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Abstract 

 

Establishing a cause–effect relationship between two variables is a fundamental goal of 

scientific research. It is valuable to know that one variable causally influences another. 

Just as important, however, is establishing how, or through what mechanism(s), this 

effect operates. Mediation analysis is a popular method used to answer such questions. A 

simple application of the mediation model looks at how one intervening variable (a 

"mediator") can explain the relationship between two others. The quantification of an 

effect through a mediator is called an indirect effect. Real-world processes are complex, 

however, and effects are often transmitted by more than one mechanism. Consequently, it 

can be beneficial to simultaneously look at multiple mediators that could explain the 

connection between an antecedent variable and its consequent. As multiple mediator 

models continue to grow in popularity, it is theoretically and practically useful to explore 

whether one mechanism is “stronger” or “more important” in producing an effect than 

another. This can be done by comparing the relative sizes of the indirect effects. 

Although several methods have been proposed in the methodological literature for 

comparing indirect effects, little to no literature exists exploring whether one method is 

better than another. The goal of this thesis is to first give a background on mediation 

analysis and multiple mediator models. Then I discuss current approaches to comparing 
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indirect effects and suggest alternative ways of doing so. Next, I demonstrate these 

concepts by conducting analyses in a real-world example. Finally, I conduct a simulation 

study comparing methods for comparing indirect effects and give suggestions for future 

research. 
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Chapter 1: Introduction 

 

 

Psychology and other scientific disciplines have long sought to explore causal 

relationships between variables. Knowing that one variable causes another provides 

valuable information to the scientific community. For instance, if self-compassion causes 

well-being to improve, it can become a focal point of behavioral or therapeutic 

interventions to improve an individual's state of mind. But knowing that a relationship 

exists is only part of the story. Just as important is to understand how a relationship 

exists. Perhaps self-compassion increases well-being because greater self-compassion 

first causes greater optimism, which, in turn, causes well-being to improve. That is, 

perhaps self-compassion is acting indirectly through optimism to enhance one’s well-

being. Mediation analysis can be used to answer such questions. Mediation analysis is 

used to understand how a predictor (hereinafter, X) is related to an outcome (hereinafter, 

Y) through one or more mediating variables (hereinafter, M).  

 Mediation models are abundant in applied research. In one study, Schönfeld, 

Brailovskaia, Bieda, Zhang, and Margraf (2016) found that daily stress had a significant 

and negative effect on a person’s mental health. But the researchers thought that this 

association was at least partially explained by another, intermediary variable (a 
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mediator). They posited that more stress would reduce a person’s level of self-efficacy, 

and this reduction in self-efficacy is what would cause poorer mental health. This 

explanation was supported by the data. Another study measured the relationship between 

compassion for others and happiness (Sanchez, Haynes, Parada, & Demir, 2018). Those 

who reported higher levels of compassion for others also reported greater levels of 

happiness and mental well-being. The authors proposed that being compassionate leads to 

prosocial friendship maintenance behavior like providing support/advice or reflecting on 

good times together. This friendship maintenance, they argue, is what leads to greater 

levels of happiness. These are merely two of many examples of mediation analysis 

conducted in research. Mediation models have been applied in a number of other fields 

including communication (Hoffman & Young, 2011), public health (Ho, Peh, & Soh, 

2013), education (Jin, McDonald, & Park, 2018), nursing (Van der Heijden, Mahoney, & 

Xu, 2019), and business (Wieder & Ossimitz, 2015), among many other allied areas of 

research.  

Although the studies above provide evidence for a mechanism underlying a causal 

relationship, it is unlikely that just one mediator explains the relationship between two 

variables linked in a causal process. Rather, it is more likely that one variable causes 

multiple others that in turn lead to some outcome. For instance, in the first example 

above, could it be that daily stress causes another variable, say rumination, and 

rumination also causes poorer mental health? Introducing more mediators into a model 

provides more information about the nomological network of the variables of interest. 

Simultaneously estimating mechanisms between X and Y is beneficial to researchers for a 
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variety of reasons, chief among these is that researchers can test competing theories 

against each other by comparing mechanisms present in a model. In the example so far—

if both mediators were measured in the same study—the researchers could test if there 

was a difference between the effect of stress through rumination on well-being and the 

effect of stress through optimism on well-being and see whether one was "more 

important" in explaining the relationship than another. A number of suggestions have 

been proposed in the literature for comparing such effects, but none of them have been 

tested to see whether one performs better than another or in what conditions one performs 

better (e.g., sample size or size of effects being compared).  

 As the use of mediation models—especially those with multiple mediators—

continues to rise, it is beneficial for methodological scholars to investigate such questions 

so substantive researchers can carry out tests that have good statistical properties. This 

thesis expands on existing recommendations for comparing indirect effects by testing 

several contemporary approaches in a simulation study. First, I discuss the mathematics 

behind mediation models. Then I describe simple and parallel mediation models and how 

one can obtain inference about effects in these models. After, I talk about current practice 

and new approaches for comparing indirect effects, step through a real-world example, 

and conduct a simulation study comparing the performance and merits of these different 

approaches. Finally, I discuss the implications of this research for substantive researchers. 

1.1 Data from a substantive example 

I will refer to a substantive example throughout this thesis. The data I use are inspired by 

and simulated from a paper published by Pitts, Safer, Castro-Chapman, and Russell 
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(2018). The study sought to explore how veterans' combat experiences caused 

posttraumatic symptoms once they returned home from war. It is well-understood that 

combat experiences are a cause of PTSD in veterans, but combat is an unavoidable 

experience for those going to war. Mediation analysis can help researchers uncover what 

combat experiences cause that might then lead to PTSD. This information can help 

inform interventions and therapeutic efforts to improve the well-being of those in the 

military. The authors hypothesized that army medics who experienced combat during 

their most recent deployment would perceive more threats to their life, and this greater 

level of perceived threat would lead to an increase in posttraumatic stress symptoms upon 

return from deployment. They also hypothesized that combat experience would lead to an 

increase in the perceived benefits of deployment which would in turn lead to a decrease 

in posttraumatic stress symptoms. The researchers X was combat experience, the 

mediators, Ms, were perceived threat and perceived benefits of deployment, and the 

outcome, Y, was posttraumatic stress symptoms.  
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Chapter 2: The Mediation Model 

 

 

Mediation models are typically estimated in one of two ways: structural equation 

modeling (SEM) or through a series of ordinary least squares (OLS) regression analyses. 

Although some researchers have taken a stance about which approach should be used to 

estimate the effects in these models, research suggests that the results between observed-

variable SEM and OLS regression are nearly identical (Hayes, Montoya, & Rockwood, 

2017; Rijnhart, Twisk, Chinapaw, de Boer, & Heymans, 2017). There are pros and cons 

to conducting mediation analysis through maximum likelihood estimation in SEM and 

through OLS criteria in regression (detailed in the papers above), but this thesis will 

discuss mediation analysis in the context of a series of regression models.  

Mediation models can be estimated using two equations where the paths are 

estimated in each equation separately (as opposed to simultaneously in SEM). If M and Y 

are continuous variables and X is either dichotomous or continuous, then a mediation 

model can be estimated by fitting the following equations to the data: 

𝑀 = 𝑑𝑀 + 𝑎𝑋 + 𝜀𝑀 (2.1) 

𝑌 = 𝑑𝑌 + 𝑐′𝑋 + 𝑏𝑀 + 𝜀𝑌 (2.2) 
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Figure 2.1 shows a statistical diagram of this model. This is called the simple mediation 

model (this is not to imply that the model is conceptually simple or that there aren’t 

complexities and controversies in interpretation—simple in this case means that it is a 

three-variable system with one X, M, and Y). In equation 2.1, a represents the expected 

difference in M with a one-unit increase in X. In equation 2.2, b represents the expected 

difference in Y with a one-unit increase in M holding X constant, and 𝑐′ represents the 

expected difference in Y with a one-unit increase in X holding M constant (this is called 

the direct effect of X). The indirect effect of X, the effect usually of interest in mediation 

analysis (the effect of X on Y through M), is obtained by multiplying a and b together 

(i.e., ab). The total effect of X on Y, c, can be obtained by adding the indirect and direct 

effects (i.e., c = ab + 𝑐′). The total effect represents the expected difference in Y with a 

one-unit increase in X and is what would result from regressing Y on X alone.   

 

 

 

Figure 2.1: A statistical diagram for the simple mediation model. ε denotes residuals in 

estimation. 

𝜀 

𝜀 
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Inference for a, b, c, and 𝑐′ can be obtained through standard regression procedures. That 

is, you can obtain p-values by dividing the regression weight by its standard error and 

comparing the resulting test statistic to a t-distribution (to test against the null that the 

weight is equal to zero) or obtain 95% confidence intervals by calculating, for example 

for a,  

𝑎 ± 𝑡.975,𝑛−2𝑠𝑒𝑎 (2.3) 

where 𝑠𝑒𝑎 is the standard error of a and 𝑡.975,𝑛−2 is the value for which 97.5% of the t-

distribution falls below at 𝑛 − 2 degrees of freedom. (Inference for b, c, and c′ would be 

conducted similarly.) 

Inference for the indirect effect is not as simple since it is the product of two 

regression coefficients. Historically, several methods have been used for inference about 

the indirect effect including the Sobel test (Sobel, 1982), the causal steps approach 

(Baron & Kenny, 1986), and the joint significance test (MacKinnon et al., 2002). These 

methods are no longer recommended by mediation scholars.  

2.1 The Bootstrap 

The bootstrap is arguably the most popular contemporary method for inference about the 

indirect effect. The bootstrap is a nonparametric resampling approach that has gained 

popularity in recent years with the increase in general computing power and 

computational tools available to substantive researchers to carry out such methods (e.g., 

PROCESS; Hayes, 2018). The appeal of the bootstrap as an inferential method is that it 

makes no assumptions about the shape of the sampling distribution of the indirect effect. 
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When bootstrapping, the original sample is treated as a population and an 

arbitrarily large number of j samples of size n—the size of the original sample—are 

drawn with replacement from the data (consequently it’s important that the original 

sample is representative of the population of interest). In general, at least 5,000 to 10,000 

resamples of the original data set are recommended. In each of these bootstrap samples, 

the indirect effect (ab) is estimated and recorded and this procedure is repeated j times. 

Typically, for inference, a confidence interval is constructed from the resulting bootstrap 

distribution of indirect effects. There are a variety of ways to construct this bootstrap 

confidence interval.  

2.1.1 Percentile Bootstrap Confidence Intervals 

The percentile bootstrap confidence interval is simple to construct and is one of the most 

used for inference about the indirect effect. A ci% confidence interval can be constructed 

by calculating the upper and lower 
(100−𝑐𝑖)

2
 percentiles of the distribution of the j 

estimates of ab (with ci being the specified level of confidence). For instance, if j = 1,000 

bootstrap samples, the 2.5 and 97.5th percentiles of the distribution would be the 

endpoints for a 95% percentile bootstrap confidence interval. If the confidence interval 

for ab does not contain zero, then M is deemed to mediate the relationship.  

2.1.2 Bias-Corrected and Bias-Corrected and Accelerated Bootstrap Confidence 

Intervals 

The percentile bootstrap approach can sometimes lead to over or underestimates of the 

population value (Efron, 1987; Efron & Tibshirani, 1993). Bias-corrected (BC) and bias-

corrected and accelerated (BCa) confidence intervals are alternatives that attempt to 
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correct for bias/inaccuracies observed with the percentile method (Efron & Tibshirani, 

1993). These methods still rely on percentile values from the bootstrap distribution to 

obtain confidence intervals, but the endpoints will vary based on approximations of the 

bias and skewness of the bootstrap distribution. To make these corrections, two values 

must be estimated: 𝑧0 (the estimate of the bias) and 𝑎𝑐 (the acceleration constant). 𝑧0 is 

the z-score for the proportion of bootstrap estimates that are less than or equal to the 

sample estimate of the effect. In this case, 𝑧0 is  

𝑧0 =  ϕ−1 (
∑ 𝑎𝑏𝑗

′𝐽
𝑗=1 ≤ 𝑎𝑏

𝐽
) 

(2.4) 

where J is the number of bootstrap samples, 𝑎𝑏𝑗
′ is the jth bootstrap estimate of the indirect 

effect, and ϕ−1 is the inverse of a standard normal cumulative distribution function 

(CDF). Since this serves as an estimate of the bias, the resulting value will be zero if 

there is no bias (i.e., half of the bootstrap estimates are below ab and half are above; 𝑧0 =

 ϕ−1(. 5) = 0).   

 The acceleration constant in BCa confidence intervals approximates the skewness 

of the distribution. More specifically, BCa intervals utilize jackknife resampling to 

estimate the rate of change of the standard error of the statistic (ab here) relative to the 

true parameter value (Efron & Tibshirani, 1993). The acceleration parameter 𝑎𝑐 can be 

can calculated by 

𝑎𝑐 =  
(∑ (𝑎𝑏̅̅ ̅ − 𝑎𝑏−𝑖

𝑛
𝑖=1 ))

3

6 [∑ (𝑎𝑏̅̅ ̅  −  𝑎𝑏−𝑖)
2𝑛

𝑖=1 ]

3
2

 
(2.5) 
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where 𝑎𝑏−𝑖 is the estimate of ab with case i removed, and 𝑎𝑏̅̅ ̅ is the mean of the n 

jackknife estimates.  

 In order to obtain the limits for the BCa confidence intervals, calculate the upper 

and lower bounds 

𝑧𝑙𝑜𝑤𝑒𝑟 =  𝑧0 + 
𝑧0 +  𝑧𝛼

2

1 − 𝑎𝑐 (𝑧0 +  𝑧𝛼
2

)
 

(2.6) 

and  

𝑧𝑢𝑝𝑝𝑒𝑟 =  𝑧0 +  
𝑧0 +  𝑧

1−
𝛼
2

1 − 𝑎𝑐 (𝑧0 +  𝑧
1−

𝛼
2

)
 

(2.7) 

where α is the specified error rate, 𝑧𝛼

2
 is the value for the (

𝛼

2
) 100 percentile of the z-

distribution and 𝑧1−
𝛼

2
 is the value for the (1 −

𝛼

2
) 100 percentile of the z-distribution. The 

percentiles for the endpoints of the confidence interval are then calculated as 

ϕ(𝑧𝑙𝑜𝑤𝑒𝑟) and ϕ(𝑧𝑢𝑝𝑝𝑒𝑟) where ϕ indicates the standard normal CDF.  

As an illustration, say 𝑧0 was estimated to be 0.45 and 𝑎𝑐 was estimated to be 

0.15. For a 95% BCa CI, the percentile for the lower endpoint would be  ϕ (𝑧0 +

 
𝑧0+ 𝑧𝛼

2

1−𝑎𝑐(𝑧0+ 𝑧𝛼
2

)

) =  ϕ (0.45 +  
0.45+(−1.96)

1−0.15(0.45+(−1.96))
) = ϕ(−0.781) =  .217(100) = 21.7 

and the percentile for the upper endpoint would be ϕ (𝑧0 +  
𝑧0+ 𝑧

1−
𝛼
2

1−𝑎𝑐(𝑧0+ 𝑧
1−

𝛼
2

)

) =
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 ϕ (0.45 +  
0.45+1.96

1−0.15(0.45+1.96)
) = ϕ(4.224) =  .999(100) = 99.9. Thus, for j = 1,000 

bootstrap samples, the limits of the 95% BCa CI would be 217th and 1,000th ordered 

values. The BC confidence intervals are computed largely the same way with the 

assumption that the acceleration parameter 𝑎𝑐 = 0.  

 If bias and acceleration are zero, this will result in the same percentiles as the 

percentile bootstrap CI. That is, the percentile for the lower endpoint is ϕ (0 +

 
0+(−1.96)

1−0(0+(−1.96))
) = ϕ(−1.96) =  .025(100) = 2.5 and the percentile for the upper 

endpoint is ϕ (0 + 
0+1.96

1−0(0+1.96)
) = ϕ(1.96) =  .975(100) = 97.5.  

2.2 The Parallel Mediation Model 

In reality, it is likely most (if not all) effects operate through more than one mechanism. It 

is unlikely that something as complex and variable as human cognition/behavior can be 

adequately described by a three-variable system. One mediator is simply not enough to 

explain most real-world processes—especially social phenomena. The parallel mediation 

model (depicted in Figure 2.2) allows mediators to correlate with one another but does 

not allow them to influence each other causally. Instead of the equations in the simple 

mediation model, the indirect, direct, and total effects can be derived through the 

following equations 

𝑀𝑖 = 𝑑𝑀𝑖
+ 𝑎𝑖𝑋 + 𝜀𝑀𝑖

 (2.8) 

𝑌 = 𝑑𝑌 + 𝑐′𝑋 + ∑ 𝑏𝑖𝑀𝑖
𝑘
𝑖=1 + 𝜀𝑌   (2.9) 

c = 𝑐′ +  ∑ 𝑎𝑖𝑏𝑖
𝑘
𝑖=1  (2.10) 
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where k is the number of mediators. Indirect effects of X on Y are constructed by 

multiplying 𝑎𝑖 and 𝑏𝑖 (for all i = 1,…,k). For example, with two mediators there are two 

indirect effects: 𝑎1𝑏1 and 𝑎2𝑏2. Each of these indirect effects is called a specific indirect 

effect. The interpretation of this effect is not the indirect effect of X on Y through 𝑀𝑖. It is 

the indirect effect of X on Y through 𝑀𝑖 controlling for the other 𝑀𝑘−1 mediators. Thus, 

you're accounting for the correlation between mediators. Accounting for this shared 

association is why mediation scholars recommend including all mediators in one single 

model as opposed to k independent simple mediation models (even if you suspect they’re 

independent before running analyses; VanderWeele & Vansteelandt, 2014). 

Parallel mediation models are commonly estimated by substantive researchers. 

For example, Wiedow et al. (2013) found that learning as a team significantly improved 

team outcomes (e.g., individual and group performance). This relationship was mediated 

by both increased task knowledge and trust in other teammates. Another study found that 

cancer patients who were able to find benefits in their condition receive more support 

from friends and family, have greater acceptance of their condition, and have greater 

acceptance of their emotions. The increased levels of social support, acceptance of their 

emotions, and acceptance of their cancer resulted in lower levels of depression (Manne et 

al., 2018). 
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Figure 2.2: A statistical diagram for a parallel multiple mediator model with k mediators. 

ε denotes residuals in estimation. 

 

 

When conducting mediation analysis with k mediators in a model, it is possible to 

estimate what is called the total indirect effect. The total indirect effect is the sum of all k 

indirect effects in the model. Although there are cases where you may be interested in 

testing whether a relationship operates through a set of mechanisms, the total indirect 

effect is generally not a useful statistic. Consider the case where the specific indirect 

effects are equal in size but opposite in sign. Here, the total indirect effect will be zero 

even though the specific indirect effects are different from zero. Just like a significant 

total effect is not a precondition of meditation, neither is a significant total indirect effect. 

Testing the total indirect effect may be useful in cases where mechanisms operating in the 

same direction are correlated with one another (where the size of the specific indirect 

𝜀 

𝜀 

𝜀 
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effects can change when controlling for the other mediators), but this is one particular 

case and it is up to the researcher to decide whether this is theoretically interesting. I 

would argue that it is usually the specific indirect effects in the model that one is 

interested in testing. 

Although the total indirect effect is typically not interesting, testing the difference 

between specific indirect effects in a model can be very interesting. In the next chapter, I 

will discuss why comparing indirect effects can be important and theoretically useful.
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Chapter 3: Comparing Indirect Effects 

 

 

Since a causal effect can operate through multiple mechanisms, a question to ask 

is whether a particular mediator is more influential in explaining a causal process than 

another. This question can be answered by comparing indirect effects. This section will 

discuss a contrast of indirect effects in a parallel multiple mediator model with two 

mediators, but the discussion generalizes to more complex models with many specific 

indirect effects, resulting in many possible comparisons between them.  

3.1 The Importance of Contrasts    

Contrasts are important for testing and building substantive theory. For an 

example of why this might be important, consider the case of substance abuse and 

intervention research. Mediation analysis is common in these areas of study because it 

helps identify the mechanisms that lead to behavior change after an intervention 

(MacKinnon, 2000). If certain mechanisms lead to a greater change in a target behavior 

than others, then these intervention programs can focus on the more effective pathways 

and eliminate the ineffective (or less effective) ones, thus improving the quality of 

treatment and likelihood of behavior change.  
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Or consider a case where two competing theories explain how optimism causes 

happiness. One theory might posit that optimism leads to resilience, and this increased 

resilience is what causes a person to be happy. A different theory might argue that 

optimism leads to increased self-trust, and this enhanced self-trust is what causes 

happiness to increase. If inference of the contrast of two indirect effects quantifying these 

theories suggested that the effect through resilience was larger than the effect through 

self-trust, the theory about resilience has more support than the theory regarding self-

trust.  

3.2 Using a Statistical Test 

It is important to carry out a formal statistical test and not fall victim to the fallacy 

that a difference in the significance of two indirect effects means that they are 

significantly different (Gelman & Stern, 2006). In this "naïve" approach to comparing 

indirect effects, researchers test the significance of specific indirect effects—if indirect 

effect A is deemed significantly different from zero but indirect effect B is not, the 

researcher would conclude that indirect effect A is larger or more important in explaining 

the relationship than indirect effect B. It is not uncommon to find examples of this 

approach (Lapointe et al., 2012; Rudy, Davis, & Matthews, 2012). Some researchers have 

even conducted contrasts between indirect effects that were/were not significant and 

dismissed the usefulness of such a comparison based on this logic (Yap & Baharudin, 

2016).  

In a perfect world where inferential tests were always accurate in identifying zero 

or nonzero effects this reasoning may hold up, but in a world filled with sampling 
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variability and other complexities, you cannot deem two effects to be different without a 

statistical test. This is especially important since the null hypothesis is never confirmed in 

methods used by researchers. It's merely that zero can't be ruled out as a possibility and 

consequently we cannot confirm the alternative hypothesis. Even if this weren't an issue, 

it's still important to test whether two indirect effects that are significantly different from 

zero are significantly different from each other. And indirect effects can be compared 

even if neither is statistically significant—testing whether 𝑎1𝑏1 = 0 and 𝑎2𝑏2 = 0 is not 

the same as testing whether 𝑎1𝑏1 − 𝑎2𝑏2 = 0. If there were a series of studies measuring 

indirect effects about a treatment program where neither indirect effect was different 

from zero but the effect through mediator A was consistently bigger than the effect 

through mediator B, this is still important information to know and it can change the 

direction and focus of future treatments.  

3.3 The Raw Difference 

Defining a contrast as the difference between two indirect effects seems like the most 

intuitive approach. Indeed, this method has been used by a great number of substantive 

researchers (Romero-Moreno, Losada, Márquez-González, & Mausbach, 2016; 

Schotanus-Dijkstra, Pieterse, Drossaert, Walburg, & Bohlmeijer, 2019; Yıldız, 2016). To 

carry out this approach, simply calculate the difference between two indirect effects 

𝑎1𝑏1 −  𝑎2𝑏2 (3.1) 

MacKinnon (2000) discussed inference for the difference between two indirect 

effects using the multivariate delta method. This method assumes the sampling 

distribution of the difference of two indirect effects is normally distributed. With this 
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assumption, the estimate of the difference can be divided by its standard error and the 

resulting value can be compared to a standard normal distribution for inference. The 

formula for the standard error of a difference between indirect effects is quite complex 

and its accuracy as an estimator of the standard error of the difference of indirect effects 

requires meeting many assumptions.  

But assumptions don’t need to be made about the sampling distribution of the 

difference and it doesn’t need to be difficult to compare two indirect effects. We can also 

conduct an inference for the difference between two indirect effects using bootstrapping. 

For inference, calculate the difference in each of the j bootstrap samples and construct a 

bootstrap confidence interval at a desired level of confidence in the same way we 

constructed a confidence interval for inference about the indirect effect (using either 

percentile, BC, or BCa confidence intervals). If the confidence interval does not contain 

zero, then the indirect effects are deemed different from each other. Testing the raw 

difference of two indirect effects answers a question about whether they are equal in 

value. 

Some may wonder if indirect effects can be compared if the mediators are 

measured on different scales. There are no problems with doing this since the scaling of 

the mediators falls out in the computation of specific indirect effects (MacKinnon, 2000; 

Preacher & Hayes, 2008). For a mathematical representation of this, consider that a 

regression coefficient can be calculated as a function of correlations and standard 

deviations of the pertinent variables (Cohen, Cohen, West, & Aiken, 2003). Preacher and 

Hayes (2008) derived the following formulas for 𝑎1 and 𝑏1 in a two-mediator model 
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𝑎1 =  𝑟𝑋𝑀1
(

𝑆𝐷𝑀1

𝑆𝐷𝑋
) 

(3.2) 

𝑏1 = 
𝑟𝑋𝑌(𝑟𝑋𝑀2𝑟𝑀1𝑀2−𝑟𝑋𝑀1)+𝑟𝑀1𝑌(1−𝑟𝑋𝑀2

2 )+𝑟𝑀2𝑌(𝑟𝑋𝑀1𝑟𝑋𝑀2−𝑟𝑀1𝑀2)

1−𝑟𝑋𝑀1
2 −𝑟𝑋𝑀2

2 −𝑟𝑀1𝑀2
2 +2𝑟𝑋𝑀1𝑟𝑋𝑀2𝑟𝑀1𝑀2

(
𝑆𝐷𝑌

𝑆𝐷𝑀1

) 
(3.3) 

When you multiply 𝑎1 and 𝑏1, the scaling of 𝑀1 (𝑆𝐷𝑀1
) cancels out. All that remains are 

the correlation terms and the standard deviations of X and Y (
𝑆𝐷𝑌

𝑆𝐷𝑋
). The same applies for 

𝑀2 when constructing 𝑎2𝑏2. Thus, if two indirect effects share the same scaling for X and 

Y, they can be (statistically) meaningfully compared.  
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Chapter 4: Comparing Opposing Indirect Effects 

 

 

A potential problem arises with using the raw difference described in equation 3.1 when 

the indirect effects are different in sign. Consider a situation where two indirect effects 

are of the same magnitude but different in sign. Recall that in section 1.1, Pitts et al. 

(2018) posited that combat experience would increase both perceived threats to life and 

perceived benefits of deployment upon return to civilian life. They also argued that 

perceived threats to life would increase posttraumatic stress symptoms and perceived 

benefits from deployment would decrease posttraumatic stress symptoms. The resulting 

indirect effects are of opposing signs. 

Suppose the effect through perceived benefit, 𝑎1𝑏1, was –0.60 and the effect 

through perceived threat, 𝑎2𝑏2, was 0.60. It’s not as if one of these is necessarily more 

important than the other in explaining the relationship between combat experiences and 

PTSD, they are merely operating in different directions. A test of the raw difference, 

however, would result in a point estimate of –1.20 by equation 3.1. If the confidence 

interval for this difference didn’t contain zero, one would correctly conclude the indirect 

effects are different—they are just different in value. But they are equal in strength. To 
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avoid this, if one wants to test whether two indirect effects are different in strength when 

they are of different signs, a different method must be used.  

Testing whether opposing indirect effects are different in strength not only 

improves conceptual/theoretical understanding of the mechanisms measured in a study, it 

can also help researchers and practitioners improve treatment programs. Consider a 

program such as alcoholics anonymous (AA). An AA program can attempt to reduce 

alcohol consumption through a number of different mediators such as increased self-

efficacy and reduced depression (O’Rourke, & MacKinnon, 2018). Sometimes 

intervention programs can have unintended effects on behavior, such as physical activity 

interventions which can increase BMI as a result of caloric intake (Cerin & MacKinnon, 

2009) and drug-prevention programs that might inform participants of more reasons to 

use a drug (MacKinnon, 2000).  

Assume self-efficacy and reasons to drink were measured as part of an evaluation 

of an AA program. When looking at the effect through self-efficacy, the indirect effect 

(𝑎1𝑏1) is negative—the AA program would increase self-efficacy (𝑎1 > 0), and this 

increased self-efficacy would decrease drinking behavior (𝑏1 < 0). When looking at the 

effect through reasons to drink, the indirect effect (𝑎2𝑏2) could be positive (the program 

may increase the reasons one may choose to drink, 𝑎2 > 0, and this increase in reasons 

would increase drinking behavior, 𝑏2 > 0). Both mechanisms affect drinking behavior, 

but they are operating in different directions. Comparing such indirect effects could allow 

practitioners to modify an AA program to make them more effective in reducing how 
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much one drinks. We cannot draw such conclusions using the raw difference in cases like 

this and consequently must use an alternative approach.  

The literature on comparing indirect effects of opposite signs is sparse. Other than 

a recommendation by Hayes (2018) suggesting one calculate the difference of the 

absolute values of the indirect effects when they are of opposing signs and Ter Hoeven, 

van Zoonen, and Fonner (2016) who added two indirect effects of opposing signs, no 

special measures have been taken or recommendations have been given to compare 

indirect effects of different signs. However, there are a number of possibilities for 

substantive researchers to compare the strength of indirect effects that differ in sign and 

comparing these approaches is the purpose of this thesis. 

4.1 The Difference in the Absolute Values 

One possible approach when the indirect effects are of different signs involves using the 

absolute values of the indirect effects. To carry out this approach, calculate the difference 

in the absolute values  

|𝑎1𝑏1| − |𝑎2𝑏2| (4.1) 

For inference, do this for each bootstrap sample, construct a bootstrap confidence 

interval, and if the confidence interval for the difference does not contain zero, then the 

two effects are deemed different from each other. The difference in absolute values 

approach answers a question about the equality of magnitude/strength of two indirect 

effects as opposed to whether they are equal in value.  

 Hayes (2018) recommends using the raw difference approach if the indirect 

effects are of the same sign and using the difference of the absolute values approach if 
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they are of different signs. This creates a “conditional” test where—based on the 

observed signs of the indirect effects—either the raw difference or difference of absolute 

values will be calculated. (This is called the "conditional difference approach" because 

which method you use is conditional on the signs of the observed indirect effects.)  

4.2 The Sum 

An interesting contrast for comparing two indirect effects that are different in sign was 

used by Ter Hoeven, van Zoonen, and Fonner (2016). In their model, they proposed 

adding two indirect effects of different signs together as a form of contrast. This approach 

makes sense when the indirect effects are of opposing signs because if they were of the 

same strength, you would expect their sum to equal zero. Thus, you can carry out this 

method by calculating the sum of the indirect effects 

𝑎1𝑏1 + 𝑎2𝑏2 (4.2) 

For inference, do this for each bootstrap sample, construct a bootstrap confidence 

interval, and if the resulting interval doesn’t contain zero, then the indirect effects are 

deemed different in strength from each other.  

4.3 The Ratio 

The ratio of two effects takes into account both sign and magnitude. To test whether two 

indirect effects are different using this approach, calculate the ratio of two indirect effects 

𝑎1𝑏1

𝑎2𝑏2
 

(4.3) 

For inference, do this for each bootstrap sample, construct a percentile bootstrap 

confidence interval, and if the resulting interval does not contain -1 or 1, this provides 

evidence that the two indirect effects are different in strength and value. 
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The biggest issue with this approach is the presence of a zero in the denominator. 

In equation 4.3, if 𝑎2𝑏2 is zero then the result is undefined and impossible to interpret. 

You could possibly flip the indirect effects for such cases, but this fixes nothing if both 

indirect effects are zero. And if the numerator is zero and the denominator is nonzero, the 

ratio is 0. This could lead to a confusing interpretation in the context of the problem if 

one of the indirect effects is zero. It is mathematically but not substantively meaningful.  

Even if one of the indirect effects is close to zero, the ratio can be infinitely small 

or large and the same issues exist when trying to interpret the results. Calculating the 

ratio with small numbers can lead to numerical stability issues/strange bootstrap 

distributions. In the example we will use in Chapter 5, the calculated ratio of the indirect 

effects is –0.443. The bootstrap ratio values in 10,000 resamples of the data produces a 

range between [–26, 48]. (This range can get even larger when the values in the 

numerator and/or denominator get smaller.) Additionally, if during the bootstrap 

algorithm one of the ratio calculations is undefined, it could stop the computations or 

generate other errors if the software is not equipped to handle such values.  

4.4 The Ratio of Absolute Values 

The point estimate that results from the ratio can range from (–∞, ∞). A modification of 

equation 4.3 involves calculating the ratio of the absolute values of the indirect effects 

|𝑎1𝑏1|

|𝑎2𝑏2|
 

(4.4) 

For inference, do this for each bootstrap sample, construct a bootstrap confidence 

interval, and if the resulting interval does not contain one, the two indirect effects are 

deemed different in strength. The difference here is that the point estimate is now 
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bounded from [0, ∞). The presence of a zero or near-zero value in the numerator or the 

denominator still poses a problem, however.  

4.5 The Proportion of Absolute Values 

It is possible to further bound the estimate in equation 4.4. By calculating the proportion 

of the absolute value of one indirect effect to the sum of the absolute values of both 

indirect effects, the estimate is bound between zero and one. To conduct this test, 

calculate 

|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 

(4.5) 

For inference, do this for each bootstrap sample, construct a bootstrap confidence 

interval, and if the resulting interval does not contain .5, this provides evidence that the 

two indirect effects are different in strength (if the interval is entirely below .5, |𝑎1𝑏1| is 

deemed smaller, and if the interval is entirely above .5, |𝑎1𝑏1| is deemed larger). 

Equation 4.5 is contingent on neither the numerator nor denominator equaling zero for 

the reasons listed above. 

This method should produce identical inference to the ratio of absolute values 

since these point estimates are transformations of each other. To demonstrate why this is, 

say |𝑎1𝑏1| is 8 and |𝑎2𝑏2| is 2. Plugging these values into equation 4.4. produces a value 

of 4 whereas equation 4.5 produces a value of .8. However, if we take 
.8

(1−.8)
 we get the 

same value from equation 4.4 (i.e., 4). This is true for any two values you plug into the 

equations. I would argue equation 4.5 produces a cleaner estimate than equation 4.4 (the 
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values approach 0 and 1 instead of 0 and infinity), and since they provide the same 

information about the contrast of two indirect effects, I would recommend equation 4.5.  
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Chapter 5: War Veterans and Posttraumatic Stress Disorder 

 

 

To illustrate the concepts in this thesis, I will step through the example with war veterans 

introduced in chapter one. Throughout time, the health of veterans returning from war has 

been of interest to researchers, citizens, and of course, veterans and active military 

personnel. Understanding what leads to PTSD and other negative outcomes like high 

suicide rates is of the utmost importance for those wishing to better the lives of veterans 

who have given a part of theirs to help protect the country. Mediation analysis can help 

reveal how combat experiences lead to posttraumatic stress symptoms. Recall that the X 

was combat experience (COMBAT in Figure 5.1), the Ms were perceived threats to life 

(PTHREAT) and perceived benefits from deployment (BENEFITS), and the Y was 

posttraumatic stress symptoms (PTSD). Social desirability (SOCIAL) was a covariate in 

all model equations. See Figure 5.1 for a conceptual diagram. The data come from a 

questionnaire administered to 324 Army combat medics.  
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Figure 5.1 A conceptual diagram for the war veteran study. 

 

 

5.1 Estimating the Specific Indirect Effects 

The researchers estimated a parallel multiple mediation model controlling for social 

desirability. I will discuss the individual a and b paths and the specific indirect effects 

and their confidence intervals. See Table 5.1 for full model results. Assuming all effects 

are causal in nature (which is up for debate since the data are not experimental in nature), 

combat experiences significantly increased both the perceived benefits of the deployment 

and perceived threats to life (𝑎1 = 0.19; 𝑎2 = 0.69). As expected, the more benefits one 

perceived of their deployment, the fewer PTSD symptoms they reported (𝑏1 = –0.38). 

When they reported perceiving more threats to their life, they also reported more PTSD 

symptoms (𝑏2 = 0.23). A total of 10,000 resamples were used to construct bootstrap 

confidence intervals for inference (only percentile bootstrap confidence intervals are 

reported for simplicity). The specific indirect effect through perceived benefit is negative 

and statistically significant (𝑎1𝑏1 = 0.19(–0.38) = –0.07, 95% CI = [–0.134, –0.025]). 
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Thus, combat experiences decrease PTSD symptoms indirectly through perceived 

benefits of deployment. The specific indirect effect through perceived threat is significant 

(𝑎2𝑏2 = 0.69(0.23) = 0.16, 95% CI = [0.062, 0.280]). Combat experience also increase 

PTSD symptoms indirectly through perceived threats to life. Here, combat experiences 

operate through both mechanisms simultaneously to cause a decrease (and increase) in 

PTSD symptoms. In this case both indirect effects are significant, but this is not 

necessary to go on to the next step: contrasting indirect effects.  

 

 

Table 5.1 Model results from the war veteran study 

Note. All values are for indirect effects of opposing signs. The 95% CI for indirect effects 

is a percentile bootstrap confidence interval constructed from a total of 10,000 bootstrap 

samples.   

Outcome Predictor Effect Value (SE) p 95% CI 

BENEFIT COMBAT 𝑎1 0.19 (0.053) < .001 [0.086, 0.294] 

THREAT COMBAT 𝑎2 0.691 (0.091) < .001 [0.511, 0.871] 

PTSD BENEFIT 𝑏1 –0.378 (0.119) .002 [–0.613, –0.144] 

 THREAT 𝑏2 0.235 (0.069) .001 [0.099, 0.370] 

 COMBAT c′ 0.335 (0.124) .007 [0.092, 0.579] 

- - 𝑎1𝑏1 –0.072 (-) - [–0.134, –0.025] 

- - 𝑎2𝑏2 0.162 (-) - [0.062, 0.280] 

 

 

5.2 Obtaining Contrasts 

Every contrast method discussed in this thesis was used to compare 𝑎1𝑏1 and 𝑎2𝑏2. Table 

5.2 contains the full results and Figure 5.2 show the bootstrap distributions for each 
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contrast method. The raw difference suggests that the indirect effects are different in 

value (𝑎1𝑏1 −  𝑎2𝑏2 =  –0.23; 95% CI = [–0.352, –0.133]). In all other methods, there is 

not sufficient evidence to deem the indirect effects different in strength (the intervals 

either contain 0, 0.5, 1, or –1 depending on the method). This highlights the importance 

of using the correct method for the research question of interest. If the question is 

whether two indirect effects are equal in value, the raw difference would be appropriate 

in this situation. This is often not the question, however. Usually researchers are 

interested in determining whether indirect effects are different in strength. In such cases, 

you would use one of the alternative methods discussed in this thesis to compare these 

opposing indirect effects. It would be incorrect to say that 𝑎1𝑏1 is less important in 

explaining PTSD symptoms than 𝑎2𝑏2 by using a test of the raw difference because the 

indirect effects are of opposing signs. These results suggest that it is equally important to 

teach deployed soldiers to seek out personal benefits from their deployment and perceive 

fewer threats to their life to ameliorate PTSD upon return form war (though the latter is 

largely out of the soldier’s control).  

 Figure 5.2 reveals interesting details about the contrast methods. The distributions 

in Panels A, B and C—the distributions for the raw difference, the difference of absolute 

values, and the sum—appear approximately normal. In Panels D and F, the distributions 

for the ratio of absolute values and the proportion of the sum of absolute values are 

positively skewed. And in Panel E, the distribution for the ratio is highly negatively 

skewed. The distributions for the ratio and the ratio of absolute values appear to suffer 

from the problems discussed in chapter 4 (i.e., they have wide ranges and tall peaks). 
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Although bootstrapping does not make assumptions about the shape of the sampling 

distribution, the coefficients estimated in the BC and BCa CIs may be large (this will be 

something to consider when interpreting the simulation results in Chapter 6).  

 

 

Table 5.2 Model results from the war veteran study 

Note. *The conditional contrast and difference of absolute values are the same because the 

observed specific indirect effects are of opposing signs. The 95% CI for contrasts is a percentile 

bootstrap confidence interval constructed from 10,000 bootstrap samples.   

 

Contrast Null (H0) Value 95% CI 

𝑎1𝑏1 − 𝑎2𝑏2 = 0 –0.234 [–0.352, –0.133] 

|𝑎1𝑏1| − |𝑎2𝑏2| = 0 –0.090 [–0.231, 0.043] 

Conditional Contrast* = 0 –0.090 [–0.231, 0.043] 

𝑎1𝑏1 +  𝑎2𝑏2 = 0 0.090 [–0.043, 0.231] 

𝑎1𝑏1

𝑎2𝑏2
 

   = ± 1 –0.443 [–1.585, –0.113] 

|𝑎1𝑏1|

|𝑎2𝑏2|
 

= 1 0.443 [0.117, 1.610] 

|𝑎1𝑏1|

|𝑎1𝑏1|  +  |𝑎2𝑏2|
 

= .50 .310 [.104, .617] 
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Figure 5.2: Bootstrap distributions for all contrast methods in the war veteran study. The 

conditional difference and difference of absolute values are the same because the indirect 

effects being compared are of opposing signs. The max for each histogram is the same.
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Chapter 6: A Simulation Study Comparing Contrast Methods 

 

 

As I've discussed, more than one mediator can (and probably should) be included in a 

mediation model and the resulting indirect effects can (and probably should) be compared 

with one another. But what method (of the ones presented in this thesis) should be used to 

compare indirect effects? Should any of these approaches be used at all? Is the usefulness 

of the approach contingent on sample size or the size of the indirect effects? All of these 

questions were taken into account when designing this simulation.  

6.1 Setting up the Simulation  

The simulation study was conducted in GAUSS 20. A parallel multiple mediator 

model with two mediators was the basis of the simulation. Although not representative of 

every possibility, the following sample sizes and parameter values were chosen to cover a 

wide range of scenarios and are commonly used in the mediation simulation literature 

(Fritz & MacKinnon, 2007; Hayes & Scharkow, 2013). Seven possible values (–0.59, –

0.39, –0.14, 0, 0.14, 0.39, 0.59) were used for 𝑎1, 𝑎2, 𝑏1, and 𝑏2 to simulate a wide range 

of sizes and signs of indirect effects. A direct effect of zero was used in all conditions. To 

resemble a range of sample sizes used by substantive researchers, five different values 

ranging from small to large (n = 25, 50, 100, 200, and 500) were used. Crossing all 
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combinations of the above values results in 12,005 different combinations/conditions 

(7×7×7×7×5). There were a total of 2,000 repetitions per condition

The data for X were sampled from a standard normal distribution and the Ms were 

generated from X using the corresponding a paths in the model for the Ms (see equation 

2.8; e.g., 𝑎1 = 0.59, 𝑎2 = 0.14, and both of these values were multiplied by X to generate 

data for 𝑀1 and 𝑀2). Standard normal errors were added to 𝑀1 and 𝑀2 to generate 

sampling variance (𝜀𝑀𝑖
 in equation 2.8). Y was generated from the Ms and X using both 

bs and 𝑐′ in the model for Y (see equation 2.9; e.g., 𝑏1 = 0.39, 𝑏2 = –0.14, 𝑐′ = 0, and 

these values were multiplied by the data for 𝑀1, 𝑀2, and X respectively to generate 

values for Y). Standard normal errors were also added to Y in each repetition. These 

served as the data. In each repetition, a total of 5,000 bootstrap samples were constructed 

and the indirect effects 𝑎1𝑏1 and 𝑎2𝑏2 were calculated in each bootstrap sample and 

compared using the difference in absolute values, the sum, the ratio, the ratio of the 

absolute values, the proportion of the absolute value of 𝑎1𝑏1 to the sum of the absolute 

values, and the conditional method proposed by Hayes (2018). This resulted in 5,000 

differences in each repetition where percentile, BC, and BCa bootstrap confidence 

intervals were constructed for inference. 

6.2 Simulation Results 

In each of the conditions (e.g., 𝑎1 = 0.59, 𝑎2 = 0.14, 𝑏1 = 0.39, 𝑏2 = 0.14, n = 25), 

the number of times the 95% confidence interval covered the null difference and the 

number of times the 95% confidence interval covered the true value of the contrast were 

divided by the number of repetitions (2,000) and multiplied by 100 to calculate the 
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percentage for each method’s coverage rate for the corresponding as, bs, and n. The null 

difference is a term used for the value that indicates the indirect effects are equal in a 

contrast method (e.g., 0 for the difference of absolute values, 1 for the ratio of absolute 

values). 

6.2.1 Coverage of the true difference 

First, it is important to test how often each method produces a confidence interval 

that contains the true value of the contrast relative to the level of confidence specified by 

the researcher. For 95% confidence intervals, we would expect 95% of the confidence 

intervals for a method to contain the true value. The percentage of times the confidence 

intervals contain the value of interest is called the coverage rate. Thus, for this simulation 

study, the coverage rate of each method (and type of confidence interval) should be 

approximately 95(%). If the coverage is greater than 95, the test is containing the value 

too often and is considered statistically conservative (the intervals are too wide for the 

confidence level specified). If the coverage is less than 95, the intervals aren’t containing 

the true value enough and the method would be statistically liberal (the intervals are too 

narrow for the confidence level specified). Table 6.1 contains the coverage rates for each 

contrast method for each type of confidence interval at a variety of sample sizes.  
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Table 6.1 Overall coverage of true contrast value for each method 

Note. BC = Bias-corrected. BCa = Bias-corrected and accelerated. CI = Confidence interval. Coverage is 

displayed as the % of times the method contains the true contrast value. The conditional contrast method is 

excluded from this table as the true contrast value varies. 

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 96.3 95.2 94.6 93.6 93.1 

 2. 𝑎1𝑏1 +  𝑎2𝑏2 96.1 95.3 95.1 95.0 95.0 

 3. 
𝑎1𝑏1

𝑎2𝑏2
 72.1 71.9 71.4 71.0 70.8 

 4. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 53.0 52.7 52.5 52.0 51.4 

 5. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 53.0 52.7 52.5 52.0 51.4 

 

 

 

 

BC 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 90.8 90.8 90.7 91.6 93.2 

 2. 𝑎1𝑏1 +  𝑎2𝑏2 95.0 94.5 94.6 94.7 94.8 

 3. 
𝑎1𝑏1

𝑎2𝑏2
 59.7 63.1 65.7 68.4 70.2 

 4. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 43.4 45.0 46.2 48.5 50.7 

 5. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 43.4 45.0 46.2 48.5 50.7 

 

 

 

 

BCa 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 92.9 92.0 90.9 90.6 91.5 

 2. 𝑎1𝑏1 +  𝑎2𝑏2 92.9 92.6 92.6 92.7 92.7 

 3. 
𝑎1𝑏1

𝑎2𝑏2
 56.7 59.5 62.2 65.4 67.4 

 4. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 42.7 44.2 45.3 47.4 49.6 

 5. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 43.9 44.5 44.7 46.4 48.6 
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Consistent with prior research, the percentile confidence intervals tended to have 

better coverage than the BC and BCa confidence intervals (i.e., the percentile confidence 

intervals were closer to 95%; Fritz, Taylor, & MacKinnon, 2012; Hayes & Scharkow, 

2013). Additionally, as sample size increased, coverage rates tended to approach 95% for 

each method. (Although sometimes coverage decreased with an increase in sample size; 

e.g., the difference of the absolute values for percentile CIs.) The sum and difference of 

absolute values performed the best of all the methods, though it should be noted that the 

coverage rates of the contrast methods involving division improved substantially when 

true indirect effects of size zero were excluded and when indirect effects were greater in 

magnitude (this is likely due to the problems identified in chapter 4). To get a better 

understanding of the performance of these methods, I will breakdown the coverage rates 

when there is and is not a true difference between the indirect effects. 

6.2.2 Coverage of the null difference when the indirect effects are equal (same sign) 

 It is important to see how each method compares to the “traditional” approach for 

comparing indirect effects (i.e., calculating the raw difference). In order for this 

comparison to be meaningful, I isolated situations where the indirect effects were equal in 

value and sign and looked at the coverage rates for the null difference. Table 6.2 contains 

results for each sample size and confidence interval approach. (The sum is not in Table 

6.2 since the indirect effects are of the same sign.)  

 

 

 

 



38 

 

Table 6.2 Correct coverage of the null difference when 𝑎1𝑏1 = 𝑎2𝑏2 

Note. BC = Bias-corrected. BCa = Bias-corrected and accelerated. CI = Confidence interval. The raw 

difference is included as a reference and the sum is excluded because the indirect effects are of the same 

sign (and thus would not be used as a contrast). 

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. 𝑎1𝑏1 −  𝑎2𝑏2 97.2 96.1 95.5 95.3 95.2 

 2. |𝑎1𝑏1| − |𝑎2𝑏2| 98.9 98.3 97.7 97.0 96.4 

 3. Conditional Contrast 98.8 98.2 97.7 97.1 96.7 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 98.3 97.7 97.0 96.3 95.9 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 98.9 98.3 97.7 97.0 96.4 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 98.9 98.3 97.7 97.0 96.4 

 

 

 

 

BC 

 1. 𝑎1𝑏1 −  𝑎2𝑏2 95.7 94.7 94.4 94.6 94.8 

 2. |𝑎1𝑏1| − |𝑎2𝑏2| 94.5 93.4 92.7 92.5 93.1 

 3. Conditional Contrast - - - - - 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 72.2 74.0 75.3 76.9 78.1 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 74.2 75.2 75.7 77.3 78.7 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 74.2 75.2 75.7 77.3 78.7 

 

 

 

 

BCa 

 1. 𝑎1𝑏1 −  𝑎2𝑏2  93.6 92.8 92.5 92.6 92.6 

 2. |𝑎1𝑏1| − |𝑎2𝑏2| 96.6 95.5 94.3 93.3 93.1 

 3. Conditional Contrast - - - - - 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 66.6 67.1 68.3 70.2 71.2 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 73.5 74.2 74.8 76.3 77.6 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 77.1 76.3 75.2 75.7 76.7 
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Once again, for all contrast methods, percentile CIs had the best coverage and 

coverage rates tended to approach 95% as sample size increased. (Subtracting the values 

in the table from 100 provides an estimate of the Type I error rate.) This is consistent 

with prior research which suggests that percentile confidence intervals have the lowest 

Type I error rate when compared to BC and BCa confidence intervals (Fritz, Taylor, & 

MacKinnon, 2012; Hayes & Scharkow, 2013). The contrast methods involving division 

had relatively poor coverage with BC and BCa confidence intervals. Since the bootstrap 

distributions for these approaches are highly skewed (see Figure 5.2), it could be that the 

BC and BCa intervals overcorrected for the issue (and thus had poorer performance as a 

result. See Section 6.2.3 for a further discussion of this.) 

The raw difference appeared to perform the best here as it was the closest to 95% 

on average among all the contrast methods. It is worth noting that the difference of 

absolute values provided the same coverage as the ratio of absolute values and proportion 

of absolute values for the percentile CIs. This is because they provide the same 

information with respect to the null difference. Anytime the difference of absolute values 

produces a negative value (less than zero), the ratio of absolute values will be less than 

one (since the absolute value of 𝑎1𝑏1 is less than the absolute value of 𝑎2𝑏2) and the 

proportion of the absolute values will be less than .5. Anytime the difference of absolute 

values produces a positive value (greater than zero), the ratio of absolute values will be 

greater than one and the proportion of absolute values will be greater than .5. Thus, each 

bootstrap sample for the three methods will be concurrently above/below the null 

difference, and when we select the same percentiles for each method, the null difference 
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will/will not equally be contained in each interval. This equality doesn’t hold for the BC 

or BCa methods since the percentiles for the endpoints of the CI differ based on the bias 

and/or acceleration in the bootstrap distribution (and the distributions for the difference of 

absolute values and ratio/proportion are not the same). These three approaches and the 

ratio were close in performance to the raw difference but were more conservative for 

percentile CIs and more liberal for BC CIs. 

6.2.3 Coverage of the null difference when the indirect effects are equal and nonzero 

(same sign) 

 The coverage rates of each method are affected when both of the indirect effects 

are zero. To account for this, Table 6.3 contains the results for the coverage of the null 

difference when 𝑎1𝑏1 and 𝑎2𝑏2 are equal, of the same sign, and nonzero. (The sum is still 

not in Table 6.3 since the indirect effects are of the same sign.)  
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Table 6.3 Correct coverage of the null difference when 𝑎1𝑏1 = 𝑎2𝑏2 ≠ 0 

Note. BC = Bias-corrected. BCa = Bias-corrected and accelerated. CI = Confidence interval. The raw 

difference is included as a reference and the sum is excluded because the indirect effects are of the same 

sign (and thus would not be used as a contrast). 

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. 𝑎1𝑏1 −  𝑎2𝑏2 96.4 95.4 95.1 94.9 95.0 

 2. |𝑎1𝑏1| − |𝑎2𝑏2| 98.3 97.4 96.7 95.9 95.2 

 3. Conditional Contrast 98.0 97.1 96.4 95.6 95.1 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 97.9 97.5 96.9 96.4 96.4 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 98.3 97.4 96.7 95.9 95.2 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 98.3 97.4 96.7 95.9 95.2 

 

 

 

 

BC 

 1. 𝑎1𝑏1 −  𝑎2𝑏2 94.8 94.1 94.2 94.5 94.7 

 2. |𝑎1𝑏1| − |𝑎2𝑏2| 92.8 92.0 91.4 91.6 93.6 

 3. Conditional Contrast - - - - - 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 80.2 85.3 89.2 93.0 95.7 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 79.6 83.3 85.9 90.0 94.0 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 79.6 83.3 85.9 90.0 94.0 

 

 

 

 

BCa 

 1. 𝑎1𝑏1 −  𝑎2𝑏2  92.7 92.2 92.3 92.4 92.6 

 2. |𝑎1𝑏1| − |𝑎2𝑏2| 95.0 93.5 92.2 91.0 91.7 

 3. Conditional Contrast - - - - - 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 75.6 80.5 85.3 90.5 93.6 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 78.3 81.7 84.4 88.3 92.0 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 80.8 81.5 81.8 84.6 88.1 
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The coverage of each method was closer to 95% when both indirect effects 

weren’t zero. This was particularly true for the methods involving division and BC/BCa 

confidence intervals. Recall the shape of the distributions in Figure 5.2—excluding zero 

indirect effects makes the average size of the indirect effects larger and the bootstrap 

distributions less bias/skewed. Thus, the bias and acceleration estimates would be 

smaller. It’s possible these methods overcorrect for highly skewed distributions. 

6.2.4 Coverage of the null difference when the indirect effects are equal (opposing 

signs)  

Next, let’s look at the performance of each method when the indirect effects are 

of opposing signs. Table 6.4 contains the coverage rates of the null difference for each 

contrast method for percentile, BC, and BCa confidence intervals at a variety of sample 

sizes. (The raw difference is not on this table since the indirect effects are of opposing 

signs.)  
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Table 6.4 Correct coverage of null difference when −𝑎1𝑏1 = 𝑎2𝑏2 

Note. All values are for indirect effects of opposing signs. BC = Bias-corrected. BCa = Bias-corrected and 

accelerated. 

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 98.9 98.3 97.7 97.0 96.4 

 2. Conditional Contrast 98.8 98.2 97.7 97.2 96.7 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 97.0 96.1 95.6 95.3 95.2 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 98.3 97.7 97.0 96.3 95.8 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 98.9 98.3 97.7 97.0 96.4 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 98.9 98.3 97.7 97.0 96.4 

 

 

 

 

BC 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 94.6 93.5 92.7 92.5 93.1 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 95.6 94.7 94.5 94.6 94.7 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 72.2 73.9 75.4 77.0 77.9 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 74.2 75.2 75.7 77.3 78.7 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 74.2 75.2 75.7 77.3 78.7 

 

 

 

 

BCa 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 96.6 95.5 94.3 93.3 93.1 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 93.4 92.8 92.6 92.7 92.7 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 66.5 67.2 68.3 70.2 71.1 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 73.5 74.2 74.8 76.4 77.6 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 77.2 76.3 75.2 75.7 76.6 
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Percentile intervals again tended to have better coverage of the null difference 

(and thus a lower Type I error rate) than BC and BCa confidence intervals. BCa 

confidence intervals performed the worst on average across contrast method and sample 

size. The sum was the closest to 95% (except for BCa CIs where the difference of 

absolute values performed the best across sample sizes). Once again, the difference of 

absolute values, ratio of absolute values, and proportion contrast methods produced 

identical (and slightly conservative/liberal) inference.  

6.2.5 Coverage of the null difference when the indirect effects are equal and nonzero 

(opposing signs)  

The analyses in the previous section will be replicated but once again exclude 

indirect effects of size zero. Table 6.5 contains the coverage rates of the null difference 

for each contrast method for percentile, BC, and BCa confidence intervals at a variety of 

sample sizes. (The raw difference is still not on this table.)  
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Table 6.5 Correct coverage of null difference when −𝑎1𝑏1 = 𝑎2𝑏2 ≠ 0 

Note. All values are for indirect effects of opposing signs. BC = Bias-corrected. BCa = Bias-corrected and 

accelerated. 

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 98.3 97.4 96.7 95.9 95.2 

 2. Conditional Contrast 98.1 97.2 96.6 95.8 95.1 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 97.0 96.1 95.6 95.3 95.2 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 96.3 95.4 95.1 95.0 95.0 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 98.3 97.4 96.7 95.9 95.2 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 98.3 97.4 96.7 95.9 95.2 

 

 

 

 

BC 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 92.9 92.1 91.4 91.7 93.6 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 94.8 94.2 94.3 94.5 94.7 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 80.3 85.4 89.3 93.1 95.7 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 79.7 83.2 85.9 90.1 94.0 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 79.7 83.2 85.9 90.1 94.0 

 

 

 

 

BCa 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 95.1 93.6 92.2 91.1 91.8 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 92.6 92.3 92.4 92.5 92.6 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 75.5 80.7 85.4 90.6 93.6 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 78.4 81.6 84.4 88.4 92.0 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 80.9 81.5 81.8 84.7 88.1 
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Once again, the coverage of all methods tended to improve (i.e., be closer to 95%) 

when excluding cases where both indirect effects were zero. This was particularly true for 

the methods involving division and BC/BCa CIs (for the reasons discussed earlier). 

Additionally, as sample size increased, coverage tended to 95% (with a couple of 

exceptions for BC/BCa CIs).  

6.2.6 Approximate power when the true difference is small  

Correctly including the null difference in a confidence interval and avoiding Type 

I errors is important, but just as important is ensuring a method is correctly containing the 

true contrast value when a true difference exists (i.e., avoiding Type II errors). To 

approximate power for each contrast method, I will subtract the coverage rate of the null 

difference when a true difference exists from one. Table 6.6 contains the coverage rates 

of each method for percentile, BC, and BCa confidence intervals at a variety of sample 

sizes. In this instance, power will be calculated for “small” effects sizes (when |𝑎1𝑏1| −

|𝑎2𝑏2| is nonzero and between ± 0.10). This range is not based on statistical theory, but 

rather contains approximately half of the cases where there is a true difference (the rest of 

the differences will be ≥  ± .10 and considered moderate/large).  
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Table 6.6 Approximate power when the true difference is nonzero and small |𝑎1𝑏1| −
|𝑎2𝑏2| ≤  ± 0.10 

Note. Values are for contrasts between indirect effects of opposing signs. BC = Bias-corrected. BCa = 

Bias-corrected and accelerated. CI = Confidence interval.  

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 1.4 3.7 8.9 19.2 36.3 

 2. Conditional Contrast 1.6 3.9 9.0 19.1 36.4 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 6.8 15.1 25.8 40.1 58.8 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 3.6 8.6 16.3 26.1 40.9 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 1.4 3.7 8.9 19.2 36.3 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 1.4 3.7 8.9 19.2 36.3 

 

 

 

 

BC 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 7.2 11.8 18.9 29.4 46.1 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 9.4 18.0 28.2 41.8 59.8 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 32.9 34.7 38.3 43.6 55.0 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 27.7 28.3 30.3 35.1 47.5 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 27.7 28.3 30.3 35.1 47.5 

 

 

 

 

BCa 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 4.2 7.7 14.4 24.4 40.1 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 11.1 18.0 27.0 38.7 54.1 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 41.7 45.9 40.0 54.9 63.3 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 28.6 29.3 31.1 34.8 44.4 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 24.6 27.5 32.3 37.9 47.3 
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In general, power was the lowest for percentile CIs and the highest for BCa CIs, 

consistent with prior research (Fritz, Taylor, & MacKinnon, 2012; Hayes & Scharkow, 

2013). As expected, power increased for each contrast method and confidence interval 

type as sample size increased. The sum tended to have the greatest power among all 

contrast methods, especially with percentile CIs. The contrast methods involving absolute 

values had the lowest power across sample sizes and CI type.  

6.2.7 Approximate power when the true difference is moderate to large  

Finally, let’s look at cases where the true difference between indirect effects is 

“moderate to large.” Recall that the definition of moderate to large is arbitrary and 

approximately the halfway point for the size of differences (i.e., |𝑎1𝑏1| − |𝑎2𝑏2| ≥

 ± 0.10). Table 6.7 contains the approximate power for each contrast method for 

percentile, BC, and BCa confidence intervals at a variety of sample sizes.  
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Table 6.7 Approximate power when true difference is moderate to large |𝑎1𝑏1| −
|𝑎2𝑏2| ≥  ± 0.10 

Note. All values are for indirect effects of opposing signs. BC = Bias-corrected. BCa = Bias-corrected and 

accelerated. 

CI Method Contrast Method 
Sample Size 

25 50 100 200 500 

 

 

 

 

Percentile 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 9.6 31.4 62.2 85.1 95.6 

 2. Conditional Contrast 10.3 32.3 62.7 85.2 95.6 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 24.3 54.3 79.6 92.6 97.8 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 13.6 30.6 46.7 59.6 72.0 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 9.6 31.4 62.2 85.1 95.6 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 9.6 31.4 62.2 85.1 95.6 

 

 

 

 

BC 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 24.4 47.5 70.4 86.7 95.7 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 30.1 58.3 80.9 92.8 97.8 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 38.2 48.6 61.3 72.1 83.1 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 35.5 48.1 67.6 85.5 95.5 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 35.5 48.1 67.6 85.5 95.5 

 

 

 

 

BCa 

 1. |𝑎1𝑏1| − |𝑎2𝑏2| 15.4 37.3 63.6 82.0 93.0 

 2. Conditional Contrast - - - - - 

 3. 𝑎1𝑏1 +  𝑎2𝑏2 27.7 50.9 74.2 .89.3 96.3 

 4. 
𝑎1𝑏1

𝑎2𝑏2
 48.1 57.9 70.6 84.5 94.0 

 5. 
|𝑎1𝑏1|

|𝑎2𝑏2|
 37.2 51.7 63.0 79.9 92.4 

 6. 
|𝑎1𝑏1|

|𝑎1𝑏1| + |𝑎2𝑏2|
 33.7 49.7 69.4 86.6 95.9 
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Although BC confidence intervals performed the best on average across sample 

sizes, percentile intervals were nearly identical in power starting at n = 100. This also is 

consistent with prior research, which suggests that as effect size increases, the difference 

in power between percentile CIs and BC/BCa CIs decreases (Fritz, Taylor, & 

MacKinnon, 2012; Hayes & Scharkow, 2013). The power across all conditions for small 

effect sizes was relatively low (no combination of sample size, CI type, or contrast 

method crossed the typical power threshold of .8—the highest power was .63). In 

comparison, all contrast methods besides the ratio exceeded .8 at a sample size of n = 

200. 

6.2.8 Graphical representations 

It may be useful to visually demonstrate the coverage performance for each 

method. Figures 6.1, 6.2, and 6.3 contain—for percentile, BC, and BCa CIs 

respectively—panels of boxplots showing the correct coverage of the null difference for 

each method at a variety of sample sizes (for varying sizes of the indirect effects that are 

equal in value but opposite in sign).  
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Figure 6.1 A boxplot grid for the coverage rates of the null difference for a variety of 

sample sizes and sizes of indirect effects. Coverage rates are for percentile bootstrap 

confidence intervals. 



52 

 

 
Figure 6.2 A boxplot grid for the coverage rates of the null difference for a variety of 

sample sizes and sizes of indirect effects. Coverage rates are for bias-corrected bootstrap 

confidence intervals. 
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Figure 6.3 A boxplot grid for the coverage rates of the null difference for a variety of 

sample sizes and sizes of indirect effects. Coverage rates are for bias-corrected and 

accelerated bootstrap confidence intervals. 
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The figures support the information from Tables 6.1-6.5. Percentile CIs had less 

variability than BC and BCa CIs and greater coverage of the null difference, however as 

the size of the indirect effects and sample size increased, the differences between the CI 

types decreased. With large indirect effects and a sample size of 500, all contrast methods 

across all CI types had coverage rates centered around .95. The contrast methods 

involving division had far greater variability than the difference of absolute values and 

sum, especially with small indirect effects.  

 Figure 6.4 consists of boxplots that show the difference in power across 

percentile, BC, and BCa CIs for the contrast methods. As expected, percentile CIs have 

the greatest variability (with all methods having power ranging from 0 to 1), however the 

median power value for each contrast method is similar across the CI types (with 

exception to the ratio).  
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Figure 6.4 A boxplot grid for the coverage rates of the true difference (i.e., power) for 

various bootstrap confidence intervals. BC = Bias-corrected, BCa = Bias-corrected and 

accelerated. 
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Chapter 7: Discussion 

 

 

Comparing indirect effects allows researchers to further expand their understanding of 

how causal processes operate. It is important to know that an effect is transmitted through 

multiple mechanisms, but it is also critical to know how these effects compare to one 

another in size and value. The information contrasts provide can not only save resources 

for and streamline the focus of behavioral rehabilitation programs, it can allow 

researchers to build substantive theory and compare the merits of multiple theories 

attempting to explain the same relationship. Researchers can answer more complex and 

nuanced questions by utilizing contrasts.  

I started the thesis with an overview of simple and parallel mediation models. I 

then talked about the most common approach to comparing indirect effects and three 

different types of bootstrap confidence intervals that can be used to obtain inference for 

the difference between indirect effects. Identifying a problem of comparing indirect 

effects of opposing signs, I proposed several methods for comparing such effects. I then 

illustrated these concepts with a real-world example involving war veterans and PTSD. 

Finally, I conducted a simulation study to compare the coverage rates of these methods in 

a variety of settings based on effect and sample size. 
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7.1 Summary and Recommendations 

Percentile CIs provided a good balance between controlling for Type I error and 

power. When looking at power at small effect sizes, percentile CIs did not perform as 

well as BC and BCa CIs. However, as sample and effect size increased, the differences in 

power between the types of confidence intervals decreased. When looking at the 

coverage of the true contrast value regardless of its size, percentile confidence intervals 

tended to perform better across sample sizes, effect sizes, and contrast method. Percentile 

bootstrap confidence intervals also had the lowest Type I error rate on average. The BC 

and BCa intervals had particularly poor coverage for contrast methods involving division 

(especially when one or both of the indirect effects were exactly or close to equal to 

zero).  

Bigger sample sizes unsurprisingly resulted in better coverage of the true contrast 

value, smaller Type I error, and greater power. Although there is no formal 

recommendation for sample size as a result of this thesis, the bigger the sample size, the 

better. For example, it wasn’t until n = 200 that most of the contrast methods started to 

approach 95% correct coverage of the null difference when the indirect effects were the 

same. The coverage rate of some of the contrast methods was still hovering around a 

conservative 97% with a sample size of 500.  

Substantive researchers interested in comparing the strength of indirect effects can 

apply the results of this thesis to their research. The conditional contrast method did not 

perform noticeably better than the difference of absolute values or the raw difference 

condition. Since this practice is not theoretically sound (as you would have to look at the 



58 

 

data to decide what test you were going to use), it is not recommended. Although the raw 

difference had slightly better coverage of the true difference when the indirect effects 

were of the same sign, the difference of absolute values could be applied as a general 

method of contrast (with percentile bootstrap CIs used for inference). Since the true size 

of the indirect effects or the difference(s) between them is unknown, it could be 

reasonable to use this combination of contrast method and type of confidence interval 

that performed generally well across sample and effect sizes. Alternatively, if the 

researchers had a sense of the direction of the indirect effects before the study began, they 

could decide a priori to compare the indirect effects using the raw difference and 

difference of absolute values/sum (though this assumes the researcher’s hypothesis of the 

sign of the indirect effect is correct). Methods involving division have volatile coverage 

probabilities (as observed in the graphs and tables) and thus are not advised  

7.2 Limitations and Future Directions 

There are several ways future researchers can expand on this work. First, the 

simulation only added one source of error (the standard normal random error added to the 

Ms and Y to reflect departures between the model estimates of M and Y and their actual 

values). The simulation design assumed no random measurement error. A more 

sophisticated simulation would consider both sources of error (since both exist in the real 

world). Additionally, the simulation only considered a parallel mediation model with two 

mediators. What of other types of data? For example, how would contrasts perform in 

dyadic data with varying degrees of correlation between the Xs and Ys? 
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 Since this thesis was a simulation study and there were no proofs or derivations, 

the results only generalize to the conditions detailed in the simulation. It could be that a 

different pattern of results emerges at a larger sample or effect size. Future research could 

also consider looking at other measures when considering the quality of a contrast 

method. It could be interesting to look at the bias of a contrast method at different 

effect/sample sizes. A measure of spread such as RMSE could be calculated along with 

bias. 

7.3 Concluding Remarks  

It is important to consider the mutual symbiotic relationship between substantive theory 

and methodological research. As theory becomes more complex, so must the statistical 

methods used to help answer such questions. However, the same is true for 

methodological research (Greenwald, 2012). As methods evolve and scholars make 

conducting certain analyses easier, the questions that substantive researchers ask can 

become more intricate and representative of the real world. It is the same with 

advancement of contrasts in mediation models.  

This thesis is the first study of its kind exploring the performance of methods that 

can be used to compare indirect effects. Contrasts are not exceedingly common in the 

substantive literature, but studies like this help researchers become more aware that 

contrasts are possible, relatively simple to conduct, and backed by statistical research. 

The results of this research could be applied to software tools that aid researchers 

conducting mediation analysis in their own work (e.g., PROCESS, Hayes, 2018; 

MEDAYD, Coutts, Hayes, & Jiang, 2019). Whether assessing the efficacy of different 
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mechanisms of behavioral change in a rehabilitation program, comparing substantive 

theories, or looking at the effects of war on military veterans, contrasts in mediation 

models enrich researchers’ understanding of the causal processes that underlie a 

relationship. Now, research exists exploring the best way to do that. 
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