Par(n).

3.4.4 The partition poset complex

For n � 0 we denote by n the set {1, . . . , n}, note that 0 = ;. A partition � of n is a

decomposition n =
`

i2I
Ti into nonempty subsets (here I is required to be a nonempty set).

Given partition � = {Ti}i2I and �0 = {T 0

j
}j2J of n we say that �  �0 if there is a surjection
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f : J ! I such that Ti =
`

j2f�1(i) T
0

j
for all i 2 I.

Note that the set of partitions of n has a minimal element min consisting of only the

trivial partition {1, . . . , n}, and a maximal element max consisting of the partition of n into

singletons, i.e. {{1}, . . . , {n}}. The set of partitions of n then forms a poset with respect to

, and so may be interpreted as a category. The partition poset complex as defined below

is (a quotient of) the nerve of this category.

Definition 3.4.5. Define the n-th partition poset complex Par(n) to be the geometric re-

alization of the pointed simplicial set P (n) defined as follows. The k-simplices of P (n) are

given by sequences

�0  �1  · · ·  �k�1  �k

of partitions of n such that any chain that does not satisfy �0 = min and �k = max is

identified with the basepoint.

Face maps di : P (n)k ! P (n)k�1 are given by removing the i-th entry �i and degeneracy

maps sj : P (n)k ! P (n)k+1 are given by repeating the j-th entry �j. Note, that the image

of d0 (resp. dk) is only the basepoint if �1 6= min (resp. �k�1 6= max).

More generally, for a finite set T we define Par(T ) analogously, e.g. by setting |T | = n

and specifying a bijection T ⇠= n.

Remark 3.4.6. Note that Par(n) inherits a natural action of ⌃n by permuting the elements

of n. A useful observation is that non-basepoint elements ↵ 2 P (n)k are in bijective cor-

respondence with isomorphism classes of planar, rooted trees with n labelled leaves and k

levels, up to planar isomorphism.

Example 3.4.7. It is possible to calculate some low dimensional examples of partition poset

complexes. For instance, Par(0) = ⇤, Par(1) ⇠= S0 and Par(2) ⇠= S1 with trivial ⌃2 action.

Similarly, Par(3) may be identified with the 2-sphere with a disc glued-in at the equator,

⌃3 acts on Par(3) by permuting the three 2-discs (top hemisphere, bottom hemisphere and

equator).
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Moreover, it is known that there is a (nonequivaraint) equivalence (see [52], [7])

Par(n) '
(n�1)!_

i=1

Sn�1.

We briefly describe one route of arriving at the model (3.4.3), using the approach of

Arone-Kankaanrinta [6] to analyze IdTop⇤ by the Snaith splitting.

3.4.8 Analysis of the Taylor tower of the identity by higher stabi-

lization

Associated to the stabilization adjunction (⌃1,⌦1) between Top
⇤
and Spt, for any space

X, there is a coaugmented cosimplicial diagram X ! C(⌃1X). Here, C(⌃1X) is the cobar

resolution

C(⌃1X) := Cobar(⌦1,⌃1⌦1,⌃1X)

and the coaugmented is provided by the unit map X ! ⌦1⌃1X. C(⌃1X) is functorial in

X and provides a cosimplicial functor

C(⌃1
�) =

⇣
⌦1⌃1 //

// (⌦1⌃1)2
//

//

//

(⌦1⌃1)3 · · ·
⌘

(3.4.9)

whose coface maps are induced by inserting the unit map IdTop⇤ ! Q := ⌦1⌃1 and

codegeneracy maps are induced by the counit map ⌃1⌦1 =: K! IdSpt.

Blomquist-Harper [15] utilize the cubical higher Blakers-Massey theorems of [42] to re-

cover a classical result of Bousfield-Kan [19] (see also [21]) that simply connected spaces

are equivalent to their completion with respect to stabilization. Specifically, if X 2 Top
⇤
is

1-connected, then

X
⇠
�! holim� C(X) ' X^

⌦1⌃1 .
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The key to their proof is strong connectivity estimates of the following form.

Proposition 3.4.10. The comparison map X ! holim�k�1 C(⌃1X) is (c(k + 1) + 1)-

connected for X 2 Top
⇤
c-connected.

We make use of the above connectivity estimates to show that PnId may be recovered as

the totalization of Pn(Q•+1) (see also [2, §16]).

Corollary 3.4.11. Let k � n � 1, then PnIdTop⇤
⇠
�! holim�k�1 Pn(Q•+1).

Proof. Using the estimates from Proposition 3.4.10, this follows from the same argument as

in Proposition 3.3.6.

The above corollary readily extends to equivalences on Dn and @n as well. The upshot

for us is that @n(Qk+1) is readily computable via the Snaith splitting, as follows.

3.4.12 The Snaith splitting

Let S denote the symmteric sequence in Spt such that S[n] = S with trivial ⌃n action. The

Snaith splitting (see e.g., [69], [30]) provides equivalences

⌃1⌦1⌃1X '
_

k�1

⌃1X^k

h⌃k
'

_

k�1

S ^⌃k
(⌃1X)^k (3.4.13)

Said di↵erently, the Taylor tower for K = ⌦1⌃1 splits as a coproduct of its homogeneous

layers when evaluated on a suspension spectrum and that @⇤K ' S.

A result of Arone-Kankaanrinta [6] uses the above splittings to recover the model for

n-th homogeneous layers and n-th derivatives of the identity in spaces in (3.4.2) and (3.4.3),

respectively. The crux of their argument is that iterating the Snaith splitting provides

equivalences

@n(Q
k+1) ' @n(K

k) ' S�k[n].

Here, S�k denotes the k-fold composition of the symmetric sequence S.
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Remark 3.4.14. A key observation is that S�k[n] is just a wedge of copies of the sphere

spectrum S indexed by the k-simplices of P (n). This symmetric sequence S admits both

an operad and cooperad structure, the derivatives of the identity may be further recognized

as the totalization of the cobar complex C(S) with respect to this cooperad structure. We

defer a discussion of cooperads and their coalgebras to Appendix B. In Section 6.2 we show

that C(S) inherits the structure of a ⇤̊-monoid (see 4.2.3), which induces the desired operad

structure upon passing to totalization.
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Chapter 4

The box product and box monoids

4.1 The box-product of cosimplicial objects

The aim of this section is to introduce the box product ⇤ for cosimplicial objects in a

monoidal category (C,⌦,1) as first introduced by Batanin [10]. For nice categories C (e.g.,

C closed, symmetric monoidal), the box product endows C
� with a monoidal structure,

and cosimplicial objects which admits a monoidal pairing with respect to ⇤ inherit an A1-

monoidal pairing on their totalizations (see, e.g., McClure-Smith [65, 3.1]).

Our main use of the box product will be to produce a homotopy-coherent (i.e., A1-

) composition on the derivatives of the identity in O-algebras, modeled as TotC(O), by

demonstrating a natural pairing C(O)⇤C(O)! C(O) (Example 4.1.4).

Definition 4.1.1. Let (C,⌦,1) be a monoidal category and X, Y 2 C
�. Define their box

product X⇤Y 2 C
� at level n by

(X⇤Y )n := colim

0

@
a

p+q=n

Xp
⌦ Y q

a

r+s=n�1

Xr
⌦ Y s

oo

oo

1

A

where the maps are induced by id⌦ d0 and dr+1
⌦ id. The object X⇤Y inherits cosimplicial
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structure via coface maps di : (X⇤Y )n ! (X⇤Y )n+1 induced by

8
><

>:

Xp
⌦ Y q d

i
⌦id

����! Xp+1
⌦ Y q i  p

Xp
⌦ Y q id⌦d

i�p

������! Xp
⌦ Y q+1 i > p

and codegeneracy maps sj : (X⇤Y )n ! (X⇤Y )n�1 induced by

8
><

>:

Xp
⌦ Y q s

j
⌦id

����! Xp�1
⌦ Y q j < p

Xp
⌦ Y q id⌦s

j�p

������! Xp
⌦ Y q�1 j � p

see also Ching-Harper [28, §4].

Remark 4.1.2. Note, (X⇤Y )0 ⇠= X0
⌦ Y 0, (X⇤Y )1 and (X⇤Y )2 may be computed as the

colimits of

X0
⌦ Y 1

X0
⌦ Y 0

d
1
⌦id
//

id⌦d
0

OO

X1
⌦ Y 0 and

X0
⌦ Y 2

X0
⌦ Y 1

d
1
⌦id
//

id⌦d
0

OO

X1
⌦ Y 1

X1
⌦ Y 0

id⌦d
0

OO

d
2
⌦id
// X2
⌦ Y 0

respectively, and in general (X⇤Y )n may be computed as the colimit of the staircase diagram
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X0
⌦ Y n

X0
⌦ Y n�1

d
1
⌦id
//

id⌦d
0

OO

X1
⌦ Y n�1

. . .

OO

// Xn�1
⌦ Y 1

Xn�1
⌦ Y 0

id⌦d
0

OO

d
n
⌦id
// Xn
⌦ Y 0

(4.1.3)

In particular, if (C,⌦,1) is closed, symmetric monoidal then ⇤ defines a monoidal cat-

egory (C�,⇤,1), here 1 is the constant cosimplicial object on the unit 1 2 C (see, e.g.,

Batanin [10]).

Example 4.1.4. Recall the cosimplicial symmetric sequence C(O) = J (•+1) from (3.3.12). We

observe that C(O) admits a pairing C(O)⇤̊C(O)
m
�! C(O), where ⇤̊ denotes the box product

in SymSeq
�
Spt

, induced as follows. Let c denote the operad composition map c : J � J ! J .

Then,

(C(O)⇤̊C(O))0 ⇠= J � J
c
�! J = C(O)0

For level 1 we observe that there are maps

m0,1 : J � J �O J ! J �O J and m1,0 : J �O J � J ! J �O J

induced by J � J ! J which induces m via the following commuting square

J � J �O J
m0,1

// J �O J

J � J

id�d0

OO

d
1
�id
// J �O J � J

m1,0

OO

(4.1.5)
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More generally, there are maps of the form

mp,q : J
(p)
� J (q)

! J (p+q) for p+ q = n, p, q � 0

induced by c, which induces the pairing m at level n.

Remark 4.1.6. The above construction is entirely analogous to the following example found

in McClure-Smith [65] that the based loop space ⌦X of X 2 Top
⇤
admits an A1 composition

induced by an underlying ⇤-pairing. In this case, ⌦X is modeled as the totalization of the

cobar complex c(X) built with respect to the natural comultiplication (with coaugmentation)

given by the diagonal � : X ! X ⇥X.

It follows that c(X)p ⇠= X⇥p and the pairing c(X)⇤c(X) ! c(X) is induced by the

natural isomorphisms X⇥p
⇥X⇥q ⇠= X⇥p+q. Further, McClure-Smith show that Tot c(X) is

an algebra over the (nonsymmetric) coendmorphism operad on �•, i.e.,

A[n] = MapTop

�res

�
�•, (�•)⇤n

�

which satisfies A[0] = ⇤ and A[n] ⇠
�! ⇤ for n � 1 (in fact �n and (�•⇤�•)n are homeomor-

phic), and that with respect to this structure Tot c(X) ' ⌦X as A1-monoids.

4.2 The box product in SymSeq�

Our aim now is to build a framework in which we can work with the structure captured by

Example 4.1.4, e.g., by considering the box-product in the category of cosimplicial objects

in (SymSeqC, �, I) of symmetric sequences for (C,⌦,1) some closed symmetric monoidal

category.

The main di�culty is that the composition product of symmetric sequences does not

always commute with colimits taken in the right hand entry. That is, for B : I ! SymSeqC
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a small diagram and A 2 SymSeqC, the universal map

colimi2I(A �Bi)! A � (colimi2I Bi) (4.2.1)

is not an isomorphism in general. Thus the box-product fails to be strictly monoidal in this

setting.

Let us write SymSeq = SymSeqC and ⇤̊ for the box-product in SymSeq
� (in words we

refer to ⇤̊ as the box-circle product). Let X ,Y ,Z, . . . be cosimplicial symmetric sequences.

We will systematically interpret expressions of the form X ⇤̊Y⇤̊Z to be expanded from the

left, i.e.,

X ⇤̊Y⇤̊Z := (X ⇤̊Y)⇤̊Z, X ⇤̊Y⇤̊Z⇤̊W := ((X ⇤̊Y)⇤̊Z)⇤̊W , . . .

and note that via the universal map in (4.2.1) there is always a canonical comparison map

✓ of the form

✓ : X ⇤̊Y⇤̊Z = (X ⇤̊Y)⇤̊Z ! X ⇤̊(Y⇤̊Z) (4.2.2)

which likely fails to be invertible. However, ✓ is su�cient to provide a suitable description

of monoids with respect to ⇤̊, i.e., Definition 4.2.3, below. First, we note that the unit

I 2 SymSeqC induces a unit I 2 SymSeqC as the constant cosimplicial object on I in that

there are isomorphisms

X ⇤̊I ⇠= X ⇠= I⇤̊X .

For instance, the right isomorphism is obtained by noting that for any p, q the map

dp+1
� id in the following

Ip � X q+1

Ip � X q

id�d0

OO

d
p+1

�id
// Ip+1

� X
q

is just the identity (and hence has an inverse). Therefore, the inclusion of the vertex I0 �X n
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into the diagram defining (X ⇤̊X )n is right cofinal (i.e., induces an isomorphism on colimits).

Definition 4.2.3. By ⇤̊-monoid in SymSeq
�, we mean a cosimplicial symmetric sequence

X together with maps m : X ⇤̊X ! X and u : I ! X so that the following associativity

(4.2.4) and unitality (4.2.5) diagrams commute

X ⇤̊X ⇤̊X
✓
//

=

✏✏

X ⇤̊(X ⇤̊X ) id⇤̊m
// X ⇤̊X

m

✏✏

(X ⇤̊X )⇤̊X
m⇤̊id

// X ⇤̊X
m

// X

(4.2.4)

and

X ⇤̊I id⇤̊u
//

⇠=
$$

X ⇤̊X

m

✏✏

I⇤̊X
u⇤̊id
oo

⇠=
zz

X

(4.2.5)

Remark 4.2.6. We remark that in the language of Ching [25] (see also Day-Street [31]), ⇤̊
admits a normal oplax monoidal structure by defining

X1⇤̊ · · · ⇤̊Xk := (· · · ((X1⇤̊X2)⇤̊X3) · · · )⇤̊Xk

and obtaining grouping maps from the universal map in (4.2.1). Our notion of ⇤̊-monoids

are normal oplax monoids with respect to such structure by appealing to Ching [25, 3.4],

noting in particular that four-fold and higher associativity diagrams are known to commute

given the commutativity of (4.2.4).

Proposition 4.2.7. The cosimplicial symmetric sequence C(O) (see (3.3.12)) admits a nat-

ural ⇤̊-monoid structure, i.e., there are maps m : C(O)⇤̊C(O) ! C(O) and u : I ! C(O)

which satisfy associativity and unitality.

Proof. The map m is that constructed in Example 4.1.4. The unit I ! J provides a

coaugmentation I ! C(O) which in turn induces a map u : I ! C(O).
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Associativity (4.2.4) follows from a routine calculation, observing that

d0 : (C(O)⇤̊C(O))q ! (C(O)⇤̊C(O))q+1

is induced by d0 � id : C(O)r � C(O)s ! C(O)r+1
� C(O)s for r + s = q. Similarly, the

right-hand triangle from the unitality diagram (4.2.5) is granted by the following commuting

diagrams

Ip � C(O)q u
p
�id
//

⇠=
✏✏

C(O)p � C(O)q

mp,q

✏✏

C(O)q d
0
···d

0
// C(O)p+q

for all p, q. A similar argument provides the commutativity of the other side of the unitality

diagram.

Theorem 1.1.1(a) is then obtained as a corollary to the following proposition, the proof

of which is deferred to Section 6.1.1. As such, the aim of the following sections is to set up

a precise framework to describe what is meant by A1-operad.

Proposition 4.2.8. If X is a ⇤̊-monoid in SymSeq
�
Spt

, then TotX is an A1-monoid with

respect to the composition product (i.e., A1-operad).
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Chapter 5

N-colored operads with levels

In this section we develop our theory of N = {0, 1, 2, . . . }-colored operads with levels, which

we refer to as Nlev-operads. The motivating principle behind our constructions is to provide

a framework to fatten-up the usual notion of operads and their algebras. For this section

(C,⌦,1) will denote a given cocomplete closed, symmetric monoidal category with initial

object ���. We first recall the classical theory of colored operads.

5.1 Colored operads

Colored operads (sometimes also referred to as multicategories) o↵er a generalization of

operads to encode more nuanced algebraic operations on their algebras. We give an overview

of their pertinent details below and refer the reader to Leinster [59] or Elmendorf-Mandell

[35] for more information. As before, we will only need to consider colored operads in the

category of spectra.

Definition 5.1.1. Let C be a nonempty set, i.e., a set of colors. A C-colored operad M in

C consists of

• Objects M(c1, . . . , cn; d) 2 C for all (c1, . . . , cn; d) 2 C⇥n
⇥ C and n � 0
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• A unit map 1!M(c; c) for all c 2 C

• Composition maps of the form

M(c1, . . . , cn; d)⌦M(p1,1, . . . , p1,k1 ; c1)⌦ · · ·⌦M(pn,1, . . . , pn,kn ; cn) (5.1.2)

!M(p1,1, . . . , pn,kn ; d)

subject equivariance, associativity and unitality conditions (see, e.g., [35, 2.1]).

An algebra over M is a C-colored object, i.e., X = {Xc}c2C such that Xc 2 C for all

c 2 C, together with maps for each tuple (c1, . . . , cn; d) 2 C⇥n
⇥ C of the form

M(c1, . . . , cn; d)⌦Xc1 ⌦ · · ·⌦Xcn ! Xd

the collection of which is required to satisfy equivariance, associativity and unitality condi-

tions.

Berger-Moerdijk provide a list of examples in [13, §1.5]; of note is that for C = {⇤}, a

one-colored operad is just an operad in the classical sense. The following constructions are

also motivated by White-Yau [70] wherein a composition product for C-colored operads is

provided.

5.2 Nlev-objects

The purpose of this section is to introduce the notion of a nonsymmetric, N-colored sequence

with levels in C. We will refer to these as Nlev-objects. In our framework, Nlev-objects will

play a role analogous to symmetric sequences for classical (one-color) operads, though we

note that we do not yet impose any symmetric group actions on our Nlev-objects. Let s

denote the set {1, . . . , s} (note that 0 = ;).
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Definition 5.2.1. For k � 0, let N�̂k denote the set of tuples of orbits

N�̂k :=
��

n1, (n2
1, · · · , n

2
n1)⌃n1 , · · · , (n

k

1, · · · , n
k

nk�1)⌃nk�1

�
: nj

i
� 0 8i, j

 

where nj is inductively defined as
P

n
j�1

i=1 nj

i
and we set n0 := 1. We then treat N�̂k as a

category with only identity morphisms.

Note that the superscripts in Definition 5.2.1 are used for indexing and are not powers, we

will adhere to this convention throughout the document. Elements p 2 N�̂k will be referred

to as profiles, we will often suppress the orbit subscript and write (n1, . . . , ns) for the orbit

(n1, . . . , ns)⌃s .

Definition 5.2.2. Given p = (n1, . . . , (nk

i
)i2nk�1) 2 N�̂k, we define the weight of p to be the

integer nk =
P

i2nk�1 nk

i
. For t 2 N, we write N�̂k[t] for the set of profiles p 2 N�̂k of weight

t.

Example 5.2.3. Computing small examples we see

N�̂0 = {;}, N�̂2 ⇠= {(n, (k1, . . . , kn)) : n, ki � 0},

N�̂1 ⇠= N, N�̂3 ⇠= {(n, (k1, . . . , kn), (t1, . . . , tk) : k = k1 + · · ·+ kn, n, ki, tj � 0}.

Remark 5.2.4. Note that profiles in N�̂` are in bijective correspondence to indexing factors

of `-fold iterates of �̂ from (2.1.7), therefore objects indexed on N�̂` naturally arise when

evaluating `-fold iterates of the composition product of symmetric sequences (Definition

2.1.6) from the left.

Given p = (n1, (n2
i
)i2n1 . . . , (n`

i
)i2n`�1) 2 N�̂`[t], the term

(X1 � · · · �X`)[p]
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is the collection of factors in (X1 � · · · �X`)[t] corresponding to the indexing tuples

(nj

1, . . . , n
j

n1)⌃nj�1 2 Sum
n
j

nj�1 ,

for j = 1, . . . , `.

Definition 5.2.5. Given profiles p, q 2 N�̂k we define their amalgamation p q q to be the

orbit of the levelwise disjoint union of the two profiles. In other words, given

p = (n1, (n2
i
)i2n1 , (n3

i
)i2n2 , . . . , (nk

i
)i2nk�1),

q = (m1, (m2
j
)j2m1 , (m3

j
)j2m2 , . . . , (mk

j
)j2mk�1),

then pq q is given by

pq q :=
⇣
(n1,m1),

�
(n2

i
)i2n1 q (m2

j
)j2m1

�
, . . . ,

�
(nk

i
)i2nk�1 q (mk

j
)j2mk�1

�⌘
.

Remark 5.2.6. Note that pqq is not an element of anyN�̂k as its first entry is not a singleton.

However, if p
i
2 N�̂k[ti] for i = 1, . . . , n then

�
n, p1 q · · ·q pn

�
2 N�̂k+1[t1 + · · ·+ tn].

For instance, if p = (2, (2, 3)) and q = (3, (2, 3, 4)) then

�
2, pq q

�
=
�
2, (2, 3)⌃2 , (2, 3, 2, 3, 4)⌃5

�
2 N�̂3[14].

Definition 5.2.7. An Nlev-object P in a symmetric monoidal category C is a functor

P :
a

`�0

N�̂`
⇥N! C.
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Equivalently, P = (Pk)k�0 such that Pk is a functor N�̂k
⇥ N ! C. We also refer to

Nlev-objects as N-colored objects with levels. We further say an Nlev-object P is reduced if

• For ` � 1, P`(p; t) = ��� if p /2 N�̂`[t]

• P0(;; 1) = 1

• P0(;;n) = ��� for n 6= 1.

Recall that ��� denotes the initial object of C.

Note if P is reduced then P is determined by a functor
`

`�0 N
�̂`
! C. We will mostly

be concerned with reduced Nlev-objects, but benefit from this more general definition when

we discuss algebras in Section 5.3.6.

5.2.8 A composition product for Nlev-objects

The aim of this section is develop a monoidal composition product for Nlev-objects so that

we may encode Nlev-operads as monoids.

Definition 5.2.9. Let p = (n1, (n2
i
)i2n1 , . . . , (nk

i
)i2nk�1) 2 N�̂k and let `1, . . . , `k � 0 be

given. Let Q denote a collection of unordered sequences of profiles (qj
1
, · · · , qj

nj�1) for j =

1, . . . , k such that qj
i
2 N�̂`j [nj

i
].

We define the composite of p and Q to be the profile p �Q 2 N�̂(`1+···+`k) given as follows

p �Q :=
�
q1, q2

1
q · · ·q q2

n1 , · · · , q
k

1
q · · ·q qk

nk�1

�
.

Let

N�̂k n
 

a

`1,··· ,`k�0

N�̂`1 ⇥ · · ·⇥N�̂`k

!
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be the collection of all pairs (p,Q) such that

p = (n1, (n2
i
)i2n1 , . . . , (nk

i
)i2nk�1), Q = (q1, · · · , (qk

j
)j2nk�1)

so that the composite p �Q is defined (i.e., qj
i
2 N�̂`j [nj

i
]).

Remark 5.2.10. It is convenient to think of an element p = (n1, . . . , (nk

i
)) 2 N�̂k[t] as describ-

ing a family of planar rooted trees (see, e.g. [22]) with t leaves and k levels. More precisely,

the numbers nj

i
describe the valence (number of input edges) to the i-th node at the j-th

level, and a tree in this family is determined by a family of morphisms 'j : nj
! nj�1 for

1  j < k such that |'�1
j
(i)| = nj

i
for all i, j.

Let Q be so that p�Q is defined. From this perspective, a tree in the family corresponding

to p�Q is build by “blowing up” each node nj

i
from p by a tree from the family corresponding

to the profile qj
i
from Q.

Definition 5.2.11. We define the tensor ⌦̂ of reduced Nlev-objects Q
1, · · · ,Qk to be the

left Kan extension of the following

`
k�0

⇣
N�̂k n (

`
`1,··· ,`k�0 N

�̂`1 ⇥ · · ·⇥N�̂`k)
⌘

Q
1
�̂···�̂Q

k
//

(p,Q) 7!p�Q

✏✏

C

`
`�0 N

�̂` Q
1
⌦̂···⌦̂Q

k

left Kan ext.
// C

(5.2.12)

such that if p �Q 2 N�̂`1+···+`k [t], then

(Q1
�̂ · · · �̂Q

k)(p �Q; t) := Q
1
`1
(q1;n1)⌦

O

i2n1

Q
2
`2
(q2

i
;n2

i
) · · ·⌦

O

i2nk�1

Q
k

`k
(qk

i
;nk

i
).

Note then that (Q⌦̂k)` ⇠=
`

`1+···+`k=`
Q`1 �̂ · · · �̂Q`k

, more specifically:

(Q⌦̂k)`(p; t) ⇠=
a

`1+···+`k=`

a

p=p0�Q

(Q�̂ · · · �̂Q)(p �Q; t) (5.2.13)
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where we note that the summands `j are ordered.

Definition 5.2.14. Let P and Q be reduced Nlev-objects in C. Their nonsymmetric compo-

sition product � is defined as the coend P� ⌦N Q
⌦̂� where N denotes the category of finite

sets n for n � 0 with only identity morphisms. That is,

(P�Q)` ⇠=
a

k�0

Pk⌦̇(Q
⌦̂k)`.

We use the notation ⌦̇ to designate the product Pk⌦̇(Q`1 �̂ · · · �̂Q`k
) is evaluated at a

profile (p; t) as follows

(Pk⌦̇(Q`1 �̂ · · · �̂Q`k
))(p; t) ⇠=

a

p=p0�Q

Pk(p
0; s0)⌦ (Q1

�̂ · · · �̂Q
k)(p �Q; t)

where p0 2 N�̂k[s0] and Q is a family (qj
i
) as in (5.2.9) with qj

i
2 N�̂`j [sj

i
].

We necessarily then have

p0 =
�
s1, (s21, . . . , s

2
s1), . . . , (s

k

1, . . . , s
k

sk�1)
�

and can further describe P�Q as

(P�Q)`(p; t) ⇠=
a

`1+···+`k=`

a

p=p0�Q

Pk(p
0; s0)⌦

kO

j=1

 
O

i2nj

Q`j(q
j

i
;nj

i
)

!
(5.2.15)

Example 5.2.16. We will evaluate (P�Q)3 at

p = (n, (ki)i2n, (tj)j2k) 2 N�̂3[t]
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for P ,Q reduced Nlev-objects. Set k := k1 + · · ·+ kn, we observe

�
P2⌦̇(Q1�̂Q2)

�
(p; t) =

a

p=(n,(q
1
q···qq

n
))

P2(n, (s1, . . . , sn); t)⌦

 
Q1(n;n)⌦

O

i2n

Q2(q
i
; si)

!

where q
i
2 N�̂2[si].

Using the language of Remark 5.2.10, we think of the above as partitioning the set of

nodes (tj)j2k from p into n sets of size k1, . . . , kn, e.g., by defining a map ' : k! n such that

|'�1(i)| = ki for i = 1, . . . , n. Such a partition determines n profiles q
i
= (ki, (tj)j2'�1(i)) 2

N�̂2[si] for i = 1, . . . , n where necessarily si is the sum
P

j2'�1(i) tj. This precisely determines

all possible ways of expressing the family of trees associated to p by a “vertex blowup”

of the form p = p0 � Q, where p0 2 N�̂2[t], q1 2 N�̂1[n] and each q2
i
2 N�̂2. The term

�
P2⌦̇(Q1�̂Q2)

�
(p; t) is then obtained by using P to evaluate p0 and Q to evaluate the profiles

from Q.

Similarly,

(P2⌦̇(Q2�̂Q1))(p; t) = P2 (k, (tj)j2k; t)⌦

 
Q2(n, (ki)i2n; k)⌦

O

j2k

Q1(tj; tj)

!
,

(P1⌦̇Q3)(p; t) = P1(t; t)⌦Q3(p; t),

(P3⌦̇(Q1�̂Q1�̂Q1))(p; t) = P3(p; t)⌦

 
Q1(n;n)⌦

O

i2n

Q1(ki; ki)⌦
O

j2k

Q1(tj; tj)

!
.

Proposition 5.2.17. The category of Nlev-objects equipped with the composition product �

is monoidal.

Proof. It is straightforward to verify that � has a two-sided unit, I, given by I1(n;n) = 1

and I = ��� otherwise. For Nlev-objects P ,Q,R, there is a natural isomorphism (P�Q)�R ⇠=
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P�(Q�R) induced by the natural isomorphisms

⇣
Pn⌦̇

�
Qk1 �̂ · · · �̂Qkn

�⌘
⌦̇
�
R`1,1 �̂ · · · �̂R`n,kn

�
(5.2.18)

⇠= Pn⌦̇

⇣�
Qk1⌦̇(R`1,1 �̂ · · · �̂R`1,k1

)
�
�̂ · · · �̂

�
Qkn⌦̇(R`n,1 �̂ · · · �̂R`n,kn

)
�⌘

obtained by a tedious but ultimately straightforward calculation. The remainder of the

monoidal category axioms follow from similar observations.

Definition 5.2.19. A nonsymmetric Nlev-operad is a reduced Nlev-object P which is a

monoid with respect to �. That is, there are unital and associative maps of Nlev-objects

⇠ : P�P ! P and " : I ! P , i.e., such that the following diagrams commute

P�P�P
⇠�id

//

id�⇠
✏✏

P�P

⇠

✏✏

P�P
⇠

// P

P�I
id�"

// P�P

⇠

✏✏

I�P
"�id
oo

P

⇠=

dd

⇠=

::

5.2.20 Algebras over a nonsymmetric Nlev-operad

Let (b�) denote the inclusion of N-colored objects to Nlev-objects given by

bX0(;;n) = X[n] and bXk = ��� for k � 1.

Note that bX is not reduced, but a straightforward modification of Definition 5.2.11 pro-

vides that
� bX⌦̂n

�
0
⇠= X �̂n and

� bX⌦̂n
�
k

⇠= ��� for k � 1. Similarly, (b�) is left adjoint to Ev0

which takes values in nonsymmetric sequences and is defined at an Nlev-object P as

(Ev0P)[n] := P0(;;n).

If P is a nonsymmetric Nlev-operad then P� bX remains concentrated at level 0 and hence
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defines a monad on N-colored objects

P�(�) : X 7! Ev0(P� bX).

Definition 5.2.21. We say that an N-colored object X is an algebra over an nonsymmetric

Nlev-operad P if there is an action map

P�(X)
µ

��! X

which is associative and unital in that the following diagrams commute.

P�P�(X)
⇠�id
//

id�µ

✏✏

P�(X)

µ

✏✏

P�(X)
µ

// X

P�(X)
µ

// X

I�(X)

"

OO

⇠=

;;

We denote by Alg
!

lev
(P) the category of algebras over a nonsymmetric Nlev-operad P

along with P-action preserving maps. Note that an action map µ consists of pieces

µk : Pk⌦̇(X
�̂k)! X

for k � 0 and that Alg!
lev

(P) is complete and cocomplete and moreover that limits are built

in the underlying category of N-colored objects.

5.2.22 Change of Nlev-operads adjunction

Given a map of nonsymmetricNlev-operads � : P ! Q and a P-algebraX we defineQ�P(X)

by the reflexive coequalizer

Q�P(X) := colim
⇣
Q�(X) Q�P�(X)

oo

oo

⌘
.
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The top map above is given by P�(X)
µP

��! X and the bottom is induced by the composite

Q�P
id��
���! Q�Q

⇠Q
��! Q.

The resulting object Q�P(X) inherits a natural Q algebra structure and the construction

fits into an adjunction as in the following proposition.

Proposition 5.2.23. Given a map of nonsymmetric Nlev-operads P
�
�! Q there is a change

of nonsymmetric Nlev-operads adjunction

Alg
!

lev
(P)

Q�P (�)
//

Alg
!

lev
(Q)

�
⇤

oo

with right adjoint �⇤ given by restriction along �.

5.2.24 A forgetful functor to N-colored operads

We describe forgetful functor U from Nlev-operads to N-colored operads (specifically, non-

symmetric N-colored operads). Given p = ((n1, · · · , (n`
i
)i2n`�1) 2 N�̂`, we set s(p) to be the

unordered list of the elements of the levels of p, i.e.,

s(p) :=
�
nj

i
: j 2 {1, · · · , n}, i 2 nj

 
.

Given an Nlev-object Q we define UQ by

(UQ)(c1, . . . , ck; t) :=
a

s(p)=(c1,...,ck)

Q`(p; t) (5.2.25)

where the coproduct ranges over p 2
`

`�0 N
�̂`. We leave the proof of the following proposi-

tion to the reader.

Proposition 5.2.26. If P is an Nlev-operad then UP is a (nonsymmetric) N-colored operad.
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Furthermore, the categories Alg
!

lev
(P) and AlgUP are equivalent.

5.3 Symmetric Nlev-objects

We now impart symmetric group actions on our Nlev-objects in a way that captures operadic

composition. Denote by I
⌃ the Nlev-object in (C,⌦,1) with

I
⌃
`
(p; t) =

8
><

>:

⌃[n] ` = 1, p = n = t

��� otherwise

Recall here that ⌃[n] =
`

�2⌃n
1. Note that I

⌃ is a nonsymmetric Nlev-operad whose

composition maps are induced by the block matrix inclusions

⌃n ⇥ (⌃k1 ⇥ · · ·⇥ ⌃kn)! ⌃k1+···+kn .

Moreover the data of an algebra over I
⌃ is precisely that of a symmetric sequence; i.e.,

Alg
!

I⌃
⇠= SymSeq.

Definition 5.3.1. An Nlev-object P symmetric if P has compatible right and left actions

of I⌃ in that the following diagram must commute

I
⌃
�P�I

⌃ µ`�id
//

id�µr
✏✏

P�I
⌃

µr

✏✏

I
⌃
�P

µ`
// P

where µ` (resp. µr) denotes the left (resp. right) action map of I⌃ on P .

In other words, a symmetric Nlev-object is an (I⌃, I⌃)-bimodule. Note that I⌃�(X) ⇠=

⌃·X is the free symmetric sequence on X (see also Remark 5.4.14).
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5.3.2 Symmetric Nlev-operads

Definition 5.3.3. Let P ,Q be (I⌃, I⌃)-bimodules. We define their symmetric composition

product, denoted P�⌃Q, as the (reflexive) coequalizer (calculated in symmetric Nlev-objects)

P�⌃Q := P�I⌃Q ⇠= colim
⇣
P�Q P�I

⌃
�Qoo

oo

⌘

where the two maps are induced by the left and right actions actions of I⌃ on Q and P .

Note that P�⌃Q inherits left and right I⌃ actions by those on P and Q respectively, and

so remains an (I⌃, I⌃)-bimodule. Moreover, I⌃ is a two-sided unit for �⌃ and symmetric

Nlev-objects equipped with the product (�⌃, I⌃) is a monoidal category.

Remark 5.3.4. Since I⌃ is concentrated at level 1, is it possible to further describe the object

P�⌃Q in terms of its constituent parts. In particular,

(P�⌃Q)` ⇠=
a

k�0

a

`1+···+`k=`

Pk⌦̇⌃(Q`1 �̂ · · · �̂Q`k
)

where Pk⌦̇⌃(Q`1 �̂ · · · �̂Q`k
) is obtained as the coequalizer

colim

0

B@ Pk⌦̇(Q`1 �̂ · · · �̂Q`k
)

⇣
Pk⌦̇(I

⌃
1 �̂ · · · �̂I

⌃
1| {z }

k

)
⌘
⌦̇(Q`1 �̂ · · · �̂Q`k

)
oo

oo

1

CA

such that the top is induced by the right action of I⌃ on P and the bottom map is induced

by the isomorphism (5.2.18) and the left action of I⌃ on Q.

Definition 5.3.5. A symmetric Nlev-operad is a reduced symmetric Nlev-object P , which

is a monoid with respect to �⌃. That is, there is a multiplication map ⇠ : P�⌃P ! P and

unit map " : I⌃ ! P that satisfy the usual associativity and unitality conditions.
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5.3.6 Algebras over symmetric Nlev-operads

We now define an algebra over a symmetric Nlev-operad P . Note than algebra over a sym-

metric Nlev-operad is a symmetric Nlev-object concentrated at level 0, that is, an I
⌃-algebra

or symmetric sequence. As before, given a symmetric Nlev-operad P , let

P�⌃(�) : X 7! Ev0(P�⌃ bX)

be the associated monad on SymSeq.

Definition 5.3.7. A symmetric sequence X is an algebra over a symmetric Nlev-operad P

if there is an action map µ : P�⌃(X)! X which is associative and unital (as in Definition

5.2.21 with � replaced by �⌃ q.v.)

We denote by Alg
⌃
lev

(P) the category of symmetric P-algebras with P-algebra preserving

maps; for simplicity we will frequently use Alg
P
instead when there is no room for confusion.

We note that µ consists of maps

µk : Pk⌦̇⌃(X
�̂k)! X

where the action of I⌃ on X �̂k agrees with that for symmetric sequences discussed in Section

2.1. Furthermore,

µ0 : I ⇠= P0⌦̇⌃(X
�̂0)! X

gives a unit map for X 2 Alg
P
and we note that an algebra X over P will always be reduced,

i.e., X[0] = ���.

Example 5.3.8 (Free symmetric P-algebra on a symmetric sequence). Given a symmetric

sequence X, the object P�⌃(X) is the free P-algebra on X and fits into an adjunction

SymSeqC

P�⌃(�)
//

Alg
P

U

oo
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where U is the forgetful functor. In particular, Oper�⌃(X) (see Definition 5.4.2) is the free

operad on X (see, e.g., [2, 9.4]).

We leave the proof of the following to the reader as it follows from standard arguments

as in [44, 3.29] or [18, 4.3].

Proposition 5.3.9. If (C,⌦,1) is closed symmetric monoidal which contains all small limits

and colimits, then all small limits and colimits exist in Alg
P
. Limits and filtered colimits

are built in the underlying category of symmetric sequences and are further reflected by the

forgetful functor U .

General colimits shaped on a small diagram D are constructed by the following (reflexive)

coequalizer (whose colimits are constructed in SymSeq):

colimd2D Xd
⇠= colim

⇣
P�⌃ (colimd2D Xd) P�⌃ (colimd2D P�⌃(Xd))oo

oo

⌘
.

5.3.10 Modules over P-algebras

Definition 5.3.11. Let P be a symmetric Nlev-operad and W be a P-algebra. Let M be a

symmetric sequence. We say that M is an W-module if there are maps of the form

⌘` : P`⌦̇⌃
�
W

�̂(`�1)
�̂M

�
!M

for ` � 1 that satisfy associativity (5.3.12) and unitality (5.3.13). If M is concentrated at

level 0 we say that the object M [0] is a W-algebra.

Set ⇠ : P�⌃P ! P to be the multiplication on P and µ : P�⌃(W)!W the action map

on W . Let ` := `1 + · · · + `k. Associativity and unitality amounts to the commutitivity of
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the following diagrams

�
Pk⌦̇⌃(P`1 �̂ · · · �̂P`k)

�
⌦̇⌃

�
W

�̂(`�1)
�̂M

� ⇠`⌦⌃id
//

⇠=
✏✏

P`⌦̇⌃

�
W

�̂(`�1)
�̂M

�

⌘`

✏✏

Pk⌦̇⌃

�
(P`1⌦̇⌃W

�̂`1)�̂ · · · �̂(P`k⌦̇⌃(W
�̂`k�1
�̂M))

�

id⌦̇⌃(µ`1
�̂···�̂µ`k�1

�̂⌘`k
)

✏✏

Pk⌦̇⌃

0

@W �̂ · · · �̂W| {z }
k�1

�̂M

1

A ⌘k
//M,

(5.3.12)

and

P2⌦̇⌃

�
(P0⌦̇⌃W

�̂0)�̂(P1⌦̇⌃M)
� id⌦̇⌃(µ0�̂⌘1)

//

⇠=
✏✏

P2⌦̇⌃(W �̂M)

⌘2

✏✏

�
P2⌦̇⌃(P0�̂P1)

�
⌦̇⌃M

⇠1⌦̇⌃id
✏✏

P1⌦̇⌃M
⌘1

//M.

(5.3.13)

Recall that µ0 : I ⇠= P0⌦̇⌃W
�̂0
!W is the unit map for W .

Remark 5.3.14. We encourage the reader to compare the above definition with that of mod-

ules over algebras over an operad, e.g., as in May [61, Definition 3]. In [13, 1.5.1] an example

of a 2-colored operad whose algebras are pairs (A,M) of an O-algebra A along with an

A-module M is provided. The pair (W ,M) can be described analogously as an algebra

over an N+ := {⇤, 0, 1, 2, . . . }-colored operad with levels, though we will not require such

description.

Definition 5.3.15. We say a map P ! Q of (symmetric) Nlev-operads in some symmetric

monoidal model category C is an equivalence if for any p 2 N�̂k[t] the induced map Pk(p; t)!

Qk(p; t) is a weak equivalence in C. We write P ' Q if there is a zig-zag of equivalences of

(symmetric) Nlev-operads connecting P and Q.
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In the special case that P ' Oper then we say that a P-algebra W is an A1-operad and

that modules over W are A1-algebras.

5.4 Examples of symmetric Nlev-operads

In this section we describe some examples of symmetric Nlev-operads of interest, specifically

the coendomorphism Nlev-operads on a given cosimplicial symmetric sequence. We begin by

describing Oper – the symmetric Nlev-operad whose algebras are (one-color) operads as some

of its properties will be essential in what is to come. Our eventual goal is to prove that the

coendomorphism Nlev-operad on a ⌃-copowered symmetric sequence X (see Remark 5.4.14)

is indeed a symmetric Nlev-operad; with the particular example of A = coEnd(⌃·�•

+) in

mind (see Section 5.4.25).

Though we write most of this section for a general closed cocomplete symmetric monoidal

category C, we invite the reader to think particularly of the cases when C = Spt or Top
⇤
.

5.4.1 The symmetric Nlev-operad Oper

We begin by describing Oper for the category Set of sets.

Definition 5.4.2. Let ⌃ denote the symmetric sequence in (Set,⇥, ⇤) with ⌃[n] = ⌃n and

define a reduced Nlev-object as follows. For p 2 N�̂k[t] we set

Oper
`
(p; t) := hom

⇣
⌃[t],⌃⇤̊`[p]

⌘⌃t

Remark 5.4.3. Note there are isomorphisms

Oper
`
(p; t) = hom

�
⌃[t],⌃�`[p]

�⌃t ⇠= hom
�
⇤,⌃�`[p]

�
⇠= ⌃�`[p]. (5.4.4)
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Computing some small examples of Oper, we note that

Oper0(;; 1) ⇠= ⇤ Oper1(;;n) ⇠= ; (n 6= 1)

Oper1(n;n) ⇠= ⌃n (n � 0) Oper1(n;m) ⇠= ; (n 6= m � 0)

Oper2 (n, (k1, . . . , kn); k) ⇠= ⌃n ⇥⌃p1⇥···⇥⌃pn
⌃k

where p1, . . . , pm denotes the multiplicities of distinct integers among k1, . . . , kn, k =
P

n

i=1 ki,

and ⌃p1 ⇥ · · ·⇥ ⌃pm acts on ⌃k, e.g., by permutation of block matrices

⌃k1 ⇥ · · ·⇥ ⌃kn  ⌃k.

Similarly, let q1, . . . , qr denotes the multiplicities of the distinct integers among t1, . . . , tk and

set

p = (n, (k1, . . . , kn), (t1, . . . , tk)) 2 N�̂3[t].

Then

Oper3(p; t) ⇠= ⌃n ⇥⌃p1⇥···⇥⌃pm
⌃k ⇥⌃q1⇥···⇥⌃qr

⌃t

Proposition 5.4.5. Oper is a symmetric Nlev-operad.

Proof. As we will see, Oper is particularly special as the structure maps

⇠k,(`1,...,`k) : Operk⌦̇⌃(Oper`1 �̂ · · · �̂Oper`k)! Oper
`

(5.4.6)

which comprise ⇠ : Oper�⌃Oper! Oper consist of isomorphisms once evaluated at a profile

p 2 N�̂`[t].

That Oper is symmetric follows from the first part of the proof of Proposition 5.4.15.
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The unit map ✏ : I⌃ ! Oper is obtained via the identity morphisms

I
⌃
1 (n;n) ⇠= ⌃n ! ⌃n

⇠= Oper1(n;n)

and the initial morphism elsewhere. Let us now produce the desired map (5.4.6) at a profile

p 2 N�̂`[t].

For the reader who finds the following constructions a bit opaque, we first provide the

following intuition: for ` � 0 let �` : SymSeq
⇥`
! SymSeq be the functor �`(X1, . . . , X`) =

X1 � · · · �X`. Since � is strictly monoidal, there are isomorphisms

⌅k,(`1,··· ,`k) : �k (�`1 , · · · , �`k)
⇠=
�! �`1+···+`k (5.4.7)

such that �• is a nonsymmetric functor-operad (see, e.g., McClure-Smith [65, §4], omitting

the requirement of symmetric group actions). Moreover, the composition maps ⇠k,(`1,...,`k)

are precisely the morphisms which prescribe the equivariance of the isomorphism ⌅k,(`1,...,`k)

once evaluated at a particular string of inputs, given that evaluation at a profile in N�̂` is

the same as evaluating a symmetric sequence from the left. For instance, ⇠3,(2,1,3) provides

the isomorphisms (natural in X1, . . . , X6)

(X1 �X2) �X3 � (X4 �X5 �X6) ⇠= X1 � · · · �X6

and moreover, given p 2 N�̂`[t], the desired map ⇠k,(`1,...,`k)[p] may be thought of a precisely

arising from the isomorphism

�
⌃�`1 � · · · � ⌃�`k

�
[p]

⇠=
�! ⌃�`[p].

We describe ⇠2,(1,2) first and note the general case follows a similar argument. Let p 2
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N�̂3[t] and note that

Oper2⌦̇⌃(Oper1�̂Oper2))[p] ⇠=
a

p=(n,(p
1
q···qp

n
))

Oper2⌦̇⌃(Oper1�̂Oper2))[(n, (p1, . . . , pn))].

Fix p
i
2 N�̂2[si] for i = 1, . . . , n such that p = (n, (p1q· · ·qpn)) and set p0 = (n, (s1, . . . , sn)) 2

N�̂2[t]. We then observe

(Oper2⌦̇⌃(Oper1�̂Oper2))[(n, (p1, . . . , pn))] (5.4.8)

⇠= ⌃�2[p0]⇥S(p0)

⇣
⌃[n]⇥ (⌃�2[p

1
]⇥ · · ·⇥ ⌃�2[p

n
]
⌘

⇠= ⌃�3[(n, (p
1
, · · · , p

n
))]

◆
�! ⌃�3[p] ⇠= Oper3(p; t)

such that S(p0) = ⌃n⇥
Q

i=1⌃si and ◆ is the natural inclusion obtained from the assumption

p = (n, (p
1
q · · ·q p

n
)).

The desired map ⇠2,(1,2)[p] is induced by the coproduct of composites (5.4.8) for all p =

(n, (p
1
, . . . , p

n
)). Note further that as sets there is an isomorphism

a

p=(n,(p
1
q···qp

n
))

⌃�3[(n, (p
1
, · · · , p

n
))] ⇠= ⌃�3[p]

since � is strictly monoidal in the category of symmetric sequences of sets. Thus, ⇠2,(1,2)[p]

is invertible and more generally ⇠k,(`1,...,`k) evaluated at any profile in N�̂` is also invertible.

Associativity of ⇠ then follows from the associativity of ⌅ as in (5.4.7). That is, for a

profile (n, (k1, . . . , kn)) 2 N�̂2[k] and for i = 1, . . . , n, q
i
= (ki, (`i,1, · · · , `i,ki)) 2 N�̂2[ti] the

associativity relation

⇠k,(`1,1,··· ,`n,kn )
(⇠n,(k1,··· ,kn)⌦̇⌃id)

= ⇠n,(t1,··· ,tn)
�
id⌦̇⌃(⇠k1,(`1,1,··· ,`1,k1 )�̂ · · · �̂⇠kn,(`n,1,··· ,`n,kn )

)
�
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evaluated at some p 2 N�̂` follows from the commutative square of isomorphisms

��
⌃�`1,1� · · · �⌃�`1,k1

�
� · · · �

�
⌃�`n,1� · · · �⌃�`n,kn

��
[p] //

✏✏

(⌃�t1� · · · �⌃�tn) [p]

✏✏�
⌃�`1,1� · · · �⌃�`n,kn

�
[p] // ⌃�`[p]

Similarly, the unitality condition is satisfied by the more obvious isomorphisms

 
(⌃ � · · · � ⌃| {z }

n

)

!
[p] ⇠= ⌃�n[p] ⇠=

0

@(⌃) � · · · � (⌃)| {z }
n

1

A [p]

for all n � 0 and p 2 N�̂1 (i.e., p = p � 0).

Remark 5.4.9. Let (C,⌦,1) be a closed symmetric monoidal category with finite coproducts.

We write Oper
C for the image of Oper in C under ⌃n 7! ⌃[n] ⇠=

`
�2⌃n

1. That is, given a

profile p 2 N�̂k[t] we set

Oper
C(p; t) = MapC

�
⌃[t],⌃�k[p]

�⌃t .

Before showing that Oper encodes (one-color) operads as its algebras we first demonstrate

another class of symmetric Nlev-operads.

5.4.10 Coendomorphism symmetric Nlev-operads

Recall as in Section 6 that (C,⌦,1) denotes a closed cocomplete symmetric monoidal category

and ⌃ is the symmetric sequence in C with ⌃[k] =
`

�2⌃k
1.

Definition 5.4.11. Let X 2 SymSeq
�
C
and set coEnd(X ) to be the reduced Nlev-object given
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at (p; t) 2 N�̂`[t] by

coEnd(X )`(p; t) := Map�res

⇣
X [t],X ⇤̊`[p]

⌘⌃t

.

Example 5.4.12. Unravelling the above definition, coEnd(X )1(k; k) consists of all ⌃k-equivariant

cosimplicial maps X [k] ! X [k]. Let (q; k) = (n, (k1, . . . , kn); k) 2 N�̂2[k] and recall the de-

scription of H(k1, . . . , kn)  ⌃k from Definition 2.1.3. Then, coEnd(X )2(q; k) consists of all

⌃k-equivariant cosimplicial maps of the form

X [k]! (X ⇤̊X )[q] ⇠= ⌃[k]⌦H(k1,...,kn) X [n]⇤(X [k1]⌦ · · ·⌦ X [kn]).

Further, coEnd(X ) is quadratic in that it is generated by its first two levels as follows:

let p = (n, (ki)i2n, (tj)j2k) and set k :=
P

n

i=1 ki and t :=
P

k

j=1 tj. Then, coEnd(X )3(p; t)

consists of cosimplicial maps  that fit into the following ⌃t-equivariant diagram

X [t]
 1
//

 
))

(X ⇤̊X )[k, (tj)j2k]

 2⇤̊id
✏✏

(X ⇤̊X ⇤̊X )[n, (ki)i2n, (tj)j2k].

such that  2 2 coEnd(X )2(n, (k1, . . . , kn); k), i.e.,  2 : X [k] ! (X ⇤̊X )[n, (k1, . . . , kn)] is ⌃k-

equivariant. Said di↵erently, there is an isomorphism

coEnd(X )3(p; t) ⇠= coEnd(X )2(n, (ki)i2n; k)⌦⌃k
coEnd(X )2(k, (tj)j2k; t)

where ⌃k acts by shu✏ing the factors t1, . . . , tk of X2(k, (tj)j2k; t) in accordance to the ⌃k

equivariance of maps in X2(n, (ki)i2n; k). In general, given a profile

p = (n1, (n2
i
)i2n1 , . . . , (n`

i
)i2n`�1) 2 N�̂`
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the object coEnd(X )`(p;n`) is isomorphic to

coEnd(X )2
�
n1, (n2

i
)i2n1 ;n2

�
⌦⌃n2 · · ·⌦⌃n`�1

coEnd(X )2
�
n`�1, (n`

i
)i2n`�1 ;n`

�
. (5.4.13)

Remark 5.4.14. We would like to be able to say that coEnd(X ) is a symmetric Nlev-operad

for any cosimplicial symmetric sequence X , however this seems to not be the case. The issue

seems to be based on the potential non-invertibility of ✓ (and similarly how ⇤̊ fails to be a

strictly monoidal product for cosimplicial symmetric sequences). However, there is a class

of cosimplicial symmetric sequences on which we get the desired symmetric Nlev-structure

on coEnd(X ).

Let us say that X is ⌃-copowered if there is a sequence {Y [n]}n�0 of cosimplicial objects

in C with

X [n] = ⌃n·Y [n] ⇠= ⌃[n]⌦ Y [n]

and such that the ⌃n action on X [n] is trivial on Y [n] for all n. In such case we write

X = ⌃·Y . The benefit for us is that if X is ⌃-copowered, then ✓ has an inverse (which is

constructed in the following proposition), and so ⇤̊ is a monoidal product when restricted

to ⌃-copowered cosimplicial symmetric sequences.

Proposition 5.4.15. If X 2 SymSeq
�
C

is ⌃-copowered, then coEnd(X ) is a symmetric Nlev-

operad.

Proof. This argument is rather long and somewhat tedious, so we break it up into several

steps. The first step is to show that coEnd(X ) is symmetric, in fact ⌃-copoweredness is not

required for this part.

Let ` � 0. The left action of I⌃ on coEnd(X )` is obtained by ⌃t action on the maps

X [t] ! X
⇤̊`[p] which comprise coEnd(X )`. The right action of I⌃�̂ · · · �̂I⌃ on coEnd(X )` is
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obtained, e.g., , at ` = 2 as follows. For a profile q = (n, (k1, · · · , kn)), we observe

(I⌃�̂I⌃)(q; k) ⇠= ⌃n n (⌃k1 ⇥ · · ·⇥ ⌃kn)  ⌃k

acts via the ⌃k-equivariance of

X [k]! ⌃[k]⌦H(k1,...,kn) X [n]⇤(X [k1]⌦ · · ·⌦ X [kn]).

The general case follows a similar argument.

Second, we produce a multiplication map

⇠ : coEnd(X )�⌃coEnd(X )! coEnd(X ).

Two ingredients are crucial to this step. First, is the existence of maps

µ`1,...,`k : X
⇤̊`1⇤̊ · · · ⇤̊X

⇤̊`k ! X
⇤̊` (5.4.16)

for each tuple `1, . . . , `k such that `1 + · · · + `k = ` which are inverse to the induced map

by ✓ (see (4.2.2)). It is this step for which ⌃-copoweredness of X seems essential and

such maps µ are granted by utilizing the structure of Oper. Write X = ⌃·Y and for p =

(n1, · · · , (nk

i
)i2nk�1) set

Y
⇤k[p] = Y [n1]⇤

 
O

i2n1

Y [n2
i
]

!
⇤ · · ·⇤

 
O

i2nk�1

Y [nk

i
]

!
.

Note in the above, we are utilizing the box product for C� which is strictly monoidal.

For simplicity we describe the map µ1,2 : X ⇤̊(X ⇤̊X ) ! X
⇤̊3 and note the general case

follows from a similar argument . Note that X ⇤̊(X ⇤̊X ) takes as inputs profiles of the form

(n, (p1, · · · , pn)) for some unordered list of profiles pi 2 N�̂2.
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Fix a specific profile (n, (p1 q · · · q pn)) = p and write pi = (ki, (ti,1, · · · , ti,ki)) 2 N�̂2[ti]

for i = 1, . . . , n. There is an inclusion induced as follows

X ⇤̊(X ⇤̊X ))[n, (p1, · · · , pn)] (5.4.17)

⇠= (⌃[n]⌦ Y [n])⇤
��
⌃�2[p1]⌦ Y

⇤2[p1]
�
⌦ · · ·⌦

�
⌃�2[pn]⌦ Y

⇤2[pn]
��

⇠=

 
⌃[n]⌦⌃n

⇣a

†

⌃[t]⌦⌃t1⇥···⇥⌃tn
⌃�2[p1]⇥ · · ·⇥⌃�2[pn]

⌘!
⌦ Y

⇤3[p]

⇠= ⌃�3[n, (p1, · · · , pn)]⌦ Y
⇤3[p]

(⇤)
�! ⌃�3[p]⌦ Y

⇤3[p] ⇠= X
⇤̊3[p]

where † runs over all ⌃n permutations of t1, · · · , tn and (⇤) is induced by the natural inclusion

◆ : ⌃�3[n, (p1, · · · , pn)] ! ⌃�3[p]. Moreover, the map µ1,2 at profile p is then induced from

the inclusion described above via the isomorphism

⇣
X ⇤̊(X ⇤̊X )

⌘
[p] ⇠=

a

(n,(p1q···qpn))=p

⇣
X ⇤̊(X ⇤̊X )

⌘⇥
n, (p1, . . . , pn)

⇤
.

A straightforward computation then shows that µ1,2 is inverse to ✓.

The second ingredient to producing ⇠ is a map

coEnd(X )`1 �̂ · · · �̂ coEnd(X )`k
�
��! Map�res

⇣
X

⇤̊k,X ⇤̊`1⇤̊ · · · ⇤̊X
⇤̊`k

⌘⌃
(5.4.18)

which we construct as follows. Let ↵i : X ! X
⇤̊`i for i = 1, . . . , k. The map � is induced by

the assignment (↵1, . . . ,↵k) 7! ↵1⇤̊ · · · ⇤̊↵k, where, e.g., if k = 2 and p = (n, (t1, · · · , tn)) 2

N�̂2[t] then

(↵1⇤̊↵2)[p] : X
⇤̊2[p]! (X `1⇤̊X

`2)[p]

is obtained levelwise by the maps ↵1[n] : X [n]! X
⇤̊`1 [n] and ↵2[ti] : X ⇤̊`2 [ti] for i = 1, . . . , n.
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With these two ingredients in place, the composition ⇠ is obtained via the composition

Map�res

⇣
X ,X ⇤̊k

⌘⌃
⌦̇⌃

✓
Map�res

⇣
X ,X ⇤̊`1

⌘⌃
�̂ · · · �̂Map�res

⇣
X ,X ⇤̊`k

⌘⌃◆

id⌦̇⌃�
���! Map�res

⇣
X ,X ⇤̊k

⌘⌃
⌦̇⌃Map�res

⇣
X

⇤̊k,X ⇤̊`1⇤̊ · · · ⇤̊X
⇤̊`k

⌘⌃

comp.
���! Map�res

⇣
X ,X ⇤̊`1⇤̊ · · · ⇤̊X

⇤̊`k
⌘⌃

(µ`1,...,`k
)⇤

������! Map�res

⇣
X ,X ⇤̊`

⌘⌃
.

Fortunately, the unit map is simpler to describe. We obtain " : I⌃ ! coEnd(X ) as the

morphism

⌃[n]! Map�res(X [n],X [n])⌃n

adjoint to the action map ⌃[n]⌦X [n]! X [n] which expresses the ⌃n equivariance of X [n].

Showing that ⇠ and " satisfy the appropriate associativity and unitality conditions is a

tedious though ultimately straightforward and may be adapted from the (somewhat simpler)

proof of Proposition 4.2.8 found in Section 6.1.1.

5.4.19 Oper-algebras are operads

Our aim is now to show that Oper-algebras indeed model (one-color) operads.

Proposition 5.4.20. There is an equivalence of categories between algebras over OperC and

operads in C.

Proof. We show that a symmetric Oper-algebra is necessarily an operad and note that the

argument is readily reversed to show the converse statement. Suppose W is a symmetric

Oper-algebra. Note, Oper2⌦̇⌃W
�̂2
!W consists of maps

Oper2(n, (k1, . . . , kn); k)⌦̇⌃ (W [n]⌦W [k1]⌦ · · ·⌦W [kn])!W [k] (5.4.21)

80



for each p = (n, (k1, . . . , kn)) 2 N�̂2. Fix such a profile p and let p1, . . . , pm be the multi-

plicities of the distinct factors d1, . . . , dm among k1, . . . , kn. Coequalizing the actions of I⌃

identifies the symmetric group actions (resp. with ki replacing n)

⌃[n]⌦W [n]!W [n]

with the right action of I⌃ given in the proof of Proposition 5.4.15. Thus, (5.4.21) yields

⌃k-equivariant map of the form

⌃[k]⌦H(k1,...,kn) W [n]⌦W [k1]⌦ · · ·⌦W [kn]!W [k] (5.4.22)

which moreover obeys the correct equivariance, e.g., as described in May [61]. Said di↵erently,

(5.4.22) is the factor (W �W)[n, (k1, . . . , kn)] (as in Definition 2.1.6) and the collection of all

such maps then pieces together to form

m : W �W !W .

Since W 2 AlgOper there is a commutative diagram of the form

�
Oper2⌦̇⌃(Oper1�̂Oper2)

�
⌦̇⌃(W �̂3)

⇠=
//

⇠2,(1,2)⌦̇⌃id

✏✏

Oper2⌦̇⌃

�
(Oper1⌦̇⌃(W))�̂(Oper2⌦̇⌃(W

�̂2))
�

id⌦̇⌃(µ1�̂µ2)
✏✏

Oper2⌦̇⌃(W �̂W)

µ2

✏✏

Oper3⌦̇⌃(W
�̂3)

µ3
//W .

The composite of the right side maps describes

W � (W �W)
id�m
���!W �W

m
��!W
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and by construction the bottom map describes

(W �W) �W
m�id
���!W �W

m
��!W .

Associativity of m follows as ⇠2,(1,2) is an isomorphism.

To produce the unit u : I !W we first recall that

µ0 : I ⇠= P0⌦̇⌃(W
�̂0)!W

provides the unit map u on W . There is then a commuting diagram

Oper2⌦̇⌃

�
(Oper0⌦̇⌃(W

�̂0))�̂(Oper1⌦̇⌃(W))
�id⌦̇⌃(µ0�̂µ1)

//

⇠=
✏✏

Oper2⌦̇⌃(W �̂W)

µ2

✏✏

�
Oper2⌦̇⌃(Oper0�̂Oper1)

�
⌦̇⌃(W)

⇠1⌦̇⌃id
✏✏

Oper1⌦̇⌃(W)
µ1

//W

the composite of top and right arrows of which results in

I �W
u�id
���!W �W

m
��!W

and the left and bottom arrows are all isomorphisms. Commutativity of the other unitality

diagram follows a similar analysis.

Corollary 5.4.23. Let W be an operad, i.e., Oper-algebra. Let M 2 C and denote by M̄

the symmetric sequence concentrated at level 0 with M̄ [0] = M . Then, M is an W-algebra

(in the sense of Definition 5.3.11) if and only if M is an W-algebra in the classic sense.
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Proof. As in Definition 5.3.11, a W-algebra consists of maps

Oper
`
⌦̇⌃(W

�̂(`�1)
�̂M̄)! M̄.

Note, since M̄ is concentrated at 0, the only nontrivial contributors to such maps will

have profiles which end in a string of 0. In particular, for ` = 2 there are maps of the form

Oper2(n, (0, . . . , 0); 0)⌦̇⌃
�
W [n]⌦M⌦n

�
!M.

Since Oper2(n, (0, . . . , 0); 0) ⇠= ⌃[0] ⇠= 1, the above maps descends to

W [n]⌦⌃n M⌦n
!M

after coequalizing. Associativity and unitality follow a similar argument as the proof of

Proposition 5.4.20.

Remark 5.4.24. Though our description of Oper is new, descriptions of an N-colored operad

whose algebras are operads is not new. Berger-Moerdijk describe an N-colored operad MOp

in terms of trees whose algebras are operads in [13, 1.5.6] (see also Dehling-Vallette [32]).

Applying the forgetful functor U from Section 5.2.24 to Oper yields an isomorphic N-colored

operad to that of Berger-Moerdijk, i.e., UOper ⇠= MOp.

5.4.25 A model for A1-operads

We will now focus on a particular coendomorphism Nlev-operad in Top, namely that on the

cosimplicial symmetric sequence ⌃·�• with ⌃·�•[n] = ⌃n·�•.

Proposition 5.4.26. There is an equivalence of Nlev-operads coEnd(⌃·�•)! Oper
Top.

Proof. Note that equivalences of Nlev-operads are computed levelwise (Definition 5.3.15)

and that a morphism f : X ! Y of cosimplicial objects in Top induces a map (⌃·X)⇤̊k
!
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(⌃·Y )⇤̊k for k � 1. If additionally there is a retract r : Y ! X of f there is a map

coEnd(⌃·X)! coEnd(⌃·Y ) on coendomorphism operads induced by post-composition with

f and pre-composition with r.

Since there are morphisms ⇤
⇠
�! �n ⇠

�! ⇤ for all n � 0 (i.e., by inclusion at a vertex) we

then have

Map�res

⇣
⌃·�•, (⌃·�•)⇤̊k

⌘⌃ (†)
�! Map�res

⇣
⌃·⇤, (⌃·⇤)⇤̊k

⌘⌃
⇠= Map

�
⌃,⌃�k

�⌃

for all k � 0, where ⇤ denotes the constant cosimplicial object on ⇤ 2 Top. Moreover, since

⇤ ! �n
! ⇤ consists of weak equivalences between fibrant and cofibrant objects for all n,

the indicated map (†) is a weak equivalence in Top.

Note that for p 2 N�̂k[t], Oper
Top

k
(p; t) is just the discrete space ⌃�k[p]. Similarly,

Oper
Top⇤ ⇠= Oper

Top

+ will encode operads in (Top
⇤
,^, S0) and thus also in Spt via the tensoring

of Spt over Top
⇤
.

Remark 5.4.27. Note the functor (�)+ : (Top,⇥, ⇤) ! (Top
⇤
,^, S0) which adds a disjoint

basepoint induces isomorphisms of pointed spaces

MapTop⇤

�res

⇣
⌃·�•

+, (⌃·�
•

+)
⇤̊k

⌘⌃
⇠= MapTop

�res

⇣
⌃·�•, (⌃·�•)⇤̊k

⌘⌃
+
.

Thus, there is an isomorphism

coEnd(⌃·�•

+) ⇠= coEnd(⌃·�•)+

of Nlev-operads in Top
⇤
. For ease of notation we write A for this Nlev-operad and note

that Proposition 5.4.26 provides a map ⇢ : A
⇠
�! Oper

Top⇤ , i.e., A is a suitably “fattened-

up” version of Oper which will encode A1-operads as its algebras, similar to A encoding

A1-monoids in Example 4.1.6.
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Chapter 6

Homotopy coherent operad structures

on the derivatives of the identity

6.1 An operad structure for the derivatives of the iden-

tity in AlgO

The aim of this final section is to prove Theorem 1.1.1. We begin by proving Proposition

4.2.8 which as a corollary provides a proof of the Theorem 1.1.1(a). In Section 6.1.3 we prove

Theorem 1.1.1(b).

6.1.1 Proof of Theorem 1.1.1(a)

Since C(O) is a ⇤̊-monoid (see Proposition 4.2.7), Theorem 1.1.1(a) will follow from Propo-

sition 4.2.8, which we prove below.

Proof of Proposition 4.2.8. Let X be a ⇤̊-monoid in SymSeq
�
Spt

whose multiplication we de-

note by m : X ⇤̊X ! X . We aim to show that TotX is an algebra over A. We define maps

�` as follows (note the notation ˙̂ as ⌦̇ from Definition 5.2.14 for the monoidal category
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(Spt,^, S))

�` : A`
˙̂ ⌃(TotX )�̂` ! TotX

For simplicity we first describe the ` = 2 case. Let p = (n, (k1, . . . , kn)) 2 N�̂2[k]. Let

 2 A2(p; t), and let ↵, � : ⌃·�•

+ ! X be maps of cosimplicial symmetric sequences. Define

� at level k by the composite

(⌃·�•

+)
⇤̊2[n, (k1, . . . , kn)]

↵[n]⇤̊�[k1,...,kn]
// (X ⇤̊2)[n, (k1, . . . , kn)]

m⇤

✏✏

(⌃·�•

+)[k]

 [k]

OO

�[k]
// X [k]

where ↵[n]⇤̊�[k1, . . . , kn] is provided via the map � from (5.4.18), the construction of which

may be readily altered to give a map

� :
⇣
MapSpt

�res

�
⌃·�•

+,X
�⌃⌘�̂`

! MapSpt

�res

⇣
(⌃·�•

+)
⇤̊`,X ⇤̊`

⌘⌃
.

In general, �` is given by the following composite (compare with [3, (1.13)])

MapTop⇤

�res

⇣
⌃·�•

+, (⌃·�
•

+)
⇤̊`
⌘⌃

˙̂ ⌃
⇣
MapSpt

�res

�
⌃·�•

+,X
�⌃⌘�̂`

id ˙̂ ⌃�
���! MapTop⇤

�res

⇣
⌃·�•

+, (⌃·�
•

+)
⇤̊`
⌘⌃

˙̂ ⌃MapSpt

�res

⇣
(⌃·�•

+)
⇤̊`,X ⇤̊`

⌘⌃

compose
����! MapSpt

�res

⇣
⌃·�•

+,X
⇤̊`
⌘⌃

m⇤

�! MapSpt

�res

�
⌃·�•

+,X
�⌃

where the composition map is adjoint to the composite of evaluation maps

⌃·�•

+ ^MapTop⇤

�res (⌃·�•

+, (⌃·�
•

+)
⇤̊`)⌃ ! (⌃·�•)⇤̊`+ , (6.1.2)

(⌃·�•

+)
⇤̊` ˙̂ ⌃MapSpt

�res((⌃·�•

+)
⇤̊`,X ⇤̊`)⌃ ! X

⇤̊`.
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and m⇤ is induced by the ⇤̊-monoid structure on X .

To show that � is associative we consider the following diagram, with  0
2 An,  i 2 Aki

for i = 1, . . . , n such that the composite ⇠( 0; 1, . . . , n) =  2 Ak.

(⌃·�•

+)
⇤̊k

// X
⇤̊k

✓⇤
xx

m⇤

xx

(⌃·�•

+)
⇤̊k1⇤̊ · · · ⇤̊(⌃·�•

+)
⇤̊kn

µk1,...,kn

55

// X
⇤̊k1⇤̊ · · · ⇤̊X

⇤̊kn

m⇤⇤̊···⇤̊m⇤

✏✏

(⌃·�•

+)
⇤̊n

 1⇤̊···⇤̊ n

OO

// X ⇤̊ · · · ⇤̊X

m⇤

✏✏

⌃·�•

+

 
0

OO

�
0

,,

�

22

 

JJ

X

Note here that m⇤ is induced by repeatedly applying the pairing m : X ⇤̊X ! X from the

left, i.e.,

X ⇤̊X ⇤̊ · · · ⇤̊X
m⇤̊id⇤̊···⇤̊id
�������! · · ·

m⇤̊id⇤̊id
�����! X ⇤̊X ⇤̊X

m⇤̊id
���! X ⇤̊X

m
�! X .

The dashed morphisms � and �0 are induced by �k⇠n,(k1,...,kn) and �n(id⌦̇⌃(�k1 �̂ · · · �̂�kn),

respectively. Note as well that µk1,...,kn is as in the proof of Proposition 5.4.15, and ✓⇤ is the

grouping map induced by ✓ (see Section 4.2.3), by which it follows that � and �0 must agree.

For unitality we recall that ✏ : I⌃ ! A is induced by the inclusion at id� and therefore

the composite �1[n]"[n] in the following diagram

A1(n;n) ^⌃n MapSpt

�res

�
⌃·�•

+[n],X [n]
�⌃n �1[n]

//MapSpt

�res

�
⌃·�•

+[n],X [n]
�⌃n

(⌃n)+ ^⌃n MapSpt

�res

�
⌃·�•

+[n],X [n]
�⌃n

✏[n]

OO

⇠=

33
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is given by S0
^ TotX [n]

⇠=
�! TotX [n].

6.1.3 An equivalence of A1-operads between O and @⇤IdAlgO

We now show that the induced operad structure on @⇤IdAlgO from Proposition 4.2.8 agrees

with the induced A-algebra structure on O, thus proving Theorem 1.1.1(b). Let ⇢ : A
⇠
�!

Oper be the map described in Remark 5.4.27 and note an operad O 2 AlgOper is in algebra

over A via the forgetful functor ⇢⇤.

Proof of Theorem 1.1.1(b). By equivalence ofA1-operads we mean equivalence ofA-algebras

which restricts to an equivalence of underlying symmetric sequences.

Recall there is a natural coaugmentation O ! C(O) via O ! J . We have shown in

Section 3.3.5 that the coface k-cubes associated to

O ! C(O) and @⇤IdAlgO ! holim�n�1 @⇤((UQ)•+1)

are equivalent. Denoting these k-cubes by Xk and Yk, respectively, we note for k � n � 1

that as Yk[n] is homotopy cartesian so is Xk[n]. That is to say, for all n � 1

O[n]
⇠
�! holim�(C(O)[n]).

Let O be the constant cosimplicial object in SymSeq on O. From the above, the coaug-

mentation O ! C(O) induces a map of cosimplicial symmetric sequences ' : O ! C(O)

such that TotO
⇠
�! TotC(O). Moreover, O inherits a natural ⇤̊-monoid structure induced

by the operad structure maps O �O ! O and I ! O, and ' respects this structure (i.e., is

a map of ⇤̊-monoids).
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For each n � 0 we have

MapSpt

�res(⌃n·�
•

+,O[n])⌃n ⇠
�!MapSpt

�res(⌃n·�
0
+,O[n])⌃n

⇠=MapSpt(⌃n·S
0,O[n])⌃n ⇠= MapSpt(S0,O[n]) ⇠= O[n].

and therefore, TotO
⇠
�! O. Thus, there are commuting diagrams for all n � 0

An⌦̇⌃(⇢⇤O)�̂n

✏✏

An⌦̇⌃(TotO)�̂n

✏✏

//oo An⌦̇⌃(TotC(O))�̂n

✏✏

⇢⇤O TotO
⇠

//

⇠
oo TotC(O)

(6.1.4)

where the left is the A-algebra structure map on ⇢⇤O (which must factor through Oper) and

the right is the A-algebra structure map on @⇤IdAlgO .

6.1.5 A class of @⇤IdAlgO-algebras

Though it will follow abstractly from Theorem 6.1.3, the following corollary show that it

is possible to describe an action of @⇤IdAlgO explicitly on the TQ-completion of su�ciently

connected O-algebras. Recall that X ' X^

TQ
for 0-connected X 2 Alg

O
.

Corollary 6.1.6. Any 0-connected O-algebra X is weakly equivalent to an algebra over

@⇤IdAlgO via X 7! X^

TQ
.

Proof. A straightforward modification of the proof of Proposition 4.2.7 permits a well-defined

map of cosimplicial diagrams

r : C(O)⇤̊C(X)! C(X)

which endows C(X) with the structure of a left module over C(O). Strictly speaking we do

need to be careful here, as C(O) is not a strict monoid, so the module structure is obtained
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by replacing the right-most instances of C(O) with C(X) in (4.2.4) and (4.2.5). Nonetheless,

a straightforward adaptation of the proof of Proposition 4.2.8 demonstrates maps

A`⌦̇⌃

�
(TotC(O))�̂(`�1)

�̂X̄^

TQ

�
! X̄^

TQ

where X̄^

TQ
is the symmetric sequence concentrated at level 0 with value X^

TQ
, as required of

Definition 5.3.11.

Remark 6.1.7. One intent of the above is to motivate the analogous statement for algebras

over the derivatives of the identity in spaces, which a priori seems a bit more mysterious.

Using the model @⇤IdTop⇤ = holim� C(S) we further show in the following section that for

any S-coalgebra Y in spectra (e.g., Y = ⌃1X) the derived primitives PrimS(Y ) inherits the

structure of an algebra over @⇤IdTop⇤ via a pairing of cosimplicial objects with respect to ⇤̊
(see also [22], [50], [12]).

In this framework, Corollary 6.1.6 tells us that any 0-connected X 2 Alg
O
is equivalent

to its derived primitives PrimB(O)(TQ(X)) (with respect to a suitable coalgebra structure on

B(O), see Section 3.3.4) as @⇤IdAlgO ' O-algebras. Note also that PrimB(O)(TQ(X)) ' X^

TQ
.

As such, one possible future avenue for our work is to try to push this result to work for any

nilpotent O-algebra. This could potentially be used to prove that any nilpotent O-algebra

is equivalent to its TQ-completion (see also Section 6.3.6, along with [14], [68]; and further

compare with [19], [6], [21], [16] that any nilpotent space is equivalent to its completion with

respect to ⌦1⌃1).
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6.2 An operad structure on the derivatives of the iden-

tity in spaces

The aim of this sectin is to show that the derivatives of the identity in spaces can be given

an operad structure in a similar manner as with the operad structure just constructed for

@⇤IdAlgO . As before, our method is to show that C(S) admits ⇤̊-monoidal structure.

We need a technical lemma first; note the following is similar to the “tree ungrafting”

argument from [22]. Recall that P (n) denotes the underlying simplicial set of the n-th

partition poset complex Par(n) (Definition 3.4.5).

Lemma 6.2.1. For k, p, q � 0, there is a ⌃k-equivariant “decomposition” map

 k,(p,q) : P (k)p+q !

Y

↵2P (k)2

P (n)p ⇥ P (k1)q ⇥ · · ·⇥ P (kn)q

where n and k1, . . . , kn are obtained by setting |↵| = (n, (k1, . . . , kn)).

Proof. Let n � 1 and T1, . . . , Tn be a partition of k. Let �j 2 P (Tj)q be given by µj

0 

· · ·  µj

q
for j = 1, . . . , n, � 2 P (n)p given by �0  · · ·  �p, and let �0

j
denote the

partition obtained by replacing a set {�s}s2S 2 �j by
`

s2S
Ts. There is then an element

� � (�1, · · · , �n) 2 P (k)p+q given by

�00  · · ·  �0
p�1  �0

p
⇠=

na

i=1

µi

0 

na

i=1

µi

1  · · · 

na

i=1

µi

q
.

Given ↵ 2 P (k)2, let T1, · · · , Tn be the corresponding partition of k determined. Given

�0 2 P (k)p+q, the image  k,(p,q)(�0) at the ↵-factor of the product is defined to be the

string (�, �1, · · · , �n) if there is a decomposition �0 = � � (�1, · · · , �n) where � 2 P (n)p and

�j 2 P (Tj)q for j = 1, . . . , n, and by the basepoint otherwise.

Proposition 6.2.2. For p, q � 0 there are maps mp,q : C(S)p � C(S)q �! C(S)p+q.
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Proof. Let p, q � 0. For k � 1, mp,q at level k is given by the following composite

(C(S)p � C(S)q)[k] =
_

↵2P (k)2

0

@

0

@
Y

P (n)p

S

1

A ^
n^

i=1

0

@
Y

P (ki)q

S

1

A

1

A

!

_

↵2P (k)2

0

@
Y

P (n)p

S ^
Y

P (k1)q⇥···⇥P (kn)q

S ^ · · · ^ S

1

A

!

Y
Q

↵2P (k)2
P (n)p⇥P (k1)q⇥···⇥P (kn)q

S ^ S ^ · · · ^ S

 ⇤

k,(p,q)
����!

Y

P (k)p+q

S ^ S ^ · · · ^ S ⇠= C(S)p+q[k]

where n, k1, . . . , kn are such that |↵| = (n, (k1, . . . , kn)).

Proposition 6.2.3. The cosimplicial symmetric sequence C(S) admits a natural ⇤̊-monoid

structure, i.e., there are maps m : C(S)⇤̊C(S) ! C(S) and u : I ! C(S) which satisfy

associativity and unitality.

Proof. The map m is induced as follows. For p + q = n, the maps described in Proposition

6.2.2 fit into the following commuting squares

C(S)p � C(S)q+1 mp,q+1
// C(S)p+q+1

C(S)p � C(S)q

id�d0

OO

d
p+1

�id
// C(S)p+1

� C(S)q

mp+1,q

OO

which induce m at level n+ 1 upon taking colimits.

The unit map is induced by the coaugmentation I ! C(S) given by the identity on I.

Associativity and unitality of m and u follow from the same argument as in the proof of

4.2.7 with C(O)12 replaced by C(S).

12
Though, perhaps to reflect the notation in this section, the cosimplicial object C(O) should be written

as C(B(O)), as the bar construction B(O) is a cooperad [22], not O.
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Proof of Theorem 1.1.4. From Proposition B.2.6, we know @⇤IdTop⇤ ' TotC(S). The theo-

rem then follows from Proposition 4.2.8.

6.2.4 Derived primitives are spectral Lie algebras

Arone-Ching have shown that the operad @⇤IdTop⇤ plays a central role in homotopy theory

[3], [4]. We now show explicitly that the derived primitives of a S-coalgebra Y admit a left

action by this operad. In particular, this defines a functor

⌅ : Top
⇤
! Alg

@⇤Id, X 7! TotC(⌃1X)

which is closely related to work of Heuts as inducing equivalences after certain chromatic

localizations [50].

Proof of Theorem 1.1.5. The idea is to show that C(Y ) is a left ⇤̊-module over C(S) con-

centrated in symmetric sequence level 0. That is, the following associativity (6.2.5) and

unitality (6.2.6) diagrams commute

C(S)⇤̊C(S)⇤̊C(Y ) ✓
//

⇠=
✏✏

C(S)⇤̊(C(S)⇤̊C(Y ))
id⇤̊µ

// C(S)⇤̊C(Y )

µ

✏✏

(C(S)⇤̊C(S))⇤̊C(Y ) m⇤̊id
// C(S)⇤̊C(Y )

µ
// C(Y )

(6.2.5)

and

C(S)⇤̊C(Y )
µ

// C(Y )

I⇤̊C(Y )

u⇤̊id

OO

⇠=
88

(6.2.6)

Once we have shown this structure, it follows that TotC(Y ) is a @⇤IdTop⇤-algebra. We first

produce maps µp,q : C(S)p � C(Y )q ! C(Y )p+q.
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Let p, q � 0 be given, µp,q is then the composite

C(S)p � C(Y )q =
_

n�1

C(S)p[n] ^⌃n (C(Y )q)n

!

Y

n�1

0

@
Y

P (n)p

S

1

A ^⌃n

0

B@
n^

i=1

Y

ki�1

0

@
Y

P (ki)q

Y ^ki

1

A

⌃ki

1

CA

!

Y

n�1

0

@
Y

P (n)p

S

1

A ^⌃n

0

B@
Y

k�1

Y

k=k1+···+kn

n^

i=1

0

@
Y

P (ki)q

Y ki

1

A

⌃ki

1

CA

!

Y

k�1

Y

n�1

0

@
Y

P (n)p

S

1

A ^⌃n

0

B@
Y

k=k1+···+kn

0

@
Y

P (k1)q⇥···⇥P (kn)q

n^

i=1

Y ^ki

1

A

⌃k1
⇥···⇥⌃kn

1

CA

⇠=
Y

k�1

0

@
Y

↵2P (k)2

Y

P (n)p⇥P (k1)q⇥···⇥P (kn)q

Y ^k

1

A

⌃k

 ⇤

k,(p,q)
����!

Y

k�1

0

@
Y

P (k)p+q

Y ^k

1

A

⌃k

The map µ : C(S)⇤̊C(Y )! C(Y ) is induced at cosimplicial level 0 by

C(S)0 � C(Y )0 ⇠= S ^ Y
⇠=
�! Y

and for n � 0 at level n+ 1 by the commuting squares

C(S)p � C(Y )q+1 µp,q+1
// C(Y )p+q+1

C(S)p � C(Y )q

id�dq+1

OO

d
0
�id
// C(S)p+1

� C(Y )q

µp+1,q

OO

Here p, q � 0 are such that p+ q = n.

Associativity and unitality of µ again follows from a similar straightforward modification
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of the argument from Proposition 4.2.7 (see also Corollary 6.1.6).

Remark 6.2.7. It is worth remarking that a straightforward modification to the proofs of

Theorems 1.1.4 and 1.1.5 presented in this document shows that TotC(Q) is an A1-operad

and, if Y is a Q-coalgebra, that C(Y ) is an algebra over this operad. In particular, our

constructions provide a point-set model for TotC(Q) as a (homotopy coherent) operad which

is Koszul dual toQ, and Y ! TotC(Y ) provides a comparison from Q-coalgebras to algebras

over this operad (see [38]).

6.3 Conjectures and future work

6.3.1 A chain rule for functors of structured ring spectra

We expect that our techniques from Section 6.1 which underlie our proof that the derivatives

of the identity in Alg
O
form an operad should allow for a description of a “highly homotopy

coherent chain rule” for functors of structured ring spectra. Essentially, a chain rule describes

an equivalence of Goodwillie derivatives

@⇤F �@⇤IdD @⇤G ' @⇤(FG) (6.3.2)

for functors C
G
�! D

F
�! E (where C,D,E are suitable model categories such as Spt or Top

⇤
).

Arone-Ching [2] give a full description of a chain rule for functors between Top
⇤
and Spt,

building o↵ a chain rule for functors of Spt described by Ching [23] (see also Klein-Rognes

[53] and Yeakel [71]). The chain rule may be thought of a homotopical analog to the Faà di

Bruno formula [37] for functions of a single real variable, which describes the n-th derivative

of a composition f � g in terms of the derivatives of f and g separately. Note that by setting

either F or G to be the identity in (6.3.2), the chain rule describes a (@⇤IdD, @⇤IdC)-bimodule
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structure on the derivatives of a homotopy functor C! D
13.

Conjecture 6.3.3. Let O,O0, and O
00 be operads of spectra and F,G be finitary simplicial

functors Alg
O

G
�! Alg

O0

F
�! Alg

O00. Then there exists

(i) A “highly homotopy coherent” chain rule map @⇤F � @⇤G! @⇤(FG)

(ii) An equivalence of (O00,O)-bimodules of the form @⇤F �O0 @⇤G ' @⇤(FG)

Our method is to resolve the functors F and G by the stabilization adjunction, as done

before with the identity, in order to build the desired map 6.3.3(i) above by a ⇤̊ pairing of

cosimplicial symmetric sequences. When F and G are determined by a cofibrant (O00,O0)-

bimodule M and cofibrant (O0,O)-bimodule N , respectively, our techniques provide the

desired result. Specifically, we require that F ' |Bar(M,O,�)| and G ' |Bar(N,O0,�)|

and that M,N consist of terms which are (�1)-connected. The desired map 6.3.3(i) then

necessarily takes the form

A2⌦̇⌃(@⇤F �̂@⇤G)! @⇤(FG).

In this case, however, since @⇤F ' M , @⇤G ' N , and @⇤(FG) ' M �O0 N (Proposition

3.2.12), the map 6.3.3(i) is merely homotopic to a “fattened-up” version of the quotient map

M �N !M �O0 N

by coequalizing the left and right O0 actions on N and M , respectively. Furthermore, item

6.3.3(ii) states that the functor @⇤ which sends a suitable F : Alg
O
! Alg

O0 to its sequence

of derivatives @⇤F in fact takes values in (O0,O) bimodules. From this perspective, there

is an “evident” way to construct a functor Alg
O
! Alg

O0 from a sequence of derivatives:

specifically, by the assignment M 7!M �O (�). Let us denote by biRep the category of such

functors FM . Note that there is a natural inclusion biRep ,! Fun(Alg
O
,Alg

O0)14.

13
That is, assuming that an operad structure can be described on @⇤IdC and @⇤IdD to begin with.

14
We define here Fun(C,D) latter is the category of finitary reduced simplicial functors C! D.
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We anticipate that a chain rule as in Conjecture 6.3.3 could further be used to prove an

analogous result of Arone-Ching [3] in which they utilize their chain rule from [2] to show

that the functor F 7! @⇤F which assigns a homotopy functor its sequence of Goodwillie

derivatives admits a right adjoint �

Fun(C,D)
@⇤
//

BiMod(@⇤IdD,@⇤IdC)
�
oo (6.3.4)

Here C and D are either Top
⇤
or Spt and the explicit structure of � depends on choice of

C,D. Arone-Ching further show that the that the adjunction (6.3.4) is comonadic15, which

essentially tells us that the Taylor tower of such a functor F may be recovered from its

sequence of derivatives @⇤F as an appropriately sided bi-module, together with the action of

the comonad @⇤� via an equivalence

holimn PnF ' TotCobar(�, @⇤�, @⇤F ).

Crucial to their constructions is a precise model for @⇤F built from the derivatives of

representable functors Map(X,�)—we conjecture that a similar result holds for functors of

structured ring spectra, where we use functors FM 2 biRep as our “building blocks”.

6.3.5 An operad structure on the derivatives of the identity in a

general model category

We additionally expect that the constructions in this document may be used as a general

approach to describe an operad structure on the derivatives of the identity in a suitable

model category (or perhaps 1-category) C. What “suitable” means in this context is still a

subject of ongoing matter, but we in particular would require (i) C be pointed and simplicial,

(ii) the stabilization Spt(C) of C be closed, symmetric monoidal. We write (⌃1

C
,⌦1

C
) for the

15
See, e.g., [48] for a more detailed treatment of (co)monadic adjunctions.
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stabilization adjunction between C and Spt(C).

Similarly to the cases described before, we begin with the cosimplicial resolution of IdC

via the stabilization adjunction. Either by analogous estimates from [15], [14] or via a

modification of [2, 16.1], it should follow that @nIdC can be constructed as the totalization

of the cosimplicial diagram built from @n((⌦1

C
⌃1

C
)k+1) for k � 0. Let us write K for ⌦1

C
⌃1

C
,

and note that K admits a natural comonoid map K ! KK via the unit IdC ! ⌦1

C
⌃1

C
. A

chain rule in the style of Conjecture 6.3.3) provides that the derivatives @⇤K of K be (at

least up to homotopy) a cooperad16 via the composite

@⇤K! @⇤(KK) ' @⇤K �@⇤IdSpt(C) @⇤K

In nice cases, this cosimplicial diagram is (weakly equivalent) to the cobar complex C(@⇤K) on

@⇤K. However, it is more likely that this cooperad structure is defined only up to homotopy

and is thus not rigid enough to provide a strict comparison of cosimplicial objects between

@⇤((⌦1

C
⌃1

C
)•+1) and C(@⇤K).

One main benefit to our work is that we only need that the resultant diagram cosimplicial

diagram admits a monoidal pairing with respect to ⇤̊. This would have to built by hand,

but should be possible if we can provide a Snaith splitting of the counit K
17 or somehow

otherwise find a way to produce a Tot-model for @⇤IdC whose underlying cosimplicial object

admits a ⇤̊-monoid structure. This is essentially our approach for C = Alg
O
, wherein we use

a specific model for iterates of stabilization UQ = ⌦1

AlgO
⌃1

AlgO
provided by [55] to obtain the

diagram C(O).

16
Though this this does require some knowledge about the operad @⇤IdSpt(C). For instance, when C = Top⇤

this is just the identity symmetric sequence; for C = AlgO this is the symmetric sequence with the ring

spectrum O[1] concentrated at level 1.
17
Compare with the Snaith splitting for AlgO is described in Section 3.3.1.
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6.3.6 “Classifying operads” and homotopy descent

Once this operad structure has been established, it is reasonable to wonder how much of the

original homotopy theory of C is captured by the category of algebras over @⇤IdC (a problem

suggested by Haynes Miller). In the best case, we would obtain that C is equivalent to the

category of algebras over @⇤IdC. As suggested by the results of [15], [28], it is more likely

this equivalence will hold only after restricting to a “nice” subclass of objects. We expect

our box product pairings to provide a useful tool for obtaining such a result and outline one

possible approach as follows.

The assignment X 7! ⌃1

C
X, produces a functor from C to K-coalgebras whose right

adjoint is given by taking “derived primitives”. This adjunction is an equivalence is whenever

the stabilization adjunction is comonadic (see [48]), which we conjecture holds precisely when

restricted to elements of C such that the Taylor tower of IdC converges. A Snaith splitting is

key in translating the resultant K-coalgebra structure to a “Tate coalgebra” structure over

a the cooperad @⇤K [49]. This is part may be tricky, as even in the best known cases so

far, the Snaith splitting only produces such an equivalence up to homotopy. However, this

is precisely one benefit to our technique: We only need to show that the resulting diagram

C(⌃1

C
X) admits a (left) module structure over the underlying cosimplicial object of @⇤IdC

with respect to the box product.

We summarize the above discussion in the following conjecture (see [26], [60, §6] for a

similar discussion in 1-categories)

Conjecture 6.3.7. Let C be a “suitably nice” pointed simplicial model category, such that

Spt(C) is symmetric monoidal. Then

(i) There is a natural model for the Goodwillie derivatives of the identity @⇤IdC as an

operad and @⇤(⌃1

C
⌦1

C
) as a cooperad which are Koszul dual.
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(ii) There is a comparison map ⌅C from C to @⇤IdC-algebras in Spt(C) given by

⌅C : X 7! TotC(⌃1

C
X)

In particularly nice cases, we are interested in understanding when ⌅C induces an equiv-

alence of homotopy categories. One method for showing such an equivalence would be to

provide a natural coaugmentation �C(X)! C(⌃1

C
X) (which may be possible only after lo-

calization, in which case �C is essentially the localization functor), whose connectivity may

be analyzed via the cubical analysis techniques developed in [33], [14], [15], [27]. In Alg
O
,

this coaugmentation is the unit map X ! UQ(X) which induces an equivalence

X ' PrimB(O)⌃
1

AlgO
X ' X^

TQ

for connectiveX [29]. In Top
⇤
this coaugmentation is obtained (essentially) via the Bousfield-

Kuhn functor [54], [20] (which factors through a suitable chromatic localization of spaces

and lands in T (n)-local spectra), as shown by Heuts in [50].
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Appendix A

Polynomial approximations to certain

functors

A.1 A proof of Proposition 3.2.12(i)

Let O,O0 be reduced operads in spectra and M a cofibrant (O0,O)-bimodule. The aim of

this appendix is to prove that the n-th polynomial approximation the functor

X 7! FM(X) = |Bar(M,O, X)|

is of the form F⌧nM . This is done in two steps: first we show that functors of the form F⌧nM

are n-excisive, then we show that F⌧nM and FM agree to order n.

Our first observation is that for X 2 Alg
O
and n � 2 there is a homotopy fiber sequence

of the following form (see [55, 2.11(b)])

inO �O (X)! ⌧nO �O (X)! ⌧n�1O �O (X) (A.1.1)

Proposition A.1.2. Let R,R0 be ring spectra and M a cofibrant (R0,R)-bimodule. Then,
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for n � 1, the following functor from ModR ! ModR0 is n-excisive

Y 7!M [n] ^⌃noR Y ^n.

Proof. Let n � 1. It su�ces to show for m > n that crm(Y 7!M ^⌃noR Y ^n) ' ⇤. Since the

categories ModR,ModR0 are stable, cross-e↵ects and co-cross-e↵ects (see the proof of 3.2.12)

agree. Thus,

crm(Y 7!M ^⌃noR Y ^n) ' crm(Y 7!M ^⌃noR Y ^n)

'M ^⌃noR crm(Y 7! Y ^n) ' ⇤

since crm(Y 7! Y ^n) ' crm(Y 7! Y ^n) ' ⇤.

Corollary A.1.3. For n � 1, the functor inM �O (�) is n-excisive.

Proof. Since inM is concentrated at level n, the right O-action on inM factors through ⌧1O,

via the only nontrivial map

M [n] ^O[1] ^ · · · ^O[1]!M [n].

There are then equivalences

inM �O (X) ' inM �⌧1O (⌧1O �O (X)) 'M [n] ^⌃noO[1] TQ(X)^n. (A.1.4)

The claim then follows from Proposition A.1.2 and since TQ preserves strongly cocartesian

cubes (because it is a left adjoint).

Proposition A.1.5. For n � 1, the functor ⌧nM �O (�) is n-excisive.

Proof. We use induction on n. Note that ⌧1M �O (�) = i1M �O (�) is 1-excisive from
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Corollary A.1.3 and perhaps more simply by the observation that

i1M �O (X) 'M [1] ^O[1] TQ(X).

Let n such that the claim holds for n� 1 and recall the fiber sequence

inM �O (�)! ⌧nM �O (�)! ⌧n�1M �O (�)

from (A.1.1). Let X be a strongly cocartesian (n+ 1)-cube in Alg
O
and for a functor F set

h0(F (X )) = holimP0(n) F (X ).

Note that there is a natural map �0 : F (X (;))! h0(F (X )) which is an equivalence precisely

when F is n-excisive. Moreover, applying h0 to (A.1.1) results in a homotopy fiber sequence

h0(inM �O (X ))! h0(⌧nM �O (X ))! h0(⌧n�1M �O (X )).

Let Y be the following cube obtained by applying �0 to (A.1.1).

inM �O (X (;)) //

))

⇠

✏✏

⇤

''

✏✏

⌧nM �O (X (;)) //

(⇤)

✏✏

⌧n�1M �O (X (;))

⇠

✏✏

h0(inM �O (X )) //

))

⇤

''

h0(⌧nM �O (X )) // h0(⌧n�1M �O (X ))

We want to show that the arrow (⇤) is an equivalence. Notice that homotopy limits in Alg
O0

are created in the underlying category of spectra, so it su�ces to show (⇤) is an equivalence
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of spectra.

Since the top and bottom faces of Y are cartesian, the cube Y itself is cartesian. Thus,

since back-right face is cartesian, the front-left face is cartesian, and thus also cocartesian.

So, since the back left arrow is an equivalence, (⇤) must also be an equivalence.

Proof of Proposition 3.2.12(i). Proposition A.1.2 shows that F⌧nM is indeed n-excisive. It

remains to show that Pn(FM) ' F⌧nM . It will su�ce to show that the natural comparison

map

�n : FM ! F⌧nM

induced by M ! ⌧nM agrees to order n in the language of [43] as this condition guarantees

then that Pn(�n) is a weak equivalence in (note the second equivalence holds as F⌧nM is

n-excisive)

Pn(FM)
Pn(�n)
����! Pn(F⌧nM) ' F⌧nM .

Specifically, we need to show that there is c such that if X 2 Alg
O
is k-connected, then

�n(X) is ((n+ 1)k � c)-connected.

Let rnM denote the fiber of M ! ⌧nM so that

FrnM ! FM ! F⌧nM

is a homotopy fiber sequence of functors Alg
O
! Alg

O0 . Note that

rnM [k] =

8
><

>:

M [k] k > n

⇤ k  n
.

It follows if X is k-connected then

FrnM(X) = |Bar(rnM,O, X)|
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is constructed as a homotopy colimit of factors of the form

M [t] ^O[s1] ^ · · · ^O[s`] ^X^s

where si � 1 and s � t > n.

From [46] we know that X ^ Y is (k + ` + 1)-connected if X is k-connected and Y is `-

connected. So, if M and O are each levelwise (�1)-connected, this homotopy colimit consists

of terms which are sk � (n+1)k connected, and so FrnM(X) is (n+1)k-connected. Thus, �n

agrees to order n with c = �1 (in Goodwillie’s terminology [43], �n satisfies On(�1, 0)).

Remark A.1.6. In fact, the results of the above proposition hold whenever M is bounded

below (i.e., there is k such that for all n, ⇡⇤M [n] = ⇡ for ⇤ < k) via a careful investigation

of the connectivity of the fiber of FM ! F⌧nM .
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Appendix B

Cooperads and their coalgebras

The aim of this section is to describe what we mean by cooperads and their coalgebras in the

context of this document. We recall that an operad O is just a monoid for the composition

product � of symmetric sequences; the dual notion of cooperad is a more delicate matter.

B.1 Reinterpreting the composition product

We now adopt the notation of Chapter 5 regarding Nlev-objects. Given a non-basepoint

element ↵ 2 P (n)k, we let |↵| denote the corresponding profile in N�̂k[n] and ↵j,i be such

that

|↵| =
�
↵1,1, (↵2,1, · · · ,↵2,↵1), · · · , (↵k,1, · · · ,↵k,↵k�1

)
�
.

Here, ↵j is inductively defined as ↵j := ↵j,1+ · · ·+↵j,↵j�1 . Note n = ↵k. Said di↵erently,

↵j is the number of partitions in �j, and ↵j,1, . . . ,↵j,↵j�1 is the size of the partitions appearing

in �j�1 for j = 1, . . . , k. Note that |↵| is not uniquely determined by ↵.

Definition B.1.1. Let A1, . . . , Ak be reduced symmetric sequences. We define their com-
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position product as follows.

(A1�A2� · · · �Ak)[n] =
_

↵2P (n)k

(A1 ⌦ · · ·⌦ Ak)[↵]

Here, we use the notation

(A1 ⌦ · · ·⌦ Ak)[↵] = A1[↵1] ^
↵1̂

i=1

A2[↵2,i] ^ · · · ^

↵k�1^

i=1

Ak[↵k,i]

as ⌃↵-objects18 if ↵ is not the basepoint, and set (A1 ⌦ · · ·⌦An) of the basepoint to be the

terminal spectrum ⇤. There is a ⌃n action by permutation on P (n)k.

Similarly, their dual composition product is defined as

(A1�̌A2�̌ · · · �̌Ak)[n] =
Y

↵2P (n)k

(A1 ⌦ · · ·⌦ Ak)[↵].

We write A⌦k for the k-fold product A ⌦ · · · ⌦ A and note that A⌦0 := I. Note that

this symbol ⌦ is di↵erent from the tensor of symmetric sequences as in [67], [44]. Let P (n)�
k

denote the set of non-basepoint k-simplices of P (n). Since Spt is stable, finite coproducts

and products are equivalent and hence the natural comparison

A1� · · · �Ak

⇠
�! A1�̌ · · · �̌Ak (B.1.2)

is a weak equivalence of symmetric sequences.

Remark B.1.3. The dual composition product is rarely strictly associative, and therefore we

cannot say that a cooperad is a comonoid with respect to �̌. The issue is that the smash

product of spectra will rarely commute with limits; however for F a small diagram of spectra

and X 2 Spt, the induced maps (limF )^X ! lim(F ^X) make �̌ oplax monoidal (see, e.g.

18
We denote by ⌃↵  ⌃n the subgroup of permutations � which fix the partition ↵.
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[31], [25]).

We eschew the full development of (op)lax (co)monoids and only state what we need for

a symmetric sequence Q to be a cooperad. Note that what we are calling a cooperad is more

precisely a coaugmented cooperad with divided powers ; similarly, our notion of coalgebra is

that of a coalgebra with divided powers [38].

B.2 Cooperads

Informally, a cooperad is a reduced symmetric sequence Q that admits cocomposition maps

of the form

� : Q[k]! Q[n] ^Q[k1] ^ · · · ^Q[kn]

for all n, k = k1 + · · · + kn � 1, along with a counit ✏ : Q[1] ! S, which satisfy certain

associativity, unitality and equivariance conditions.

Equivalently, we may write the above cocomposition maps as a collection

Q[d1↵]! Q
⌦2[↵] (↵ 2 P (n)2).

Further our cooperads will be coaugmented in the counit Q[1]! S admits a retract ⌘ : S !

Q[1].

Definition B.2.1. We say that Q is a cooperad if there are well-defined cosimplicial objects

in Spt
⌃n

C(Q)[n] =
Y

↵2P (n)•
Q

⌦•[↵]

for all n � 1. Coface and codegeneracy maps are induced by the face and degeneracy maps

from P (n)• as follows.

Given ↵ 2 P (n)k, di : C(Q)⌦k�1[n]! C(Q)⌦k[n] and sj : C(Q)⌦k+1[n]! C(Q)⌦k[n] are

113



induced by

di : Q⌦k�1[di↵]! Q
⌦k[↵] (comultiplication maps)

sj : Q⌦k+1[sj↵]! Q
⌦k[↵] (counit maps)

Example B.2.2. Recall that Q⌦0 = I and that I[↵] = S for ↵ 2 P (1)k (for all k � 0). We

write out the first few factors of C(Q)[n]. First, if n = 1, we have

C(Q)[1] ⇠=
⇣
I[1] //

// Q[1]
//

//

//

Q[1] ^Q[1] · · ·
⌘
. (B.2.3)

The two maps I[1] ! Q[1] are induced by the coaugmentation ⌘ : S ! Q[1], and

di : Q[1]! Q[1] ^Q[1] is given by

d0 : Q[1] ⇠= S ^Q[1]
⌘^id
��! Q[1] ^Q[1]

d1 : Q[1]
�
�! Q[1] ^Q[1]

d2 : Q[1] ⇠= Q[1] ^ S
id^⌘
��! Q[1] ^Q[1]

Here, � is the comultiplication on Q[1]. More generally, if n � 2 then

C(Q)[n] ⇠=

✓
I[n] //

// Q[n]
//

//

//

Q
↵2P (n)�2

Q[s] ^Q[t1] ^ · · · ^Q[ts] · · ·

◆
(B.2.4)

where we write (s, (t1, . . . , ts)) = |↵|. The maps I[n] = ⇤ ! Q[n] are the initial maps; and

di : C(Q)[n]1 ! C(Q)[n]2 is induced by the following maps

d0 : Q[n] ⇠= S ^Q[n]
⌘^id
��! Q[1] ^Q[n]

d1 : Q[n]
�
�!

Y

↵2P (n)�2

Q[s] ^Q[t1] ^ · · · ^Q[ts] ((s, (t1, . . . , ts)) = |↵|)

d2 : Q[n] ⇠= Q[n] ^ S^n id^⌘^n

����! Q[n] ^Q[1]^n
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and the trivial map Q[n]! ⇤ on all other factors. Again, � contains the information of the

various comultiplication maps on Q.

For any n � 1 the counit maps sj are induced by Q[1]! S and Q[k]! ⇤ (k � 2).

B.2.5 The commutative cooperad of spectra

The symmetric sequence S introduced before admits a natural cooperad structure with

comultiplication � induced by the natural isomorphisms S ! S ^ S ^ · · · ^ S.

In particular, since S⌦k[↵] = S for any non-basepoint ↵ 2 P (n)k, it follows that

C(S)[n]k =
Y

P (n)�k
S

and the coface (resp. codegeneracy) maps are just induced by the face (resp. degeneracy)

maps of P (n).

Proposition B.2.6. There is an equivalence @⇤Id ' TotC(S).

Proof. Using the model from (3.4.2), this follows from the equivalences

@nId ' Map (|P (n)•|, S) ' Tot

Y
P (n)•

Map(S0, S) ' TotC(S)[n]

for all n � 1.

B.3 Coalgebras over a cooperad

Let Q be a cooperad. Informally, Q-coalgebra structure on a spectrum Y consists of comul-

tiplication maps

Y ! (Q[n] ^ Y ^n)⌃n (n � 1)
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which are required to further satisfy associativity, unitality and equivariance conditions.

Note these comultiplications induce a map

Y 7! Q�̌(Y ) =
Y

n�1

(Q[n] ^ Y ^n)⌃n

which we essentially require to be “oplax comonoidal” [31], and that Q-coalgebras are the

coalgebras for this comonoid.

Definition B.3.1. Let Q be a cooperad. A Q-coalgebra is a spectrum Y that admits a

well-defined cosimplicial object C(Y ) as follows. For k � 0,

C(Y )k =
Y

n�1

0

@
Y

↵2P (n)k

Q
⌦k[↵] ^ Y ^n

1

A

⌃n

.

Coface maps are induced the face maps from P (n) for each n � 1 along with the diagonal

maps on Y as follows.

• d0 : C(Y )k ! C(Y )k+1 is induced by Y ^k

⌃k
! ⇤ if the image of d0 : P (n)k ! P (n)k�1 is

the basepoint, and induced by the identity on Y ^k

⌃k
otherwise.

• For i = 1, . . . , k, di is induced by Q-cooperad structure maps

Q
⌦k[di↵]! Q

⌦k+1[↵]

for ↵ 2 P (n)k+1.

• dk+1 is induced as follows. For m � n, if ↵ 2 P (m)k+1 has (k + 1)-st partition given

by {T1, . . . , Tn}, then let ↵0
2 P (n)k be the result of quotienting the set {1, . . . ,m} by
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the relation a ⇠ b if a, b 2 Ti. Set tj = |Tj|. dk+1 is induced by the composites

Q
⌦k[↵0] ^ Y ^n

! Q
⌦k[↵0] ^ (Q[t1] ^ Y ^t1) ^ · · · ^ (Q[tn] ^ Y ^tn)

= Q
⌦k+1[↵] ^ Y ^m

for all ↵ 2 P (m)k+1 and m � n.

Codegeracy maps are induced by Q
⌦k+1[sj↵]! Q

⌦k[↵] for ↵ 2 P (n)k as in C(Q).

Remark B.3.2. Note that C(Y ) is essentially the cobar resolution on Y with respect to the

comultiplication map Y ! Q�̌(Y ). In particular, there are isomorphisms

C(Y )k ⇠=
Y

n�1

Q
�̌k[n] ^⌃n Y ^n = Q

�̌k
�̌(Y ) (k � 0)

B.3.3 Derived primitives

Let Y be a Q-coalgebra. The primitives of Y is given by the (coreflexive) equalizer in Spt

Ȳ = lim
⇣
Y //

//

Q
n�1(Q[n] ^ Y ^n)⌃n

⌘
. (B.3.4)

The top map is induced by the coaugmented structure

Y ⇠= S ^ Y
⌘^id
��! Q[1] ^ Y

and the bottom map is induced by the comultiplication maps Y ! (Q[n]^Y ^n)⌃n for n � 1.

There is a common retract of both maps given by applying ✏ ^ id : Q[1] ^ Y ! S ^ Y ⇠= Y

and Q[n]! ⇤ for n � 2.

This gives the precise analog of primitives of a coalgebra from commutative algebra, but

fails to be homotopy invariant in general. The derived primitives as defined below gives the
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homotopy-theoretic analog to this construction, and arises as the dual notion of topological

Quillen homology (TQ) for algebras over operads in spectra.

Definition B.3.5. For Y a Q-coalgebra we define the derived primitives PrimY to be the

totalization TotC(Y ).

Note that C(Y )|�1 is precisely the equalizer diagram defining Ȳ from (B.3.4).

Example B.3.6. Any X 2 Top
⇤
gives rise to an S-coalgebra ⌃1X whose comultiplication

maps are induced by the diagonals on X. That is,

⌃1X ! ⌃1(X ^ · · · ^X) ⇠= ⌃1X ^ · · · ^ ⌃1X

In particular, for any Y 2 S-coalgebra, Y _ = Map(Y, S) is a commutative ring spectrum;

i.e. algebra over the commutative operad Com. There is further an equivalence TQ(Y _)_ '

Prim(Y ) (see, e.g., [12], [50]) whenever Y is a finite spectrum.
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