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Abstract

Data is growing at an exponential rate. As a consequence, cloud microservices and

scientific applications are becoming more complex and computationally demanding. This

requires the design of new large-scale storage systems that can handle this ever-increasing

load and provide a robust and responsive service platform. New memory technologies

such as PCM, STT-RAM, and 3D-XPoint offer persistence with unprecedented perfor-

mance. Devices are available in the form of NVMe SSDs and NVDIMMs (or PMEM),

both of which can be accessed quickly between nodes using RDMA networks. These de-

vices are being increasingly adopted in datacenters and HPC clusters to accelerate data

storage and analytics. These technologies have the potential to change the fundamental de-

sign principles of storage systems. Unfortunately, existing data storage systems that have

been designed around the performance characteristics of archaic hardware such as spin-

ning disks and Ethernet adapters are unable to make efficient use of the technology. This

is because these modern storage devices have very low latency and the high software over-

head of traditional designs prevents full utilization of available bandwidth. Moreover, prior

work has been unable to hide the weak and complicated persistence properties of PMEM

while fully exploiting its byte-addressability and performance. In this thesis, we rethink

the assumptions and design paradigms of traditional storage systems and propose new al-

gorithms that would have been considered impractical on previous generation hardware.

To solve the new challenges with storage system design, we propose Navi Store, a generic
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storage sub-system with a focus on improving the performance of three classes of appli-

cations – online analytics, scientific HPC, and cloud microservices. Navi Store’s design is

based on cross-layer holistic thinking and includes four key components.

Specifically, we design Arcadia, a generic replicated log on PMEM to make it easier to

use. Arcadia hides the idiosyncratic behavior of PMEM while preserving required guaran-

tees of atomicity, integrity, concurrency, and monotonicity, allowing programmers to fully

realize the benefits of PMEM. Using this log design, we propose DIPPER, a new decou-

pled model which can be used to build fast crash-consistent persistent data structures on

PMEM. We show that this model can be used to design a quiescent-free storage system

with low tail latency. Such a system is particularly useful for cloud microservices where la-

tency service level objectives are desirable and inconsistent user experience directly results

in loss of revenue. We further propose microfs, an abstraction for designing distributed

ephemeral storage with synchronization-free control and data planes to reduce software

overhead. Based on this abstraction, we design a system to optimize checkpoint IO on su-

percomputers using NVMe-over-Fabrics and show how it can improve the performance and

progress rates of scientific HPC applications. Finally, we design hardware-based arbitra-

tion schemes for application-oblivious QoS that utilize cross stream arbitration algorithms

implemented in hardware for providing latency and throughput service level objectives to

applications in a multi-tenant cloud setting. Our research has shown that the proposed de-

signs are better than state-of-the-art in several aspects including performance, scalability,

fault tolerance, and quality of service. The main contribution of our work is new models,

algorithms, data structures, and abstractions which enable both programmers and end-users

to efficiently utilize new hardware technologies.
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Chapter 1: Introduction

Modern datacenters, high-performance computing (HPC) clusters, and public clouds

enable researchers and users from diverse domains to solve complex problems. Scientific

domain-specific applications such as fluid dynamics, structural mechanics, discrete event

simulation, and 3D-modeling need to be run at an extremely large scale to solve practical

problem sizes. Web 2.0 [136] and emerging Web 3.0 applications, such as hosted services,

web applications, and social networking need to run at even larger scales to satisfy global

demands. Both kinds of applications place extreme stress on the data storage and analytics

components of storage system middleware. This requires the design of new large-scale sys-

tems that can handle this ever-increasing load and provide a robust and responsive service

platform. Fast storage and analysis of data, in particular, is a must for achieving adequate

response times.

New non-volatile memory technologies such as phase change memory (PCM) [101],

resistive RAM (ReRAM) [10], spin-transfer torque RAM (STT-RAM) [165], and 3D-

XPoint [61] offer unprecedented performance with persistence. These technologies are

available in the form of non-volatile memory express (NVMe [131]) solid state drives

(SSDs) accessible via peripheral component interconnect express (PCIe) or NVDIMMs ac-

cessible through CPU loads and stores, commonly known as persistent memory (PMEM).

Further, high-performance remote direct memory access (RDMA) based networks allow
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fast remote access to these storage devices. Newly introduced NVMe SSDs based on flash

and 3D-XPoint memory [118] offer unprecedented performance and concurrency. For ex-

ample, new Intel SSDs offer write bandwidth up to 3GB/s [91], an order of magnitude

faster than serial AT attachment (SATA) SSDs. These devices are ideal for use in modern

systems to build compact high-density storage arrays. These arrays can be stacked together

to build a disaggregated storage cluster. With the introduction of the NVMe-over-Fabrics

(NVMf) standard [130], low latency remote access to these arrays can be effectively pro-

vided. The NVMf standard can take advantage of fast RDMA-enabled networks in modern

systems to reduce the network overheads of remote access. Guz et al. [60] have shown that

at the application level, NVMf has ∼10% overhead compared to local IO. These emerging

non-volatile memory and networking technologies have the potential to change the design

principles of storage systems.

These devices are being increasingly adopted in datacenters and HPC clusters to accel-

erate data storage and analytics [11, 128]. Unfortunately, existing data storage runtimes

have been designed considering the performance characteristics of archaic hardware, such

as spinning hard disks and Ethernet networks. Applying the design principles of stor-

age systems developed for these devices to those developed for modern devices leads to

inefficient utilization of available hardware resources. In addition, the features and high-

performance offered by new hardware make it possible to enable designs previously con-

sidered impractical. For example, persistent memory exposed as NVDIMM can be used

to build fast persistent data structures, which were considered impractical with hard disks.

There is a fundamental need for fault-tolerance in storage systems and ubiquitous use of

data structures. Hence, the design of fast persistent data structures will have a significant
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impact on the performance of storage systems. This thesis intends to rethink the assump-

tions and design paradigms of traditional storage systems to take full advantage of new

hardware, and propose new algorithms which were considered to be impractical with pre-

vious generation hardware.

With emerging memory and networking technologies (PMEM, NVMe, and RDMA) be-

ing adopted in datacenters, the challenge is to design new distributed storage systems which

can efficiently take advantage of new hardware. From the storage system perspective, four

dimensions must be considered – performance, scalability, fault-tolerance, and quality of

service (QoS). To satisfy these dimensions, existing storage solutions take a black-box

approach to system design. They expect that storage devices are accessible through stan-

dardized interfaces, such as the kernel block driver, or the POSIX application programming

interface (API). Similarly, networking devices are assumed to be only accessible through

the sockets API. Multi-layered software-heavy systems are common in the storage commu-

nity. However, to attain a synergistic solution, a tighter integration between hardware and

software is required. Software should not view hardware as a black box, but rather should

take a white-box approach and make optimal use of internal hardware features. The design

of storage systems should, therefore, involve cross-layer holistic thinking.

In this thesis, we explore three broad challenges that must be solved to provide the

four required dimensions in storage systems – (1) lowering software latency to realize full

hardware potential, (2) utilizing new hardware features to design more efficient software,

and (3) re-evaluating the design principles of storage systems based on the performance

characteristics of new hardware. In the sections that follow, we clearly articulate the spe-

cific challenges that we seek to solve in this thesis and present detailed descriptions of the

designs we propose to solve them.
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1.1 Problem Statement

In this section, we discuss the main problem statement of this thesis.

PMEM Logging. The performance critical nature of logging has led many researchers

to propose new log implementations on PMEM as a way of improving end-to-end system

performance. Several works have looked at designing both unreplicated and replicated log-

ging protocols on PMEM [14, 70, 75, 95, 162, 172, 178, 182]. Unreplicated protocols, like

PMDK’s libpmemlog [75] and FLEX [178] are by design not resilient to node or device

failures. This makes it hard to apply them in systems with reliable and replicated primary

storage. The log is a single point of failure in persistent systems, so its resilience must be

at least that of primary storage; therefore, replicated logging is essential for a robust stor-

age system. Unfortunately, prior work on replicated logging places more trust in PMEM

hardware’s ability to retain data than it should. For instance, Query Fresh [172] does not

have any mechanism to handle memory corruption (resulting from software bugs) and un-

detected media errors, so it is possible to read corrupted data. Tailwind [162] assumes the

presence of DMA capable battery-backed DRAM buffers to guarantee persistence. Such

special hardware support is impractical in a production system and we are not aware of any

commodity system offering such support.

Providing concurrency for log writes is another dimension where prior work falls short.

It is challenging to provide concurrent writes to the log because multi-threaded concur-

rency is non-deterministic and storage systems typically require log writes to preserve a

total order to guarantee correctness. Without a total order, consistency of systems cannot

be guaranteed on recovery. PMEM makes this problem even more challenging because

cache lines may be evicted implicitly at any time. So, if log data is accessed concurrently

and in-place, there are no ordering guarantees for data persistence. Prior work [75, 178]
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completely sidesteps this issue by fully isolating log writers to preserve the total log order

but at the cost of limited or no concurrency.

Reducing Persistence Overhead. Storage systems can be broadly classified into three

types – cached, uncached, and decoupled. In a cached system, a volatile cache is used to

improve performance by caching a part of the persistent data. This cache is tightly coupled

with the persistent backend, i.e., the cache is needed to update the backend. A logical or

physical log is used to ensure atomicity and durability of operations. Traditional systems

used physical logging which suffered from the large size of log records. To improve logging

performance, recent systems [71, 90, 113, 139, 146, 179, 180] have moved to logical or

operation logging. Usually, both the cache and the log have limited space. Therefore,

checkpoints are necessary to cleanup space in the log, or cache, or both. Herein lies the

major problem with cached systems. Data from the cache is used to update the persistent

backend and since the backend must be updated atomically, the cached pages cannot be

modified until they are made persistent. As a result, during checkpoints the system either

becomes temporarily unavailable or clients experience intolerable delay. This compromises

tail latency or quiescent freedom, and sometimes both.

In an uncached system, all data is immediately persistent and nothing is cached. To

ensure atomic updates, transactions are used. Since data is immediately persistent, check-

points are not required. While uncached systems were considered impractical with disks

and SSDs because of their slow write performance, they are gaining popularity in recent

times due to the advent of PMEM. The fast performance of PMEM makes uncached system

practical in production scenarios. Unfortunately, the overhead of transactions to atomically

update data in PMEM is too high, resulting in performance being compromised. The main

reason for this, as mentioned earlier, is that the CPU caches are not persistent and cache
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lines can be implicitly evicted. To ensure correct ordering of updates, explicit cache flushes

and store fences are needed. By avoiding the need for checkpoints, uncached systems can

attain low tail latency and quiescent freedom but at the cost of performance. The overhead

of transactions and cache flushes have been well studied [63, 125].

Decoupled systems are variants of cached systems where the persistent backend can

be updated without using data in the cache. This can be done, for instance, by recording

detailed information in a log, which can then be used to update the backend independent of

the frontend operation. DudeTM [107] and NV-HTM [25] are two systems for PMEM that

have explored a decoupled approach. These systems rely on expensive physical logging, as

opposed to the more efficient logical logging. Further, they require special hardware sup-

port for consistency – hardware transactional memory (HTM). Therefore, we believe that

these systems are neither performant nor widely applicable. Persimmon [190] is another

system which proposes a decoupled design, however it does not provide any concurrency.

Accelerating Checkpoint IO. Application-level checkpointing is a common approach

taken to provide insulation from inevitable system failures. In a disaggregated setup, NVMf

can be used to reduce checkpoint overhead. However, to take full advantage of this new

standard, a new approach is required which is not only transparent but is also able to expose

the raw NVMf performance to end applications. This approach must reconsider the need

to trap into the OS for every operation, instead providing unprivileged userspace storage

access. It is thus important to design userspace storage runtimes which can take advan-

tage of these resources and transparently improve application performance. In a disag-

gregated cluster setup, the most common form of storage runtime provided is a parallel

filesystem such as Lustre [149] or GPFS [147]. In recent years, several distributed filesys-

tems [12, 65, 72, 108, 163, 171] have been proposed to alleviate the bottlenecks in parallel
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filesystems. However, we find that these systems are still not ideal for highly concurrent

checkpoint IO. There are two primary reasons for this. First, these storage systems overlay

multiple software layers over POSIX filesystems which decrease the peak attainable band-

width. Second, the use of a global namespace restricts scalability and reduces efficiency of

the storage system.

Quality of Service. In cloud environments, users expect a certain guarantee of service.

Considering the new NVMe technology being introduced in enterprise clouds, it is only

natural to ask whether a similar guarantee of service can be provided for this emerging

hardware. In fact, this issue has been addressed to some extent in the NVMe standard

itself. The standard includes provisions to enable request arbitration through mechanisms

that are to be provided by hardware. However, there is limited knowledge of using these

provisions to enable service guarantees in cloud environments. Prior research [9, 57, 58,

97, 117, 140, 151, 153, 188] has mostly focused on software-based provisions for service

guarantees. While previous approaches [85, 155] have considered using such hardware

provisions to provide some QoS to users, their approaches are not holistic. The designs

proposed do not provide a complete solution for providing service-level agreement (SLA)

based guarantees to users. For providing such a solution, there are two key requirements.

First, the SLA provisioning should be completely application oblivious, i.e., it should be

completely handled by the cloud provider based on the SLA negotiated by the user. Second,

there must be mechanisms in place which allow for the provisioning of SLAs without

violations. Achieving these requires a holistic approach.

The research proposed in this thesis takes on these fundamental challenges and tries to

investigate the answers to the following research questions:
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1. Can we re-evaluate the design principles of storage systems based on the performance

characteristics of new hardware?

2. How can we reduce software overhead of storage systems to realize the full potential

of hardware?

3. Can we design new algorithms and abstractions to take advantage of the features

offered by next-generation hardware?

4. How can the end-users take advantage of the proposed designs and optimizations

with minimal or no changes to their applications?

5. What are the application-level benefits that can be achieved through the proposed

designs?

In this thesis, we address the aforementioned challenges and propose optimized solu-

tions.

1.2 Research Framework

Figure 1.1 illustrates the research framework that we present to address the challenges

highlighted above. The main contribution of this thesis is the design of a generic storage

sub-system, called Navi Store1. In this section, we further elaborate on different compo-

nents of the proposed sub-system and the specific challenges they address.

1. Can we re-evaluate the design principles of storage systems based on the performance

characteristics of new hardware?

1Navi means new in Hindi
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Figure 1.1 Research Framework

The performance characteristics of new hardware make it possible to rethink the de-

sign principles of storage systems. For example, we find that the low latency and

byte addressability of PMEM makes it possible to design a storage system, where

data is accessed in-place. Unfortunately, in-place access complicates data consis-

tency. The weak and complicated persistence properties of PMEM make this process

challenging. In this thesis, we present new approaches that make PMEM easier to

use for programmers. Specifically, we explore the design of a generic replicated log

on PMEM, called Arcadia. Arcadia implicitly handles atomicity, integrity, and repli-

cation of log records to reduce programmer burden. Our design has several novel

aspects including concurrent log writes to PMEM with in-order commit, atomicity

and integrity primitives for local and remote PMEM writes, and a frequency-based

log force policy for providing low overhead persistence with guaranteed bounded

loss of uncommitted records. We present Arcadia’s design and implementation in
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Chapter 3. Building upon this log design, we explore the design space of persistent

data structures. We first discuss challenges with lock-free data structure design, then

we propose a new decoupled approach for designing persistent data structures that

can hide the persistence overheads of PMEM. We call this approach DIPPER and

present it as a generic approach to design persistent data structures in Chapter 4. The

unique performance characteristics of PMEM resulted in several novel ideas in both

Arcadia and DIPPER to tame its idiosyncrasies.

2. How can we reduce software overhead of storage systems to realize the full potential

of hardware?

New hardware technologies provide very lower latency. For example, both NVMe

SSDs and InfiniBand adapters provide latency at least an order of magnitude faster

than hard-disks and Ethernet adapters. As a consequence, software latency now con-

stitutes a significant percentage of overall system latency. This leaves hardware

underutilized and increases total cost of ownership (TCO) of datacenters. Storage

systems must be designed to peel away unnecessary software layers and directly

access hardware (for example, by bypassing the kernel or by eliminating superflu-

ous buffer copies). In this thesis, we present a design template for direct-access

coordination-free filesystems, called microfs. Microfs is an abstraction that al-

lows for synchronization-free control and data planes along with userspace direct-

access to storage devices. Building upon this abstraction, we present NVMe-CR, an

ephemeral userspace storage runtime for NVMf-enabled disaggregated clusters. A

description of this abstraction and the design of NVMe-CR is presented in Chapter 5.
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3. Can we design new algorithms and abstractions to take advantage of the features

offered by next-generation hardware?

Four design dimensions were considered as part of this thesis – performance, scal-

ability, fault-tolerance, and QoS. New hardware offers several new features that can

either directly or indirectly used to satisfy one or more of the four desired dimen-

sions. For example, NVMe SSDs provide support for hardware-based arbitration

schemes. This serves as a great base for providing fine-grained bandwidth guar-

antees in multi-tenant cloud environments. The challenge, however, is to provide

service guarantees in an application-oblivious manner. Further, there must be some

mechanism for cloud providers to accurately estimate a lower bound on bandwidth

to be able to negotiate service level agreements (SLAs) with tenants. We show how

existing runtimes can be modified for application oblivious QoS provisioning. We

also theoretically model the arbitration mechanism available in NVMe and discuss

how the model can assist cloud providers in SLA mapping and provisioning. More

importantly, we find that the existing weighted round robin (WRR) scheme proposed

in the NVMe standard is unable to provide accurate bandwidth guarantees. We then

propose a deficit round robin (DRR) scheme which can provide required guarantees

and show how it can be easily implemented in hardware. A detailed description of

our hardware-assisted QoS work is provided in Chapter 6.

4. How can the end-users take advantage of the proposed designs and optimizations

with minimal or no changes to their applications?

The designs proposed in this thesis have been integrated into systems like NVMe-CR,

DStore2, SPDK [76], HBase [2], RocksDB [45], and Masstree [114]. For all systems,

2NVMe-CR and DStore were proposed in this thesis
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the goal was to improve performance in an application-oblivious fashion. NVMe-CR

is meant to be distributed as a shared library that implements a complete POSIX

interface and can be preloaded to run unmodified MPI binaries. To run non-MPI

applications, a simple two-line change to initialize and finalize the NVMe-CR run-

time, is all that is required. The DStore framework exposes three standardized inter-

faces via its plugins – key-value (YCSB [34]), filesystem (POSIX through fuse [5]),

and HDFS [21]. By using these plugins existing applications can be run unmodified

over DStore. Similarly, our HBase, RocksDB, and Masstree implementations require

no modification to the application interface and do not break existing applications.

Finally, our QoS-aware SPDK runtime also does not require application modifica-

tion. By only changing how applications are run (by setting their IO priority using

ionice), users can take advantage of our QoS-aware designs.

5. What are the application-level benefits that can be achieved through the proposed

designs?

Our evaluation has shown that the design dimensions considered in this thesis (per-

formance, scalability, fault-tolerance, and QoS) translate into application-level ben-

efits as well. In particular, we optimized data storage and analytics through the pro-

posed designs. Any application heavily reliant on these two activities is likely to reap

significant benefits. To evaluate the effectiveness of proposed designs, we first con-

ducted thorough empirical evaluation using micro-benchmarks, such as YCSB [34],

iozone [24], and TPC-H [35]. Based on the performance results, we optimized and

fine-tuned our designs iteratively to obtain the best possible performance. Finally,

we took two production applications – AdMaster data analytics and CoMD scien-

tific simulation, and showed how their scalability and performance can be drastically
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improved. These observations lead us to conclude that other web 2.0/2.0 applica-

tions, cloud microservices, and long-running scientific HPC applications can realize

similar improvements by leveraging our work.
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Chapter 2: Background

2.1 Persistent Memory

PMEM technologies, such as PCM [101, 102], ReRAM [10], STT-RAM [165], 3D-

XPoint [61], and memristor [158] have the potential to disrupt storage system design.

PMEM allows applications to use byte-addressable load and store instructions to access

data that is persistent across power cycles. PMEM has three orders of magnitude better

latency and an order of magnitude better bandwidth compared to flash [121, 183]. It is

evident that PMEM is a practical option for storing latency critical log data. Given that

PMEM is an emerging technology and its cost is much higher than flash [93], we do not

expect PMEM to replace flash as primary storage media in the foreseeable future. Instead,

we expect that PMEM available in next generation systems will be used for special pur-

poses, such as latency critical logging and metadata storage.

Despite its performance benefits, PMEM is hard to use correctly. Accessing persistent

data in-place means that any update must be done in a crash-consistent manner. This is

further complicated by the fact that data in CPU caches is not persistent: atomicity of a

CPU store is only at 8-byte granularity, and cache lines can be evicted implicitly. The cache

hierarchy may change the order in which data is persisted from what was desired, making

the task of keeping data consistent challenging. Ensuring persistence requires explicit cache
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flushes and store fences, while ensuring atomicity requires the use of logging. Further,

PMEM is vulnerable to uncorrectable media errors and memory corruption, complicating

data integrity. Any practical solution on PMEM must handle these issues with persistence,

atomicity, and integrity, which requires non-trivial effort.

PMEM System Architecture. The left side of Figure 2.1 shows the typical architecture

of PMEM-enabled systems. We expect the system to consist of one or more identical

multi-core NUMA-enabled CPUs. Each CPU has local registers, store buffers, and caches.

The last level cache (LLC) is shared across all cores in a CPU. Each CPU has its own

memory (DRAM and PMEM) connected to other CPUs through a mesh interconnect. The

PMEM system can be designed to support one of two persistence modes – ADR or eADR.

In ADR persistence mode, the PMEM DIMMs and the write pending queues (WPQ) in

the integrated memory controller (iMC) are part of the persistence domain. On power

failure, all stores that have reached the ADR domain will be flushed to the PMEM DIMM.

However, the CPU caches are not part of the persistence domain. So, any data left in the

CPU cache will be lost in the event of power failure. In contrast, in eADR mode, the
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CPU caches are also part of the persistence domain (they will be flushed to PMEM in case

of power failure). So, data in cache can be considered to be persistent, but data in CPU

registers and store buffers will still be lost.

Optane DCPMM. Optane DCPMM is Intel’s PMEM solution. It has much higher ca-

pacity than DRAM and is currently available in 128, 256, and 512GB DIMM configura-

tions. The right side of Figure 2.1 shows its internal architecture. Optane DIMMs op-

erate in ADR mode but systems designed for eADR can be tested on them for accurate

performance measurements, even though the system may not be crash-consistent. The

CPU memory controller uses the DDR-T protocol to communicate with DCPMM. DDR-

T operates at cache-line (usually 64B) granularity and has the same interface as DDR4

but uses a different communication protocol to support asynchronous command and data

timing. Access to the media (3D-XPoint) is at a coarser granularity of a 256B XPLine,

which results in a read-modify-write operation for stores, causing write amplification. The

XPLine also represents the Error-Correcting Code (ECC) block unit of DCPMM; access

to a single XPLine is protected using hardware ECC. Like SSDs, DCPMM uses logical

addressing for wear-leveling purposes and performs address translation internally using an

address indirection table (AIT). Optane DIMMs also use an internal cache (XPBuffer) with

an attached prefetcher (XPPrefetcher) to buffer reads and writes. The cache is used as a

write-combining buffer for adjacent stores and lies within the ADR domain, so updates that

reach the XPBuffer are persistent. DCPMM modules can be configured in either Memory

mode or App Direct mode. In memory mode, DCPMM is used as main memory without

persistence to expand its capacity. In App Direct mode, DCPMM is accessible as byte-

addressable persistent memory, separate from DRAM. We only focus on App Direct mode

in this thesis because we are only interested in persistence use cases of PMEM.
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2.2 Non-Volatile Memory Express

The Non-Volatile Memory express (NVMe) [131] standard is a recent innovation that

has significantly impacted research in storage systems. The NVMe standard is a protocol

for accessing storage devices over PCIe and replaces the legacy SATA protocol designed

for hard disks. The most significant change is the support for up to 64K parallel IO queues

with each queue possibly holding up to 64K pending requests. An NVMe IO qpair (QP),

which consists of a pair of submission and completion queues, must be allocated to submit

requests. This follows the design principles of RDMA networks and allows for highly par-

allel asynchronous IO. The standard allows flash storage devices such as SSDs to achieve

profound improvements in latency and throughput. NVMe-based SSDs have been emerg-

ing as the latest storage technology bridging the dreaded performance gap between hard

disks and memory. These new devices are built for extremely low latency and achieving

high degrees of parallel I/O. The NVMe-over Fabrics (NVMf) protocol [130] additionally

allows low-latency access to remote SSDs using the same NVMe command set. The NVMf

protocol, in particular, has the potential to fundamentally change the design principles of

distributed storage systems.

In cloud environments, users expect a certain guarantee of service. Considering the new

NVMe technology being introduced in enterprise clouds, it is only natural to ask whether a

similar guarantee of service can be provided for this emerging hardware. In fact, this issue

has been addressed to some extent in the NVMe standard itself. The standard includes

provisions to enable command arbitration through mechanisms that are to be provided by

hardware. Command arbitration is a method used by the SSD controller to determine the

next submission queue to process requests from. For example, a basic weighted round

robbin scheme for arbitration has been included in the standard. The controller processes
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requests from submission queues by giving higher priority to queues with a larger weight.

Command arbitration serves as a useful base to provide bandwidth guarantees in multi-

tenant cloud environments. The challenge in this context is to enable service guarantees

without application modification.

SPDK [76] is a userspace library built for applications with high-performance storage

requirements. SPDK moves all necessary IO drivers to userspace and operates in polling

mode, thereby enabling high-performance access to storage. In addition to legacy storage

protocols, SPDK offers support for the NVMe standard, including NVMf. Each application

thread requiring I/O is recommended to create a separate QP, allowing maximum parallel

processing and eliminating the need for synchronization through locking. Further, the pro-

cessing of IO operations is completely asynchronous. Applications need to explicitly ask

the SPDK runtime to poll the completion queues. This asynchronous operation allows for

a complete or partial overlap of I/O and application processing. The SPDK design solves

most of the performance related issues that plague the Linux NVMe driver [186].

SPDK can be used to design a direct-access userspace data plane for fast storage of data.

In this manner, the kernel IO stack can be bypassed which not only reduces latency but pro-

vides the ability to exploit hardware features such as command arbitration and namespace

isolation. Unfortunately, bypassing the kernel has negative side effects. For example, it is

easy for multiple processes to share storage devices if they use the POSIX interface since

the kernel serves as a common entry point. Userspace runtimes, in contrast, must handle

synchronization on their own, perhaps through the use of shared memory for coordination

or a client-server model. Another common issue with userspace runtimes is compliance

with POSIX API. Unless a complete POSIX abstraction is provided, existing applications

cannot be easily run without modification.
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2.3 Remote Direct Memory Access

Modern networking interconnects such as InfiniBand [6] and RDMA over Converged

Ethernet (RoCE) [15] are heavily used in high-performance computing to achieve high

throughput and low latency. These technologies are now being increasingly adopted in

datacenters worldwide. One of the key features offered by these interconnects is Remote

Direct Memory Access (RDMA). Through RDMA, a process can remotely read or update

memory contents of another remote process with no remote involvement. Data transmis-

sion is done in a completely OS-bypassed manner, i.e the communication is processed in

userspace and carried out in a zero-copy fashion. Leveraging RDMA and using hardware

offload for all protocol processing provides high-performance and low latency communi-

cation. RDMA provides both two-sided (Send and Recv) and one-sided (Read and Write)

primitives. We advocate for the use of these advanced networking interconnects in the

design of storage systems, not only for the communication performance benefits but also

for the improved reliability that it offers as compared to Ethernet hardware. The Reliable

Connection (RC) protocol provided by InfiniBand/RoCE (similar to TCP in Ethernet) pro-

vides a data delivery guarantee with data corruption detection and ordered data delivery.

In addition, RC supports hardware-level re-transmission and acknowledgements for error

recovery. These interconnects use a credit-based link-layer flow control protocol which as-

sures the absence of buffer overflows during communication, a significant advantage over

Ethernet. Moreover, the heavy reliance on hardware-based protocol processing in RDMA

networks prevents the existence of software-based errors from disturbing network commu-

nication.

Like DRAM, PMEM on remote nodes can be directly accessed with RDMA. Similarly,

NVMe drives on remote nodes are also accessible via the RDMA conduit of the NVMf
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protocol. The combination of RDMA, PMEM, and NVMe, therefore, offers the possibility

of fast storage access regardless of the location of data.
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Chapter 3: Arcadia: A Scalable Replicated Log on PMEM

The allure and peril of PMEM. PMEM has attractive latency and bandwidth proper-

ties for a storage technology. At nearly the speed of DRAM, it provides valuable persis-

tence across power cycles. By being accessible as memory, it efficiently supports byte-

addressable access to data. These features promise large performance gains for a number

of important workloads.

Unfortunately, the persistence property of PMEM is hard to realize in practice [81, 125].

Only data that has reached the PMEM controller is actually persistent. Data in CPU caches

is volatile, thus it is lost on power failure. Moreover, the CPU may reorder store operations

and implicitly evict cache lines at any time, so persistence must to be managed explicitly.

Even then, the hardware only provides 8-byte atomicity for local writes and no atomicity

for remote writes over RDMA [82]. Using the memory interface for speed also makes

PMEM intrinsically local, so node failures and network partitions curtail its availability.

The single point of failure also limits its durability as uncorrectable media errors or DIMM

failures may result in permanent loss of data [189]. These idiosyncrasies lead us to believe

that PMEM is evil.

Introducing a log. Most of these problems can be addressed by adding a log. Logging

can be used to mange persistence and provide atomicity to preserve consistency of updates
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across failures for data stored in PMEM. Before making changes to PMEM, the program-

mer first records into the log a description of the changes to be made (typically redo or

undo records), then makes the changes to primary storage in PMEM. If the system crashes

while making the changes to PMEM, log recovery at the next start-up restores consistency

of the data in PMEM by completing (with redo) or reverting (with undo) any partial up-

dates [122].

To preserve the performance benefits of using PMEM as the primary storage, the log

itself must also reside in PMEM and must be implemented with performance in mind.

The log must also be able to handle the difficulties of PMEM so that the log remains

consistent through crashes. In order to handle the inherently local nature of PMEM, the

log should also be replicated across nodes, and the replication must also have good per-

formance. PMEM’s characteristics are an excellent match with RDMA. RDMA provides

low-latency remote access to memory, including byte addressable PMEM. It is not without

complications, however, because RDMA to PMEM suffers from many of the same atom-

icity and persistence problems of local PMEM. Thus, the abstractions to tame the perils of

using PMEM locally must be extended to PMEM over RDMA. A replicated log on PMEM

is a powerful tool benefiting two key scenarios. It allows using fast PMEM to easily and

safely add fault-tolerance to a system that was volatile or had weak consistency proper-

ties, and it improves system performance of slower disaggregated storage by dramatically

reducing the log latency that often limits the update rate.

Why does not prior work solve all problems? Prior work on PMEM logging [14, 70, 75,

95, 162, 172, 178, 182] places inordinate trust in hardware’s ability to retain and atomically

update data. This is because these works were designed considering that PMEM has similar

reliability as flash/disk. However, reliability for PMEM is a more complex problem: media
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Log Device/Node Network Media Power
Design Failure Partition Error Loss

PMDK [75] 5 5 5 4

FLEX [178] 5 5 5 4

Query Fresh [172] 4 4 5 4

Tailwind [162] 4 4 4 5

Arcadia 4 4 4 4

Table 3.1 Comparison of resilience to key failure scenarios with related work. Note that
Arcadia is the only system that is robust to all of these failure scenarios. In addition, it is
the only one to provide concurrent writes with in-order commit.

errors and software bugs can corrupt data and the reliability of each memory-cell degrades

as it is used, potentially leading to premature failure [81]. So, in practice, without sufficient

redundancy and integrity checks, data may be lost or corrupted and the burden of ensuring

data availability and consistency falls onto the programmer. Further, prior work provides

limited concurrency for log writes as a simple way to ensure monotonicity, or in-order com-

mit. Providing concurrency while maintaining monotonicity requires preventing holes in

the log which is not easy to attain. This is challenging because multi-threaded concurrency

is non-deterministic and storage systems typically require log writes to preserve a total

order to guarantee correctness. Table 3.1 presents a comparison of resilience to key fail-

ure scenarios between Arcadia and related work. Arcadia was designed to overcome these

shortcomings of prior work. Through replication, Arcadia can survive device/node failures

and network partitions. Further, by leveraging novel integrity and atomicity primitives for

PMEM, Arcadia is resilient to memory corruption, media errors, and power loss. Arca-

dia also provides concurrency while preserving in-order commits. To achieve this goal,

Arcadia separates log writes into a set of distinct steps and only isolates those that require
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serialization. In this manner, accidental or unnecessary synchronization can be avoided and

concurrency is maximized.

In this chapter, we present the design and implementation of Arcadia3, a generic repli-

cated log to tame the evils of PMEM. We make the following novel contributions in this

chapter:

1. Persistence, atomicity, and integrity primitives for both local and remote accesses

to PMEM. These abstract primitives hide the weak consistency of PMEM, ensure

reliable persistence, and make PMEM easier to use.

2. A generic interface for Arcadia that has two distinguishing features – it hides the

complexities of replication and PMEM + RDMA persistence and it decouples se-

rial steps from those allowing concurrency. This minimizes accidental serialization

and allows applications to be as concurrent as possible within the constraints of cor-

rect operation. The concurrency serves to overlap application processing, checksum

computation, and replication latency across multiple threads.

3. Design and implementation of Arcadia using the proposed primitives to handle atom-

icity, integrity, and replication of log records. Our design has several novel as-

pects, which include concurrent log writes on PMEM with in-order commit and a

frequency-based log force policy for providing low overhead persistence with guar-

antees on bounded data loss.

4. We deploy Arcadia on two servers with real PMEM that are connected with RDMA.

Our analysis shows that Arcadia significantly outperforms state-of-the-art PMEM

logs, such as FLEX [178], PMDK’s libpmemlog [75], and Query Fresh [172] while

3Named after the Greek province of Arcadia.
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providing stronger log record durability guarantees. We expect Arcadia to be used as

an off-the-shelf log implementation for any storage system using logging, in particu-

lar systems that have weak consistency or disaggregated storage.

3.1 Primitives for Local and Remote Accesses

Handling atomicity, integrity, and persistence of accesses to PMEM is a non-trivial task.

In this section, we first present primitives for durable local and remote writes to PMEM.

Building upon these, we present primitives for atomically and reliably accessing data in

local or remote PMEM. Crucially, these primitives handle the complexities of PMEM +

RDMA persistence and hide the weak and complicated persistence properties of PMEM.

We distinguish the primitives as Persistence, Replication, Integrity and Atomicity.

Persistence Primitive. To guarantee persistence locally, we construct a primitive using

hardware access macros. It takes a location and length in PMEM and makes sure that data

previously stored at that location is persistent. It relies on architecture-specific instructions

such as clwb and sfence that can guarantee that data has been flushed from the volatile

CPU caches into PMEM.

Replication Primitive. Our goal was to construct a replication primitive which can work

on currently available commodity hardware and does not require hardware-modification

or BIOS configuration changes. To this end, we design a single round-trip protocol for

both replicating and persisting data to remote PMEM. We use the one-sided RDMA-Write-

with-Immediate (RDMA-Write-Imm) operation to both replicate data and signal the remote

server to force data to storage using the persistence primitive. The ‘immediate’ value in this

operation carries with it the length of the data to force while its starting address is obtained

from the completion event. Essentially, the RDMA-Write-Imm acts as an asynchronous
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Figure 3.1 Integrity Primitive Data Layout in PMEM

1 # header and buf are preallocated in PMEM
2 function ReliableWrite(data, size)
3 header = generateHeader(data, size)

4 header.crc = crc32(header) # Header CRC

5 memcpy(buf.data, data, size) # Copy data

6 buf.crc = crc32(data) # Data CRC

7 # Replicate + Force header and data

8 return rdma write and force(header, buf)
9

10 function ReliableRead(data)
11 rdma read(header, buf) # Remote read

12 if (header.crc != crc32(header))
13 return false
14 if (buf.crc != crc32(buf.data))
15 return false
16 memcpy(data, buf.data, header.size)

17 return true

Listing 3.1 Integrity Primitive

RPC to signal the remote server to persist data. Once the persist operation is complete, the

remote server sends an acknowledgement using an RDMA send. The local server can use

this acknowledgement as an assurance of remote data persistence. This approach preserves

the benefits of one-sided RDMA while also guaranteeing remote persistence.

Integrity Primitive. This primitive is designed for reliably reading and writing data in

PMEM. Reliability here means that we should be able to verify the integrity of data. This

requires protection against two situations – the first where writes may be torn, i.e., only part

of data is persisted, and the second where data is corrupted because of undetected media
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Figure 3.2 Atomicity Primitive Data Layout in PMEM

errors. To achieve reliability, we add a header field to every data item with checksums pro-

tecting both of them. Figure 3.1 provides an overview of the data layout for this primitive.

The header contains the size of the data buffer and can be used to store additional informa-

tion, for instance, to identify the type of data stored. Listing 3.1 presents a pseudo-code of

the primitive. The rdma write and force() function represents the replication primitive

and can be replaced by the persistence primitive if replication is not desired. For reliably

writing data, checksums (such as CRC32) for both header and data are be generated. By

protecting both using checksums, there are no ordering requirements of writes or persis-

tence barriers for the header and data. In addition, there is no requirement on atomicity of

writes to PMEM. This is crucial because replicating data using RDMA does not provide

any atomicity guarantees. In our approach, a single replicate and persist operation is suffi-

cient for the entire write. When reading data, both the header and data checksum must be

checked before data can be safely copied. Header integrity must be validated before data

integrity, otherwise the size field in the header may not be correct. As an optimization, the

header checksum can be replaced by a special integrity check value, such as a log sequence

number (LSN).

Atomicity Primitive. This primitive is designed for atomically accessing data in PMEM

and is required when updating an object with a fixed location. It guarantees that the entire

data is updated atomically and that data integrity can be validated on reads. Atomically

updating data is challenging because writes may be torn, so data may be only updated
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1 # idx and buf[] are preallocated in PMEM
2 function AtomicWrite(data)
3 memcpy(buf[!idx].data, data, size)

4 buf[!idx].crc = crc32(data) # Generate CRC

5 # Replicate + Force data and CRC

6 rdma write and force(buf[!idx])

7 idx = !idx # Flip index

8 # Replicate + Force index

9 return rdma write and force(idx)
10
11 function AtomicRead(data)
12 # Remote read

13 rdma read(idx, buf)

14 if (buf[idx].crc != crc32(buf[idx].data))
15 return false
16 memcpy(data, buf[idx].data, size)

17 return true

Listing 3.2 Atomicity Primitive

partially. Data cannot be updated in-place because there is no guarantee of atomicity for

remote writes to PMEM. To solve this issue, we propose the use of copy-on-write (CoW)

for updates to data. Figure 3.2 provides an overview of the data layout and Listing 3.2

presents a pseudo-code of the primitive. We use two buffers to implement the CoW ap-

proach and switch between the two for every update. The index flag is used to identify the

current valid buffer for reads. Data integrity is protected using checksums. For any update,

data must be written to the invalid buffer. Once data and its checksum have been written

and persisted, the index can be updated and persisted accordingly. As an optimization, the

index flag can be placed in volatile storage as long as the valid data buffer can be identi-

fied on recovery using the contents of the data. Another possible optimization is to always

write to a new dynamically allocated buffer and discard the old buffer once the write has

successfully completed.
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Figure 3.3 Arcadia’s Layout on PMEM

Use Cases. The proposed primitives are useful in making PMEM easier to use. The in-

tegrity primitive can be used to reliably write data once, or when the data being overwritten

is known not to be needed anymore. The atomicity primitive can be used when updating

existing data in place, where we need to make sure that if there is a failure during write,

the old data remains readable. We show how these primitives can be applied in Arcadia to

achieve the persistence, integrity, and atomicity requirements of log writes. Both primitives

are used in Arcadia for accessing different portions of the log – the integrity primitive is

used for accessing log records while the atomicity primitive is used for accessing the log

header.

3.2 Arcadia Design

In this section, we present the design and implementation of Arcadia. We design Ar-

cadia as a replicated log with a single-primary, multi-backup model. It has a single multi-

threaded writer doing updates (logger) and a single reader during recovery.

3.2.1 Design Overview

PMEM Layout. We place the entire log as a single file on a DAX filesystem formatted on

PMEM. The entire file is mmaped into the address space of the process to enable load/store
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access to log records. Figure 3.3 shows an overview of the log layout on PMEM. The

log itself consists of a circular buffer of fixed size to hold the log records and a header

containing information necessary to both identify and recover instances of the log. We call

this header the superline because it fits within a single cache line and its functionality is

analogous to the superblock in a filesystem. The superline stores the head and start LSN

of the log which are used on recovery to find the first valid record. We do not include the

log tail in the superline to avoid the overhead of having to update it on each log append.

Instead, we find the log tail on recovery by iterating over all valid records to locate the end

of the log. Each log record in Arcadia consists of a header and payload pair. The header

contains the length and checksum of the payload as well as a monotonically increasing LSN

and a valid flag. Arcadia relies on special values and basic consistency checks like magic

numbers, LSNs, checksums, and valid flags to validate the content of data in persistent

storage.

Operation Modes. Arcadia can be deployed in one of three operation modes – local,

local+remote, or remote only. In the local mode, log data is placed and accessed only on

PMEM available on the local server. In local+remote mode, the local copy is the primary

replica of the log with one or more secondary servers serving as backups. Finally, in remote

only mode, all durable copies of the log reside on one or more remote backups, while the

client only holds a volatile copy of the log. As long as there is any replication, at least one

log is remote. Latency of parallel log appends is limited by the slowest backup in a write

quorum, thus having a persistent primary does not significantly help performance. This

means that log clients can be located anywhere there is good RDMA connectivity and are

not required to have PMEM.
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API Function Description

[id, ptr] reserve(size) Reserve space for a record
int copy(id, data, size) Copy data into a record
int complete(id) Mark a record as completed
int force(id, freq=1) Force a record to PMEM

REC append(data, size) Append a record

LSN getLSN(id) Get record LSN

int cleanup(id) Reclaim record space
int cleanupAll() Reclaim entire log

ITERATOR begin/end() Recovery iterator

Table 3.2 Arcadia’s Interface

Interface. Arcadia’s interface was designed with three goals – (1) minimizing unintended

synchronization, (2) providing direct access to PMEM, and (3) enabling use in any situation

requiring logging. An overview of the interface is presented in Table 3.2. Conventionally,

log interfaces only include an append method for log writes. Bundling the entire write

as a single append method limits any overlap of application compute with log writes and

data persistence. To achieve the first goal, we propose a set of fine-grained methods to

write data in the log. These methods break the append method into four separate stages

– reserve, copy, complete, and force. This separation allows users increased flexibility;

it enables them to call these methods only if required and place them at the best possible

location. An append method is also provided as a combination of the four fine-grained

methods wrapped up into a convenient high-productivity operation. The second goal is

achieved by providing a direct pointer to the PMEM region allocated for a record using

reserve. The benefit of having a direct pointer is that it allows the user to assemble the log

record contents directly in PMEM without need to first build it in DRAM and then copy it.

It avoids the need for a data copy in cases where the data to be logged is not already sitting
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in DRAM. Finally, to achieve the third goal, we provide several generic methods to add

records, reclaim space used by records, and iterators to traverse valid records for recovery.

More details on how these methods operate can be found in section 3.2.3.

3.2.2 Replication and Recovery Protocol

Arcadia implements a quorum-based protocol for replication and recovery. The write

quorum (W ) is a configurable parameter that can be adjusted based on desired performance

and fault-tolerance. The read quorum (R) is automatically selected based on W and the

number of durable replicas (N ) to satisfy quorum requirements (R+W > N ). Therefore,

the system can tolerate up to N −W replica failures when writing log records.

Replication. When log data needs to be replicated, RDMA writes are initiated to all back-

ups (remote log replicas) in parallel. Next, we wait for the persistence acknowledgement

from all backups. Once complete, the data can be considered to be durably replicated. Net-

work partitions and backup failures can disrupt this process. To handle such cases, Arcadia

uses a timeout-based approach. If the backup write times out, we consider the backup to be

failed and immediately close the connection with that server. This also avoids the problem

of an inconsistent backup in cases with a transient network partition. As long as the number

of failed backups does not impact the write quorum (i.e., W backups are in complete sync),

the replication process is successful. In situations where write quorum cannot be achieved,

replication will fail, and as a consequence any call to force will also fail. We delegate re-

sponsibility for these failures to the application. An easy fix that the application can use in

such cases is to gracefully shutdown, add new backup servers (by copying the PMEM log

files), and restart the application.
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Recovery. On recovery, Arcadia checks that a sufficient number of copies of the log are

available and consistent to meet the read quorum, R. If the read quorum is not met because

backups are unavailable, Arcadia fails recovery and lets the user retry after more backups

come online. If read quorum fails because too many copies are corrupted, then Arcadia

cannot guarantee data consistency and recovery cannot proceed safely. During the recovery

process, we use data in the superline to detect which copies of the log are consistent and

contain the most recent data. Before accepting any new requests, Arcadia repairs any

inconsistent or failed log copies using the consistent copies. Only inconsistent copies are

modified during recovery, therefore, the recovery process is idempotent and invulnerable

to repeated failures. Once recovery is complete, the primary and all backups are up to date,

so new requests can be safely accepted.

Handling Primary Failure. Primary failures are handled by using a third-party coordi-

nator, such as Apache ZooKeeper [4]. On primary failure, the coordinator triggers leader

election, and selects a new primary. The user application is then migrated to the new pri-

mary and restarted once log recovery is complete.

Handling Diverging Histories. Diverging histories can happen due to repeated failures of

different backups. To solve this problem, we add an epoch field to the superline in each log

copy. The epoch values start out at 1. On each recovery, all available copies are read and

the maximum value is taken. A majority of copies must be readable, or recovery cannot

continue. Recovery increments the number by 1 and writes the new value to all available

copies. Writes to a majority of nodes must be successful to continue. Only log copies with

the highest epoch are considered valid, thereby avoiding diverging histories.
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3.2.3 How Arcadia Works

In this sub-section, we describe how Arcadia works in detail. Arcadia uses the proposed

integrity primitive for accessing log records and the atomicity primitive for accessing the

superline. As an optimization to the integrity primitive, we use the LSN for validating the

header rather than a checksum. For optimizing the atomicity primitive, we keep the index

in volatile memory and identify the valid superline on recovery based on which copy has

the latest start LSN.

Concurrent Log Writes and Monotonicity. Arcadia allows concurrent writes despite

having in-order commits. We describe how each write method is handled internally to

enable this. The reserve method allocates space for log records and returns a direct pointer

to the allocated space in PMEM. It is also responsible for generating the LSN for the

record. To ensure monotonicity of LSNs, this method synchronously allocates log space

and generates LSNs. The copy method is a convenience method to copy data into a reserved

record. It uses non-temporal stores that bypass the CPU caches to copy data to PMEM

efficiently. This method can be safely called multiple times to copy different data chunks

into the record. Note that users may choose not to use this method and instead use memcpy

or CPU stores to copy data themselves. The complete method is used once all data has

been written to the record. Complete generates and writes the checksum for the record

payload and also sets the valid flag in the record header. The force method guarantees that

a record is durable, i.e., it will be available after a crash. It does this by replicating and

persisting records. Importantly, it ensures that there are no holes in the log. To do this,

force waits, if necessary, until all previous records have been marked valid (complete) and

forces them first. This is done by spinning on the valid flag, which is part of the record
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header, until it is set. Doing so ensures that records are always persisted in-order despite

concurrent accesses.

The key insight here is that reserve and force are the only synchronous methods required

during a log write. Multiple threads can safely call copy and complete in parallel. Although

data is concurrently written into the log, the reserve and force methods carefully track the

status of all records to ensure that monotonicity is still maintained.

Log Space Reclamation. Space reclamation is important when records are no longer nec-

essary for recovery because the changes they describe have already been made durable.

Depending on the type of logging algorithm used, records may be invalidated at different

times. However, a cleanup method operating at the granularity of a record is sufficiently

generic to be applicable in all cases. This method is responsible for unsetting the valid flag

of the record. It also checks if there is a contiguous section of the log starting from the head

(the oldest valid record) that can be reclaimed. If so, it advances the log head and updates

its value in the superline. A cleanupAll method is also provided to reclaim the entire log.

This method simply re-initializes the entire log and updates the superline accordingly.

Recovery Iterator. This iterator is used to access all valid records upon recovery from a

crash. It is useful in bringing the system back to a consistent state using data in the log.

Before it can be used, the recovery protocol (see section 3.2.2) is triggered to repair any

corruption and ensure consistency of all copies. The recovery iterator operates on the local

log copy and obtains the log head from its superline to find the oldest valid record. To

validate records, three integrity checks are performed – (1) the LSN must be monotonically

increasing, (2) the valid flag must be set, and (3) the checksum of the payload must match.

The iterator ends when any one of these checks fails. These integrity checks guarantee that

any partially written or corrupted records are not applied during recovery.
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3.2.4 Force Policy

Up until now, we have assumed that log writers would always do an explicit force on

the log after writing a log record, i.e. that the thread doing the logging would not be able to

continue until the log record was safely committed. But doing a force operation on the log

after every write is expensive. The high cost of persisting data and the coarse granularity of

writes for traditional block storage motivated researchers to propose techniques to reduce

the number of synchronous, small writes required by relaxing freshness requirements (how

up to date the state is after crash recovery). One popular approach is called group com-

mit [66]. In this approach, log records are persisted in batches (or windows), such that the

number of unpersisted records at any time is limited by a threshold, often called the group

commit size. By controlling the group commit size, the desired level of freshness can be

achieved.

With PMEM, the performance characteristics of persistent writes have changed dras-

tically. PMEM write latency and granularity is much lower than other PCIe connected

storage devices, so the cost of persistence is lower too. This seems to imply that there is no

merit in limiting write frequency with PMEM. However, we find that when adding replica-

tion overhead to overall performance characteristics, the overhead of persistence remains

relatively high. This is because the cost of replication over RDMA is often an order of

magnitude higher than local writes to PMEM. To reduce the cost of replication, we first ex-

plore if group commit can be a viable approach. We find that although it improves overall

latency, it is not scalable; at high concurrency, group commit has significant overhead. This

is because a shared global counter is required to maintain the current window size. Concur-

rent access to this counter across threads results in significant cache thrashing and reduces

the effectiveness of group commit. This effect was not observed in prior work because
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Figure 3.4 Example showing the worst case scenario for the frequency-based force policy
with T=3 and F=2, where all threads are blocked in trying to force persistence. All 6
records have been completed and may be lost on crash.

they did not allow concurrent access to the log. Further, with fast PMEM hardware the

software and synchronization overhead constitutes a significant portion of overall latency,

so the effects of synchronization are much more pronounced.

To reduce the overhead of replication and persistence without adding synchronization

overhead, we propose a novel frequency-based force policy. The key idea is as follows.

Instead of maintaining a window of unpersisted records, we force records at intervals de-

termined by a predefined ‘update frequency’. The crux of the idea lies in the fact that we

can leverage the monotonicity of record LSNs to determine when to force data. For in-

stance, given a frequency of F , data will be persisted every time a record with an LSN

divisible by F is forced. Each thread that completes a record with such an LSN is re-

sponsible for persisting records, which distributes this effort over all active threads. In this

manner, we do not need a shared counter to maintain the window size, but instead piggy

back on existing synchronization to generate monotonic LSNs as consecutive integers. In

our design, threads can force records concurrently, which could leave holes in the log if

a subset of them complete the force before a crash. To prevent this issue, we require any

thread calling force on a record to wait until all pending forces on records with lower LSNs

complete and all previous records have been completed. In the worst case, all threads can
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Figure 3.5 Microbenchmark Comparison with FLEX and PMDK

get blocked doing a force. This can happen if, for instance, the first thread doing a force

gets context switched, or if a record with an earlier LSN that is not a multiple of F has

not been completed yet. When threads force with the configured frequency, they will each

be separated by F records. This gives us the theoretical upper bound of the number of

completed records that can be lost as F × T , where T is the maximum number of threads

or concurrent forces allowed. Figure 3.4 shows an example of the worst case scenario with

T=3 and F=2. All three threads are blocked in this scenario. It is easy to see that the

maximum number of records that may be lost on crash4 can be correctly calculated using

the formula described here.

4We call this the vulnerability window.
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Use Cases. There are two use cases for this policy. The first is where explicit guarantees

of persistence are not required for ensuring consistency (e.g., when recording logical op-

erations in the log for a volatile key-value store). In this case, the frequency-based force

policy can be used for all log updates to reduce the overhead of persisting records. A few of

the recent updates may be lost on crash (the policy provides a bounded guarantee for how

many updates can be lost), but consistency is not compromised. The second use case is

where explicit guarantees of persistence are required for ensuring consistency (e.g., when

recording state updates in the log for a filesystem). Even in this case, the frequency-based

force policy can be used for all log updates to reduce the overhead of persistence (by calling

force with freq=F for every record). When users require an explicit guarantee of record

persistence, they may either issue a synchronous force (a force with freq=1) or check if the

difference between the LSN of a newly allocated record and the record they want forced is

greater than the theoretical upper bound of the size of the vulnerability window, F × T .

3.3 Experimental Analysis

In this section, we present the evaluation of Arcadia. We conduct a comprehensive anal-

ysis of the impact of the novel aspects of our design. We also compare performance and

resilience of Arcadia with state-of-the-art PMEM-optimized logs, FLEX [178], PMDK’s

libpmemlog [75] (referred to as simply PMDK in the evaluation), and Query Fresh [172].

We were unable to compare with Tailwind [162] because it requires special hardware sup-

port and its source code is unavailable.

3.3.1 Experimental Testbed

Our experimental testbed consists of two Linux (4.18) nodes, each equipped with two

Cascade Lake CPUs (5218@2.30GHz), 192GB DRAM (2 x 6 x 16GB DDR4 DIMMs),
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and 1.5TB PMEM (2 x 6 x 128GB DCPMMs) configured in App Direct mode. Each CPU

has 16 physical cores (with hyperthreading enabled) and 22MB of L3 cache (LLC). All

available PMEM is formatted as two ext4 DAX filesystems, each utilizing the memory of

a single CPU socket as a single interleaved namespace. The two nodes are connected using

100Gbps EDR InfiniBand. One node is used as the primary while the other is used as a

backup.

All code was compiled using GCC 8.3.1. PMDK [75] 1.8 was used across all eval-

uations to keep comparisons fair. Hardware counters were obtained using a combination

of Intel VTune Profiler [74], Intel PCM [79], and Linux perf utility. DCPMM hardware

counters were collected using the ipmwatch utility, a part of the VTune Profiler.

3.3.2 Microbenchmark Evaluation

We first present a microbenchmark-level comparison of Arcadia with FLEX and PMDK.

Since FLEX and PMDK do not support replication, we compare them with Arcadia de-

ployed in local mode.

Latency: We evaluate the latency of log writes with a single thread while varying the

record size. Figure 3.5(a) shows this evaluation. We find that Arcadia has the lowest

latency out of all three designs, up to 6x faster than PMDK and 8x faster than FLEX. One

of the main reasons for this trend is that Arcadia does not maintain the pointer to the tail

(most recently added record) of the log in PMEM (superline) and thus does not need to

update it on every record write. FLEX performs the worst because it has high software

overhead and it appends the record header and payload in separate operations. To confirm

the reasons for these observations, we analyzed the breakdown of log writes for a 1KB

record in Figure 3.5(b). We can clearly observe that flushing data to PMEM takes much
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Figure 3.6 Replication Overhead Analysis

more time in FLEX and PMDK. This is because they both update the log tail for each write.

The flush time is especially high because it also includes the additional store fence required

to wait for data being copied into PMEM before the tail update. By avoiding a tail update,

Arcadia shows much lower latency despite computing checksums.

Throughput: Figure 3.5(c) presents throughput curves in a multi-threaded setting. We

measure the overall log throughput while increasing the number of threads concurrently

adding records to the log. Both FLEX and PMDK have flat curves because they fully iso-

late writers using coarse-grained locks and do not provide any concurrency. Arcadia only

isolates steps that require serialization (reserve and force), and can provide some level of

concurrency. Its throughput is maximum at 4 threads, but reduces slightly at higher con-

currency. There are two reasons for this – (1) serialization overhead in reserve and force,
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and (2) poor bandwidth for highly concurrent accesses to PMEM. We also measure the

aggregate log throughput in a multi-tenant setting. This is a common usage scenario where

multiple tenants are sharing the same resources. Figure 3.5(d) shows the throughput for

different record sizes with 16 concurrent single-threaded tenants, each writing to a sepa-

rate log. Without replication, Arcadia performs the best in all cases. As the record size

increases, throughput is bound by the PMEM bandwidth, and all log implementations con-

verge to that limit. An observation we make is that Arcadia’s throughput is lower for 64B

records than 128B records. This is because of the write amplification effects in DCPMM

for small-sized writes. With replication, Arcadia has lower throughput than FLEX and

PMDK for small record sizes. In these cases, replication overhead bounds overall through-

put. However, for large record sizes (¿ 2KB), throughput is indistinguishable from the local

mode.

3.3.3 Replication Overhead Analysis

To understand the performance characteristics of replication with PMEM and RDMA,

we conduct an experiment to measure the replication overhead of different policies with

Arcadia deployed in local+remote mode. We compare three policies – (1) parallel, in which

the local cache flush and RDMA replication are done in parallel, (2) serial (LF+Rep.), in

which the two operations are done sequentially with the local flush performed first, and

(3) serial (Rep.+LF), which is similar to serial (LF+Rep.) except the order of operations

is reversed. Figure 3.6(a) analyzes the log write latency across record sizes for these three

policies. Surprisingly, we find that the polices have significant impact on overall latency.

Contrary to expectation, parallel has the worst latency, while serial (Rep.+LF) has the best.

To understand the reasons for this trend, we analyzed the overhead of just the copy and
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force operations of log writes (shown in Figure 3.6(b)) as well as the LLC miss counts of

the three policies (shown in Figure 3.6(c)). The copy+force overhead curves mirror the

trends of the log write latency curves. This confirms that the overhead of the replication

policies are the reason for these trends. We can also observe that a local flush is an order

of magnitude faster than remote flush. Therefore, when using the parallel policy, the local

cache flush invalidates data from the LLC.5 So, RDMA writes need to read data back from

PMEM instead of reading it directly from the LLC. This additional read is manifested as

additional LLC misses and is confirmed by Figure 3.6(c). The serial policy where the local

flush happens first, suffers from the same issue, and therefore shows similar performance.

Its performance is only marginally better than the parallel policy. We suspect that this is

because concurrent reads and writes to PMEM in the parallel policy, conflict and slightly

reduce performance. The serial (Rep.+LF) policy has the best performance because RDMA

writes can get data directly from the LLC; the LLC misses graph confirms this reason.

Next, we analyze the impact of number of synchronous backups on log throughput.

Our testbed only has two nodes, so we conduct this experiment on another cluster with

Skylake nodes and EDR InfiniBand. Figure 3.6(d) shows the impact of number of back-

ups on throughput for different record sizes. A common theme across record sizes is that

adding just one backup results in a significant drop in throughput. This is because the over-

head of replication is significant. Interestingly, going beyond one backup does not impact

throughput as much. The asynchronous nature of RDMA enables data to be sent to mul-

tiple backups in parallel, minimizing impact on throughput. This is a significant result as

it shows that as long as replication is enabled, throughput is not significantly impacted by

the number of backups. Therefore, it is not necessary to compromise fault-tolerance for

5At the time of writing this thesis, cache write-back instructions had not been implemented in Intel pro-
cessors.
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Figure 3.7 Recovery Evaluation

performance when replication is enabled. These results also indicate that clients without

local PMEM can work efficiently in cases where PMEM is restricted to a subset of server

nodes.

3.3.4 Recovery Evaluation

To evaluate the recovery performance of Arcadia, we measured the total time taken to

recover log state and iterate over all valid records on recovery, calling a null recovery func-

tion for each record. Figure 3.7(a) compares Arcadia’s recovery latency in local mode with

FLEX and PMDK. Both Arcadia and FLEX rely on checksums to verify record integrity,

so they have similar performance. This is because the time taken to verify checksums dom-

inates recovery latency, which is also why latency increases linearly with log size. PMDK

does not use checksums, so its recovery procedure only consists of calling null functions

for each record. This is why it is able to recover so fast. However, by not relying on any

integrity checks, it is unable to handle undetected media errors and may end up reading cor-

rupted data. Figure 3.7(b) compares Arcadia’s recovery latency with replication enabled in

normal recovery and when the primary log copy fails or is lost. These represent the best
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Figure 3.8 Force Policy Analysis

and worst case situations for recovery, respectively. We observe that when the primary

copy is lost, the latency is higher. In this scenario, Arcadia needs to recover the primary

copy using data in the backup which increases recovery time. However, this process uses

the fast one-sided RDMA reads for copying data which does not add significant overhead.

Even for a 256MB log, recovery takes less than 500ms in the worst case; so, we conclude

that recovery is fast enough for most practical scenarios.

3.3.5 Force Policy Analysis

We compare group commit and frequency-based force policies in this experiment. We

compare log throughput for the two policies in Figure 3.8(a). The group size or frequency

is listed in parenthesis. We evaluate with two different values for each policy; these values
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have been chosen such that their theoretical vulnerability window sizes are comparable.

So, group (128) is comparable to freq (8), while group (256) is comparable to freq (16).

We also evaluate the sync policy in which each log write is synchronously forced. Re-

sults demonstrate the group commit has significant overhead at high concurrency and its

throughput drops by 30% at 16 threads. Concurrent access to the window size variable is

behind this drop. On the other hand, the frequency-based policy is much more scalable

because it avoids this synchronization overhead. To confirm that synchronization overhead

is the reason for poor performance of group commit, we analyze the L1d miss rate for all

policies (see Figure 3.8(b)). We can clearly observe that group commit has much higher

miss rates because of constant cache thrashing as a result of concurrent accesses to the

shared counter.

We also measure the distribution of the vulnerability window size (from latest com-

pleted record to the most recently forced record) for the frequency-based policy. Unlike

group commit, the vulnerability window size is not fixed because if a thread gets blocked

doing a force, other threads can keep adding new records and increase the window size.

Figures 3.8(c) and 3.8(d) show this distribution for frequencies of 8 and 16, respectively.

Interestingly, we find that the probability distribution is skewed towards smaller sizes, far

below the theoretical upper bound. This shows that on average, threads are unlikely to

block on a force. Overall, we conclude that the frequency-based policy is not only more

scalable, but in practice it provides better resilience than its theoretical limit.

3.3.6 Arcadia Applications

RocksDB. To demonstrate the practical benefits of Arcadia, we integrate it with RocksDB,

a popular key-value database used at Facebook, by swapping out its log with Arcadia. We
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Figure 3.9 Comparison with FLEX using RocksDB

use the fine-grained interface for adding log records. We evaluate this version in both local

and local+remote modes and compare it with the FLEX integration of RocksDB [141]. Fig-

ure 3.9 compares the latency and throughput for both sequential and random key-value puts

at full-subscription (16 threads). By reducing the log append latency, Arcadia improves la-

tency by up to 38% and throughput by up to 62% in local mode (0 bkp). In local+remote

mode (1 bkp), Arcadia is better than FLEX (which is local-only) for sequential puts and

only marginally worse for random puts, despite enabling replication. Replication overhead

is much less than the overhead of the entire put operation. Hence, there is little difference

in performance between the different modes. Also, random puts are much slower than

sequential puts, so the benefits of using Arcadia are less.

Masstree. We integrate Arcadia with Masstree [114], another popular key-value database,

to enable comparison with Query Fresh. Like the RocksDB application, we use the fine-

grained interface for adding log records as well as the frequency-based force policy. This

experiment shows the practical benefits of the frequency-based force policy. Figure 3.10(a)

compares the throughput of read-modify-writes and Figure 3.10(b) compares the theoreti-

cal vulnerability window size for Query Fresh and Arcadia (with both group commit and
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frequency-based force policies). From the results, we observe that Arcadia’s group commit

policy has high synchronization overhead at 8 and 16 threads which reduces performance

bringing it close to Query Fresh’s throughput. Query Fresh also uses group commit but

it only enables limited log concurrency. Therefore, it delivers lower throughput than Ar-

cadia but is also less impacted by the synchronization overheads of group commit. The

frequency-based policy is able to deliver the best performance (up to 65% faster than Query

Fresh) and fault-tolerance by avoiding unnecessary synchronization and forcing records

more frequently.

3.3.7 Key Insights

Our measurements demonstrate the performance benefits of our approach compared

to PMDK, FLEX, and Query Fresh. The measurements confirm the benefits of specific

innovations and design choices in Arcadia, such as avoiding the superline tail pointer, and

using concurrency to limit the impact of checksums and replication. They also highlight

subtle factors such as the serialization implied by group commit and the interaction between

local flush and remote replication, giving confidence in the overall conclusions.

Arcadia’s log interface crucially decouples steps requiring serialization from those al-

lowing concurrency to maximize performance of parallel applications. It also illustrates

PMEM’s byte-addressability to avoid unnecessary data copying. The proposed frequency-

based force policy gives flexibility in the freshness and performance trade-off, while allow-

ing more concurrency than the traditional group commit method.

3.4 Related Work

Logging on PMEM. A number of prior works [14, 70, 75, 95, 162, 172, 178], have lever-

aged PMEM performance for logging as a means to improve overall system performance.
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Figure 3.10 Comparison with Query Fresh using Masstree

Some of these works (Query Fresh [172], WBL [14], NV-Logging [70]) propose PMEM-

based logs that are tightly integrated with a particular system or logging algorithm. Some

of them (PMDK [75], FLEX [178], NVWAL [95]) propose unreplicated logs that cannot

provide high availability. Others (e.g., Tailwind [162]) rely on special hardware support.

Moreover, none of these are able to satisfy the robustness requirements of large-scale pro-

duction systems because they do not provide resilience to some key failure scenarios.

Logging on Flash/Disk. Corfu [17], Raft-based log [8], Apache Kafka [170], Distributed-

Log [59], GNR [38], and JBD2 [166] are relevant log implementations on traditional flash

and disk storage that are deployed in production systems. These designs are considered

to be reliable and robust. However, they were designed considering the performance char-

acteristics, access methods, and reliability of flash/disk which are considerably different

than those of PMEM. Therefore, naively applying them to PMEM is unlikely to result in a

performant or robust solution.
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Combining RDMA and PMEM. Octopus [111], Forca [69], File-MR [182], Orion [181],

pDPM [164], AsymNVM [112], NVFS [83], Hotpot [150], Mojim [191], and RDMP-

KV [105] have worked on combining PMEM with RDMA for fast access to remote per-

sistent storage. Each takes a different approach to remote persistence and atomicity that

are not broadly applicable in other scenarios because they are either tied to a particular

data format (key-value or file) or the complications of RDMA + PMEM persistence are

not fully solved. In contrast, in this chapter, we present abstract primitives for ensuring

remote persistence, atomicity, and integrity, that can be applied generically on commodity

hardware.

3.5 Summary

In this chapter, we described Arcadia, a generic log stored on PMEM and replicated

using RDMA with an easy to use interface. Implementing fast, fault-tolerant systems is

challenging, but logging is a crucial abstraction to ease this task. The PMEM shortcomings

with atomicity, persistence, and locality, with replication over RDMA put the implemen-

tation of robust systems at risk of overcomplexity. Arcadia’s design encapsulates lessons

learned uncovering and addressing problems using these technologies safely and realiz-

ing the alluring performance and reliability benefits this combination offers. Arcadia takes

a pragmatic approach to the performance benefits of PMEM and RDMA while accom-

modating practical requirements such as concurrency and reliability to provide a realistic

assessment of their promise. By presenting a usable log interface we hope to foster wider

adoption of these technologies to improve robust storage systems.
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Chapter 4: DIPPER: A Decoupled Model for Persistent Data

Structure Design

The emerging PMEM technology offers unprecedented high performance while sup-

porting data persistence, and has fueled a renaissance in re-evaluating the design of persis-

tent storage systems [30, 33, 41–43, 50, 70, 71, 86, 139, 175, 176, 179]. In the previous

chapter, we presented the design of a generic replicated log on PMEM and showed how

such a design is useful in making PMEM easier to use and improving the performance of

a wide range of storage systems. In this chapter, we build upon our work on the replicated

log and take up the challenge of designing a storage system which is simultaneously fast,

tailless, and quiescent-free. We believe that these are important requirements for modern

systems, particularly considering the high demands of applications in a cloud setting. Pro-

viding these three features is essential for predictable and consistent performance, which is

important in satisfying latency and throughput service level objectives [103, 160]. Incon-

sistent user experience has been shown to directly result in loss of revenue [84].

Most file and database systems cache important data and employ a journal or write-

ahead log (WAL) to support fault-tolerance. Numerous studies [13, 26, 28, 32, 48, 63,

70, 95, 110, 116, 132, 148, 168, 184, 195] have focused on providing PMEM-aware data

structures and logging schemes to reduce latency and guarantee failure recovery. These

designs can indeed provide much better performance than SSD- or disk-based schemes,
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but they are unable to provide a performant quiescent-free storage system, which means

that users’ requests in the frontend may have to wait for completion of data persistence

activities in the backend, particularly during checkpoints. The reason for this is that the

cache must be write-protected during checkpoints to ensure that the persistent backend is

updated in a consistent manner. This limitation results in significant delay for requests

arriving during checkpoints. As a result, the system must either quiesce for a short time or

accept high tail latency.

On the other hand, the storage and memory like nature of PMEM has spawned a new

class of storage systems that place and access data in-place [28, 32, 33, 41, 42, 48, 50,

63, 86, 110, 139, 148, 168, 169, 175, 179, 195]. Such systems unburden themselves from

the limitations of checkpoints since data is always persistent. However, the challenge in

designing such systems is that updates to PMEM must be done in a crash-consistent man-

ner. This is further complicated by the fact that data in CPU caches is not presistent and

cache lines can be evicted implicitly. Ensuring consistency requires explicit cache flushes

and store fences, while ensuring atomicity requires the use of transactions or journaling.

Any practical solution on PMEM must deal with both atomicity and consistency issues.

This requires expensive, and often complex, protocols to be used which significantly lower

end-to-end performance [63, 125]. The high cost of atomic data persistence compromises

performance.

In this chapter, we propose a new approach for storage system design, called Decoupled,

In-memory, and Parallel PERsistence (DIPPER) that exploits the byte addressability of

PMEM to efficiently achieve the decoupling of system and checkpoint spaces. The system

space to store data structures is entirely in DRAM while the checkpoint space (including
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an operation log) is entirely in PMEM. Some recent systems like DudeTM [107], NV-

HTM [25], and Bullet [71] have also proposed partially or fully decoupling operation and

persistence phases to lower the cost of persistence and improve performance. However,

these systems still rely on expensive physical logging which is particularly bad when the

working set of transactions is large. The novelty of DIPPER is in its unique architecture

which allows the use of operation logging without limiting frontend concurrency. The key

idea is to let the frontend operate independently on DRAM while recording operations in

the log and applying these updates to the backend asynchronously on an identical backend

in PMEM. Operations need not wait for the updates to be applied to the backend to be

considered durable. DIPPER ensures that the log replay is deterministic, so the checkpoint

space can be updated in the background without involvement of the system space. The

frontend and backend are kept consistent by applying the concept of observational equiv-

alence [145]. The goal is to hide the latency of persistence by using the volatile system

space for all requests and taking checkpoints in the background. This approach solves the

limitations of prior work – By keeping the frontend in fast DRAM, and only recording op-

erations in a log, the cost of persistence is significantly lowered. In addition, the decoupled

persistence process prevents the need to quiesce the system and can deliver low tail latency.

DIPPER can be used to design fast and crash-consistent storage systems with PMEM.

Our approach uses PMEM to store identical persistent shadow copies of DRAM struc-

tures. We use shadow updates for backend atomicity to avoid costly transactions and cache

flushes. This process is seamlessly handled by our PMEM allocator. In this manner, the

same code can be used to perform operations on both structures and the need to serialize
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Name Data Structure Persistence Mode Design Technique

Link-free [195] linkedlist both dirty-bit
SOFT [195] linkedlist both dirty-bit
TLog∗ linkedlist both per-thread logging
Log-free∗ linkedlist eADR atomic operations
Volatile [99] ring buffer none atomic operations
TX∗ ring buffer both transactions
TX-free∗ ring buffer eADR per-thread status buffer

∗Proposed in this thesis

Table 4.1 Summary of Lock-free Designs Evaluated. Persistence mode ‘both’ is equivalent
to both ADR and eADR.

data is avoided. This also simplifies the backend design and prevents the need to hand-

modify code to add cache flushes and transactions. Our design not only increases produc-

tivity, but also makes the process of keeping the volatile and persistent copies consistent

much easier. PMEM bandwidth (∼30GB/s for read and ∼10GB/s for write on our cluster)

is comparable to DRAM, which implies that the checkpoint space can keep up with the

system space.

We design a generic storage sub-system, called DStore, short for Decoupled Store

which uses DIPPER to implement its control plane. We deploy DStore on a server with

Intel Optane DCPMM. With the aforementioned techniques, DStore can reduce software

overhead to ∼10%. Experimental results demonstrate that DStore can deliver up to 6x

lower tail latency service level objectives (SLO) and up to 5x higher throughput SLO

compared to state-of-the-art PMEM optimized systems like PMEM-RocksDB [141, 178],

MongoDB-PMSE [78], and NOVA [179, 180].
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4.1 Lock-Free Persistent Data Structures

In this section, we first discuss challenges associated with persistent lock-free data

structure (PLFS) design. Then, we present the design and evaluation of two PLFSs –

ring buffer and linkedlist. The intention of this case study is two fold. First, we want to

highlight the difference in PLFS design between eADR and ADR persistence modes. Our

findings show that designs which assume the presence of ADR may not provide the best

performance in eADR mode, particularly for update heavy workloads. So, there is merit in

tailoring designs for eADR mode. Second, we want to compare and contrast PLFS design

techniques. Our results show that selecting an appropriate technique can significantly im-

pact performance and should be done considering the workload IO pattern and persistence

mode. Most importantly, our analysis shows that transactions and cache flushes on PMEM

have high overhead. This observation inspired the design of DIPPER for data structure de-

sign as a means to avoid transactions completely and avoid the persistence cost of PMEM

in the critical path.

4.1.1 Visibility v/s Persistence

Designing persistent lock-free data structures is challenging because commonly held

assumptions about data structure behavior break down when recovering from a crash. In

traditional concurrent volatile data structures, it is a common assumption that visible oper-

ations are complete. This guarantee is provided by hardware – visible memory changes are

cache coherent, so they are visible to all threads. When adding persistence to the picture,

this assumption no longer holds in ADR mode. Even if an operation is visible, it may not

be persistent, because data may still be in volatile cache. A crash before persistence will

prevent the operation from being visible upon recovery. Therefore, operations can only be
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Figure 4.1 TLog Design Overview with 2 Threads. Thread 1 has completed its operation
whereas Thread 2 is in-flight. 0 in the bitmap indicates that the memory region is allocated.

considered complete if they are both visible and persistent. The biggest challenge in the

design of lock-free persistent data structures is to guarantee that visibility and persistence

are atomic, i.e., an operation is either both or none. An exception to this is with eADR

mode. In eADR mode, the volatile cache hierarchy is within the persistence domain. So,

visible operations can be immediately considered to be persistent. In this case there is no

need to flush the cache but store fences may still be required to force data out of the per-

core store buffers, which are not part of the persistence domain. Even then, a compound

operation, consisting of multiple atomic visible operations, can only be made atomic by

using transactional techniques, such as journaling. In other words, if an operation does not

have a single linearization point (instruction), then it is not atomic.

4.1.2 Design Techniques

There are several existing techniques in literature which can be used to implement

PLFS. Providing atomicity and isolation guarantees requires the use of complex transac-

tional systems, which often use locks for mutual exclusion. The use of locks implies that

the data structure is no longer lock-free. Transactional abstractions which use redo/undo
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Figure 4.2 Lock-free Linkedlist Throughput Evaluation

logging are one of the most common techniques but as many of these rely on locks inter-

nally they are not applicable. Some abstractions, such as PMDK’s libpmemobj library [80]

do not use locks but rely on per-thread buffers to maintain transaction state. Such abstrac-

tions can be used to maintain consistency and lock-freedom. Another recently developed

technique is the dirty-bit design, as used in [173, 195]. In this approach, data is marked

dirty when it is updated; threads which find the dirty bit set flush data to PMEM so that only

committed data is read. Using per-thread scratch buffers for logging or status tracking is

another approach that can be used. Since threads operate on independent memory regions,

they can operate in a lock-free manner. Finally, for eADR mode, relying on atomic op-

erations is sufficient to maintain consistency. Note that only using atomic operations may

not be sufficient in this case because some information may be required to identify the data

structure state on recovery from crash. Other techniques, such as per-thread logging may
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also be necessary. Also note that in all designs atomic operations are required to maintain

mutual exclusion.

In this section, we present designs for two truly lock-free persistent data structures –

a multi-producer, multi-consumer ring buffer and a concurrent linked list. We chose these

data structures because they are commonly used in database systems for several different

purposes. Table 4.1 shows a summary of the different designs we evaluate. Designs with

persistence mode ‘both’ were designed for ADR mode but can also be run in eADR mode

by replacing all persistence barriers with store fences. The main point of this study is not

to implement the best possible design but rather to compare and contrast different design

approaches.

4.1.3 Lock-free Linkedlist

We consider a sorted linkedlist with any arbitrary structure as the value. Our lock-

free linkedlist designs are extensions of Harris’ algorithm [64] and support the same basic

operations – insert, delete, and contains. The original algorithm uses the atomic

compare-and-swap operations to maintain lock freedom. Node deletion is logical and

requires subsequent garbage collection to reclaim memory. The logical deletion process

involves marking nodes as removed by setting the least significant bit of the node’s pointers.

Our designs build upon the original algorithms to provide persistence. We propose one

design for ADR systems, called TLog, and another for eADR systems, called Log-free.

Both designs use the same memory allocator and base design.

TLog Design. TLog adds persistence barriers to ensure durability. A new node is flushed

to PMEM before being added to the list. In addition, changes to a node’s next pointer are

also flushed. For maintaining operation atomicity, we rely on per-thread scratch buffers for
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micro-logging operations. Before initiating a list operation, each thread stores the operation

type and its parameters in its scratch buffer and marks it as in-flight. Once the operation

is completed, the operation is marked as completed. On recovery, scratch buffers of all

threads are examined and any in-flight operations are redone. Recovery is idempotent

because insert and delete operations are both idempotent themselves.

Log-free Design. In eADR mode, the volatile cache is in the persistence domain. Insert and

delete operations have a single linearization point (the compare-and-swap instruction).

Therefore, we do not need to use transactions or journaling to maintain atomicity. We can

use Harris’ algorithm as is, but with store fences at linearization points. However, we still

need to prevent PMEM leaks and allow PMEM address space relocation. Our memory

allocator solves these two problems.

Memory Allocator Design. The memory allocator consists of a fixed size PMEM slab in-

dexed using a volatile lock-free bitmap. The bitmap relies on atomic fetch-and-and/or

instructions to retain lock freedom. Our memory reclamation algorithm uses epoch-based

reclamation (EBR) [47] to maintain correctness and garbage collect unused memory. To

prevent PMEM leaks, we keep the bitmap in volatile DRAM and rebuild its state upon re-

covery. This is done by walking through the linkedlist and marking the memory region for

each node as allocated in the bitmap. In this manner, memory allocation does not require

transactional support. Finally, to safeguard against PMEM address space relocation, we

use relative pointers and pointer swizzling [32, 156].

Figure 4.1 shows an overview of the TLog design. As can be inferred from the figure,

linkedlist nodes are allocated from the PMEM slab and use node offsets instead of pointers.

In the example shown, two threads operate on the linkedlist. Thread 1 has completed its

insert operation and marked the in-flight flag in its log as false. Thread 2, on the other
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hand, has not completed its delete operation and its in-flight flag is still set to true. If there

is a crash at this moment, then on recovery Thread 2’s pending operation will be completed

using data in the log. The Lock-free design is the same as shown in the figure, except that

the per-thread logs are not required.

Evaluation. We compare our designs with two current state-of-the-art approaches, SOFT

and Link-free, proposed in [195]. We measure the total throughput achieved by all imple-

mentations while varying the update ratio and value range at full subscription (28 threads)

to simulate a heavy load scenario.

Figures 4.2(a) and (b) compare list throughput in ADR mode for 1024 and 4096 value

ranges. TLog outperforms Link-free in all cases and SOFT in all but two cases. Link-free

works similar to TLog but does not use per-thread logs for atomicity. Instead, find op-

erations are required to flush the node (if not already persisted) before returning it. This

increases the latency of find operations and reduces overall throughput. SOFT is an opti-

mization of Link-free in that it does not flush node pointers but uses a valid flag per-node

to indicate which nodes are part of the list. On recovery, all PMEM nodes are scanned to

find valid nodes and are added to the list. SOFT reduces the number of persistence barriers

required, so insert and delete operations are fast. However, it still requires find operations

to flush nodes, increasing find latency. On the other hand, TLog uses micro-logging for

atomicity and does not rely on find operations doing persist barriers. Therefore, TLog

find latency is much lower than SOFT or Link-free but insert and delete latency is higher.

This also explains why TLog performance gets closer to Link-free and SOFT as the update

percentage is increased.

Figures 4.2(c) and (d) compare list throughput in eADR mode for 1024 and 4096 value

ranges. TLog outperforms both Link-free and SOFT in all cases. This is because in eADR
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mode there is no need to flush cache-lines. So, insert and delete operations do not incur

persistence overheads. SOFT and Link-free optimize insert/delete over find and are hence

outperformed by TLog. We also observe that Log-free outperforms TLog in all but two

cases, albeit only by a small margin. The Log-free design takes advantage of the eADR

mode to avoid the micro-logging operation which TLog performs. By eschewing logging,

Log-free achieves better throughput, particularly for 1024 value range. The Log-free de-

sign’s improvement over TLog is only marginal because a majority of time is spent in

search and find operations as opposed to persistence barriers.

To make complete sense of the ADR results, we first analyze the time-wise breakdown

of each function call using a flame graph. Figure 4.3 shows the flame graphs for TLog and

SOFT with 1024 value range and 50% updates. The stacked boxes show the function call

trace and the width of each box is proportional to total time spent in that function. For

both implementations, a majority of time is spent in iterating over the list (search and find

operations). Persistence barriers and other operations comprise a very small fraction of

overall time. Increasing value range or decreasing update percentage will further reduce

this fraction of time. According to [68], a typical application using list-based sets performs

90% reads. This indicates that optimizing linkedlist traversal is more important than mini-

mizing persistence operations. Both SOFT and Link-free focus on optimizing persistence,

resulting in a sub-optimal design. On the other hand, TLog does not change search and

find operations (as compared to Harris’ algorithm), and shows better performance for find

intensive cases. To verify this reason, we measure the latency of search and find operation

while varying value range (256, 1024, and 4096) and update percentage (5 and 50). Results

are shown in Figure 4.4. We find that on increasing value range SOFT latency increases
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Figure 4.3 Flame Graph of Persistent Linkedlist Implementations with 1024 Value Range
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Figure 4.4 Lock-free Linkedlist Latency for Search and Find

more for both operations as compared to TLog. These results confirm the reasons for the

performance trends in Figure 4.2.

4.1.4 Lock-free Ring Buffer

We base our designs on Krizhanovsky’s algorithm [99] for volatile lock-free ring buffers.

Volatile Design. The original algorithm uses per-thread head and tail pointers to maintain

lock freedom. To perform a push or pop operation, each thread increments the global

head/tail pointer using a fetch-and-add instruction and stores the old value in its local

head/tail pointer. The local pointer indicates the queue slot which the thread will operate
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on. Before operating on the location, the thread must make sure that it is safe to push or

pop at that slot. To ensure this, two global variables (last tail and last head) are maintained

to indicate the earliest push and pop operations still in-flight. Threads compute theses

variables for each operation by iterating over all thread-local head/tail pointers. These

variables are used to ensure that we do not push at a slot still being popped or vice-versa.

Once each thread completes its operation, it sets its local head/tail pointer to INT MAX.

This allows other threads to push/pop that slot. Essentially, this store instruction is the

linearization point of an operation where it becomes visible to other threads.

Persistent Design Overview. We propose two designs for our lock-free persistent ring

buffer – a transaction-based design, TX, for ADR systems and a transaction-free design,

TX-free, for eADR systems. For both designs, the ring buffer, global head/tail pointers,

and thread-local pointers are placed in PMEM. Last head and last tail pointers are placed

in DRAM instead of PMEM because they can be computed using thread-local pointers and

hence do not need to be persisted. We also add two thread-local pointers in PMEM (push

and pop position) to indicate the slot position where the thread is operating on. These

pointers are used to identify the slots for which push/pop operations were interrupted in

case of a crash. Memory management is fairly straightforward since the ring buffer is

of a fixed size. We allocate PMEM for all necessary structure and pointers statically on

application startup. The simplified memory allocation avoids PMEM leaks. In addition,

we use indices instead of real pointers to allow PMEM address space relocation. Figure 4.5

shows an overview of the ring buffer design with 2 producers and 2 consumers. As shown in

the figure, each producer/consumer has a private buffer which contains the local head/tail

and position pointers. The position variable always indicates the slot which was being

operated on. On recovery, the head/tail pointer is examined. If it is not INT MAX (∞), then
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Figure 4.5 Ring Buffer Design Overview with 2 Producers and 2 Consumers: LT is last
tail, T is tail, LH is last head, and H is head.

the corresponding operation was left incomplete. In this manner, all incomplete operations

can be detected by scanning the buffers of all producers and consumers and appropriate

steps can be taken to restore the state to produce a consistent view of the ring buffer.

TX Design. In this design, we wrap the critical section of push/pop operations with trans-

actions for atomicity. We use PMDK’s libpmemobj transactional bindings for this purpose,

which use a combination of redo and undo logging to achieve atomicity. The use of trans-

actions guarantees that there are no partially completed operations in case of a crash. On

recovery, we examine the push/pop position pointers to determine which buffer slots were

being operated on at the time of crash. We use this information to consolidate the buffer,

i.e., copy data to remove holes, which can occur as a result of a subset of threads initiat-

ing their operations at the time of crash. Using PMDK transactions does not compromise

lock-freedom because transactions use thread-local buffers to store internal state and avoid

synchronization.

TX-free Design. The TX-free design follows the same principle as the TX design but does

not require the use of transactions. Only store fences are required to implement persistence
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barriers. This is because the volatile cache is within the persistence domain in eADR

mode. Further, there is only a single linearization point, which involves setting the push/pop

position to INT MAX. On recovery, checking the values of the position pointers for each

thread enables us to identify in-flight operations and roll them back. After the roll-back is

complete, we consolidate the buffer, just as in the TX design.

Evaluation. To the best of our knowledge, TX and TX-free are the first lock-free persistent

ring buffer solutions available. Thus, we compare the performance of the proposed designs

with the volatile implementation in both ADR and eADR persistence modes. We use 4KB

slot size and 32K slots so that the working set is 3-4 times larger than the LLC size.

We first examine the effects of flushing data with low temporal locality in eADR mode.

We modify our designs to flush slot data (but not per-thread buffers or transaction state)

on each push operation and measure latency. Figure 4.6 shows the normalized latency for

TX and TX-free designs in eADR mode. Except for average push TX latency, all other

latency values are similar or higher when slot data is not flushed from the cache. We find

that not flushing non-critical data can increase latency. The reason for this is that data in

the ring buffer has low temporal locality and competes with other critical data for cache

space. This reduces the cache hit rate of the per-thread buffers and transaction state which

have high temporal locality and increases overall latency. Push latency is less affected than

pop latency because not flushing the slots removes an expensive persistence operation off

the critical path for push operations. This is also the reason why TX has slightly better

push latency. Finally, we can also observe that TX-free is less affected as compared to TX.

This is because TX-free does not use transactions and hence has a lower overall memory

footprint, so the cache hit rate of critical data is less affected. Overall, flushing data with

low temporal locality is good for lowering latency. Although this observation appears
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with 4KB slot size at 28 threads, (b) Performance trends via low-level PMEM counters.
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trivial and has been observed in prior literature, its impact is more pronounced with PMEM

because its latency is much higher than DRAM. Therefore, applying this observation can

significantly impact performance. Based on these results, we flush slot data in eADR mode

for all subsequent experiments.

We also measure the latency of each operation with 50% pops and 50% pushes at full

subscription (28 threads). Figure 4.7(a) shows the average, p99, and p99.9 latency of dif-

ferent implementations. We observe that TX in ADR mode shows the worst performance.
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This is expected because it requires expensive transactions and cache-line flushes to ensure

atomicity and durability. All changes to PMEM data need to be logged and PMEM writes

have high overhead. We can also observe that in eADR mode, TX-free has much better per-

formance than TX. Even though cache-line flushes can be avoided for TX in eADR mode,

the overhead of transactions is high. However, TX-free avoids both cache flush and trans-

action overheads and achieves near volatile performance. In fact, P99 latency for TX-free is

only 2x that of the volatile design. To better understand the reasons for these performance

trends, we examine low-level PMEM counters for the entire duration of our experiments.

Results are presented in Figure 4.7(b). PMEM read/write represent data exchanged with the

PMEM controller while media read/write represent data exchanged with the internal 3D-

XPoint media in DCPMM. We find that TX (ADR) has the highest number of L3 misses

and PMEM operations. In comparison, TX (eADR) significantly reduces L3 misses and

PMEM reads. This is because we do not flush transaction data and per-thread buffers to

PMEM, so load operations are more likely to be serviced from the CPU cache. PMEM

and media writes are also reduced by avoiding some cache-flush operations. Finally, TX-

free further reduces PMEM and media writes because transactional PMEM updates are

not required anymore. An interesting observation is that the media reads remain largely

unchanged for all implementations. This implies that reads are mostly serviced from the

XPBuffer in DCPMM.

4.1.5 Key Insights

The main takeaways from our analysis are twofold. First, transactions on PMEM have

high overhead; so, transactions should be avoided to the extent possible. Per-thread

logging and dirty-bit design are two alternatives that can be used to avoid transactions. As
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System Persistence Technique Type Low Tail Fast Quiescent
Latency Performance Freedom

MongoDB-PM [123], sqlite [139] Periodic Async Checkpoint Cached 5 5 4

PMEM-RocksDB [141, 178] Continuous Async Checkpoint Cached 5 5 5

NOVA [180], Pronto [116] Copy on Write (CoW) Cached 5 4 4

MongoDB-PMSE [78] Inline Persistence Uncached 4 5 4

DudeTM [107], NV-HTM [25] Decoupled Durability + HTM Decoupled 4 5 4

DStore (proposed) DIPPER Decoupled 4 4 4

Table 4.2 Comparison of related work

we observed from our evaluation, per-thread logging is more optimal for read-heavy work-

loads while the dirty-bit design is better for update-heavy workloads. Also, in some cases it

may not be possible to avoid transactions. Therefore, choosing the correct design technique

is important for both performance and correctness. Second, we conclude that ADR-based

designs do not necessarily provide the best performance in eADR mode. To attain opti-

mal performance, algorithms should be specifically designed for the eADR persistence

mode by taking advantage of the immediate persistence of any visible operation. Our

results show that this is more applicable for update-heavy workloads.

Hiding the persistence overhead. Evaluation of our lock-free designs has shown that they

provide good performance. However, as we saw from the comparison in Figure 4.7(a),

the overhead of persistence is quite high for the ADR design compared with the volatile

design. To reduce this performance gap, we propose DIPPER, a decoupled approach to hide

the overhead of persistence. We discuss DIPPER’s design in detail in the next section.
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4.2 DIPPER Design

This section proposes a new approach, called Decoupled, In-memory, and Parallel

PERsistence (or DIPPER) for implementing persistent data structures that fully decouples

the frontend and backend. We compare DIPPER with existing approaches in Table 4.2.

4.2.1 Key Ideas

We present DIPPER as an approach on PMEM to make a set of DRAM data struc-

tures persistent by only logging information necessary to perform an operation on this set.

DIPPER generates a linear order for all operations, preserved in the log, and operates de-

terministically on the data structures, according to this linear order. In case of recovery

from failure, this linear order, as preserved in the log, can be easily recovered and the same

scheme can be used to reconstruct the state of DRAM data structures by treating all oper-

ations in the log as new requests. To be applicable in practical scenarios, DIPPER must

solve two challenges. First, deterministic operation on data structures should not pose as a

scalability bottleneck. Second, DIPPER must provide an atomic quiescent-free checkpoint

solution to ensure uninterrupted service to end-users.

To solve these challenges, DIPPER fully decouples volatile system space and persis-

tent checkpoint space both logically and physically. The system space to store data struc-

tures is entirely in DRAM while the checkpoint space (including the log) is entirely in

PMEM. When a checkpoint is triggered, the checkpoint space is updated using the oper-

ations recorded in the log. Since the log replay is deterministic, the checkpoint space can

be updated in the background without affecting the system space. The main idea is to hide

the latency of persistence by using the volatile system space for all requests and taking

checkpoints in the background. In this manner, requests operate directly on the volatile
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version and experience DRAM-like latency, though write operations will experience a mi-

nor overhead for operation logging. The expectation is that the rate of write requests is low

enough that the persistent shadow copy can be updated quickly and kept consistent with

the volatile version. This is generally true since most requests arriving at storage systems

are read requests [23, 29, 87]. Furthermore, write rates vary hugely, with some periods of

low activity and some periods of bursty traffic [87, 89]. The volatile frontend can absorb

bursty traffic easily and the persistent backend can then be updated during the periods of

low activity in the background.

Our approach reduces the size of each log record, since only high-level operations and

their parameters need to be logged. This reduces the log fill up rate. Further, the high band-

width of PMEM lowers checkpoint cost and improves the rate of log clean up. DIPPER

works with a PMEM backend and not SSD or disk backend, because only then is the rate of

log fill up lower than the rate of the log cleanup (checkpoint). Thus, the checkpoint process

can be completely overlapped with system operation.

The background checkpoint process does not compromise crash consistency for two

reasons. First, the system logs all updates and log records are not discarded until a check-

point is complete. Second, the checkpoint process is designed to be completely atomic. In

this manner, we achieve quiescent-free checkpoints while maintaining fault-tolerance.

4.2.2 Architecture and Abstraction

Figure 4.8 shows the architecture of DIPPER. DIPPER is a write-ahead logging ap-

proach. Log records are filled before the start of a request and marked as committed after

completion of the request. DIPPER relies on the concept of observational equivalence

to allow concurrency while guaranteeing determinism and correctness (see section 4.2.7).
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DIPPER treats the set of DRAM data structures as a black box, logging only logical op-

erations performed on this box and the input required from outside the box. To achieve

fault-tolerance, DIPPER proposes a novel abstraction of shadow persistent data structures

(or simply shadow copies) in PMEM, that represent a shadow copy of the volatile system

space located in the persistent checkpoint space. We call these shadow copies because their

state lags behind their volatile counterparts. These represent a snapshot of the system at a

particular point in time and are only used for recovery in case of failure. During normal

operation, the system operates purely on DRAM data structures while logging operations

in the log. Each logical operations translates to a set of functions to be performed on each

data structure. This mapping needs to be statically defined as it will be used by the recovery

logic to update the shadow copies. In the background and in parallel to frontend operation,

the operations in the log are applied to the persistent backend.

DIPPER is a derivative of logical logging. However, DIPPER differs from prior al-

gorithms utilizing logical logging in one critical aspect. DIPPER leverages its determin-

ism property along with byte addressable PMEM to decouple normal system operation
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from checkpointing. This allows DIPPER to provide fault-tolerance while allowing re-

quests to only operate on DRAM data structures. This is in stark contrast to other sys-

tems [70, 116, 123, 141] that only cache pages in memory that are eventually persisted.

4.2.3 Memory Management

Memory management is an important component of our design. We delegate several

important functions to the memory allocator to make it easy for DIPPER to be applied to

any data structure. Our backend design uses shadow updates for atomicity, so the PMEM

allocator need not be crash consistent itself. This means that DIPPER can work with any

off-the-shelf DRAM allocator. The same allocator can be used for both DRAM and PMEM

management. Keeping both allocator designs the same makes it easier to reconstruct the

volatile space from the persistent space in the event of a crash. We expect the allocator to

implement two additional functions – one to iterate over all allocated memory regions and

flush them to PMEM and the other to create a copy of the allocator state. The first function

is used to ensure durability at the end of a checkpoint. The second function is used to for

two purposes. The first is to avoid persistent memory leaks. During a checkpoint, a copy of

the PMEM allocator is created along with copies of other data structures for recovery in the

event of a crash. The second is to recover volatile space from the persistent space after a

crash. In addition, to allow the data structures to be seamlessly copied and work inspite of

PMEM address space relocation, we use relative pointers and pointer swizzling [32, 156]

for both DRAM and PMEM structures. This means that we store offsets to the base address

instead of pointers. On each pointer dereference, the base address is added to the offset to

obtain the actual pointer to data.
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op param(s) commitlength opLSN

Figure 4.9 DIPPER log record: LSN is log sequence number, length is length of log record,
op is operation type, and commit is committed flag. The generic nature of the record allows
any arbitrary operation to be captured in the log.

4.2.4 Logging on PMEM

DIPPER relies on a PMEM resident log to record all processed operations. We exploit

the byte addressability of PMEM to access log records in-place. Figure 4.9 shows the

structure of a DIPPER log record. We capture each operation and its parameters within

the log record. The LSN is used to verify the validity of log records. Consequentially, the

LSN must be persisted atomically. With PMEM, only single word writes (usually 8B) are

atomic. Furthermore, spurious cache line evictions can change the order in which portions

of a log record are made persistent. To ensure that the LSN is persisted atomically, we

flush cache lines containing each log record in the reverse order. We write and flush the

LSN only after all other cache lines in the log record have been persisted. LSN is the first

field in the log record. Thus, the log record will only be considered valid once the first

cache line containing the LSN is flushed as the last step of the log write. Cache lines are

flushed by calling clflushopt or clwb, followed by a store fence. Note that this is just

one possible implementation for the log. DIPPER can work with any log implementation

as long as arbitrary operations can be added to the log and records can be written atomically

to PMEM. The Arcadia log design proposed in the previous section can also be used here

directly, and indeed, the approach we discuss here does borrow several design choices made

in Arcadia.
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4.2.5 Atomic Quiescent-Free Checkpoint

To prevent the log from growing without end, checkpoints are triggered once the free

space in the log fall below a pre-defined threshold. As shown in Figure 4.8, the checkpoint

process begins by swapping the active and archived logs (this is fast and only involves a

pointer swap), and moving any uncommitted log records to the new active log. Once this

process is complete, frontend operations can proceed on DRAM data structures and the

checkpoint is processed asynchronously. The checkpoint procedure involves playing com-

mitted records from the archived log on the shadow copies. A dedicated checkpoint thread

pool is responsible for operating on the persistent backend in parallel with the frontend.

We leverage the byte addressability of PMEM to reuse the functions defined for each

DRAM data structure operation. In this manner, the shadow copies iterate through the

same states that the volatile copies went through. We guarantee durability by flushing all

modified cache lines upon completion of the checkpoint process. This is done by iterating

over all allocated pages in the PMEM allocator (including the allocator state) and flushing

each cache line in the page to PMEM. Once all operations in the log have been processed,

the shadow copies will have the same state as the DRAM structures had at the start of a

checkpoint. Thus, the state of the shadow copies at the end of a checkpoint represents the

checkpoint image. Correctness is guaranteed by leveraging the determinism property of

DIPPER. To guarantee idempotency during a checkpoint, we always create a new copy of

the shadow copies. In case of a crash during a checkpoint, the recovery logic uses the old

persistent versions for recovery. A root object, placed in a well known offset in PMEM

contains pointers to current and old copies of the shadow copies as well as the current state

of the checkpoint process. Our PMEM allocator is responsible for flushing cache lines to

ensure durability and creating copies of backend structures to ensure atomicity.
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Finally, to achieve atomicity, we update the locations of shadow copies in the root

object atomically and only upon successful completion of the checkpoint process. As is

evident, checkpoints are processed in the background without significant impact on system

throughput. Our evaluation (see section 4.5.3) verifies this claim.

This approach for implementing the backend has several benefits. First, since the rep-

resentations of the DRAM and PMEM data structures are the same, the same code can be

used for both. Further, by using shadow updates to maintain backend atomicity, the cost

of consistency is significantly lowered. There is no need to ensure that data structures are

updated in a consistent and durable manner for each operation. Therefore, complicated

techniques, such as transactions, which are often employed to attain atomicity are not re-

quired. This simplifies the implementation of the backend and allows code written for

volatile structures to be used as is for the persistent structures.

4.2.6 Idempotent System Recovery

The recovery process involves recovering the state of volatile data structures from their

persistent counterparts. For recovery, the root object provides pointers to the data structures

and the state of the checkpoint process. If we detect that the system crashed during a

checkpoint, we first need to reconstruct the latest versions of the shadow copies (otherwise,

this step is skipped). This is done by playing records from the archived log on the old

copies of the shadow copies. Essentially, we redo the checkpoint procedure ongoing at the

time of crash. Next, we recover the volatile state. This involves replicating the PMEM

allocator state in the DRAM allocator and copying pages from PMEM to DRAM. Finally,

we replay log records in the active log on the data structures to restore system state to what

it was before the crash.
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1 global ongoing−ops <− empty # list of ongoing operations
2 global logical−log <− empty # logical log
3 global log−lock <− free # global log lock

4
5 function high−level−operation(op)
6 retry:
7 grab log−lock
8 for o−op in all ongoing−ops
9 # if we do not violate system concurrency control

10 # requirements , let o−op and op proceed in parallel
11 if conflict(o−op, op) == true
12 release log−lock
13 wait until o−op completes
14 goto retry

15
16 # no conflict or conflict resolved

17 add op to ongoing−ops
18 add op to logical−log
19 release log−lock
20
21 # now we can execute op

22 ...

23
24 # once complete, remove it from ongoing−ops
25 remove op from ongoing−ops

Listing 4.1 Algorithm for Applying Observational Equivalence in DIPPER

After recovery is complete, the system state is restored and new requests can be ac-

cepted. During recovery, we only play committed log records on the shadow copies. So,

there is no need to log undo operations since the shadow copies represent a consistent

checkpoint image (or in database terms, a transaction consistent checkpoint [142]). Hence,

DIPPER can be thought of as a redo-only logging algorithm. The state of the system is de-

fined exclusively by volatile structures which means that the recovery process is guaranteed

to be idempotent.
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4.2.7 Observational Equivalence and Concurrency

Supporting concurrent operations is a must for any practical solution. DIPPER supports

concurrency through the notion of observational equivalence [145]. Using this notion, we

can state that two data structure states are observationally equivalent if they both give the

same answer to any observation from a prespecified set. Two operations on a data structure

are said to be commutative or non-conflicting if reordering the operations results in obser-

vationally equivalent states. Commutative operations are permitted to operate concurrently

on a data structure. The use of commutativity for concurrency is not new and has been

widely studied [31, 157]. However, applying it to logical logging has been problematic.

This is because if the volatile and persistent domains are not fully decoupled, then different

portions of the persistent backend must be updated atomically since the log only contains

operations and not actual data. Concurrent modification of data structures could lead to

an inconsistent backend. Prior work [109] has shown how a write graph can be used to

delay the persistence of data objects and increase concurrency. Nevertheless, this solution

requires costly maintenance of the write graph state. Further, concurrency is limited when

data are being made persistent. DIPPER overcomes these challenges by fully decoupling

volatile and persistent domains. The volatile structures do not need to be involved to update

the persistent backend. Therefore, commutativity can be fully exploited to increase con-

currency. For instance, operations on distinct keys in a hashtable are non-conflicting and

can be executed in parallel. The hashtable must, of course, support concurrency and avoid

concurrent modification of a single bucket. In DIPPER, the implication is that log records

are not required to be in serialized order but only conflicting order. So, not only can a

single data structure be updated concurrently, by non-conflicting requests but different data

structures can also be operated on in parallel. In case of recovery after a crash the exact
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representations of the data structures will not be the same as those before crash, but the ob-

servable state of the data structures will be the same. This guarantee is sufficient to ensure

correctness of the system [145]. A high-level overview of this algorithm is presented in

Listing 4.1.

4.3 Thread Models

RQ SQ

RDMA NIC

Dispatcher

Operation 1

Operation 2

Operation 3

Operation 4

(a) Threaded Server Design (TS)

RQ SQ

RDMA NIC

Handler
response

(b) Shared Threaded
Server Design (STS)

RQ SQ

RDMA NIC

Network 
Handler

Processing 
Handler

I/O 
Handler

Response 
Queue

Processing 
Queue

I/O Queue

(c) Functional Partitioning-based Design (FP)

Figure 4.10 Thread Models for System Design

Web services and applications are becoming more complex and their demand is steadily

increasing. This requires the design of new systems that can handle this ever-increasing

load and provide a robust and responsive service platform. Much of the previous work [104,

174] highlights the need for a highly decoupled and functionally partitioned (FP) model,

such as Staged Event-Driven Architecture (SEDA). Such models are believed to ensure

fair response times to clients while ensuring high request processing throughput. These
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models are designed using processes and threads as the models for concurrent program-

ming. Different functional activities are assigned to different pools of threads, thus utiliz-

ing the plethora of cores available in modern processors. However, such designs overlook

the overhead of thread synchronization and data transfer between cores, particularly when

each request takes only a brief amount of time to be processed. This is particularly true

when using RDMA-based communication, where the advanced networking hardware pro-

vides extremely low latency communication and offload capabilities. The performance

characteristics of RDMA networks require a re-evaluation of the concurrency architecture

to ensure optimal response time and usage of hardware.

Traditional storage architectures were based on the popular functional partitioning de-

sign approach [104]. However, we argue that it might not be the best approach for achieving

low latency of operations. Functional partitioning is considered to be particularly useful for

ensuring fair response times to clients. This argument holds true when each request takes a

significant amount of time to be resolved but breaks down if the request only takes a brief

amount of time. In this scenario, the overheads of thread synchronization and data transfer

between cores (cache thrashing) can lead to significant performance degradation. This is

particularly significant when using fast storage devices such as NVMe drives or PMEM,

where the latency is extremely low. This calls for re-designing the storage architecture,

particularly for latency-critical operations.

To avoid any performance degradation and scaling to a large number of clients, we

believe that a run-to-completion approach (i.e. single thread to process entire request) is

the best solution. Using a single thread to process the complete request ensures that we do

not run into any thread synchronization issues and prevents frequent cache thrashing. The

thread-per-request model and bounded thread pool models are two of the most common
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single-threaded designs. The thread-per-request model is well known for its simplistic

design and application in web services [27]. The bounded thread pool model is a variant

of the thread-per-request model which imposes a limit on the total number of threads. Our

goal here is to show that these models work well for querying workloads on HBase [2],

a NoSQL database. We evaluate three designs based on these single-threaded models as

well as the default functional partitioning approach for scan operations. These designs are

presented in Figure 4.10 and discussed in detail below.

Threaded Server Design (TS). This design is based on the thread-per-request model, uti-

lized in several web servers. In this design, each operation consumes a thread, with the OS

responsible for switching between threads to ensure fair response times for clients. While

this approach is relatively easy to program, it can lead to significant performance degrada-

tion when the number of threads is large, owing to the overheads associated with threading.

In this design, we have a dispatcher thread pool for reading operation requests from the

network adapter and launching a thread to process the request in. Each operation thread is

responsible for processing the complete operation including sending the result back to the

client.

Shared Threaded Server Design (STS). While the threaded server design suffers from

the threading overhead for a large number of threads, this design aims to solve this issue by

using a bounded thread pool for operation processing. The entire design uses just one thread

pool to process the entire operation. Incoming requests wait in the NIC’s queues until one of

the handler threads pick them up for processing. Limiting the number of concurrent threads

leads to a more scalable and robust design as compared to the unconstrained threaded server

design. It should be noted that the number of threads can and should be tuned.
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Functional Partitioning-based Design (FP). Functional partitioning typically involves

partitioning the application’s activities into a set of distinct functions which are each pro-

cessed by separate threads. The interaction between functional units usually takes place

through shared queues and variables. In our case, network, computation, and IO can easily

be identified as the main activities. Separate thread pools are assigned for these three tasks

with communication between the thread pools using thread-safe queues.

To test our design with a real-world application, we use data provided by AdMaster

Inc. [1], a marketing data technology company that uses Big Data to provide businesses

with useful marketing data. The data consists of a set of events for users interacting with

ads on smartphones. The overall dataset has more than 50 fields for each record. After

discussion with AdMaster data scientists, we came up with four workloads which represent

queries that are daily used by AdMaster to analyze their data.
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To evaluate the performance characteristics of different thread models, we integrate

them into HBase and design a multi-client workload which incorporates all four applica-

tion workloads. In this workload, we run multiple clients such that each workload is being

run by a quarter of the clients. We feel that this multi-client workload accurately embod-

ies the characteristics of the load and request distribution received by AdMaster databases.

This is because, in real world applications, users typically run different types of queries

concurrently. We use 15M records from the AdMaster data for this evaluation. Results for

this evaluation are presented in Figure 4.11. We also observe that STS and FP have similar

performance for CCIndex [194] and Phoenix [3], while for HBase FP has the least average

latency for 128 clients. TS performance suffers from the overheads of threading, particu-

larly for 64 and 128 clients. To achieve optimal performance with STS, we observe that

we need to increase the number of main handler threads from two to four. This is primarily

because clients are running different workloads, thus more handlers are needed to ensure

that a big request does not block other requests. Thus, while STS and FP performance are

similar, STS still uses significantly less number of threads. Based on these results, we use

the STS thread model in the design of DStore, which is discussed in the next section.

4.4 DStore

In this section, we present the design and implementation of DStore and its integration

with DIPPER.

4.4.1 Overview

To demonstrate the effectiveness and efficiency of DIPPER, we propose a new fast and

durable object storage sub-system, called DStore. DStore is designed with the goal of being

a generic fault-tolerant embedded storage sub-system.
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API Function Type Description

ctx ds init() environment Initialize context for application thread
void ds finalize(ctx) environment Terminate context

OBJECT oopen(ctx, name, size, op) filesystem Open an object for reading, writing, or both
void oclose(OBJECT) filesystem Close an object
ssize t oread(OBJECT, buf, size, offset) filesystem Partial reads on object
ssize t owrite(OBJECT, buf, size, offset) filesystem Partial writes on object

ssize t oget(ctx, key, value) key-value Get value for key
ssize t oput(ctx, key, value, size) key-value Set value for key
int odelete(ctx, name) key-value Delete object or key

int olock(ctx, name) concurrency control Acquire lock on object
int ounlock(ctx, name) concurrency control Release lock on object

Table 4.3 DStore Interface Overview

API and Semantics. We do not opt for POSIX compliance so as to avoid the shortcomings

of POSIX IO [16, 187]. The growing popularity of simpler cloud services which offer

access to objects instead of files needs to be recognized. As a consequence, we propose

a new set of APIs to provide scalable access to objects. Table 4.3 lists the main API for

accessing DStore.

The API and semantics of DStore have been specifically constructed to handle a wide

variety of use cases and requirements. We provide both key-value and filesystem style

APIs while storing the data as objects. Unlike object stores such as OpenStack Swift [135],

DStore treats objects as modifiable entities. The primary difference between the key-value

and filesystem API is statefulness. The key-value API does not require an object handle,

releasing DStore of the arduous task of tracking open handles. This allows applications to

achieve much higher scalability.

The oopen, oclose, oread, and owrite primitives are semantically related to their filesys-

tem counterparts. The oget and oput primitives are derivatives of the standard kev-value

functions, get and set. Each thread submitting IO needs to initialize a context for submitting
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Figure 4.12 DStore layout and steps followed by a write request

requests using ds init. For concurrency control, olock and ounlock primitives are provided

to specify complex dependencies between objects. Concurrency control for a single object

is implicitly handled by DStore.

Use Cases. Due to lack of a complete POSIX interface, we do not envision that DStore

can be a direct filesystem replacement, but rather a system complementary to a filesystem

which can handle workloads requiring higher scalability and performance. It can also be

integrated into existing file and database systems. The key-value API enables DStore to be

directly used as a persistent key-value store. The low latency and scalability of DStore can

be utilized in checkpoint-recovery systems [20, 62]. In addition, distributed file and object

storage systems can easily be modified to use DStore. We also provide plugins for YCSB,

HDFS, and fuse over DStore to allow existing applications to run seamlessly.

4.4.2 Data Layout

DStore distributes data and internal structures between DRAM, PMEM, and SSD (see

Figure 4.12). Data are stored purely on SSD because of its capacity and non-volatility.

SSD pages are grouped into blocks which are the unit of data allocation in DStore. The
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first block is reserved for the superblock, which contains relevant recovery information

about the system. Most importantly, it contains the PMEM root object which is required

for recovery in case of failure. A block pool is used to manage the SSD blocks. To store

metadata pages, an metadata zone is used along with an metadata pool to allocate free

entries in the metadata zone. The metadata and block pools are circular buffers containing

free blocks and metadata pages. An PMEM-based log is used for recovery in case of failure.

For maintaining an index of objects in the system, we utilize a btree. All data structures

including the metadata and btree are stored in DRAM with their shadow copies stored in

PMEM. Essentially, DStore implements its control plane using DIPPER, with the frontend

in DRAM and backend in PMEM, while the data plane is placed on a high-capacity SSD.

We use a DAX filesystem formatted on PMEM for space management. We directly map

a part of PMEM into the address space of the system by using mmap on a file located on

the filesystem. To allocate memory for shadow copies, we use a simple slab-based memory

allocator. This allocator uses the mmaped memory and creates slabs in different size classes

that are a power of two. For DRAM management, we use a similar slab-based allocator but

with slabs allocated from the volatile heap.

DStore does not utilize a write cache, but writes directly to the internal DRAM-based

write cache in SSDs, providing significant data transfer time savings. We find that SSDs

with internal DRAM have enhanced power-loss data protection [77]. In the event of power

failure, device capacitors will assist in flushing write cache data to non-volatile storage.

DStore transparently leverages device capacitance to reduce the overhead of crash consis-

tency.
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4.4.3 Exploiting DIPPER in DStore

DStore uses DIPPER to make all DRAM structures shown in Figure 4.12 persistent.

Data are updated in-place and are thus omitted from the log. We write log records for

oopen, owrite, oput, and odelete operations. Log records for oopen and owrite are only

written if they modify an metadata. The input parameters (excluding data) for all operations

are stored in the log record. In our design, the size of each log record is just 32B plus the

object name. In practice, we expect most log records to fit within a single cache line.

In DIPPER, a write operation works as follows (see Figure 4.12): 1 Lock the block

and metadata pool, 2 allocate and write the log record, 3 allocate blocks from block

pool, 4 allocate pages from metadata pool, 5 unlock the block and metadata pool, 6

write metadata with allocated blocks in metadata zone, 7 write btree record to memory,

8 write data to SSD, and 9 commit and flush log record to PMEM. Steps 3 , 4 , 6 ,

and 7 are responsible for constructing a metadata and btree entry. Exactly the same set of

steps is used to reconstruct metadata and btree state upon recovery from failure.

As we can infer from the description above, the btree and metadata zone are updated

in parallel outside the synchronous region. This parallelism is achieved by using the ob-

servational equivalency property of DIPPER. Our concurrency control algorithm (see sec-

tion 4.4.4) ensures that log records are added in conflicting order to maintain correctness.

4.4.4 Concurrency Control

We propose a concurrency control (CC) algorithm, which forwards information readily

available in the PMEM log to determine concurrently executing operations. Our goal while

designing this algorithm is to minimize additional memory usage and keep the latency

for detecting conflicting requests minimal. Most systems use per-object locks to provide
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concurrency control which increase linearly with the number of live objects in the system.

In contrast, our CC algorithm embeds a lock flag within the log records for each request.

The number of locks is therefore limited by the size of the log. Conflicting requests do

not use a hold and wait approach, but rather spin on dedicated flags corresponding to their

conflict.

Write-Write Conflicts. The log contains records of all operations currently in execution.

When a new request arrives, we scan the log to check if any operations in execution are

operating on the same object. If so, we spin on the committed flag of the conflicting record

until the operation finishes. This ensures that we do not have two concurrently executing

requests on the same object. However, scanning the complete log to check for conflicts is

inefficient and unnecessary. Scanning from the first uncommitted record until the end of

the log enables us to detect conflicting operations without adding significant overhead.

Read-Write Conflicts. Since read requests are not added to the log, read-write request

conflicts can still occur. For resolving read-write concurrency, we introduce a new in-

memory hash table that maps object names to their current read count. The read count

is updated using the atomic fetch-and-add instruction to ensure consistent count values

during parallel operation by threads. By looking at the read count at the start of a write

request, we can be sure that no request is reading that object at that time. In case the read

count is non-zero, we simply poll on it until it is zero.

4.4.5 Additional Design Considerations

In this subsection, we discuss some of the additional considerations that were made

while designing DStore.
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Inter-Object Dependencies. Having the ability to specify complex inter-object depen-

dencies is invaluable for many applications. For example, in a filesystem, dependencies

between a file and its directory are captured by locking the directory before modifying the

file. Such cases can be handled by using the olock and ounlock primitives to lock objects.

To implement these primitives we introduce a novel NOOP log operation. This operation

represents a NOOP on the DRAM data structures and is ignored by DIPPER recovery logic.

The olock primitive places a NOOP record in the log and ounlock marks this record as com-

mitted. Thus, a log scan can correctly identify locked objects as conflicts.

Request Processing Model. For improving scalability and latency, we use the run-to-

completion STS thread architecture, proposed in section 4.3, to implement the IO pro-

cessing pipeline completely in userspace. For optimal IO performance, we utilize the

NVMe [131] protocol to interact with flash hardware directly.

Durability and Consistency. DStore writes data directly to storage device-level RAM (if

available, otherwise to non-volatile media). In the event of an unexpected crash, device

capacitors will safely flush data to non-volatile media. By eschewing buffering, DStore

provides strong guarantees of data durability. Further, DStore only marks log records as

committed once data is made durable. This implies that metadata will always be consistent,

i.e., objects can never contain garbage data.

CoW Design. To enable fair comparison of DIPPER with CoW checkpoints used in re-

lated work, we implement CoW in DStore. This works as follows. When a checkpoint is

triggered, all volatile pages in the frontend are marked as read only. As soon this is done,

the frontend can process write operations again. When a client tries to modify a read-only

page, a page fault is triggered and a handler copies the page to PMEM. Clients can assist in
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this copying process, but must wait until the page is copied before making any modification

to it.

4.5 Experimental Analysis

In this section, we present the evaluation of DStore.

4.5.1 Experimental Testbed

Our experimental testbed consists of a Linux (3.10) server equipped with two Cascade

lake CPUs (8280L@2.70GHz), 384GB DRAM (2 x 6 x 32GB DDR4 DIMMs), and 6TB

PMEM (2 x 6 x 512GB DCPMMs) configured in App Direct mode, and a 750GB Intel

P4800X NVMe drive. Each CPU has 28 cores (with hyperthreading disabled) and 38.5MB

of L3 cache (LLC). All available PMEM is formatted as two xfs-DAX filesystems, each

utilizing the memory of a single CPU socket as a single interleaved namespace.

All code was compiled using gcc 9.2.0. PMDK [75] 1.8 was used across all evaluations

to keep comparisons fair. Hardware counters were obtained using a combination of Intel

VTune Profiler [74] and Linux iostat utility. DCPMM hardware counters were collected

using the ipmwatch utility, a part of the VTune Profiler.

We decided to compare performance with at least one system from each category in Ta-

ble 4.2. We directly compare DStore with three popular PMEM-optimized NoSQL storage

systems, PMEM-RocksDB [141, 178], MongoDB-PM [123], and MongoDB-PMSE [78].

PMEM-RocksDB is an optimized version of the log-structured merge (LSM) tree-based

vanilla RocksDB [45] and uses a PMEM resident log to improve performance. MongoDB-

PM uses an optimized btree-based WiredTiger engine with the btree index and journal

placed in a DAX filesystem formatted on PMEM to improve performance. MongoDB-

PMSE uses PMEM optimized data structures to store data in-place and uses PMDK’s
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Figure 4.13 Latency Evaluation

pmemobj-cpp library for crash consistency. We also implement the copy-on-write check-

point scheme used in NOVA [180] and Pronto [116] in DStore for comparison purposes.

Finally, we also compare metadata overhead with the Linux direct-access (DAX) filesys-

tems xfs [161], ext4 [115], and NOVA [179].

4.5.2 Is DStore Fast?

To evaluate DStore performance, we measure the average latency of 4KB read and up-

date operations at full-subscription (28 cores) with YCSB [34] workloads A (50% read,

50% write) and B (95% read, 5% write). We compare DStore latency with that of other

PMEM-optimized systems. From Figure 4.13(a), we can observe that DStore provides the

best latency in all cases, up to 4x lower than other systems. The reason for this is that

metadata requests experience ultra-low latency since the frontend is entirely in DRAM.

In contrast, other systems must access persistent storage for metadata updates, which in-

creases latency. For instance, MongoDB-PMSE must update both data and metadata in

PMEM for each operation. This is also the reason that we see higher improvement for up-

date than read operations. In general, update latency is lower for workload B compared to

90



T
hr

ou
gh

pu
t (

K
op

s)
0 10 20 30 40 50 60

0
50

15
0

25
0

35
0

S
S

D
 B

an
dw

id
th

 (
G

B
/s

)

0 10 20 30 40 50 60

0
1

2

P
M

E
M

 B
an

dw
id

th
 (

G
B

/s
)

Time (s)

0 10 20 30 40 50 60

0
1

2
3

4

(a) PMEM-RocksDB

T
hr

ou
gh

pu
t (

K
op

s)

0 10 20 30 40 50 60

0
50

15
0

25
0

35
0

S
S

D
 B

an
dw

id
th

 (
G

B
/s

)

0 10 20 30 40 50 60

0
1

2

P
M

E
M

 B
an

dw
id

th
 (

G
B

/s
)

Time (s)

0 10 20 30 40 50 60

0
1

2
3

4

(b) MongoDB-PM

T
hr

ou
gh

pu
t (

K
op

s)

0 10 20 30 40 50 60

0
50

15
0

25
0

35
0

S
S

D
 B

an
dw

id
th

 (
G

B
/s

)

0 10 20 30 40 50 60

0
1

2

P
M

E
M

 B
an

dw
id

th
 (

G
B

/s
)

Time (s)

0 10 20 30 40 50 60

0
1

2
3

4

(c) MongoDB-PMSE
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Figure 4.14 System throughput and storage bandwidth over a 1 minute window for a full-
subscription (28 cores) 50% read, 50% write workload

A for all systems because the high read:write ratio implies that the cost of persistence can

be more easily overlapped with updates to the volatile cache. Finally, we also observe that

DStore with copy-on-write checkpoints provides nearly the same latency as DStore. This

is because checkpoint design only impacts tail latency and not average latency.

We also compare with PMEM-optimized DAX filesystems (xfs-DAX, etx4-DAX, and

NOVA) to evaluate the filesystem interface of DStore. Since these filesystems place data in

PMEM while DStore does so in SSD, we were unable to make a direct comparison. Instead,

we measure the metadata overhead of 4KB writes to a file for each system. Figure 4.13(b)

shows this comparison. Just like the previous experiment, we find that DStore is the fastest

in terms of updates to metadata. This is because updating metadata only requires making

changes to in-memory data structures and recording the operation in the log. In contrast,

other systems need to update changes to PMEM because their volatile and persistent do-

mains are not decoupled. For instance, NOVA must update the file’s inode as well as add

the operation to the inode’s log, both of which must be made in PMEM for durability.
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Size Time NVMe Write BTree Metadata Log Flush Total

4KB
Time (cycles) 24029 789 807 1663 27288

Time (ns) 8899.63 298.89 292.22 615.93 10106.67
% of Total 88.06 2.96 2.89 6.09 100

16KB
Time (cycles) 108844 1284 789 1945 112862

Time (ns) 40312.60 475.56 292.22 720.38 41800.74
% of Total 96.44 1.14 0.70 1.72 100

Table 4.4 Time breakdown of write requests

xfs-DAX and ext4-DAX suffer from similar limitations. Overall, we find that by keeping

metadata in DRAM and using compact logical logging, DStore significantly reduces oper-

ation latency compared to other systems. Through experimental analysis, we also discover

that our userspace run-to-completion pipeline is successful in avoiding context switches in

the critical path, which also contributes to latency reduction.

Why is DStore Fast? To better understand why DStore is fast, we analyze its write pipeline

in more detail. Table 4.4 shows the latency breakdown of 4KB and 16KB writes. The time

spent in each component is given in cycles, nanoseconds, and as a percentage of total

time. The right-most column shows the total time for the write request. Metadata indicates

the time required to allocate blocks and update the corresponding metadata. Log flush

represents time spent in flushing the log record to PMEM. What stands out the most is the

percentage of time spent doing NVMe writes. This indicates that we are successfully able

to reduce software overhead to ∼10% of total time. We also observe that a log flush takes

less than 2000 cycles (or 740 ns), minimizing the impact of logging on write performance.

This also indicates that 3D-XPoint technology provides extremely low latency for a single

cache line flush. Finally, we find that the metadata and log flush overheads are similar for

both IO sizes. This is because the use of logical logging in DIPPER leads to request size
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agnostic software overhead. Therefore, we conclude that having a DRAM frontend with

the entire metadata in the reason for DStore’s fast performance.

4.5.3 Is DStore Quiescent-Free?

To measure the effects of checkpoints on system throughput, we conduct an experi-

ment with a full-subscription (28 cores) 50% read, 50% write workload. We measure the

aggregate throughput over a 1 minute window. We chose a 1 minute window because

it was long enough for each system to trigger a checkpoint at least once. The first row

of graphs in Figure 4.14 shows the result of this analysis. We can clearly observe that

DStore is able to sustain higher throughput than other systems for the entire time win-

dow. The troughs in the graph represent periods of checkpoint. DStore throughput drops

slightly during a checkpoint because of the impact of background threads applying opera-

tions to the backend. Nevertheless, even the lowest throughput achieved is greater than the

highest of any other system, i.e. DStore is able to satisfy a high throughput SLO. Impor-

tantly, the system never fully quiesces for both read and write operations. Other systems

are unable to achieve high throughput because of the reasons discussed earlier (see sec-

tion 4.5.2). Apart from MongoDB-PMSE, all systems experience throughput drops during

checkpoints. MongoDB-PMSE uses inline persistence, so no checkpoints are required and

the throughput is consistent over time. Despite this, the overheads of cache flushes and

transactions prevent it from achieving good performance even though it places data on

PMEM. DStore delivers 15% higher throughput SLO compared to MongoDB-PMSE and

is more cost effective because it places data on SSD. Another observation we make is that

the copy-on-write design significantly lowers throughput during checkpoints. This is be-

cause client threads need to block and wait until the pages they want to modify are made
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Figure 4.15 Tail latency curves at full-subscription (28 cores) for YCSB workloads A (50%
read, 50% write) and B (95% read, 5% write)
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Figure 4.16 Effect of optimizations on write latency

durable. Finally, we find that the continuous background compaction in RocksDB prevents

the frontend from achieving consistent throughput. In fact, for a short duration, it was

unable to serve any update requests, violating quiescent freedom.

Why is DStore Quiescent-Free? To understand our observations further, we measured

the SSD and PMEM bandwidth during the experiment. The SSD bandwidth for PMEM-

RocksDB and MongoDB-PM clearly show the activity of the asynchronous checkpoints,
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which explains the dips in throughput during them. MongoDB-PMSE does not use the

SSD at all as it places all data in PMEM. Interestingly, for DStore (including CoW case),

the SSD bandwidth curve mirrors the throughput curve. This is because data is directly

updated in the SSD for each request and metadata is only placed in DRAM/PMEM. If we

look at the PMEM bandwidth, we notice that except DStore, other systems utilize only a

small percentage of available bandwidth. The reason for this is that their throughput is

limited by other factors, such as checkpoints or transactions. These systems are unable

to effectively utilize the byte-addressability and performance of PMEM. Even CoW does

not utilize PMEM effectively because pages are flushed individually when page faults are

triggered and not in batches. DStore is able to better exploit its performance by using

shadow updates for the backend. In this manner, the backend throughput is not limited since

transactions are not needed. We also observe that the PMEM backend is not always active

which indicates that DStore can handle workloads with an even higher write:read ratio

without quiescing. We conclude that logical and physical decoupling of normal operation

and checkpoints allows them to be completely overlapped. As a result, DStore can provide

uninterrupted service to end users.

4.5.4 Is DStore Tailless?

We measure the tail latency of 4KB read and update operations at full-subscription

(28 cores) with YCSB workloads A (50% read, 50% write) and B (95% read, 5% write).

Figure 4.15 shows the tail latency curves for both operations. Overall, DStore has flatter

tail latency curves and also the lowest latency values for all cases, up to 6x lower than other

systems. The reason for this trend is the decoupled design, which is successful in hiding

the latency of persistence. In contrast, other systems have longer tails because of the effects
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of checkpoints on client requests. Requests arriving during checkpoints must wait for data

to be persisted, resulting in this trend. Some other interesting observations we make are

as follows. CoW shows high p9999 latency for the update heavy workload A but close to

DStore latency for the read heavy workload B. This is due to a reduction in the frequency of

checkpoints for workload B as compared to A. We find that read tail latency is also worse

for other systems as compared to DStore. This implies that checkpoints impact both read

and write requests. Finally, we observe that MongoDB-PMSE has high p999 and p9999

latency despite using an uncached design. We believe this trend is because of the high

tail latency of PMEM itself and not the software design. The high tail latency of Optane

DCPMM has been verified in [183].

Why is DStore Tailless? For improving write latency, we proposed effective optimiza-

tions, including PMEM-based logical logging, decoupled persistence (DIPPER), and ob-

servational equivalency (OE). To determine the impact of these optimizations on system

performance, we first evaluate the baseline design, adding optimizations one-by-one and

measuring performance again. The naı̈ve baseline uses ARIES-style physical logging [51]

with CoW checkpoints. Figure 4.16 gives us an idea of the impact of optimizations on

both average and p9999 latency at full-subscription. The naı̈ve design has the worst per-

formance. This is due to the high log write latency and overhead of CoW checkpoints.

Moving from physical to compact logical logging improves average latency by 21% and

tail latency by 15%. Incorporating DIPPER (+DIPPER) on top of this improves tail latency

significantly (∼7.6x). DIPPER impacts tail and not average latency because it only im-

proves response times for requests during a checkpoint. Finally, adopting OE completely

removes any synchronization overhead, further improving average and p9999 latencies by

9% and 2%, respectively. OE particularly helps at high concurrency by allowing parallel
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System Shutdown Type Metadata Replay Total Time

PMEM-RocksDB clean 0 156 156
MongoDB-PM clean 474 139 613

MongoDB-PMSE clean 985 0 985
DStore clean 846 841 1687

PMEM-RocksDB crash 5013 150 5163
MongoDB-PM crash 7525 12786 20311

MongoDB-PMSE crash 1708 0 1708
DStore crash 11580 861 12441

Table 4.5 System recovery time (in ms): metadata is time to recover metadata and replay
is time to replay log records.

operation on the btree and metadata zone. We conclude that logical logging is the most

beneficial for average latency while DIPPER is the most beneficial for tail latency.

4.5.5 Recovery Performance

To test recovery performance, we evaluate two cases: one with a normal shutdown and

the other with an unexpected crash. We simulate system failure by forcing a hard shutdown

(SIGKILL) and restarting the process. For this experiment, we load two million 4KB ob-

jects into each system. Table 4.5 shows system recovery times for both cases mentioned

earlier. When recovering from a clean shutdown, DStore must reconstruct its volatile space

from the persistent space. Other systems do not have this overhead because they only bring

data into the cache on-demand. For this reason, recovery from a clean shutdown takes

longer for DStore. In case of failure during a checkpoint, all systems take longer to re-

cover. This is because any operations in-flight need to be re-executed and lost data must

be reconstructed using the log. For DStore, the ongoing checkpoint process during a crash

must be redone upon recovery in addition to the normal recovery process. MongoDB-PM

and PMEM-RocksDB must recover any lost volatile data by replaying records from the
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Figure 4.17 Storage footprint with 2M 4KB objects

log. All three have a similar recovery procedure and therefore show similar performance.

MongoDB-PMSE only needs to re-execute in-flight operations using transaction data and

recovers the fastest. In general, the two-level design prevents instant recovery for DStore.

Since recovery is not the common case, we believe that the current design provides ade-

quate recovery times but leaves room for improvement in the future.

4.5.6 Storage Footprint

DStore maintains two copies of metadata (in DRAM and PMEM) and uses shadow

updates for the PMEM copy. We consider it important to measure the storage overhead

and compare it with other systems. To evaluate the physical storage footprint, we load

two million objects into the system and then measure the total space (DRAM, PMEM, and

SSD) consumed by each system. Figure 4.17 shows the result of this analysis. Default

settings are used for all systems. Interestingly, we find that all systems have similar storage

footprint. Overall, DStore only consumes more space than MongoDB-PMSE. MongoDB-

PMSE consumes the least space because it does not require a volatile cache. While the

actual data storage footprints for all systems are virtually the same, the metadata overheads

differ significantly. Both PMEM-RocksDB and MongoDB-PM reserve a large chunk of

DRAM as their cache space but only actually utilize a small portion of it. For this reason,

both have a higher storage footprint than DStore. In the worst case, DStore may need space
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System Throughput p9999 Lat. Recovery Lat. Space Ampl.

MongoDB-PM 106704 IOPS 5439 us 20311 ms 2.47
MongoDB-PMSE 219221 IOPS 12119 us 1708 ms 1.36
PMEM-RocksDB 47532 IOPS 6055 us 5163 ms 1.97

DStore (CoW) 119685 IOPS 16863 us 12441 ms 1.86
DStore 252832 IOPS 2665 us 12441 ms 1.86

Table 4.6 Summary of achievable service level objectives

for three copies of metadata. However, since the space is allocated ad-hoc, this overhead

is kept to a minimum. Further, the performance benefits of the decoupled approach far

outweigh the drawbacks of additional PMEM usage.

4.5.7 Evaluation Summary

To get a complete picture of how different systems might perform in a cloud setting,

we analyzed their achievable SLO. Table 4.6 provides a summary of these for throughput,

p9999 and recovery latency, and space amplification6. These represent the worst case val-

ues we obtained in our experiments. For each metric, the best values have been highlighted.

DStore achieves the best throughput and p9999 SLO. This is because the use of DIPPER

prevents sudden drops in throughput and keeps tail latency low, resulting in consistent and

predictable performance. For recovery and space amplification, MongoDB-PMSE is able

to delive the best SLO. This is expected because it does not utilize a cache and data is per-

sisted inline. Therefore, there is no storage overhead of the cache and recovery can be near

instantaneous. DStore (CoW) has the same recovery and storage overhead as DStore be-

cause it uses the same recovery and memory allocation design. However, the CoW design

is unable to deliver the same performance characteristics as DIPPER.

6We define space amplification as the ratio of size of application data to the size of space utilized by the
storage system across DRAM, PMEM, and SSD.
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Key Takeaways. Our results indicate that using a decoupled design is optimal for through-

put and latency SLO while an uncached design is optimal for recovery and space SLO.

Cached approaches can provide fast performance, but because of inconsistent performance

during checkpoints, they are ineffective in providing reasonable SLO. Depending on the

required tradeoffs, a decoupled or uncached design should be chosen for storage systems.

Overall, we conclude that DStore provides the best performance SLO, good space SLO,

and adequate recovery SLO and satisfies the three requirements we set out to achieve.

4.6 Related Work

Over the last decade, a significant body of work has attempted to design transactional

abstractions [25, 32, 49, 107, 169], persistent data structures [28, 36, 48, 63, 110, 116,

148, 168, 195], and file, key-value, and database systems [30, 33, 41–43, 50, 70, 71, 86,

139, 175, 176, 179] for PMEM. All of these systems can be classified as either cached,

uncached, or decoupled.

Cached Systems. Despite the byte-addressability and performance benefits of PMEM,

cached systems remain a popular class of storage systems. Several cached systems [30, 36,

43, 70, 116, 123, 141, 176, 178] have been recently proposed to leverage PMEM. Despite

differences in the design and implementation of these systems, all of them suffer from the

same flaw. Clearing cache or log space is a costly operation and typically requires the cache

to be write-protected for the duration of this operation. Ultimately, this design is unable to

provide consistent performance that is desired by cloud providers.

Uncached Systems. Several systems [28, 32, 33, 41, 42, 48, 50, 63, 86, 110, 139, 148,

168, 169, 175, 179, 195] have been proposed to take advantage of the storage and memory

characteristics of PMEM to modify and access data in-place. Unfortunately, ensuring crash
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consistency for updates is non-trivial, requiring complicated transactional or journaling

algorithms to be used. It has been shown that durable transactions have high overhead and

significantly lower end-to-end performance [63, 125].

Decoupled Systems. Some recent systems like DudeTM [107], NV-HTM [25], and

Bullet [71] have proposed partially or fully decoupling operation and persistence phases to

lower the cost of persistence and improve performance. However, these systems still rely on

expensive physical logging which is particularly bad when the working set of transactions is

large. DudeTM and NV-HTM both use HTM for atomicity. Unfortunately, HTM requires

hardware support which limits their wide-scale applicability. Further, DudeTM requires

hardware changes to support its timestamp design, making it incompatible with commodity

HTM. In contrast, DStore does not require special hardware support and uses more efficient

logical logging. DStore is influenced and inspired by Bullet. Like DStore, Bullet separates

volatile and persistent domains and proposes a cross-referencing technique to keep the two

consistent. However, Bullet requires both the key and value to be added to the log. In

contrast, DStore’s design allows values to be omitted from the log and be placed only in

persistent storage. Furthermore, DStore’s DIPPER is more generic than Bullet’s cross-

referencing logs in that it can be applied to any storage system and not just key-value

stores.

Logical Logging. Some recent works [113, 139] have successfully applied logical log-

ging to database systems, while WAFL [90] and NOVA [179, 180] have done the same to

filesystems. However, unlike DStore, these works do not provide a truly atomic quiescent-

free checkpoint solution.
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4.7 Summary

In this chapter, we first presented the design of a lock-free persistent linkedlist and ring

buffer [53]. We demonstrated the effect of persistence mode on the performance of per-

sistent lock-free data structures and that data structures optimized for ADR mode will not

be optimal in eADR mode unless re-architectured. Next, we presented the design and im-

plementation of DStore, a high-performance fault-tolerant userspace storage sub-system.

DStore provides fast performance, low tail latency, and quiescent freedom simultaneously

through the proposed DIPPER approach which decouples system and checkpoint space.

We showed that by using PMEM to store the checkpoint space, we can leverage its perfor-

mance to effectively overlap the operation of the two spaces. The novelty of our approach

was in the design of the backend, which allowed us to use the same code for both spaces and

provide low overhead persistence. We also explored different thread models [56] for our

design and showed that a single thread run-to-completion design is more suited for provid-

ing low latency. Evaluation with Intel Optane DCPMM demonstrates the clear superiority

of DStore over other state-of-the-art storage systems.
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Chapter 5: Microfs: A Coordination-Free Abstraction for Ephemeral

Storage

With enormous compute power, upcoming exascale systems [137] will bring with them

crippling frequencies of system failure. Prior work estimates that their mean time be-

tween failure (MTBF) will be less than 30 minutes [7]. Exascale applications must protect

themselves from unavoidable failures by checkpointing internal state to persistent stor-

age. System-level checkpoint dumps on existing multi-petaflop systems have been shown

to have significant overhead [22]. This problem will be exacerbated on exascale systems

as not only will checkpoint time increase, but checkpoint frequency will also increase to

account for the decrease in MTBF. The IO runtime must bear the burden of storing vast

amounts of data in as little time as possible. Consequently, the storage components of

exascale systems must be redesigned.

Newly introduced NVMe SSDs based on flash and 3D-XPoint memory offer unprece-

dented performance and concurrency. For example, new SSDs offer write bandwidth up

to 2.5GB/s [91], an order of magnitude faster than SATA SSDs. These devices are ideal

for use in HPC systems to build high density storage arrays. These arrays can be stacked

together to build a disaggregated storage cluster. With the introduction of the NVMe-over-

Fabrics (NVMf) standard [130], low latency remote access to these arrays can be effectively

provided. The NVMf standard can take advantage of fast RDMA enabled networks in HPC
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Figure 5.1 Weak scaling checkpoint bandwidth with OrangeFS and GlusterFS. Note the
gap between the peak and available hardware IO bandwidth.

systems to reduce the network overheads of remote access. Guz et al. [60] have shown that

at the application level, NVMf only has ∼10% overhead compared to local IO.

In a disaggregated HPC cluster setup, the most common form of storage runtime pro-

vided is a Parallel File System (PFS), such as Lustre [149]. In recent years, several dis-

tributed filesystems [12, 65, 72, 108, 163, 171] have been proposed to alleviate the bottle-

necks in PFS. However, we find that these systems are still not ideal for highly concurrent

checkpoint IO. To demonstrate the shortcomings of existing filesystems, we measure the

sustained bandwidth of checkpoint IO on NVMe SSDs while varying the number of con-

current application processes.

Figure 5.1 shows the checkpoint bandwidth for OrangeFS [163] and GlusterFS [65]

with the ECP CoMD application [44]. At best, OrangeFS and GlusterFS can only achieve

41% and 84% of the peak hardware bandwidth, respectively. There are two primary rea-

sons for this. First, these storage systems overlay multiple software layers over POSIX
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filesystems which decrease the peak attainable bandwidth. Second, these filesystems ex-

pose significant overhead at high concurrency, which is because the strict POSIX seman-

tics require open and creat syscalls to be atomic. The need for operation atomicity and

metadata consistency requires complicated distributed synchronization mechanisms which

suffer from scalability limitations [119, 120]. Note that at lower process counts, GlusterFS

is unable to deliver their peak bandwidth. This is because GlusterFS uses consistent hash-

ing to distribute files between storage devices which has high standard deviation of load

under low concurrency, as shown in [100].

There has been work [192, 193] to alleviate these bottlenecks by reducing or eliminating

the need for synchronous namespace (or directory hierarchy) access. Unfortunately, these

works are unable to extract the best possible performance from fast NVMe devices. Control

and data operations have to trap into the OS and go through multiple software layers, negat-

ing the benefits of using low latency NVMe devices. As such, these storage systems are

only suitable for storing long-lived input and output data and not latency critical ephemeral

checkpoint data. The characteristics of checkpoint IO are different. The data is ephemeral

and the IO bandwidth required depends on the job scale. Therefore, for storing checkpoint

data, we need a storage runtime which can be configured during a job’s runtime based on its

load factor. The runtime itself must be ephemeral and should terminate with the job. To the

best of our knowledge, no storage runtime is available in the HPC community yet, which

can offer direct access to storage using NVMf as well as synchronization-free control and

data planes. Therefore, there is a clear need to design a coordination free storage runtime

for checkpoint/restart, which can provide low latency direct access to remote SSDs using

NVMf. An ephemeral storage runtime for checkpoint data must satisfy three requirements:
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(1) full utilization of available bandwidth, (2) high resiliency of data, and (3) support for

large number of concurrent clients.

5.1 The microfs Abstraction

We introduce micro filesystem (or simply microfs) as a powerful design template for

ephemeral distributed filesystems that wish to provide the minimal functionalities expected

of a storage system. Microfs is designed to peel off the unnecessary software layers

that hinder performance and allow applications to directly access storage devices. As op-

posed to conventional kernel filesystems, microfs runs purely in userspace which allows

it to bypass the kernel virtual filesystem (VFS) and block driver, eliminating the need to

trap into the kernel for every operation. Furthermore, microfs abstains from providing a

shared namespace, instead only providing a private one for each application process. It is

this choice which obviates the requirement to synchronize across all microfs instances, a

common challenge for user-level filesystems. With this observation, we present microfs

as a high-performance alternative for storing ephemeral application data.

To attain the goals of microfs, we formulate the following design principles.

Principle 1: Direct userspace access to storage devices. To enable unprivileged userspace

access to devices, microfs uses the vfio kernel module. IO operations can then be sub-

mitted using memory mapped IO and completed by issuing DMA operations purely in

userspace. This allows for bypassing the kernel VFS and block driver while also providing

fine-grained control over the IO pipeline. We expect microfs instances to implement a

run-to-completion request pipeline (by avoiding locks and using polling instead of inter-

rupts) to reduce IO latency.
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Principle 2: Maintaining storage device integrity. Storage devices are shared across sev-

eral microfs instances. Integrity is maintained by logically and physically partitioning the

device between the instances. This partitioning is done at initialization time using a shared

communication runtime. We create group communicators for processes sharing hardware

to enable coordinated access to storage devices. Once the partitioning is complete, each

runtime instance can access its portion of the device without any need for coordination. In

this manner, unprivileged direct access to storage can be provided efficiently.

Principle 3: Synchronization-free control and data planes. Data plane operations are

designed to be synchronization-free by allocating a separate hardware IO queue for each

microfs instance. This enables parallel IO by exploiting the large number of queues in

modern storage devices. For example, the Intel Optane P4800X SSD controller can support

up to 32 hardware queues. The use of a single IO queue per instance guarantees that IO op-

erations are completed in the order they are received. Control plane (metadata) operations

are synchronization-free since no inter-microfs coordination is required, by definition.

Principle 4: Data and metadata durability. Traditional kernel filesystems rely on an OS-

level cache to buffer IO, journaling both data and metadata to maintain durability. Instead,

microfs writes data directly to device-level RAM and transparently leverages device ca-

pacitance to guarantee durability. Metadata consistency is maintained using lightweight

operation logging. Furthermore, the runtime periodically checkpoints internal filesystem

states to the storage device to prevent the log from growing without end.

5.2 NVMe-CR Design

In this section, we present the design of NVMe-CR.
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Figure 5.2 NVMe-CR Runtime Architecture. Each runtime instance directly accesses its
own remote SSD partition via NVMf.

5.2.1 Architecture

NVMe-CR is a storage runtime designed for scalable C/R capabilities using the emerging

NVMf protocol. NVMe-CR is built upon the microfs abstraction to enable low latency IO.

The goal of NVMe-CR is to provide C/R support for systems with disaggregated storage.

NVMe-CR does not provide a global namespace but only private per-process namespaces.

This is a conscious design decision to eliminate synchronization. Figure 5.2 shows the

architecture of NVMe-CR. Each application process runs its own storage runtime which is

mapped to a single partition of a remote SSD, connected using NVMf. Each runtime in-

stance implements three critical functionalities – the control plane, data plane, and storage

balancer. The control plane is responsible for creating and storing metadata of files and

directories. The data plane provides a block device like interface to access the remote SSD

partition using NVMf. The storage balancer partitions available storage devices between

compute processes and provides a conflict free many-to-one mapping. These three compo-

nents work in tandem to expose an ephemeral storage runtime to disaggregation oblivious
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applications. The sub-sections that follow provide a detailed description of the working of

these components.

5.2.2 Application Obliviousness

One of the primary goals we want to achieve is portability, i.e., enhancing the storage

runtime without application modification. We use the common approach of symbol inter-

ception provided by the GNU ld linker to achieve this. We intercept all the standard POSIX

IO library calls and redirect them to the NVMe-CR runtime. NVMe-CR implements all of the

IO library calls while remaining purely in userspace by following the design principles of

microfs. For management of the NVMe-CR runtime, we also intercept the MPI Init and

MPI Finalize calls. Runtime initialization and finalization is handled by these wrappers.

Internally, we leverage the MPI runtime for coordination between multiple instances as

well as for identification purposes. It should be noted that coordination is only necessary

in the initialization routine. Subsequent control and data plane requests are not required to

synchronize with other runtime instances. By using the symbol interception method, we

can efficiently separate the filesystem API from remote data storage and run unmodified

application binaries over NVMe-CR.

5.2.3 Data Storage using NVMf – Data Plane

NVMe-CR can transparently leverage NVMf as the data plane conduit to access the high

density storage arrays. Currently, our implementation uses the RDMA transport for data

exchange. Figure 5.3 compares the proposed and existing data conduits. The entire soft-

ware stack is shifted to userspace from the kernel. The entire software stack is shifted to

userspace from the kernel. To enable userspace access to remote SSDs via NVMf we use
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data plane lies in userspace, a stark contrast from the existing approach.

Intel’s SPDK library [76]. We chose SPDK as opposed to other systems like NVMeDi-

rect [92], and libaio [106] because it is the current state-of-the-art solution. Further, it has

negligible software overhead and its NVMf server is multi-tenant. SPDK NVMf server

daemons are deployed on each storage node for handling client NVMe requests. SPDK

NVMf clients, embedded within the NVMe-CR runtime are responsible for communication

with server daemons. In this manner, all data plane operations are internally translated into

NVMf requests and handled by the NVMe-CR runtime.

Data Durability. NVMe-CR eschews buffering write requests, instead writing data directly

to internal device-level RAM, if available. Otherwise, it is directly written to flash memory.

Flash devices with RAM usually support enhanced power-loss data protection [77]. In the

event of power failure, device capacitors will safely flush volatile data to non-volatile flash

memory. Writing to device RAM does not limit the overall data storage capacity but only

improves performance in cases where data fits within device RAM. If data does not fit in

RAM, performance gets limited to SSD bandwidth. By avoiding data buffering, we assure

that data is always persistent and can survive temporary power failures. This design choice
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was made based on the observation that buffered IO reduces overall application progress

rate.

5.2.4 Metadata Management – Control Plane

The control plane is responsible for metadata management, including block allocation,

data and metadata consistency, and exposing a POSIX compatible interface. Its goal is

to eliminate the need for complex distributed synchronization and minimize network IO.

NVMe-CR’s control plane design has several advantages. First, by exposing only private

namespaces, metadata operations never have to coordinate across processes. In contrast,

other systems must use distributed locking algorithms for each metadata operation to main-

tain a consistent global namespace. Second, metadata is entirely maintained in DRAM with

lightweight operation logging used for consistency and durability. The only network IO in-

volved is for reading/writing file data and writing compact log records. Other systems

must transmit additional data over the network (such as inodes and large sized physical log

records), reducing overall system efficiency. In addition, the control plane uses a combi-

nation of several techniques and designs to maximize performance. These are explained in

detail below.

Hugeblocks. For space management, we divide the SSD into blocks, the smallest unit of

storage allocation. Given that checkpoint files are several MBs, if not GBs, we allow files

to be managed in large block sizes. We call these hugeblocks because of their similarity to

hugepages. In our design, we use a hugeblock size of 32KB as opposed to kernel filesys-

tems which support block sizes only up to 4KB. We use a circular block pool for O(1)

hugeblock allocation. The use of hugeblocks significantly lowers the amount of informa-

tion that must be kept to track file blocks, which not only reduces the space overhead but
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also makes the process of block allocation faster. Further, we submit NVMf IO requests in

hugeblock units as well, which allows us to attain peak hardware bandwidth regardless of

the number of clients sharing an SSD. The reason for this is that NVMe SSDs internally

break up large IO requests into several smaller (usually hardware block sized) requests

which can then be split across the available flash channels for highly parallel IO. The entire

SSD bandwidth can then exploited even if there is only a single client accessing the device.

POSIX Semantics. By using SPDK for remote IO, we can indeed bypass the kernel, but

we need to provide a POSIX filesystem like interface to applications. NVMe-CR imple-

ments wrappers for commonly used POSIX IO syscalls. For providing a filesystem like

runtime with POSIX semantics, we borrow several conventional filesystem concepts and

techniques, such as inodes to store file metadata and directory files to store directory en-

tries. The control plane handles failure recovery using a write-ahead log. All metadata

operations executed during the following functions are logged: mkdir, open, write, and

unlink. The log is flushed before a subsequent operation is processed. Since we do not

buffer writes and we journal metadata operations for open and write, our runtime provides

stronger data durability guarantees than required by POSIX. As a consequence, metadata

will always be consistent, even with unexpected failures. This is an important property

because it guarantees that a completely written checkpoint file will never hold corrupted

data and can safely be used for recovery.

Per-process Private Namespace. If we take a look at common checkpointing patterns

used by applications, we find that two patterns are prevalent – N-1 and N-N [19]. In the N-

1 pattern, processes write to a single shared file, whereas in the N-N pattern each process

writes to a unique file. Recent work [167] has estimated that 90% application runs use

the N-N pattern. Due to this reason, the designs proposed in this chapter are specifically
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targeted towards the N-N pattern. The concurrent creation of millions of files is a scalability

challenge for filesystems. The choice of private per-process namespaces in NVMe-CR allows

us to overcome the scalability bottlenecks with the N-N pattern. Each runtime instance is

only tasked with the creation of a single file per checkpoint. Each runtime instance exposes

a private root directory which is not accessible to other processes. The root directory is a file

which resides on the remote SSD partition for the process. Since the root directory files are

independent for each process, the namespace exposed by them are private. The directory

hierarchy is constructed using a set of directory files indexed by a DRAM resident B+Tree.

The B+Tree contains mappings of directory and file names to their root inode. Any file

manipulation operation (creat, open, unlink, read, or write) is handled exclusively

by the NVMe-CR runtime associated with the originating process. Each runtime not only

handles the maintenance of the private namespace but also block and inode allocation for

files. In this manner, no coordination is required for any operation.

Metadata Provenance. To ensure that checkpoint files are available despite application

failure, we must ensure that metadata is safely made durable. A simple approach could

involve storing metadata on the remote SSDs and updating it on each fsync or write call.

This would lead to unnecessarily high remote IO operations over NVMf. To reduce the

metadata overhead imposed on each runtime instance, we allow the control plane to store

metadata (inodes, block pool, and B+Tree) locally, within the memory of compute nodes.

To guarantee metadata durability and consistency, we journal filesystem metadata opera-

tions using a compact operation log stored on remote SSDs. Each syscall that modifies an

inode needs to be logged. Only the syscall type and its parameters need to be added to the

log. The use of operation logging significantly reduces the amount of data that must be

sent over network to the remote SSDs. We call this approach metadata provenance because
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Figure 5.4 Log Record Coalescing

we store every operation in the log, giving us the ability to track fine-grained changes to

metadata. During recovery in the event of a crash, the runtime reconstructs metadata by

replaying operations recorded in the log. An in-memory B+Tree is used to keep mappings

of filenames to their inodes allowing fast lookups of files. The state of the B+Tree can also

be reconstructed upon recovery from a crash.

To limit the size of the log, the runtime checkpoints internal DRAM state (which in-

cludes the inodes, block pool, and B+Tree) to a reserved region on the remote SSD. To

ensure that checkpoints do not affect user IO requests, the checkpoint process is overlapped

with the application compute phase. In this manner, the checkpoint process is completed

in the background using a dedicated checkpoint thread without affecting application per-

formance. The background thread can exactly determine when the application checkpoint

process is complete by monitoring the number of open files. When the number of open files

is zero and the number of free log records is below a predefined threshold, the background

thread kickstarts the process of checkpointing internal volatile state. Further, the check-

point process is designed to be atomic. Log records are only discarded once the checkpoint

is complete. A failure during checkpoint will not affect the durability and consistency of

data.

Log Record Coalescing. To reduce the number of log records written, we propose a tech-

nique called log record coalescing. In this technique, we take advantage of the sequential
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nature of checkpoint IO to combine near-adjacent log records as long as they represent

consecutive writes to the same checkpoint file. Figure 5.4 shows how this process works.

Instead of adding new log records for each write, we can simply update the log record

for the previous write. We use a sliding window to find the log record for the previous

write and update it accordingly. In this manner, the log fillup rate is significantly lowered,

which means that filesystem state does not need to be checkpointed frequently to clean log

space. In addition, the number of records that must be replayed on recovery is significantly

lowered too, which provides near-instantaneous recovery of the NVMe-CR runtime itself.

5.2.5 Load-aware IO – Storage Balancer

The storage balancer is responsible for both allocation of storage nodes for a job and

balancing IO load between available storage devices. NVMe-CR considers two vital factors

while distributing data between remote SSDs – load balancing and fault-tolerance. Load

balancing is important to ensure that we utilize all of the available IO bandwidth and all

processes get an equal distribution of the bandwidth. Fault-tolerance is another important

factor because we need to place checkpoint data in a separate failure domain than what

the process is in. Otherwise, it is likely that failure of a process coincides with loss of its

checkpoint data. To account for both of these factors, NVMe-CR uses a novel data distribu-

tion algorithm.

First, we identify the failure domains for each node by using the network topology.

Nodes which share hardware are placed in the same domain. For example, all nodes within

a rack and all nodes sharing a power distribution unit are placed in the same domain. Next,

we create partner failure domains, such that nodes in both partners are in separate failure

domains. For each failure domain, we create a list of partner domains sorted by the number
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of switch hops between them. Finally, we create a mapping of processes and storage nodes,

such that their respective failure domains are partners and the load on each storage node

is as equal as possible. We construct the mapping using a greedy algorithm to minimize

communication cost. Storage devices for a job are allocated on the closest (fewest hops

away) available partner domain. Processes within a job are assigned to the allocated SSDs

in a round robbin manner to achieve load balancing. Once this mapping is defined, we

create an MPI communicator for all processes sharing an SSD, called MPI COMM CR. The

SSD is then partitioned between processes in the associated communicator. Each process

gets a contiguous segment of the SSD based on the its rank and the communicator size.

Figure 5.5 shows how the available storage is partitioned and allocated to MPI processes.

Security Model. To ensure device integrity despite userspace access, we rely on the names-

pace feature in the NVMe standard. All SSDs are divided into at least two namespaces.

The job scheduler assigns storage to jobs at the granularity of a namespace. If there are no

free namespaces, new ones are created from unused SSD space. Although the number of

namespaces supported by each SSD is limited, the number of concurrent jobs an SSD can

support is only limited by its bandwidth. This is because a few concurrent jobs can easily

saturate its bandwidth. This approach allows SSDs to be shared between applications while

relying on the isolation property of namespaces to maintain security.
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This enforcement requires integration with the cluster job scheduler. In practice, we

do not anticipate this to be a problem. For example, by using Slurm’s generic resources

plugin [154], we were able to support this design on our cluster easily. Further, NVMe-CR’s

control plane acts as a trusted intermediary between the application and SSD. The control

plane performs access control checks for file IO so that POSIX permissions are respected

and unauthorized users cannot corrupt or read checkpoint data.

For each job, the user must specify the number of storage devices required for check-

point data. This number can be determined by ensuring that the process:SSD ratio is in the

range 56–112. This is based on our experimental results showing that at this ratio NVMe

SSD bandwidth is utilized to its maximum. The storage balancer works along with the job

scheduler to allocate SSDs based on allocated compute nodes and the network topology,

as explained earlier. The load balancing does not require maintenance of additional infor-

mation because job schedulers already have topology information readily available. When

the user runs an application, the storage balancer is again invoked to partition the allocated

devices among the application processes. Once the partitioning (which is done during run-

time initialization) is complete, the load balancer does not need to be involved during the

lifetime of the application.

Handling Cascading Failures. For NVMe-CR, our storage balancer tries to keep application

processes and their checkpoint data on separate failure domains to minimize the possibil-

ity of both failing. Although rare, cascading failures can happen on large-scale clusters

and must be handled to protect checkpoint data. This is challenging because such failures

may disrupt the application and also availability of its checkpoint data. To protect data

despite cascading failures, we use multi-level checkpointing [124]. In this solution, most

checkpoints are still handled by NVMe-CR, but every so often, one checkpoint is put on a

117



slower but more reliable parallel filesystem, such as Lustre. Through redundancy mech-

anisms, such as replication, such systems can guarantee that data is available even with

cascading failures. Therefore, performance is not compromised because most checkpoints

are handled by the fast NVMe-CR runtime, and fault-tolerance to cascading failures is also

not compromised by relying on the redundancy of parallel filesystems. Our approach is

complimentary to existing multi-level checkpointing approaches for fault-tolerance.

5.2.6 Implementation Notes

We implement NVMe-CR purely in C11 and distribute it as a shared library. This library

can be preloaded during runtime using the LD PRELOAD environment variable to transpar-

ently run any MPI application binary. The remote NVMf devices to connect to can be

specified as a list exported using the NVMF DEVICES environment variable. The root di-

rectory path can be specified using the the CHKPT DIR environment variable. NVMe-CR’s

control plane is implemented on top of DStore’s control plane, which was presented in sec-

tion 4.4.

5.3 Experimental Analysis

In this section, we present the evaluation of NVMe-CR.

5.3.1 Experimental Testbed

We consider a disaggregated cluster for our evaluation. Our cluster has one storage rack

with 8 nodes and one compute rack with 16 nodes. Each node in the storage rack has a 28

core skylake (Gold 6132@2.6GHz) CPU with 192GB memory running Linux 3.10 and an

Intel P4800X Optane SSD. Each node in the compute rack has a 28 core broadwell (E5-

2680v4@2.4GHz) CPU with 128GB memory running Linux 3.10. All nodes are equipped
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with Mellanox ConnectX-5 adapters and are connected using 100Gbps EDR InfiniBand.

Lustre is used as the PFS and is configured with 4 separate storage servers, each using one

12Gbps RAID controller.

We use ECP CoMD [44] as a representative HPC application to show the practical ben-

efits of our proposed NVMe-CR runtime. Most applications in the ECP application suite, in-

cluding AMG, Ember, ExaMiniMD, and miniAMR have similar behavior and are likely to

show similar improvements as CoMD. We compare NVMe-CR performance with OrangeFS,

GlusterFS, Crail [12], XFS, and ext4.

We only compare with Crail in a single server configuration because its publicly avail-

able version only supports a single NVMf server. Although we could not compare with

Crail in a multi-server setting, we expect it to perform worse than NVMe-CR because Crail

uses a single metadata server which becomes a bottleneck at high-concurrency. We were

also unable to compare with DeltaFS; despite significant effort, we were unable to run it on

our cluster.

5.3.2 Optimal Hugeblock Size

Chosing an optimal hugeblock size is important for obtaining the best performance.

If the size is too small, metadata overhead and IO request count will be high. On the

other hand, a large block size will increase the waiting time for each hardware IO queue,

reducing multi-process performance. To determine the optimal hugeblock size, we measure

the overhead of writing 512MB checkpoint files for a full subscription run. Results (see

Figure 5.6(a)) show that 32KB is the optimal size for achieving the lowest latency. Using

a 32KB block size instead of the standard 4KB delivers 7% improvement in latency. It
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also results in an 8x reduction in the size of the block pool and the number of inodes used.

Henceforth, we use a 32KB hugeblock size for all experiments.

5.3.3 Load Imbalance Evaluation

Load balancing is important to ensure that available hardware resources are efficiently

utilized. To measure load imbalance for different storage systems, we compare the coef-

ficient of variation (ratio of standard deviation and mean) of load (size of data stored) on

each storage server. Figure 5.6(b) shows the value of this coefficient when CoMD is run at

different process counts. GlusterFS uses a consistent hashing algorithm to distribute data,

which has been shown to have high standard deviation at low concurrency [100], just as

observed. OrangeFS stripes file data across servers which works much better than consis-

tent hashing at low concurrency but has noticeable overhead at higher process counts. In

contrast, NVMe-CR achieves perfect load balancing regardless of the level of concurrency.

The reason for this is that our storage balancer creates a mapping between processes and

storage devices using a round-robbin policy. Since each process creates a file of the same

size, the load on each server is then exactly equal. GlusterFS and OrangeFS cannot achieve

perfect load balancing because they are not associated with a single application. A map-

ping of processes to storage devices cannot be created since the filesystem does not know

which application each client belongs to.

5.3.4 Direct Access Evaluation

To quantify the benefits of direct access, we measure the dump time for different check-

point sizes using NVMe-CR, XFS, ext4, and SPDK on a local NVMe SSD for a full sub-

scription (28 cores) run. Figure 5.6(c) shows the results of this analysis. Checkpoint data

is written using the write system call and persistence is guaranteed by calling fsync.
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Figure 5.6 (a) Checkpoint times for different hugeblock sizes, (b) Load imbalance for
NVMe-CR, OrangeFS, and GlusterFS, (c) Full subscription performance of NVMe-CR, ext4,
XFS, and SPDK, and (d) Drilldown evaluation showing impact of optimizations.

We find that direct access is crucial in lowering the latency for large sized checkpoints.

For 512MB data, we see 19% and 83% improvement compared to XFS and ext4, respec-

tively. This improvement comes from the ability to bypass the kernel as well as the use of

hugeblocks and metadata provenance, which significantly reduce metadata overhead. For

example, hugeblocks lowers the number of SSD blocks to be allocated and tracked by

4x. Compared to SPDK, NVMe-CR has no noticeable overhead. This clearly highlights the

elimination of software and metadata overheads. Note that SPDK alone cannot handle all

the IO challenges (POSIX compliance, metadata management, and private namespace) of

an NVMf-enabled distributed storage system as we have discussed earlier. We also mea-

sure the percentage of benchmark time spent in the kernel. By enabling userspace device

access in NVMe-CR, the benchmark only spends 10% of its time in the kernel compared to

76.5% for XFS and 79% for ext4. This reduction is because all POSIX IO syscalls are

now resolved completely in userspace. NVMe-CR provides userspace implementations of

all IO syscalls. The 10% time spent in the kernel is because of non-IO syscalls made by

the benchmark itself and during the initialization and finalization routines in NVMe-CR (for
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example as a result of calling malloc). We also note that on increasing data size, the per-

formance gap increases. This is because metadata overhead has a linear correlation with

file size.

5.3.5 Drilldown Evaluation

To understand the impact of the different optimizations and designs in NVMe-CR, we

measure the checkpoint time with the CoMD application on a single node. We start with

a base design resembling a traditional kernel filesystem and add optimizations one-by-one,

measuring the checkpoint time for each case. Figure 5.6(d) shows this analysis. Bypassing

the kernel and eliminating the global namespace provides up to 44% improvement com-

pared to baseline. The improvement is also higher at scale which is because the overheads

of global namespace synchronization are high. Metadata provenance improves perfor-

mance up to 17% (v/s + userspace & private namespace) by lowering the size of log records.

At low concurrency it improves performance by reducing software overhead while at high

concurrency, it improves performance by increasing the available data bandwidth. Finally,

using hugeblocks improves performance up to 62% (v/s + metadata provenance). The im-

provement is mostly noticeable at low concurrency because performance is dictated more

by software overhead than IO bandwidth. Overall, we conclude that the private namespace

improves performance at high concurrency, hugeblocks improves performance at low con-

currency, and metadata provenance improves performance in all cases. Combining all three

optimizations delivers the best performance at all levels of concurrency.

5.3.6 NVMf Overhead

We measure the overhead of NVMf by comparing checkpoint performance on a lo-

cal and remote SSD for a full subscription (28 cores) run. We also compare with Crail,
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Figure 5.7 (a) Full subscription performance of NVMe-CR on a local and remote SSD, and
(b) File create performance of NVMe-CR, OrangeFS, and GlusterFS.

OrangeFS* GlusterFS* NVMe-CR#

2686.25 3.5 445.25

Table 5.1 Metadata overhead with CoMD in MB. * per storage node # per runtime

a userspace storage runtime which supports NVMf via SPDK. The remote access is as

demonstrated in Figure 5.3 over EDR InfiniBand fabric. Results (see Figure 5.7(a)) show

that there is no noticeable overhead in latency for writing checkpoints. In fact, the maxi-

mum overhead we observe is below 3.5% and is independent of the size of the checkpoint.

The benefits of metadata provenance are clear when we compare NVMe-CR and Crail. Even

though both use SPDK for NVMf support, NVMe-CR consistently provides up to 5-10%

lower overhead for remote access. There are two factors which contribute to achieving

negligible overhead. First, using the SPDK NVMf driver instead of the kernel NVMf

driver eliminates kernel space overhead. Second, the use of metadata provenance reduces

the amount of additional data that must be sent via NVMf, minimizing the overhead of

metadata operations. These results highlight the advantages of enabling userspace remote

access over fast RDMA networks. It is clear that the proposed userspace data and control

planes are successful in creating a low latency pipeline.
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Figure 5.8 Efficiency of storage systems during checkpoint and recovery of the CoMD ap-
plication state. Efficiency of a storage system is defined as the ratio of application perceived
IO bandwidth and the hardware IO bandwidth.

5.3.7 Metadata Overhead

In the N-N checkpoint pattern, the number of files scales linearly with the job size. The

number of file creates that a storage system can perform is an important metric for check-

point IO. We compare the create performance of storage systems at different job scales

to determine how well they can perform under heavy load. Results are presented in Fig-

ure 5.7(b). NVMe-CR provides 7x and 18x higher create performance at 448 processes. The

primary reason for this is the absence of a global namespace. Each process can create files

in parallel and avoid serialization of operations. For each file create, a corresponding entry

must be added to the directory file stored on the remote SSD. Hence, the file create per-

formance is only limited by hardware bandwidth and not software latency. OrangeFS and

GlusterFS use consistent hashing to lower metadata overhead. Despite this optimization,

both must add file entries to a single common directory file which effectively serializes file

creates, leading to poor performance.

We also measure the storage overhead of metadata and checkpoints compared to Or-

angeFS and GlusterFS. As we can see from Table 5.1, NVMe-CR requires ∼450MB storage

per runtime, OrangeFS requires ∼2.6GB, and GlusterFS only requires 3.5MB per storage
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node. The total overhead for NVMe-CR can be calculated by multiplying this value with

the number of application processes. For high concurrency runs, the total overhead for

NVMe-CR is higher than both OrangeFS and GlusterFS, but remains under acceptable limits.

For instance, on our cluster only 1.7% of SSD space is utilized for metadata and checkpoint

storage, in the worst case. We also measure the DRAM footprint and find that NVMe-CR

consumes less than 512MB per-instance – 404MB for inodes and 102MB is for B+Tree.

This minor increase in metadata overhead can be justified by the significant performance

benefits of our design. For GlusterFS, the overhead is minimal because it uses consistent

hashing which requires little metadata to be maintained. On the other hand, OrangeFS has

high overhead as it needs to store both file metadata and striping information.

5.3.8 Application Evaluation

We measure the overhead of checkpointing the CoMD application state under both

weak and strong scaling configurations. We compare checkpoint as well as recovery effi-

ciency with NVMe-CR, OrangeFS, and GlusterFS. We do not compare with Crail because it

currently only supports a single storage server for its NVMf tier. We define the efficiency of

a storage runtime as the ratio of the peak IO bandwidth visible to applications to the peak

theoretical bandwidth offered by hardware. Checkpoint performance is only dependent on

overall bandwidth of the storage system. Therefore, we use efficiency as a metric which

allows us to compare the relative checkpoint performance of different storage systems. For

all cases we use the aggregate SSD bandwidth as the hardware peak.

Strong Scaling. For strong scaling analysis, the problem size is fixed to 16,384K atoms

for a total fixed checkpoint size of 86GB (for 10 checkpoints). Figures 5.8(a) and 5.8(b)

show the checkpoint and recovery efficiency for multi-node full subscription runs. Overall,
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we find that NVMe-CR achieves better efficiency for both cases than other storage systems.

Synchronization-free control and data planes are responsible for good scalability. The load

balancer in NVMe-CR allows it to attain better efficiency than other systems at lower process

counts. This is because our greedy load balancing algorithm ensures that all of the SSDs

are utilized efficiently. Apart from GlusterFS, other systems are unable to handle the meta-

data burden when 448 processes concurrently checkpoint data. The reason is the use of

a global namespace and high software overhead. During recovery, however, they perform

much better since there is no metadata overhead involved. GlusterFS is better than other

systems we compare with because of its decentralized design. Nevertheless, its checkpoint

performance is still ∼ 13% lower than NVMe-CR because of its poor create performance

(see Figure 5.7(b)) and reliance on POSIX IO (see Figure 5.6(c)). At high concurrency,

NVMe-CR achieves the best efficiency of all systems because of its coordination-free de-

sign.

Weak Scaling. We fix the problem size to 32K atoms per process while scaling up to 448

processes. We take 10 periodic checkpoints during application runs for a total checkpoint

dump of 700GB. This experiment was designed to show that NVMe-CR can handle large data

volume. Figures 5.8(c) and 5.8(d) show the results of this analysis. Overall, we find that

NVMe-CR achieves near perfect efficiency (0.96 for checkpoint and 0.99 for recovery) at 448

processes. Recovery efficiency is so high because of log record coalescing which allows the

runtime to recover instantaneously and fully utilize available bandwidth. For checkpoints,

other systems suffer from the high synchronization overhead of creating a large number

of concurrent files, leading to poor efficiency. During recovery, just like in the strong

scaling case, their performance improves significantly because there is less synchronization

involved to read files. However, GlusterFS performance dips at 448 processes because its
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Metric OrangeFS GlusterFS NVMe-CR

Checkpoint Time (s) 85.9 44.5 39.5
Recovery Time (s) 3.6 4.5 3.6

Progress Rate 0.252 0.402 0.423

Table 5.2 CoMD evaluation with multi-level checkpointing at 448 processes. For progress
rate, higher values are better.

metadata server is unable to handle the large influx of read requests. In contrast, NVMe-CR

achieves good efficiency at both low and high concurrency by avoiding synchronization

and achieving direct device access.

5.3.9 Multi-Level Checkpointing Evaluation

To evaluate NVMe-CR in a real-world use case with cascading failures, we conduct an

experiment with CoMD at 448 processes. We use different systems for the first checkpoint

level and Lustre as the second level, where one checkpoint in ten is written to Lustre. We

compare checkpoint time, recovery time, and application progress rate for different sys-

tems in Table 5.2. It is clear that NVMe-CR is the best for all metrics, which is because

its efficiency is near ideal. Compared to GlusterFS, it reduces checkpoint time by 11%,

recovery time by 20% and progress rate by 5%. The large improvement in recovery is

due to log record coalescing (without coalescing, recovery takes 4s) which allows very fast

metadata recovery. Therefore, using NVMe-CR directly results in benefits at the applica-

tion level, reducing overall runtime and increasing the probability of applications running

successfully.
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5.4 Related Work

There have been several works which focus on reducing the overheads of application

checkpointing. CRUISE [144] is a userspace filesystem backed by DRAM to enable fast

checkpoints. Zest [129] uses a log structured design with a burst buffer layer to reduce

checkpoint overhead. CRFS [138] improves checkpoint IO by aggregating small IO op-

erations into larger operations which are written asynchronously to disk. PLFS [19] is

another filesystem aims at optimizing checkpoints which follow the N-1 pattern. Other

works like PapyrusKV [94], UnifyCR [108], and BurstFS [171] present a burst buffer de-

sign using node local storage to accelerate C/R IO as opposed to NVMe-CR that is targeted

towards a disaggregated setup. Storage systems like Hermes [98], DDN IME [37], Cray

DataWarp [67], GlusterFS [65], and OrangeFS [163] overlay multiple software layers on

kernel filesystems to access data. While these works have improved checkpoint overhead,

they suffer from two basic limitations. First, these filesystems still suffer from the use

of POSIX filesystems to access devices. Direct userspace access to devices via NVMf, as

achieved by our proposed NVMe-CR, is not supported. Second, serialization of metadata op-

erations and synchronization between clients could prevent applications from fully utilizing

available IO bandwidth. BSCFS [72] and Crail [12, 159] do support an NVMf-based data

plane, however, both require applications to be modified to use their specific non-POSIX

API. BLCR [62] is an orthogonal approach for system-level C/R as opposed to application

C/R, which we focus on.

NVMe-CR’s microfs abstraction is most related to the design of DeltaFS [193]. DeltaFS

does not expose a single namespace, but a collection of snapshots that can be used by ap-

plications to construct their own namespace view. This provides the ability to execute large

numbers of parallel metadata operations with minimal coordination. Microfs extends this
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idea to completely remove coordination requirements for both metadata and data opera-

tions. It assumes the complete absence of a global namespace and partitions SSDs between

processes to achieve logical isolation. To reduce the amount of data to be checkpointed,

techniques such as incremental checkpointing [46], cooperative checkpointing [133], multi-

level checkpointing [124] and data compression [73] have been proposed. While these ap-

proaches reduce checkpoint overhead, they still rely on existing inefficient IO subsystems.

Thus, these works are complementary to the designs proposed in this chapter and can be

combined for improved performance.

5.5 Summary

In this chapter, we presented the design of NVMe-CR [54], a storage runtime for disag-

gregated clusters with NVMf. First, we presented a powerful design template for filesys-

tems meant for storing ephemeral application data. By following the design principles

of this template, filesystems can achieve low latency direct access to device. Built upon

these principles, NVMe-CR provides synchronization-free control and data planes as well

as a fault-tolerance and load-aware storage balancing. By proposing techniques like meta-

data provenance, log record coalescing, and hugeblocks, NVMe-CR is well suited for storing

checkpoint data. Experimental analysis with CoMD shows that on a local cluster our run-

time can achieve near perfect (> 0.96) efficiency at 448 processes. As a result, our runtime

lowers checkpoint overhead by up to 2x, while increasing job progress rates by as much as

1.6x.
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Chapter 6: HAQ: Hardware-Assisted Quality of Service for NVMe

Drives

The architecture of enterprise clouds is rapidly changing. Novel hardware and software

innovations constantly drive the evolution of cloud environments. The NVMe standard

is a recent innovation which has significantly impacted research in storage systems. The

standard allows flash storage devices such as SSDs to achieve profound improvements

in latency and throughput. NVMe-based SSDs have been emerging as the latest storage

technology bridging the dreaded performance gap between hard disks and memory. These

new devices are built for extremely low latency and achieving high degrees of parallel I/O.

This makes them ideal to be used in cloud environments, where sharing of resources is a

given.

In cloud environments, users expect a certain guarantee of service. Considering the new

NVMe technology being introduced in enterprise clouds, it is only natural to ask whether a

similar guarantee of service can be provided for this emerging hardware. In fact, this issue

has been addressed to some extent in the NVMe standard itself. The standard includes

provisions to enable request arbitration through mechanisms which are to be provided by

hardware. However, there is limited knowledge on using these provisions to enable service

guarantees in cloud environments. Prior research [9, 57, 58, 97, 117, 140, 151, 153, 188]

has mostly focused on software-based provisions for service guarantees. While previous
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approaches [85, 155] have considered using such hardware provisions to provide some QoS

to users, their approaches are not holistic. The designs proposed do not provide a complete

solution for providing SLA-based guarantees to users. For providing such a solution, there

are two key requirements. First, the SLA provisioning should be completely application

oblivious, i.e., it should be completely handled by the cloud provider based on the SLA

negotiated by the user. Second, there must be mechanisms in place which allow for the

provisioning of SLAs without violations. Achieving these requires a holistic approach

which we propose in this chapter. We show how existing runtimes can be modified for

application oblivious QoS provisioning. We also theoretically model the arbitration mech-

anism available in NVMe and discuss how the model can be used for SLA mapping and

provisioning.

NVMe SSDs are still considered as emerging hardware. While costs have been rapidly

declining in recent years, they are still high enough to prevent wide-scale adoption in cloud

environments [52, 126, 185]. Having a system which can provide NVMe device emulation

can prove to be very useful. Emulation allows for testing NVMe related code without the

need for buying expensive hardware. In addition, emulation also allows for approximate

performance modeling of such applications. Existing schemes for NVMe emulation do

not provide any mechanisms to test and evaluate the arbitration mechanisms available in

the standard. Moreover, no flash device has implemented weighted arbitration schemes

yet [97]. Thus, we propose designs for accurate modeling of QoS schemes in the NVMe

part of Quick Emulator (QEMU) [18, 134]. With this solution, cloud providers can not

only verify their middleware and schedulers, but can also use it for performance modeling

and benchmarking.

To summarize, the main contributions of this work are as follows:
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• Design of QoS-aware NVMe emulator which provides support for weighted round

robin and deficit round robin arbitration

• Theoretical modeling of arbitration schemes with queuing theory

• Extension of Storage Performance Development Kit (SPDK) runtime to allow for

application oblivious SLA provisioning

Our evaluation shows that by combining our QoS-aware NVMe emulator and enhanced

SPDK runtime, we can achieve I/O bandwidth SLA guarantees in an application oblivious

manner. We also observe that our QoS-aware emulator can deliver similar or better perfor-

mance as compared to the existing emulator in QEMU. To the best of our knowledge, our

proposed emulator is the first NVMe emulator to offer support for QoS.

6.1 QEMU NVMe Emulation

NVMe SSDs are still considered as emerging hardware. Although NVMe SSDs have

been commercially available for several years now, their cost is a significant barrier to their

adoption in large-scale cloud environments. We believe that over time, as the performance

of SSDs increases and their cost decreases, their adoption will see an exponential increase.

While it is important to design runtime and middleware that can take advantage of the

NVMe standard, it is also important to provide mechanisms to emulate NVMe devices.

Emulation allows for testing NVMe related code without the need for buying expensive

hardware. In addition, emulation also allows for approximate performance modeling of

such applications.

There exist many solutions that provide the ability to emulate NVMe devices. The

most robust and stable of these is provided as part of QEMU. QEMU [143] is a popular
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open-source hypervisor for hardware virtualization. QEMU introduced NVMe emulation

support a few years ago which has now developed into a stable tool for NVMe device

virtualization. The reason that we chose QEMU for this purpose is that it is a popular and

well-known framework for hardware virtualization and it already includes mechanisms to

virtualize Memory Mapped IO (MMIO), block IO, hardware interrupts (e.g. MSI-X), and

PCIe devices. This makes it perfect for emulation of NVMe devices.

6.1.1 The Need for QoS-Aware Emulation and Runtime

QoS is an extremely important part of the cloud computing paradigm. In fact, this is

one of the primary reasons for the popularity of cloud computing. Most cloud providers

these days offer SLAs to their clients as a basic way of achieving QoS. In the context of

NVMe storage, it is paramount to have a design that provides some guarantee of service

(e.g., latency or bandwidth) to applications or VMs depending on the service granular-

ity. NVMe provides hardware-based mechanisms for command arbitration. Schemes like

round robin and weighted round robin arbitration (WRR) (see Section 6.2.1) have been

included in the NVMe standard, while NVMe SSD vendors are free to implement vendor

specific arbitration mechanisms. However, none of these schemes have been implemented

in commercially available SSDs.

While the QEMU NVMe emulator supports the entire NVMe command set, the hardware-

based weighted round robin arbitration mechanism specified in the NVMe standard is not

supported. Cloud providers providing service guarantees for storage might want to test their

scheduling solutions using hardware virtualization. In this context, having an emulator for

NVMe devices which can provide command arbitration mechanisms as described in the
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standard can prove to be extremely useful. We believe that making such a solution avail-

able will tremendously benefit cloud providers in designing scheduling solutions. We do

not focus on improving the emulator to accurately model the performance characteristics

of NVMe devices, but rather on accurate modeling of the command processing and arbi-

tration mechanisms. This will allow us to provision service guarantees using the improved

QEMU emulator.

6.2 QoS-Aware NVMe Emulation

In this section, we describe our proposed design for QoS-aware NVMe emulation. We

first briefly describe the Weighted Round Robbin and Deficit Round Robbin (DRR) arbi-

tration scheme, then present our solution for implementing these schemes in QEMU, and

finally demonstrate via experimental evaluation the superiority of our solution over the

existing NVMe emulation in QEMU.

6.2.1 WRR Arbitration

The WRR arbitration mechanism in the NVMe standard provides a useful mechanism

to implement QoS support in cloud middleware. The biggest advantage of this mechanism

is that it is implemented completely in hardware resulting in low latency arbitration and

reduced complexity of drivers and runtimes. This mechanism works as follows. There are

three different priority classes for NVMe submission queues, high, medium, and low. Each

class of priority is assigned a numerical weight. The NVMe controller processes commands

for submission queues in order of their priorities. The maximum number of commands that

can be processed for queues of a certain priority in one arbitration round is determined by

the weight of that priority class. For a single submission queue, the maximum number of

commands that can be processed in one arbitration round is determined by the arbitration
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burst setting. By adjusting the weights of different classes of priority, the desired level of

QoS can be achieved. The current NVMe emulator in QEMU does not provide support for

the WRR arbitration mechanism. In this section, we describe our proposed design for a

QoS-aware NVMe emulator.

6.2.2 DRR Arbitration

While the WRR scheme is efficient in providing a guarantee of throughput, it requires

the sizes of requests to be fixed or previously known. Otherwise, applications with differ-

ent sized requests will result in a higher than intended weight for large requests. In this

context, significant research has been done to provide solutions which can provide opti-

mal bandwidth QoS despite request size variation. Schemes like deficit round robin (DRR)

and weighted fair queuing (WFQ) are popular models widely used in networking. Both

DRR [152] and WFQ [39] can provide bandwidth guarantees. However, WFQ requires

O(log(n)) time to process each request, while DRR only requires O(1), where n is the

number of priority classes. Even though there are just three priority classes (as defined

in the NVMe standard), DRR is simpler and satisfies our requirements for QoS. DRR is

a modification of WRR, where instead of giving each request equal cost, its given a cost

equal to its size. This effectively ensures that the overall bandwidths for each priority class

are in the ratio of their weights. It is practical to extend WRR to DRR because it is easy

for the NVMe controller to determine the size of each request by quickly peeking at the

size entry in the request structure. We believe that DRR is an effective alternative to WRR

which can provide better QoS with the same overhead. We implement the DRR scheme in

the QEMU NVMe emulator and show that it is much more effective in providing bandwidth

guarantees to cloud users than WRR.
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Figure 6.1 (left) Existing command submission procedure for QEMU NVMe emulation,
and (right) Proposed command submission procedure for QoS-aware NVMe emulation

6.2.3 Designing Hardware-Based Arbitration Schemes

For basic NVMe emulation, the existing designs in QEMU can be re-used. However,

for providing QoS, the software-based arbitration mechanism in QEMU needs to be re-

designed.

Existing emulation design. The left side of Figure 6.1 shows the command submission

process for the existing emulator. The working can be detailed by the following steps:

1 The host puts an I/O request in the submission queue, 2 The host rings the queue

doorbell, 3 This triggers an interrupt which is processed by the QEMU main thread, 4

The QEMU main thread updates the timer of the submission queue, and 5 The timer

expires and the main thread submits Linux aios for each request. The default design uses

the QEMU main thread to execute the entire I/O processing pipeline. The fundamental flaw

with this approach is that as soon as a command is placed in the submission queue, the main

thread will start processing it. Submitting an I/O request involves ringing a doorbell which

generates an interrupt. This interrupt is also handled by the QEMU main thread. Thus,
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at one time, only one command can be in any submission queue. This design allows no

conception of QoS and is fundamentally different from the way commands are processed

in an actual NVMe SSD.

Design Considerations. Emulation is an effective tool for testing the performance and

functionality of hardware. A good emulation requires accurate modeling of hardware, i.e.,

the software implementation should mimic the behavior of hardware. In addition, specially

while proposing new hardware logic, the functionality, complexity, and memory usage

should be kept as minimal as possible. This allows for cost savings and latency benefits. In

this context, we emulate arbitration schemes using simplistic space efficient data structures.

Each priority class is assigned a circular linked list for holding pointers to the submission

queues in the priority class. In addition, 8 bit unsigned integers are used to store remaining

and pre-defined weights for each priority class which will map to hardware registers or

dedicated buffers on device memory for each queue. After each arbitration round, the

remaining weights are updated to the pre-defined weights. In addition, a single bit is kept

for each submission queue to indicate if it has a pending request. This allows for efficient

arbitration by allowing the controller to quickly skip over empty queues. We believe that

this design closely mimics hardware behavior. We now describe our arbitration scheme

designs in QEMU.

Proposed Design. For emulating the NVMe device in a more realistic manner, we intro-

duce a dedicated thread for executing the functions of the NVMe controller. We also make

sure that data structures shared with the QEMU main thread are locked using a mutex be-

fore access. In addition, to allow for software-based arbitration, we introduce a circular

linked list for each priority class. Each submission queue is added to the appropriate linked

list when it is created. We maintain just one head pointer for each linked list which points
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to the submission queue that should be used next by the controller for command arbitration.

The controller processes commands from each priority class one by one. For each priority

class, the controller will use the appropriate linked list and start processing commands for

the queue pointed to by the head pointer, moving the pointer each time a queue is serviced.

It will continue processing commands for the priority class until either all queues have been

serviced or the total cost of commands processed is equal to the weight of the priority class.

Thus in one arbitration round, all priority classes will be served, but the maximum cost of

commands that can be processed for each class is equal to its weight.

The right side of Figure 6.1 shows the command submission process for the proposed

emulator. The following steps describe the complete process: 1 The host submits requests

directly to the submission queues, 2 The host then rings the doorbell, 3 This generates an

interrupt which is handled by the QEMU main thread, 4 The NVMe controller thread first

uses the high priority linked list, 5 It picks up each submission queue with an outstanding

request and submits Linux aios for requests, 6 Controller thread moves onto next submis-

sion queue, and 7 After processing requests for all submission queues in a priority level,

the controller moves to next priority linked list. The NVMe controller thread in parallel

continuously scans the circular linked lists for each priority class. Whenever it finds pend-

ing requests, it submits a Linux aio operation for each request while ensuring WRR/DRR

arbitration. Our NVMe controller thread can execute independently of the QEMU main

thread. This allows the request submission and processing to proceed in parallel, thereby

allowing for the possibility of multiple outstanding requests in submission queues. This

emulates the actual behavior of an NVMe SSD more accurately. Applications submit and

place a request in the submission queues independent of the processing of requests by the

NVMe hardware. Thus, our solution provides a better emulation of NVMe hardware.
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There are many possible solutions for designing arbitration in QEMU. For example,

the QEMU aio interface can be used to process commands for each submission queue

parallelly. We chose our design with the goal of emulating the NVMe device behavior as

accurately as possible with minimal overhead. In our design, we use just one additional

thread, but the arbitration mechanism and NVMe controller are precisely emulated. Our

experimental analysis also confirms this claim.

6.3 Performance Modeling of Arbitration Schemes

In this section, we model the performance of the WRR and DRR arbitration schemes.

6.3.1 Performance Modeling

In the previous section, we presented our QoS-aware NVMe emulator design. To allow

cloud providers to fully utilize this new tool, it is necessary to provide a model for perfor-

mance prediction. This will allow for accurate SLA provisioning with minimal violations.

Symbol Description

h/m/l high/medium/low priority class weight
λ input request rate
γ average SSD throughput
µ SSD processing rate
ρ queue utilization
p SSD parallelism
q queue depth
a average request latency

Table 6.1 Notation Used
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We first model the WRR throughput. The presence of many varying situations and

variables makes the performance modeling of WRR challenging. For simplicity, we assume

that the average I/O size for each priority class is the same. For each priority class, the

maximum commands processed in one round will be equal to its weight. However, in case

the submission queues in a priority class do not have more commands than its weight, other

priority classes will be able to get higher throughput. Thus, the minimum throughput for

each priority class should be in the ratio of their weights. Assuming that γ is the average

throughput the NVMe SSD can deliver and h,m, and l are the weights of the corresponding

priority classes, the minimum throughput for the high priority class can be calculated out

as

γh ≥
h

h+m+ l
× γ (6.1)

Minimum throughput for other priority classes can be calculated similarly. For estimat-

ing the actual throughput of each priority class, queuing theory can be used. While each

priority class can have multiple queues, they can be considered to constitute one combined

big queue. If λh, λm, and λl are the input request rates for the respective priority classes, we

know from queuing theory that γ = λ, i.e. output rate is equal to input rate if input rate is

not greater than the processing rate µ. This is generally true for NVMe since the command

submission will fail if the submission queue is full. The input rate will then automatically

adjust to be equal to the output rate. For a general case, the weights in Equation 6.1 need

to be multiplied by the utilization (ρ) of each priority class so that we can determine the

average commands processed from each class in one arbitration round. The utilization of

each class can be computed as λ
γ

using queuing theory. Thus, the average throughput for

each class can be calculated as
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γh = min(λh,
h

h+ ρmm+ ρll
× γ) (6.2)

It is easy to see that if we do not submit any requests in the medium and low priority

classes, i.e ρm and ρl are zero, then γh will be γ or the complete throughput of the SSD

as long as the input rate λh is high enough to keep the SSD busy. The utilization of each

priority class (ρ) is the ratio of its input rate to max throughput. Utilization determines how

many requests are available to be processed for the priority class in one arbitration round.

A utilization of one means that the number of requests available for processing is equal to

the weight of the priority class. For DRR, replacing γ with the average SSD bandwidth

should suffice since it is bandwidth based. In addition, no guarantees on the request size

are required.

To calculate the latency for each operation of a priority class, we need to account for

two factors. First, queuing delay and second, internal parallelism in the SSD. Queuing

delay accounts for the time a request waits to be serviced by the SSD. In general, a request

in a particular priority class must wait for requests before it in its own class as well as

requests in other priority classes to finish. Assuming requests take an average of time of

a to complete, p requests can be submitted in parallel, and each priority class can have a

maximum of q outstanding requests, we can calculate the maximum latency for the high

priority queue as

tmax =
q

h
× h+ ρmm+ ρll

p
× a (6.3)

This equation should hold true for both DRR and WRR as long as the average request

size for all classes is the same. Otherwise, a will not remain a constant. The effective par-

allelism p of the SSD can approximately be estimated based on the number of flash chips
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Figure 6.2 Model Validation: actual and predicted high priority class throughput and la-
tency with varying low priority queue utilization (ρl)

it has. This is assuming that requests are uniformly distributed over the logical address

space. For workloads with different request distributions, conflicts between requests will

likely reduce the parallelism. Write workloads will be adversely affected by garbage col-

lection activities further reducing the parallelism. Assuming no conflicts between requests,

the effective parallelism can be derived by dividing the number of flash channels by the

write amplification factor. The write amplification can accurately estimated using equa-

tions proposed in [40]. In some scenarios, it may be infeasible to accurately know the IO

request pattern of workloads. In these cases, a better solution would be to estimate the a/p

ratio empirically by running the workload once.

6.3.2 Model Validation

To prove the validity of our proposed model, we run experiments on an NVMe SSD

to confirm the latency and throughput characteristics under different load conditions. Our

testbed consists of one node with a 8 core, 16 thread sandy bridge CPU with 32GB DRAM

and an Intel P3700 NVMe SSD. We use CentOS 7.1 with the 4.9 Linux kernel. However,

as mentioned before, there does not exist an actual flash device offering either WRR or
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DRR arbitration in hardware. Hence, we build a thin software layer over SPDK, provid-

ing software-based queues offering DRR and WRR schemes. This layer is designed to be

light weight with minimal locking to ensure hardware-like performance. To validate our

model, we run a random read benchmark with three threads using the three separate priority

classes. DRR weights are set to (32k, 64k, 128k) and each thread submits 32k IO requests.

Each priority class is assigned a separate hardware queue, although, request submission and

completion is handled by a single thread to ensure DRR compliance. We vary the utiliza-

tion of the low priority thread and measure the throughput and latency of the high priority

thread. For our model, we estimate γ and a/p through empirical analysis. Both of these pa-

rameters can be estimated by running a simple multi-client benchmark with one thread per

physical core utilizing a separate hardware NVMe queue. γ was found to be around 240k

while a
p

was around 81 µs. We compare these results with those predicted by our model.

This comparison is presented in Figure 6.2. Figure 6.2(a) shows the high priority through-

put with varying low priority utilization (ρl). ρh and ρm are set to one. Figure 6.2(b) shows

the latency of the high priority class with varying low priority utilization. We observe near

perfect correlation between the observed and predicted values with a maximum deviation

of less than 5%. Thus, we believe that our model works well in practical situations and is

a useful tool for performance prediction. Given the estimated values of γ, a, and p, we can

accurately predict the latency and throughput of any priority class.

6.3.3 Model Usage Scenarios

Calculating the average throughput and maximum latency for each priority class can

prove to be useful in multiple scenarios while provisioning I/O bandwidth and latency

SLAs in cloud environments. Consider a scenario where some job is already using an
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NVMe device and the cloud resource scheduler would like to schedule another job to use

the same device. By using Equation 6.2, the scheduler can calculate the I/O bandwidth

for both jobs and determine whether their respective SLAs will be violated. A decision

can then be made about scheduling the new job to use the NVMe device. Now consider

another scenario where the scheduler would like to assign weights to each priority class.

Equations 6.2 and 6.3 can be used to calculate the weights, assuming that the bandwidth

and latency SLAs and utilization of each job are known beforehand.

We have shown in this section that the performance modeling of arbitration schemes in

NVMe can serve to be extremely useful in cloud environments.

6.4 QoS-aware SPDK Runtime

In this section, we describe our proposed approach for designing a QoS-aware SPDK

runtime. We start by presenting our solution for enabling service guarantees in NVMe-

based cloud environments, before moving on to our application oblivious design for QoS

provisioning using SPDK. Finally, we present evaluation results with synthetic application

scenarios to demonstrate the benefits of our design.

6.4.1 Enabling Service Guarantees

In modern cloud environments, users expect a guarantee of service for their applica-

tions. Cloud providers typically negotiate SLAs with users as a way to provide these guar-

antees. In such a scenario, cloud middleware and runtime should be able to provide mech-

anisms to satisfy these guarantees as QoS. From an end user’s perspective, the SLA provi-

sioning should be completely transparent. So, the service guarantee mechanisms should be

completely application oblivious. In the context of NVMe storage, our goal is to use the
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hardware provided arbitration mechanisms as a way of providing applications with a guar-

antee of IO bandwidth. Since these schemes should be application oblivious, we propose

to modify the (SPDK) runtime to allow for QoS support.

A cloud environment typically charges users based on the level of priority they desire.

Since, the NVMe WRR arbitration scheme allows for three priority classes as discussed

before, we propose the same priority classes for application users as well. The correspond-

ing priority classes will be mapped to each other such that an application with high priority

will submit IO requests to the high priority submission queue and so on. The DRR scheme

is also based on the same three-priority system. The weight of each priority class, which

determines the maximum number of IO commands that can be processed from one class

in an arbitration round, can be determined by the cloud provider based on the SLA negoti-

ated with the user. Similarly, for scheduling multiple users to share an NVMe SSD, the IO

priority requested by each user and the priority class weights need to be considered.

6.4.2 Application Oblivious QoS Provisioning

The SPDK runtime has support for the NVMe WRR scheme. This is however left to the

discretion of the user himself. To use the WRR scheme, the user has to explicitly enable

it using an SPDK function and set the priority for each submission queue created. This

existing mechanism does not satisfy our application oblivious requirements. We thus pro-

pose a new priority mapping design in SPDK which does not require application changes

to modify priority. To this end, we propose to use the Linux IO priority framework as a

means to transfer the priority class information from the application to the SPDK runtime,

similar to the approach proposed in [85].
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The IO priority class for an application can be set using the ionice command which

expects a value from 0 to 3. We use the 1-3 classes and map them to high, medium, and

low priority classes. 0 is mapped to the urgent priority class and is left for cloud admin-

istrative purposes. The priority class for the application can then be obtained by SPDK

using the Linux IO priority interface (ioprio get syscall). This design works because the

SPDK runtime will be run in the context of the thread submitting IO. We modify the SPDK

runtime to always use the WRR or DRR scheme and set the priority for a QP based on the

IO priority of the application it is associated to. The IO priority of each application can be

set by the cloud middleware based on the SLA with each user. In this manner, any applica-

tion built using SPDK can be provided any level of service without the need to modify the

application.

6.4.3 Handling Rogue Tenants

Our QoS-aware runtime provides tenants with an interface to provide a certain guaran-

tee of service. In this regard, it is important to ensure that a rogue tenant cannot influence

the performance of others. In our design, each tenant is allocated a separate QP for IO re-

quest processing, resulting in performance isolation. The actual request processing is done

by the SSD controller which ensures that the service guarantees of each priority class are

maintained. A rogue tenant might submit requests at a rate higher that its service guaran-

tee. This will only result in its submission queue getting filled up, and eventually it will be

unable to submit requests. This will result in its throughput getting limited to its service

guarantee. Thus, QoS will be ensured regardless of how the tenants submit requests.
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Figure 6.3 Evaluation with Synthetic Application Scenarios: (a) Bandwidth over time with
Scenario1, (b) Job bandwidth ratio for Scenarios 2-5

6.4.4 Synthetic Application Scenarios

We use the same testbed as described in Section 6.3 for our evaluations. We use a

modified version of QEMU [134] and SPDK v17.10 for our evaluations and as a base for

our designs.

To show the benefits of a QoS-aware SPDK runtime, we simulate five application sce-

narios and measure the bandwidth achieved by each job over time. For all scenarios, we set

the priority class weights to (32, 16, 8) for WRR and (128k, 64k, 32k) for DRR, ensuring

that the weight ratios are the same. For the first scenario, we use an experiment similar

to the one in Section 6.1. In this scenario, we run one high priority job with 4k requests

and one medium priority job with 8k requests. Figure 6.3(a) shows the results of this ex-

periment. With the WRR, both jobs receive the same bandwidth despite having different

priorities. Each request is given equal priority regardless of its size, leading to a skewed

bandwidth distribution. However, DRR is able to achieve near perfect bandwidth distribu-

tion as per priority weights. We also note that the bandwidth over time is relatively stable

pointing to a robust hardware emulation.
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The remaining scenarios all have 2 simultaneous jobs submitting back-to-back requests.

Scenario 2 has two high priority jobs, both with 4k requests. Scenario 3 has a high prior-

ity job with 4k requests and a low priority job with 8k requests. Scenario 4 is the same

as Scenario 3 with the priorities exchanged. Scenario 5 has two high priority jobs, one

submitting 4k and 8k requests and the other 8k and 16k requests. We measure the total

average bandwidth for both jobs in each scenario and calculate the bandwidth ratio. This

analysis is presented in Figure 6.3(b). We also provide the expected ratio as per the priority

weights. We are more interested in the bandwidth ratios rather than their actual values since

we are focused on QoS and the hardware performance is only emulated. In all scenarios,

the difference in request sizes leads WRR to incorrectly favor the job with larger request

size, while DRR is able to achieve close to the expected ratio. The only case where WRR

provides the desired ratio is Scenario 2, where the request sizes for both jobs are the same.

Vanilla SPDK just provides equal throughput distribution, not providing any service guar-

antees whatsoever. This analysis clearly demonstrated the superiority of DRR over WRR

in achieving bandwidth guarantees.

Although our results are based on NVMe emulation, we expect similar behavior with

actual hardware. There are two reasons for this expectation. One, both WRR and DRR

have been shown to be easy to implement in hardware [88, 152] and provide accurate

bandwidth ratios. Two, usage of separate hardware queues for each application along with

lockless request submission and completion paths ensure that the hardware performance

characteristics are reflected in the application performance. We thus believe that DRR

should either become part of the NVMe standard or be accepted by vendors as a good

implementation choice for vendor specific arbitration schemes.
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6.5 Related Work

Several prior works have studied QoS support over shared cloud and data-center stor-

age systems [57, 58, 117, 153, 188]. For flash-based storage, in particular, specific cost

model based I/O schedulers such as FIOS [140] and FlashFQ [151] designed for fairness

and throughput guarantees have been proposed. On the other hand, providing QoS-aware

runtimes for NVMe devices has been a topic of recent research. Joshi et al. [85] propose

to implement WRR support for NVMe in the Linux driver. They employ a similar I/O

priority-based approach for application oblivious QoS provisioning. However, their design

suffers from two fundamental flaws. First, they implement their design in the Linux driver

which we have shown to perform poorly as compared to SPDK. Second, they provide no

mechanism for cloud providers to provision SLAs using their solution. We argue that our

hardware-assisted QoS solution is more applicable in terms of performance and usability

in cloud environments.

With the availability of fast network interconnects, storage disaggregation-based tech-

nologies and systems are being extensively explored [12, 96]. Along these lines, software-

based systems for accessing remote NVMe Flash at latencies as low as local NVMe access,

such as ReFlex [97], have been proposed. Open-source disaggregated I/O architectures,

such as Crail [12], are built exclusively with user-level I/O support (e.g., NVMf, SPDK,

RDMA), allowing heterogeneous storage and networking hardware to interact with each

other in an optimal manner within the data processing engine.

6.6 Summary

NVMe-based devices are gaining popularity in cloud environments. This trend mo-

tivated us to work on analyzing, modeling, and provisioning QoS for NVMe SSDs [55].
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In this chapter, we first evaluated the existing QEMU-based NVMe emulator using perfor-

mance and QoS as our metrics. We concluded that the emulator is insufficient for providing

any service guarantees. We then proposed designs for accurate modeling of hardware-based

WRR and DRR in the QEMU NVMe emulator. We theoretically modeled the arbitration

schemes and showed how the analysis can be used for SLA provisioning in cloud envi-

ronments. Finally, we discussed a new approach for providing service guarantees using

a QoS-aware SPDK runtime. We demonstrated through experimental evaluation that our

QoS-aware NVMe emulator with DRR scheme and SPDK runtime can deliver bandwidth

service guarantees in cloud environments in an application oblivious manner. This work

should prove useful to vendors while designing arbitration schemes in SSDs and to cloud

providers in provisioning SLAs for tenants.
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Chapter 7: Future Research Directions

In this section, we present future research directions that the community is moving

towards.

7.1 Distributed Persistent Pools

A good avenue for future research is the concept of distributed persistent memory. Prior

research [150] has shown that having such a solution is incredibly useful in different scenar-

ios. Distributed persistent pools can effectively aggregate PMEM across several nodes and

be used to design distributed filesystems. However, there still remain several challenges

that must be solved to have a practical and scalable solution. Transferring data between

PMEM on different nodes can be directly achieved via RDMA. However, making sure that

data is actually persisted is still an ongoing research problem. There is not yet an efficient

mechanism to guarantee remote persistence. Software-based solutions, which we have

proposed in this thesis, have noticeable latency overhead, while hardware changes have

yet to be standardized. However, our prior work [105] has shown that proposed hardware

primitives, when available, can be used to efficiently solve this problem. Second, PMEM

is vulnerable to uncorrectable media errors and memory corruption. In this context, it is

imperative to ensure data availability and durability despite corruption. Commonly used
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techniques like replication and erasure coding can be applied to solve this issue, but the de-

sign of such schemes for PMEM is still an emerging research direction. As a future work

of this thesis, we plan to investigate possible practical solutions that solve these issues.

We also plan to explore how these distributed pools can be effectively utilized in storage

systems.

7.2 Computational Storage/Memory

The conventional computational paradigm involves moving data from storage to com-

pute (usually the CPU), processing that data using a kernel and moving the results back

to storage. As the size of data has exploded in recent times, distributed and disaggregated

storage systems have become commonplace to manage and store the vast volume of data.

In such systems, the traditional computational paradigm results in a majority of application

time being spent in moving data between the CPU and storage, reducing the effective-

ness of compute capabilities and increasing application runtime. To solve this problem,

computational storage/memory is a new paradigm that has been proposed and is gaining

popularity in recent years. In this paradigm, instead of data being moved to compute,

compute is moved to data. The key advantage is that movement of compute is signifi-

cantly less expensive and less frequent. Therefore, compute capabilities can be utilized to

their maximum. Recently, Samsung and Xilinx have introduced SmartSSDs [177] which

house programmable FPGAs to allow certain computational functionalities to be offloaded

to these devices. The major research challenges here include coming up with abstractions

to allow code shipping and to program near-storage computational units, such as SOCs and

FPGAs.
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Chapter 8: Impact on the Storage Community

8.1 Impact on the Design of Distributed Storage Systems

The main contributions of this thesis are new models, algorithms, data structures, and

abstractions which enable both programmers and end-users to efficiently utilize new hard-

ware technologies. Therefore, our work is not tied to any particular storage system or

application. The proposed designs are generic enough to be applicable to any distributed

storage system. For instance, the microfs abstraction presented in Chapter 5 can be uti-

lized to design coordination-free ephemeral storage systems. Furthermore, as we showed in

Chapter 4, our DIPPER algorithm can be exploited to build fast, persistent crash-consistent

data structures to store file system metadata. Finally, the Arcadia log interface and design

is generic and can be used for any log implementation on PMEM.

8.2 Impact on Scientific and Web Applications

The designs presented in this thesis are specifically targeted towards long-running sci-

entific applications and short-running web services. We have taken one production applica-

tion from both these classes of applications – CoMD is representative of scientific applica-

tions while AdMaster is representative of web services. Through experimental analysis, we
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showed that the proposed designs can successfully improve the performance of these appli-

cations and allow them to be run at large scale efficiently. We expect that other applications

in these domains will be able to utilize the proposed designs and get similar improvements.

Increasing the performance and scalability of applications can also make it possible to run

simulations at scales that were earlier impractical. This is especially true for time-sensitive

simulations, such as weather prediction. The low progress rates with current generation

storage systems imply that by the time a simulation is complete, it may no longer be use-

ful. In these scenarios, the highly efficient NVMe-CR design can be utilized to reduce the

simulation time and make the results useful.

8.3 Impact on NVMe SSD Design

Hardware-based arbitration schemes for NVMe SSDs serve as a great base to provide

basic service guarantees when accessing storage in cloud environments. Relying on hard-

ware schemes as opposed to software schemes not only results in better performance but

also provides fine-grained control over QoS. The hardware-assisted QoS work in this the-

sis demonstrates the shortcomings of the WRR arbitration scheme proposed in the NVMe

standard. We showed that DRR is a more suitable scheme to provide bandwidth guarantees

and is easy to implement in hardware. The NVMe standard allows SSD vendors to imple-

ment custom arbitration schemes. We expect that vendors will implement DRR or similar

schemes in future generations of SSDs.
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8.4 Software Release and Wide Acceptance

The High-Performance Big Data (HiBD) project [127] aims to make scalable high-

performance designs of popular Big Data stacks publicly available to the community. Pack-

ages provided by the project include optimized versions of Hadoop, Spark, and HBase. The

HiBD packages are being used by more than 335 organizations worldwide in 37 countries

to accelerate Big Data applications. More than 38,000 downloads have taken place from

this project’s site. Some of the designs proposed in this thesis, including our thread-based

architecture work, have been integrated into the RDMA-based Apache HBase package and

can be used on RDMA clusters to seamlessly accelerate data analytics. In addition, code

for our lock-free persistent data structure designs [53] has been open-sourced and is avail-

able at https://github.com/padsys/PMIdioBench. In the future, we also plan to make

the Arcadia, DStore, and NVMe-CR code open-source to further promote academic research

and industry collaboration.

155

https://github.com/padsys/PMIdioBench


Chapter 9: Conclusion and Contribution

Modern datacenters and HPC clusters are increasingly adopting non-volatile memory-

based storage devices and RDMA-based high-throughput interconnects. This trend is ex-

pected to grow as the amount of data to be stored is growing exponentially. To be able

to utilize these new technologies effectively, storage systems design principles need to be

re-evaluated and re-designed to exploit the full potential of modern architectures. Un-

fortunately, existing storage runtimes are designed considering the performance charac-

teristics of archaic hardware like spinning disks and Ethernet networks. Therefore, these

systems are unable to extract optimal performance from modern hardware and lead to poor

application-level performance. In this thesis, we have proposed a three-pronged approach

to fully exploit the architectural features of new technologies – (1) reducing software over-

head, (2) utilizing new features of hardware, and (3) rethinking storage system design prin-

ciples.

The work proposed in this thesis has provided a thorough analysis of existing storage

system designs on emerging non-volatile memory systems and identified various limita-

tions and associated bottlenecks. To circumvent these problems, we proposed Navi Store,

a generic storage sub-system, with four key design components. These four proposed com-

ponents take a cross-layer holistic approach to system design.
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The first major contribution of this thesis is Arcadia, a scalable replicated log on PMEM.

This design hides the data consistency, persistence, and integrity problems with PMEM and

makes it easier to use. Our analysis shows that Arcadia significantly outperforms state-of-

the-art PMEM logs, such as FLEX, PMDK’s libpmemlog, and Query Fresh while providing

stronger log record durability guarantees. We expect Arcadia to be used as an off-the-shelf

log implementation for any storage system using logging, in particular systems that have

weak consistency or disaggregated storage.

The second major contribution is DIPPER, an approach for designing persistent data

structures. This algorithm utilizes the byte addressability of PMEM to hide its persistence

overhead without impacting concurrency or fault-tolerance. We design a generic storage

sub-system, called DStore, short for Decoupled Store which uses DIPPER to implement

its control plane. Experimental results demonstrate that DStore can deliver up to 6x lower

tail latency service level objectives and up to 5x higher throughput service level objectives

compared to state-of-the-art PMEM optimized systems like PMEM-RocksDB, MongoDB-

PMSE, and NOVA.

The third major contribution is microfs, a coordination-free abstraction for storage sys-

tem design. Using this abstraction serves as a base, we designed NVMe-CR, a direct-access

ephemeral storage system with minimal coordination requirements for accelerating check-

point IO. Compared to these state-of-the-art systems, NVMe-CR can reduce checkpoint

overhead by as much as 2x. Furthermore, through increased efficiency and low software

overhead, our runtime can lower the required hardware IO bandwidth (and the overall TCO

as a consequence) by as much as 2x.
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The fourth and final major contribution is a hardware-based QoS approach. This design

provides request-size agnostic latency and bandwidth service guarantees in an application-

oblivious fashion. We demonstrated through experimental evaluation that hardware-based

arbitration with DRR scheme and SPDK runtime can deliver bandwidth service guarantees

in cloud environments in an application oblivious manner. This work should prove useful to

vendors while designing arbitration schemes in SSDs and to cloud providers in provisioning

SLAs for tenants.

The designs proposed in this thesis have shown empirically better performance at micro-

benchmark as well as at application-level in comparison to state-of-the-art solutions em-

ployed by production storage systems when running on modern datacenters and HPC clus-

ters. In particular, evaluation with YCSB shows that DStore can improve application

throughput by up to 2x. Further, using the ECP CoMD application, our results show that

NVMe-CR can achieve near perfect (> 0.96) efficiency at 448 processes.
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SLA Service Level Agreement.

SLO Service Level Objective.

SSD Solid State Drive.
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