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Abstract

We discuss the Euler characteristic transform (ECT) as a method to
model shapes in 2D digital images. We study the mathematical back-
ground of Euler characteristic transform based on cubical homology,
and we review the recent works about Euler characteristic transform.
We also exhibit the algorithms for Euler characteristic transform. Lastly,
we conduct some distance-based clustering analysis, and we present
some results in the end.
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Chapter 1: Introduction

The paper will explore the uses of the Euler characteristic transform (ECT) on

analyzing shapes in 2D digital images. Euler characteristic transform is a method

to represent geometric shapes by using tools from topological data analysis. So in

the first chapter, we will review the math concepts in applied algebraic topology.

In particular, we will talk about cubical homology theory. In the same chapter,

we will define the Euler characteristic transform for a cubical set and discuss a bit

about persistent homology.

In the next chapter, we will see the precursor of the Euler characteristic trans-

form, which is the persistent homology transform. And we will also review recent

research about persistent homology transform and Euler characteristic transform

to help readers know the short history of ECT.

After the literature review, we will first show the idea of how to convert a dig-

ital image to a cubical complex. And then, we will demonstrate how to construct

a number of Euler curves for each cubical complex made from an image, that is,

to execute the Euler characteristic transform. The detailed algorithms and expla-

nation will also be presented. Moreover, after we use ECT to represent images, a

distance between two ECTs of cubical sets will be defined. So, we will do some

distance-based cluster analysis on some samples sets of image data. The cluster

1



analysis will help us further master the procedures and understand what kinds of

information this technique can tell us.

Finally, we will address some directions of future works.
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Chapter 2: Cubical Homology and Euler Characteristic Transform

2.1 Cubical Homology

In this section, we will review the concept of cubical sets and cubical homol-

ogy. We follow the materials in chapter 2 of the book Computational Homology by

Kaczynski et al. [5]. The notations we used mostly came from the book.

2.1.1 Elementary Cubes

Definition 2.1. An elementary interval is a closed interval I ⊂ R of the form I =

[v, v + 1] or I = [v, v] for some v ∈ Z. We write [v] = [v, v] for an interval that

contains only one point. The elementary intervals of the form [v] are said to be

degenerate, and the intervals of the form [v, v] are nondegenerate.

Definition 2.2. An elementary cube Q is a finite product of elementary intervals,

that is, Q = I1 × I2 × · · · × Id ⊂ Rd, where each Ij is an elementary interval. The

set of all elementary cubes in Rd is denoted by Kd. The set of all elementary cubes

is denoted by K, namely K :=
⋃∞

d=1Kd.

Definition 2.3. Let Q ∈ Kd. The dimension of Q is defined to be the number

of nondegenerate elementary intervals in Q, denoted by dim Q. We let Kk :=

{Q ∈ K : dim Q = k} and Kd
k := Kk ∩Kd.

3



2.1.2 Cubical Sets

Definition 2.4. A set X ⊂ Rd is said to be cubical if X can be written as a finite

union of elementary cubes.

If X ⊂ Rd is a cubical set, then we adopt the following notations:

K(X) := {Q ∈ K : Q ⊂ X}

and

Kk(X) := {Q ∈ K(X) : dim Q = k}.

So, the cubical set X can be written as

X :=
⋃

Q∈K(X)

Q =
d⋃

k=1

⋃
Q∈Kk(X)

Q.

The elements of K0(X) are called the vertices of X, and the elements of K1(X) are

called the edges of X. More generally, the elements of Kk(X) are the k-cubes of X.

Proposition 2.1. If X ⊂ Rd is cubical, then X is closed and bounded.

Proof. By definition a cubical set X is the finite union of elementary cubes. An

elementary cube is closed since it is a product of closed sets. A finite union of

closed sets is also closed.

For Q = I1 × I2 × · · · × Id ∈ K(X), where Ij =
[
vj
]

or Ij =
[
vj, vj + 1

]
, let

ρ(Q) = maxj=1,...,d
{∣∣vj

∣∣+ 1
}

. By taking r := maxQ∈K(X) ρ(Q), we see that X ⊂

B(0, R), where B(0, r) is the open ball centered at 0 with radius r. So, X is bounded.

4



2.1.3 Cubical Chains

Definition 2.5. For each Q ∈ Kd
k , define Q̂ : Kd

k ! Z by

Q̂(P) :=

{
1 for P = Q,
0 else.

Q̂ is called an elementary k-chain dual to the elementary cube Q. The set of all

elementary k-chains of Rd is denoted by K̂d
k :=

{
Q̂ : Q ∈ Kd

k

}
, and the set of all

elementary chains of Rd is denoted by K̂d :=
⋃∞

k=0 K̂d
k .

Definition 2.6. The group of k-dimensional chains or k-chains of Rd is the free

abelian group generated by the elementary chains of Kd
k and is denoted by Cd

k .

Thus the elements of Cd
k are functions c : Kd

k ! Z such that c(Q) = 0 for all

but finitely many Q ∈ Kd
k . In particular, K̂d

k is the basis for Cd
k . If c ∈ Cd

k , then

dim c := k.

Proposition 2.2. The map φ : Kd
k ! K̂d

k by Q 7! Q̂ is a bijection.

Proof. K̂d
k is defined to be the image of φ. To prove injectivity, assume that P, Q ∈

Kd
k and P̂ = Q̂. Then 1 = P̂(P) = Q̂(P). It follows that P = Q.

Definition 2.7. Let c ∈ Cd
k . The support of the chain c is the cubical set

|c| :=
⋃{

Q ∈ Kd
k : c(Q) 6= 0

}
.

Remark. Support of a chain satisfies nice geometric features. For example, if Q ∈ K,

then
∣∣∣Q̂∣∣∣ = Q.

Definition 2.8. Let c1, c2 ∈ Cd
k , where c1 = ∑m

i=1 αiQ̂i and c2 = ∑m
i=1 βiQ̂i. The

scalar product of the chains c1 and c2 is defined as

〈c1, c2〉 :=
m

∑
i=1

αiβi.

5



Proposition 2.3. The scalar product defines a bilinear mapping 〈·, ·〉 : Cd
k × Cd

k ! Z.

Definition 2.9. Given two elementary cubes P ∈ Kd
k and Q ∈ Ke

l , define

P̂ � Q̂ := P̂×Q.

This extends to arbitrary chains c1 ∈ Cd
k and c2 ∈ Ce

l by

c1 � c2 := ∑
P∈Kk
Q∈Kl

〈c1, P̂〉〈c2, Q̂〉P̂×Q.

The chain c1 � c2 ∈ Cd+e
k+l is called the cubical product of c1 and c2.

Proposition 2.4. Let a, b, c be any chains.

(i) a � 0 = 0 � a = 0.

(ii) a � (b + c) = a � b + a � c if b, c ∈ Cd
k .

(iii) (a � b) � c = a � (b � c).

(iv) If a � b = 0, then a = 0 or b = 0.

(v) |a � b| = |a| × |b|.

Proposition 2.5. Let Q̂ be an elementary cubical chain of Rd with d > 1. Then there exist

unique elementary cubical chains Î and P̂ with I ∈ K1 and P ∈ Kd−1 such that Q̂ = Î � P̂.

Proof. Since Q̂ is an elementary cubical chain, Q is an elementary cube with Q =

I1 × I2 × · · · × Id. If we set I := I1 and P := I2 × · · · × Id, then Q̂ = Î � P̂.

If Q̂ = Ĵ � R̂ for some J ∈ K1 and R ∈ Kd−1, then Î × P = Ĵ × R. By Proposition

2.2 we have I × P = J × R. Since I, J ⊂ R (the first copy of R in Rd), it follows that

I = J and hence P = R.

6



2.1.4 Cubical Chains in a Cubical Set

Definition 2.10. Let X ⊂ Rd be a cubical set. Let K̂k(X) :=
{

Q̂ : Q ∈ Kk(X)
}

. The

set of k-chains of X is the free subgroup of Cd
k generated by the elements of Kk(X)

and is denoted by Ck(X).

Remark. We see that

Ck(X) =
{

c ∈ Cd
k : |c| ⊂ X

}
.

Lemma 2.1. K̂k(X) is a basis of Ck(X).

Proof. By definition of Q̂, the set K̂k(X) is linearly independent.

Remark. SinceKk(X) is finite, Ck(X) is a finite dimensional free abelian group. And

for any c ∈ Ck(X), we can write

c = ∑
Qi∈Kk(X)

αiQ̂i,

where αi = c(Qi).

2.1.5 The Boundary Map

Definition 2.11. Given k ∈ Z, the cubical boundary map ∂k : Cd
k ! Cd

k−1 is defined

for an elementary chain Q̂ ∈ K̂d
k by induction on d as follows.

Define ∂0 = 0. When d = 1, Q is an elementary interval. Define

∂kQ̂ :=

{
0 for Q = [v],

[̂v + 1]− [̂v] for Q = [v, v + 1].

Next, when d > 1, Q = I1 × I2 × · · · × Id. Let I = I1 and P = I2 × · · · × Id. Then

by Proposition 2.5 we have Q̂ = Î � P̂. Define

∂kQ̂ := ∂k1 Î � P̂ + (−1)dim I Î � ∂k2P̂,

7



where k1 = dim I and k2 = dim P.

Finally, we extend the definition to all chains in Cd
k by linearity. That is, if c =

∑n
i=1 αiQ̂i, then

∂kc :=
n

∑
i=1

αi∂kQ̂i.

Remark. Note that the domain of ∂k is Cd
k consisting of the k-chains. Whenever the

domain Cd
k is given, k is understood. So we simplify the notation ∂k to ∂.

Proposition 2.6.

∂2 = 0.

Proof. It suffices to verify the property for elementary chains. And the proof is by

induction on the dimension of the ambient space Rd.

Let Q be an elementary interval. If Q = [v], then ∂∂Q̂ = 0. If Q = [v, v + 1],

then
∂(∂Q̂) = ∂(∂ ̂[v, v + 1])

= ∂([̂v + 1]− [̂v])

= ∂([̂v + 1])− ∂([̂v])

= 0.

8



Next assume that Q is an elementary cube in Kd for d > 1. Then Q = I1 × I2 ×

· · · × Id. Let I = I1 and P = I2 × · · · × Id. Then Q = I × P. By Proposition 2.5,

∂(∂Q̂) = ∂(∂( Î × P))

= ∂(∂(̂I � P̂))

= ∂(∂̂I � P̂ + (−1)dim Î̂I � ∂P̂)

= ∂(∂̂I � P̂) + (−1)dim Î∂(̂I � ∂P̂)

= ∂∂̂I � P̂ + (−1)dim ∂̂I∂̂I � ∂P̂ + (−1)dim Î
(

∂̂I � ∂P̂ + (−1)dim Î̂I � ∂∂P̂
)

= (−1)dim ∂̂I∂̂I � ∂P̂ + (−1)dim Î∂̂I � ∂P̂,

where ∂∂̂I = 0 and ∂∂P̂ by the inductive hypothesis.

Observe that if dim Î = 0, then ∂̂I = 0. Then ∂̂I � ∂P̂ = 0 and hence ∂∂Q̂ = 0. If

dim Î = 1, then dim Î = 0. Thus, the two terms cancel each other. It follows that

∂∂Q̂ = 0.

Definition 2.12. The boundary map for the cubical set X is defined to be ∂X
k :

Ck(X) ! Ck−1(X) obtained by restricting ∂k to Ck(X).

Remark. The definition may need further justification of well-definedness. Readers

can refer to [5] for details.

Definition 2.13. The cubical chain complex for the cubical set X ⊂ Rd is

C(X) :=
{

Ck(X), ∂X
k

}
k∈Z

,

where Ck(X) are the groups of cubical k-chains generated by K̂k(X) and ∂X
k is the

cubical boundary map restricted to X.

Definition 2.14. Let C(X) = {Ck(X), ∂k}k∈Z be a cubical chain complex for the

cubical set X ⊂ Rd. A cubical chain complex D(X) =
{

Dk(X), ∂′k
}

k∈Z
is a cubical

chain subcomplex of C(X) if

9



1. Dk(X) is a subgroup of Ck(X) for all k ∈ Z.

2. ∂′k = ∂k|Dk(X).

Proposition 2.7. Let X ⊂ Y be cubical sets. Then C(X) is a chain subcomplex of C(Y).

Proof. The proof requires only a careful inspection of definitions. X ⊂ Y implies

that K(X) ⊂ K(Y), hence Kk(X) ⊂ Kk(Y) for all k. Thus, K̂k(X) ⊂ K̂k(Y). Since

K̂k(X) and K̂k(Y) are bases of the free subgroups Ck(X) and Ck(Y) respectively,

Ck(X) is a subgroup of Ck(Y).

Recall that the cubical boundary map was defined by linearly extending the

definition on elementary cubes. Thus, the boundary maps ∂X
k for C(X) and ∂Y

k for

C(Y) can be obtained by restricting ∂ to Ck(X) and Ck(Y) respectively. So ∂X
k =

∂Y
k |Ck(X)

Remark. For cubical sets X, Y, we have X ⊂ Y iff K(X) ⊂ K(Y). Indeed, for the

opposite direction, if there exists an x ∈ X such that x /∈ Y, then there exists a cube

Q ∈ X such that Q /∈ Y. Hence, K(X) 6⊂ K(Y).

2.1.6 Homology of Cubical Sets

Definition 2.15. Let X ⊂ Rd be a cubical set. A k-chain z ∈ Ck(X) is called a cycle

in X if ∂z = 0. The set of all k-cycles in Ck(X) is denoted by Zk(X).

A k-chain b ∈ Ck(X) is called a boundary in X if there exists c ∈ Ck+1(X) such

that ∂c = b. The set of boundary elements in Ck(X) is denoted by Bk(X).

Remark. The set Zk(X) =
{

z ∈ Ck(X) : ∂X
k z = 0

}
is the kernel of the boundary

map. Thus, the set Zk(X) forms a subgroup of Ck(X). The set Bk(X) is by defi-

nition the image of the boundary map ∂X
k+1. So Bk(X) is also a subgroup of Ck(X).

10



Moreover, by proposition 2.6, ∂c = z implies ∂z = ∂2c = 0. Thus, every boundary

is a cycle and hence Bk(X) is a subgroup of Zk(X).

Definition 2.16. The kth cubical homology group or the kth homology group of X

is the quotient group

Hk(X) := Zk(X)/Bk(X).

The homology of X is the collection of all homology groups of X, denoted by

H∗(X) := {Hk(X)}k∈Z.

Remark. We are interested in cycles that are not boundaries. So we treat cycles that

are boundaries as trivial. Therefore, the elements of the quotient group Hk(X) :=

Zk(X)/Bk(X) are equivalence class of cycles under the equivalence relation that for

any two cycles z1, z2 ∈ Zk(X), z1 ∼ z2 if z1− z2 is a boundary, i.e., z1− z2 ∈ Bk(X).

We say that z1 and z2 are homologous if they differ by a boundary.

Definition 2.17. Let z ∈ Zk(X). We call the equivalence class of z in Hk(X) the

homology class of z. It is denoted by [z]X or [z] if the cubical set X is clear from the

context.

2.2 Euler Characteristic Curves

In this section, we want to discuss about the Euler characteristic curve, which

is the main focus of this paper. The reader will also get some ideas of filtration

and persistent homology from this section before we introduce them in the later

section.

We will quote without proving the following theorem:

11



Theorem 2.1. Any finitely generated abelian group G is isomorphic to a group of the form:

Zr ⊕Z/b1Z⊕Z/b2Z⊕ · · · ⊕Z/bkZ,

where r is a non-negative integer, bi > 1 whenever k > 0, and bi divides bi+1 for

i ∈ {1, 2, . . . , k− 1} whenever k > 1. The numbers b1, b2, . . . , bk, and r are uniquely

determined by G.

Definition 2.18. The number r is the rank of the free subgroup Zr and is called the

Betti number of G.

Definition 2.19. Let X ⊂ Rd be a cubical set, and βk be the Betti number of the kth

homology group Hk(X) of X. The Euler characteristic of X is defined to be

χ(X) := ∑
k∈Z

(−1)kβk.

Definition 2.20. Let u ∈ Rd be a vector and h ∈ R be a ‘height’ value. Let Q =

I1 × I2 × · · · × Id be an elementary cube. We say that Q is with a height of ≤ h in

direction u if for every Ij with j ∈ {1, . . . , d},

1.
(
vj + 1

)
· u ≤ h, provided Ij =

[
vj, vj+1

]
, and

2. vj · u ≤ h, provided Ij =
[
vj
]
.

The set of all elementary cubes that are with a height of ≤ h in direction u is de-

noted by Kd
(u,h).

Definition 2.21. Let X ⊂ Rd be a cubical set and let Kk(u,h)(X) := Kk(X) ∩ Kd
(u,h).

We define

X(u,h) :=
⋃

Q∈K(u,h)(X)

Q,

where K(u,h)(X) =
⋃d

k=0Kk(u,h)(X).

12



Remark. By Proposition 2.7 the corresponding cubical chain subcomplex is given

by

C(u,h)(X) :=
{

Ck(X(u,h)), ∂(u,h)

}
k∈Z

.

Accordingly, we can compute homology groups with a cubical chain subcom-

plex. Also we can compute Euler characteristics by taking an alternating sum of

the rank of the resulted homology group in each dimension. It leads to the follow-

ing definition.

Definition 2.22. Let X ⊂ Rd be a cubical set and let u be a direction vector in Rd.

The Euler curve of X in the direction u is a function ECu,X : R ! Z defined by

h 7! χ
(

X(u,h)

)
.

Remark. The Figure 2.1 is an illustration of the Euler curve of a cubical set in the

direction (1, 1) ∈ R2.

Definition 2.23. Let X ⊂ Rd be a cubical set and let S1 ⊂ R2 be the set of vec-

tors of unit length in R2. The Euler characteristic transform of X is defined to be

ECT(X) : Sd−1 ! ZR by

u 7! ECu,X.

At this point, we have established the definition of Euler characteristic trans-

form.

2.3 Chain Maps

In the later Section 2.4, in order to define the persistent homology, we want to

consider the effects of continuous functions between cubical sets on the homology

13
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Figure 2.1: Euler curves of binary images in direction (1, 1).
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groups. In particular, if Xi and Xj are cubical sets with Xi ⊂ Xj, what will be the

effect of the inclusion map Xi ↪! Xj on the homology groups Hk
(
Xj
)

for all k ∈ Z.

We will see that a continuous map between cubical sets X, Y induces a chain map

between the cubical chain complexes of X and Y, hence induces homomorphisms

between homology groups of X and Y.

Definition 2.24. Let C(X) =
{

Ck(X), ∂X
k
}

k∈Z
and C(Y) =

{
Ck(Y), ∂Y

k
}

k∈Z
be cu-

bical chain complexes. A sequence of homomorphisms φk : Ck(X) ! Ck(Y) is a

chain map if for every k ∈ Z

∂Y
k φk = φk−1∂X

k .

We use the notation φ# : C(X) ! C(Y) to represent the collection of homomor-

phisms {φk : k ∈ Z}.

Remark. Given z ∈ Zk(X), since ∂X
k (z) = 0, we have ∂Y

k φk(z) = φk−1∂X
k (z) =

φk−1(0) = 0. So a chain map takes cycles to cycles. Since φk−1∂X
k = ∂Y

k φk, a chain

map also takes boundaries to boundaries. We have the following Lemma.

Lemma 2.2. If φ : C(X) ! C(Y) is a chain map, then

φk(Zk(X)) ⊂ Zk(Y) := ker ∂Y
k

and

φk(Bk(X)) ⊂ Bk(Y) := im ∂Y
k+1

for all k ∈ Z.

Proposition 2.8. A chain map φ : C(X) ! C(Y) between chain complexes induces

homomorphisms between the homology groups of X and Y. That is, the homomorphism
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φk∗ : Hk(X) ! Hk(Y) by

φk∗([z]) := [φk(z)],

where z ∈ Zk for all k ∈ Z.

Proof. The Lemma 2.2 guarantees that the map φk∗ is a homomorphism from the

quotient group ker ∂X
k / im ∂X

k+1 to ker ∂Y
k / im ∂Y

k+1, that is φk∗ : Hk(X) ! Hk(Y).

We also want to see the actual definition is independent of the choice of z. As-

sume that [z] = [z′] for some z′ ∈ Zk. Then z′ = z + b for some b ∈ Bk. Since φ# is

a chain map, we have

φk∗
([

z′
])

=
[
φk(z′)

]
= [φk(z + b)] = [φk(z) + φk(b)] = [φk(z)] = φk∗([z]).

Remark. We use the notation φ∗ : H∗(X) ! H∗(Y) to represent the collection of

homomorphisms {φk∗ : k ∈ Z}.

The following example will be useful when we define the persistent homology

groups in the section 2.4.

Example 2.1. Let X ⊂ Y be cubical sets in Rd. We know from the Proposition 2.7

that the cubical chain complex C(X) is a chain subcomplex of C(Y). The inclusion

map ι : X ↪! Y, given by ι(Q) := Q, maps elementary cubes to elementary cubes.

It defines an inclusion map of the chain complexes, ι : C(X) ! C(Y) by

ιk(Q̂) := Q̂,

for all Q ∈ Kk(X). More specifically, in each dimension k, by taking the linear

combination of the elementary k-chains, we get an inclusion map ιk : Ck(X) !
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Ck(Y) defined by ιk(c) := c for every c ∈ C(X). Since ∂kιk(c) = ∂k(c) = ιk−1∂(c),

we have ι is a chain map. Therefore, it induces a homomorphism of homology

groups

ι∗ : H∗(X) ! H∗(Y).

We will consider the image of a homology class [z] ∈ Hk(X) under the map ι∗

as well as the image of Hk(X) for all k ∈ Z later.

2.4 Filtrations and Persistent Homology

In the above section 2.2, we defined the subcomplex determined by a direc-

tional vector and a height value, and we wanted to calculated the sublevel Euler

characteristics. The idea behind these is to measure changes in the homology of a

filtration of complexes over time. So in this chapter, we will briefly talk about the

concept of filtrations and persistent homology. The definitions we used here came

from [3, 12, 10]. It is helpful to know the concepts for the literature review chapter.

Definition 2.25. Let X ⊂ Rd be a cubical set. A filtration of X is a nested sequence

of cubical subsets of X, that is ∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X.

Remark. The cubical chain complex for Xi is denoted by

C(Xi) :=
{

Ck(Xi), ∂
Xi
k

}
k∈Z

.

Proposition 2.7 implies that C(Xi) is a subcomplex of C(Xi+1) for every i ≥ 0.

Example 2.2. In this example we introduce a kind of filtration that is related to

the Euler characteristic transform. Given a cubical set X ⊂ Rd and a direction u,

we can order the vertices of X by their "heights" in the direction u. For example, as
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Figure 2.2: Order of vertices

shown in Figure 2.2, if the directional vector u is a unit vector, then we can compare

the scalar projections of those vertex vectors onto u, which is the dot product of the

vertex vector and u. We can partition the set of vertices into equivalence classes by

the relation v1 ∼ v2 iff v1 · u = v2 · u.

Suppose we have a set of equivalence classes of vertices of a cubical set X, and

let {[v1], [v2], . . . , [vn]} denote the set, ordered by comparing their scalar projec-

tions. We define X0 = ∅ and Xi to be the cubical set such that

K(Xi) := {Q ∈ K(X) : v /∈ Q if [v] > [vi]}.

The sequence ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X is a filtration. We can see an

illustration of the filtration of a cubical set determined by the vector (1, 1) in the

Figure 2.3.

Definition 2.26. Let X0 ⊂ X1 ⊂ · · · ⊂ Xn = X be a filtration. The p-persistent kth

homology group of Xi is

Hk
(
Xi,i+p

)
:= Zk(Xi)/

(
Bk(Xi+p) ∩ Zk(Xi)

)
18



Figure 2.3: Filtration
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The corresponding p-persistent kth Betti number is β
i,i+p
k := rank Hk

(
Xi,i+p

)
.

Remark. An equivalence definition is that the p-persistent kth homology groups of

a cubical set Xi is the image of the homomorphism induced by the inclusion map

ιi,j : Xi ! Xj where j = i + p. That is Hk(Xi,j) = im ιi,j if we use the same notation

for the induced map Hk(Xi) ↪! Hk(Xi+p).

We note that Hk(Xi,i) = Hk(Xi).

Definition 2.27. Let [z] ∈ Hk(Xi) for i > 0. We say that [z] is born at Xi if [z] /∈

Hk(Xi′,i), that is [z] /∈ im ιi′,i for all i′ < i. Moreover, for [z] that is born at Xi, we

say that [z] dies entering Xj if for every i′ < i < j′ < j, we have ιi,j′([z]) /∈ Hk(Xi′,j′)

and ιi,j([z]) ∈ Hk(Xi′,j).

Definition 2.28. If [z] is born at Xi and dies entering Xj, then the difference in

index j− i is said to be the index persistence of [z]. If [z] never dies, then its index

persistence is defined to be ∞.

We can visualize the collection of persistent Betti numbers.

Definition 2.29. Let µ
i,j
k be the number of k dimensional homology classes born at

Xi and dying entering Xj, we have for every i′ < i < j′ < j,

µ
i,j
k :=

(
β

i,j′

k − β
i,j
k

)
−
(

β
i′,j′

k − β
i′,j
k

)
.

For i ≤ j, drawing each point (i, j) with multiplicity µ
i,j
k on the extended real plane

R
2, we get the kth persistence diagram of the filtration, denoted by Dgmk.
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Chapter 3: Literature Review

In this chapter, we will review recent works about the Euler characteristic trans-

form. Euler characteristic transform is derived from the persistent homology trans-

form (PHT), which is designed to model surfaces in R3 and shapes in R2. Persis-

tent homology is a popular tool in topological data analysis, and it is an algebraic

method for detecting topological structures of data. The data being studied in TDA

could be many types of data, such as point cloud data, time series data, or image

data. Shape analysis is about statistical analysis of geometric shapes including

shape matching and shape recognition. It mainly studies and processes geometric

shapes extracted from 2D and 3D images. The idea behind persistent homology

transform and Euler characteristic transform is to use methods from topological

data analysis to study geometric shapes.

3.1 Euler Characteristic Transform

Turner et al. [10] introduce the persistent homology transform as a tool to per-

form shape analysis on objects in R3 and shapes in R2. In short, for a subset M of

Rd (d=2 or 3), which can be written as a finite simplicial complex, the persistent

homology transform of M is a function assigning to a directional vector v ∈ Sd−1

the collection of the kth dimensional persistence diagram corresponding to v for
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k ∈ {1, . . . , d− 1}. One notable result of the paper is that such collections of per-

sistent diagrams are sufficient statistics for shape and surface models. It is the first

formal demonstration that using persistent homology would not result in loss of

information. This has been demonstrated by proving the theorem that the persis-

tent homology transform is injective when the domain is space of subsets of R2 or

R3 that can be written as finite simplicial complexes (Theorem 3.1 and Corollary

3.1 in [10]).

Another important aspect of the injectivity theorem is that the proof of the the-

orem is actually constructive. It suggests that the transform is theoretically invert-

ible and provides an algorithm to reconstruct the simplical complex hence the set

from the persistent diagrams.

The space of persistent diagrams is a metric space [7]. The distances between

persistent diagram may be defined. Nevertheless, the geometric structure of the

space of persistent diagrams is complicated. In order to resolve this issue, they

introduce a simplified variation of the PHT, which is the Euler characteristic trans-

form. Although the Euler curves store relatively less geometric and topological

information than the persistent diagrams, they live in a space with a much better

geometric structure. As a corollary of the aforementioned theorem, the Euler char-

acteristic transform is also injective. This new sufficient statistic is a collection of

curves that can have an inner product structure which allows people to apply the

smooth ECT to a broader set of statistical methodologies [1]. The original idea and

the definitions can be found in [10]. This explains the motivation for inventing the

Euler characteristic transform in addition to the persistent homology transform.
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The definition are basically the same as we presented in section 2, except that

they originally consider the sets that can be turned into finite simplicial complexes

in Rd instead of cubical sets. Since most of the examinations we did were on pix-

elated images, we chose a version of complex that is closer to thresholded planar

images.

Crawford et al. further explain the ECT and the smooth Euler characteristic

transform (SECT) [1]. They restrict the Euler curve to a compact interval [a, b]

based on the simplicial complex. And then, they take the mean of an Euler curve

over the interval [a, b] the and subtract the mean from the Euler curve. This pro-

duces a centered Euler curve. Integrating the center Euler curve gives a continuous

piecewise linear function that has value 0 at the endpoints of the interval [a, b].

Recall the Euler curves involved in the definition of the Euler characteristic

transform. A Euler curve of a cubical set X ⊂ Rd in a certain direction is a function

well-defined on R. The paper [10] also treats the Euler curves as functions defined

on R. For practical purpose, we may want to consider truncated Euler curves.

3.2 Reconstruction of Shapes from Euler Curves

In addition to classifying shapes using the Euler curves, people also think about

the reconstruction of shapes from the information stored in the persistent diagram

and Euler curves [2, 4, 10].

The proof in [10] of the injectivity of the persistent diagram transform and Euler

characteristic transform when the domain is the collection of sets in R2 or R3 that

can be turned into simplicial complexes is moreover an algorithm by which we can
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read the information of simplicial complexes (vertices, edges, faces, etc.) from the

collection of persistent diagrams produced by the PHT.

Curry et al. generalize the injectivity theorem [2]. The theorem is stated as

Theorem 3.1 (Theorem 3.4 in [2]). Let CS(Rd) be the set of constructible sets, i.e., com-

pact definable sets. The map ECT : CS(Rd) ! CF(Sd−1 ×R) is injective. Equivalently,

if M and M′ are two constructible sets that determined the same association of directions

to Euler curves, then they are the same set. Symbolically:

ECT(M) = ECT(M′) : Sd−1 ! CF(R) ⇒ M = M′

The proof of the Theorem 3.1 is based on an inversion theorem of Schapira [9].

And another major result of the paper shows that any shape in a certain set of

non-axis aligned shapes can be characterized by finitely many Euler curves.

Fasy et al. [4] worked on the collection of planar graphs, which are equiva-

lent to simplicial complexes in R2, and showed that planar graphs can be recon-

structed using a finite number of ECs instead of infinitely many Euler curve, each

corresponding to a direction on S1.
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Chapter 4: Applications

4.1 Digital Image and Cubical Homology

In this section, we will talk about the relation between the shapes in digital

images and cubical sets, and use some simple example to demonstrate how to

convert a digital image to a cubical set.

4.1.1 Digital Images as Cubical Sets

A digital image is a image made of pixels. The pixels can be stored in many

different formats, such as an ordered long vector or a rectangular array, i.e., an

m by n matrix. The image matrix has a natural coordinate system. We can say

that the pixel stored at the ith row and the jth column has coordinate (i, j). The

coordinate system is like a rotated coordinate system compared to the standard

coordinate system in R2. For convenience, in this thesis we might want to think

that we always store pixels in an m by n matrix.

If we rotate the coordinate system in mind and say that the coordinate (i, j) of

a pixel is just the coordinate of a vector in R2 with respect to the standard basis,

then it allows us to identify each pixel with a vector in R2 and put each pixel on

the integer lattice Z2 in R2.
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The information that a digital image carries is not only the position of the pixels,

otherwise images are all dots arranged in rectangular shapes with differences only

in size. Moreover, the grayscale images, which are the digital images we are caring

about in this paper, carries also the intensity information. Each pixel of a grayscale

image has a intensity value, which is a real number ranged from 0 to 255. The

number represents the amount of light. Therefore, 0 means completely dark and

255 means the brightest. The binary image which has only intensity values 0 and

255 is an extreme case of the grayscale image. We can always turn a grayscale

image into a binary image by thresholding it, that is, if the intensity value is less

than or equal to the threshold number, we change the intensity value to 0, and if

the intensity value is greater than the threshold number, we change it to 255. We

can further make those pixels have values only 0 and 1. If the pixel has value 1, we

record the location information, the coordinate, of the pixel. Otherwise, we ignore

the pixel completely.

We therefore obtain a set of pixels. The pixels depict the shape of the object

in the digital image. We also obtain a set of vectors in R2. The vectors can be

thought of as the set of vertices of some cubical set. Any two adjacent vertices

determine an edge, or the elementary 1-cubes. The area enclosed by four edges are

the squares or 2-cubes. This is the process of turning a digital image into a cubical

set. Additionally, if we do not satisfy with the fact that cubical sets are only located

in the first quadrant of the plane, we can translate the approximate center of the

image to the origin or translate the cubical set.

Let us look at an example.
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(a) Binary image (b) Cubical set

Figure 4.1: Turning a binary image into a cubical set

Example 4.1. Suppose we have a 7 by 7 binary image stored as the following matrix

0 0 0 0 0 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 0 0 0 1 1
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 0 0 0 0 0


We associate a Cartesian coordinate to each of the pixels in the way we described

above. We then translate the pixels to make sure that the pixel that previously has

coordinate (4, 4) to be centered at the origin now. As shown in the Figure 4.1a,

the filled dots represent pixels that have value 1, and the empty dots represents

pixels that have value 0. We consider the filled dots as vertices. If any of the

four neighbors (left, right, top, and bottom) of a certain vertex is also a filled dot,

we connect those two vertices by an edge. And whenever we have four edges

enclosing a square area of side length 1, we fill the area with a square. We obtain

the cubical set illustrated in the Figure 4.1b. Denote the cubical set by O. Then
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K0(O) = {[−2]× [−2], [−1]× [−3], [−2]× [−1], [−1]× [−2], [0]× [−3],

[−2]× [0], [−1]× [−1], [0]× [−2], [1]× [−3], [−2]× [1],

[−1]× [0], [0]× [−1], [−2]× [2], [−1]× [1], [1]× [−1],

[2]× [−2], [−1]× [2], [1]× [0], [2]× [−1], [−1]× [3],

[0]× [2], [1]× [1], [2]× [0], [0]× [3], [2]× [1],

[1]× [2], [1]× [3], [2]× [2]} ,

In this manner, we can write out the K1(O) and K2(O) sets, but it seems tedious.

We just list some of the elements:

K1(O) = {[−2]× [−2,−1], [−2]× [−1, 0], [−2]× [0, 1], [−2]× [1, 2], . . .

[−1, 0]× [−3], [0, 1]× [−3], . . . } ,

K2(O) = {[−2,−1]× [−2,−1], [−2,−1]× [−1, 0], [−2,−1]× [0, 1], . . . } .

The cubical set O is the made out of these elementary cubes.

The way we exhibit above was just one way of turning a image into a cubical

set. We will further demonstrate the above process and some variations in appli-

cation contexts in subsection 4.2.2. The algorithms of producing cubical complexes

is provided in Appendix A.

4.1.2 Algebra of Cubical Sets

We would also like to show an example of applying the boundary map to an

elementary 2-cube.

Example 4.2. Let Q = [v, v + 1] × [w, w + 1] as shown in the Figure 4.2a. The
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(v, w) (v + 1, w)

(v, w + 1) (v + 1, w + 1)

Q

C

B

D

A

(a) Elementary cube

(v, w) (v + 1, w)

(v, w + 1) (v + 1, w + 1)

Q̂

Ĉ

B̂

−D̂

−Â

(b) Geometric interpretation of a chain

Figure 4.2: Example of an elementary 2-cube and a chain dual to it

elements in K1(Q) are
A = [v]× [w, w + 1],

B = [v + 1]× [w, w + 1],

C = [v, v + 1]× [w],

D = [v, v + 1]× [w + 1].

The corresponding elementary 1-chain dual to these elementary intervals are

Â = ̂[v]× [w, w + 1],

B̂ = ̂[v + 1]× [w, w + 1],

Ĉ = ̂[v, v + 1]× [w],

D̂ = ̂[v, v + 1]× [w + 1].

Recall the definition of the boundary map ∂2: for Q̂ = Î1 � Î2,

∂2Q̂ := ∂1̂I1 � Î2 + (−1)dim I1 Î1 � ∂1̂I2,
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So we can calculate

∂2Q̂ = ∂1
̂[v, v + 1] � ̂[w, w + 1] + (−1)dim ̂[v,v+1] ̂[v, v + 1] � ∂1

̂[w, w + 1]

=
(
[̂v + 1]− [̂v]

)
� ̂[w, w + 1]− ̂[v, v + 1] �

(
̂[w + 1]− [̂w]

)
= [̂v + 1] � ̂[w, w + 1]− [̂v] � ̂[w, w + 1]− ̂[v, v + 1] � ̂[w + 1] + ̂[v, v + 1] � [̂w]

= B̂− Â− D̂ + Ĉ.

From the above calculation, we see that the image of an elementary 2-chain un-

der the boundary map ∂2 is a 1-chain c = B̂ − Â − D̂ + Ĉ. |c| is the contour of

the square Q. This might suggest that the algebraic and topological boundaries are

closely related, that is
∣∣∣∂Q̂

∣∣∣ = bd
∣∣∣Q̂∣∣∣ = |c|. The plus or minus sign in the expression

for c has also a geometric interpretation: For example, we think of Â as indicating

moving along the edge from (v, w) to (v, w + 1) while −Â means traversing the

edge in the opposite direction. The direction is from the “lower vertex” to the “up-

per vertex” for positive elementary 1-chains and reverse for negative elementary

1-chains. So, c represents a counterclockwise closed path around the square as

shown in 4.2b.

4.2 Clustering Random Sampling from MNIST Dataset

The MNIST database is a database of handwritten digits. It consists of 60,000

training images and 10,000 testing images [6]. There is a variation of the MNIST

dataset called Fashion-MNIST, which is a dataset consisting of gray scale images

of 70,000 fashion products [11]. We will choose a subset of the MNIST dataset and

a subset of the Fashion-MNIST dataset to illustrate how to use the Euler character-

istic transform to cluster shapes in image data.

30



4.2.1 Preprocessing Dataset

The first step is to process the images in dataset. The digital images in both

MNIST and Fashion MNIST dataset are grayscale images, we want to turn them

into binary images. There are many standardized functions or build-in functions

in many different languages to load in and preprocess the dataset, for instance,

the binarizing function IMBINARIZE in MATLAB. These tools help us convert the

images in the MNIST dataset to desired binary images for building cubical com-

plexes. By default, IMBINARIZE uses Otsu’s method, which chooses the threshold

value to minimize the intraclass variance of the thresholded black and white pix-

els [8]. And we can choose different threshold values as well. Different ways of

binarizing the same digital image will result in different cubical complexes, hence

different homology groups.

4.2.2 Turning Images to Cubical Sets

Having obtained binary images from the dataset, we then consider how to turn

them into cubical sets. Recalling in subsection 4.1.1, we treated each nonzero pixel

as a vector in R2 and as a vertex. Alternatively, each nonzero pixel can be thought

of as a square. The coordinate of the pixel is the coordinate of the center of the

square. To make sure that two squares can intersect only at edges or vertices, it

is reasonable to choose the length of the sides of the squares to be 1. Hence, the

coordinate of any vertex is of the form (i + 1/2, j + 1/2) for some i, j ∈ Z. In this

paper, we think of pixels as vertices.

Given a binary image matrix, we can easily find a list of coordinates of the

nonzero vertices, for example, by means of the FIND function in MATLAB. Next,
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for a vertex that has coordinate (i, j) with i and j in this list, we consider the

two pixels with coordinates (i + 1, j) and (i, j + 1) respectively. If say (i + 1, j) is

nonzero, we want to connect (i, j) and (i + 1, j) to form an edge. We record the two

coordinates in the list of edges. Always considering (i + 1, j) and (i, j + 1) is just

one way to avoid repeated counting of edges. We do the process for each vertex

in the list of vertices to get a list storing the coordinate information of all desired

edges. Finally, for a vertex with coordinate (i, j) in this list, we consider the three

pixels (i + 1, j), (i, j+ 1 and (i + 1, j+ 1). If (i + 1, j) = (i, j+ 1) = (i + 1, j+ 1) = 1,

the four vertices form a square. We add the four coordinates to the list of squares.

Considering for each vertex in the vertex list, we can get list of all squares. The

details are in Algorithm 1.

4.2.3 Euler Curves

With the information of cubical complexes, we can compute combinatorial or

topological invariants, such as Betti numbers and Euler characteristics. Recalling

in Chapter 2 section 2.2, we defined the Euler characteristic and Euler curves for

general cubical set in Rd. The Euler characteristic of a cubical set is defined to

be the alternating sum of the nth Betti numbers. In computation, calculating the

rank of cubical homology groups involves reduction of some large matrices, which

takes a lot of time. On the other hand, counting the elementary cubes is way faster

than applying elementary operations to matrices. To easily acquire the Euler char-

acteristic, we can use the following definition:
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Definition 4.1. Let X ⊂ Rd be a cubical set, and nk be the number of the kth ele-

mentary cubes. The Euler characteristic of X is defined to be

χ(X) := ∑
k∈Z

(−1)knk.

The definition of Euler curve indicates the algorithm of how to produce Euler

curves from cubical sets. For a cubical set X, we obtained the lists of vertices, edges,

and faces of X from Algorithm 1. Let the list of vertices V be a nv by 2 matrix,

where nv is the number of vertices. Then each row of V stores the coordinate of a

vertex. Similarly, let the list of edges E be a ne by 4 matrix, where ne is the number

of edges, and let the list of squares F be a n f by 8 matrix, where n f is the number

of squares. So, each row of E stores 2 coordinates of two vertex and each row of F

stores 4 coordinates. Let u = (u1, u2)
T be a direction vector as a column vector. A

matrix multiplication of V and u can quickly yield a list of dot products of v and u.

This is a list of ’heights’ we assigned to each v in V. The list of edges actually has

two lists of vertices, say V1 and V2. Multiplying V1, V2 with u, respectively, we find

two lists of dot products, say A and B. The MATLAB code MAX(A, B) will return

the largest element from each row of A and B. In this way, we assign the ’height’

value max{v · u : v ∈ e} to e for every e in E. In a similar fashion, we assign height

to each of the faces in F.

Next, we set an interval [m, M]. So the Euler curve will start at height m and

end at height M. The number of increments n is also necessary. Once m, M and n

are given, the increment on h-axis is of course ∆h = M−m
n−1 . So, at hi = m + i∆h for

i ∈ {0, . . . , n− 1}, we want to find the Euler characteristic χ(X(u,hi)
). So, using the

three lists of heights of elementary cubes, we can find the number nv of elementary

0-cubes with height of ≤ hi, the number ne of elementary 1-cubes with height of
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≤ hi, and the number n f of elementary 2-cubes with height of ≤ hi. It follows that

χ(X(u,hi)
) = nv− ne + n f . A for loop can give χ(X(u,hi)

) for all i. The details can

be found in Algorithm 2.

4.2.4 Distance Between ECT

We now know how to calculate the Euler curve of a cubical set X for a fixed di-

rection u. We can then evenly sample a number of directions from S1 and compute

a bunch of Euler curves. We obtain the Euler characteristic transform of X. We

want to further smooth the Euler curves, for example, using the MATLAB func-

tion SMOOTHDATA(EC, ‘gaussian′). After smoothing, we calculate the distance be-

tween the SECTs of two cubical sets, i.e., two images, by the way suggested in the

paper [1]. The distance function is given by

dist(SECT(X1), SECT(X2)) :=
(∫

S1

∥∥ECu,X1 − ECu,X2

∥∥2du
)1/2

. (4.1)

With this distance function, we can try some distance-based clustering.

4.2.5 Clustering

At first, we randomly selected 30 samples from the digit MNIST dataset. We

applied the Otsu’s method in the thresholding process. We used Algorithm 1 to

turn the sampled images into cubical complexes and used Algorithm 2 to compute

20 (corresponding to 20 directions evenly sampled from S1) Euler curves for each

sample. We smoothed them and calculated pairwise distance between any two

SECT(Xi) and SECT(Xj) based on equation 4.1. We got a 30 by 30 distance matrix

D.
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Figure 4.3: Colored dendrogram for 30 digits

The MATLAB function LINKAGE(D,′ ward′) helps carry out the hierarchical

cluster analysis with ward linkage on D. The clustering dendrogram is shown

in Figure 4.3. The plot indicates that there are two main clusters. By reading the

leaf nodes of the cluster on the right-hand side, we see that this cluster contains

almost all of the digits 0 and 9, and all of the digits 6 and 8. On the other hand,

the left cluster contains mostly the digits that do not have a cycle. However, this is

a relatively less interesting result because by simply calculating the Euler charac-

teristic of each digit, we can get very similar clustering result instead of doing the

ECT. So we may want to consider sub-clusters of these two main clusters to see if

35



the ECT could tell more information. We chose to examine the 6 sub-clusters. In

Figure 4.3, the six colored clusters from left to right are cluster 3, cluster 2, cluster

1, cluster 6, cluster 5, and cluster 4. We read these cluster numbers from the Figure

4.4. The orders of the digit images from left to right, top to bottom in Figure 4.4 are

corresponding to the numbers on the leaf nodes of the dendrogram in Figure 4.3.

A reorganized list of digits is shown in the Figure 4.5. We can read off some

interesting points from sub-clusters. First, we note that the break-up digit 0 has

Euler characteristic 1. Clusters 1, 2 and 3 all contains digits with characteristic 1.

The zero was not clustered into other clusters but the cluster 2 with five other digit

4s. This may be because the cut appears on the top side of the loop. So when

we sweep from the top side of the image to bottom side, the filtration contains

subcomplexes with two connected components in the beginning, like the situation

that we sweep over digit 4 from top to bottom. We may suspect that if the cut of

the loop of 0 appeared on the left side, then the zero might be clustered into cluster

1 together with those 3s.

Secondly, a narrow 3 was clustered with many other 1s, whereas wide 3s are

more similar to 5. This might suggest that the ECT also carries some geometric

information in addition to topological information. The third point was observed

by a careful inspection on both the clusters and images. This process is sensitive to

tiny pixels. A small cut on the loop of the zero changes the topological structure.

By zooming in the middle digit 6 in cluster 5 in Figure 4.5, we can see a tiny empty

pixel. Once this pixel gets filled, again the topology will suddenly change. And in

cluster 7 in Figure 4.5, we can clearly see that the first digit 5 has two components,
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Figure 4.4: 30 samples from MNIST dataset with clusters labeled on top.
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Figure 4.5: Cluster 1 to 6 listed from top to bottom

while the second connected component of the digit 9 is almost invisible to see.

However, the Euler characteristic transform can detect this.

This experiment on MNIST handwriting dataset might help us understand the

Euler characteristic transform somehow. We may also want to conduct another

experiment on the Fashion MNIST dataset especially to see how different methods

of binarizing will affect the clustering result.
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Figure 4.6: 20 images from Fashion MNIST dataset

We selected 20 samples from the Fashion MNIST dataset as shown in Figure 4.6.

Since Otsu’s method may result in some information loss in this dataset, we chose

to threshold by some fixed numbers. How to determine a thresholding number

is an important question. We tried to threshold by 0.05 and 0.1 (the images in

the dataset have been normalized to have intensity values ranged from 0 to 1) to

see some results. Since we did binirizing process twice differently, we label these

two sub-experiments by 2A and 2B, respectively. We used Algorithms 1 and 2

to compute 20 Euler curves for each of the 20 cubical sets in each time. After

computing distance, we got two distance matrices. We did the hierarchical cluster

analysis using the same method. And the Figure 4.7a and 4.7b are the dendrograms

of the clusterings from experiment 2A and 2B, respectively.

We still examine sub-clusters in details. In experiment 2A, we chose to see 6

sub-clusters, and in experiment 2B, we chose to see 5 clusters. In Figure 4.7a and

4.8b, we can see where each image got clustered.
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(a) Clustering dendrogram in experiment 2A

(b) Clustering dendrogram in experiment 2B

Figure 4.7: Colored dendrograms in experiment 2A and 2B
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(a) Clustering result in experiment 2A

(b) Clustering result in experiment 2B

Figure 4.8: The binary images with cluster label on top in experiments 2A and 2B
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There are some notable points. Increasing thresholding value from 0.05 to 0.1

changed the cubical complexes. The first example is the bag in the fourth column of

the first row. Increasing threshold resulted in a cut on the band. So the bag does not

have degree one homology in experiment 2B any more. It was clustered into the

group in which other images clearly have characteristic 1. The second example is

the jacket in the first column of the third row. Increasing threshold created a small

hole in it. So it was clustered with the bags with a band as well as the shoes with

a hole. The third example is the bag in the third column of the third row. When

taking threshold value 0.05, there was a pixel in the background. So the cubical

set had two components. While in experiment 2B, the pixel in the background got

ignored. The above three examples are typical examples of homology changing

owing to different thresholding values.

On the other hand, we still see some positive results. For example, the trousers

and shirts are clustered into different clusters although they all have Euler charac-

teristic 1. But we might expect a performance downgrade when we went from a

relatively simple MNIST dataset to the Fashion MNIST dataset.
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Chapter 5: Future Works

We found in experiment 2A that the handbag in the third column of the third

row (the 13th sample) and the shirt in the last column of the last row (the 20th

sample) were clustered into the same cluster, cluster 2. And we also talked about

that when using the threshold value 0.05 in experiment 2A, it will result in an

isolated pixel in the background of the image of the bag. Regarding this issue, we

talk about an upgraded method in this final chapter.

5.1 Betti Number Curves

We can use what we have learned about cubical homology to get some Betti

numbers. If we compute the kth Betti number of each subcomplex of a filtration of

some cubical set, we can similarly produce the kth Betti number curve of a cubical

set. For example, we take the two images from the experiment 2A in subsection

4.2.5, as shown in Figure 5.1. The first image is the 13th sample, and the second

image is the 20th sample. If we keep subdividing the cluster 2 in experiment 2A,

we can see from the dendrogram in the Figure 4.7a that these two images are clus-

tered together into a finer sub-cluster, separated from other samples in cluster 2.

Let us see some Euler characteristic curves in some directions for the two images

in Figure 5.1a and Figure 5.1b.
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(a) The 13th image (b) The 20th image

Figure 5.1: Two images from experiment 2A

In Figure 5.2, we present some Euler curves and Betti curves. The four sub-

figures 5.2a, 5.2c, 5.2e, and 5.2g in Figure 5.2 contain the Euler curves, the degree 0

Betti curves, and the degree 1 Betti curves for the image in Figure 5.1a in directions

(0,−1), (1, 0), (0, 1), and (−1, 0), respectively. Within each sub-figure, the solid

curve is the Euler curve, the dashed curve is the degree 0 Betti curve, and the

dash-dotted curve is the degree 1 Betti curve. Similarly, the four sub-figures 5.2b,

5.2d, 5.2f, and 5.2h contains the same kinds of curves for the image in Figure 5.1b.

Fix any of the four directions, we compare the two Euler curves for two images.

And we can indeed see that the two Euler curves are similar in each of the four

directions. On the other hand, we could see significant differences (in the sense

that the L2-distance is large) when comparing the Betti number curves for a fixed

direction.

The future works may involve finding faster algorithms to produce Betti num-

ber curves and carrying out similar clustering analysis on the dataset.
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(a) top-down (b) top-down

(c) left-right (d) left-right

(e) bottom-up (f) bottom-up

(g) right-left (h) right-left

Figure 5.2: Comparison of Betti number curves and Euler number curves

45



Appendix A: Algorithms

Algorithm 1 Binary Image to Cubical Complex

1: function CUBICALCPLX(A) . A ∈ Zm×n
2

2: V = FIND(A 6= 0)
3: for all v ∈ V do . v = (i, j)
4: if (i + 1, j) = 1 then
5: append e to E . e = [i, i + 1]× [j]
6: end if
7: if (i, j + 1) = 1 then
8: append e to E . e = [i]× [j, j + 1]
9: end if

10: end for
11: for all v ∈ V do
12: if (i + 1, j) = 1 & (i, j + 1) = 1 & (i + 1, j + 1) = 1 then
13: append f to F . f = [i, i + 1]× [j, j + 1]
14: end if
15: end for
16: return V,E,F
17: end function
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Algorithm 2 Cubical Complex to Euler Curve

1: function EULERCURVE(V, E, F, u, m, M, n) . V = nV by 2 matrix
2: . E = nE by 4 matrix
3: . F = nF by 8 matrix
4: . u = column vector in R2

5: . [m, M] = domain of EC
6: . n = number of increments
7: hV = V ∗ u . ∗ is matrix multiplication
8: hE = max([E1 E2] ∗ u, [E3 E4] ∗ u)
9: hF = max(max([F1 F2] ∗ u, [F3 F4] ∗ u), max([F5 F6] ∗ u, [F7 F8] ∗ u))

10: N = m : (M−m)/(n− 1) : M
11: for s = 1 : n do
12: v = hV(FIND(hV ≤ N(s))); nv = LENGTH(v)
13: e = hE(FIND(hE ≤ N(s))); ne = LENGTH(e)
14: f = hF(FIND(hF ≤ N(s))); n f = LENGTH( f )
15: EC(s) = nv− ne + n f
16: end for
17: return EC
18: end function
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