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Abstract  

Traditional greenhouse spray technologies are wasteful, with large off-target losses. These 

chemicals when used in such excessive quantities can be harmful to the environment and create a 

hazardous work environment for greenhouse workers. The efficiency of the spray system can be 

improved by using an intelligent variable-rate sprayer. It was able to achieve a reduction in spray 

volumes by about 45% even with a limited accuracy in its characterization of plant canopies 

(Yan et al., 2018). The efficiency of the variable-rate system can be improved further by 

improving its characterization of plant canopies. This was achieved by processing the data 

obtained from the laser sensor. The processing algorithm (CHBC) developed was a combination 

of a registration algorithm, clustering algorithm and mirroring. The registration algorithm was 

used to improve resolution. The clustering algorithm segmented individual plant canopies from 

the laser data to enable further processing of each canopy separately. Mirroring was used to 

predict the occluded portions of the plant canopies. CHBC was shown to reduce root mean 

square error (RMSE) in the canopy width measurements by 46%. It achieved an overall mean 

RMSE of 25 mm compared to 47 mm recorded by Yan et al. (2018). The sensor height was 

indirectly proportional to the RMSE recorded by CHBC up to a certain height, after which the 

RMSE stayed the same. The ‘optimal’ sensor height for the best performance was calculated 

based on the limitations of CHBC. The CHBC algorithm was integrated into an existing real-

time/inline system developed by Yan et al. (2019) with modifications. The inline operation was 

converted to an offline operation. A new GUI was designed, and the modifications made to the 

system were tested in a lab environment to ensure proper function. A convex hull algorithm was 

also introduced to measure volumes and consequent spray rates for the offline system. The 

convex hull method was more accurate in measuring volumes, achieving a mean accuracy of 
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81% compared to 66% when using the Yan et al. (2019) methodology. This improved volume 

estimation accuracy also resulted in spray savings of 15%. The performance of the offline system 

was tested in a greenhouse environment by measuring the spray coverage achieved over plant 

canopies. The offline system managed to significantly reduce spray coverage at the edges of the 

plant while still maintaining recommended deposition. The coverage at the tops and bottoms of 

plant canopies with tight row spacing was similar for all systems. The offline system 

significantly reduced coverage below recommended values at the bottom of canopies with large 

row spacing. The spray density for these canopies was still sufficient for disease prevention 

using insecticides and herbicides but not for fungicides. The offline system achieved spray 

savings of 87% compared to the conventional spray system while also improving the efficiency 

of the Yan et al. (2019) system by 53%.   
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Chapter 1: Introduction 

1.1 Background 

Greenhouse production systems provide a highly controlled environment that allows for plants to 

flourish. It achieves this control by mitigating the effects of the surrounding environment and 

therefore, removing variability. However, these control measures come at a cost. They are very 

expensive to run and therefore need to have all systems running at a high efficiency in order to 

make economic sense. However, existing greenhouse spraying systems used are wasteful and 

inefficient. Greenhouse growers believe that a high spray volume and pressure is needed for 

good plant protection (Braekman et al., 2009; Goossens et al., 2004). This is a wasteful and 

unsafe practice since the chemicals used are highly toxic and can have lasting effects on the 

environment and human health.  

Runoff from greenhouses may exceed environmental risk limits and chemical concentrations 

have been found to exceed those from agricultural runoff (Roseth and Haarstad, 2010). High 

concentrations of chemicals with high water solubility was found in water bodies and 

groundwater near greenhouses as well as in the products grown inside them (Haarstad et al., 

2012). The excessive use of chemicals inside greenhouses creates a hazardous work 

environment. Greenhouses are closed off when compared to an open field and this can lead to the 

chemicals staying inside the greenhouse for much longer times, resulting in prolonged exposure 

for workers (Siebers and Mattusch, 1996; Tsimbiri et al., 2015).  

These chemicals are known to be carcinogenic, cause cardiovascular abnormalities, as well as 

neurological symptoms such as Parkinson’s disease (Cayir et al., 2019; Çayir et al., 2018; Del 

Prado-Lu, 2007; Semchuk et al., 1992). Therefore, it is vital to use these chemicals as sparingly 

as possible but still manage to get the best properties out of them - the easy control or prevention 
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of plant pathogens, pests, weeds and diseases. Damalas and Eleftherohorinos (2011) suggest 

various ways of reducing the use of chemicals such as implementing less pesticide dependent 

cropping systems, the development of new chemicals that are safer and using the right spray 

system. An improved spray system can significantly improve the efficiency of pesticide use and 

can reduce spray volumes. 

Conventional, fixed-rate spray technology has large off-target losses and poor deposition (Giles 

et al., 2011; Pergher et al., 1997; Sánchez‐Hermosilla et al., 2011; Seiber et al., 1993). Spray 

volume can be reduced significantly by using variable-rate spray technology. This has been well 

documented for field applications. The principle of the variable rate sprayer is to obtain a visual 

of the canopies to be sprayed and control the spray rate of the nozzles based on the 

characteristics of the canopies. The visual can be obtained using a camera, ultrasonic sensor or 

laser sensor. Cameras have a limited field-of-view, provide only 2D data and their performance 

is affected by environmental factors such as lighting conditions (Giles et al., 2011). Ultrasonic 

sensors have a limited spatial resolution and their performance is also affected by environmental 

variables (Chen et al., 2012). A laser sensor is best suited for this operation and has been 

documented to perform well under field conditions (Jeon and Zhu, 2012; Shen et al., 2017; Chen 

et al., 2012; Zhu et al., 2017). Chen et al. (2012) developed a laser sensor guided, variable rate 

spray system for field applications. The laser sensor was used to calculate the volume and 

density of canopies which then determined the amount of spray volume required. The spray rate 

was controlled by using PWM controlled nozzles which were triggered in real time as the laser 

sensor passed over a target canopy. The reduction in chemical use was between 47 and 73%.  

Shen et al. (2017) provided a similar improvement by using the same principle and observed an 

improvement in the coverage while using a significantly lesser volume of chemical. They found 
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that in the variable rate mode the sprayer used only 12.1 to 43.3% of the chemical used in the 

constant or fixed rate mode. The coverage also improved by 30 to 55%. Giles et al. (2011)  

evaluated the performance of different target-sensing, smart sprayers in three orchards with 

varying row spacing and tree species.  They observed that the savings in spray volumes was 

proportional to gaps between tree rows since the most tightly packed orchards showed 15% spray 

savings whereas the orchards that had wider tree row spacings showed a reduction of 40% in the 

spray volume used.  

The same principle of using a laser-guided, variable rate sprayer can be applied inside 

greenhouses but it requires modifications. Row spacing is very limited inside greenhouses since 

greenhouse productions systems are expensive to run and hence growers need to maximize the 

yield per square foot. Hence, to improve spray efficiencies for tight row spacing and small gaps, 

the accuracy of canopy volume and density measurements must be high (Giles et al., 2011). The 

resolution of the 3D map generated by the laser sensor will need to be higher since the target 

objects are a lot smaller and are more tightly packed.  

There is limited literature regarding the use of a smart, target-sensing, variable-rate sprayer 

inside greenhouses. Satnam Singh et al. (2004) designed an autonomous vehicle for greenhouse 

spraying with the objective of improving worker safety inside greenhouses but not to improve 

spray efficiencies. Sánchez-Hermosilla et al. (2013) studied the effects of controlling the spray 

volume application rate based on a manually calculated Plant Row Volume (PRV) rather than a 

laser sensor based system. Llop et al. (2016) studied the accuracy of using a 2D laser sensor to 

characterize tomato plants inside greenhouses. The tomato plants were mapped from both sides 

to determine their height, volumes, width, and leaf area. This system, though accurate, was built 
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for mapping high-wired tomato crops and not short crops grown in greenhouses which have a 

very different canopy geometry.  

Yan et al. (2019) studied the performance of an intelligent, 2D laser sensor guided, variable rate 

sprayer for greenhouse applications. They used a system to map plant canopies from above, 

enabling the characterization of short crops. They observed spray savings of about 45%. 

However, the accuracy of the 2D laser sensor in determining dimensions of 3D objects was 

limited (Yan et al., 2018).  The RMSE (Root Mean Square Error) in the width measurements 

increased as the horizontal distance of the object from the laser increased. The point cloud data 

was heavily distorted and more and more of the target objects were hidden from the laser sensor 

as the distance of the targets from the laser increased. This system can therefore be improved 

further by overcoming the shortcomings in canopy characterization.  

This project focuses on improving and modifying the Yan et al. (2018) and Yan et al. (2019) 

system by introducing a processing algorithm to improve plant canopy characterization. The 

processing algorithm will need to manipulate the data obtained from a laser sensor and make 

more accurate estimations of the plant canopy volumes and densities – the factors that determine 

the spray volume output. The improved canopy characterization algorithm is incorporated into 

the Yan et al. (2019) system by converting the inline operation of the system to an offline 

operation. The performance of the modified system is tested in a lab environment as well as in 

the greenhouse.  

1.2 Objectives  

The overall objective of this project is to improve the spray efficiency of a 2-D laser guided, 

variable-rate sprayer for greenhouse applications by making more accurate canopy volume and 

density estimations.  
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The specific objectives are:  

• To implement a processing algorithm that can characterize plant canopies more 

accurately. 

• To test the variables that affect the performance of the processing algorithm. 

• To redesign the existing inline Yan et al. (2019) system to integrate the processing 

algorithm.  

• To conduct lab and field experiments to evaluate the performance of the modified 

variable-rate spray system. 

1.3 Thesis Organization 

This thesis is organized into four chapters. The first chapter is an introduction and provides a 

brief background of the study, the problems being addressed, as well as the goals and objectives 

of the rest of the study. The next two chapters will be presented in the form of two standalone 

manuscripts. The first of the two manuscripts (Chapter 2) will address the development of the 

processing algorithm used and its performance. It will describe in detail the methodology used to 

improve canopy characterization as well as provide comparative results with the existing 

methodology. The physical limitations-such as sensor height, to the performance of the algorithm 

are also discussed. The second manuscript (Chapter 3) will discuss the methods used to integrate 

the processing algorithm developed in the previous chapter into an existing variable-rate spray 

system and test its performance in the lab as well as in a greenhouse. It will discuss all the 

modifications necessary and introduce an improved method to determine plant canopy volumes 

and spray rates. The final chapter (Chapter 4) will be an overall conclusion of the thesis with 

recommendations on future studies and further improvements that can be made to the system.   
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Chapter 2: Improved Canopy Characterization with Laser Scanning 

Sensor for Greenhouse Spray Applications 

2.1 ABSTRACT  

Laser-guided intelligent spray technology for greenhouse applications requires sensors that can 

accurately measure plant dimensions. This study proposed a new method to overcome current 

limitations by introducing a processing algorithm that manipulates the noisy dataset and 

determines the optimal sensor height to produce better measurement of the canopy width. The 

processing involves a combination of registration, clustering and mirroring algorithms. The 

registration algorithm aligns multiple scans of the same scene to improve resolution. The 

clustering algorithm isolates individual plant canopies from the dataset to enable further 

processing. The mirroring algorithm resolves the problems of distortion and occlusion and 

predict the missing information in the dataset. The performance of the processing algorithm was 

evaluated by calculating the root mean square error (RMSE) in the canopy width measurements. 

Its results were compared with the measurements reported in Yan et al. (2018). The processing 

algorithm reduced RMSE values by 46% compared to Yan et al. (2018). The average RMSE of 

the processing algorithm was 25 mm compared to 47 mm by Yan et al. (2018) when the laser 

sensor was at a height of 1 m. The sensor height was observed to be inversely proportional to the 

RMSE values. Another experimental setup was used to test the limits of this relationship while 

using objects that were more representative of plant canopy shapes. The accuracy of the CHBC 

algorithm reduced when the sensor height was either above or below the ‘optimal sensor height’ 

which was derived from calculations made by Sun et al. (2017). The processing algorithm 

introduced has the potential to not only improve spray efficiencies but also in plant phenotyping 

applications.  
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2.2 INTRODUCTION 

Chemicals are used in greenhouses to maintain plant yield, and quality by combating insects, 

weeds, and plant pathogens, but they may be used in excessive quantities by greenhouse growers 

(Braekman et al., 2009; Goossens et al., 2004). This excessive use can have a detrimental effect 

on the environment as well as on worker safety. Runoff from greenhouses may have levels of 

pesticides, - including fungicides, herbicides and insecticides that are hazardous (Haarstad et al., 

2012; Roseth and Haarstad, 2010). Excess chemicals from commonly used spray systems such as 

handheld sprayers and fixed-rate spray booms (Derksen et al., 2008; 2010) stays in the 

greenhouse and compromises worker health (Siebers and Mattusch, 1996). Chemical exposure 

has been shown to cause health issues for greenhouse workers (Cayir et al., 2019; Çayir et al., 

2018; Damalas and Eleftherohorinos, 2011; Del Prado-Lu, 2007). Pesticide residues on 

greenhouse crops also present a food safety concern (Osman et al., 2011). Therefore, there is a 

need to improve the efficiency of chemical use in greenhouses by reducing both the volume of 

chemicals and the drift from spray systems.  

 

Laser-guided variable-rate sprayers have shown a significant improvement in spray efficiency 

for field applications (Berenstein et al., 2010; Gil et al., 2007; Giles et al., 2011; Jeon and Zhu, 

2012; Shen et al., 2017; Chen et al., 2012; Chen et al., 2013). The spray volume is controlled 

based on measured plant canopy characteristics. These measurements can be carried out by using 

cameras, ultrasonic sensors, or LiDAR/laser sensors. The performance of camera image based 

canopy characterization is dependent on the lighting conditions (Llorens et al., 2011) and only 
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provide 2D data which has a limited field of view. Ultrasonic sensors can provide 3D data but 

their performance also depends on environmental conditions (Chen et al., 2012) and their 

detection accuracy is much lower than laser sensors (Llorens et al., 2011). Laser sensor based 

canopy characterization has been demonstrated in the field to be a very effective tool in not only 

determining spray volumes but also in informing management practices (Chakraborty et al., 

2019; Escolà et al., 2017; Llorens et al., 2011). It can be used for fruit detection and yield 

prediction (Gené-Mola et al., 2020; Méndez et al., 2019). It has potential in plant phenotyping 

(Colaço et al., 2018; Heun et al., 2019; Sun et al., 2017; Wang et al., 2017), disease detection 

(Husin et al., 2020), making accurate measurements of leaf morphological traits, leaf area index, 

as well as leaf area density  (Llop et al., 2016; Panjvani et al., 2019; Thapa et al., 2018).  

    

Compared to orchards, canopy characterization inside a greenhouse can be challenging due to 

multiple constraints that must be addressed. Greenhouse production is expensive; therefore, 

high-value plants are tightly packed and require precise care and attention. The resolution, 

therefore, of the mapped data needs to be high due to the dense grouping of plants as well as the 

smaller targets compared to orchards. The laser sensor must be placed above the canopy to 

maximize the number of rows of plants that can be mapped from one scan. In an orchard, the 

sensor is placed at a height of 1.5 to 2.0 m above the ground and travels between rows  (Escolà et 

al., 2017; Gené-Mola et al., 2020; Gil et al., 2007; Liu and Zhu, 2016; Llorens et al., 2011), 

mapping the side-view of trees that are about 4.0 m tall and hence the area to be mapped is about 

2 m either side of the laser sensor. In a greenhouse on the other hand, the length of a bay is much 

greater than 2 m so the area to be mapped either side of the overhead laser sensor must be large. 

This prevents certain portions of the plant canopies out of the line-of-sight of the laser sensor, a 
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condition referred to as occlusion. The resolution of the laser sensor also decreases as the 

horizontal distance from the sensor increases (Sun et al., 2017). To reduce the effects of 

occlusion, the sensor can be placed higher, but this also reduces the resolution (Sun et al., 2017).  

 

Researchers have characterized tomato canopies inside greenhouses using a similar approach 

reported for orchard and nursery applications. The tomato plants were grown on high-wires and 

side-views were scanned (Llop et al., 2016). However, this methodology is not suitable for short 

crops such as potted plants where plant canopy information is better collected from an overhead 

view. Yan et al. (2018) studied a laser sensor mounted on a horizontal spray boom system that 

scanned the targets from above, but it suffered from occlusion and resolution problems. These 

problems resulted in difficulties in making accurate canopy width measurements and 

distinguishing between individual plant canopies that were farther from the laser. The dataset 

became sparser and more distorted as the distance from the laser sensor increased. These 

limitations can be addressed by either a hardware solution, e.g. use more laser sensors to collect 

more data, or a data processing algorithm to extract more reliable information from the data set.  

 

The use of multiple laser sensors can reduce occlusion and provide more canopy structure 

information. Heun et al. (2019) used two sensors to map plant canopies from above. Gené-Mola 

et al. (2020) found that by combining data from multiple laser sensor placed between rows at 

different heights, the accuracy of the system was improved. However, the range mapped by the 

dual laser systems used was only about 3.5 m (Gené-Mola et al., 2020; Heun et al., 2019). 

Mapping the whole field with this limited range is time consuming but possible in a field setting 

where the system can travel between tree rows, which is not possible in greenhouses. To map a 
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large greenhouse bay and maintain a high resolution, it would require multiple sensors which is 

not feasible because it significantly increases the system cost.  

 

The resolution of the system can be improved in other ways such as ‘super resolution’ algorithms 

or by implementing ‘registration’ algorithms. Super-resolution can be performed by either using 

a single image or combining multiple scans. Single scan super-resolution requires a training 

dataset with multiple images which is highly time-consuming to obtain (Glasner et al., 2009; 

Hornacek et al., 2013; Mac Aodha et al., 2012). Multi-scan super-resolution requires at least 30 

scans in order to show a significant improvement in resolution (Bulyshev et al., 2014; Kil et al., 

2006). The large number of scans is not feasible for greenhouse applications mainly because it is 

a time-consuming process to scan the large growing areas. Our main objective was to improve 

estimations of plant canopy width measurements, not resolution. A marginal improvement in 

resolution that could assist the clustering algorithm in grouping datapoints more accurately was 

sufficient. Therefore, ‘registration’ can be used in this context. Registration is the process of 

aligning multiple scans of either the same scene or multiple angles of the same scene where each 

scan has some overlapping area with the previous scan (Besl and McKay, 1992; Guo et al., 2014; 

Mitra et al., 2004). Scans from multiple angles can reduce the area that is occluded but requires 

multiple laser sensors, which increases the cost of the system significantly. Because the 

registration algorithm is only used to assist the performance of the clustering algorithm, a simple, 

rudimentary form of the Iterative Closest Point (ICP) principle has been shown to be sufficient 

(Besl and McKay, 1992). 
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To predict the occluded portions of each plant canopy, information from the parts of the canopy 

visible to the laser sensor can be used. This requires each canopy to be processed individually. A 

clustering algorithm can isolate individual plant canopies from the laser sensor dataset. 

Clustering is the grouping of data such that points within a cluster are more ‘similar’ to each 

other than the rest of the point cloud. In a spatial dataset, ‘similarity’ can be defined through 

Euclidean distance. Points that are closer together are assumed to be more ‘similar’ to each other 

than those further apart. Any points that lie below a certain threshold value of Euclidean distance 

are considered as part of the same cluster. The threshold values are set by the user and they can 

be fixed, dynamic or used in combination with other parameters. There are multiple variations of 

clustering algorithms that can be used for varied applications. The dataset in this project was 

noisy and distorted and hence algorithms whose performance is sensitive to threshold values set 

by user-defined parameters (Bosnak, 2017; Ester et al., 1996; Ghosh and Lohani, 2013; Jain et 

al., 1999; Nyström Johansson and Wellenstam, 2017; Reiser et al., 2018; Wei et al., 2014) would 

not be expected to perform well. Clustering algorithms that are based on training models 

(Spinello and Siegwart, 2008; Wang et al., 2008) cannot work for this dataset either because only 

a portion of plant canopies is visible to the laser and there is significant distortion. Therefore, it 

becomes unreliable to make comparisons to pre-defined plant canopy profiles. Hence, the 

clustering algorithm used for this application was less sensitive to user-defined threshold values 

and did not require training models.  

 

Processing algorithms, however, have some limitations in performance depending on the quality 

of data received. The quality of the dataset was restricted by some physical limitations such as 

the height at which the laser sensor was placed. Yan et al. (2018) found that the height of the 
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laser sensor determines how much of the plant canopy is hidden. The height of the sensor is also 

inversely proportional to the resolution of the dataset (Sun et al., 2017), resulting in the laser 

sensor potentially missing the edges of plant canopies. The optimal height of the laser sensor 

must therefore be determined to ensure the best performance of the processing algorithm.  

Specific objectives of this research included –  

• Develop a processing algorithm that isolates plant canopies from the dataset.  

• Compare the processed dataset’s width measurement accuracy to Yan et al. (2018).   

• Test the effect of sensor height on the accuracy of canopy width measurements. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Data Collection 

There were two data sets for this project. The first of which was obtained from Yan et al. (2018). 

The LiDAR/laser sensor scans were taken under indoor conditions at the USDA-ARS 

Application Technology Research Unit in Wooster, Ohio. The test area was 5.0 m wide, 8.0 m 

long and 5.5 m high. The laser sensor was mounted on the left side of a linear constant-speed 

track, which moved the laser over 4 rows of regularly shaped objects and one row of artificial 

plants. Each row consisted of the same object and in the case of the artificial plants, similar 

shape and volume. Images of these regularly shaped objects and artificial plants are given in Yan 

et al. (2018). The four regularly shaped objects were a toy ball, a cardboard box, a basketball and 

a cylinder (Table 2-1). These objects were chosen to provide a clear standard against which the 

performance of the algorithm could be compared. The toy ball was pink and had a smooth 

surface, the basketball had an alternating pattern of red and black with a textured finish, the box 
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was made of cardboard and the cylinder was white, with a smooth finish. Artificial plants were 

used as their foliage volumes and shape remain constant during the experiment.  The objects 

were placed on wooden boards of variable height to keep the distance from the top of every 

object to the laser sensor uniform, irrespective of the dimensions of each object. Each row had 8 

of the same objects placed 0.5 m apart with the first object placed directly underneath the sensor 

travel path, with the eighth object at 3.5 m horizontally from the laser sensor. For comparisons in 

this paper, the data was calculated for 5 different laser sensor heights (distance from the top of 

the objects to the laser). The laser sensor height started at 0.25 m and increased in increments of 

0.25 m. Its travel speed was 1.6 km/h. Each scan was iterated 3 times.  

 
Table 2-1: Dimensions of objects used in the dataset collected by Yan et al. (2018). Standard deviations are given within 

parenthesis. 

Target Object  X (Width) (mm) Y (Length) 

(mm) 

Z (Height) 

(mm) 

Diameter 

(mm) 

Artificial Plants  231 (20) 232 (22) 325 (8)  

Basketball    183 

Box 231 225 115  

Toy Ball     233 

Cylinder    108 118 

 

 

A second dataset was collected to evaluate the effect of sensor height on the plant canopy 

characterization. The experimental setup was similar to the first dataset described above. The 

only differences were the travel speed, the mounting height of the sensor and the target objects. 

The sensor travel speed was 0.48 km (0.3 miles) per hour. The laser sensor was mounted at 5 

different heights – 2.00, 2.25, 2.50, 2.75 and 3.00 m from the ground. The objects used were 3 

rows of artificial plants (Plant Group-1,2,3) and 1 row of ‘Regular Objects’ which were toy balls 

placed over pots that emulated an “ice-cream cone” shape (Table 2-2, Figure 2-1). These objects 

were used to better represent plant canopy shapes in a greenhouse. The artificial plants within 
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rows had similar dimensions but the dimensions varied between rows. Seven objects were placed 

in each row, 0.5 m apart, starting from 0.5 m from the laser up to 3.5 m. The spacing between 

rows was also 0.5 m.  

 
Table 2-2: Dimensions of target objects used to test the effect of sensor height. Standard deviations are in parenthesis. 

Object X (Width) (mm) Y (Length) (mm) Z (Height) (mm) Diameter (mm) 

Plant Group-1  231 (20) 232 (22) 325 (8)  

Plant Group-2 184 (14) 173 (16) 205 (12)  

Plant Group-3 239 (9) 206 (21) 331 (10)  

Regular Object   345 233 

 

 

 

Figure 2-1: Target objects used for the second dataset to test the accuracy of canopy dimension measurement using the 

processing algorithm. Three sets of irregular shaped objects and one set of regular shaped objects were used. 

 

2.3.2 Laser sensor and 3D map construction 

The information obtained from the laser sensor was converted to a three-dimensional map/ point 

cloud dataset. The laser sensor used was a 2D laser sensor with a 10.0 m, 270˚ radial range with 

1080 laser beams per scan cycle of 25 ms (UST 10-LX, Hokuyo, Osaka, Japan). The sensor 
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works based on the time of flight principle. It sends out a laser beam of a known speed and 

measures the amount of time the beam takes to reflect from an object or surface and return to the 

sensor to determine the range data (‘r’). Each beam from the sensor is rotated from the previous 

one by 0.2˚, starting from -135˚ up to 135˚. This provides a total radial scanning range of 270˚. 

Hence, each laser beam has a corresponding scanning angle ‘ϴ’ as well as range data ‘r’. The 

‘height’ (Z-axis) and ‘width’ (or ‘Distance from the laser sensor’) (X-axis) of each laser beam 

can be determined by using Equation 2.1 and Equation 2.2, derived from the Pythagorean 

theorem. The third dimension- ‘length’ (Y-axis), is obtained by moving the sensor through space 

via the constant speed track as shown in Figure 2-2.  

 𝑋 = 𝑟 × 𝑠𝑖𝑛𝜃 (2.1) 

 

 

𝑍 = 𝑟 × 𝑐𝑜𝑠𝜃 

 

(2.2) 

 

 

Where, ‘X’ is the horizontal distance from the laser sensor to the detection point 

             on the canopy (m) 

             ‘Z’ is the laser sensor height above the top of canopy (m) 

             ‘r’ is the range data from the laser sensor 
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Figure 2-2: Construction of the point cloud dataset. The laser sensor scans along X-axis and travels along Y-axis. The height and 

distance of each point from the laser is calculated by using its respective scanning angle ‘ϴ’, the distance travelled before. 

 

The constant speed of the laser sensor was used to calculate the Y-coordinates and provide a 

complete three-dimensional map/point cloud. The sensor produced 1080 beams every 25 ms 

(time taken for one scanning cycle), or one beam every 0.0231 ms (25 ms/1080). The distance 

that each laser beam was deviated from the previous beam in the Y direction (Laser travel 

direction) was therefore given by Equation 2.3.  

 

Where, ‘Y’ is the distance that the laser beam travelled (mm) 

                          ‘ν’ is the laser sensor travel speed (m/s) 

 𝑌 = 0.0231 × 𝜈 (2.3) 
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The resulting 3D point cloud was visualized and processed entirely on a numerical computing 

platform (MATLAB R2019a ver. 9.6.0.1114505, MathWorks, Natick, Massachusetts, USA). The 

data was then filtered to get rid of the datapoints that represent the ground/greenhouse floor 

because they interfere with the clustering algorithm. They were removed by manually measuring 

the height of the sensor from the ground and removing any points below that threshold. The 

remaining points represent the plant canopies or objects. One half of the dataset was also 

removed because only one half of the 270˚ scanning plane had objects as they were only placed 

to the right of the sensor and nothing was placed to the left.  

2.3.3 Processing methodology 

The data was processed to identify individual objects and improve canopy width measurements. 

The processing algorithm involved registration, clustering, and mirroring. To improve the 

resolution of the dataset, registration was used. A clustering algorithm was used to extract 

individual targets from the data set for further processing which included mirroring each target to 

get a better estimate of its shape and dimensions.  

2.3.3.1 Registration 

A rudimentary point-to-point Iterative Closest Point (ICP) Registration was performed to align 

multiple scans of the same scene (Besl and McKay, 1992). The basic principle of this algorithm 

is to find the best transformation that must be performed on one point cloud so that it is aligned 

with the reference point cloud. This requires a two-step process of data association and 

transformation. Data association is essentially finding point-pairs between the two point clouds. 

Every point in the reference point cloud is associated/paired to the point that is closest to it in the 

second point cloud. The transformation matrix is then determined such that the distances 
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between these point pairs is minimized. This involves finding the center of mass of the two point 

clouds, translating the second point cloud onto the reference point cloud, and finding the rotation 

required through singular value decomposition (SVD). This whole process of data association 

and transformation is then iterated until there is no further improvement in the alignment of the 

two point clouds. A third scan can then be registered onto the first two scans using the same 

process. This registration algorithm was implemented using a function developed by Jakob 

(2020).  

Three scans were registered in this project for the purpose of increasing the density of datapoints 

further from the laser to assist the clustering algorithm. More scans could potentially be 

registered but each additional scan would require more data collection time and more 

computation time due to the increase in datapoints.  

2.3.3.2 Clustering 

To delineate plant canopies from the point cloud data, a clustering algorithm was used. A 

DBSCAN algorithm groups dense distributions of points in the dataset while being robust to 

noise (Ester et al., 1996). It works by identifying whether a point is part of the interior of a 

cluster (core), a border point or just noise based on two user-defined parameters – i.e., a distance 

threshold and a minimum number of points that must lie within this threshold (density). The 

DBSCAN algorithm performs well for noisy datasets but it is not robust to clusters of varying 

densities. This is a significant shortcoming for the dataset in this project because it is known that 

the clusters (plant canopies) have varying densities as the distance from the laser increases.  

To overcome these shortcomings Varied-DBSCAN, a modified DBSCAN algorithm was tested 

(P. Liu et al., 2007). A dynamic distance threshold was used as opposed to a fixed threshold, that 
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is dependent on the density of the point cloud distribution. A varying distance threshold was 

determined by using a KNN function that determines the specified number of nearest neighbors 

from a point and returns their distances. The sum of the mean and 2 standard deviations of these 

distances were used to determine the distance threshold for that specific point. This was done so 

that outliers were removed, and under-segmentation did not occur. However, the Varied-

DBSCAN algorithm had trouble distinguishing between plant canopies when they were placed 

closer together (Figure 2-3). When the algorithm was tested inside a greenhouse, it tended to 

heavily under-segment the dataset. 

 

Figure 2-3: Shortcomings of the Varied-DBSCAN algorithm due to under-segmentation when plant canopies are tightly packed. 

Each color represents an individual cluster. The 3D point cloud was obtained by moving the laser sensor at 0.5 km/h and placing 

the laser sensor at 0.5 km/h and placing the laser sensor at a height of 2.5 m from the ground. 

 

A clustering algorithm that can effectively isolate canopies even when they are tightly packed is 

essential for greenhouse applications. Li et al. (2012) developed a clustering algorithm that 

segmented individual coniferous trees from a dense forest with an accuracy of 86%. They used 
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the wider spacing between trees at their tops to build clusters from the top-down. A clustering 

algorithm was developed using the same principle. It is fair to assume that for most greenhouse 

plants, like coniferous trees, the spacing at the tops of the plant canopies are larger than at the 

bottoms. This algorithm requires a user-defined distance threshold to determine whether two 

points belong to same cluster or not, but it was not sensitive to this value and was able to group 

points accurately for a wide range of distance thresholds.  For the ease of following discussion, 

the processing algorithm will be referred to as Canopy Height Based Clustering (CHBC).   

CHBC works by grouping datapoints from the top-down, one cluster at a time. All the points are 

first ordered from the highest to the lowest and clusters are formed one at a time. CHBC assigns 

each point in the dataset as either ‘Part of the cluster’ (P) or ‘Not part of the cluster’ (N). The 

first step in building a cluster is assigning the highest point (local maxima) in the dataset to ‘P’. 

Each subsequent point is then assigned based on the whether the minimum Euclidean distance 

between the point in question to any point in the two sets – ‘P’ and ‘N’ is lesser than the distance 

threshold that is set. A distance threshold of half the average row-spacing was found to be a 

reasonable limit to avoid under or over-segmenting. If the minimum distances to both sets are 

lesser than the threshold, then the point is assigned to the set that is closer to the point. Therefore, 

the conditions to be satisfied are: 

• If (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑃′ <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑃′ <  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑁′) then the point 

belongs to ‘P’ 

• If (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑃′ <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑃′ >  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑁′)  then the 

point belongs to ‘N’ 

• If (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 ′𝑃′ >  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)   then the point belongs to ‘N’ 
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Once all the points have been assigned to either ‘P’ or ‘N’, all the “P” points are grouped as a 

cluster, stored separately, and removed from the main dataset. The whole process is repeated 

with all the remaining points. This is iterated until every point in the dataset is assigned to a 

cluster. This algorithm performed well because it was robust to tight spacing between plant 

canopies (Figure 2-4) and improved processing times significantly.

 

Figure 2-4: CHBC accurately identifies individual plant canopies even when they are tightly packed. Each color represents an 

individual cluster. The 3D point cloud was obtained by moving the laser sensor at 0.5 km/h and placing the laser sensor at a 

height of 2.5 m from the ground. 

 

2.3.3.3 Mirroring 

As mentioned earlier, only a portion of the canopy is visible to the laser sensor due to the 

incidence angle and the problem of occlusion. This leads to the large errors in the width 

measurements made along the X-axis (perpendicular to the laser travel direction). To improve 

the accuracy of these measurements, a ‘mirroring’ technique was introduced. It involved 

assuming that plant canopies are symmetrical and using the visible portion to estimate the 



 22  

 

dimensions of the whole canopy.  This estimate can be achieved by mirroring the front half of 

the canopy on to the partially occluded rear half side.  

The mirroring operation is performed by splitting each cluster down the middle along the Y-axis 

(Figure 2-5(a)). This is achieved by finding the minimum bounding circle of each cluster 

(Semechko, 2020). The minimum bounding circle is the smallest circle that contains all points of 

a given set. This circle is determined for each individual plant by providing each cluster as an 

input to a function that determines the minimum bounding circle of a given set of points. The 

diameter of each circle along the Y-axis is used as the axis of mirroring. The points on the front 

half side are then mirrored across this axis onto the partially occluded rear side. If the objects are 

to the right of the laser, it means that all the points to the left of the axis are mirrored onto the 

right and vice versa if the objects are placed to the left of the laser (Figure 2-5(b)). Equations 2.4, 

2.5, and 2.6 are used to find the coordinates of the mirrored datapoints. Because each cluster was 

isolated from the dataset, one can process them individually and perform such operations.  

 𝑋𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑  (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑙𝑎𝑠𝑒𝑟) =  −𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + (2 × 𝑎) (2.4) 

   

 𝑌𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 ( 𝑇𝑟𝑎𝑣𝑒𝑙 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) = 𝑌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  (2.5) 

   

𝑍𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑(𝐻𝑒𝑖𝑔ℎ𝑡) = 𝑍𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (2.6) 

 

Where, ‘a’ is derived from x=a which is the equation of the diameter of the 

circumscribing circle 
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Figure 2-5: Mirroring is a technique used to improve plant canopy estimation. a) The axis of mirroring is the diameter of the 

minimum bounding circle that is parallel to the y-axis of each cluster. Each color represents an individual cluster. b) The 

mirrored point cloud data distributions are more representative to plant canopies by eliminating distortion and filling missing 

points due to occlusion. The datapoints to the left of the mirroring axis are mirrored onto the right. Each color represents an 

individual cluster. 

 

The dimensions of each individual cluster (target object) was found by measuring the distance 

between the extreme points along all axes. The relative location of each target object was also 

found. 

 

2.4 RESULTS AND DISCUSSION 

2.4.1 First Dataset Analysis 

The CHBC’s performance was compared to the measurements obtained by Yan et al. (2018). To 

facilitate the following discussion, ‘width measurement’ refers to the measurement taken along 

the X-axis which is perpendicular to the sensor travel direction. Since the width measurements 
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had the largest error, the Root Mean Square Error (RMSE) in the width was compared to Yan et 

al. (2018) by utilizing the same dataset. The height of the sensor and the horizontal distance from 

the laser sensor were the two main limiting factors in the accuracy of measurements by Yan et al. 

(2018). The effects of these two factors were therefore evaluated and results are shown in Table 

2-3 and Table 2-4. The RMSE was measured for 4 sensor heights, 8 horizontal distances from 

the laser sensor, and 5 target objects.  

The sensor height had an inversely proportional relationship with the RMSE in width 

measurements for all target objects and for both methodologies (Table 2-3). The CHBC 

algorithm reduced the RMSE at all sensor heights for all objects compared to Yan et al. (2018). 

The sensor height also had an influence on the RMSE values for CHBC, where the RMSE 

reduced from 120 mm to 42 mm for the artificial plants, from 100 mm to 13 mm for the toy ball, 

from 93 mm to 18 mm for the basketball, 106 mm to 34 mm for the box, and from 71 mm to 15 

mm for the cylinder. The higher the sensor height, the more of the target that was visible to the 

sensor and hence the lower RMSE. For the highest sensor height of 1.00 m, the CHBC algorithm 

reduced the RMSE by 15, 33, 43, 28, 22 mm compared to Yan et al. (2018) for the artificial 

plants, toy ball, basketball, box, and cylinder, respectively.  
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Table 2-3: The RMSE of X direction (width) measurements across all horizontal distances of objects from the laser sensor (0.0, 

0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m) for four sensor heights.  

Sensor Height (m) 

RMSE in X Direction (mm) 

Artificial Plants  Toy Ball 

CHBC Yan et al. (2018) CHBC Yan et al. (2018) 

0.25 120 104 100 163 

0.50 53 84 30 81 

0.75 50 55 12 44 

1.00 42 57 13 46 

Sensor Height (m) 
Basketball  Box  

CHBC Yan et al. (2018) CHBC Yan et al. (2018) 

0.25 93 117 106 132 

0.50 36 91 52 78 

0.75 25 59 48 48 

1.00 18 61 34 62 

Sensor Height (m) 
Cylinder   

CHBC Yan et al. (2018)   

0.25 71 128   

0.50 30 53   

0.75 28 25   

1.00 15 37   

 

An increasing horizontal distance of the target objects from the laser sensor resulted in an 

increase in RMSE for both the CHBC algorithm and Yan et al. (2018) (Table 2-4). The CHBC 

algorithm consistently lowered RMSE compared to Yan et al. (2018) for the objects placed 

beyond 1.0 m from the laser sensor. There was a steep increase in the RMSE with the CHBC 

algorithm for the objects placed at 3.0 and 3.5 m from the laser. This was because the CHBC 

algorithm did not detect the presence of objects for the sensor height of 0.25 m as they were 

almost completely hidden from the laser sensor. If the data at the sensor height of 0.25 m was not 

considered, the RMSE would be improved to 55, 18, 55, 48, 39 mm for the objects placed at 3.0 

m for the artificial plants, toy ball, basketball, box, and cylinder, respectively. For the objects 

placed at 3.5 m the RMSE would be improved to 47, 40, 36, 56, 42 mm for the artificial plants, 

toy ball, basketball, box, and cylinder, respectively.  
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Table 2-4: The RMSE of X direction (width) measurements across all sensor heights (0.25, 0.50, 0.75, 1.00 m) for eight 

horizontal distances of objects from the laser sensor.  

Horizontal Distance (m) 

RMSE in X Direction (mm) 

Artificial Plants Toy Ball 

CHBC Yan et al. (2018) CHBC Yan et al. (2018) 

0.0 28 21 14 20 

0.5 48 31 15 50 

1.0 36 62 16 63 

1.5 77 95 21 90 

2.0 15 90 4 103 

2.5 76 76 37 114 

3.0 110 120 71 110 

3.5 121 105 121 120 

Horizontal Distance (m) 
Basketball  Box  

CHBC Yan et al. (2018) CHBC Yan et al. (2018) 

0.0 14 14 58 18 

0.5 5 44 21 34 

1.0 13 70 30 44 

1.5 22 78 39 57 

2.0 13 92 29 58 

2.5 29 114 66 54 

3.0 103 108 123 78 

3.5 97 134 91 100 

Horizontal Distance (m) 
Cylinder   

CHBC Yan et al. (2018)   

0.0 15 5   

0.5 8 22   

1.0 13 38   

1.5 17 47   

2.0 32 58   

2.5 52 89   

3.0 68 103   

3.5 69 122   

 

The CHBC achieved an average cumulative RMSE of about 25 mm which was lower than the 47 

mm of Yan et al. (2018), when the sensor height was 1.00 m. Yan et al. (2018) also had a steep 

increase in error for objects farther than 1.5 m from the laser sensor. The CHBC on the other 

hand had a low variance in RMSE with an increasing distance from the sensor. This shows that 

CHBC reduced RMSE by 46% for canopy width measurements. 
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2.4.2 Second Dataset Analysis 

The quality of the dataset and hence, the performance of CHBC was also affected by the shape of 

the objects used. The regular objects (cylindrical, spherical and cuboids) used in Yan et al. 

(2018) provide definitive measurements against which the performance of the system can be 

tested but a better measure of performance can be obtained by using objects that are more 

representative of plant canopy shapes. In contrast, the second experimental setup tested the 

limitations of CHBC with respect to sensor height, while using a different set of objects. Table 2-

5 and Table 2-6 show the RMSE in the width calculations made by the CHBC with the second 

experimental setup with respect to the sensor height and horizontal distance from the laser, 

respectively. The RMSE was measured for 5 sensor heights, 7 horizontal distances from the laser 

sensor, and 4 target objects. 

The trend of an increasing sensor height resulting in improved measurement accuracy, obtained 

from the previous results, reached a point of diminishing returns (Table 2-5). The RMSE values 

tended to remain constant and even increased for increasing sensor heights. The ‘Plant Group-2’ 

had the lowest average RMSE of 19 mm at a sensor height of 2.0 m while ‘Plant Group-1’ and 

‘Plant Group-3’ had their lowest mean RMSE values of 44 mm and 28 mm at sensor height of 

2.5 m. The sensor height did not seem to affect the RMSE for the ‘Regular Object’. Greater 

sensor heights resulted in larger distances between successive laser beams (Sun et al., 2017). 

This means that the laser is more likely to miss the edges of the target objects which causes 

higher RMSE values. However, compared to the actual object sizes, these RMSE values were 

very small and could be ignored when the measured dimensions were converted to canopy 

volume for managing spray outputs. 
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Table 2-5: The RMSE of X direction (width) measurements across all horizontal distances of objects from the laser sensor (0.5, 

1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m) for five sensor heights.  

Sensor Height (m) 
RMSE in X Direction (mm) 

Plant Group-1  Plant Group-2 Plant Group-3  Regular Object  

2.00 50 19 38 10 

2.25 71 34 46 28 

2.50 44 32 28 15 

2.75 54 26 47 14 

3.00 58 35 46 21 

 

The horizontal distance of the objects from the laser had no effect on the performance of the 

CHBC algorithm (Table 2-6) for all objects apart from ‘Plant Group-1’. This shows that the 

CHBC algorithm was able to effectively predict the dimensions of target object despite occlusion 

and distortion. There were slight increases in RMSE for objects placed at certain distances from 

the laser and this was due to the mirroring algorithm tending to over-estimate the dimensions of 

target objects. The regular object showed more consistent results which may be due to the 

regular object having a clear standard measurement compared to some human error in the 

manual measurement of irregularly shaped artificial plants.  

Table 2-6: The RMSE of X direction (width) measurements across all sensor heights (2.00, 2.25, 2.50, 2.75, 3.00 m) for seven 

horizontal distances of objects from the laser sensor.  

Horizontal Distance (m) 
RMSE in X Direction (mm) 

Plant Group-1  Plant Group-2 Plant Group-3  Regular Object  

0.5 13 8 43 7 

1.0 32 22 50 12 

1.5 49 49 16 17 

2.0 65 40 54 21 

2.5 49 23 36 21 

3.0 83 26 45 21 

3.5 70 21 37 24 
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The clustering algorithm used was always able to identify individual plant canopies irrespective 

of the height of the sensor or the number of scans registered. There was also very little difference 

in the RMSE of measurements made with a single scan compared to three registered scans 

(Table 2-7). The registration of multiple scans, which would be time-consuming, was thus, not 

required. The removal of the distortion through mirroring was dependent on the height of the 

sensor and the quality of the dataset. To obtain accurate estimations, at least half of the plant 

canopies must be free from occlusion, which depends on row spacing and the height of the plant 

canopies.  

Table 2-7: Comparison of RMSE with a single scan and three registered scans. The RMSE of X direction (width) measurements 

across all horizontal distances of objects from the laser sensor (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m) for a sensor height of 1 m. 

Target Object 
RMSE in X Direction (mm) 

Single Scan Three Scans 

Artificial Plants 53 42 

Toy Ball 16 13 

Basketball 21 18 

Box 36 34 

Cylinder 17 15 

 

2.4.3 Optimal Sensor Height Calculation 

The optimal sensor height for the best performance is dependent on the row spacing, number of 

plants in a row (range required), and the average plant height as shown in Figure 2-6 (Sun et al., 

2017).  
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Figure 2-6: Deriving the optimal sensor height as a function of range, row spacing and average plant canopy height. 
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Where, ‘H’ is the sensor mounting height (m) 

‘R’ is the distance between two plants at two ends of the row (m) 

‘h’ is the average plant height (m) 

‘s’ is the center to center plant spacing (m) 

 

The general shape and the area of the plant canopy that needs to be visible to the laser sensor 

affect the optimal sensor height. Equation 2.8 is based on at least half of the plant canopy being 

visible to the laser for CHBC to perform well, assuming the container grown plants have 
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symmetrical shapes. Using Equation 2.8, the optimal height for ‘Plant Group-1’ and ‘Plant 

Group-3’ was about 2.5 m from the ground (R = 4.00 m; h = 0.32 m; s = 0.50 m) which is 

confirmed by the results that show the lowest RMSE at a sensor height of 2.5 m. For the 

‘Regular Object’ the optimal sensor height is about 2.75 m (R = 4.00 m; h = 0.34 m; s = 0.50 m) 

for which the RMSE value was the second lowest measured and for ‘Plant Group-2’ the optimal 

sensor height was about 1.7 m (R = 4.00 m; h = 0.21 m; s = 0.50 m) and the lowest sensor height 

of 2 m showed the lowest RMSE results.  

2.5 IMPROVEMENTS 

The system can be further improved by overcoming a few limitations. The CHBC algorithm, in 

the case of two overlapping plant canopies, might over/under-estimate plant canopy dimensions 

since the points that lie in the region of overlap may be assigned to either plant canopy. The 

removal of ground points can be automated as opposed to the current solution where the user has 

to manually measure the distance from the laser to the ground and input the value into the 

program. The mirroring method used to estimate the shape of the occluded or distorted side of 

the plant canopy assumes that plant canopies are symmetrical which is not always the case. 

Hence, implementing a way to predict the overall dimensions of plant canopies with limited 

information through training models could potentially lead to more accurate measurements. An 

alternative could also be the combining of multiple scans from multiple angles if it is 

economically feasible. 

CHBC increased the range that a single laser sensor could cover and accurately estimate plant 

canopy dimensions. Ultimately, it might have potential to be used for applications other than 

determining spray volumes such as plant phenotyping, and plant health monitoring. Heun et al. 

(2019) used laser data from two sensors to characterize plant canopies in the field for plant 
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phenotyping. However, they only covered a total area of about 3.5 m. Sun et al. (2017) measured 

the maximum height of individual cotton plants for phenotyping purposes. However, they also 

covered a limited area of about 1.5 m using a single sensor. This project has demonstrated that 

with the use of CHBC, a single laser sensor can measure a total area of 7 m (3.5 m either side of 

the sensor) with an RMSE of 25 mm. This can increase the area covered by a single laser with a 

comparable accuracy and reduce the amount of time required to map large areas. The quality of 

the dataset begins diminishing significantly beyond 7 m as it becomes increasingly sparse and 

noisy.  

2.6 CONCLUSIONS 

To improve variable-rate spraying in greenhouses, this study proposed new approaches to 

improve canopy characterization. This was done with the introduction of a point cloud data 

processing algorithm and an evaluation of mounting height of the laser sensor. The processing 

algorithm improved the plant canopy measurement accuracy over a previously reported effort 

(Yan et al., 2018). A 46% measurement error reduction, in terms of root mean square error 

(RMSE), was achieved by effectively isolating individual targets from the dataset, removing 

distortion, and estimating the occluded portion of the plant canopies. The improvement was 

largely due to more accurate measurement of farther away plants where less point cloud data and 

more occlusion was observed.  

Sensor height did affect the measurement performance, as reported by Sun et al. (2017), while 

using either the Yan et al. (2018) methodology or the processing algorithm proposed in this 

research. The latter method was more accurate and robust at different sensor heights. In 

comparison, the lowest average RMSE of the plant canopy width measurements were achieved 

when the sensor was placed at a height of 1 m from the top of the canopies - 25 mm for the 
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processing algorithm compared to the 47 mm from Yan et al. (2018). The proposed processing 

algorithm was also more reliable in accurately measuring plant canopies when the height of the 

sensor was determined by calculating an ‘optimal sensor height’ that was dependent on the 

height of the plants, the canopy to canopy spacing, and the total range/greenhouse width to be 

measured. 
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Chapter 3: An Offline Variable-Rate Sprayer System for Greenhouse 

Applications 

3.1 ABSTRACT  

Conventional fixed-rate spray systems used to apply pesticides inside greenhouses are wasteful, 

with large off-target losses and over-spraying of plant canopies. Variable-rate sprayer technology 

has resulted in spray savings of 45% inside greenhouses even with a limited accuracy in canopy 

characterization (Yan et al., 2019). Further savings can be made if the canopy characterization is 

improved. This project incorporated an algorithm that improved measurements of canopy 

dimensions (Chapter 2) coupled with a convex hull methodology into a system designed by Yan 

et al. (2019). The purpose of this addition was to improve the measurement of plant canopy 

dimensions and volumes, which are used to calculate spray rates. However, this required 

modifying the Yan et al. (2019) system from an inline operation to an offline one, because the 

algorithm used required extensive computing time. The modifications made were tested by 

visualizing the location of nozzle activation. The activation of the nozzles was found to begin 

spraying within 7.21 mm of the edges of plant canopies. The processing algorithm (Chapter 2) 

with the convex hull methodology was found to improve on the Yan et al. (2019) methodology, 

recording an overall mean accuracy of 81% compared to 66% by Yan et al. (2019). The 

improvement in volume estimation resulted in a reduction in spray volume used by 15%. The 

spray coverage performance of the modified offline spray system was tested in a greenhouse 

environment against the Yan et al. (2019) system and a conventional fixed-rate spray system. 

The offline system significantly reduced spray coverage at the edges of plant canopies while 

meeting the recommended spray coverage percentages. The tops and bottoms of canopies that 

were grouped close together had similar percentage coverage for all three systems. The coverage 
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in the bottoms of plant canopies was reduced below recommended values for the offline system. 

The reduction in coverage was compensated by a density of droplets, which was sufficient for 

pest prevention. The offline system achieved an 86% reduction in spray volume compared to a 

conventional spray system and improved the efficiency of the Yan et al. (2019) variable-rate 

spray system by 53%.  

Keywords: Automation, Application Technology, Controlled Environment Plant Production, 

Convex Hull, LiDAR, Offline Operation, Precision Agriculture 

 

3.2 INTRODUCTION 

Traditional pesticide application systems using fixed rate sprayers are wasteful, have large off-

target loses, and tend to over-spray canopies. This excess of harmful chemicals can be 

detrimental to the environment and worker safety, and it can become a financial drain because 

the grower is paying for more chemicals than are necessary. Run-off from greenhouses has been 

documented to exceed safe environmental limits from both flower and vegetable production 

facilities (Roseth and Haarstad, 2010). The chemical concentrations in the runoff also tended to 

exceed those from agricultural runoff for the majority of compounds measured (Roseth and 

Haarstad, 2010). Prolonged exposure to harmful chemicals in pesticides can pose serious health 

risks for workers (Damalas and Eleftherohorinos, 2011). Semchuk et al. (1992) have also 

suggested that pesticide exposure can result in workers being more prone to Parkinson’s disease. 

Greenhouses have the added drawback of being contained systems that are slow to vent, thus 

exposing workers to spray cloud drift for extended periods of time (Siebers and Mattusch, 1996). 

Therefore, it is essential to improve existing chemical application systems.  
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Researchers have proposed methodologies to improve spray efficiency for field applications, 

such as orchards and vineyards, as traditional spray technologies are wasteful and have low 

deposition efficiency (Giles et al., 2011; Pergher et al., 1997; Seiber et al., 1993). Seiber et al. 

(1993) measured the spray deposition from dormant spraying of diazinon and concluded that 

88% of the pesticide hit the peach orchard floor rather than the canopies. Pergher et al. (1997) 

compared chemical application techniques in a vineyard and found that 37% to 62% of the spray 

volume applied did not get deposited on the leaves of the target canopy. Sánchez‐Hermosilla et 

al. (2011) observed that only about 50-66% of the spray hit the tomato canopies while the rest 

was lost to the ground. The efficiency of these systems can be improved significantly by using a 

variable-rate sprayer (Escolà, 2010; Giles et al., 2011; Jeon and Zhu, 2012; Shen et al., 2017; 

Chen et al., 2012; Yan et al., 2019; Zhu et al., 2017). The principle of the variable rate sprayer is 

to detect the presence of a canopy; measure its characteristics, such as volume and density; and 

control the spray volume of each nozzle based on those calculations. Chen et al. (2012) showed a 

reduction in chemical use by 47-73% when implementing a variable-rate sprayer in orchards. 

Giles et al. (2011) observed savings in spray volumes between 15% and 40% in orchards. Zhu et 

al. (2017) reduced spray volume by up to 77.6% using a laser-guided variable-rate sprayer in 

ornamental nurseries. Shen et al. (2017) also managed to reduce spray volumes while improving 

sprayer coverage by up to 55% in a commercial nursery.   

In greenhouse boom spray systems, the spray efficiency is improved by operators manually 

changing spray outputs to match plant sizes. They normally mount a multi-nozzle manifold with 

4 to 5 different size nozzles at each position, and manually select the nozzles as needed.  This 

process is time-consuming, not precise, and prone to human error. The same principle of the 

variable-rate sprayer that is used in the field can be utilized in greenhouses to improve spray 
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efficiencies, but it must be adapted. Sánchez-Hermosilla et al. (2013) observed upwards of 30% 

reduction in spray volume for greenhouse tomato crops by varying the application rate 

depending on Plant Row Volume (PRV), which was measured manually. This canopy 

characterization process can be automated by using a LiDAR/laser sensor. Yan et al. (2019) 

placed a laser sensor onto a travelling spray boom to determine canopy characteristics from 

above. The resulting three-dimensional map of the canopies was then used to characterize them 

to determine the spray volume required from each nozzle. The mean spray volume savings 

observed were around 45% even though the measurements made from the laser sensor had 

limited accuracy. The dataset obtained became increasingly limited and noisy as the distance 

from the laser sensor increased due to problems of occlusion. Only one side of a plant canopy 

was visible to the laser sensor, while the rest of the canopy was hidden (Yan et al., 2018). Hence, 

with an improved accuracy in the canopy characterization, further savings in spray volume can 

be achieved. The canopies can be characterized better by introducing a point cloud data 

processing algorithm (Chapter 2).  

The canopy characteristics, such as volume and density, that are used to determine the required 

spray rate can be determined in a number of ways. Yan et al. (2019) and Chen et al. (2012) 

calculated them by assuming each point in the LiDAR point cloud dataset to be a ‘bar’ of unit 

length and width. The height of each ‘bar’ was the distance of the point from the ground (Yan et 

al., 2019) or to the assumed center of the tree canopy (Chen et al., 2012). The cumulative volume 

of these ‘bars’ was used to determine spray volume. The density of a section of the point cloud 

was calculated as a ratio of the minimum volume of the cuboid that encompasses all the ‘bars’ to 

the cumulative volume of the ‘bars’ in the section. This approach did not consider intra-canopy 

density variations. This resulted in an overestimation of plant canopy densities (Yan et al., 2019), 



 38  

 

because canopies tend to be less dense at the edges, compared to the center, so the edges require 

less spray. To achieve more precise canopy volumes estimations, various methods can be 

incorporated such as a convex hull, segmented convex hull, cylinder-based modelling, as well as 

a voxel-based approach (Cheein et al., 2015; Chakraborty et al., 2019; Escolà et al., 2017; Lee 

and Ehsani, 2009). The approach used in this project was a 3D convex hull, which is 

computationally simple and provides a volume measurement that is closely correlated to manual 

measurements (Chakraborty et al., 2019; Lee and Ehsani, 2009).  

The improvement in canopy characterization and volume and density estimation comes at the 

cost of computing time, which makes inline performance, in which operations are carried out 

synchronously, difficult. This project integrated the 3D convex hull with the system developed 

by Shen et al. (2017) and Yan et al. (2019), which was designed for inline operation. Hence, it 

needed to be modified for offline functionality, that is, sequential operations in which the laser 

sensor scanned the canopies on one run and then sprayed the canopies on a secondary run. This 

two-step process added a few complications because the position of the plant canopies in space 

was required to determine when to trigger the nozzles for the secondary spraying run. However, 

there is limited GPS functionality in indoor spaces such greenhouses, which makes it difficult to 

identify the exact location of plant canopies so only their relative position can be obtained. The 

location of canopies was detected by comparing point cloud datasets from the previous ‘scan 

run’ to the data being collected during the ‘spray run’ using a similarity index.  

This project modified the spray system developed by Yan et al. (2019)  to convert the system 

from an inline/real-time operation to an offline operation. A new Graphical User Interface (GUI) 

was rebuilt to facilitate the two separate operations of scanning and spraying and allow the user 

to specify operating parameters for greenhouses of varied dimensions and constraints. 
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The goal of this project was to improve spray volume savings while ensuring plant canopies 

were sufficiently covered with spray. Hence, the modified system was tested in a greenhouse 

environment to observe its spray coverage performance as well as its effectiveness in identifying 

targets and minimizing spray loss to the ground.  

The objectives of this project were to: 

• Modify the Yan et al. (2019) system to enable offline operation 

• Improve the canopy volume estimations using a 3D convex hull approach 

• Evaluate spray volumes determined for individual plants using the convex hull-based 

volume approach  

• Evaluate the spray deposition over the plant canopy in a commercial production 

greenhouse using the modified offline system 

3.3 MATERIALS AND METHODS 

To better characterize plant canopies, a 3D complex hull methodology coupled with a processing 

algorithm (Chapter 2) was integrated into an existing system developed by Yan et al. (2019). The 

Yan et al. (2019) system retrofitted a conventional travelling spray boom commonly used for 

commercial greenhouses with multiple components. They included a 270˚ wide-range laser 

scanning sensor (UST-10LX, Hokuyo Automatic Co., Ltd., Osaka, Japan), an embedded 

computer, pulse-width modulated (PWM) solenoid valves and a PWM controller (Liu et al., 

2014). The PWM solenoid valves were coupled with nozzles for a controllable spray rate. 

Custom software was developed by Yan et al. (2019) and implemented to extract the data from 

the laser and control the spray output for inline functionality. To integrate the 3D convex hull 

methodology and the processing algorithm (Chapter 2) into the Yan et al. (2019) system, certain 
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modifications were required. All the hardware components, apart from the embedded computer, 

of the Yan et al. (2019) system remained unchanged. A laptop (Dell Latitude 3500, 2018, Dell 

Inc., Texas, USA) was used rather than an embedded computer. The software in the Yan et al. 

(2019) system was changed and this required converting the system from an inline to offline 

operation.  

3.3.1 Offline Operation 

Offline operation splits the operation of the system into a two-step process of scanning and 

spraying rather than doing them synchronously (inline). On the scan run, the laser sensor data 

was collected and stored in a file. The data was then processed offline and used to determine 

spray rates for each individual nozzle over the length of the travel path of the spray boom. The 

system was then run again to spray the plant canopies. The conversion to an offline operation 

involved three major elements:  offline calculation of spray rates, redesign of the Graphic User 

Interface (GUI), and timing the activation of nozzles on the spray run.  

3.3.1.1 Offline Spray Rate Calculation 

A 3D map was generated from the laser data, processed (Chapter 2), and then used to determine 

the spray rates of each nozzle required for the ‘spray run’. All calculations were done offline 

using a numerical computing platform (MATLAB R2019a ver. 9.6.0.1114505, MathWorks, 

Natick, Massachusetts, USA). Because the density of plant canopies varies within a canopy as 

well as between canopies, the intra-canopy spray rate should also be varied to achieve the most 

efficient use of spray volume. To determine the varying spray rates of individual nozzles over the 

length of the travel path, the 3-D map obtained from the laser data was split into segments along 

the sensor’s travel direction. Each segment represented the spray rate required over a specific 
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region of the map for an individual nozzle (Figure 3-1). The length of each segment was 

determined by how often the spray rate of the nozzles needed to be changed and the speed ‘ν’ 

(Equation 3.1). The width of each segment was determined by the area covered by each 

individual nozzle, which is dependent on nozzle spacing (Equation 3.2).  

 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 0.125𝑠 × 𝜈 (3.1) 

   

 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑎 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑁𝑜𝑧𝑧𝑙𝑒 𝑆𝑝𝑎𝑐𝑖𝑛𝑔  (3.2) 

 

Where, ν is the travel speed of the boom and 0.125 s is determined by the frequency at which the 

PWM solenoid valves can be switched, which is 10 Hz (100 ms).  

Therefore, the spray rate was calculated every 0.125 s – a time interval slightly lesser than its 

maximum switching frequency.  

 

Figure 3-1: The processed 3-D data is split into segments to identify the sequence of varying spray rate required for each 

individual nozzle over the length of plant canopies. 

 

The spray rate was controlled by varying the duty cycle of the nozzle. Duty cycle is the amount 

of time that each nozzle is required to be open to control its flow rate. It is calculated as a 

percentage value of the maximum flow rate when the nozzles are open continuously (Equation 

3). The required flow rate in Equation 3.3 is calculated using Equation 3.4 (Shen et al., 2017; 

Yan et al., 2019).   
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 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =  
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑁𝑜𝑧𝑧𝑙𝑒
× 100  (3.3) 

 
 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 = 60 × 𝑤 × ℎ × 𝜈 × 𝜌 × ∇ 

 

(3.4) 

 

Where,   ‘w’ is the range of a spray nozzle (width of a segment)   

               ‘h’ is the maximum height of canopy that lies within a segment  

               ‘ν’ is the travel speed of the boom and laser sensor 

               ‘ρ’ is the density of the canopy that lies within a segment  

               ‘∇’ is the spray rate required to effectively cover 1m3 of a canopy which 

                     is fixed at 0.13 (Jenkins and Hines, 2003; Yan et al., 2019).  

The density (ρ) is calculated for each segment as a ratio (Equation 3.5):  

 𝜌 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑎𝑛𝑜𝑝𝑦 𝑡ℎ𝑎𝑡 𝑙𝑖𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑏𝑜𝑖𝑑 𝑡ℎ𝑎𝑡 𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑠 𝑡ℎ𝑒 𝑐𝑎𝑛𝑜𝑝𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 (3.5) 

 

The volumes of each canopy that fell in a segment were calculated by using a three-dimensional 

convex hull (Section 3.3.2.1). The volume of the circumscribing cuboid of a plant was calculated 

by finding the length, width and height of the canopy lying within the segment as shown in 

Figure 3-2. When a single nozzle was covering a width that has multiple plants of varying 

densities, the canopy with the highest density value was used. 
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Figure 3-2: The calculation of the 'density' of plant canopies that lie within a segment. It is shown using the x-y axis (a) and the 

x-z axis (b) 

 

The duty cycles for each segment in the whole dataset were calculated. The result was a 

sequence of duty cycles for each individual nozzle that represented the changes in spray rate over 

the length of the travel path of the spray boom.  

3.3.1.2 Spray Control Graphic User Interface 

The spray control GUI was redesigned to facilitate a two-step offline operation. It was used to 

obtain values from the user and ensure ease of operation. The GUI split the two operations into 

two tabs of the same window – the ‘Laser Data Collection’ tab and the ‘Spray Application’ tab.  

Laser Data Collection Tab  

The GUI Laser Data Collection tab was used to obtain inputs from the user that would be used to 

calculate spray rates offline. The inputs included travel speed, sensor height, sensor range, 

number of nozzles, nozzle spacing, and distance between first nozzles on either side of the sensor 
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(Figure 3-3).The travel speed was required to build a three-dimensional map of the whole region 

by assuming that the speed of the boom was constant and aggregating multiple two-dimensional 

scan lines. The sensor height information was used to remove ground points from the dataset. 

The sensor range was used to clip the dataset and use only the points that represented the region 

of interest and get rid of all other unnecessary points. The number of nozzles was required to 

determine the duty cycle of each nozzle. The nozzle spacing parameter was used to determine 

how to segment the dataset and identify which portion of the dataset fell under which specific 

nozzle and the area that each nozzle covered. The distance between the first nozzle on the left 

and right was used to identify the center of the region of interest (plants that need to be sprayed) 

and how to split the dataset into two halves, because there are two spray booms of equal length 

on either side of the laser sensor. The ‘Play’ icon, when clicked, turned on communication with 

the laser sensor and began recording data. The ‘Stop’ icon turned off the laser sensor and stored 

the recorded data in a file. 
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Figure 3-3: Graphical User Interface (GUI) to facilitate the easy operation of the spray system. It is also used to obtain certain 

information from the user required to process the data and understand the specifications of the system as well as the greenhouse. 

 

Spray Application Tab  

The GUI ‘Spray Application’ tab was used for the second step of the offline operation – the 

spray run. It provided the ability to test the nozzles to see if all nozzles were being triggered. The 

sliding bar to the right of the tag, ‘Duty Cycle’, enabled the user to test all nozzles at specific 

duty cycles to ensure their proper function prior to the spray run. The GUI also accepted an input 

for the distance between the laser and the nozzles (Figure 3-4). This distance was used to 

calculate the delay time required between the laser identifying the location of canopies in the 

spray run (Section 3.3.1.3) and the nozzles passing over them. The ‘Play’ icon, when clicked, 

turned on the laser sensor again. The laser sensor was used in the spray run to determine the 
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location of plant canopies in the greenhouse to identify when to activate the spraying of the 

nozzles.  

 

Figure 3-4: Graphic User Interface (GUI) designed for the spray run of the system. It enables the user to input parameters which 

assist in the timing of activation of the nozzles. 

 

3.3.1.3 Nozzle Activation Timing 

To spray plants precisely using the previously determined plant canopy density information, it 

was necessary to consider the positional offset between the sensor and the nozzles, and to detect 

the starting location of the spraying operation. The starting location was determined by using a 

similarity index to detect the presence of plant canopies. It compared the laser data being 



 47  

 

collected in the spray run to the previously recorded data from the scan run. If the two datasets 

were a match, it indicated that the plant canopies had been located.    

Similarity Index 

A similarity index provides a quantifiable measure when two datasets are compared to each 

other. The cosine similarity index was determined to be the easiest to implement as well as 

sensitive enough to show a significant drop-off when comparing dissimilar datasets. Cosine 

similarity is a measure of similarity between two vectors that uses the cosine of the angle 

between them. An index of 1 shows two identical vectors while 0 shows opposing vectors. The 

height data from the laser was used as the parameter to determine similarity (Equation 3.6). The 

first row of segments from the scanned dataset, which represented the starting location of plant 

canopies, was used as a reference vector. The first row of segments was represented by five scan 

lines from the laser sensor (five scan lines takes 0.125 s and it is assumed that the spray boom is 

travelling at the same speed as during the scan run (Equation 3.1)). Five consecutive scan lines 

were therefore taken from the laser and compared to the reference vector. If a similarity 

threshold of 85% was not met, the first scan line of the five was removed and the next one was 

added. The process repeated until the threshold was met, after which a new loop was executed 

where the program tried to achieve the highest possible similarity by replacing the earliest scan 

lines with new ones. Once the highest possible similarity was achieved, it assumed that the edge 

of the first canopy was detected and the duty cycle sequence was called with a delay time based 

on the distance between the laser sensor and the nozzles and the travel speed. The nozzle 

activation time and the time it took to identify the edge were accounted for in this delay time.  
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cos 𝜃 =
�⃗�. �⃗⃗�

‖𝑎‖‖𝑏‖
 

 

                     Where, �⃗� is the height data from the scan run 

                                 �⃗⃗� is the height data from the spray run 

 

(3.6) 

Laser Alignment  

Another factor that affected the nozzle activation timing in a practical scenario was the alignment 

of the laser sensor against the spray boom (Heun et al., 2019). Theoretically, it is assumed that 

the sensor scan line is completely parallel to the spray boom, but this is not the case when 

mounting the laser. In a greenhouse, when the sensor scans a length of close to 10 meters, this 

effect is amplified and can cause the laser to identify a canopy before it is actually in line with it 

or identify the canopy after it has crossed it, based on the uncompensated misalignment. This 

needed to be corrected because the performance of the whole system was dependent on the 

accuracy with which the canopies were located. Therefore, the error of the laser scan line was 

observed by scanning a straight row of objects with a straight edge (e.g. cardboard boxes). 

Ideally, the laser scan should have shown a straight line of objects but due to alignment issues 

there was a slight slope to the line. This slope was calculated, and depending on the distance of 

the canopy from the laser, a delay time was added or subtracted based on the tangent of the angle 

of slope.  

3.3.1.4 Nozzle Activation Test  

The timing of the activation of nozzles was a good measure of the performance of all the 

modifications made to the inline system (Yan et al., (2019)) for offline operations. It was 

evaluated using two experimental setups - one in a laboratory and the other in a commercial 

greenhouse (Casa Verde Growers, Columbia Station, OH). The ability of the system to detect the 
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starting location of plant canopies and spray accuracy of the subsequent plants along the travel 

direction was tested in one experiment. The effect of the laser alignment was tested in a second 

experiment.  

The nozzle activation was measured by using a shallow tray filled with arselite (Turface Quick 

Dry, Turface Athletics, Buffalo Grove, IL, USA) and obtaining a visual of the spray pattern 

(Figure 3-5). Arselite has preferred properties for the spray location detection as it: 1) changes 

color when wet (Figure 3-5(b)), making visual observation easier; 2) absorbs more water and has 

less surface runoff than water sensitive paper, which is commonly used for this type of study; 

and 3) allows for repeated measurements because the surface can be easily refreshed by 

removing the wetted arselite and resurfacing it with dry arselite. 

The laboratory experimental setup consisted of placing one row of target objects along the travel 

direction and marking their starting edges. The edges of the objects were marked across the 

arselite tray so that errors in nozzle activation could be measured as the wet arselite provided a 

clear distinction of where the nozzles were activated. Four regular shaped objects with clearly-

defined straight edges were used – 2 metal disks and 2 fiberglass objects. Four artificial plants 

were used as well, of which three were of similar dimensions while one had smaller dimensions. 

The four objects were placed 0.5 m apart from each other along the travel path and at a fixed 

distance of 1.5 m from the laser sensor. The distance between the nozzle and the laser sensor was 

1.5 m. A single nozzle was used to simulate the performance of all the nozzles on the spray 

boom. It was located adjacent to the target objects, at a height of 25 mm from the arselite tray 

target and functioned at a pressure of 275 kPa. A flat fan nozzle (XR8001, TeeJet Co., Wheaton, 

IL, USA) was used to get a thin spray pattern. The distance between the nozzle being activated 

and the red chalk line on the arselite that represented the edges of the objects was measured. 
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Observations were made for the four regular shaped objects as well as the four artificial plants, 

with five repetitions for each. The spray system travelled at a speed of 0.116 m/s.  

A similar experiment was conducted in a commercial greenhouse with a few adjustments. The 

spray boom system used had two spray wings of equal length, either side of the laser sensor 

(UST 10-LX, Hokuyo, Osaka, Japan). The wing had 20 nozzles (XR80015, TeeJet Co., 

Wheaton, IL, USA) coupled with PWM solenoid valves (Capstan Ag Systems Inc., Topeka, KA, 

USA), spaced 533.4 mm apart, covering a total distance of 9 m. The solenoid valves were 

controlled by a PWM controller (Liu et al., 2014). The PWM controller and the laser sensor were 

connected directly to the laptop. The boom and the laser sensor traveled at a constant speed of 

0.224 m/s. Five objects were placed in a row along the travel direction, and readings were taken 

by placing the row of objects at three different distances from the laser (1.5, 2.5, 3.5 m). The 

objects used were all regular shaped boxes. Three repetitions were run for each position of the 

row of objects.  
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Figure 3-5: (a) The experimental setup to determine the accuracy in the activation of nozzles once canopies have been detected. 

(b) The spray pattern was visualized on the arselite tray and its deviation from the edge of the canopy (marked by red chalk on 

the arselite) was measured. 

 

3.3.2 Canopy Volume Estimation Improvement  

A 3D convex hull method was used to determine the volumes of plant canopies. The contours of 

plant canopies were considered rather than just the elevation data from the laser data (Yan et al., 

2019; Chen et al., 2012).  The volume data was used to calculate density and spray rate.  

3.3.2.1 Convex Hull Method 

A convex hull is the smallest convex polygon containing a given set of points. In 3D space, it 

creates a bounding surface that follows the contour of all the external points that represent a plant 

canopy. The volume that this surface encapsulates then gives us the volume of the canopy.  This 

convex hull volume can be used for individual plant canopies in the dataset by using a 

‘clustering’ algorithm, which isolates canopies from the laser dataset (Chapter 2). The convex 

hull approach was used to identify volumes of canopies that were present within a segment of the 
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split laser dataset to calculate spray rates offline. A built-in function on a numerical computing 

platform was used to generate the convex hull and calculate its volume (‘alphaShape’, Copyright 

2013-2015, The MathWorks, Inc.). The ‘alphaShape’ function creates a polyhedron that 

envelops a set of 2-D/ 3-D points. To find a convex hull, the alpha angle is set to infinity.  

The edges of plant canopies are less dense and require lower spray volume than the center. This 

intra-canopy density variation is represented when using the convex hull method because it 

follows the three-dimensional contours of the plant canopy. When split along the travel direction, 

the density values and the subsequent spray rates calculated will be lower at the edges of the 

canopy (Figure 3-6).  

Through laboratory evaluations, it was found that the density values at the extreme edges of the 

canopy can result in very low required spray rates and, therefore, low duty cycles – in the range 

of 2-15%. The PWM solenoid valves have limitations in their performance for duty cycles lower 

than 20% (Gu et al., 2011) that may result in the edges of the canopy not being sprayed with 

enough chemical to prevent disease. Alternatively, one can use nozzles with lower spray rates to 

increase the duty cycle values obtained because the duty cycle is inversely proportional to the 

‘Maximum Flow Rate’ of the nozzle (Equation 3.3). Therefore, nozzles which had a maximum 

flow rate of 1.5 L/min (0.40 GPM) at 275 kPa (XR8004, TeeJet Co., Wheaton, IL, USA) were 

replaced by nozzles that had a maximum flow rate of 0.5625 L/min (0.15 GPM) (XR 80015, 

TeeJet Co., Wheaton, IL, USA) at the same line pressure. This scaled duty cycle values and 

achieved a more precise spray rate control for the intra-canopy variation in density.  
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Figure 3-6: The convex hull approach calculates volumes by following the contours of the whole canopy. The density calculated 

for the edges of the canopy will therefore be lower than the in the middle, which is denser. 

 

3.3.2.2 Canopy Volume Estimation Evaluation 

The performance of the convex hull approach was first evaluated using the dataset obtained by 

Yan et al. (2018). It consisted of 5 rows of object – 4 rows of regular objects (toy ball, 

basketball, box, cylinder) and 1 row of irregular objects (Plant Group-1). The objects were 

spaced 0.5 m apart both between and within rows. The dimensions of the objects are given in 

Table 2-1. A laser sensor (UST 10-LX, Hokuyo, Osaka, Japan) was placed on a constant speed 

track at a height of 1 m from the top of the objects. The travel speed was 0.447 m/s. The volume 

of the regular shaped objects and artificial plants were measured manually and compared with 

the volume obtained through the convex hull approach. The use of regular shaped objects 

provided a clear standard against which the performance could be tested. Artificial plants were 

used because they maintain their size and shape over time and can be used multiple times. 
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The performance of the system was further evaluated in a commercial greenhouse. The laser 

sensor was placed at a height of 3 m from the ground and the spray boom travelled at a speed of 

0.178 m/s. A sensor height of 3 m was chosen based on our previous effort (Chapter 2). The 

average plant height of the three varieties was 305 mm and the center to center width was 500 

mm since the big canopies had a width of around 408 mm, with a range of 4.5 m. Three varieties 

of plant canopies of different volumes were manually measured – big, medium, and small. The 

average dimensions of the five plant canopies of each variety are shown in Table 3-1. The plants 

were placed adjacent to each other at varying distances from the sensor.   

Table 3-1: Dimensions of plant canopies used to test the performance of the convex hull approach in the greenhouse. Standard 

deviations are given within the parenthesis. 

 

3.3.3 Spray Volume Evaluation 

The convex hull method’s ability to improve variable spray rates within plant canopies was 

tested to see whether it resulted in a meaningful reduction in spray volume. It was compared to 

the approach used by Yan et al. (2019). The evaluation was carried out in a laboratory setting 

using three groups of plants of different dimensions (Table 2-2) and a single nozzle. There were 

seven plants in a group that were placed at incremental distances from the laser (0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, 3.5 m).  

Proper nozzle flow rate is important in evaluating PWM-solenoid-valve controlled operation due 

to the limited performance when the duty cycle is less than 20%. Two nozzles with different 

flow rates were evaluated to determine which performed closest to its theoretical volume (Table 

Canopy Type X (Width) (mm) Y (Length) (mm) Z (Height) (mm) 

Big  408 (30.3) 396 (13.4) 368 (8.4) 

Medium  332 (42.7) 326 (8.9) 302 (10.9) 

Small  214 (23.0) 230 (29.2) 246 (20.7) 
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3-2). The nozzle with a high flow rate,1.5 L/min, (XR 8004, TeeJet Co., Wheaton, IL, USA) and, 

subsequently, lower duty cycles had lower spray volume output than was theoretically expected 

and was unreliable in its performance. Most duty cycles calculated were below 20%.  The PWM 

valves did not open for duty cycles below 10% and performed unreliably for duty cycles below 

20% (Gu et al., 2011). This resulted in spray volumes that were closer to theoretical volumes, 

calculated using Equation 3.7, but only because the nozzle failed to open for most of its 

operation; thus, the spray will not reach all parts of the plant canopy, and result in poor spray 

coverage. Measured volumes are always higher than theoretical volumes during normal 

operation.  The nozzle with a lower flow rate of 0.5625 L/min (XR 80015, TeeJet Co., Wheaton, 

IL, USA) had higher duty cycles and therefore, a more reliable performance, producing spray 

volumes higher than the theoretical values which is more in line with the normal operation 

(Figure 3-7), where the measured spray output is much higher than the theoretical spray output. 

The higher measured spray volumes are due to mechanical limitations of the PWM solenoid 

valves not being able to open and close fast enough (Yan et al. 2019). There was also some 

excess dribble once the nozzles were turned off. Based on the evaluation of the two nozzles, the 

lower flow rate nozzle, 0.5625 L/min, was chosen because of its more reliable performance.  

Table 3-2: The lower flow rates and higher duty cycles result in more reliable outputs above theoretical volumes. The spray 

volumes measured from two different nozzles with different flow rates are compared. Standard deviations are in parenthesis. 

Parameters Nozzle Flow Rate – 1.5 L/min Nozzle Flow Rate – 0.5625 L/min 

Mean Measured Vol (ml) 2.02 (1) 7.48 (1.8) 

Theoretical Vol (ml) 2.51 2.57 

 

 



 56  

 

 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝑝𝑟𝑎𝑦 𝑉𝑜𝑙𝑢𝑚𝑒(𝑚𝑙) = ∑(𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒𝑖 × 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 (𝑚𝑙
𝑠⁄ )) × 0.125𝑠 

𝑛

𝑖=1

 (3.7) 

Where, ‘n’ is the number of segments in the calculated sequence of duty cycles 

                   0.125 s is the the time between successive duty cycles 

 

Figure 3-7: The measured volumes are consistently higher than theoretical volumes due to mechanical limitations of the PWM 

valves. The comparison between theoretical volume and the measured volume at varying duty cycles for a nozzle with a flow rate 

of 0.5625 L/min. 

 

The spray volume output of each of the seven nozzles was regulated by sending their respective 

duty cycle sequences to the PWM controller (Liu et al., 2014). The lab setup was restricted to a 

single nozzle; therefore, the spray volume output of the seven nozzles was measured one at a 

time. The spray output was collected using a container that covered the whole area of the nozzle. 

Water was used as a safe alternative to chemical spray. The water collected was then measured 

using an electronic scale (PG2002-S, Mettler Toledo, Columbus, OH, USA), with a resolution of 
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0.01 g. The process was repeated five times for each of the seven nozzles and for both of the 

plant canopy volume determination methods mentioned above.  

 

3.3.3 Spray Coverage Test  

The spray coverage achieved by the offline spray system was tested in a commercial greenhouse 

using real plant canopies. The laser sensor was mounted at a height of 3 m from the ground, 

scanning the plants from above. The sensor height was determined using the method described in 

Chapter 2 where the average height of the three canopies (Table 3-3) was 328 mm, the canopy to 

canopy spacing was considered to be 500 mm as the big canopies had a width of around 464 mm 

and the range/width of the greenhouse was 4.5 m. The largest canopies were considered for the 

canopy to canopy spacing because the tight spacing of smaller plants would result in a sensor 

height that would cause large errors in characterization (Chapter 2). The spray boom and the 

laser sensor were travelling at a constant speed of 0.178 m/s. Nozzles with a flow rate of 0.5625 

L/min at a pressure of 275 kPa were used and any duty cycles below 20% were scaled to 20% to 

ensure that the PWM valves turned on and performed reliably. A flow meter (SM8001, IFM 

Efector Inc., Essen, Germany) was connected to the boom to measure the spray volume output of 

the system.  

Spray coverage on the plant canopies was observed using water sensitive paper (WSP). WSP has 

been widely used to determine spray coverage (Chen et al., 2013; Salyani et al., 2013; Sinha et 

al., 2020; Wu et al., 2019; Xiao et al., 2018). Strips of the WSP were placed on the edges of 

selected plant canopies along the travel direction as well as on the top and bottom of other target 

plants. A total of 16 canopies were selected to test spray coverage performance.  Figure 3-8(a) 
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illustrates the experimental layout of the plants and locations of the WSP targets. Three different 

sizes of plant canopies were used (Table 3-3) to test the performance of the system against 

canopies of varying volumes. Ten WSPs were also placed on the ground to monitor the ability of 

the system to stop spraying when there was no plant. The longer targets (G1, G2, … G6) were 

used to test whether the nozzles were activated and deactivated at the right times, while the small 

targets (G7, G8, G9, and G10) were used to test whether the right nozzles were activated (Figure 

3-8(a)). Data from three spray volume determination methods were collected - the modified, 

offline system discussed in this project; the Yan et al. (2019) system; and a conventional fixed-

rate spray system. Three replications were performed for each of the three methods. The sprayed 

WSP were then analyzed using an imaging software that determined spray coverage percentage 

and droplet density, among other values (Zhu et al., 2011).  

Table 3-3: Dimensions of the three varieties of plant canopies used for the spray coverage test in the greenhouse. Standard 

deviations are in parenthesis. 

Canopy Type Width (mm) Height (mm) 

Big  464 (68) 480 (54) 

Medium  271 (36) 299 (16) 

Small  174 (10) 205 (28) 
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Figure 3-8: (a) Experimental design to test the spray coverage of the offline spray system in a greenhouse environment. (b) Three 

rows of small plants. (c) Three rows of medium sized canopies. (d) Three rows of big canopies. (e) Scattered pattern of medium 

canopies to test whether the right nozzles are being triggered. (f) Spray boom travelling over the experimental setup. (g) 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Nozzle Activation 

3.4.1.1 Lab Experiment 

The control of spray location was found to have good accuracy using the four objects placed in a 

row along the travel direction (Figure 3-9). The nozzle was activated within 7 mm of the edge of 

the canopies based on the mean of the error of all rows., with a standard error of 1 mm. The 

nozzles were always activated before the edge of the objects. The error in nozzle activation 

depended on two factors – the accuracy with which the similarity index detected the starting 
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location of target objects and the speed of the system. The starting location of the objects 

determines when the sequence of duty cycle data generated through offline processing is sent to 

the PWM controller to trigger the nozzles. The speed of the system affects nozzle activation 

because it is assumed to be constant and identical for both the scan run and spray run. If there 

were consistent discrepancies in the speed between the two runs, there would be an error 

accumulation, where an increasing travel distance would result in an increasing error with each 

object. The error in Object 1 showed that the target object location was detected with an 

accuracy of 7 mm. Object 2 had a mean error of 10 mm, Object 3, 3 mm, and Object 4, 8 mm. 

The error was not accumulative for each object. Therefore, the assumption of identical speeds for 

both runs was found to be reasonable under the experimental condition 

 

Figure 3-9: The error in location of activation of spray nozzles. All errors were below theoretical limits. There was no 

cumulative error in the activation with an increasing travel distance (signified by the lack of an increasing error with each row). 
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The theoretical maximum error in activation must lie within the distance calculated by Equation 

3.8.  

 𝐸𝑟𝑟𝑜𝑟 ≤ (0.125 × 𝑇𝑟𝑎𝑣𝑒𝑙 𝑆𝑝𝑒𝑒𝑑) mm (3.8) 

Where 0.125 s is the time it takes for the laser sensor to send 5 scan lines.  

The formula is the same as the length of a segment in the density calculations mentioned 

previously. This error exists because the algorithm splits the entire dataset into segments 

(depicted by the yellow lines in Figure 3-10) from the starting edge of the first object. Hence, the 

subsequent edges of multiple rows of objects may not lie perfectly at the start of a segment 

(Figure 3-10(a)) and may even have a small portion of the edge in the segment, but this is 

enough for the nozzle to be activated because there is an object present in the segment. The error 

in nozzle activation is directly proportional to the travel speed of the spray boom. Hence, the 

higher the speed of the spray boom, the larger the potential error in nozzle activation. The errors 

in all rows for the laboratory experiment were within the theoretical limit of 14.5 mm calculated 

for this test using Equation 3.8. Therefore, the assumption of a constant speed was also found to 

be reasonable and any inconsistences in travel speed were insignificant.  
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Figure 3-10: The nozzle activation error is associated with the spatial resolution of the laser scan. The maximum error is the 

length of a segment. (a) shows early nozzle activation where the dataset is split (red line in the figure), does not intercept with the 

plant canopy. (b) shows zero nozzle activation error where the dataset is split, is tangent to the plant canopy. The yellow lines 

depict the locations of where the laser dataset is split into segments. 

 

3.4.1.2 Nozzle Alignment 

Since there are many nozzles on a given spray boom, it is essential to assure all nozzles are 

activated accurately whether they are close or far from the LiDAR sensor.  Figure 3-11 shows 

the nozzle activation errors for objects at different distances from the laser sensor. The system in 

the greenhouse travelled at a speed of 0.224 m/s; hence, the acceptable error threshold was 28 

mm (Equation 3.8). The nozzles were activated before the edges of the objects for all 

observations. When the objects were placed 1.5 m from the laser a mean error of 15 mm was 

observed. Mean errors of 12 mm and 18 mm were observed for objects placed at 2.5 m and 3.5 m 

from the laser sensor, respectively. The error in laser and nozzle alignment was measured as 

1.55˚. This would have resulted in an error of approximately 41, 68, and 95 mm in the nozzle 
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activation at 1.5, 2.5 and 3.5 m from the LiDAR sensor, respectively, if there was no correction 

for the error. The results from the experiment showed that the increasing distance of the objects 

from the laser did not result in an increase in error in activation of the nozzles. The laser 

alignment compensation performed well. The error was also lower than the theoretical error 

threshold of 28 mm for all distances.  

 

Figure 3-11: The increasing distance of a row of objects from the laser does not have an increasing error in activation. Hence, it 

can be inferred that the correction in alignment performs well. 

 

3.4.2 Convex Hull Volume Estimation 

To evaluate the performance of plant canopy volume estimation, the convex hull approach was 

compared to the methodology proposed by Yan et al. (2019). The initial evaluation was done in a 

laboratory environment using artificial targets, including objects of regular geometrical shapes 

and a group of artificial plants. The methodology was further evaluated in a greenhouse with 

living plants.   
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3.4.2.1 Artificial targets  

The convex hull approach to canopy volume estimation performed better than the method 

proposed by Yan et al. (2019) for objects with irregular surfaces and curvatures (Figure 3-12). 

Mean accuracy was used as a quantitative measure to compare the two methods. The convex hull 

method had an overall mean accuracy of 82% for all objects compared to 66% using the 

methodology proposed by Yan et al. (2019). The convex hull method had a mean accuracy of 

81% for ’Plant Group-1’ , 83% for the basketballs, and 83% for the toy balls compared to 39%, 

58%, and 52%, respectively, using Yan’s methodology (Yan et al., 2019). On the other hand, 

higher accuracy was obtained using Yan’s approach for boxes and cylinders, with a mean 

accuracy of 93% and 86%, respectively, than that achieved by the convex hull approach, with 

mean accuracies of 80% and 81%, respectively. The shape of the target objects had an impact on 

the performance of both methodologies. Yan et al. (2019), as mentioned earlier, assumes each 

point in the dataset to be a bar with unit length and width whose height is determined by the 

distance of the point from the ground. The volume is calculated as the cumulative volume of 

these bars; hence, it estimates objects with uniform cross section, such as the boxes and cylinders 

better than objects that have irregular cross sections like ‘Plant Group-1’, the toy balls, and 

basketballs. The convex hull method on the other hand follows the contours of target objects to 

estimate volumes. Plant canopies are irregular in shape; therefore, the convex hull method is 

better suited for plant volume estimation applications.  
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Figure 3-12: The comparison in performance of volume calculations between Yan et al. (2019) and the convex hull approach. 

The convex hull approach performs better for objects with irregular surfaces and curves, which are more representative of plant 

canopy shapes 

 

3.4.2.2 Living plants  

The performance of the algorithm was further evaluated against manually measured plant canopy 

volumes in a greenhouse environment with three different sizes of plant canopies (Table 3-4). 

The convex hull method had a mean accuracy of 83%. Five plants were manually measured in 

each size of plant canopy. The convex hull method achieved the lowest mean accuracy of 72% 

with a large standard deviation for the big canopies. The medium sized canopy volumes were 

estimated with an accuracy of 95%, while accuracy of the small canopy volume measurements 

was 82%. The algorithm tended to overestimate the volumes of canopies placed within 1 m of 

the laser sensor (Chapter 2). This effect was more pronounced for the big canopies.  
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Table 3-4: The performance of the convex hull approach in estimating canopy volumes in a greenhouse environment. A mean 

overall accuracy of 82.89% was achieved. The standard deviations are in parenthesis. 

 

 

3.4.3 Spray Volume Laboratory Evaluation  

The spray volume measured was consistently lower for the convex hull approach over all nozzles 

compared to that of Yan’s approach (Yan et al., 2019). Table 3-5 shows the mean measured 

volumes, calculated volumes based on the duty cycle data sent to the nozzles, and the savings. A 

mean spray volume reduction of approximately 15% was observed over all nozzles and all 

canopy sizes. The measured spray volume was higher than the calculated spray volumes 

(Equation 3.7) for both methodologies. This was due to the physical limitation of the PWM 

solenoid valves not closing at the right time since the duty cycles are changed every 0.125 s (Yan 

et al.,2019) plus an excess dribble when the nozzles were turned off. The excess measured 

volumes also resulted in lower measured spray savings compared to the calculated/potential 

spray savings.  

 

 

 

 

Target  Mean Accuracy (%) 

Big Canopies 72 (20) 

Medium Canopies 95 (6) 

Small Canopies 82 (10) 
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Table 3-5: The spray volume outputs of the two methods - convex hull and Yan et al. (2019) are compared. The average volumes 

shown are those of the outputs of seven nozzles for three different sizes of artificial plant canopies. The convex hull approach 

consistently showed lower spray volumes and achieved an average saving of 15%. Standard deviations are in parenthesis. 

 

The three groups of artificial plants resulted in three different spray volume outputs, which 

shows that the variable-rate spray system functioned effectively. ‘Plant Group-3’ had the highest 

average spray volume output of 9.08 ml for the convex hull method while Yan et al. (2019) was 

10.28 ml. ‘Plant Group-1’ had mean spray volumes of 5.88 ml and 6.81 ml for the convex hull 

method and Yan et al. (2019), respectively. ‘Plant Group-2’ resulted in 3.24 ml and 4.01 ml 

mean spray volumes for the convex hull and Yan et al. (2019) methods, respectively. ‘Plant 

Group-2’ showed the greatest reduction in spray volume at 19%. This might not be the best 

measure since a few of the duty cycles for the small canopies were below 20%, where the spray 

nozzle performance is not reliable (Gu et al., 2011). ‘Plant Group-1’ showed 14% and ‘Plant 

Group-3’ showed 12% spray savings. The consistent reduction in volume between the two 

methods shows that the improvement in volume estimation results in greater spray volume 

savings.   

Target Parameters 
Convex 

Hull 

Yan et al. 

(2019) 

Plant Group-1  

Mean Measured Vol (ml) 5.88 (0.92) 6.81 (0.93) 

Calculated Vol (ml) 2.19 2.84 

Measured spray savings 14% 

Potential savings 23% 

Plant Group-2  

Mean Measured Vol (ml) 3.24 (0.36) 4.01 (0.36) 

Calculated Vol (ml) 1.14 1.46 

Measured spray savings  19% 

Potential savings  22% 

Plant Group-3  

Mean Measured Vol (ml) 9.08 (0.78) 10.28 (0.64) 

Calculated Vol (ml) 2.95 3.95 

Measured spray savings  12% 

Potential savings 25% 
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3.4.4 Spray Coverage 

A deposition study was conducted in a production greenhouse to evaluate the offline spraying 

system’s performance for pest management based on its effectiveness and efficiency. For the 

effectiveness of insecticides, herbicides and fungicides, a coverage of at least 30% is required for 

disease prevention. If coverage is less than 30%, a droplet density of 20-30 droplets/cm2 is 

sufficient for insecticides and 50-70 droplets/cm2 is sufficient for fungicides (Zhu et al., 2011).  

The spray coverage performance of three different spraying strategies was evaluated using 

deposition data collected with WSP targets located at three different locations in the plant canopy 

(Section 3.3.3). Table 3-6, Table 3-7, and Table 3-8 show the percentage coverage obtained by 

the three strategies at the edges, including leading edge and trailing edge of a plant canopy; 

bottom; and top of the plant canopies, respectively. C1, C2, … C16 are plant locations where the 

WSP targets were placed as shown in Figure 3-8(a).  

Table 3-6 shows that the offline system significantly reduced the spray coverage on the edges of 

plant canopies compared to the other two systems. This shows that the offline system improved 

on the overestimation of edge canopy densities of the Yan et al. (2019) system and a precise 

spray rate control for intra-canopy density variations was achieved.  The algorithm significantly 

reduced spray coverage for canopies placed beyond 3.5 m from the laser sensor (C1, C5, and 

C9), which shows that the offline system with the use of the newly developed processing 

algorithm was able to better characterize plant canopies further from the laser. The offline 

system had a spray coverage well above the recommended 30% for all canopies except C9. The 

mean spray coverage for C9 was 28.57% and the mean droplet density was 58.6 droplets/cm2, 

with a standard deviation of 21.7 droplets/cm2. This droplet density would have been sufficient 

for insecticides and herbicides but not for fungicides. C9 was a small canopy placed at around 4 
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m from the laser sensor. The dimensions of the canopy were underestimated due to the reduction 

in resolution of the laser dataset as the distance from the laser increased.  This resulted in less 

than ideal spray volume output.  

Table 3-6: The percentage coverage for the WSP placed at the edges of the plant canopies. Three repetitions were performed for 

each method and two edges were measured for each canopy, resulting in a total sample size of 6. Standard deviations are in 

parenthesis. Same letters within the same column and same canopy show there is no significant difference (α=0.05). C1, C3, C5, 

C7, C9, and C11 are the labels provided for selected plant canopies that had WSP placed at their edges. 

Deposition Target – Canopy - Edges 

Method C1 C3 C5 C7 

Yan et al. (2019) 92.87 (5.57) a 99.58 (0.23) a 96.9 (3.68) a 98.19 (2.65) a 

Offline  79.59 (5.07) b 97.74 (0.95) b 84.68 (5.93) b 90.60 (4.23) b 

Conventional  97.82 (0.93) a 99.72 (0.25) a 99.01 (1.33) a 99.93 (0.06) a 

  C9 C11   

Yan et al. (2019) 96.22 (2.04) a 74.11 (9.88) b   

Offline  28.57 (7.32) c 85.42 (6.89) b   

Conventional  81.58 (8.56) b 99.67 (0.35) a   
 

Table 3-7 shows that there was no significant difference between the spray coverage achieved by 

the offline system and the Yan et al. (2019) system at the bottom of most plant canopies; Thus, 

the lower spray rates of the offline system still managed to penetrate the plant canopies 

effectively. There was no significant difference for the canopies placed in tightly packed blocks 

(C2, C4, C6, and C8). The offline system spray coverage was significantly lower than the Yan et 

al. (2019) system for canopies C14 and C15 that were in sparsely populated blocks. The 

reduction in spray coverage was below the recommended 30% for the offline system in canopies 

C4, C13, C14, C15 and C16. The droplet densities for the respective canopies were 134.76 (39), 

106.37 (66), 110.87 (15.5), 58.37 (33.12), 80.67 (4.35) droplets/cm2. From the density and 

coverage data, it can be inferred that only C15 had a lower than recommended spray coverage 

and density for fungicides, yet it was sufficient for insecticides and herbicides. The spray 

coverage can be improved by using nozzles that have a greater flow rate to penetrate the 
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canopies better; However, it may increase the total spray volume used and result in over-

spraying of the rest of the plant canopy.  

Table 3-7: The percentage cover for the WSP placed at the bottom of the plant canopies. Three repetitions were performed for 

each method for each plant canopy. Standard deviations are in parenthesis. Same letters within the same column and same 

canopy show there is no significant difference (α=0.05). C2, C4, C6, C8, C13, C14, C15, and C16 are the labels provided for 

select plant canopies that had WSP placed the bottom of the canopy. 

Deposition Target – Canopy – Bottom 

Method C2 C4 C6 C8 

Yan et al. (2019) 28.16 (5.75) a 16.02 (6.81) a 29.88 (19.25) a 33.56 (33.86) a 

Offline  28.69 (2.88) a 13.29 (2.98) a 30.71 (28.69) a 32.76 (9.45) a 

Conventional  31.22 (2.86) a 23.09 (5.97) a 79.66 (7.55) a 78.50 (2.80) a 

  C13 C14 C15 C16 

Yan et al. (2019) 17.89 (10.57) b 49.42 (11.26) b 27.6 (5.10) b 21.98 (19.6) b 

Offline  11.02 (3.69) b 21.31 (5.52) c 7.27 (3.80) c 17.12 (7.83) b 

Conventional  68.70 (11.96) a 79.89 (11.17) a 38.58 (2.82) a 85.21 (0.04) a 

 

The offline system showed a significant reduction in spray coverage while maintaining values 

well above the recommended 30% at the top of plant canopies (Table 3-8). The spray coverage 

achieved by the offline system was significantly lower than the Yan et al. (2019) system for C10, 

C13, C14, and C15. It was also significantly lower than the conventional system for all canopies 

except C2, C4 and C12. These results show that the offline system managed to reduce over-

spraying at the tops of canopies. 
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Table 3-8: The percentage coverage for the WSP placed at the top of the plant canopies. Three repetitions were performed for 

each method and for each canopy. Standard deviations are in parenthesis. Same letters within the same column and same canopy 

show there is no significant difference (α=0.05). C2, C4, C6, C8, C10, C12, C13, C14, C15, and C16 are the labels provided for 

select plant canopies that had WSP placed the top of the canopy. 

Deposition Target – Canopy - Top  

Method C2 C4 C6 C8 

Yan et al. (2019) 98.91 (0.71) a 99.45 (0.29) b 97.61 (3.02) ab 95.02 (3.20) ab 

Offline  93.09 (4.51) a 99.90 (0.05) a 84.34 (8.68) b 95.12 (1.25) b 

Conventional  99.25 (0.09) a  99.91 (0) a 99.87 (0.04) a 99.87 (0.04) a 

  C10 C12 C13 C14 

Yan et al. (2019) 97.38 (0.70) a 42.93 (14.10) b 99.91 (0.11) a 99.65 (0.36) a 

Offline  93.48 (2.47) b 93.78 (1.46) a 82.85 (2.88) b 85.94 (1.03) b 

Conventional  99.61 (0.24) a 99.79 (0.29) a 99.96 (0.02) a 99.95 (0.02) a 

  C15 C16   

Yan et al. (2019) 99.57 (0.72) a 84.05 (1.02) b   

Offline  87.64 (3.73) b 82.97 (3.98) b   

Conventional  99.8 (0.13) a  99.8 (0.13) a   
 

The spray coverage on the ground targets were significantly lower than the conventional for both 

variable-rate spray systems, which shows there was a reduced loss of spray to the ground (Table 

3-9). The offline system also had significantly lower spray coverage than that of the Yan et al. 

(2019) system on the ground targets G1, G3, G5 and G9. This finding indicates that the offline 

system was able to reduce off-target losses further. The targets G2, G4, and G6, placed behind 

the trailing edges of the plant canopies had higher coverage percentages than G1, G3, and G5, 

placed ahead of the leading edges of plant canopies. This may have been due to a slight spray 

drift inside the greenhouse along the travel direction of the spray boom. There was also no 

significant difference in spray coverage between the Yan et al. (2019) system and the offline 

system for G2, G4, and G6. This may have been because the Yan et al. (2019) system did not 

account for the error in laser alignment resulting in the nozzles being turned off earlier than 

intended. G7 had the highest spray coverage for both the Yan et al. (2019) system as well as the 

offline system, which due to the WSP being within the range of the nozzles that were activated. 
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G8 and G10 showed minimal coverage for both variable-rate spray systems, while there was a 

significant reduction between the two variable-rate systems for G9. The conventional system 

predictably achieved a 100% spray coverage on the ground targets showing their large off-target 

losses.  

Table 3-9: Percentage coverage for the WSP placed on the ground. Three repetitions were performed for each method and for 

each canopy. Standard deviations are in parenthesis. Same letters within the same column and same canopy show there is no 

significant difference (α=0.05). G1, G2 … G10 are the labels provided for select ground targets. 

Deposition Target - Ground  

Method G1 G2 G3 G4 

Yan et al. (2019) 83.59 (10.87) a 46.44 (3.16) b 72.41 (7.70) b 49.91 (16.18) b 

Offline  6.71 (5.53) b 39.55 (8.69) b 13.27 (1.18) c 26.42 (4.32) b 

Conventional  100 (0) a 100 (0) a 100 (0) a 100 (0) a 

  G5 G6 G7 G8 

Yan et al. (2019) 6.54 (3.40) b 52.65 (33.51) a 33.04 (13.31) b 0.19 (0.24) b 

Offline  0.35 (0.12) c 80.26 (0.48) a 16.91 (6.25) b 0.56 (0.63) b 

Conventional  100 (0) a 100 (0) a 99.95 (0.08) a 100 (0) a 

  G9 G10   

Yan et al. (2019) 11.31 (3.26) b 0.51 (0.49) b   

Offline  3.37 (0.95) c 0.34 (0.24) b   

Conventional  100 (0) a 100 (0) a   
 

The variable-rate spraying systems showed a significant reduction in spray volume used 

compared to the conventional, constant spray system. The total spray volume used by the Yan et 

al. (2019) system was 5.06 liters. The offline system used 2.36 liters while the conventional 

system used 16.43 liters. There was a reduction of 86% with the offline system compared to the 

conventional spray system. The offline system achieved a 53% reduction in spray volume used 

compared to Yan et al. (2019) while maintaining spray coverage and droplet density above the 

recommended values for all canopies. These results show that the offline system was able to 

improve the efficiency of the existing variable-rate sprayer by 53%, using precise intra-canopy 

spray rate variations and reduced losses to the ground.  
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3.5 APPLICATIONS AND IMPROVEMENTS 

 

The convex hull approach with the processing algorithm could be integrated into the system 

while maintaining inline operation if the computing power of the system can be improved. This 

integrated inline system could improve spray efficiencies while eliminating potential increases in 

operational costs due to running the system multiple times. The methodology used to correct for 

the laser alignment can also reduce off-target losses and result in better spray coverage of plant 

canopies. 

Offline functionality, on the other hand, can provide further flexibility in how the laser data is 

collected. The current system, which has one laser sensor for each spray boom, may not be 

economically feasible when considering the large number of spray booms in a commercial 

greenhouse. Hence, mapping the whole greenhouse through more cost-effective methods such as 

utilizing an UAV (Unmanned Aerial Vehicle) while spraying offline could potentially lead to 

significant reductions in system costs.  

3.6 CONCLUSIONS 

The accommodation of an improved canopy characterization algorithm required the modification 

of an inline system (Yan et al., 2019) to an offline system. This study focused on two aspects of 

spray control: spray location and spray volume control. The developed methodologies were 

tested both in a laboratory and a commercial greenhouse. As a result, the offline system achieved 

53% and 86% spray volume reductions compared to an intelligent greenhouse sprayer developed 

by Yan et al. (2019) and a conventional spray system, respectively.  

For the spray location control, the algorithm developed was found effective in detecting and 

initiating a sequence of spray operations. For precise spraying location of all nozzles on a spray 
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boom, it was aligned with the LiDAR/laser sensor that was used to collect plant information. The 

nozzles were found to activate within a mean distance of 7 mm from the edge of the plant 

canopies. The distance travelled by the nozzles did not show any effect on the timing of 

activation.  

Improved canopy volume determination was possible using a convex hull approach and was 

shown to improve volume estimations compared to that by Yan et al. (2019) for objects with 

irregular surfaces and curvatures, which are more representative of plant canopy shapes. It 

achieved a mean accuracy of 82% compared to 66% for the methodology reported by Yan et al. 

(2019). The improvement in volume measurements also showed an improvement in spray 

volume outputs with an average reduction of 15% in spray volume based on laboratory tests.  

It was further found that the intra-canopy precision control, according to varied canopy density, 

resulted in improved spray efficiency while meeting most of the coverage requirements. The 

spray coverage evaluation was conducted in a commercial production greenhouse. The improved 

efficiency was due to a significant reduction in spray coverage at the edges of plant canopies that 

have lower canopy density, while staying above recommended spray coverage percentages. At 

the center, where the density is the highest, the tops and bottoms of the canopies achieved similar 

coverage as the Yan et al. (2019) system and the conventional system for plant canopies that 

were grouped closely together. It significantly reduced off-target losses as seen from the spray 

coverage data of the ground targets. The coverage was reduced to below recommended values 

for the offline system in the bottoms of a few plant canopies. The low spray coverage still had a 

density of droplets which was sufficient for pest prevention.  
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Chapter 4: Conclusions and Recommendations for Future Study 

The efficiency of a 2D laser-guided, variable rate sprayer (Yan et al., 2019) was improved by 

reducing spray volume use by 53% in a greenhouse environment. This reduction in spray volume 

was achieved through the introduction of a processing algorithm (CHBC) that improved canopy 

characterization. CHBC involved the use of a combination of registration algorithm, clustering 

algorithm and a mirroring algorithm. The improvement was measured using a root mean square 

error (RMSE) parameter. The RMSE in canopy width measurements – the major shortcoming of 

Yan et al., (2018) was reduced by 46% when using CHBC. CHBC achieved an average RMSE 

of 25 mm compared to Yan et al., (2018) which was 47 mm when the laser sensor was placed at 

a height of 1 m. Greater laser sensor heights reduced RMSE for both the Yan et al. (2018) 

methodology as well as CHBC but the latter methodology was more accurate and robust at 

different sensor heights. CHBC also performed more reliably for plants placed at increasing 

horizontal distances from the sensor when the sensor height was determined by calculating an 

‘optimal sensor height’ whose formula was derived using principles developed by Sun et al. 

(2017). 

The inline variable rate spray system developed by Yan et al., (2019) was modified to 

incorporate the CHBC algorithm. The computing time required by the CHBC algorithm meant 

that the system could no longer have inline functionality. The system was converted to operate 

offline and split its functions into a two-step process. It was made to perform one run where the 

plant canopies were scanned and spray on a second run. A new GUI was designed to facilitate 

this two-step process. The location of when the nozzles were activated for the spray run was 

determined by detecting the presence of the plant canopies using the data recorded from the 

previous scan run. A similarity index was used to compare the laser data obtained during the 
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spray run to the data obtained from the scan run. When the two datasets matched, it meant that 

the plant canopies were located. The performance of this detection algorithm was tested by 

locating where the nozzles were activated. It was found to activate within 7.23 mm of the edges 

of the plant canopies.  

The spray rates were calculated offline using the CHBC processed data. They were calculated as 

a function of the volume of the plant canopies. A convex hull was used to calculate volumes and 

increased the accuracy compared to the Yan et al., (2019) methodology. A mean accuracy of 

81% was achieved by the convex hull compared to 66% of Yan et al., (2019). A reduction of 

15% in spray volume was also observed in a lab environment when using the convex hull 

method which was able to precisely control spray rates based on intra-canopy variations in 

density. The offline system using the CHBC processed data and the convex hull to calculate 

volumes was tested in a greenhouse environment. Its spray coverage over plant canopies was 

compared to the Yan et al., (2019) system as well a conventional system. No significant 

difference in spray coverage was observed for the top and bottom of plant canopies grouped 

close together. The edges of the canopies sprayed by the offline system showed a significant 

reduction in spray coverage while staying above recommended values. There was also a 

significant reduction in off-target losses. The bottom of plant canopies placed in sparse rows 

showed a reduction in spray coverage below recommended values, but the density of spray was 

still sufficient for disease prevention using insecticides and herbicides but not for fungicides. The 

offline system reduced spray volumes by 87% compared to the conventional system and 

improved the efficiency of the Yan et al., (2019) system by 53%.  

The algorithm developed in this study can be further developed to resolve some limitations. The 

ground datapoints interfere with the CHBC algorithm and are removed currently by manually 
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measuring the height of the sensor from the ground and inputting the value into the program. 

This can be automated in the future.  

The computing time can also be reduced through further improvement of the code. The test area 

of the greenhouse was restricted to about 16m in length and the CHBC algorithm took about 15 

min to process close to 2.5 million datapoints.  

The mirroring algorithm assumes plant canopies are symmetrical and this may not be the best 

assumption since it overestimates the canopy dimensions for plants closer to the laser. Hence 

further studies can be performed to develop better ways to predict the occluded sides of the plant 

canopies.  

The offline spray system can also be improved further for commercial use inside a greenhouse. 

The current system obtains laser data from the GUI but processes it separately on a numerical 

computing platform. The processed data is then fed back to the GUI to spray the canopies. A 

more cohesive single platform data collection and processing is desirable. The spray efficiency 

can also be improved further by studying the effect of the overlapping spray coverage areas 

between adjacent nozzles.  
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Appendix A 

Source code (MATLAB R2019a ver. 9.6.0.1114505, MathWorks, Natick, Massachusetts, USA) 

 

A.1 3-D Map Construction and Filtering 

 

% Loading the data from the file saved during the scan run into variables  

parameters = load ("C:\laserdata\"+ para_filename+".txt"); 

Speed = parameters(1,1); 

Speed_const=(0.025/720)*(Speed*447.04); 

Ground_Level = parameters(2,1)*1000; 

Range = (parameters(3,1)*1000); 

No_Nozzle = parameters(4,1); 

Nozzle_Spacing = parameters(5,1); 

Dist_of_first_right_nozzle_from_laser = parameters(6,1); 

Dist_of_first_left_nozzle_from_laser = parameters (7,1); 

 

data = load ("C:\laserdata\"+data_filename+".txt"); 

  

%First using nameplace x,y,z parameters before the dataset is limited by the set greenhouse 

range and ground points have been removed. Nameplace arrays have to be used since we need to 

initialize the 'z' parameters before filtering 

  

nameplace_x = data(:,1); 

nameplace_y = data(:,2); 

nameplace_z=[]; 

j=1; 

for i=1:length(nameplace_x) 

    nameplace_z(j) = i*Speed_const; 

    j=j+1; 

end 
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nameplace_z=nameplace_z'; 

 

x=[];y=[];z=[]; 

%Filtering the data based on greenhouse dimensions  

for i=1:length(nameplace_x) 

    if(nameplace_y(i)>-Range && nameplace_y(i)<Range && nameplace_x(i)>600 

&&nameplace_x(i)<(Ground_Level))  

        x=[x;nameplace_x(i)]; 

        y=[y;nameplace_y(i)]; 

        z=[z;nameplace_z(i)]; 

    end  

end 

 

Raw_Data = [x y z]; 

 

%Removing noise from the filtered dataset 

ptCloud= pointCloud(Raw_Data); 

ptCloudA= pcdenoise(ptCloud); 

Raw_Data = ptCloudA.Location(:,:); 

 

A.2 Clustering Algorithm  

% Copying the dataset into a dummy variable so as to not affect the main variable 

Dummy_Data=Raw_Data; 

no_of_clus=1; 

Clusters={}; 

 

while (isempty(Dummy_Data)==0) 

    Not_in_clus = []; 

    Pres_in_clus = []; 

    Dummy_Data=sortrows(Dummy_Data,1); 

    local_maxima = Dummy_Data(1,:); 
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    threshold = linspace (175,10,((Ground_Level+20)-local_maxima(1,1))); 

    [nr,nc]=size(Dummy_Data); 

     

    Pres_in_clus = [Pres_in_clus;local_maxima]; 

    Not_in_clus = [Not_in_clus;40000 40000 40000]; 

     

    Idx=rangesearch([Dummy_Data(:,2) Dummy_Data(:,3)],[local_maxima(:,2) 

local_maxima(:,3)],750,'SortIndices',true); 

    Idx=sort(Idx{1,1}); 

    length_of_Idx=length(Idx); 

     

     

    for i=2:length_of_Idx        

         

        distances_to_P = sqrt((Pres_in_clus(:,2)-Dummy_Data(Idx(i),2)).^2 + (Pres_in_clus(:,3)-

Dummy_Data(Idx(i),3)).^2); 

        distances_to_N = sqrt((Not_in_clus(:,2)-Dummy_Data(Idx(i),2)).^2 + (Not_in_clus(:,3)-

Dummy_Data(Idx(i),3)).^2); 

         

        if (round(Dummy_Data(Idx(i),1)-local_maxima(1,1))>0) 

            indi_threshold = threshold(round(Dummy_Data(Idx(i),1)-local_maxima(1,1))); 

        else 

            indi_threshold = threshold(1); 

        end 

         

        if(min(distances_to_P)<indi_threshold && min(distances_to_P)<=min(distances_to_N)) 

            Pres_in_clus = [Pres_in_clus;Dummy_Data(Idx(i),:)]; 

        elseif (min(distances_to_P)<indi_threshold && min(distances_to_P)>min(distances_to_N)) 

            Not_in_clus = [Not_in_clus;Dummy_Data(Idx(i),:)]; 

        elseif (min(distances_to_P)>indi_threshold) 

            Not_in_clus = [Not_in_clus;Dummy_Data(Idx(i),:)]; 
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        end 

         

    end 

     

    Dummy_Data = setdiff(Dummy_Data,Pres_in_clus,'rows'); 

    Clusters{no_of_clus,1}=Pres_in_clus; 

    no_of_clus = no_of_clus+1; 

     

end 

  

  

Clusters = Clusters(cellfun(@(Clusters) length(Clusters)>=60, Clusters)); % Removing clusters 

that have less than 40 points 

 

Processed_Data=Clusters; 

Clus_no=numel(Clusters); 

  

[Mirrored_Data] = Mirroring(Processed_Data,Clus_no,Ground_Level); 

 

A.3 Mirroring Algorithm 

 

function [Mirrored_Data] = Mirroring(Processed_Data,Clus_no,Ground_Level) 

%% Filtering the clusters 

  

Dummy_Data = Processed_Data; 

distances_from_centroid=[]; 

angle_from_centroid=[]; 

  

%Removing points that are greater than or lesser than mean+/-2 standard deviations   

for k=1:Clus_no 

    len=length(Dummy_Data{k,1}); 
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    centroid_x= mean(Dummy_Data{k,1}(:,1)); 

    centroid_y= mean(Dummy_Data{k,1}(:,2)); 

    centroid_z= mean(Dummy_Data{k,1}(:,3)); 

  

    for i=1:len 

        y_pt= Dummy_Data{k,1}(i,2); 

        z_pt= Dummy_Data{k,1}(i,3); 

        distances_from_centroid=[distances_from_centroid, (sqrt((y_pt-centroid_y)^2 + (z_pt-

centroid_z)^2))]; 

        angle_from_centroid=[angle_from_centroid, atan(abs(z_pt-centroid_z)/abs(centroid_y-

y_pt))]; 

    end 

     

    %Calculating the Mean and Standard Deviation of the distances for each 

    %cluster to find outliers 

    avg=mean(distances_from_centroid); 

    sd=sqrt(var(distances_from_centroid)); 

     

    u_lim= avg+(1.96*sd); %Upper limit     

   

    %Replacing all the outliers by Nan (Not a number) 

    for j=1:len 

        if (Dummy_Data{k,1}(j,2)<centroid_y) 

            if (distances_from_centroid(j)>u_lim && angle_from_centroid(j)<((pi/180)*35)) %|| 

distances_from_centroid(j)<l_lim) 

                Dummy_Data{k,1}(j,:)=nan; 

            end 

        end 

    end 

     

    distances_from_centroid=[]; 
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    angle_from_centroid=[]; 

end 

  

%Removing the points that are Nan (Not a number) 

for k=1:Clus_no 

i=1; 

    len=length(Dummy_Data{k,1}); 

    while (i<=len) 

        if(isnan(Dummy_Data{k,1}(i,1))==1) 

            Dummy_Data{k,1}(i,:)=[]; 

            len=length(Dummy_Data{k,1}); 

            i=1; 

        else 

            i=i+1; 

        end 

       

    end 

     

end 

  

%% Mirroring the data  

  

j=0; 

Mirrored_Data={}; 

Nameplace_Matrix=[]; 

Test_Array =[]; 

hold on 

for k=1:Clus_no 

    if (abs(mean(Dummy_Data{k,1}(:,2)))>300) %Mirror only the clusters beyond 300mm from 

the sensor       

        [R,C,Xb] = ExactMinBoundCircle([Dummy_Data{k,1}(:,2),Dummy_Data{k,1}(:,3)]); 
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        t = linspace(pi/2,3*pi/2,200); %Using only a semi-circle to find the two points that define 

the diameter of the bounding circle  

         

        bound_cir_y = R*cos(t) + C(1); %Bounding circle center y-coordinate 

        bound_cir_z = R*sin(t) + C(2); %Bounding circle center z-coordinate 

         

        %The points that define the diamter that splits the bounding cicrle 

        y_upper_lim=bound_cir_y(end);  

        z_upper_lim=bound_cir_z(end);  

        y_lower_lim=bound_cir_y(1);  

        z_lower_lim=bound_cir_z(1);  

         

        %Mirroring the points that fall to the right of the splitting 

        %plane(Diameter of the bounding circle)  

        for i=1:length(Dummy_Data{k,1}) 

            y_org=Dummy_Data{k,1}(i,2); z_org= Dummy_Data{k,1}(i,3); 

x_org=Dummy_Data{k,1}(i,1); %Original data points from the Dummy_Data matrix 

            if (abs(y_org)>abs(y_upper_lim)) 

                continue; 

            else 

                y_mirrored= 2*(y_upper_lim + ( (((y_org-y_upper_lim)*(y_lower_lim-

y_upper_lim))+((z_org-z_upper_lim)*(z_lower_lim-z_upper_lim)))/((y_lower_lim-

y_upper_lim)^2+(z_lower_lim-z_upper_lim)^2))*(y_lower_lim-y_upper_lim))-y_org; 

                z_mirrored= 2*(z_upper_lim + ( (((y_org-y_upper_lim)*(y_lower_lim-

y_upper_lim))+((z_org-z_upper_lim)*(z_lower_lim-z_upper_lim)))/((y_lower_lim-

y_upper_lim)^2+(z_lower_lim-z_upper_lim)^2))*(z_lower_lim-z_upper_lim))-z_org; 

                Nameplace_Matrix=[Nameplace_Matrix; x_org y_mirrored z_mirrored ; x_org y_org 

z_org]; 

            end 

        end 

        j=j+1; 
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        Mirrored_Data{j,1}= Nameplace_Matrix; 

        Nameplace_Matrix=[]; 

    else 

        j=j+1; 

        Mirrored_Data{j,1}=Dummy_Data{k,1}; 

         

    end 

    Test_Array=[];     

end 

  

y_conv=[];z_conv=[]; 

for i=1:Clus_no 

    [R,C,Xb] = ExactMinBoundCircle([Mirrored_Data{i,1}(:,2),Mirrored_Data{i,1}(:,3)]); 

    t = linspace(0,2*pi,20); 

     

    y_conv = (0.5*R)*cos(t) + C(1); 

    z_conv = (0.5*R)*sin(t) + C(2); 

    inPoints = polygrid(y_conv,z_conv,0.01); 

    x_conv=(Ground_Level).*ones(size(inPoints(:,1))); 

    Mirrored_Data{i,1}=[Mirrored_Data{i,1};x_conv inPoints(:,1) inPoints(:,2)]; 

    y_conv=[];z_conv=[];H=[]; 

end 

end 

 

 

A.4 Overall Processing Algorithm Flowchart  
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A.5 Spray Rate and Duty Cycle Calculation 

 

Vol_per_section={}; 

Pts_per_section={}; 

Density_per_section={}; 

inc=1; 

  

Dum_Mat = cell2mat(Dummy_Mirrored_Data); 

length_data=[]; 

length_data=length(Dummy_Mirrored_Data{1,1}); 

for i=2:Clus_no 

length_data=[length_data;length_data(i-1)+length(Dummy_Mirrored_Data{i,1})]; 

end 

Valid_Indices_Track={}; 

cluster_x=[];cluster_y=[];cluster_z=[]; 

valid_x=[];valid_y=[];valid_z=[]; 

cluster_indices=[]; 

valid_indices=[]; 

  

length_dataset=max(Dum_Mat(:,3))-min(Dum_Mat(:,3)); 

Segment_length= 721*5*Speed_const; %The nozzles are triggered every 0.125s which is 

equivalent to 5 scan lines 

travel_limit = round(length_dataset/Segment_length); 

 

low_limit = min(Dum_Mat(:,3))/Speed_const; 

Current_Segment_Val=((low_limit)-rem((low_limit),721))*Speed_const; 

  

  

Slice_length = Nozzle_Spacing; %Assuming there are 10 nozzles 

  

% Initializing a kd-tree searcher to improve speed 
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Mdl = KDTreeSearcher([Dum_Mat(:,2) Dum_Mat(:,3)],'BucketSize',20000); 

for i=1:travel_limit 

     

    Current_Slice_Val=-(Dist_of_first_right_nozzle_from_laser + (Nozzle_Spacing/2)); 

    for j=1:No_Nozzle 

             

        Idx = rangesearch(Mdl,[Current_Slice_Val 

Current_Segment_Val],750);%Distance','euclidean');%,'Scale',iqr([Dum_Mat(:,2) 

Dum_Mat(:,3)])); 

         

        if (length(Idx{1,1})>3) 

                Idx=cell2mat(Idx); 

              % Finding the valid indexes that lie in the particular segment 

              % and slice 

                for k=1:length(Idx) 

                    if (Dum_Mat(Idx(k),3)>=Current_Segment_Val && 

Dum_Mat(Idx(k),3)<=(Current_Segment_Val+Segment_length) && 

Dum_Mat(Idx(k),2)>=Current_Slice_Val && Dum_Mat(Idx(k),2)<=(Current_Slice_Val + 

Slice_length)) 

                        valid_x=[valid_x;Dum_Mat(Idx(k),1)]; 

                        valid_y=[valid_y;Dum_Mat(Idx(k),2)]; 

                        valid_z=[valid_z;Dum_Mat(Idx(k),3)]; 

                        valid_indices = [valid_indices;Idx(k)]; 

                    end 

                end 

                valid_data=[valid_x valid_y valid_z]; 

                valid_x=[];valid_y=[];valid_z=[]; 

            %Finding the index that belong to a particular cluster 

            while (isempty(valid_data)==0) 

                for l=1:length(length_data) 
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                    if(min(valid_indices)<=length_data(l)) 

                        break; 

                    end 

                end 

                 

                %Assigning values to the valid points that belong to a cluster                 

                for m=1:length(valid_indices) 

                    if(valid_indices(m)<=length_data(l)) 

                        cluster_x=[cluster_x;Dum_Mat(valid_indices(m),1)]; 

                        cluster_y=[cluster_y;Dum_Mat(valid_indices(m),2)]; 

                        cluster_z=[cluster_z;Dum_Mat(valid_indices(m),3)]; 

                        cluster_indices=[cluster_indices;valid_indices(m)]; 

                    end 

                end 

                 

                cluster_data = [cluster_x cluster_y cluster_z]; 

                cluster_x=[];cluster_y=[];cluster_z=[]; 

                 

                 

                Pts_per_section{i,j}{1,inc}=cluster_data; 

                shp=alphaShape(Pts_per_section{i,j}{1,inc},inf); 

                Vol_per_section{i,j}{1,inc} = volume(shp); 

                width_of_dataset=(max(cluster_data(:,2))-min(cluster_data(:,2))); 

                length_of_dataset=(max(cluster_data(:,3))-min(cluster_data(:,3))); 

                height_of_dataset=(max(cluster_data(:,1))-min(cluster_data(:,1))); 

                if (Vol_per_section{i,j}{1,inc}>0) 

                    Density_per_section{i,j}{1,inc} = 

Vol_per_section{i,j}{1,inc}/(width_of_dataset*length_of_dataset*height_of_dataset); 

                else 

                    Density_per_section{i,j}{1,inc} = 0; 

                end 



 100  

 

                valid_data = setdiff(valid_data,cluster_data,'rows'); 

                valid_indices = setdiff(valid_indices, cluster_indices); 

                inc=inc+1; 

            end 

  

        end 

  

        Current_Slice_Val=Current_Slice_Val - Slice_length; 

        inc=1; 

    end 

     

    Current_Segment_Val = Current_Segment_Val + Segment_length; 

    inc=1; 

end 

toc 

%% 

  

[i_length,j_length]=size(Vol_per_section); 

Max_Height=[]; 

density=[]; 

Right_DC=zeros([travel_limit,No_Nozzle*2]); 

Right_DC_Hex{15,No_Nozzle*2}={'0'}; 

Right_Spray_Rate = zeros([travel_limit,No_Nozzle]); 

Segment_Height = zeros([travel_limit,No_Nozzle]); 

  

  

for i=1:i_length 

    for j=1:j_length 

        Sum_Vol =0; 

        Max_Density_of_section=0; 

        for k=1:length(Vol_per_section{i,j}) 
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            Sum_Vol = Sum_Vol + Vol_per_section{i,j}{1,k}; 

            Max_Density_of_section= 

max(Max_Density_of_section,Density_per_section{i,j}{1,k}); 

            if (isempty(Pts_per_section{i,j})==0) 

                Max_Height=[Max_Height,min(Pts_per_section{i,j}{1,k}(:,1))]; 

  

            else 

                Max_Height=G_Level-1;   

            end 

        end 

        Seg_Height=min(Max_Height); 

         

        if (isempty(Seg_Height)==1) 

            Seg_Height=G_Level-1;             

        end 

        density(i,j) = Max_Density_of_section; 

        Segment_Height(i,j) = Seg_Height; 

        Right_Spray_Rate(i,j) = ((60*(Slice_length/1000)*((Ground_Level-

Seg_Height)/1000)*(Speed*0.44704)*density(i,j)*0.13)/0.675)*100; 

        if (Right_Spray_Rate(i,j)==0) 

            Right_DC(i,j)=0; 

        elseif(round(Right_Spray_Rate(i,j))<20) 

            Right_DC(i,j)=20; 

        elseif(round(Right_Spray_Rate(i,j))>99) 

            Right_DC(i,j)=99; 

        else 

            Right_DC(i,j) = round(Right_Spray_Rate(i,j)); 

        end 

        Max_Height=[]; 

    end 

end 
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Right_DC=flip(Right_DC,2); 

[nr,nc]=size(Right_DC); 

clear R_DC_Hex; 

R_DC_Hex{15,1}={}; 

for i=1:nr 

    k=i; 

    R_DC_Hex{k,1}= "ff"; 

    for j=1:nc 

        Right_DC_Hex{k,j}=num2str(Right_DC(i,j)); 

        if round(Right_DC(i,j))<10 

            Right_DC_Hex{k,j}="0"+Right_DC_Hex{k,j}; 

        end 

        R_DC_Hex{k,1} = strcat(R_DC_Hex{k,1},Right_DC_Hex{k,j}); 

    end 

    R_DC_Hex{k,1}= R_DC_Hex{k,1} + "55"; 

end 

R_DC_Hex{k+1,1}= "ff000000000000000000000000000000000000000055"; 

 

  

 %% Left Nozzles 

% Clearing variables used during right nozzle spray rate calculations 

tic 

Vol_per_section={}; 

Pts_per_section={}; 

Density_per_section={}; 

inc=1; 

  

cluster_x=[];cluster_y=[];cluster_z=[]; 

valid_x=[];valid_y=[];valid_z=[]; 
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cluster_indices=[]; 

valid_indices=[]; 

  

low_limit = min(Dum_Mat(:,3))/Speed_const; 

Current_Segment_Val=((low_limit)-rem((low_limit),721))*Speed_const; 

  

  

for i=1:travel_limit 

    Current_Slice_Val=Dist_of_first_left_nozzle_from_laser + (Nozzle_Spacing/2); 

    for j=1:No_Nozzle 

 

  % Initializing a kd-tree searcher to improve speed 

       

        Idx = rangesearch(Mdl,[Current_Slice_Val 

Current_Segment_Val],750);%Distance','euclidean');%,'Scale',iqr([Dum_Mat(:,2) 

Dum_Mat(:,3)])); 

         

        if (length(Idx{1,1})>3) 

%               Idx=sort(Idx{1,1}); 

                Idx=cell2mat(Idx); 

              % Finding the valid indexes that lie in the particular semnet 

              % and slice 

                for k=1:length(Idx) 

                    if (Dum_Mat(Idx(k),3)>=Current_Segment_Val && 

Dum_Mat(Idx(k),3)<=(Current_Segment_Val+Segment_length) && 

Dum_Mat(Idx(k),2)<=Current_Slice_Val && Dum_Mat(Idx(k),2)>=(Current_Slice_Val - 

Slice_length))                         

                        valid_x=[valid_x;Dum_Mat(Idx(k),1)]; 

                        valid_y=[valid_y;Dum_Mat(Idx(k),2)]; 

                        valid_z=[valid_z;Dum_Mat(Idx(k),3)]; 

                        valid_indices = [valid_indices;Idx(k)]; 
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                    end 

                end 

                valid_data=[valid_x valid_y valid_z]; 

                valid_x=[];valid_y=[];valid_z=[]; 

            %Finding the index that belong to a particular cluster 

            while (isempty(valid_data)==0) 

                for l=1:length(length_data) 

                    if(min(valid_indices)<=length_data(l)) 

                        break; 

                    end 

                end 

                 

                %Assigning values to the valid points that belong to a cluster                 

                for m=1:length(valid_indices) 

                    if(valid_indices(m)<=length_data(l)) 

                        cluster_x=[cluster_x;Dum_Mat(valid_indices(m),1)]; 

                        cluster_y=[cluster_y;Dum_Mat(valid_indices(m),2)]; 

                        cluster_z=[cluster_z;Dum_Mat(valid_indices(m),3)]; 

                        cluster_indices=[cluster_indices;valid_indices(m)]; 

                    end 

                end 

                 

                cluster_data = [cluster_x cluster_y cluster_z]; 

                cluster_x=[];cluster_y=[];cluster_z=[]; 

                                 

                Pts_per_section{i,j}{1,inc}=cluster_data; 

                shp=alphaShape(Pts_per_section{i,j}{1,inc},inf); 

                Vol_per_section{i,j}{1,inc} = volume(shp); 

                width_of_dataset=(max(cluster_data(:,2))-min(cluster_data(:,2))); 

                length_of_dataset=(max(cluster_data(:,3))-min(cluster_data(:,3))); 

                height_of_dataset=(max(cluster_data(:,1))-min(cluster_data(:,1))); 
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                if (Vol_per_section{i,j}{1,inc}>0) 

                    Density_per_section{i,j}{1,inc} = 

Vol_per_section{i,j}{1,inc}/(width_of_dataset*length_of_dataset*height_of_dataset); 

                else 

                    Density_per_section{i,j}{1,inc} = 0; 

                end 

                valid_data = setdiff(valid_data,cluster_data,'rows'); 

                valid_indices = setdiff(valid_indices, cluster_indices); 

                inc=inc+1; 

            end 

  

        end 

        Current_Slice_Val=Current_Slice_Val + Slice_length; 

        inc=1; 

    end 

    Current_Segment_Val = Current_Segment_Val + Segment_length; 

    inc=1; 

end 

  

%% 

  

[i_length,j_length]=size(Vol_per_section); 

Max_Height=[]; 

density_left=[]; 

Left_DC=zeros([travel_limit,No_Nozzle]); 

% Left_DC_Hex{travel_limit,No_Nozzle}={'0'}; 

Left_DC_Hex{15,No_Nozzle}={'0'}; 

Left_Spray_Rate = zeros([travel_limit,No_Nozzle]); 

  

for i=1:i_length 

    for j=1:j_length 
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        Sum_Vol =0; 

        Max_Density_of_section=0; 

        for k=1:length(Vol_per_section{i,j}) 

            Sum_Vol = Sum_Vol + Vol_per_section{i,j}{1,k}; 

            Max_Density_of_section= 

max(Max_Density_of_section,Density_per_section{i,j}{1,k}); 

            if (isempty(Pts_per_section{i,j})==0) 

                Max_Height=[Max_Height,min(Pts_per_section{i,j}{1,k}(:,1))]; 

            else 

                Max_Height=G_Level-1; 

            end 

        end 

        Seg_Height=min(Max_Height); 

        if (isempty(Seg_Height)==1) 

            Seg_Height=G_Level-1; 

        end 

        density_left(i,j)=Max_Density_of_section; 

        Left_Spray_Rate(i,j) = ((60*(Slice_length/1000)*((Ground_Level-

Seg_Height)/1000)*(Speed*0.44704)*density_left(i,j)*0.13)/0.675)*100; 

  

        if (Left_Spray_Rate(i,j)==0) 

            Left_DC(i,j)=0; 

        elseif(round(Left_Spray_Rate(i,j))<20) 

            Left_DC(i,j)=20; 

        elseif(round(Left_Spray_Rate(i,j))>99) 

            Left_DC(i,j)=99; 

        else 

            Left_DC(i,j) = round(Left_Spray_Rate(i,j)); 

        end 

        Max_Height=[]; 

    end 
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end 

  

 

[nr,nc]=size(Left_DC); 

L_DC_Hex{nr,1}={}; 

for i=1:nr 

    L_DC_Hex{i,1}= "ff"; 

    for j=1:nc 

        Left_DC_Hex{i,j}=num2str(Left_DC(i,j)); 

        if round(Left_DC(i,j))<10 

            Left_DC_Hex{i,j}="0"+Left_DC_Hex{i,j}; 

        end 

            L_DC_Hex{i,1} = strcat(L_DC_Hex{i,1},Left_DC_Hex{i,j}); 

    end 

    L_DC_Hex{i,1}= L_DC_Hex{i,1} + "0000000000000000000055"; 

end 

  

L_DC_Hex{i+1,1}= "ff000000000000000000000000000000000000000055"; 

toc 

%% 
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Appendix B 

B.1 User’s Guide to Operate the Intelligent Sprayer 

 

• Connect the laser sensor to the computer through the ethernet cable 

• Connect the computer to the PWM Controller through the COM ports – COM1 for the 

right spray boom and COM2 for the left spray boom  

• Measure the distance from the laser sensor to end of the greenhouse bay (half of the total 

width since the laser is mounted onto the center of the spray boom) 

• Measure the nozzle spacing  

• Count the number of nozzles on the boom  

• Measure the distance of the first nozzles on the right and left spray boom to the laser 

sensor.  

• Measure the distance between the laser sensor and the nozzles 

• Set the speed of the boom (Values range from 1-16 which referred to speeds from 

0.044704 m/s to 0.40234 m/s) 

First Step is the Scan Run: 

• Open the Sprayer Program on the computer 

• Fill in the measured parameters in the ‘Data Collection’ Tab  

• Click the ‘Play’ icon button and wait for the message bar at the bottom to say “Recording 

Data…” 

• Move the spray boom across the plant canopies at the previously fixed speed 

• Click the ‘Stop’ button when all the plant canopies have been scanned  

• Wait for the message “Recording has Stopped” 
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• Minimize the Spray Program  

Second Step to identify the spray rates  

• Run the CHBC processing program on MATLAB and enter the file name of the saved 

data from the scan run. (Saved in a specific location on the computer). 

• This will result in two new files being recorded- The duty cycle sequence for the right 

boom, the duty cycle sequence for the left boom) 

Third Step is the Spray Run 

• Minimize the MATLAB program and open the ‘Spray Application’ tab on the Sprayer 

Program  

• Enter the parameter required 

• Test the nozzles if required by setting a duty cycle on the sliding bar and clicking the 

‘Test Nozzles’ button 

• Move the spray boom back to its initial position 

• Click the ‘Play’ icon button and move the spray boom at the same speed setting as in the 

scan run  

• Wait for the message “Looking for canopies…” 

• Once the laser passes the first set of canopies, the message “Canopies Detected!” will be 

printed 

• The duty cycle sequence will then be triggered based on the distance between the nozzles 

and the sensor and the speed 

• The system will apply a variable-rate spray over the length of the travel distance 
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B.2 Spray Run Operational Flowchart  

 


