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Abstract

We introduce the SqueezeFit linear program as a fast and robust dimensionality reduction

method. This program is inspired by both the SqueezeFit semi-definite program [10] and

scGeneFit [3], which is a linear program version of SqueezeFit that has been used to classify

single cell RNA-sequence data with a given structured partition. The original SqueezeFit

semi-definite program has a strong theoretical background but it exhibits slow runtimes with

large data sets. In contrast, scGeneFit performs efficiently and robustly with scRNA-seq

data given either flat or hierarchical label partitions, but it does not have much theoretical

justification for its performance. The SqueezeFit linear program fills this computational and

theoretical gap. After providing new theoretical guarantees, we illustrate the performance

of the SqueezeFit linear program on real-world gene expression data.
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Chapter 1: Introduction

In machine learning, data with too many features leads to high dimensionality and pos-

sible over-fitting. Furthermore, high-dimensional data can be extremely difficult to visualize

and analyze. Overall, dimensionality reduction is a necessity. Various dimensionality re-

duction methods, including Principle Component Analysis (PCA) and Linear Discriminant

Analysis (LDA), help scientists and industries compress data and reduce computation time.

However, there are certain problems that can not easily be resolved by the existing methods,

which has motivated researchers to develop alternate dimensionality reduction methods.

1.1 Motivating Problem: Marker Gene Selection

Single cell RNA-sequencing (RNA-seq) provides a wealth of information. Studies and

technologies have provided valuable insights regarding the characterization of single cells

among complex cell populations. Existing methodologies mostly rely on markers – fluores-

cence that tie the nearby genes that we are interested in that will be quantified [3]. Given a

lot of cells of different types and the gene expression of each cell over multiple genes, we are

eager to know an accurate and efficient way to find the handful of genes (i.e., the markers)

that best enables classification by cell type.

The existing technologies, however, either fail to consider the hierarchical relationship

between various types of cell and the interrelationship in the expression patterns across
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different genes [4], or are rather redundant under the circumstances that is unnecessary to

obtain all cell types and markers to maintain the hierarchy [3]. Thus, the key challenge is

to fill the methodological gap, with given single cell RNA-seq data and the hierarchy of cell

type labels, by a robust and efficient selection approach which finds a few markers that allow

classification [3].

1.2 Issues with Modern Classification: Adversarial Examples

Our problem is to identify what signal in the data should be used by the classifier,

and modern classification technologies, i.e., neural networks, have similarly demonstrated

the need for help with signal classification. Studies have shown that various models are

vulnerable against adversarial attacks [5]. That is, when a small perturbation is applied to

the correctly classified example, these models tend to misclassify the perturbed examples

with high confidence [5]. See Figure 1.1 for a demonstration of an adversarial example.

Figure 1.1: From [5]: GoogLeNet[14] changes its classification of the image with surprisingly
high confidence after adding a slight perturbation to the image. Left: The model classifies
the image as “panda” with 57.7% confidence; Middle: adding a small perturbation to the
previous image; Right: the model classifies the slightly perturbed image as “gibbon” with
99.3% confidence.
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One of the main reasons of the shared vulnerability against adversarial examples among

various machine learning models, according to [5], is that the perturbations are aligned with

the weight vectors of these models.

The adversarial examples shows our lack of understanding of the manner of neural net-

works. The challenge is to convey to the machine what portions of the signal are important.

SqueezeFit (which will be introduced in the next section), however, is motivated by this and

tries to overcome the shared weakness among machine learning methods, and communicate

the signal precisely.

1.3 SqueezeFit

SqueezeFit is a label-aware dimensionality reduction method. Given data with various

labels in a high-dimensional vector space, SqueezeFit finds a subspace of lower dimension

on which the data can be projected while maintaining a desired distance between different

points with different labels [10]. SqueezeFit, inspired by large margin nearest neighbor

classification, relaxes the problem into a semi-definite program that recovers the projection.

See Figure 1.2 for a visual demonstration of SqueezeFit comparing to other dimensionality

reduction methods.

Following [10], consider a data set D = {(xi, yi)}i∈I in Rd × [k], where xi is a sample in

Rd with some index i, yi is the corresponding label of xi for all i ∈ I, and [k] = {1, 2, ..., k}

represents the set of labels. SqueezeFit seeks the lowest dimensional subspace where samples

with distinct labels are separated. Below, we show how this problem can be viewed as an

optimization problem.

Let Π be an orthogonal projection onto some lower dimensional subspace. Let Z(D) :=

{xi − xj : i, j ∈ I, yi 6= yj} be the set of vector differences of samples with various labels,

3



Figure 1.2: From [10]: (Left) Plot of data in R3; (middle left) Result of Principle Compo-
nent Analysis (PCA). (middle right) Result of linear discriminant analysis (LDA). (right)
SqueezeFit, different than PCA and LDA, projects onto a low-dimension subspace where
desired distance between labels is maintained. SqueezeFit yields a good approximation and
recovers the planted projection factor.

and let ∆ > 0 be a desired minimum separation between samples with different labels after

the projection. We obtain the following optimization problem:

minimize rank Π subject to ||Πz|| ≥ ∆ ∀z ∈ Z(D), ΠT = Π, Π2 = Π. (1.1)

Following the convex relaxation of the previous equation from [10], SqueezeFit Semi-

definite Program is obtained:

minimize tr(M) subject to zTMz ≥ ∆2 ∀z ∈ Z(D), 0 4M 4 I. (sqz(D,∆))

SqueezeFit is not only amenable to theoretical analysis [10], but importantly, it can

also be applied in scientific fields. In particular, the algorithm of SqueezeFit performed

surprisingly well when dealing with the marker gene selection problem [3] mentioned in

section 1.1. The adapted version of SqueezeFit to the marker gene problem, scGeneFit, is

shown to be able to accurately discriminate cell types for a particular tissue type with known

structured partition of cell type labels [3]. scGeneFit reduces sqz(D,∆), the semi-definite
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program (SDP), to a linear program (LP) by taking advantage of an additional constraint

given by the specific selection of marker genes. Following Theorem 7 from [10], SqueezeFit,

in the context of the so-called projection factor recovery problem, is theoretically guaranteed

to succeed with high probability within a certain range of signal-to-noise ratio (SNR).

According to [10], it takes 50 minutes for a standard Macbook Air 2013 to run SqueezeFit

when the data set contains 800 data points with dimension 100. The SDP is indeed slow

on large data sets, but it has a strong theoretical backing. In contrast, scGeneFit, a linear

program version of SqueezeFit, is much faster and shows its robustness and efficiency in the

context of the marker selection problem. Yet, the LP version has no developed theoretical

foundation.

1.4 Our Approach

This thesis aims to fill the gap between SqueezeFit and scGeneFit by providing a theoret-

ical treatment for an LP version of SqueezeFit. In addition to providing a detailed theoretical

analysis, we will also illustrate several numerical experiments. As we will see, the LP version

can decrease the running time while maintaining the performance of the original SDP, and

has a known application (marker gene selection).

In the next chapter, we will derive the SqueezeFit Linear Program and the dual program,

and discuss weak and strong duality using general convex theory. We will discuss SqueezeFit

LP in the context of the projection factor recovery problem in chapter 3. In chapter 4, we

will illustrate the results of several numerical implementations and experiments. A summary

of our results and some insights of a few research questions for future work will be discussed

in the last chapter.
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Chapter 2: Derivation of SqueezeFit Linear Program

2.1 Review of General Convex Theory

SqueezeFit is convex optimization program. Before we discuss sqzLP(D,∆), let us review

some general convex theory. See [2] for more details. We will use the following terminologies,

notations and definitions mentioned in this section throughout the development of the LP

version of SqueezeFit.

Definition 1. (Convex function) A function f : Rn → R is convex if it satisfies,

fi(αx + βy) ≤ αfi(x) + βfi(y), (2.1)

for all x,y ∈ Rn and for all α, β ∈ R≥0 with α + β = 1.

Definition 2. A convex optimization problem has the form

minimize f(x) subject to gi(x) ≤ bi, i = 1, . . .m, (2.2)

where x ∈ Rn is the optimization variable, b1, . . . bm ∈ R are the limits for the constraints,

and the objective function f : Rn → R, and the constraint functions gi : Rn → R ∀i = 1, . . .m

are convex.
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Linear programs and semidefinite programs are both convex optimization problems. The

general form of linear programs is the following:

minimize cTx subject to aTi x ≤ bi, i = 1, 2, . . . ,m, (LP)

where c, a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R are called the problem parameters describing

the objective and constraint functions.

Definition 3. A set K is a cone if for every x ∈ K and α ≥ 0, we have αx ∈ K, it is a

convex cone if for every x,y ∈ K and α1, α2 ≥ 0, we have α1x + α2y ∈ K.

Definition 4. Let K be a set, then the dual cone of K is defined as K? := {y : xTy ≥

0 ∀x ∈ K}.

A Cone Program has the form of

minimize cTx subject to Ax− b ∈ L, x ∈ K, (2.3)

where L and K are cones. The corresponding Dual Cone Program is

maximize bTy subject to c− ATy ∈ K?, y ∈ L?, (2.4)

where K? and L? are the dual cones of K and L respectively.

The optimal value of the dual problem provides the best lower bound for the primal

problem that can be obtained from a convex combination of the primal constraints. The

following definitions describe the relationship between these two values:

Definition 5. (Weak Duality) Let d? be the optimal value of the dual problem, and let

p? be the optimal value of the primal problem. If d? ≤ p?, we say that weak duality holds.

The difference between p? and d?, i.e., p? − d? is called the optimal duality gap of the

original problem.
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When the duality gap is zero, we obtain strong duality:

Definition 6. (Strong Duality) If d? = p?, we say that strong duality holds.

Strong duality holds means that the best lower bound can be achieved by the dual

problem, hence, we say that the duality is tight.

Definition 7. If a dual feasible (µ, v) is found, that means a lower bound on the optimal

value of the primal problem is found. Thus, we say that a dual feasible point (µ, v) provides

a certificate for that lower bound.

Definition 8. Let x? be a primal optimal, and let (µ?, v?) be a dual optimal point when

strong duality holds. Then the following condition

µ?i > 0⇒ fi(x
?) = 0 for each i (2.5)

or,

fi(x
?) < 0⇒ µ?i = 0 for each i (2.6)

is known as complementary slackness.

2.2 Motivation

SqueezeFit seeks the lowest dimensional subspace where samples with distinct labels are

separated. In Chapter 1, we mentioned that SqueezeFit can be written as an optimization

problem. Consider D = {(xi, yi)}i∈I in Rd× [k], where xi is a sample in Rd with some index

i, yi is the corresponding label of xi for all i ∈ I, and [k] = {1, 2, ..., k} is the set of labels.

Let Π be an orthogonal projection onto some lower dimensional subspace, we have [10]

minimize rank Π subject to ||Πz|| ≥ ∆ ∀z ∈ Z(D), ΠT = Π, Π2 = Π, (2.7)

8



where Z(D) := {xi − xj : i, j ∈ I, yi 6= yj}.

We aimed to resolve the difficulty of running the SDP SqueezeFit on large data sets,

so we considered adding a new constraint to the program sqz(D,∆) and make it a linear

program (LP), which, in general, is faster than a SDP. The new constraint allows us to get

both the speed and relevance to scGeneFit, which is a LP version of sqz(D,∆) and is a

convex relaxation of the previous equation. The constraint makes the optimization variable

M to be a diagonal matrix due to the special objective of selecting marker genes [3]. We

take inspirations from scGeneFit, and restrict M to be a diagonal matrix. We obtain

minimize tr(M) subject to zTMz ≥ ∆2 ∀z ∈ Z(D), 0 4M 4 I, M diagonal.

(2.8)

2.3 SqueezeFit Linear Program

To obtain the LP version of SqueezeFit, we want to adapt our (2.8) to a general LP form

(see equation (LP)). Since we enforce M to be a diagonal matrix, we can “vectorize” M

by its diagonal, and denote it as m, i.e., m is a vector contains the diagonal entries of M .

Hence, we obtain tr(M) =
∑

i mi. We can simplify the above equation (2.8) to

minimize
∑
i

m(i) subject to
∑
i

z(i)2m(i) ≥ ∆2 ∀z ∈ Z(D), 0 ≤m(i) ≤ 1 ∀i.

(sqzLP(D,∆))

2.4 Deriving the Dual Cone Program of sqzLP(D,∆)

To derive the dual program of sqzLP(D,∆), we follow (2.3) and (2.4) from Definition 4

in Section 2.1 by taking x = m, c = 1d, i.e., the all ones column vector of dimension d. Let

z◦2 denote the element-wise square of vector z. Let K = Rd≥0, and L = R|Z|+d≥0 . Consider

9



A =

[
Z
−I

]
, b =

[
∆21|Z|
−1d

]
,

where Z ∈ R|Z|×d has the rows (z◦2)T for each z ∈ Z(D) and I is the d× d identity matrix.

Plugging into the dual cone program format in (2.3), we obtain

maximize

[
∆21|Z|
−1d

]T
y subject to 1d −

[
Z −I

]
y < 0, y < 0. (2.9)

Performing the inner product and combining the terms, we obtain a dual cone program for

sqzLP(D,∆) when Z(D) is infinite:

sup ∆2
∑

z∈Z(D)

µ(z)−
∑
j∈[d]

vj

subject to 1−
∑

z∈Z(D)

µ(z)z◦2 + v ≥ 0, v ≥ 0, µ ≥ 0,
(dual(D,∆))

where µ : Z(D)→ R and v ∈ Rd are the decision variables.

Let’s first verify weak duality:

Theorem 1. (Weak Duality) If x is primal feasible and y is dual feasible, and let b and c

be what we defined above, then 〈b,y〉 ≤ 〈c,x〉, i.e., weak duality holds.

Proof. Let x, c,y,b, L and K be what we defined above. Since x is primal feasible and y is

dual feasible, y ∈ L?, Ax− b ∈ L. Then 〈y, Ax− b〉 ≥ 0 implies

〈y, Ax〉 ≥ 〈y,b〉 = 〈b,y〉. (2.10)

Then we have

〈b,y〉 ≤ 〈y, Ax〉 = 〈ATy,x〉 ≤ 〈c,x〉, (2.11)

and hence weak duality.
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2.5 Dual Certificate for SqueezeFit LP

Next, we want to show that sqzLP(D,∆) admits a dual certificate. Hence, the following

definition from [10] is necessary for our next theorem:

Definition 9. (Following Definition 4 of [10]) We call the vectors with smallest length in

Z(D), if exists, the contact vectors of D, and we say the data set D = {(xi, yi)}i∈I is

∆-fixed if there exist m ∈ argsqzLP(D,∆) such that diag(m1/2)xi = xi for all i ∈ I.

Following [10], for ∆-fixed data, strong duality can be characterized with the following

theorem:

Theorem 2. Let D = {(xi, yi)}i∈I be ∆-fixed. Then sqzLP(D,∆) admits a dual certificate

(µ,v) if and only if the contact vectors (see Definition 9) of D span span{xi}i∈I .

Proof. (This proof follows the proof of Theorem 15 of [10].)

(⇐) Pick any finite subset of the set of contact vectors of D, denoted as Z0. Suppose Z0

spans span{xi}i∈I . Let ξ :=
∑

z∈Z0
z◦2. Let η = mini∈T

∑
z∈Z0

z(i)2, where z(i) here denotes

the i-th element of z. Let

µ(z) =

{
1
η

if z ∈ Z0

0 otherwise
(2.12)

and pick v such that

v(i) =

{∑
i µ(z)z(i)2 − 1 if i ∈ T

0 otherwise
(2.13)

One can easily show that (µ, v) is feasible in the dual problem with objective value
∑

i m(i).

By Lemma 10 in [10], (µ, v) is therefore a dual certificate secured by weak duality.

(⇒) Consider mopt = (1|T |, 0d−|T |)T ∈ Rd, where mopt(i) = 1 when zi 6= 0. We claim

that if (µ, v) is feasible in 1.1, then so is (µ,v ◦mopt). The feasibility follows from

11



1−
∑

z∈Z(D) µ(z)z◦2 + v ◦mopt = 1−
∑

z∈Z(D) µ(z)z◦2 +
∑

z∈Z(D) µ(z)z◦2 −mopt < 0

and the objective value is larger since
∑

i(v ◦mopt)(i) ≤
∑

i v(i). Therefore, without loss of

generality, (µ,v) has im(diag(v)) ⊆ im(diag(v ◦mopt)).

Consider q :=
∑

z∈Z(D) µ(z) ∆2

||z||2 z
◦2 − v. Then

∑
i q(i) = |T |, which equals to the

dual value of (µ,v). The orthogonal projection onto span{xi}i∈T , denoted as Π, satisfies

im(diag(v)) ⊆ im(diag(v ◦mopt)) ⊆ im(Π). Let

a := 1T −
∑

z∈Z(D)

µ(z)(1− ∆2

‖z‖2
)z◦2 − q

= 1T −
∑

z∈Z(D)

µ(z)z◦2 +
∑

z∈Z(D)

µ(z)
∆2

‖z‖2
z◦2 −

∑
z∈Z(D)

µ(z)
∆2

‖z‖2
z◦2 + v

= 1T −
∑

z∈Z(D)

µ(z)z◦2 + v ≥ 0

By Lemma 10(i) in [10], Π is in the optimal set of sqzLP(D,∆), and so tr(Π) =
∑

i q(i).

Therefore, the dual feasibility of (µ,v) implies a stronger inequality

0 ≤
∑
i

a(i) = −
∑

z∈Z(D)

µ(z)(‖z‖2 −∆2) ≤ 0. (2.14)

Hence, we can conclude:

(a) We must have that a = 0 since a ≥ 0 and
∑

i a(i) = 0.

(b)
∑

z∈Z(D) µ(z)(‖z‖2 −∆2) = 0 implies that µ(z) 6= 0 only when z is a contact vector of

D, and µ(z) = 0 otherwise, by Lemma 12 of [10].

Consider the span of contact vectors of D, denoted as T , by conclusion (a), we have

1T −
∑

z∈Z(D) µ(z)z◦2 + v = 0,∑
z∈Z(D) µ(z)z◦2 = 1T + v.

By conclusion (b), we obtain:

12



span{xi}i∈I = im(Π) ⊆ T ⊆ span{xi}i∈I

Hence, T = span{xi}i∈I as desired.

Let Z0 be the set of contact vectors of D = {(xi, yi)}i∈I . If D is ∆-fixed, then mopt =

(1|T |, 0d−|T |) ∈ Rd, where mopt(i) = 1 when zi 6= 0. Then, 〈mopt,mopt −
∑

z µ(z)z◦2 + v〉 =

〈mopt,
∑

z µ(z)z◦2 − v〉 = |T | = r.

Once strong duality holds, a dual certificate of a given optimizer may be desired. Hence,

we developed the following lemma:

Lemma 3. (Complementary Slackness) Suppose (µ,v) is a dual certificate of sqzLP(D,∆).

For any optimal m of sqzLP(D,∆), the optimal set of dual(D,∆) is given by the set of points

(µ,v) that are feasible in the dual program dual(D,∆) and also satisfy the following:

supp(µ) ⊆ {z ∈ Z(D) : mTz = ∆2}, (2.15)

vi = 0,∀i 6∈ T . (2.16)

Proof. Suppose (µ,v) is feasible in dual(D,∆). Hence 1 −
∑

z∈Z(D) µ(z)z◦2 + v ≥ 0. Since

mi ≥ 0,∀i, we have

〈m, 1−
∑

z∈Z(D)

µ(z)z◦2 + v〉 ≥ 0 (2.17)

After separating the inner product and doing some rearrangement, we get

〈m, 1〉 ≥ 〈m,
∑

z∈Z(D)

µ(z)z◦2〉 − 〈m,v〉 (2.18)

We can rewrite (2.18) as

∑
i

m(i) ≥
∑

z∈Z(D)

µ(z)mTz◦2 −mTv ≥ ∆2
∑

z∈Z(D)

µ(z)−mTv ≥ ∆2
∑

z∈Z(D)

µ(z)−
∑
i

v(i).

(2.19)
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Since sqzLP(D,∆) admits a dual certificate, the optimal set of dual(D,∆) is the set of feasible

points (µ,v) in dual(D,∆) in which all of the inequalities from (2.19) achieve equality.

Since z is supported on T , ∆2 =
∑

i∈T z(i)2 = ‖z‖2. Hence z is a contact vector.

Therefore, µ(z) 6= 0 only if z is a contact vector. Hence, the equality of the second inequality

can be written as (2.15). The equality of the third inequality implies (2.16), whereas the

equality of the first inequality only occurs when m = 0.

By complementary slackness, the primal value of m equals to (µ,v), i.e., the dual value.

Hence, Weak duality suggests m is feasible in sqzLP(D,∆) [10].

Now that we have discussed the duality theory of the LP version of SqueezeFit, in the

next chapter, we will study the behavior of sqzLP(D,∆) when under a certain model of data.
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Chapter 3: Projection Factor Recovery with the SqueezeFit

Linear Program

3.1 Review of Probability Concepts

Before we discuss the Projection Factor Recovery model, let us review some general

probability concepts. See [15], [11] and [12] for more details.

Definition 10. (Markov’s Inequality) Let X ≥ 0 be random variable, then

P(X ≥ a) ≤ E(X)

a
, for any a > 0. (3.1)

Definition 11. (Chebyshev’s Inequality) Given any random variable X, then for any

positive b,

P(|X − E(X)| ≥ b) ≤ V ar(X)

b2
. (3.2)

Definition 12. (Chernoff Bound) Consider a random variable X, let ψ be the log-moment

generating function of X, and let ψ? be its Legendre dual :

ψ(λ) := log(E[eλ(X−EX)]), ψ?(t) = sup
λ≥0
{λt− ψ(λ)}. (3.3)

Then we have P(X − EX ≥ t) ≤ e−ψ
?(t).

With the Chernoff Bound, we can obtain Gaussian tail bounds and Chi-squared tail

bounds:
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Lemma 4. (Gaussian Tails) Let X ∼ N (µ, σ2), then

P[X − E(X) ≥ t] ≤ e−t
2/2σ2

(3.4)

Furthermore, if we let µ = 0, σ = 1, i.e., X ∼ N (0, 1), we have [11]

P(|X| ≥ t) ≤ 2e−t
2/2 for every t > 0 (3.5)

Lemma 5. (Chi-Squared Tails) Let X has Chi-squared distribution with n degrees of

freedom, then, for every t > 0, we have

P[|X − n| ≥ t] ≤ 2 exp(−1

7
min(

t2

n
, t)). (3.6)

Definition 13. (Cauchy-Schwarz Inequality) For any two random variables X and Y ,

we have

|E(XY )| ≤
√

E[X2]E[Y 2]. (3.7)

where equality holds if and only if X = αY for some constant α ∈ R.

Theorem 6. (Central Limit Theorem) Suppose {Xi}∞i=1 is a sequence of iid random

variables with zero mean and unit variance. Then 1√
n

∑n
i=1Xi converges in distribution to

the standard Gaussian distribution.

Theorem 7. (Bernstein’s Inequality) Suppose {Xi}∞i=1 is a sequence of random variables

with zero mean and variance σ2, and |Xi| ≤ b. Then for every t > 0, we have

P{
n∑
i=1

≥ t} ≤ 2 exp(−1

3
·min(

t2

nσ2
,
t

b
)). (3.8)

3.2 Projection Factor Recovery

We plant a subspace onto which the data will be projected, and we want to identify the

conditions under which sqzLP(D,∆) recovers this subspace. We make use of the following

definition from [10] to handle the projection factor recovery for sqzLP(D,∆):
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Definition 14. Consider D0 = {(xi, yi)}i∈[a] in Rd × [k], select any σ > 0. For each i ∈ [a],

draw {gij}j∈[b] independently from N (0, σ2), and consider the perturbed data set D = {(xi+

gij, yi)}i∈[a],j∈[b], follow definition 5 of [10],we say D is drawn from the projection factor

model, and we denote it as D ∼ PFM(D0, σ
2, b).

Definition 15. We define E as the edge set of the graph G = (I, E), where E ⊆ {(i, j) :

i, j ∈ I} and Z0 = {xi − xj : (i, j) ∈ E}.

For simplicity, we assume that G = (I, E) is necessarily k-partite, where k is the number

of labels in the data set D, i.e., k = |{yi, i ∈ I}|, and every vertex v of G = (I, E) has degree

deg(v) ≤ 1. Following [10], now we want to show that the dual certificate for the perturbed

data set D is a predictable perturbation of the dual certificate for the original data D0 by

the next theorem.

Theorem 8. (Main result) Let D0 = {(xi, yi)}i∈[a] in Rd × [k]. Consider the projection

factor model D ∼ PFM(D0, σ
2, b). Let E be the edge set of the graph G = (I, E). Then

SqueezeFit LP has arg sqzLP(D,∆)= {1T} with probability at least 1 − 2|T c| · exp(− |E|
7

),

provided

σ2 . ( 1
|E| ·mini∈T

∑
z∈Z0

z(i)2)1/2,

where Z0 is the set of contact vectors of D0.

Proof. Consider the set of contact vectors Z0 from Definition 9. Clearly, we have

Z0 ⊆ Z := {(xi − xj), i, j ∈ I, yi 6= yj}. (3.9)

Since noises are added on T c and we want mopt = 1T , we want to select a dual certificate

for a perturbed ∆-fixed data. Let

η = min
i∈T

∑
z∈Z0

z(i)2, (3.10)
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and let

µ(z) =

{
1
η

if z ∈ Z0

0 otherwise
, (3.11)

we want

1 ≥
∑
z∈Z0

µ(z)z(j)2, ∀j ∈ T c, where
∑
z∈Z0

µ(z)z(j)2 =

∑
z∈Z0

z(j)2

η
, (3.12)

and by rearranging the terms, we obtain

∑
z∈Z0

z(j)2 ≤ η = min
i∈T

∑
z∈Z0

z(i)2, (3.13)

and hence, we want

max
j∈T c

∑
z∈Z0

z(j)2 ≤ min
i∈T

∑
z∈Z0

z(i)2. (3.14)

Let S = {i ∈ I : deg(i) = 1}, and consider {xij}i∈I,j∈T c is independently and identically

N (0, σ2) distributed. Then for (xi(j)− xi′(j))
2 ∼ N (0, 2σ2) over E, we have

max
j∈T c

∑
z∈Z0

z(j)2 = max
j∈T c

2
∑
{i,i′}∈E

(xi(j)− xi′(j))
2

= max
j∈T c

2
∑
{i,i′}∈E

(2σ2N (0, 1))2

= max
j∈T c

8σ4
∑
{i,i′}∈E

(N (0, 1))2

= 8σ4 × (max of |T c| i.i.d χ2(|E|) random variables)

Let e = |E| and consider {uj}j∈T c ∼ χ2(e), then for some s, we have

P{max
j∈T c

uj > s} = P{∃j ∈ T c s.t. uj > s} ≤
∑
j∈T c

P{uj > s} = |T c| × P{uj > s}. (3.15)

Since for some x ∼ χ2(n), and for some t, by Lemma 5, we have

P{(x− n) ≥ t} ≤ P{|x− n| ≥ t} ≤ 2 · exp(−1

7
·min(

t2

n
, t)). (3.16)

Put s := e+ t, then

P{max
j∈T c

u(j) > e+ t} ≤ |T c| · P{uj > e+ t} ≤ |T c| · 2 · exp(−1

7
·min(

t2

e
, t)). (3.17)
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Consider t = e, we have

P{max
j∈T c

u(j) > 2e} ≤ |T c| · 2 · exp(−e
7

). (3.18)

Hence,

max
j∈T c

∑
z∈Z0

z(j)2

= 8σ4 × (max of |T c| i.i.d χ2(|E|) random variables)

≤ 8σ4 ×O(|E|) with probability greater than 1− |T c| · 2 · exp(−e
7

)

Therefore, arg sqzLP(D,∆)= {1T} with probability at least 1− |T c| · 2 · exp(− e
7
), if

σ2 . ( 1
|E| ·mini∈T

∑
z∈Z0

z(i)2)1/2

as desired.

There are a few models that are related to our projection factor recovery model, and we

will discuss them in Appendix A. In the next chapter, we will discuss a few implementations

and the results of our numerical experiments of the model using planted and real data sets.
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Chapter 4: Numerical Experiments and Results

In this section, we will discuss several different implementations of SqueezeFit Linear

Program, and our numerical experiments. We used CVX [7][6] on MATLAB [9] for the

implementations.

4.1 Implementation Variants

4.1.1 Direct Implementation

We implement the convex optimization problem sqz(D,∆) and sqzLP(D,∆) directly.

Figure 4.1 shows the plots of result of sqz(D,∆) and sqzLP(D,∆) for a planted projection

factor recovery in R3. We generated similar projection factor recovery problems with different

levels of perturbation. We ran 100 trials on different values of σ and calculated the successful

rates of either method, i.e., the quotient between the number of successes (error less than

10−4) and the number of trials. We plotted the successful rates for the two methods, shown

in Figure 4.2. Our numerical experiments showed that sqzLP(D,∆) can perform as good

as sqz(D,∆) in projection factor recovery problems, and be able to recover the planted

projection factors more accurately with higher noise level.

We are not only interested in the performance of SqueezeFit LP comparing to the orig-

inal SDP, but also the running time when dealing with data with higher dimensions. We

generated random known models with different and higher dimensions using the idea of
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Figure 4.1: (Left)Points in R3 in two classes drawn from a random known model with an
unknown projection factor. (Middle) SqueezeFit yields a good approximation and recov-
ers the projection factor. Similar to Figure 1.2. (Right) The Linear Program version of
SqueezeFit yields the same result as the original SqueezeFit, the Semidefinite Program.

Dimension LP(seconds) SDP(seconds)
4 0.27785 2.7187
8 0.21925 2.8649
16 0.2763 5.8024
32 0.66274 40.866
64 0.70162 607.6813
128 1.9643 3039.5166

Table 4.1: Empirical running time for sqz(D,∆) and sqzLP(D,∆) dealing with 1000 data
points of dimension 4, 8, 16, 32, 64 and 128. The linear program shows great advantage
against the semidefinite program regarding time complexities.

hyper-sphere, and timed SqueezeFit LP and SDP. We used a 2017 standard MacBook Pro

with 3.1 GHz Dual-Core Intel Core i5 processor. Table 4.1 shows the results of the empirical

running time to run sqz(D,∆) and sqzLP(D,∆) with various data dimensions. We observed
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Figure 4.2: Projection Recovery of a random known model with different levels of pertur-
bation (see Definition 14) and with ∆ = 0.2, d = 3 and n = 63. The horizontal axis
represents the values of σ, and the vertical axis represents the successful rates of the two
method.

that it took sqz(D,∆) much longer - nearly 800 times and nearly 1500 times longer than

sqzLP(D,∆) - to analyze data with dimension 64 and 128 correspondingly.

4.1.2 Implementation Improvements

We observed that even with small d, the program is slow when finding the set Z(D) with

direct implementation. Lemma 11 of [10] suggests that the ∆ constraints are typically not

tight. We follow [10] and relax Z(D): Fix s to be any integer greater than 1, and denote

the indices of the s nearest neighbors to xi as S(i, p), where p ∈ [k] is its label, and let

Zs(D) :=
⋃
i=[n]

⋃
p∈[k],p 6=yi

{xi − xj : j ∈ S(i, p)}. (4.1)
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Replace Z(D) in sqzLP(D,∆) with Zs(D). We obtain

minimize
∑
i

m(i) subject to
∑
i

z(i)2m(i) ≥ ∆2 ∀z ∈ Zs(D), 0 ≤m(i) ≤ 1 ∀i

(sqzLPs(D,∆))

Instead of having O(n2) constraints, the above relaxation reduces it to O(sn) constraints.

As a result, it requires less time to calculate the set of constraining vectors and reduces the

total running time of the linear program (See Table 4.2). Furthermore, illustrated by Figure

4.3, our numerical experiments showed that the relaxed program yields close approximations

to the original program optimizers.

n Original Relaxed
100 1.0195 0.24453
200 1.6064 0.20526
400 6.5114 0.22791
800 29.0561 0.26727
1600 151.0611 0.53171

Table 4.2: Empirical running time for sqzLP(D,∆) and sqzLPs(D,∆) dealing with n data
points of dimension 4 and s = 1, where n = 100, 200, 400, 800, 1600. The relaxation in
sqzLPs(D,∆) reduces the total running time of the linear program by a great amount espe-
cially when n ≥ 200.

In summary, relaxing the Z(D) constraints by replacing Z(D) with Zs(D) is consider-

ably faster when n ≥ 200 while remains the good performance of the original sqzLP(D,∆)

program. We will use the algorithm of sqzLPs(D,∆) for further numerical experiments in

the next two sections due to its convenient features.
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Figure 4.3: Projection Recovery of a random known model with different levels of pertur-
bation (see Definition 14) and with ∆ = 0.2, d = 3 and n = 63. The horizontal axis
represents the values of σ, and the vertical axis represents the successful rates. The suc-
cessful rates of sqzLP(D,∆) and sqzLPs(D,∆) are shown to be almost identical according to
our numerical results.

4.2 Relation to Theoretical Results

Before we apply more data sets to the program, let’s compare the numerical results

in the previous section to the theoretical results in chapter 3. Again, we used a random

known model with different levels of perturbation and with ∆ = 0.2. The result of Theorem

8 assures for this specific known model, with σ2 ≤ 0.390802687774539, the probability of

successfully finding the accurate optimizer is at least 0.999753180391827. We observed in

Table 4.3 that the results of our numerical experiments confirms our previous illustrated

theories.

24



σ σ2 Probability
0 0 1
0.125 0.015625 1
0.25 0.0625 1
0.375 0.14062 1
0.5 0.25 1
0.625 0.39062 1
0.75 0.5625 0.98
0.875 0.76562 1
1 1 0.97

Table 4.3: Projection Factor Recovery of a random known model with different levels of
perturbation and with ∆ = 0.2 and n = 63.

4.3 Application

SqueezeFit Linear Program is motivated and inspired by the Marker Gene Selection

Problem mentioned in Chapter 1. Since we have confirmed that the numerical experiments

using simulated data agree with the previously developed theories, we now want to study the

performance of SqueezeFit LP when applying it to scRNA-seq data with given structured

partition. Here, we followed [3] and illustrates the result of SqueezeFit LP of two data

sets with different given partition structure of cell types: Cord blood mononuclear cell with

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), and mouse

cortex single-cells.

4.3.1 Cord Blood Mononuclear cell (CBMC)

We applied SqueezeFit LP to a data set obtained by a CBMC study - CITE-seq [13],

which is a method that “combines highly multiplexed protein marker detection with unbiased

transcriptome profiling for thousands of single cells” [13], and allows “simultaneous detection

of single cell transcriptomes and protein markers” [13]. The data set contains more than
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8000 CBMC single-cell profiles and has a dimension of 500 representing the “top highly

variable genes from both human and mouse cell lines” [3]. With the given flat partition

structure of the 13 distinct cell types population, we applied sqzLPs(D,∆) to this data set

with a sampling rate of 10%, and limited the size of Zs(D) to be at most 5000. sqzLPs(D,∆)

is expected to identify the marker genes to project the data on while maintaining desired

separation of distinct cell type population to achieve dimensionality reduction. It took the

LP 20.162791 seconds to find the solution. Figure 4.4 illustrates our results.

Figure 4.4: T-distributed stochastic neighbor embedding (t-SNE) visualization of results of
SqueezeFit LP with a sample rate of 10% and a maximum of 5000 constraints. Figure shows
projection of the single-cell expression profiles of CBMC [13] on 10, 15, 20, 25 marker genes.
It seems that 25 marker genes are sufficient to distinguish 13 different population.
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4.3.2 Single-cell analysis on mouse cortical cell

We applied SqueezeFit LP to another scRNA-seq data set obtained from [16]. This data

set represents cell types in the mouse cortex and hippocampus and the study provides a

hierarchy of those cell types [3] [16]. The data set contains 3005 data points of dimension

4000. We applied sqzLPs(D,∆) with a sampling rate of 5% and a maximum of 600 con-

straints. Figure 4.5 illustrates our result of SqueezeFit LP using the first layer of labels. It

takes the LP 230.921854 seconds to find the solution. Figure 4.6 shows the performance of

sqzLPs(D,∆) on the second layer of the hierarchical labels. It takes 255.813360 seconds to

find the marker genes. Similar to the result of [3], we found that SqueezeFit LP performed

fairly well in the astrocytes-ependymal, pyramidal CA1, and oligodendrocytes subpopula-

tions, but poorly when distinguishing cell subtypes in the microgolia subpopulation, which

might be directly caused by the existence of rare cell subtypes [3].

Figure 4.5: t-SNE visualization of the performance of SqueezeFit LP applying on a set of
scRNA-seq data identifying mouse cortical cell-type population using the first layer labels
[16] with a sampling rate of 5% and a maximum of 600 constraints. Left provides a t-SNE
visualization of the original data using the first layer of labels. The rest of the figure shows
projection of the single-cell expression on 20 and 40 markers.
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Figure 4.6: t-SNE visualization of the performance of SqueezeFit LP applying on the a set
of scRNA-seq data identifying mouse cortical cell-type population using the second layer of
labels [16] with a sampling rate of 5% and a maximum of 600 constraints. Figure shows
the projection of the single-cell expression of various subpopulation on 30 and 40 mark-
ers. SqueezeFit LP performed fairly nicely in certain subpopulations including astrocytes-
ependymal(row 1), pyramidal CA1(row 4), and oligodendrocytes(row 3), but poorly in
the microgolia(row 2) subpopulation.

From the previous experiments on the two different scRNA-seq data sets, we conclude

that SqueezeFit LP is able to find the marker genes so that the projection separates distinct
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cell types of scRNA-seq data sets with given structured partition - either flat (e.g. CBMC)

or hierarchical (mouse cortex) [3]. Though the program seems more accurate and efficient

on a flat partition, but is also able to handle and recover more complicated structures [3].

In the next section, we will summarize our theoretical and numerical results together, and

discuss a few research questions for future work.
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Chapter 5: Discussion

Inspired by the SqueezeFit semi-definite program [10] and scGeneFit [3], we proposed

SqueezeFit Linear Program. We followed [10], and guaranteed the LP theoretically in the

context of the projection factor recovery, mentioned in Chapter 3. We investigated the

performance of SqueezeFit LP through numerical experiments in Chapter 4. We observed

that SqueezeFit LP performed much faster than the original program when dealing with

data with high dimension and improved the performance in projection factor recovery with

planted data sets. We also applied two scRNA-seq data sets with different types of parti-

tion structure. It seems that SqueezeFit LP can handle flat and hierarchical relationships

between distinct class labels without taking too much time. In summary, SqueezeFit LP fills

the gap between the two predecessors: SqueezeFit LP overcomes the difficulty to run the

original SqueezeFit SDP on large data, and provides a theoretical backing for scGeneFit.

In this section, we will discuss a few questions and topics that came across throughout the

development of SqueezeFit LP that can be interesting for future research work.

First, we noticed that SqueezeFit LP produces less adequate results in distinct subtypes

under certain subpopulations when rare cell types emerge (see Figure 4.6 for details). We may

be able to make a small adjustment to the program, for example, certain thresholds during

the sampling process to overcome this issue. Also, the difficulty of placing the unlabeled cells,
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mentioned in [3], may be reduced by a relaxation of the categorical labeling to a manifold

surface constraint.

We also realized that the diagonal constraint is specifically good for the marker gene

selection problem due to its special objective. However, the diagonal constraint may not

perform as well as the marker gene selection problem in other classification problems, for

example, image classification. In the future, it will be interesting to investigate the perfor-

mance of SqueezeFit in the context of a different classification problem by adding a slightly

modified constraint.

Furthermore, the numerical experiments of SqueezeFit focused on k-nearest neighbor

classifiers [10]. However, convolution neural networks are currently the best known algo-

rithms for image classification [10]. For example, ImageNet [8], a deep convolutional neural

network is able to classify millions of high-resolution images of various of classes with low

error rates. As SqueezeFit aspires to overcome adversarial attacks (see in Chapter 1), enforc-

ing convolution-friendly constraints in SqueezeFit can be another potential future project

[10].
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Appendix A: Related Models

Here, we discuss two models that are related to our Projection Factor Recovery Model

in Chapter 3: Planted Clique and Stochastic Block Model.

A.1 Planted Clique

The clique problem is one of the problems that seeks clusters given a collection of

objects: Given a graph G = (V,E), the clique problem aims to identify the largest clique

in G, where clique is defined as a subset of all vertices V in which all elements are pairwise

adjacent [11]. We are interested in finding the clique number ω(G) of the graph, which is

defined as the size of the largest clique in G. However, the problem is hard to solve - there

is no polynomial-time algorithm to determine the clique number of graphs in general [11].

In fact, the problem of determining whether there exists a clique of a certain size (positive

integer) in a given graph is NP-complete [11].

One can consider an independent set in a graph G = (V,E), which is defined as a

collection of nonadjacent vertices in G, which is also a clique in the graph complement

G. Hence, we are also interested in finding α(G), the size of the largest independent set

in G, known as the independence number [11]. Denote S to be an independent set of

G = (V,E), we can write the problem of finding the independence number as the following
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program:

maximize |S| subject to S ⊆ V,

(
S

2

)
∩ E = ∅. (A.1)

After rewriting the previous program in terms of functions of the form x : V → R, and a

tight relaxation (see details in [11]), we have the following semi-definite program:

maximize 〈J,X〉 subject to Xij = 0 ∀{i, j} ∈ E, trX = 1, X < 0, rankX = 1.

(A.2)

We can obtain the Lovász number by relaxing the rank constraint, hence the Lovász number

θ(G) is given by the optimal value of the following program:

maximize 〈J,X〉 subject to Xij = 0 ∀{i, j} ∈ E, trX = 1, X < 0, (Lovász SDP)

where J = 11T , and X = xxT . The dual program is given by

minimize λ subject to λI < A, Aij = 1 ∀{i, j} ∈ E, (A.3)

where A is defined as the adjacency matrix of G [11].

Similar to our Projection Factor Recovery problem mentioned in Chapter 3 which aims

for conditions and probabilities of recovering a planted projection factor, the planted clique

model seeks graphs for which Lovász SDP exactly recovers a maximum clique of the graph

complement [11]. The following lemma and theorem from [11] will answer the question (the

proofs can also be found in [11]).

Lemma 9. (Lemma 4.1.6 in [11]) Suppose there exists an feasible point (λ,A) for (A.3) such

that A1S = |S|1S and λ2(A) ≤ |S|. Then 1
|S|1S1TS is the unique optimizer of (Lovász SDP),

and S is the unique maximum independent set of G.

Denote G(n, p, k) to be a random graph model, which is derived from drawing G0 ∼

G(n, p), the Erdös-Rényi random graph, and S ∼ Unif
(
V
k

)
, and then adding all edges in
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between S and G0 to the desired graph model. One can expect the Lovász number of G,

since G is a slightly perturbed version of G0, to also have the order of
√
n [11]. Consider the

case p = 1
2
, we have the following theorem:

Theorem 10. (Theorem 4.1.7 from [11]) There exists a universal constant c > 0 such that

if k ≥ c
√
n, then the planted clique in G ∼ G(n, 1

2
, k) is exactly recovered by Lovász’s primal

program for G with probability approaching 1 as n→∞.

The theorem tells us that when k is sufficiently larger than
√
n, the Lovász SDP can

exactly recover the independent set S, and achieves the goal of the planted clique model.

We observed the similarity between the projection factor recovery model for SqueezeFit

LP and the planted clique model for the clique problem: when it appears to be difficult

computationally to find a solution, one may treat the problem with a convex relaxation and

seek the cases which the problem can be solved.

A.2 Stochastic Block Model

The Stochastic Block Model(SBM) is another model that exhibits cluster behaviors [1].

Consider a graph G = (V,E) ∼ SBM(n, p, q), where n is an even number representing the

number vertices in the graph, and E is a random subset of
(
V
2

)
with a specific distribution:

Consider S and Sc as two communities of the graph. Draw S ∼ Unif
(
V
n/2

)
. The events

{{i, j} ∈ E} are independent and have probability p if i and j are in the same community,

and have probability q otherwise. The model aims to recover two communities of a given

graph [1][11].

Consider a given graph G = (V,E) ∼ SBM(n, p, q), let g ∈ {−1, 1}n be the solution

to the problem, i.e., for any vertex i, we have gi = 1 if i ∈ S, and gi = −1 if i ∈ Sc.

Consider the case when p > q, and let p = α · logn
n

and q = β · logn
n

, which is motivated by
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the Erdös-Rényi model [11]. Given the adjacency matrix A of the graph, the algorithm for

recovering the two communities can be written as the following program [1]:

maximize xTAx subject to xi = ±1. (A.4)

We can consider a convex relaxation to the previous problem and obtain the following semi-

definite program [1]:

maximize tr(AX) subject to Xii = 1 X < 0, (A.5)

where X = xxT for a vector x ∈ Rn with entries ±1, and for any i-th entry xi = 1 if the

vertex i is in one community and −1 otherwise. The following theorem gives the conditions

that guarantees exact recovery :

Theorem 11. ([1], [11]) If (α − β)2 > 8(α + β) + 8
3
(α − β), the SDP (A.5) has a unique

solution given by ggT with high probability.

The above theorem shows us the high probability to fully recover the communities of a

given graph in polynomial time. The detailed proof of the previous theorem can be found

in [1], and the following definition and lemma are the keys:

Definition 16. (See Definition 2 of [1]) Let G+ be a subgraph of G which includes the edges

that connect within one community, and D+ the degree matrix of G+. Let G− and D− be

defined similarly. The Stochastic Block Model Laplacian is defined as

L = D+ −D− − A, (A.6)

where A is the adjacency matrix of the graph G.

Lemma 12. (See Lemma 6 in [1]) If 2L + In − 11T < 0 and λ2(2L + In − 11T ) > 0, then

(A.5) has a unique solution given by the outer product of g.
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The proof of the above lemma can be found in [1]. We again observed the similarity

between the Stochastic Block Model and our Projection Factor Recovery problem: we give a

convex relaxation of a combinatorial problem, and apply convex and probabilistic theorems,

which helps us find the condition and probability of a solving a problem exactly in polynomial

time.
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Appendix B: Proofs of Supporting Theorems

Here, we provide the proofs of a few supporting lemmas and theorems.

B.1 Proof of Supporting Lemmas

B.1.1 Proof of Lemma 4

Proof. [12] Consider ψ(λ) and ψ?(t) in the definition of Chernoff Bound (see Definition 12)

and, let X ∼ N (µ, σ2), then E[eλ(X−E(X))] = eλ
2σ2/2. Let

ψ(λ) =
λ2σ2

2
, ψ?(t) =

t2

2σ2
. (B.1)

We obtain the Gaussian tails: P[X − E(X) ≥ t] ≤ e−t
2/2σ2

.

B.1.2 Proof of Lemma 5

Proof. [11] Use a change of variable y = (1− 2s)x when computing the moment generating

function of X, where X has Chi-squared distribution with n degrees of freedom, then

EesX = (1− 2s)−n/2, s ∈ (−∞, 1

2
). (B.2)

We can bound the right-hand tail with Chernoff bound, and obtain

P{X − n ≥ t} ≤ e−st · Ees(X−n) = exp(−(n+ t)s− n

2
log(1− 2s)). (B.3)
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Consider s = t
2(n+t)

∈ (0, 1
2
), which is the minimizer, we have

P{X − n ≥ t} ≤ exp(− t
2
· (1− n

t
) log(1 +

t

n
)) ≤ exp(− t

2
· 2

7
min(

t

n
, 1)), (B.4)

by assuming t < n, we have

P{X − n ≥ t} ≤ exp(− t
7

). (B.5)

Similarly, the left-hand tail can be bounded with Chernoff. We have

P{n−X ≥ t} ≤ e−st · Ees(n−X) = exp((n− t)s− n

2
log(1 + 2s)). (B.6)

Assuming t < n, we consider the minimizer of the above bound s = t
2(n−t) ] > 0. We have

P{n−X ≥ t} ≤ exp(
t

2
· (1 +

n

t
log(1− t

n
)) ≤ exp(

t

2
· − t

2

4n
) = exp(− t

2

4n
). (B.7)

Combining the previous bounds, we obtain

P{|X − n| ≥ t} ≤ 2 · exp(−1

7
min(

t2

n
, t)), (B.8)

as desired.

B.2 Proof of Supporting Theorems

B.2.1 Proof of Theorem 7

Proof. ([11]) Apply Chernoff bound and properties of exponential functions. We have

P{
n∑
i=1

Xi ≥ t} ≤ exp(−st)E(s
n∑
i=1

Xi) = e−st
n∏
i=1

E(esXi). (B.9)
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Since Ees|X| ≤ esb < ∞, we can express the moment generating function in terms of the

moments. Hence,

EesXi = E
∞∑
k=0

(sX)k

k!
=
∞∑
k=0

skE(Xk)

k!

≤ 1 + σ2

∞∑
k=2

skbk−2

k!

= 1 +
σ2

b2
(esb − 1− sb)

≤ exp(
σ2

b2
(esb − 1− sb)).

Hence,

P{
n∑
i=1

Xi ≥ t} ≤ exp(−st)E(s
n∑
i=1

Xi) = e−st
n∏
i=1

E(esXi)

≤ exp(−nσ
2

b2
· g(

bt

nσ2
))

, where g(z) = (1 + z) log(1 + z)− z ≥ 1
3

min(z2, z) for z ∈ (0,∞). Hence,

P{
n∑
i=1

Xi ≥ t} ≤ exp(−nσ
2

b2
· g(

bt

nσ2
)) ≤ −1

3
min(

t2

nσ2
,

t

b
), (B.10)

as desired, where the same result can be obtained through similar work when applying

Chernoff bound to {−Xi}ni=1. Hence,

P{|
n∑
i=1

Xi| ≥ t} ≤ −1

3
min(

t2

nσ2
,

t

b
)

as desired.
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