
1

FUEL: A Runtime Methodology to Preload Time Consuming UI-APIs for Android Apps

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

the Graduate School of The Ohio State University

By

Zheng Cui, B.S

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2020

Thesis Committee

Xiaorui Wang, Advisor

Irem Eryilmaz

2

Copyrighted by

Zheng Cui

2020

ii

Abstract

It is important for the developers to keep their applications responsive. However, a

complex user interface (UI) can cause responsiveness problems during the execution of

UI-APIs [1]. Even worse, a soft hang may be generated when the execution time of a UI-

API is longer than a perceivable delay (i.e., 100ms). This paper presents FUEL (Fast UI

Elements Loading), a runtime methodology that preloads the UI elements that are likely

to be executed in order to reduce the response time. FUEL consist of three components:

the view cache, the preloading module and the prediction module. It records the loading

sequence of activities with complex UI at runtime and predicts which UI layout should be

inflated ahead of time. After inflation, the generated views are saved in the view cache

and can be retrieved through its corresponding class name when needed. We have tested

FUEL on four open source applications that are available in the Google Play Store or on

GitHub. As the results show, FUEL is able to reduce the execution time of UI-APIs by at

least 28%, thus to eliminate soft hangs caused by complex UIs.

iii

Vita

2018..B.S. Electrical Engineering, University of

Electronic Science and Technology of China

2018 to presentDepartment of Electrical and Computer

Engineering, The Ohio State University

Fields of Study

Major Field: Electrical and Computer Engineering

iv

Table of Contents

Abstract ... ii

Vita ... iii

List of Tables ... vi

List of Figures ... vii

Chapter 1. Introduction ... 1

Chapter 2. Background .. 2

2.1 Android Platform Architecture ... 2

2.1.1 The Linux Kernel ... 2

2.1.2 Hardware Abstraction Layer (HAL) .. 2

2.1.3 Android Runtime (ART) .. 2

2.1.4 Native C/C++ Libraries ... 2

2.1.5 Java API Framework.. 3

2.1.6 System Applications .. 3

2.2 Introduction to Android Development .. 5

2.2.1 Major Components of an Android Application ... 5

2.2.2 Activity .. 6

2.2.3 User Interface (UI) ... 10

2.2.4 Practical Example of UI Design .. 11

2.2.5 Information about UI-APIs .. 14

2.3 The Reasons Why UI-APIs can Generate Responsiveness Problems 15

Chapter 3. Methodology and Design .. 17

3.1 Motivations and Goals .. 17

3.2 Pre-execution of UI-APIs ... 17

3.3 Design of FUEL .. 21

3.3.1 Design Overview ... 21

v

3.3.2 Preloading Module ... 21

3.3.3 View Cache .. 23

3.3.4 Prediction Module .. 24

3.4 Practical Example of Implementation ... 25

Chapter 4. Performance and Evaluation ... 30

Chapter 5. Conclusion ... 35

References ... 36

Appendix A. Source Code .. 37

A.1 ViewCache.java ... 37

A.2 Preloader.java ... 38

A.3 Register an ActivityLifecycleCallbacks... 42

vi

List of Tables

Table 1. Applications tested with FUEL... 30

Table 2. Execution time of tested UI-APIs. .. 31

Table 3. Comparison of memory usage. ... 33

Table 4. Execution time of CommentsActivity.setContentView on a virtual device. 34

vii

List of Figures

Figure 1. Components of the Android platform [3]. ... 4

Figure 2. An example of activity stacks [4]. ... 7

Figure 3. Activity lifecycle [5].. 9

Figure 4. A hierarchy of UI layout [6]. ... 11

Figure 5. A UI layout of PDF Converter: Part (a) the layout XML file. Part (b) the

interface shown on the mobile phone (left part) and the UI structure (right part). 13

Figure 6. Top-level hierarchy of an activity’s UI [9]. ... 19

Figure 7. The execution time of UI-APIs of InstaMaterial. ... 20

Figure 8. The loading sequence of a test application. ... 25

Figure 9. Project files of InstaMaterial... 26

Figure 10. Code of step 2. ... 26

Figure 11. Override the onCreate() method of the InstaMaterialApplication class. 27

Figure 12. Retrieve LayoutInflater. .. 28

Figure 13. Override the onDestroy() method of the main activity. 28

Figure 14. UI operations in UserProfileActivity and CommentsActivity. 29

Figure 15. UI layout of CommentsActivity. .. 32

1

Chapter 1. Introduction

An important feature of smartphone applications is the complex user interfaces (UI).

However, a complex user interface can cause responsive problems during the execution

of UI-APIs (Application Programming Interface). Even worse, a soft hang may be

generated when the execution time of a UI-API is longer than a perceivable delay (i.e.,

100ms [2]). The user experience may be extremely bad if the application has too many

responsive problems. The motivation of this project is to reduce the execution time of UI-

APIs without modifying the UI elements. This paper presents FUEL (Fast UI Elements

Loading), a runtime methodology that executes heavy UI operations ahead of time and

caches preloaded UI elements in the memory. All the design and test are implemented on

Android platform. The rest of this paper is organized as follows. Chapter 2 introduces

background about Android development, especially about UI. Chapter 3 describes the

design and implementation of FUEL. Chapter 4 shows the performance of FUEL on open

source applications. Chapter 5 concludes the paper.

2

Chapter 2. Background

2.1 Android Platform Architecture

Android is an open-source operating system based on the Linux kernel. Figure 1 is from

the official documentation of Android and it shows the main components of the Android

platform [3].

2.1.1 The Linux Kernel

The Linux kernel is the foundation of Android platform. It provides underlying drivers

for various hardware of devices, such as camera drivers, Wi-Fi drivers etc., and power

management. Also, Android Runtime (ART) relies on the Linux kernel to perform

functions such as threading and low-level memory management. The security mechanism

of the Linux kernel provides corresponding protection for Android.

2.1.2 Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) provides interfaces to Java API Framework. The

HAL contains multiple library modules. When an API requests access to a specific

hardware of device, the corresponding library module is loaded by Android system.

2.1.3 Android Runtime (ART)

For devices running Android 5.0 (API level 21) or higher, Android Runtime (ART)

enables each application to run in its own process. ART is specially customized for

mobile devices, and it is optimized for limited memory and CPU of mobile phone.

2.1.4 Native C/C++ Libraries

Native C/C++ Libraries are required by Android system components and services

because they are built from native code written in C and C ++. Developers can use Java

3

framework APIs to access these native libraries and add different support in their

applications. For example, the SQLite library provides database support, the OpenGL ES

library provides 3D drawing support, and the Webkit library provides browser kernel

support.

2.1.5 Java API Framework

It provides various APIs (Application Programming Interface) that may be used when

building applications. Some Android system applications are developed using these APIs.

Developers can also build their own applications with these APIs.

2.1.6 System Applications

It includes all the applications installed on mobile phone, such as contacts, calendars,

internet browsing, and other applications belonging to Android system, and of course, all

third-part applications.

4

Figure 1. Components of the Android platform [3].

5

2.2 Introduction to Android Development

2.2.1 Major Components of an Android Application

The four major components of the Android system are Activity, Broadcast Receiver,

Service, and Content Provider, which are frequently used to build an application. But not

every Android application consists of all four components. Developers can use the entire

feature set of the Android OS (Operating System) through APIs written in the Java

language to build them. The activity class is the most important building block in

Android development. Almost all Android applications interact with users through

activities, for this reason the activity class is mainly responsible for creating display

windows that contain information, buttons, pictures, etc. It is noteworthy that the

development of Android applications pays attention to the separation of logic function

design and UI design. It is not recommended to write the user interface directly in an

activity. A more general approach is to define the UI in a layout file and then place it in

the corresponding activity with setContentView() method. A service is an application

component that can run in the background performing some long-time operations, and it

does not directly interact with the user. For example, a service can perform tasks like

playing music, downloading, file I/O and so on. A service can be started by other

application components. It will run in the background until its operations end or it is

stopped by the application or system. Note that a service can continue to run even if the

user switches to another application or exits the application. A broadcast receiver is used

to receive broadcast messages from various places, such as the Android system and other

applications. Broadcast messages can be sent with Context.sendBroadcast(Intent) method

6

if an event of interest occurs. When a Broadcast Receiver is triggered, the system will

perform corresponding operations, for example launching a needed application. The

content provider class makes it possible to share data between applications. Content

providers can also help an application to access the data saved in files, SQL (Structured

Query Language) databases, and other storages. For example, the information of contacts

can be read through a content provider. All components of an application, which include

all activities, services, broadcast receivers, and content providers, must be declared in

AndroidManifest.xml file after implementation. The manifest file contains essential

information about an application (e.g., the application’s package name, the components

of the application, the required user permissions).

2.2.2 Activity

As almost all Android applications interact with users through activities and the UI of

display windows is mainly loaded in activities, more information about the activity class

is introduced in this section.

When an application is launched, its main activity will be started and display the interface

on the screen. Main activity is declared in AndroidManifest.xml file, and almost every

android application contains one main activity. Every time a new activity is started, it will

be placed over the previous activity. When it is destroyed, the previous activity will

return to foreground. Actually, all activities are managed in activity stacks by the Activity

Manager of Android OS. The stack is a last-in-first-out data structure. By default,

whenever the user starts a new activity, it will be pushed into the stack and placed at the

top. If the user presses the back button or call the finish() method to destroy the top

7

activity, it will be popped out of the stack, and the activity below it (i.e. the previous

activity) will be at the top of the stack again. Activities in the stack are never rearranged.

Figure 2 shows an example of how an activity stack works.

Figure 2. An example of activity stacks [4].

An activity has four states in its life cycle:

⚫ Running. If an activity is at the top of activity stacks, it is active or running. This is

usually the activity interacting with users.

⚫ Visible. If an activity is no longer at the top of activity stacks but is still visible, the

activity enters a visible state. It is possible if the running activity cannot fill the entire

screen.

⚫ Stopped. If an activity is no longer at the top of activity stacks and is completely

invisible, it is stopped. Its data and variables will be saved by the system. But

8

activities in the stopped state may be killed and recycled by the system, when

memory is needed elsewhere.

⚫ Destroyed. If an activity is removed from activity stacks, it is destroyed. The system

tends to recycle destroyed activities to ensure that the phone has sufficient memory.

Figure 3 is from the official documentation of Android. It shows the life cycle and state

paths of an activity. There are seven callback methods (in rectangles) that can be used by

developers to perform operations:

⚫ onCreate(): It is called when the activity is first created. Some initialization

operations should be completed in this method, such as loading UI, binding data to

lists, etc.

⚫ onStart(): It is called when the activity turns from invisible to visible.

⚫ onResume(): It is called when the activity is ready to interact with the user. The

activity at this time must be at the top of activity stacks and running.

⚫ onPause(): It is called when the system is ready to start or resume another activity.

⚫ onStop(): It is called when the activity is completely invisible to the user.

⚫ onDestroy(): It is called before the activity is destroyed.

⚫ onRestart(): It is called before the activity moves from stopped state to running state.

9

Figure 3. Activity lifecycle [5].

10

2.2.3 User Interface (UI)

A layout defines the structure of a user interface. In Android applications, all UI layouts

are composed of View and ViewGroup objects. Figure 4 shows a hierarchy of UI layout.

A View is an object that can be seen or interacted with the user, and it is usually called

"widget". Android platform provides a large number of UI widgets. For example, a

TextView displays text in the layout, a Button responds to click or tap event to perform

an action, an ImageView displays an image to the user. Developers can also customize

view objects and implement a custom view by overriding some of the standard methods

called by the framework on the view. A ViewGroup is a layout container for other View

and ViewGroup objects. Developers can use different layout structure types to build UI

(e.g., LinearLayout, RelativeLayout, FrameLayout, etc.). A UI layout can be designed in

two ways:

⚫ Declare UI elements in XML. Android provides an XML vocabulary that

corresponds to the View classes and subclasses. As mentioned above, it is

recommended to separate logic function design and UI design. Developers can

declare an entire UI layout in an XML file instead of in the activity class. Then a

resource ID will be assigned to the layout file by the Resource Manager. It is easy to

load the UI in the corresponding activity with setContentView(int id) method when

the activity is created (i.e., when onCreate() method is called).

⚫ Instantiate layout elements at runtime. View and ViewGroup objects can also be

declared programmatically. This approach is usually for modifying UI elements at

runtime.

11

Figure 4. A hierarchy of UI layout [6].

2.2.4 Practical Example of UI Design

Figure 5 shows an entire UI layout of the CropImageActivity of the application PDF

Converter. The user interface is designed for editing photos selected by the user. The

XML file are shown in Figure 5(a), but some attributes of its layouts and widgets are

hidden. Figure 5(b) shows the preview of the UI (left part) and the corresponding

structure (right part). The UI layout is composed of four layouts (i.e., ViewGroups) and

several widgets (i.e., Views). The outermost layout (in the white rectangle in Figure 5(b))

is CoordinatorLayout, which contains two other layouts: an AppBarLayout (in the green

rectangle) and a LinearLayout (in the red rectangle). Only one Toolbar widget is in

AppBarLayout. The LinnearLayout in the red rectangle contains a CropImageView

widget customized by the developer, whose function is showing multiple selected

12

images, and another LinearLayout (in the yellow rectangle), which consists of two Button

widgets, two ImageView widgets and one TextView widgets. The positioning of layouts

and widgets in the XML file must be defined by their attributes and parameters. For

example, there are four attributes in the innermost LinearLayout (in the yellow

rectangle):

⚫ Layout_width: This attribute defines the width of the LinearLayout. Its value is

match_parent, which means the width matches that of its parent layout (i.e., the

width of screen in this example).

⚫ Layout_height: This attribute defines the height of the LinearLayout. Its value is

warp_content, which means the height of the layout can just contain the inside

elements.

⚫ Layout_marginTop: This attribute defines the width of top margin, 5dp in this

example.

⚫ Orientation: This attribute defines the orientation of the inside elements. In this

example, “horizontal” means the inside widgets are arranged horizontally. The

positioning of the inside widgets (i.e., buttons, textView and imageViews) is defined

by the sequence and attributes of them.

This UI layout is loaded in the onCreate() method of the CropImageActivity with

setContentView(R.layout.activity_crop_image_activity). When the activity is created, its

onCreate() method will be called and the UI will be loaded at this time.

13

(a) continued

Figure 5. A UI layout of PDF Converter: Part (a) the layout XML file. Part (b) the

interface shown on the mobile phone (left part) and the UI structure (right part).

14

 Figure 5 continued

(b)

2.2.5 Information about UI-APIs

⚫ android.app.Activity.setContentView (View view): It loads and sets the UI for an

activity. Its input parameter refers to an explicit view which is added to the activity's

view hierarchy.

⚫ android.app.Activity.setContentView (int layoutResID): It loads and sets the UI for

an activity. Its input parameter refers to the resource ID of a layout XML file. When

calling this method, the layout XML file is converted to a view. Then this view is

placed to the activity’s content.

⚫ android.app.Activity.findViewById(int id): It Finds a view by its ID defined by

android:id attribute in XML file.

15

⚫ android.support.v7.app.AppCompatActivity.setContentView: It loads and sets the UI

for an activity, and has more operations compared to the setContentView method in

Activity class.

⚫ android.app.Activity.addContentView: It add an additional view to the activity’s

content without removing the existing content view.

⚫ android.app.Activity.startActivity: It launches a new activity to show in the

foreground.

⚫ android.app.Activity.finish: It is called when an activity should be closed. It allows

the activity to terminate any running job before calling onDestroy().

⚫ android.view.LayoutInflater.inflate (int resource, ViewGroup root): It coverts an

layout XML file into a corresponding view hierarchy. The first parameter resource

refers to the resource ID of an XML file. The second parameter root is an optional

ViewGroup to be the parent of the generated hierarchy. This value can be null. This

method returns the created view object. Note, this method cannot be used directly.

Instead, a LayoutInflater instance must be retrieved first.

2.3 The Reasons Why UI-APIs can Generate Responsiveness Problems

There are several possible causes of slow UI responsiveness:

⚫ Structure: Each widget and layout added to the application requires initialization,

layout inflation, and drawing. For example, using nested layout structure instead of

LinearLayout can lead to an excessively deep view hierarchy. Furthermore, nesting

several instances of LinearLayout can be especially expensive as each child needs to

be measured more than once. This is particularly important when the layout is

16

inflated repeatedly, such as when used in a ListView or GridView. The more views

the application has, the more time it will take to measure, layout, and draw. To

minimize the time it takes, it is important to keep the UI component tree as flat as

possible, and remove all views that is not essential.

⚫ Cold vs Warm start: With cold start, the application is not in memory, and it needs

to load the entire UI from scratch. However, if all the application’s activities are

resident in memory, the application can avoid to repeating object initialization,

layout inflation, and rendering. This is the main target of application preloading [7].

17

Chapter 3. Methodology and Design

3.1 Motivations and Goals

As mentioned above, in order to make UI-APIs responsive, it is important to keep the

UI’s hierarchy flat (i.e., reduce the nesting structure and remove redundant views).

However, application developers may inevitably design a complex UI to make the

interface beautiful and attractive. The main target of FUEL (Fast UI Elements Loading) is

to build a cache of heavy UI operations executed between consecutive user actions, so

that the execution time of UI-APIs can be shorter when the user interacts with the

application. FUEL runs at runtime on the users’ devices and has two main goals:

⚫ Preload UI elements asynchronously in the background and save them in cache.

⚫ Decide which UI elements should be loaded ahead of time. Because preloading those

UI elements that may not be interact with users leads to energy and memory waste

[8].

3.2 Pre-execution of UI-APIs

Every time the UI of an application is updated, the application and the OS execute a

series of operations to update the displayed views and/or generate an animation. Upon the

execution of a UI-API the application executes the following jobs on the main thread:

18

1. Call the setContentView(view) method of the PhoneWindow class, the base class for a

top-level window look and behavior policy. An instance of this class is the top-level

view which provides some UI configurations such as title, background, etc.

2. Initialize mContentParent. This variable refers to the DecorView, the top-level view

of the window (i.e. DecoreView in Figure 6), in which the UI of activity’s content are

placed. The attributes of DecorView are initialized in this step such as theme,

visibility of the window, title, etc.

3. Layout inflation: convert the layout XML file into a corresponding view and add the

inflated view to the DecorView with inflate(layoutResID, mContentParent) method.

a. Retrieve an XmlResourceParser object through getLayout(Resource) method. The

XmlResourceParser class defines a series of APIs for parsing XML files.

b. Parse the layout XML file and inflate the root view.

c. Inflate child views and attach them to the root view.

d. Return the root view of the inflated hierarchy and add it into the DecorView.

4. Call onContentChanged() method of the activity to place the UI to activity’s content,

i.e., ContentView in Figure 6.

19

Figure 6. Top-level hierarchy of an activity’s UI [9].

The UI-API inflate() is the UI-API that can cause responsiveness problems because it is

computation intensive. The basic idea of FUEL is that executing the inflate APIs, i.e.

above step 3, ahead of time so as to potentially reduce the response time of user actions.

After inflation, the UI XML file of an activity will be converted into a view and this view

will be saved into cache. When the activity is launched, we just need to place the

preloaded view to activity’s content without converting. Figure 7 shows the execution

time of a UI-API of the application InstaMaterial with and without pre-execution. In the

20

original application, all UI operations of the activity, UserProfileActivity, are executed on

the main thread when the activity is created with a response time of 62ms (labeled all UI

operations in Figure 7). The execution time can be reduced to 38ms by preloading UI on

another thread (labeled Set inflated views to activity’s content in Figure 7). Specifically,

the UI inflation, i.e. converting the layout XML file into views, is executed before

creating the activity and the inflated views are saved in cache, which takes 21ms in total.

When the activity is created, the remaining operations on the main thread are just

retrieving the inflated views and setting them to activity’s content.

Figure 7. The execution time of UI-APIs of InstaMaterial.

21

3.3 Design of FUEL

3.3.1 Design Overview

FUEL has three main components: the view cache, the preloading module and the

prediction module. FUEL works at runtime to decide which UI elements should be

loaded ahead of time to decrease their response time. It uses a prediction algorithm that

examined the application’s current foreground activities and identifies which UI elements

are likely to be executed before the application’s contexts changes. The heavy UI

operations of the identified UI elements are preloaded between user’s actions on a new

thread.

3.3.2 Preloading Module

The preloading module starts a new thread and inflate views from the XML layout file a

head of time on that thread. It should be initialized when the application is launched.

There is some required information stored in the module:

⚫ The resource ID of layout XML files. It is the essential input variables needed by

UI-APIs and should be entered in the initialization step. Note, there may be more

than one resource ID, but each resource ID should not be identical to the others.

⚫ The class name of corresponding activities. It is combined with the resource ID in

the PreloadInfo class and should be entered with resource ID. Similarly, all names

must be different from each other.

⚫ LayoutInflater. Only one instance of LayoutInflater is saved in the preloading

module. Used to inflate views, i.e. convert the XML layout file to view objects. It is

retrieved from the main activity’s context in the onCreate() state.

22

After initialization, the preloading module first creates a new thread by declaring a

Thread class that implements the Runnable interface. Then override the run() method and

implement all operations here. An Android application can have multiple concurrent

threads executing different operations asynchronously. Thus, all the following operations

run on this new thread in order to preload UIs and keep the main thread responsive. Once

there are no preloaded UIs in the view cache, the prediction module decides which UI

layout should be loaded ahead of time. After that, the LayoutInflater inflates views from

the layout file by calling inflate() method (i.e. do Step 3 mentioned in section 3.2). Then

the inflated views are saved in the view cache by calling put(String name, View view)

method. The second variable refers to the inflated view, and the first variable refers to the

class name of its corresponding activity. The inflated view is saved into cache with the

class name mapped to it. More information is provided in the next section.

Usually, the view cache only keeps one inflated UI layout and the preloading module

starts inflating a new layout if the old one is loaded by corresponding activity. Note, the

prediction module can be invalidated, i.e. the preloading module runs without prediction.

In this running mode, all UI layouts are inflated and kept by the view cache. It is

recommended to use this mode if only one UI layout need to be preloaded in the

application.

There are several methods declared in the preloading module:

⚫ start(). Start the preloading module without prediction.

⚫ startInSequence(). Start the preloading module with prediction.

23

⚫ setPreloadInfo(String name, int id). Save the essential information of a UI layout that

need preloading. The first input parameter name refers to the class name of an

activity. The second input parameter id refers to the resource ID of the activity’s

layout XML file.

⚫ setInflater(Context context). Retrieve LayoutInflater from the context of the

application. The input parameter context can be an instance of the activity class or

the application class.

3.3.3 View Cache

The view cache is a storage in which the inflated views are saved in. The main

component is HashMap, a data structure that can map keys to values. The main advantage

of using HashMap is the high performance of the operations such as adding, deleting,

searching data in HashMap. The inflated views are saved into the HashMap with the class

name of corresponding activity. There are several methods declared in the view cache:

⚫ put(String name, View view). The second variable refers to the inflated view, and the

first variable refers to the class name of its corresponding activity (key). This method

saves the input view into the HashMap and maps the name to the view. If a view in

the cache is needed, it can be retrieved through its key (i.e. class name).

⚫ get(String name). Retrieve the inflated views in the cache. The input variable name

refers to the class name of an activity (key). It returns the preloaded views to which

the key is mapped.

24

3.3.4 Prediction Module

The prediction module examines the application’s contexts (e.g., current foreground

activity) and identifies which UI elements are likely to be interacted with the user. The

basic idea of prediction is to record the loading sequence of interested activities (i.e., the

activities whose UI elements need to be preloaded). The prediction module first registers

an ActivityLifecycleCallbacks to monitor the lifecycle of all activities. Once an interested

activity is launched, its class name will be saved to a queue, a first-in-first-out data

structure. If another interested activity is launched, its class name will be inserted into the

queue after the previous one. Thus, the loading sequence is saved in the queue at runtime.

Before exiting the application, the loading sequence will be saved in the ROM of the

device through the SharedPreferences APIs. When the application launched next time,

the preloading module retrieves the loading sequence of its previous usage. After that, the

UIs of interested activities are preloaded successively according to it. For example,

Figure 8 shows a SharedPreferences file saved in the device. The number “0-10” refers

to the loading sequence of the interested activities. In this example, the UI of Activity1

should be preloaded and saved in the view cache first. After it is removed from the cache

and loaded to an activity, the UI of Activity3 will be preloaded according to the sequence.

25

Figure 8. The loading sequence of a test application.

3.4 Practical Example of Implementation

In this section, I describe how to implement FUEL with the application InstaMaterial. In

this example, the UI elements of UserProfileActivity and CommentsActivity need to be

preloaded. Their corresponding class names are“ui.activity.UserProfileActivity” and

“ui.activity.CommentsActivity”. The resource ID of their UI XML files are

R.layout.activity_user_profile and R.layout.activity_comments.

The implementation steps are shown as follows:

1. Copy the source code files of FUEL and paste to the folder that contains java files,

i.e. to app/src/main/java/io/github/froger/instamaterial in this example. Figure 9

shows the hierarchy of project files.

26

Figure 9. Project files of InstaMaterial.

2. Open the application java class file, i.e. InstaMaterialApplication in Figure 9, and

declare a local variable in that class as follows:

Figure 10. Code of step 2.

27

3. Override the onCreate() method of the InstaMaterialApplication class to initialize

FUEL (Figure 11).

a. Save required information through setPreloadInfo(String name, int id) method,

which includes the activities’ class name and the resource ID of UI layout files.

b. Read the SharedPreferences file to get the loading sequence of interesting

activities.

c. Registers an ActivityLifecycleCallbacks to monitor the lifecycle of activities.

d. Start the preloading module with prediction.

Figure 11. Override the onCreate() method of the InstaMaterialApplication class.

28

4. Retrieve LayoutInflater from the context of the main activity with setInflater(Context

context) method. That is to find onCreate() method of MainActivity and add the

following code in Figure 12.

Figure 12. Retrieve LayoutInflater.

5. Override the onDestroy() method of MainActivity with the following code in Figure

13 to enable the loading sequence can be saved in the ROM before exiting the

application.

Figure 13. Override the onDestroy() method of the main activity.

29

6. Change the UI-APIs in UserProfileActivity and CommentsActivity with the following

code in Figure 14. Note, for CommentsActivity, the 7th line should be modified to

setContentView(R.layout.activity_comments).

Figure 14. UI operations in UserProfileActivity and CommentsActivity.

Note that above steps may be slightly different for other Android applications.

30

Chapter 4. Performance and Evaluation

We have tested FUEL on four applications that are all open source and available in the

Google Play Store or on GitHub. All the applications are tested with Samsung Galaxy S9

(SM-G9600) smartphone whose OS version is Android 10.0 (API level 29). The commit

number refers to the master version. Table 1 shows the basic information of all tested

applications.

Table 1. Applications tested with FUEL.

Table 2 shows the execution time of tested applications with and without FUEL. The

label UI-API refers to the API which is tested with FUEL. For example,

CropImageActivity.setContentView stands for the setContentView() API of

CropImageActivity. Each UI-API is tested with cold start in both cases. The complexity

31

measures how complex a UI is. It is defined as the sum of inflation time of all view

groups of the UI. For example, Figure 15 shows the UI layout of CommentsActivity of

InstaMaterial. It consists of three view groups: A Toolbar (in the red box), a

FrameLayout (in the yellow box) which contains a RecyclerView and a View, a

LinearLayout (in the green box) which contains an EditText and a SendCommentButton.

Their inflation time is 1.3, 1.9 and 19.7 respectively. Thus, the complexity of this UI is

22.9 in total. As summarized in Table 2, all the UI-APIs’ execution time has been

reduced with FUEL. The pre-execution allows the device to decrease the response time

by up to 65%. More execution time is saved by FUEL for a complex UI, such as

AntennaPod vs. You Master Clean.

Table 2. Execution time of tested UI-APIs.

32

Figure 15. UI layout of CommentsActivity.

Table 3 shows the performance of the prediction module. Its data shows the memory

space of the inflated view variables in the view cache with and without prediction

solution. For the tested applications (i.e. Image to PDF, InstaMaterial and UI Test), each

of them needs to preload more than one UI. Specifically, InstaMaterial preloads the UIs

of UserProfileActivity and CommentsActivity. Image to PDF preloads the UIs of

CropImageActivity and ImagesPreviewActivity. UI Test preloads the UIs of Activity1,

Activity2 and Activity3. If FUEL runs without prediction, all of them are preloaded at

runtime and saved in cache. Thus, it takes more storage space. On the contrary, there is

only one UI layout saved in cache when FUEL runs with prediction. As shown in Table

3, the memory overhead is decreased by prediction solution.

33

Table 3. Comparison of memory usage.

Heavy UI rendering may cause soft hangs when the response time is longer than a

perceivable delay of 100ms. Table 4 shows the execution time of

CommentsActivity.setContentView on a virtual device (i.e., the emulator provided by

Android Studio) which includes soft hang occurrence. As shown in Table 3, FUEL can

reduce the execution time to less 100ms and make the UI-APIs responsive.

34

Table 4. Execution time of CommentsActivity.setContentView on a virtual device.

35

Chapter 5. Conclusion

This paper presents FUEL, a runtime methodology that preloads the UI elements that are

likely to be executed in order to reduce the response time. FUEL consist of three

components: the view cache, the preloading module and the prediction module. It records

the loading sequence of activities with complex UI at runtime and predicts which UI

layout should be inflated ahead of time. After inflation, the generated views are saved in

the view cache and can be retrieved through its corresponding class name when needed.

In this paper, I test FUEL with four open source applications. The results show that

FUEL is able to reduce the execution time of UI-APIs by at least 28%, thus to eliminate

soft hangs caused by complex UIs.

36

References

[1] Brocanelli, Marco & Wang, Xiaorui. (2018). Hang doctor: runtime detection and

diagnosis of soft hangs for smartphone apps. 1-15. 10.1145/3190508.3190525.

[2] Brad Fitzpatrick. 2010. Writing zippy Android apps. In Google I/O Developers

Conference.

[3] https://developer.android.com/guide/platform.

[4] https://developer.android.com/guide/components/activities/tasks-and-back-stack.

[5] https://developer.android.com/reference/android/app/Activity.

[6] https://developer.android.com/guide/topics/ui/declaring-layout.

[7] Lin, Y.R. & Chu, Edward & Chang, Evan & Lai, Yuan-Cheng. (2017). Smoothed

Graphic User Interaction on Smartphones with Motion Prediction. IEEE

Transactions on Systems, Man, and Cybernetics: Systems. PP. 1-13.

10.1109/TSMC.2017.2685243.

[8] Linares-Vásquez, Mario & Bavota, Gabriele & Bernal-Cárdenas, Carlos & Oliveto,

Rocco & Di Penta, Massimiliano & Poshyvanyk, Denys. (2014). Mining Energy-

Greedy API Usage Patterns in Android Apps: An Empirical Study. 11th Working

Conference on Mining Software Repositories, MSR 2014 - Proceedings.

10.1145/2597073.2597085.

[9] https://blog.csdn.net/nugongahou110/article/details/49662211.

https://developer.android.com/guide/platform
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/topics/ui/declaring-layout
https://blog.csdn.net/nugongahou110/article/details/49662211

37

Appendix A. Source Code

A.1 ViewCache.java

import android.view.View;

import java.util.HashMap;

public class ViewCache {

 private static final int maxSize = 10;

 private static int nViews = 0;

 private static HashMap<String, View> mCache = new HashMap<>();

 public static synchronized void put(String name, View view) {

 if (nViews == maxSize) {

 return;

 }

 mCache.put(name, view);

 nViews++;

 }

 public static synchronized View get(String name) {

 if (nViews == 0) {

 return null;

 }

 if (mCache.containsKey(name)) {

 nViews--;

 return mCache.remove(name);

 } else {

 return null;

 }

 }

 public static boolean isEmpty(){

 return (nViews == 0);

 }

 public static boolean contains(String name) {

 return mCache.containsKey(name);

 }

}

38

A.2 Preloader.java

import android.content.Context;

import android.content.SharedPreferences;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Queue;

import java.util.Set;

public class Preloader {

 private final String TAG = "MyTest";

 private LayoutInflater mInflater;

 private boolean stop;

 private ArrayList<PreloadInfo> mPreloadInfo = new ArrayList<>();

 private Queue<String> sequence = new LinkedList<String>();

 private Queue<String> sequenceRecord = new LinkedList<String>();

 public String currentActivity;

 public String previousActivity;

 public void start() {

 Log.d(TAG, "Preloader start");

 stop = false;

 new Thread(new Runnable() {

 @Override

 public void run() {

 while (!stop) {

 if (needPreload() && mInflater != null) {

 for (int i=0; i < mPreloadInfo.size(); i++) {

 PreloadInfo info = (PreloadInfo) mPreloadInfo.get(i);

 if (!ViewCache.contains(info.Name)) {

 View preloadView = mInflater.inflate(info.Id, null);

 ViewCache.put(info.Name, preloadView);

 //Log.d(TAG, "View saved in cache: " + info.Name);

 }

39

 }

 }

 }

 }

 }).start();

 }

 public void startInSequence() {

 Log.d(TAG, "Preloader start in sequence");

 stop = false;

 /*for (String str:sequence) {

 Log.d(TAG, str);

 }*/

 new Thread(new Runnable() {

 @Override

 public void run() {

 while (!stop) {

 if (ViewCache.isEmpty() && mInflater != null){

 String name = sequence.poll();

 for (int i=0; i < mPreloadInfo.size(); i++) {

 PreloadInfo info = (PreloadInfo) mPreloadInfo.get(i);

 if (info.Name.equals(name)) {

 View preloadView = mInflater.inflate(info.Id, null);

 ViewCache.put(info.Name, preloadView);

 //Log.d(TAG, "View saved in cache: " + info.Name);

 break;

 }

 }

 }

 }

 }

 }).start();

 }

 public void setPreloadInfo(String name, int id) {

 PreloadInfo info = new PreloadInfo(name, id);

 mPreloadInfo.add(info);

 }

 private boolean needPreload() {

 for (int i=0; i < mPreloadInfo.size(); i++) {

 PreloadInfo info = (PreloadInfo) mPreloadInfo.get(i);

 if (!ViewCache.contains(info.Name)) {

40

 return true;

 }

 }

 return false;

 }

 public boolean containsInfo(String name) {

 for (int i=0; i < mPreloadInfo.size(); i++) {

 PreloadInfo info = (PreloadInfo) mPreloadInfo.get(i);

 if (info.Name.equals(name)) {

 return true;

 }

 }

 return false;

 }

 public void recordSequence(String name) {

 sequenceRecord.offer(name);

 }

 public void setInflater(Context context) {

 mInflater = LayoutInflater.from(context);

 }

 public void saveSequence(SharedPreferences sharedPreferences) {

 SharedPreferences.Editor editor = sharedPreferences.edit();

 int n = 1;

 while (!sequenceRecord.isEmpty()) {

 String name = sequenceRecord.poll();

 String number = Integer.toString(n);

 editor.putString(number, name);

 n++;

 }

 Log.d(TAG, "Sequence saved");

 editor.apply();

 }

 public void loadSequence(SharedPreferences sharedPreferences) {

 Map<String, ?> all = sharedPreferences.getAll();

 if (!all.isEmpty()) {

 Set<String> keys = all.keySet();

 int n = 1;

 while (keys.contains(Integer.toString(n))){

 //Log.d(TAG, key);

41

 String key = Integer.toString(n);

 String name = (String) all.get(key);

 sequence.offer(name);

 n++;

 }

 }

 sharedPreferences.edit().clear().apply();

 Log.d(TAG, "Sequence loaded");

 }

 public int getInfoId(String name) {

 for (int i=0; i < mPreloadInfo.size(); i++) {

 PreloadInfo info = (PreloadInfo) mPreloadInfo.get(i);

 if (info.Name.equals(name)) {

 return info.Id;

 }

 }

 return 0;

 }

 public void stop() {

 stop = true;

 }

}

class PreloadInfo {

 public String Name;

 public int Id;

 public LayoutInflater inflater;

 public PreloadInfo(String name, int id) {

 Name = name;

 Id = id;

 inflater = null;

 }

 public void setInflater(Context context) {

 inflater = LayoutInflater.from(context);

 }

}

42

A.3 Register an ActivityLifecycleCallbacks

registerActivityLifecycleCallbacks(new ActivityLifecycleCallbacks() {

 @Override

 public void onActivityCreated(@NonNull Activity activity, @Nullable Bundle

savedInstanceState) {

 //Log.d(TAG,"onActivityCreated: " + activity.getLocalClassName());

 String name = activity.getLocalClassName();

 if (preloader.containsInfo(name)) {

 preloader.recordSequence(name);

 }

 }

 @Override

 public void onActivityStarted(@NonNull Activity activity) {

 //Log.d(TAG,"onActivityStarted: " + activity.getLocalClassName());

 }

 @Override

 public void onActivityResumed(@NonNull Activity activity) {

 //Log.d(TAG, "onActivityResumed: " + activity.getLocalClassName());

 }

 @Override

 public void onActivityPaused(@NonNull Activity activity) {

 //Log.d(TAG,"onActivityPaused: " + activity.getLocalClassName());

 }

 @Override

 public void onActivityStopped(@NonNull Activity activity) {

 //Log.d(TAG, "onActivityStopped: " + activity.getLocalClassName());

 //previousActivity = activity.getLocalClassName();

 }

 @Override

 public void onActivitySaveInstanceState(@NonNull Activity activity, @NonNull

Bundle outState) {

 }

 @Override

 public void onActivityDestroyed(@NonNull Activity activity) {

 //Log.d(TAG,"onActivityDestroyed: " + activity.getLocalClassName());

 }

});

