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Abstract

Transit schedules are essential planning tools for many passengers – especially for

low-frequency services, transfers, or travel decisions made ahead of the time. This

underscores the continued importance of accurate transit schedules to passengers.

Agencies, on the other hand, also count on reliable travel times and schedule adherence

data for timetable and headway scheduling, as well as operational planning, to provide

reliable services to passengers. The objective of this study is to develop a tool to identify

potential discrepancies between scheduled and observed mean travel times at a stop-

to-stop level after removing outliers, and to identify potential inconsistencies between

scheduled and observed transfer times at the transfer point level. Demonstrations of

the tool’s application are provided using data collected from the Central Ohio Transit

Authority (COTA).

In the COTA application, the study reveals that for certain route sections, the

schedules do not accurately capture the observed temporal variation in mean travel

times throughout the day, especially between peak hours and midday. In other cases,

spatial patterns are visible in the discrepancies between observed and scheduled

travel times, with segments near major intersections tending to have longer than

scheduled travel times, which result in further delays. Stop-to-stop level travel time

distributions are examined to support scheduling purposes. Several distributions are

shown to provide a better fit to observed stop-to-stop travel times than commonly
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used distributions, namely, the Epsilon skewed normal, Generalised Extreme Value,

and mixture normal distributions. Furthermore, this research examines correlations

between travel times across stop-to-stop segments to understand the degree to which

delays may propagate. The results show that most stop-to-stop travel times can

be considered independent from the those of adjacent segments. Higher positive

correlations can be observed at areas with lower traffic and passenger activities. In

addition, potential driver behaviour changes when running ahead of schedule are

pointed out by calculating the conditional travel times given no delays.

In a further analysis, discrepancies between scheduled and observed transfer times

are examined. Like many other agencies, transfers are not coordinated nor guaranteed

by COTA. Overall transfer reliability is examined at the system level, and conditional

probabilities of passengers being able to make a connection after a delay on the first

bus are derived. It is found that three minutes of scheduled transfer time correspond to

an 85% probability of the transfer being successful. If the first bus arrives on or before

the transfer bus is scheduled to arrive, there is also an 85% probability of the transfer

being successful. A general comparison of observed and scheduled transfer times shows

that around 20% of transfer points have shorter than scheduled transfer times and

30% have longer than scheduled transfer times. For the remaining 50% of transfer

points, the scheduled transfer times roughly correspond to the observed transfer times.

Such analyses allow the agency to inform passengers regarding the risks associated

with a planned transfer, and it will allow agencies to assess risks of propagating delays

to future trips associated with holding the transfer bus to guarantee transfers.
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Chapter 1: Introduction

1.1 Motivation

A reliable public transit system is essential to attract passengers, and literature

have pointed out the importance of transit reliability (Carrel et al., 2013) from

passengers’ perspective. However, despite the importance of service reliability to

passengers, there has been relatively fewer attention to transit reliability at stop to

stop level. Researchers and agencies have been analysing transit services at terminal

to terminal level or timepoint to timepoint level. Yet, passengers may not travel

from terminal to terminal or timepoint to timepoint (Halvorsen et al., 2019). As a

result, most researchers have also cited the lack of data as a factor for not being able

to examine transit systems at greater detail (Mazloumi et al., 2010). In addition,

there is a mismatch between the passenger information software based on GTFS

which provides stop arrival times and the common scheduling practice at timepoint

or terminal level (Wessel et al., 2017). Furthermore, since not all transfer points

are located at timepoints, transfer performances cannot be evaluated directly using

timepoint level data. More comprehensive description of stop to stop travel times and

transfer point performances is still needed.

1



This thesis aims to build a system that collects and analyses the vehicle location

data. The system analyses travel times and transfer time at a finer grain level, i.e. at

stop to stop level instead of timepoint to timepoint level commonly used in practice.

Agencies already monitor their on-time performance at timepoint level and address

any significant on-time performance issues using these data by adding time to trips

or segments where vehicles consistently run late, since most AVL systems do not

provide travel time analyses by default (Muller and Furth, 2001). The main goal of

the system focuses on other aspects of the scheduling, which is to calculate whether

there are inconsistencies between the scheduled and actual travel times and transfer

times. These calculations aim to capture temporal and spatial variations of these

inconsistencies if any. The analyses will in turn be done at stop to stop level, trip

level, route level, and system level.

Other than the main goal, this system will also have the ability to aggregate travel

time and arrival time data in different ways for other studies. The following studies

are demonstrated using the system. If agencies wish to provide more accurate stop

arrival or departure times, stop schedules generated by unknown software processes

after the scheduling process at timepoint level are not particularly helpful for making

improvements, thus more descriptive statistics are still needed. Agencies need to

keep in mind variation and potential skewness of the travel time distribution when

determining slack times for segments with larger variation. These skewness and

distribution information could then be used in simulations to determine a good

operation strategy. Agencies might also want to prioritise addressing issues on certain

segments. If the stop to stop travel times are independent, meaning the variance can

be summed up, agencies could prioritise reducing variation on segments with larger
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variances thus reducing the overall terminal to terminal variance. In addition, agencies

might want to see if simple travel time assumptions could be used as starting point to

reduce their workload for stop level scheduling. This thesis attempts to model travel

time distributions and travel time correlations as well to address the above questions.

In addition, since driver behaviours might also contribute to inconsistencies between

scheduled and observed travel times, conditional travel times given delays is explored

but not further examined by the thesis due to lack of data.

As for transfer studies, agencies may want to adopt a set of transfer related

standard, similar to on time performance. Thus, probability of missing transfers is

calculated as a reference. In order to help agencies potentially improve passenger

transfer experience using of these aforementioned observations, simulation for holding

strategies based on historical data is demonstrated using the system. The system can

also be easily expanded to incorporate other data sources from other agencies such as

weather, traffic, and land use data.

To illustrate the potential use of the system, it is applied to data collected from

Central Ohio Transit Authority (COTA). COTA redesigned services in May 2017 to

have brand new routes and schedules, and the shift to a grid like service network

sometimes requires passengers to make a transfer to complete their trips. The agency

also made its AVL data public in 2017. Comprehensive AVL datasets from COTA were

collected for this thesis to offer a comprehensive view of the agency’s new transit system

operations for the past two years starting January 2018, when the data collection

began, to March 2020, when the results were obtained for this thesis.
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1.1.1 Objectives

Based on the motivations presented above, this subsection summarises the main

objectives for this study. There are two main objectives, one related to stop-to-stop

travel times and one related to transfer times. This drives the structure of the analyses,

which will be referred to hereafter as the “travel time component” and the “transfer

time component”.

For the travel time component, the objective is to identify inconsistencies between

the actual service experienced by passengers and the scheduled travel time expected

by the passengers. This analysis will be done at stop to stop level, trip level, line

level, and system level to capture the spatial and temporal differences. In addition,

this thesis will look at the distributions of the stop to stop travel times, due to

its importance on the theoretical analyses done by previous research (Kieu, 2015).

Furthermore, since the sum of stop to stop travel time and stop dwelling times should

be the terminal to terminal travel time, this thesis examines the correlations between

the travel time on neighbouring stop to stop segments to provide more theoretical

information when summing up stop to stop segments. Finally, this thesis explorers

the potential behavioural change from operators when they run early and when they

run late, to see if these stop to stop level travel times are consistent with previous

research by Levinson (1991), which shows drivers tend to get further delayed if they

leave the starting terminal late.

For the transfer analysis, the objective is to describe transfer times at system level

from actual observed data in addition to the previous research efforts that focused

more on deriving these transfer times from theoretical travel time and transfer time

distributions or simulations (Bookbinder and Désilets, 1992). Then, the probabilities
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of missing a transfer given different amount of information is explored. Finally, this

thesis considers the impact of a simple holding strategy that would improve the

probability of successful transfers.

1.2 COTA System Overview

This thesis used data from Central Ohio Transit Authority, commonly referred

to as COTA. COTA is the primary transit authority in Central Ohio. It provides

services mainly in Franklin County, and portions of Delaware, Fairfield, Union, and

Licking counties (McCann, 2016). COTA’s fixed route services consist of 13 local lines

runs through downtown Columbus; 10 crosstown lines serving outside downtown area;

13 rush-hour only commuter lines, 2 limited stop services, 4 special services.

COTA redesigned their transit system in 2017 through streamlining bus routes,

adding more frequent services, and introducing several all-day limited stop services. A

more detailed background on their service design and operation can be found in later

sections in this section.

After long delays, they also launched real-time bus tracking through the Transit

App and began publishing relevant data in General Transit Feed Specification (GTFS)

online for the public. In addition, the GTFS feed describes all of the agency’s stops,

trips, routes, and schedules, and GTFS real time provides GPS tracking most of their

vehicles, with a small portion of vehicles missing from the feed due to equipment or

internet outages. This makes analysing services at more detailed level possible. Since

their real-time bus tracking system and their redesigned system operation became

more stabilised in January 2018, it is a more reasonable starting point to collect data

and analyse their newly designed services in detail.
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1.2.1 Transit System Redesign (TSR)

Over the past decade, central Ohio region experienced rapid growth. COTA was

expecting 8.8% population growth and 4.4% job growth in its service area by 2025

(McCann, 2016). This growth will lead to more public transit users, either due to

increased congestion or due to increased demand for quality transit services (McCann,

2016). The main goal for TSR is to respond to the increasing demand brought by the

regional growth and changes in development patterns, as development patterns are

shifting back to more urban designs. The resulting higher density also increased transit

demand which requires more consistent, simplified, and frequent services (McCann,

2016). The redesigned system was implemented on May 1, 2017.

The new transit system follows a “grid like” approach, where lines run as linear as

possible. This system depend more on connections with other linear lines to allow

passengers to get to areas served by other lines. During the day, these transfers are

generally inferred from the published schedule by passengers, i.e. these transfers are

not specifically scheduled nor guaranteed by the agency. A timed-transfer system,

commonly referred to as “line up” goes into effect at 10pm everyday to guarantee

transfers between buses in downtown area due to reduced service level at night.

1.2.2 Service Standards

According to COTA service standards (McCann, 2016), TSR classified COTA

services into three categories, Frequent, Standard, and Rush Hour.

Frequent lines operate every 15 minutes or better most of the day, seven days a

week. The main service goal is aligned for best ridership outcomes. The service is
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designed as linear as possible on the same corridor with no deviations are allowed

without justification (McCann, 2016).

Standard lines operate every 30 or 60 minutes, 7 days a week. For lines that

operate every 30 minute, the service purpose is mixed with ridership and coverage,

where the line have a mixture of ridership and coverage segments. While for the

60 minute services, the main goal is to provide coverage and basic level of access to

people. These services provide as linear as possible on the same corridor, with limited

deviations to serve major activity centers (McCann, 2016).

Rush Hour lines operates only during weekday peak periods. It offers non stop

service mainly between suburban areas and downtown Columbus. The direction that

goes with peak flow is considered as commute services, while the services going against

the peak flow is considered as reverse commute services. These services are designed

as direct as possible for the express segments (McCann, 2016).

1.2.3 Service Monitoring and Service Changes

Current service change data collection and service change process are based on

several Intelligent Transportation Systems (ITS) implemented between 2015 and

2019 (McCann, 2016). The core of COTA’s ITS system, which also related to this

thesis, are the Computer Aided Dispatch (CAD), Automatic Vehicle Location (AVL)

systems. ITS created opportunities for COTA to monitor their operations, responding

proactively to changes in demand or traffic, and provide real-time travel information

for passengers.

The CAD and AVL system provides operational metrics, such as whether the bus

is running on time compared to the scheduled times using their on time performance
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metrics (McCann, 2016). Vehicle locations used in these systems are communicated via

4G cellular data system every 15 seconds. The system also achieves the vehicle locations

which allows the agency to review incidents and evaluating route performances.

Currently, the operational metrics are measured at timepoint levels.

To ensure their services are in accordance with the published schedule, COTA

monitors its on-time performance based on its own service standards (McCann, 2016).

“A vehicle is considered ‘on-time’ when its arrival is from zero to 4 minutes and 59

seconds after the scheduled time. A vehicle is considered ‘late’ when it arrives five

minutes or more after the scheduled time” (McCann, 2016). Express lines can arrive

at stops up to five minutes early after the express segment where the buses do not

stop, whereas other services are not allowed to run early at timepoint stops. Their

on-time performance standard is 80% of all buses should arrive at scheduled timepoints

“on-time”. These on-time performance data is available at least on a monthly basis,

where the system should be reviewed on average over each month.

COTA’s service changes happen every trimester, on the first Monday of January,

May and September every year. These changes occur to improve their service metrics,

such as on-time performance mentioned above, as well as to improve productivity of

existing services (McCann, 2016).

1.3 Organization of this Thesis

The rest of this thesis document is organised in the following way.

Literature on previous transit reliability research is presented in Chapter 2. This

chapter reviews past research on general use of AVL data, bus travel time variability,

passenger metrics from agencies, and transfer coordination.
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Chapter 3 gives an overview of the methodology used in this study, details include

data sources, data processing, data storage, and data aggregation.

Chapter 4 begins the COTA study, with detailed discussion of spatial and temporal

travel time inconsistencies between scheduled travel times and observed mean travel

times, travel time distributions, conditional travel times given a certain bus delay, and

travel time correlations from stop to stop.

Chapter 5 focuses on the temporal transfer time inconsistencies at different transfer

points, and conditional probability of successful transfers given scheduled transfer

time and given actual arrival time in relation to scheduled transfer bus departure time.

In addition, this chapter applied a simple holding strategy on the observed transfer

data to illustrate the effects of holding.

Chapter 6 discusses the findings and concludes this thesis. This chapter summarises

and combines the findings in previous chapters with potentially useful operational

insights for agencies. Limitations, potential improvements, and future expansions of

this study are also proposed and explored.
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Chapter 2: Literature Review

This chapter focuses on the previous research efforts relating to this thesis. The

main topics discussed below are travel time variability, travel time monitoring, transfer

coordination, and transit scheduling methods. These literature were selected with

a specific focus on the larger dataset applications. After the detailed summaries of

previous literature, there is a short discussion that ties previous research efforts to the

contribution of this thesis.

2.1 Travel Time Variability and Adjustments

Travel time variability has limited prior studied due to the lack of comprehensive

dataset (Mazloumi et al., 2010), and thus frameworks for analysing these data still

needs to be developed. However, prior studies mainly focused on passenger experiences

waiting at bus stops. With the implementation of GPS tracking systems on transit

vehicles, Mazloumi et al. (2010) used bus GPS data from Melbourne suburbs to

examine factors that caused complete trip (i.e. terminal to terminal) travel time

variability. They found travel times in a given departure window are best characterised

by normal distribution during peak hours while off peak windows are best fitted by

log normal distribution. Then, they explored factors, such as route length, number of

stops, traffic signals, delays, industrial land use, rain, and time of day, that impact
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complete trip travel times using ordinary least square linear regression. They found

that route length is the most important route characteristic that contributes to travel

time variability, while industrial land use had highest impact on travel time variability

as an external factor. They conclude travel time distributions are important inputs

to understand travel time variability, and that shortening route sections or overall

route lengths, consolidating bus stops, multi-door boarding and alighting, could reduce

travel time variability. They also found buses running ahead of schedule tend to have

longer travel times than late buses. The rain factor is only found to be significant in

AM peak.

El-Geneidy et al. (2011) mentioned the issue there are little effort to studied

collected AVL and APC data in evaluating transit performance. They analysed travel

time adherence and reliability for one cross-town route in Minneapolis, MN. at time

point level and route level. Their result demonstrate potential ways of identifying

service level decline, and they recommended schedule revision to increase the travel

time and arrival time adherence. Due to low ridership at certain stops, they also

recommended stop consolidation to decrease service variability. They also fitted linear

regression line to model run times at timepoint level. The result indicate that run

time is longer at the end of service pattern, and departure delays increase the run

time.

Liao and Liu (2010) developed a data processing framework for transit performance

analysis, using AVL, APC, automatic fare collection (AFC), and schedule data, to

enable further analysis in transit performance and support operational decision making.

They utilised one month of archived data obtained from Metro Transit in Minneapolis,

MN. They analysed these data at the time point level, which includes time point
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schedule adherence, and link travel time between timepoints. They demonstrate their

model can assist agencies in conducting further analysis in transit performance and

factors causing delays at timepoint level, thus enables agencies to develop more robust

transit schedules.

Another area related to transit scheduling is predicting vehicle arrival times, which

has been thoroughly studied by scholars. However, O’Sullivan et al. (2016) pointed

out the non-linear natures of existing bus arrival time prediction models, and potential

drawbacks of these models due to variations in input data. They argue the prediction

problems are complicated, due to complex interactions among determining factors

such as passenger demand, weather, accidents, and service capacity. They developed

a metamodel approach, which enhances existing models using quantile regression to

place bounds on associated errors.

2.2 Travel Time Monitoring

This section focuses on real-time vehicle movement monitoring and their appli-

cations with a stronger attention on agency practices from New York City Transit

and Tri-County Metropolitan Transportation District of Oregon (TriMet). The more

generalised approaches not specific to any agencies proposed by academics are also

discussed later in this section.

Transit agencies monitors their real-time vehicle movements during their daily

operations. Agencies can obtain operational metrics and performance analyses from

the archived vehicle location data to improve their service. To reiterate, COTA uses

real-time GPS locations to monitor their vehicles and calculate bus delay times, which

allows dispatchers to instruct bus drivers to run limited or express service to get back
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on schedule if running behind or instruct bus drivers to stop if running early (McCann,

2016). COTA archives information to calculate performance metrics and to assist

incident resolutions (McCann, 2016).

New York City Transit has used traditional operation-focused performance metrics

to evaluate their performance (Halvorsen et al., 2019). However, they mention that

these metrics, like on time performance at terminals, are useful for agency to take

actions to improve operations, but they do not reflect customer experiences. Halvorsen

et al. (2019) and Graves et al. (2019) argue that passengers rarely travel a line from

terminal to terminal, and customers tend to understand system performance in terms

of additional time they have to spend waiting or riding. As a result, they developed

passenger centric performance metrics for their subway and bus services to allow

transit planners to review customer experience issues along a route. This allows

New York City Transit to improve their transparency and public communications.

They developed an online subway dashboard and two new passenger centric metrics,

additional platform time and additional train time. Similarly, New York City Transit

had also developed customer focused journey time metrics for their bus services (Graves

et al., 2019), additional bus stop times and additional travel time. They are calculated

using the origin destination matrix and vehicle movement data, either through their

train supervision records or bus GPS records, which allow them to assign passengers

to vehicles. Their new metrics received praise from many people, and are now used

by NYCT for public communications. To illustrate the relationships between the

passenger centric service metrics and traditional operational focused metrics, they

calculated the correlations. These metrics are then shown to have moderate correlation

between the existing operational focused metrics like on time performance and wait
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assessment (i.e. percent of passengers who waited longer than 5 minutes). They argue

this is likely due to traditional metrics like on time performance do not take the extent

of poor performance into consideration and are limited to 0% to 100%.

The archived AVL data is also used in schedule revision in agencies. Another

typically monitored item is the adherence to the scheduled arrival time, which allows

agencies to revise schedules and remedy delays along a route. As mentioned in Chapter

1, COTA modifies their schedules three times per year based on on-time performance

data at the timepoint level.

Coleman et al. (2018) at New York City Transit developed a data-driven approach

to prioritize schedule revisions for the most in need bus routes by evaluating service

capacity, ridership data, and terminal to terminal travel time data. They cited the

labour intensive schedule revising process and limited resources as reasons for limited

schedule revisions at New York City Transit with most schedules revised once every

two years. They utilise their automatic vehicle location data and their ridership data

to identify routes with the greatest discrepancy between scheduled versus actual travel

time as well as planned capacity versus the peak load point ridership for in depth

reviews. They analysed these capacity and running times based on fifteen to sixty

minute time intervals throughout the day, with shorter time interval during peak hours

and longer time interval during off-peak hours. Then, they calculate scores for every

route based on surplus or insufficient travel time or capacity, then these individual

scores are multiplied to obtain the overall ranking of the route. Highest scores are

assigned to routes that exceed their performance threshold, i.e. median running time

deviates more than 2 minutes, and ridership either exceeds capacity or are below half
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of the provided capacity. This prioritisation process makes schedule revisions at New

York City Transit more responsive to changes in travel conditions.

TriMet in Portland, Oregon also utilises their performance metrics to improve

their transit schedules (Kimpel et al., 2008). They record time point to time point

travel times along the route and calculates 20th, 50th, and 80th percentile travel times.

They consider the 50th percentile run time is the time typically required for operators

to operate the segment, while 20th and 80th percentiles are arbitrary upper and lower

bounds as indicators for extreme insufficiencies and extreme surpluses in the schedule.

They then applied cluster algorithms and nonparametric statistics on the median run

times to obtain an optimal run time for their scheduling process.

Some scholars have also developed approaches that are not specific to any agencies.

Basak et al. (2019) developed a data-driven approach to optimize transit schedules.

They choose to optimize the probability of buses arriving at timepoints on time.

They utilised genetic algorithm and particle swarm optimization algorithms for the

optimisation process. Their result show particle swarm optimization requires less

computing resources while also providing good results.

Kieu (2015) studied the travel time variability in route level by fitting various

statistical distributions to model the observed terminal to terminal travel times.

Kieu (2015) found public transit travel time is significantly different from private

transportation, and log-normal describes the travel times the best.

Bates et al. (2001) discusses passengers’ valuation of travel reliability. They

conclude that travel time reliability is highly valued by passengers, travel time dis-

tributions generally do not follow “nice distributions”, such as normal distributions,
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thus medians become more representative when distributions are not well behaved

and medians should be used when evaluating travel times.

Previous literature have pointed out the importance of transit reliability in passen-

gers’ decision making process. Carrel et al. (2013) found that in-vehicle delays are

more likely to drive people away from transit than having longer waiting times at the

origin stop. They also pointed out that passengers may evaluate services reliability

based on the real time information they received from mobile apps, instead of the

service schedule provided by the agencies.

2.3 Transfer Applications and Coordination

The New York City Transit passenger centric metrics also considered the impacts

from passenger transfers (Graves et al., 2019; Halvorsen et al., 2019). They utilised

the origin destination matrices to generate linked trips, and match each individual

trip segment to running vehicles. Both groups uses scheduled running time to model

customer decisions to reflect the customers’ lack of knowledge on future delays when

deciding which train to board. However, when service interruptions occur, such as

service changes, station closures, or the vehicle a passenger is more likely to board,

considering overcrowding, are delayed by more than 15 minutes, their model will look

for alternative routes that complete the trip faster. Due to major service changes or

track works during late nights and weekends, their metrics are not applied to these

time periods due to the change in overall trip patterns.

Kieu (2015) developed a simulation model to evaluate transfer times given different

bus travel time variability and bus departure times at a transfer point. From the

simulation, Kieu (2015) found there is no planned transfer time (i.e. transfer determined
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by planners from one vehicle to another built into the schedules) that minimizes the

mean transfer time nor the probability of missing a transfer. Through online (holding

based on real time bus arrival prediction) and offline (scheduling and operation changes)

coordinated transfer strategies proposed by the author, the mean transfer time can be

reduced by 20 percent and the probability of missing the transfer can be reduced by

80 percent.

Bookbinder and Désilets (1992) proposed a model for transfer optimization and

coordination. The model takes into account bus travel time variations and different

objective functions such as the expected transfer times or the variation in transfer

times. They utilised bus travel time distributions to model the transfer times at the

transfer stop. The authors show the expected transfer times are hard to improve, but

the variations in transfer times can be reduced easily. They further conclude that

“transfer optimization under a no-hold policy may produce more improvements when

headways are long” (Bookbinder and Désilets, 1992).

Knoppers and Muller (1995) studied the positive and negative implications resulted

from transfer coordinating strategy. Based on vehicle and passenger arrival time

distribution the authors examined waiting times expectations and variations at transfer

stops. Through derivations, they conclude schedule coordination becomes less effective

when frequencies are higher on the connecting line. They also conclude that delayed

departure at one transfer point may endanger subsequent transfer points.

Shafahi and Khani (2010) is a more recent attempt in optimizing transfer waiting

times. Shafahi and Khani (2010) formulated the transfer problem into a mixed integer

programming problem and a genetic algorithm problem to optimize transfers by

minimizing waiting times. Their most significant assumptions are that the headways
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are uniform, travel times are given, and dwelling time at stops are constants. They

conclude that mixed integer programming is good for smaller agencies, while the

genetic algorithm is better for larger agencies.

Another improvements to the transfer optimisation is from Parbo et al. (2014).

They incorporated passengers’ modified route choice as results from schedule changes

into their optimisation process by using the Danish national route choice model and

national transit schedule. Their research results led to a yearly reduction in weighted

waiting time equivalent to 45 million Danish Kroner. However, they suggest future

research to look consider non-deterministic bus arrival times in addition to their

scheduled based analyses.

2.4 Current Transit Scheduling Methods

Wessel et al. (2017) proposes a method to retroactively improve the accuracy of

transit agencies’ GTFS feed by using real time vehicle locations provided. Using these

observed data, they created a routable bus timetable representing service delivered

which can then be used in assessing transit performance, reliability, and accessibility

issues. They argue that transit schedules are often done at timepoints, whereas arrival

and departure times for stops in between timepoints are not yet defined in practice.

GTFS, on the other hand, requires arrival and departure times for every stop served

by a certain trip. There is a discrepancy between the general scheduling practices and

what’s shown to the passengers through GTFS, which calls for further investigation

into stop level scheduling practices.

Ceder (1987) listed four bus headway setting methods. He mentions service

frequencies are determined to maintain adequate service quality and minimize number
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of buses in operation and efficiently allocate resources to gather ridership data. He

proposes three types of headways. Equal headway simply means headways are evenly

spaced during each time period. Balanced headways, are not evenly spaced, but

they are set so that observed passenger loads would be similar on all buses. Smooth

headways are simply the average of equal and balanced headways. Then, headways

can be set based on passenger loads. Ceder’s first two headway setting methods are

based on point checks, i.e. ridership obtained at one point along the route. The first

method is based on data gathered at max load point during the whole day. The second

method is to determine service frequency based on hourly or period max load point.

The third and fourth method are based on ride checks, i.e. data obtained from a

complete bus trip. The third method sets the frequency so that the average load along

the route is at or under the desired capacity. The fourth method adds a constraint to

the third method that limits the length of the route where the load exceeds a certain

overcrowding limit. In addition, special requests can be applied to the headways,

such as clocked faced headways. Once the headways are set, the average round trip

times including holding and layover times are used as additional inputs for setting

trip departure and arrival times.

Levinson (1991) synthesizes the agency practices on bus running times. He points

out that good schedules should allow enough running time to operate the route,

account for congestion and signal delays, and provide enough layover time at the

terminal so that late buses can start the next trip on time. He also found that if

drivers leave the terminal late, it is unlikely that they are able to catch up the lost

time. Levinson (1991) also concludes that scheduled run times should be set at a value
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slightly less than the mean or median run time in order to ensure that the majority of

operators do not have to kill time in order to maintain their schedule adherence.

In a later synthesis, Furth (2000) argued that whether scheduled running times

are based on average running times, ideal running times, or a high percentile running

times (e.g. 75 to 95 percentile) is a matter of agency policy. Ideal running times help

prevent buses from running early, which is less desirable for passengers than trips

running late. However, under ideal schedules, trips will tend to run late, and will

need greater scheduled layovers at terminals. The high percentile running times help

prevent trips from being late, but increases the chances of running early unless agencies

implement strict policy to reduce early departures. The high percentile running times

also mean less layover time is needed in the schedule. The average running time

policy is a compromise between those extremes. Furth argues while average running

time is sufficient to determine scheduled running time, scheduled layovers should be

determined based on running time variability. As a result, most agencies choose to use

a high percentile, typically 85th percentile, as their “half cycle” time, i.e. the terminal

to terminal travel time plus layover time at the terminal. This allows them to set

standards so that a small percentage of vehicles will not be able to start the next trip

on time.

Muller and Furth (2001) argue that people mistakenly assume automatic vehicle

location systems provides travel time analyses to agencies by default, simply because it

tracks the vehicles. However, this is not the case. They further argued that schedules

at timepoints must be set correctly to allow good schedule adherence. They pointed

out that European systems consider every stop as time points to avoid large schedule

deviations. They argue precise travel time scheduling under urban congestion requires
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larger data provided by trip time analysing system. They shows a scheduling strategy

that sets travel time to be the 85th percentile from every timepoint to the terminal.

The idea is that if drivers end up early and holding at a time point, the remainder of

the trip should also satisfy the on time requirement with high probability. Then, the

individual segment travel times are set using repeated subtractions.

Coleman et al. (2018) summarized the scheduling practice at New York City

Transit. They review express routes yearly, weekday schedules at minimal every two

years, while the weekend are required to be revised at least every four years. Their

scheduling process mainly includes analyzing ridership and end to end running time

data. During peak hours, they set their load standard to 100% of standing and seating

rooms, while during off peak hours, the load standard is reduced to refer the desired

maximum load by passengers. Their bus GPS data are matched to timepoints to

determine the running times. If the actual ridership exceeds their designed capacity,

service frequency is increased.

2.5 Discussion

This section points out or reiterates potential improvements and research needs

from the existing literature listed in previous sections. The literature review shows

that agencies commonly design their schedules at timepoint level or at trip level, and

most studies reviewed in this chapter use time point level schedule adherence data or

terminal to terminal run time data to conduct their analyses for bus systems. Yet,

GTFS standard requires arrival and departure times at stop level, which are not yet

clearly defined by most agencies (Wessel et al., 2017). There is an obvious mismatch

between the agencies’ service design at timepoint level and passenger experience at stop
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level. In addition, despite timepoints are commonly placed at higher ridership stops

to evaluate service reliability, not all passengers travel from timepoint to timepoint

(Halvorsen et al., 2019). This mismatch between what is provided by the agency and

what is perceived by passengers calls for investigation on whether GTFS stop to stop

travel times are consistent and representative with the actual travel times experienced

by the passengers, and the stop to stop level analysis represent passenger’s experience

closer.

In addition, transit scheduling practices reviewed in this chapter also pointed out

that scheduling normally picks 85th percentile as the “half cycle” time (Kimpel et al.,

2008), as previous literature assume 85th percentile is the mean plus one standard

deviation. This assumption means that if drivers start their trips on time, 15 percent

of the drivers will be so late to get to the terminal that they will not be able to start

their next trip on time (Furth, 2000). However, this practice may potentially violate

the statistical definition when creating stop schedules or even timepoint schedules,

which require summing up individual travel time for each segment to the terminal

to terminal travel time. By definition, the sum of stop to stop travel times and

dwelling times at each stop adds up to the total terminal to terminal travel time.

Unfortunately, the sum of 85th percentiles stop to stop travel times does not equal to

85th percentile terminal to terminal travel time. Regardless, in practice, some agencies

determine timepoint to timepoint travel times by subtracting the 85th percentile

travel times from one timepoint to the terminal from the 85th percentile travel time

from previous timepoint to the terminal (Muller and Furth, 2001). Since percentiles

cannot be directly summed up or subtracted, this practice may have contributed

to the inconsistencies passenger experience at stop to stop level as well. Based on
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these potential issues, this thesis will focus on the mean travel times. In addition, the

practice of getting 85th percentile by adding one standard deviation to the mean may

only be true when the data are normally distributed. Thus, the distributions of the

data need to be examined further at stop to stop level if agencies decide to continue

this practice at stop to stop level.

Furthermore, Carrel et al. (2013) also highlights the importance of transfer times

which are more important compared to waiting time at the origin stop. Despite

agencies use some transfer points as timepoints for their service evaluation, not all

passengers transfer at timepoints. In addition, most of the transfer optimisation and

coordination literature reviewed in this chapter (Bookbinder and Désilets, 1992; Kieu,

2015) are based on statistical bus travel and arrival time variations and expected

transfer times are inferred from these distributions. There still lacks a comprehensive

overview of what are the actual transfer times passengers experienced.

One reason for the lack of research is a lack of comprehensive datasets, which has

been pointed out by other researchers (Mazloumi et al., 2010). It is not surprising

that the selected studies on travel time variations and deviations only analysed a few

transit lines, and none of them conducted systemwide analyses. One or two transit

line might not be adequate to reflect systemwide travel time deviation pattern.

This thesis tries to look at the transit unreliability or inconsistencies experienced

by passengers at stop to stop travel times and transfer times in addition to agencies’

on time performance monitoring. In order to add more evidence to the previous

theoretical derivation research efforts on travel time and transfer time distributions

(Bookbinder and Désilets, 1992; Kieu, 2015), this thesis also examines stop to stop

travel time distributions and correlations. This thesis will also examine the conditional
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travel times when drivers run late to see if the results are consistent with previous

research done at terminal to terminal level by Levinson (1991).

This thesis also aims to look at transfer times from the observed data rather than

the derived distributions or simulations (Bookbinder and Désilets, 1992; Kieu, 2015).

The focus for this thesis is to examine transfer time inconsistencies, if any, at each

individual transfer point, and probabilities of missing a transfer are calculated using

the observed data.
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Chapter 3: Data and Data Processing

This chapter describes the data and methodology used in the thesis. In general,

the data used here are GTFS static and GTFS real time feeds provided by COTA.

The system collects GTFS real time feeds every 10 seconds, and GTFS static feeds

when updates become available. There are more detailed descriptions for the GTFS

standards in this chapter. Then the data is stored in a relational database for processing

and analysing travel time and transfer times. More detailed descriptions can be found

later in this chapter.

3.1 Introduction to GTFS

General Transit Feed Specification (GTFS) was developed by Tri-County Metropoli-

tan Transportation District of Oregon (TriMet) along with Google. The goal was

to enable online trip planning through data that are shared with the general public.

TriMet and Google formatted transit data from the agency into a format that could

be imported into trip planning applications like Google Maps. It provides a universal

specification for transit agencies to publish their data to the public. As a result, GTFS

has been adopted by various agencies around the world and third-party software

developers for numerous purposes, including trip planning and real-time information
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systems. COTA partnered with Transit App to provide trip planning and real-time

data to passengers.

GTFS feeds published by COTA described in the following subsections, as well as

most other agencies, contain two main components, GTFS Static and GTFS real time.

GTFS Static contains transit information that are likely to stay the same for some

period of time. These information include transit schedule, fare, and geographical

shapes. On the other hand, GTFS real time provides real time information that

contains predicted arrival times, vehicle location updates, as well as service alerts.

3.1.1 GTFS Static

A GTFS Static feed is similar to a relational database schema which consists of a

series of tables and their relations, except GTFS is stored and published in a series of

comma-delimited text files. A GTFS Static feed defines and describes the agency’s

common information, such as their lines and schedule, for the public. The required

information by the GTFS Static standard are agency, stop, routes, scheduled trips,

scheduled stop times for each trip, stops, and service dates information. This thesis

extensively uses all these required information, along with the additional shape file

provided by COTA’s GTFS file. The following paragraphs describes some important

fields related to this thesis and how COTA defines these fields.

The Agency dataset is a required dataset by GTFS. This dataset contains the

agency or agencies whose services are described in the dataset. COTA’s GTFS feed

only contains one agency, thus the file contains only the header row and one data row.

Agency ids that help distinguish services run by different agencies. Agency Name

is the full name of the agency. Agency URL is the website for the agency. Agency

26



timezone specifies the timezone which the agency operates in, which also defines the

time zones for the defined arrival and departure times. There are additional fields

that further describes the agency, such as the customer service phone number. These

additional fields are not described here as they are not used in this thesis.

Calendar and Calendar Dates datasets describe when will the service run, which

is also required by GTFS standard. Calendar dataset allows agency to distinguish

weekday and weekend services by specifying a weekly schedule. Calendar Dates, on

the other hand, defines individual dates whether a service will or will not occur.

Calendar file contains a unique identifier, service ID, for a set of dates when

services are available. Each service is defined by days of the week, from Monday to

Sunday. Start date defines the start of the service interval defined in this GTFS feed.

Similarly, end date specifies the end date for the service interval described in this

GTFS feed. Each day of the week has an indicator whether the service operates on all

corresponding days of the week in the date interval ranging from start date to end

date. The field is 1 when service is available, 0 when service is not available. COTA

uses this file to define most of its services, as most of its services are categorised into

weekday, Saturday, Sunday services.

Calendar dates file only contains three fields, service id, which references the

calendar file. It identifies a set of dates when a service exception occurs for a specific

service id. Date field defines when the service exception occurs. Together, service id

and date are used as compound keys in GTFS standards, meaning each service id and

date pair can only show up once in calendar dates file. Finally, there an exception

type indicator that shows whether the referenced service has been added or removed

from the corresponding date. COTA mainly uses this file to specify service exceptions,
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such as major holidays when buses operate on Sunday schedules. COTA also uses

this file to define service dates for services that do not follow a strictly follows day of

the week schedule, such as additional OSU services that operates only when OSU is

in session.

The Route dataset defines transit routes, which is a group of trips that are

advertised as one single service. In COTA’s case, there are 47 rows listed in the

dataset.

Each lines is assigned a unique route ID, that identifies the lines. Each line is

then associated to the agency operating the route by referencing the agency ID in the

agency file. Route Short Name is for a short name for the riders to identify a route.

This might be different from the Route ID field. For example, COTA uses 101 as

internal route id for the CMAX line, where CMAX is the route short name known to

passengers as well as displayed on the header sign. Route long name is the full name

of the route. COTA uses this field to describe the main corridor a route serves, or the

main destination a route serves. There are additional fields that allows passengers

to distinguish the services, such as the route color. These additional fields are not

described here as they are not used in this thesis.

Trip dataset lists the trips on each route. Each trip is a trip from the origin

terminal to the destination terminal on a specific time of the day.

Each trip is assigned a unique trip ID, which help identifies a specific trip. A trip

is also associated with three foreign keys, route id, shape id, and service id. These

three fields references the route, geographical shape that describes the path vehicle

follow, and service dates for the corresponding trip. Each trip also contains the header

sign of the trip, which is the text identifying the trip’s destination that appears on the
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displays for passengers to distinguish short turns and branches on the route. Direction

id indicates the directions of travel. All of COTA’s trip are linear and bi-directional,

meaning a service operates from one terminal to another terminal, then back to the

original terminal. Block ID identifies the block which the trip belongs. A block

contains one or more sequential trips a vehicle will follow during the day. This is

different from COTA’s run number. COTA uses run numbers to specify one or more

sequential trips a driver will follow during the shift. A run can be different from the

block, as driver shift changes may occur in the middle of the route while the vehicle

and passengers will continue the trip.

Stop dataset is a collection of all the stops where transit vehicles pick up and drop

off passengers.

In the dataset, each line corresponds to one stop, distinguished by a unique stop

ID. Stop Code field shows the stop number posted on the stop signs, which allows

agencies to use phone-based information systems for passengers to get information.

Stop Name is the full name of the stop, which allow people to understand the location

of the stop. For COTA, it is the name of the road intersection where the bus stop

is located. Stop latitude and longitude fields describes the geographical location of

each stop. There are other optional fields not mentioned here, since those are not

applicable for COTA system or not relevant to this thesis.

Stop Time dataset corresponds to each trip, and delineates specific times a transit

vehicle arrives and departs from each trip. These stop level arrival or departure times

are determined by proprietary softwares agencies use after the scheduling process at

timepoint level. People generally use these software as black boxes not knowing the

process used to generate these stop to stop arrival or departure times. For COTA
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data, it is reasonable to speculate that these stop level arrival and departure times

are linearly interpolated, since stop to stop segments between two timepoints have

the same travel speed.

Stop times data has two foreign keys, trip id and stop id. These two foreign keys

reference a trip these stop time applies to, and stops being served in this particular

trip. Then each stop, from beginning to the end of the trip, is assigned a stop sequence

number. The stop sequence will monotonically increase as the bus runs along the trip.

Each stop is also associated with an arrival time and a departure time. COTA does

not model dwelling times at stops, except for the line ups. This means, the arrival time

is the same as the departure time in this dataset. For services after midnight, these

two times are set to values greater than 24:00:00. Each stop also has a corresponding

shape distance traveled value showing the actual distance traveled along the associated

geographical shape.

Shapes dataset details the paths a transit vehicle will follow for a collection of

trips. COTA uses the road center lines to define these paths.

Shape id is required to identify a shape. Each shape has a collection of shape

points that are used to define the paths a vehicle will follow. Shape points are stored

as latitude and longitudes. Each shape point is assigned a shape point sequence,

showing the order of shape points that connects to the path of the trip. Each shape

point is also associated with shape distance traveled value, similar to the stop times

dataset. This shows the actual distance from the beginning of the path to the shape

point specified in this record.

Transfer file in the GTFS standard is optional. Most applications derive transfer

points based on geographical proximity of stops, like most passengers would plan their
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transfers based on the published schedule. However, this file will help specify additional

rules for trip planning applications when identifying transfer points. Especially when

transfers are not possible between routes at specific locations. COTA does not provide

a complete transfer rules file, and I had to manually add more transfer points into the

transfer file following the specified GTFS format for the transfer analysis in Chapter

5.

Each transfer is identified by a from stop id and a to stop id. These two stop ids

are foreign keys referencing the stops dataset. In conjunction, they identify the stop

where transfer begins, and the stop where the transfer ends. Each pair of stop ids

is also assigned a transfer type, specifying the types of transfers, such as untimed

transfers which COTA operates mostly on. There are also an extended version for

this file, where it further identifies from and to trips for a specific transfer point. My

transfer files will follow the extended version, since the goal of the analysis is to show

detailed arrival, departure, and transfer times at a given transfer point throughout a

given day.

Other files, such as frequencies, are not modeled in COTA’s GTFS feed, as they

are optional and COTA does not operate headway based service. Therefore, this thesis

omits their explanations.

3.1.2 GTFS Real Time

GTFS Real Time (GTFS-RT) is an extension to the GTFS that allows transit

agencies to provide non-static updates, such as arrival time updates, vehicle locations,

and service alerts, to its passengers. COTA utilises all three elements of GTFS-RT

for passenger information, Trip Update, Vehicle Position, and Alert. Currently at
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COTA, Trip Updates and Vehicle Locations updates are sent out every 15 seconds.

Service Alerts are sent out once they are in effect. Most of the fields specified in these

feeds are optional, due to different services status being involved. Thus, the following

descriptions will focus on COTA’s real time feed.

Trip Update provides real-time updates on a trip’s status. It can either show

future updates, such as estimated arrival time for future stops, or show past events,

such as stop times for previous stops that allows passenger to determine whether the

vehicle has passed. COTA’s Trip Update feed consists of 5 fields, Trip Descriptor,

Vehicle Descriptor, Stop Time Updates, and Timestamp. Each field contains one

entity, except stop time update which can contain more than 1 stop times.

Trip Descriptor allows real time data to be matched to one trip in GTFS Static

feed using the primary key Trip ID. Again, since COTA does not operate a headway

based service, this is enough for our purposes. It also avoids collision with the future

trips under the same Trip ID by specifying the trip’s Start Date. Vehicle Descriptor

gives additional information on the vehicle operating on the trip. COTA uses the bus

label visible to passengers as the identifier for each vehicle. Stop Time Updates gives

the updated stop times for both future stops and past stops for the trip. Each Stop

Time Update shows the updated arrival and departure time for a given Stop ID on

the trip. Timestamp gives the time at which the vehicle’s progress was measured.

However, there are problems with COTA’s Trip Updates feed. GTFS Trip Updates

feed is mainly designed for passenger information, and it allows past stop times to be

overwritten. Current COTA system estimate arrival times for both future and past

stops are calculated as current delay time in minutes plus scheduled arrival time. Past

stop times will be overwritten by COTA’s system once the delay minutes changes.
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Therefore, the recorded data has potentially large deviations from reality. Based on

these facts, I chose to reconstruct these values using vehicle position data, which

provides more certainty.

Vehicle Position shows real time information about a vehicle’s geographical location.

COTA’s vehicle position feed has 5 fields, Trip Descriptor, Vehicle Descriptor, Vehicle

Position, and Timestamp.

Similar to Trip Updates, Vehicle Positions gives the same information in Trip

Descriptor and Vehicle Descriptor fields to allow data users to match vehicles to a

specific trip in the GTFS Static feed. Timestamp is also the moment when the vehicle’s

location is measured. In addition, Vehicle Positions feed gives the geographical location

of a vehicle, by using the latitude and longitude coordinates in WGS-84 system.

Alert gives passenger data about service disruptions and future planned disruptions.

COTA’s alert feed has 5 fields, active period, informed entity, effect, header and

description texts.

Informed Entity specifies the passengers whom should be notified or impacted by

this alert. This can be done at several levels, agency level, route level, route level by

direction, trip level, or stop level, given the corresponding primary keys to the GTFS

Static feed. Active Period defines a range of time when the alert should be shown to

the passengers. Effect shows the impacts to the service, such as detour and significant

delays. Header text is a quick description for the alert, similar to a title, whereas the

description text describes the alert in detail.
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3.2 Data Collection

The data collecting process was implemented using Java for programming language.

The process started in January 2018 and is still on-going as of March 2020 when

the results were obtained for this thesis. It is designed to save all GTFS static and

real time data, and update the results once new data become available. Thus, data

available to use in this thesis is an almost 100% sample from COTA’s GTFS feed.

It is not entirely 100% due to equipment or internet outages. The data collection

send requests every 10 seconds, and COTA system will respond with locations of

all vehicles that has drivers logged in. As of January 2020, more than 334 million

distinct real-time bus GPS tracking records, over 1.6 million trips in the system were

recorded, and more than 102 million distinct stop times are recorded. Due to the

massive amount of data, raw GTFS Static and GTFS Real-Time data are converted

to a MySQL relational database for storage using the structure outlined in previous

section. This allows storage of the entire dataset while reducing overhead storage

spaces.

Meanwhile, data processing process was implemented in late 2018, which detailed

processing steps are provided in the next section. The data processing is scheduled to

automatically run once a day, so that the research results, which are available on my

website https://norman.cloud, will always reflect the latest data.

3.3 Data Processing

Generally speaking, the actual arrival time at a stop equals to scheduled departure

time at first stop plus first stop delay time plus the sum of stop level travel times from

the first stop plus any extra holding times. Therefore, this study examines travel time
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at stop level to reveal inconsistencies between scheduled and actual travel times under

typical conditions, in order to address the concerns mentioned in the introduction.

Again, studying travel times at stop level can help transit planners pinpoint which

route sections are causing inconsistencies and allows transit agencies to strategically

allocate their resources such as staff hours.

In addition, actual travel times can indicate when vehicles are catching up to

schedule if the actual travel time is shorter than the scheduled travel time. On the

other hand, if the actual travel time is longer than the scheduled time, the vehicle is

falling behind. In the case of a trip being severely affected by a major disruption or

break down, unlike the scheduled arrival time adherence data, travel time data from

other sections of the route that are not affected can still be used in the analysis.

Currently, COTA does not report stop level travel time or schedule adherence data,

thus stop level travel time data needs to be estimated first using the GPS coordinates

reported by each bus, then the travel time data can be aggregated for the analyses.

3.3.1 Matching GPS to Trips

Since the dataset is very large, typical GIS software cannot process all the GPS

points. An ad-hoc spatial join method was implemented to match the GPS data to

the bus routes. Since a line can be represented as the limit of a series of points when

the number approaches infinity, bus routes were converted to a series of points that

are less than 1 meter apart for the estimation.

There are additional constraints to consider when matching GPS data to the shape

file. Since the routes has a direction and vehicles operate from the beginning to the

end of the line, GPS points cannot be spatially joined directly. GPS points had to
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be sorted by time and by scheduled trip, then the nearest route points were matched

sequentially from the beginning of the line. Then, based on the nearest route points,

the route distance can be calculated for each GPS point.

Due to the limitations of GPS precision, if a vehicle is off route by more than

50 meters it is considered to be in detour, and the corresponding data points are

saved but not considered in this study, since this study only considers typical travel

conditions.

3.3.2 Calculate Stop Times

Using the route distance and time spent at each point, the GPS points can be

grouped into 3 categories, arriving at stop, at stop, and departing from stop. GPS

points that are within the range from 30 meters before the stop to 15 meters after are

considered to be within the stop boundary, since buses are required to stop at the

designated sign and more than 1 bus can stop at the same stop at the same time.

For the at stop category, the recorded GPS points around stops are grouped based

on above classification to calculate stop arrival and departure times. The arrival and

departure time for each stop along the route are estimated using the earliest time

and latest time at a location within the stop boundary where the vehicle spend the

most time. Note, this is different from the GTFS schedule published by COTA, which

doesn’t model dwelling times at stops, since modeling dwell times can help identify

and remove some outliers such as excessively long dwell times at stop. The reason for

using the location where the vehicle spent most time is due to the case when buses

report one or two GPS points within the stop boundary when arriving or departing

the stop. However, when stationary, buses could send out multiple GPS points at the
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same location. This is illustrated in Figure 3.1 as an example, where the bus send

out one GPS points while approaching and departing the stop respectively, and the

bus send out multiple GPS points while stationary. If there are no recorded GPS

points around a certain stop, the nearest recorded GPS point is used to determine

stop arrival and departure times.

Figure 3.1: Example of Stop Time Calculation. X-axis represents the distance from
the stop where negative numbers represent before stop and positive numbers represent
after stop. Y-axis shows the number of GPS points at a given location.

3.3.3 Extract Travel Times

This step calculated the travel time between two stops using the estimated stop

arrival times. Since times on COTA schedules are considered as arrival times and

37



dwell times are added into the travel times, this thesis tries to be consistent with

the agency’s schedule when comparing the observed and the scheduled travel times.

To be more precise, since COTA uses arrival based schedule, the scheduled travel

time consists of the time between the arrival at stop 1 and the arrival at stop 2. The

sequence of events for an arrival based system is that a bus arrives stop 1, dwells at

the stop 1, departs from stop 1, and arrives at stop 2. Thus, travel time between two

stops in this study is considered to be dwelling time at the first stop for boarding and

alighting, plus run time to the second stop.

There are several potential ways for outliers to appear in the observed data. Since

extreme outliers will skew the mean and this thesis is based on the sample means, this

thesis performs an outlier removal process outlined in the next section. For COTA,

buses are not allowed to leave earlier than the scheduled arrival time, and drivers are

instructed to slow down or stop if they are running early to wait for the schedule to

catch up. If drivers leave on time and purposefully avoid running early, the travel

time would never be shorter than scheduled. Therefore, the arrival and dwelling times

at each stop were calculated and compared using the outlier removal process outlined

in the next subsection to remove data with excessive or unusual overall dwelling times.

As it was not possible to determine how much of the observed dwell time pertained

to the boarding and alighting process and how much pertained to potential holding

after the completion of said process, the full dwell times were removed, including

boarding and alighting times and potential holding times. Example of such cases are

holding at certain stops when running early or assisting wheelchair users. Another

case is the late-night line ups, where most bus lines meet downtown to provide transfer

opportunities in order to accommodate for lower frequency. When calculating travel
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times, data with excessive dwelling times were also compared to scheduled holding

times in order to reflect both travel times and scheduled holding times. In addition,

cases like vehicle breakdowns or equipment outages will also show unusual stopping

time at a location, and these records also contributes to the outliers and thus removed.

3.3.4 Outlier Removal

To reiterate, outliers might affect the mean, and this thesis is based on comparing

observed sample means recorded from AVL data to the schedule. Due to major

disruptions such as accidents, reroutes, and break downs, there are multiple outliers

in the dataset. Major delays and unusually long travel times should also be removed,

since the dispatcher might instruct the bus to run limited stops or express service in

certain areas to recover from the delay. Since the goal of this study is to compare

actual travel times under typical travel conditions against scheduled travel times, these

outliers in travel times and dwelling times were removed from the analysis.

This study uses Density Based Spatial Clustering of Applications with Noise

(DBSCAN) for this step. DBSCAN (Schubert et al., 2017) is a density-based clustering

algorithm designed to identify clusters and outliers in the data. The algorithm identifies

three types of points: core points, which have more than the minimum required points

within a given distance; border points, which are within reach of core points but

have less than minimum required points within the given distance; and outlier points,

which are outliers that do not belong in any group. In short, given a set of inputs, the

algorithm groups points that are close together and marks outliers in lower density

areas where the nearest neighbour is too far away. The algorithm is set to keep at

least 80% of the data as core and border points, which corresponds to having less
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than or equal to 20% outliers. The parameter choice and model sensitivity can be a

subject of future research.

In this application, DBSCAN is used to remove outliers only; cases with multiple

clusters are not considered. Pending further research, the meaning of more than 1

cluster should be examined. Figure 3.2 is an example plot of the DBSCAN algorithm

applied to one stop pair. In the figure, x-axis is the recorded delay at first stop in

seconds, and y-axis is the actual travel times in seconds. From the figure, we can

observe that the algorithm marked data points that are not close to the dense core

points as outliers, namely the points with relatively longer travel time or points with

longer delays.

Although not shown here, excessive dwelling times can potentially be identified.

For example, when holding happens, the bus would be running early where x-axis will

be a negative number and spending excessive amount of time where y-axis will have a

larger number, which make the data points closer to the top left corner further away

from the dense core points. However, one potential issues is when holding at a certain

stop is the norm for a given trip, in that case, holding cases will have more density,

whereas the non-holding cases are considered as far away and removed. This case

should be very rare, since most of operators avoid driving early since their bonuses

depend on it. If this does happen, analysts can easily spot them by looking at the

dwelling times directly, since they will be much longer than expected.

3.4 Data Aggregation for Travel Time Analysis

One advantage of using the relational database, mentioned in previous chapter,

is that, the data can easily be aggregated in various ways, such as based on time of
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Figure 3.2: Example of outlier Removal Results, where class 1 represents the data
used in the analyses and class -1 represent the outlier data not used in the analyses.
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day (timestamp), service type (whether the service is a weekday, Saturday, or Sunday

service), direction, or whether the line is an express service. In addition, a sequence of

stops can also be aggregated to reflect timepoint to timepoint, or terminal to terminal

travel times which are consistent with the service metrics at the agency.

This study analysed the data by conducting a two tailed T-test to check the

hypothesis of whether the scheduled travel time is the actual travel time mean. To

reiterate, mean travel times are used here for better theoretical justification, and

outliers are removed so that the means will not be affected severely by outliers.

If the T-test fails to reject this hypothesis at 95% level, it is considered balanced

travel time, meaning the statistical tests fails to reject the hypothesis that the scheduled

mean is the actual population mean. If the T-test rejects the hypothesis and the

scheduled travel time lie on the extreme ends of the sampling distribution, the scheduled

travel time is considered surplus or insufficient based on whether the scheduled time

is larger or smaller than the sample mean, respectively. Since a common on-time

performance goal used by agencies is 85%, this study compares the scheduled travel

time to an 85% upper bound in the cumulative distribution, which leaves 15% of

relatively longer travel time observations on the tail. If the scheduled time is larger

than the 85% upper bound, then the schedule is considered extreme surplus, since

less than 15% of the actual travel time will be slower than scheduled. Similarly, for

symmetry, 15% lower bound was chosen to reflect extreme schedule insufficiencies,

since only 15% of the trips can adhere to the scheduled travel time.
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3.4.1 Data Visualisation

To better illustrate the spatial component of the analysis, a data visualization

tool was developed. The visualization is based on Google Map API and connected to

the database server, which allows users to dynamically change the level of analysis

and parameters of the data aggregation. There were four major steps to create this

visualization: i) The trip and related stop pairs were selected from the database. ii)

The actual travel times were aggregated and compared against the scheduled travel

time. iii) Each stop pair was colour coded based on the statistics. iv) Each stop

pair was then drawn on the maps. Currently, the website allows users to query

for trip level analysis and system wide analysis. All stop pairs within the analysis

scope will be colour coded and displayed on the website. The colours range from

green to yellow to red, indicating surplus, adequate, and insufficient travel times

respectively. If the actual travel times is significantly slower than scheduled travel

time, the section between the stop pair is coloured as red. Similarly, if the typical

travel time is significantly faster than scheduled travel time, the section is coloured as

green. The section is coloured as yellow if the difference is not significant. For the

screenshots of the website, please refer to the results and discussion section where

detailed interpretations of the results are presented.
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Chapter 4: Travel Time Analysis

There are several aspects relating to passenger experiences and evaluates transit

services, whether the bus arrives on time is one of the aspects. Passengers will expect

a bus to show up at a given stop when it is the scheduled arrival time. As of now,

COTA measures and adjusts its service based on timepoint level on-time performance

data. However, passengers don’t necessarily wait for a bus at timepoints (Halvorsen

et al., 2019). There are also other aspects that are crucial to passengers experiences

and agency operations, such as travel time and transfer time. This chapter will focus

on the travel times at stop to stop level in addition to their existing service metrics,

i.e. on time performance at timepoints.

For agencies, on-time performance will not tell the whole picture on whether the

current schedule is adequate, since it does not tell the extent of poor performances

(Halvorsen et al., 2019). For example, operators might leave the terminal late for

various reasons, such as maintenance issue or when the drivers with line knowledge

are confident that they will catch up to the schedule. However, since COTA does not

allow operators to run ahead of schedule, it is also not adequate to tell whether the

schedule is sufficient if operators consistently have to slow down significantly between

timepoints to kill time and wait for the schedule to catch up.
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To passengers, whether in vehicle travel time is longer or shorter than scheduled

travel time is an important indicator for service reliability (Carrel et al., 2013).

Schedule is less relevant when headways are short, since there will be another bus

to pick up the passenger shortly. However, since the most frequent headway for

COTA is 10 minutes which happens during weekday rush hours only, bus lines from

COTA cannot be considered as frequent enough for schedules to be less important. In

addition, real time information published by COTA may also influence passengers’

perceived travel time. However, since it requires additional inputs from riders this

will not be discussed in this thesis.

For agencies, if the observed in vehicle travel time is longer, then the trip is further

delayed. On the other hand, if the observed in vehicle travel time is shorter, buses

will catch up the schedule. In the cases where travel time is extremely insufficient, the

agency might need to add additional vehicles to the line to adhere to their schedule.

On the other hand, if travel times are more than sufficient for drivers to complete the

route, agencies might be able to remove vehicles from the line.

The following sections uses COTA Line 31 as an example to show different level

of analysis, since the entire system consists of 43 lines and more than 3000 stops,

writing them all in one report would be unrealistic. This line is chosen since it is one

of the newly designed routes after TSR. It mostly combined sections from 4 pre-TSR

crosstown routes mainly on the western half of the line, namely 80, 81, 82, and 84,

whereas the eastern half of the line is brand new. Also, additional information were

obtained from the drivers operating on this line that may help understand the result

presented here. Similar analyses for other lines or stops can follow the frameworks

and steps outlines below.
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To reiterate the data section, the stop level arrival times are produced by proprietary

software used by COTA after the scheduling process which is at timepoint level.

In addition, it is reasonable to speculate that the stop arrival times are linearly

interpolated, since stop to stop segments between two timepoints tend to have the

same travel speed. It is worth to note that the agency measures its performance

only at timepoints, and may not hold them to the stop to stop schedules. However,

the schedules shown on the agency’s website also use these stop level arrival times.

Passengers can easily interpret these stop arrival times as schedules the agency adheres

to. In addition, the AVL system used by dispatchers and the drivers will categorise a

vehicle and react accordingly based on these generated stop level arrival times. Despite

these stop arrival times are not determined at by schedulers, it is generally treated

as a schedule by passengers and the agency. Thus, this thesis will refer to them as

scheduled arrival times. Since these stop arrival times are generated using unknown

algorithms from a commercial software, the results or interpretations may differ from

the software’s intentions.

This chapter first looks at the inconsistencies between the scheduled travel time

and the actual travel times at stop to stop level, trip level, line level, and system

level. This will indicate insufficiency patterns that agencies might want to pay closer

attention. Second, the chapter examines how these stop to stop travel times are

distributed. This could aid agencies in finding a more suitable statistical distribution

that can be used in their scheduling process. Next, the chapter explorers how are

these stop to stop travel times correlate. The results could help agencies in identifying

priorities when planning for their services. Finally, the chapter analyses the conditional
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travel times to see what travel times can be reasonably achieved if drivers don’t slow

down when they run early.

4.1 Travel Time Inconsistencies Across Time and Space

4.1.1 Stop to Stop Level

The algorithm calculates and compare observed mean travel times to scheduled

travel time for all sections using t-tests at 95% confidence level where the null hypothesis

being tested is that the observed mean travel time for a given trip equals the scheduled

travel time, whereas the alternative hypothesis is that the observed mean travel time

does not equal to the scheduled travel time. Since COTA does not have seasonal

schedules, the calculation uses all non-outlier data observed from past two years.

Although analysts could look at seasonal variations using the system, seasonal or even

monthly aggregation is not shown here. Here is an example stop pair to show the

findings, from King Ave and Delashmut Ave to King Ave and Olentangy River Rd.

This stop pair is located near Ohio State University campus and runs through

Lennox Town Center, which is a main shopping centre in the campus area. King

Ave is classified as a major collector, Olentangy River Road is classified as a minor

arterial with highway access to State Route 315, which is classified as other freeway

and expressway, and Delashmut Ave is classified as local. The entrance to Lennox

Town Center is located after the Olentangy River Road stop. There are no traffic

signals or stop signs between the two stops. (ODOT, 2016)

To reiterate, generally speaking, transit terminal to terminal travel time equals

the sum of stop to stop travel times and dwelling times at each stop. Thus, in theory,

these random variables needs to add up to represent the terminal to terminal travel
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time as well. The means can be summed up regardless of its distribution, whereas the

percentiles cannot be summed up to equal a given percentile. In addition, refer to

the scheduling practices mentioned in literature section, current scheduling literature

focus more on the terminal to terminal travel times (Kimpel et al., 2008). These

literature also pointed out that 85th percentile is the half cycle time, which includes

the terminal to terminal travel time and the layover or recovery time. The terminal to

terminal travel time is generally picked from the mean or the median, and the layover

time can be determined from the standard deviation, where adding one standard

deviation is assumed to yield 85 percentiles, or a given percentiles specified by the

labour contract or agency standards (Kimpel et al., 2008). This study chooses to focus

on the mean, based on its additivity and percentiles are provided as a comparison

to previous literature. To make these results generalisable and due to the lack of

information, scheduling practices at COTA, such as the practice of using mean travel

time and using high percentile to calculate layover time, are also assumed to be the

same as mentioned in previous literature.

Weekday trips for this stop pair are selected and analysed by trip. Table 4.1 shows

the results returned from the database for the analysis, including the scheduled arrival

time, sample size, mean, standard deviation for actual travel times, scheduled travel

time, and the t-statistic. Additional information is provided on the 15th, 50th, and

85th percentiles of the sample. Again, the percentiles are provided as a reference for

current practices. Actual travel time sample mean and scheduled travel time for each

trip are plotted in Figure 4.1. The x-axis illustrates the trip, sorted by time, and

y-axis shows the travel time in seconds.
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A more general classification scheme is also provided here in Table 4.1. The

classification is determined based on the t-statistics and the commonly used 85th

percentile. The extreme cases are determined by the 85th percentile, extremely

sufficient if 85 percent of travel times are less than scheduled, extremely insufficient if

85 percent of travel times are longer than scheduled. If the travel times don’t fall into

the extreme category and t-statistics are able to reject the null hypothesis mentioned

earlier, the segment falls into the sufficient or insufficient categories, sufficient where

t-statistic is positive, insufficient where t-statistic is negative. Lastly, if t-statistic is

unable to reject the null hypothesis, the segment is categorised as balanced.

Table 4.1 shows that for 33 out of 36 trips, the actual travel time sample mean is

lower than the scheduled travel time. Also, scheduled travel time is longer than the

actual travel time sample mean plus one standard deviation for 27 out of 36 trips.

Based on the figure and t-statistics in the table, it is shown that actual travel time

between the two stops are generally shorter than the scheduled travel time.

By comparing the sample standard deviations in the table, it shows that variation

in observed travel time increases around AM PM peaks and lunch hours. These trips

with larger standard deviations also coincide with larger sample means. The scheduled

travel times are within one standard deviation from the actual travel times for these

trips. Two trips have insufficient travel times, in which the sample mean is larger than

the scheduled travel time. Especially for the 7:32 trip, the scheduled time is slightly

less than the median, which indicates that less than half of the trips can operate

within the given travel time. This indicates that the schedule becomes tighter, and

thus may be harder to adhere to during peak time periods compared to off-peak hours.
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Table 4.1: Mean Travel time vs Scheduled Travel Time.
Time Sch Ssize Smean SSD Diff Tstat 15PC. 50PC. 85PC. Sch.PC. Classification

05:06:53 37 389 27.2211 3.9031 -9.7789 -49.4142 24 27 31 100 ExSurplus
05:36:53 37 387 25.6460 4.8041 -11.3540 -46.4939 21 25 31 100 ExSurplus
06:06:04 45 402 26.0498 4.7708 -18.9502 -79.6409 22 26 29 100 ExSurplus
06:35:04 45 387 27.8992 5.1413 -17.1008 -65.4334 23 27 34 100 ExSurplus
07:03:15 52 407 31.9410 8.0431 -20.0590 -50.3134 24 31 41 99 ExSurplus
07:32:25 60 387 65.5866 30.1243 5.5866 3.6482 39 61 105 75 Insufficient
08:04:15 52 394 43.5381 19.5083 -8.4619 -8.6099 28 37 64 83 Surplus
08:35:04 45 397 34.8237 14.4266 -10.1763 -14.0548 22 31 46 90 Surplus
09:05:04 45 399 27.9749 7.0607 -17.0251 -48.1645 21 27 35 100 ExSurplus
09:34:04 45 408 30.1961 7.0871 -14.8039 -42.1929 23 29 38 100 ExSurplus
10:03:04 45 385 27.5247 6.2199 -17.4753 -55.1277 21 26 34 100 ExSurplus
10:33:04 45 398 29.3467 6.5002 -15.6533 -48.0420 23 29 36 100 ExSurplus
11:03:04 45 404 27.9480 7.0917 -17.0520 -48.3296 20 27 35 100 ExSurplus
11:33:04 45 389 27.4910 6.9859 -17.5090 -49.4330 20 27 35 100 ExSurplus
12:03:04 45 408 31.8554 10.1464 -13.1446 -26.1677 26 30 37 99 ExSurplus
12:33:04 45 398 45.9824 27.3642 0.9824 0.7162 22 31 42 96 Balanced
13:03:04 45 388 40.5026 20.0286 -4.4974 -4.4231 26 35 73 76 Surplus
13:32:04 45 408 32.4338 9.2138 -12.5662 -27.5482 26 33 62 81 ExSurplus
14:02:04 45 410 32.9146 8.7528 -12.0854 -27.9580 24 31 41 96 ExSurplus
14:31:15 52 395 31.6506 7.1570 -20.3494 -56.5090 25 31 41 96 ExSurplus
15:00:25 60 389 34.4422 9.9951 -25.5578 -50.4327 25 32 38 100 ExSurplus
15:29:25 60 395 40.4278 17.9622 -19.5722 -21.6559 26 33 43 92 ExSurplus
15:58:25 60 408 38.3186 13.6814 -21.6814 -32.0100 27 34 55 88 ExSurplus
16:28:25 60 387 38.3437 16.0534 -21.6563 -26.5382 25 29 40 92 ExSurplus
16:58:25 60 386 53.5259 32.8965 -6.4741 -3.8665 27 35 50 95 Surplus
17:31:15 52 393 74.0356 49.9244 22.0356 8.7500 26 34 51 93 Insufficient
18:01:15 52 391 45.1586 24.3439 -6.8414 -5.5571 30 39 92 81 Surplus
18:31:15 52 393 41.5954 19.8599 -10.4046 -10.3859 30 53 137 59 Surplus
19:02:15 52 406 32.0246 6.9987 -19.9754 -57.5094 27 36 64 87 ExSurplus
19:33:15 52 392 30.8724 7.1712 -21.1276 -58.3311 27 34 58 88 ExSurplus
20:04:04 45 389 29.5476 4.9975 -15.4524 -60.9842 26 31 40 100 ExSurplus
20:34:04 45 401 29.8579 5.6765 -15.1421 -53.4173 25 29 37 99 ExSurplus
21:04:04 45 403 30.8437 5.5001 -14.1563 -51.6689 25 29 34 100 ExSurplus
21:34:04 45 404 29.9554 5.2768 -15.0446 -57.3064 25 29 35 99 ExSurplus
22:04:04 45 399 31.1454 5.7724 -13.8546 -47.9431 26 30 37 100 ExSurplus
22:34:04 45 407 32.4079 10.6820 -12.5921 -23.7819 25 29 35 99 ExSurplus
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Figure 4.1: Illustration of Travel Time Inconsistencies Between King & Delashmut
and King & Olentangy River Road.

Figure 4.1 shows another interesting pattern when comparing the sample mean

to the scheduled travel time. For AM and PM peaks, the schedule generally reflects

the increasing travel time during the time periods, although the schedule might not

be increased enough in some cases. However, for the lunch hour, the schedule is not

reflecting the increased travel time at all, although the t-statistics are generally less

than 0. This makes it slightly harder for buses to adhere to the scheduled travel time.

Since most buses run faster than schedule, and the travel time distribution during

the off-peak hours are relatively tight (with smaller standard deviations), the schedule

can reallocate the surplus times to other sections of the route where the scheduled

travel time tends to be insufficient. For the trips that might have tight schedules, the

schedule can add more travel time to reflect the increase more accurately.
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4.1.2 Trip Level

The trip 697167 is one of the scheduled trips on Line 31. It leaves the layover point

at Grandview Yard at 6:46 on weekday mornings and heads northeast towards Easton

Transit Center. It serves the city of Grandview Heights, The Ohio State University,

MAPFRE Stadium, and Easton area.

By aggregating the actual travel times for each stop pair in this trip, and analysing

their deviations from scheduled travel time, we can analyse trip level travel time

deviation using Table 4.2. Here, only data between two timepoints are shown to

illustrate the findings. For more complete trip level data, please refer to the appendix

Table A.2. Again, based on the reasoning outlined in previous sections, this thesis

focus on the mean and percentiles are provided as references.

The data visualization (Figure 4.2) shows inconsistencies between scheduled and

actual travel times for most stop pairs along the route for this specific trip. For this

specific trip, only 6 stop pairs out of 65 are classified as balanced. 14 stop pairs are

classified as surplus, while 24 are classified as extreme surplus. 14 stop pairs are

classified as insufficient while 7 are extremely insufficient.
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Figure 4.2: Trip Level Travel Time Difference Visualization for trip 697167.

In addition, by looking at the difference in seconds between scheduled travel time

and sample mean in Table 4.2, the insufficiencies are quickly offset by surpluses right

after for some sections. One example is the section between time point GRA5THN

(Grandview Ave & W 5th Ave) to KINKENE1 (King Ave & Kenny Rd), the sum

of the differences is just 5 seconds, but the deviations from scheduled travel times

between these two timepoints are high. In several segments, the differences between
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scheduled and actual travel times are more than 20 seconds, which is a magnitude

larger than the overall difference. Since current practices focus on terminal to terminal

travel times or timepoint to timepoint travel times, the small overall deviation at

timepoint to timepoint level and the larger differences at stop to stop level further

imply that traditional scheduling done at route or timepoint level is not precise enough

to reduce inconsistencies at stop to stop level. Analysts in transit agencies might have

to focus on the stop to stop level data, if available, in order to reduce these stop to

stop level inconsistencies.

Furthermore, the sum of 85th percentiles is greater than the sum of means plus

one standard deviation, assuming these stop to stop segments are independently

distributed. This shows again that percentiles cannot be added up to equal a given

percentile, which highlights the potential issues when analysing stop to stop travel

times using percentiles.

One important aspect to note is that number of segments in each classification

alone cannot be used to describe overall travel time surplus or insufficiency for the

whole trip. Overall loses could be smaller than the overall time gained in surplus

sections, and vise versa. In the example used above, there are 6 insufficient segments

where the trip loses time and 3 surplus segments where the trip catches up. However,

the sum of gains is larger the sum of loses, making the overall mean travel time less

than the scheduled time.

The above observations contribute to a high variation across segments in delay

times, due to vehicles catching up in one section while lagging behind in another.

Although the number of surplus stop pairs is larger than the insufficient stop pairs,

this does not necessarily mean the vehicles run early since the sum of insufficiencies
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could be longer than the sum of surplus travel times for specific trips due to population

standard deviations in actual travel times. Further research is required to produce a

recommended stop arrival time for scheduling purposes.

There are clusters of sections where the scheduled travel times are insufficient,

meaning scheduled travel time is less than actual travel times, near the areas of

Fifth by Northwest, University View, Ohio State University South Campus area, and

Arlington Park. The characteristics of these insufficient sections are in close proximity

to major intersections through closer examination on the map.

Since the time points are often located at major intersections where there are also

transfer points to other routes, vehicles often have longer travel times than scheduled

near the timepoints. Actual travel times at time points have insufficient travel times,

either before or after eight out of eleven time points.

Opposingly, the surplus sections often lie between two major intersections. This

suggests that scheduled travel time is longer than the actual travel times between

major intersections. This makes sense, since most of stops are located between

major intersections, and there are fewer major intersections than the regular local

intersections due to road hierarchy. These observations will be examined further in

later sections to see if there is a systematic pattern.

Based on above information, schedules can be adjusted to reflect this travel time

pattern by adding more time near major intersections and reducing time between

major intersections. This also proves the drawbacks of analysing travel time at time

point level which does not reflect the travel times between stops very well. Vehicles

are left behind schedule at major intersections where timepoints are typically located

, but they catch up in between two timepoints. Therefore, time point level analysis

56



does not show travel time variation precisely and does not show underlying travel

time variation pattern.

4.1.3 Line Level

Again, using the Line 31 as example, the trip level travel times analyses are

aggregated into the line level analysis based on terminal departure time. Based on the

classification obtained for each trip, the numbers of stop pairs in each class were plotted

in Figure 4.3 and shown in Table 4.3. For example, the 6:46 trip used throughout this

thesis has 24 extreme surplus segments, 14 surplus segments, 4 balanced segments, 17

insufficient segments, and 8 extreme insufficient segments.

Figure 4.3: Line 31 Northeast Weekday Trip Classification Plot.

Just like the trip level analysis specifically for trip 697167, unsurprisingly, travel

time for other trips in the day shows similar trend. The extreme surplus sections,
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Table 4.3: Line 31 Northeast Weekday Stop Classification Counts.

Time ExSurplus Surplus Balanced Insufficient ExInsufficient

04:52:00 24 13 4 14 11
05:22:00 20 18 6 15 7
05:51:00 20 12 8 17 10
06:19:00 25 8 7 16 11
06:46:00 24 14 4 17 8
07:15:00 23 10 5 14 15
07:47:00 21 14 2 16 14
08:17:00 23 13 5 16 10
08:47:00 21 15 5 15 11
09:16:00 22 15 7 12 11
09:46:00 22 17 5 15 8
10:16:00 16 18 4 18 11
10:46:00 20 16 7 14 10
11:16:00 24 20 1 13 9
11:45:00 24 13 8 12 10
12:15:00 19 13 10 15 10
12:45:00 20 15 7 16 9
13:14:00 24 9 6 20 8
13:44:00 25 11 1 20 10
14:13:00 21 15 3 22 6
14:42:00 19 12 9 17 10
15:11:00 19 16 2 19 11
15:39:00 25 10 5 19 8
16:08:00 24 13 3 22 5
16:38:00 26 12 4 18 7
17:11:00 26 13 2 19 7
17:42:00 28 9 5 16 9
18:12:00 24 7 6 23 7
18:44:00 25 8 5 19 10
19:15:00 27 6 6 22 6
19:46:00 26 9 5 19 8
20:16:00 23 9 8 16 11
20:47:00 18 11 6 21 11
21:17:00 24 11 5 21 6
21:47:00 20 16 4 21 6
22:17:00 24 11 3 21 8
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surplus sections, and insufficient sections are of the same magnitude, while balanced

sections and extreme insufficient sections are of the same magnitude.

Numbers of segments in each category vary quite quickly. Since there are 18

drivers operating the line on a weekday, there is a chance that driver behaviours

might influence the travel time inconsistency. Due to the lack of data, the operators’

preferences, such as departing the terminal late or driving unnecessarily slowly when

running ahead of schedule, were ignored in this analysis. However, this table does

show a general trend in travel time inconsistencies. Although operator behaviours

were touched on by previous literature, operators’ behaviour at stop to stop level

should be further studied as an improvement to this study.

Another reason for the sudden variations on line 31 specifically might be due to

class changes. Since this line runs through Ohio State University campus, and during

class change, there are lots of pedestrian traffic. These large pedestrian traffic volumes

would impede bus travel time significantly. Also, during class change, like rush hours,

there are more riders catching the bus to different destinations, which would increase

the dwelling time at each stop on campus.

Generally, this line has more extreme surplus sections than other categories. The

number of extreme surplus sections decreased during the morning peak, while the

numbers in other classes increased. Another decrease in the number of extreme surplus

sections occurred during lunch hour, where the number of extreme insufficient and

balanced sections increased. During the evening peak, the number of extreme surplus

numbers decreased again. However, during the PM peak, the insufficient sections are

the most common. This shift towards insufficiency during the morning and evening

peak hours suggests that once again, like the stop level analysis, the scheduled travel
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times do not increase enough compared to the increase in actual travel times. This

means that, during the peak hours, buses are less likely to recover from delays.

Another observation from the data, which is not shown here due to limited space,

is that insufficient stop pairs during off peak hours tend to remain insufficient during

peak hours. This is consistent with the analyses in previous sections, which also

shows that schedules do not increase enough during peak hours, and schedules do not

increase enough for insufficient stop pairs to become balanced or even surplus stop

pairs.

4.1.4 System Level

For the system level analysis, all the lines and trips that were scheduled to operate

were analysed similar to the trip level and stop level analysis, then aggregated by hour.

Figure 4.4, shows the percent of stop pairs in each category by hour, where Table

4.4 shows the actual counts in each category by hour. For example, there are 516

segments classified as extreme insufficient as shown in the table, which corresponds to

roughly 20% of segments in the system shown in the figure around 6 am.

The results show the observations in line level and trip level analyses still apply to

the extreme surplus cases. The number of extreme surplus stop pairs are the most

common type. The extreme surplus cases decrease, and the extreme insufficient cases

increase during AM and PM peaks. Again, this suggests that during peak hours the

travel time did not increase enough, and vehicles have less surplus travel times for

delay recovery.

Another interesting fact shown here is that after the PM peak, the number of

insufficient and extreme insufficient stop pairs decreased and the extreme surplus cases
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Table 4.4: Number of stop pair classifications trend for weekday services, where each
table cell represent the amount of segments classified in a given category at a given
hour.

Hour ExSurplus Surplus Balanced Insufficient ExInsufficient

4 294 87 22 64 51
5 1484 389 127 310 249
6 1216 395 135 372 516
7 1391 396 145 419 564
8 1282 428 152 414 622
9 1118 441 135 426 637
10 1501 423 154 418 487
11 1341 407 144 435 566
12 1243 432 134 472 685
13 1406 453 182 430 514
14 1197 474 137 440 655
15 1201 441 139 465 818
16 1286 416 143 448 789
17 1087 413 137 434 928
18 1532 432 124 431 590
19 1616 395 141 343 398
20 1526 440 131 358 443
21 1581 441 128 365 305
22 1472 453 131 319 263
23 1480 404 118 294 186
24 634 194 56 104 71
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Figure 4.4: Systemwide stop to stop level travel time classification count plot.

increased, while the other cases remained relatively the same. This suggests that the

actual travel time decreases faster than the scheduled travel time during those hours.

The system wide visualizations, Figure 4.5 and Figure 4.6 also reinforce a result

from trip level analysis, which is that vehicles tend to run slower than scheduled

travel time near major intersections, especially where two bus lines intersect. This

visualization also shows that at 5pm, most of the southern part of downtown is

classified as extreme insufficient. One possibility is that commuting traffic trying to

get access to the highway on ramps located in the southern edge of downtown.

By contrasting Figures 4.5 and 4.6, which show systemwide classification at noon

and 5 pm respectively, we can visualise the facts observed from the classification count

shown in Figure 4.4. The number of red extreme insufficient cases increase, resulting

in a map that is more red. Also, it also point out a fact that if a segment is classified
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Figure 4.5: Systemwide Stop to Stop Level Travel Time Visualization for Weekdays
at Noon, where each segment is shown on the map.
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Figure 4.6: Systemwide Stop to Stop Level Travel Time Visualization for Weekdays
at 5 PM, where each segment is shown on the map.
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as extreme insufficient, it is very likely to stay that way even with the additional travel

times allocated to the schedule. Green sufficient sections during off peak hours are

also likely to shift to insufficient classifications. This is consistent with the spike of

the number of extreme insufficient segments during PM peak, due to the overall shift

towards insufficiency.

In conclusion, transit agencies and their software vendors might want to adopt more

detailed analysis to provide a more robust transit schedule. Current practices have led

to mostly adequate terminal to terminal travel times in our examples. However, the

stop to stop level travel times still have larger deviations from the observed data. With

more trip planning apps showing passengers arrival times at stop level, it becomes

more important for agencies to adhere to their stop level arrival and travel times for

passengers as well. In addition, since summing up stop to stop travel times and stop

dwelling times should yield terminal to terminal travel time, and percentiles don’t

add up to percentiles, agencies need a more statistically sound way of providing stop

arrival times. As a result, analysts might potentially want to look at means and

their confidence interval or credible intervals when assessing travel times, and look

at variances when determining layover time. This implication is also consistent with

previous literature by Levinson (1991).

4.2 Stop to Stop Travel Time Distribution

Typically, agencies determines its layover times by using a high terminal to terminal

travel time percentile to ensure most vehicles can start their next trip on time (Kimpel

et al., 2008). Previous research focused on fitting terminal to terminal travel times

using either symmetrical distributions or skewed distributions (Mazloumi et al., 2010).
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However, as seen from previous sections, more aggregated view, terminal to terminal,

masks large variations at smaller scale, the stop to stop level. Since mean, variance,

and empirical percentiles do not describe skewness or potentially multimodality, fitting

stop to stop level travel time distributions would support agencies if they decide to

use percentiles similar to Muller and Furth (2001) and allow researchers to understand

travel time variations more clearly. In addition, transit agencies also need to account

for travel time distributions to determine their schedule, especially when planning for

slack times to account for larger variations at certain segments. Finally, researchers or

agencies might be able to use these theoretical distributions to develop simulations

that help further analyse different operation strategies (Kieu, 2015).

As the central limit theorem points out that the sum of independent random

samples tends to converge to normal distribution even when original variables are not

normally distributed, making normal distribution a good approximation. However, as

the previous literature pointed out in the literature review section, the travel times

between terminals and timepoints are highly skewed (Mazloumi et al., 2010). Here, this

study examines whether travel times for stop to stop level travel times recorded from

COTA are also skewed. Refer to the literature reviews, previous studies have mainly

examined uni-modal skewed distributions without providing comparisons among the

available skewed distributions, and the multimodal tests shows the majority of the

corridor travel times do not show significant multimodality (Kieu, 2015). In addition,

previous literature have not used mixture distributions to model stop to stop travel

times. Here, additional skewed distributions and mixture distributions were fitted and

compared to obtain better fittings to stop to stop travel times.
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Also, due to the higher data resolution, we can observe some more details, such as

buses waiting for traffic lights. A bus get stopped by traffic lights is a random event,

which depends on how long a bus wait at the traffic light, and resulting travel times

between stops would be different due to different events related to the traffic light or

other common random events along the line.

Mixture distributions are commonly used to model a random variable selected by

chance from a collection of distributions according to given probabilities of selection,

then the value of the selected random variable is realized. In the travel time case, travel

times might be modeled as a random variable selected by the probability of whether

the traffic is red or green, which would result in different travel time distributions.

This lead to another question, whether mixture distributions provides relatively better

fit for these stop to stop travel times.

Data after the outlier removal process, mentioned in Chapter 3, were selected

from the database, and were fitted with various distributions. Common distributions

that were used in this analysis are normal, logistic, generalised extreme value, gener-

alised Pareto, log-logistic, log-normal, epsilon skewed normal, uniform, and mixture

distributions with 2 and 3 normal distributions. Obviously, there are some common

distributions that are not defined nor suitable to model the travel time distribution,

and these distributions were not fitted in this study. One example of such distribu-

tion is exponential distribution, which measures the time between events that occur

independently and continuously at a certain rate (i.e. a Poisson process).

To compare each distribution fit, I calculated the log likelihood. However, due to

differences in parameter numbers among these models, log likelihood function will

tend to show better results for larger models. Therefore, I also need to use Akaike

67



Information Criterion (AIC) to penalise the additional parameters in larger models

when comparing them. In other words, AIC will deal with both overfitting and

underfitting of data, and provides a relative measure for the quality of models being

considered. Thus, AIC values were used when ranking these fitted distributions.

The smaller the AIC, the better a model is compared to other models. Here

I focus on common distributions that provides best AIC for different stops. Most

common best fit distributions are Generalised Extreme Value (GEV), Epsilon Skewed

Normal (ESN), and Mixture distributions with 2 and 3 normal distributions (refer to

as BiNormal and TriNormal distributions for simplicity).

Using Trip 697167 as example again, the results, listed in Table 4.5, show consistent

results to previous literature that the travel time distribution is highly skewed. 58%

of the stop pairs falls into the single-mode skewed distribution categories, represented

mostly by the Generalised Extreme Value and Epsilon Skewed Normal distributions,

whereas 39% of the stop segments fall into the mixture distribution categories. For

more detailed AIC and Negative Log-Likelihood results for this trip, please refer to

the appendix Table A.1.

Table 4.5: Travel Time Distribution Counts for Trip 697167.

TripId Name NumberOfDist

697167 GEV 17
697167 ESN 22
697167 BiNormal 10
697167 TriNormal 16
697167 LogLogistics 1
697167 Uniform 1
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Figure 4.7: Travel Time Histogram and Fitted PDF for Trip 697167 from North Star
& Presidential to 1197 Kinnear.

Similar to previous research, the majority of data do show significant skewness.

To demonstrate the skewness of the distribution, one example of single-mode skewed

data is shown in Figure 4.7, where the x-axis is the travel time, y-axis is the counts in

one bin, the blue bars are the histogram, and the red line represents the probability

density function fitted using epsilon skewed normal distribution. This data is observed

from stop NOSTARN (North Star Rd & Presidential Dr) to stop KIN1197E (1197

Kinnear Rd). The sample mean of the observed data is 66 seconds. However, from

the histogram, we can see that the mode is around 56 to 61 seconds, which is less
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than the mean. This shows a positive skewed distribution (i.e. a distribution with

fatter right tail).

In addition to previous research findings, there is also cases where mixture distri-

butions provide better fits. To demonstrate the multimodality, one example is shown

in Figure 4.8, where again the x-axis is the travel time, y-axis is the counts in one bin,

the blue bars are the histogram, and the red line represents the probability density

function fitted using TriNormal distribution. In this case, we can observe two larger

split point, one around 50 seconds, and another around 90 seconds.

Figure 4.8: Travel Time Histogram and Fitted PDF for Trip 697167 from King &
Olentangy River Road to King & Olentangy Trail.
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One major difference between these two segments is that the single-mode case

doesn’t have traffic signals in between, since the intersection is handled by a roundabout.

On the other hand, for the tri-normal case, it has one traffic signal in between. The

traffic signal in the tri-normal case is a rather complicated one, which contains

dedicated left turn signals on all four directions if there are enough vehicle to trigger

the traffic sensor. It also has pedestrian light buttons, which will extend the green

lights on one street to allow pedestrian crossing. The length of red lights are also

dependent on the traffic flow by directions. It would make sense to use mixture

distribution in this case.

The above observation leads to a further question, where are these distributions

located at, and does traffic signals create these mixture distributions? To answer this,

I put these distributions on the map, shown in Figure 4.9. In this map, the different

distributions are coded in the following way: GEV (Dark Green), Epsilon Skewed

Normal (Light Green), Other (Yellow), BiNormal (Orange), TriNormal (Red).

From the map, the answer is not so obvious. Major intersections, such as the

tri-normal example above, Hudson and Summit, and Easton area does have mixture

distributions. However, some other major intersections, such as High and Lane, has a

single mode, but skewed distribution. For segments between intersections, they are

not necessarily all belong to the two single-mode skewed distribution, such as the

segments on Hudson.

As for the system level stop to stop travel time distributions, the best fit distribu-

tions were aggregated by hour, and the percentages for each distribution are shown in

Table 4.6 and are plotted in Figure 4.10. Again, percentages are used here to account

for difference in service levels across hours. For example, there are 31.76% segments
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Figure 4.9: Stop to Stop Travel Time Distribution for Trip 697167.

with ESN as its best fit distribution at 4 AM, as shown in the table, which corresponds

to the left end of the light green line that represents ESN.

Once again, the result show the stop to stop travel times are not normally dis-

tributed, since none of the best fit distribution is normal distribution. Single mode

distributions are predominant, while tri-modal mixture distributions also accounts

for a significant share. Overall, there are five distributions that accounts for more

72



than five percent of the distributions, namely ESN, GEV, TriNormal, BiNormal, and

Uniform distributions. All other percentages, except the top three, TriNormal, ESN,

and GEV, remain roughly the same throughout the day.

ESN distribution is shown to be the best fit regardless of hour. ESN and GEV

alone accounts for more than 60 percent of travel times. Interestingly, from the plot,

we can observe that the percentage of ESN and GEV distributions are going the

opposite way during morning peak. More precisely, the percentage of ESN distribution

increases, while the percentage of GEV decreases from system opening to the end

of morning peak. However, after 9 AM, the percentage of two distributions, ESN

and GEV, have the same trend. The reason for why this is the case is left for future

research.

Figure 4.10: Travel Time Distribution Plot By Hour.
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There are significant amount of tri-modal cases, which account for 15 to 25 percent

of the best fit distributions. There are two noticeable increase in tri-modal percentage

during morning and evening peaks. These increases coincide with the two decreases for

the single modal distributions. To reiterate, mixture distributions are commonly used

to model a random variable, selected by chance from a collection of distributions. The

result show that during peak hours, travel time becomes more complex with different

sub-category distributions that a travel time might fall into. This suggests that these

travel times are affected by different factors on the road, such as traffic light patterns

or different passenger flow. However, this does pose a theoretical challenge. What

is a representative distribution that can be used in a public schedule, since transit

schedule can only list one travel time. This question is left for future research.

The above results highlights the need to evaluate stop to stop travel times using

skewed distributions and mixture distributions. The AICs also show that current

distribution fittings used by current literature, such as Log-Normal distribution, do

not provide better fitting for the data, and additional distributions such as Epsilon

Skewed Normal distribution should be considered when modeling stop to stop travel

times. The results also calls for further research on the potential causes for these

multi-modality distributions, as these research might requires additional datasets

from transit agency and other government agencies. More importantly, since the

mixture distribution is a collection of distributions weighed by different probabilities,

more research is needed to assist agencies in determining one single number that is

representative for passenger reference.
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4.3 Stop to Stop Travel Time Correlations

If agencies wish to schedule for stop level arrival times instead of timepoint level,

they might want to know whether analysts can make simple assumptions regarding

travel times during the scheduling process to start with. To reiterate, it is reasonable

to speculate the stop level schedules are generated by software assuming a constant

travel speed between two timepoints. However, based on previous results regarding

inconsistencies between mean travel times and scheduled travel times, a relatively

constant travel time assumption may not hold. Regardless, analysts might still want

to examine whether there is any correlation between consecutive stop to stop travel

times, so that these travel speed assumptions can be applied to some segments to

reduce their work load. In addition, correlations may also be helpful for dispatchers

to make decisions if increased travel time on one segment would lead to increased

travel time on other segments. Dispatchers could then potentially instruct buses to

run limited stop service to catch up the schedule.

Theoretically, the sum of stop to stop travel times and stop dwelling times should

add up to the terminal to terminal travel time. Again, the mean travel times used in

this thesis can be added directly regardless of distribution. Agencies also use travel

time variances during their scheduling process to determine layover or recovery times.

They may also use the travel time variance to determine whether to include slack times

in schedules to help accommodate unexpected delays. Therefore, it is important to also

know whether the travel time variances can also be added directly to be timepoint to

timepoint level or terminal to terminal level variance, so that they can potentially put

slack times on certain consecutive segments with larger travel time variation. If these

segments are independent, variances can be summed up. Agencies could prioritize
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reducing variation on specific segments with larger variances to reduce their overall

terminal to terminal variance, and thus improving service and operation reliability.

Examining the correlation of between travel time segments can help address the above

questions.

Correlations can also show whether vehicles travel times are affected consistently

by traffic. For example, if a bus gets slowed down by traffic on one segment due to

higher than normal congestion, it could potentially get slowed down in the upcoming

segments. Knowing where these correlated segments are can potentially help the

agency to gather several stops together under a certain traffic assumption when

designing the schedule, which would help them alleviate some workload given their

limited resources.

The data processing and analyses is a fairly simple one. I can simply query for

stop to stop travel times on two consecutive segments recorded on the same trip on

the same day. However, if there are outliers that were removed during the outlier

removal process mentioned in Chapter 3, then travel times on those two segments for

that trip on that date were removed from the correlation analysis. In other words,

only two consecutive stop to stop travel time without any outliers were used in the

analysis. This demonstrates once again that, if there are outliers in one segment,

analysing travel times at stop to stop level can help preserve some stop to stop level

data compared to the timepoint to timepoint level analyses. After obtaining the travel

time pairs, correlations can be calculated.

These correlations were then put into a map format. Once again, using trip 697167

as an example, the correlation map is shown in Figure 4.11. The visualisation shows

the correlation between the coloured segment and the upcoming segment. The map is
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colour coded in the following way: <-0.5 Dark Green, (-0.5, -0.2) light green, (-0.2,

0.2) yellow, (0.2, 0.5) orange, and >0.5 is red.

Figure 4.11: Stop to Stop Travel Time Correlation Map for Trip 697167. (HN stands
for highly negatively correlated, N for negatively correlated, I for independent, P for
positively correlated, and HP for highly positively correlated).

From the map, we can observe that most of the stop pairs have a relatively low

correlation, (-0.2, 0.2). However, there are consecutive segments where the travel

times are positively correlated, especially in the Grandview area. This makes sense,
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because those segments don’t have many passenger pick ups and drop offs, and there

are very limited traffic light interventions (mostly controlled by sensors on quieter

streets). This allows buses to travel at a consistent speed in that area, thus resulting

in a higher correlation.

Another observation is that, there isn’t any highly negatively correlated segments.

This also makes sense, since most of the times travel time increase on one segment

is unlikely to be followed by travel time decrease on the next segment. However,

these cases do exist. One example is the first weekday trip on Line 1 heading to

Reynoldsburg Park and Ride. Travel times from High and State and from High and

Town are negatively correlated, and the correlation is -0.614. It will be interesting to

further examine these negative correlations from far apart segments in future research.

For overall correlation of each stop to stop segments for each trip in the system

using the metrics mentioned above, there are 0.1% consecutive segments classified

as highly negative, 2.6% as negative, 60.8% as independent, 31.4% as positive, and

5.1% as highly positive. These results suggest that most stop to stop travel times are

independent from each other, even with a relatively low threshold for classification.

When these percent in each correlation categories were aggregated by hour, shown in

Table 4.7 and plotted in Figure 4.12, the independent segments are still the majority.

For example, there are 43.77% independent segments at 4 AM shown in the table,

which corresponds to the left end of the yellow line in the figure. In other words,

knowing one stop to stop travel time, will not likely yield any useful information on

the travel time for next segment. Thus, agencies might still need to analyse for each

individual stop to stop segments during their travel time analysis.
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Table 4.7: System-wide Correlation Classification by Hour. (HN stands for highly
negatively correlated, N for negatively correlated, I for independent, P for positively
correlated, and HP for highly positively correlated).

Hour HN N I P HP

4 0.0029 0.0177 0.4377 0.3690 0.1727
5 0.0020 0.0264 0.4536 0.3770 0.1409
6 0.0012 0.0268 0.5181 0.3532 0.1007
7 0.0015 0.0238 0.5800 0.3275 0.0673
8 0.0016 0.0230 0.5928 0.3293 0.0533
9 0.0015 0.0231 0.6023 0.3219 0.0512
10 0.0014 0.0242 0.6181 0.3129 0.0434
11 0.0017 0.0265 0.6270 0.3055 0.0394
12 0.0019 0.0269 0.6346 0.3001 0.0366
13 0.0014 0.0275 0.6351 0.2995 0.0365
14 0.0013 0.0277 0.6469 0.2912 0.0330
15 0.0014 0.0274 0.6569 0.2838 0.0305
16 0.0012 0.0276 0.6608 0.2797 0.0306
17 0.0019 0.0286 0.6397 0.2964 0.0334
18 0.0016 0.0246 0.6100 0.3214 0.0425
19 0.0011 0.0238 0.5831 0.3419 0.0500
20 0.0010 0.0230 0.5585 0.3583 0.0592
21 0.0030 0.0250 0.5392 0.3663 0.0664
22 0.0034 0.0177 0.5089 0.3950 0.0750
23 0.0035 0.0231 0.4870 0.3956 0.0908
24 0.0023 0.0125 0.3823 0.4654 0.1374

The terminal to terminal travel time equals to the sum of stop to stop travel times

and dwell times. Setting the terminal to terminal travel time is important to determine

layover times and is important in labour contracts. Since we are discussing stop to stop

travel times in this thesis, summing these individual stop to stop segments as random

variables should also give us a random variable about terminal to terminal travel time.

The expected values, the mean, can be added regardless of distribution, thus giving

a clear picture of mean terminal to terminal travel time. The variance or standard
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Figure 4.12: System-wide Correlation Classification Plot by Hour. (HN stands for
highly negatively correlated, N for negatively correlated, I for independent, P for
positively correlated, and HP for highly positively correlated).

deviation of terminal to terminal travel time, however, cannot be summed up directly.

The variance equals to the sum of individual variances and their co-variances. The

above result shows that most stop to stop travel times can be considered uncorrelated

due to their low correlation coefficient, and most of the correlation coefficients are

above 0. Thus, most of the variances can be summed up directly. In other words,

summing up the variances will slightly underestimate the overall variance. This result

suggests that if agencies want to reduce their travel time variability, they might have

to look at reducing travel time variability for each stop to stop segment. In addition,

since the stop to stop pairs are mostly independent and variances for independent

variables can be summed up directly, reducing variance for one segment can reduce
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overall trip variance. Transit agencies might want to focus their resources on the

segments with highest variances.

Overall, the result show most of the stop to stop travel times are not positively

nor negatively correlated from the upcoming stop to stop travel time. Travel time

in areas with little traffic and passenger activities are often positively correlated.

This is also consistent with the systemwide trend shown in the Figure 4.12. When

traffic and passenger activities pick up from the beginning of the operation, more

segments become independent, and fewer segments are positively correlated. To the

contrast, when passenger and traffic activities dies down after PM peak, there are

more positively correlated segments and fewer independent segments. This means

that analysts can only make assumptions on consecutive stop to stop travel times

when there are knowledge regarding how traffic and passengers behave in that area.

Otherwise, analysts might have to examine each stop to stop travel time independently.

4.4 Conditional Stop to Stop Travel Time Given Delay

Another concern is regarding the use of all travel time samples on a given trip

when analysing its schedule. Travel times are affected by multiple reasons, such as

the driver’s driving style, and their relationship to the schedule. COTA does not

allow drivers to depart a timepoint earlier than the scheduled arrival time, and drivers’

bonuses depend on not crossing the timepoint early. If a schedule is sufficient and

the bus is running close to being exactly on time, some drivers might opt to slow

down to avoid being held at timepoints, while some other drivers would prefer to

be held at timepoints so that they can stretch their legs. Since drivers sign up for

their runs based on seniority, some senior drivers would consistently sign up for one

82



run, while some other runs will see different drivers from time to time. This would

result in inconsistencies when analysing the travel time, and might bias the travel

times to suit one specific driver. For example, if a driver that prefers to run fast and

stop consistently signed up for one trip is not available on a given day, the schedule

might not be consistent for a substitute driver who might be accustomed to run

slower. However, due to the lack of operator number in AVL data, I will only look

into conditional travel times given a certain delay. This can also be left for future

research once the operator data is available from the agency.

Trip 697167 used throughout this thesis is one example of one senior driver

operating consistently on this trip. Based on additional interview with the operator,

the operator will slow down when running early, otherwise the operator would follow

the posted speed limit. However, this might not be the case for all operators. Again,

more research on driver behaviours at stop to stop level is needed to make this result

more generalisable. The scheduled terminal to terminal travel time is 3900 seconds,

and based on the actual AVL data, the average travel time is 3820 seconds without

any explicit holding times, while 73 percent of the recorded trips will complete faster

than the scheduled 3900 second travel time, and 100 percent of the recorded trips will

complete within 4200 seconds (5 minutes longer than the schedule, which corresponds

to being on time at COTA). In addition, the trip’s on time performance at stop level

recorded in January 2020 is presented in Table 4.8 (some days are not recorded due

to COTA system upgrading and potential internet connection issues). From the table,

it is obvious that the trip consistently operate either on-time or early without being

late during January 2020. It is very reasonable to raise the hypothesis from above

results that this trip can operate at a higher speed to reduce holding time and the slow
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operating speed when running early. Travel time is generally considered as a disutility

for passengers, decreasing travel time would increase the utility of passengers, thus

resulting in higher transit users.

Table 4.8: On Time Performance at Stop Level for Trip 697167.

Date Early On Time Late

20200102 0.0597 0.9403 0
20200103 0.0441 0.9559 0
20200108 0.2059 0.7941 0
20200109 0.3382 0.6618 0
20200113 0.2206 0.7794 0
20200114 0.2687 0.7313 0
20200115 0.1940 0.8060 0
20200116 0.2206 0.7794 0
20200117 0.0735 0.9265 0
20200122 0.2206 0.7794 0
20200123 0.1029 0.8971 0
20200124 0.2206 0.7794 0
20200127 0.1324 0.8676 0
20200129 0.1667 0.8333 0

Using an example on campus, from stop High and 13th to High and 15th, where

High and 15th is a timepoint which drivers are not allowed to depart earlier than the

scheduled arrival time. A split point of 60 seconds is chosen as an example, which

corresponds to the agency’s AVL data rounds down delay to the nearest minutes in

the published real time feed. Anything delay between 0 and 60 seconds would be

considered as 0 in the real time feed. If the bus is running less than 60 seconds behind

schedule, the average travel time is 66 seconds. On the other hand, if the bus is

running more than 60 seconds behind schedule, the average travel time is 56 seconds.
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Two sample T-Test is used to determine whether these two sub-samples have the same

mean. The T-Statistics is -4, with p-value less than 0.0001. Therefore, it is reasonable

to reject the hypothesis that the two samples have equal mean, and that the operator

do slow down significantly when they are closer to running early. This is especially

the case when the drivers are biased towards running behind schedule, since they are

not allowed to run early. The only option left for the drivers is to slow down and wait

for the schedule to catch up while adding excessive travel time to the passengers. This

result shows once again that using on-time performance alone does not always show

segments where travel time can be improved.

However, if we look at another example on the trip, from Kenny and Steelwood

to King and Kenny, where King and Kenny is a timepoint, the conditional travel

time shows the opposite story. Once again, if the bus is running less than 60 seconds

behind schedule, the average travel time is 94 seconds. On the other hand, if the bus is

running more than 60 seconds behind schedule, the average travel time is 101 seconds.

Two sample T-Test gives a T-Statistics of 2.85 and a p-value of 0.0046. Based on this

result, it is reasonable to conclude that the two sub-samples do not have equal mean,

and travel time increases if the bus is running more than 60 seconds behind.

Most of the segments on this trip is consistent with the first example, where if

the bus is running more than 60 seconds behind schedule the expected travel time

would be lower. Whereas the second case is less common. The explanation for this

phenomenon should be explored in future research. However, one correlation for this

phenomenon can be tied back to the previous discussion on travel time classifications.

Referring back to Figure 4.1, the High St segment is classified as extreme sufficient,

while the Kenny Rd segment is classified as extreme insufficient. For now, this analysis
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confirms the personal observation that buses is slowed down if the trip has a sufficient

schedule, and that agency should consider reallocating travel times to allow more

consistent travel speeds.
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Chapter 5: Transfer Time Analysis

Like I mentioned in the last chapter, there are other aspects in the schedule a

passenger expect agencies to meet. In a transit system, one line can only take a

passenger to a limited amount of destinations. However, with intersecting lines, a

passenger will have access to more destinations served by other lines. Therefore,

transfer activity is also an important aspect when passengers plan or experience their

trips.

Transfer activities are not coordinated nor guaranteed by COTA most of the times

during the day, except there will be line ups at night to provide transfer opportunities

when services are running not as frequent as during the day, as mentioned in Chapter

1. Passengers normally infer their transfers, or a trip planning software will, by looking

at the published schedule. Either way, the information inferred from the schedule

would include the arrival time of the first bus and the arrival time for the transfer bus

at the transfer stop.

The importance of transfers and the disutilities caused by the transfers raises

questions regarding whether a passenger will make their expected transfer, as well as

the observed transfer times between the two trips in this system. To reiterate, the

first chapter, COTA does not coordinate nor guarantee passenger transfers except

during the late night line ups. However, transfer stops, which are not necessarily
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timepoints, are clearly marked in their official maps and the trip planning functions

from the agency’s website. Similar to previous chapter, passengers can easily treat

these times as schedules the agency tries to adhere to. Thus, this thesis will refer

to them as scheduled transfers. Missing a transfer becomes more important if the

scheduled transfer time is short, where passengers risk missing their transfer bus. On

the other hand, if the transfer time is too long, passengers might avoid travel on

transit for that specific trip, or using other transit lines to get to their destination.

This chapter describes the transfer activities in addition to COTA’s existing metric

mentioned in Chapter 1, on time performance, that does not describe transfer activities

and the relationship between two trips. More specifically, this chapter first explorers

the probability of missing a transfer given a scheduled transfer time, which could

potentially aid passengers in planning their transfers. Next, the probability of missing

a transfer given first bus’s arrival at transfer point, which might help passengers

identify potential risks associated with their transfers while on board the first bus.

Third, identifying transfer time inconsistencies between the observed mean transfer

times and the scheduled transfer times, which could help the agency identify and adjust

their services to improve transfer reliability. Finally, a potential holding strategy to

ensure transfers and its potential consequences relating to holding, which could help

agencies in making day to day operational standards.

The last two analyses in this chapter will focus on transfer opportunities provided

to passengers by the schedule. If the first bus ran late and missed the planned transfer

bus, a later transfer bus could potentially provide shorter transfer time than scheduled

to the passenger. However, in this case, despite the potentially shorter transfer time,

passengers might still arrive at their destination late due to the delay on the first
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bus. To better illustrate the effect of missing a transfer in the third analysis, the time

a passenger miss their planned transfer is set to negative and used in the analysis.

Otherwise, all transfer times would be positive, thus not showing passengers missed

their planned transfer clearly. Determining whether a later transfer bus has a shorter

transfer time to the passenger can easily be done by comparing the headway between

the planned transfer bus and a later transfer bus to the time a passenger missed the

transfer. As for holding analysis, holdings are demonstrated up to 15 minutes, which

excludes the extreme delays cases on COTA’s lower frequency lines. However, one

limitation is that determining which transfer bus would provides less delay for both

agency and passengers is not explored by this thesis when frequent lines were included

in the analysis due to the lack of ridership data. In addition, although some trips

require more than one transfer to complete, due to the lack of ridership data, this

chapter examines one transfer point at a time and the results are not weighted by

ridership. This can be left for future research once the ridership data from APC or

AFC become available from the agency.

5.1 Missed Transfer Probabilities Given Scheduled Transfer
Time

One simple way to look at these transfer activities is treat the transfers as Bernoulli

trials, where we measure whether the transfer is successful or not. When passengers

make their travel plans and looking at their transfer times, one question that often

comes to mind is that, can passengers make to their transfer bus given a scheduled

transfer time?

From the recorded arrival time data for the past two years, transfer point arrival

times can be extracted and examined. Due to AVL or internet availability issues,
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actual arrival times might not be available for the both trips. In this case, only

transfers with arrival times for both trips are considered. Then, for walking times

needed from one stop to another is measured in Google Maps. If the from stop and

to stop is the same one, i.e. no walking is needed, walking time is set to 0. Finally,

transfer success rates were calculated, where if the first bus arrives before the transfer

bus then the transfer is considered as successful.

Table 5.1 presents the detailed results for missed transfers given a scheduled transfer

time. It shows the scheduled transfer time in seconds rounded down to the nearest

minutes to be consistent with COTA’s system, total recorded missed transfers, total

recorded successful transfers, total recorded transfers, and the percentage of missed

transfers. To illustrate the trend, the percentage of missed transfers are plotted on a

chart, shown in Figure 5.1, where x-axis shows the scheduled transfer time in seconds

rounded down to the nearest minutes, and the y-axis shows the percentage of missed

transfers. For example, given 3 minutes scheduled transfer time, 15.35% transfers

will be missed, meaning 84.65% transfers are successful, as show in the figure and the

table.

From the table and the figure, we can observe that the changes of missing a

transfer decreases quickly, then slows down as the scheduled transfer time increase.

This result is expected. If the scheduled transfer time increase, the first bus will have

a lesser impact on the transfer times, and thus passengers are more likely to make

their transfers.

On the other hand, if the scheduled transfer time is between four and five minutes,

there is still a 10% chance a passenger will miss the transfer bus. This again highlights

the insufficiency of only using on time performance to monitor their service. The first
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Table 5.1: Observed Missed Transfer Probability Given a Scheduled Transfer Time in
Minutes.

Scheduled Xfer Min Missed Success Total % Missed

0 497999 735152 1233151 40.38 %
1 949555 2029368 2978923 31.88 %
2 686885 2425452 3112337 22.07 %
3 470439 2594364 3064803 15.35 %
4 317360 2626204 2943564 10.78 %
5 237379 2863409 3100788 7.66 %
6 157741 2788458 2946199 5.35 %
7 114735 2968499 3083234 3.72 %
8 78855 3011559 3090414 2.55 %
9 55598 2931613 2987211 1.86 %
10 68392 2929819 2998211 2.28 %
11 19636 2278691 2298327 0.85 %
12 12630 2190946 2203576 0.57 %
13 7732 2151234 2158966 0.36 %
14 4786 2006774 2011560 0.24 %
15 1393 953437 954830 0.15 %
16 676 650664 651340 0.10 %
17 156 577250 577406 0.03 %
18 72 582990 583062 0.01 %
19 23 572516 572539 0.00 %
20 20 539414 539434 0.00 %
21 36 491775 491811 0.01 %
22 3 551875 551878 0.00 %
23 8 497318 497326 0.00 %
24 3 486905 486908 0.00 %
25 4 472636 472640 0.00 %
26 2 453305 453307 0.00 %
27 1 449431 449432 0.00 %
28 1 442201 442202 0.00 %
29 1 396951 396952 0.00 %
30 0 103059 103059 0.00 %
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Figure 5.1: Missed Transfer Given Schedule Time.

bus is still considered to be on time by COTA when they run five minutes behind

schedule, while the transfer bus is also considered on time when they run exactly on

time. This demonstrates once more that on time performance does not describe the

transfer aspects passengers expect transit system to behave. This becomes especially

important when the transfer bus is not frequent. Missing the bus will delay the

passenger significantly longer. This lead to the question of how many transfers would

be successful if the transfer bus were held by a certain amount of time, which would

be explored in later sections.

From these observations, agencies should come up with a service standard for

their passengers on what to expect about their transfers. Using the available AVL

data and potentially AFC data or OD matrix, more detailed missed transfer counts

and percentages can be calculated, which can be used in conjunction with on time
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performance to improve the understanding of the transit system’s performance. More

detailed analyses can be done at trip level to examine whether a specific transfer

is considered risky based on the agency’s standard, such as how many percent of

transfers missed at a given transfer stop. If the transfer is risky, then the agency might

want to consider changing the service schedule to allow more time for transfers, or to

consider some sort of holding strategy to improve the transfer.

Another interesting pattern is that this graph almost looks like an exponential

distribution. More research is needed to closer examine the distribution that generated

these data.

5.2 Missed Transfer Probabilities Given Arrival Time of First
Bus

While a passenger is on a bus heading to the transfer point, a common question

would be, given delay on the first bus, what are the chances to catch the transfer bus?

As a passenger, we normally calculate our chances looking at the difference between

the expected arrival time on the first bus based on the delay and the scheduled arrival

time for the transfer bus since the real time tracker might not work. In other words,

passengers want to look at the delay on the first bus and compare it to the scheduled

transfer time to determine whether they can make their transfer or not. Again, like

the previous section, this section will look at this problem with a simpler view, by

treating the transfer points as Bernoulli trials, whether a passenger will successfully

make their transfer or not.

From the recorded arrival time data for the past two years, transfer point arrival

times and their delays can be extracted and examined. Since there are two trips

involved at one transfer point at one time, actual arrival times might not be available
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for both trips. In this case, only transfers with arrival times for both trips are

considered. Then, for simplicity and to be consistent with agency’s published AVL

data, transfer success rates were aggregated by minutes.

Table 5.2 presents the detailed results for missed transfers given the difference

between scheduled transfer time and delay on the first bus. It shows the difference

in seconds rounded down to the nearest minutes, to be consistent with COTA’s

system, total recorded missed transfers, total recorded successful transfers, total

recorded transfers, and the percentage of missed transfers. To illustrate the trend,

the percentage of missed transfers are plotted on a chart, shown in Figure 5.2, where

x-axis shows the difference in seconds rounded down to the nearest minutes, and

the y-axis shows the percentage of missed transfers. Here negative numbers show

the minutes the first bus arriving before the scheduled transfer bus arrival, whereas

positive numbers show the minutes the first bus arriving after the scheduled transfer

bus arrival. For example, if the first bus arrives 1 minute before the transfer bus is

scheduled to arrive, 4.35% transfers were missed as shown in the table and the figure.

Given more information, we can see the percentage of missed transfers decrease.

For example, the percent transfer missed for when the first bus arrives less than one

minute before the transfer bus is scheduled to arrive is 14%, less than 40% given only

less than one minute scheduled transfer time. This makes sense, since getting to the

transfer point one minute before the transfer bus is scheduled to arrive is different

from only having one minute of scheduled transfer time. A trip might have a scheduled

transfer time of five minutes, but the bus might be running four minutes after the

scheduled arrival time.
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Table 5.2: Missed Transfer Probabilities Given Scheduled Transfer Bus Arrival and
Actual Arrival of First Bus.

ArrivalScheduleDiff MissedXfer SuccessXfer TotalXfer % Missed

-15 0 773258 773258 0.00 %
-14 39 1154252 1154291 0.00 %
-13 213 1429766 1429979 0.01 %
-12 570 1692230 1692800 0.03 %
-11 791 1918512 1919303 0.04 %
-10 868 2215095 2215963 0.04 %
-9 722 2475183 2475905 0.03 %
-8 548 2637231 2637779 0.02 %
-7 614 2777628 2778242 0.02 %
-6 1735 2794062 2795797 0.06 %
-5 4520 2907526 2912046 0.16 %
-4 11310 2885428 2896738 0.39 %
-3 22426 2916571 2938997 0.76 %
-2 47016 2890755 2937771 1.60 %
-1 123400 2715163 2838563 4.35 %
0 332000 1960298 2292298 14.48 %
1 528938 1140784 1669722 31.68 %
2 571124 613435 1184559 48.21 %
3 508757 314788 823545 61.78 %
4 402490 159051 561541 71.68 %
5 306735 83892 390627 78.52 %
6 227971 45565 273536 83.34 %
7 171880 25553 197433 87.06 %
8 126745 14866 141611 89.50 %
9 93777 8609 102386 91.59 %
10 68642 4836 73478 93.42 %
11 49399 2867 52266 94.51 %
12 34264 1412 35676 96.04 %
13 22951 685 23636 97.10 %
14 13793 301 14094 97.86 %
15 6427 78 6505 98.80 %
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Figure 5.2: Missed Transfer Given Difference Between Schedule Time and Delay.

Notice there are missed transfers when the first bus is arriving before the schedule

arrival time of the transfer bus. This is possibly due to buses running early between

time points. After all, on time performance is measured at timepoints only and not

all transfer points are timepoints, this creates the possibility for operators to leave

transfer points early at the transfer stops.

The chances of missing their transfer bus are small but not zero, when arriving a

few minutes before the scheduled transfer bus arrival. This is could either potentially

related to AVL system issues. There are times when the on board computer does

not switch trip directions or freezes and reports wrong information. It could also

be contributed to drivers not knowing their schedule very well when driving on an

unfamiliar line. However, the general trend still applies.
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From the figure, it is easier to observe the rate of change, or slope. Once again, we

observe a sharp increase in percent missed transfers centered around 0. However, the

sharp increase start to flatten out when the first bus arrives three minutes or more after

the scheduled transfer bus arrival. This suggests that if the first bus is significantly

delayed, there is a slight chance that the transfer bus is also significantly delayed.

Furthermore, for the first two minutes, passengers can still transfer to the next bus

with more than 50 percent probability. This also makes sense, since most transfer

points, although not all, are timepoints. To reiterate, COTA do not allow operators to

cross timepoints earlier than scheduled, and drivers’ bonuses depend on this standard.

Thus, most operators will avoid crossing the timepoints early, and arriving later than

scheduled time, creating more time for transfer passengers even when the first bus

run late and arrives a minute or two after the transfer bus is scheduled to arrive.

Since there is still a five percent chance to miss the transfer bus when the first

bus arrives one or two minutes before the scheduled arrival time of the transfer bus,

due to the transfer bus running early. Agencies might want to hold early buses at

transfer points in addition to the timepoints to improve the probability of passengers

making to their transfers successfully. Agencies should also keep the transfer points

as timepoints and could potentially add more transfer points to timepoints where

they evaluate their operators and performances. This would help passengers in two

ways. One, timepoints are printed on the schedules, therefore allowing passengers to

determine their transfer times easily. Two, timepoints would prevent operators to run

early, and could potentially increase passengers’ chance to catch their transfer buses.

Again, this analyses can be done in greater detail. However, due to the lack of

data, I will leave that to future consideration.
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5.3 Identifying Transfer Time Inconsistencies Across Time

After examining the transfer probabilities at a system level, let’s turn our attentions

to the individual transfer times. Similar to the stop to stop level travel times, this

section will use some transfers as examples to highlight the issues.

The following subsections examines the inconsistencies between scheduled transfer

times and observed mean transfer times by using t-tests. The null hypothesis used

in the test is that observed mean transfer time is equal to scheduled transfer time,

whereas the alternative hypothesis is that observed mean transfer time is not equal to

the scheduled transfer time.

Since in reality, if a passenger misses the transfer bus, they had to wait for the

next one to show up. However, by simply looking at the actual passenger transfer

times, it is hard to tell transfers that are more likely to be missed. For the analyses

below, missed transfers are represented as a negative time to better illustrate them.

5.3.1 Transfer Level

For each individual transfer, the scheduled arrival time for the first trip and the

transfer trip are extracted. Then, the actual arrival times for both trips are matched

to these transfer points. From these times, I can calculate the scheduled transfer time

and actual transfer time for each day for each scheduled transfer. Finally, using one

sample t-test, I can test the hypothesis of whether the scheduled transfer time is the

expected value observed from these samples. I will show two examples to illustrate

transfer time inconsistencies, one with longer and one with shorter than scheduled

transfer time. More specifically, transfer time will be represented in positive number

showing the time for passengers to walk and to wait for their transfer bus. On the
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other hand, negative times show passengers miss their transfer bus by how many

seconds.

For longer than scheduled transfer times, using our trip 697167 on Line 31 which

tends to run early, the example is the transfer point at High and 13th. This trip is

scheduled to arrive at High and 13th at 7:13:41 am, and the southbound Line 2 is

scheduled to arrive at 7:22:05 am. By calculation, the scheduled transfer time is 504

seconds. After matching the actual arrival times, the average transfer time is 814

seconds with a 122 second sample standard deviation, resulting in a 12.68 t-statistics.

Even without the t-statistics, we can see that the average transfer time significantly

more than scheduled transfer time, more than two sample standard deviations away

to be more precisely. In fact, if we calculate all other transfers from trip 697167, it

has no significant shorter than scheduled transfer time.

On the other hand, transfer times to trip 697167 will be tighter, since it tends

to run early. For example, trip 691475 on southbound Line 2 is scheduled to arrive

at High and Hudson at 7:16:00 am, and trip 697167 on northeast-bound Line 31 is

scheduled to arrive at High and Hudson at 7:20:00 am. The scheduled transfer time is

240 seconds. By calculating the actual transfer times on these two trips, we get an

average transfer time of -75 seconds and a standard deviation of 93 seconds, resulting

a -16 t-statistics. Again, negative transfer times are used here to better illustrate

missed transfers. Where in this case, the passenger miss the Line 31 trip on average by

75 seconds. It is also easy to observe this significantly shorter than scheduled transfer

time without the t-test. The difference between scheduled transfer time and average

transfer time is more than 5 minutes, and the average transfer time is more than 3

standard deviations away from the scheduled transfer time.

99



For the agency, it is important to identify these cases, especially at more important

transfer points in the system such as High and Hudson. By examining why these

transfer times have significant deviations, whether it is due to travel time insufficiency

or the operators leave the terminal behind schedule, the agency can improve the

transfer reliability throughout the system, by either holding the bus slightly to allow

more reliable transfers or addressing operation issues on specific trips.

5.3.2 System Level

For the system level, all transfer times were compared to their scheduled transfer

times, similar to the transfer level analysis. Then, t-statistics were aggregated to

represent the system. If the t-statistic for a specific transfer is not able to reject the

null hypothesis, it is classified as balanced. If the t-statistic is able to reject the null

hypothesis and it is positive, meaning the observed mean transfer time is larger than

scheduled, the segment is then classified as longer. Finally, if the t-statistic is able to

reject the null hypothesis and it is negative, the segment is classified as shorter.

First of all, the overall classification for the past two years are 20.77% transfers

with significantly shorter transfer time than scheduled, 48.9% transfers with balanced

transfer time, and 30.33% with significantly longer transfer times than scheduled.

However, if we look at the percentage of transfers in each category by hour. The

time pattern is less obvious than the transfer time section. Percentage of transfers in

each category by hour is presented in Table 5.3. These results are plotted in Figure

5.3 for better illustration, where x-axis represent the hour, and the y-axis represent

the percentage in each class. For example, in the table, there are 44.38% transfers
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classified as Balanced at 4 AM, which corresponds to the left end on the yellow line in

the figure.

Table 5.3: Transfer Point Classifications by Hour.

Hour Shorter Balanced Longer

4 24.62% 44.38% 31.01%
5 22.32% 47.36% 30.33%
6 23.08% 42.45% 34.48%
7 20.90% 42.55% 36.55%
8 19.43% 47.22% 33.34%
9 17.89% 51.20% 30.91%
10 17.46% 52.41% 30.12%
11 18.38% 51.66% 29.95%
12 19.38% 50.72% 29.90%
13 19.10% 51.51% 29.38%
14 19.05% 51.24% 29.71%
15 20.15% 49.45% 30.40%
16 22.65% 47.13% 30.22%
17 21.68% 47.82% 30.50%
18 20.31% 49.48% 30.21%
19 19.05% 52.80% 28.15%
20 19.93% 49.96% 30.10%
21 27.50% 49.04% 23.46%
22 34.76% 43.89% 21.35%
23 25.63% 48.97% 25.40%
24 31.41% 44.28% 24.30%

From the table and the figure, we can observe that the temporal component is not

as strong as the travel time section. Here, we see an increase in longer than scheduled

transfer time category and a decrease in equal transfer time category during the

morning peak. To the contrary, for the PM peak, there is a slight increase in shorter

than scheduled transfer time category and decrease in equal transfer time category.

However, there is a significant decrease for the longer than scheduled transfer time
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Figure 5.3: Transfer Classification Plot by Hour.

category and a significant increase in shorter than scheduled transfer time category

around 9 pm. These temporal results indicate that transfer time classifications are

relatively stable, with a longer transfer time during the morning and shorter than

schedule transfer times right before the line up starts.

5.4 Holding buses for transfer passengers

For passengers, missing a transfer is not a good service experience, since they had

to wait for the next trip. This is especially unpleasant when missing an infrequent

service, since the wait time will be very long.

From the results above, it is clear that a passenger is most likely to miss a transfer

when the scheduled transfer time is tight, or when the first bus is delayed resulting a

lower transfer time. Since the chances of missing a bus decrease very quickly with

minute closer to 0, this led to a question, what if the transfer bus is told to wait for
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first bus? Assuming everything else, such as travel times, stays the same, what will

happen to the transfers and subsequent operations?

Since there is no passenger transfer data, I came up with a simplified simulation,

where I assume there is transfer activity at every scheduled transfer point. I picked

a day as an example in this subsection, more specifically January 23rd 2019, since

almost all of the trips were recorded on that day. Then, I came up with some sample

holding strategies. The holding categories include holding all buses, holding standard

buses, and holding buses with more than 30 minute headway for a given maximum

amount of time, ranging from 0 (no holding, day progress as recorded) to 15 minutes.

For each holding strategy, number of missed transfers, number of delayed subsequent

trips, and number of times buses was held or hold count of the daywere calculated to

describe the impacts to passengers and to the agency.

First, all the scheduled transfer points were sorted from earliest to latest as a

starting point. This is to simulate the day starting from the beginning of the operation

when nothing was held. Next, as the day progress, if there a trip in the corresponding

holding catalogue, running with the sum of total holding less than maximum holding

time, delays will be added to this trip to simulate buses being held until the second

bus arrives. Repeat this step until 10pm when the line up starts. As a reminder

for the Introduction chapter, evening line ups mean all local buses meet downtown

for 10 minutes to coordinate and guarantee transfers due to buses running at lower

frequency. Finally, as the day ends, the previously mentioned descriptive statistics

were calculated, and the results are shown in the following paragraphs.

Table 5.4 shows the detailed simulation results for January 23, 2019. It includes

the descriptive numbers for each holding category and the maximum holding time in
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seconds. To better illustrate these results, they are plotted on three charts, Figures

5.4, 5.5, and 5.6. As an example, the table and the green line in the figures show

when holding routes with headway more than 30 minutes for a maximum 5 minutes,

7220 transfers would be missed systemwide, 1 additional terminal departure would be

missed, and 213 holdings would be performed.

From Table 5.4 and Figure 5.4, we can observe that as the max holding time

increase, there is an initial drop in missed transfers number, and, sooner or later, an

increase in missed transfer numbers. Based on the data, the increase in missed transfer

numbers is most likely a result from upstream holding, which used up the max holding

time waiting for buses with larger delay. The holding caused the first vehicle to miss

subsequent transfers further down the line, while the transfer buses, also used up its

max holding times, do not hold for the first bus. The trend is especially obvious when

only holding the standard lines.

Another observation from Table 5.4 and Figure 5.5 is that as the maximum holding

time increase, the delayed future trips also increase. This is especially problematic

when holding all bus trips, as the number of delayed future trips increase quickly.

Although not shown here in the data, the delayed future trips are more likely to

happen during the peak hours. This makes sense, since the layover times at the

terminals are shortened due to the travel time increase during peak hours.
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Figure 5.4: Missed Transfer Counts using Different Holding Strategies, where the
numbers in the legend corresponds to COTA’s headway category. E.g. the blue line
represents holding routes that run every 30, 45, and 60 minutes, which corresponds to
COTA’s standard routes.

From Table 5.4 and Figure 5.6, we can observe that as the max holding time

increase, there is an increase in holding counts. This is expected, as the maximum

holding time increases, certain trips would be held longer, and might cause extra

holdings in their subsequent transfers that would not be held when the trips were not

held as long. This again highlights the strong dependence among all bus lines, since

holding one bus could potentially cascade delays to its future transfers, as well as

cascade through subsequent trips and future transfers. This shows holding buses for

transfers can potentially be problematic as the number of holding increases. This is

notable when holding all lines. As the maximum holding time increases, the number

of holdings grow faster than the other two categories. When maximum holding time
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Figure 5.5: Delayed Next Terminal Departure Counts using Different Holding Strate-
gies, where the numbers in the legend corresponds to COTA’s headway category. E.g.
the blue line represents holding routes that run every 30, 45, and 60 minutes, which
corresponds to COTA’s standard routes.

is only one minute, the holding counts reach more than 1500, which is more than the

maximum for other two categories. Even though the holdings counts are significantly

less for the other two holding categories, the counts may still reach several hundreds

quickly. Thus, coordinating and tracking these transfers may not be realistic for

operators and agencies.

Although not shown in the result section, holding strategies do result in missing

other transfers points, but overall transfer risks are lower. The results also highlights

the result of TSR. TSR created a network of bus lines, considering only one bus, one

line, or one transfer at a time, ignores the strong level of interdependence between
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Figure 5.6: Holding Counts using Different Holding Strategies, where the numbers in
the legend corresponds to COTA’s headway category. E.g. the blue line represents
holding routes that run every 30, 45, and 60 minutes, which corresponds to COTA’s
standard routes.

buses. Holding one bus for a long period of time, will delay and potentially cause

passengers to miss future transfers on the bus.

Again, the above simulation is run based on the assumption that there will be

some passenger transferring at the given transfer point. The actual numbers will

be lower than what is shown in the results. However, based on these observations,

it is important to recognize and combine the results from previous sections. Since

passengers are most likely to miss tightly scheduled transfers (less than three minutes)

and transfers when the first bus is delayed closer to the arrival of transfer bus, along

with the initial decrease in missed transfer counts, it is important to recognize the

first three or four minutes.
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Again based on the observations from Figures 5.4, 5.5, and 5.6, the missed transfer

count decrease the fastest when the maximum holding time is less than 2 or 3 minutes

while the number of holdings and delayed future trips increase the fastest in the same

period. This creates a tension between holding the bus for passengers and ensuring

later operation reliability. Since holding more than 2 minutes can cause delays in

future trips and 2 minutes is not a long time interval, a holding strategy that provides

a good compromise would be that the agency tell the operators to wait for transfer

passengers if they see another bus approaching the transfer stop, so that the overall

holding time for a specific trip would remain short. The strategy would reduce missed

transfer counts, while the holding time would not cause significant delays for later

times and holding counts would remain manageable for dispatchers or supervisors to

control. Although this process can also be automated by the software vendors, human

monitoring is still required to potentially override the system to ensure reliability in

later operations. One example of such automated system is from INIT. They developed

a transfer support system for planners to pre-plan transfer points and allow passengers

to request holding their transfer bus. Most importantly, regardless of whether the

process is automated or not, passengers should let their operator know when they will

potentially miss their transfer bus, and ask the driver to signal the transfer bus to

wait for transfer passengers.
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Chapter 6: Discussions and Conclusions

6.1 Research Summary

To summarize, this thesis research was motivated by the importance of transit

reliability in general (Carrel et al., 2013), COTA’s transit system redesign, and COTA’s

implementation of automatic vehicle location systems. Once these significant changes

were in place, the agency might want to fine tune their system so that it becomes more

reliable to passengers. Since previous researchers had issues obtaining and analysing

transit data at a more detailed level (Mazloumi et al., 2010), this thesis attempted to

set up a data analysis framework for analysing the recorded stop to stop travel time

as well as transfer time data.

The main data source used in this thesis is the GTFS and GTFS real time data,

published by the agency. The on-going data collection started in January 2018,

meaning more than two years of GTFS data were collected, stored, processed, and

analysed. The data processing framework was designed to be updated everyday so

that the analyses results are up to date and reflects the latest data.

The data processing processes matches the vehicle GPS locations to the route

locations and distances. Next, from these route distances stop arrival and departure

times can be estimated. These stop time data were used in transfer time section to
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identify the arrival time of first bus and the departure time of transfer bus. Then, the

travel times between stops were calculated. Finally, outlier travel times, such as break

downs and reroutes, were removed from the analyses using DBSCAN.

Although this study is based solely on the GTFS data from Columbus, OH, this

methodology can easily be applied to other transit systems elsewhere that implemented

AVL systems with a few potential modifications based on agency specific requirements.

For example, holding strategies might need to be adjusted since other agencies have

different holding requirements for drivers. Another potential adjustment would be

travel time matching and delay calculation process, since some agency operate based

on frequency without a fixed schedule. On the other hand, some agencies use a

completely different AVL data format. The basic idea of this study can still be applied

for the agencies that uses CEN Network Timetable Exchange (NeTEX) and Service

Interface for Real Time Information (SIRI) formats. These modifications will be

minimal, since schedule and vehicle position data are provided universally across these

data standards.

6.1.1 Travel Time Analysis

For the travel time analyses, they are done at stop to stop level and they have

four components, travel time inconsistencies, travel time distributions, travel time

correlations, and conditional travel time given delays. First, the travel time inconsis-

tencies were done at stop to stop level, trip level, line level, and system level to reflect

temporal and spatial differences.

For stop to stop level, the analysis compares the scheduled travel time to the

recorded sample mean, 15th percentile, and 85th percentile, for all weekday trips that
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serves that segment. The analysis used one segment to illustrate the inconsistencies

for this particular stop segment. The result show, for this segment, the schedule does

not reflect actual travel time increases around lunch hours, and the schedule does not

add enough travel time to accommodate the increased travel time for AM and PM

peaks.

Then, for trip level, the analysis aggregates all stop to stop segments for one

particular trip. Data visualisation were used to help illustrate the inconsistencies

across space for one trip. One particular trip was used as example to demonstrate the

analysis. The result for this trip shows that travel times are likely to be insufficient

around major intersections, where timepoints are usually located at. The surplus

travel times, on the other hand, tend to lie between major intersections.

The line level analysis is the aggregation of trip level analysis, where the amount

of sufficiencies and insufficiencies segments are counted and presented for all trips

on one line. This step aggregates temporal and spatial variations for one line, which

allows agencies to narrow down potential causes for insufficiencies on one line. The

line 31 was used to illustrate the process. The result show rapid variations for the line

throughout the day.

The system level aggregates all segments in a time period. This allows agencies to

control for a certain time and examine the spatial variation at a higher level. The

thesis presented two one hour periods, 12 PM to 1 PM and 5 PM to 6 PM. The

result is consistent with previous finding, that the peak hours have more insufficient

segments despite the increase in scheduled travel times. The result also generalises

the finding at trip level, that the insufficient segments are concentrated around major

intersections.
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Next component is the travel time distribution. This component is mainly to

check whether stop to stop travel time distributions are consistent with higher level

distributions like terminal to terminal travel time distributions. If the distributions are

not consistent with previous used distributions, what are some potential representative

distributions that could be used to model stop to stop travel times? The result show

that previously used distributions at terminal to terminal level do not fit the stop to

stop travel times better. Due to the higher data resolution, more impacts, such as from

traffic lights, can be observed from the distributions, making mixture distributions

one of the dominant distributions. On single mode distributions, Epsilon Skewed

Normal and Generalised Extreme Value distributions tend to perform better. For

spatial information, mixture distributions tend to appear near major intersections,

which have more complicated traffic light settings. Temporally, mixture distributions

tend to appear more often around peak hours, which have more traffic impacts.

For the correlation analysis, sample from one stop to stop segment is correlated

with the upcoming segment. This help determine whether stop segments can be

grouped under one traffic condition assumption. This also help bridge the gap between

the observed data and the theoretical derivation, where variances cannot be added

directly without the independent condition. However, the result show most stop

to stop travel times are independent, there are more positively correlated segments

than negatively correlated, and that more stops segments become independent during

peak hours. The spatial finding show that only stop segments that are in the same

geographical area without large traffic and passenger activities can be grouped under

the same assumption.
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6.1.2 Transfer Time Analysis

The transfer analysis tried to describe the overall recorded transfer time data from

the passengers’ perspective, since there are little literature that systematically analyse

the actual transfer times in their analysis. The components for the transfer analysis

are the probability of missing a transfer at a given scheduled transfer time, probability

of missing a transfer given arrival time of the first bus, deviations between scheduled

transfer times and observed transfer times experienced by passengers, and finally a

very simple holding strategy that attempts to reduce the probability of missing a

transfer.

For the probability of missing a transfer given a scheduled time, the result show

an almost exponential decrease as the scheduled transfer time increases, as expected.

Even if the scheduled transfer time is around five minutes, the agency’s definition of

being on time, there is still 8 percent chance that a passenger will miss the transfer.

This information could be helpful for passengers to make their transfer decisions and

could help agencies in designing a transfer time standard for their systems.

As for the probability of missing a transfer given the arrival time of the first bus,

the result show an almost exponential increase starting at the first bus arrives 1 minute

before scheduled transfer bus departure. This is could potentially be explained by

transfer bus running early.

For the deviations between scheduled and actual transfer times, the analysis is done

at two levels, transfer level and system level. The transfer level used 2 transfer points

to demonstrate shorter and longer than scheduled transfer times. The system level

aggregated the individual transfer within the hour and found most transfer times are

as expected during midday. However, AM peak tends to have longer than scheduled
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transfers times, whereas the PM peak tends to have shorter than scheduled transfer

times.

Based on these probabilities, a simple holding strategy was demonstrated by

applying it to different service headway categories. The result show the number of

transfers decrease the fastest when buses are held by maximum 3 minutes. If buses

were to be held longer, the holding could cause missed transfers at future transfer

stops further down the line. The result also shows expected increase in missed next

terminal departures, meaning the layover times at the terminal are not sufficient for

drivers to recover from the holding times and delays. Finally, the result indicates the

number of holdings increases as the maximum holding time increases.

6.2 Preliminary Conclusions

This section summarises the preliminary findings from this thesis. Pending further

research, these findings may only be applied specifically to COTA. However, similar

analyses can be done to other systems without significant changes to the framework.

The results suggest that the difference between the scheduled and actual travel time

data varies both temporally and spatially. This study reveals that transit schedules

do not accurately reflect the actual variation in travel time at different times of the

day for certain sections. There are also a few sections where the actual travel time is

either insufficient or sufficient of schedule for all trips during the week. Despite the

increase of scheduled travel times, there tend to be more insufficient scheduled stop to

stop travel times during AM peak, lunch hours, and PM peak. In addition, regardless

of time of the day, travel times near major intersections tend to be insufficient.
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Transit agencies will be able to focus their resources on adjusting scheduled travel

times based on route segments where actual travel time deviates significantly from the

schedule. Analysts at agencies might be able to focus their resources on addressing

the increase in insufficiencies during rush hours and lunch hours by reallocating the

excessive travel times on certain segments of the trip to the insufficient segments of

the trip. On the other hand, agencies could address the insufficiencies around major

intersections by advocating for Transit Signal Priorities.

The analysis also provides new information for researchers and analysts on travel

time distributions. The result show stop to stop travel times are likely to be skewed,

and sometimes tend to be multi-modal. Although more research is needed, there are

other distributions, not yet mentioned in the literature, that provides better fit for

stop to stop travel times, namely GEV, ESN, and mixed normal distributions. The

result show mixture distributions share a similar trend with stop to stop travel time

insufficiencies. There tend to be more mixture distributions around traffic lights and

during peak hours.

Travel time correlations at stop to stop level also provides some new insights.

When summing random variables, stop to stop travel times in our case, variances

cannot be added without considering their co-variances unless they are independent.

The result show most of the stop to stop travel times are independent with its previous

or subsequent segments. This indicate variances can also be added most of the

time, which means larger variance on one stop to stop segment would be likely to

contribute to the overall terminal to terminal travel time variance. Agencies can focus

their resources on addressing these larger variances to improve their overall service

consistency. In addition, since most of the travel times are independent, meaning
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knowing travel time for one segment will not affect the travel time outcomes on other

segments, designing stop arrival and departure times might require agencies to look at

individual segments separately. However, the result show higher positive correlations

in areas or times with little passenger activities or traffic interruptions. This makes

assumptions regarding consistent travel speeds more justifiable in these areas.

Although future research is needed, conditional travel time analysis given delays

show that operators are more likely to deliberately slow down to avoid running ahead

of schedule, since COTA does not allow drivers to cross timepoints earlier than

scheduled arrival time. These results can help agencies to design schedules that are

more representative for driver behaviours. Agencies might want to use data where

vehicles are more than a minute behind schedule to avoid drivers consistently slowing

down to avoid running early. Since in vehicle delays are viewed more negatively than

waiting time at their origin stop (Carrel et al., 2013), designing schedules that are

more representative could help improve passengers’ happiness.

It is also important for agencies to design a transfer time standard, so that transfer

time performances can be analysed and improved for passengers. This could potentially

be done by synchronizing their services schedule better at transfer points, so that

transfer times experienced by passengers are not “tight”, i.e. with more chances to

miss their transfers. Since a common on time performance goal is 85%, agencies might

also want to set a success transfer goal of 85%, which corresponds to 3 minutes of

scheduled transfer time plus walking time between stops. Agencies might want to use

3 minute transfer time plus walking time when scheduling a transfer point to improve

their transfer reliability. Given the arrival time of the first bus, the 85% successful

transfers can be achieved when the first bus arrives before the scheduled transfer bus
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arrival. Dispatchers might want to avoid the first bus arriving later than the scheduled

transfer bus arrival. Some form of holding strategies should also be considered to

improve the connections between services. The result show greater improve when

buses are held less than 3 minutes, suggesting an easier improvement by instructing

drivers to wait slightly or signal the other vehicle if they see another bus approaching

the transfer point. Agencies might also want to prioritise transfer points that has

significantly shorter than scheduled transfer times to improve their transfer reliability,

which corresponds to 20% of the total transfer opportunities in COTA system.

6.3 Potential Use of the System

The research findings could also provide new insights and implications for transit

planners to improve the reliability and consistency of scheduled travel times.

Stop level information could also help focus transit planners to the sections where

the schedule is significantly insufficient, instead of trying to analyse multiple stops

between time points. They can also infer the likely causes for why vehicles are running

significantly slower than scheduled travel time, based on time of the day, day of the

week, and the location of the stops and road layouts.

In addition, the methodology developed in this study may also help traffic engineers

improve the effectiveness of traffic light settings in order to facilitate more consistent

transit operations. Especially, this allows transit planners to advocate for the effective

means of improving transit reliability, such as transit signal priorities. This would

also allow the agencies to explore different strategies when installing additional transit

priority signals based on their resources and their most problematic segments. Agencies

could consider the historical travel time data and travel time variations to determine
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which intersections are more suitable or should be prioritised for transit priority signals.

If historical data of similar implementations or testing projects are available, agencies

could also evaluate the effects of different strategies by comparing detailed travel

times and travel time variations before implementation to travel times and travel time

variations after implementation.

This study can also be applied to improve the transparency of transit agencies.

This visualization helps transit riders understand where buses run tend to catch up

or get delayed, and this information would help riders plan their trip accordingly.

It would also help agencies provide more justification when advocating for transit

investments, such as additional transit priority signals or bus lanes.

These travel time analysis could also help agencies determine a better operational

schedule for the drivers. There are only three service changes relating to published

schedule per year at COTA. The operational schedule change more frequently, some-

times daily operation determined in the morning will be changed in the afternoon

due to interruptions such as vehicle outages and driver assignment changes. Agencies

might be able to determine a better daily operational schedule based on driver and

vehicle availability.

6.4 Limitations and Future Research

There are still several limitations and assumptions that needs to be studied, and

several future improvements are planned for the research.

The most obvious limitation for this study is that this does not apply to agencies

without AVL information. If agencies do not have AVL implemented, then there is no
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vehicle position and timestamp available for any computerized or automated travel

time analysis.

One thing to note is that although the mathematics can be very precise and the

patterns found can help planners focus their resources, they cannot be used to replace

specific planning process. This study does not imply that the numbers generated by

this algorithm are superior to existing methods when analysing system performance,

since there are other operational constraints that this paper did not consider. This

study does not suggest that mean travel times should be used in real world schedules.

It is up to transit planners to recognize the patterns described in this paper and

determine their analysis methodology in order to achieve their specific operational

goals.

One limitation of this study is the impact of schedule revisions, which will be

further studied. This study merged all past travel time data into one analysis. However,

actual travel times might change due to schedule revisions. If the schedule is tightened,

drivers might have difficulties keeping up with tight schedules, therefore they might

drive faster to recover. On the other hand, if the schedule added too much time, the

vehicles might arrive early, and the dispatchers might instruct the drivers to slow

down or to stop.

Another limitation is the effect of other scheduled vehicles on the same corridor,

since their interactions will affect the travel time as well. If the two vehicles on two

different routes are scheduled closely on the same corridor, the first vehicle might

take more the passengers, thus increasing dwelling time for the first vehicle while

reducing the dwelling time for the second vehicle. This might cause differences when

estimating the dwelling times and actual travel times between the two trips. Similar
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interactions between local and limited service should also be taken into consideration.

Local services might delay express services if there is no space for the limited service

to overtake, therefore increasing the travel time on the limited service. An area of

future research is to study the impact of these interactions on the travel times. This

could potentially help agencies determine a better spacing between vehicles based on

travel times as well as a better schedule that reflects travel times more precisely.

Various regression analyses can be applied systematically on travel times at stop

level to determine the factors that are more likely to cause deviation from both

scheduled and actual travel and transfer times. As described in the literature review,

current studies do not consider the entire system and they analysed at time point

level. Data mining algorithms can be used to group trips with similar travel times

together to aide transit planners when developing new schedules.

From above, future research will design an algorithm that uses real time data

to produce suitable travel time values for transit schedules. This could potentially

be done by minimizing deviations between actual and scheduled travel times while

considering the schedule recovery process, driver behaviours, and passenger behaviours.
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Appendix A: Appendix

Table A.1: Best Fit Distributions for each Segment in
Trip 697167 by AIC.

FromStop Distribution NLogL AIC Mu Median
12T153E GEV 1790.77 3575.55 103.92 102
1STAVOW ESN 1234.26 2462.51 35.12 34
1STGRAW GEV 1517.36 3028.72 70.17 69
1STNORW ESN 1255.66 2505.31 33.54 32
1STOXLW ESN 1368.67 2731.35 42.09 40
1STVIRW ESN 649.90 1293.79 10.65 10
1STWILW ESN 1001.14 1996.28 28.44 28
EASCHAE BiNormal 2030.40 4070.79 116.48 105
EASEASPE TriNormal 1390.56 2797.12 27.03 26
EASMORE GEV 1545.15 3084.29 47.95 48
EASSUNE GEV 1728.03 3450.06 85.60 84
GOO868W ESN 357.78 709.56 24.81 24
GOOYARW ESN 471.28 936.57 19.70 19
GRA3RDN BiNormal 1576.87 3163.75 76.89 79
GRA5THN TriNormal 1395.26 2806.53 36.47 35
GRAKINGN BiNormal 1493.56 2997.12 67.95 67
HIG13TN GEV 1583.36 3160.73 59.35 57
HIG15TN TriNormal 1449.65 2915.29 59.00 53
HIGBLAN GEV 1636.75 3267.50 51.16 44
HIGHUDN GEV 1678.02 3350.04 72.71 71
HIGLANN ESN 1460.52 2915.03 29.59 27
HIGNORN ESN 1506.90 3007.80 34.24 32
HIGPATN ESN 1334.76 2663.51 26.27 25
HIGWOON GEV 1742.03 3478.06 73.50 71
HUDADAE BiNormal 1069.45 2148.90 20.55 19
HUDCLEE BiNormal 1707.79 3425.59 73.19 69
HUDDAYE TriNormal 1659.12 3334.24 58.96 59
HUDDREE ESN 1476.36 2946.72 49.84 49
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HUDFIOE BiNormal 1381.89 2773.77 34.34 32
HUDHIAE ESN 1535.16 3064.32 50.34 49
HUDJOYE ESN 1663.43 3320.85 53.17 50
HUDMCGE BiNormal 1625.62 3261.24 57.65 57
HUDONTE GEV 1410.40 2814.80 39.59 38
HUDOPPE BiNormal 1401.27 2812.54 25.03 21
HUDPONE TriNormal 1390.61 2797.21 26.45 22
HUDSILE GEV 1680.69 3355.39 61.03 60
HUDSUME TriNormal 1316.66 2649.33 53.32 52
KENKINS1 TriNormal 1498.56 3013.11 50.40 49
KENSTELS GEV 1807.87 3609.73 102.42 102
KIN1197E ESN 1539.11 3072.22 71.34 69
KINDELE ESN 1413.85 2821.70 31.96 31
KINKENE1 ESN 1401.28 2796.55 43.28 42
KINOLEE TriNormal 1922.89 3861.78 76.02 72
KINOLEE1 GEV 1134.49 2262.99 88.56 89
KINSTAW TriNormal 1513.42 3042.84 49.59 48
MEDC9THN GEV 1848.13 3690.26 111.20 110
MEDCCE TriNormal 1013.36 2042.71 43.27 42
MOC2315E ESN 1315.23 2624.46 35.86 35
MOC250E ESN 1696.33 3386.67 133.61 133
MOCWOOE GEV 1526.26 3046.52 54.14 53
NEI10TN TriNormal 1390.34 2796.68 38.13 36
NEI11TN Uniform 1875.53 3747.07 118.00 118
NORBURNW GEV 866.21 1726.43 15.12 15
NORCHAN TriNormal 1548.46 3112.93 66.30 66
NORGOON GEV 825.93 1645.86 17.03 17
NORWILLN ESN 1115.90 2225.80 31.06 30
NOSTARN ESN 1494.16 2982.31 61.08 59
PARMOCS ESN 961.79 1917.59 27.32 27
RAIBALS ESN 752.36 1498.72 76.23 69
STE418N BiNormal 996.05 2002.10 13.96 14
STECOLN TriNormal 1338.65 2693.29 27.35 23
STEMORN1 TriNormal 1405.86 2827.71 24.38 21
STEWORN TriNormal 1917.86 3851.71 86.34 87
SUNCASN TriNormal 1828.76 3673.51 89.82 88
SUNMCUN LogLogistic 1436.15 2868.31 62.02 61
SUNPATN BiNormal 1358.95 2727.89 60.42 58
SUNSUNN GEV 1674.91 3343.83 117.05 116
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Table A.2: Complete Trip Travel Time Table for Trip
697167.

FromID Sch SSize SMean SSD Diff TStat Classification

RAIBALS 37 141 76.53 45.20 -39.53 10.38 Insufficient
GOOYARW 23 122 21.23 5.43 1.77 -3.60 Surplus
GOO868W 32 148 25.94 6.39 6.06 -11.54 Surplus
NORGOON 26 298 18.39 4.46 7.61 -29.50 ExSurplus
NORBURNW 25 206 17.54 3.39 7.46 -31.57 ExSurplus
NORWILLN 47 363 31.04 5.39 15.96 -56.37 ExSurplus
1STNORW 29 365 33.85 9.89 -4.85 9.36 Insufficient
1STOXLW 44 364 41.95 11.37 2.05 -3.45 Surplus
1STVIRW 14 20 18.50 4.64 -4.50 4.34 Insufficient
1STWILW 38 374 28.60 5.58 9.40 -32.55 ExSurplus
1STAVOW 38 374 35.36 8.01 2.64 -6.37 Surplus
1STGRAW 59 358 70.28 17.12 -11.28 12.47 Insufficient
GRA3RDN 68 361 76.89 20.29 -8.89 8.33 Insufficient
GRA5THN 35 374 36.96 9.91 -1.96 3.83 Insufficient
GRAKINGN 57 388 67.95 13.21 -10.95 16.33 ExInsufficient
KINSTAW 41 390 49.59 13.44 -8.59 12.62 Insufficient
NORCHAN 54 390 66.30 13.88 -12.30 17.50 ExInsufficient
NOSTARN 84 403 61.02 10.56 22.98 -43.70 ExSurplus
KIN1197E 99 392 71.84 12.57 27.16 -42.78 ExSurplus
KENKINS1 39 393 50.40 12.27 -11.40 18.42 ExInsufficient
KENSTELS 71 398 102.54 23.02 -31.54 27.33 ExInsufficient
KINKENE1 75 391 43.29 9.31 31.71 -67.34 ExSurplus
KINDELE 52 407 31.94 8.04 20.06 -50.31 ExSurplus
KINOLEE 70 407 76.02 32.45 -6.02 3.74 Insufficient
KINOLEE1 112 271 88.60 16.06 23.40 -23.98 ExSurplus
MEDCCE 31 270 43.27 11.13 -12.27 18.10 ExInsufficient
MEDC9THN 80 391 111.33 27.64 -31.33 22.42 ExInsufficient
NEI10TN 54 388 38.55 13.25 15.45 -22.98 ExSurplus
NEI11TN 108 396 111.60 28.57 -3.60 2.50 Insufficient
12T153E 119 388 104.03 24.84 14.97 -11.87 Surplus
HIG13TN 79 388 60.04 20.55 18.96 -18.17 ExSurplus
HIG15TN 70 388 59.40 16.70 10.60 -12.50 Surplus
HIGWOON 59 389 73.51 21.87 -14.51 13.09 Insufficient
HIGLANN 30 377 30.25 11.56 -0.25 0.41 Balanced
HIGNORN 45 406 34.45 11.10 10.55 -19.16 ExSurplus
HIGPATN 37 390 27.06 10.20 9.94 -19.24 ExSurplus
HIGBLAN 59 388 50.94 23.45 8.06 -6.77 Surplus
HIGHUDN 71 389 72.80 18.51 -1.80 1.92 Balanced
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HUDADAE 29 381 21.06 5.26 7.94 -29.47 ExSurplus
HUDDAYE 51 388 58.96 18.32 -7.96 8.56 Insufficient
HUDSUME 63 388 54.48 14.34 8.52 -11.70 Surplus
HUDSILE 60 390 61.12 18.23 -1.12 1.21 Balanced
HUDOPPE 35 355 26.35 10.20 8.65 -15.97 ExSurplus
HUDPONE 32 374 27.10 11.00 4.90 -8.62 Surplus
HUDHIAE 79 402 50.37 11.47 28.63 -50.05 ExSurplus
HUDMCGE 64 393 57.65 15.73 6.35 -8.00 Surplus
HUDONTE 56 390 39.74 10.98 16.26 -29.25 ExSurplus
HUDDREE 60 390 49.92 10.99 10.08 -18.11 ExSurplus
HUDCLEE 48 391 73.19 20.57 -25.19 24.21 ExInsufficient
HUDJOYE 43 402 53.58 16.02 -10.58 13.24 Insufficient
HUDFIOE 24 397 34.34 9.16 -10.34 22.50 ExInsufficient
PARMOCS 28 398 28.03 5.43 -0.03 0.10 Balanced
MOCWOOE 59 407 54.18 10.64 4.82 -9.13 Surplus
MOC2315E 38 397 36.09 9.53 1.91 -3.98 Surplus
MOC250E 122 397 133.57 17.46 -11.57 13.20 Insufficient
SUNSUNN 152 393 117.17 17.43 34.83 -39.62 ExSurplus
SUNCASN 86 400 89.82 25.74 -3.82 2.97 Insufficient
SUNMCUN 86 390 62.42 10.15 23.58 -45.89 ExSurplus
SUNPATN 81 393 60.60 10.00 20.40 -40.44 ExSurplus
EASSUNE 73 390 85.73 20.64 -12.73 12.18 Insufficient
EASMORE 50 390 48.01 12.86 1.99 -3.05 Surplus
EASEASPE 40 394 27.39 8.10 12.61 -30.92 ExSurplus
EASCHAE 127 418 116.48 36.95 10.52 -5.82 Surplus
STECOLN 53 394 27.66 10.66 25.34 -47.19 ExSurplus
STEWORN 59 391 86.34 37.88 -27.34 14.27 Insufficient
STEMORN1 27 303 29.64 16.77 -2.64 2.74 Insufficient
STE418N 64 149 20.28 4.16 43.72 -128.39 ExSurplus
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