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Abstract 

The goal of many laboratory studies using the signal detection paradigm is to 

produce a bias-free estimate of listener sensitivity (Green and Swets, 1966). Forced-

choice procedures with equal a priori probability of signal occurrence, a balanced payoff 

matrix, and trial-by-trial feedback are designed to assess sensitivity with response bias 

forced to zero. Attempts to approximate real-world listening situations in controlled 

laboratory settings do not lend themselves to traditional listening paradigms. Listeners in 

real-world listening tasks rarely encounter N-interval forced-choice opportunities. 

Further, many real-world listening situations do not lend themselves to trial-by-trial 

feedback.  

Davis (2015) reported the effects of incomplete feedback on response bias for a 

simple tone-in-noise listening experiment with a single interval yes-no procedure. 

Feedback provided ranged from no feedback on any trial, to eight conditions with 

feedback for some signal–response combinations, to feedback on every trial. Davis 

reported a descriptive data analysis for each subject. The current study conducted an 

inferential data analysis with Bayesian statistics to estimate the effect of incomplete 

feedback on response bias in each experimental condition. The main finding is that, as 

expected, complete feedback drives response criteria toward the optimum, and 

incomplete feedback conditions result in various degrees of deviation from the optimal 
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criterion. The results can be interpreted in terms of how feedback conveys information 

about a priori probabilities of different states of the world and the values and costs of 

correct and incorrect responses.  
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Chapter 1. Statement of the Problem 

The degree to which the results of a laboratory experiment reveal what happens in 

the real world depends on what factors or variables of the real-world problem are 

captured and modeled in the experiment. Auditory tasks in the real world include 

detecting warning sounds in noisy work environments, detecting a phone ringing in the 

presence of loud music, and detecting an ambulance siren in traffic. Many factors could 

have an impact on the detection performance, such as physical characteristics of the 

target and background sounds, the importance of the information carried by the target 

sound, how often the target sound occurs, whether the target sound occurs regularly or 

not. In addition, the biological characteristics of the observer and the number of other 

tasks that the observer must handle at the same time could influence performance as well. 

These factors together determine the actual detectability of auditory signals in the real 

world. The effects of some real-world factors are minimized in controlled laboratory 

experiments to test computational models for predicting human sensitivity to signal 

characteristics. However, many real-world listening situations do not lend themselves to 

traditional listening paradigms. To improve our ability to predict signal detectability in 

real-world listening situations, the gap between traditional listening paradigms and real-

world listening situations should be mitigated by incorporating real-world factors into 

controlled laboratory design. 
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1.1 Examples of real-world listening situations 

Bars and restaurants are common noisy environments where loud music and 

conversations are mixed in the background. If someone’s phone ringtone is a piece of 

music, the ringtone may not be heard every time it occurs. Sometimes the ringtone could 

be easily masked by music in the background, as the background fluctuates. Both the 

intensity of the background noise and any similarity between the ringtone and the 

background will contribute to the difficulty of detecting the occurrence of a phone call in 

that environment.  In the psychoacoustics literature, these effects are normally called 

energetic and informational masking (Brungart, 2001).  

In addition, phone calls are of different importance. A phone call could come 

from “the boss” or it could come from an unknown caller. The cost of missing a phone 

call from someone’s boss is probably higher than that of missing an unwanted call. The 

costs and values of missing versus answering phone calls may affect the level of alertness 

of the observer. If the phone number has been compromised and most phone calls are 

scam calls, the owner may not care much about missing a call at a party. If the owner is a 

busy executive who receives lots of working phone calls every day, they would probably 

check the phone very often during the party. 

Warning sounds in noisy workplaces, such as the cockpit of an airplane, a nuclear 

power plant or a large manufacturing plant, are designed to alert workers to dangerous 

events. The alarm system is a critical part of the safety system of many workplaces. 

Desired detectability of the warning signals must be achieved through appropriate design 

and installation of the warning sounds. Design and installation of warning sounds should 
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consider characteristics of the noise background, acoustical properties of the work area, 

hearing status of workers, and use of hearing protection (Giguère et al. 2008). Dangerous 

events associated with alarms often require the operator’s immediate attention. Failure to 

react to alarms can have significant negative outcomes. For example, in a military 

cockpit, dangerous events could be “Surface-to-air Missile”, “Air Interceptor” and 

“Unknown Threat” (Smith et al. 2004). In a hospital, alarms could signify “Cardiac 

Crisis”, “Staff Emergency” or “Patient Call” (Rayo et al., 2019). The cost of missing an 

event, versus the reward for responding to it, as well as the frequency with which each 

dangerous event occurs, might affect the operator’s performance in the detection task.   

Another real-world listening situation is detecting an ambulance siren in traffic. 

For the ambulance to move efficiently through traffic, other road users must be alerted by 

the ambulance siren and stop their vehicles immediately. However, the sound of the 

ambulance siren could be missed due to soundproofing or loud music inside the vehicle 

(Rane et al., 2019). Not reacting to ambulance siren in time could delay the arrival of the 

ambulance vehicle, which could result in serious negative outcomes.  

Each detection situation has its unique features as well as some common features 

shared by most situations. To improve the sound design and better predict the 

detectability of auditory signals in the real world, one could conduct either field studies 

or laboratory studies to test the effects of various factors. Each type of study has its 

advantages and limitations.  
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1.2 Modelling real-world listening situations and testing them in a laboratory 

Laboratory experiments and field experiments are complementary methods for the 

study of cause-and-effect relationships (Aziz, 2017; Coppock and Green, 2015). A field 

experiment is conducted in a “real-world” setting, the results of which are more likely to 

be generalized beyond the current study (VandenBos, 2007). The independent variables 

may or may not be deliberately manipulated by the researcher. Participants may or may 

not be aware that they are being studied and observed for their reactions. Subjects often 

are not randomly assigned to experimental conditions.  

On the other hand, laboratory research is conducted in a setting completely 

designed by the experimenter. It is a tightly controlled investigation in which the 

researcher manipulates the factor under study to determine if such manipulation generates 

a change in the subjects’ performance (Aziz, 2017). Compared to a field experiment that 

has less control over extraneous variables, a laboratory experiment is more likely to be 

free of flaws in its conclusions about cause-and-effect relationships among variables 

(VandenBos, 2007).  

Both types of experiments are important for the understanding of human auditory 

detection. An example is the detection of electric vehicles by pedestrians. Electric 

Vehicles (EV) produces much less noise compared to normal vehicles, however, the 

absence of warning sounds entails a risk for pedestrians, especially for those who are 

visually impaired (González-Hernández et al., 2017). The investigation of the detection 

of EV alerts ranges from perceptual experiments in the laboratory using static listeners to 

explore the influence of various timbre parameters on sound detectability (Parizet et al., 



5 

 

2013) to outdoor experiments with real background noise and subjects walking in a real 

pedestrian area to explore responses produced in a dynamic urban environment 

(González-Hernández et al., 2017). 

Before any field experiment is carried out, laboratory testing usually comes first. 

One should carefully examine the difference between the laboratory setting and real-

world situations, incorporate real-world factors into the laboratory experiments, and 

control them as much as possible. This will probably benefit research in at least two 

respects: it will improve the external validity of the results obtained from the laboratory 

experiment, and it will help eliminate the effects of extraneous variables that are not 

under control in a field experiment.  

In psychophysics, laboratory experiments are usually designed to test 

computational models.  Models are logical frameworks composed of a set of assumptions 

that describe the underlying mechanism of the problem under investigation.  Models help 

predict the result of an experiment and experiments test whether the prediction is accurate 

or not. In psychophysics, a group of models based on the Theory of Signal Detection 

(TSD) (Green and Swets, 1966) are of great importance in separating the effects of 

sensory factors and non-sensory factors. Section 1.3 briefly reviews the theoretical 

importance of TSD in psychophysics, elements of TSD, and psychophysical procedures 

of TSD. Section 1.4 discusses the gap between typical psychophysical experiments based 

on TSD and signal detection in real-world situations.   
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1.3 The contribution of TSD to psychophysics, elements of TSD and psychophysical 

procedures 

In the early psychophysics experiments, it was assumed that the probability of a 

yes response for a stimulus presentation was entirely determined by the stimulus and the 

biological state of the sensory system (Gescheider, 2013, pp. 93). Later, it was noted that 

at least two non-sensory factors also influence the probability of yes responses: stimulus 

probability and response consequences (Gescheider, 2013, pp. 98). TSD was the major 

theoretical advance made in the 1950s to separate the influence of non-sensory factors 

upon detection from sensitivity (Harvey, 2014).  

TSD was built on statistical decision theory (Green and Swets, 1966, pp. 7). The 

decision that an observer must make when detecting a brief tone in white noise, such as 

the task in Davis (2015), is assumed to be a statistical one. A simple tone-in-noise task 

was used to minimize the effects of signal and noise characteristics on listeners’ 

performance. The decision is based on evidence that is ambiguous in the sense that it 

does not completely support one of several hypotheses. According to TSD, the level of 

the noise against which a signal is detected may be either external or internal to the 

detecting device (or both) and is assumed to vary randomly from moment to moment 

(Gescheider, 2013, pp. 105). A stimulus is either noise alone, or a weak signal plus noise. 

The observer must make a sensory observation 𝑥 (an internal representation of the 

stimulus) of the stimulus and then decide whether the observation is due to noise alone 

(NA) or signal plus noise (SN). The magnitude of the observation due to NA varies 

randomly. The randomness is described by a probability distribution. When a signal is 

added, the probability distribution is shifted to the right. That is, the average sensory 
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observation magnitude is assumed to be greater for signal plus noise (SN) than for noise 

alone (NA). The more overlap between the two distributions, the more difficult to make a 

correct decision (Gescheider, 2013, pp. 106). 

In TSD, the basis for making a decision is the likelihood ratio corresponding to 

the magnitude of the observation, which is the ratio of the probability, or likelihood, of 

the observation given the stimulus is SN to the probability of the observation given the 

stimulus is NA.  

𝑙(𝑥) =
𝑃(𝑥 | 𝑆𝑁)

𝑃(𝑥 | 𝑁𝐴)
 

If 𝑙(𝑥) is greater than 1, it indicates that it is more likely that the stimulus 

presented was SN rather than NA. If 𝑙(𝑥) is smaller than 1, it indicates that it is more 

likely that the signal was not there. If 𝑙(𝑥) is equal to 1, it indicates that SN and NA are 

equally likely (Gescheider, 2013, pp. 107). TSD assumes that the observer operates by a 

decision rule. A particular value of 𝑙(𝑥) is set as the cutoff point above which the 

observer responds SN and below which the observer responds NA. It is called the 

likelihood ratio criterion, denoted by 𝛽. The optimal likelihood ratio criterion, which 

optimizes the performance in a long series of observations, is a function of the a priori 

probabilities of SN and NA trials and the costs and values of the various decision 

outcomes (Gescheider, 2013, pp. 112; Green and Swets, 1966, pp. 23).  

𝛽𝑜𝑝𝑡 =
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)

[𝑉(𝐶𝑅) + 𝐶(𝐹𝐴)]

[𝑉(𝐻) + 𝐶(𝑀)]
 

where V(CR) is the value of a CORRECT REJECTION, C(FA) is the cost of a FALSE 

ALARM), V(H) is the value of a HIT, and C(M) is the cost of a MISS. (Values and costs 
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are all entered as positive numbers.) The concept of optimal likelihood ratio criterion will 

be critical for the discussion in chapter 4. 

The unique contribution of TSD to psychophysics is that it offers a means to 

measure sensitivity and criterion independently (Gescheider, 2013, pp. 118). The index of 

stimulus detectability is 𝑑′, which is the difference between the means of the SN and NA 

distributions divided by the standard deviation of the NA distribution. The index of 

response bias (the tendency of the observer to favor one response over another) is 𝐶, 

which is the number of standard deviation units that the response criterion is above or 

below the zero bias point where the NA and SN distributions cross. At the point where 

the NA and SN distributions cross, 𝑙(𝑥) is 1 and 𝐶 is 0. Above that point, 𝑙(𝑥) is larger 

than 1 and 𝐶 is positive. Below that point, 𝑙(𝑥) is smaller than 1 and 𝐶 is negative. 

Response proportions, from which the theoretical constructs of sensitivity and 

criterion are estimated, are obtained using psychophysical procedures such as the single 

interval yes-no procedure (SIYN) and the two-alternative forced-choice (2AFC) 

procedure (Gescheider, 2013, pp. 142-146). The SIYN procedure presents a sequence of 

trials to the observer. One trial only contains one observation interval where a signal may 

be present or absent. The observer must judge whether a trial contains a signal or not. 

2AFC differs from SIYN in that two observation intervals are presented in a trial. The 

observer must report which interval contained a signal after a trial.  
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1.4 Limitations of Experiments based on TSD 

This section discusses several discrepancies between typical signal detection 

experiments based on TSD and real-world detection situations. One issue is that typical 

signal detection experiments based on TSD often clearly define an observation interval 

by visual indicators (e.g., lights). Observers know when to pay attention and when to 

relax. However, usually there is no visual cues telling the observer when to start to pay 

attention to a signal in the real world. In some situations, observers must pay sustained 

attention in searching for a signal during a long period of time. This has stimulated a 

large amount of research on the vigilance problem since the 1950s (Mackworth, 1956; 

Watson and Nichols, 1976; Swets, 1977).  

Another issue is that although 2AFC is often chosen as the psychophysical 

procedure in many signal detection experiments to estimate listener sensitivity which is 

uncontaminated by variations in response criterion (Green and Swets, 1966, pp. 43-44; 

Gescheider, 2013, pp.146), listeners rarely encounter tasks similar to 2AFC in the real 

world. To better resemble real-world detection tasks, a SIYN procedure or a vigilance 

task should be used. 

In a typical signal detection experiment, equal a priori probabilities of SN and 

NA events and equal values for correct responses and costs of incorrect responses are 

assigned to direct the response criterion toward the unbiased position. However, these 

conditions rarely occur in the real world. For example, the probability of signal 

occurrence may be considered low when the task is to detect an ambulance siren. The 

cost of missing an ambulance siren may be considered as larger than the cost of a false 
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alarm (“heard” a siren when there was none). These real-world conditions could shift the 

response criterion from the unbiased position.  

Usually, a running account of the observer’s performance is provided by trial-by-

trial feedback. Trial-by-trial feedback gives the observer complete knowledge of whether 

the decision outcome is a hit, a miss, a false alarm, or a correct rejection. However, in the 

real world, an observer usually does not have access to complete knowledge of results. 

For example, when an ambulance vehicle passes other vehicles stopped at the roadside, 

drivers at the roadside know that they have correctly detected a siren. When a driver 

misheard a sound as an ambulance siren and prepared to stop, he might realize that it was 

a false alarm when he saw all other vehicles do not stop. When a driver missed a siren 

behind him and shortly turned right or left, he may never know that he has missed a siren. 

Incomplete knowledge of results is a non-sensory factor, which could influence an 

observer’s response criterion. The purpose of the research carried out by Davis (2015) 

was to study the effects of incomplete feedback on response bias. A detailed review of 

Davis (2015) will be given in Chapter 2. 

In summary, detection tasks in real-world conditions, such as detecting a siren in 

traffic, could differ significantly from a typical signal detection experiment in the 

laboratory in many aspects. Davis (2015) focuses on the discrepancy in an observer’s 

knowledge of results. Chapter 2 reviews the experiment design, data analysis, and results 

of Davis (2015), and proposes a further analysis of the results of Davis (2015). 
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Chapter 2 Literature Review 

Feedback provides information about the outcomes of past responses in a 

psychophysical experiment. Since the 1950s, knowledge of results was used to train 

observers to achieve asymptotic performances (Davis, 2015; Green and Swets, 1966, pp. 

395).  Since it is rare that observers will always know whether each response is correct or 

incorrect in real-world detection situations, the effects of two forms of incomplete 

knowledge of results have been studied. One type of study, known as providing “partial 

feedback”, manipulated the proportion of trials for which the observer receives feedback 

(Lurie and Swaminathan, 2009; Szalma et al., 2000).  Another type of study, known as 

“incomplete feedback”, manipulated which response type (HIT, MISS, False Alarm or 

Correct Rejection), or combinations of response types received feedback (Szalma et al., 

2006, Davis, 2015). The subtle difference between the two is that “partial feedback” is 

given for all four response types, but only on a percentage of the experimental trials.  

“Incomplete feedback” can occur on any trial for the designated response type(s).  The 

experiment of Davis (2015), reviewed below, provided “incomplete feedback”.  

 

2.1 The approach used by Davis (2015) 

2.1.1 Description of the experiment 

Davis (2015) investigated the influence of incomplete feedback on response bias 

for a simple tone-in-noise detection task. The psychophysical procedure used was a 
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single-interval yes-no procedure. A signal-plus-noise (SN) trial contained a 500 ms 

broadband, white noise and a 20 ms 1 kHz tone presented in the temporal middle of the 

white noise (see Figure 1). A noise-alone (NA) trial contained only the 500 ms white 

noise. The reason for using a pure tone as the signal and a white noise as the background 

was to minimize the effects of signal and noise characteristics on listener performance. 

Subjects were asked to respond whether a trial contained the 1 kHz pure tone or not by 

clicking a button on the user interface shown in Figure 1. Then visual feedback was given 

to show whether the response “yes” or “no” was correct or incorrect. A correct response 

was marked with a check with the response button turned green. An incorrect response 

was marked with a cross with the response button turned red.  

 

 

Figure 1. Timing and organization of a trial for the familiarization, threshold estimation, 

and IKR tasks used by Davis (2015). The trial is divided into three sections: (1) stimulus 

presentation lasing 1000 ms, (2) a pause giving the subject time to respond, and (3) 

display of feedback information lasting 500 ms. Reproduced from Davis (2015). 
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Each experimental condition provided a unique type of feedback to the listener, 

ranging from no feedback on any trial to eight conditions (listed below) with feedback for 

some combinations of HIT, MISS, FA and CR, to complete feedback on every trial. The 

organization of the experimental conditions is shown in Figure 2. The 10 feedback 

conditions are (1) no feedback, (2) feedback only for HIT, (3) only for MISS, (4) only for 

FA, (5) only for CR, (6) only for “yes” trials (HIT and FA), (7) only for “signal” trials 

(HIT and MISS), (8) only for “correct” trials (HIT and CR), (9) only for HIT, MISS and 

FA, and (10) for all SR combinations (all trials). The No Feedback condition (1) was 

presented first and the All Feedback condition (10) was presented last for all listeners. 

Conditions (2) to (8) were presented in a unique random order for each subject.  Each 

condition contained 10 blocks of 50 trials. In each block, half of the trials were signal 

trials and half were noise trials presented in a random order.  

Ten young adults with normal hearing participated in the experiment. Davis 

(2015) attempted to maintain sensitivity as constant as possible across the experimental 

conditions. Subjects were matched for sensitivity by a single-interval adaptive procedure 

(Kaernbach, 1990). Signal-to-noise ratio (SNR) for 75% detection threshold was 

established for each subject. Then that SNR was used for each subject throughout the 

experiment.  
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Figure 2. Experiment conditions in the Davis (2015) study. Condition (1) was presented 

first and condition (10) was presented last. All other conditions were completed between 

conditions 1 and 10 and were completed in random order. Each matrix represents a 

condition in which feedback is provided for the shaded box. Reproduced from Davis 

(2015). 
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2.1.2 Descriptive data analysis and its limitation 

The optimal likelihood ratio criterion for the experiment in Davis (2015) is 1, 

since a priori probabilities of SN and NA trials were equal, and values of correct 

responses and costs of incorrect responses were not specified. The optimal response 

criterion is located at the unbiased position (𝐶𝑜𝑝𝑡 = 0) for this experiment. When 

feedback is complete, it is expected that the observers’ response criterion would be at the 

unbiased position. When feedback is incomplete, the observers’ response criterion might 

deviate from the unbiased position.    

 Davis (2015) labeled his research questions with four keywords: Symmetry, 

Organization, Implicitness, and Amount.  

 Symmetry: Were the response biases for the four conditions [HIT], [MISS], [FA], 

and [CR] all equal?  

 Organization: Did bias differ when only “yes” trials got feedback, or only 

“signal” trials got feedback, or only “correct” trials got feedback? That is, were the 

response biases for the conditions [HIT, FA], [HIT, MISS], and [HIT, CR] all equal?  

 Implicitness: Were subjects able to utilize missing feedback to achieve the 

unbiased response criterion? That is, were the response criteria in conditions [HIT, 

MISS], [HIT, CR] and [HIT, MISS, FA] unbiased?  

 Amount: Did providing feedback for more types of decision outcomes reduce 

response bias?  
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Davis (2015) reported a descriptive data analysis for each subject. In each 

condition, every subject completed 10 blocks, which yielded 10 pairs of HIT and FA 

rates. Each pair of HIT and FA rates yields a pair of sensitivity and bias scores 

(Macmillan, & Creelman, 2004), as shown by the following equations. 

𝑑′ = 𝑍(ℎ𝑖𝑡 𝑟𝑎𝑡𝑒) − 𝑍(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒) 

𝐶 =  −0.5[𝑍(ℎ𝑖𝑡 𝑟𝑎𝑡𝑒) + 𝑍(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒)] 

For each subject, a 95% confidence interval of response bias was constructed 

based on the 10 data points in each condition. For each subject, pairwise comparisons of 

biases across conditions was done by evaluating the amount of overlap of the confidence 

intervals. There are 6 possible pairwise comparisons among the 4 conditions in symmetry 

(HIT, MISS, FA, CR).  For example, the evaluation of the difference between the means 

of the [HIT] and [MISS] conditions compared the differences between the two conditions 

where the target signal was present. For each subject, Davis (2015) counted the number 

of significant differences out of the 6 pairwise comparisons. For 9 out of 10 subjects, 

more than 3 out of 6 pairwise comparisons yielded significant results, indicating response 

biases were not all equal across [HIT], [MISS], [FA], and [CR]. 

Davis (2015) also analyzed the direction and degree of response bias for each 

condition in [HIT], [MISS], [FA] and [CR]. Most subjects showed response bias toward 

“No” (being conservative; showing a tendency to report signal absence; 𝐶 is positive) in 

most conditions. Most subjects showed the least amount of response bias when only HITs 

received feedback and the most response bias when only CRs received feedback. 
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There are 3 possible pairwise comparisons among the 3 conditions in 

organization ([HIT, MISS], [HIT, FA] and [HIT, CR]).  For 8 out of 10 subjects, more 

than 2 out of 3 pairwise comparisons yielded significant results. Again, this indicates 

response biases were not all equal across [HIT, MISS], [HIT, FA] and [HIT, CR]. Since 

most subjects showed response bias toward “Yes” (being liberal; showing a tendency to 

report signal presence; 𝐶 is negative ) in some conditions and toward “No” in other 

conditions, Davis (2015) concluded that response bias shows no apparent pattern toward 

“Yes” or “No” in these three conditions. 

To explore whether subjects could utilize missing feedback to reduce response 

bias, Davis (2015) compared response criterion in [HIT, MISS], [HIT, CR] and [HIT, 

MISS, FA] to the unbiased position as well as the criterion in [ALL-KR] which was 

assumed to be least biased among all conditions. Most subjects yielded criterion close to 

the unbiased position or the criterion when HITs, MISSes, FAs, and CRs all received 

feedback.  

To explore whether response bias is reduced when more feedback is provided, 

Davis (2015) analyzed the relationship between response bias and the number of types of 

feedback provided in each condition. Each condition provided feedback for 1, 2, 3, or all 

4 types of decision outcomes. Results from 6 out of 10 subjects suggested that the more 

the feedback provided, the less the response bias.  

The 10 subjects in Davis (2015) showed some common characteristics as well as 

idiosyncrasies in their response biases. The main limitation of the individual analysis is 

that it is purely descriptive, and it does not offer inference about the behavior of the 
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population. An estimate of the group-level response bias for each experimental condition 

may reveal new insights into the underlying mechanism of how incomplete feedback 

influences response bias in auditory signal detection. An approach to estimating model 

parameters of TSD (sensitivity and response bias) has been advocated by some Bayesian 

modelers (Lee, 2008; Lee and Wagenmaker, 2014; Rouder and Lu, 2005) for certain 

statistical advantages. The next section briefly describes this modeling and the inference 

procedure. 

 

2.2 Inferential data analysis using Bayesian statistics 

2.2.1 The probability model 

The equal-variance Gaussian signal detection framework with an extension is 

used to model the data generating process in each condition. It is assumed that the 

probability distributions of the magnitude of observation due to NA and SN are both 

Gaussian. The mean of the distribution under NA is set as 0. The variances of both 

distributions are set as 1. Compared to the distribution under NA, the distribution under 

SN is shifted to the right by d’ standard deviations. Thus, the distribution under NA is the 

standard normal distribution 𝑁(0, 1), and that under SN is 𝑁(𝑑′, 1).  

It is assumed that each subject has an individual sensitivity and an individual 

response bias, denoted by 𝑑𝑖 and 𝑐𝑖. The left panel of Figure 3 shows the model for 

subject i in a condition. It is assumed that individual response biases (𝑐𝑖𝑠) and 

sensitivities (𝑑𝑖s) for this group of subjects is a sample from the population. The right 
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panel of Figure 3 shows the model on the left panel with an extension that models the 

individual biases or sensitivities as observations from a group-level Gaussian distribution.  

 

 

 

Figure 3. Left: Equal-variance Gaussian signal detection theory framework for subject 𝑖, 
where 𝑐𝑖 is the bias parameter, 𝑑𝑖 is the sensitivity parameter,  𝑘𝑖 is the response criterion, 

𝜃ℎ𝑖 is the HIT rate, and 𝜃𝑓𝑖  is the FA rate. Right: Equal-variance Gaussian signal 

detection theory framework with hierarchical extension. 𝑠 is the number of signal trials 

and 𝑛 is the number of noise trials in a condition. ℎ𝑖 is the observed number of HITs and 

𝑓𝑖 is the observed number of FAs for subject 𝑖 in a condition. 𝜇𝑐 and 𝜎𝑐  are the mean and 

standard deviation of the parent distribution of individual bias parameters. 𝜇𝑑 and 𝜎𝑑 are 

the mean and standard deviation of the parent distribution of individual sensitivity 

parameters. 
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Each condition contains 500 trials (10 blocks × 50 trials / block). Half of them are 

signal trials and half of them are noise trials. In the right panel of Figure 3, s = n = 250. 

The observed data for each subject are the HIT and FA counts (ℎ𝑖 and 𝑓𝑖), which are 

assumed to follow binomial distributions. 𝜃ℎ𝑖 and 𝜃𝑓𝑖 are the HIT and FA probabilities. 

 

ℎ𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑠, 𝜃ℎ𝑖) 

𝑓𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃𝑓𝑖) 

  HIT and FA probabilities, 𝜃ℎ𝑖 and 𝜃𝑓𝑖 , are determined by sensitivity 𝑑𝑖 and 

response bias 𝑐𝑖. 

𝜃ℎ𝑖 =  𝛷(
1

2
𝑑𝑖 − 𝑐𝑖) 

𝜃𝑓𝑖 =  𝛷(−
1

2
𝑑𝑖 − 𝑐𝑖) 

 Individual sensitivities, 𝑑𝑖s, are modeled as random draws from a Gaussian parent 

distribution with mean 𝜇𝑑 and standard deviation 𝜎𝑑. Individual biases, 𝑐𝑖s, are viewed as 

random draws from a Gaussian parent distribution with mean 𝜇𝑐 and standard deviation 

𝜎𝑐.  

𝑑𝑖  ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑑, 𝜎𝑑) 

𝑐𝑖 ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑐, 𝜎𝑐) 
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2.2.2 Bayesian inference procedure 

In Bayesian statistics, the uncertainty about a parameter is quantified with a 

probability distribution. Before one sees any data, a prior distribution is given to each 

parameter to be estimated. Bayes theorem (Bayes, 1763) lies at the core of Bayesian 

statistics, which specifies how the prior distribution is updated with the information 

collected from the data to arrive at the posterior distribution (Lee & Wagenmakers, 2014, 

pp. 3). Diffuse priors were set for 𝜇𝑐, 𝜇𝑑, 𝜎𝑐, and 𝜎𝑑. Markov Chain Monte Carlo 

sampling of posterior distributions of 𝜇𝑐, 𝜇𝑑, 𝜎𝑐 and 𝜎𝑑  were done in WinBUGS 

(Spiegelhalter et al., 2003) and R(Ripley, 2001).  Figure 4 shows the script for setting up 

the model in WinBUGS. For each parameter, an empirical density of the posterior 

distribution was obtained from the samples. 

In addition to reporting the empirical posterior distribution, the location of the 

posterior is usually summarized with mean, median, or mode. The selection of the 

summary statistic depends on the shape of the posterior. Although mean is very 

frequently used, if the posterior has a heavy tail, then mean may not be a good choice, 

since it is easily influenced by extreme values and may be far away from where the most 

probability is located (Bolstad and Curran, 2016, pp. 150). The spread of the posterior is 

summarized with variance or standard deviation (Bolstad and Curran, 2016, pp. 151). To 

find a high probability interval for the parameter, a credible interval (highest density 

interval) is often reported (Bolstad and Curran, 2016, pp. 153). The lower bound of a 

95% credible interval is the 2.5% quantile of the posterior and the upper bound is the 

97.5% quantile of the posterior. 



22 

 

 

 

In summary, Davis (2015) manipulated incomplete feedback in a simple tone-in-

noise detection experiment to study the effects of incomplete feedback on response bias. 

Davis (2015) analyzed the data carefully for each subject. Incomplete feedback indeed 

resulted in changes in response bias on an individual level. However, Davis (2015) did 

not make any inference for the population’s response bias under incomplete feedback 

conditions. The results of an experiment should not be limited to the observers who 

participated in the study. Thus, an inferential data analysis is needed. The next chapter 

presents the results from inferential data analysis with Bayesian statistics.

ℎ𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑠, 𝜃ℎ𝑖) 

𝑓𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃𝑓𝑖) 

𝜃ℎ𝑖 =  Φ(
1

2
𝑑𝑖 − 𝑐𝑖) 

𝑐𝑖  ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑐 , 𝜎𝑐) 

𝑑𝑖  ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑑 , 𝜎𝑑) 

𝜇𝑐~ 𝑁 ൬0,
1

. 001
൰  𝜇𝑑~ 𝑁(0,

1

. 001
) 

𝜆𝑐~𝐺𝑎𝑚𝑚𝑎(.001, .001) 

𝜆𝑑~𝐺𝑎𝑚𝑚𝑎(.001, .001) 

𝜎𝑐 =  
1

ඥ𝜆𝑐
  𝜎𝑐 =  

1

ඥ𝜆𝑐

Figure 4. Script for setting up the equal-variance Gaussian signal detection theory model 

with an extension in WinBUGS. 
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Chapter 3 Reanalysis and Results 

3.1 Data collected in Davis (2015) 

Davis (2015) provided the HIT rate and FALSE ALARM (FA) rate averaged over 

10 blocks for each subject in each condition (Table 1). HIT count and FA count were 

recovered from the HIT rate and FA rate. There were 500 trials in each condition, 250 of 

which were SN trials and 250 were NA trials. Thus, the HIT count in 250 trials is 250 

multiplied by the HIT rate. The FA count in 250 trials is 250 multiplied by the FA rate. 

For each condition, HIT counts and FA counts for all subjects were then fed into the 

Markov Chain Monte Carlo sampling procedure to estimate the group-level response bias 

(𝜇𝑐)  and sensitivity (𝜇𝑑).  

 

Table 1. HIT rate and FA rate averaged over 10 blocks for each condition and each 

subject 

Condition Rate s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

NO-KR 
HIT 0.69 0.45 0.61 0.45 0.72 0.67 0.49 0.44 0.59 0.39 

FA 0.17 0.08 0.06 0.09 0.28 0.08 0.22 0.07 0.21 0.06 

[H] 
HIT 0.63 0.65 0.71 0.67 0.78 0.71 0.64 0.66 0.74 0.50 

FA 0.23 0.41 0.13 0.15 0.27 0.33 0.42 0.30 0.52 0.11 

[M] 
HIT 0.67 0.64 0.51 0.59 0.66 0.53 0.67 0.56 0.67 0.56 

FA 0.20 0.45 0.11 0.30 0.20 0.18 0.28 0.45 0.31 0.07 

[FA] 
HIT 0.65 0.57 0.70 0.43 0.71 0.56 0.67 0.52 0.71 0.51 

FA 0.09 0.24 0.16 0.26 0.33 0.34 0.24 0.40 0.41 0.20 

                                                                                                            Continued  



24 

 

Table 1  Continued 

Condition Rate s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

[CR] 
HIT 0.72 0.83 0.46 0.29 0.61 0.56 0.63 0.52 0.57 0.35 

FA 0.27 0.28 0.22 0.34 0.24 0.13 0.31 0.19 0.41 0.07 

[H, M] 
HIT 0.78 0.70 0.82 0.82 0.66 0.68 0.58 0.60 0.69 0.47 

FA 0.30 0.38 0.41 0.36 0.23 0.34 0.51 0.12 0.37 0.09 

[H, FA] 
HIT 0.58 0.60 0.53 0.74 0.74 0.78 0.60 0.50 0.70 0.63 

FA 0.12 0.27 0.18 0.24 0.35 0.29 0.41 0.42 0.42 0.12 

[H, CR] 
HIT 0.70 0.51 0.86 0.53 0.74 0.59 0.53 0.62 0.71 0.53 

FA 0.19 0.17 0.47 0.40 0.26 0.31 0.44 0.20 0.38 0.18 

[H,M,FA] 
HIT 0.72 0.73 0.82 0.81 0.76 0.54 0.70 0.57 0.65 0.43 

FA 0.19 0.31 0.37 0.26 0.19 0.34 0.27 0.43 0.44 0.14 

All-KR 
HIT 0.77 0.75 0.68 0.66 0.62 0.57 0.52 0.46 0.69 0.63 

FA 0.26 0.40 0.34 0.50 0.34 0.33 0.30 0.40 0.41 0.16 

 

3.2 Results of inferential data analysis 

Stimulus strength was kept constant throughout the experiment in terms of the 

individualized signal-to-noise ratio. Thus, group-level sensitivity (𝜇𝑑) is expected to be 

relatively stable across conditions. Response bias is assumed to be affected by non-

sensory information conveyed by feedback. Thus, group-level response bias (𝜇𝑐) is 

expected to vary across conditions. Posterior means and 95% credible intervals for 𝜇𝑐, 

𝜇𝑑, as well as 𝜎𝑐 (spread of response bias in the group) and 𝜎𝑑 (spread of sensitivity in 

the group) in all conditions are reported in Table 2. Figure 5 shows the posterior 

distributions of 𝜇𝑐 for all conditions. Figure 6 shows the posterior distributions of 𝜇𝑑 for 

all conditions. Posterior distributions of 𝜎𝑐 and 𝜎𝑑 are shown in Figure 7 and Figure 8, 

respectively. 
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Table 2 Posterior means and 95% credible intervals for 𝜇𝑐, 𝜇𝑑, 𝜎𝑐 and 𝜎𝑑. 

Feedback Condition 
𝜇𝑐 𝜇𝑑 𝜎𝑐 𝜎𝑑 

mean 95% CI mean 95% CI mean 95% CI mean 95% CI 

No Feedback 0.52 0.31, 0.74 1.31 1.07, 1.54 0.32 0.19, 0.53 0.33 0.18, 0.58 

CR 0.29 0.07, 0.52 0.87 0.53, 1.21 0.34 0.21, 0.58 0.51 0.31, 0.87 

FA 0.19 0.05, 0.34 0.93 0.62, 1.23 0.22 0.13, 0.36 0.46 0.27, 0.8 

MISS 0.22 0.04, 0.4 0.98 0.7, 1.26 0.27 0.16, 0.46 0.41 0.24, 0.71 

HIT 0.08 -0.11, 0.27 1.05 0.77, 1.32 0.28 0.17, 0.48 0.4 0.23, 0.69 

HIT + CR  

(correct trials) 0.1 -0.11, 0.29 0.91 0.63, 1.18 0.3 0.18, 0.5 0.4 0.24, 0.69 

HIT+ FA 

(“yes” trials) 
0.12 -0.05, 0.29 0.98 0.68, 1.28 0.26 0.15, 0.44 0.44 0.26, 0.76 

HIT + MISS 

(signal trials) 
0.02 -0.21, 0.25 1.02 0.76, 1.29 0.35 0.21, 0.59 0.38 0.22, 0.65 

HIT + MISS + FA 0.05 -0.12, 0.23 1.03 0.73, 1.34 0.26 0.16, 0.44 0.47 0.28, 0.79 

All Feedback 0.03 -0.1, 0.16 0.77 0.5, 1.04 0.19 0.11, 0.34 0.39 0.23, 0.66 

 

A comparison between the two extreme conditions (No Feedback and All 

Feedback) suggests that providing complete feedback to the subjects had effectively 

reduced response bias. Subjects showed a significant amount of response bias when no 

feedback was provided (No Feedback, �̂�𝑐 = 0.52). As can be seen from the first row of 

Figure 5, the posterior distribution of 𝜇𝑐 is far away from the unbiased position indicated 

by the vertical dashed line. Subjects were conservatively biased in this condition. When 

complete feedback was provided, response bias was reduced almost to none (All   
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Figure 5. Posterior distributions of the mean of bias (𝜇𝑐) in all conditions. The vertical 

dashed line in each row shows the unbiased position. (NO-No Feedback; CR-CORRECT 

REJECTION; FA-FALSE ALARM; M-MISS; H-HIT; H.CR- correct trials; H.FA-“yes” 

trials; H.M-signal trials; All-All Feedback) 
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Feedback, �̂�𝑐 = 0.03). As can be seen from the last row of Figure 5, the posterior 

distribution of 𝜇𝑐 is very close to the unbiased position. 

When feedback was incomplete, the response criterion in most conditions was not 

optimal. As can be seen from Figure 5, the posterior distributions of 𝜇𝑐 deviate from the 

unbiased position in these conditions. When feedback was provided for just one Signal-

Response combination (HIT, MISS, FA, or CR), bias was reduced compared to the No 

Feedback condition (CR, �̂�𝑐 = 0.29; FA, �̂�𝑐 = 0.19; MISS, �̂�𝑐 = 0.22; HIT, �̂�𝑐 = 0.08; No 

Feedback, �̂�𝑐 = 0.52). Posterior distributions of 𝜇𝑐 in these conditions are much closer to 

the unbiased position than in the No Feedback condition. Among these four conditions, 

providing feedback for HIT has the greatest effect in reducing response bias. The 95% 

credible interval of 𝜇𝑐 in HIT condition contains 0.   

Providing feedback for signal trials (HIT + MISS) further reduces bias almost to 

none (�̂�𝑐  = 0.02). Providing feedback for “yes” trials (HIT + FA) does not reduce bias 

further (HIT + FA, �̂�𝑐  = 0.12). Providing feedback for correct trials has a similar effect 

(HIT + CR, �̂�𝑐  = 0.1). Providing feedback for HIT, MISS and FA reduces bias almost to 

none, although the effect is not as great as providing feedback for signal trials only (HIT 

+ MISS+ FA, �̂�𝑐 = 0.05; HIT + MISS �̂�𝑐  = 0.02). 

As can be seen from Figure 6, most conditions show relatively similar 

sensitivities except the first and last conditions. For the eight conditions that were 

randomly presented, posterior means of 𝜇𝑑 are between 0.87 and 1.05. Sensitivity in the 

first condition, No Feedback, is the highest among all conditions (�̂�𝑑 = 1.31). Sensitivity 

in the last condition, All Feedback, is the lowest among all conditions (�̂�𝑑 = 0.77). Davis   
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Figure 6. Posterior distributions of the mean of sensitivity (𝜇𝑑) in all conditions (NO-No 

Feedback; CR-CORRECT REJECTION; FA-FALSE ALARM; M-MISS; H-HIT; H.CR- 

correct trials; H.FA-“yes” trials; H.M-signal trials; All-All Feedback) 
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(2015) reported that most subjects (9 out of 10) showed sensitivity above 1 in the first 

condition, while most subjects (8 out of 10) showed sensitivity below 1 in the last 

condition (many were around 0.7 and one was as low as 0.16).  

The estimated spread of the parent distribution of response bias (�̂�𝑐) in each 

condition is reported in the fifth column of Table 2. It is between 0.19 and 0.35. The All-

Feedback condition shows the smallest spread among all conditions (�̂�𝑐 = 0.19), 

indicating that response bias varies the least across subjects when feedback was 

complete. The estimated spread of the parent distribution of sensitivity (�̂�𝑑) in each 

condition is reported in the sixth column of Table 2. It is between 0.33 and 0.51. The 

variability of sensitivity among subjects is similar across conditions.  

In summary, response bias varied across conditions while sensitivity was 

relatively constant. When there was no feedback, subjects showed a substantial amount of 

response bias toward “No”. When feedback was complete or when feedback was 

provided for signal trials, response bias was reduced almost to none. Chapter 4 will 

discuss how feedback might convey non-sensory information (a priori probabilities and 

costs and values of responses) to the subjects and how response bias was influenced 

accordingly.  
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Figure 7. Posterior distributions of the standard deviation of bias (𝜎𝑐) in all conditions 

(NO-No Feedback; CR-CORRECT REJECTION; FA-FALSE ALARM; M-MISS; H-

HIT; H.CR- correct trials; H.FA-“yes” trials; H.M-signal trials; All-All Feedback) 
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Figure 8. Posterior distributions of the standard deviation of sensitivity (𝜎𝑑) in all 

conditions (NO-No Feedback; CR-CORRECT REJECTION; FA-FALSE ALARM; M-

MISS; H-HIT; H.CR- correct trials; H.FA-“yes” trials; H.M-signal trials; All-All 

Feedback) 
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Chapter 4 Discussion and Conclusions 

4.1 Effects of Incomplete Feedback on Response Bias 

To maximize performance in a long series of observations (specifically, to 

maximize expected values), recall that the optimal likelihood ratio criterion, 𝛽𝑜𝑝𝑡, is 

given by the equation 

𝛽𝑜𝑝𝑡 =
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)

[𝑉(𝐶𝑅) + 𝐶(𝐹𝐴)]

[𝑉(𝐻) + 𝐶(𝑀)]
 

where V(CR) is the value of a CORRECT REJECTION, C(FA) is the cost of a FALSE 

ALARM), V(H) is the value of a HIT, and C(M) is the cost of a MISS. Values and costs 

are all entered as positive numbers. If costs and values are irrelevant and the goal is to 

simply maximize the proportion of correct responses, the optimal likelihood ratio 

criterion is simplified to 𝛽𝑜𝑝𝑡 =
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)
 (Green and Swets, 1966, pp. 23). For the auditory 

detection task in Davis (2015), values of correct responses and costs of incorrect 

responses were not specified numerically or as monetary gains or losses. Subjects were 

simply asked to “get as many correct answers as possible”. Therefore, the optimal 

criterion for the experiment is simply 𝛽𝑜𝑝𝑡 =
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)
. The ratio of the a priori probabilities 

is 1, so 𝛽𝑜𝑝𝑡 = 1, which is also the unbiased response criterion.  

Since subjects were not told before the experiment that SN and NA events were 

equally likely to occur, they could have assumed that P(SN) and P(NA) were equal, or 
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that SN was more likely to occur than NA, or the other way around. Thus, the subjective 

a priori probabilities ratio could be equal to, less than, or greater than 1. If there is no 

feedback, it is up to each subject to decide whether to behave conservatively, liberally, or 

neutrally. When complete feedback is available, subjects could learn that the a priori 

probabilities P(SN) and P(NA) were equal from the feedback. That is, an indication of 

“HIT” or “MISS” indicates that a SN trial has occurred; a “FALSE ALARM” or 

“CORRECT REJECTION” indicates that a NA trial has occurred. When feedback is 

incomplete, subjects may, or may not, gain an accurate estimate of the a priori 

probabilities.  

A visual display was used to indicate whether a response was correct or not. A 

check and a green response button were used to convey a HIT or a CORRECT 

REJECTION. A cross and a red response button were used to convey a MISS or a 

FALSE ALARM. With complete visual feedback, the values of correct responses and 

costs of incorrect responses were reinforced equally. With incomplete feedback, only 

some values or costs were reinforced. This might have result in an imbalanced internal 

payoff matrix. That is, the value of a HIT, the value of a CORRECT REJECTION, the 

cost of a MISS and the cost of a FALSE ALARM could be considered unequal by the 

observers. From the perspective of an observer, the decision goal might be not just to 

maximize the number of correct responses, but also to maximize the expected “value”. 

The observers might have used 
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)

[𝑉(𝐶𝑅)+𝐶(𝐹𝐴)]

[𝑉(𝐻)+𝐶(𝑀)]
 as the optimal response criterion. 

The magnitude of 
[𝑉(𝐶𝑅)+𝐶(𝐹𝐴)]

[𝑉(𝐻)+𝐶(𝑀)]
 might increase or decrease when some decision 

outcomes are reinforced by feedback. When HITs were reinforced, subjects knew the 
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occurrence of a HIT, but did not know when a MISS, a FALSE ALARM or a CORRECT 

REJECTION had occurred. In this case, the value of a HIT might have been reinforced, 

and the magnitude of the ratio  
𝑉(𝐶𝑅)+𝐶(𝐹𝐴)

𝑽(𝑯)+𝐶(𝑀)
  might have been decreased, because part of 

the denominator was increased (indicated by the blue text color). 

 Subjects were very conservative in the first condition where no feedback was 

available. The estimated response bias was positive. This indicates that the corresponding 

likelihood ratio criterion is greater than 1. That is, the product of the unknown subjective 

ratio of costs and values and the unknown subjective ratio of a priori probabilities is 

greater than 1 (
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)

𝑉(𝐶𝑅)+𝐶(𝐹𝐴)

𝑉(𝐻)+𝐶(𝑀)
> 1). This indicates that subjects might have expected 

NA trials occur more often than SN trials, and/or the cost of a FALSE ALARM and the 

value of CORRECT REJECTION is greater than the cost of a MISS and the value of a 

HIT. It is more probable that the subjective ratio of a priori probabilities was the 

dominant factor since no visual display of green check or red cross was shown to the 

subjects at all in this condition. The conservative behavior might just be a characteristic 

of this group of subjects. This group of subjects was a convenient sample. They had a lot 

of experience in other auditory detection experiments. If a different sample of subjects 

were recruited from a more general population, liberal or neutral behavior might have 

been observed.  

When complete feedback was provided in the last condition, the subjective ratio 

of a priori probabilities  
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)
  might be close to 1 for each subject. Subjects could tell 

whether an SN event occurred or not because feedback occurred on every trial. Subjects 
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might have cumulated this information over time and learned the equal a priori 

probabilities of SN and NA events. Also, when feedback was complete, the subjective 

magnitude of 
𝑉(𝐶𝑅)+𝐶(𝐹𝐴)

𝑉(𝐻)+𝐶(𝑀)
 might be close to 1, since the values and costs of all decision 

outcomes were equally emphasized. Both ratios were close to 1, driving the response 

criterion toward the unbiased position.  

It is quite interesting that the response criterion was almost at the unbiased 

position when feedback was provided for “signal” trials (HIT and MISS). In this 

condition, signals and feedback occurred together, subjects could learn the a priori 

probabilities by comparing the number of trials with feedback and the number of trials 

with no feedback, or at least they could tell that SN trials were not as rare as they might 

have expected at the beginning of the experiment. Thus, the subjective ratio of  
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)
  

might be still greater than 1, but not as large as that when no feedback was available.  The 

subjective ratio of  
𝑉(𝐶𝑅)+𝐶(𝐹𝐴)

𝑽(𝑯)+𝑪(𝑴)
  might be less than 1, because HIT trials and MISS trials 

were reinforced by the visual feedback, and subjects might have thought that the value of 

a HIT and the cost of a MISS were greater than the value of a CORRECT REJECTION 

and the cost of a FALSE ALARM. Taken together, the product of the two ratios might be 

close to 1.  

When feedback was provided for “correct” trials (HIT and CORRECT 

REJECTION), subjects could have learned that the a priori probabilities were equal, but 

it was not as easy as when feedback was provided for “signal” trials. To learn how likely 

an SN trial occurs in this condition, subjects must add the number of HITs (“yes” 
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responses with feedback) and the number of MISSes (“no” responses without feedback). 

Similarly, to learn how likely a NA event occurs, subjects must add the number of 

CORRECT REJECTIONs (“no” responses with feedback) and the number of FALSE 

ALARMs (“yes” responses without feedback). Keeping track of these sums would not be 

not easy, especially when the task is to pay attention to a weak signal embedded in noise. 

This may explain why the response criterion in this condition was not as unbiased as 

when feedback was provided for “signal” trials. No speculation can be made for the 

impact of proving feedback for correct trials on the ratio  
𝑽(𝑪𝑹)+𝐶(𝐹𝐴)

𝑽(𝑯)+𝐶(𝑀)
 in this condition, 

since part of the numerator is increased and part of the denominator is increased. 

When feedback was provided for “yes” trials (HIT and FALSE ALARM), 

information about the a priori probabilities was not complete. It was not possible to count 

the number of SN trials or NA trials in a block. One must know either the number of 

HITs and MISSes, or the number of FALSE ALARMs and CORRECT REJECTIONs, to 

learn the a priori probabilities. This may explain why the response criterion in this 

condition was not as unbiased as when “signal” trials received feedback or when all trials 

received feedback. Again, no speculation can be made for the impact of providing 

feedback for “yes” trials on the ratio  
𝑉(𝐶𝑅)+𝑪(𝑭𝑨)

𝑽(𝑯)+𝐶(𝑀)
 , since one element in the numerator and 

one element in the denominator were reinforced. 

It may be interesting to compare response biases when only HIT received 

feedback and when only CORRECT REJECTION received feedback. When HIT 

received feedback, an observer could count the number of a large portion of SN trials. 

This would correct the observer’s initial belief that SN trials may be rare. Similarly, when 
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CORRECT REJECTION received feedback, an observer could count the number of a 

large portion of NA trials. This would correct the observer’s initial belief that NA trials 

are very common. Thus, providing feedback for HIT and providing feedback for 

CORRECT REJECTION may be considered as providing similar information about the a 

priori probabilities. The subjective ratio  
𝑃(𝑁𝐴)

𝑃(𝑆𝑁)
 should be similar in these cases. However, 

providing feedback for CORRECT REJECTION leads to a more conservative bias than 

providing feedback for HIT. Knowing when a CORRECT REJECTION occurs might 

have emphasized the value of a CORRECT REJECTION, which increased the ratio 

𝑽(𝑪𝑹)+𝐶(𝐹𝐴)

𝑉(𝐻)+𝐶(𝑀)
, resulting in a greater (more conservative) likelihood ratio criterion. Knowing 

when a HIT occurs might have emphasized the value of a HIT, which decreased the ratio  

𝑉(𝐶𝑅)+𝐶(𝐹𝐴)

𝑽(𝑯)+𝐶(𝑀)
, resulting in a smaller (less conservative) response criterion.  

 Above all, the effect of incomplete feedback on response bias in the experiment of 

Davis (2015) could be interpreted in terms of how feedback conveys information about a 

priori probabilities of SN and NA trials and the relative importance of decision outcomes 

to the subjects. When information was complete, observers were able to achieve the 

optimal response criterion associated with the setting of the experiment (equal a priori 

probabilities and a balanced payoff matrix), which was also the unbiased criterion. When 

information was incomplete, the criterion used by the observers deviated from the 

unbiased criterion. It seems the observers maintained an optimal criterion which was 

determined by the available information. 
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4.2 Sensitivity  

In general, sensitivity was relatively stable across 8 out of the 10 conditions, 

indicating that the internal representation of the presence or absence of the signal was 

controlled well by the individualized signal-to-noise ratios. Feedback did not have a 

substantial effect on sensitivity. However, it was not completely clear why this group of 

subjects showed higher sensitivity in the first condition and lower sensitivity in the last 

condition. This may have been a decrease of sensitivity over time due to fatigue, but one 

may also question why it was not the case that sensitivity increases as subjects become 

more experienced with the stimuli. In a future study, one may want to present all 

experimental conditions in random order instead of fixing the condition with no feedback 

at the beginning and the condition with complete feedback at the end. 

 

4.3 Summary and Conclusions 

Subjects showed little or no response bias when complete feedback was provided, 

while the amount of bias was significant when there was no feedback, as expected. Once 

some feedback was provided, although incomplete, response bias was reduced 

significantly. For this group of subjects, providing feedback for HIT reduced bias more 

than for providing feedback for MISS, FALSE ALARM and CORRECT REJECTION. 

When feedback was incomplete, response bias was not reduced as much as when 

feedback was complete, except when feedback was provided for signal trials (HIT and 

MISS).  Providing feedback for signal trials was as effective as providing feedback for all 

decision outcomes in reducing response bias for this group of subjects. Perhaps the result 
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of the current study is uniquely defined by the conservative character of this group of 

subjects. A larger sample might yield subgroups with liberal or neutral pre-testing bias 

allowing a study to determine the effects of incomplete feedback on those subgroups.  

The issue in real-world signal detection tasks highlighted by the study of 

incomplete feedback, is that information about the environment available to the observer 

may be limited. which could result in a ceiling for the observer’s behavior. In the 

experiment of Davis (2015), feedback carries information about the a priori probabilities 

as well as costs and values of correct and incorrect responses. When part of the feedback 

was taken away, subjects could not respond without bias to optimize their long-term 

performance.  

Together, a priori probabilities, values of correct responses and costs of incorrect 

responses (the payoff matrix), and the amount and type of feedback could all vary in real-

world listening situations or other signal detection scenarios. A priori probabilities of 

different states of the world could be unequal. Values and costs for different responses 

may be unbalanced. Feedback for certain responses may or may not be accessible. These 

could all affect an observers’ response criterion which drives his/her performance in a 

signal detection task in the real world. When designing a laboratory signal detection 

experiment, non-sensory factors mentioned above should be incorporated into the design 

to improve the external validity of the experimental results.  
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4.4 A brief proposal for a follow-up study 

The results of the current study and theory of signal detection suggest that 

response bias exists (response criterion is not optimal) when feedback is incomplete. One 

may be curious about whether response bias could be trained out of a listener who must 

operate in situations for which incomplete feedback is the norm. An experiment could be 

designed to test this hypothesis. Below is a brief proposal for the experiment.  

The simple tone-in-noise detection task from Davis (2015) will be used. SN and 

NA trials will be set equally likely to occur. For this experiment, let us specify the values 

of HIT and CORRECT REJECTION as monetary gain of 5 dollars and costs of MISS 

and FALSE ALARM as monetary loss of 5 dollars. Listeners will be recruited and 

randomly assigned to the control group and the treatment group. Individualized signal-to-

noise ratio will be determined for each listener in the same way as described in Davis 

(2015). Listeners will go through a familiarization task as that in Davis (2015) to get 

familiar with the stimuli and the psychophysical procedure. Listeners in the treatment 

group will receive an additional training session. The purpose of the training session is to 

reinforce the non-sensory information that will direct response criterion to the unbiased 

position according to theory of signal detection. During the training session, listeners in 

the treatment group will be told explicitly that SN and NA trials are always equally likely 

to occur. They will also be told that each correct response results in a monetary gain of 5 

dollars and each incorrect response results in a money loss of 5 dollars.  To emphasize 

this information, listeners will be required to practice with several blocks of trials. A 

visual display will show them whether the signal was present or absent. After a response, 



41 

 

a counter will show the monetary gain/loss. After the training session, a test session will 

be given to both groups of listeners. The experimental conditions will be the same as 

those in Davis (2015). The only difference is that the visual display will show the total 

value at the end of a block. Finally, performance will be compared between the two 

groups.  

If listeners in the treatment group show less response bias than listeners in the 

control group, this suggests that non-sensory information could be reinforced and fixed in 

advance by training. Later, subjects can keep the unbiased response criterion even if they 

have to operate in situations where incomplete knowledge of results is the norm. If 

listeners in both groups show similar results, this indicates that it is difficult to fix non-

sensory information by training, and response bias will continue to be influenced 

significantly by incomplete knowledge of results.  

 

 



42 

 

Bibliography 

Aziz, H. (2017). Comparison between field research and controlled laboratory research. 

Archives of Clinical and Biomedical Research, 1(2), 101-104 

Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By 

the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John 

Canton, AMFR S. Philosophical transactions of the Royal Society of London, (53), 

370-418. 

Bolstad, W. M., & Curran, J. M. (2016). Introduction to Bayesian statistics. John Wiley 

& Sons. 

Brungart, D. S. (2001). Informational and energetic masking effects in the perception of 

two simultaneous talkers. The Journal of the Acoustical Society of 

America, 109(3), 1101-1109. 

Coppock, A., & Green, D. P. (2015). Assessing the correspondence between 

experimental results obtained in the lab and field: A review of recent social science 

research. Political Science Research and Methods, 3(1), 113. 

Davis, M. J. (2015). The effects of incomplete knowledge of results on response bias in an 

auditory detection task (Doctoral dissertation, The Ohio State University).  

Gescheider, G. A. (2013). Psychophysics: the fundamentals. Psychology Press. 

Giguère, C., Laroche, C., Osman, A., & Zheng, Y. (2008, July). Optimal installation of 

audible warning systems in the noisy workplace. In Proceedings of the 9th 

International Congress on Noise as a Public Health Problem (ICBEN) (pp. 197-

204). 



43 

 

González-Hernández, J. M., Peral-Orts, R., Campillo-Davo, N., Poveda-Martínez, P., 

Campello-Vicente, H., & Ramis-Soriano, J. (2017). Assessment of warning sound 

detectability for electric vehicles by outdoor tests. 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. 1988 

reprint edition.  

Harvey Jr, L. O. (2014). Detection theory: sensory and decision processes. University of 

Colorado, Boulder. 

Kaernbach, C. (1990). A single‐interval adjustment‐matrix (SIAM) procedure for 

unbiased adaptive testing. The Journal of the Acoustical Society of America, 88(6), 

2645-2655.  

Lee, M. D. (2008). BayesSDT: Software for Bayesian inference with signal detection 

theory. Behavior Research Methods, 40(2), 450-456.  

Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical 

course. Cambridge university press.  

Lurie, N. H., & Swaminathan, J. M. (2009). Is timely information always better? The 

effect of feedback frequency on decision making. Organizational Behavior and 

Human decisión processes, 108(2), 315-329. 

Mackworth, N. H. (1956). Vigilance. Nature, 178(4547), 1375-1377. 

Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user's guide. 

Psychology press. 

Parizet, E., Robart, R., Chamard, J. C., Schlittenlacher, J., Pondrom, P., Ellermeier, 

W., ... & Hatton, G. (2013, June). Detectability and annoyance of warning sounds 



44 

 

for electric vehicles. In Proceedings of Meetings on Acoustics ICA2013 (Vol. 19, 

No. 1, p. 040033). Acoustical Society of America. 

Rane, D., Shirodkar, P., Panigrahi, T., & Mini, S. (2019, March). Detection of 

Ambulance Siren in Traffic. In 2019 International Conference on Wireless 

Communications Signal Processing and Networking (WiSPNET) (pp. 401-405). 

IEEE. 

Rayo, M. F., Patterson, E. S., Abdel-Rasoul, M., & Moffatt-Bruce, S. D. (2019). Using 

timbre to improve performance of larger auditory alarm sets. Ergonomics, 62(12), 

1617-1629. 

Ripley, B. D. (2001). The R project in statistical computing. MSOR Connections. The 

newsletter of the LTSN Maths, Stats & OR Network, 1(1), 23-25. 

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an 

application in the theory of signal detection. Psychonomic bulletin & 

review, 12(4), 573-604. 

Smith, S. E., Stephan, K. L., & Parker, S. P. (2004). Auditory warnings in the military 

cockpit: A preliminary evaluation of potential sound types (No. DSTO-TR-1615). 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION EDINBURGH 

(AUSTRALIA) AIR OPERATIONS DIV. 

Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS user manual. 

Swets, J. A. (1977). Signal detection theory applied to vigilance. In Vigilance (pp. 705-

718). Springer, Boston, MA. 



45 

 

Szalma, J. L., Hancock, P. A., Warm, J. S., Dember, W. N., & Parsons, K. S. (2006). 

Training for vigilance: Using predictive power to evaluate feedback 

effectiveness. Human factors, 48(4), 682-692. 

Szalma, J. L., Parsons, K. S., Warm, J. S., & Dember, W. N. (2000, July). Continuous vs. 

Partial Knowledge of Results in Training for Vigilance. In Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting (Vol. 44, No. 21, pp. 3-

386). Sage CA: Los Angeles, CA: SAGE Publications. 

VandenBos, G. R. (2007). APA dictionary of psychology. American Psychological 

Association. 

Watson, C. S., & Nichols, T. L. (1976). Detectability of auditory signals presented 

without defined observation intervals. The Journal of the Acoustical Society of 

America, 59(3), 655-668 


