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Abstract 

This study is focused on exploring the possibilities of using camera and route 

planner images for autonomous driving in an end-to-mid learning fashion. The overall idea 

is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and 

map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, 

we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. 

Therefore, in this study, we replicated this notion by using end-to-mid imitation learning. 

Besides, this work also places emphasis on using minimal and cheaper sensors such as 

camera and basic map for autonomous driving rather than expensive sensors such Lidar or 

HD Maps as we humans do not use such sophisticated sensors for driving. Therefore, in 

this work, we imitated human driving behavior by using camera and route planner images 

for predicting the desired waypoints and by using a dedicated control to follow those 

predicted waypoints. 

 

The other reason behind this approach is that numerous research [1] have already 

been conducted in the modular and end-to-end pipeline. Both the techniques were found to 

be promising, however, even after decades of research, their results were found to be un-

generalizable for all road scenarios indicating the need for a better approach. In particular, 

Waymo researchers [1] have empirically found out that the end-to-end learning approach 
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is not generalizable even with millions of data points. With all that said, this work tries to 

divide the end-to-end approach and to explore the autonomous driving problem in an end-

to-mid fashion by finding a reasonable spot for ‘mid’ in the end-to-end pipeline.  

 

This thesis also includes the work carried out for developing a 3D photo-realistic 

environment with Lidar and Google Earth images using SLAM, meshing, and 

StructureFromMotion techniques. The main application of this work is for AV simulations 

and pre-deployment testing in a simulator environment and the primary focus is to explore 

the possibilities to generate a simulation environment where one can validate autonomous 

driving algorithms before deployment and to conduct an experiment which would be 

unfeasible in real-world settings. 
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Chapter 1. Introduction 

 

1.1 Motivation and Intuition 

 The first section of the study is focused on autonomous driving with camera and 

route planner data. This work is inspired by and tried to imitate human driving, because, 

humans are able to drive seamlessly using just their vision regardless of the situation. In 

addition to vision, humans use basic maps such as google/apple maps to find routes in order 

to navigate. In other words, humans do not use any sophisticated sensor such as Lidar, 

Radar or HD maps for driving, they rely only on their vision and map to identify traffic 

signals, signs, other vehicles, pedestrians and route, and use their motor control (hand/leg) 

to drive the vehicle. In this work, we replicated this notion by dividing the driving task into 

two units, namely the perception and control unit. The perception unit acts as a vision block 

and is used to predict the desired waypoints for the vehicle, while the control unit is used 

to calculate the needed throttle and steering command to follow the predicted waypoints. 

 

 Why the camera and basic map alone? We hope it is intuitively reasonable why 

these two go together and why they would fail when used stand-alone! For example, 

consider you are using only the camera, in that case, there will be no information for the 
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network to take the decision in the road intersections. To overcome this, one can train 

branched networks for each possible decision and picking the one on the fly, which would 

be computationally expensive. On the other hand, if we use only the map, we would not 

have information about traffic signals, signs, location of other vehicles, and pedestrians to 

take appropriate action. In other words, the map (navigation) would only give the spatial 

waypoints, however in practice, we need temporal waypoints in order to navigate. Besides, 

in some situations, we might need to intentionally deviate from the spatial waypoints (from 

navigation). For example, imagine some car is parked partially on the side of the road, in 

that case, we would normally nudge to the other side while crossing that parked car (i.e. 

intentionally deviate from the spatial waypoints from navigation). For these reasons, in our 

study, we use camera and map data together for our perception unit to predict the desired 

temporal waypoints. Once the desired waypoints are predicted we use a dedicated control 

unit to follow those waypoints. This is the overall motivation and intuition behind the first 

section of this thesis. 

 

 The second section of the thesis is focused on developing a simulation environment 

from Lidar and GoogleEarth Image [19, 20] data. It mainly focuses on designing a 

reasoning reasonable workflow for generating environments by connecting the dot from 

various domains including photogrammetry [26, 27, 28] and robotics [21, 22]. The notion 

behind this work is to build a simulation environment that can serve as a test bench for pre-

deployment testing and simulation. Also, the issue we found is that, although there are 

numerous researchers available to work on autonomy, their development is hindered 
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because of the lack of hardware or the resources needed to develop a simulator. Therefore, 

we worked on this issue and connected the start-of-arts works from various domains such 

as SLAM. Meshing, and SfM techniques for generating a simulation environment. In 

particular, we focused on combining the accuracy of lidar and photo-realisticness of google 

earth images.  

 

1.2 Literature review 

 In the last decade, voluminous research has been carried out on autonomous driving 

and those research can be primarily put under categories such as a modular and end-to-end 

pipeline. In modular pipeline [33, 34, 35], the overall objective is subdivided into subtasks 

and each task is addressed separately, while on the other hand, end-to-end [3, 5, 6, 9, 15, 

16, 17, 18] approach treat the objective as a single block and tries to solve it generally by 

using neural networks. Both approaches have their advantages and disadvantages due to 

the very nature of the design. To briefly highlight them, in the modular pipeline approach, 

the assumptions used to build the system are generally very constrained and would not 

encapsulate the real-world scenarios. On the other hand [14, 15, 16, 17, 18], although the 

End-to-End data-driven approach could theoretically solve the problem, it required an 

enormous amount of data to converge to an optimal solution which is practically infeasible 

– at least for now. Therefore, this led to the creation of new approaches, such as End-to-

Mid [4, 7, 8, 9], Mid-to-Mid [1], Mid-to-End, where the part understudy is solved by using 

neural networks while others are solved using the classical math-based approach. Even 

after decades of research, the reasonable position for ‘mid’ in the End-to-End approach, as 
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well as, the trade-off between data-driven and math-based approach is not fully understood. 

In this study, we focus on the end-to-mid learning approach and tried to identify the 

reasonable location for ‘mid’ in the end-to-end pipeline. 

 

 To briefly mention, the research to achieve autonomous driving started decades 

ago, in 1989 Pomerleau showed ALVINN [11] can drive with a 3-layer network using 

camera and laser range finder data. Although this idea was promising, further research on 

using neural networks for autonomous driving was hindered by hardware required to 

optimize the network at the time. Therefore, the researcher [18, 33, 34, 35], tried to build 

a system based on the classical mathematical equation. This approach comes at the cost of 

the assumption used to build those mathematical equations. In practice, those assumptions 

were more constrained and would fail when tested in the wild. In recent times, due to the 

recent technological boom in hardware development, the use of neural network regained 

interest and voluminous research has been conducted. 

 

 In this part, we have discussed the work that are more related to our study.  In 

Waymo’s ChaufferNet [1], the researcher tried to solve self-driving in an end-to-end 

fashion using 30 million data points, still were not able to generalize it for all driving 

scenarios. Therefore, they tried a mid-to-mid approach to solve the autonomous driving. 

The main focus of ChaufferNet [1] is on trajectory planning, therefore, they assumed that 

they have reasonable perception unit to needed data such as map, route, traffic light, speed 
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limit, locations of other vehicles at every instance. Similarly, Simon Hecker et al [3, 16, 

17] also addressed the issue by using surround-view cameras and route planner data. Simon 

et al tried LSTM based network in an end-to-end fashion. Similar to our notion, Simon et 

al used map data as a key input, along with 360 degrees surround-view camera and GPS 

data. Recently, Dian et al [4] demonstrated a two-stage learning approach with DAgger [8, 

9, 10] and outperformed existing results in Carla's benchmark. Dian et al, primarily used 

two agents for the training, where one agent would have access to privileged data such as 

vision, map, traffic signs, location of pedestrians and other vehicles, while the other agent 

would have access to only the vision data. In this work, Dian et al used a branched network 

for training for each possible decision in namely left, right, straight, and lane-keep (similar 

to [2, 5, 6, 7]). In [5,6], Codevilla et al tried conditional imitation learning in an end-to-end 

manner to map input image directly to steering and throttle commands. Axel et al [7], 

extended Codevilla et al work, by predicting the affordances for driving instead of direct 

control. Similarly, numerous research such as [14, 15, 18, 12, 13] can be in this domain. 

On analyzing, we found that most of the research was focused on end-to-end and end-to-

mid (at of various levels) and many also relayed on sophisticated sensor data such as Lidar 

or HD maps. Therefore, in this work, we wanted to explore and restate the autonomy 

problem, and address it using the subtle intuition that we identify from human-driving 

(imitation/behavioral learning). We believe that such a subtle notion can help in restating 

the autonomy problem in a more solvable way. In short, in this study, we analyzed the 

feasibility of autonomous driving with only vision and basic map using end-to-mid 

learning, in particular, to predict desired waypoints using camera and map images; to use 
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dedicated control to execute those estimated waypoints. The reason behind this approach 

is discussed in the Motivation and Intuition section.   

 

1.3 Contribution 

 The first contribution of this study is that we explored autonomous driving in end-

to-mid fashion with more emphasis on using only vision and basic map as the inputs. We 

also incorporated intuition from human-driving to identify a sweet-spot for mid in the end-

to-end pipeline. Finally, we provided the empirical results and showed the feasibility of 

our approach in an urban environment using the Carla Simulator (Unreal Engine). 

 

 The second contribution is that we proposed an effective workflow to generate a 

photo-realistic 3D environment using Lidar and Google earth images for AV simulations 

and per-deployment testing. 

 

1.4 Scope and Organization 

 The thesis is organized as follows, in the first chapter, we have discussed the 

intuition and motivation behind our approach and also to review the recent work in the 

domain. In the second chapter, we have explained our approach to deal the autonomous 

driving problem, in particular, we have discussed the data collection, network architecture, 

formulation of controls, network training, and evaluation techniques. In the third chapter, 
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we have shown the simulation results and inferences for our work. In the fourth chapter, 

we have explained the workflow for environment generation and also showcased the final 

render of the environment. In the fifth chapter, we reviewed the work and discussed the 

overall results and inferences, and finally concluded with a discussion on future work.
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Chapter 2. Waypoint Prediction Using Camera and Route Planner Images 

2.1 Introduction 

 In this chapter, the overall objective, setup of our simulation environment, system 

architecture, data collection, data preprocessing, networks training, and evaluation 

methods are discussed. 

 

 The overall objective of our study is to reframe the autonomous driving problem in 

an end-to-mid fashion and to build suitable network architecture for the perception unit and 

to complete the pipeline with a control unit for executing the predicted waypoints. 

 

2.2 Overall system architecture 

 As mentioned earlier, the overall diving task is divided into the perception and 

control unit. The perception unit is designed to take a front-facing camera image and a 

basic top-view map image as the inputs and predicts the desired temporal waypoints for 

driving as the prediction. We used separate convolutional neural networks for camera and 

map images before fusing them and feeding them to a dense layer for predicting the 

waypoints. We used early fusion technique much similar to [39] for fusing the camera and 
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map features. The developed perception architecture is fully differentiable as well. For the 

control unit, we developed a math-based algorithm to generalize a trajectory based on the 

prediction and to calculate the needed lateral and longitudinal control based on our vehicle 

kinematics. More details on network architecture and control techniques will be discussed 

in the later sections. The overall architecture of our system is shown in figure 1. 

 

 

Figure 1: Over-all System Architecture 
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2.3 Carla Simulator 

 Carla is used as the core simulation environment for this study. Carla is a gaming 

simulation developed by A. Dosovitskiy et al [2]. and is widely used for various 

autonomous driving research. The Carla simulator provides various features such as 

sensors, traffic managers, maps, and weather conditions along with multiple towns and 

vehicles. In particular, the simulator provides seven towns with different landscapes 

ranging from rural to urban environments with various vehicles including bikes, cars, and 

mini trucks. The simulator also provides sensors such as RGB, depth, semantic cameras, 

radar, collision, GNSS, and lidar sensors. Some of the sensors are visualized in figure 2. 

The maps in the simulator also include open-drive information. One can get road lane 

information including the location of ground truth waypoint data from this open-drive. The 

simulator also provides various weather conditions ranging from sunny to rainy weather. 

For our study, we used two towns, randomly picked vehicles from all categories, RGB 

camera, maps information, and four kinds of weather conditions. More details on these 

input data will be discussed in the next section.    
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Figure 2: Carla Simulator [38] 

 

2.4 Data Collection 

 In this study, we used two towns in Carla, namely Town1 and Town2, where the 

former town is used for training, and the latter town is used for testing (as a previously 

unseen town). Carla also provides options to change weather and traffic conditions as we 

needed. Therefore, for data collection, we preferred to use different weather conditions for 

training and testing. Similarly, we also collected the data at various traffic levels. To 

highlight, each town in the simulator is provided with open-drive information from which 

we can get data regarding the road lane information such as the location of lane center, next 

nearest waypoint, road junction, intended route (from path planning algorithm - global 

route planner), vehicle state, and other similar data. We utilized the open-drive information 

to generate a basic map and used it to emulate the real world navigation systems such as 

Google/Apple maps. 
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The following data are collected, 

 Camera image (front-facing) 

 Route planner (similar to google/apple navigation) 

 Location (GNSS) 

 Ego state (orientation, position, steer, throttle, velocity...) 

 

 

 

 Figure 3: Front Facing Camera - (a) real world [36] 
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Figure 4: Front Facing Camera - (b) Simulator 

 

Since we were using a simulator, we made sure that the synthetic data from the 

simulator is much closer to the real-world data. We have compared the real-world and 

synthetic data in Figures 3 and 4. In practice, those real-world data for the camera and basic 

map images can be taken from dash-cam and screencast of google/apple navigation. 

Although we had the entire open-drive information from the simulator, we only considered 

the road, lane, and intended route information for generating the basic map image - in order 

to have a reasonable comparison to real-world scenarios. Therefore, no GPS/GNSS data 

were fed explicitly to the network. The intended route of travel is derived based on a 

straight forward A* based global route planner with a given start and end locations. The 

intended route is collected at each instance and later embedded on the basic map to generate 

the final input map. The ego locations are also collected along with the timestamp and later 

used as the target location (ground truth data - as desired future target) while training i.e. 

the actual locations traced by ego vehicle in the future (time-shifted locations) are used as 

the target locations for the network prediction during training. Besides, every state of our 
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ego vehicle including velocity, steer, throttle, position, orientation, and other such 

measurements are also collected. 

 

Carla’s default autopilot agent is modified and used as the oracle agent. This 

modified oracle agent uses PID based control to reduce the cross-tract-error between the 

current location and nearest waypoint from the local planner. We also added intentional 

noises by overriding steer and throttle command at random instances while collecting the 

data and also by changing waypoint information in route planner. Besides, additional 

noises were added while generating the map i.e. noises were added to the position of ego 

and orientation of the map in order to emulate real-world GPS inaccuracies and latencies. 

The camera images are also augmented with noises before feeding them to the network. 

 

2.5 Network Architecture 

The proposed network will take two inputs images and predicts desired temporal 

waypoints. The two input images, namely, the front-facing camera and the top-view route 

planner (map) images, are 3-channeled. The front-facing camera image is a straight 

forward raw RBG image received from the simulator, while the image for the input map is 

generated from the collected data, with the intended routed embedded in it. The network 

would output five waypoints - represented by a vector of size 10 (5 waypoints – each 

waypoint is a pair of x and y coordinates in ego vehicle’s frame of reference). 
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For our perception unit, we used early fusion technique [39], in which, the inputs 

images would initially be processed separately and then fused to predict the waypoints i.e. 

the input (camera, map) images would be processed separately to extract the high-level 

feature, and then the camera and map features are concatenated and fed to a densely 

connected layer to predict the desired waypoints. Unlike [4,5,6,7] methods, we did not use 

any branched network in our architecture rather we preferred a single network to handle all 

the possible turns at the road intersections. In other words, most of the research based on 

Carla simulator would inherit a branched architecture to resolve the directional ambiguity 

for the turn at the road intersections. Usually, they would use four branches to account for 

left, right, straight, and land keep, and would pick the needed branch on the fly based on 

local route planner. However, in our approach, we didn’t follow this approach, rather 

preferred to have a single branch to handle all the direction at the intersection. The notion 

of our approach is to solve the ambiguity at the road intersection using the features from 

the map image. For both input images, we used res-net based architecture with a different 

configuration to extract the feature, in particular, we used resnet-18 and resnet-34 for map 

and image respectively as our base. While implemented, we removed a few layers from 

each block of resnet architecture. Once the features are extracted, the map and image 

features are linearized and concatenated to form the fused feature. We also added velocity 

while fusing the feature [4] for better prediction.  Then, the fused feature to feed to a dense 

network to predict waypoints (vector of size 10, i.e. 5 pairs of (x,y)). The overall network 

architecture is shown in figure 5. 
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a. Real world [37]                             b. Simulator 

 Figure 5: Route Planner / Basic Map, (a) Real world, (b) Simulator 

 

During the training, only the front-facing camera image was fed to the networks for 

every forward pass, whereas the map image was fed with a probability function. We found 

that this technique helps in better generalization, by removing the unintentional correlation 

between the map (route) and output waypoints. One can reason why this is the case, 

because, in most of the training data, the desired waypoints can be inferred from just the 

embedded route in the input map image. However, such a correlation would result in an 

undesirable effect in situations where the ego vehicle would have to stop. For example, 

imagine a J-walking pedestrian, and indeed the vehicle has to stop for the pedestrian. 

However, at such time, we found some peculiar results. We found that the network, trained 

without probability function (for map input), learned to find the correlation between input 
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map and output prediction and didn’t stop at such situations. At the same time, the network 

trained with probability function (for map input), was able to stop at situations using the 

extracted feature from the front-facing camera. We also found out this technique made our 

networks to be more generalized. The intuition behind this technique will be discussed in 

the conclusion section. 

 

 

Figure 6: Network architecture of Perception Unit 

 

2.6 Training 

 Our proposed network is fully differentiable and was implemented with PyTorch 

and trained using Nvidia GTX 2080i. We trained our network in a sequential manner with 
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slight variations at each step. For initial training, both camera and map images were fed as 

input. For the next part, we introduced decaying probability for map images, i.e. chances 

for map image to be fed is less in the initial part and increases with every training epoch. 

Besides, we found that the networks that were trained with square loss initially and with 

L1 loss in later part, to perform better in the evaluation stages than the networks trained 

separately with only L1 and L2 losses. For all the networks, we used Adam optimizer with 

a learning rate of 1e-4. At times, based on the losses we changed the optimizer, learning 

rate, and loss functions. For training, we used the future ego location as our target waypoint 

location.  

 

2.7 Controls: 

 Once the desired waypoints are predicted by the perception unit, those waypoints 

are fed to the control unit to calculate the needed lateral and longitudinal control. We used 

the kinematics based model for vehicle control (steering and throttle). The overall 

workflow for this unit is similar to [7, 4] and uses the predicted temporal waypoints for 

driving. 

 

 To highlight, the temporal waypoints (5 waypoints) from the perception unit are in 

the ego vehicle's frame of reference. Therefore, we can directly use the waypoints to 

calculate the needed vehicle control. For lateral control, we interpolated the waypoint and 

calculated the needed steering based on the offset (cross-track) from the vehicle frame of 
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reference. Based on the offset, we used PID based control to reduce the offset. For the 

longitudinal control, as the predicted waypoints are in temporal sequence, we used the 

distance between consequent waypoints to calculate the needed throttle. Based on the 

distance, the needed target speed and throttle is calculated using PID control. Both lateral 

and longitudinal controllers are tuned heuristically.  

 

2.8 Evaluation 

 In this part, the methods that we used to evaluate our model are discussed. For our 

study, we focused on evaluating our proposed network initially with unseen test data and 

later in the Carla simulator with the control unit. Due to our system architecture, we could 

not directly use Carla’s default benchmark test. Therefore, we created modified benchmark 

tasks with insights from Carla‘s benchmark. Each task in the evaluation was designed to 

address the major real-world tasks such as lane-keeping, handling road junction based on 

the map, obeying traffic lights, and avoiding collision with other vehicles and pedestrians. 

 

 To briefly highlight, for the evaluation, we used the two towns in two settings. In 

the first setting, we use the same town where we collected the data but evaluate the 

performance at different weather conditions. In the second setting, we use a completely 

new town and evaluate our model for both previously seen and unseen weather conditions. 

Our evaluation approach is more oriented to test the perception unit, therefore, it is assumed 

that the control unit is reasonably certain and would calculate the needed steering and 



20 

 

throttle command based on the predicted waypoints. For empirical results, we followed the 

same metric as in [4,5], where each task would be considered a success if the ego vehicles 

would complete the task without any collision. We repeated each task multiple times with 

multiple settings as mention before. For calculation purposes, we considered the runs 

where the ego vehicle had traveled at least half a distance to the goal. The simulation results 

of our evaluation are discussed in the next chapter.
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Chapter 3. Simulation Results: 

 In this chapter, we have showcased the results from this study and also discussed 

the inferences that can be made based on those results. This chapter is organized as follows; 

first, we briefly discussed the test scenario and visualized the inputs (front-facing camera 

and map images) and outputs (waypoint prediction) of our perception unit at those test 

scenarios. Then, the results for each task are shown and inferences are discussed. 

The major tasks that we considered to handle are, 

 Lane Keeping 

 Road junction 

 Traffic Light 

 Pedestrian 

 

3.1 Input and Outputs 

 There are two inputs namely front-facing camera image and basic map to our 

perception unit. Both inputs are 3-channeled and fed through our perception stack to 

estimate five temporal waypoints. Since the waypoints are predicted in our ego-vehicles 
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frame of reference, we can directly visualize them, here, we have visualized the output by 

overlaying the predicted waypoints over the map. 

 

     

Figure 7: Visualizing the inputs (a) normal weather 

 

    

Figure 8: Visualizing the inputs (b) Rainy weather 

  

 

The basic map visualized (on the right side) will consist of road and lane 

information, along with the intended route overlaid on them (as a pink line). The Pink line 
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is extracted from the simulator’s global route planner data, and as the ego vehicle travels, 

the pink line will also be extended such that it would always be representing a certain 

portion of the intended route (in the real world, one can get this data from google/apple 

map). The basic map is shown in the Appendix section. 

 

  

Figure 9: Visualizing the input (c) J-walking pedestrian 

 

In the above visualization (figure 8), the pedestrian is made to cross the road when 

the ego vehicle reaches a certain distance from the targeted location. In Figures 6 and 7, 

we have changed the weather conditions and visualized the inputs. 

 

3.2 Lane Keeping 

 For this task, our objective is to predict waypoints such that we would drive in the 

center of the lane. It also includes the cases where the ego vehicle has to turn at road 

corners. For evaluation, we picked the roads with turns from both the towns and tested 

them at different weather conditions. The results are as follows, 
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3.3 Lane Keeping – Driving Straight 

 In this section, we have shown the predictions of our agent at the various instance 

of time and analyzed it based on the test scenario.    

 

Figure 10: Lane-keeping – Driving Straight – Normal weather (a) 

 

 For visualization purposes, we have overlaid the waypoint predictions on the input 

map (right side in figure 9), i.e. only the locations for the white dots are predicted by our 

perception unit.   
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Figure 11: Lane-keeping – Driving Straight – Normal weather (b) 

 

Figure 12: Lane-keeping – Driving Straight – Rainy weather 
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Figure 13: Lane-keeping – Driving Straight – Different Town 

 

From the above figures, we can infer that the output predictions are in our desirable 

region and are oriented towards the center of the lane. These predictions are further used 

to plan trajectory and to calculate the needed throttle and steering.  

 

3.4 Lane Keeping – Turning at corner 

 In this part, we extended the previous scenario where our ego vehicle has to take a 

turn (road corner). The output predictions are visualized at different instances of time for 

better understanding. 
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Figure 14: Lane-keeping – Cornering (a) - waypoints before taking the turn 

 

Figure 15: Lane-keeping – Cornering (a) – waypoints while taking the turn 
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 From the above results, we can infer that the output waypoint predictions are in 

accordance with the situation i.e. curved when taking the corner and straight when driving 

in the straight road. If we ponder, we can also see that the waypoints are well-spaced when 

driving straight and slightly closer when taking the turning, indicating that the ego-vehicle 

has to slow down to take the turn.  

 

  In the next case, we changed the weather condition to mild rain and evaluated our 

agent’s performance. We found that our agent predictions were similar to our previous 

case, i.e. the waypoints were curved when taking the turn and straight after taking the turn.  

 

 

Figure 16: Lane-keeping – Cornering (b) – waypoints before taking the turn at mild rain 
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Figure 17: Lane-keeping – Cornering (b) – waypoints while taking the turn at mild rain 

 

Figure 18: Lane-keeping – Cornering (b) – waypoints after taking the turn at mild rain 
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Figure 19: Lane-keeping – Cornering (b) – waypoints after taking the turn at mild rain 

 

From the above results, we can infer that predicted waypoints are according to the 

situation. And if we see in fig 16 and 17, our agent is able to recover from the situation 

where the input map is tiled. In the real-world, this can be due to noises or latencies due to 

GPS in our navigation system. 

In the next case, we tested our agent in a new town and with a new weather 

condition. The results for lane-keeping and cornering are below,   
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Figure 20: Lane-keeping – Driving straight – a new town with new weather  

 

Figure 21: Lane-keeping – cornering (c) – waypoints before turning  
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Figure 22: Lane-keeping – cornering (c) – waypoints while turning (a) 

 

Figure 23: Lane-keeping – cornering (c) – waypoints while turning (b) 
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Figure 24: Lane-keeping – cornering (c) – waypoints after turning 

 

In the above examples, we can infer that predicted waypoints are also changing 

based on the situation. In figures19, 20, and 23, the waypoints are straight and well-spaced, 

while in figures 21 and 22. the waypoints are curved based on the turn. We can also see 

that the waypoints are comparatively shorter during the turn indicating that the ego vehicle 

has to slow down to make the turn. 
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3.5 Road Junction 

 In the previous case, the scenario was simple, the ego was not forced to make a 

decision, and it had to only predict waypoints to drive in the lane center. However, in this 

task, we extend the scenario to include road intersection/junction, where the model has to 

resolve the ambiguity in the direction of its turn. Here, the notion is that our model should 

infer the direction of its turn form the features extracted from the input map image.  

 Similar to the previous task, we have shown the results at various instances of 

time for better understanding.  

  

 

Figure 25: Turning at Junction – based on the map – waypoints before turning 
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Figure 26: Turning at Junction – based on the map – waypoints while turning (a) 

 

Figure 27: Turning at Junction – based on the map – waypoints while turning (b) 
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Figure 28: Turning at Junction – based on the map – waypoints after turning 

  

From the above examples, we can infer that the waypoints are based on the 

embedded route in the map image, indicating the model is able to resolve the ambiguity 

while turning at the junctions. This would be a good place to justify the need for the input 

map for our model. Imagine the same scenario, however, we have not included the input 

map, in such cases, the agent would not be able to handle the intersection. We hope it is 

intuitively understandable. To overcome this, [4, 5, 6, 7] have used a branched network for 

each direction and pick the appropriate network on-the-fly using supervisory control. In 

our work, we did not include any such branched networks or supervisory control, but rather 

we used the basic map and single linear network to handle all the directions. From figures 
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24, 25, and 26, we can see that predicted waypoints at the junction are based on the 

embedded route in the input map. 

  

3.6 Traffic Light 

 In this task, we focus on evaluating our agent on handling the traffic lights. For this, 

we pick routes with a traffic light and turned the traffic light to red while the ego reaches 

near it. Our objective is to make the ego vehicle stop for the red light and to resume again 

for the green light. 

 

Figure 29: Stopping for a Traffic light – before seeing the red light  
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Figure 30: Stopping for a Traffic light – after seeing the red light (a) 

 

Figure 31: Stopping for a Traffic light – after seeing the red light (b) 
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Figure 32: Stopping for a Traffic light – after seeing the green light 

 

From the above examples, we can see that the waypoints are well apart for lane-

keeping and as it reached the traffic light/junction, the waypoints start to come closer 

indicating that ego-vehicle has to slow down. In the other example [figures 29 and 30], we 

can see that the temporal waypoints are very short in fact cluttered at the same location, 

indicating that the vehicle has to stop completely. Controls for such stopping can be 

designed with our control unit based on the cluttered waypoints. Once the light turns green 

[figure 31], the predicted waypoints are again straight and temporally well-apart indicating 

that the ego can resume the travel. 

We tested the same task at varying weather conditions and predicted waypoints 

were as expected. We have to mention that the control unit has to be tuned properly to get 

the needed results. 
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Below are the results we got when testing at rainy weather. 

 

Figure 33: Stopping for a Traffic light – before seeing the red light 

 

Figure 34: Stopping for a Traffic light – after seeing the red light (a) 
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Figure 35: Stopping for a Traffic light – After seeing the red light (b) 

 

Figure 36: Stopping for a Traffic light – after seeing the green light 
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 When tested at the rainy weather, similar to the previous case, the predicted 

waypoints were cluttered when seeing the red traffic light and changes back to well-spaced 

waypoints when the traffic light turns green.  

 

3.7 Pedestrian 

 In this task, we evaluate our agent on handling J-walking pedestrian. For this, we 

created scenarios and made pedestrians cross the road at different timings based on the ego 

location. Here, the objective is to predict waypoints that would avoid collision with the 

pedestrians either by slowing down or by completely stopping. 

 

Figure 37: Slowing down for J-walking pedestrian – before pedestrian J-walks 
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In this next example, we made the pedestrian to J-walk such the ego vehicle has to 

slow down in order to avoid the collision. In figure 36, when there is no pedestrian, the 

predicted waypoints are straight and well-spaced (similar to lane-keeping). Once the 

pedestrian is detected [in figure 38] the predicted waypoints are shorter and comparatively 

closer to each other. These shorter waypoints are processed by the control unit to find 

appropriate throttle/brake to reduce the ego speed. 

 

Figure 38: Slowing down for J-walking pedestrian – when pedestrian J-walks (a) 

 

From figure 37, when there is no pedestrian, the predicted waypoints are similar to 

lane-keeping. Note the length of the waypoints is mark using a green line, which we would 

use as a reference for the upcoming time instances. 
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Figure 39: Slowing down for J-walking pedestrian – when pedestrian J-walks (b) 

  

We can see that, length of the red line is much shorter than the green line, indicating 

that the ego vehicle has to slow down. The process of slowing down is handled by the 

control unit based on the waypoints (length).  

In the previous scenario, we only saw the ego-vehicle was able to slow down for J-

walking pedestrian. However, in this scenario, we made the pedestrian cross the road, right 

in front of the ego-vehicle. Here the ego must stop completely in order to prevent the 

collision.  
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Figure 40: Stopping for J-walking pedestrian – before pedestrian J-walks 

 

Figure 41: Stopping for J-walking pedestrian – when pedestrian J-walks (a) 
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Figure 42: Stopping for J-walking pedestrian – when pedestrian J-walks (b) 

 

Figure 43: Stopping for J-walking pedestrian – after pedestrian J-walks 
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If we notice, we can see the pedestrian in figure 40 is crossing slower than in figure 

37. We can also see from figure 41, the predicted temporal waypoint very short and 

cluttered than in figure 38. These cluttered waypoints are handled by the control unit – 

which would stop our ego vehicle. Similarly to the previous case, once the pedestrian 

finishes crossing our lane, the predicted waypoints are back to normal as before i.e. straight 

and well-spaced [figure 42]. We repeated all the tasks at multiple weather conditions for 

multiple times.   

3.8 Inference 

From all the above tests, we can infer from that our agent is able to predict desired 

waypoints   

 to lane keep,  

 to turn at the corners,  

 to take decisions at the intersections,  

 to obey traffic lights and  

 to avoid collision with pedestrians. 

In addition, the predicted waypoints are comparatively shorter (length-wise) while 

approaching the corners or the road intersections indicating that the vehicle has to slow 

down.  
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Chapter 4. Environment Generation: 

 

 In this chapter, we have showcased our work on generating photo-realistic 

environments for simulations and pre-deployment testing purposes. In particular, we have 

discussed motivation and need behind this work and briefly on existing state-of-art 

techniques, and finally proposed a reasonable workflow to generate a 3D photo-realistic 

environment from Lidar and Google Earth images. We have also showcased the rendered 

images of the environment generated using our approach. 

 

4.1 Motivation 

 The main reason behind this work was that we needed a simulation environment to 

conducted experiments and to evaluate our algorithms before deploying them in the real 

world. However, the needed software and tools were expensive. Therefore, we decided to 

develop a custom workflow to generate the environment using existing open-sourced 

software and the tools we had in our lab. For this work, we decided to use lidar to scan the 

environment (for its accurate measurement) and to use google images (to get photo-

realisticness). One can also develop the environment using lidar or google image 

(independently), however, the generated environment would come with the cost i.e. the 
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environment would either lack photo-realisticness or accuracy respectively. Therefore, in 

our approach, we wanted to combine the accuracy of the lidar and photo-realisticness of 

the google images to generate our final environment. 

 

4.2 Proposed methodology 

 The procedure we propose focuses on connecting the existing state-of-art tools in 

photogrammetry domains such as SLAM, Meshing, and StructureFromMotion. We found 

the rendered environment to be reasonable. The workflow [42] is as follows, first, we 

generated the point cloud of the entire route that we want to map. We fused all the 

instantaneous point cloud to create a single dense point cloud using SLAM. Then, we 

meshed all those point clouds to generate the 3D mesh of the environment. Here, the 

generated mesh would lack the color details as it was generated only using a lidar point 

cloud. Therefore, we generated another colored point cloud from google earth images using 

the StructureFromMotion technique. Finally, we combined the colored point cloud as the 

textures to the 3D mesh generated from the Lidar point cloud. As a result, the final 

generated mesh is accurate and photo-realistic. 
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Figure 44: Our proposed workflow for generating environment  

 

 For this work, we only used existing open-sourced tools such as MeshLab, PCL, 

Meshroom, Autoware, Blender, and similar tools. Images of the rendered environment are 

shown in the results session of this chapter. We also imported and conducted various 

experiments with the generated environment in a simulator such as Carla (Unreal). 

 The procedure to replicate our work is discussed in the following sections. The 

major steps of our workflow are as follows, pre-processing, SLAM, mesh generation, SfM, 

depth map, and texture generation. We collected our own point cloud data using Velodyne 

lidar and used google earth studio to collect images of the same route. We also used 
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OpenStreetMap data to get the road map, which we used to overlay over our environment 

for better results.   

 

4.2.1 Pre-processing 

 In preprocessing, we mainly try to trim down than redundant point cloud data to 

improve the speed in the next steps. This is mainly to remove the dense point clouds of the 

object that were significantly closer to the lidar. Due to design, the point clouds collected 

near the lidar would be cluttered and points collected at a far distance would be far apart. 

Our objective is to remove those redundant points and to sample a reasonable amount of 

data cloud for the SLAM step. Note that when we do SLAM, point cloud from each scan 

would be interlaced therefore without preprocessing the generated point cloud would very 

dense (computationally expensive). For sampling, we used a Poisson sampling disk [22] 

approach to remove those highly cluttered point clouds. For our work, we removed almost 

40-45% of lidar point cloud data. We have to mention that, the collected lidar scan would 

include point clouds of other moving objects such as vehicles, pedestrians, etc… Ideally, 

those point clouds have to be removed before the SLAM step. One can use existing state-

of-art methods [21] to detect point cloud of other vehicles, cyclists, and pedestrians, and 

can remove from each lidar scan. One can skip this step if the collected data contains only 

the static objects. However, we noticed this only issue only in the later part, therefore, we 

manually removed those vehicles and pedestrians in the meshing step. The tools we 

primarily used for this step are Voxel and Poisson sampling disk, in particular, we used 
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MeshLab and Point Cloud Library. One can also skip this step and directly move to SLAM 

if preferred.   

  

4.2.2 SLAM 

 In this step, we used the SLAM technique to interlace all the individual 

preprocessed lidar cloud to generate a single point cloud of the entire route. There are 

various ways to achieve this, however, we preferred NDT based SLAM implementation of 

Autoware for its ability to handle large data. Once the point cloud of the entire route was 

generated, we again tried to reduce the point cloud. This step is optional and can have an 

appreciable effect while finding vertices normal for mesh generation. For reducing the 

point cloud, we used the voxel sample approach.       

 

4.2.3 Meshing 

In this step, we used the meshing technique over the SLAM-ed point cloud to 

generate the 3D mesh. The main task for this step is to identify the appropriate vertex 

normals for our point cloud. Slight variation in this step could have a significant effect on 

the final mesh, therefore, one might have to heuristically select the parameter based on 

resolution and size, and might have to repeat this step for better results. Once the vertex 

normals are calculated, one can any surface meshing algorithm to construct the mesh. We 

found better surfaces with the ball-pivoting surface reconstruction algorithm [23]. The 
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parameters for ball-pivoting should be chosen based on point cloud density, size of the 

route/environment, and other similar factors. The generated mesh would have some faulty 

triangles and edges such as single point triangles, duplicate edge. These faulty triangles 

have to be removed else one might face issues when importing them in simulators. We use 

Meshlab for this step. Then, we used a quadratic edge decimation [24] technique to 

significantly reduce the triangle and edge count without much loss in the surface. To 

remove the spiky surface we used smoothing filters such as gaussian and laplacian filter 

for this. For this task, we used Meshlab [32], Blender, Point Cloud Library. 

 

The generated mesh is a reasonably accurate replica of the environment as we have 

used lidar for the measurement. The next step is to add the color (photo-realisticness) to 

the mesh. For this, one can collect images using drones, however, we used google earth 

studio to collect the images of our environment. We nearly collected around 4,000 satellite 

image for this process. We acknowledge that the generated point cloud would be affected 

by the quality of google maps and occlusion due to trees and buildings. 

 

In the upcoming part, we have only discussed the important step while skipped 

some intermediate steps such as feature extraction, point correspondences, and feature 

matching which can be handled by using Meshroom. We used Meshroom for this part, one 

might also use Pix4D, OpenMVG, VisualSFM, and other photogrammetry software to 

achieve the same result. The overall objective is to find the extract of the features from all 
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images and to match them to estimate the 3D structure of the environment. We think, this 

would be a good place to justify our goal. Although one might be able to generate the 

environment using only the images with SfM techniques, the generated environment would 

not be accurate (as our lidar mesh) and would be affected by occlusion and map quality. 

For this reason, we use the SfM technique with our images, only to incorporate photo-

realisticness to our previous Lidar mesh. 

 

4.2.4 Structure from Motions (SfM) 

 In this step, we used the matched feature from the previous step to generate a 3D 

point cloud (with color information). We used SfM libraries [25, 26, 27, 28, 29] from the 

meshroom to generate the point cloud. We heuristically identified the parameter needed 

for the SfM algorithm. One might also use other photogrammetry tools such as Pix4D, 

VisualSFM. Meshroom is used because of its cuda enabled libraries. One can mesh this 

point could to generate the environment if needed, however, it would have the previously 

mentioned drawbacks. To mention, we use this point cloud only to add photo-realisticness 

to our lidar mesh. To enhance texturing results, we created a dense point cloud using [28, 

29, 30], which can be implemented using libraries from the meshroom. One can also further 

enhance the results by generating the Depth map. For this step, we primarily used 

Meshroom, Pix4D, and Blender. 
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4.2.5 Texturing 

 In this step, we added the textures from the SfM point cloud to the lidar mesh, using 

Least Square Conformal Maps [30]. We used meshroom’s implementation of the Least 

Square Conformal Map algorithm and also used Blender to fix the scale and origin. The 

result of the final map is shown in figures 44 - 50. Note that images of the rendered 

environment shown below are from the SfM technique.  

 

Figure 45: Rendering of Environment (a) 
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Figure 46: Rendering of Environment (b) 
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Figure 47: Rendering of Environment (c) 

 

Figure 48: Rendering of Environment (d) 
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Figure 49: Rendering of Environment (e) 

 

Figure 50: Lidar Mesh – Different place (a) 
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Figure 51: Lidar mesh (b) 

 

Figure 52: Lidar mesh (c)



60 

 

Chapter 5. Results and Conclusions 

 In this chapter, we have briefly reviewed the overall work carried out and results 

that we got, and finally, concluded with the future work and scope.  

 

 In the first part of this thesis, we delve into addressing the autonomous driving 

problem. In chapter 1, we explained the current trends available to solve the autonomous 

driving problem along with their shortcomings, then emphasized the need to think the 

autonomy from the human-diving perceptive and proposed an alternative approach to 

address the problem. We also justified the reasoning of our approach with the simulation 

results. In Chapter 2 and Chapter 3, we discussed the architecture of our perception and 

control unit, then on training and evaluation methods.  We also showed the simulation 

results for tasks such as lane-keeping, decision-taking at the intersection, obeying traffic 

lights, and avoiding collision with pedestrians at different simulation conditions. 

  

 Having said that, there are a lot of ways one can further improve this work. One 

can improve the agent to work at various traffic conditions and also various weather 

conditions. In current settings, our model would fail at dense traffic or at extreme weather 

conditions. One could also explore the recurrent base neural network and see whether it 
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could have an improvement in predicting desired waypoints for our ego by internally 

estimating the future locations of other vehicles and pedestrians. One could also explore 

the controls aspect of our problem. Since autonomy is a wide topic and can be seen and 

addressed in multiple directions. One could also explore a different spot for ‘mid’ in the 

‘end-to-end’ pipeline and compare the results with the existing approaches.   

 

In the second part of this thesis, we delve into generating environments for 

simulation and research purposes. In Chapter 4, we discussed the need for such simulation 

environments and explained the issues behind them. Then, we proposed a workflow that 

uses Lidar and google earth images to address the issue. Further, we focused on using only 

the open-sourced software and tools to achieve this. We also explained the step-by-step in-

detailed procedure of our workflow. Finally, we showcased the rendered environment 

generated using our approach. Even here, there is a lot to improve. One can work on 

improving the speed of the overall process. One can incorporate state-of-art sensor fusion 

techniques to improve the final results.     
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Appendix - Image collection - Simulator 

Below are the images of the top views of the town.  

 

Figure 53: Town 1 – Top View (a) [41] 

 

Figure 54: Town 1- Top view (b) [41] 
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Figure 55: Town 2 – Top View (a) [41] 

 

Figure 56: Town 2 – Top View (b) [41]
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