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Abstract

The aim of this dissertation is three-fold: (i) we construct a natural highly homotopy coherent
operad structure on the derivatives of the identity functor on structured ring spectra which
can be described as algebras over an operad O in spectra, (ii) we prove that every connected
O-algebra has a naturally occurring left action of the derivatives of the identity, and (iii)
we show that there is a naturally occurring weak equivalence of highly homotopy coherent
operads between the derivatives of the identity on O-algebras and the operad O.

Along the way, we introduce the notion of IN-colored operads with levels which, by con-
struction, provides a precise algebraic framework for working with and comparing highly
homotopy coherent operads, operads, and their algebras. We also show that similar tech-
niques may be used to provide a new description of an operad structure for the Goodwillie
derivatives of the identity in spaces and describe an explicit comparison map from spaces to

algebras over such operad.
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Chapter 1

Introduction

Algebraic topology has its roots in constructing, computing and understanding the deeper
structure of three main invariants classically associated to a topological space X: homotopy
groups 7,X, homology groups H,X, and cohomology groups H*X. While not always an
easy task, computing homology and cohomology groups can often be done in purely algebraic
terms given a nice enough presentation of your space X. Homotopy groups on the other hand
are more elusive. Elements of the n-th homotopy group 7, X are represented by maps from
the n-dimensional sphere S™ into your space of choice X, up to continuous deformation (i.e.,
homotopy). In this elusiveness lies a more finessed invariant of spaces, as the homotopy
groups often hold deeper information which homology and cohomology can not distinguish.
The tradeoff then is that homotopy groups are generally much more difficult to compute, even
providing a full description of the homotopy groups of the 2-sphere S? is an exceptionally

difficult problem and still not fully understood.

Stable homotopy groups

As a result, it can be useful to know even an approximation of the homotopy groups of a

space. The stable homotopy groups X of a space X are one such approximation. It follows
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from the Freudenthal suspension theorem [47, Corrolary 4.24] that if X is a k-connected
space! that 7, X = 75X for n < 2k; ie., that the stable homotopy groups agree with
the homotopy groups in a “stable range”. Stable homotopy groups are an instance of the
homotopy groups of a more general type of algebro-topological object called a spectrum (see,
e.g. [36], [51]) which is akin to a chain complex of spaces. Many computations involving
spectra can be carried out by more formal algebra than their space-level compatriots, and as
such the stable homotopy groups of a space are often significantly computable than ordinary

homotopy groups.

But how are the stable homotopy groups constructed? The reader familiar with homology

theory will recall that there is always an isomorphism
H*X = H*T(XX) (1.0.1)

where ¥X denotes the suspension of a space X (which may be modelled as the smash product
in spaces of the 1-sphere and X, ¥X = S!' A X). Freudenthal’s suspension theorem tell us
that, unlike homology groups, the homotopy groups of a space only obey this isomorphism
inside the stable range, i.e., m, X = m,,11(XX) for n < 2k when X is k-connected. However,
in spaces the smash product A admits a right adjoint Y + QY = Map(S',Y)? Using the
identification m, 1 (XX) = [S™T! S A X], the isomorphism above is obtained by applying
the n-th homotopy group functor to the point-set level map nx: X — QX X. Iterating this
map builds the stabilization QX of a topological space X as the following colimit whose

maps are given by Q"nsgnx

QX = Q®Y™X = colim(X — QXX — Q252X — O3%3X — -..).

!This means that the groups 7, X for n < k are trivial
2The latter here is topologized by the compact-open topology, though QY can more easily be thought of
as the space of loops in Y based at x € Y.



The stable homotopy groups are obtained then as the ordinary homotopy groups of QX
ie.,

T X = m(QX).

What’s more is that, in the language of Goodwillie’s calculus of homotopy functors, the
functor Q may be thought of as a first order—or linear—approximation to the identity
functor on based topological spaces. This strikes the question: What does linearity mean in

this context?

Linear functors

Inspiration may be taken again from homology. Again, the familiar reader may recall that
homology groups satisfy excision [47, Theorem 2.20] which gives rise to a strong computa-
tional tools such as the Mayer-Vietoris sequence [47, §2.22]. An equivalent statement is that

any pushout square
A—C
B——D
of CW complexes (where all of the maps are cellular inclusions) be taken to a pullback square
of groups

HA——H.C

L

H.B—H.D.

By setting C' and D to be the cone on A, and D = XA, the isomorphism (1.0.1) follows from

a simple calculation.

The functor @) satisfies a related homotopical condition: that any homotopy pushout



square of spaces

)‘[V T
Y —Z7

be taken to a homotopy pullback square

0X —= QW

.y

QY —~QZ.

Such functors are called excisive, or more specifically 1-ezcisive. In [43], Goodwilllie shows
that any functor F': Top, — Top, which preserves weak homotopy equivalences admits a
universal such 1-excisive approximation, P;F', by means of a comparison map F' — P F
(which, under suitable niceness conditions on F' should induce an isomorphism in a “stable
range” of homotopy groups when evaluated on suitably connected spaces). Indeed, the
universal 1-excisive approximation to the identity functor on Top, is the stable homotopy

functor Q.

Let Spt denote (a model for) the category of spectra symmetric monoidal with respect to
the smash product A, for which the sphere spectrum S is the unit®. The term linear can be
justified by observing that any 1l-excisive functor Spt — Spt is of the form X — E A X for
fixed spectrum E*. A l-excisive functor F': Top, — Top, such that F'(x) ~ * will similarly
always factor through the the usual stabilization adjunction (3°°,Q%°) between Top, and
Spt,

yee S
Top, — Spt,
OP. <P

as F ~ Q®FY® such that F is a l-excisive functor on spectra. In particular, the universal

3Such as the symmetric spectra of [51], or S-modules of [36].
4At least when restricted to finite spectra X.



1-excisive approximation is the usual stabilization of F,
P F(X) ~ colim, Q"F(X"X)

and the spectrum which classifies PiF is called the first derivative of F [41].

The Taylor tower

In fact, Goodwillie shows more. In [43], he constructs a Taylor tower of n-excisive or
“polynomial of degree at most n” functors, P,F', along with and natural transformations

P, F — P,F (for n > 0), of the form
F—...—>PF—->P F— - —= PF— FR/F.

These functors P,F play a role analogous to the Taylor polynomials p, f associated to an
infinitely differentiable function f: R — R in ordinary calculus and analysis. The formula

™)

n!x

pnf(m) - pn—lf(m) =

has a homotopical analog in that the “difference” (in this case, homotopy fiber) between P, F
and P,_1F' is measured by a certain spectrum with action by the n-th symmetric group X,

denoted 0, F (the n-th derivative of F') as an equivalence of the form

D, F(X) = hofib(P, F(X) = Py 1F(X)) ~ Q®(8,F AS®X "),

The subscript hY,, above denotes that homotopy orbits have been taken with respect to the
¥, action on 0, F and on ¥*°X"" (via permutation of factors).
Under suitable niceness conditions on F' and the input space X, the Taylor tower may be

used to tell us something about the homotopy type of F'(X). For instance, the Taylor tower
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of the identity on Top, will converge to the homotopy type of its input when evaluated on

simply-connected spaces. That is, for 1-connected X € Top,, the natural map

X — lim P,Tdrep, (X)

n—oo

is a weak homotopy equivalence. As such, the Taylor tower of the identity provides a useful
canonical resolution of a space which begins with the stabilization QX. Moreover, this
resolution is “controlled” by the symmetric sequence of derivatives 0,Idvop, = {0, IdTop, }n>1

Much work has gone into understanding Taylor towers and Goodwillie derivatives in
recent decades, both for functors of spaces and spectra and also in more general contexts
(see, for instance, [66], [11], [60, §6]). Johnson [52] and Arone-Mahowald [7] give a descrip-
tion of the layers D,Idr,,, in terms of Spanier-Whitehead duals to the n-th partition poset
compler—essentially, a pointed space built from the combinatorics of partitions of the set
{1,...,n}. For instance, the 2-nd partition poset complex is just S° with trivial 3, action,

and so

DyTdrep, (X) =~ Q% Map (5%, B°X"?)y, ~ QOX2.

Similarly, OIdrep, >~ S, a desuspension of the sphere spectrum, with trivial 3, action.

Spectral Lie algebras

Using this description, Ching [22] has shown that the symmetric sequence of Goodwillie
derivatives 0,Idtop, = {0nIdTop, }n>1 can be given a natural operad structure. In fact, this
operad fits nicely into a broader story of Koszul duality as described by [40], [39], [38]. The
partition poset models described by [52], [7] for 0,Idop, indeed show that the derivatives of
the identity in spaces are Koszul dual to the commutative cooperad® in Spt, and as such is

often referred to as the Spectral Lie operad (as the Lie operad in chain complexes in similarly

5See Appendix B for our treatment of cooperads



dual to the commutative cooperad [40]). This spectral Lie operad additionally plays central
rule in describing a chain rule for derivatives as shown by Arone-Ching [2]: that is, an

equivalence of symmetric sequences
0.F 0, 1ar,,, 0.G =~ 0.(FG)

for functors F,G: Top, — Top, (here o denotes the composition product, see 2.1.6).

More generally, the operad of Goodwillie derivatives plays a crucial role in describing the
homotopy theory of the category of based spaces. Heuts [50] (see also [12]) has further shown
that certain “chromatic localizations” M/ of Top, can be characterized by the category of
algebras over 0,Idr,,, in T'(n)-local spectra. As such, it is often anticipated that similar
techniques may be used to better understand other categories in which one can do functor
calculus. A widely recognized slogan of functor calculus that the Goodwillie derivatives of
the identity on a suitable model category C should come equipped with a canonical operad
structure which tells us something about C. One such example, and the focus of our first

main theorem, is when C is a category of algebras over a (reduced) operad O in spectra.

Operads and structured ring spectra

First, some background: Operads [62], [17] are combinatorial tools for describing spaces (or
spectra) X which admit a pairing X A X — X and unit map S — X that may be only
associative or commutative up to coherent homotopies (such as the structure found on an
n-fold loop space Q"Y [62]) and have played an increasingly common and powerful role in
homotopy theory. Common examples of interest are associative, commutative, or E,-ring
spectra (for 1 < n < oo)—the latter of which interpret between highly homotopy associative
(B or Ay) and highly homotopy commutative (Ey) ring spectra and enjoy a rich structure
on the (co)homology theories they represent. For an operad O in spectra, we write Algy

for the category of algebras over O. An object X € Alg, is a spectrum X together with
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associative and unital action maps of the form

Oln] As, X" — X (n>0)

We will require that our operads be reduced in that the 0-ary operations described by O
are trivial (i.e., O[0] = %). Such condition guarantees that our O-algebras are nonunital; a
condition that can naturally arises when working with augmented rings.

Pereira [66] shows that the constructions and main results of [43] readily extend to func-
tors between categories of algebras over operads in spectra. Many other authors are respon-
sible for early work which suggests this should be possible including Kuhn [57], McCarthy-
Minasian [64], Basterra-Mandell [9], and Harper-Hess [46]. Our work relies heavily on the

constructions of Kuhn-Pereira [55] for describing the Taylor tower of certain functors on

Algy.

1.1 Main theorems

Our first main result, Theorem 1.1.1(a) as follows, is that the Goodwillie derivatives of the
identity in the category of algebras over a reduced operad O in spectra can be given a

naturally occurring “highly homotopy coherent” operad structure.

Theorem 1.1.1. Let O be an operad in spectra such that O[n| is (—1)-connected for n > 1
and O[0] = . Then,

(a) The derivatives of the identity in Algy, can be equipped with a natural highly homotopy

coherent operad structure.

(b) Moreover, with respect to this structure, 0,Idayg,, is equivalent to O as highly homotopy

coherent operads.



It has been known for some time that O[n] is a model for 9,Idayg,. Part (b) of Theorem
1.1.1 in particular answers a long standing conjecture which appears in [2]| (and also answered
in the context of oco-operads by Ching in [26]), a main difficulty of which is describing an
intrinsic operad structure on the derivatives of the identity which may be compared with

that of the operad O.

The proofs of parts (a) and (b) to Theorem 1.1.1 may be found in Sections 6.1.1 and 6.1.3,
respectively. Our technique is to avoid working with the identity directly by replacing it with
the Bousfield-Kan cosimplicial resolution provided by the stabilization adjunction (@, U) for
O-algebras. The strong cartesianness estimates of Blomquist [14] (see also Ching-Harper
27]) allow us to then express 0,Idaj, as the homotopy limit of the cosimplicial diagram

(showing only coface maps)

0.(QUY™ = (0.(UQ) == 0.(UQP =2 0.(UQ) - ) (1.1.2)

whose terms 9,(QU)**! may be readily computed by an O-algebra analogue of the Snaith
splitting. We thus obtain a natural cosimplicial resolution C'(O) of the derivatives of the
identity such that d,Idajg, =~ holima C'(O) which furthermore may be identified as the TQ
resolution of O as a left O-module. Our approach is influenced by the work of Arone-
Kankaanrinta [6] wherein they use the cosimplicial resolution offered by the stabilization
adjunction between spaces and spectra to analyze the derivatives of the identity in spaces

via the classic Snaith splitting.

We induce a highly homotopy coherent operad structure (i.e., A-operad) on 0,Idag, by
constructing a pairing of the resolution C'(O) with respect to the box product O for cosim-
plicial objects (see Batanin [10]). Thus, we extend to the monoidal category of symmetric
sequences a technique utilized in McClure-Smith [65]: specifically, that if X is a C-monoid
in cosimplicial spaces or spectra then Tot(X) is an A,.-monoid (with respect to the closed,

symmetric monoidal product for spaces or spectra).
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There are some subtleties that arise in that (i) the box product is not as well-behaved
when working with the composition product o of symmetric sequences, and (ii) the extra
structure encoded by o leads us to work with N-colored operads to express A,.-monoids with
respect to composition product. As such, one of the main developments of this thesis is that
of N-colored operads with levels (i.e., Ni-operads) as useful bookkeeping tools designed
to algebraically encode operads (i.e., strict composition product monoids) and “fattened-
up” operads as their algebras. Within this framework of Nj,-operads we can also describe

algebras over an A.-operad.

Remark 1.1.3. In the statement of Theorem 1.1.1 the phrase “naturally occuring” means that
we refrain from endowing 0,Idaig, With the operad structure from O directly. Rather, we
produce a method for intrinsically describing operadic structure possessed by the derivatives
of the identity that should carry over to other model categories suitable for functor calculus.
In particular, the constructions of such an operad structure on the derivatives of the identity

should:

(i) Recover the (As-) operad structure endowed on 0,Idrp, described by Ching in [22].

(ii) Endow the derivatives of an suitably nice homotopy functor® F': Alg,, — Alg,, with
a natural (0.Idag,,,0sIdalg,)-bimodule structure (which is in turn equivalent to an
(O', O)-bimodule) suitable for describing a chain rule (as in Arone-Ching [2]) with a

view toward running the machinery of [3].

(iii) Be fundamental enough to describe an operad structure on 0,Idc and chain rule for a

suitable model category C (e.g., one in which one can do functor calculus).

In fact, item (i) is the subject of our second main result, Theorem 1.1.4 below. Items
(ii) and (iii) are the subject of current work, and we defer a discussion to our progress along

with some conjectural remarks to Section 6.3.

SFor instance, we should expect this to be possible for functors which are finitary and simplicial
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Theorem 1.1.4. The symmetric sequence 0,1dtep, is a highly homotopy coherent operad.

One of our main interests in operads is in what structure is described on their algebras.
Ching further shows that the homology of 0,Idtep, gives a “Lie operad” [22], which is Koszul
dual to the commutative cooperad [40] (see also [39]). The operad 0,Idtep, of spectra is
similarly Koszul dual to the commutative cooperad in spectra (as in [38]) and so is often
referred to as the spectral Lie operad.

In addition, we prove the following theorem (Theorem 1.1.5). As the commutative co-
operad in Spt is also an operad, Theorem 1.1.5 may be thought of as an amplified version
of the classic result from commutative algebra which states that the primitives of a Hopf

algebra naturally form a Lie algebra (see, e.g. [1]).

Theorem 1.1.5. The derived primitives (Definition B.3.5) of a commutative coalgebra’ in

spectra admit a natural action by 0,Idtop, .

The above theorem is also not necessarily new. For a finite commutative coalgebra Y,
the derived primitives Prim(Y’) is equivalent to TQ(Y Y)Y (see Example B.3.6)—where here
YV = Map(Y, S) is the Spanier-Whitehead dual—and the latter is known to admit an action
by 0.Idw,p, (e.g. as in [22], [12], [50]). However, our constructions provide an easy to
use, algebraic alternative to the pioneering operad structure on 0,Idte,. found in [22]. In
particular, we expect our approach to allow us to show that the Goodwillie derivatives of the
identity in a suitable model category C come equipped with a canonical operad structure,

induced in a similar way (see 6.3.6).

1.1.6 Outline of the argument

Our main tool is to utilize the Bousfield-Kan cosimplicial resolution with respect to the

stabilization. For the context of (-algebras in Theorem 1.1.1, this relies on a result of

"For us, coalgebra means coalgebra with divided powers (see, e.g. [38]).
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Basterra [8], that the stabilization of an O-algebra X is naturally equivalent to its topological
Quillen homology spectrum TQ(X) (see Section 2.3). Topological Quillen homology may be
thought of as the derived indecomposables quotient for structured ring spectra described as

algebras over a (reduced) operad, and arises as the left derived functor of the left adjoint in
Q.
Alge ~— Alg; ~ Modoy.

Here, J denotes a suitable replacement of 70, the truncation of O above level 1 (see Section
2.3), U denotes the forgetful functor along the map of operads O — J (which also provides
trivial operations from O[n] on a J-algebra for n > 2), and @ is the O-algebra analog of the

indecomposables quotient R/R? for R a nonunital commutative ring in classical algebra.

Using the strong connectivity estimates offered by Blomquist’s higher stabilization the-
orems [14, §7], we first show that d,Idag, is equivalent to holima 0,(UQ)**" (see (1.1.2)).
Similarly to Arone-Kankaanrinta [6], in which they compute the n-excisive approximations
(resp. n-th derivatives) of the identity functor on Top, in terms of the n-excisive approxi-
mations (resp. n-th derivatives) of iterates of stabilization 2*°%*° by means of the Snaith

splitting, we then analyze the terms 0,(UQ)**! via an analog of the Snaith splitting in Alg,,.

Essentially a statement about the Taylor tower of the associated comonad QU , the Snaith

splitting in Alg, permits equivalences of symmetric sequences
0.(QU) ~ |Bar(J, 0, J)| ~ J o, J =: B(O)

as (J, J)-bimodules (here, o' denotes the derived composition product). By iterated appli-

cations of the splitting, we may compute

8*(UQ)k+l :_\B(O) 0j---0y B(O)j: JOO -+ 00 (]1: C(O)k

k k+1
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and moreover that 0,(UQ)*™ ~ C(O) as cosimplicial symmetric sequences. Here, C'(O) is
given by

J—=JopJ—=JopJopJ—=JopJopJopn -

_—

with coface map d’ induced by inserting O — J at the i-th position (see Remark 3.3.11 along
with (2.3.4)).

Note, B(O) is (at least up to homotopy) a cooperad with a coaugmentation map J —
B(0), and our C(0O) is essentially a rigid cosimplicial model for the cobar construction
on B(O). In particular, this allows us to bypass referencing any particular model for the

comultiplication on B(O) (e.g., that of Ching [22], see also Section 3.3.4).

We construct a pairing m: C(O)O0C(O) — C(O) with respect to the box product (Defi-
nition 4.1.1) of cosimplicial symmetric sequences via compatible maps of the form (induced
by the operad structure maps J o J — J)

mpq: JOO...OO(JoJ)OO...OOJ%JOO...OOJOO...OOJ;

(. . J/ A

p+1 q+1 p+g+1

along with a unit map u: I — C(QO), where I denotes the constant cosimplicial symmetric
sequence on I. Our argument is then to induce an A, -monoidal pairing on 9,Idag, —

modeled as Tot C(O) — via m and u (compare with McClure-Smith [65]).

One difficulty which arises is that the composition product of symmetric sequences is
not as well-behaved of a product as, say, cartesian product of spaces or smash product of
spectra. Thus, we do not obtain m as a strictly monoidal pairing on the level of cosimplicial
diagrams. In resolving this issue we introduce a specialized category of N-colored operads
with levels (i.e., Ni-operads) designed specifically to overcome these technical subtleties
of the composition product. As a result, a large portion of this document is dedicated to

carefully developing the framework of N,-operads and their algebras.

With these details in tow it is then possible to produce an A.-operad structure on
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0.Idpjg,- Let Tot denote restricted totalization Tot™ (see Section 2.2.2), we then obtain an
As-monoidal pairing

Tot C'(O) o Tot C(O) — Tot C(O)

described as an algebra over a certain Nj,-operad which is a naturally “fattened-up” re-
placement of the Nj,-operad whose algebras are strict operads (see Definition 5.4.2 along
with Propositions 5.4.5 and 5.4.23). Moreover, the coaugmentation O — C(Q) provides a
comparison between O and 0,Idag, which we show yields an equivalence of A-operads,
thus resolving the aforementioned conjecture.

Our method for proving Theorems 1.1.4 and 1.1.5 is similar. We make use of the mod-
els for 0,Idtop, as the Spanier-Whitehead dual of the n-th partition poset complex Par(n)
(Definition 3.4.5),

0nId1ep, =~ Map(Par(n), S), (n>1).

We then show that Map(Par(n), S) can be modeled as the totalization of the cobar reso-
lution C'(S)[n] on the commutative cooperad of spectra. Essentially, C(S)[n] has p-simplices
given by the p-fold composition S°”[n], where S is the reduced symmetric sequence with
S[n] = S (with trivial ¥, action) for n > 1. We show that the cosimplicial symmetric
sequence C/(S) admits a natural C-monoid structure (see [29, Definition 5.6]) induced, es-
sentially, by the canonical isomorphisms S o S°7 = §°P*%  This [J-monoid structure then
induces the desired “highly homotopy coherent” operad structure on 0,Idt,, upon passing
to totalization.

We similarly show that the derived primitives may be calculated as the totalization of
a certain cosimplicial spectrum C(Y). In particular, C(Y) is precisely the dual notion of
derived indecomposables which underlies the construction of topological Quillen homology
for O-algebras. We show that C(Y) is a (-module over the cobar resolution C/(S) and that
this module structure induces an action of d,Idtep, on the derived primitives upon passing

to totalization.
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1.1.7 Comparison to the operad structure constructed by Ching

We expect the operad structure on d,Idr,, described in this document is equivalent to that
constructed by Ching in [22]. In particular, our main technical lemma (Lemma 6.2.1) is
reminiscent of the “tree ungrafting” arguments found in [22], and our notion of [J-monoid
is similar to Ching’s notion of “pre-cooperad” in [24]. However, despite these similarities,
the author is not aware of an explicit comparison between the two constructions, nor to the

third description offered in [26].

1.1.8 Organization of this document

This document is organized into seven Chapters and features two appendices A and B.

Chapter 2 is devoted to the required background for working with operads and their
algebras in spectra as well as stabilization and topological Quillen homology of structured
ring spectra.

Chapter 3 gives a brief overview of Goodwillie’s calculus of homotopy functors and also
describes the our main objects of interest, specifically, the Goodwillie derivatives of the
identity functor.

Chapter 4 introduces the box product for cosimplicial diagrams and offers some technical
remarks for extending this product to the category of cosimplicial symmetric sequences.

Chapter 5 introduces our notion of N-colored operads with levels (i.e. Nj,-operads) and
describes a model for “fattened-up operads” which we will employ.

Chapter 6 contains proofs of our main theorems on the deriavtives of the identity in
structured ring spectra and in the category of pointed topological spaces, and also includes
some conjectural remarks on extending our techniques to a more general setting.

Appendix A contains a deferred proof of a particular model for the n-excisive approxi-
mations to certain functors of structured ring spectra. Appendix B contains the necessary

background for (a particular model of) cooperads and their coalgebras.
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Chapter 2

Operads and their algebras

We work in the category algebras over a reduced operad in a closed, symmetric monoidal
category of spectra (Spt, A, S). For convenience we will use the category of S-modules as in
Elmendorf-Kriz-Mandell-May [36] and refer to such objects as spectra. The main technical
benefit of working with S-modules is that all spectra will be fibrant (and thus Tot X’ of
a levelwise fibrant diagram will already correctly model holima &'), though we note that
similar results should hold in the category of symmetric spectra by utilizing suitable fibrant
replacement monads.

We observe that Spt is a cofibrantly generated, closed symmetric monoidal model category
(see, e.g., [2, Definition 1.12]) and write Map®P*(X,Y’) for the internal mapping object of

Spt

Spt. When it is clear from context we write Map for Map>®. We let Top denote the category

of compactly generated Hausdorff spaces. In [36], it is shown that Spt admits a tensoring of
Top, which may be extended to Top by first adding a disjoint basepoint. In particular for
K € Top, X,Y € Spt there are natural isomorphisms

hom (K, A X,Y) = hom(X, Map>™ (K ,,Y)).

Though we will not make explicit use of it, we define a simplicial tensoring of Spt via
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KANX:=|K|ANX for K € sSet, and X € Spt.

2.1 Symmetric sequences

Let (C,®,1) be a closed symmetric monoidal category and write Map® for the mapping
object in C. When C is clear from context we write Map for Map®. We will require that C
be cocomplete, and write ¢ for the initial object of C; particular categories of interest are
Spt and Top,.

Recall that a symmetric sequence in C is a collection X |[n| € C for n > 0 such that X|[n]
admits a (right) action by X,. We let SymSeq¢ denote the category of symmetric sequences
in C and action preserving morphisms. A symmetric sequence X is reduced if X[0] = ¢
(some authors require in addition that X[1] = 1, however we omit this condition). When C
is clear from context we will simply write SymSeq. Note that SymSeq comes equipped with
a monoidal product o, the composition product (also called circle product) defined as follows

(see also [67] or [44]).

2.1.1 The composition product of symmetric sequences

For X,Y € SymSeq we define X oY at level k by

(XoY)[k] = [[ X[n] ®s, Y [K]. (2.1.2)

n>0

Here, ® denotes the tensor of the symmetric sequences (e.g., as in [44]). For n, k > 0, Y®"[k]

is computed as

[[vmle eYmle  JI ks, YiE]©- @Yk
Kk i+ +kn=k

17



where 7 runs over all surjections k = {1,...,n} — {1,...,n} = n and we set m; := |7 1(7)|
for i € n. The composition product admits a unit I given by I[1] = 1 and I[k] = ¢ otherwise.

For our purposes, we find it convenient to work with with a slightly modified version of the
composition product for reduced symmetric sequences. Let X,Y € SymSeq be reduced. Let
(k1,..., k) denote a sequence of integers ki, ..., k, > 1 (allowing for repetition of entries)

and set Sum® to be the collection of orbits (ki,...,k,)s, such that 3"  k; = k.

Definition 2.1.3. Given ky,...,k, > 1 we define H(ky,...,k,) as the collection of block
permutation matrices Xy, X -+ x X, < ¥y, along with the X, permutations of those blocks

such that k; = d;.

Remark 2.1.4. We observe that orbits (ky,...,k,)s, are in bijective correspondence to par-
titions kK = diyp1 + --- + dyp, where 1 < d; < -+ < d,, and p; > 1. Given an orbit
(k1,. .. kn)s, let 1 < dy < ---d,, be the distinct entries of multiplicity p;. We note that

there is an isomorphism (here, ¥ denotes the wreath product ¥, 1%, = XX" x %,,)
H(kl,...,/{}n) = Eg’ll X o0 X Eg’;n

Moreover H(ky,...,k,) admits a natural ¥, action by permutation of elements k; and

the induced map H(ki,...,k,) = H(koq1),- ., Ko@) is an isomorphism for all o € 3,,.

Though we will not need this fact, we remark that H(ky,...,k,) may be identified with

the stabilizer of the ¥ action on partitions of {1,..., k} into sets of size ki, ..., k, (see, e.g.,
23, §1.12]).
For k > 0 we set X[k] := [],5, 1.

Remark 2.1.5. The composition product X oY may be equivalently written as

(XoV) k] = ] 11 (k] @b,y X[ @ Y[k @ -+ @ Yky]. (2.1.6)

n20 (ky,...,kn) s, €Sumk
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Here, the action of H(ky,...,k,) on X[k] is induced by that on X, and the action on X[n]®
Y[k ® - ® Y[k,] is given as follows (see also Ching [23, 1.13])

e X, x---xX, <X, acts on X|[n]

p1

o fori=1,...,m, Ziﬁi acts on the factors Y'[k;] such that k; = d; by
(i) permuting the p; factors Y'[d;]

(ii) acting by corresponding 3,4, factor on each Y'[d,].

We also make the following definition for the nonsymmetric composition product XoY

(note that our definition differs from [45])

(xov)[k =] 11 Xn@Y[k]®- @Yk, (2.1.7)

n20 (ki,....kn)s,, €Sumk

Note that 6 is not associative, our primary use for 6 will be as a bookkeeping tool for

indexing the factors involved in expanding iterates of o from the left (as in Section 5).

2.1.8 Operads as monads

An operad in C is a symmetric sequence O which is a monoid with respect to o, i.e., there are
maps O o O — O and I — O which satisfy additional associativity and unitality relations
(see, e.g., Rezk [67]). An operad is reduced if O]0] = *. We will only consider reduced
operads in this document, and interpret operad to mean reduced operad unless otherwise
specified.

Any symmetric sequence M gives rise to a functor M o (—) on C given as follows (note
X0 = 1)

X Mo (X)=\/ M[n] @, X°".

n>0

19



If O is an operad, then the associated functor O o (—) is a monad on C which we will
frequently conflate with the operad O. We let Alg(% denote the category of algebras for the

monad associated to an operad O in C.

2.2 Some assumptions and notation for structured ring

spectra

When C = Spt and O is an operad of spectra, then Alg, = AIgSOpt is a pointed simplicial
model category (see, e.g., [28, §7]) when endowed with projective model structure from Spt.

For a further overview of notation and terminology we refer the reader to [44, §3] or [67, §2].

2.2.1 Assumptions on O

From now on in this document we assume that O is a reduced operad in Spt which obeys some
mild cofibrancy conditions that are satisfied if, e.g., O arises via the suspension spectra of a
cofibrant operad in spaces. In particular, we require that the underlying symmetric sequence
of O[n] be X-cofibrant (see, e.g., [2, §9]) and that the terms O[n] be (—1)-connected for all

n>1.

2.2.2 Use of restricted totalization

We systematically interpret Tot of a cosimplicial diagram to mean restricted totalization (see
also [28, §8])

Tot := Tot™s = Mapijrtes (A., _) - (1\/[apSPt(Ao7 _)>Ares '

Here, A denote the usual simplicial category of finite totally-ordered sets [n] := {0 < 1 <
- < n} and order preserving maps, A™ C A is the subcategory obtained by omitting

degeneracy maps, and A® denotes the usual cosimplicial space of topological n-simplices. For
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convenience, if C'* is cosimplicial object, we will write Tot C'* instead of the more technically
correct Tot(C®|ares).

Diagrams shaped on A" are referred to as restricted cosimplicial diagrams. Importantly
the inclusion A™ — A is homotopy left cofinal® and so if C* is a cosimplicial diagram in
Alg, which is levelwise fibrant (as opposed to the stronger condition of Reedy fibrancy),
there are equivalences

holima C*® ~ holimars C*® ~ Tot C°.

2.2.3 Truncations of O

For n > 0 we define 7,,: SymSeq — SymSeq to be the n-th truncation functor given at a
symmetric sequence M by

Mkl k<n
(T M)[k] =

* kE>n
with natural transformations 7,, — 7,,_1. We let i,, be the fiber of 7,, — 7,,_1, i.e., i, M[k] = *
for k # n and i, M [n| = M|n] in which case we say i, M is concentrated at level n.
For M = O the truncations 7,0 assemble into a tower of (O, O)-bimodules which receives

a map from O of the form

O—=- =10 —10-—>n10. (2.2.4)

The tower (2.2.4) is well studied and plays a central role in examining the homotopy com-
pletion of a structured ring spectrum as in [46]. Note as well that O — 7O is a map of
operads and there is a well-defined composite 7O — O — 70 which factors the identity

on 1 O.

8The main property we are interested in here is that such functors induce equivalences on homotopy
limits.
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2.2.5 Change of operad adjunction

Associated to a map f: O — O of operads there is a Quillen adjunction of the form (see,
e.g., [67))

fe
Algy —— Algey
f*

in which the left adjoint f, is given by the (reflective) coequalizer
f(X) 1= 0 00 (X) = colim (00 00 (X) =2 0" 0 (X) )

and the right adjoint f* is the forgetful functor along f. If f is a levelwise equivalence then
the above adjunction is a Quillen equivalence and furthermore the left derived functor Lf,

may be calculated via a simplicial bar construction as follows (see, e.g., [44])

Lf.(X) := O o} (X) ~ |Bar(O', 0, X°)|.

2.3 Stabilization of structured ring spectra

In order to have a well-defined calculus of functors on Alg,, it is necessary to understand the
stabilization of the category of such algebras. Note that Alg, is tensored over simplicial sets
(see, e.g., [28, §7]) and thus one can define Sp(Algy), the category of Bousfield-Friendlander
spectra of O-algebras, which is Quillen equivalent to the category of left O[1]-modules,
Modop (see, e.g., [9] or [66, §2]).

The stabilization map for O-algebras is thus equivalent to the left adjoint of (2.2.5) with

respect to the map of operads O — 1O, i.e.,

23 X = 110 00 (X)
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for O-algebras X. By analogy, QX‘l’go gives an O[1]-module trivial O-algebra structure above
level 2. Moreover, if O[1] = S, then the stabilization of Alg, is equivalent to the underlying
category Spt.

As in [28], we replace 7O by a “fattened-up” operad J to produce an iterable model for

TQ-homology with the right homotopy type. That is, let J be any factorization

in the category of operads, where h is a cofibration and g a weak equivalence. There are

then change of operads adjunctions
Q gx
Alg, (U_; Alg; —=Alg, 0o = Modop; (2.3.1)
g

such that (g., ¢*) is a Quillen equivalence and, notably, U preserves cofibrant objects (see
[46, 5.49]). We refer to the pair (Q,U) as the stabilization adjunction for O-algebras and

use Alg; as our model for the stabilization of Alg.

2.3.2 TQ-homology

The total left derived functor LQ(X) =: TQ(X) is called the TQ-homology spectrum of
X and the composite RU(LQ(X)) is the TQ-homology O-algebra of X. We note that the
TQ-homology spectrum of X may be calculated in the underlying category Spt as

LQ(X) ~ | Bar(J, 0, X¢)| ~ | Bar(r10, O, X°)|.

For simplicity, we will assume the O-algebras we work with are cofibrant by first replacing

X by X¢, where (—)¢ denotes a functorial cofibrant replacement in Alg,,.
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2.3.3 The Bousfield-Kan resolution with respect to TQ

Associated to the stabilization adjunction for O-algebras (Q, U) there is a comonad K := QU
on Alg;. Given Y a K-coalgebra, we let C'(Y') denote the cosimplicial object Cobar(U, K,Y).
For X € Algy, let X — C(X) := C(QX) be the coaugmented cosimplicial object given

below

X = (UQ(X) == (UQP(X) == (UQP¥(X) -+ ) (2:3.4)

(JOO(X):);JO(QJOO(X)ﬁ-JOoJOoJO(/)(X»")

I

Coface maps d' in (2.3.4) are induced by inserting @ — J at the i-th position, i.e.,
JOO...OOJ%JJOO...OOOOO...OOJ%JOO...OOJOO...OOJ

and codegeneracy maps s’ are induced by Jop J — J oy J = J at the j-th position.
Remark 2.3.5. The totalization of the diagram (2.3.4) above is called the TQ-completion of
an O-algebra X, defined by

X{q = Tot C(X) ~ holimp C(X).

It is known that X ~ Xgq for any O-connected O-algebra X (see, e.g., [27]).

2.3.6 Cubical diagrams

Let P(n) denote the poset of subsets of the set {1,...,n}. A functor Z: P(n) — C is
called an n-cube in C or also an n-cubical diagram. We use the following notation Py(n) :=
P(n)\ {0} and Py(n) := P(n) \ {{1,...,n}} and refer to diagrams shaped on either Py(n)
or Py(n) as punctured n-cubes. The total homotopy fiber of an n-cube Z, denoted tohofib Z,
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is defined to be the homotopy fiber of the natural comparison map
Xo: Z(0) — holimgp,,) Z.

If the comparison xq is a weak equivalence (resp. k-connected) we say that Z is homotopy

cartesian (resp. k-cartesian).
Dually, the total homotopy cofiber of Z is the homotopy cofiber of the comparison map
x1: hocolimp, ) Z2 = Z({1,...,n})

which we denote by tohocofib Z. If x; is a weak equivalence (resp. k-connected) we say that
Z is homotopy cocartesian (resp. k-cocartesian). We note that the total homotopy fiber
(resp. cofiber) of a cube may be calculated by iterated homotopy fibers (resp. cofibers), see
e.g., [11, 3.2].

0
Example 2.3.7 (Coface n-cube). Let Z7! 2, Z*bea coaugmented cosimplicial object. There
are associated coface n-cubes Z,, whose subfaces encode the relation on coface maps (see,

e.g., Ching-Harper [28, §2.3]). We demonstrate Z, and Z3 below

z-1 .. . 20 Zz-1 ~ Z0
%do d° %do ‘ \
v 1 d°
0 d! 1 : d L
Z Z Zvo dl Zl dl
z! & 22




2.3.8 Higher stabilization for O-algebras

For k > 0, let A<k denote the full subcategory of A comprised of sets [{] € A for £ < k

(note AS™! = ()). There are inclusions of categories
P=AS"T 3 A0 S AS 5. S ASF 5 S A

and moreover holima Y may be computed as limit of the tower {holima<r Y} (see, e.g., [28,
§8.11] for a detailed write-up). There is a natural homotopy left cofinal inclusion Py(n) —
A=""1 which, in particular, allows us to model the comparison X — holima<n-1 C'(X) via
the map xo (see Section 2.3.6) for the coface n-cube associated to X — C'(X).

By careful examination of the connectivities of these maps, Blomquist is able to obtain
the following strong convergence estimates as a corollary to [14, 7.1] (see also Dundas [33]

and Dundas-Goodwillie-McCarthy [34]).

Proposition 2.3.9. Let O be an operad in Spt whose entries are (—1)-connected, X €
Algy k-connected, and C(X) as in (2.3.5). Then, for any n > 0 the induced map X —
holima<n—1 C(X) is (k + 1)(n + 1)-connected.

These estimates show, in particular, if X is O-connected then X = X714 (see also Ching-

Harper [27]).
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Chapter 3
An overview of functor calculus

Functor calculus was introduced by Goodwillie in a landmark series of papers [41, 42, 43]
as a means of analyzing homotopy functors to or from Top, or Spt. Since, the theory been
recognized as a general phenomenon which, in particular, relates a suitable model category
to its stabilization. We refer the reader to [5] for an overview and exposition of some recent
applications of the theory.

In what follows we consider functors F': C — D between suitable pointed simplicial model
categories C and D. Our main examples are when C, D are either Top,, Spt or when C,D are
categories of structured ring spectra described as algebras over reduced operads in spectra.
We refer the reader to Pereira [66] for a more detail on functor calculus in categories of

structured ring spectra.

3.1 The Taylor tower

Definition 3.1.1. A functor F': C — D is n-excisive if F' takes any strongly cocartesian

(n 4+ 1)-cube in C to a cartesian (n + 1)-cube in D.

Note, when n = 1 this is precisely the excisive condition discussed in the introduction,
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as a strongly cocartesian 2-cube is just a homotopy pushout cube.

Example 3.1.2. One nugget of intuition for the above definition is that n-excisive functors
are “determined” by their values on n+ 1 points, similar to polynomial functions f: R — R,
as follows. Let X € Top, and let X be the strongly cocartesian (n + 1)-cube in Top, with
X(0) = X and X ({k}) = CX, the cone on X with X(0) — X ({k}) the usual inclusion, for
1<k<n+1. A functor F': Top, — Top, being n-excisive in particular asks that F(X) be
a cartesian (n + 1)-cube in Top,. Unravelling definitions, this tells us that F(X) = F(X(0))
be recovered by the homotopy limit of the cube F(X|Py(n+1)); which is in turn determined
by the values of F(x) ~ F(CX) = F(X({k})) for 1 <k <n-+1.

A central construction in functor calculus is that of the Taylor tower (sometimes referred
to also as the Goodwillie tower) of n-excisive approximations associated to a functor F': C —
D as follows

D,F (3.1.3)

|

F P.F Pt ——- - —— RF.

The functor P,F is called the n-th excisive approximation to F and is initial in the
homotopy category of n-excisive functors receiving a map from F. In this work, all of our
approximations are based at the zero object * € C, though approximations based at arbitrary
spaces Y € Top, are described in [43]. The functor D, F'is called the n-th homogeneous layer
and is defined as

D, F := hofib(P,F — P,_,F).

Note that PyF' is a constant functor taking value F'(x). We call F' reduced if F(x) ~ x
and note that for reduced functors we have P, F' ~ D, F'. Recipes for constructing P, F' are

provided in [43] for functors of Top, and Spt, and [66] for functors of structured ring spectra.
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3.1.4 Analytic functors

If F satisfies additional connectivity conditions on certain cubical diagrams (e.g., if F' is
suitably stably n-excisive for all n as in [42, 4.1]) we call F' analytic, or more specifically
p-analytic: a key feature being that an analytic functor F' may be recovered as the homotopy

limit of the tower (3.1.3) on p-connected inputs X, i.e.,
F(X) ~ holim,, P,F(X).

For instance, the identity functor on Top, is 1l-analytic by the higher Blakers-Massey
theorems (see, e.g., [42, §2]) and the analogous results for structured ring spectra of Ching-

Harper [27] demonstrate that the identity functor on Alg, is 0-analytic.

3.1.5 Cross effects and derivatives

Let S, (X, ..., X,) denote the n-cube
T+ \/ Xy, for T € P(n).
4T

The n-th cross effect of G is the n-variable functor defined by

CIr'y G(Xl, e 7Xn) := tohofib G(Sn(Xl, Ce 7Xn))

Our work concerns the derivatives of a functor F', which are certain spectra which classify
the homogeneous layers D, F' (under some mild conditions on F') and are computable via
cross effects. We recall first that a functor G is n-homogeneous if G is n-excisive and P,G ~ %

for £ < n and that G is finitary if G commutes with filtered homotopy colimits.

A major triumph of functor calculus is the classification of m-homogeneous functors.
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Proposition 3.1.6 below is summarized from Goodwillie [43] (for functors of spaces and spec-
tra) and highlights the relevant properties of the homogeneous layers D, F' and derivatives

O, I associated to a functor F'.
Proposition 3.1.6. Let F': Top, — Top, be a homotopy functor and n > 1. Then:
e D, F is n-homogeneous.

o D, F naturally factors through Spt as D, F ~ Q% oD, F o X*° such that D,F is n-

homogeneous.

e D, F is characterized by a spectrum with (right) ¥, -action, 0, F called the n-th deriva-

tive of F', and there is an equivalence’

DoF(X) = Q%(3,F Mg, (S°X)").

e The spectrum O, F may be calculated via cross effects [43, §3] as
OnF ~cr, D, F(S,...,5)

with X, -action given by permutting the inputs S.

3.2 Functor calculus in categories of structured ring

spectra

We have a similar proposition for functors of structured ring spectra, summarized from [66].

For notational convenience we let TQ denote the composite 3:TQ ~ 1,00} (—).

9For X which have the homotopy type of a finite CW-complexes; or on an arbitrary space X if F commutes
with filtered colimits (i.e., F is finitary).
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Proposition 3.2.1. Let F': Alg,, — Algy be a homotopy functor, X € Algy, and n > 1.
Then:

(i) D, F is n-homogeneous.

(ii) There are n-homogeneous functors D, F and ]IS;F such that the following diagram com-

mutes

Alg, —2= Alg, —% Modoy (3.2.2)

anF anF lﬁ;F

(iii) There is a (J,J)-bimodule O.F, whose n-th entry 0,F is called the n-th Goodwillie

deriwative of ', and such that there are equivalences of underlying spectra

D, F(X) =~ i, (8, F) oY (TQ(X))

(iv) Do F is characterized by an (O[1], £, 0 O[1])-bimodule'® 8, F which has underlying spec-
trum equivalent to that of O, F .

(v) There are equivalences of underlying spectra

Dy F(X) 2 (0uF Nopan TQEX) s, = 3,F NS op TQX)N™ (3.2.3)

(vi) The n-th derivative may be calculated via n-th cross effects cr,, as
O, F ~ 0,F ~ cr, D,F(O[1],..., O[1])

with right ¥, Y O[1]-action granted by permuting the inputs.

10That is, a left module over O[1] and right module over ¥, 1 O[1] (see Definition 3.2.7 for the definition
of the wreath product ¥,, 1 O[1])
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Remark 3.2.4. The above equivalence (3.2.3) hold in general for finite cell O-algebras X
and, if F' further is finitary (i.e., F' commutes with filtered homotopy colimits), then the
equivalences may be extended to arbitrary O-algebras X. The notation AL and o" denote
the derived smash product and circle product, respectively. We will often omit the latter

notation and understand our constructions to be implicitly derived.

The careful reader might note that the n-th Goodwillie derivative of F' is only defined
up to weak equivalence, and so the choice 0,F vs. 8NnF for functors of structured ring
spectra may seem a pedantic distinction. For our purposes, this distinction is beneficial to

the readibility of several of the upcoming proofs. Further, there are equivalences
Lg.0,F ~ é;;LF and 0, F ~ Rg*é;LF,

and for concreteness, the model for the derivatives of the identity we employ is as a (J, J)-
bimodule, Tot C'(O) (see (3.3.12)).

Of note is that the choice of D,F (resp. I[f)S;F) may be made functorial in F' by a
straightforward modification of the argument presented in [2, 2.7]. In particular if F' is

finitary, then for any Y € Modpp;; we have

D, F(Y) ~ 0, F As0m Y 3.2.5
O]

3.2.6 A note on wreath products

We use %, 1 O[1] to denote the twisted group ring (i.e., wreath product) (£,)+ A O[1]". We

recall some pertinent details of wreath products of ring spectra below.

Definition 3.2.7. Given a ring spectrum R we define

SR = S R (8,) 0 AR
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with multiplication given by

(c ANZ) AN (T ANy) — o Axo(y).

Our main use of such objects stems from the following proposition (see also [58, Lemma

14], [55, §2]). Note that a right ¥, ! R-module is a (right) ¥,, object via the unit map I — R.

Proposition 3.2.8. Let R be a ring spectrum, X a left R-module and M a right R-module

with n commuting actions of R (i.e., right R""-module). Then, there is an isomorphism

(M ARan XAn)En =M /\Ean X/\n.

Remark 3.2.9. The right-hand equivalence of (3.2.3) is an instance of this equivalence. Of
note is that if X is a cofibrant O-algebra, then TQ(X) is cofibrant in Modpp; and therefore
Proposition 3.2.8 provides that TQ(X)"" is a cofibrant as a left ¥, ¢ O[1]-module.

In addition, the (O[1],%, ! O[1])-bimodule structure on the derivatives 9, F for all n >
1 induces (1,0, 710)-bimodule structure on the symmetric sequence 9, F which is further
compatible with the (., J)-bimodule structure on 0,F via the (g.,¢"*) adjunction. In the
simplified case that O[1] = S, an (S, 3, ¢ S)-bimodule is just a spectrum with a right action

by ¥, and (3.2.3) reduces to an equivalence of underlying spectra

D, F(X) ~ 0,F As, TQ(X)"".

3.2.10 Taylor towers of certain functors Alg, — Algy,

Let O, O be reduced operads in spectra and M be a cofibrant (O', O)-bimodule with

M|[0] = % whose terms are (—1)-connected. We define a functor Fy;: Alg, — Alg,’ at
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X € Alg, by the simplicial bar construction
Fr(X) = |Bar(M, 0, X)| ~ M o}, (X). (3.2.11)

Note F)y is finitary and the left O’ action on M induces a left O’ action on Fj/(X). The
following proposition may be summarized from Harper-Hess [46] and Kuhn-Pereira [55, §2.7]
and further provides a model for the Taylor tower of functors F);. For completion, we sketch

proofs of the relevant details.

Proposition 3.2.12. Let M and Fy; be as described above. Then there are equivalences

(natural in M)

(i) PoFy =~ 1M ob,) (=)

(ii) DpFpy =~ i, M o?9 (=) ~i,M o[} (TQ(-))
(i1) DuFar(=) = M(n] Al o (=)™

(iv) B, Far = Mn]

such that the Taylor tower for Fy is equivalent to

inM og (=)

|

Fy—s i —=1, Mo (=) —=71, 1Mo}y (=) —=-+ ——=7 Mol (—).

Proof. We will write o for o" and A for AL. The equivalence (i) is proved in Appendix A (see
also [66, 4.3]). For (ii) we note that morphisms 7, M — 7,_1 M give rise to the comparison
maps on excisive approximations P, F), I P, 1 Fy and moreover the fiber sequence

M — 1M — 11 M
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identifies i, M op (—) with the fiber of ¢,. Moreover, as the right O-action on i, M factors

through 71O there are then equivalences of underlying spectra

DnFM(X) ~ (ZnM Or0 7'10) (76) (X)

~ lnM or0 (7'1 (oTs) (X)) ~ ZnM Oy (TQ(X))
Note that (iii) follows from the observation that any ¥ € Modop;
inM or 0 (Y) ~ M[n] Asa00] Yy ",

The proof of (iv) follows from the equivalence cr,, F' ~ cr™ ' between cross-effects and
co-cross-effects of functors landing in a stable category as in Ching [23] (see also McCarthy

[63]), where latter is defined dually to cr, as follows
o’ G(Xy,...,X,) = tohocofib (P(n) 5T — G (H Xt)> :
teT

In particular, taking co-cross-effects will commute with Ay,,0p) and so
crp Dp P ~ crp (M[n] As o) (—)"™) ~ M|n] NS00 crp ((—)™).

Via the computation cr,((—)"") ~ (X,)+ A (=)™ we then obtain

OnFar ~ M[n| Asopy (X, 0O[1]) >~ M(n].

O

Definition 3.2.13. For functors of the form F); we take as our models for P, Fy;, D, F); and
O, Fas those from Proposition 3.2.12. A map M — M’ of cofibrant (O, O)-bimodules induces

natural transformations P, F; — P, Fy; and D,, F; — D, Fy;, and also that é;F W — é;LF Ve
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is equivalent to M[n] — M’[n].

3.2.14 The Taylor tower of the identity on Alg,

Note that for M = O, the functor Fp is equivalent to the identity via O op (=) =~ Idajg,,-
Moreover, there are natural transformations Idajg, — 7,0 0o (—) provided by the unit map
of the change of operads adjunction (Section 2.2.5) applied to the map of operads O — 7,,0.
The Taylor tower of the identity in Alg, then is equivalent to

in© oo () (3.2.15)

|

Idag, — - ——> 1,000 (=) —=T7,-10 00 (=) —= -+ ——=T110 0p (—)

This tower (3.2.15) has previously been studied by Harper-Hess [46] in relation to homo-
topy completion of O-algebras (see also Kuhn [56] and McCarthy-Minasian [64]). Moreover,
Ching-Harper provide Alg, analogues of the higher Blakers-Massey theorems in [27] which
in particular show that Idajg, is O-analytic. That is, for 0-connected X the following com-

parison map is an equivalence
X — holim,, 7,0 op (X).

As a corollary to Proposition 3.2.12, we obtain equivalences of underlying spectra (see
also [46])
DnIdAIgO (X) ~ inO oT5) (X) ~ O[TL] /\Enlo[l] -FQ<X)ML

and also observe that c:?;IngO ~ O[n] as a (O[1], £,,0O[1])-bimodule for all n > 1. Therefore,
with a view toward the operad structure on 0,Idte, constructed by Ching in [22] we are
lead to the following question, found in Arone-Ching [2]: Is it possible to endow O,Idpjg,

with a naturally occurring operad structure such that 0,Idaig, ~ O as operads?
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A key idea to our approach is taken from Arone-Kankaanrinta [6] where they show
that 0,Idr,, may be better understood by utilizing the cosimplicial resolution from the
stabilization adjunction (X°°,Q°) by means of the Snaith splitting. Within the realm of
0-connected O-algebras, the (Q,U) adjunction between Alg,, and Alg; (the latter, recall, is
Quillen equivalent to Modpp)) is the exact analogue of stabilization. We provide an Alg,,

analogue of the Snaith splitting in Section 3.3.1.

3.3 A model for derivatives of the identity in Alg,

The aim of this section is to describe specifically the model for the derivatives of the identity
we employ, as Tot of a certain cosimplicial symmetric sequence C'(Q) which may be motivated
as the totalization of the cosimplicial object arising from a calculation of the n-th derivative
of (QU)* via the Snaith splitting in Alg,. We are further motivated by work of Arone-
Kankaanrinta [6] which utilizes the Snaith splitting in spaces (3.4.12) to provide a model for

the derivatives of the identity in spaces.

3.3.1 The Snaith splitting in Alg,

There is an analogous result for O-algebras, wherein the adjunction (3°°, Q%) is replaced by

(Q,U) from (2.3.1). Let B(O) be the (J, J)-bimodule
B(O) = J oy J ~|Bar(J,0,.J)|
and note that given Y € Alg; cofibrant there is a zig-zag of equivalences.

QU(Y) < |Bar(J,0,Y)| = | Bar(J, 0, J)| oy (Y) = B(O) o, (Y).
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The Alg, Snaith splitting is then the equivalence

QU(Y) ~ B(O) oy (Y). (3.3.2)

Remark 3.3.3. At first blush, (3.3.2) may not seem like a proper “splitting” in the style of

the classic Snaith splitting for Top, (see Section 3.4.12), which declares an equivalence
TROPNCX ~ \[ SeXN
k>1

for X € Top,. This is more an artifact of our use of Alg; for the stabilization of Alg,. Indeed,
given instead Y € Modop, the associated comonad arising from the adjunction (¢.Q,Ug")

between Alg, and Modp(;) has a natural splitting

9.QUg"(Y) = \/ B(O)[k] Ao Y™

k>1

such that B(O) ~ B(0) via

B(O) = 1,0 0, 10 ~ | Bar(1,0, 0, 1,0)| ~ | Bar(J, 0, J)| ~ B(O).

3.3.4 Cooperad structure on B(O)

It is known that B(O) (resp. B(0)) is a coaugmented cooperad, at least in the homo-
topy category of spectra (see, e.g., Ching [22] for the topological case, Lurie [60, §5] for an
oo-categorical approach, or Ginzburg-Kapranov [40] for the chain complexes case) via the

natural comultiplication

Jop J = Jol Ooly J— Jopy Jopy J =~ (JopJ)oy(J ol J).

38



We would like to say that the Alg, Snaith splitting allows one to immediately recognize
0,Idaig,, as the cobar construction on B(O), however the splittings provided seem to be too
weak to justify this claim (a similar problem is enocuntered in Arone-Kankaanrinta [6] for
the classic Snaith splitting). As such, one benefit of our work is that we do not require any
more rigid cooperad structure on B(O) to produce our model for 0,Idajg,, -

Also of note is that the Alg, Snaith splitting may be interpreted to say that any Y € Alg
(resp. Y € Modpypy)) is naturally a divided power coalgebra over B(O) (resp. B(0)), at least
in the homotopy category, and that the functor X — TQ(X) underlies the left-adjoint to
the conjectured Quillen equivalence (i.e., Koszul duality equivalence) between nilpotent O-
algebras and nilpotent divided power B(O)-coalgebras from Francis-Gaitsgory [38] (which
has since been partially resolved by Ching-Harper [28]).

3.3.5 Interaction of the stabilization resolution with Taylor towers

We now provide the explicit model we employ for 0,Idaje,. Our argument is essentially to
show that one can “move the 0, inside the holim” on the right hand side of (2.3.4) by higher
stabilization and then use the Alg, Snaith splitting to recognize the resulting diagram. Let

us write Id for Idag,.
Proposition 3.3.6. Let k > n > 1, then P,Id = holima<x—1 B,((UQ)*™).

Proof. The estimates from Proposition 2.3.9 suffice to show that the map
¢x: Id — holima<k—1 C(—)

agrees to order n on the subcategory of 0-connected objects (see [43, 1.2]) in which case

P,(ck) is an equivalence via [43, 1.6]. Further,

P, (holima<i—1 C(—)) ~ holima <1 P,((UQ)**)
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as P,(—) commutes with very finite’! homotopy limits by construction (cf. Section 2.3.8).

]

Since D,,(—) and 9,,(—) are built from P,(—) by very finite homotopy limits, Proposition
3.3.6 extends to an equivalence on homogeneous layers and derivatives as well. Moreover,

the restriction map
holima P, ((UQ)**™) — holima<x—1 P,((UQ)**)

is an equivalence for £ > n > 1 as the objects as a corollary to the higher stabilization
estimates from Proposition 2.3.9 (resp. for D,, and 0,).
Let M be an (O, O)-bimodule. For notational convenience, for £ > 1, we set

M® = Mog 00 M. (3.3.7)

J/

~-
k

Note that J® is a cofibrant (O, ©)-bimodule with (UQ)**'(X) = J*+1 o, (X). By Propo-

sition 3.2.12, there are then equivalences

P,1d = holima < ( Po(UQ) == P((UQ)*) == Pu((UQ)?) -+ )

ShohmAgkq (TnJ(l) %6) (—) = TnJ(2) (oT5) (—) :;THJ(?)) (oF5) (—) s )
and

D,1d = holima <e-1 ( Dn(UQ) == Du((UQ)*) == Du((UQ)?) -+~ )

~ holima <k-1 (inJ(l) 0o (=) == i, JP 0p (=) == inJ P 00 (=) - - )

"Recall that a very finite homotopy limit is one taken over a diagram whose nerve has only finitely many
nondegenerate simplices, and that such homotopy limits will commute with filtered homotopy colimits.
Homotopy limits over n-cubes and punctured n-cubes are very finite
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whenever k > n > 1.

Note there is an equivalence of restricted diagrams

(TnJ(.H) 00 (—=))|ast1 = P,(UQ)*™)|ask

(resp. (i, Y 0o (=) ai—1 =~ D,((UQ)*+1)|a<r—1) by first replacing the coface k-cube
associated to

Id — (UQ)**

by the k-cube Zj (see (3.3.8) below) and then applying 7, (resp. i,) objectwise.

J 1eT
{Pk)>T — Zx(T) = (Z100 00 Z) oo (—)} such that Z; = (3.3.8)
O i¢T

We then use the corresponding models for I[S; from Proposition 3.2.12 and compute the

n-th derivatives via cross effects to obtain equivalences

OnTd S holima s (9,(UQ) == 0, (UQ)) == 0.(UQ)) -+ ) (3.3.9)

~holima<is (((nO)V[n] == (nO)[n] == (nO)Pfn] - ).

for k >n>1.

Example 3.3.10. We sketch this process for k = n = 2. Note, there is an isomorphism of

square diagrams of the form

a—2 - UQ (O 00 0) 0o (=) —E= (0 00 J) 00 ()

I

UQ-"~UQUQ  (Jop®)op (—) - (JowJ) oo (-).
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Taking 2-homogeneous layers, we obtain an equivalence of homotopy pullback squares

DyTd—%—~ Dy(UQ) i5(0 00 0) 0p (=) = i3(O 00 J) 00 (—)

R

Dy(UQ) ~“=Dy(UQUQ)  ia(J 00 O) 00 (=) —Lis(J 00 J) 00 (~).

The associated lifts ﬁ;(—) to functors on Modop from Proposition 3.2.12 then fit into a

homotopy pullback square

D,Id d° (O 00 1O)[2] Noppz (=)

d° l/ d0

1

(7’10 (o75) O)[Q] /\0[1}32 (_)/\2 L) (71(9 [o75) T10)[2] /\(9[1]z2 (—)/\2

which by taking cross effects cry then provides an equivalence of homotopy pullback squares

Old—L - 0,(UQ)  Dpld nO[2] 0p1d —2 J[2]

N T

DH(UQ)—L-,(UQUQ) mOR2]—L= (n0 oo n0)[2]  J[2]—= (J oo J)[2].

Remark 3.3.11. It follows then that 0,Id is obtained as holima C(O) ~ Tot C(O), where

C(0O) is the following cosimplicial diagram (showing only coface maps)

C(O) <JO(QOZJO@JO(QO—>-JO(9JO(9JO@O"') (3.3.12)

o (J:;JOOJ—>_>JOOJOOJ--->,

with coface maps as in (2.3.4), i.e., C(O) = J**V. In other words C(O) provides a rigidifi-

cation of the diagram 0,(UQ)*™ whose terms are a priori defined only up to homotopy.
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3.4 The Taylor tower of the identity functor in spaces

The Taylor tower of the identity is a central object of homotopy theory. From the definitions

in [43], is not hard to show
Py Tdrop, (X) o DyId1ep, (X) > QFX>(X) (3.4.1)

the stabilization of a space X. The higher Blakers-Massey theorems [42, 2.1] show that Id
is l-analytic and therefore the Taylor tower of the identity in Top, offers an interpolation

between a simply connected space X ~ holim,, P, Idw, (X) and its stabilization QXX

The equivalences from (3.4.1) show that the first derivative of Idtep, is just the sphere
spectrum S. Johnson [52] and later Arone-Mahowald [7] give a description of the higher ho-
mogeneous layers and derivatives of Idtep, in terms of the partition poset complez (Definition

3.4.5). Specifically, they show
Dy Idrop, (X) = QO ( Map (Par(n), S X""), ) (3.4.2)
and similarly
0pId1op, =~ Map(Par(n), S) (3.4.3)

for all n > 1. In particular, the n-th derivative of Idt,, is just the Spanier-Whitehead dual
to Par(n).

3.4.4 The partition poset complex

For n > 0 we denote by n the set {1,...,n}, note that 0 = (). A partition X of n is a
decomposition n = [, 7; into nonempty subsets (here I is required to be a nonempty set).

Given partition A = {T;}ier and N = {T}};c; of n we say that A < X' if there is a surjection
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f:J — I such that T; =[] o1 foralli € I.

Jef~H(

Note that the set of partitions of n has a minimal element min consisting of only the
trivial partition {1,...,n}, and a maximal element max consisting of the partition of n into
singletons, i.e. {{1},...,{n}}. The set of partitions of n then forms a poset with respect to

<, and so may be interpreted as a category. The partition poset complex as defined below

is (a quotient of) the nerve of this category.

Definition 3.4.5. Define the n-th partition poset complex Par(n) to be the geometric re-
alization of the pointed simplicial set P(n) defined as follows. The k-simplices of P(n) are

given by sequences

MSAMS- SN SN

of partitions of n such that any chain that does not satisfy A\g = min and Ay = max is
identified with the basepoint.

Face maps d;: P(n), — P(n),_1 are given by removing the i-th entry \; and degeneracy
maps S;: P(n)y — P(n),41 are given by repeating the j-th entry A;. Note, that the image
of dy (resp. dy) is only the basepoint if A; # min (resp. A\;p_; 7# max).

More generally, for a finite set T we define Par(7") analogously, e.g. by setting |T| = n
and specifying a bijection 1" = n.
Remark 3.4.6. Note that Par(n) inherits a natural action of 3, by permuting the elements
of n. A useful observation is that non-basepoint elements o« € P(n), are in bijective cor-
respondence with isomorphism classes of planar, rooted trees with n labelled leaves and k
levels, up to planar isomorphism.
Ezxample 3.4.7. 1t is possible to calculate some low dimensional examples of partition poset
complexes. For instance, Par(0) = x, Par(1) = S° and Par(2) = S! with trivial X, action.
Similarly, Par(3) may be identified with the 2-sphere with a disc glued-in at the equator,
Y3 acts on Par(3) by permuting the three 2-discs (top hemisphere, bottom hemisphere and

equator).
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Moreover, it is known that there is a (nonequivaraint) equivalence (see [52], [7])

(n—1)!

Par(n) ~ \/ st

i=1

We briefly describe one route of arriving at the model (3.4.3), using the approach of
Arone-Kankaanrinta [6] to analyze Idrp, by the Snaith splitting.

3.4.8 Analysis of the Taylor tower of the identity by higher stabi-

lization

Associated to the stabilization adjunction (3°°, Q%) between Top, and Spt, for any space
X, there is a coaugmented cosimplicial diagram X — C(X*°X). Here, C(X*X) is the cobar
resolution

C(X°X) := Cobar(Q*, X°0Q> ¥*X)

and the coaugmented is provided by the unit map X — Q>*°¥>*°X. C(X*X) is functorial in

X and provides a cosimplicial functor
CE*-) = (Q°°E°° e e —— (QOOEOO)3---> (3.4.9)

whose coface maps are induced by inserting the unit map Idy,,, — @ = QX and

codegeneracy maps are induced by the counit map X*°Q* =: K — Idgy.

Blomquist-Harper [15] utilize the cubical higher Blakers-Massey theorems of [42] to re-
cover a classical result of Bousfield-Kan [19] (see also [21]) that simply connected spaces
are equivalent to their completion with respect to stabilization. Specifically, if X € Top, is

1-connected, then

X = holima C(X) ~ X{woseo-

45



The key to their proof is strong connectivity estimates of the following form.

Proposition 3.4.10. The comparison map X — holima<i-1 C(X°X) is (c¢(k + 1) + 1)-

connected for X € Top, c-connected.

We make use of the above connectivity estimates to show that P,Id may be recovered as

the totalization of P,(Q*™!) (see also [2, §16]).
Corollary 3.4.11. Let k > n > 1, then P,Idtop, — holima<i—1 P, (Q*).

Proof. Using the estimates from Proposition 3.4.10, this follows from the same argument as

in Proposition 3.3.6. O

The above corollary readily extends to equivalences on D,, and 0, as well. The upshot

for us is that 9,(Q**1) is readily computable via the Snaith splitting, as follows.

3.4.12 The Snaith splitting

Let S denote the symmteric sequence in Spt such that S[n| = S with trivial 3, action. The

Snaith splitting (see e.g., [69], [30]) provides equivalences

SROPN®X ~ \[ SOXN ~ \[ S Ay, (E0X) (3.4.13)
k>1 k>1
Said differently, the Taylor tower for K = 2°°3°° splits as a coproduct of its homogeneous
layers when evaluated on a suspension spectrum and that 0,K ~ S.
A result of Arone-Kankaanrinta [6] uses the above splittings to recover the model for
n-th homogeneous layers and n-th derivatives of the identity in spaces in (3.4.2) and (3.4.3),
respectively. The crux of their argument is that iterating the Snaith splitting provides

equivalences

On(QM) =~ 0, (KF) ~ S°¥[n).
Here, S°* denotes the k-fold composition of the symmetric sequence S.
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Remark 3.4.14. A key observation is that S°*[n] is just a wedge of copies of the sphere
spectrum S indexed by the k-simplices of P(n). This symmetric sequence S admits both
an operad and cooperad structure, the derivatives of the identity may be further recognized
as the totalization of the cobar complex C(S) with respect to this cooperad structure. We
defer a discussion of cooperads and their coalgebras to Appendix B. In Section 6.2 we show
that C'(S) inherits the structure of a [(-monoid (see 4.2.3), which induces the desired operad

structure upon passing to totalization.
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Chapter 4

The box product and box monoids

4.1 The box-product of cosimplicial objects

The aim of this section is to introduce the box product [J for cosimplicial objects in a
monoidal category (C,®, 1) as first introduced by Batanin [10]. For nice categories C (e.g.,
C closed, symmetric monoidal), the box product endows C2 with a monoidal structure,
and cosimplicial objects which admits a monoidal pairing with respect to [J inherit an A..-
monoidal pairing on their totalizations (see, e.g., McClure-Smith [65, 3.1]).

Our main use of the box product will be to produce a homotopy-coherent (i.e., A.-
) composition on the derivatives of the identity in O-algebras, modeled as Tot C'(O), by
demonstrating a natural pairing C'(O)0C(0) — C(O) (Example 4.1.4).

Definition 4.1.1. Let (C,®,1) be a monoidal category and X,Y € C®. Define their boz
product XOY € C* at level n by

(XOV)" :=colim | [J] XPeYy'— ][] X @Y
p+qg=n r+s=n—1

where the maps are induced by id ® d° and d"*! ® id. The object XY inherits cosimplicial
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structure via coface maps d*: (XOY)" — (XOY)"*! induced by

Xp®yqﬂ>Xp+l®yq i<p
XP®YQM>XP®YQ+1 i>p

and codegeneracy maps s’: (XOY)" — (XOY)" ! induced by

Xreys 28, xr1gye <y
Xp®qu>Xp®yq—l i>p

see also Ching-Harper (28, §4].

Remark 4.1.2. Note, (XOY)" 2 X% @ Y (XOY)! and (XOY)? may be computed as the

colimits of

X'@Y! X' Y?

id®d0T id®d0T

XO®YO—.>X1®Y0 and X0®Y1—.>X1®Y1
d'®id d'®id

id®d? T

X1®YOMX2®YO

respectively, and in general (XOY)™ may be computed as the colimit of the staircase diagram
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X'@yn (4.1.3)
id®d?
XO ® Yn—l —.>X1 ® Yn—l
d'®id T

Xn—l ® Yl

id®d0]
n—1 0 n 0

In particular, if (C,®,1) is closed, symmetric monoidal then [J defines a monoidal cat-
egory (CA,EI,l), here 1 is the constant cosimplicial object on the unit 1 € C (see, e.g.,
Batanin [10]).

Ezample 4.1.4. Recall the cosimplicial symmetric sequence C(O) = J+ from (3.3.12). We
observe that C'(O) admits a pairing C'(O)C(O) 2 C(©), where [ denotes the box product
in SymSeqSApt, induced as follows. Let ¢ denote the operad composition map c¢: Jo J — J.

Then,
(C(OTCON° = JoJ S J=C(0)
For level 1 we observe that there are maps
mo1: JoJopJ = JopJ and myg: JopJoJ = Jop J
induced by J o J — J which induces m via the following commuting square
JoJopJ—2s Jop J (4.1.5)

idodOT ml,O]

JoJ - JonJolJ
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More generally, there are maps of the form
Myq: JP o JO — JPHD for p4g=n,pqg>0

induced by ¢, which induces the pairing m at level n.

Remark 4.1.6. The above construction is entirely analogous to the following example found
in McClure-Smith [65] that the based loop space QX of X € Top, admits an A,, composition
induced by an underlying [J-pairing. In this case, 2X is modeled as the totalization of the
cobar complex ¢(X) built with respect to the natural comultiplication (with coaugmentation)
given by the diagonal §: X — X x X.

It follows that ¢(X)? =2 X*P and the pairing ¢(X)Oe(X) — ¢(X) is induced by the
natural isomorphisms X P x X*¢ = X *P*4 Further, McClure-Smith show that Tot¢(X) is

an algebra over the (nonsymmetric) coendmorphism operad on A®, i.e.,
Aln] = Map 2%, (A, (A%

which satisfies A[0] = x and A[n] = * for n > 1 (in fact A" and (A*TJA®)" are homeomor-

phic), and that with respect to this structure Tot ¢(X) ~ QX as A,.-monoids.

4.2 The box product in SymSeq®

Our aim now is to build a framework in which we can work with the structure captured by
Example 4.1.4, e.g., by considering the box-product in the category of cosimplicial objects
in (SymSeqc, o, 1) of symmetric sequences for (C,®,1) some closed symmetric monoidal
category.

The main difficulty is that the composition product of symmetric sequences does not

always commute with colimits taken in the right hand entry. That is, for B: Z — SymSeq
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a small diagram and A € SymSeq, the universal map
colim;ez(A o B;) — A o (colim;ez B;) (4.2.1)

is not an isomorphism in general. Thus the box-product fails to be strictly monoidal in this

setting.

Let us write SymSeq = SymSeq. and [J for the box-product in SymSeq® (in words we
refer to [J as the boz-circle product). Let X, Y, Z,... be cosimplicial symmetric sequences.
We will systematically interpret expressions of the form X OYOZ to be expanded from the

left, i.e.,
XOyOoz .= (x0y)0z, XOY0z0w = (XOy)02)0w, ...

and note that via the universal map in (4.2.1) there is always a canonical comparison map
0 of the form
0: XOYOZ = (x0Y)0Z — XO(YOZ) (4.2.2)

which likely fails to be invertible. However, 6 is sufficient to provide a suitable description
of monoids with respect to |j, i.e., Definition 4.2.3, below. First, we note that the unit
I € SymSeq induces a unit I € SymSeq as the constant cosimplicial object on I in that

there are isomorphisms

X0~ X =~ [0X.

For instance, the right isomorphism is obtained by noting that for any p,q the map
dP*! oid in the following
lp o Xq+1
idod®
lp o XU drtloid lp+1 o X4

is just the identity (and hence has an inverse). Therefore, the inclusion of the vertex I°o X™
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into the diagram defining (XCIX)™ is right cofinal (i.c., induces an isomorphism on colimits).

Definition 4.2.3. By [J-monoid in SymSeq®, we mean a cosimplicial symmetric sequence
X together with maps m: X 00X — X and u: I — X so that the following associativity
(4.2.4) and unitality (4.2.5) diagrams commute

XOX0X — 2 XO(X0X) 99y (4.2.4)

| lm

(AOX)0x P Oy ey

and
X029 yOx 209 Py (4.2.5)
X

o

Remark 4.2.6. We remark that in the language of Ching [25] (see also Day-Street [31]), O

admits a normal oplax monoidal structure by defining
X0 0X, = (- (A0X)0A) - - - )0,

and obtaining grouping maps from the universal map in (4.2.1). Our notion of [J-monoids
are normal oplax monoids with respect to such structure by appealing to Ching [25, 3.4],
noting in particular that four-fold and higher associativity diagrams are known to commute

given the commutativity of (4.2.4).

Proposition 4.2.7. The cosimplicial symmetric sequence C(O) (see (3.3.12)) admits a nat-
ural O-monoid structure, i.e., there are maps m: C(O)IC(O) — C(O) and u: I — C(O)

which satisfy associativity and unitality.

Proof. The map m is that constructed in Example 4.1.4. The unit I — J provides a

coaugmentation I — C(O) which in turn induces a map u: I — C(O).
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Associativity (4.2.4) follows from a routine calculation, observing that
d": (C(O)OC(0))* = (C(0)AC(0))"+!

is induced by d° o id: C(O)" o C(O)* — C(O)™ o C(O)* for r + s = ¢. Similarly, the
right-hand triangle from the unitality diagram (4.2.5) is granted by the following commuting
diagrams

1P 0 C(0)1 4L (O 0 C(O)1

lN lm

0y —LL ooyt
for all p,q. A similar argument provides the commutativity of the other side of the unitality

diagram. O

Theorem 1.1.1(a) is then obtained as a corollary to the following proposition, the proof
of which is deferred to Section 6.1.1. As such, the aim of the following sections is to set up

a precise framework to describe what is meant by A..-operad.

Proposition 4.2.8. If X is a O-monoid in SymSeqSApt, then Tot X is an As-monoid with

respect to the composition product (i.e., Ax-operad).
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Chapter 5
N-colored operads with levels

In this section we develop our theory of N = {0, 1,2, ... }-colored operads with levels, which
we refer to as Nj,-operads. The motivating principle behind our constructions is to provide
a framework to fatten-up the usual notion of operads and their algebras. For this section
(C,®,1) will denote a given cocomplete closed, symmetric monoidal category with initial

object ¢. We first recall the classical theory of colored operads.

5.1 Colored operads

Colored operads (sometimes also referred to as multicategories) offer a generalization of
operads to encode more nuanced algebraic operations on their algebras. We give an overview
of their pertinent details below and refer the reader to Leinster [59] or Elmendorf-Mandell
[35] for more information. As before, we will only need to consider colored operads in the

category of spectra.

Definition 5.1.1. Let C' be a nonempty set, i.e., a set of colors. A C-colored operad M in

C consists of
e Objects M(cy,...,cp;d) € Cfor all (¢p,...,cp;d) € C*™ x C and n >0
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e A unit map 1 — M(c;c) for all c € C

e Composition maps of the form

Mier, .. e d)@M(Pra, .. Prgic) @ - @ M(Prty -+, Prkn Cn) (5.1.2)

— M(P11, . Dok d)

subject equivariance, associativity and unitality conditions (see, e.g., [35, 2.1]).

An algebra over M is a C-colored object, i.e., X = {X_.}.cc such that X, € C for all
¢ € O, together with maps for each tuple (¢q,...,¢,;d) € C*" x C of the form

M(er, ... end) @ X, @@ X, = Xy

the collection of which is required to satisfy equivariance, associativity and unitality condi-
tions.

Berger-Moerdijk provide a list of examples in [13, §1.5]; of note is that for C' = {x}, a
one-colored operad is just an operad in the classical sense. The following constructions are
also motivated by White-Yau [70] wherein a composition product for C-colored operads is

provided.

5.2 Nj-objects

The purpose of this section is to introduce the notion of a nonsymmetric, N-colored sequence
with levels in C. We will refer to these as Ny, -objects. In our framework, N,-objects will
play a role analogous to symmetric sequences for classical (one-color) operads, though we
note that we do not yet impose any symmetric group actions on our Nj,-objects. Let s

denote the set {1,...,s} (note that 0 = ().
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Definition 5.2.1. For k > 0, let N°* denote the set of tuples of orbits
N = {(n17 (n%, T vnil)znw T (nlfv T ’nﬁ’ﬁl)znk—l) : TLZ =0 VZ"]}

where n’ is inductively defined as Z?;l n‘Z and we set n’ := 1. We then treat N°* as a

category with only identity morphisms.

Note that the superscripts in Definition 5.2.1 are used for indexing and are not powers, we
will adhere to this convention throughout the document. Elements p € N°* will be referred

to as profiles, we will often suppress the orbit subscript and write (n4,...,ns) for the orbit

(N1, ..., ng)s,-

Definition 5.2.2. Given p = (n', ..., (n¥);cpr-1) € N°* we define the weight of p to be the
integer n* =3, 1 nf. For t € N, we write N°*[¢] for the set of profiles p € N°* of weight
t.

Example 5.2.3. Computing small examples we see

Néo = {®}7 N62 = {(n7 (kla ) kn)) ‘n, kl Z 0}7

N ~ N, N L(n, (ky, ..o kn), (b1, te) ok =ky 4+ ko, kiyt; > 0}

Remark 5.2.4. Note that profiles in N° are in bijective correspondence to indexing factors
of (-fold iterates of 6 from (2.1.7), therefore objects indexed on N° naturally arise when
evaluating (-fold iterates of the composition product of symmetric sequences (Definition

2.1.6) from the left.

Given p = (n', (n?)ient - - -, (nf)iene—1) € N°[t], the term

(Xyo---0Xy)p]
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is the collection of factors in (X; o --- o X,)[t] corresponding to the indexing tuples

J
nl

J nd
(nl, BN )Enj_l € Sumnjfl,

forj=1,...,0

Definition 5.2.5. Given profiles p,q € N° we define their amalgamation p Il g to be the

orbit of the levelwise disjoint union of the two profiles. In other words, given

(0!, (n})ient, (1] )ien2, - -, (1f)imc-1),

S/
I

Q = (m1> (m?)jémla (m?)j€m27 ceey (m;?)jEmk*1>7

then p IT g is given by
pllq:= ((nl, m"), ((n})iem 11 (mjz)jeml), N (g Py i (m‘l;)jemkfl)>.

Remark 5.2.6. Note that pllg is not an element of any N°F as its first entry is not a singleton.

However, if p. € N°*[t;] for i = 1,...,n then
(n,ﬂﬂ---ﬂ&) e Nk oo t)
For instance, if p = (2,(2,3)) and ¢ = (3,(2,3,4)) then

(2,p11q) = (2,(2,3)s,,(2,3,2,3,4)x,) € N*[14].

Definition 5.2.7. An N, -object P in a symmetric monoidal category C is a functor

P: HN“XN—>C.

£>0
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Equivalently, P = (Px)r>0 such that P is a functor N% x N — C. We also refer to

Niev-0objects as N-colored objects with levels. We further say an Nje,-object P is reduced if
e For (> 1, Py(p;t) = ¢ if p ¢ N*t]
o Py(0;1)=1
e Po(D;n) =¢ for n # 1.

Recall that ¢ denotes the initial object of C.

Note if P is reduced then P is determined by a functor [, N° — C. We will mostly
be concerned with reduced N,-objects, but benefit from this more general definition when

we discuss algebras in Section 5.3.6.

5.2.8 A composition product for Nj,-objects

The aim of this section is develop a monoidal composition product for N,-objects so that

we may encode N, -operads as monoids.

Definition 5.2.9. Let p = (n', (n?)icnt, ..., (nf)icnr-1) € N and let £y,..., 0, > 0 be
given. Let @ denote a collection of unordered sequences of profiles (g{, R gfl ;1) for j =
1,...,k such that ¢/ € N° [n]].

We define the composite of p and @ to be the profile po @ € No(et++4) given as follows

pOQ: (Q_I,gfﬂ---ﬂgip'“ 7QTH”'Hg:k71)’

Let

Nékx< H Naglx---xN“k>
¢

1, 20
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be the collection of all pairs (p, @) such that

P = (n17 (n?)ienla cee (nf)iEnkfl)v Q = (Q )T (q]?)]Enkfl)

so that the composite p o @ is defined (i.e., ¢/ € NG [nd]).
Remark 5.2.10. Tt is convenient to think of an element p = (n', ..., (n¥)) € N°¥[t] as describ-
ing a family of planar rooted trees (see, e.g. [22]) with ¢ leaves and k levels. More precisely,
the numbers n? describe the valence (number of input edges) to the i-th node at the j-th
level, and a tree in this family is determined by a family of morphisms ¢;: nd — n=! for
1 < j < k such that \goj_l(z)] = n? for all i, j.

Let @ be so that po( is defined. From this perspective, a tree in the family corresponding
to po@ is build by “blowing up” each node nf from p by a tree from the family corresponding

to the profile q_f from Q.

Definition 5.2.11. We define the tensor & of reduced Njo-objects Q' --- , QF to be the

left Kan extension of the following

B 5 5 Q's--50k
[0 (N " (I, >0 N “x - x N e’“)) —C (5.2.12)
l(pvQ)HpoQ
Y Ol®--®QF
HEZO N left Kan ext. C

such that if po @ € N°OH 4 [t] then

(Q'6---6Q") (po@st) = Qj, (¢"sn") ® Q) QF, (%) - © Q) Qi (a:nk).

i€nt i€nk-1

Note then that (Q@”f)g 2114 ip,—e Q0+ - - 0Qy,, more specifically:

@y [ J] (@669 (po@it) (5.2.13)

L1+ =L p=p'oQ
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where we note that the summands ¢; are ordered.

Definition 5.2.14. Let P and Q be reduced Ng-objects in C. Their nonsymmetric compo-
sition product ©® is defined as the coend P_ @y Q¥ where N denotes the category of finite

sets n for n > 0 with only identity morphisms. That is,

(P@Q)e = H Pk®(Q®k)g.

k>0

We use the notation ® to designate the product Pr®(Q,6---6Qy,) is evaluated at a

profile (p;t) as follows

(Pe®(Qu8---8Q ) (pst) = [ Pultss) ®(Q'6---6Q") (po Qi)

where p' € N°*[¢'] and Q is a family (¢7) as in (5.2.9) with ¢/ € N°G ).

We necessarily then have

and can further describe POQ as

PoQupt = JI ]I P" s’)@@ (@ ng(gj;ng)) (5.2.15)

L1+ =L p=p'oQ j=1 \ieni
Ezample 5.2.16. We will evaluate (P©Q)3 at

p = (n, (ki)ien, (tj)jex) € N63[t]
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for P, Q reduced N,-objects. Set k := ki + --- + k,,, we observe

(732®(Q16Q2)) (p;t) = H Pa(n, (s51,...,80);t) ® <Q1(n; n)® ® Qz(gi; Sz))

p=(n,(g,I--Igq ) ien

where ¢ € N°[s,].

Using the language of Remark 5.2.10, we think of the above as partitioning the set of
nodes (t;);ex from p into n sets of size ky, ..., ky, e.g., by defining a map ¢: k — n such that
lo1(i)| = k; for i = 1,...,n. Such a partition determines n profiles q, = (ki, () jep1) €

N°2[s;] for i = 1,...,n where necessarily s; is the sum > t;. This precisely determines

jep~1()
all possible ways of expressing the family of trees associated to p by a “vertex blowup”
of the form p = p' o Q, where p' € N°?[f], ¢* € N°[n] and each 7 € N°2. The term
(732®(Q16Q2)) (p;t) is then obtained by using P to evaluate p’ and Q to evaluate the profiles

from Q.
Similarly,
(P22(Q26Q1))(p5 1) = Pa (K, (t))jexi t) © (Qz(“a (Ki)ien; k) ® ® Qi (ty; tj)) :
jek
(P1®Q3)(p;t) = Pi(t;t) ® Qs(p;t),

(P5®(216Q16Q1))(p;t) = Ps(p;t) ® (Ql(n; n) ® Q) Qu (ki ki) ® Q) Qi (t; m) :

i€n jek

Proposition 5.2.17. The category of Nie,-objects equipped with the composition product ©®

18 monoidal.

Proof. 1t is straightforward to verify that ® has a two-sided unit, Z, given by Z;(n;n) = 1
and Z = ¢ otherwise. For Ne,-objects P, Q, R, there is a natural isomorphism (POQ)OR =
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PO(QOR) induced by the natural isomorphisms

(Pn®(Qk16 Y 6an))®(R€1,16 e 6R6n7kn) (5218)

= n®<(Qk1®<RE1,16 e 6R51,k1))6 e 6(an®(,R’én,16 e 6R£n,kn))>

obtained by a tedious but ultimately straightforward calculation. The remainder of the

monoidal category axioms follow from similar observations. O]

Definition 5.2.19. A nonsymmetric N -operad is a reduced N,-object P which is a
monoid with respect to ®. That is, there are unital and associative maps of Ny, -objects

£:POP — P and e: T — P, i.e., such that the following diagrams commute

§oid idoe e0id

POPOP 25 pop POI L% pop L2 7oP
lid@f l& X l& o
POP — P P

5.2.20 Algebras over a nonsymmetric N,-operad

Let (:) denote the inclusion of N-colored objects to N,-objects given by
Xo(0:n) = X|[n] and X, = ¢ for k > 1.

Note that X is not reduced, but a straightforward modification of Definition 5.2.11 pro-
vides that ()A(@)”)O =~ X°" and ()A(@m)k >~ ¢ for k > 1. Similarly, (=) is left adjoint to Ev,

which takes values in nonsymmetric sequences and is defined at an Nj,-object P as
(EvoP)[n] := Po(B;n).

If P is a nonsymmetric Nj,-operad then P@)/(\’ remains concentrated at level 0 and hence

63



defines a monad on N-colored objects
PO(=): X s Evo(PeX).

Definition 5.2.21. We say that an N-colored object X is an algebra over an nonsymmetric

Njey-operad P if there is an action map
PO(X) L5 X

which is associative and unital in that the following diagrams commute.

POPO(X) 22 Po(X)  PoO(X) =X
Lid@u H ET -
POX) ———=X To(X)

We denote by Algy. (P) the category of algebras over a nonsymmetric Nje,-operad P

along with P-action preserving maps. Note that an action map p consists of pieces
M - Pk®(X6k) — X

for k > 0 and that Algp, (P) is complete and cocomplete and moreover that limits are built

in the underlying category of N-colored objects.

5.2.22 Change of Nj,-operads adjunction

Given a map of nonsymmetric Nie,-operads o: P — Q and a P-algebra X we define Qop(X)

by the reflexive coequalizer

QOp(X) := colim ( QO(X) == QoPe(X) ) .
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The top map above is given by PO(X) L7, X and the bottom is induced by the composite

QeP 197, 0n0 2. g,

The resulting object Q®p(X) inherits a natural Q algebra structure and the construction

fits into an adjunction as in the following proposition.

Proposition 5.2.23. Given a map of nonsymmetric Nio,-operads P — Q there is a change

of nonsymmetric Nje,-operads adjunction

" Qop(—) "
AIglev (P> -~ AIglev (Q)

g

with right adjoint o* given by restriction along o.

5.2.24 A forgetful functor to N-colored operads

We describe forgetful functor U from Nje,-operads to N-colored operads (specifically, non-

symmetric N-colored operads). Given p = ((n',- -+, (nf)iene-1) € N°, we set s(p) to be the

unordered list of the elements of the levels of p, i.e.,
s(p) == {n]:je{l,-- ,n}ieni}.
Given an Njg,-object Q we define UQ by

(UQ)(c1,y ... cx3t) := H Qu(p;t) (5.2.25)

s(p)=(c1,--,ck)

where the coproduct ranges over p € [[,5, N°¢. We leave the proof of the following proposi-

tion to the reader.
Proposition 5.2.26. If P is an Ne,-operad then UP is a (nonsymmetric) N-colored operad.
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Furthermore, the categories Algps, (P) and Algyp are equivalent.

5.3 Symmetric Nj,~objects

We now impart symmetric group actions on our Nj,,-objects in a way that captures operadic

composition. Denote by Z* the Ne,-object in (C,®,1) with

[n] t=1,p=n=t
Iy (p;t) = N
1) otherwise

Recall here that X[n] =[] 1. Note that Z* is a nonsymmetric No-operad whose

O'GEn

composition maps are induced by the block matrix inclusions
Yp X (Ekl X o+ X an) — Ek1+-~~+kn~

Moreover the data of an algebra over Z* is precisely that of a symmetric sequence; i.e.,

Y

Alg7s = SymSeq.

Definition 5.3.1. An Nj-object P symmetric if P has compatible right and left actions

of Z* in that the following diagram must commute

TPoPer® 2 pors
lid@ur j Hr
I*oP a P

where i (resp. pi,) denotes the left (resp. right) action map of Z* on P.

In other words, a symmetric Nje,-object is an (Z¥, Z*)-bimodule. Note that Z>®(X) =

Y- X is the free symmetric sequence on X (see also Remark 5.4.14).
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5.3.2 Symmetric N, -operads

Definition 5.3.3. Let P, Q be (Z*,Z*)-bimodules. We define their symmetric composition

product, denoted POxQ, as the (reflexive) coequalizer (calculated in symmetric Ne,-objects)
POy = POz Q = colim ( POQZI__POI*0Q )
where the two maps are induced by the left and right actions actions of Z* on Q and P.

Note that P®xQ inherits left and right Z* actions by those on P and Q respectively, and
so remains an (Z*,Z%)-bimodule. Moreover, Z* is a two-sided unit for ®x and symmetric

Nie,-0bjects equipped with the product (®x,Z*) is a monoidal category.

Remark 5.3.4. Since Z% is concentrated at level 1, is it possible to further describe the object

POxQ in terms of its constituent parts. In particular,

(PQEQ)ZEJH H Pr@5(Qp, 6+ 0Qy,)

k>0 01 +-+L =L

where P®5(Qy, 0+ -6Qy, ) is obtained as the coequalizer

colim | Pr(Qu-++5Q) T (P&(TF0 - 0TF) ) &(Qu 6+ 6Qy,)
k

such that the top is induced by the right action of Z* on P and the bottom map is induced
by the isomorphism (5.2.18) and the left action of Z* on Q.

Definition 5.3.5. A symmetric N\, -operad is a reduced symmetric Nj,-object P, which
is a monoid with respect to ®yx. That is, there is a multiplication map &: POsP — P and

unit map £: Z¥ — P that satisfy the usual associativity and unitality conditions.
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5.3.6 Algebras over symmetric N, -operads

We now define an algebra over a symmetric Nj,-operad P. Note than algebra over a sym-
metric Nje,-operad is a symmetric Nje,-object concentrated at level 0, that is, an Z>-algebra

or symmetric sequence. As before, given a symmetric Njo,-operad P, let
Pos(—): X — EVO(PG)E)?)

be the associated monad on SymSeq.

Definition 5.3.7. A symmetric sequence X is an algebra over a symmetric Nj.,-operad P
if there is an action map pu: POx(X) — X which is associative and unital (as in Definition

5.2.21 with ® replaced by ®x q.v.)

We denote by Alg, (P) the category of symmetric P-algebras with P-algebra preserving
maps; for simplicity we will frequently use Alg, instead when there is no room for confusion.

We note that p consists of maps
M Pk®E(X6k) — X

where the action of Z* on X°F agrees with that for symmetric sequences discussed in Section
2.1. Furthermore,

po: 1= Py@s(X%0) = X

gives a unit map for X € Alg, and we note that an algebra X over P will always be reduced,
i.e., X[0] = ¢.
Ezample 5.3.8 (Free symmetric P-algebra on a symmetric sequence). Given a symmetric

sequence X, the object POy (X) is the free P-algebra on X and fits into an adjunction

PoOs(-)
SymSeq <M_E Algp
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where U is the forgetful functor. In particular, Oper®©x(X) (see Definition 5.4.2) is the free

operad on X (see, e.g., [2, 9.4]).

We leave the proof of the following to the reader as it follows from standard arguments

as in [44, 3.29] or [18, 4.3].

Proposition 5.3.9. If (C,®, 1) is closed symmetric monoidal which contains all small limits
and colimits, then all small limits and colimits exist in Algp. Limits and filtered colimits
are built in the underlying category of symmetric sequences and are further reflected by the

forgetful functor U.

General colimits shaped on a small diagram D are constructed by the following (reflexive)

coequalizer (whose colimits are constructed in SymSeq):

colimgep Xg = colim ( POy (colimgep Xyg) === POy (colimgep POx(Xy)) > .

5.3.10 Modules over P-algebras

Definition 5.3.11. Let P be a symmetric Nj,-operad and W be a P-algebra. Let M be a

symmetric sequence. We say that M is an W-module if there are maps of the form
et Pes (WD M) — M

for ¢ > 1 that satisfy associativity (5.3.12) and unitality (5.3.13). If M is concentrated at
level 0 we say that the object M[0] is a W-algebra.

Set £: POsP — P to be the multiplication on P and p: POx(W) — W the action map

on W. Let ¢ := {1 + --- + {. Associativity and unitality amounts to the commutitivity of
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the following diagrams

(Pe@s(Prd- - 8Py)) g (WD M) £®xid

|

Pi®s (Po,@sW)6 - - - 6(Py, @5 (W15 M)))

Py (WEDaM) (5.3.12)

IR

Ne

jid®z(ue15---6wk1 814,

Py | Wo---oWeM ™ M,

k—1

and
Pados (Po@sWP)o(Py&sM)) 2 b & (Wo M) (5.3.13)
(Pz@z (Poapl)) ®2M 2
l&@zid
PiosM " M.

Recall that pg: I = Py@sW® — W is the unit map for W.

Remark 5.3.14. We encourage the reader to compare the above definition with that of mod-
ules over algebras over an operad, e.g., as in May [61, Definition 3|. In [13, 1.5.1] an example
of a 2-colored operad whose algebras are pairs (A, M) of an O-algebra A along with an
A-module M is provided. The pair (W, M) can be described analogously as an algebra
over an N := {x,0,1,2,... }-colored operad with levels, though we will not require such

description.

Definition 5.3.15. We say a map P — Q of (symmetric) Nj,-operads in some symmetric
monoidal model category Cis an equivalence if for any p € N°¥[t] the induced map Py (p; t) —
Qk(p;t) is a weak equivalence in C. We write P ~ Q if there is a zig-zag of equivalences of

(symmetric) Ne,-operads connecting P and Q.
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In the special case that P ~ Oper then we say that a P-algebra W is an A, -operad and

that modules over W are A, -algebras.

5.4 Examples of symmetric N, ~operads

In this section we describe some examples of symmetric N, -operads of interest, specifically
the coendomorphism N\.,-operads on a given cosimplicial symmetric sequence. We begin by
describing Oper — the symmetric Nje,-operad whose algebras are (one-color) operads as some
of its properties will be essential in what is to come. Our eventual goal is to prove that the
coendomorphism Nj,-operad on a Y-copowered symmetric sequence X (see Remark 5.4.14)
is indeed a symmetric Nie,-operad; with the particular example of A = coEnd(X-A%) in

mind (see Section 5.4.25).

Though we write most of this section for a general closed cocomplete symmetric monoidal

category C, we invite the reader to think particularly of the cases when C = Spt or Top,.

5.4.1 The symmetric Nj,,-operad Oper

We begin by describing Oper for the category Set of sets.

Definition 5.4.2. Let ¥ denote the symmetric sequence in (Set, x, *) with X[n] = ¥,, and

define a reduced Nje,-object as follows. For p € N°[t] we set
o Yt
Oper(p; t) := hom (S[t], =™[p))
Remark 5.4.3. Note there are isomorphisms

Oper,(p; t) = hom (S[t], 2°[p])™ = hom (¥, 2 [p]) = S°/[p]. (5.4.4)
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Computing some small examples of Oper, we note that

Opery(f: 1) = + Oper, () =0 (n # 1)
Oper,(n;n) =2 %, (n>0) Opery(n;m) =0 (n#m>0)

Oper2 (n, (kb ceey kn>, k) = En Xgplx...xgpn Zk

where p1, ..., pm, denotes the multiplicities of distinct integers among ki, ..., ky, k= > ¢ ki,

and X, X ---x Y, actson X, e.g., by permutation of block matrices
Zkl Xoeee szn SEk

Similarly, let ¢4, ..., g. denotes the multiplicities of the distinct integers among ¢, ..., %, and

set

p=(n,(ki,....kn), (ts, ... t)) € N®[t].

Then
Oper3(]_3; t) = Zn XEplx-anpm Zk X2q1x~~~><EqT Zt

Proposition 5.4.5. Oper is a symmetric Ny, -operad.

Proof. As we will see, Oper is particularly special as the structure maps
Eh(tr,tn) | Operk®g(0perg16 -~ 00per,, ) — Oper, (5.4.6)

which comprise £: Oper®xOper — Oper consist of isomorphisms once evaluated at a profile
p € N*[t].

That Oper is symmetric follows from the first part of the proof of Proposition 5.4.15.

72



The unit map e: Z* — Oper is obtained via the identity morphisms
IF(n;n) =%, = X, = Oper, (n;n)

and the initial morphism elsewhere. Let us now produce the desired map (5.4.6) at a profile

p € N°[t].

For the reader who finds the following constructions a bit opaque, we first provide the
following intuition: for £ > 0 let o,: SymSeq* — SymSeq be the functor oy(X1, ..., X;) =

Xjo0---0X,. Since o is strictly monoidal, there are isomorphisms

—_

Zk,(01, ) - Ok (oflv T 7Of/c> — Ol 4+, (547)
such that o, is a nonsymmetric functor-operad (see, e.g., McClure-Smith [65, §4], omitting
the requirement of symmetric group actions). Moreover, the composition maps & e,,...,)
are precisely the morphisms which prescribe the equivariance of the isomorphism Zj (s, ¢,)
once evaluated at a particular string of inputs, given that evaluation at a profile in N ig

the same as evaluating a symmetric sequence from the left. For instance, 3 (21,3 provides

the isomorphisms (natural in Xj, ..., Xg)
(X10X2)0X3O(X4OX5OX6)gXlo"'oXﬁ

and moreover, given p € N*[t], the desired map & (q,,...4,)[p] may be thought of a precisely

arising from the isomorphism

(Zoﬁl 6---0 Eoﬁk) [p] i EOE@].

We describe £y (1,2) first and note the general case follows a similar argument. Let p €
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N°3[t] and note that

Oper,®sx(Oper;60per,))[p] = IT  Oper,®x(Oper,30pery))((n, (p,...-.p,)))-

p=(n,(p,I--Lp ))

Fixp. € N°2[s;] fori = 1,...,nsuch that p = (n, (pII- - IIp,)) and set p’ = (n, (s1,...,5,)) €
N©°2[t]. We then observe

(Oper,®@x,(Oper,60per,))[(n, (1_91, . ,g_on))] (5.4.8)
= 520y sy (Sh) % (5%p,) x -+ x 2%[p, ]

—n

= 3%(n, (p,, -+ ,p,))] = X°°[p] = Opery(p; t)

such that S(p') = ¥, x [[,_; X, and ¢ is the natural inclusion obtained from the assumption

p=(n,(p, I---Tp )).

The desired map &, 1,2)[p] is induced by the coproduct of composites (5.4.8) for all p =

n e . Note further that as sets there is an isomorphism
(n, (pys---5p,)) p

H 203[<n’ (1_917 U 7]_7n))] = Zog[p]

p=(n,(p, I1-TIp, )) -

since o is strictly monoidal in the category of symmetric sequences of sets. Thus, & (1 .2)[p]

.....

Associativity of ¢ then follows from the associativity of = as in (5.4.7). That is, for a
profile (n, (ky, ..., kn)) € N®*[k] and for i = 1,...,n, ¢, = (ki, (lix, -~ , lig,)) € N°[t;] the

associativity relation

Eb i b)) (En(hr o o) Dxid)

= En(trtn) (1D (Eky (1101000 Ok (Ct b))
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evaluated at some p € N follows from the commutative square of isomorphisms

((EOZLIO L. ozoél’kl) 0---0 (EOZ"JO L Ogoén,kn)> [B} (Zotlo . OZOt") ]

| -
(D010 - Xtk ) [p] =[p]

Similarly, the unitality condition is satisfied by the more obvious isomorphisms

for all n > 0 and p € N°! (ie., p=p>0). O

Remark 5.4.9. Let (C,®,1) be a closed symmetric monoidal category with finite coproducts.

We write Oper© for the image of Oper in C under ¥, — X[n] =[] 1. That is, given a

oEX,

profile p € N°*[t] we set
Oper®(p; t) = Map® (2[t], = [p]) ™ .

Before showing that Oper encodes (one-color) operads as its algebras we first demonstrate

another class of symmetric Ny, -operads.

5.4.10 Coendomorphism symmetric Nj,-operads

Recall as in Section 6 that (C, ®, 1) denotes a closed cocomplete symmetric monoidal category

and X is the symmetric sequence in C with 3[k] = ][ 1.

O'sz

Definition 5.4.11. Let X € SymSeq® and set coEnd(X) to be the reduced Nye,-object given
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at (p;t) € N*[t] by

coEnd(X),(p; t) := Mappres <X[t], XEK[QD& :

Ezample 5.4.12. Unravelling the above definition, coEnd(X'); (k; k) consists of all ¥;-equivariant
cosimplicial maps X[k] — X[k]. Let (¢;k) = (n, (k1,...,k,); k) € N°?[k] and recall the de-
scription of H (ky, ..., k,) < ¥ from Definition 2.1.3. Then, coEnd(&X)(g; k) consists of all
Yp-equivariant cosimplicial maps of the form

X[k] = (X0X)[g) = Z[k] @,

.....

Further, coEnd(X') is quadratic in that it is generated by its first two levels as follows:
let p = (n, (Ki)ien, (tj)jex) and set k := > | k; and ¢ := S t;. Then, coEnd(X)s(p; 1)

Jj=1

consists of cosimplicial maps v that fit into the following >;-equivariant diagram

Y (xOX)]

T

(xXOX0X)[n,

X[1]

, () jex]
Pollid

ki)z‘ena (tj)jek]'

—_~ < X

such that 1y € cOEnd(X)a(n, (ky, ..., kn)1 k), ie., tha: X[k] = (XDX)[n, (ky, ..., kn)] is Sp-

equivariant. Said differently, there is an isomorphism

coEnd(X)3(p; t) = coEnd(X)2(n, (k;)ien; k) @y, coEnd(X)a(k, (¢;) ek;t)

where X acts by shuffling the factors 1,. .., ¢ of As(k, (¢) ex;t) in accordance to the X

equivariance of maps in Xo(n, (k;)ien; k). In general, given a profile

p= (n1> (nzg)ienlv R (nf)ien“l) < N
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the object coEnd(X),(p; n’) is isomorphic to

coEnd(X)2(n', (n})ient; n*) ®s 5 O5 ,_, coEnd(X)a (", (nf)icne-1;n"). (5.4.13)
Remark 5.4.14. We would like to be able to say that coEnd(X) is a symmetric Nj,-operad
for any cosimplicial symmetric sequence X', however this seems to not be the case. The issue
seems to be based on the potential non-invertibility of # (and similarly how [J fails to be a
strictly monoidal product for cosimplicial symmetric sequences). However, there is a class

of cosimplicial symmetric sequences on which we get the desired symmetric Ny, -structure

on coEnd(X).

Let us say that X' is X-copowered if there is a sequence {Y[n]},>o of cosimplicial objects
in C with
Xn] = 35-YIn] = Xn] @ Y[n]

and such that the 3, action on X[n| is trivial on Y[n] for all n. In such case we write
X = %.Y. The benefit for us is that if X' is ¥-copowered, then € has an inverse (which is
constructed in the following proposition), and so [J is a monoidal product when restricted

to X-copowered cosimplicial symmetric sequences.

Proposition 5.4.15. If X € SymSeqCA is Y-copowered, then coEnd(X) is a symmetric Ne,-

operad.

Proof. This argument is rather long and somewhat tedious, so we break it up into several
steps. The first step is to show that coEnd(X) is symmetric, in fact 3-copoweredness is not

required for this part.

Let ¢ > 0. The left action of Z* on coEnd(X'), is obtained by ; action on the maps
X[t] — Xﬁg[g] which comprise coEnd(X),. The right action of Z*6---6Z* on coEnd(X), is
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obtained, e.g., , at £ = 2 as follows. For a profile ¢ = (n, (k1,--- ,k,)), we observe
(T76Z%)(q; k) = 8y x (S, X -+ x By,) < By
acts via the ¥p-equivariance of

.....

The general case follows a similar argument.

Second, we produce a multiplication map
€: coEnd(X)®xcoEnd(X) — coEnd(X).
Two ingredients are crucial to this step. First, is the existence of maps

fgy.p: XPO0 . X o x (5.4.16)
for each tuple ¢1,..., ¢, such that ¢; 4+ --- + £, = ¢ which are inverse to the induced map
by 6 (see (4.2.2)). It is this step for which Y-copoweredness of X seems essential and
such maps p are granted by utilizing the structure of Oper. Write X = ¥-) and for p =

(nt,---, (nf)i@k_l) set

YH(p] = V'O <® y[n?]) 00 <,® ymﬂ) .

Note in the above, we are utilizing the box product for C* which is strictly monoidal.

For simplicity we describe the map f12: X D(X Ox ) = X 03 and note the general case
follows from a similar argument . Note that XC(XTX ) takes as inputs profiles of the form

(n, (p1, -+, pn)) for some unordered list of profiles p; € N°2.
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Fix a specific profile (n, (p1 II--- I p,)) = p and write p; = (k;, (i1, -+, tix,)) € N2[t;]

for i = 1,...,n. There is an inclusion induced as follows

XO(X0X) [0, (pr, -+ pa)] (5.4.17)

=~ (Sn] @ Y[n)O (2] @ Y[p1]) @ - @ (2% [pa) @ YP[pa]))
= (E[n] Rz, (HE[t] @5y, xoox Ty, Do[p1] X -+ X 2"2[&])) ® Y% [p]
1

=~ 5[, (pr, -+, pa)] © VP[p] 5 B3p) @ Y [p] 2 X%

where f runs over all ¥, permutations of ¢, - - - ¢, and (x) is induced by the natural inclusion
v X%, (p1, -+, pa)] = X°°[p]. Moreover, the map ju; 5 at profile p is then induced from

the inclusion described above via the isomorphism

(vo@ox)p= I (A0@00) [ (- op)]-

(n,(paT1-TIpn))=p -

A straightforward computation then shows that s 5 is inverse to 6.

The second ingredient to producing £ is a map

. . NG >

COENd(X),6 - - - 6 coEnd(X)s, ——s Map ve (XD’“, X0y, Dxmk) (5.4.18)
which we construct as follows. Let a;: X — X Dt for § = 1,...,k. The map I' is induced by
the assignment (o, ..., ax) — a0 - - Oay, where, e.g., if k = 2 and p=(n,(t, - ,t,)) €

N©2[t] then
(1 D0as)[p]: X7[p] — (X10X)[p]

is obtained levelwise by the maps a;[n]: X[n] — X7 [n] and as[t;]: X2[t,] fori=1,...,n.
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With these two ingredients in place, the composition ¢ is obtained via the composition

Z .

. o by . by
MapAres (X, XDk> ®Z (MapAres (X, XDEl) 6 A 6 MapAres (X, XDK}C) )

s NN . . NEEPNENS 5
MG Map ove (X, XD’“) &5 Map are (XDk, xoap. . Dxmk>

oo B o by
oM N [ap A (X, xoary. .. DX%>

(Bey,...0 )

e\ 2
MapAres (X, XDZ> .

Fortunately, the unit map is simpler to describe. We obtain €: Z* — coEnd(X) as the
morphism

2[n] = Map e (X[n], X[n])™

adjoint to the action map 3[n] ® X'[n] — X[n] which expresses the 3,, equivariance of X'[n].
Showing that £ and e satisfy the appropriate associativity and unitality conditions is a
tedious though ultimately straightforward and may be adapted from the (somewhat simpler)

proof of Proposition 4.2.8 found in Section 6.1.1. [

5.4.19 COper-algebras are operads

Our aim is now to show that Oper-algebras indeed model (one-color) operads.

Proposition 5.4.20. There is an equivalence of categories between algebras over Oper® and

operads in C.

Proof. We show that a symmetric Oper-algebra is necessarily an operad and note that the
argument is readily reversed to show the converse statement. Suppose W is a symmetric

Oper-algebra. Note, Oper,®@5W°2 — W consists of maps

Opery(n, (1, ..., kn); k)®s WIn] @ Wk] ® - - - @ W(k,]) — WIk] (5.4.21)
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for each p = (n, (k1,..., k) € N°2. Fix such a profile p and let py,...,py, be the multi-
plicities of the distinct factors dy, ...,d,, among ki, ..., k,. Coequalizing the actions of Z*

identifies the symmetric group actions (resp. with k; replacing n)
3[n] ® Win| — Win|

with the right action of Z* given in the proof of Proposition 5.4.15. Thus, (5.4.21) yields

Yp-equivariant map of the form

k) Wn] @ Wk @ - - @ Wik, — WIk] (5.4.22)

.....

which moreover obeys the correct equivariance, e.g., as described in May [61]. Said differently,
(5.4.22) is the factor (W oW)|n, (k1, ..., k,)] (as in Definition 2.1.6) and the collection of all

such maps then pieces together to form

m: WoW — W.

Since W € Algg,,, there is a commutative diagram of the form

(Operytos; (Oper, 60per,)) ©5 (W) —= Oper,®y; ((Oper; ©x(W))6(Opery@s (W*2)))

lid®2 (n18p2)

€a,(1,2)®xid Oper,@s(WoW)
LM
Oper;®s (W) W.

The composite of the right side maps describes

Wo(WoW) L% wow Iy Wy
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and by construction the bottom map describes
WoW)oWw 224 wow Iy W,

Associativity of m follows as &5 (1,9) is an isomorphism.

To produce the unit w: I — W we first recall that
po: I =2 Po@s(WP) - W
provides the unit map u on W. There is then a commuting diagram

Oper,®x. ((Opery&s (W))5(Oper, @s(W))) 2L, Oper,éos (WoW)

]%

(Oper,®s(Opery60per;)) ®s (W) B2
J&@zid
Oper,®x(W) = W

the composite of top and right arrows of which results in

ToWw Y wow ™ w

and the left and bottom arrows are all isomorphisms. Commutativity of the other unitality

diagram follows a similar analysis.

Corollary 5.4.23. Let W be an operad, i.c., Oper-algebra. Let M € C and denote by M

the symmetric sequence concentrated at level 0 with M[0] = M. Then, M is an W-algebra

(in the sense of Definition 5.3.11) if and only if M is an W-algebra in the classic sense.
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Proof. As in Definition 5.3.11, a W-algebra consists of maps

Oper,@s (W Vs M) — M.

Note, since M is concentrated at 0, the only nontrivial contributors to such maps will

have profiles which end in a string of 0. In particular, for £ = 2 there are maps of the form
Oper,(n, (0,...,0);0)®s, (Wn] @ M) — M.
Since Opery(n, (0,...,0);0) = X[0] = 1, the above maps descends to
Win] ®@s, M®" — M

after coequalizing. Associativity and unitality follow a similar argument as the proof of

Proposition 5.4.20. []

Remark 5.4.24. Though our description of Oper is new, descriptions of an N-colored operad
whose algebras are operads is not new. Berger-Moerdijk describe an N-colored operad Mo,
in terms of trees whose algebras are operads in [13, 1.5.6] (see also Dehling-Vallette [32]).
Applying the forgetful functor U from Section 5.2.24 to Oper yields an isomorphic N-colored
operad to that of Berger-Moerdijk, i.e., UOper = Mg,

5.4.25 A model for A -operads

We will now focus on a particular coendomorphism Nj,-operad in Top, namely that on the

cosimplicial symmetric sequence 3-A® with 3X-A®[n] = 3,,-A°.
Proposition 5.4.26. There is an equivalence of Nie,-operads coEnd(3-A®) — Oper ™.

Proof. Note that equivalences of Nj,-operads are computed levelwise (Definition 5.3.15)

and that a morphism f: X — Y of cosimplicial objects in Top induces a map (X-X )ﬁk —
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(E-Y)m for k£ > 1. If additionally there is a retract r: Y — X of f there is a map
coEnd(2- X)) — coEnd(X-Y) on coendomorphism operads induced by post-composition with
f and pre-composition with 7.

Since there are morphisms * — A™ = x for all n > 0 (i.e., by inclusion at a vertex) we

then have

N> N>
MapAres <Z'A., (EA.)Dk> Q) MapAres <2'i7 (Zi)uk> g Map (E, 20k>2

for all £ > 0, where x denotes the constant cosimplicial object on x € Top. Moreover, since

x — A™ — x consists of weak equivalences between fibrant and cofibrant objects for all n,

the indicated map (f) is a weak equivalence in Top. ]

Note that for p € N°*[¢], Operzc’p(g; t) is just the discrete space X°%[p]. Similarly,

Top,,

Oper = Operrfp will encode operads in (Top,, A, S°) and thus also in Spt via the tensoring

of Spt over Top,.

Remark 5.4.27. Note the functor (=), : (Top, X,*) — (Top,, A, S?) which adds a disjoint
basepoint induces isomorphisms of pointed spaces

N ¥ - %
Map P (E'Ala (E-A;)D’f) =~ Map 2, (Z-Aﬁ (Z_Ao>[lk>
+

Thus, there is an isomorphism
coEnd(X-A%) = coEnd(X-A®)

of N-operads in Top,. For ease of notation we write A for this Nj,-operad and note

Top. je., A is a suitably “fattened-

that Proposition 5.4.26 provides a map p: A — Oper
up” version of Oper which will encode A.-operads as its algebras, similar to A encoding

Aso-monoids in Example 4.1.6.
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Chapter 6

Homotopy coherent operad structures

on the derivatives of the identity

6.1 An operad structure for the derivatives of the iden-
tity in Algy

The aim of this final section is to prove Theorem 1.1.1. We begin by proving Proposition

4.2.8 which as a corollary provides a proof of the Theorem 1.1.1(a). In Section 6.1.3 we prove

Theorem 1.1.1(b).

6.1.1 Proof of Theorem 1.1.1(a)

Since C/(O) is a [-monoid (see Proposition 4.2.7), Theorem 1.1.1(a) will follow from Propo-

sition 4.2.8, which we prove below.

Proof of Proposition 4.2.8. Let X be a [-monoid in SymSeqSApt whose multiplication we de-
note by m: X X — X. We aim to show that Tot X is an algebra over A. We define maps

\¢ as follows (note the notation A as ® from Definition 5.2.14 for the monoidal category
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(Spt, A, 5))
Aot AiAs(Tot )% — Tot X

For simplicity we first describe the ¢ = 2 case. Let p = (n, (ki,..., k,)) € N°2[k]. Let
Y € Ay(p;t), and let o, B: ¥-A% — X be maps of cosimplicial symmetric sequences. Define

~ at level k by the composite

(A3, (ki ) 2y (k)
%Wﬂ{ lm*
DN — LI - X[K]

where a[n]0B[ki, .. ., k] is provided via the map I from (5.4.18), the construction of which

may be readily altered to give a map

T (MapSAP}es (3-A2, X)E>6e s Map®Pt, ((Z.A;)W, Xﬁ@f.

In general, )\ is given by the following composite (compare with [3, (1.13)])

=\ 2 80
MapZ (AL, (5:41)%) " As (Maph (503, 2)°)

. N> . N>

M Mapipts (SA%, (5:A9)7) As Map%l (A1), X7)

compose Spt ° e b2

COMPO N [apSPL, (Z~A+, X )

Mex Spt [ =

=5 Map e (Z-A%, X)

where the composition map is adjoint to the composite of evaluation maps

S-AS A Map 2 (S-A% (5-A%)7 5 (5-A%)F (6.1.2)
(2-A) P Ay MapSPL ((S-A%)7, X% — X
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and m, is induced by the [J-monoid structure on X.
To show that ) is associative we consider the following diagram, with ¢’ € A, ¥; € Ay,
for i = 1,...,n such that the composite £(¢';91,...,¢,) =¥ € Aj.

(B-A%)TT. .. O(D-AY ) X, Dk

. . P . .
P10 Ll / i
- ... X

M

Note here that m, is induced by repeatedly applying the pairing m: X OX — X from the

left, i.e.,

mOid0---0lid mflidiiid\ XﬁXﬁX mOid Xﬁz’\? moy

xoxQ...ox

.....

.....

grouping map induced by 6 (see Section 4.2.3), by which it follows that v and 4’ must agree.
For unitality we recall that e: Z* — A is induced by the inclusion at ida and therefore

the composite A\[ne[n] in the following diagram

Ay (n;n) As, Map>Ph, (2-A%[n], X[n])zn bl Map>SPL, (Z-A%[n], X[n])zn

e[n1T =

(Sn), As, MapRes (2-A%[n], X[n]) ™"
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is given by S° A Tot X[n] = Tot X[n]. O

6.1.3 An equivalence of A, -operads between O and 0,Idajg,

We now show that the induced operad structure on 0,Idajg, from Proposition 4.2.8 agrees
with the induced A-algebra structure on O, thus proving Theorem 1.1.1(b). Let p: A =
Oper be the map described in Remark 5.4.27 and note an operad O € Algg,,, is in algebra

over A via the forgetful functor p*.

Proof of Theorem 1.1.1(b). By equivalence of A-operads we mean equivalence of A-algebras

which restricts to an equivalence of underlying symmetric sequences.

Recall there is a natural coaugmentation O — C(O) via O — J. We have shown in

Section 3.3.5 that the coface k-cubes associated to
0 — C(O) and 8*IdA|gO — holimAgnfl 8*((UQ)'+1)

are equivalent. Denoting these k-cubes by X} and ), respectively, we note for k > n > 1

that as YV[n| is homotopy cartesian so is Xj[n|. That is to say, for all n > 1
O[n] = holima (C(O)[n)).

Let O be the constant cosimplicial object in SymSeq on O. From the above, the coaug-
mentation O — C(O) induces a map of cosimplicial symmetric sequences ¢: O — C(O)
such that Tot O = Tot C(O). Moreover, O inherits a natural [-monoid structure induced
by the operad structure maps Q@ o O — O and I — O, and ¢ respects this structure (i.e., is

a map of [J-monoids).
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For each n > 0 we have

Map L, (,-A%, Ofn])™ = Map Pt (S,-A°, , On])>

2 Map®™(,-5°, O[n])™" = Map*™(S°, O[n]) = O[n].

and therefore, Tot O = . Thus, there are commuting diagrams for all n > 0

A, @5 (p*0)" <—— A, @5 (Tot 0)°" ——= A, @5 (Tot C(O))>" (6.1.4)
p*O — Tot O — Tot C(O)

where the left is the A-algebra structure map on p*O (which must factor through Oper) and
the right is the A-algebra structure map on 0,Ida, . O

6.1.5 A class of 0,Idp,, -algebras

Though it will follow abstractly from Theorem 6.1.3, the following corollary show that it
is possible to describe an action of d,Idalg, explicitly on the TQ-completion of sufficiently

connected O-algebras. Recall that X ~ X7 for 0-connected X € Alg,,.

Corollary 6.1.6. Any 0-connected O-algebra X is weakly equivalent to an algebra over

8*IdA|go via X +— X—{—\Q

Proof. A straightforward modification of the proof of Proposition 4.2.7 permits a well-defined

map of cosimplicial diagrams
r: C(O)OC(X) — C(X)

which endows C'(X) with the structure of a left module over C'(Q). Strictly speaking we do

need to be careful here, as C'(O) is not a strict monoid, so the module structure is obtained
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by replacing the right-most instances of C'(O) with C'(X) in (4.2.4) and (4.2.5). Nonetheless,

a straightforward adaptation of the proof of Proposition 4.2.8 demonstrates maps
Ay ((Tot C(0))* Vo Xrg) — X1g

where X@Q is the symmetric sequence concentrated at level 0 with value X7, as required of

Definition 5.3.11. O

Remark 6.1.7. One intent of the above is to motivate the analogous statement for algebras
over the derivatives of the identity in spaces, which a priori seems a bit more mysterious.
Using the model 0,Idte,, = holima C(S) we further show in the following section that for
any S-coalgebra Y in spectra (e.g., Y = ¥*°X) the derived primitives Primg(Y’) inherits the
structure of an algebra over 0,Idr,, via a pairing of cosimplicial objects with respect to O

(see also [22], [50], [12]).

In this framework, Corollary 6.1.6 tells us that any 0-connected X € Alg,, is equivalent
to its derived primitives Primp)(TQ(X)) (with respect to a suitable coalgebra structure on
B(0), see Section 3.3.4) as 0,Idajg, ~ O-algebras. Note also that Primp)(TQ(X)) ~ X7q.
As such, one possible future avenue for our work is to try to push this result to work for any
nilpotent O-algebra. This could potentially be used to prove that any nilpotent O-algebra
is equivalent to its TQ-completion (see also Section 6.3.6, along with [14], [68]; and further
compare with [19], [6], [21], [16] that any nilpotent space is equivalent to its completion with
respect to Q°°X°).
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6.2 An operad structure on the derivatives of the iden-
tity in spaces

The aim of this sectin is to show that the derivatives of the identity in spaces can be given
an operad structure in a similar manner as with the operad structure just constructed for
0,Idag,. As before, our method is to show that C'(S) admits [J-monoidal structure.

We need a technical lemma first; note the following is similar to the “tree ungrafting”
argument from [22]. Recall that P(n) denotes the underlying simplicial set of the n-th
partition poset complex Par(n) (Definition 3.4.5).

Lemma 6.2.1. For k,p,q > 0, there is a Yj-equivariant “decomposition” map

Yk (pa) : P(k)pq — H P(n), x P(ki)g x -+ x P(ky)q

aeP (k)2

where n and ky, ..., k, are obtained by setting |a| = (n, (k1,...,k,)).

Proof. Let n > 1 and Ty,...,T, be a partition of k. Let ; € P(7}), be given by ,ug <
- < pdfor j = 1,...,n, v € P(n), given by Ay < --- < A, and let \; denote the

partition obtained by replacing a set {v}scs € A; by [[,cg7s. There is then an element

yo (B, ,Bn) € P(k)prq given by

1%

/ !/ /
Ny < <N <N

n . n . n .
ITwe < T < <]Lw

Given « € P(k)o, let Ty, -+ , T, be the corresponding partition of k determined. Given
7" € P(k)ptq, the image Wy 4 (7)) at the a-factor of the product is defined to be the
string (7, 81, -+ , Bp) if there is a decomposition 7' =~y o (84, -+ , ,) where v € P(n), and
B; € P(T}), for j =1,...,n, and by the basepoint otherwise. ]

Proposition 6.2.2. For p,q > 0 there are maps m, ,: C(S)P o C(S)? — C(S)P*1.
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Proof. Let p,q > 0. For k > 1, m,,, at level k is given by the following composite

n

c@yocwnm="\ (| IIs)A~A| Il s

a€P(k)2 P(n)p i=1 \ P(ki)q

- \/ H S A H SA---AS
aEP(k‘)Q P(n)p P(k‘l)quXP(k‘n)q

— H SASA---AS

[aepy, P()px P(ki)gx X P(kn)q
\P*
SLILUN H S/\S/\.../\Sgc(ﬁ)p-i-q[k,]

P(k)m—q

where n, ki, ..., k, are such that |a| = (n, (ki,...,k,)). O

Proposition 6.2.3. The cosimplicial symmetric sequence C(S) admits a natural O-monoid
structure, i.e., there are maps m: C(S)AC(S) — C(S) and u: I — C(S) which satisfy

associativity and unitality.

Proof. The map m is induced as follows. For p 4+ ¢ = n, the maps described in Proposition

6.2.2 fit into the following commuting squares

C(S)P o C(S)7H! _Meatt C(S)ptatl
idod? T Tmpﬂ 'q

C(S)r o C(S)T L O(S)PH 0 O(S)

which induce m at level n 4+ 1 upon taking colimits.
The unit map is induced by the coaugmentation I — C(S) given by the identity on I.
Associativity and unitality of m and wu follow from the same argument as in the proof of

4.2.7 with C(O)" replaced by C(S). O

12Though, perhaps to reflect the notation in this section, the cosimplicial object C'(O) should be written
as C(B(0)), as the bar construction B(Q) is a cooperad [22], not O.
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Proof of Theorem 1.1.4. From Proposition B.2.6, we know 0,Idte, =~ Tot C(S). The theo-

rem then follows from Proposition 4.2.8. O]

6.2.4 Derived primitives are spectral Lie algebras

Arone-Ching have shown that the operad 0,Idt,, plays a central role in homotopy theory
3], [4]. We now show explicitly that the derived primitives of a S-coalgebra Y admit a left

action by this operad. In particular, this defines a functor

: Top, — Alg.1q, X — TotC(X*X)

(1]

which is closely related to work of Heuts as inducing equivalences after certain chromatic

localizations [50].

Proof of Theorem 1.1.5. The idea is to show that C(Y) is a left -module over C/(S) con-
centrated in symmetric sequence level 0. That is, the following associativity (6.2.5) and

unitality (6.2.6) diagrams commute

idClp

C($)0C($)TC(Y) —=C(S)T(C(S)TC(Y)) = C(S)OC(Y) (6.2.5)

|- ’

(C(S)TIC(S))EIC(Y) B C(S)EAC(Y) — - O(Y)

and
C(S)OC(Y) L= C(Y) (6.2.6)
10c(Y)

Once we have shown this structure, it follows that Tot C(Y) is a 0,Idtop -algebra. We first
produce maps fi,,: C(S)P o C(Y)? — C(Y)PT.
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Let p,q > 0 be given, p,, is then the composite

CS) o C(Y) =\ C) ] As, (CY))"
n>1

ST I s) e (ATL{ TT v

n>1 \ P(n), i=1k;>1 \ P(ki)q Sk,
=TI I s~ | IT I A(II Y™

n>1 \ P(n), k>1 k=ki4-+kn i=1 \ P(k;)q Sk,
SHIT(Is) | T (T Ave

E>1n>1 \ P(n), k=ki+-+kn \ P(k1)gx--xP(kn)q 1= Sy XX T,
~ H H Y/\k:

k>1 \ a€P(k)2 P(n)px P(k1)gx-xP(kn)q Sk

“en (T v

k=1 \ P(K)pq 5,

The map p: C(S)OC(Y) — C(Y) is induced at cosimplicial level 0 by

[~=3

C(S) oCY)2SAY =Y
and for n > 0 at level n + 1 by the commuting squares

C(S)P o C(Y)7H! _Hpatl C(y)prat!
idoqurlT Tﬂp+1,q

C(S)P o C(Y )7L C(S)P+l o C(Y)1

Here p,q > 0 are such that p + ¢ = n.

Associativity and unitality of u again follows from a similar straightforward modification
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of the argument from Proposition 4.2.7 (see also Corollary 6.1.6). O]

Remark 6.2.7. It is worth remarking that a straightforward modification to the proofs of
Theorems 1.1.4 and 1.1.5 presented in this document shows that Tot C(Q) is an A..-operad
and, if Y is a Q-coalgebra, that C'(Y) is an algebra over this operad. In particular, our
constructions provide a point-set model for Tot C'(Q) as a (homotopy coherent) operad which
is Koszul dual to Q, and Y — Tot C'(Y) provides a comparison from Q-coalgebras to algebras

over this operad (see [38]).

6.3 Conjectures and future work

6.3.1 A chain rule for functors of structured ring spectra

We expect that our techniques from Section 6.1 which underlie our proof that the derivatives
of the identity in Alg, form an operad should allow for a description of a “highly homotopy
coherent chain rule” for functors of structured ring spectra. Essentially, a chain rule describes

an equivalence of Goodwillie derivatives
a*F OB*IdD a*G ~ a*(FG) (632)

for functors C < D 5 E (where C, D, E are suitable model categories such as Spt or Top,).

Arone-Ching [2] give a full description of a chain rule for functors between Top, and Spt,
building off a chain rule for functors of Spt described by Ching [23] (see also Klein-Rognes
[53] and Yeakel [71]). The chain rule may be thought of a homotopical analog to the Faa di
Bruno formula [37] for functions of a single real variable, which describes the n-th derivative
of a composition f o g in terms of the derivatives of f and g separately. Note that by setting

either F' or G to be the identity in (6.3.2), the chain rule describes a (0,Idp, 0,Idc)-bimodule
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structure on the derivatives of a homotopy functor C — D'3.

Conjecture 6.3.3. Let O, O, and O" be operads of spectra and F,G be finitary simplicial

functors Alge G, Alg e LN Algyn. Then there exists
(i) A “highly homotopy coherent” chain rule map 0, F o 0,G — 0.(FG)
(i1) An equivalence of (0", O)-bimodules of the form 0.F oo 0,G ~ 0.(FG)

Our method is to resolve the functors F' and G by the stabilization adjunction, as done
before with the identity, in order to build the desired map 6.3.3(i) above by a O pairing of
cosimplicial symmetric sequences. When F' and G are determined by a cofibrant (0", O')-
bimodule M and cofibrant (O, O)-bimodule N, respectively, our techniques provide the
desired result. Specifically, we require that F' ~ |Bar(M,O,—)| and G ~ |Bar(N,O’, —)|
and that M, N consist of terms which are (—1)-connected. The desired map 6.3.3(i) then

necessarily takes the form

Ay®5(0,F60,G) — 0.(FG).

In this case, however, since 0,F ~ M, 0,G ~ N, and 0,(FG) ~ M oo N (Proposition
3.2.12), the map 6.3.3(i) is merely homotopic to a “fattened-up” version of the quotient map

MON%MOO/N

by coequalizing the left and right O’ actions on N and M, respectively. Furthermore, item
6.3.3(ii) states that the functor 0, which sends a suitable F': Alg,, — Algy, to its sequence
of derivatives 0,F in fact takes values in (O, O) bimodules. From this perspective, there
is an “evident” way to construct a functor Alg, — Alg, from a sequence of derivatives:
specifically, by the assignment M — M op (—). Let us denote by biRep the category of such

functors Fys. Note that there is a natural inclusion biRep — Fun(Alg,,, Algy ).

13That is, assuming that an operad structure can be described on 9,Idc and 0,Idp to begin with.
14We define here Fun(C, D) latter is the category of finitary reduced simplicial functors C — D.
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We anticipate that a chain rule as in Conjecture 6.3.3 could further be used to prove an
analogous result of Arone-Ching [3] in which they utilize their chain rule from [2] to show
that the functor F' — 0,F which assigns a homotopy functor its sequence of Goodwillie

derivatives admits a right adjoint ®

Ox
Fun(C, D) ~ BiMod s, 145,06, 1a¢) (6.3.4)

Here C and D are either Top, or Spt and the explicit structure of ® depends on choice of
C,D. Arone-Ching further show that the that the adjunction (6.3.4) is comonadic'®, which
essentially tells us that the Taylor tower of such a functor F' may be recovered from its
sequence of derivatives 0, F as an appropriately sided bi-module, together with the action of

the comonad 0,P via an equivalence
holim,, P, F' ~ Tot Cobar(®, 0,®, 0, F).

Crucial to their constructions is a precise model for 0,F built from the derivatives of
representable functors Map(X, —)—we conjecture that a similar result holds for functors of

structured ring spectra, where we use functors Fj; € biRep as our “building blocks”.

6.3.5 An operad structure on the derivatives of the identity in a

general model category

We additionally expect that the constructions in this document may be used as a general
approach to describe an operad structure on the derivatives of the identity in a suitable
model category (or perhaps oco-category) C. What “suitable” means in this context is still a
subject of ongoing matter, but we in particular would require (i) C be pointed and simplicial,

(ii) the stabilization Spt(C) of C be closed, symmetric monoidal. We write (X, Q) for the

15See, e.g., [48] for a more detailed treatment of (co)monadic adjunctions.
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stabilization adjunction between C and Spt(C).

Similarly to the cases described before, we begin with the cosimplicial resolution of Idc
via the stabilization adjunction. Either by analogous estimates from [15], [14] or via a
modification of [2, 16.1], it should follow that 9,,Idc can be constructed as the totalization
of the cosimplicial diagram built from 9, ((QXXX)*1) for k > 0. Let us write K for QX%
and note that K admits a natural comonoid map K — KK via the unit Idc — QFXZ. A
chain rule in the style of Conjecture 6.3.3) provides that the derivatives 0,K of K be (at

least up to homotopy) a cooperad'® via the composite

8*K — a*<KK) ~ a*K Oa*IdSpt 8*K

(©

In nice cases, this cosimplicial diagram is (weakly equivalent) to the cobar complex C'(9,.K) on
0,K. However, it is more likely that this cooperad structure is defined only up to homotopy

and is thus not rigid enough to provide a strict comparison of cosimplicial objects between

0, ((2X2)*+1) and C(0,K).

One main benefit to our work is that we only need that the resultant diagram cosimplicial
diagram admits a monoidal pairing with respect to [J. This would have to built by hand,
but should be possible if we can provide a Snaith splitting of the counit K!” or somehow
otherwise find a way to produce a Tot-model for 0,Id¢ whose underlying cosimplicial object
admits a [-monoid structure. This is essentially our approach for C = Alg,, wherein we use
a specific model for iterates of stabilization UQ = Qg‘,’go 2o provided by [55] to obtain the
diagram C(O).

16Though this this does require some knowledge about the operad 0xIdsp(c)- For instance, when C = Top,
this is just the identity symmetric sequence; for C = Alg, this is the symmetric sequence with the ring
spectrum O[1] concentrated at level 1.

17Compare with the Snaith splitting for Alg,, is described in Section 3.3.1.
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6.3.6 “Classifying operads” and homotopy descent

Once this operad structure has been established, it is reasonable to wonder how much of the
original homotopy theory of C is captured by the category of algebras over 0,Idc (a problem
suggested by Haynes Miller). In the best case, we would obtain that C is equivalent to the
category of algebras over 0,Idc. As suggested by the results of [15], [28], it is more likely
this equivalence will hold only after restricting to a “nice” subclass of objects. We expect
our box product pairings to provide a useful tool for obtaining such a result and outline one

possible approach as follows.

The assignment X +— XX, produces a functor from C to K-coalgebras whose right
adjoint is given by taking “derived primitives”. This adjunction is an equivalence is whenever
the stabilization adjunction is comonadic (see [48]), which we conjecture holds precisely when
restricted to elements of C such that the Taylor tower of Idc converges. A Snaith splitting is
key in translating the resultant K-coalgebra structure to a “Tate coalgebra” structure over
a the cooperad 0,K [49]. This is part may be tricky, as even in the best known cases so
far, the Snaith splitting only produces such an equivalence up to homotopy. However, this
is precisely one benefit to our technique: We only need to show that the resulting diagram
C(XX) admits a (left) module structure over the underlying cosimplicial object of 0,.Idc

with respect to the box product.

We summarize the above discussion in the following conjecture (see [26], [60, §6] for a

similar discussion in co-categories)

Conjecture 6.3.7. Let C be a “suitably nice” pointed simplicial model category, such that

Spt(C) is symmetric monoidal. Then

(i) There is a natural model for the Goodwillie derivatives of the identity 0,Idc as an

operad and 0.(XFQY) as a cooperad which are Koszul dual.
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(i) There is a comparison map Zc from C to 0,1dc-algebras in Spt(C) given by

Ec: X = TotC(SXX)

In particularly nice cases, we are interested in understanding when =¢ induces an equiv-
alence of homotopy categories. One method for showing such an equivalence would be to
provide a natural coaugmentation ®¢(X) — C(XFX) (which may be possible only after lo-
calization, in which case ®c is essentially the localization functor), whose connectivity may
be analyzed via the cubical analysis techniques developed in [33], [14], [15], [27]. In Alg,

this coaugmentation is the unit map X — UQ(X) which induces an equivalence
X ~ PrimB(O) ZX?%OX ~ X—{—\Q

for connective X [29]. In Top, this coaugmentation is obtained (essentially) via the Bousfield-
Kuhn functor [54], [20] (which factors through a suitable chromatic localization of spaces

and lands in 7'(n)-local spectra), as shown by Heuts in [50].

100



1]
2]

3]

[10]

Bibliography

E. Abe. Hopf algebras. Cambridge Univ. Press, 1977.

Gregory Arone and Michael Ching. Operads and Chain Rules for the Calculus of Func-
tors. Number 338 in Astérisque. Société Mathématique de France, 2011.

Gregory Arone and Michael Ching. A classification of Taylor towers of functors of spaces
and spectra. Advances in Mathematics, 272:471-552, Feb 2015.

Gregory Arone and Michael Ching. Cross-effects and the classification of taylor towers.
Geometry and Topology, 20(3):1445-1537, Jul 2016.

Gregory Arone and Michael Ching. Goodwillie calculus. In Handbook of Homotopy
theory. CRC Press, 2019.

Gregory Arone and Marja Kankaanrinta. A functorial model for iterated Snaith splitting
with applications to calculus of functors. In Fields Institue Communications, volume 19.
Amer. Math. Soc., 1998.

Gregory Arone and Mark Mahowald. The Goodwillie tower of the identity functor and
the unstable periodic homotopy of spheres. Inventiones mathematicae, 135(3):743-788,
Feb 1999.

Maria Basterra. Andre—Quillen cohomology of commutative s-algebras. Journal of pure
and applied algebra, 144:111-143, 1999.

Maria Basterra and Michael A. Mandell. Homology and cohomology of E..-ring spectra.
Mathematische Zeitschrift, 249(4):903-944, 2005.

Mikhail A. Batanin. Coherent categories with respect to monads and coherent prohomo-
topy theory. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 34(4):279—
304, 1993.

101



[11]

[21]

[22]

23]

[24]

[25]

Kristine Bauer, Brenda Johnson, and Randy McCarthy. Cross effects and calculus in an
unbased setting. Transactions of the American Mathematical Society, 367(9):6671-6718,
Nov 2014.

Mark Behrens and Charles Rezk. Spectral algebra models of unstable v,,-periodic ho-
motopy theory, 2017.

Clemens Berger and Ieke Moerdijk. Resolution of coloured operads and rectification of
homotopy algebras. Contemporary Mathematics, page 31-58, 2007.

Jacobson R. Blomquist. Iterated delooping and desuspension of structured ring spectra,
2019.

Jacobson R. Blomquist and John E. Harper. Suspension spectra and higher stabilization,
2016.

Jacobson R. Blomquist and John E. Harper. Suspension spectra and higher stabilization,
2017.

J.M. Boardman and R.M. Vogt. Homotopy Invariant Algebraic Structures on Topological
Spaces. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1973.

Francis Borceux. Handbook of Categorical Algebra 2, volume 51 of Encyclopedia of Math
and its Applications. Cambridge university press, 1994.

A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations, volume
304 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 1972.

Aldridge Bousfield. Uniqueness of infinite deloopings for K-theoretic spaces. Pacific J.
Math., 129(1):1-31, 1987.

Gunnar Carlsson. Derived completions in stable homotopy theory. J. Pure Appl. Alge-
bra, 212(3):550-577, 2008.

Michael Ching. Bar constructions for topological operads and the Goodwillie derivatives
of the identity. Geometry and Topology, 9(2):833-934, 2005.

Michael Ching. A chain rule for Goodwillie derivatives of functors from spectra to
spectra. Trans. Amer. Math. Soc., 362:399-426, 2010.

Michael Ching. Bar-cobar duality for operads in stable homotopy theory. Journal of
Topology, 5(1):39-80, Jan 2012.

Michael Ching. A note on the composition product of symmetric sequences. J. Homotopy
Relat. Struct., 7:237-254, 2012.

102



[26] Michael Ching. Infinity-operads and Day convolution in Goodwillie calculus, 2020.

[27] Michael Ching and John E. Harper. Higher homotopy excision and Blakers—Massey
theorems for structured ring spectra. Advances in Mathematics, 298:654-692, Aug 2016.

[28] Michael Ching and John E. Harper. Derived Koszul duality and TQ-homology comple-
tion of structured ring spectra. Advances in Mathematics, 341:118-187, Jan 2019.

[29] Duncan A. Clark. On the goodwillie derivatives of the identity for structured ring
spectra, 2020.

[30] F. R. Cohen, J. P. May, and L. R. Taylor. Splitting of certain spaces C'X. Mathematical
Proceedings of the Cambridge Philosophical Society, 84(3):465-496, 1978.

[31] Brian Day and Ross Street. Lax monoids, pseudo-operads, and convolution. In In
Diagrammatic Morphisms and Applications, volume 318 of Contemporary Mathematics,
pages 75-96, 2003.

[32] Malte Dehling and Bruno Vallette. Symmetric homotopy theory for operads, 2015.

[33] Bjorn Ian Dundas. Relative K-theory and topological cyclic homology. Acta Math.,
179(2):223 — 242, 1997.

[34] Bjorn Ian Dundas, Thomas Goodwillie, and Randy McCarthy. The local structure of
algebraic K-theory, volume 18 of Algebra and Applications. Springer-Verlag London,
2012.

[35] A. D. Elmendorf and M. A. Mandell. Rings, modules, and algebras in infinite loop space
theory. Advances in Mathematics, 205(1):163-228, Sep 2006.

[36) AD Elmendorf, I Kriz, MA Mandell, and JP May. Rings, modules, and algebras in
stable homotopy theory, volume 47. American Mathematical Soc., 1997.

[37] F. Faa di Bruno. Sullo sviluppo delle funzion. Annali di Scienze Matematiche e Fisiche,
6:479—480, 1855.

[38] John Francis and Dennis Gaitsgory. Chiral Koszul duality. Sel. Math. New Ser., 18:27—
87, 2012.

[39] E. Getzler and J. D. S. Jones. Operads, homotopy algebra, and iterated integrals for
double loop spaces, 1994. [arXiv:hep-th.9404055].

[40] Victor Ginzburg and Mikhail Kapranov. Koszul duality for operads. Duke Math. J.,
76(1):203-272, 10 1994.

103



[41]

[42]

[43]

[44]

[45]

Thomas G. Goodwillie. Calculus I: The first derivative of pseudoisotopy theory. K-
Theory, 4(1):1-27, 1990.

Thomas G. Goodwillie. Calculus II: Analytic functors. K-Theory, 5(4):295-332,
1991/1992.

Thomas G. Goodwillie.  Calculus III: Taylor series.  Geometry and Topology,
7(2):645-711, 2003.

John E. Harper. Homotopy theory of modules over operads in symmetric spectra.
Algebraic and Geometric Topology, 9(3):1637-1680, Aug 2009.

John E. Harper. Homotopy theory of modules over operads and non-sigma operads in
monoidal model categories. Journal of Pure and Applied Algebra, 214(8):1407-1434,
2010.

John E. Harper and Kathryn Hess. Homotopy completion and topological Quillen
homology of structured ring spectra. Geometry and Topology, 17(3):1325-1416, Jun
2013.

Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
Kathryn Hess. A general framework for homotopic descent and codescent, 2010.

Gijs Heuts. Goodwillie approximations to higher categories. PhD thesis, Harvard Uni-
versity, 2015. [accessible at http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467478].

Gijs Heuts. Lie algebras and v,-periodic spaces, 2018.

Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. Journal of the Amer-
ican Mathematical Society, 13(1):149-208, 1999.

Brenda Johnson. The derivatives of homotopy theory. Transactions of the American
Mathematical Society, 347(4):1295-1321, 1995.

John R Klein and John Rognes. A chain rule in the calculus of homotopy functors.
Geometry and Topology, 6(2):853-887, 2002.

Nicholas Kuhn. Morava K-theories and infinite loop spaces. In Algebraic Topology
(Arcata, CA, 1986), volume 1370 of Lecture Notes in Math., page 243-257. Springer,
1989.

Nicholas Kuhn and Luis Pereira. Operad bimodules and comprosition products on
Andre-Quillen filtration of algebras. Algebr. Geom. Topol., 17(2):1105-1130, 2017.

104



[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

Nicholas J Kuhn. Localization of Andre-Quillen-Goodwillie towers and the periodic
homology of infinite loopspaces. Advances in Mathematics, 201:318-378, 2006.

Nicholas J. Kuhn. Goodwillie towers and chromatic homotopy: an overview. Geometry
& topology monographs, 10:245-279, 2007.

Tyler Lawson. The plus-construction, Bousfield localization, and derived completion.
Journal of Pure and Applied Algebra, 214:596-604, 2010.

Tom Leinster. Higher Operads, Higher Categories. London Mathematical Society Lec-
ture Note Series. Cambridge University Press, 2004.

Jacob Lurie. Higher algebra. http://people.math.harvard.edu/~1lurie, 2017.

J Peter May. Definitions: operads, algebras and modules. Contemporary Mathematics,
202:1-8, 1997.

J.P. May. The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 1989.

Randy McCarthy. Dual calculus for functors to spectra, volume 271 of Contemp. Math.,
pages 183-215. Amer. Math. Soc., Providence, RI, 2001.

Randy Mccarthy and Vahagn Minasian. On triples, operads, and generalized homoge-
neous functors, 2004.

James E. McClure and Jeffrey H. Smith. Cosimplical objects and little n-cubes, i.
American Journal of Mathematics, 126(5):1109-1153, 2004.

Luis Pereira. Goodwillie calculus and algebras over a spectral operad. PhD thesis,
Massachusetts Institute of Technology, 2013.

Charles Rezk. Spaces of algebra structures and cohomology of operads. PhD thesis,
Massachusetts Institute of Technology, 1996.

Nikolas Schonsheck. Fibration theorems for TQ-completion of structured ring spectra,
2020.

V. P. Snaith. A stable decomposition of Q"S"X. J London Math. Soc., 7(2), 1974.

David White and Donald Yau. Bousfield localization and algebras over colored operads.
Applied Categorical Structures, 26(1):153-203, Feb 2018.

Sarah Yeakel. A monoidal model for multilinearization, 2017.

105



Appendix A

Polynomial approximations to certain

functors

A.1 A proof of Proposition 3.2.12(i)

Let O, O’ be reduced operads in spectra and M a cofibrant (O', O)-bimodule. The aim of

this appendix is to prove that the n-th polynomial approximation the functor
X — Fy(X) = |Bar(M, 0, X)|

is of the form F ;. This is done in two steps: first we show that functors of the form F, 5,
are n-excisive, then we show that F, ,; and F); agree to order n.

Our first observation is that for X € Alg, and n > 2 there is a homotopy fiber sequence
of the following form (see [55, 2.11(b)])

inO oo (X) = 1,0 00 (X) = 7,10 00 (X) (A.1.1)

Proposition A.1.2. Let R, R’ be ring spectra and M a cofibrant (R', R)-bimodule. Then,
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forn > 1, the following functor from Modgr — Modg: is n-excisive
Y — M[’I’L] AsR y/m,

Proof. Let n > 1. It suffices to show for m > n that cr,,,(Y — M Ag, g Y\") ~ *. Since the
categories Modg, Modg: are stable, cross-effects and co-cross-effects (see the proof of 3.2.12)

agree. Thus,

(Y = M A, g Y ~aa™(Y = M As, g Y™)

~ M As,r er™(YV = Y) > %
since cr™(Y — Y) >~ cr,,, (Y = Y) = . O
Corollary A.1.3. Forn > 1, the functor i, M op (—) is n-excisive.

Proof. Since i, M is concentrated at level n, the right O-action on i, M factors through 7O,

via the only nontrivial map
Mn|ANO[A]A---NO[1] = M[n].
There are then equivalences
inM oo (X) i, M or0 (110 oo (X)) = M[n] As,op TQ(X)M. (A.1.4)

The claim then follows from Proposition A.1.2 and since TQ preserves strongly cocartesian

cubes (because it is a left adjoint). O
Proposition A.1.5. Forn > 1, the functor 1,M oo (—) is n-excisive.

Proof. We use induction on n. Note that M op (=) = i1 M op (—) is l-excisive from
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Corollary A.1.3 and perhaps more simply by the observation that

1WwM op (X) ~ M[l] /\(9[1] TQ(X)

Let n such that the claim holds for n — 1 and recall the fiber sequence

ZnM (oT5) (—) — TnM (75 (—) — Tn—lM [o75) (—)

from (A.1.1). Let X be a strongly cocartesian (n + 1)-cube in Alg, and for a functor F set

ho(F(X)) = holimp, ) F(X).

Note that there is a natural map xo: F(X(0)) — ho(F (X)) which is an equivalence precisely

when F' is n-excisive. Moreover, applying hg to (A.1.1) results in a homotopy fiber sequence

ho(inM 0o (X)) = ho(TaM 00 (X)) = ho(Tpn_1M oo (X)).

Let Y be the following cube obtained by applying yq to (A.1.1).

inM op (X(K * \
- M oo (X (D)) Tn1M oo (X(0))
©)
ho(inM 0o (X)) * ~

T T

ho(Th M oo (X)) ho(Th_1M oo (X))

We want to show that the arrow (%) is an equivalence. Notice that homotopy limits in Alge,

are created in the underlying category of spectra, so it suffices to show (x) is an equivalence
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of spectra.
Since the top and bottom faces of ) are cartesian, the cube )Y itself is cartesian. Thus,
since back-right face is cartesian, the front-left face is cartesian, and thus also cocartesian.

So, since the back left arrow is an equivalence, (%) must also be an equivalence. O]

Proof of Proposition 3.2.12(i). Proposition A.1.2 shows that F s is indeed n-excisive. It
remains to show that P,(Fy) ~ F,, . It will suffice to show that the natural comparison
map

>\n: FM—>F7—”M

induced by M — 7, M agrees to order n in the language of [43] as this condition guarantees
then that P,()\,) is a weak equivalence in (note the second equivalence holds as F. js is

n-excisive)

Pn(An)

Pn(FM) — Pn(FTnM) = FTnM'

Specifically, we need to show that there is ¢ such that if X € Alg, is k-connected, then
An(X) is ((n + 1)k — ¢)-connected.
Let r,M denote the fiber of M — 7,,M so that

Ff,.nM — FM — FTnM
is a homotopy fiber sequence of functors Alg, — Alg.,. Note that

Mkl kE>n
rnM[k] =

* E<n

It follows if X is k-connected then

F, u(X) =|Bar(r,M, O, X)|
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is constructed as a homotopy colimit of factors of the form

M[t]AO[s1]) A=+ AO[sg] A X

where s; > 1 and s > ¢t > n.

From [46] we know that X AY is (k4 ¢+ 1)-connected if X is k-connected and Y is (-
connected. So, if M and O are each levelwise (—1)-connected, this homotopy colimit consists
of terms which are sk > (n+1)k connected, and so F,, 3 (X) is (n+1)k-connected. Thus, A,

agrees to order n with ¢ = —1 (in Goodwillie’s terminology [43], A, satisfies O,,(—1,0)). O

Remark A.1.6. In fact, the results of the above proposition hold whenever M is bounded
below (i.e., there is k such that for all n, m,M[n] = 7 for * < k) via a careful investigation

of the connectivity of the fiber of Fy; — F}. .
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Appendix B

Cooperads and their coalgebras

The aim of this section is to describe what we mean by cooperads and their coalgebras in the
context of this document. We recall that an operad O is just a monoid for the composition

product o of symmetric sequences; the dual notion of cooperad is a more delicate matter.

B.1 Reinterpreting the composition product

We now adopt the notation of Chapter 5 regarding N,-objects. Given a non-basepoint
element a € P(n)y, we let |a| denote the corresponding profile in N°*[n] and a;; be such

that

|Oé| - (O{1717(Oé2717"‘ 7a2,a1)7”' 7(0%,17"' 705k,ak,1)) .

Here, «; is inductively defined as o; := a1 + -+ + @, ,- Note n = . Said differently,
a; is the number of partitions in A;, and a1, ..., @j,_, is the size of the partitions appearing

in \;_; for j =1,..., k. Note that || is not uniquely determined by «.

Definition B.1.1. Let Ay,..., Ay be reduced symmetric sequences. We define their com-
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position product as follows.

(AjoAgo---0Ap)n] = \/ (A ®-- & A)a]

aEP(n)k
Here, we use the notation
[e%1 Q-1
(A ® - ® Ap)|a] = Ajjoq] A /\AQ[OQ,,-] Ao A /\ Aglou.i]
i=1 i=1

as Y,-objects!® if av is not the basepoint, and set (4; ® - - ® A,,) of the basepoint to be the
terminal spectrum . There is a ¥,, action by permutation on P(n)y.

Similarly, their dual composition product is defined as

(A14z5---6A)n] = ] (A1 @@ Alal.
a€P(n)k
We write A®* for the k-fold product A ® --- ® A and note that A®° := I. Note that
this symbol ® is different from the tensor of symmetric sequences as in [67], [44]. Let P(n)3,
denote the set of non-basepoint k-simplices of P(n). Since Spt is stable, finite coproducts

and products are equivalent and hence the natural comparison
Ajo---0A;, =5 Aj5---0A, (B.1.2)

is a weak equivalence of symmetric sequences.

Remark B.1.3. The dual composition product is rarely strictly associative, and therefore we
cannot say that a cooperad is a comonoid with respect to 6. The issue is that the smash
product of spectra will rarely commute with limits; however for F' a small diagram of spectra

and X € Spt, the induced maps (lim /) A X — lim(F A X) make & oplax monoidal (see, e.g.

18We denote by £, < 3, the subgroup of permutations o which fix the partition «.
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[31], [25]).

We eschew the full development of (op)lax (co)monoids and only state what we need for
a symmetric sequence Q to be a cooperad. Note that what we are calling a cooperad is more
precisely a coaugmented cooperad with divided powers; similarly, our notion of coalgebra is

that of a coalgebra with divided powers [38].

B.2 Cooperads

Informally, a cooperad is a reduced symmetric sequence Q that admits cocomposition maps

of the form

5: QK] — Q] A Q] A+ - A Qlk]

for all n,k = ki + -+ + k, > 1, along with a counit e: Q[1] — S, which satisfy certain
associativity, unitality and equivariance conditions.

Equivalently, we may write the above cocomposition maps as a collection
Qldia] — 9%*[a] (a € P(n)s,).

Further our cooperads will be coaugmented in the counit Q[1] — S admits a retract n: S —

Q[1].

Definition B.2.1. We say that Q is a cooperad if there are well-defined cosimplicial objects
in Spt™»
_ ®e
@l =11 _,,.9""la]

for all n > 1. Coface and codegeneracy maps are induced by the face and degeneracy maps

from P(n), as follows.

Given o € P(n)y, d*: C(Q)®1[n] — C(Q)®*[n] and s/: C(Q)®*[n] — C(Q)®*[n] are
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induced by

d': Q%" d;a] - Q®F[a] (comultiplication maps)

s’ Q¥ [s;a] — Q%*[a] (counit maps)

Example B.2.2. Recall that Q% = I and that I[a] = S for a € P(1),, (for all & > 0). We
write out the first few factors of C'(Q)[n]. First, if n = 1, we have

cQu = (1n=—=Qn==enrQ[] ). (B.2.3)

The two maps [[1] — Q[1] are induced by the coaugmentation n: S — Q[1], and
d': Q[1] — Q[1] A Q[1] is given by

d°: Q1] = S A Q1] M Q1] A Q[1]
d': Q[1] > Q1] A Q[1]

idAn

d*: Q1] 2 Q] A S — Q[1] A Q[1]
Here, 0 is the comultiplication on Q[1]. More generally, if n > 2 then
C(Q)n] % ( 11r] == Q) == Mcpi QA QI A A Q] -+ ) (B24)

where we write (s, (t1,...,ts)) = |a|. The maps I[n] = * — Q[n] are the initial maps; and

d': C(Q)[n]' — C(Q)[n]? is induced by the following maps

d°: Q[n] = S A Q[n] % Q1] A Q[n]

d': Q] 5 T QlslAQt]A---AQt] ((s.(h,-.-,1)) = |al)
a€P(n)3
&: Qln] = Q] A S N Qln] A Q[
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and the trivial map Q[n] — * on all other factors. Again, § contains the information of the
various comultiplication maps on Q.

For any n > 1 the counit maps s’ are induced by Q[1] — S and Q[k] — * (k > 2).

B.2.5 The commutative cooperad of spectra

The symmetric sequence S introduced before admits a natural cooperad structure with
comultiplication 0 induced by the natural isomorphisms S -+ SASA--- A S.

In particular, since S®¥[a] = S for any non-basepoint a € P(n)y, it follows that

@M =11,

and the coface (resp. codegeneracy) maps are just induced by the face (resp. degeneracy)

maps of P(n).
Proposition B.2.6. There is an equivalence 0,1d ~ Tot C(S).
Proof. Using the model from (3.4.2), this follows from the equivalences
0,Id ~ Map (| P(n) TotH Map (8°,9) ~ Tot C(S)[n]

for all n > 1. O

B.3 Coalgebras over a cooperad

Let Q be a cooperad. Informally, O-coalgebra structure on a spectrum Y consists of comul-
tiplication maps

Y = (Qn] A Y ™), (n>1)
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which are required to further satisfy associativity, unitality and equivariance conditions.

Note these comultiplications induce a map

Y Q5(Y) = [[(Qn] A Y™y,

n>1

which we essentially require to be “oplax comonoidal” [31], and that Q-coalgebras are the

coalgebras for this comonoid.

Definition B.3.1. Let Q be a cooperad. A Q-coalgebra is a spectrum Y that admits a
well-defined cosimplicial object C'(Y') as follows. For k > 0,

cy)=T1[{ I <*ajny™

n>1 a€P(n)k n
n

Coface maps are induced the face maps from P(n) for each n > 1 along with the diagonal

maps on Y as follows.

o d°: C(Y)" = C(Y)"! is induced by Y{i*¥ — « if the image of do: P(n)y — P(n)e—1 is
the basepoint, and induced by the identity on YZ’\: otherwise.

e Fori=1,...,k, d'is induced by Q-cooperad structure maps
Q%*[d;a] — Q®F*!o]

for € P(n)g41.

e d**! is induced as follows. For m > n, if & € P(m)y;; has (k + 1)-st partition given

by {T1,...,T,}, then let &/ € P(n); be the result of quotienting the set {1,...,m} by
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the relation a ~ b if a,b € T;. Set t; = |T;|. d*™ is induced by the composites

Q%I AY N — Q¥F[o/T A (QIL ] AY MY A -+ A (Q[t] A YN

— Q®k+1[a] A Y/\m

for all & € P(m)41 and m > n.
Codegeracy maps are induced by Q%*[s;a] — Q%] for o € P(n); as in C(Q).

Remark B.3.2. Note that C'(Y) is essentially the cobar resolution on Y with respect to the

comultiplication map Y — Qo6(Y'). In particular, there are isomorphisms

I

C) =[] @) As, V" = QFa(Y)  (k20)

B.3.3 Derived primitives

Let Y be a Q-coalgebra. The primitives of Y is given by the (coreflexive) equalizer in Spt
Y = hm<Y:;Hn21(Q[n] AY M) ) (B.3.4)
The top map is induced by the coaugmented structure
Y2SAY 2 oAy

and the bottom map is induced by the comultiplication maps Y — (Q[n]AY ")y, for n > 1.
There is a common retract of both maps given by applying e Aid: Q[I]AY — SAY =Y
and Q[n] — * for n > 2.

This gives the precise analog of primitives of a coalgebra from commutative algebra, but

fails to be homotopy invariant in general. The derived primitives as defined below gives the
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homotopy-theoretic analog to this construction, and arises as the dual notion of topological

Quillen homology (TQ) for algebras over operads in spectra.

Definition B.3.5. For Y a Q-coalgebra we define the derived primitives PrimY to be the
totalization Tot C'(Y').

Note that C(Y)|a<: is precisely the equalizer diagram defining Y from (B.3.4).

Example B.3.6. Any X € Top, gives rise to an S-coalgebra >*°X whose comultiplication
maps are induced by the diagonals on X. That is,

YPX 580X A AX)EECX A AETX

In particular, for any Y € S-coalgebra, YV = Map(Y, S) is a commutative ring spectrum;
i.e. algebra over the commutative operad Com. There is further an equivalence TQ(Y"Y)" ~

Prim(Y) (see, e.g., [12], [50]) whenever Y is a finite spectrum.
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