
A Detachable LSTM with Residual-Autoencoder Features

Method for Motion Recognition in Video Sequences

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree
Master of Science in the Graduate School of The Ohio State

University

By

Sheng Ding, M.S

Graduate Program in Department of
Electrical and Computer Engineering

The Ohio State University

2020

Master’s Examination Committee:

Prof. Xiaorui Wang, Advisor

Prof. Wladimiro Villarroel



c© Copyright by

Sheng Ding

2020



Abstract

Motion recognition in video sequences is a challenging computer vision problem.

Actions are represented as a series of frames in video environments, which can be

easily understood by analyzing multiple frames’ contents. In this thesis, we recognize

human actions in a way similar to our observation of actions in real life, which is

exploring the features of consecutive frames and the connection between them.

Traditionally, feature extraction and recognition in video motion recognition are

integrated, and the training time is lengthy [1–5]. Especially when new data is given,

the time cost of retraining may be days which is too high, and the reliability for a new

environment is low. We want to break down this process to reduce the difficulty of

training, and at the same time, to find a reliable description of the process of feature

extraction.

In this thesis, we propose a detachable training motion recognition method by pro-

cessing the video data using Residual Block Autoencoder (ResAE) and Long Short-

Term Memory (LSTM) network. The proposed method can provide a reliable feature

extraction and process long videos by analyzing the features in frame sequences.

Experimental results show acceptable performance over 60% accuracy, which is

promising, in action recognition using the proposed method on UCF-101 (action

recognition dataset).

ii



This is dedicated to my dear families and friends.

iii



Acknowledgments

Without the help of the following people, I would not have been able to complete

my thesis. My heartfelt thanks to:

Dr. Xiaorui Wang, for being my mentor in research. Under his guidance, I

learned more professional knowledge and research skills, involved with exciting re-

search topics, but more importantly, I have got the chance to improve myself with a

better understanding of the research methodology, ideas development, and research

attitude. I feel very grateful for the opportunity to have him as my research advisor.

Dr. Han-Wei Shen, for his valuable suggestions on the algorithm model design and

experiment implementation, as well as his great advice and helps with the revision of

my thesis writing. I do appreciate him for all the above helpings.

Dr. Yunhao Bai, for his unselfish suggestions and generous helpings in sharing his

knowledge and experience of OS concept and framework implementation.

iv



Vita

December 24, 1995 . . . . . . . . . . . . . . . . . . . . . . . . . Born - Wuhu, China

Sept, 2014 - June, 2018 . . . . . . . . . . . . . . . . . . . . . B.E. Electrical Packaging,
Beijing Institute of Technology

Aug, 2018 - present . . . . . . . . . . . . . . . . . . . . . . . . .M.S. candidate Electrical and Com-
puter Engineering,
Ohio State University

Fields of Study

Major Field: Electrical & Computer Engineering

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Approach and Result . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Deep nets in Motion Recognition . . . . . . . . . . . . . . . . . . . 5

3. Model Architecture and Details . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Residual Block . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Structure Design . . . . . . . . . . . . . . . . . . . . . . . . 12

vi



3.3 Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 RNN and LSTM . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . 15

4. Dataset Design and Application . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 UCF-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Video Preprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Canny Edge Detection . . . . . . . . . . . . . . . . . . . . . 20

5. Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Experiment Overview . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Performance Prediction . . . . . . . . . . . . . . . . . . . . 23
5.2.2 ResAE Training and Visual Results . . . . . . . . . . . . . . 24

5.3 LSTM Training and Visual Results . . . . . . . . . . . . . . . . . . 26

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



List of Tables

Table Page

3.1 Description of Input and Output Parameters Used in The Proposed
LSTM for Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

viii



List of Figures

Figure Page

2.1 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Playing Piano and Archery . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 High Jump and Long Jump . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 FNN Autoencoder vs. FNN Classfication . . . . . . . . . . . . . . . . 11

3.3 Autoencoder Example in MNIST . . . . . . . . . . . . . . . . . . . . 12

3.4 Identity Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Autoencoder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Residual Block Structure . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 RNN Long-Term Dependencies . . . . . . . . . . . . . . . . . . . . . 15

3.8 The Repeating Module in A Standard RNN Contains A Single Layer
vs. An LSTM Contains Four Interacting Layers . . . . . . . . . . . . 16

3.9 Forget Gate Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.10 Memory Select Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.11 Update Cell State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.12 Output Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



4.1 Origin Frame vs Canny Edge Frame . . . . . . . . . . . . . . . . . . . 20

5.1 Training Time with Size Increasing . . . . . . . . . . . . . . . . . . . 23

5.2 Loss with Size Increasing . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Restoration (top) and Original (bottom) Image for Input Size 28*28,
98*98, 148*148, and 320*320 . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 Residual-Autoencoder Test Loss . . . . . . . . . . . . . . . . . . . . . 25

5.5 Original (left) and Recovered (right) Images (with average loss 0.7%) 25

5.6 Canny Edge (left) and Recovered (right) Images (with average loss 0.3%) 26

5.7 Original Frame with Three Channels . . . . . . . . . . . . . . . . . . 26

5.8 LSTM Train Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.9 LSTM Test Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

x



Chapter 1: Introduction

1.1 Background

Motion recognition in video sequences is a challenging computer vision problem,

which involves the similarity of visual content, the change of the same motion perspec-

tive, the camera’s movement with action performer, the scale and posture of actors,

and different illumination conditions. In general, human motion is the movement of

body parts interacting with objects in the environment. In a video environment, an

action is represented by a series of frames, which can be easily understood by ana-

lyzing multiple frames’ contents [3]. In this thesis, we recognize human actions in a

way similar to our observation of actions in real life, which is exploring the features

of consecutive frames and the connection within them.

1.2 Problem Statement

The training process is end-to-end in some existing video motion recognition mod-

els, which means feature extraction and recognition are encapsulated together for

training. Such encapsulation undoubtedly reduces the design requirements for the

model because the end-to-end models focus on results more and often ignore the hid-

den layer. In such a model, we cannot assess the quality of the features extraction;

1



the training time for months and computing resources (more than 24GB ram) are

enormous as well.

We hope to disassemble the feature extraction and recognition, design a neural

network structure capable of handling complex frames (complex environment and

detail) in the feature extraction part, reduce the size of the feature representation as

much as possible, and find a reliable method to evaluate its performance.

1.3 Approach and Result

In this thesis, some modifications were made to the feature extractor, and the

whole training process is divided into two parts:1) Frame compression and feature

extraction, 2) Recognition based on continuously processed frame.

We designed an LSTM as a recognition component. We want to reduce the train-

ing time as much as possible for preprocessing while still having high robustness. To

attain that goal, an Autoencoder based on the residual block, similar to the architec-

ture in [3], is presented as a compression/extraction component.

Applying the Hand Gesture Recognition Database, we demonstrate the feasibility

of the encoder in feature extraction. By experimenting with the UCF-101 dataset,

we evaluate the performance of ResAE+LSTM.

1.4 Thesis Overview

The remaining chapters of this thesis introduce some works already done and

document our design methodology, the results of our work, and the conclusion of this

research.

2



Chapter 2 makes a brief review of the previous work in both the traditional method

and the modern deep learning method.

Chapter 3 introduces how different model units are built internally. Including

the structure design of Autoencoder and LSTM layer. The working principle and

mathematical rationality of residual block are also mentioned.

Chapter 4 presents the video dataset we used and some preprocessing of the video

frame.

Chapter 5 provides the experimental process and all the experimental data. Among

them, the Autoencoder training relevant data accounts for a large proportion as well

as details of the dataset generation and usage in model training.

Chapter 6 summarizes the thesis’s results and analyzes the model’s characteristics,

which give pointers to future research based on this exemplary work.

3



Chapter 2: Related Works

This chapter introduces standard Deep learning models and their utility in Motion

Recognition. A general overview of the architectures in different Deep learning models

supports a discussion of the problem at hand and the goals of this project.

Researchers have proposed many motion recognition methods based on manual

(traditional methods) or deep network approaches in the past decade.

2.1 Traditional Methods

Earlier works were based on mathematical features for non-realistic action, in

which actors often performed specific actions in scenes with simple backgrounds.

Such systems extract low-level features from video data and then feed them to classi-

fiers such as support vector machines (SVM), decision trees, and k-nearest neighbors

(KNN) for action recognition.

For instance, the geometrical properties of space-time volume (STV), called action

sketch, were analyzed by Yilmaz and Shah [1]. They stacked body contours in the

time axis by capturing direction, speed, and shape of STV for action recognition.

Hu et al. [2] used two types of features: motion history image (MHI) and histogram

of oriented gradients feature (HOG). The former is the foreground image subtracted

from the background scene, while the latter refers to the magnitudes and directions

4



of edges. Then these features are fused and classified by simulated annealing with

multiple instances learning SVM (Smile-SVM).

However, these methods, based on mathematical features, have certain limitations.

For example, the STV-based approach is not useful for identifying the actions of mul-

tiple people in one scene. The technique based on MHI only works well in simple

datasets. To deal with complex datasets, we need a hybrid approach that combines

different functions and preprocessing, which will increase the computational complex-

ity of the target system [6].

These limitations can make lengthy videos and real-time applications with con-

tinuous video streaming difficult.

2.2 Deep nets in Motion Recognition

In addition to the motion recognition methods based on manual features, several

methods based on deep learning have been proposed in recent years. Deep learning

has shown significant progress in many areas, such as image classification, person

recognition, object detection, speech recognition, and bioinformatics [7].

The deep learning architectures for action recognition could be classified into three

categories based on feature extraction and fusion in different domains. Simonyan and

Zisserman [4] raised an architecture which is a two-stream convolutional network

based on two separate recognition streams (spatial and temporal), combined by late

fusion. The spatial stream performs action recognition from still video frames, while

the temporal stream is trained to recognize action from motion in the form of dense

optical flow (Figure 2.1). However, the precomputing of optical flow requires extra

GPU running time and storage space, which has become the two-stream algorithm’s

5



bottleneck. Besides, the traditional optical flow calculation method is entirely in-

dependent of the two-stream framework, not end-to-end training, result in that the

motion information in advance is not optimal [8].

Figure 2.1: Optical Flow

The second architecture is focusing on the three-dimensional convolution kernel.

Similar to still images, a video is a set of consecutive pictures with some inner corre-

lation in the time domain. As an extension of 2D ConvNets, 3D ConvNets is more

suitable for learning spatiotemporal features, which means it does some help in video

processing. In [5], Tran and his colleagues proposed a new model C3D based on 3D

ConvNets. Simultaneously, due to the good performance in still image recognition,

ResNet which is an improved architecture of ConvNets came into the researchers’

view [9, 10].

The problem is that unlike the motion recognition in still images, the motion recog-

nition based on video should have the ability to represent the evolution of short-term

small motions and long-term representation. Some motions can be reliably distin-

guished through the movements captured from successive frames, such as short-term

actions, but some kinds of motions require the overall features of a more lasting video

like long-term actions. To illustrate the above issues, we show some example videos

from UCF-101 [11] dataset in Figure 2.2 and 2.3. As shown in Figure 2.2 , ”Playing

Piano” and ”Archery” can be easily recognized through the information of a static

frame or small motion between consecutive frames. However, sometimes short clips

6



are not sufficient for classifying similar classes (High Jump vs. Long Jump), as shown

in Figure 2.3. Therefore, it is critical to exploit the complementary nature of the

single static frame, the short and long-term temporal evolution, and the video-level

representations. With that in mind, Liu et al. [12] proposed Temporal Convolutional

3D Network (T-C3D) based on the Multi-clip C3D model [13] architecture.

Figure 2.2: Playing Piano and Archery

Figure 2.3: High Jump and Long Jump

Unlike the first two models, the third architecture exploits the convolution unit

and Recurrent Neural Network (RNN), which has ”time depth” and forms implicit

component representation in the time domain [14]. A significant limitation of sim-

ple RNN models that strictly integrate state information over time is known as the

”vanishing gradient” effect: in practice, the ability to backpropagate an error sig-

nal through a long-range temporal interval becomes increasingly complex [15]. Long

Short-Term Memory (LSTM) units, first proposed in [16], are recurrent modules that

enable long-time learning. LSTM units have hidden state augmented with nonlinear

mechanisms to allow the state to propagate without modification, be updated, or be

7



reset, using simple learned gating functions [17]. LSTMs have recently been demon-

strated to be capable of large-scale learning of speech recognition [18] and language

translation models [19,20].

Considering that the LSTM unit is a deep learning architecture with cumulative

effects, if the input size of the LSTM unit is too large (≥ 104), each unit will cor-

respondingly have more losses, thus affecting the final output. In [6], Ullah et al.

used CNN as a feature extractor so that a 112x112 image can be compressed into a

1x1000 feature matrix. However, the whole process is end-to-end, which means the

convolution nets and LSTM are trained together. Even regardless of how much time

is spent in the training process, the performance of the feature extractor is also an

unknown factor.

Compared to general CNN nets, though Autoencoder is also a lossy compression

process, training allows its compression results to be restored as much as possible to

the original input, which can be a good indicator of feature extraction [21,22].

8



Chapter 3: Model Architecture and Details

This chapter introduces different model units and their inner structure in the

proposed framework, including features extraction through Resnet-Autoencoder for

frames and recognizing actions from the sequence of frames in video using LSTM.

3.1 Structure Overview

Figure 3.1 illustrates the framework of the proposed ResAE-LSTM network. First,

S frames are uniformly selected from the video to form a clip which represents the

entire video. For example, for a 151 frames video, the small clip with 15 frames is

formed by picking the frame with a 10 frames interval (10,20,...,150). We extract

ResAE features for all frames from these small clips. Second, the feature representing

the sequence of action are fed to the proposed LSTM in S chunks, where each chunk

is the features representation of the video frame and input to one RNN step. The

final state of LSTM is obtaining video-level scores and analyzing for final recognition

of an action in a video.

9



Figure 3.1: Model Structure

3.2 Feature Extraction

The feature extraction of the proposed method is completed by the encoder in

the Autoencoder. We evaluate whether the feature matrix is useful and train the

Autoencoder through the restoration of the decoder to the feature matrix.

3.2.1 Autoencoder

We want to discover a “proper” way to extract features for consecutive frames.

In the traditional CNN+LSTM model, as mentioned in Chapter 2.2, the output of

CNN is not evaluable. Though it dramatically reduces the size of input images, it

may bring some unexpected noise or unnecessary information to the LSTM net and

affect the training process, recognition output either.

Autoencoder is an unsupervised artificial neural network that learns how to com-

press and encode data efficiently then learns how to reconstruct the data back from

the reduced encoded representation to a representation that is as close to the original

input as possible.

Unlike other Feedforward Neural Networks (FNN), as shown in Figure 3.2, which

focus on the Output Layer and error rate, Autoencoder focuses on the Hidden Layer.

Given the example in the Modified National Institute of Standards and Technology

(MNIST) dataset, the output of the Hidden Layer is a compressed feature matrix,

10



as shown in Figure 3.3. This feature matrix is reliable because it can be restored to

the original image, while the output of the FNN softmax layer is just the result of

multiple convolutional layers which we can not evaluate.

Figure 3.2: FNN Autoencoder vs. FNN Classfication

The mathematical expression for Autoencoder is as follows, where φ and ψ repre-

sent encoder and decoder; X and L represent the input and loss function respectively.

φ, ψ = argminφ,ψL(X, (φ ◦ ψ)X) (3.1)

It can be seen that Autoencoder is an enhanced Principal Component Analysis

(PCA) element: It has some nonlinear transformation units, so the learned code can

be more refined and have more vital expression ability for input.

3.2.2 Residual Block

Resnet was proposed to solve the problem of network degradation. The degra-

dation problem refers to the fact that the model accuracy is not always improved

with the increase of network depth, and this problem is not caused by overfitting.

Because after deepening the network, not only the test error is rising, but also the

training error is rising. The rising error for both training and test may be due to

the fact that deeper networks are accompanied by gradient disappearance/explosion

problems, which hinder the convergence of the network.

11



He et al. [9] have proposed that the solution to network degradation is to build

an identity mapping, as shown in Figure 3.4. The original network input was x, and

the output was H(x). Assume that H(x) = F(x) + x, so the network just needs

to learn to output a residual F(x) = H(x) − x. The authors suggest that learning

the residual F(x) is much easier than learning the original feature H(x) directly.

According to the authors’ analysis, the deeper model should have a training error no

greater than its shallower counterpart if the added layers can be formed as identity

mappings. However, it is not easy to approximate identity mappings by multiple

nonlinear layers, causing the degradation problem. By applying residual learning

reformulation, the solvers may easily approach the weights of the nonlinear layers

toward zero to approach identity mappings, if they are optimal.

Figure 3.3: Autoencoder Example in
MNIST

Figure 3.4: Identity Mapping

3.2.3 Structure Design

The architecture of Residual-Autoencoders we designed in this thesis is presented

in Figure 3.5.

In the encoder part, a 4-layer structure is used. The second and third layers are

convolutional layers with the residual block (Figure 3.6), called downsampling layers,

whose strides are set to 2. Each time a downsampling layer is passed, the frame

12



Figure 3.5: Autoencoder Structure

size becomes 1/4 ∗ 1/4 of the original one. Two downsampling layers mean that the

final feature matrix is 1/256 of the original frame. The dropout layer in the residual

block with rate = 0.5 is used to improve the robustness and reduce the probability of

overfitting [23]. The first and last convolutional layers do not change the frame size

but expand the channels of training samples in order to preserve more information

during size reduction.

Figure 3.6: Residual Block Structure

13



To make the combination of functions work better, we set an activation layer after

every convolution layer. The reason why we choose PRelu, as shown in Figures 3.5 and

3.6, rather than Relu is that comparing to get rid of all negative correlation elements,

the retention of some of them is more conducive to feature extraction because the

negative correlation also expresses correlation in a sense [24].

In the decoder part, which is symmetric to the encoder in process, transposed

convolution is adopted to decode as the replacement of convolution in the decoder.

Regarding the choice of the loss function, considering that image coding restora-

tion is essentially a regression problem, in [12], McCaffrey mentioned that Mean

Squared Error could provide several local optimization solutions, convenient for the

training of the model.

3.3 Recognition

3.3.1 RNN and LSTM

Humans don’t start their thinking from scratch every second. Recurrent neural

networks were invented according to this characteristic. They have chain structure

loops, which can obtain input and give an output at each sequence node [25].

RNNs are able to connect previous information to the present task, such as using

previous video frames to inform the understanding of the present frame. However,

when it comes to a long sequence that a single chain structure cannot hold all the

information, RNNs become unable to learn to connect the information.

As shown in Figure 3.7, X0 and X1 are two inputs at the very beginning of the

sequence and do have a high correlation with the ht+1. When t is large enough,

14



module A cannot remember the information all the way down to sequence nodes 0

and 1 which will certainly affect the result of predicting ht+1.

Figure 3.7: RNN Long-Term Dependencies

Long Short-Term Memory networks – usually just called “LSTMs” – are a special

kind of RNN, capable of learning long-term dependencies. They were introduced by

Hochreiter & Schmidhuber (1997), and were refined and popularized by many people

later on.

LSTMs are explicitly designed to avoid the long-term dependency problem.

3.3.2 Mathematical Analysis

All recurrent neural networks have the form of a chain of repeating modules of

a neural network. In standard RNNs, this repeating module will have a very simple

structure, such as a single tanh layer. LSTMs also have this chain-like structure, but

the repeating module has a different structure which makes the whole process into

three stages: forget gate stage, select memory stage, and output stage, as shown in

the middle module of the LSTM in Figure 3.8. To better explain how it works, all

the variables used and their definitions are shown in Table 3.1.

15



Figure 3.8: The Repeating Module in A Standard RNN Contains A Single Layer vs.
An LSTM Contains Four Interacting Layers

xt Input at step t
ht−1,t Hidden state at step t− 1, t
Ct−1,t Cell state at step t− 1, t
Wf,i,C,o Trainable Weight in forget, input gate, Cell state and output layer
bf,i,C,o Trainable Bias in forget, input gate, Cell state and output layer
ft Forget items
it Old information needs to be updated

C̃t New information needs to be added
ot Output selector

σ, tanh Nonlinear sigmoid function, Activation function

Table 3.1: Description of Input and Output Parameters Used in The Proposed LSTM
for Recognition.

The forget gate layer (Figure 3.9) is used to decide what information should be

thrown away from the cell state. This decision is made by a sigmoid layer. It looks

at ht−1 and xt and outputs a number between 0 and 1 for each number in the cell

state Ct−1.

The relation is given by the following equation:

ft = σ(Wf · [ht−1, xt] + bf ) (3.2)

The memory select layer (Figure 3.10) is used to decide what new information

can be stored in the cell state. It has two parts. First, a sigmoid layer decides which

16



values will be updated. Next, a tanh layer creates a vector of new candidate values,

C̃t, that could be added to the state. In the end, by combining these two layers, the

whole process creates an update to the state.

it = σ(Wi · [ht−1, xt] + bi) (3.3)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.4)

Figure 3.9: Forget Gate Layer Figure 3.10: Memory Select Layer

After going through the forget gate layer and the memory select layer, cell state,

Ct−1, can be updated into Ct (Figure 3.11).

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.5)

Finally, the output layer chooses what to output (Figure 3.12).

Figure 3.11: Update Cell State Figure 3.12: Output Layer

This output will be based on the filtered cell state. First, getting through a

sigmoid layer to decide what parts of the cell state to output. Then, put the cell state

17



through tanh and multiply it by the output of the sigmoid gate, so that it can only

output the parts we decided to.

ot = σ(Wo · [ht−1, xt] + bo) (3.6)

ht = ot ∗ tanh(Ct) (3.7)

18



Chapter 4: Dataset Design and Application

This chapter introduces the dataset used in this thesis. Apart from the necessary

information, how is the video preprocessed will also be mentioned.

4.1 UCF-101

UCF-101 is an action recognition data set of real action videos, collected from

YouTube, having 101 action categories [11].

The action categories can be divided into five types: 1) Human-Object Interaction,

2) Body-Motion Only, 3) Human-Human Interaction, 4) Playing Musical Instruments,

5) Sports.

To have better comparability, we choose 16 groups of videos of the second category,

which are similar in video environment and mainly focus on human movements.

4.2 Video Preprocess

Considering that the inputs of the Autoencoder are single-frame images, the first

step is to decompose the video into pictures according to the number of frames. Since

training consists of compressing and recovering, all the images do not need to be

tagged compared to the classification task.

19



4.2.1 Video Clips

A five-second video whose fps is 30 has 150 frames, and most of those frames are

highly similar to those adjacent to them in time, which means that it makes no sense

to put the entire video into the model. Duplicate images can be discarded with the

method of spaced sampling.

In the training process, we took S = 15 frames of each video to form a clip as

indicated in Chapter 3.1.

4.2.2 Canny Edge Detection

In certain works mentioned in Chapter 2, such as [4], optical flow is extracted as

one of the motion features. The reasonable point of pulling optical flow is that, firstly,

it can simplify the data (only considering the optical flow field, that is, the motion

information, removing complex environment information) and reduce the computa-

tion time. Second, it can make the input more diverse and improve the robustness of

the model.

However, extracting optical flow is quite time-consuming and requires advanced

computing equipment. Canny edge detection is one of several methods used to extract

motion features besides optical flow. The process result is shown in Figure 4.1.

Figure 4.1: Origin Frame vs Canny Edge Frame

20



By applying edge detection, the human body’s motion outline in the complex

background can be found. For feature extraction, the lower the noise interference,

the better the performance of the Autoencoder [26].

21



Chapter 5: Experiment and Data

5.1 Experiment Overview

In this chapter, we evaluate the proposed ResAE + LSTM model based on UCF-

101. As mentioned in Chapter 3.1, we split the training process into two parts,

respectively, representing feature extraction and motion recognition.

Prior to the training of the Autoencoder, we conducted a preliminary experiment

on the Hand Gesture Recognition Database to find out the influence of input size

on the time of training and the performance of the Autoencoder. This preliminary

experiment helps us in scaling video frame.

In the main experiment, we first train the automatic encoder, and the evaluation

criterion is the loss rate of the restored frame. We put both the original frame and

the edge detection frame into the Autoencoder to obtain two-stream feature matrices.

Then, we conduct LSTM training based on the two-stream feature matrices in the

small clips from the video with an average length of 15 frames.

22



5.2 Autoencoder

5.2.1 Performance Prediction

The training of encoders is a complicated process. We want the coding time to be

as short as possible, and the recovery rate to be as high as possible, which means the

loss needs to remain low. Intuitively, it has a high demand for the size of the input

image and the random preprocessing of the image like flip, not only edge detection.

We used the Hand gesture recognition database [27] which contains 20000 still

images in 10 categories for Autoencoder testing and obtained the effect of input

size on Autoencoder function and convergence time. The relationship is shown in

Figures 5.1 and 5.2.

Figure 5.1: Training Time with
Size Increasing

Figure 5.2: Loss with Size Increasing

From these two graphs, we can conclude that as the input size increases, the

training cost explodes exponentially. Simultaneously, the recovery difficulty is greater,

and the loss rate gradually converges to a certain value.

We present some restoration results to support this view (Figure 5.3). It is evident

23



Figure 5.3: Restoration (top) and Original (bottom) Image for Input Size 28*28,
98*98, 148*148, and 320*320

that when input is relatively small, the necessary information is insufficient, and the

restoration has a significant loss.

In this case, to achieve the tradeoff of time and loss, it is unnecessary to have a

large input size such as 1280*720. A reasonable size range is 200 to 250, within which

training is often about a few hours and loss is at a convergent level of about 0.7%.

5.2.2 ResAE Training and Visual Results

We took Body-Motion Only set in UCF-101 as the final training dataset. There are

over 1,500 videos in 16 categories in the database. After the videos were decomposed

frame by frame, we obtained a total of 323,260 images, of which 90% were used as

the training set and 10% as the test set.

To prevent overfitting, we set the learning rate to 0.001 and the decay rate to

0.00001. With the time restriction, 10000 iterations are operated with 50 frames per

24



batch. The testing loss shows that ResAE has good performance (Mean Square Error

less than 1%), as show in Figure 5.4).

Figure 5.4: Residual-Autoencoder Test Loss

The original frame size is 240*320. After the feature extraction, we get a 15*20

feature matrix. At the same time, we also continue the idea of two-stream; one is the

original image with RGB 3 channels, the other is the grayscale image processed by

canny edge detection. Because background information is essentially omitted in canny

edge detection images, the loss rate of restored images using Canny Edge detection

is lower (Figure 5.5, 5.6). We can consider that the motion information contained in

the feature matrix of the hidden layer is more effective.

Figure 5.5: Original (left) and Recovered (right) Images (with average loss 0.7%)

In our design, the feature matrix of the original image, which is the input to LSTM,

has three channels. We are more concerned about the dynamic components of the

picture for the action, so we can consider using only one of the three channels because

25



Figure 5.6: Canny Edge (left) and Recovered (right) Images (with average loss 0.3%)

channel decomposition does not affect dynamic features; moreover, the encoding of

the edge detection image also compensates for these losses. In Figure 5.7, we can see

that all the details are blurred similarly in different channels.

Figure 5.7: Original Frame with Three Channels

5.3 LSTM Training and Visual Results

After the training of Autoencoder, we take one of the feature matrix channels as

the input to LSTM. Then, the coded frame is reshaped into a 1-dimension vector

before sent into LSTM.

Due to the time limitations, we only trained 600 iterations, which run through

half of the whole dataset. In Figure 5.8, the training loss is significantly reduced from

3% to 0.5%. The accuracy of the model prediction reached 60% (Figure 5.9).

Compared with the completed training model like T-C3D with accuracy at 79.7%,

the training of ResAE-LSTM is not sufficient due to time and resource constraints.

So the final accuracy is not very high (an average accuracy is between 70% and 85%).

26



Figure 5.8: LSTM Train Loss Figure 5.9: LSTM Test Accuracy

However, in the case of only going through half of the data set, the training loss

has steadily declined, indicating a stable convergence trend. In Figure 5.9, accuracy

is also rising, which may suggest that if more computing resources and time are

available, higher accuracy can be achieved.

27



Chapter 6: Conclusion

In this thesis, we presented an architecture of a Residual-Autoencoder + LSTM

which is a deep learning model, combined with a compression technique for motion

recognition.

We gave a detailed design structure and introduced its mathematical principle.

Residual-Autoencoder first extracts the feature matrix from the video frames. Then,

LSTM is fed with these feature matrix for recognition. We analyzed videos in small

clips, where the length of clips depends on S frames, which are picked in some ad-

justable time interval preprocessing. Due to these properties, the proposed method

is capable of learning long term complex sequences in videos.

The feasibility of the new model was verified by testing using the UCF-101 dataset.

Our model can evaluate the feature extraction performance of the middle layer with

an average loss of 0.7% for the original frame and 0.3% for the Canny Edge detection

frame, which improves the reliability of LSTM classification work and achieves a

relatively decent 60% accuracy in motion recognition, considering a limited training

due to time and resource constraints. In addition to the final accuracy, the advantages

of the new model are also reflected in the training process. Compared with T-C3D

and other models that take several weeks of training, ResAE+LSTM only takes a

few days. At the same time, in the case of motions with the same label but different

28



backgrounds, it is only necessary to retrain ResAE to extract corresponding features

instead of retraining the whole model end-to-end. It can be said that the new model

is conducive to transfer learning.

According to the performance and training process of the model in the practical

video sets, we found some shortcomings of the new model. The first is the performance

symmetry of the encoder and decoder. In our design, the decoder plays a critical role

in image restoration due to its symmetry with the encoder structure, which will cause

unavoidable interference to the evaluation of feature extraction. In the future, we can

simplify the structure of the decoder as much as possible and reduce its impact.

Another con is that the structure of LSTM is quite simple in this thesis and does not

make full use of two-stream features (original and canny edge detection) of the motion.

To improve that, we may try to apply multi-layers LSTM for multi-dimension inputs

later, which may increase training time but should help raise the model’s accuracy.

29



Bibliography

[1] A. Yilmaz and M. Shah. Actions sketch: A novel action representation. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
984–989, Jun 2005.

[2] Y. Hu, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang. Action detection in
complex scenes with spatial and temporal ambiguities. The IEEE International
Conference on Computer Vision (ICCV), pages 128–135, 2009.

[3] N. Bian, F. Liang, H. Fu, and B. Lei. A deep image compression framework
for face recognition. 2019 2nd China Symposium on Cognitive Computing and
Hybrid Intelligence (CCHI), pages 99–104, 2019.

[4] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. Advances in Neural Information Processing
Systems, 2014.

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. The IEEE International
Conference on Computer Vision (ICCV), Dec 2015.

[6] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik. Action recog-
nition in video sequences using deep bi-directional lstm with cnn features. IEEE
Access, 6:1155–1166, 2018.

[7] S. K. Choudhury, P. K. Sa, R. P. Padhy, S. Sharma, and S. Bakshi. Improved
pedestrian detection using motion segmentation and silhouette orientation. Mul-
timedia Tools Appl 77, page 13075–13114, 2018.

[8] Y. Zhu, Z. Lan, S. Newsam, and A. G. Haauptmann. Hidden two-stream convo-
lutional networks for action recognition. Asian Conference on Computer Vision,
pages 363–378, 2017.

[9] K. He, X. Zhang, S. Ren, and Sun J. Deep residual learning for image recognition.
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun 2016.

30



[10] Christoph Feichtenhofer, Axel Pinz, and Richard P. Wildes. Spatiotemporal mul-
tiplier networks for video action recognition. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[11] S. Khurram, A. R. Zamir, and S. Mubarak. Ucf101: A dataset of 101 human
actions classes from videos in the wild, 2012.

[12] K. Liu, W. Liu, C. Gan, M. Tan, and H. Ma. T-c3d: Temporal convolutional
3d network for real-time action recognition. Thirty-Second AAAI Conference on
Artificial Intelligence, pages 7138–7145, 2018.

[13] Carreira Joao and Zisserman Andrew. Quo vadis, action recognition? a new
model and the kinetics dataset. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[14] R. J.Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1989.

[15] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual
recognition and description. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 1997.

[17] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-
works for video classification. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

[18] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent
neural networks. International Conference on Machine Learning, pages 363–378,
2014.

[19] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, 2014.

[20] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. SSST Workshop,
pages 103–111, Oct 2014.

[21] Haojie Liu, Tong Chen, Qiu Shen, Tao Yue, and Zhan Ma. Deep image com-
pression via end-to-end learning, 2018.

31



[22] Z Cheng, H Sun, Masaru Takeuchi, and Jiro Katto. Performance comparison of
convolutional autoencoders, generative adversarial networks and super-resolution
for image compression. The IEEE Conference on Computer Vision and Pattern
Recognition Workshops(CVPR), 2018.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[24] James D. McCaffrey. Why you should use cross-entropy error instead of clas-
sification error or mean squared error for neural network classifier training.
https://jamesmccaffrey.wordpress.com/2013/11/05/. Accessed November
5, 2013.

[25] Christopher Olah. Understanding lstm networks. https://colah.github.io/

posts/2015-08-Understanding-LSTMs/. Accessed August 27, 2015.

[26] S. Arif, J. Wang, T. Ul Hassan, and Z. Fei. 3d-cnn-based fused feature maps
with lstm applied to action recognition. Future Internet, 2019.

[27] T. Mantecón, C.R. del Blanco, F. Jaureguizar, and N. Garćıa. Hand gesture
recognition using infrared imagery provided by leap motion controller. Int. Conf.
on Advanced Concepts for Intelligent Vision Systems (ACIVS), pages 47–57, 24–
27, Oct 2016.

32


