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Abstract 

With the on-going electrification and data-intelligence trends in logistics industries, 

enabled by the advances in powertrain electrification, and connected and autonomous 

vehicle technologies, the traditional ways vehicles are designed by engineering experience 

and sales data are to be updated with a design for operation notion that relies intensively 

on operational data collection and large scale simulations. In this work, this design for 

operation notion is revisited with a specific combination of optimization and control 

techniques that promises accurate results with relatively fast computational time. The 

specific application that is explored here is a Class 6 pick-up and delivery truck that is 

limited to a given driving mission. A Gaussian Process (GP) based statistical learning 

approach is used to refine the search for the most accurate, optimal designs. Five hybrid 

powertrain architectures are explored, and a set of Pareto-optimal designs are found for a 

specific driving mission that represents the variations in a hypothetical operational 

scenario. A cross-architecture performance and cost comparison is performed and the 

selected architecture is developed further in the form of a forward simulator with a 

dedicated ECMS controller. In the end, a traffic-in-the-loop simulation is performed by 

integrating the selected powertrain architecture with a SUMO traffic simulator to evaluate 

the performance of the developed controller against varying driving conditions.
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Chapter 1. Introduction to Powertrain Electrification 

The aim of the research presented in this thesis is to: First, formulate a suitable 

design space exploration search scheme that is capable of using realistic drive cycle data 

and a collection of powertrain component information to arrive at an optimal architecture 

for a range-extended plugin hybrid electric delivery truck. Second, design an online 

implementable energy management strategy to maximize the selected performance metrics 

of the vehicle over a driving mission; and finally, to test the robustness of the controller 

with an integrated powertrain-cum-traffic-in-the-loop simulation environment. This entire 

exercise will culminate in conclusions that will aid in making an informed decision about 

the final implementation of the specified real-world product. 

1.1 Motivation for Powertrain Electrification 

Hybrid electric vehicles (HEVs) are essential to meet the targets imposed by recent 

regulations mandating reduced fuel consumption and emissions in the automotive industry. 

The motivation for this thesis comes from the US-China Clean Energy Research Center 

program (CERC TRUCK), which investigates technologies with the potential to reduce 

dependence of commercial trucks on oil and reduce GHG emissions. The aim is to 

demonstrate an overarching goal of a 50% freight ton efficiency improvement for a pickup 

and delivery truck over a 2016 baseline conventional vehicle [1]. 
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Electrified vehicle powertrains, viz. HEVs and EVs are relevant alternatives to the vast 

majority of the current market offerings with conventional, internal combustion engine 

(ICE) powered vehicles. In addition to the ICE, hybrid powertrains consist of electric 

motors and power electronics as well as energy storage systems such as batteries and super-

capacitors, depending on the architecture and application. The efficient operation of such 

an electrified powertrain requires careful selection of the architecture, component sizes and 

energy management strategy. According to the 2019 annual report published by Global EV 

Outlook, these environmentally friendly alternatives to IC engine vehicles grew to 

represent 4% of the global vehicle market share from 2013 to 2018 and are expected to go 

beyond 40% by 2030 [2].  

The same research points out that the number of charging points worldwide was estimated 

to be approximately 5.2 million at the end of 2018, growing by 44% from the previous 

year. Most of this increase was in private charging points, accounting for more than 90% 

of the 1.6 million installations last year. It is indispensable that a commensurate growth in 

the infrastructure for electrified powertrain happens with a growth in their market share in 

order to achieve desired lifecycle emissions reduction while meeting commercial targets. 

On a well-to-wheel basis, greenhouse gas (GHG) projected emissions from HEVs and EVs 

will continue to be lower than for conventional internal combustion engine (ICE) 

vehicles. According to the proposed New Policies Scenario, GHG emissions of the 

electrified fleets will reach almost 230 million tons of carbon-dioxide equivalent (metric 

ton CO2-eq) in 2030, offsetting about 220 metric ton CO2-eq emissions. The International 
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Energy Agency proposes that the assumed trajectory for power grid decarbonization is 

consistent its Sustainable Development Scenario and further strengthens GHG emission 

savings from HEVs and EVs. 

It is widely understood that the true emissions reduction that can be achieved from 

powertrain electrification needs a holistic analysis of the well-to-wheel energy flow. 

Whether or not HEVs and EVs deliver net benefits in terms of GHG emissions savings 

ultimately depends on the emissions that occur throughout the entire value chain, i.e. over 

the life cycle compared with other options. Going by the current global average carbon 

intensity (518 grams of carbon-dioxide equivalent per kilowatt-hour [g CO2-eq/kWh]) [2], 

an average passenger EV and plug-in hybrid electric car (PHEV) emits less GHGs than a 

global average ICE vehicle using gasoline over their life cycle. This is, however a global 

outlook, and the extent of emissions reduction ultimately depends on the power source: 

CO2 emissions savings are significantly higher for electric cars used in countries where the 

power generation demographic is dominated by renewable sources. In countries where the 

power generation mix is dominated by coal – such as India, with two-thirds of its electricity 

coming from fossil fuels – it has been found that hybrid vehicles exhibit lower emissions 

than EVs. The extent of the impact differs depending on the size of the ICE vehicle. 

In the freight transport segment around the world, electrified vehicles were mostly 

deployed as light-commercial vehicles (LCVs), which reached 250,000 units in 2018, 

while medium electric truck sales were in the range of 1000-2000 in 2018. In addition to 

this, the International Energy Agency reports that the global EV stock in 2018 was served 
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by 5.2 million light-duty vehicle chargers, (540,000 of which are publicly accessible), 

along with 157,000 fast chargers for buses. 

Figure 1 sourced from IEA 2019 report depicts the comparative life-cycle GHG emissions 

of a mid-size global average car by powertrain in 2018. The data suggests that the GHG 

emissions of BEVs using electricity characterized by the aforementioned global average 

carbon intensity are similar to those of fuel cell electric vehicles (FCEVs) using hydrogen 

generated from steam methane reforming and to those of HEVs using gasoline. On average, 

the capacity of BEV cars to deliver net GHG emission savings in comparison with PHEV 

cars depends on the size of the battery pack. In the large vehicle segment, EVs save more 

GHG emissions compared to ICE vehicles having similar characteristics. This is due to the 

higher fuel economy penalty from the heavier ICE vehicles in comparison with EVs. 

 

Figure 1: Comparative life-cycle GHG emissions of a mid-size global average car by 

powertrain [2] 
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Notes: The BEV refers to a vehicle with 200 km range, the addition of the shaded area 

refers to a vehicle with 400 km range. The ranges suggested by the sensitivity bars represent 

the case of small cars (lower bound) and of large cars (upper bound) – for BEVs, the lower 

bound of the sensitivity bar represents a small car with a 200 km range, and the upper 

bound represents a large car with a 400 km range. 

1.2 Markets and Opportunities for US and China Electrified Powertrains 

Since the year 2000, data from IEA (Figure 2) shows that global emissions from trucks and 

buses (heavy-duty vehicles) have annually risen at a rate of 2.2%. With the pressing need 

to curtail CO2 emissions, more countries around the world must adopt policies and 

standards, and existing ones must become more comprehensive and stringent. This applies 

to passenger as well as commercial vehicles. In urban settings, rapid electrification – 

especially of buses, but increasingly of light commercial and medium-duty trucks – will 

help in staying abreast of emissions goals. US and China being the two biggest economies 

in the world today, the impact of electrification of light commercial and medium-duty 

trucks, together with coordinated efforts by multiple stakeholders to improve logistics and 

operational efficiency will be highly beneficial. 

The rapid growth of commerce in China and strong demand for delivery vehicles in the US 

driven by a steadily growing economy and increased demand for goods translates into more 

delivery and more trucking activity.  
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Figure 2: Projected CO2 emissions – heavy-duty vehicles in the Sustainable 

Development Scenario [7] 

Building upon recent momentum, rapid adoption of battery electric buses and trucks in 

these cities will not only reduce energy consumption but also cut local pollutant and 

CO2 emissions. In addition to that, medium-duty trucks (MDV) with regional and long-

haul missions will need to transition to low-carbon alternative fuels and efficient 

powertrains. Options include hybridization and hydrogen fuel-cell electric vehicles, 

advanced biofuels and electro-fuels [2]. 

In terms of market adoption in US and China, urban buses are one of the great success 

stories of rapid electrified vehicle market uptake. Taking advantage of the suitability of 
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their fixed routes and schedules, their frequent start-stops and cities’ targets to reduce local 

air pollution, a market for electric buses has emerged quite rapidly. The next phase of 

growth in urban electrification of transport pertains to pickup and delivery vehicles with 

similar driving missions to those of urban road transport. 

China has led the way for the world in injecting locally made electrified buses to their 

market, first to Chinese cities – Shenzhen became the global model [3] when it transitioned 

entirely to electric city buses within only a few years [4] – and increasingly to Europe and 

North America. Commercial trucks operating in urban environments may be the next to 

heavily electrify. The consensus is that long-term payback of initial capital investments in 

electrified medium-duty trucks, especially those belonging to large, well-coordinated fleets 

and logistics services, may incite these fleets to electrify even more quickly than private 

passenger cars to push for sustainability. 

City-level efforts to contain air pollution, including targets for phasing out diesel and 

internal combustion engines, together with corporate efforts to anticipate and take the lead 

on pressing public issues, will further spur HEV and EV adoption for light-duty 

commercial fleets. For a GVW of less than 16 tons, an increasingly wide selection of 

electrified trucks is reaching the market. In fact, major postal and package delivery 

companies, including DHL, UPS and FedEx, are expanding their fleets, and the Swiss and 

Austrian postal services have pledged to transition to all-electric fleets by 2030 or earlier. 

Meanwhile, momentum continues in the demonstration and commercialization of zero-
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emission trucks – the majority of which are also electric, as cited by the International 

Council on Clean Transportation [5]. 

As battery technology improves steadily along with cheaper price per kWh of Li-ion 

batteries, the weight and range thresholds for electric vehicles continue to rise. For trucks 

operating on regional delivery segments, the suitability of electrification will depend upon 

continuing energy density improvements and cost reductions in lithium-based batteries. In 

addition to leading in electrifying buses, light commercial vehicles, and even medium-duty 

trucks, China has introduced fleets of hydrogen fuel-cell electric trucks and buses, most of 

which operate on reliable routes and refuel centrally at a single station [6]. In this way, 

China has demonstrated that they have moved ahead of the rest of the world into uncharted 

territory. 

1.2.1 CERC TRUCK Research 

As mentioned in section 1.1, the motivation for this thesis comes from the US-China Clean 

Energy Research Center’s Truck Research Utilizing Collaborative Knowledge program 

(CERC TRUCK), which investigates technologies with the potential to reduce dependence 

of commercial trucks on oil and reduce GHG emissions. In November 2009, the United 

States and China established the bilateral Clean Energy Research Center (CERC), the 

primary purpose of which is to facilitate joint research and development on clean energy 

technology by teams of scientists and engineers from both countries [1].  
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As the world’s top energy consumers, energy producers and greenhouse gas emitters, the 

United States and China will play leading roles in the world’s transition to a clean energy 

economy in the years ahead. Medium- and heavy-duty truck transport systems account for 

a large share of petroleum-based fuel consumption in both countries. With the Chinese and 

the U.S. markets representing the two biggest markets for commercial vehicles in the 

world, one country alone cannot achieve global goals for the reduction of petroleum 

consumption and greenhouse gas (GHG) emissions.  

The CERC Truck Research Utilizing Collaborative Knowledge Consortium will: 

• Contribute to dramatic improvements in technologies with the potential to reduce 

dependence of commercial trucks on oil and reduce GHG emissions,  

• Build a foundation of knowledge, technologies, human capabilities, and 

relationships in mutually beneficial areas that will position the United States and 

China for a future with highly efficient clean commercial trucks that have very low 

environmental impacts,  

• Leverage the complementary strengths of each country’s intellectual and research 

capacities, and  

• Accelerate the advancement of technologies for clean trucks through joint research 

and development. 

China is the largest market for electric vehicle sales worldwide today, followed by Europe 

and the United States. Figure 3 obtained from the IEA Global EV Outlook 2019 report, the 

global electric car sales and market share from the years 2013-18 can be seen in terms of 
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the market share and number of vehicles sold. The rapid growth in the Chinese market 

share from well below 1% to over 4% is in stark contrast to the slow rise in market uptake 

for Europe and the US. This difference can be attributed largely to the aggressive policy 

adoption by the Chinese government favoring zero emission vehicles. The share of pure 

electric vehicles in the Chinese market is far greater than those in its two counterparts, 

where hybridized options have a more significant share of the electrified vehicle market. 

Nevertheless, the market shift towards adoption of the electrified powertrain is clear, and 

the stage is set for substantial overhaul of the market share over the next decade in China 

and the United States. 

 

Figure 3: IEA analysis based on country submissions [2] 

Note: IEA analysis based on country submissions, complemented by ACEA (2019); EAFO 

(2019); EV Volumes (2019); Marklines (2019); OICA (2019). Europe includes Austria, 
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Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, 

Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, 

Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. Other includes 

Australia, Brazil, Chile, India, Japan, Korea, Malaysia, Mexico, New Zealand, South 

Africa and Thailand. 

1.2.2 Classification 

Vehicles are generally classified based on their weight category, especially in the 

commercial and freight segment. Table 1 lists a broad classification of passenger and 

freight vehicles in the Chinese market on the basis of gross vehicle weight rating, based on 

data obtained from the classification of power-driven vehicles and trailers. 

Table 1: Vehicle weight classes in China 

Basic Application Vehicle Class Gross Vehicle Weight Rating Number of Seats 

Passenger 

M1 - ≤ 9 

M2 < 5,000 kg > 9 

M3 > 5,000 kg > 9 

Load 

N1 < 3,500 kg - 

N2 3,500 ~ 12,000 kg - 

N3 > 12,000 kg - 

The corresponding vehicle types are depicted in Figures 4 and 5, starting with M1 class 

passenger vehicles and going up to N3 freight vehicles. 
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Figure 4: Passenger vehicles of category M1, M2 and M3 respectively (data from: 

Chinese Classification of power-driven vehicles and trailers, GB/T 15089-2001) 

  

 

Figure 5: Freight vehicles of category N1, N2 and N3 respectively (data from: Chinese 

Classification of power-driven vehicles and trailers, GB/T 15089-2001) 

According to data from the Chinese Ministry of Transportation, until September 2018, the 

number of electric vehicles has reached 2.21 million, of which 1.78 million are pure electric 

vehicles, accounting for 80.53%, and 254,000 are electric trucks, accounting for 11.46%. 
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Figure 6: Load capacity: Electrified vehicles (Chinese Ministry of Transportation) 

As depicted in Figure 6, the load capacity of passenger segment electrified vehicles has 

fallen, while that of the freight vehicles have increased steadily from 2013-2018. 

Meanwhile, the total number of vehicles in both the applications has remained fairly steady 

on a year-on-year basis. 

1.2.3 United States Market Study 

In the United States, both trucks and buses are classified by weight. The US Department of 

Energy classifies them as depicted in Figure 7, ranging from Class 1 passenger pick-up 

trucks weighting in at 6000 lbs. or less, all the way to Class 8 long-haul semi-trucks tipping 

the scales at 33,000 lbs. and above. This study focuses specifically on urban pick-up and 

delivery trucks in the Class 6 range weighing 19,600 lbs. – these are picked out with red 

outlines inset in Figure 7. In the United States, they are commonly seen in applications like 

FedEx, UPS and similar postal delivery applications with a frequent start-stop driving 

mission in low to medium speed environments. A series hybrid powertrain makes a good 

case for improved efficiency in these trucks due to this very driving mission. 
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Despite their potential benefits, the application of hybrid technologies into the medium- and 

heavy duty (MD/HD) markets is still at a relatively early stage. The size and diversity of the 

market prevents the application of a single hybrid solution that works equally well for the 

diverse vocational population. The MD/HD vehicle market encompasses a much wider 

variety of vehicle classes and thus Gross Vehicle Weights (GVWs) as compared to the LD 

passenger vehicle industry. Light heavy-duty trucks are classified as vehicles between 

8,500lbs GVW and less than 19,500lbs GVW (Class 2b through Class 5). Medium duty 

trucks are classified as vehicles between 19,500lbs and 33,000lbs GVW (Class 6 and Class 

7). Heavy duty trucks are classified as vehicles over 33,000lbs GVW (Class 8). 

 

Figure 7: Weight class of vehicles in the US (data from: US Department of Energy, 

http://www.afdc.energy.gov/data/) 

A typical Class 6 delivery vehicle is depicted in Figure 8. This exercise in efficiency 

improvement assumes the baseline vehicle to be powered by a gasoline IC engine, with a 

daily duty cycle lasting approximately 8 hours in an urban setting. The fuel economy of this 
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vehicle is evaluated in a chassis dyno with multiple loads over different days to obtain a 

benchmark to improve upon while performing the design space exploration detailed in the 

next chapter. 

 

Figure 8: A Class 6 delivery truck (image: US Department of Energy) 

A ballpark equivalence between the truck weight classes between the United States and 

China is indicated in Table 2 with correlations drawn between the eight different classes in 

the US and the six categories in China – M1, M2, M3, N1, N2 and N3. This is useful in 

cross-market comparison of available products in each segment. 

Table 2: Comparison of vehicle weight ratings in the US and China 

Gross Vehicle 

Weight Rating 

(lbs.) 

Federal Highway Administration US Census Bureau 
China 

Equivalent Vehicle Class 
GVWR 

Category 
VIUS Classes 

<6000 Class 1: <6000 lbs. Light Duty 

<10,000 lbs. 

Light Duty <10,000 

lbs. 

M1, M2, N1 

10,000 Class 2: 6001 – 10,000 lbs. 

M3, N2 

14,000 Class 3: 10,001 – 14,000 lbs. 

Medium 

Duty 10,001 

– 26,000 lbs. 

Medium Duty 

10,001 – 19,500 lbs. 
16,000 Class 4: 14,001 – 16,000 lbs. 

19,500 Class 5: 16,001 – 19,500 lbs. 

26,000 Class 6: 19,501 – 26,000 lbs. 
Light Heavy Duty 

19,001 – 26,000 lbs. 

33,000 Class 7: 26,001 – 33,000 lbs. Heavy Duty 

>26,001 lbs. 

Heavy Duty >26,001 

lbs. 
M3, N3 

>33,000 Class 8: >33,000 lbs. 
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An insight into the truck sales in the United States for Class 3 to Class 8 is provided in 

Figure 9 sourced from the US Department of Energy and Ward’s Auto. The general trend 

is that of increased sales number across the board with a conductive economic growth since 

2009. Class 5 and Class 6 trucks, which are of particular interest in this study have witnessed 

sustained growth in this period. With their growing numbers, and tightening global demand 

to curtail emissions drastically by 2030, marginal improvements in fuel economy are not 

sufficient.  

 

Figure 9: Class 3-8 truck sales in the US from 2001-2018 (US Department of Energy; 

http://www.afdc.energy.gov/data/) 

Large-scale improvement in fuel economy standards is the most effective way to get on 

track to meet 2030 global targets. The transportation energy expenditure for the US in the 

year 2018 is shown in Figure 10 obtained from the US DoE. The share of fuel consumption 
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for medium and heavy trucking industry far outweighs the demand from air, water and rail 

combined. This calls for manifold increase in fuel economy standards in this industry, which 

can be driven by large electrification, connectivity, platooning and data analytics among 

other means. While the current state of the art in Li-ion battery technology does not permit 

a viable application for long-haul trucks, medium duty trucks are well within the scope of 

large-scale electrification, especially with range-extended EV technology. 

 

Figure 10: Transportation energy use by mode and fuel type in the US in 2018 (US 

Department of Energy; http://www.afdc.energy.gov/data/) 

A few of the current products and components in the US market in the HEV space are 

highlighted in the following paragraphs along with their key technical specifications. 
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1. Cummins EDI PowerDrive 6000 in Kenworth T370 Utility Truck 

Table 3: Specifications of Cummins EDI PowerDrive 6000 

Items Parameters Value 

Architecture PHEV - 

Vehicle Gross Weight 33,000 lbs. 

 Shape Size - 

 Max Velocity - 

 Distance Range Pure electric mode: 50 miles; hybrid mode: > 300 miles 

Motor Type - 

 Peak Torque - 

Engine Cummins B6.7 - 

 Type Diesel 

 

     

 

Figure 11: The Kenworth T370 Utility Truck (images from Cummins Inc.) 
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2. TEVVA MOTORS and Cummins ETREE 

Table 4: Specifications of TEVVA MOTORS and Cummins ETREE 

Component ETREE TEVVA 

Vehicle 
Class 6 Pick-Up & Delivery Truck 

Curb Weight: 19706.9 lbs. 

Pick up & delivery  

7.5 ton /16500 lbs. 

Engine (REEV) Cummins 4.5L 180 HP Diesel 1.6L Diesel, 100 HP (74 kW)  

Battery 100-150 kWh 66 kWh, 350 V 

Generator 135 kW (continuous) unknown 

Traction Motor 165 kW (continuous) AC PM Motor 120 kW 

Gearbox 4 speed AT unknown 

     

Figure 12: Cummins ETREE and TEVVA MOTORS (images from Cummins Inc.) 

1.2.4 China Market Study 

According to the 2019 annual report of the Global EV Outlook [2], EV deployment has 

been growing rapidly over the past ten years, with the global stock of electric passenger 

cars passing 5 million in 2018, an increase of 63% from the previous year. Around 45% of 

electric cars on the road in 2018 were in China – a total of 2.3 million – compared to 39% 

in 2017. In comparison, Europe accounted for 24% of the global fleet, and the United States 
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22%. China has been on the forefront of the aforementioned market overhaul with 

aggressive policy mandates from the government along with fiscal incentives to businesses. 

A few of the current products and components in the China market in the HEV commercial 

truck space are highlighted here along with their key technical specifications. 

1. Chanje V8070 

Table 5: Specifications of the Chanje V8070 

Items Parameters Value 

Architecture Dual Rear Motors - 

Vehicle Gross Weight 16,535 lbs. 
 Shape Size 318.8*86.4*107.7 in 
 Max Velocity 80 mph 
 Distance Range 150 miles 

Motor Type PMSM*2 
 Peak Torque 564 ft-lbs. 
 Max Power 198 hp 
 Rated Power - 

Chassis Wheelbase 194.3 in 

 

     

Figure 13: Chanje V8070 electrified truck (images from Chanje product portfolio) 
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Figure 13 continued 

 

2. BYD 6D Class 6 Step Van 

Table 6: Specifications of the BYD 6D 

Items Parameters Value 

Architecture EV, Direct Drive - 

Vehicle Gross Weight 23000 lbs. 
 Shape Size 325.6*96.9*121.5 in 
 Max Velocity 70 mph 
 Distance Range 125 miles 

Motor Type PMSM 
 Peak Torque 1328 ft-lbs. 
 Max Power 335 hp 
 Rated Power - 

Chassis Wheelbase 178.0 in 



22 

 

 

Figure 14: BYD 6D Class 6 EV Step Van (image from BYD Auto) 

3. BYD Class 6 Truck 

Table 7: Specifications of the BYD Class 6 Truck 

Items Parameters Value 

Architecture EV, Direct Drive - 

Vehicle Gross Weight 26000 lbs. 
 Shape Size 277.0*86.6*93.9 in 
 Max Velocity 65 mph 
 Distance Range 125 miles 

Motor Type PMSM 
 Peak Torque 1328 ft-lbs. 
 Max Power 335 hp 
 Rated Power - 

Chassis Wheelbase 153.5 in 

 

Figure 15: BYD Class 6 Truck (image from BYD Auto) 
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4. BYD Class 5 Truck 

Table 8: Specifications of the BYD Class 5 Truck 

Items Parameters Value 

Architecture EV, Direct Drive - 

Vehicle Gross Weight 16141 lbs. 

 Shape Size 236.0*80.5*86.8 in 

 Max Velocity 62 mph 

 Distance Range 155 miles 

Motor Type PMSM 

 Peak Torque 406 ft-lbs. 

 Max Power 201 hp 

 Rated Power - 

Chassis Wheelbase 132.3 in 

 

 

Figure 16: BYD Class 5 Truck (image from BYD Auto) 
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5. FAW Jiefang J6F CA5042XXYP40LEVA84-3 

Table 9: Specifications of FAW Jiefang J6F direct drive truck 

Items Parameters Value 

Architecture EV, Direct Drive - 

Vehicle Gross Weight 12.49 t 
 Shape Size 7000*2364*2805 mm 
 Max Velocity 90 km/h 
 Distance Range 260 km 

Motor Type PMSM 
 Peak Torque 700 Nm 
 Max Power 125 kW 
 Rated Power 85 kW 

Chassis Wheelbase 3800 mm 
 Axle load 4740/7750 kg 

     

 

Figure 17: FAW Jiefang J6F Direct Drive Truck (images from FAW Jiefang) 
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6. BYD T7 BYD5110XXYBEV 

Table 10: Specifications of BYD T7 Direct BEV Truck 

Items Parameters Value 

Architecture EV, Direct Drive - 

Vehicle Gross Weight 10.695 ton 
 Shape Size 7450*2250*3300 mm 
 Max Velocity 100 km/h 
 Distance Range 240 km 

Motor Type PMSM 
 Peak Torque 550 m 
 Max Power 150 kW 
 Rated Power 110 kW 

Chassis Wheelbase 4250 mm 
 Axle load 3600/7095 kg 

     

 

Figure 18: BYD T7 Direct BEV Truck (images from BYD Auto) 
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7. Daimler Atego BlueTec Hybrid 12T Series Production Prototype 

Table 11: Specifications of Daimler Atego BlueTec Hybrid 

Items Parameters Value 

Architecture parallel hybrid P2 - 

Vehicle Gross Weight 11.99 ton 
 Shape Size - 
 Max Velocity > 70 mph 

Engine Type four-cylinder OM 924 LA diesel engine 
 Peak Torque 810Nm@1200-1600rpm 
 Max Power 44 kW 

Motor Peak Torque 420 Nm 
 Max Power 36 kW 

Transmission Type Mercedes-Benz G 85-6 
 Ratios - 

     

 

Figure 19: Daimler Atego BlueTec Hybrid (images from Daimler) 
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8. HINO 195h 6th Generation diesel-electric hybrid system 

Table 12: Specifications of HINO 195h diesel-electric hybrid system 

Items Parameters Value 

Architecture hybrid+6AT - 

Vehicle Gross Weight 19500 lbs. 

 Shape Size 318.8*86.4*107.7 in 

 Max Velocity > 70 mph 

Engine Type Diesel-Electric Hybrid 4-cycle 

 Peak Torque 440 ft-lbs.@1500rpm 

 Max Power 210 hp@2500rpm 

Motor Peak Torque 258 ft-lbs. 

 Max Power 36 kW 

Transmission Type 6-AT 

 Ratios 3.742/2.003/1.343/1/0.773/0.634 

  

 
Figure 20: HINO 195h diesel-electric hybrid system (images from HINO Trucks) 
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1.3 Range-extended HEVs for Commercial Vehicle Applications 

Range extended electric vehicles (REEVs) have the ability to operate both as a pure electric 

vehicle as well as a hybrid electric vehicle based on the state of charge (SoC) of the energy 

store, which is usually a battery. The state of charge of the energy storage represents the 

amount of usable energy that remains in it. As a hybrid, the on-board range extender or 

generator set provides additional energy to increase the feasible driving range by 

recharging the electrical energy store. HEVs have more than one source of propulsive 

energy, which makes energy management imperative and challenging. Hybrid vehicles can 

have varying architectures, including parallel, series and power-split layouts each of which 

demand different power management strategies to be operated efficiently. While operating 

as an electric vehicle, the REEV utilizes only the battery to meet its energy demands and 

operates in a charge depleting (CD) mode to maximize the large energy store on board [8]. 

The generic schematic for a range-extended hybrid is depicted in Figure 21. 

 

Figure 21: Range-extended Hybrid Electric Vehicle Architecture 
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The primary advantages of pursuing a range-extended architecture for a medium-duty 

urban delivery truck application optimized traction driveline, modular powerplant 

possibilities (engine downsizing), packaging benefits, excellent transient response, long 

operation life and possible zero emission operation. The main disadvantage lies in the fact 

that there are multiple energy conversion losses involved compared to a parallel 

architecture. Hence, such an architecture is not ideal for a long-haul highway application. 

However, the diversity and physical size of medium-duty vehicles also allows 

manufacturers to consider the use of multiple high voltage battery packs to increase range 

in either a charge sustaining or charge depleting configuration. This provides design 

benefits to extend range from 50 miles versus 100 miles of charge depleting range 

capability for an inner city or urban PHEV pick-up and delivery vehicle versus a residential 

mixed urban and rural application. This approach can also be used to target specific 

performance. For example, a PHEV energy storage system could consist of a charge 

depleting high voltage battery and a high voltage charge sustaining battery – a hybrid 

energy storage system (HESS) – each of a specific chemistry suited to the duty cycle. This 

could reduce the premium price to a fleet operator by allowing the operator to buy the 

energy storage (or range) and performance they require [9]. 

Potential candidates for electrified powertrain truck technologies range from electric 

vehicles to range-extended electric vehicles to plug-in hybrid electric vehicles. The CERC-

TRUCK team studies powertrain architectures to create a modular approach that considers 
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mission requirements, flexibility of powertrain design for second life, and regional and 

vocational needs, taking into account the tradeoffs in subsystem sizing, cost, and matching. 

Longer-term goals include development of a novel battery pack design that hinges on the 

concepts of flexibility and modularity, and creation of a completely reconfigurable energy 

storage system for medium-duty and heavy-duty hybrid trucks, whose characteristics 

(power density, energy density, thermal performance, and degradation) can be optimized 

directly in the field. Later, the team hopes to design a flexible and reconfigurable drivetrain 

architecture (power electronics + traction motor + engine + mechanical coupling and 

transmission) and quantify tradeoffs as a function of cost, weight, and performance. 

1.4 Hybrid Electric Vehicle Optimal Energy Management 

In comparison to conventional IC engine vehicles, a relatively low energy-to-weight ratio 

amongst HEVs and EVs makes the efficient and optimal utilization of their energy very 

important. Energy management algorithms enable these vehicles to perform efficiently and 

at optimal operation points within the constraints of the powertrain components and the 

specific application. Energy management in HEVs involves deciding the amount of power 

delivered at each instant by the energy sources present in the vehicle while meeting 

required physical constraints. The primary objectives of an Energy Management System 

(EMS) are detailed in Figure 22. 
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Figure 22: Objectives of an Energy Management Strategy [10] 

CERC-TRUCK focuses on advanced energy management at the vehicle, multi-vehicle and 

fleet levels, with an overall target of improving vehicle energy consumption at the 

individual vehicle level by 15% and the freight efficiency of fleets at the regional level by 

30%. The overarching goal is to maximize fleet efficiency through advanced energy 

management at the vehicle, multi-vehicle, and fleet levels. 

Initially, partners in the United States and China collect existing on-road vehicle trip 

profiles for both countries. Researchers will use data collected to develop and optimize 

specific algorithms for medium-duty and heavy-duty applications for both U.S. and China 

markets. Analysis will quantify and understand the market differences and the impact of 

predictive energy management together with engine-in-the-loop assessments to validate 

the proposed algorithms. 
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In the longer term, research teams will develop a framework and specific use cases for both 

countries that automate the evaluation of multiple vehicle-level controls and study the 

impacts of a variety of driving scenarios and powertrain technologies. Ultimately, this team 

seeks to implement an algorithm to schedule the departure times of individual trucks to 

ensure that they can form a platoon. 

The CERC-TRUCK team uses vehicle fuel economy modeling to identify subsystems that 

might yield efficiency improvements. After selecting candidate technologies for improving 

freight efficiency, research teams will prototype and fabricate or procure and evaluate 

potential alternatives, with longer-term goals of implementing and validating those 

showing greatest promise in a demonstration vehicle. 

What follows is not meant to be an exhaustive review of contributions to the topic of 

adaptive strategies. Only the pivotal works on the subject have been reviewed. 

1.4.1 Global Optimal Energy Management Strategy: Dynamic Programming 

When computational capabilities are not a limiting factor, and assuming availability of a 

priori information about the entire optimization horizon (driving cycle), dynamic 

programming (DP) can be a powerful tool in benchmarking all online strategies. However, 

online optimal energy management techniques are chosen for practical application in hybrid 

vehicles partly due to their reduced computational demands in a real-time scenario and the 

causal nature. 
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The DP algorithm was proposed by Richard Bellman in the 1950s as a powerful tool to 

solve multi-stage decision problems with easy computational implementation. The essential 

idea behind the algorithm is the Bellman's Principle of Optimality, which states: An optimal 

policy has the property that whatever the initial state and initial decision are, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from the first 

decision [Bellman, 1957]. 

 

Figure 23: Dynamic Programming schematic 

It is capable of providing optimal solution to problems of high complexity. However, it is 

noncausal and is only implementable in simulation – i.e., in a backward sense, starting 

from the final solution, tracking back through the control inputs needed at each stage to get 

there with the minimal cost. To determine the first control action, DP needs the backward 

solution of the entire problem, which explains why it is not practical for a real-time 

application. A simplified schematic of dynamic programming is illustrated in Figure 23. 

This simple yet powerful principle turned into an iterative algorithm that efficiently 

searched the entire control space for the optimal policy. A general software toolbox called 
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‘dpm’ was developed at ETH Zurich [11] that allows simulation of HEV energy usage in 

a specified drive cycle. 

For a hybrid electric vehicle with multiple energy sources, DP provides the sequence of 

controls that dictate the power split between the internal combustion engine and the energy 

storage system at every time step of the powertrain operation. Associated with control input 

to the powertrain is the cost that corresponds to fuel consumption, emissions, battery 

energy depletion, battery ageing or those based on other objectives. As with any optimal 

control strategy, the control input(s) at any stage is determined by in order to meet the 

demands of the system, while respecting the states of the system. The number of solution 

candidates that can be evaluated is a compromise between the computational power and 

the accuracy of the result: for instance, the minimum cost candidate may not always 

coincide with chosen candidate due to physical limits of the powertrain, but the closer they 

are to each other, the better the approximation of the optimal solution [12]. 

Once the grid of possible power splits, or solution candidates, is created, the procedure 

outlined earlier can be used, associating a cost to each of the solution candidates. 

Proceeding backwards (i.e., from the end of the driving cycle), the optimal cost-to-go is 

calculated for each grid point, and stored in a matrix of costs. When the entire cycle has 

been examined, the path with the lowest total cost represents the optimal solution [12]. It 

is to be noted that the accuracy of the solution offered by DP is limited by the discretization 

of the candidates in the problem. 
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Hence, DP offers the closest approximation to the optimal solution of the energy 

management problem for HEVs, and is therefore used to determine the maximum potential 

of any given architecture, thus serving as an essential benchmark for all online control 

strategies, in general. 

The implementation of DP is a process with three steps: determination of arc costs, 

minimization of cost-to-go to determine the optimal control policy (proceeding backward 

in time), and application of the optimal control policy to the system (proceeding forward 

in time). While the last step can be performed on a standard simulator, the first two steps 

require a specific coding able to separate clearly the definition of the cost at each time from 

the integration of the dynamic state equations. In other words, a non-dynamic 

representation of the cost function 𝐿𝑘 = 𝐿(𝑥𝑘, 𝑢𝑘 , 𝜔𝑘) and the system function 𝑥𝑘+1 =

 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) are needed, where the external disturbance 𝜔𝑘  may represent the driving 

cycle, the road grade etc. These functions are then called by the DP algorithm to compute 

the cost-to-go starting from the last point of the driving cycle, and to determine the optimal 

policy [12]. 

More recently, there have been successful implementation of short horizon DP in tandem 

with model predictive control (MPC), by leveraging look-ahead information to predict the 

future drive cycle encountered by the vehicle. The DOE ARPA-E NEXTCAR program 

undertaken by the Ohio State University Center for Automotive Research [13] and studies 

by Arizona State University researchers on look-ahead optimization strategies for HEVs 

[14] are prime examples. 
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1.4.2 Online Energy Management Strategies 

This CERC-TRUCK team focuses on integrating the key technologies identified across 

multiple research areas to demonstrate the efficiency improvement at the vehicle level. 

This effort assesses and characterizes a baseline demonstration vehicle. After modifying 

the demonstration vehicle with promising technology candidates, research teams will 

assess those technologies in order to quantify their respective impacts on vehicle efficiency. 

After evaluating individual technologies on the demonstration vehicle, researchers will 

assess the aggregate improvement of all technologies to quantify overall freight efficiency 

improvements. This will require an online implementable energy management strategy to 

be integrated with the selected hybrid architecture. At present, most hybrid vehicles in 

production implement rule-based or heuristic strategies to split the power demand between 

the two forms of available energy stores in the vehicle – fuel and battery. 

HEV energy management strategies have been classified over the years under several 

different criteria, focusing on the characteristics, approach and implementation adopted by 

them. One such classification that covers the majority of the state-of-the-art, proposed by 

Ahmed M. Ali et al [15], is depicted in Figure 24. The two major categories in this 

taxonomy are Heuristic or Rule-based and Optimization-based or Analytical. This section 

throws light on a few of their sub-categories. 
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Figure 24: Classification of Power Management Strategies [15] 

While rule-based strategies are easy to implement and robust, they are by and large sub-

optimal in the grand scheme of HEV energy management as pointed out by D. Tran et al 

[10]. As a result, research over the past two decades have sought to arrive at real-time 

control strategies that are driven by optimization techniques. The most popular among 

these optimal control methods is the Equivalent Consumption Minimization Strategy 

(ECMS), which is a realization of offline PMP [16]. 

(i) Pontryagin’s Minimum Principle 

The most well-known algorithm for solving the optimal control problem is Pontryagin’s 

Minimum Principle (PMP), which is an extension of the calculus of variations with regard 

to the Euler–Lagrange equation [17]. The PMP was derived by Russian mathematician Lev 

Pontryagin in 1956 to solve the constrained global optimization problem; some regard this 

theorem as the beginning of modern optimal control theory. There are several formulations 

of PMP, depending on the way the optimal control problem is specified. 
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Each HEV architecture has one or more degrees of freedom to fulfill a prescribed driving 

cycle. For parallel HEV, for example, the road load is imposed by the drive cycle, however, 

one among the torque from the engine and that from the electric machine can be selected 

freely. In series or power-split HEV there is one degree of freedom more to be chosen, a 

speed value (e.g., the engine speed). A further degree of freedom to be optimized can be 

the transmission mode or gear number. 

L. Serrao et al. [18] applied the same concept to find the optimal power split strategy for a 

hybrid electric refuse vehicle in 2005. PMP method does offer optimal solutions close to 

the DP results, however, the initial costate has a significant impact on the SoC variation, 

according to the work by S. Delprat et al [19]. Considerable amount of research has been 

published with methods that can be used to estimate the initial costate value, as seen in 

[20], [21], [22], [23] One major limitation of pursuing this route of obtaining the costate is 

that the optimal costate value can be computed only if the future driving cycle is known in 

advance. Hence, the driving cycle prediction with historical data, statistical methods and 

driving pattern recognition based on the vehicle location have been integrated with PMP 

to handle the dependence of the costate on the SOC. 

Finding the optimal control strategy thus means finding the optimal value of each degree 

of freedom at each time step of the cycle. The PMP states that at each time step, the optimal 

values of the degrees of freedom are found by minimizing a function called Hamiltonian. 

The Hamiltonian is characterized by a ‘costate’, which is interpreted as a penalty factor for 

the battery energy utilization [24]. The optimal value of the initial costate can be found 
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through an iterative process, known as the shooting method, given full knowledge of the 

driving cycle is available. If different driving cycles are utilized, the initial costate obtained 

may have different values.  

As formulated by G. Rizzoni et al. in [25], the Hamiltonian function for the HEV energy 

management problem is: 

𝐻 (𝑆𝑂𝐶(𝑡), 𝑃𝑏𝑎𝑡𝑡(𝑡), 𝜆(𝑡), 𝑃𝑟𝑒𝑞(𝑡)) = 𝑚̇𝑓 (𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑃𝑟𝑒𝑞(𝑡)) + ( 𝜆(𝑡) +

𝜔(𝑆𝑂𝐶)). 𝑆𝑂𝐶̇ (𝑡),  

and the necessary conditions are: 

𝑃𝑏𝑎𝑡𝑡
∗ (𝑡) = 𝑎𝑟𝑔 min

𝑃𝑏𝑎𝑡𝑡(𝑡)∈𝑈𝑃𝑏𝑎𝑡𝑡

𝐻(𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑆𝑂𝐶(𝑡), 𝜆(𝑡), 𝑃𝑟𝑒𝑞(𝑡)) 

𝑆𝑂𝐶̇ ∗(𝑡) = 𝑓(𝑆𝑂𝐶∗(𝑡), 𝑃𝑏𝑎𝑡𝑡
∗ (𝑡)) 

𝜆̇∗(𝑡) = −( 𝜆∗(𝑡) + 𝜔(𝑆𝑂𝐶))
𝜕𝑓

𝜕𝑆𝑂𝐶
(𝑆𝑂𝐶∗, 𝑃𝑏𝑎𝑡𝑡

∗ ) = ℎ(𝑆𝑂𝐶∗(𝑡), 𝑃𝑏𝑎𝑡𝑡
∗ (𝑡),  𝜆∗(𝑡))  

𝑆𝑂𝐶∗(𝑡0) = 𝑆𝑂𝐶0 

𝑆𝑂𝐶∗(𝑡𝑓) = 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶
∗(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 

The solution of the PMP’s necessary conditions is obtained via shooting method according 

to the scheme provided in Figure 25, described by G. Rizzoni et al [25]. 
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Figure 25: Schematic of the Pontryagin’s Minimum Principle [25] 

The implementation of the PMP’s necessary conditions is shown in the schematic of 

Figure 25. At each instant of time over the optimization horizon [𝑡0, 𝑡𝑓], given a request 

of power, 𝑃𝑟𝑒𝑞 , the Hamiltonian is built and minimized. This generates the optimal control, 

𝑃𝑏𝑎𝑡𝑡
∗ (𝑡) that is applied to the state and co-state dynamic block to compute the state of 

charge and co-state variation at the next step. 

 

Figure 26: Open-loop PMP-based energy management control scheme [25] 

The additive penalty function ω(SOC) is the piecewise function given by: 

ω(SOC) = {

0 if 𝑆𝑂𝐶𝑚𝑎𝑥 < 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑖𝑛
K if SOC < 𝑆𝑂𝐶𝑚𝑖𝑛
−K if SOC > 𝑆𝑂𝐶𝑚𝑎𝑥
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The constant K is determined in simulation iteratively by a hit and trial method to ensure 

that whenever the SOC hits the lower bound 𝑆𝑂𝐶𝑚𝑖𝑛 and less whenever the SOC hits the 

upper bound 𝑆𝑂𝐶𝑚𝑎𝑥. When SOC is within bounds, the penalty function is inactive, i.e., 

a zero term is added to the instantaneous cost. 

(ii) Equivalent Consumption Minimization Strategy 

The equivalent consumption minimization strategy (ECMS) was introduced by Paganelli 

et al. in 1999 as a method to address the optimal control problem, and has been shown to 

provide an effective solution to the HEV energy management problem. ECMS reduces the 

global optimal problem of minimization of fuel consumption to an instantaneous 

minimization problem to be solved at each time step, without use of information about the 

future operation of the powertrain. 

According to G. Rizzoni et al., [25] ECMS is based on the idea that, in charge-sustaining 

(CS) HEVs, the difference between the initial and final battery SOC is negligible in 

comparison to the total energy used. This implies that the electrical energy storage system 

is used only as an energy buffer, and ultimately, all energy comes from fuel, and the battery 

can be seen as an auxiliary, reversible fuel tank. Any stored electrical energy used during 

a battery discharge phase must be replenished at a later stage using fuel from the engine, 

or through regenerative braking. 

Two cases are possible at a given operating point: 
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1. the battery power is positive (discharging): a recharge with the engine will require some 

additional fuel consumption in the future;  

2. the battery power is negative (charging): the stored electrical energy will be used to 

reduce the engine load, which implies a fuel saving. 

The principle underlying the ECMS approach is that a cost is assigned to the electrical 

energy, so that the use of electrical stored energy is made equivalent to using (or saving) a 

certain quantity of fuel. This cost is obviously unknown, as it depends on future vehicle 

behavior, but it has been shown that the cost can be related to driving conditions in a broad 

sense (for example, urban versus highway driving). The concept implemented by the 

ECMS is illustrated in Figure 27, which refers to a parallel HEV, but the concept can be 

applied to a series HEV – the only difference is the location of the power summation node. 

 

Figure 27: Energy path during discharge (a) and charge (b) in a parallel HEV [25] 
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Note: When implementing ECMS, we account for the use of stored electrical energy, in 

units of chemical fuel use (g/s), such that an equivalent fuel consumption taking into 

account the cost of electricity 

The key idea of ECMS is that in both charge and discharge, an equivalent fuel 

consumption can be associated with the use of electrical energy; the equivalent future (or 

past) fuel consumption, 𝑚̇𝑟𝑒𝑠𝑠(𝑡) (g/s), can be summed to the present real fuel 

consumption – fuel mass flow rate 𝑚̇𝑓(𝑡) (g/s) – to obtain the instantaneous equivalent 

fuel consumption, 𝑚̇𝑓,𝑒𝑞𝑣(𝑡): 

𝑚̇𝑓,𝑒𝑞𝑣(𝑡) = 𝑚̇𝑓(𝑡) + 𝑚̇𝑟𝑒𝑠𝑠(𝑡)    (1) 

By analogy to an engine which consumes real fuel and for which the instantaneous fuel 

consumption is given as 

𝑚̇𝑓(𝑡) =
𝑃𝑒𝑛𝑔(𝑡)

𝜂𝑒𝑛𝑔(𝑡)𝑄𝐿𝐻𝑉
 

where 𝑄𝐿𝐻𝑉  (MJ/kg) is the fuel lower heating value (energy content per unit of mass), 

𝜂𝑒𝑛𝑔(𝑡) is the engine efficiency, and 𝑃𝑒𝑛𝑔(𝑡) is the power produced by the engine when it 

operates at a certain efficiency, the electric machine consumes virtual fuel  

𝑚̇𝑟𝑒𝑠𝑠(𝑡) =
𝑠(𝑡)

𝑄𝐿𝐻𝑉
𝑃𝑏𝑎𝑡𝑡(𝑡). 
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The equivalence factor s(t) is a vector of values, one for charge and one for discharge, 

𝑠(𝑡) = [𝑠𝑐ℎ𝑔(𝑡), 𝑠𝑑𝑖𝑠(𝑡)]. Its task is to assign a cost to the use of electricity, converting 

electrical power into equivalent fuel consumption. Although, C. Musardo, G. Rizzoni et al. 

[26] showed that a single value of 𝑠 can be used with little sacrifice in fuel economy. 

By using ECMS the global problem of minimizing the total cost is reduced to the local 

(instantaneous) problem of minimizing 𝑚̇𝑓,𝑒𝑞𝑣(𝑡): 

𝐺𝑙𝑜𝑏𝑎𝑙 = {
𝑚𝑖𝑛𝑃𝑏𝑎𝑡𝑡(𝑡)∈𝑈𝑃𝑏𝑎𝑡𝑡

∫ 𝑚̇𝑓(𝑡)
𝑡𝑓

𝑡0

𝑑𝑡

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

 

𝐿𝑜𝑐𝑎𝑙 = {
∫ 𝑚𝑖𝑛𝑃𝑏𝑎𝑡𝑡(𝑡)∈𝑈𝑃𝑏𝑎𝑡𝑡

𝑚̇𝑓,𝑒𝑞𝑣(𝑡)
𝑡𝑓

𝑡0

𝑑𝑡

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

 

At each time instant (and over the entire duration of the driving cycle, the equivalent fuel 

consumption is calculated using (1) for several candidate values of the control variable 

𝑃𝑏𝑎𝑡𝑡(𝑡); the value that gives the lowest equivalent fuel consumption is selected.  

This approach has been shown to closely approximate the global optimal solution. In 

addition, the instantaneous minimization problem is computationally less demanding than 

the global problem solved with dynamic programming, and applicable to real-world 

situations since it does not rely (explicitly) on information about future driving conditions. 

A constant value of the equivalence factor in charge, 𝑠𝑐ℎ𝑔, and in discharge, 𝑠𝑑𝑖𝑠 , must be 

selected beforehand. Further research by C. Musardo et al [26] discuss that a real-time 
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energy management for HEV is obtained by adding to the ECMS framework an on-the-

fly algorithm for the estimation of the equivalence factor according to the driving 

conditions. The main idea is to periodically refresh the control parameter according to the 

current road load, so that the battery state of charge is maintained within the boundaries 

and the fuel consumption is minimized. Pei et al [27] presented a direct mathematical 

approach for determining the state of charge (SOC)-dependent equivalence factor in the 

HEV supervisory control problem using dynamic programming. It provides a rational 

basis for designing ECMS which achieve near optimal fuel economy compared to DP. 

1.4.3 Adaptive Optimal Energy Management Strategies 

If a priori knowledge of the drive cycle is not available, PMP (and ECMS) offers 

suboptimal online implementable control because the co-state λ or the equivalence factor 

‘s’ needs to be estimated as driving demands change. The hypothesis of perfect knowledge 

of the driving conditions clashes with the characteristics of general-purpose automotive 

applications and is not suitable for real-time applications [26]. The task of updating λ or 

the ‘s’ online as driving scenarios vary results in a general supervisory controller that is 

referred to as adaptive optimal supervisory controller. Methods falling into this category 

have been indicated in the literature as Adaptive PMP (A-PMP) or Adaptive-ECMS (A-

ECMS) strategies. In particular, three main categories of adaptation techniques to design 

A-ECMS can be identified: 

• adaptation based on driving cycle prediction; 

• adaptation based on driving pattern recognition; 
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• adaptation based on feedback from SOC. 

Adaptation Based on Driving Cycle Prediction 

As in most realistic scenarios, when no information on the future drive cycle demand is 

available, optimal fuel economy cannot be guaranteed for any mission. The optimal value 

of the equivalence factor can be found through a systematic optimization only if the driving 

cycle is known. In such cases, better controller performance can be achieved by updating 

the ECMS equivalence factor as the driving cycle varies over time. These variation in the 

future demand can be predicted to varying levels and degrees of accuracy utilizing the 

technologies described in Chapter 3.  

In the early methods, described by C. Musardo et al. in [26], [28] and [29]), a real-time 

energy management strategy was proposed by adding a real-time algorithm to the ECMS 

module for the periodic estimation and updating of the equivalence factor. The main idea 

is to periodically refresh the control parameter according to the current road load, so that 

the battery state of charge is maintained within the boundaries and the fuel consumption is 

minimized. For instance, this can be achieved in a charge-depleting hybrid by means of a 

delta energy or delta SOC feedback to constrain the SOC to follow a reference line. 
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Figure 28: Schematic of adaptive energy management strategies [25] 

The ECMS module is thus augmented with a device able to relate the control parameter, 

s(t), to the current velocity profile. Figure 28 shows the A-ECMS control diagram: the 

identification of the driving mission given by the Speed Predictor is used as input to the 

Adaptor where the best value of the equivalence factor is found based on receding-horizon 

optimization [12]. 

To improve the execution time, a simplification was proposed for actual real-time 

implementation [26], consisting in the use of one equivalence factor, for both charge and 

discharge, thus introducing some approximation. The performance of A-ECMS is slightly 

inferior to the standard ECMS tuned on a perfectly known driving cycle, but in general, 

the results are quite good, and, most importantly, achievable in real-world application (if 
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enough computational power is available). In [30], the A-ECMS method strategy is based 

on speed prediction. The equivalence factor is estimated online based on a look-ahead 

horizon defined in terms of energy at the wheels, to determine at each instant the most 

likely behavior (charging or discharging) in the near future. 

In [31] instead, an adaptation scheme similar to [29] is presented which uses a predictive 

reference signal generator (pRSG) in combination with a SOC tracking-based controller. 

The pRSG computes the desired battery SOC trajectory as a function of vehicle position 

such that the recuperated energy is maximized despite the constraints on the battery SOC. 

To compute the SOC reference trajectory, only the topographic profile of the future road 

segments and the corresponding average traveling speeds must be known. A constant 

reference SOC is considered, and A-ECMS implemented as in [29] is compared with a 

MPC-type controller based on the prediction of future torque demand, showing very similar 

performance of the two controllers. 

Adaptation Based on Driving Pattern Recognition 

In parallel to the development of adaptive supervisory control schemes based on driving 

cycle prediction, an alternative adaptation scheme has been proposed exploiting the fact 

that equivalence factors are similar for cycles with similar statistical properties. Part of the 

studies below are cited from [12]. 

R. Bartholomaeus et al. [32] proposed an approach towards the real-time prediction of the 

speed profile of a vehicle operating in fixed-route service by leveraging the historic route 
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information for the predictive control of the hybrid drive train. The proposed algorithm 

utilized previously taken measurements, e.g., by a GPS device, of the vehicle motion 

during fixed-route travel. That history information together with measurements along the 

currently driven part of the route is processed in order to predict the future speed profile of 

the vehicle. 

In a 2002 study by S. Jeon et al [33], a multi-mode driving control algorithm using driving 

pattern recognition is developed and applied to a parallel HEV. The multi-mode driving 

control was defined as the control strategy that switches a current driving control algorithm 

to the algorithm optimized in a recognized driving pattern. In the study, six representative 

driving patterns are selected, composed of three urban driving patterns, one expressway 

driving pattern, and two suburban driving patterns. A total of 24 parameters such as average 

cycle velocity, positive acceleration, kinetic energy, stop time/total time, average 

acceleration, and average grade are chosen to characterize the driving patterns. 

An approach for A-ECMS based on driving pattern recognition is presented to obtain better 

estimation of the equivalence factor in different driving conditions is presented by B. Gu 

et al. in [34] and [35]. A pattern recognition algorithm is used to first identify which kind 

of driving conditions the vehicle is traversing, and then to select the most appropriate 

equivalence factors from a predefined set of values. The optimal values of s for several 

cycle typologies (city, highway, etc.) are precalculated and stored in memory; during 

vehicle operation, the adaptation algorithm uses the past and present driving conditions to 

determine the current cycle type, from which it selects the appropriate equivalency factor. 
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While the vehicle is running, a time window of past driving conditions is analyzed 

periodically and recognized as one of the representative driving patterns. This operation is 

performed in the Driving pattern recognition block of Figure 28. The Adaptor module then 

selects the more suitable values of s(t) from the equivalence factor database given the 

recognized driving patterns, and the ECMS is executed with the estimated value of s(t). 

Adaptation Based on Feedback from State of Charge 

After the equivalence between ECMS and PMP was formalized and a new interpretation 

of the ECMS was given as the optimal solution computed with PMP, it was understood 

that only one parameter needed to be adapted for online optimization, e.g., the co-state λ. 

Adaptive supervisory control approaches that rely on the instantaneous minimization of the 

Hamiltonian and have the PMP co-state λ as the single control parameter to adapt go under 

the name of A-PMP methods. The mechanism used to perform the adaptation in this case 

is feedback of the battery SOC.  

Approaches developed to design adaptive optimal supervisory control methods using SOC 

feedback in [36], [37] and [38] are based on the idea of dynamically adjusting the value of 

the co-state at the present time (without using past driving information or attempting to 

predict future driving behavior), in order to contrast the SOC variation and thus maintain 

its value around the target value (reference SOC profile). In all these methods, SOC 

reference is considered constant. Performing the adaptation using a single parameter rather 

than two has a significant advantage in that it reduces the design and calibration 

complexity. 
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Conceptually, these approaches differ in that, while [36], [37] by J. Kessels and A. Chasse 

update the equivalence factor at each time instant, S. Onori et al. [38] rely on the concept 

of a charge-sustaining horizon, imposing charge-sustainability over a finite time horizon. 

If, on one hand these methods are easy to implement, robust (as they all rely on SOC 

feedback) and computationally cheap, on the other hand their performance relies on tuning 

of the parameters used in adaptation. 

1.4.4 Model Predictive Control (MPC) 

The MPC was introduced to tackle the issue of the DP algorithm, i.e., the global optimal 

control can be achieved only when all future information including the road shape, state of 

the vehicle, and the road loads are known in advance. Such conditions are impractical to 

obtain in advance for real-time applications, as discussed earlier in this chapter. 

Model Predictive Control (MPC) is defined in a family of control techniques that make an 

explicit use of a model of the process to obtain the control signal by minimizing an 

objective function. Model predictive control represents the solution of a standard optimal 

control problem over a finite horizon, performed online using a model to predict the effect 

of the control on the system output. Therefore, MPC operates based on a receding-horizon 

control strategy with a predictive scheme using three main steps as described by E. F. 

Camacho et al in [39]:  

(i) calculating the optimal inputs over a prediction horizon to minimize the objective 

function subject to the constraints,  
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(ii) implementing the first element of the derived optimal inputs to the physical plant, and  

(iii) moving the entire prediction horizon forward and repeating from step (i). 

The optimal control problem in the finite domain is solved at each sampling instant, and 

control actions are obtained based on an online rolling optimization. However, the 

performance of the MPC is sensitive to the model quality. The mismatch of the models is 

represented in the models of the wheels, weather, road conditions, and sensor accuracy. To 

minimize this mismatch and disturbances, the horizon length has to be tuned, or GPS 

information is used with the MPC to improve the prediction results. According to G. 

Rizzoni et al [12], MPC is a control technique that requires high computational effort and 

an accurate model of the system in order to give good results; on the other hand, it can be 

applied to many cases and can be very effective if the reference trajectories are known. 

This does not happen in the case of vehicular applications, and some prediction techniques 

must be used in order to implement MPC as an energy management strategy for HEVs. 

From the viewpoint of prediction algorithm, MPC can be split into two sub-classes: 

deterministic and stochastic. Like DP, deterministic-MPC has been used as a benchmark 

to evaluate other MPC-based energy management strategies, since it uses extensive future 

knowledge. On the other hand, stochastic MPC does not demand a priori information, and 

can easily adapt itself to changes in the stochastic parameters and high-order models. In 

literature, Markov chains are generally used to predict unknown future information or 

arbitrary processes such as driver demand, vehicle speed, power demand, road grade, 

left/right turns etc. as studied by [40], [41] and [42]. In [43], the authors use a Model 
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Predictive Control (MPC)-based strategy and utilize the information attainable from 

Intelligent Transportation Systems (ITS) to establish a prediction-based real-time 

controller structure. 

The decisive advantage of MPC over ECMS is that MPC is neither short-sighted nor too 

sensitive. MPC is also used in conjunction with algorithms such as quadratic programming, 

nonlinear programming, Pontryagin's Minimum Principle and Stochastic Dynamic 

Programming based on the mission characteristics.  
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Chapter 2. Design Space Exploration 

In this chapter, the entire process of the optimal architecture selection of the series 

plug-in hybrid delivery truck is laid out with high level of detail. The architecture selection 

was made with the aid of a multitude of tools and input data, which culminated in the 

optimal layout to cater to the specific mission. This process is termed as Design Space 

Exploration for hybrid electric vehicles.  

Note: This chapter is an extended version of the paper titled “Design Space Exploration 

for a Series Plug-in Hybrid Pickup and Delivery Truck Using Gaussian Process 

Optimization” accepted for publication by the SAE in April 2020. 

In previous research work on this topic, several electrified powertrain architectures have 

been proposed, such as series- and parallel hybrids, with or without plug-in (PHEV) 

features, each having their own benefits. Multiple performance objectives are considered 

when optimizing the design of an electrified powertrain – fuel economy, emissions, 

component cost and weight, packaging, battery size, and drivability. Often times, these 

objectives are contradictory, i.e., one candidate may never be optimal with respect to all 

relevant objectives, but instead there are different trade-offs between different powertrain 

candidates.  
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Moreover, when comparing different segments of the transportation industry, for example, 

transit buses, or different classes of trucks for parcel delivery, it is clear that one powertrain 

may not be optimal in all situations. Hence, for each specific application, selecting 

electrified powertrain architecture and component sizes is an important task to find the 

optimal trade-off between fuel consumption and other performance objectives. This leads 

to the notion of design for operation, i.e. a design methodology that aims at finding optimal 

powertrain topology and component sizes for specific operation scenarios.  

The problem of finding the optimal powertrain configuration is referred to as Design Space 

Exploration (DSE), which is often formulated as a Multi-Objective Optimization Problem 

(MOOP) as pointed out by D. Jung et al [44], [45]. In general, DSE is an optimization 

problem where the design space grows exponentially with the number of components that 

are optimized, thus requiring a considerable computational effort. Design Space 

Exploration of hybrid electric vehicles can be traced back to the 1990s, when the Good-

Design Seeker, an architecture for exploring large design space of HEV using exhaustive 

search and dominance filtering, was developed by J. Josephson, G. Rizzoni et al [46]. This 

exercise has since then has adopted three main approaches to solve the design optimization 

problem:  

• Brute force method, that is, an exhaustive search;  

• Other search algorithms including genetic algorithm, the Nelder-Mead Simplex 

algorithm, PSO and DIRECT [47], [48];  
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• Gradient-based algorithms including convex optimization and sequential quadratic 

programming studied in [49], [50], [51].  

2.1 Design Space Exploration for Delivery Trucks 

While the design optimization and the control design problems can be solved separately, 

we believe that it is necessary to solve a co-optimization problem in which the powertrain 

optimal control solution is a part of the design space as well. One typical example is to 

consider the component/subsystem sizing and control variables as a whole, and to optimize 

this bi-level system design using a combination of an iterative search algorithm and 

Dynamic Programming (DP).  

A large chunk of previous research in the area of HEV design space exploration hinges on 

fixed HEV architectures. This approach is not holistic, and limits the scope of design 

optimization to sizes of only certain components and the final drive ratio as discussed in 

[52]. Among those who take into consideration the generation and selection of different 

topologies, few explore a variety of series hybrid topologies. A general and inclusive 

framework for HEV design space exploration (DSE) is proposed in this paper, by 

specifying in detail the elements of input, constraints, cost function and output for each 

plausible architecture. Simplified pictorial representations of this process are shown in 

Figures 29 and 30. 
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Figure 29: Components of Design Space Exploration 

Evaluating the performance of each powertrain can be time-consuming, because fuel 

consumption is evaluated by optimizing a specific powertrain for a given set of driving 

scenarios representing realistic driving missions. Therefore, in these situations, selecting a 

suitable search algorithm is important. In order to reduce the total computation time, a 

design space exploration algorithm is proposed which uses Gaussian Processes (GP) to 

select the powertrain candidate, in each iteration, that is most likely to be Pareto-optimal. 

In this work, the powertrain design of a medium-duty Class 6 delivery truck is considered. 

The truck has a series hybrid powertrain with an internal combustion engine as range 

extender (REEV), where different powertrain topologies with plug-in features are 

explored. A simulation model of the powertrain is developed and Dynamic Programming 
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is used to compute the optimal control strategies and fuel consumption for each 

architecture. 

 

Figure 30: A holistic schematic of DSE 

The first part of this chapter describes the modeling of the various components of the 

powertrain, and provides the details about the size of the design space and the GP algorithm 

used to optimize the exploration. DP is used to solve the optimal energy management 

problem to determine the sequence of control inputs that result in the lowest cost solution, 

i.e. the highest fuel efficiency, for each of the optimal candidates. In the second part, the 

solution of the problem is presented, and the results of the simulations are used to perform 

a cross-architecture performance and cost comparison. 

2.2 Framework, Methodology and Problem Formulation 

As already mentioned, the object of this study is to achieve an optimal architecture for a 

range-extender hybrid electric vehicle (REEV) with plug-in features. A general schematic 

representation of a REEV is presented in Figure 31. As shown, in this type of architecture, 
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the internal combustion engine (ICE) is used along with a generator in order to operate as 

a genset that is connected to the rest of the powertrain electrically. Figure 1 also shows 

which components are considered for the DSE: the electric motor (EM) and the 

transmission (Trans) and driveline. In the energy flow block diagram at the bottom of the 

figure, these elements are enclosed inside dashed lines. Depending on the transmission and 

EM choice, five REEV architectures are analyzed: 

1. Two-speed e-Axle; 

2. Three-speed AMT + Electric Motor; 

3. Four-speed AMT + Electric Motor; 

4. Direct Drive; 

5. Dual Motor. 

 

Figure 31: REEV architecture with representation of energy flow 
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In the following subsections, the models of the vehicle and powertrain components are 

described first. After that, the size of the design space is presented, and the need to reduce 

its volume is discussed, which leads to the description of the search algorithm used in the 

design space reduction. In addition, the formulation of the optimal energy management 

problem is described. 

2.2.1 Vehicle Road Load Model 

The vehicle road load is a result of Newton's Second Law of Motion, and is used to 

calculate the longitudinal vehicle speed: 

𝑣(𝑡) = 𝑣(0) + ∫
𝐹𝑡𝑟𝑎𝑐𝑡 − 𝐹𝑙𝑜𝑎𝑑

1.1𝑀

t

0

𝑑𝑡 
(1) 

For a REEV, the tractive force 𝐹𝑡𝑟𝑎𝑐𝑡 is passed down to the wheel level from the electric 

motor through the transmission (if present). On the other hand, the load force, 𝐹𝑙𝑜𝑎𝑑, is a 

combination of aerodynamic drag, 𝐹𝑑𝑟𝑎𝑔, force from grade, 𝐹𝑔𝑟𝑎𝑑𝑒, and rolling resistance. 

𝐹𝑙𝑜𝑎𝑑 = 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑔𝑟𝑎𝑑𝑒 + 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎  (2) 

𝐹𝑑𝑟𝑎𝑔 =
1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣

2 
(3) 

𝐹𝑔𝑟𝑎𝑑𝑒 = 𝑀𝑔𝑠𝑖𝑛𝜃 (4) 

𝐹𝑟𝑜𝑙𝑙 = 𝑀𝑔𝑐𝑜𝑠𝜃 (5) 
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𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 1.1𝑀
𝑑𝑣

𝑑𝑡
           (6) 

The prominent parameters of the vehicle used in simulation are listed in Table 13. These 

correspond to a Class 6 pickup and delivery truck. 

Table 13: Default vehicle parameters 

Mass (kg) 8890 

Rolling resistance coefficient 0.0072 

Wheel radius (m) 0.4191 

Frontal area (m2) 5.41 

Aerodynamic drag coefficient 0.622 

Auxiliaries power (W) 4000 

The vehicle model across different simulators stay ideally the same. Although some 

differences exist due to the ways different simulators are constructed, the vehicle dynamics 

model, the powertrain model should be synced up as identical as possible. To address this 

syncing issue, an effort of converting vehicle data into class-defined objects are made. 

The default vehicle parameters (Table 13) are stored in the ‘vehicle_model’ class and will 

be automatically used during class object creation. 

2.2.2 Powertrain Dynamics Model 

All powertrain models are quasi-static energy conversion efficiency models, except the 

battery model, which contains an integral equation (state of charge). Thus, the combined 

vehicle and powertrain model has two dynamic states: vehicle velocity and battery state of 

charge. 
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(i) Genset Model 

The engine model is created from measured data of a mass-market 4.5L internal combustion 

engine, which is scaled up with the Willans Line model to match a 150 kW of maximum 

electrical power generation, coupled with a constant generator efficiency of 90%. The scaled 

genset efficiency map is shown in Figure 32. However, being mechanically disconnected 

from the driveshaft, the genset is manipulated to operate at its maximum efficiency on the 

optimal operation line (OOL), which is illustrated in Figure 33. The genset is modelled as a 

MATLAB class object with the properties described in Table 14. 

 

Figure 32: Original and scaled engine efficiency maps 
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Figure 33: Scaled engine optimal operating line (OOL) 

 

Table 14: Genset class definition 

Name  Meaning 

P_genset_list Genset electrical output power (W) 

mf_list Fuel consumption rate (grams/sec) 

Note: There exists inherent possibility of sudden switching from one engine (or electric 

motor) operation point to another because of the quasi-static model being used here. In 

realistic terms, these sudden switching of operating points wouldn’t be acceptable. It is up 

to future revisions (if necessary) to implement these higher fidelity models of engine (and 

electric machine) that models the constraint on torque change and speed change to limit 

abrupt transitions. 
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(ii) Electric Motor Model  

The electric motor used in this study is a scaled up permanent magnet synchronous machine 

with a peak power output of 245 kW and a continuous power output of 165 kW. The electric 

motor map is generated using a linear scaling process: the speed range of the motor is 

stretched, such that it could meet top speed requirements of 80 mph with a final drive of 

5.13, and wheel radius of 0.4191 m. The original motor map and the scaled up electric 

machine map are shown one after the other in Figure 34. 

 

Figure 34: The original motor map (above) and the scaled-up map (below) 
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Figure 34 continued 

 

The scaling of the motor took a simple but effective linear scaling approach. First, the speed 

range of the motor is stretched, such that it could meet top speed requirements of 80 mph 

with a final drive of 5.13 and wheel radius of 0.4191(m) or 16.5(in). Second, the torque 

range of the motor is stretched and obtained an optimal scaling ratio of 1.069 as a result of 

the DSE study.  

The abovementioned scaling process resulted in a motor with continuous peak power of 

165kW. The electric motor is modelled as a MATLAB class object with the properties listed 

in Table 15. 
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Table 15: Electric machine class definition 

Name Meaning 

w_motor_list_eta EM Speed List for ηEM map 

T_motor_list_eta EM Torque List for ηEM map 

eta_motor EM Efficiency (ηEM) map 

T_motor_list EM Speed List for Maximum Torque Curve 

T_peak_max_list EM Peak Maximum Torque List 

T_cont_max_list EM Continuous Maximum Torque List 

(iii) Battery Model 

The battery model is a zeroth order equivalent circuit model, which assumes parallel and 

series connections of identical cells. The battery parameters are listed in Table 16. 

The battery model follows simple zero order equivalent circuit model. Data of the battery 

chemistry and internal characteristics are taken from an OSU project directory. The battery 

pack is modelled as a MATLAB class object with the properties described in Table 16. 

Scaling of the battery was performed in a simplified way: By changing the number of 

parallel branches in order to match up with the assumed 74 kWh battery capacity suggested 

by the industry partner. The resulting number of parallel branches is a non-integer. 

Table 16: Battery pack parameters 

Property Value Property Value 

Rated Pack Voltage (V) 700 Rated Cell Voltage (V) 2.71 

Number of cells in series 258 Number of cells in parallel 51.13* 

Pack capacity (kWh) 74 Cell capacity (Wh) 5.61 

Pack capacity (Ah) 27,306 Cell capacity (Ah) 2.07 

Discharging C-rate 2.5 Charging C-rate 1 
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*Note: The number of cells in parallel is not an integer because the scaling of the battery 

was performed using a continuous scaling factor. 

The physics involved in modeling the battery pack are described below: 

• 𝐼𝑐𝑒𝑙𝑙 = 𝜂𝑏𝑎𝑡𝑡 ∙
1

2𝑅
(𝑉𝑜𝑐 − √𝑉𝑜𝑐2 − 4𝑅𝑃𝑐𝑒𝑙𝑙) 

• 𝑆𝑜𝐶(𝑡) = −
1

𝐶𝑐𝑒𝑙𝑙
∫ 𝐼𝑐𝑒𝑙𝑙𝑑𝑡
𝑡

𝑜
+ 𝑆𝑜𝐶(0) 

• VOC modeled by:  𝑉𝑜𝑐 = 𝑉0 + 𝛼0(1 − exp (−𝛽𝑆𝑜𝐶)) + 𝛾𝑆𝑜𝐶 + 𝜁(1 −
𝜖

1−𝑆𝑜𝐶
) 

• R (internal resistance) is modeled by maps in Figure 35. 

 

Figure 35: Battery internal resistance maps 

(iv) Transmission Model 

The transmission is simply modelled as a set of gear ratios with fixed efficiencies. The 

optimized gear ratios are listed in the tables for the corresponding architectures later in this 

chapter. 
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(v) Backward Model 

A backward simulator was built to make use of Dynamic Programming algorithm to 

provide a benchmark global optimal solution for the energy management problem. The 

name backward comes from the fact that the algorithm requires inverted vehicle dynamics 

calculation from the outcome speed of vehicle to the force and torque exerted on the vehicle 

powertrain. The ‘dpm’ toolbox requires that the problem is formulated in a particular 

format such that the toolbox could understand and solve it. The relationship diagram for 

this particular problem is shown in Figure 36. 

 

Figure 36: Backward powertrain model for a conventional vehicle 

Model Setup: The vehicle and environment models are automatically setup by creating 

the vehicle class object described in Section 2.2.1. The only thing that needs effort is to 

translate those models to ‘dpm’ acceptable variables. 

Simulation options: Apart from a scalable vehicle powertrain, the things that could be 

changed for the backward DP simulation are: upper and lower limits of SOC, initial SOC 

value and the drive cycle. The variables required by ‘dpm’ is listed in Table 17. 
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Table 17: Variables required to setup the dpm function 

DPM variable Meaning Property 

grd.X{1} SOC ∈ [0, 1], continuous 

grd.X{2} Engine State ∈ [0, 1], discrete 

grd.X{3} Gear State ∈ [0, 1, 2], discrete 

grd.U{1} Engine ON/OFF Request ∈ [0, 1], discrete  

grd.U{2} Genset Power Level ∈ [1, 2…, N], discrete 

prb.W{3} Gear Request ∈ [1, 2], discrete  

prb.W{1} Vehicle Speed predetermined, stage by stage 

prb.W{2} Vehicle Road Load predetermined, stage by stage 

prb.W{3} Mechanical Brake Torque (optional*) predetermined, stage by stage 

*The mechanical brake torque is an optional feature required only when recording 

mechanical brake decisions from the Simulink forward simulator is to be injected here for 

comparison reasons (refer to Section 3.1 for more information on this topic) 

2.2.3 Library of Components 

The powertrain components simulated in this project include the following, and their ranges 

of specification are described in detail in Table 18. 

1. Internal combustion engine 

2. Gear ratios and mechanical gearbox 

3. Electric machine(s) 

4. Battery pack 

5. Engine accessories and auxiliary loads 

6. Brakes and tires 
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Table 18: Specification for the vehicle parameters and range for components 

Component Specifications 

Vehicle 

Class 6 Pick-Up & Delivery Truck 

GVW: 19,600 lbs. 

Frontal Area: 5.4 m2 Coefficient of drag: 0.622 

Transmission efficiency: 0.95, driveline efficiency: 0.93, e-axle efficiency: 0.93 

Rolling resistance coefficient: 0.0072; Rotation mass factor: 1.1.  

Genset Using the optimal operating line (OOL) of combined Genset data 

Battery 

74 kWh 

permissible SOC range: 100% - 20% 

Specified starting SOC for drive cycle: 99% 

Specified terminal SOC boundary for drive cycle: 78% - 82% 

Traction Motor 
Scalable motor based on TM4 LSM200C-HV2600 

176 kW continuous power PMSM electric machine 

Gearbox 

4-speed [4.5– 3.5], [3.5– 2.5], [2.5– 1.2]; 

3-speed [4.0– 2.5], [2.5– 1.2]; 

2-speed [3.0 – 1.5];  

direct drive; dual-motor. 

Rear Axle Ratio 5.13 

Accessories 4 kW 

Tire Radius 0.419 m 

2.2.4 Design Space Exploration 

There are multiple architecture options and component sizes that can be used within the 

framework of delivery trucks. The powertrain is optimized with respect to freight ton 

efficiency (discussed in section 2.3), vehicle weight, packaging and operating cost. The 

complexity of on-line control algorithms for different architectures is not considered in this 

case study. Fuel economy is evaluated using Dynamic Programming (DP) and a 

mathematical model of each powertrain architecture. Since different candidates will have 

various trade-offs of the objective functions, the goal is to explore the Pareto-front to 
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understand the optimal trade-offs between the objective functions and to see which 

powertrain architectures and component sizes are relevant in different situations.

 

Figure 37: The progressive list of stages and outcomes of Design Space Exploration 

In general, the driving missions are represented by driving cycles which describe the 

general characteristics for each driving mission, for example, average and maximum speed, 

and frequency of starts and stops. One powertrain can be optimized for multiple driving 

cycles simultaneously; however, in this study, we select one specific driving cycle that is 

representative of a typical package delivery application. The flow of actions in this process 

is represented in Figure 37. 
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Figure 38: Design and operational objectives of Hybrid Electric Vehicles [15] 

The overarching objectives under consideration when developing an HEV are categorized 

and discussed (Figure 38) in detail by Ahmed M. Ali et al [15]. To solve the design space 

exploration problem, a search algorithm is necessary that can evaluate candidates from 

different architectures. Design space exploration is, in general, a non-linear problem 

meaning that an exhaustive search approach is necessary to guarantee that the global 

optimum is found. However, since the search space grows exponentially with the number 

of components, an exhaustive search is only feasible if the search space is not too large. 

Here, an approach that reduces the design space while retaining near optimality is used. 

(i) Need for Design Space Reduction 

The powertrain design variables considered in the DSE exercise include the transmission 

gear ratios and the electric motor power. Based on the vehicle parameters, a preliminary 

matching is performed between the transmission gear ratios and the electric machine power 

to meet the following requirements: 
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• desired acceleration and maximum speed;  

• desired gradeability. 

From this preliminary matching process, the range of values for both the gear ratios and 

the electric machine power output are obtained. For instance, for the four-speed automated 

manual transmission + electric machine (AMT+EM) architecture, the considered range of 

values is reported in Table 19. 

Table 19: Design space variables, range and discretization 

Design variable Value range Discretization 

Gear 1 3.5 – 4.5 5 

Gear 2 2.5 – 3.5 11 

Gear 3 1.2 – 2.5 14 

Final drive 5.13 - 

Electric Machine 150 -200 kW 30 

For this architecture, the size of the design space, based on the data reported in Table 19, 

would be 23,100. The process of evaluating the fuel economy with Dynamic Programming 

is computationally intensive, and becomes impractical when the design space becomes too 

large. Therefore, a brute-force exhaustive search is not feasible, and a reduction of the 

design space is needed. This is accomplished by means of a search algorithm that is able 

to filter out the candidates that are less likely to be optimal, as described in the next 

subsection. It will be shown in the following sections that with an approach called Gaussian 

Process Optimization, the number of evaluated candidates for this architecture is reduced 
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from 23,100 to 530. The performance and fuel economy calculations are then performed 

only on the remaining candidates.  

2.2.5 Search Algorithms Used in DSE 

Evaluating the objective functions of each powertrain candidate is considered 

computationally costly, due to heavy simulations and optimizations of the powertrain fuel 

consumption. Therefore, the search algorithm should carefully select which candidates to 

evaluate to reduce the search time. The candidate selection procedure is allowed to take time 

if it helps to reduce the overall time of the design space exploration. A heuristic search 

algorithm is proposed which is able to explore relevant parts of the design space from 

multiple architectures while reducing the number of evaluated candidates. 

(i) Overview of Convex Optimization 

Willans lines scalable engine model has been used to model hybrid electric vehicles since 

the late 90's. PHEV life-cycle cost, fuel cost and emission cost has been studied for over-

simplified vehicle model and a Peterson battery degradation model. DIRECT-method based 

series PHEV optimization with respect to battery size and motor size has been performed 

with synthesized drive cycle out of Markov chains based on collected driving data. Particle 

Swarm Optimization (PSO) method is applied to optimize a hybrid fuel-cell vehicle in terms 

of series and parallel numbers of fuel cells and supercapacitors. A comparison of four 

optimization methods for P2 Parallel HEV component size showed advantage of Simulated 

Annealing and DIRECT method over Genetic Algorithm and PSO. Optimizing the 
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parameters of a rule-based supervisory control strategy is studied based on a fixed HEV 

powertrain. Other methods used for HEV component size optimization include Parallel 

Chaos Optimization Algorithm (PCOA). Methods For parallel hybrid HEV with planetary 

gearsets, bond graphs have been abstracted to represent the gearing connection variants, and 

optimization of the bond graph structure leads to optimal powertrain selection. 

The nature of the optimization-optimal control problem is two-fold: firstly, the powertrain 

parameters needs to be selected; secondly the selected powertrain needs to be properly 

controlled to do its best. A review of the approaches used to deal with such problem is 

summarized in. The approaches for attacking the co-design problem are categorized into 

sequential, nested, combined and alternating methods.  

Combined methods combined the sizing optimization problem and vehicle optimal control 

in a drive cycle into a single optimal control problem to avoid running repeated vehicle 

simulations for all variants of powertrain architectures. Due to the mixed-integer 

programming nature of the problem caused by discrete switching dynamics of genset and 

gearshift, the problem is not solvable directly with convex optimization.  

Researchers at Chalmers University has conducted a series of investigation of this combined 

method using convex optimization. Further simplification than the convexification model is 

explored, where linear programming (LP) is used assuming that the efficiencies of 

components are constant values, and a 4% difference in result is observed. 
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Convex optimization is built for sizing and continuous optimal control problem, and 

combined with heuristics to turn the discrete engine on/off dynamics into a switching 

threshold for turning on the engine. 

An attempt was made by fusing a heuristic power threshold-based EMS strategy into a 

convexified HEV model, and optimizing the sizing of battery and genset with the control 

strategy at the same time cost. In this attempt however, the control strategy is heuristic and 

not globally optimal. In the same paper a second iterative Convex Optimization/Dynamic 

Programming (DP) approach is used, where DP is used to pass optimal engine on/off control 

trajectory for particular powertrain configuration to the problem as a fixed sequence, and 

the remaining sub-problem is handled by convex optimization to provide the next best 

powertrain configuration back to DP to generate an updated engine on/off trajectory. 

(ii) Introduction to the Gaussian Process Optimization 

The design space exploration can be expressed as a Multi-Objective Optimization Problems 

(MOOP). MOOP are optimization problems where the objective is to simultaneously 

minimize a set of 𝑀 objective functions 

min
x̅
(𝑔1(𝑥̅), 𝑔2(𝑥̅),… , 𝑔𝑀(𝑥̅)) 

subject to 𝑥̅ ∈ 𝑋,  

where 𝑔𝑖(𝑥̅) is an objective function, and 𝑋 denotes the design search space. 

A candidate is called Pareto-optimal if there are no other candidates that dominates the 

solution, i.e. if another candidate is better with respect to all objective functions [53]. The 
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idea is to find the Pareto-optimal solutions in the design space that offers the best trade-offs 

in conflicting objectives. The set of Pareto-optimal solutions is called the Pareto-front. 

Usually the knowledge of the Pareto-front requires an exhaustive search of all candidates, 

which in many cases are too computational demanding. A good approximation to the Pareto-

front that doesn’t requires full exhaustive search is the “dominance” function that is only 

based on evaluated candidates. The function is defined as: 

ℎ(𝑦̅; 𝑌̂) =
|{𝑦̃ ∈ 𝑌̂: 𝑦̃𝑖  ≤ 𝑦̅𝑖 , 𝑦̃𝑖 ≠ 𝑦̅𝑖 , ∀𝑖 = 1,… , 𝑛}|

|𝑌̂|
     (1) 

where | ∙ | denotes the number of elements in the set. The set 𝑌̂ contains the vectors 𝑦̅ for all 

evaluated candidates. The single-objective function ℎ(𝑦̅; 𝑌̂) measures the ratio of other 

candidates that dominates the given candidate. An advantage of the proposed measure (1) 

is that it is normalized with respect to the value ranges of the different objectives. Note that 

for Pareto-optimal candidates, the single-objective function ℎ(𝑦̅; 𝑌̂) = 0. With the 

introduction of the “dominance” function, an algorithm that suggests next best candidates 

is also needed to keep looking for Pareto-likely candidates. 

(iii) Candidate Selection Using Gaussian Process 

A search algorithm is necessary to identify which candidates in the design space to evaluate 

next in each iteration. A machine learning method called Gaussian Processes [54] is here 

proposed to identify which candidate to evaluate based on the previously evaluated 

candidates. Gaussian Processes have previously been proposed to solve global optimization 
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problems, see for example [55]. Here, the idea is to estimate ℎ(𝑦̅; 𝑌̂) for candidates that 

have not yet been evaluated. If any candidate is estimated to have ℎ(𝑦̅; 𝑌̂) = 0, within some 

confidence interval, the candidate is considered relevant to be evaluated because it can 

potentially improve the Pareto-front. If it is estimated that ℎ(𝑦̅; 𝑌̂) > 0, i.e. the candidate is 

not predicted to have better performance than the “so far” Pareto-optimal solutions, that 

candidate will not be considered for evaluation.  

It should be noted that Gaussian Process is originally intended for problems with inherent 

probabilistic nature, but it is used here to help with a deterministic optimization problem. 

The legitimacy of this seemingly misuse is that one could treat a large deterministic 

optimization problem as a probabilistic one, in which the true value distribution of all 

candidates could never be exploited due to computational demand. 

(iv) Gaussian Processes 

A Gaussian Process (GP) is a non-parametric function that can be used to model a spatially 

correlated function 𝑓(𝑢). It uses observations of the function input 𝑢 and output 𝑦 to 

compute an estimate 𝑦 = 𝑓(𝑢). A GP is defined by its mean function 𝜇(𝑢) and covariance 

function 𝑘(𝑢, 𝑢′), which is also called a kernel function.  

𝑓(𝑢) ∼ 𝐺𝑃(𝜇(𝑢), 𝑘(𝑢, 𝑢′)) 

The conditional distribution 𝑝(𝑓|𝑓) is computed as  

𝐴 = 𝐾(𝑢, 𝑢′)𝐾(𝑢, 𝑢)−1 
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𝑃 = 𝐾(𝑢′, 𝑢′) − 𝐾(𝑢′, 𝑢)𝐾(𝑢, 𝑢)−1𝐾(𝑢, 𝑢′) 

The covariance matrix 𝐾(𝑢, 𝑢′) is given by 

𝐾(𝑢, 𝑢′) =  (
𝑘(𝑢1, 𝑢1

′ ) ⋯ 𝑘(𝑢1, 𝑢𝑀
′ )

⋮ ⋱ ⋮
𝑘(𝑢𝑁, 𝑢1

′ ) ⋯ 𝑘(𝑢𝑁, 𝑢𝑀
′ )
) 

There are many different kernel functions to model spatial correlation. Here, the exponential 

kernel is used, 

𝑘(𝑢, 𝑢′) = 𝜎2exp (−
𝑟

ℓ
), 

where 𝑟 = √(𝑢 − 𝑢′)𝑇(𝑢 − 𝑢′) is the Euclidean distance and 𝜎 and ℓ are tuning parameters. 

The matrix 𝑃 gives a confidence measure of the estimate, meaning that the estimate 𝑓 has 

greater uncertainties at points where the diagonal elements of 𝑃 is large. By assuming that 

the true function 𝑓 exceeds a lower bound of the confidence interval, it is possible to 

determine which points are most likely to be a global minimum. Since the objective is to 

find Pareto-optimal candidates by finding candidates such that ℎ = 0, new candidates are 

selected such that the lower bound of the confidence interval is lower than zero. As more 

candidates are evaluated, the confidence interval close to the evaluated candidates will 

shrink and new candidates will be selected in other parts of the design space which has a 

lower confidence interval. This will help balance the search between global exploring of 

different areas of the design space which have not yet been explored and local exploring 

where many Pareto-optimal candidates have been found. 
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(v) Evaluation Procedure  

Gaussian Processes are used to estimate the function which maps a specific candidate 𝑥̅, 

i.e., a set of component sizes for a given architecture, to an estimate of the distance to the 

Pareto front. A GP model is estimated for each powertrain architecture where the evaluated 

candidates, i.e. their component configurations, are input and the corresponding values 

ℎ(𝑦̅; 𝑌̂) are outputs in the training data. 

In each iteration of the search algorithm, the GP models are updated for the architecture. 

Then, the GP model for each architecture is used to estimate for all remaining candidates 

which are likely to be Pareto-optimal, i.e. the candidates which have a confidence interval 

that includes zero. A new candidate 𝑥̅ is then selected from the architecture where the lower 

bound of the confidence interval has the lowest value.  

If a candidate 𝑥̅ cannot be evaluated or is infeasible, i.e. it cannot fulfill the specified 

performance requirements, the single-objective function (1) has no value. These candidates 

are ignored when evaluating the single-objective function ℎ(𝑦̅; 𝑌̂). However, note that it is 

likely that Pareto-optimal solutions are close to the set of infeasible candidates which means 

that the search algorithm is likely to select infeasible candidates. To avoid that the search 

algorithm focuses the search among the infeasible set, a penalty is added based on the 

distance from each candidate to the infeasible candidates. This is done by generating a 

second GP model for each architecture which is used to add a penalty to the estimated lower 

bound based on how close it is to evaluated candidates which where feasible and infeasible. 

The penalty is scaled to make sure that the search avoids candidates that are likely to be 
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infeasible but still evaluate those that are feasible. A GP model 𝑝 = 𝑓𝑝(𝑥̅) is trained for each 

architecture using evaluated candidates 𝑥̅ as input where infeasible candidates have output 

one and feasible candidates have output minus one. Then, the penalty is computed as the 

maximum of the estimated output for a new candidate 𝑝̂ = 𝑓𝑝(𝑥̅𝑛𝑒𝑤) and zero to have a 

value that is non-negative and should not penalize candidates far from the infeasible 

candidates. 

(vi) Initialization  

In order to make predictions which candidate to evaluate in each iteration requires there is 

a set of already evaluated candidates from all architectures. Therefore, the search algorithm 

is initialized by evaluating a randomly selected set of candidates from each architecture. 

The results from these candidates are then used to predict which next candidate to evaluate 

by the search algorithm.  

(vii) Search Algorithm Summary 

The design space exploration search algorithm can be summarized in the following steps: 

1. Define a search space including multiple architectures 𝑋 = 𝑋1 ∪ 𝑋2 ∪ …∪ 𝑋𝑞 

where 𝑞 is the number of architectures. 

2. Select randomly for each architecture a number of candidates and evaluate the 

objective functions for these candidates.  

3. Train a GP model for each architecture using the evaluated candidate component 

sizes as input and the value of the single-objective function (1) as output. 
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4. Train another GP for all architectures where feasible candidates are mapped to the 

value zero and infeasible candidates to a penalty value 𝛾. This is used to penalize 

candidates that are likely to be infeasible.  

5. Use the GP models to predict a lower bound of the confidence interval for all other 

candidates and the infeasibility penalty.  

6. Select the candidate that has the lowest lower bound (after adding the infeasibility 

penalty). If the lower bound is larger than 0, then stop the search. 

7. Otherwise, evaluate the selected candidate and go to step 3. 

The iterative process involved in this exercise is illustrated in Figure 39. 

 

Figure 39: Arriving at the optimal candidate using the search algorithm in [44] 

• Shaded area: 95% confidence interval 

• Dotted line: True value 
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• Red: Evaluated candidates 

• Green: Gaussian Process predicted values 

• Dotted line at bottom: threshold for optimal results 

The Gaussian Process Optimization could receive a speed boost if the initial candidates are 

close enough to the actual optimal ones in the design space. This could be achieved by 

utilizing the speed benefits of convex optimization to provide a set of approximately good 

candidates as the initial candidates for Gaussian Process Optimization. 

2.2.6 Optimal Energy Management Strategy  

Once the design space has been reduced to a manageable size, Dynamic Programming [25] 

can be used to evaluate the efficiency of the remaining candidates. Since two energy 

sources are available on hybrid powertrains, an energy management strategy is required to 

control the energy flows in the HEV. In this study, DP is used to solve the optimal energy 

management problem to determine the sequence of system inputs that result in the lowest 

cost solution, i.e. the highest fuel efficiency, for each of the optimal candidates.  

In any optimization problem, the cost function is the ley to the problem formulation and 

solution.  In this study, the primary goal is maximizing fuel economy while ensuring the 

minimum number of engine start-stops and gear shifts to keep emissions in check without 

a comprehensive emissions model. With this goal, the cost function 𝐽 to be minimized has 

been formulated: 
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min  
𝑢
𝐽 = min

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+ 𝛷|𝛥𝑢𝑔𝑒𝑛| + 𝛺|𝛥𝑢𝑔𝑒𝑎𝑟| 𝑑𝑡 
(8) 

where 𝑚̇𝑓 is the fuel consumption in g/s, 𝛥𝑢𝑔𝑒𝑛 is the engine on-off switching event, 

𝛥𝑢𝑔𝑒𝑎𝑟 is the gear change event, 𝛷 and 𝛺 are the cost penalties associated with engine on-

off and gear shift, respectively. 

A backward simulator is built from the sub-models described previously in section 2.1 in 

order to generate the optimal control strategy for the given scenario with the use of 

Dynamic Programming. The signal flow in the backward model is depicted in Figure 40. 

 

Figure 40: Backward simulator representation for a hybrid vehicle 

The sequence of controls provided by DP represents the power split between the internal 

combustion engine and the rechargeable energy storage system at successive time steps. 

The cost here corresponds to the design objectives: fuel consumption and genset start/stop. 

The set of choices at each instant is determined by considering the state of each powertrain 

component and the total power request. The number of solution candidates that can be 

considered and evaluated is a compromise between the computational capabilities and the 

accuracy of the result. 
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The optimal power split and resultant fuel economy for each selected candidate is generated 

using the open source ‘dpm’ toolbox [11]. 

2.3 Simulation Results and Problem Solution 

In this section, the candidates of all the five REEV architectures are presented in detail. 

The performance of every architecture is evaluated after having reduced the size of the 

design space to a manageable level. Appropriate cost functions will be extended to all the 

architectures in order to perform Dynamic Programming and obtain the fuel economy of 

all likely candidates. The candidates with the best fuel economy will subsequently be 

compared against each other over parameters including freight ton efficiency, cost, weight 

and packaging. 

2.3.1 Duty Cycles for the Delivery Truck 

The Design Space Exploration exercise dealt with in this paper is limited to a specified 

driving profile corresponding to a Class 6 pickup and delivery truck, with a REEV plugin 

hybrid architecture. The duty cycle in question is approximately 8 hours long, with zero 

geographical grade, and is representative of a start-stop driving scenario. The drive cycle 

that was initially synthesized for this purpose was too artificial to be considered a realistic 

set of scenarios, and was hence smoothed out to meet the necessary requirements for the 

application. The profile is depicted in Figure 41. The statistical features of the drive cycle 

are also reported in the Table 20. 



86 

 

 

Figure 41: The selected pick-up and delivery drive cycle 

Table 20: Driving cycle characteristics 

Property Original Smoothed partial Deviation 

Duration 7.69 hours (27,703 sec) 1.39 hours (5,000 sec) 22703 seconds 

Distance covered 96.73 miles 17.29 miles 79.44 miles 

Max Speed 73.71 miles/h 73.32 miles/h 0.39 miles/h 

Average Speed 27.79 miles/h 26.42 miles/h 1.37 miles/h 

Max Acceleration 1.6413 m/s^2 1.6413 m/s^2 0 

As per the benchmark set for the Class 6 pick-up and delivery truck application, the 

required operating points have been plotted on the electric machine map depicted in Figure 

42, utilizing a direct drive architecture with a final drive ratio of 5.13. The size of the 

working points on the plot represents the power demand from the motor. This gives an 

early indication of the continuous and peak power requirement for the electric machine. 
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Figure 42: Electric motor map with operating points for the selected drive cycle 

2.3.2 Constraints in the Optimization Process 

The assumptions for the weight and cost of the powertrain, and the methodology for 

arriving at the required values are elaborated in Tables 21 and 22. The specifications quoted 

in these tables are obtained through market research for the corresponding product as well 

as by using advice from the industry partners involved in the CERC Truck Consortium. 

Table 21: Weight and cost of the REEV powertrain 

Components Weight 

ICE Engine 300 kg 

Final Drive 100 kg 

Genset 260 kg 

AMT Transmission  50 + 25*gears kg 

e-axle Transmission 25*gears kg 

Battery 7 kg/kWh 

Electric Motor (Interpolated) [130kW, 195kg; 212kW, 340kg] 

Other* 3000 kg 
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Components Cost 

ICE Engine 10,000 $ 

Final Drive 1,000 $ 

Genset 15,000 $ 

AMT Transmission  2000 + 500*gears $ 

e-axle Transmission 2000 + 500*gears $ 

Battery 300 $/kWh 

Electric Motor 50 $/kW 

Fuel (gas) 2.80 $/gal 

Electricity 0.15 $/kWh 

Table 22: Calculation of the cost and weight of the REEV powertrain: 

Components Definition 

Powertrain Weight 𝑤𝑝𝑡 = 𝑤𝑔𝑒𝑛𝑠𝑒𝑡 +𝑤𝑏𝑎𝑡𝑡 +𝑤𝑚𝑜𝑡𝑜𝑟 +𝑤𝑡𝑟𝑎𝑛𝑠 +𝑤𝑓𝑑 

Curb Weight 𝑤𝐺𝐶𝑊𝑅 = 𝑤𝑝𝑡 +𝑤𝑜𝑡ℎ𝑒𝑟 

Gross Weight 𝑤𝐺𝑉𝑊𝑅 = 𝑤𝐺𝐶𝑊𝑅 +𝑤𝑝𝑎𝑦𝑙𝑜𝑎𝑑 

Powertrain Cost 𝑐𝑝𝑡 = 𝑐𝑔𝑒𝑛𝑠𝑒𝑡 + 𝑐𝑏𝑎𝑡𝑡 + 𝑐𝑚𝑜𝑡𝑜𝑟 + 𝑐𝑡𝑟𝑎𝑛𝑠 + 𝑐𝑓𝑑 

Fuel Cost 𝑐𝑓𝑢𝑒𝑙 = 𝑢𝑓𝑢𝑒𝑙 ×
𝑚𝑓𝑢𝑒𝑙

1000

𝐿_𝑡𝑜_𝐺𝑎𝑙

𝜌𝑔𝑎𝑠
×𝑁𝑡𝑟𝑖𝑝 × 365 ×𝑁𝑦𝑒𝑎𝑟 

Electricity Cost 𝑐𝑒𝑙𝑒𝑐 = 𝑢𝑒𝑙𝑒𝑐 × 𝐸𝑒𝑙𝑒𝑐 ×𝑁𝑡𝑟𝑖𝑝 × 365× 𝑁𝑦𝑒𝑎𝑟 

Energy Cost 𝑐𝑒𝑙𝑒𝑐 = 𝑢𝑒𝑙𝑒𝑐 × 𝐸𝑒𝑙𝑒𝑐 ×𝑁𝑡𝑟𝑖𝑝 × 365× 𝑁𝑦𝑒𝑎𝑟 

Operation Cost 𝑐𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑝𝑡 + 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 

1. The maximum available payload is denoted as 𝑤𝑝𝑎𝑦𝑙𝑜𝑎𝑑  

2. The electric energy used per run is denoted as 𝐸𝑒𝑙𝑒𝑐  

3. The number of years of operation is assumed to be 𝑁𝑦𝑒𝑎𝑟 = 10 

4. The number of daily trips run by the truck is denoted by 𝑁𝑡𝑟𝑖𝑝 

Based on the chosen vehicle parameters, the minimum powertrain requirements are 

calculated in order to meet the performance benchmarks set by the industry partner. The 

broad list of powertrain requirements can be summarized as: Minimum power for 

acceleration and max speed; RPM requirement for presumed reduction gear ratio; Minimum 
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power and torque requirement for grade performance. The specific list of requirements and 

the corresponding powertrain requirements are tabulated in Table 23. 

Table 23: Powertrain performance benchmark 

Presumed Axle Reduction 

Gear Ratio Values 
4.17 5.13 6.23 

 Target Time Power Required 

Acceleration Time 

0-20 mph 9 sec 54.91~102.11 kW* 

0-30 mph 14 sec 82.83~151.11 kW 

0-40 mph 22 sec 102.24~179.49 kW 

0-50 mph 36 sec 114.05~187.75 kW 

25-35 mph 9 sec Powertrain Specific 

Maximum Speed 70 mph 

711.45 rpm (i0 = 1) 

89.91 kW 
2966.7 rpm (i0 = 4.17) 

3815. rpm (i0 = 5.13) 

4432.3 rpm (i0 = 6.23) 

The required power for acceleration events is calculated as the sum of two terms: a constant 

force term needed for acceleration, and a constant power term needed to sustain the attained 

speed. The expressions needed to determine the power demand are obtained from [56]. The 

left-hand side integral is broken into two parts: the 0 to 𝑣𝑏 constant force operation and the 

𝑣𝑏 to 𝑣𝑓 constant power operation: 

𝑚∫
𝑑𝑣

𝑃𝑚
𝑣𝑏

𝑣𝑏

0

+𝑚∫
𝑑𝑣

𝑃𝑚
𝑣

𝑣𝑓

𝑣𝑏

= 𝑡𝑓 

Solving for 𝑃𝑚, we can get:  

𝑃𝑚 =
𝛿𝑚

2𝑡𝑓
(𝑣𝑏

2 + 𝑣𝑓
2) 
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{
  
 

  
 𝑃𝑚_𝑙𝑜𝑤 = lim

𝑣𝑏→0
𝑃𝑚 + 𝑃𝑓 =

𝛿𝑚𝑣𝑓
2

2𝑡𝑓
+ 𝑃𝑓

𝑃𝑚_ℎ𝑖𝑔ℎ = lim
𝑣𝑏→𝑣𝑓

𝑃𝑚 + 𝑃𝑓 =
𝛿𝑚𝑣𝑓

2

𝑡𝑓
+ 𝑃𝑓

𝑃𝑓 = 𝑣𝑓 (𝑚𝑔𝐶𝑓0 +𝑚𝑔𝑣𝑓𝐶𝑓1 + (
1

2
𝜌𝐶𝐷𝐴𝑤 + 𝐶𝑓2)𝑣𝑓

2)

 

Using the same approach taken for meeting the acceleration benchmarks, the powertrain 

requirements are estimated for meeting the gradeability benchmarks as in Table 24. 

Table 24: Gradeability benchmarks for the powertrain 

Speed 

(mph) 

Grade 

(%) 

Required Wheel 

Torque (Nm @ 

rpm) 

Axle Reduction 

Gear Ratio 

Motor Torque 

(Nm) 

and Speed (rpm) 

with gear ratio 

Required 

Power 

(kW) 

8 30 11727.70@81.31 

i0 = 4.17 2812.4@339.06 

99.86 i0 = 5.13 2286.1@417.11 

i0 = 6.23 1882.5@506.56 

30 12 5197.53@304.91 

i0 = 4.17 1246.4@1271.5 

165.96 i0 = 5.13 1013.2@1564.2 

i0 = 6.23 834.27@1899.6 

55 4 2445.80@559.00 

i0 = 4.17 586.52@2331 

143.18 i0 = 5.13 476.76@2867.7 

i0 = 6.23 392.58@3482.6 

65 2 1876.08@660.63 

i0 = 4.17 449.90@2754.8 

129.79 i0 = 5.13 365.71@3389.0 

i0 = 6.23 301.14@4115.7 
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A graphical representation of the preliminary matching for the axle reduction ratios based 

on the speed and gradeability requirements is depicted in Figure 43. This figure indicates 

that for the range of maximum torque of the EM in the [2400, 3200] Nm bracket, and the 

maximum EM speed in the bracket of [3000, 4500] RPM, the ideal axle reduction gear ratio 

lies in the range of [3, 6.5]. 

 

Figure 43: Preliminary matching for the axle reduction ratios with speed and grade 

2.3.3 Conventional Powertrain 

The conventional powertrain of the Class 6 delivery truck has a gasoline engine, with a 5-

speed automatic transmission. The powertrain is represented in Figure 44, and the 

component characteristics are reported in Table 25. For this architecture the state and 

control variables are listed in Table 26, with fuel cost penalties added for engine start/stop 

and gear change in the objective function to minimize fuel consumption. 
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Figure 44: Conventional powertrain architecture 

Table 25: Conventional powertrain specification range 

Design Variable Value 

Engine Power (kW) 278 

Engine Top Speed 5000 RPM 

1st gear ratio 3.1 

2nd gear ratio 1.81 

3rd gear ratio 1.41 

4th gear ratio 1 

5th gear ratio 0.71 

Final Drive 5.13 

Table 26: Conventional powertrain control parameters and cost function 

 

 

State Variables Engine State, sgen, ON or 

OFF 

Current Gear, sgear (5-speed + 

Final drive) 

Control 

Variables 

Engine ON/OFF, ugen Selected Gear, ugear 

Objective 

Function 
min
𝑢
 𝐽 = min

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+ 𝛷|𝛥𝑢𝑒𝑛𝑔| + 𝛺|𝛥𝑢𝑔𝑒𝑎𝑟| 
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Figure 45: Engine efficiency and fuel consumption for the conventional powertrain 

Fuel consumption for the conventional powertrain over the CERC P&D drive cycle is 

depicted in Figures 45 and 46. The conventional gasoline engine vehicle consumes 50.8 kg 

of fuel, which serves as a benchmark for the HEV architectures to be studied going forward. 

Table 27 lists the significant specifications and performance of the IC engine truck. 

 

Figure 46: Fuel consumption for the conventional powertrain 
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Table 27: Conventional IC engine powertrain specifications 

Final Drive 

Ratio 
Trans Ratio 

Fuel Economy 

(mpg) 

Powertrain 

Weight (kg) 

Powertrain 

Cost ($) 

10 Yrs. 

Energy Cost 

Freight 

ton eff. 

5.13 
3.1, 1.8, 1.4, 

1.0, 0.7 
7.1 700.0 15,500.0 150,327.0 36.6 

 

2.3.4 Hybrid Powertrains 

The five proposed hybrid powertrain architectures are presented in more detail in the 

following sub-sections. The common features are the genset and the plug-in capability, 

while they differ in the size of the electric motor, transmission and driveline details. 

(i) Two-speed e-Axle 

The two-speed e-Axle powertrain is driven by an electric machine through a 2-speed 

transmission. The powertrain is show in Figure 47, while the range extender genset and 

transmission characteristics are reported in Table 28. The state and control variables for 

this architecture are listed in Table 29, with fuel cost penalties added for engine start/stop 

and gear change in the objective function to minimize fuel consumption. 

 

Figure 47: Two-speed e-Axle powertrain architecture 
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Table 28: Two-speed e-Axle powertrain parameters 

Design Variable Value Range 

Motor Continuous Power (kW) 150-200 

1st gear ratio 1.5-3 

2nd gear ratio 1 

Final Drive Range 5.13 

Engine Top Speed 4000 RPM 

Table 29: Two-speed e-Axle powertrain control parameters and cost function 

State Variables Genset State, 

sgen, ON or OFF 

Current Gear, sgear (2-

speed+Final drive) 

State of Charge of 

the Battery, SOC 

Control 

Variables 

Engine 

ON/OFF, ugen 

Selected Gear, ugear Genset Power 

Level, pgen 

Objective 

Function 
min
𝑢
 𝐽 = min

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+ 𝛷|𝛥𝑢𝑒𝑛𝑔| + 𝛺|𝛥𝑢𝑔𝑒𝑎𝑟| 

Multi-objective DSE is performed on two-speed e-axle candidates, shown in Figure 48.  

 

Figure 48: Pareto front generation 
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From the design space exploration for the 2-speed e-axle architecture, a number of 

observations are made. Different grade requirements have different electric machine size 

preferences. A grade of 30% at 8mph requires larger overall gear ratio (best: 3×5.13), a 

grade of 12% at 20mph requires smaller overall gear ratio (best: 2×5.13), a 4% grade at 

55mph and 2% grade at 65mph requirements are met easily, and are only sensitive to the 

electric motor size, not the gear ratios. They can both be satisfied through a direct drive 

from the electric machine to the wheels. The ease of satisfying the gradeability requirement 

is indicated by the torque margin factor. 

𝑇𝑜𝑟𝑞𝑢𝑒 𝑚𝑎𝑟𝑔𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑜𝑟𝑞𝑢𝑒

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇𝑜𝑟𝑞𝑢𝑒
− 1 

The study of the grade capability requirements has led to a number of conclusions. With 

the current gear ratio selection of [1.5-3] and current motor range [150-200] kW, the 3rd 

and 4th grade requirements are easy to meet. The 30% grade at 8mph requirement asks for 

a larger gear ratio, and with an electric motor of 165kW continuous power, this ratio is at 

least 2.25. With the increase in motor size, the required gear ratio will drop to 2.0. The 12% 

grade at 30 mph requirement asks for higher EM power, and delivers the best performance 

when the motor has the highest power delivery at 30 mph. This requirement is generally 

met unless a highly undesirable combination is chosen, such as: the electric motor is under 

170kW and the 1st gear ratio is above 2.3. 
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Figure 49: Pareto front generation for two-speed e-axle candidates 

An illustration of the pareto front generation for the 2-speed e-axle architecture is shown 

in Figure 49 as an example. In this scenario, a trade-off exists between motor size and fuel 

consumption. Among the most optimal candidates, there is a fuel consumption difference 

of 15g and a motor size difference of 20 kW. The worst candidate has 85g more fuel 

consumption than the best candidates. 

A minimum motor power of 165 kW is required to meet drive cycle and grade requirement 

benchmarks. Moreover, a higher 1st gear ratio offers better fuel economy. In order to meet 

grade requirements, gear ratios around 2.3 are best suited for all four designated grade 

requirements even with a relatively small motor. This observation is evident from the gear 

ratio vs motor size plot in Figure 50. 
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Figure 50: Optimal candidate selection for two-speed e-axle candidates 

Table 30: Two-speed e-axle – best candidate; genset penalty analysis 

Fuel Consumption Comparison for Different Genset Start Penalty 
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1 2C 1C 10 190 14.08 19.38 12.18 0 

2 2C 1C 20 165 15.87 19.44 12.57 0.39 

3 2C 1C 30 143 17.41 19.43 15.51 3.33 
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As the fuel penalty increases, the number of genset start-stop events will drop, but on the 

other hand, there will be more unnecessary idling time when the fuel is not converted into 

useful work. When the fuel penalty for start-stop is 30g instead of 10g, a considerable 3.33 

kg of fuel is wasted, at the cost of 47 less genset starts, from 190 starts to 143 starts. 

Motor efficiency falls mostly in either very high (90-95%) regions, or very low (<80%) 

regions. The room for low efficiency region performance improvement is limited by 

flexibility of gear ratios, and characteristic of drive cycle. 39% time in 1st gear, 61% time 

in 2nd gear, as shown in Figure 51. 

Table 31: Electric machine operating time against efficiency 

Motor efficiency (%) Operation time (%) 

95-99 0 

90-95 27.78 

85-90 5.71 

80-85 3.12 

<80 63.38 
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Figure 51: EM optimal operating points and gear shits 

 

Figure 52: Genset power, engine state, battery power for the speed profile 

A number of optimal powertrain operation properties are summarized below. 

• Discharging C-rate: 10C 

• Charging C-rate: 1C 

• Engine on: 50.87 min 
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• Battery charging: 101.65 min  

• Charging from Engine: 44.3 min 

• Engine turns on 20 times 

• Idling events are seen during hard regen braking 

(ii) Three-speed AMT + Electric Motor 

The three-speed AMT+EM powertrain, depicted in Figure 53, is driven by an electric 

machine through a 3-speed automated manual transmission, with a genset range extender. 

The characteristics of the components are listed in Table 32. The state and control variables, 

and the cost function for this architecture are listed in Table 33. 

 

Figure 53: Three-speed AMT+EM powertrain architecture 

Table 32: Three-speed AMT+EM powertrain parameters 

Design Variable Value Range 

Motor Continuous Power (kW) 150-200 

1st gear ratio 2.5-4 

2nd gear ratio 1.2-2.5 

3rd gear ratio 1 

Final Drive Range 5.13 

Engine Top Speed 4000 RPM 
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Table 33: Three-speed AMT+EM powertrain control parameters and cost function 

State Variables Genset State, sgen, 

ON or OFF 

Current Gear, sgear (3-

speed+Final drive) 

State of Charge of 

the Battery, SOC 

Control 

Variables 

Engine ON/OFF, 

ugen 

Selected Gear, ugear Genset Power 

Level, pgen 

Objective 

Function 
min 
𝑢
 𝐽 = min

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+𝛷|𝛥𝑢𝑒𝑛𝑔| + 𝛺|𝛥𝑢𝑔𝑒𝑎𝑟| 

 

Multi-objective DSE is performed on three-speed AMT+EM candidates, shown in Fig 54.  

 

Figure 54: Pareto front generation 
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From the design space exploration for the 3-speed e-axle architecture, a number of 

observations are made. Different grade requirements have different electric machine size 

preferences. The 30% grade at 8mph requires a large 1st gear ratio, and has no dependence 

on 2nd gear ratio. The 12% grade at 20mph requirement is focused on the 2nd gear ratio, 

slightly preferring a smaller 2nd gear ratio. The 4% grade at 55mph and 2% grade at 65mph 

requirements are met easily, and is only sensitive to the electric motor size, not the gear 

ratios. They can both be satisfied by a direct drive (3rd gear) to the wheels. 

The study of the grade capability requirements has led to a number of conclusions. With 

the current gear ratio setup at [2.5-4] and [1.2-2.5], and current electric motor range [150-

200] kW, the 3rd and 4th grade requirements are easy to meet. The 1st grade requirement is 

met by all candidates, because the 1st gear ratio starts at 2.5, which is more than enough for 

the 1st grade requirement for any motor size. The 2nd grade requirement is focused on the 

gear ratio of 2nd gear, because, in order to meet that requirement, the vehicle has to be in 

2nd gear, not 1st or 3rd. Furthermore, the requirement on 2nd gear ratio is similar to the two-

speed e-axle case, where a slightly smaller gear ratio is preferred, and when motor size is 

less than 170kW, the 2nd gear ratio should be less than 2.4. In general, the grade 

performance requirement is not a concern as long as the 1st gear ratio is taller than 2.4, and 

the 2nd gear ratio is shorter than 2.4. 
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Figure 55: Candidate feasibility study for 3-speed AMT+EM 

 

 

Figure 56: Optimal component sizes 
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A single best solution stands out as a result of the converging tendency of smaller motor 

and lesser fuel consumption, and gear ratio optimization for fuel consumption. 

Transmission ratio provided enough range. Only a few combinations fail the grade test. 

The worst candidate has 117g more fuel consumed than the best candidate. A minimum 

165kW motor is required for drive cycle and grade requirements. Most gear ratio 

combinations could meet grade performance requirements. Optimal result pointed to one 

single candidate.  

The choice of gear ratio is solely targeted at optimizing fuel consumption with the smallest 

possible electric motor, as grade requirements are out of the picture. For the 1st gear ratio, 

the choice gear ratio value 3 could be explained as the best option to place the low speed 

low torque operations into an optimal region on the motor efficiency map. For 2nd gear 

ratio, the choice of ratio equal to 1.2 could be explained as the tendency to require more 

diversified small gear ratios slightly above 1 in order to improve motor efficiency for low 

speed low torque operations.  

Motor efficiency falls mostly in either very high (90-95%) regions, or very low (<80%) 

regions. The room for low efficiency region performance improvement is limited by 

flexibility of gear ratios, and characteristic of drive cycle. Timewise, 3% is spent in 1st gear, 

33% in 2nd gear, 64% in 3rd gear as indicated in Figure 57. 
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Figure 57: EM optimal operating points and gear shifts 

 

Table 34: Electric machine operating time against efficiency 

Motor efficiency (%) Operation time (%) 

95-99 0 

90-95 27.85 

85-90 5.81 

80-85 3.07 

<80 63.27 
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Figure 58: Genset power, engine state, battery power for the speed profile 

A number of optimal powertrain operation properties are summarized below. 

• Discharging C-rate: 10C 

• Charging C-rate: 1C 

• Engine on: 58.28 min 

• Battery charging: 103.1 min  

• Charging from Engine: 45.0 min 

• Engine turns on 21 times 

• Idling events are seen during hard regen braking 

(iii) Four-speed AMT + Electric Motor 

The four-speed AMT+EM powertrain, see Figure 59, is driven by an electric machine 

through a 4-speed automated manual transmission, with a genset range extender. The 
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component characteristics are listed in Table 35. The state and control variables, and the 

cost function for this architecture are listed in Table 36. 

 

Figure 59: Four-speed AMT+EM architecture 

Table 35: Four-speed AMT+EM powertrain parameters 

Design Variable Value Range 

Motor Continuous Power (kW) 150-200 

1st gear ratio 3.5-4.5 

2nd gear ratio 2.5-3.5 

3rd gear ratio 1.5-2.5 

4th gear ratio 1 

Final Drive Range 5.13 

Engine Top Speed 4000 RPM 

Table 36: Four-speed AMT+EM powertrain control parameters and cost function 

State 

Variables 

Genset State, sgen, ON 

or OFF 

Current Gear, sgear (4-

speed+Final drive) 

State of Charge of 

the Battery, SOC 

Control 

Variables 

Engine ON/OFF, ugen Selected Gear, ugear Genset Power 

Level, pgen 

Objective 

Function 
min
𝑢
 𝐽 = min

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+𝛷|𝛥𝑢𝑒𝑛𝑔| + 𝛺|𝛥𝑢𝑔𝑒𝑟| 
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Multi-objective DSE is performed on four-speed AMT+EM candidates, shown in Fig 60.  

 

Figure 60: Generation of pareto-optimal candidates 

 

From the design space exploration for the 4-speed e-axle architecture, a number of 

observations are made. Similar to the case for 3-speed architecture, grade requirements are 

generally met. Only a few cases exist where the 12% grade at 30mph requirement is not 

met, due to a lack of gear ratios below 2.4. The 2nd grade performance benchmark (12% 

grade at 30mph) is the most challenging requirement due to its power demand, the best 

TAF for it is 16%. 
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Figure 61: Four-speed AMT+EM Pareto front 

The study of the grade capability requirements has led to a number of conclusions. A single 

best solution stands out as a result of the converging tendency of smaller electric motor 

size and lesser fuel consumption, and gear ratio optimization for fuel consumption. The 

selected range of gear ratios proved to be sufficient. Only a few combinations fail the 

gradeability test. The worst candidate has 117g more fuel consumed than the best 

candidate. A minimum continuous power of 165kW is required for the electric machine to 

meet the drive cycle and grade requirements. Most gear ratio combinations could meet the 

gradeability performance requirements. Compared to three-speed AMT+EM architecture, 

the four-speed version doesn’t provide noticeable energy cost drop. For the 1st gear ratio, 

the choice of value at 4.5 could be explained as the best option in order to place the extreme 

low speed low torque operations into an optimal region on the motor efficiency map.  
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For the 2nd gear ratio, the choice of value at 3.0 could be considered as the best option to 

place the low speed low torque operations into an optimal region on the motor efficiency 

map. For the 3rd gear ratio, the choice of 1.2 could be explained as the tendency to require 

more diversified small gear ratios slightly above 1 in order to improve motor efficiency for 

high speed operations by slightly reducing motor speed and increasing torque. 

 

Figure 62: Optimal component sizes 

 

Motor efficiency falls mostly in either very high (90-95%) regions, or very low (<80%) 

regions. Timewise, 1% is spent in 1st gear, 23% in 2nd gear, 46% in 3rd gear, 30% in 4th 

gear as shown in Figure 63.  
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Figure 63: EM optimal operating points and gear shifts 

Table 37: Electric machine operating time against efficiency 

Motor efficiency (%) Operation time (%) 

95-99 0 

90-95 29.74 

85-90 4.49 

80-85  2.46 

<80 63.30 
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Figure 64: Genset power, engine state, battery power for the speed profile 

A number of optimal powertrain operation properties are summarized below 

• Discharging C-rate: 10C 

• Charging C-rate: 1C 

• Engine on: 61.70 min 

• Battery charging: 103.48 min  

• Charging from Engine: 45.18 min 

• Engine turns on 21 times 

• Idling events are seen during hard regen braking 

(iv) Direct Drive 

The direct drive powertrain, see Figure 65, is driven by an electric machine through a final 

drive ratio of 5.13, with a genset range extender. The component characteristics are listed 
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in Table 38. The state and control variables, and the cost function for this architecture are 

listed in Table 39. 

 

Figure 65: Direct drive powertrain architecture 

Table 38: Direct drive powertrain parameters 

Design Variable Value Range 

Motor Continuous Power (kW) 150-450 

Final Drive Range 5.13 

Engine Top Speed 4000 RPM 

Table 39: Direct drive powertrain control parameters and cost function 

State 

Variables 

Genset State, sgen, ON or OFF State of Charge of the Battery, 

SOC 

Control 

Variables 

Genset ON/OFF, ugen Genset Power Level, pgen 

Objective 

Function 
𝑚𝑖𝑛
𝑢
 𝐽 = 𝑚𝑖𝑛

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+𝛷|𝛥𝑢𝑔𝑒𝑛| 
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Figure 66: Direct drive pareto front 

From the design space exploration for the direct drive architecture, a number of 

observations are made. A trade off exists between electric motor size and fuel consumption. 

As there’s no transmission in this architecture, the motor size needs to be much larger to 

pass the grade performance tests. The worst candidate has 42g more fuel consumed than 

the best candidate. Compared to the e-axle AMT+EM architectures, the direct drive layout 

provides better fuel economy due to the fact that there are no transmission losses. But this 

saving is partially offset by the lack of a transmission to further optimize motor operation 

across the operating range.  

The drawback of the direct drive layout is obvious: an oversized electric motor increases 

powertrain weight and cost. Motor efficiency falls mostly in either very high (90-95%) 

regions, or very low (<80%) regions. The room for low efficiency region performance 

improvement is limited by the lack of a gearbox for torque multiplication. 
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Figure 67: EM optimal operating points 

Table 40: Electric machine operating time against efficiency 

Motor efficiency (%) Operation time (%) 

95-99 0 

90-95 15.90 

85-90 7.53 

80-85  3.24 

<80    73.32 
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Figure 68: Genset power, engine state, battery power for the speed profile 

A number of optimal powertrain operation properties are summarized below. 

• Discharging C-rate: 10C 

• Charging C-rate: 1C 

• Engine on: 58.0 min 

• Battery charging: 100.92 min  

• Charging from Engine: 43.93 min 

• Engine Idling: 14.07 min 

• Engine turns on 19 times 

• Idling events are seen during hard regen braking 



118 

 

(v) Dual Motor 

The dual motor powertrain is shown in Figure 69. The component characteristics are 

presented in Table 41. The state and control variables, and the cost function are listed in 

Table 42. 

 

Figure 69: Dual motor powertrain architecture 

Table 41: Dual motor powertrain parameters 

Design Variable Value Range 

Motor 1 Continuous Power (kW) 150-300 

Motor 2 Continuous Power (kW) 50-150 

Final Drive Range 5.13 

Engine Top Speed 4000 RPM 

Table 42: Dual motor powertrain control parameters and cost function 

State Variables Genset State, 

sgen, ON or OFF 

Current Gear, sgear (4-

speed+Final drive) 

State of Charge of 

the Battery, SOC 

Control 

Variables 

Genset ON/OFF, 

ugen 

Genset Power Level, 

pgen 

Torque Split 

Factor, fsplit 

Objective 

Function 
𝑚𝑖𝑛
𝑢
𝐽 = 𝑚𝑖𝑛

𝑢
∫ 𝑚̇𝑓(𝑥, 𝑢)𝑑𝑡
𝑇𝑓

𝑇0

+𝛷|𝛥𝑢𝑔𝑒𝑛| 
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Figure 70: Dual motor pareto front 

From the design space exploration for the dual motor architecture, a number of 

observations are made. Several optimal candidates exist, but the combined motor size is 

consistent. Minimum combined electric motor power stands at 370kW. Compared to the 

single-motor direct drive architecture, the total motor power required remains the same. 

But the candidate with the best fuel consumption is slightly better than that of the direct 

drive layout by a margin of just 1%. 
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Figure 71: Dual motor architecture component sizes 

A compromise between Motor 1 size and Motor 2 size exists in this architecture. In 

combination, they need to reach the torque required for every individual gradeability 

performance requirement. Compared to e-axle architectures, the dual motor layout 

provides minor advantage in fuel savings due to the fact that, although there is no 

transmission loss, the relatively low efficiency of motor operation compromises the savings 

on transmission losses. Motor efficiency falls mostly in either very high (90-95%) regions, 

or very low (<80%) regions. Motor 1, which is bigger in size, would be better off working 

in low power situations or be turned off, so that the combined system could minimize 

energy losses during certain operating points on the drive cycle. 
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Figure 72: Dual motor operating maps 

Table 43: Electric machine operating time against efficiency 

Motor efficiency (%) Motor 1 (%) Motor 2 (%) 

95-99 0 0 

90-95 12.30 22.52 

85-90 5.42 5.19 

80-85 1.83 2.94 

<80  80.44 69.34 
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Figure 73: Genset power, engine state, battery power for the speed profile 

A number of optimal powertrain operation properties are summarized below. 

• Engine on: 52.5 min 

• Battery charging: 103.93 min  

• Charging from Engine: 44.07 min 

• Engine turns on 19 times 

2.3.5 Cross-Architecture Performance and Cost Evaluation 

At this stage, multi-objective design space exploration is performed on each architecture. 

Using the near-optimal component size range for each REEV layout, fuel economy values 

are evaluated using Dynamic Programming. For delivery trucks, freight ton efficiency is 

defined as the number of tons of freight moved for one mile for each gallon of fuel: 
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𝜂𝑓𝑟𝑒𝑖𝑔ℎ𝑡−𝑡𝑜𝑛 =
𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 × 𝐷𝑡𝑟𝑖𝑝

𝑉𝑓𝑢𝑒𝑙
= 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝑀𝑃𝐺 

(9) 

where 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑  is the maximum available payload of the truck in tons, 𝐷𝑡𝑟𝑖𝑝 is the trip 

distance in miles and 𝑉𝑓𝑢𝑒𝑙  is the volume of fuel used per trip in gallon. 

As discussed earlier, the primary metrics for evaluating the selected architectures are 

powertrain cost, powertrain weight and freight ton efficiency. For all the five architectures, 

these three parameters are obtained and compared against each other. A number of 

assumptions have been made for the cost and weight evaluation of the various powertrain 

components, based on industry trends and available data. Calculation of the cost and weight 

of the REEV powertrains are performed based on the methodology summarized in Section 

2.3.2. 

The results of the cross-architecture performance comparison are presented in Figures 74 

to 77. Figures 74 and 75 show the relation between freight ton efficiency, powertrain 

weight and cost for the REEV architectures, while Figure 76 incorporates the conventional 

powertrain into the picture. It is evident from Figure 76 that the two-speed e-axle 

architecture has the highest freight ton efficiency, since adding more speeds into the 

transmission adds to the losses in the driveline while increasing the cost of the powertrain 

at the same time. 
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Figure 74: Comparison of powertrain cost vs weight vs freight ton efficiency 

 

Figure 75: Comparison of powertrain cost vs weight vs freight ton efficiency 
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Figure 76: Comparison against the conventional powertrain 

 

Figure 77: Powertrain cost comparison over the lifetime of operation 
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In comparison to the conventional powertrain, all the REEV architectures have far superior 

freight ton efficiency, although at a much higher powertrain cost. The hybrid powertrains 

have more components and hence incur a much higher initial cost. This is expected to be 

offset by the decreased cost in fuel consumption over time. The REEV powertrains cost in 

the range of 50,000 USD, against the 15,000 USD initial investment for the conventional 

powertrain, as shown in Figure 77. Furthermore, the direct drive and dual motor 

architectures demand greater initial investment over the two-speed e-Axle, three-speed and 

four-speed AMT+EM architectures largely due to the higher cost of the electric motor/s. 

Figure 77 shows that the conventional architecture may have a lower initial investment 

cost, but the high fuel cost adds up and starts offsetting the initial cost advantage. Therefore, 

the range extender candidates start to surpass the conventional powertrain after 3 years of 

operation. The dual motor and direct drive candidates have a small price margin over 

AMT+EM solutions because of the larger motor size requirement. Note that maintenance 

cost for the vehicle is not included in this evaluation. 

Additional comments can be made comparing the results shown in Figures 78 to 81, where 

the influence of each architecture on the powertrain efficiency, motor size and weight is 

shown. These figures also highlight the statistical spread of the effect of the component 

size range on these parameters using box plots. They convey the variability of the 

performance parameters for each architecture with change in component size.  

Figures 78 and 80 show that in terms of freight ton efficiency and powertrain weight, the 

two-speed e-Axle stands out among the other architectures. 
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For the direct drive architecture, a trade-off exists between motor size and freight ton 

efficiency. As there is no transmission, the motor size needs to be much larger to pass the 

grade performance tests. Compared to AMT+EM and two-speed e-Axle architectures, the 

direct drive layout is expected to offer better freight ton efficiency due to the fact that there 

are no transmission losses. But this saving is partially offset by the lack of a transmission 

to further optimize motor operation. The drawback of direct drive is evident: oversized 

motor increases powertrain weight and cost. 

 

Figure 78: Freight ton efficiency comparison 
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Figure 79: Motor size comparison 

The dual motor architecture has a compromise between motor 1 and motor 2 size. When 

combined, they need to reach the torque required for each individual grade performance 

requirement. Compared to e-Axle architecture, dual motor provides a minor advantage in 

fuel savings due to the fact that there are no transmission losses.  

When it comes to powertrain weight and cost, the two-speed e-axle architecture once again 

stands out among the rest – refer to Figures 80 and 81. The higher cost and weight of the 

direct drive and dual motor architectures take them out of consideration for the optimal 

candidate. Although the motor size is slightly better for three-speed and four-speed 

architectures, the two-speed architecture outshines the other two in terms of freight ton 

efficiency, powertrain weight and cost. Hence, the overall trend for this particular 

application is clearly in favor of the two-speed e-axle topology. 
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Figure 80: Powertrain weight comparison 

 

 

Figure 81: Powertrain cost comparison 

2.3.6 Optimal Architecture and Conclusions 

In this work, the design for operation notion is applied to find the optimal powertrain 

topology and component sizes for a specific operation scenario. In particular, the vehicle 

considered in this study is a Class 6 pickup and delivery truck, which is typically used in 



130 

 

urban driving with frequent start/stop events. In the first part of this paper, the modeling of 

the powertrain and vehicle components has been addressed, and an overview of the Design 

Space Exploration (DSE) has been presented. The problem of reducing the design space 

size has also been introduced. Five different range-extended PHEV powertrain 

architectures have been proposed for the specific operation scenario: two-speed e-axle, 

three-speed AMT+EM, four-speed AMT+EM, direct drive and dual motor. A multi-

objective DSE, using Gaussian Process for design space reduction, has been performed. 

The objectives of the analysis are minimum fuel consumption and genset start/stops. A 

backward simulator for every powertrain architecture has been developed to determine the 

optimal energy management strategy using Dynamic Programming. The resulting best 

candidates from each REEV architectures have been compared against each other and 

against the conventional powertrain in terms of freight ton efficiency, cost, size and weight. 

Overall, the two-speed e-Axle stood out in terms of freight ton efficiency, powertrain 

weight and cost, while maintaining the requisite competitive performance among all 

architectures. A two-speed transmission is sufficient for the selected pickup and delivery 

duty cycle in addition to meeting the grade capability requirements. 

2.4 Summary of Results 

Overall, the two-speed e-Axle stood out in terms of freight ton efficiency, powertrain 

weight and cost, while maintaining the requisite competitive performance among all 

architectures. A two-speed transmission is sufficient for the selected pickup and delivery 

duty cycle in addition to meeting the grade capability requirements. Further scope of this 
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study in the upcoming chapters involve designing an online optimal control strategy for 

the selected architecture, and evaluating the robustness of the implemented controller over 

realistic driving scenarios. 
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Chapter 3. Performance Metrics to Enhance Power Management in HEVs 

The thrust areas in this chapter include the choice of specific performance metrics 

that are crucial to the optimal operation of a Class 6 range-extended hybrid delivery truck. 

The study revolves around the performance metrics which are most relevant to the CERC 

Truck project and discusses technologies that can be leveraged to improve these metrics 

over a baseline IC engine truck. Although the focus is on metrics that enhance range-

extended delivery trucks, the results of this chapter can be very well extended to other 

hybrid vehicle architectures and market segments. 

After arriving at the relevant metrics, the discussion moves on to literature survey and 

essential quantification of the benefits of look-ahead knowledge on the performance of an 

REEV controller. A forward simulator with an adaptive ECMS controller is the primary 

tool utilized in the evaluation of the potential performance benefits. 

3.1 Performance Metrics for Delivery Trucks 

Based on the mission, a hybrid electric vehicle may have a multitude of objectives that 

need to be fulfilled. A few of them pertaining to a Class 6 pickup and delivery truck are 

highlighted in this study. The first and foremost target for the market segment is to 



133 

 

minimize operational cost, which directly translates to reducing initial investment, fuel 

consumption and other operational costs relating to maintenance. 

All commercial operations must also adhere to the prescribed emissions targets laid out by 

the governing authorities that they fall under. This is of special importance today with most 

densely populated city centers around the world clamping down on localized air pollution 

caused by vehicular operation by mandating different levels of zero emission operation and 

chalking out designated areas in the city, namely geofences, that enforce EV operation for 

transportation. The fuel economy and emissions from an REEV can be directly impacted 

by the engine start-stop strategy employed by its controller in an attempt to minimize fuel 

usage. Frequent start-stops can push the aftertreatment system out of its optimal operating 

temperature range and risk emissions control. Furthermore, this can also compromise the 

durability of the genset components.  

In addition to the above factors governing controller objectives, the longevity of the 

product is of importance to make commercial sense. The electrical energy storage system 

(ESS) may need dedicated controller attention to ensure that it operates within safe limits, 

while not getting cycled at unreasonable charge/discharge rates that accelerate ageing. This 

may apply to other components of the electrified powertrain as well. From a driver’s 

perspective, the powertrain must offer acceptable levels of NVH (noise, vibration, 

harshness) and drivability to facilitate safe and stress-free operation. What follows is a 
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detailed exploration of a number of these prime factors that are seminal to the optimal 

operation of the REEV under consideration. 

3.1.1 Fuel Economy 

According to studies cited by Schittler et al [61], as much as about 30% of the life cycle 

cost of a medium duty truck comes from the cost of fuel. Since the average mileage for a 

US Class 6 truck is of the order of 100,000 miles per year, minimizing the fuel consumption 

by a few percentages will translate into significant cost and emissions reductions. 

It has been estimated that that approximately one quarter of the global CO2 emissions come 

from the transportation sector, bulk of which corresponds to roadway transportation [61]. 

Hybridization of medium and heavy duty (MD/HD) vehicles has a strong potential to 

improve real world fuel economy, decrease principal pollutants as well as greenhouse 

emissions. The dent that can be made by fuel saving in this market segment can be far more 

significant compared to the passenger car segment due to their volume of fuel consumption. 

However, the market penetration of hybridized products in this segment is still very 

miniscule. 

The hybridization challenges of medium-duty trucks are not limited to the choice of the 

right configuration alone. The driving mission can be highly variable within the same Class 

6 weight category. For instance, a delivery truck operates over a very different driving 

profile compared to a goods truck, even though both vehicles may have a similar GVW 

classification. A typical delivery truck spends its first part of the driving mission getting to 
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the start of its daily route and then switches to a stop-and-go route with peak speeds 

between 20 mph and 30 mph limited to an urban or housing neighborhood scenario. It can 

also be noted that there are significant idle events during the drive cycle observed with 

package drop-off. These findings are supported by research which found that both 

application and driver behavior have significant effects on the fuel economy of a particular 

vehicle application [2], [6] and [7]. 

The general consensus is that medium-duty vehicles offer greater flexibility and 

opportunity for various regeneration strategies, as well as the option of having one axle 

being driven by one source, say, a conventional powertrain, and the other by a purely 

electric powertrain. 

The concept of pairing of hybridization with the higher efficiency and lower CO2 output of 

a diesel combustion engine (as opposed to a gasoline engine) is an attractive prospect. 

However, the main deterrent is the incremental hybrid system cost over the baseline 

equivalent, which drives up initial investment. Another point of note is that modern-day 

diesel engine, even with their high thermal efficiency, demand complicated and expensive 

aftertreatment systems to comply with emission certification. As a result, depending on the 

market nature and investment constraints, a tradeoff needs to be made between increasing 

fuel economy and reducing emissions by tailoring a suitable hybrid system and strategy. 
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The final product configuration will vary based on the specific vehicle application and 

market. 

In conclusion, the driving force behind hybridization is the combination of fuel and running 

costs. As we cross peak oil production and the cost of fuel increases, customers may opt 

for medium-duty hybrids to reduce their operating costs over the lifetime of the vehicle. 

Some mechanisms to accelerate deployment include enforced government regulations as 

well as the reducing costs of batteries and electrical component development and 

production. At the end of the day, the balance of these competing factors will ultimately 

dictate the deployment and adoption of MD HEVs. [9] 

3.1.2 Engine Start/Stop Events 

A hybrid electric vehicle may have, on several occasions, conflicting ideas within its list 

of objectives. A prime example is that of the trade-off between fuel economy and engine 

start-stop events. While turning off the genset when the load demand from it equates to 

zero is an action that directly slashes idling fuel consumption, the emissions and powertrain 

durability penalties that come with it are conflicting with the initial objective in the first 

place. The energetic costs of IC engine start-stop events in plug-in hybrid vehicles have 

been exceedingly well-documented by Engbroks et al. [62] with experimental and 

simulation methods. Following is a brief summary of the major conclusions arrived at by 
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this study focusing on experimental evaluation of the energetic expense for engine starts in 

PHEVs under various conditions. 

The study distributes over 80,000 engine starts in a combined IC engine/electric machine 

characteristic map to quantify the losses involved in these events. The energetic expenses 

are broken down to the individual powertrain components in order to quantify the principal 

causes. The influence of cold engine oil temperatures is also investigated in this context. 

With a share of about 80%, the internal combustion engine has the greatest influence on 

the energetic costs for the IC engine start in every single operating point. There are 

numerous reasons for this: Even in the stationary best efficiency point, the gasoline engine 

operates with efficiencies not better than 35%. 

It was concluded that the influence of this effect is largely dependent on the engine-off 

time as well as on the exhaust gas temperature dynamics. The impact of the electrical losses 

in this event was observed to be relatively marginal. Energy losses in the electric 

machine(s), battery pack and power electronics are primarily related to the power demand 

by the controller which spiked during start-stops events. 

At 0°C, the effort for starting the IC engine is tripled at low loads. This was justified by the 

increasing viscosity of the engine oil with cold temperatures. In further research, it was 

shown that the effort for engine start was increased by a factor of 1.5 to 3 in terms of 

increased fuel consumption for a temperature of 0°C, largely attributed to low oil 

temperatures. This can be reasoned by an increasing viscosity of the engine oil with cold 

temperatures. The impact of the resulting friction torque was much larger in the part-load 
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conditions than towards higher engine loads. The experiment utilized a V6 gasoline engine 

which had electric costs varying between 0.5 Wh and 4.0 Wh in the range of 1000-2000 

RPM. A critical observation was that the added fuel cost per engine start lied between 0.4 

g and 2.3 g. The results also showed a strong dependence on the IC engine operating point. 

While the required electric energy largely varied with torque demand, the fuel usage 

showed a strong dependence on power demand. 

The existing mix of medium-duty Class 6 trucks have turbocharged diesel powered 

powertrains equipped with advanced aftertreatment systems that curtail emissions. These 

diesel engines are inherently bulky with very heavy rotating masses and associated 

auxiliary loads, which are highly cumbersome in the event of frequent start-stop events. To 

add to that, they have turbocharger systems which demand a continuous feed of lubricating 

oil powered by the engine oil pump to prevent coking and bearing deterioration as the high-

speed assemblies “coast down” without pressure-fed oiling during short stop and go events. 

The aforementioned advanced after treatment equipment will also be affected if hybrid 

power-split operations are not coordinated with diesel particulate filter (DPF) regeneration 

and catalyst temperature dynamics. If not carefully managed, the additive effects of 
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frequent engine start-stop events will adversely impact the durability of engine and 

emission systems. 

The influence of engine Stop/Start systems on the NVH quality of vehicles and the 

potential countermeasures for improving Stop/Start NVH for vehicles equipped with 

automatic engine start-stop systems was studied in detail by Wellmann et al in [63]. 

In lighter weight classes, it has been shown that adopting “blended” hybrid mode offers an 

alternative to an engine stop start strategy, which provides the opportunity to have both the 

drivability of a conventional vehicle without the adverse durability impacts of a start-stop 

engine strategy, while achieving increased fuel economy and reduced emissions. It is to be 

mentioned that such an architecture will enforce a smaller hybrid powertrain with little to 

no pure electric range although its offers cost and performance advantages on a per kW 

basis. 

3.1.3 Emissions 

There is a growing awareness of the effect of green-house gases such as CO2 on global 

warming, and realization that reducing CO2 emissions needs to be addressed on either 

voluntary or mandatory basis.  In the case of vehicles running on fossil fuels, reduction of 

CO2 emission is linked directly to fuel consumption, and thus the additional stimulus for a 

strong research focus on energy efficiency of vehicle propulsion. 

The overall vehicle fuel economy fundamentally depends on the efficiency of the fuel 

converter (e.g. IC engine), vehicle mass and losses, e.g. air drag, rolling resistance, 
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driveline losses etc.  While in the case of passenger cars there are obvious opportunities for 

improvements in all of aforementioned categories, in the case of trucks the choices become 

severely limited.  Most of the heavier trucks already use highly efficient diesel engines and 

fuel conversion efficiency can be improved only incrementally. Truck weight is dictated 

by the payload: development of light weight structures is likely to increase the payload 

carrying capacity, rather than reduce the gross vehicle weight. Dimensions of the payload 

carrying section limit the chances for reducing the aerodynamic drag.  Consequently, 

hybridization of the propulsion system offers the best potential for significant reduction of 

truck fuel consumption. Hybridization provides the flexibility in controlling engine 

operation, regeneration of braking energy, possible engine downsizing and prolonged 

engine shut-down intervals [64]. 

However, per the extensive research by Minarcin et al [9], the emission warranty obligation 

engine manufacturers face has been an integral part of deployment. Engine manufacturers 

have extensive experience with the engine-based components that affect emission 

compliance. It is to be noted that hybridization is a new emission control that many engine 

manufacturers have little or no experience with or control over as it relates to component 

and by extension emission warranty. In the volumes currently deployed, the risk is 

minimized but the durability limits cannot be adequately characterized absent significant 

increases in volume. Minarcin et al [9] also point out that this places the full hybrid 

compliance obligation on the engine manufacturer as the certificate holder. Engine 

manufacturers must then weigh the benefits of emission warranty obligation against the 
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benefits of a hybrid system. This has often prevented the certification of medium-duty 

HEVs in California and will continue to be have major cost implications [9].  

Even though parallel hybrids are easier to implement with greater level of expertise in the 

industry, they do not offer the flexibility of operation needed in the medium-duty delivery 

vehicle segment.  Parallel hybrids are effective in regeneration as shown by Buchvald et 

al. [65], Wu et al. [66] and Filipi et al. [67], but the emissions advantages typically diminish 

for duty cycles including predominantly start-stop driving.  In contrast, a series system 

provides full flexibility in controlling engine operation under any conditions [64], and the 

goal of this study is to explore the opportunities for maximizing fuel economy with the 

series hybrid concept.  

The subject of emissions in series HEV applications is discussed in more detail in Sec 4.5. 

3.1.4 Introduction to the Forward Simulator 

The selected medium to evaluate the potential for improvement of the fuel economy, 

engine start-stop and emissions performance of the truck is a forward simulator. The 

Forward Simulator is a Simulink-based simulator that incorporates the selected optimal 

range extender HEV architecture arrived at in Chapter 2 with the Design Space Exploration 

exercise. The data for the powertrain components are sourced from industry partners as 

well as utilizing market research. The full disclosure on the component modeling in the 

forward simulator is discussed here. 
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Vehicle Road Load Model 

The vehicle road load is a result of Newton's Second Law of Motion, and is used to 

calculate the longitudinal vehicle speed, in the exact same procedure presented in Sec 2.2.1. 

Powertrain Dynamics Model 

All powertrain models are quasi-static energy conversion efficiency models, except the 

battery model, which contains an integral equation (state of charge). Thus, the combined 

vehicle and powertrain model has two dynamic states: vehicle velocity and battery state of 

charge. 

(i) Genset Model 

The engine model is created from measured data of a mass-market 4.5L internal 

combustion engine, which is scaled up with the Willans Line model to match a 150 kW of 

maximum electrical power generation, in the exact same procedure presented in Sec 2.2.1. 

The genset is modelled as a MATLAB class object with the same properties as discussed 

in Chapter 2. 

 (ii) Electric Motor Model  

The electric motor used in this study is a scaled up permanent magnet synchronous machine 

with a peak power output of 245 kW and a continuous power output of 165 kW. The electric 

motor map is generated using a linear scaling process described in Chapter 2. 
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 (iii) Battery Model 

The battery model is a zeroth order equivalent circuit model, which assumes parallel and 

series connections of identical cells, as described in Chapter 2. 

(iv) Transmission Model  

The transmission is simply modelled as a set of gear ratios with fixed efficiencies. The 

optimized gear ratios are those corresponding to the optimal 2-speed architecture arrived 

at in the Design Space Exploration process discussed in Chapter 2. 

As a Simulink model, this simulator provides unique benefits in that it has visually intuitive 

interface, has a good library of modules for controller prototyping, and easy to be shared 

with other team members as the Simulink platform is prevalent in engineering education. 

3.1.5 Model Setup with MATLAB 

The overall model structure is a driver-powertrain-vehicle dynamics interaction. The driver 

model is currently implemented as a simple PID controller that tracks the reference speed. 

The current driver settings are: 𝐾𝑃 = 5; 𝐾𝐼 = 10-5; 𝐾𝐷 = 0. The hybrid powertrain structure 

is illustrated in Figure. The powertrain takes in commands from the powertrain controller, 

and provides tractive force to the rear axle. Currently, a front axle model has not been built, 

and all traction and braking torque are modelled on the rear axle. The Simulink schematics 

of the forward simulator are depicted in Figures 82 and 83. 
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Figure 82: Forward simulator for the selected 2-speed e-axle architecture 

 

Figure 83: Powertrain module inside the forward simulator 

All sub-modules of the powertrain (genset, battery, electric motor etc.) inherit the class 

definitions mentioned in section Chapter 2. Prior to the Object-Oriented Design refactoring, 

these sub-modules were manually modified to match up with the models in the backward 

DP simulator. The work is complete with the ultimate and long-term reliable approach to 

have an Object-Oriented Design pipeline throughout the different simulators. 
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Figure 84: Object oriented design of the simulator environment 
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3.1.6 Powertrain Controller: A-ECMS 

The powertrain controller accepts the inputs from the driver model, namely the accelerator 

pedal position (APP) and brake pedal position (BPP) commands, and sends forward the 

following requests to the powertrain: Torque from IC Engine, IC engine speed, Motor 

Torque request and hydraulic brake request. The controller is implemented in three main 

blocks which will be discussed in the following subsections. 

Gear Shifting Strategy: The gear shifting policy is simplistic as it is done only on the basis 

of the engine speed. Even though the model has the capability of accepting APP position as 

a parameter, in the current implementation it is invariant with APP request. 

𝜔𝑢𝑝𝑠ℎ𝑖𝑓𝑡 = 𝑓(𝑔𝑒𝑎𝑟, 𝐴𝑃𝑃) = 1047.09 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

𝜔𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡 = 𝑓(𝑔𝑒𝑎𝑟, 𝐴𝑃𝑃) = 26.49 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Thus, the implementation is straightforward: the system decides upshifts and downshifts 

using a 𝑆𝑡𝑎𝑡𝑒𝑓𝑙𝑜𝑤® block that takes into account 𝜔𝑢𝑝𝑠ℎ𝑖𝑓𝑡  and 𝜔𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡 . In order to 

avoid rapid shifting, the state flow takes into account a threshold time for which a particular 

gear should hold irrespective of the engine speed crossing the speed thresholds. 

Motor Regeneration and Service Brake requests: This part of the controlled can be 

divided into several individual tasks:  

• Evaluating the maximum traction braking that can be applied.  
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• Comparing the maximum traction possible at the wheel and converting it into a 

motor torque value. This is then compared with the maximum possible motor torque 

at that particular speed (a dynamic quantity). 

• Deciding between APP and BPP requirements in case both are transmitted to the 

controller.  

• Deciding the power discharge from the battery based on motor power demand. The 

final motor torque demand is thus limited by the battery power 𝑆𝑡𝑎𝑡𝑒𝑓𝑙𝑜𝑤®.  

The calculation of maximum traction torques and comparison is shown below:  

𝑇𝑏𝑟𝑎𝑘𝑒,𝑚𝑎𝑥 =
0.7𝑚𝑔

𝑟𝑔𝑒𝑎𝑟 ∗ 𝑟𝑑𝑖𝑓𝑓 ∗ 𝑟𝑤ℎ𝑒𝑒𝑙
 

𝑇𝑏𝑟𝑎𝑘𝑒 = min(𝑇𝑏𝑟𝑎𝑘𝑒,𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥,𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑚𝑜𝑡𝑜𝑟) ∗ 𝐵𝑃𝑃 

𝑤ℎ𝑒𝑟𝑒, 𝑇𝑚𝑎𝑥,𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑚𝑜𝑡𝑜𝑟 = 𝑓(𝜔𝑚𝑜𝑡𝑜𝑟) 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘 𝑡𝑜 𝑒𝑛𝑠𝑢𝑟𝑒 0 ≤ 𝑇𝑏𝑟𝑎𝑘𝑒 ≤ 𝑇𝑏𝑟𝑎𝑘𝑒,𝑚𝑎𝑥 

The resolution between BPP and APP commands is shown below: 

𝐼𝑓 𝐴𝑃𝑃 > 0.01 

𝑇𝐸𝑀,𝑟𝑒𝑞 = 𝐴𝑃𝑃 ∗ 𝑇𝐸𝑀,𝑚𝑎𝑥,𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝑤ℎ𝑒𝑟𝑒, 𝑇𝐸𝑀,𝑚𝑎𝑥,𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑓(𝜔𝑚𝑜𝑡𝑜𝑟) 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 
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𝑇𝐸𝑀,𝑟𝑒𝑞 = 𝑇𝑏𝑟𝑎𝑘𝑒 

Power-Split Strategy: The power split strategy depends on several subdivisions which are 

summarized in the below subsections. 

Accessory Load Definition: The simulator assumes a constant accessory load of 4000W 

on the Battery when the vehicle is in motion. In case the vehicle is stationary, there is no 

accessory load on any powertrain component. 

SOC Deviation Calculation: The deviation of SOC is based on 2 quantities: a desired SOC 

value and the actual SOC value from the battery. In order to calculate the desired SOC, the 

current controller setting relies on the concept of work done by the vehicle. The controller 

has a 1D lookup table that stores the remaining work demand as a function of vehicle 

distance travelled. The desired SOC is then calculated using the following methodology. 

𝑊𝑑𝑚𝑑,𝑟 = 𝑊𝑜𝑟𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

𝑊𝑑𝑚𝑑,𝑟 = 𝑓(𝑉𝑣𝑒ℎ): 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 𝑎 𝑙𝑜𝑜𝑘𝑢𝑝 𝑡𝑎𝑏𝑙𝑒 

∆𝑆𝑂𝐶 = 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑂𝐶 

∆𝑆𝑂𝐶 = 𝑆𝑂𝐶𝐵𝑎𝑡𝑡 −max (𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙 , 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙 +
𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙

𝑊𝑑𝑚𝑑,𝑡𝑜𝑡𝑎𝑙
𝑊𝑑𝑚𝑑,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) 

The ECMS section of the controller decides the appropriate power for the Genset and the 

Battery. In order to do this, first the power requirement, now referred to as 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 is 

evaluated as follows: 



149 

 

𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑃𝑚𝑜𝑡𝑜𝑟 + 𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑖𝑒𝑠 

𝑃 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑃𝐺𝑒𝑛𝑠𝑒𝑡,𝑎𝑟𝑟𝑎𝑦) ,𝑚𝑎𝑥(0, 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)) 

The power P is now discretized in steps of 1 percent such that: 𝑃𝑖 = 0.01 ∗ 𝑃 ∗ 𝑖 

The fuel consumption of the genset is calculated for all discretized values through a lookup 

table and the battery power request is calculated for the remaining part of the power 

consumption as summarized below: 

𝑚𝑓,𝑖,𝐼𝐶𝐸 = 𝑓(𝑃𝑖) 

𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞𝑢𝑒𝑠𝑡,𝑖 = 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝑃𝑖 

𝑚𝑓,𝑡𝑜𝑡𝑎𝑙,𝑖 = 𝑚𝑓,𝑖,𝐼𝐶𝐸 +
𝑃𝑏𝑎𝑡𝑡,𝑖 ∗ 𝛾

𝑄𝐿𝐻𝑉
 

The calculation of 𝑃𝑏𝑎𝑡𝑡,𝑖 is done using a separate battery model and is described in 

subsequent subsections. 

From the total array of total fuel consumption, the lowest value of the consumption is 

selected and the same indexed values from genset and battery power vectors are selected as 

final requests. 

𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝐸𝐶𝑀𝑆 = 𝑃𝑖∗ 

𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞,𝐸𝐶𝑀𝑆 = 𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞𝑢𝑒𝑠𝑡,𝑖∗ 

It must be noted that the value of 𝛾 is not modified throughout the cycle. The SOC control 

is based on enforcement of lower and upper SOC limits. 
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Battery model and calculations: The battery model in the controller calculates the current 

and voltage based on the 0th order model. The calculation of open circuit voltage and 

resistance are implemented as lookup tables. 

𝑃𝑏𝑎𝑡𝑡 = (𝑉𝑂𝐶 − 𝐼𝑅0)𝐼 

𝐼 =
𝑉

2𝑅0
−√(

𝑉

2𝑅0
)
2

−
𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑅0
 

𝑉 =
𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝐼
 

0 ≤ 𝑉 ≤ 𝑉0 

𝑉0 = 𝑓(𝑆𝑂𝐶) 

𝑅0 = 𝑓(𝑆𝑂𝐶, 𝑇, 𝑠𝑔𝑛(𝐼)) 

𝑃𝑏𝑎𝑡𝑡 = 𝑉𝐼 + 𝑄 

= 𝐼2𝑅0𝑁𝑠𝑒𝑟𝑖𝑒𝑠𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  

It can be seen from the equations that the net power from the battery includes the requested 

power as well as the losses from heating. Because of the saturation on the voltage, the 

controller ensures that the power requests to the battery are reasonable and in no violation 

of battery limits. In the current simulation, the temperature is assumed to be constant 
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throughout and is equal to 25 C. The genset and battery power requests as a result of the 

ECMS block are coupled in a bus and will now be collectively referred to as 𝑃𝑟𝑒𝑞,𝐸𝐶𝑀𝑆 . 

Charging Mode: A similar set of genset and battery power requests is defined in the 

charging mode: 

𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑒𝑙𝑒𝑐,𝑚𝑎𝑥𝐸𝑡𝑎  

𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑒𝑙𝑒𝑐,𝑚𝑎𝑥𝐸𝑡𝑎𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑎𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑒𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

Thus, in charging mode, 

𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑒𝑙𝑒𝑐,𝑚𝑎𝑥𝐸𝑡𝑎  

𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

Request Routing: It is clear that we have 2 sets of requests, in ECMS mode and charging 

mode and the controller needs to resolve which set of requests is to be routed further. The 

decision between these requests is resolved through two limiting values of SOC, which are 

dynamic in nature. 

The two values, 𝑑𝑆𝑂𝐶𝑙𝑜𝑤𝑒𝑟 and 𝑑𝑆𝑂𝐶𝑢𝑝𝑝𝑒𝑟 are defined as: 

𝑑𝑆𝑂𝐶𝑙𝑜𝑤𝑒𝑟 = −0.5 ∗
𝑡𝑐𝑦𝑐,𝑡𝑜𝑡𝑎𝑙 − 𝑡

𝑡𝑐𝑦𝑐,𝑡𝑜𝑡𝑎𝑙
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𝑑𝑆𝑂𝐶𝑢𝑝𝑝𝑒𝑟 = 0.5 ∗
𝑡𝑐𝑦𝑐,𝑡𝑜𝑡𝑎𝑙 − 𝑡

𝑡𝑐𝑦𝑐,𝑡𝑜𝑡𝑎𝑙
 

The resolution on the routed requests is based on the following logic: 

𝐼𝑓 𝑑𝑆𝑂𝐶 < 𝑑𝑆𝑂𝐶𝑙𝑜𝑤𝑒𝑟 

𝑃𝑟𝑒𝑞,𝑟𝑜𝑢𝑡𝑒𝑑,𝑔𝑒𝑛𝑠𝑒𝑡 = 𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  

𝑃𝑟𝑒𝑞,𝑟𝑜𝑢𝑡𝑒𝑑,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞,𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

𝐼𝑓 𝑑𝑆𝑂𝐶 > 𝑑𝑆𝑂𝐶𝑢𝑝𝑝𝑒𝑟  

𝑃𝑟𝑒𝑞,𝑟𝑜𝑢𝑡𝑒𝑑,𝑔𝑒𝑛𝑠𝑒𝑡 = 𝑃𝑔𝑒𝑛,𝑟𝑒𝑞,𝐸𝐶𝑀𝑆  

𝑃𝑟𝑒𝑞,𝑟𝑜𝑢𝑡𝑒𝑑,𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑃𝑏𝑎𝑡𝑡,𝑟𝑒𝑞,𝐸𝐶𝑀𝑆  

The routed power requests are then fed to an "Engine restart minimizer" block which 

eliminates continuous ON OFF requests to the engine. The end result of the block is an 

engine speed and torque request. From the "Motor Regeneration and Service brake requests" 

block, we get a set of torque requests for the motor and hydraulic brake request. 

A result of simulating the CERC P&D cycle with initial battery SOC of 99% is depicted in 

Figure 85 with the outcome of the SOC profile and the fuel consumption superimposed. 
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Figure 85: Sample results from the forward simulator with an ECMS controller 

3.1.7 Cross-validation between Forward and Backward Models 

Dynamic programming conclusively offers the best global solution to the optimal control 

problem discussed in this thesis. Before delving into the improvement of the online 

implementable controller in the selected candidate, it is important to analyze the potential 

for improvement in fuel economy on top the baseline controller. This section is a brief 

attempt to quantity the exact potential for improvement. 

The backward DP simulator and Simulink forward simulator were developed in different 

time frames. Thus, it is necessary to have them cross-validated. Since model differences 

exist between backward and forward simulation, the comparison requires bridging the 

differences first. Several efforts have been applied towards achieving this goal. 
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Figure 86: Sample results from the backward simulator using Dynamic Programming 

 

Figure 87: Powertrain states observed during the P&D drive cycle 

In order to perform cross-validation between the backward and forward simulation, the 

benchmark fuel economy for the selected architecture is evaluated using Dynamic 

Programming and the results are summarized. 
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1. The results of the backward simulator following CERC Pickup and Delivery cycle 

are represented in Figures 86 and 87.  

2. First, the velocity profile produced by the forward simulator driver is exported to be 

running on the backward simulator, the resulting energy numbers are represented in 

the following figure.  

3. Second, the forward simulator's mechanical brake decisions are exported to be 

running on the backward simulator, the resulting energy numbers are represented in 

Figure.  

4. The forward simulator with a driver following CERC Pickup and Delivery cycle is 

represented in Figure 85. 

5. Fuel economy results are compared between DP and ECMS in Table 44, with 

percentage differences for three different levels of velocity profile matching that 

highlight the potential for fuel efficiency improvement in the forward simulator. 

This exercise is also aided by the Sankey diagram in Figure 88. 

Table 44: Comparison of fuel economy results between DP and ECMS 

Gross Wt. DP DP (fwd. cycle) DP (fwd. + brake) A-ECMS % Delta 

19501 lbs. 15.2 MPG 14.2 MPG 11.8 MPG 11.2 MPG 35%; 26%; 5% 
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Figure 88: Sankey diagram showing the energy flow in the forward simulator 

Energy Comparison Between Backward and Forward Simulators 

Figure 89 depicts the component-wise energy split starting from the two sources of energy 

– generator set and the battery – all the way down to the wheels. The Sankey diagram in 

Figure 90 offers further insights into the areas of the forward simulator that may be deficient 

in modeling accuracy and points towards avenues of potential fuel economy improvement 

going forward. 
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Figure 89: Energy split at component level for forward and DP simulations – the 

comparison is performed at four levels of driver behavior matching 

 

Figure 90: Sankey diagram with normalized comparison of energy flow between the 

forward simulator (black) and DP (red); Note: the driver inputs are matched between the 

two simulations in order to equate the power demand from the duty cycle 
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3.2 Literature Review: Look-Ahead Information in Delivery Trucks 

Improvement of efficiency of powertrains – electrified or otherwise – have been 

traditionally focused on enhanced performance of each individual component in the 

propulsion system and how they interact with each other. IC engine and transmission 

efficiencies have been incrementally optimized over the course of a century since the 

advent of the automobile. A similar approach has been ongoing in the area of electric 

drivetrains and energy storage system with a push to increase component level efficiency 

and minimize losses at the interfaces of power transmission. With diminishing returns 

offered by these approaches, the next leap in powertrain efficiency gains is expected to 

come from the smart utilization of big data, connectivity, sensor fusion and high 

computational power. These technologies offer real-time streams of information with a 

prescient view of the scenarios that may be encountered by vehicles, which can be 

leveraged to prepare the powertrain to strive towards an optimal response. The look-ahead 

data include measured quantities at the current time and generally have information about 

the spatial future. 

Control strategies are adapting to take advantage of the aforementioned information 

available to vehicles – especially those that have predictable driving missions such as 

delivery vehicles and refuse trucks. In existing literature, the methodologies used range 

from statistical approaches that store and retrieve historical driving data to predict the 

future driving demand with high certainty, to neural networks that assign weighting factors 



159 

 

to parts of the drive cycle to dictate power source, and receding horizon controllers (e.g. 

MPC) that utilize look-ahead data in their predictors. 

Feedforward optimal control algorithms such as Dynamic programming, PMP and convex 

optimization are acausal and demand complete a priori information. In the real-world, it is 

unrealistic to assume full knowledge of the exact future trajectories. Even in the unlikely 

scenario of complete driving mission information, the computational complexity of these 

algorithms rules out their real-time implementation. 

The underlying utility of look-ahead information is that it allows one to predict the 

temporal or time-based future trajectories of the vehicle state (velocity) based on the 

knowledge of its spatial future in the driving route. Spatial future consists of the vehicle’s 

surrounding and how they may manifest in space in the future, such as traffic density, 

traffic light status, stop signs etc. If the application is a delivery vehicle, the spatial elements 

in the future of the driving route may be more predictable than that of an average passenger 

vehicle. This prediction is used to compute an optimal policy for the powertrain operation 

and such controllers are called look-ahead controllers due to the type of the data utilized in 

prediction. The following literature survey inherits results from Chapter 5 on look-ahead 

energy management written by Hegde. B, 2018 [68]. 

According to existing literature [68], predictive energy management strategies for HEVs 

can be classified based on its two major components: 1) prediction methodology; and 2) 

optimization algorithm. The prediction methodology culminates in the prediction of the 

velocity trajectory that the vehicle may follow based on the information from the look-
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ahead enablers. The optimization algorithm is then tasked with devising an optimal way to 

prepare the powertrain and utilize the energy sources available on board to fulfil the control 

objectives. 

Another approach to classifying these control strategies in literature is based on whether or 

not the control algorithm has access to the future velocity trajectory. Prediction 

methodologies without look-ahead information include frozen-time, exponentially 

varying, stochastic, and prescient MPC algorithms. Frozen-time – as the name suggests – 

assumes that the vehicle’s velocity will remain the same as current time for the future, and 

exponentially varying method assumes the vehicle’s velocity decreases exponentially in 

the future [69] [70] [71]. Stochastic methods utilize historical data to construct a Markov 

transition model for vehicle’s states. The Markov model is then used to predict the vehicle’s 

velocity into the future as a statistic. Such methods are highlighted in [70], [72], [73], [74] 

and [75]. Prescient algorithm offers a velocity prediction that is identical to that in the 

future, since it assumes that the full knowledge of the future trajectory is available in 

advance [70]. 

Look-ahead controllers are generally feedback controllers and their feedback not only 

come from the vehicle but external environment as well. Sensors such as GPS, RADAR 

and map databases can be used for to aid the look-ahead controller in predicting the future. 

They are generally implementable by virtue of their causality, however, the significant 

computation burden that comes with processing large amounts of look-ahead data may 
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make them expensive to implement on a production vehicle [76], [77], [25]. Further 

exploration of this topic is dealt with in Section 3.3.1. 

A study by Ambuhl and L. Guzzella [78] predicts a velocity trajectory by using the current 

vehicle state and average vehicle speed over the entire trip. The authors in [79], [80] and 

[81] estimate the velocity profile of the vehicle by using traffic light phase information 

which in turn helps in the minimization of fuel consumption over the entire mission. [82] 

and [83] have explored the use of road grade, turns and speed limit information in the 

prediction of future vehicle speed profiles. The future velocity was assumed to be known 

based on the velocity trajectory of a leader vehicle in [84]. Future vehicle velocity 

trajectories are predicted by using traffic data and geographical relief preview in the works 

of [85] and [86] respectively.  

The classification of controllers based on their optimization algorithm includes the likes of 

linear programming, quadratic programming, non-linear optimization, model predictive 

control etc. MPC with a linearized model for optimization is highlighted in [88]. ECMS-

based methods [26] are used for predictive control in [87], [89] and [90]. Stochastic MPC 

is used in [72] and [70]. MPC and dynamic programming have been used in conjunction 

in the works of [71], [91], and [92] [93]. The effect of the optimality of the MPC control 

based on changing prediction horizon lengths has been discussed by Rezaei et al. in [91]. 

Gissing et al. [94] explored the predictive energy management problem with cabin heating 

considerations. Both the studies assumed that the exact future velocity trajectory of the 
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vehicle is known a-priori. Huang et al. [95] have published an excellent review on the usage 

of MPC for HEV energy management. 

3.3 Look-Ahead Energy Management 

Look-ahead energy management is a predictive control policy that leverages information 

about some of the future events facing the vehicle in its impending route. The anticipated 

velocity profile of the vehicle is then estimated by bringing together this host of 

information, and the hybrid power-split is then accomplished by means of an optimal 

control algorithm. The conditions change during a drive mission due to perturbations such 

as delays due to traffic, or dynamic parameters such as the vehicle gross weight. The 

control robustness in a predictive algorithm is increased by feedback and the approach 

discussed here involves repeatedly calculating the fuel-optimal power-split in real-time. 

The technique is simplified and illustrated in Figure 91. At point A, the optimal solution is 

sought for the control problem that is defined over the horizon which is obtained by 

truncating the entire driving mission horizon. Only one time-step worth of control is 

applied to the system, and then this process is repeated at point B. A schematic for the 
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determination of the time horizon for predictive control based on various information 

inputs through connectivity and sensors is illustrated in Figure 92. 

 

Figure 91: Illustration of a look-ahead control methodology [61] 

 

 

Figure 92: Determination of the horizon for predictive control based on various inputs 
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3.3.1 Feasible Look-Ahead Technologies 

Various techniques and devices can be used to derive velocity profiles and power 

predictions from the available host of look-ahead data. It is understood that the reliability 

of look-ahead forecasts depends on the accuracy of sensors on-board the vehicle and their 

integration with the processing system. Four types of look-ahead predictors are highlighted 

in this section, introduced in the increasing order of their information fullness and intricacy. 

The model-based nature of these predictors sure that physical limits of the powertrain and 

driver behavioral uncertainties are incorporated in the predictions. 

A cumulative enumeration of the different levels of velocity predictors is presented here 

(as inherited from Chapter 2 of the study on this topic by A. V. Rejendran [96]. At each 

incremental level, additional information is added towards refining the velocity prediction, 

and hence requires additional technological support to go up each level in the list. The 

general consensus is that the higher the predictor level, the better the accuracy of velocity 

prediction. 

1. Type 1 or SL-Predictors: These predictors rely on road speed limit (SL) and grade 

information from maps. They use speed limit data of different roads along the route to 

forecast future speed. The inbuilt powertrain model needs to recognize the infeasibility of 

step increase in speed and predict a gradual acceleration that is in accordance with 

powertrain physical limitations and a predefined driver behavior model. Grade information 

is used to make road load predictions. However, it does not account for vehicle stops at 

stop signs and intersections.  
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2. Type-2 or SLSS-Predictors: Type 2 adds to Type 1 predictors. These predictors include 

Stop Sign (SS) information, and account for presence of stop signs and traffic light 

controlled intersections along the route. They also use a priori knowledge of the vehicle 

specifications to predict acceleration and deceleration performance requirements. 

3. Type 3 or SLSSLT: Type 3 improves speed forecasts from Type 2 predictors by using 

known information about the route and expected turns during the route. This predictor is 

designed based on observations that human drivers reduce speed prior to sharp turns 

following which they accelerate and try to match the speed limit of the new road. Type 3 

predictors recognize this driver behavior and improves upon the prediction from Type 2 

predictor.  

4. Type 4 or V2X (Vehicle to X): This predictor directly uses the velocity trajectory 

information from other vehicles that traversed a given route at some point in the past. 

Predictions are made either by extracting the speed of a prior vehicle as a function of 

location, or data from multiple vehicles can be fused together to yield a prediction. The 

fusion process may be defined such that the speed data is weighted differently based on 

vehicle type, time of travel etc.  

The underlying assumption of this predictor is that human drivers are best indicators of 

another human’s on road behavior. In this case, actual speed information from a similar 

vehicle that traversed a given road in the past is used to detect other factors that cause 

drivers to reduce speed apart from stop signs, traffic lights and turns. This includes the 

effect of crossing intersections with larger roads (where drivers reduce speed for safety 



166 

 

reasons) or the effect of curvy roads along the route. A practical implementation of V2X 

predictors is currently implemented in General Motors’ Cadillac products under the brand 

name of Super Cruise [97]. Using LiDar mapping technology, Cadillac has mapped over 

200,000 miles of compatible highways in the US, and established vehicle-to-vehicle 

connectivity between Cadillacs to enable hands-free driving. 

Figure 93 is a graphical representation of how each level of velocity predictors assist in the 

forecasting of the future vehicle trajectory. Starting with the road speed limit alone, the 

profile follows a step function-like behavior which is highly unrealistic. Smoothing it out 

with blended acceleration and deceleration inputs make it more practical. Adding stop signs 

and turns further enhance the accuracy of the prediction. Finally, the speed data from V2X 

connectivity completes the velocity trajectory prediction with exceeding resemblance to 

that generated by a human driver. 

 

Figure 93: Driving profile estimation from different levels of look-ahead data [96] 
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List of Available Look-Ahead Technologies 

The exercise of driving a look-ahead energy management strategy towards an optimal 

direction is dependent on the effective utilization of future information from the enablers. 

Out of the host of data collected by these enablers, the right information needs to be 

extracted that can reliably predict the impending velocity profile to facilitate an optimal 

control action. In many scenarios, this will require the system to explore information that 

are beyond the confines of the vehicle operation and immediate vicinity, such as those 

provided by localized radar and imaging sensors. Tapping on the status of the 

transportation system and its surroundings can add value in improving the prediction 

accuracy of the future trajectories. The collection of sensors, methods and sources that can 

collate information which can contribute towards the estimation of future driving 

conditions are called ‘Technology Enablers’. 

This section summarizes the results of a brief study that was conducted to classify the types 

of information that can be accrued from existing technologies, and how they come together 

to create a beneficial environment for predictive energy management of hybrids. The look-

ahead parameters of interest that are derived from the road and traffic information can be 

classified into the following broad categories:  

1. Speed limit 

2. Effective dynamic speed limit 

3. Stop signs and traffic lights 

4. Traffic light status 
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5. Grade 

6. Leader speed and distance 

7. Leader type 

8. Traffic density 

A summary of enabler technologies, the information furnished by them, their utility and 

practical implementation cases are highlighted below: 

GPS: The Global Positioning System feeds in the parameters such as position, velocity 

and direction of motion of the vehicle. This aids in the triangulation of the vehicle within 

its route, and giving it with feedback on its bearings. GPS finds application in maps and 

V2V communication.  

Inertial Measurement Units: IMUs provide information on the instantaneous 

longitudinal, lateral and vertical acceleration values of the vehicle. This suite of 

information can be utilized in localization feedback, speed determination, detecting turns 

and road condition measurement. This finds direct application in driver assistance systems 

such as Electronic Stability Program (ESP), traction control and slip detection. 

Camera: Camera imagery can be processed to recognize landmarks, obstructions ahead, 

lateral traffic light in the visible range and lane localization. This host of information can 

be used in vehicle localization, serves as an indicator of traffic density, tweaking the 

regeneration time and in determining driver intent recognition. The safety systems that are 
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derived from this information include collision avoidance, lane departure waning, lane 

keep assist, pedestrian detection, speed limit and sign detection. 

Radar: Radar relays information on the relative speed of the vehicle ahead, headway and 

lateral and longitudinal obstructions. Radar information can contribute towards efficient 

adaptive cruise control, serve as indicator of traffic and identify or predict lane 

change/passing. Safety related feature such as adaptive cruise control, collision avoidance, 

pedestrian detection, lane change assist, beam control, blind spot monitoring and turning 

assistant depend on the radar information. 

Lidar: Lidar also transmits information on the relative speed of the vehicle ahead, 

headway, lateral and longitudinal obstructions and lane localization in specialized cases. 

This information can cater to efficient adaptive cruise control, serve as an indicator of 

traffic and identify or predict lane change/ passing. The emergence of lidar in automotive 

applications has sharpened the driver assistance features such as adaptive cruise control, 

collision avoidance, pedestrian detection, lane change assist, beam control, blind spot 

monitoring and turning assistant. 

Maps – offline: Offline maps provide a multitude of information such as the grade of the 

road ahead, grade profile for multiple routes, routes to destination and speed limits. use: 

road load estimation, optimal routing; safety: hill descent systems, adaptive cruise control 

(speed limit), wrong-way driving warning 
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Maps – online: Adding on top of the features offered by offline maps, the online 

counterpart can offer routes, weather, wind, traffic information and construction zone 

information in real-time. This array of information can be exploited for online routing 

update, sensing effective speed limit, and determining optimal routing. The added safety 

benefits are adaptive cruise control, (based on road condition, speed limit), crosswind 

information and weather warnings. 

V2I/S: Vehicle-to-infrastructure connections furnish real-time data on traffic light 

broadcasts, traffic density, traffic speed broadcast, weather and road conditions. This can 

serve towards velocity optimization or increased regeneration time, traffic density 

information and ramp-up shaping. The driver assistance systems of relevance to this 

technology are intersection assistant (with GPS), turning assistant, traffic light control, 

crosswind information and weather warnings. 

V2V: Vehicle-to-vehicle communication facilitates sharing of braking pedal signal, 

accelerator pedal signal and self-classification data between vehicles on the road. This 

information can be direct indicators of traffic and ramp-up shaping and further contribute 

towards the improvement of collision avoidance, adaptive cruise control, lane change 

assist, beam control, blind spot monitoring and turning assistant. 

3.3.2 Quantifying the Benefits of Look-Ahead Information 

The vehicle’s environment determines how the vehicle is driven on a certain route. 

Fortunately, some of the vehicle’s environment is static with respect to distance traveled 
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by the vehicle. For instance, stop signs remain at the same locations and road slope doesn’t 

change based on time of the day. Certain other aspects of the vehicle’s environment such 

as traffic light phases or traffic density changes with time. Some of the environmental 

features can only be described statistically for the lack of simple models to describe them; 

they include wind direction, wind speed, behavior of other drivers on the road etc. While 

both travel distance and time constitute the future, features that are static in distance domain 

remain the same as time progresses. Hence, it is trivial to predict the status of such features 

into the future. For features that evolve with time, if we can measure their current state and 

understand how they evolve in time, then those features can also be predicted into the future 

with some uncertainty.  

Sensor technologies and communication systems elaborated in Section 3.3.1 can provide 

data about certain features of the environment. The easiest elements to get the data for are 

stationary in space. The features evolving in time are harder to get data for but aren’t 

entirely impossible to track. Look-ahead data can be used to accurately predict the future 

states of the vehicle and hence enable more informed, globally optimal energy management 

strategies [68] 

To begin with, determining the power demand of the vehicle over the course of a driving 

mission is the starting point to achieving a globally optimal energy management strategy. 

Just like in the case of Dynamic Programming, a priori knowledge of all the prospective 

regeneration events, and the occasions where electrical energy can be used to offset fuel 

consumption allows the control algorithm to make decisions that are globally optimal. 
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Using the road method, the power demand of a vehicle can be expressed by the equation:  

𝑃𝑣𝑒ℎ  =  𝑉𝑘 [
𝜌𝑎𝐶𝑑𝐴𝑓𝑉𝑘

2

2
+  𝑀𝑔𝐶𝑟𝑜𝑙𝑙𝑐𝑜𝑠(𝜃𝑘) +  𝑀𝑔𝑠𝑖𝑛(𝜃𝑘) +  𝑀𝑉̇𝑘] 

where 𝑉 is the velocity of the vehicle, 𝑉̇ is the acceleration, 𝑀 is the mass of the vehicle, 

𝑔 is acceleration due to gravity, 𝜌𝑎 is density of air, 𝐶𝑑 is co-efficient of aerodynamic drag, 

𝐴𝑓 is effective aerodynamic frontal area, 𝐶𝑟𝑜𝑙𝑙 is co-efficient of rolling friction, 𝜃 is road 

grade in radians, and 𝑘 suggests that it varies with distance. 

Since it can be reasonably assumed that the road grade encountered by a vehicle is static 

across the route, and can be accounted for quite easily, to predict the power demand of the 

vehicle, it is imperative that the vehicle’s velocity must be forecasted. The features of the 

environment of the vehicle into the future can be measured with look-ahead information. 

The challenge is to structure a methodology that directly links information about the future 

to the vehicle’s velocity prediction.  

Hence, it is highly advantageous to have the ability to accurately predict the velocity 

trajectory of the vehicle into the future. A reliable prediction of the velocity profile can 

lead to a well-informed energy management strategy that prepared the powertrain states in 

advance to best tackle the power demand ahead, rather dealing with it in a reactive manner 

that may likely be sub-optimal. 
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Impact of Look-Ahead Data Analyzed from the LEMS Project at OSU (2018) 

Studies by B. Hegde et al [68] showed that ‘information vs. benefit’ pareto front was 

subject to variation with traffic conditions. Traffic predictions and Ranging sensors did not 

exhibit improvement at low traffic conditions. But traffic predictions and ranging sensors 

were found to be valuable under heavy and moderate traffic. 

The delivery truck characteristics corresponding to this study include lower speeds limits, 

frequent stops & turns, shorter traffic congestions. The result showed that speed limits and 

stop locations played key role in fuel economy, additional benefit due to ranging is not 

significant, traffic look-ahead adds significant value only if congestions are significant, 

turns and stops locations may add benefits in urban driving and that traffic look-ahead will 

be very useful in congested traffic scenarios. 

The energy management system proposed in this work uses the look-ahead data to optimize 

fuel consumption over a trip with exact a-priori knowledge of the future. The implemented 

controller extracts velocity trajectories over varying horizon lengths and processes that data 

for energy management with an adaptive ECMS controller. This exercise is performed in 

order to quantify the best-case scenario of efficiency improvement, given an ECMS-based 

controller is implemented in the simulator. 

Simulation results are first presented for a baseline non-adaptive ECMS controller with a 

fixed equivalence factor ‘𝑠’, which brings the final SOC to a desired lower limit of ~20%. 

The drive cycle used as reference for the look-ahead information is the CERC Pickup and 
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Delivery Cycle, and the forward simulator used to implement the controller evaluation 

coincides with the model that was introduced in Section 3.1. Figure 94 depicts the SOC 

trajectory resulting from the baseline ECMS controller evaluation with a tuned equivalence 

factor to bring the final SOC to 20%. 

 

Figure 94: SOC profile and fuel usage resulting from the baseline ECMS controller 

 

 

Figure 95: Distance-based reference SOC profile for the ECMS controller 
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Figure 95 represents the distance-based reference SOC profile that is enforced upon the 

ECMS controller to follow over the course of the driving mission. The linear trajectory can 

be expressed by the equation: 𝑆𝑂𝐶 = 𝑆𝑂𝐶0 − 𝛼𝑑, where 𝛼 = 0.726% is the slope of the 

line (or the percentage SOC drop per mile) and 𝑑 is the total trip distance. The value of the 

tuned equivalence factor in this case is 1.91, and the total fuel consumed comes out to be 

16.08 kg, including the correction applied for the remaining energy in the battery. The 

number of engine start-stop events tally up to 503 in the absence of any limiting mechanism 

on it. This set of results obtained without any look-ahead information forms the benchmark 

for the adaptive ECMS technique. 

3.3.3 Incorporating Look-Ahead Information in the Control Problem 

Following on the heels of the previous section, this part focuses on the implementation of 

an adaptive ECMS strategy that hinges on look-ahead information from a prescribed 

driving cycle to dynamically adapt the equivalence factor and hence enable fuel economy 

enhancement with no prior tuning of the said factor. 

A Simulink implementation of the equivalence factor adaption block is depicted in Figure 

96, along with indications of the velocity prediction, and a distance-based reference SOC 

tracking. The default horizon length (and hence, the frequency) of the equivalence factor 

adaption is 60 seconds. The reference trajectory of the SOC adjusts itself with every 

passing horizon based on the distance information available for the next 60 seconds, which, 

in turn, triggers the updating of the s-factor. 
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The s-factor adaption block does not refresh the equivalence factor if the vehicle is 

stationary for 60 seconds or longer. Additionally, this methodology is robust even in the 

absence of a suitable initiation of the equivalence factor. 

 

Figure 96: Simulink block with the Adaption Method for the Equivalence Factor 

The ECMS equivalence factor is now actively adjusted by tracking the deviation of the 

actual SOC with respect to the reference SOC. The adaption rate can be varied based on 

the value of the update time variable. This results in a reliable self-correcting mechanism 

for the reference SOC tracking.  

Based on the work by  Rizzoni et al [26], the new equivalence factor for each upcoming 

horizon step (k+1) can be adapted as follows. 

𝑠𝑘+1 = 0.5(𝑠𝑘 + 𝑠𝑘−1) + 𝐾𝑠(𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶(𝑡𝑘)) 

Where, 𝑠𝑘 and 𝑠𝑘−1 are the equivalence factors corresponding to the previous two horizons, 

𝐾𝑠 is a calibration parameter (equal to 1.8 in this case), 𝑆𝑂𝐶𝑟𝑒𝑓 is the reference SOC at the 

current time and 𝑆𝑂𝐶(𝑡𝑘) is the actual SOC at the current time 𝑡𝑘 . 



177 

 

The velocity prediction uses the CERC Pickup and Delivery drive cycle as the accurate 

estimate of the future horizon (full information). The extraction procedure for the predicted 

velocity is depicted in the Simulink representation in Figure 97. 

 

Figure 97: Velocity prediction block using the CERC P&D drive cycle 

The distance covered in each impending horizon is determined through the integration of 

velocity for that horizon, and the reference SOC for each horizon step is calculated as:  

𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = ∫ 𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡)𝑑𝑡
𝑡𝑘+1

𝑡𝑘

 

∆𝑆𝑂𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝛼𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑆𝑂𝐶𝑟𝑒𝑓(𝑡𝑘+1) =  𝑆𝑂𝐶𝑟𝑒𝑓(𝑡𝑘) −  ∆𝑆𝑂𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

The methodology for SOC adaption is implemented in Simulink as depicted in Figure 

98. 
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Figure 98: Reference SOC profile generation 

Simulation results are presented for the adaptive ECMS controller with the equivalence 

factor ‘𝒔’ being updated with every upcoming horizon, and finally bringing the final SOC 

to a desired lower limit of ~20%. Figure 99 depicts the SOC trajectory resulting from the 

A-ECMS controller evaluation with an arbitrary initial equivalence factor of 2. The 

resulting fuel economy and engine start-stop events are highlighted in contrast with the 

baseline controller in Table 45. It is evident that even without any calibration effort to find 

an optimal s-factor, the fuel consumption retains the same value as that of the benchmark 

controller. This is validated by the fact that the average equivalence factor of the A-ECMS 

controller over the entire mission coincides with that of the tuned value of its baseline 

counterpart. 

The significant reduction in the number of start-stop events with the implementation of the 

A-ECMS controller directly translates to an improved emissions performance for the 

vehicle at no absolute cost in fuel consumption. This can be attributed to the timely 
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adaption of the s-factor which simultaneously helps follow the reference profile, while not 

demanding excessive state changes from the engine to do so. 

 

Figure 99: SOC trajectory, fuel consumption and s-factor adaption with A-ECMS 

Table 45: Comparison of the benchmark ECMS controller against adaptive ECMS 

Parameter ECMS A-ECMS with distance based SOC prediction 

Fuel consumption 16.08 kg 16.01 kg 

Engine Start-stops 503 453 (emissions benefit) 

S-factor 1.91 1.909 (average) 

Horizon length 

change 

NA 20/60/300 seconds  

Information needed NA Adaption, calibration parameters and look-ahead 

information 

In order to evaluate the impact of horizon lengths on the results, two more iterations are 

performed with horizon lengths of 20 seconds and 300 seconds respectively. The results 

for the SOC trajectory and the equivalence factor evolution are summarized in Figures 100 

and 101. 
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Figure 100: SOC trajectory, fuel consumption and equivalence factor adaption with the 

A-ECMS controller (horizon length: 20 seconds) 

Changing the horizon lengths did not yield any notable variation in fuel consumption which 

hovered around the baseline value of 16 kg. On a similar note, the number of engine start 

stop events remained fairly steady in comparison to that in the 60-second horizon case. 

From Figures 100 and 101, it is also evident that the s-factor adaption becomes unstable 

with higher length of horizon, and that the SOC deviates more from the reference as the 

horizon is widened. 

 

Figure 101: SOC trajectory, fuel consumption and equivalence factor adaption with the 

A-ECMS controller (horizon length: 300 seconds) 
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In order to evaluate the impact of the initial value of the equivalence factor on the results, 

two more iterations are performed with s-factors 3 and 1 respectively. The results for the 

SOC trajectory and the equivalence factor evolution are summarized in Figures 102 and 

103. 

 

Figure 102: A-ECMS controller (initial equivalence factor = 3) 

Changing the initialization of the equivalence factor yielded slightly higher values of fuel 

consumption over the baseline, which hovered around 16.5 kg. On the engine start-stop 

front, the former resulted in much fewer start-stop events (411), while the latter induced a 

higher count at 475, although both numbers fare better than the baseline ECMS count. 

From Figures 102 and 103, it is also evident that the s-factor adaption remains smooth with 

varying initialization values, however, the SOC deviates more from the reference in both 

cases depending on the calibration parameter 𝐾𝑠. 



182 

 

 

Figure 103: SOC trajectory, fuel consumption and equivalence factor adaption with the 

A-ECMS controller (initial equivalence factor = 1) 

3.4 Summary of Results 

The outcome of the study in this chapter suggests the limitation of the A-ECMS controller 

even with full knowledge of the drive cycle available in a charge depleting series HEV, in 

comparison to the level of efficiency that can be achieved the global optimal dynamic 

programming. Recall from Section 3.1.7 that DP can provide up to 35% better fuel 

efficiency in this particular architecture without the driver inputs matching (actual velocity 

and braking strategy), and up to 5% better efficiency with driver inputs equated. 

Since receding horizon controller applications such as model predictive control (MPC) are 

beyond the scope of this thesis, the primary advantage from integrating an online adaptive 

ECMS algorithm with the selected candidate lies in the fact that its fuel economy and 

engine start-stop outcomes are relatively robust even with the lack of calibration of the 

equivalence factor specific to the drive cycle. The ideal horizon length is in the range of 

one minute, and the results are comparable to that of a tuned ECMS controller, all the while 
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providing enhanced engine start-stop control authority, which translates to a direct 

emissions advantage. 

The shortcomings of the A-ECMS controller even with full look-ahead information of the 

velocity profile may stem from the fact that ECMS as a standalone is not adequately 

equipped to tackle optimization of a hybrid nature – ones that include both continuous and 

discrete states such as electric machine/genset power and gear selection/genset state 

respectively. Hence, a rule-based controller that is capable of handling different types of 

states may be necessary to further improve fuel economy and minimize start-stops on top 

of what was achieved by A-ECMS in this application. 
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Chapter 4. Traffic-in-the-Loop Simulation for Controller Evaluation 

  The central idea behind this chapter is the realization that fuel economy extends 

beyond the realm of powertrains and is influenced by many factors that are beyond the 

physical confines of the vehicle systems. These features constitute the broader environment 

outside the vehicle, and are termed environmental factors. These aspects have seemingly 

random behavior and are non-causal in nature, which make isolating their effects a daunting 

task. A traffic-in-the-loop (TIL) simulator exposes the vehicle systems to these factors to 

varying degrees and duration in order to verify the robustness of the controller in response 

to them, independent of the driving mission. 

4.1 Introduction to Traffic-in-the-Loop Simulation 

As detailed in Section 3.1.1, a fixed drive cycle-based approach to evaluate controllers fails 

to expose the powertrain to scenarios related to vehicle interaction with varying traffic 

density and aggressiveness, infrastructure and the causal nature of events that are part of 

real-world driving. The overall interdependency of the transportation system on various 

elements makes these factors unpredictable. For example, the velocity trajectory of a vehicle 

is affected by its interactions with traffic lights, speed of other vehicles, road grade, driver 

behavior etc. Standard drive cycles subject vehicles to temporally fixed set of inputs on 

every iteration, and fail to account for random events. 



185 

 

To evaluate the effectiveness of a controller, there needs to be a simulator that goes beyond 

the realm of driving cycles. Such a system will need to have the capability to facilitate a 

two-way interaction between the powertrain and the environment in every step of the action. 

The perspective shifts from following designated velocity profiles to viewing it from the 

standpoint of the entire transportation system. Such a scheme facilitates a setting that allows 

more reliable calibration of controllers, and enables accelerated development of intelligent 

powertrains and safety systems. 

The subsequent sections of this chapter describe various components of TIL simulation, 

including its architecture and concludes with a demonstration of results obtained from it. 

Impact of Driver Behavior on Fuel Economy 

Experimental validation by fuel economy testing authorities over the years, coupled with 

academic research by Sharer et al [98] and Ahmed et al. [99] point out that variation in fuel 

economy caused by driving styles and on-road conditions can add up to 35%. While driver 

behavior has been cited as the highest contributing element towards variation of real-driving 

fuel economy from certified estimates, the second and third most influential factors are 

interaction of vehicles with traffic, and infrastructure such as stop signs, speed limits, traffic 

lights etc. respectively. These are natural factors which the affect driver behavior that go 

unaccounted for in synthetic driving cycles traditionally used for fuel economy evaluation. 

As a result, it is observed that the aforementioned three elements are interrelated to a certain 

degree.  
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Such social and infrastructure related interactions on driver behavior can account for 

variation in trip parameters like trip-time and fuel economy caused by random events. 

Moving to a traffic-in-the-loop based simulation helps recreate a good degree of randomness 

encountered by human drivers, given that the calibration of the traffic generation is realistic 

and that the powertrain has sufficient fidelity to respond to stimuli. This methodology can 

be exceedingly better in replicating fuel economy and related performance results (e.g. 

emissions) that are obtained through driving a vehicle in real world scenarios as opposed to 

a dynamometer testing. 

Consequence of Real-world Driver Behavior  

Although it may appear in the onset that realistic driving behavior is completely governed 

by causality of events in a real-time manner, the truth is that any present driver action may 

have more complicated consequences. For instance, an aggressive acceleration event before 

approaching a traffic signal that is soon to turn red will enforce the application of brake and 

a mandatory stop event. On the other hand, a calculated speed trajectory by the driver can 

result in cruising uninterrupted through the traffic signal without the need for a braking 

event by allowing sufficient time for the lights to go green. 

A more advanced example of non-causal effect is the artificial limitation or de-rating of the 

powertrain induced by driver behavior, powertrain limitations, traffic and interaction with 

the infrastructure. Advanced driver assistance systems (ADAS) adaptive cruise control 

(ACC) or speed control enforced by stability systems can also induce dynamic effects on 

fuel economy that have no room for consideration in traditional drive cycle-based 
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powertrain simulation. Once again, an integrated powertrain-traffic simulation environment 

has the scope to quantify these impacts in a bid to make controller evaluations all the more 

representative. 

Types of Traffic Simulators 

Traffic simulation is the mathematical modeling of transportation systems. These simulated 

environments accommodate for the presence of stop signs, traffic lights, lane changes and 

traffic with a spread of different vehicles; driven by drivers of various types. It also imposes 

varying properties for roads including, road-based speed limits, lane widths and prohibited 

lanes. The behavior of member vehicles to the above parameters are described by discrete 

rules or mathematical formulations that are often differential equations [100]. 

The velocity profiles followed by vehicles on a traffic simulator are not predefined. Each 

vehicle’s behavior is determined by its acceleration limits, driver behavior model, and road 

speed limits. Given a traffic free virtual road, vehicles in this environment accelerate to a 

steady speed and maintain that speed in the absence of any external disturbances like traffic 

or stop signs. This steady state speed for each vehicle, depends on the vehicle properties 

and type of driver assigned to it. Certain driver models may cause a minor oscillation of 

this steady state speed, about a given mean with a pseudo-random amplitude and frequency. 

Further, member vehicles decelerate to avoid collisions in the presence of other vehicles or 

when approaching traffic lights and stop signs. This steady state speed for each vehicle, 

depends on the type of driver assigned to it. Further, the vehicles members decelerate to 

avoid collisions in the presence of other vehicles or ahead of traffic lights and stop signs. 
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Traffic simulation techniques can be classified into 3 basic types: Macroscopic, Mesoscopic 

and Microscopic. The study in this thesis is limited to microscopic traffic simulators, i.e. 

every vehicle element in the traffic environment serves as an independent entity with the 

ability to adhere to traffic laws and are governed by ‘behavioral sub-models’ [101]. 

Microscopic Traffic Simulations track individual vehicle movements on a second by 

second or sub-second basis. In such simulations, there will be a ’warm-up’ period before 

the system reaches a desired traffic density on its network. SUMO, the traffic simulation 

package used in this work falls under this category. The computation load for such 

simulation techniques increase with the number of vehicles being simulated. 

Mesoscopic Traffic Simulation: When dealing with larger simulation areas or higher 

traffic count, microscopic simulation techniques can become slow as they are process 

intensive and compute the behavior of every vehicle individually. To simplify this problem, 

transportation elements can be analyzed in small groups. Within each group the elements 

are considered homogeneous. Vehicles can be grouped according to various factors but 

mostly based on direction of traffic flow. 

Macroscopic traffic simulations deal with aggregated characteristics of transportation 

elements, such as combined traffic flow dynamics & zonal-level travel demand analysis. 

E.g.: Google Maps. 
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4.2 Literature Review: Traffic Simulators for Controller Evaluation 

Various attempts have been made towards utilizing the concept of traffic simulation in 

conjunction with numerical powertrain simulators for fuel economy prediction. A 

summary of these attempts is presented in this section. The traffic-in-the-loop framework 

introduced here differs from these prior attempts since it forms a closed loop co-simulation 

where the powertrain model and the traffic simulation environment interact dynamically 

through an in-built two-way communication link. The co-simulation is setup such that the 

powertrain dynamics and the driver properties of the host vehicle affects its behavior in the 

traffic simulator at every time step and vice versa.  

A highly comprehensive study on the most important models and theories that characterize 

the flow of highway and city traffic in its many facets was conducted by the Committee on 

Traffic Flow Theory and Characteristics in 2001 [102]. They present the various models 

that have been developed to characterize the relationship among the traffic stream 

variables: speed, flow and concentration. This publication also explores in high detail the 

human element in the context of the driver-vehicle system, and the discrete components of 

its performance. Macroscopic car flow models, traffic impact models, flow in signalized 

traffic intersections, safety schemes, fuel consumption and emission models are also 

explored in detail. The study concludes with a traffic simulation model that explores a wide 

variety of dynamical problems. 

Elsewhere, Bajpai et al [103] proposed an efficient interface to couple adaptive control 

strategy and traffic simulator. This interface mediates between traffic control system and 
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traffic simulator and provides online interaction to simulation from the control strategy. 

Additionally, a module to estimate the vehicular delay due to the control strategy is 

developed and tested in SUMO. Studies by Doniec et al. [104] proposed a behavioral multi-

agent model for road traffic simulation. Their contribution involves simulation of traffic in 

a real intersection and comparison of the simulated traffic flow with the real flow to 

highlight the relevance of the approach.  

J. Maroto et al. [105] described a microscopic model that is able to simulate traffic 

situations in an urban environment in real time for use in driving simulators. Two types of 

vehicles were considered in the simulation, namely the user-driven vehicle at the center of 

the simulation model and the other vehicles that interact with it and its surroundings, which 

configure the developed traffic model. Simulation was performed in a reduced zone, called 

the control zone, surrounding the user-driven vehicle. Such a model is immediately 

applicable to large-scale driving simulators for driver training, traffic control studies, and 

safety studies. 

4.3 Cross-Platform Simulation with Urban Drive Cycles 

By combining traffic simulation with a physics-based powertrain model, the simulation 

framework proposed in this chapter overcomes drawbacks of drive cycle-based powertrain 

simulation as detailed above. It allows users to run a virtual road test of a vehicle, in a 

simulated environment with various sensors and control algorithms in loop. Given the 

nature of vehicle behavior in traffic simulators, velocity profiles generated from such 

techniques are more realistic, provided the traffic and infrastructure elements are tuned 
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appropriately with accurate data. Once calibrated, infinite number of drive scenarios can 

be obtained by varying ‘seed numbers’ corresponding to each simulation run- in the traffic 

modeling software. 

Simulation of Urban Mobility (SUMO), is an open source, highly portable, microscopic, 

multi-modal traffic simulation. It allows to simulate how a given traffic demand which 

consists of single vehicles moves through a given road network. The simulation allows 

addressing a large set of traffic management topics. It is purely microscopic: each vehicle 

is modelled explicitly, has an own route, and moves individually through the network. 

Simulations are deterministic by default but there are various options for introducing 

randomness.   

SUMO provides the capability to turn street map into trajectories for 2-dimentional vehicle 

models to run on. The additional features include the addition of traffic lights, speed limits, 

environment vehicles to interact with the ego-vehicle. The project started in October of 

2019, with an objective to connect the Simulink-based simulator with traffic environment. 

The project objectives include prototyping of the powertrain architecture and investigation 

of proper control strategy. The objectives span a wide spectrum from vehicle modeling to 

control design. To address these objectives with a relatively small and efficient team, a 

flexible suite of simulation tools is required. Combining the past wisdoms and lessons 

learned at the Center for Automotive Research, a solution of providing not just one, but 

cluster of interdependent tools is proposed and being implemented. 
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To represent and analyze the aspect of powertrain optimization, hybrid energy management, 

driver, external environment, available information for control, single tool that does all 

doesn't exist. Instead, a pool of different tools is brought together. In this case, three 

distinctive simulators are used as shown in Figure 104. 

• A MATLAB script-based simulator that follows a predefined drive-cycle, doesn't 

have a driver and runs Dynamic Programming (DP) as the control algorithm; 

• A MATLAB Simulink-based simulator that implements a PID-based driver who 

tries to track a predefined drive-cycle, and runs A-ECMS as the control algorithm; 

• A SUMO-based traffic simulator that simulates road map and traffic for a host 

vehicle. 

 

Figure 104: Cross-platform simulation 
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4.4 SUMO – Simulation of Urban Mobility 

To overcome the deficiencies in current practices pertaining to powertrain simulation as 

discussed earlier, a framework that aims to integrate the real-world factors such as non-

causality, vehicle-infrastructure interaction and traffic behavior into a conventional 

powertrain simulator is presented here. This enables the user to capture dynamics that are 

associated with real-world systems and study the effect of factors external to the powertrain 

on the overall system efficiency and performance. In the proposed framework, the online 

coupling of SUMO and Simulink allows the adaptation of vehicles behavior during 

simulation runtime.  

Further, TIL helps to capture the mean and variance of on-road fuel economy without the 

need for physical road testing. In theory, the precision of such estimations is constrained 

only by the fidelity of models used. The primary goal of this co-simulation is to describe a 

‘host vehicle’ in the SUMO environment, whose dynamics and controls are governed by a 

Simulink based powertrain model. As this host vehicle moves in the virtual world; a 

Simulink based dynamic powertrain plant model is utilized at the back-end, to compute the 

parameters such as, but not limited to: Host speed for next time step, instantaneous fuel 

consumption, engine operating points, gear shifts etc., while simultaneously exercise 

various control actions (e.g. acceleration limiting, torque split etc.). The speed computed 

by the powertrain model is then fed into SUMO as an ‘command input’ before every 

simulation step. This would make sure that the behavior of vehicle model within SUMO is 

realistic, and within dynamical bounds as defined in the vehicle model. This closed loop 
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simulation allows all associated causality to be strictly maintained. The following Section 

3.5.1 describes the powertrain simulator’s integration with a traffic simulation package that 

helped achieve the goals of this work. The salient features of SUMO are as follows:  

• SUMO includes all applications needed to prepare and perform a traffic simulation 

(network and routes import, DUA, simulation) 

• Simulation features: 

o Space-continuous and time-discrete vehicle movement 

o Different vehicle types 

o Multi-lane streets with lane changing 

o Different right-of-way rules, traffic lights 

o A fast openGL graphical user interface 

o Manages networks with several 10.000 edges (streets) 

o Fast execution speed (up to 100.000 vehicle updates/s on a 1GHz machine) 

o Interoperability with other application at run-time 

o Network-wide, edge-based, vehicle-based, and detector-based outputs 

o Supports person-based inter-modal trips 

o Network Import  

o Imports VISUM, Vis-sim, Shapefiles, OSM, RoboCup, MATsim, OpenDRIVE 

and XML-Descriptions 

o Missing values are determined via heuristics 

o Routing  

o Microscopic routes - each vehicle has an own one 
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o Different Dynamic User Assignment algorithms 

o High portability  

o Only standard C++ and portable libraries are used 

o Packages for Windows main Linux distributions exist 

o High interoperability through usage of XML-data only 

o Open source (GPL) 

Figure 105 elucidates the simulation paradigm followed by SUMO in bringing together its 

capabilities in order to prepare an environment suitable to introduce a host vehicle for 

performing traffic-in-the-loop simulation. The procedure starts with selecting the route map 

through Open Street Maps resources and concludes in trace extraction that corresponds to 

the trajectory of the traffic elements that are generated in the simulation space. At the end 

of this process, the stage is set for the host vehicle to enter the simulation and exchange 

information to start the co-simulation with MATLAB. 

 

Figure 105: Vehicle mobility simulation process in SUMO 
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4.4.1 Forward Simulator  

The Forward Simulator is a Simulink-based simulator that incorporates the selected optimal 

range extender HEV architecture arrived at in Chapter 2 with the Design Space Exploration 

exercise. The data for the powertrain components are sourced from industry partners as well 

as utilizing market research. The full disclosure on the component modeling in the forward 

simulator is discussed in Chapter 3.1. 

4.4.2 Open Street Maps for Route Generation 

SUMO has evolved into a full featured suite of traffic modeling utilities including a road 

network capable to read different source formats, demand generation and routing utilities 

from various input sources (origin destination matrices, traffic counts, etc.), a high 

performance simulation usable for single junctions as well as whole cities including a 

“remote control” interface (TraCI) to adapt the simulation online.  

Road Network Generation 

To run a traffic simulation, a network file is required. A network file is simply an XML 

file that contains information about how junctions (nodes) are connected with roads (edges 

consisting of one or more lanes), how lanes are connected at junctions, what are the top 

speeds and shapes of lanes and also the information about traffic light logic. There are 

several ways to obtain such a network file, but most of them mean using the 

NETCONVERT tool that comes with SUMO. One option is to provide SUMO-specific 

XML files as input for NETCONVERT. Those inputs include an XML file to list all nodes, 
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another one to list all edges, one for describing edge types (i.e. what is the maximum speed, 

number of lanes, allowed/disallowed vehicle types etc. for a given edge type), and finally 

a file to describe how edges are connected in nodes (e.g. to specify if left turns are allowed 

in a given junction or not). The edge type and connection files are optional and SUMO uses 

default values if edges don't have any type information specified and guesses the 

connections at junctions if unspecified. It is also possible to generate a random road 

network using the NETGENERATE tool. It builds three different kinds of abstract road 

networks: “Manhattan”-like grid networks, circular “spider-net” networks, and random 

networks. Each of the generation algorithms has a set of options, which allow adjusting the 

network’s properties. Figure 106 shows examples of the generated networks. 

However, using a network that exists in the real world is likely to be more desirable. The 

road network importer NETCONVERT converts networks from other traffic simulators 

such as VISUM, Vissim, or MATSim. It also reads other common digital road network 

formats, such as shapefiles or OpenStreetMap (OSM). Besides these formats, Netconvert 

is also capable to read fewer known formats, such as OpenDRIVE or the RoboCup network 

format. 
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Figure 106: Examples of abstract road networks as built using “netgenerate”; from left to 

right: grid (“Manhattan”, spider, and random network) 

Road Network Using OSM Map 

To use an OSM map for creating a road network for SUMO, map data needs to be 

downloaded. That can be done preferably from http://www.openstreetmap.org/ by either 

selecting a rectangular area from the map or specifying a bounding box with geographic 

coordinates. But it is also possible to obtain a map programmatically by sending an HTTP 

request to the OSM API. SUMO even provides a Python script for making the API call. 

The downloaded OSM map is simply an XML file that contains a list of data primitives - 

nodes (a point on the earth's surface), ways (an ordered list of nodes) and relations (a data 

structure that documents relations between other elements). This OSM map file can then 

be given as input to NETCONVERT to transform it into a network file i.e. Netmap file that 

SUMO can use. 

For this work, a map of the area around The Ohio State University was downloaded in 

OSM format from Open Street Maps and imported to SUMO. A sample route for CERC 

application is charted out in Figure 107. 

http://www.openstreetmap.org/
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Figure 107: A sample route for CERC P&D application on an OSM map 

NETCONVERT 

The network importer and generator reads road networks from different formats and 

converts them into the SUMO-format. A SUMO network file describes the traffic-related 

part of a map, the roads and intersections the simulated vehicles run along or across. At a 

coarse scale, a SUMO network is a directed graph. Nodes, usually named "junctions" in 

SUMO-context, represent intersections, and "edges" roads or streets. Note that edges are 

unidirectional. Specifically, the SUMO network contains the following information:  

▪ Every street (edge) as a collection of lanes, including the position, shape and speed 

limit of every lane; 

▪ Traffic light logics referenced by junctions; 

▪ Junctions, including their right of way regulation; 

▪ Connections between lanes at junctions (nodes). 
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Also, depending on the used input formats and set processing options, one can also find  

▪ Districts; 

▪ Roundabout descriptions. 

4.4.3 Inserting the Host Vehicle into the Co-simulation 

The fundamental components in this simulator are summarized in this section. A high-level 

overview of the proposed co-simulation is illustrated in Figure 108. 

 

Figure 108: SUMO framework – a high level overview 

SUMO and Associated Support Structures: These provisions are in place to facilitate 

the communication between SUMO and Simulink through MATLAB. 

Sensor Modules: Outputs from SUMO such as (but not limited to) distance to and speed 

of vehicle ahead, current phase of upcoming traffic light en route etc. can be considered as 

sensor outputs. In this case, these values can be considered as output from a RADAR sensor 

and a V2I receiver respectively. Sensor noise can then be modeled separately by 

understanding individual sensors behavior and creating a custom noise pattern that can be 

added to the sensor outputs from the SUMO before being fed into the controller. 
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Powertrain Controller: The powertrain controller can range from a simple start stop 

controller for mild hybrids that use the sensor data to perceive the environment to make 

on-off decisions to more complex controllers where sensor data and robustness to 

uncertainty is crucial for optimal operation. These controllers process inputs from SUMO 

and yield control inputs to the powertrain. 

Powertrain and Vehicle Dynamics Model: These models help calculate energy 

consumption and fuel economy values. Based on the fidelity of the system model, one can 

choose to observe dynamics involved in various components and study their effects on the 

environment or vice versa. 

4.4.4 Intelligent Driver Model (IDM) for Velocity Profile Generation 

The IDM predictor is deterministic and uses information such as headway distance, speed 

of the vehicle ahead, current velocity of the host vehicle and its acceleration limits to 

determine the host vehicle’s predicted speed in the next time-step (set using the parameter 

window in Table 46). The IDM based velocity predictor in Simulink (Figure 109) is 

calibrated using parameters from the host vehicle’s (SUMO) parameters at the beginning 

of each simulation. 
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Figure 109: Simulink implementation of the Intelligent Driver Model (IMD) which is the 

interface for information exchange between MATLAB and SUMO 

The IDM acceleration is a continuous function incorporating different driving modes for 

all velocities in freeway traffic as well as city traffic [106]. Besides the bumper-to-bumper 

distance ‘𝑠’ to the leading vehicle, the desired speed 𝑣0 and the actual speed 𝑣, the IDM 

also takes into account the velocity difference (approaching rate) ∆𝑣 = 𝑣 − 𝑣1 to the 

leading vehicle. The IDM acceleration function is given by 

𝑎𝐼𝐷𝑀(𝑠, 𝑣, ∇𝑣) =
𝑑𝑣

𝑑𝑡
= 𝑎 [1 − (

𝑣

𝑣0
)
𝛿

− (
𝑠 ∗ (𝑣, ∆𝑣)

𝑠
)

2

] , (1) 

𝑠 ∗ (𝑣, ∆𝑣) = 𝑠0 + 𝑣𝑇 +
𝑣∆𝑣

2√𝑎𝑏
 , (2) 
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Initialization of parameters of the Intelligent Driver Model (IDM) used in the simulations 

are provided in Table 46. These are varied in the later stages of the co-simulation to setup 

desired traffic scenarios, as shown in Figure 110. A simplified flowchart depicting the 

SUMO-MATLAB integration via the Intelligent Driver Model is given in Figure 111. 

Table 46: Intelligent Driver Model (IDM) parameters 

Parameter Car Truck 

Desired speed, 𝒗𝟎 120 km/h 85 km/h 

Free acceleration exponent, 𝜹  4 4 

Desired time gap, T 1.5 s 2.0 s 

Jam distance  2.0 m 4.0 m 

Maximum acceleration, a 1.4 m/s2 0.7 m/s2 

Desired deceleration, b 2.0 m/s2 2.0 m/s2 

 

Figure 110: Paradigm of the Intelligent Driver Model (IDM) within SUMO 
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Figure 111: Flowchart depicting the SUMO-MATLAB integration via the IDM [96] 

4.4.5 Co-simulation Framework and Sensor Emulation 

To cope with the deficiencies in current practices pertaining to powertrain simulation, a 

framework that aims to integrate the real world factors such as non-causality, vehicle-

infrastructure interaction and traffic behavior into a conventional powertrain simulator in 

an effort to capture the dynamics that are associated with real-world systems and study the 

effect of environmental factors external to the powertrain on the overall system efficiency 
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and performance is elaborated here for common understanding. In this perspective, the 

functionality of the TraCI4MATLAB utility is essential to understand. 

TraCI4MATLAB 

TraCI4MATLAB is an API (Application Programming Interface) developed in MATLAB 

that allows the communication between any application developed in this language and the 

urban traffic simulation software, SUMO. The functions that comprise TraCI4MATLAB 

implement the TraCI (Traffic Control Interface) application level protocol, which is built 

on top of the TCP/IP stack, so the application developed in MATLAB, which is the client, 

can access and modify the simulation environment provided by the server (SUMO). 

TraCI4MATLAB allows controlling SUMO objects such as vehicles, traffic lights, 

junctions etc., enabling applications like traffic light predictive control and dynamic route 

assignment, among others. 

Co-Simulation Framework 

The integration of the Simulink-based powertrain simulator with SUMO traffic simulation 

has been accomplished in a two-step manner. First, the TraCI4MATLAB interface is used 

to link MATLAB and SUMO in a ‘server-client’ manner, where SUMO acts as the server 

with MATLAB acting as the client. TraCI4MATLAB uses a Java API to establish a TCP/IP 

communication link between SUMO and MATLAB. To ensure connectivity, an explicitly 

specified port (port 30000) to establish this communication passage is utilized. Further, 

this architecture ensures that multiple vehicle models running on various different 
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physical/virtual machines can simultaneously access the simulation parameters in a 

centrally operating SUMO server by connecting to the same port via TraCI. This is 

represented graphically in Figure 112. In this figure, the dotted lines enclosing the ‘TraCI’ 

and ‘MATLAB’ blocks signify that they operate as one integral unit by virtue of the fact 

that TraCI4MATLAB is implemented as MATLAB functions and reside within the 

MATLAB environment. 

 

Figure 112: Information flow between Simulink and SUMO 

Second, a communication link is established between the Simulink model and 

TraCI4MATLAB via an interface that resides within the powertrain model. This interface 

supports two-way flow of information, and thus works to close the loop between SUMO 

and the powertrain model. Hence, it is embedding a more detailed and customizable 

powertrain and control model into the traffic simulation. This architecture is shown 

graphically in Figure 113, which describes the closed loop information exchange that takes 

place in the designed framework.  

The overall goal behind organizing the simulation framework is such that, given a-priori 

knowledge of the ‘host’ vehicle’s speed in the next time step, the vehicle model can treat 

it as a ‘virtual’ driver speed request. This speed request (𝜗k+1) is then subject to control and 
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vehicle dynamic limitations, hence resulting in modified speed request 𝜐𝑘+1. Further, speed 

𝜗𝑘+1 from the vehicle model is then sent to SUMO as a speed input. This method of 

Simulink leading the simulation and SUMO following the speed input, ensures that the 

SUMO and Simulink models are always tightly coupled. However, vehicle velocity in a 

future time step is not available as an output from SUMO. Thus, the authors set the 

Intelligent Driver Model (IDM) model as the driver model for the host vehicle within 

SUMO environment, and implemented the same equations in Simulink. 𝜑𝑘 carries all the 

required parameters from SUMO to be used by the IDM model shown above to predict the 

vehicle’s velocity in the next time step 𝜗k+1. 

 

Figure 113: Information flow in closed-loop simulation 

Since the model equations for the IDM are the same in both the SUMO and Simulink 

environments, the velocity prediction for step ‘k+1’ is accurate. This predicted velocity 

𝜗k+1 is fed into the vehicle controller as desired velocity. Subsequently, the controller 
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applies a set of inputs, given by 𝜗𝑘+1 to the vehicle model. Based on control and component 

level dynamics, the velocity 𝜗⃑⃑⃑𝑘+1 attained by the vehicle is computed by the vehicle model, 

given the latest control inputs and powertrain limits. This now forms the velocity input 

which is then set as an input to the SUMO vehicle via the interface. Upon receiving this 

input, SUMO carries out one simulation step, and the whole process repeats for the next 

time step. Hence, a closed loop co-simulation with traffic-in-the-loop is achieved. From a 

systems perspective, one can consider this integration process to be akin to replacing the 

driver in the vehicle model with the traffic simulator. 

The co-simulator framework developed in this work is depicted in figure 114. This high-

level figure illustrates all associated components and information flows. There are four 

basic components in this simulator: host powertrain, lead vehicle, traffic and driver. 
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Figure 114: Bird’s-eye view of the simulation framework 

Traffic-in-the-loop Powertrain Simulation 

The primary objective of the co-simulation is to declare a ‘host vehicle’ in the SUMO 

environment, whose dynamics and control are governed by a Simulink-based powertrain 

model. As this host vehicle moves in the virtual world, the dynamic powertrain model is 

utilized in the backend in a closed loop manner to compute the parameters such as (but not 

limited to) host speed for next time step, instantaneous fuel consumption etc., and 

simultaneously exercise various control actions (e.g. acceleration limiting). The speed 

computed by the powertrain model is then fed into SUMO as a ‘command input’. This 

would make sure that the behavior of the vehicle model within SUMO is realistic and 

within the physical and dynamic bounds as defined by the Simulink model. 
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There are several ‘TraCI’ commands, as shown in Table 47, which are used to interface the 

communication between MATLAB and SUMO. To appreciate how MATLAB 

communicates with SUMO to get specific information such as VehicleID, position, speed 

and LaneID etc. about a particular vehicle, for instance 'testVehicle', through ‘TraCI’ 

commands, please refer to the commands described in Table 47. 

Table 47: TraCI commands to extract sensor information 

TraCI Commands/functions Information 

traci.vehicle.getPosition('testVehicle') Self-localization 

traci.vehicle.getPosition('VehicleID') Location of other vehicle(s) 

traci.vehicle.getSpeed('testVehicle') Self-speed 

traci.vehicle.getLeader_osu('TestVehicle') Leader ranging 

traci.vehicle.getAccel(LeaderID) Leader acceleration 

traci.vehicle.getVehicleClass(LeaderID) Leader classification 

traci.vehicle.getLaneID(vehID) Lane identification 

traci.lane.getWidth (laneID) Road width 

traci.lane.getLength(laneID) Road localization 

traci.lane.getMaxSpeed(LaneID) Speed limit 

traci.edge.getLastStepVehicleIDs(edgeID) Road traffic number 

traci.edge.getLastStepOccupancy(edgeID) Road utilization % 

getLastStepVehicleIDs(edgeID) 

traci.vehicle.getVehicleClass(VehicleIDs) 

traci.edge.getLastStepLength(EdgeID) 

Road demographics 

traci.vehicle.getLastStepMeanSpeed(edgeID) Edge average speed 

traci.vehicle.getLastStepHaltingNumber(edgeID) Number of vehicles in jam 

traci.vehicle.getVehicleLights() Traffic light position 

traci.trafficlights.getPhase() Traffic light phase 

traci.vehicle.getVehicleLights() Time to traffic light green 

traci.vehicle.getVehicleLights() – post processed Distance to green light 

traci.simulation.getDistanceRoad(Current Edge, Current 

Pos, Destination Edge, Destination Pos, isDriving) 

Distance to the destination 
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Figure 115: The complete layout of the powertrain-traffic co-simulation environment 

4.5 Simulation Results and Discussion 

A successful co-simulation has been obtained by integrating the forward simulator of the 

selected two-speed e-axle HEV candidate with the SUMO traffic-in-the-loop simulation 

environment for evaluation of the controller performance under various driving scenarios. 

4.5.1 Drive Cycle Characterization 

The specific driving route under consideration is a randomized traffic generated in the 

Columbus OSM street map elaborated in Section 4.4.2, with the host vehicle injected into 

it. This route is utilized here for the controller evaluation by subjecting the host vehicle to 

a multitude of traffic parameters such as driver aggressiveness, following distance, 

acceleration and deceleration limits during a driving scenario lasting approximately 20 
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minutes. The response of the host vehicle to its environment is limited by the ability of its 

default driver (driven by a PID controller) to follow the demanded trajectory. 

4.5.2 Analysis of the ECMS Controller Performance 

With the co-simulation environment in place, the ECMS controller can now be evaluated 

against a variety of traffic conditions that a vehicle may be subjected to in real-world 

driving. This section explores the impact of driver and traffic-induced factors such as 

maximum and minimum acceleration of the vehicle(s) driving ahead of the host vehicle, 

minimum time gap between these vehicles and the following distance. 

The set speed by the SUMO simulator is essentially the lead vehicle speed in the SUMO 

traffic simulator. The host vehicle does not track the velocity set by the SUMO simulator 

accurately because the forward simulator driver is not adequately tuned for every scenario 

encountered in the traffic simulation. Hence, this is effectively a way of testing the 

robustness of the forward simulator physics as much as it is of the controller. 

4.5.3 Effect on Trip Fuel Economy and Start-Stops 

In general, the trends in fuel economy and start-stop events is heavily influenced by the 

aggressiveness of the lead vehicle driver (IDM), which compels the host vehicle to follow 

in response. A very low aggressiveness in the lead vehicle driver results in higher fuel 

economy, and allows the host vehicle to track the speed more accurately. 
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Figure 116: Impact of driver behavior on fuel economy and engine start-stops 

Table 48: Statistical data: dependence of powertrain performance on IDM behavior 

Parameter Fuel Economy Engine Start-Stops 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

IDM Acceleration Limit 10.15 1.51 14.2 2.7 

IDM Minimum Time 

Gap 

13.13 0.5 12.2 0.41 

IDM Following 

Distance 

9.42 0.14 12.72 0.46 
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Figure 117: Statistical data: dependence of powertrain efficiency on IDM behavior 

As expected, the statistical data in Table 48, and Figures 116 and 117 show that the highest 

deviation in the fuel economy is inflicted by change in acceleration limits of the driver, 

while the least impact is due to the lead vehicle following distance. The time gap 

maintained by the lead vehicle had an intermediate level of influence on fuel economy. In 

terms of the number of genset start-stop events, a clear trend was observed only in the case 
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of changing acceleration limits. Following distance and time gap did not yield any 

conclusive impacts on engine start-stop trends. 

 

Figure 118: Statistical data on the dependence of genset start-stops on IDM behavior 

The frequency distribution of the number of engine start stops highlighted in Figure 118 

attest that the above driver behavior elements do not have a verifiable effect on the genset 

ON-OFF events, partly owing to the relatively small number of test cases (60 driving 

scenarios). 
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4.5.4 Effect on Trip Emissions 

As elaborated in Section 3.1.3, trip emissions are largely down to the quantity of fuel 

consumed. Additionally, they can be heavily influenced by the number of genset start-stop 

events that impacts the temperature dynamics of the aftertreatment system in the case of 

the selected range-extended hybrid candidate.  

A detailed exploration of the aftertreatment model dynamics is beyond the scope of this 

thesis. However, a simplified lump thermal model with an energy equivalence between the 

exhaust gas thermal energy and the catalyst temperature dynamics is implemented in the 

forward simulator. The following discussion throws light on the details of this exhaust 

thermal model, as well as the results generated with the A-ECMS controller. 

An Aftertreatment Model for the Forward Simulator 

The aftertreatment system dynamics is modeled here as a simple lumped thermal system 

with heat input from the generator set exhaust flow, which raises its temperature to the 

optimum degree needed for suitable conversion of the exhaust species (Figures 119 and 

120). The catalyst also loses heat to the surroundings by means of convective losses. This 

convective heat transfer is accounted for in the following expressions. 
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Figure 119: Energy dynamics in the generator set system 

 

Figure 120: Thermal dynamics of the two-way catalyst 

Convection heat transfer rate, 𝑞 = ℎ𝐴(𝑇1 − 𝑇2), 

Where ‘h’ is the coefficient of convective hear transfer 

The thermal resistance associated with convection is given by the expression: 

𝑅𝑡 =
Δ𝑇

𝑞
=
1

ℎ𝐴
 

Thermal capacitance: 𝑇 − 𝑇0 =
1

𝐶𝑡
∫ 𝑞𝑑𝑡
𝑡

0
,   𝐶𝑡 = 𝑀𝑐 

Heat energy added to the catalyst: 𝑞 = 𝑚𝑐𝑝ΔT 
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Experimental data needed to execute this model in simulation include the map of the 

aftertreatment inlet temperature as a function of the engine torque and speed: 

𝑇1(𝑇𝑜𝑟𝑞𝑢𝑒, 𝜔), the map of the aftertreatment inlet mass flow rate as a function of torque 

and speed: 𝑚̇(𝑇𝑜𝑟𝑞𝑢𝑒, 𝜔). 

The temperature dynamics of the catalyst is given by: 

• Rate of heat energy added to the catalyst (W): 𝑞̇ = 𝑚𝑐𝑎𝑡𝑐𝑝,𝑐𝑎𝑡(
𝑑𝑇𝑐𝑎𝑡

𝑑𝑡
) 

• Heat transferred to the catalyst (W) = ℎ𝑒𝑥ℎ 𝑡𝑜 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡𝐴𝑐𝑎𝑡(𝑇𝑒𝑥ℎ − 𝑇𝑐𝑎𝑡) =

ℎ1𝐴𝑐𝑎𝑡(𝑇𝑒𝑥ℎ − 𝑇𝑐𝑎𝑡) 

• Heat lost to the surroundings (W) = ℎ𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑡𝑜 𝑎𝑖𝑟𝐴𝑐𝑎𝑡(𝑇𝑐𝑎 − 𝑇𝑎𝑡𝑚) =

ℎ2𝐴𝑐𝑎𝑡(𝑇𝑐𝑎𝑡 − 𝑇𝑎𝑡𝑚) 

• Energy balance for the aftertreatment system gives: 

𝑚𝑐𝑎𝑡𝑐𝑝,𝑐𝑎𝑡
𝑑𝑇𝑐𝑎𝑡
𝑑𝑡

= ℎ1𝐴𝑐𝑎𝑡(𝑇𝑒𝑥ℎ − 𝑇𝑐𝑎𝑡) − ℎ2𝐴𝑐𝑎𝑡(𝑇𝑐𝑎𝑡 − 𝑇𝑎𝑡𝑚)          (1) 

The parameter values that are required execute this model in simulation include the mass, 

area and the coefficient of convective associated with the exhaust flow, the catalyst and the 

environment such as 𝑚𝑐𝑎𝑡,  𝑐𝑝,𝑐𝑎𝑡 , ℎ1𝐴𝑐𝑎𝑡 , ℎ2𝐴𝑐𝑎𝑡 , 𝑇𝑒𝑥ℎ , 𝑇𝑐𝑎𝑡 as functions of engine 

operating points. Note that the exothermic heat generated by catalysis is not modeled 

separately here, and is assumed to be lumped with the first term on the right-hand side of 

equation (1). 
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A map of the engine’s exhaust temperature is built based on the data obtained from 

experimental results. Then a catalyst thermal model is integrated with the forward 

simulator. Note that the catalyst cooling during the engine-off periods is strongly affected 

by the temperature that is assumed for the exhaust flow. If it is assumed that when the 

engine is off, no exhaust flow occurs, the exhaust temperature drops to some fixed value 

(e.g. 150 C), and the catalyst will cool down faster, because it will reject heat both to the 

atmosphere and the exhaust. Also note that the exhaust temperatures are quite high in 

general, and since the engine is operated on the optimal operating line for the most part, 

the catalyst usually stays in that higher range of its temperature spectrum. Therefore, the 

results show that only engine stops of around half an hour can significantly cool down the 

catalyst below the optimum operating range. 

 

Figure 121: Temperature dynamics of the catalyst based on the exhaust gas flow 

The exhaust temperature during cooling down is not the same as the previous value noted 

when the engine is on. It also cools down as depicted in the experimental result in Figure 

121. The model parameters are such that there is a non-zero heat transfer coefficient from 
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the exhaust flow to the catalyst when there is no exhaust flow, i.e. no convection heat 

transfer. The model can then capture the heat soaking section (the very first increase of 

temperature in the plot where the engine is already off). Otherwise, the modeled two-way 

catalyst (TWC) temperature will fall straightaway instead of going up first. 

 

 

Figure 122: Study of the catalyst temperature dynamics over the drive cycle 

However, the benefit of that is unused given the fact that the heat soak phenomenon is not 

modeled. That means catalyst temperature only goes downward, and the exhaust 
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temperature is a passive parameter in the controller operation, with the lower threshold 

temperature never realized in the simulation window, except for the duration of the mid-

day break in the drive cycle. 

From the simulation results of the aftertreatment dynamics indicated in Figure 122, it is 

clear that the two-way catalyst temperature does not fall below the light-off temperature 

assumed at the cut off value of 300 C. As a result, the emission penalty that comes with 

uncontrolled start-stop events is trivial. It is however a concern that the number of start-

stops can adversely affect the durability of the genset hardware, as elaborated in Section 

3.1.2. This is a consequence of the limitation of the A-ECMS controller in being inherently 

unable to penalize start-stop events with a penalty function. It has the ability to access 

neither the past trajectory of the drive cycle nor the future events while performing the 

instantaneous power split to follow the reference SOC profile. Hence, a rule-based 

controller would be necessary to have a meaningful authority over start-stop events. 

4.5.5 Advantage of Traffic Co-simulation over Deterministic Drive Cycles 

Fixed drive cycle-based simulation techniques are inadequate to fully represent the effects 

related to vehicle interaction with infrastructure and other vehicles and its non-causal 

treatment of driving profile information. Thus, a pressing need was felt to develop a 

simulation framework where the vehicle is subjected to a real-world environment and is 

required to interaction with surrounding traffic by virtue of imposed driver behavior 

variation. This work has developed a framework that aims to integrate the real world factors 

such as causality, vehicle infrastructure interaction and traffic behavior into a hybrid 
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powertrain simulator in an effort to capture the dynamics that are associated with real-

world systems, and study the effect of factors external to the powertrain on the overall fuel 

economy, engine start-stop events and emissions. 

In the proposed framework, the online co-simulation allows the adaptation of vehicle 

behavior during the simulation runtime. Hence, in a statistical sense, the methodology of 

the simulation that is described in this thesis helps to reliably capture the mean and standard 

deviation in on-road fuel economy, constrained only by the fidelity of the models used 

without the need for on-road tests. 

4.6 Summary of Results 

A co-simulation has been achieved with the integration of the selected powertrain model 

with a dynamic traffic environment by marrying MATLAB and SUMO in a real-time 

manner. The impacts of the driver and traffic behavior on the fuel economy, start-stop 

performance and emissions of the vehicle have been evaluated to test the controller 

robustness in an environment that is far more realistic than synthetic drive cycles.  
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Chapter 5. Conclusion and Future Scope 

The research presented in this thesis dealt with the formulation of a suitable design 

space exploration search scheme capable of leveraging realistic drive cycle data and a 

collection of powertrain component information to culminate in an optimal architecture for 

a Class 6 range-extended plugin hybrid electric delivery truck. An online implementable 

energy management strategy was designed and implemented to optimize the selected 

performance metrics of the vehicle over a specific driving mission. Finally, the robustness 

of the controller was tested with an integrated powertrain-cum-traffic-in-the-loop 

simulation. The entire exercise has led to a set of conclusions that aided in making an 

informed decision about the final implementation of the specified real-world product. 

5.1 Summary of the Study 

A design for operation notion that relies intensively on operational data collection and 

large-scale simulations is the cornerstone of this project. In the past two decades, a number 

of studies have addressed this design notion that uses optimization tools and simulation 

models to find optimal powertrain topology and component sizes for specific operation 

scenarios. In this work, this design for operation notion was revisited with a specific 

combination of optimization and control techniques that promises accurate results with 

relatively fast computational time. A Gaussian Process (GP) based statistical learning 

approach was used to refine the search space for the most accurate, optimal designs. Five 
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hybrid powertrain architectures, namely two-speed e-axle, three-speed automatic manual 

transmission with electric motor (AMT+EM), four-speed AMT+EM, direct drive and dual 

motor were explored, and a set of Pareto-optimal designs were found for a specific driving 

mission that represents the variations in a hypothetical operational scenario. The entire 

range of modeling and optimization processes were performed on the MATLAB-Simulink 

platform. A cross-architecture performance and cost comparison was performed, which 

showed that two-speed e-axle is the optimal architecture for the specific application. 

Given the inability of fixed drive cycle-based simulation techniques to fully represent 

effects related to vehicle interaction with infrastructure and other vehicles and its non-

causal approximation of driving profiles, a strong need was felt to develop a simulation 

framework where the vehicle drives in a virtual real-world condition and is subjected to 

interaction with surrounding vehicles and infrastructure. This work has developed a 

framework that aims to integrate the real-world factors such as causality, vehicle 

infrastructure interaction and traffic behavior into a hybrid powertrain simulator in an effort 

to capture the dynamics that are associated with real-world systems and study the effect of 

environmental factors external to the powertrain on the overall system efficiency and 

performance.  

In the proposed framework, the online traffic-powertrain co-simulation allows the 

adaptation of vehicle behavior during simulation runtime. Hence in a statistical sense, the 

frame work of the simulation that is described in this thesis helps to reliably capture the 
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mean and variance in on-road fuel economy, constrained only by the fidelity of the models 

used without the need for on-road tests. 

5.2 Future Scope 

Firstly, it is established that the Design Space Exploration exercise resulted in satisfactory 

results for the powertrain architecture by minimizing the computation cost to a great extent. 

Such a study can also be extended to parallel or power-split vehicle architectures in the same 

commercial truck weight class to generate schemes that are more universally applicable. 

While the adaptive ECMS controller provided robust fuel economy performance for the 

vehicle by utilizing accurate a priori information, better results can be obtained by 

incorporating a receding horizon controller such as model predictive control (MPC) or MPC 

in conjunction with dynamic programming over short horizons. Such techniques have been 

successfully demonstrated in passenger vehicle by undertakings such as the ARPA-E 

NEXTCAR led by the Center for Automotive Research, OSU [13]. With such a versatile 

controller, multiple levels of velocity predictors can be employed to obtain varying degrees 

of look-ahead information, and predict the future velocity. Such an exercise would also 

facilitate the cost-benefit analysis of the addition of cumulative sensor suites in production 

vehicles. Furthermore, there is potential for more realistic intelligent driver models to be 

integration with the forward simulator for look-ahead control as well as traffic-in-the-loop 

simulation with SUMO. Additionally, controller development and validation for 
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applications similar to geo-fencing – constraining the powertrain operation mode based on 

location data – can also be performed using the SUMO framework. 

Developing a higher fidelity aftertreatment model to be integrated with the simulator is 

another area of potential improvement. This model can be integrated with dynamic 

programming with added penalties for failing to adhere to temperature limits of the two-

way catalyst. Results would offer the absolute best scenario of fuel economy and engine 

start-stop counts to serve as a universal benchmark for this architecture going forward. 

Further improvement of fuel economy and start-stop performance can be achieved with 

advanced control of the regenerative strategy to curtail energy conversion losses between 

the genset and wheels by maximizing the battery throughput. This may necessitate the 

exploration of a rule-based controller to further improve fuel economy and start-stops on 

top of A-ECMS. Additionally, the SUMO co-simulation can be extended to study impacts 

of different levels of look-ahead information – speeds limits, stop signs, traffic density et al 

on the selected vehicle performance metrics.  

Finally, the traffic-in-the-loop simulation can be scaled up to perform a higher number of 

driving scenarios to better quantify the trends in the impact of driver behavior on fuel 

economy and start-stops. 
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Appendix A. Further Reading 

1. Further reading on the CERC Truck consortium: https://cerc-truck.anl.gov/ 

2. More information on the SUMO traffic simulator: 

https://sumo.dlr.de/docs/index.html 

3. Downloads from the ETH Zurich Dynamic Programming code package: 

https://idsc.ethz.ch/research-guzzella-onder/downloads.html 

4. Open Street Maps for traffic environment setup: https://www.openstreetmap.org/ 

5. International Energy Agency Global EV Outlook Report 2019: 

https://www.iea.org/reports/global-ev-outlook-2019 

6. International Energy Agency: The Future of Trucks, Technology Report 2017 

https://www.iea.org/reports/the-future-of-trucks 
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