
On Product and Sum Decompositions of Sets:

The Factorization Theory of Power Monoids

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy in the Graduate School of The Ohio State University

By

Austin Alan Antoniou, M.S.

Graduate Program in Mathematics

The Ohio State University

2020

Dissertation Committee:

K. Alan Loper

Ivo Herzog

Cosmin Roman



Copyright by Austin Alan Antoniou
2020



Abstract

Let (H, ·) be a monoid. The power monoid of H , first studied in full generality by Y. Fan and S. Tringali,

is the collection Pfin(H) of finite, nonempty subsets of H , with the operation of setwise multiplication given

by X · Y := {x · y : x ∈ X, y ∈ Y }. This is a highly non-cancellative monoid in which many standard

factorization questions (e.g., for which H is Pfin(H) BF, or which sets occur as sets of factorization lengths)

have complicated and interesting answers. We pivot to the submonoid Pfin,1(H) consisting of finite subsets

containing 1, which is equimorphic to Pfin(H) when H is a group, but is also deserving of study in its own

right.

We determine exact conditions on H for which Pfin,1(H) is atomic (resp. BF). Due to its non-cancellative

nature, Pfin,1(H) eludes characterization by some of the usual tools of factorization theory. To respond in a

systematic way to non-cancellative phenomena, we formulate the notion of “minimal” factorizations and the

“minimal” versions of the usual properties BmF, FmF,HmF, and UmF (corresponding, respectively to BF,

FF, HF, and UF or factoriality). With this in hand, we can give exact conditions on those H which make

Pfin,1(H) BmF (resp. FmF, HmF, UmF). As a further application, we show that all intervals of the form

[2, k] are realized as sets of factorization lengths in Pfin,0(Z/nZ) for k ∈ [2, n− 1].

Even Pfin,0(N), the reduced power monoid of the naturals, is a rich object of study. Of particular interest

are the quantifiable differences between the intervals [0, n] and the other elements of Pfin,0(N). It is already

known, due to Fan and Tringali, that LPfin,0(N)([0, n]) = [2, n]. We refine this result by introducing the

partition type of a factorization and showing that [0, n] has factorizations of almost every partition type, and

that non-intervals sharply fail to do so. Intervals are further distinguished by giving an exponential lower

bound on |ZPfin,0(N)([0, n])|, the number of factorizations of [0, n].

Following the idea of partition type beyond the realm of power monoids, we take a detour to show that

the density of atoms of a given degree in any numerical semigroup algebra over a finite field is asymptotically

zero (as we let the degree approach infinity).

Returning to power monoids, we end by focusing in particular on sets of factorization lengths in Pfin,0(N).

The study of which sets occur as sets of lengths in Pfin,0(N) is fairly difficult, and requires some new tools.

To this end, we show that all factorization phenomena that occur in Pfin,0(Nd), for d > 1, also occur in

Pfin,0(N) (and vice-versa). Consequently, we may leverage the intuition and geometry of the integer lattice.

After developing the necessary methods, we recover some known results on sets of lengths; namely, that {n}
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and {2, n+ 1} occur as sets of lengths for any n ≥ 2. Finally, we demonstrate that [2,m+ 2] ∪ {m+ n+ 1}
can be realized as a set of factorization lengths for all m ≥ 1 and n ≥ 2, representing progress toward the

conjecture, made by Fan and Tringali, that Pfin,0(N) realizes all feasible sets of lengths.
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Chapter 1

Introduction

Factorization theory pursues a full understanding of how complex objects decompose into their simplest

constituent parts. Depending on the algebraic structure in question, the difficulty of gaining such an under-

standing can vary wildly. Some objects can be broken down in exactly one way, while others exhibit more

exotic behavior and are able to be broken down into several qualitatively different combinations of simpler

parts. Among our tasks are to test the bounds of this behavior, and to completely classify the circumstances

under which it can occur. In the present work, we bring our attention to a fairly new class of algebraic

objects – the titular “power monoids” – which possess many characteristics that make their study difficult,

hence interesting.

1.1 Motivation

The motivation to study power monoids is drawn from two sources: factorization theory and arithmetic

combinatorics.

Arithmetic combinatorics has historically involved sumsets in abelian groups (or even just in Z). It has

been concerned with questions such as “how large can a sumset be expected to be?” which is resolved in the

case of Z/pZ by the Cauchy-Davenport inequality: for A,B ⊆ Z/pZ, |A+B| ≥ min{p, |A|+ |B|− 1}. There
is, of course, an accompanying inverse problem; namely, which pairs A and B satisfy |A+B| = |A|+ |B|−1?

This is resolved by Vosper’s Theorem, which says that the extremal pairs A and B are arithmetic progressions

with the same difference. Though this is but a small slice of what the subject has to offer, it brings to our

attention the potential for structural questions in arithmetic combinatorics and consequently highlights its

surprising ideological closeness to parts of factorization theory.

The broadest question in factorization theory is: “how do elements decompose into atoms?” Asking this

question requires one to first specify (1) which elements, (2) which definition of “atom”, and (3) which values

of “how”? The first two points may be clear – or should be after Chapter 2 – but the third refers to what

constitutes reasonable answers to the original question. Is it enough to specify that an element has more

than one factorization? Or do we wish to distinguish factorizations by lengths, or by the types of atoms that
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they involve, or some further level of distinction? Making these ideas rigorous is one of the challenges but

also one of the predominantly interesting features of factorization theory.

Once we have settled these parameters of the question, we can then think about various settings and

how to characterize their factorization behavior. Historically, one of the first classes of rings which drew

the attention of many was that of rings of integers inside number fields. In this setting, we find perhaps

the most famous example of a ring which fails to have unique factorization, Z[
√
−5], as 2 · 3 = 6 = (1 +

√
−5)(1 −

√
−5). A significant effort, which furthered the study of ring theory while also drawing ideas

from analysis and geometry, went toward understanding the full range of behaviors exhibited by elements

of rings of integers. This eventually blossomed into the study of general Dedekind domains, Krull domains,

and further generalizations.

From this, we see how even a single class of examples can have a lasting impact on factorization theory,

and on mathematics. However, much of the field to date has focused on studying factorization in rings which

are not only commutative but also cancellative, meaning ab = ac implies that b = c. This is not to say that

the subject has neglected non-cancellative settings altogether; monoids of modules or monoids of ideals in

commutative rings are certainly well-studied. However, these settings can involve heavy algebraic machinery

and make it difficult to interact with other areas of mathematics. On the other hand, power monoids are

highly non-cancellative while being rooted in a simple and natural combinatorial construction: the collection

of (finite) subsets of a monoid, endowed with setwise multiplication. We strive to open up the study of power

monoids to bring attention to their own robust structure and also to explore their inevitable entanglement

with combinatorics, number theory, and other areas of mathematics.

1.2 Plan and Main Results

In the remainder of this chapter, we will set some notation and conventions to be used hereafter.

Chapter 2 begins laying the foundation neessary to have a detailed discussion of factorizations. Here we

will give definitions and examples of properties which characterize the extend to which a monoid may fail to

have uniqueness of factorization (the conditions UF, HF, FF, BF). The chapter ends with a comparison of

the present framework to the existing body of literature, especially the work of D.D. Anderson et al.

Chapter 3 introduces the main object of study: the power monoid, Pfin(H). We discuss the reduction,

possible in many cases of interest, to the reduced power monoid Pfin,1(H). We determine that Pfin,1(H) is

atomic exactly when H has no nontrivial idempotent elements or elements of order 2 (Theorem 3.2.3) and

that Pfin,1(H) is BF exactly when H is torsion free (Theorem 3.2.5).

Chapter 4 returns to a discussion of factorization theory in general as we address the degeneracy of some

of the usual notions in a non-cancellative setting. In response to this problem, we formulate the notion of a

minimal factorization and minimal versions of the usual factorization properties: UmF, HmF, FmF, BmF.

We then apply our new framework to power monoids to find that Pfin,1(H) is BmF or FmF if and only if

Pfin,1(H) is atomic (Theorem 4.2.4); that Pfin,1(H) is HmF if and only if H is a group of order dividing 3
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(Theorem 4.2.5); and that Pfin,1(H) is UmF if and only if H is trivial (Corollary 4.2.6).

In Chapter 5, we begin to focus on the specific case of the reduced power monoid of N with addition,

which we refer to as Pfin,0(N). In this setting we can leverage the linear ordering on N to introduce the

partition type of a given factorization in Pfin,0(N). This is a new measure by which we may asses the degree

to which an element fails to factor uniquely. Indeed, we see that the intervals [0, n] have factorizations

of almost every possible partition type (Theorem 5.2.8). This signifies a sharp dichotomy with the other

elements of Pfin,0(N), as any non-interval X ∈ Pfin,0(N) satisfies LPfin,0(N)(X) ≤ max(X)/2 (Theorem 5.3.5).

As a corollary to the idea of partition types, we conclude the chapter with an aside which shows that

numerical semigroup algebras have zero asymptotic density; see Section 5.4 and Theorem 5.4.10 for the

details.

Chapter 6 continues along the direction of quantifying the wild factorization behavior of intervals in

Pfin,0(N). By constructing large families of atoms of Pfin,0(N) and tying their growth rates to the growth of

generalized Fibonacci numbers, we demonstrate that the number of factorizations of the interval [0, n] grows

exponentially with n. In particular, for any ε > 0, there is a constant C such that, for sufficiently large n,

|ZPfin,0(N)([0, n])| ≥ C( 4
√
2− ε)n (Theorem 6.3.4).

Chapter 7 first establishes that Pfin,0(N) and Pfin,0(Nd) have, in a sense suitable for our purposes, identical

factorization behavior for all d > 1. This affords us the opportunity to use higher-dimensional geometric

intuition to attack problems in Pfin,0(N) and leads us to develop some new methods for understanding

factorizations in Pfin,0(Nd). This line of thought allows us to recover some known results for realizations of

length sets in Pfin,0(N); namely, that {n} ∈ L(Pfin,0(N)) for all n ≥ 2 (Theorem 7.2.5 or [FT18, Proposition

4.9]) and that {2, n+ 1} ∈ L(Pfin,0(N)) for all n ≥ 2 (Theorem 7.3.3 or [FT18, Proposition 4.10]). Finally,

we push the methods developed to realize a new family of sets as sets of lengths in Pfin,0(N); we show that

[2,m+ 2] ∪ {m+ n+ 1} ∈ L(Pfin,0(N)) for all n ≥ 2 and m ≥ 1 (Theorem 7.4.2).

It should be mentioned that large sections of what follows are the result of joint work with Salvatore

Tringali, whose paper [FT18] with Yushuang Fan marks the first entry in the literature toward the general

study of power monoids. Specifically, Section 2.4 and Chapters 3 and 4 are borrowed from [AT19]. Even

further, the questions posed by Fan and Tringali – especially the conjecture that the system of sets of lengths

of Pfin,0(N) is as large as possible, made in [FT18, Section 5] – inspired the work done in Chapter 7.

1.3 Notation and Conventions

• N = {0, 1, 2, 3, . . .}, Z = {0,±1,±2, . . .}, and R denote the sets of natural numbers, integers, and real

numbers, respectively. Here we adopt the French convention that 0 ∈ N so that N is a monoid.

• In general, unless otherwise specified, lowercase letters (a, b, x, y, etc.) will usually refer to elements

of a monoid; ordinary uppercase letters to sets and subsets (A, B, X , Y , etc.); script or calligraphic

uppercase letters (A, C, F , P) to distinguished subsets or collections of subsets; math fraktur letters

(a, b, etc.) to words in a free monoid over a given generating set (see Section 2.1 for more details on
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free monoids). Specifically, i, j, k, ℓ, m, and n will usually stand for non-negative integers. H will

stand for a monoid, G for a group, and R for a ring.

• X ⊆ Y will mean that X is a subset of Y ; X ! Y will mean that X ⊆ Y but X ̸= Y ; K ≤ H will

mean that K is a submonoid of H .

• For a subset S ⊆ R and k ∈ N, we set the notation S>k := {n ∈ S : n > k} and S≥k := {n ∈ S : n ≥ k}.
• For a, b ∈ R ∪ {∞}, [a, b] = {n ∈ Z : a ≤ n ≤ b} shall denote the (integer) interval from a to b.

• For a real number x, ⌊x⌋ := max{n ∈ Z : n ≤ x} (read floor of x) is the greatest integer less than x.

Similarly, ⌈x⌉ := min{n ∈ Z : n ≥ x} (read ceiling of x) is the least integer greater than x.

• If S is a set and E is an equivalence relation on S, the equivalence class of some x ∈ S shall be denoted

by [x]E . The subscript may be removed in situations where the implied equivalence is clear.

• Fix an integer m > 1. When m is understood from context, ā ∈ Z/mZ will denote the residue class of

a modulo m. We will write a ≡ b(mod m) if ā = b̄.

• On occasion, we will wish to lift residue classes to elements of N. If x ∈ Z/mZ and m is well understood

from context, we set x̂ := min(x ∩N) ∈ [0,m− 1]. By a similar token, for a subset X ⊆ Z/mZ, we set

X̂ := {x̂ : x ∈ X}.
• In general, we will refer to the operation of a not necessarily commutative monoid (H, ·) as “multipli-

cation”. We will often write xy instead of x · y when no confusion is likely to arise.

• The identity of a multiplicative monoid (H, ·) will be called 1; the identity of an additive monoid (H,+)

will be called 0.

• For a k ∈ N and elements xi of some set for i ∈ [1, k], we will often write the family X := {xi : i ∈ [1, k]}
in “long form” as x1, . . . , xk. On the other hand, we may refer to its elements simply “the xi” or {xi}i
for brevity. If X is a subset of a monoid (H, ·), we will write the ordered product of the elements of

X as x1 · · ·xk. In particular, if k happens to be 0, this product is empty and we set the convention

x1 · · ·xk = 1 to avoid any confusion or ill-definedness.
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Chapter 2

Monoids and Factorizations

Monoids, in general, have very little structure while still having enough to make their study tractible. This

delicate balance makes the setting of monoids a desirable one for a broad and far-reaching exploration

of factorization and other multiplcatively-focused topics. This chapter will include many definitions and

elementary results which range from standard fixtures of the literature to specialized notions for the present

work.

2.1 Fundamentals of Factorization Theory

We begin by laying out the framework in which we will study factorizations.

Definition 2.1.1. Let H be a monoid.

• u ∈ H is a unit if there is v ∈ H with uv = vu = 1. The group of units in H is denoted by H×. H is

called reduced if H× = {1}.
• x, y ∈ H are associates if there are units u, v ∈ H× so that x = uyv. In this case, we write x ≃H y

(or just x ≃ y if there is no chance of confusion).

• a ∈ H \ H× is an atom if, whenever a = xy, either x ∈ H× or y ∈ H×. The set of atoms of H is

denoted by A(H).

• x ∈ H is idompotent (or an idempotent) if x2 = x.

The existing body of work on factorization theory contains several reasonable definitions of “associate”

and “atom” which are not always equivalent. Here, we have chosen one such set of definitions; this choice

has consequences on the definitions to be laid out in the remainder of this section, and on the nature of the

results one may prove. Fortunately, previous entries in the literature have taken care to compare some of

these alternative notions. Look to Section 2.4 for more a more detailed digression on different definitions of

“associate” and “atom” and how they relate to one another.

Definition 2.1.2. Let H be a monoid and let x, y ∈ H . We say x divides y in H (written x|Hy, or x|y if

the monoid is clear from context) if there are y, z ∈ H with zxw = y.

5



We will use the language of free monoids heavily throughout as a convenient way of precisely describing

information about factorizations of elements. This method of bookkeeping is borrowed from [FT18], which

is in turn based on the usage of free abelian monoids in [GHK06] and much of the subsequent literature on

factorization theory as studied from the monoid point of view.

Definition 2.1.3. Let S be a set. The free monoid on S is the set

F∗(S) := {s1 ∗ · · · ∗ sℓ : ℓ ∈ N and si ∈ S for each i ∈ [1, ℓ]}

of formal words whose letters belong to S. Its operation, denoted by ∗, is called concatenation.

Let s = s1 ∗ · · · ∗ sℓ ∈ F∗(S), where each si ∈ S. The length of s is |s| := ℓ. (The empty word εS is said

to have length zero).

The elements s1, . . . , sℓ are called the factors of s. A word t ∈ F∗(S) is said to be a subword of s if

there are 1 ≤ i1 < · · · < ik ≤ ℓ such that t = si1 ∗ · · · ∗ sik .

Definition 2.1.4. Let H be a monoid. The factorization homomorphism of H is the unique homomorphism

πH : F∗(H) → H satisfying πH(x) = x for all x ∈ H .

The factorization monoid of H is the free monoid F∗(A(H)) generated by the atoms of H . Its elements

are referred to as factorizations.

If x ∈ H is a non-unit, then the set of factorizations of x is

ZH(x) := {a ∈ F∗(A(H)) : πH(a) = x} = F∗(A(H)) ∩ π−1
H (x)

The subscript “H” may be omitted for brevity if the ambient monoid in which the factorization is being

considered is clear from context.

For a non-empty word a ∈ ZH(x), if we write a = a1 ∗ · · · ∗ ak, the atoms ai are said to be factors of x.

Definition 2.1.5. Let H be a monoid, x ∈ H be a non-unit, and a, b ∈ F∗(A(H)). We will say that a is

(H-)equivalent to b if, writing a = a1 ∗ · · · ∗ ak and b = b1 ∗ · · · ∗ bℓ,

1. k = ℓ.

2. The factors in b are permuted associates of the factors of a; that is, there is a permutation σ ∈ Sn

(where Sn is the symmetric group on [1, n]) such that bi ≃H aσ(i) for all i ∈ [1, k].

3. a and b have the same product; i.e., πH(a) = πH(b).

In this case, we will write a ≃H b (or just a ≃ b if H is clear from context).

It is not difficult to check that ≃H defined here is indeed an equivalence relation on F∗(A(H)). Note we

are using the same notation for associates (a ≃H b) and for equivalence of factorizations (a ≃H b). This is

suggestive of the close connection between the notions of associates and of factorization equivalence. Though

they are not the same relation, context should make the meaning clear when each is being used.

6



Definition 2.1.6. Let H be a monoid and x ∈ H \H×. The set of factorization classes of x is

ZH(x) := {[a]≃ : a ∈ ZH(x)} = ZH(x)/ ≃

and the set of (factorization) lengths of x is

LH(x) := {|a| : [a]≃ ∈ ZH(x)}.

Lastly, the system of (sets of) lengths of H is L(H) := {LH(x) : x ∈ H \H×}.

Definition 2.1.7. Let H be a monoid. Here we define some properties to measure the degree of uniqueness

of factorization in H .

• H has unique factorization (UF) if, for all x ∈ H\H×, |ZH(x)| = 1 (we may also sayH is factorial).

• H is half factorial (HF) if, for all x ∈ H \H×, |LH(x)| = 1.

• H has finite factorization (FF) if, for all x ∈ H \H×, |ZH(x)| < ∞.

• H has bounded factorization (BF) if, for all x ∈ H \H×, |LH(x)| < ∞.

• H is atomic if, for all x ∈ H \H×, ZH(x) ̸= ∅.

Proposition 2.1.8. We have the following logical implications among the properties defined just above:

HF

UF BF atomic

FF

2.2 Examples and Non-Examples

Here we will take a moment to examine the reversibility – or lack thereof – in the logical implications between

the properties outlined in Proposition 2.1.8. We also remark on some well-studied classes of monoids which

demonstrate some of those properties.

Example 2.2.1. (Z \ {0}, ·) is a unique factorization monoid (this is the Fundamental Theorem of Arith-

metic).

Example 2.2.2. Let P ⊆ N be the set of primes, and let M = ⟨P× P⟩ be the monoid generated by pairs of

primes under coordinatewise multiplication. Then, for any pair (m,n) ∈ M , it is clear that any factorization

of (m,n) has length equal to the number of primes (counted with multiplicity) dividing m or n. However,

this is not a UF monoid; we have, for instance, that (2, 2)(3, 3)(2, 3) = (12, 18) = (2, 3)(2, 3)(3, 2).
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Example 2.2.3. Most examples we will encounter from here onward will be FF, so it is perhaps more

useful to see a non-example of an FF monoid. Let R = R+ xC[x] be the ring of polynomials with complex

coefficients and real constant term. Then, for all nonzero r ∈ R, we have

x2 = ((r + i)x)

(
1

r + i
x

)

.

Since r + i /∈ R for r ̸= 0, (r + i)x is a non-unit of R, so we have found infinitely many factorizations of x2.

However, any element of R \ {0} has only finitely many factorization lengths by a degree argument. Thus

the monoid R \ Z is BF but not FF.

Some of the richest factorization behavior is encountered in BF monoids. Since much of the discussion

to come will center around power monoids which are BF, we will merely mention some other well-known

classes of BF monoids.

Example 2.2.4. A numerical monoid or numerical semigroup is a submonoidH ! N with finite complement.

These exhibit a wide range of factorization behaviors and have been well studied in, among other works,

[OP17, OP18, BOP17, GS18, CGH+18]. We will encounter these in Section 5.4.

Example 2.2.5. Let G be a finite abelian group and let B(G) be the submonoid of the free monoid on

G consisting of zequences whose sum is equal to 0 in G, called the block monoid of G or the monoid of

zero-sum sequences over G. The interest in these monoids can be traced back to the study of the class

group of a Dedekind domain (usually a ring of integers of a number field). They have been studied in some

form or another since the late 1960s. The broad problems centered around zero-sum sequences are well-

formulated in [GG06] and [GHK06]. More recent works with varying perspectives on the subject include

[GLPW18, SC17, GS19, GS20].

Example 2.2.6. Let D be a domain with field of fractions K; then Int(D) := {f(x) ∈ K[x] : f(D) ⊆ D} is

the ring of integer-valued polynomials of D which, of course, is well-discussed in [CC97]. In addition to the

rich theory developed – in, for instance, [Lop97a],[Lop97b], or [CLS02] – around understanding the prime

ideal structure of this ring, it is amenable to the study of factorization behavior, and exhibits some surprising

behaviors. For example, any finite subset of N≥2 can be realized as the set of factorization lengths of some

polynomial f(x) ∈ Int(D) whenever D is a Dedekind domain with infinitely many maximal ideals of finite

index [FNR19, Fri13].

Example 2.2.7. Since we will usually be looking at atomic monoids, we offer a non-example here; consider

the set Q = Q≥0 of non-negative rational numbers under addition. Q is reduced (its only unit is the identity,

0) and we have, for any non-zero element x ∈ Q, that x = x
2 + x

2 . This is a decomposition of x into two

non-zero (hence non-unit) elements, so x is not an atom. Thus we learn that Q not only fails to have

factorizations into atoms, but also to have atoms at all.
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2.3 Monoid and Equimorphism Basics

Here we will define and examine some properties that pertain to monoids in general, as well as some notions

which will help us understand the relationships between certain monoids.

Definition 2.3.1. Let H be a monoid. For any x ∈ H , let ⟨x⟩H := {xk : k ∈ N>0} denote the subsemigroup

generated by x in H . Then we define the order of x in H to be ordH(x) := |⟨x⟩H | (we may drop the subscript

H when the monoid is clear from context).

H is said to be

• torsion if, for all x ∈ H , ordH(x) < ∞;

• non-torsion if there exists x ∈ H with ordH(x) = ∞;

• torsion-free if, for all x ∈ H , ordH(x) = ∞.

Note that, in the case when H is a group, ⟨x⟩H is the cyclic subgroup generated by x in H , and ordH(x)

therefore corresponds to the familiar sense of “order” from group theory.

Definition 2.3.2. Let H be a monoid and let x, y, z ∈ H . H is

• reduced if H× = {1} is trivial;

• cancellative if xz = yz or zx = zy implies that x = y;

• unit cancellative if xy = x or yx = x implies that y ∈ H×;

• Dedekind-finite if xy = 1 implies that yx = 1 (i.e., one-sided inverses are actually two-sided).

The condition of Dedekind-finiteness will play a very important role in the remainder of this chapter.

This is a very mild condition which one may almost expect of a “typical” monoid (we have cancellative ⇒
unit-cancellative ⇒ Dedekind-finite). Example 3.1.4 includes a monoid which is not Dedekind-finite.

Proposition 2.3.3. Let H be a monoid. The following hold:

(i) If u, v ∈ H× then uv ∈ H×, and the converse holds whenever H is Dedekind-finite.

(ii) If A(H) is non-empty or H is commutative or unit-cancellative, then H is Dedekind-finite.

(iii) If a ∈ A(H) and u, v ∈ H×, then uav ∈ A(H).

(iv) If x ∈ H \H× and u, v ∈ H×, then LH(uxv) = LH(x).

Proof. See [FT18, parts (i), (ii), and (iv) of Lemma 2.2, and Proposition 2.30].

Definition 2.3.4. Let H be a monoid with a submonoid M . M is divisor closed in H if, whenever y ∈ M

and x|Hy, we have x ∈ M .

Divisor closedness can help us gain a partial understanding of a monoid’s factorization behavior by way

of examining submonoids. This strategy is made more precise by the following result, which is borrowed

from [FT18, Proposition 2.21].
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Proposition 2.3.5. Let H be monoid with a divisor-closed submonoid M . Then

(i) M× = H×;

(ii) A(M) = A(H) ∩M ;

(iii) For all x ∈ M \M×, ZM (x) = ZH(x);

(iv) For all x ∈ M \M×, LM (x) = LH(x);

(v) L(M) ⊆ L(H).

Proof. See the proof of [FT18, Proposition 2.21].

Now we will borrow from [Tri19, Definition 3.2] notion of an equimorphism, which formally packages the

idea that, under suitable conditions, arithmetic may be transferred from one monoid to another.

Definition 2.3.6. Let H and K be monoids, and ϕ : H → K a monoid homomorphism. We denote by

ϕ∗ : F∗(H) → F∗(K) the (unique) monoid homomorphism such that ϕ∗(x) = ϕ(x) for every x ∈ H , and we

call ϕ an equimorphism if the following hold:

(E1) ϕ−1(K×) ⊆ H×;

(E2) ϕ is atom-preserving, meaning that ϕ(A(H)) ⊆ A(K);

(E3) If x ∈ H and b ∈ ZK(ϕ(x)) is a non-empty A(K)-word, then ϕ∗(a) ∈ [b]≃K
for some a ∈ ZH(x).

Moreover, we say that ϕ is essentially surjective if K = K×ϕ(H)K×.

Proposition 2.3.7. Let H and K be monoids and ϕ : H → K an equimorphism. The following hold:

(i) LH(x) = LK(ϕ(x)) for all x ∈ H \H×.

(ii) If ϕ is essentially surjective, then for all y ∈ K \K× there is x ∈ H \H× with LK(y) = LH(x).

Proof. See [FT18, Theorem 2.22(i)] and [Tri19, Theorem 3.3(i)].

2.4 Literature and Comparing Alternate Definitions

Our approach to factorization in possibly non-cancellative or non-commutative monoids is borrowed from

[FT18], where one can read thoroughly about differences and similarities with the classical approach to factor-

ization in commutative and cancellative monoids (and hence in integral domains) pursued by A. Geroldinger

and F. Halter-Koch in [GHK06], and with the much more recent approach to factorization in cancellative

but possibly non-commutative monoids set forth by N.R. Baeth and D. Smertnig in [BS15]; in particular,

see [FT18, Remarks 2.6 and 2.7].

This said, there are many previous entries in the literature that have treated (mainly algebraic) aspects

of factorization theory in commutative (unital) rings with non-trivial zero divisors. Most notably, D.D.

Anderson and collaborators have extensively studied factorizations in commutative rings corresponding to

notions of “associate” and “irreducible” other than the ones adopted in the present paper, see e.g. [AAM85,
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AM85, AVL96, AVL97, AAVL01, AC11, CAVL11]. Below we review these alternative definitions and contrast

them with our approach.

To start with, let R be a commutative ring and denote by R× the group of units of the multiplicative

monoid of R. Given x, y ∈ R, we say in the parlance of [AVL96, Definition 2.1] that

• x is associate to y (in R), written x ∼R y, if xR = yR;

• x is strongly associate to y, written x ≈R y, if x ∈ yR× (by Proposition 2.3.3(i), this is equivalent to

x being associate (as per Definition 2.1.1) to y in the multiplicative monoid of R);

• x is very strongly associate to y, written x ∼=R y, if x ∼R y and one of the following holds:

(i) x = y = 0R (where 0R is the zero of R);

(ii) x ̸= 0R and if x = yz for some z ∈ R then z ∈ R×.

Accordingly, one has three notions of “irreducible”, see [AVL96, Definition 2.4]. To wit, an element a ∈ R is

• irreducible if a /∈ R× and a = xy for some x, y ∈ R implies that a ∼R x or a ∼R y;

• strongly irreducible if a /∈ R× and a = xy for some x, y ∈ R implies that a ≈R x or a ≈R y;

• very strongly irreducible if a /∈ R× and a = xy for some x, y ∈ R implies that a ∼=R x or a ∼=R y.

It is obvious that very strongly irreducible elements of R are strongly irreducible, and strongly irreducible

elements are irreducible. In general, none of these implications can be reversed, see the paragraph after the

proof of Theorem 2.12 in [AVL96]. However, we get by [AVL96, Theorem 2.2(3)] that the three notions

coincide when R is présimplifiable in the sense of [Bou74a], meaning that if xy = x for some x, y ∈ R then

x = 0R or y ∈ R× (e.g., this is the case when R is an integral domain). Moreover, [AVL96, Theorem 2.5]

yields that a non-zero element of R is strongly irreducible if and only if it is an atom of the multiplicative

monoid of R.

Putting it all together, we thus see that the ring R is very strongly atomic in the sense of [AVL96,

Definition 3.1] if and only if one of the following holds:

(A1) R has non-trivial zero divisors and the multiplicative monoid of R is atomic (as per Section 2.1);

(A2) R is an integral domain and R \ {0R} is an atomic monoid under multiplication.

Similarly, R is a bounded factorization ring in the sense of [AVL96, Definition 3.8], a half-factorial ring in

the sense of [AFRS03, p. 87], a finite factorization ring in the sense of [AVL96, Definition 6.5], or a unique

factorization ring in the sense of [AVL96, Definition 4.3] if and only if one of conditions (A1) and (A2) in the

above is satisfied with “atomic” replaced, respectively, by “BF”, “HF”, “FF”, or “factorial”.

As long as the scope is restricted to commutative rings, it is therefore possible to compare our approach

to factorization with others based on irreducibles, strong irreducibles, or even alternative “elementary fac-

tors” (including the ones considered by C.R. Fletcher [Fle69], A. Bouvier [Bou74a, Bou74b], and S. Galovich

[Gal78]) by referring to [AVL96, CAVL11], where these comparisons are worked out in great detail. (Inciden-

tally, it appears that Galovich is tacitly assuming “irreducibles” in the sense of [Gal78] to be non-units.) See
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also [BBM17, Theorem 3.4 and Corollary 3.5] for a couple of results of a more arithmetic flavor concerning

lengths of factorizations into irreducibles in commutative rings of the form D/xD, where D is a principal

ideal domain and x is a non-zero, non-unit element of D.
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Chapter 3

Power Monoids and Atomicity

Here we embark on the study of the (arithmetic and algebraic) structure of power monoids. These objects

were first introduced and studied by Y. Fan and S. Tringali in [FT18]. They encode a very natural combi-

natorial construction: the collection of finite subsets of a monoid. Historically, combinatorial thinkers have

been concerned primarily with subsets of abelian groups, or even just cycic groups. Throughout the remain-

der of this work, we will see that the prior concentration of the literature on the case of abelian groups has

been well-founded: this is a very tractible and robust area of research, with many questions which are yet

unanswered. However, we will also see that the phenomena which occur in subsets of more general monoids

present vast challenges of their own, and are certainly deserving of attention.

3.1 Subset Arithmetic

Definition 3.1.1. Let (H, ·) be a monoid. We define an operation (called setwise ·) by, for any subsets

X,Y ⊆ H ,

X · Y := {x · y : x ∈ X and y ∈ Y }

(as before, we will usually drop the “·” and simply write XY for X · Y ). With this operation, the following

collections of subsets of H become monoids:

• The power monoid of H is Pfin(H) := {X ⊆ H : X ̸= ∅ and |X | < ∞};
• The restricted power monoid of H is Pfin,×(H) := {X ⊆ H : X ∩H× ̸= ∅ and |X | < ∞};
• The reduced power monoid of H is Pfin,1(H) := {X ⊆ H : 1H ∈ X and |X | < ∞}.

We may refer to H as the ground monoid of any of these power monoids.

We proceed first with some elementary but helpful observations we will often use without comment.

Proposition 3.1.2. Let H be a monoid. The following hold:

(i) If X1, . . . , Xn ∈ Pfin,1(H), then X1 ∪ · · · ∪Xn ⊆ X1 · · ·Xn.

(ii) If u, v ∈ H× and X1, . . . , Xn ∈ Pfin,×(H), then |uX1 · · ·Xnv| = |X1 · · ·Xn| ≥ max1≤i≤n |Xi|.
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(iii) If K is a submonoid of H , then Pfin,1(K) is a divisor-closed submonoid of Pfin,1(H). (Note that the

conclusion is valid regardless of whether K itself is divisor-closed.)

(iv) Pfin,1(H) is a reduced monoid and Pfin(H)× = Pfin,×(H)× =
{

{u} : u ∈ H×}.

(v) A(Pfin,×(H)) ⊆ H×A(Pfin,1(H))H×.

Proof. (i) is trivial, upon considering that (X · 1H) ∪ (1H · Y ) ⊆ XY for all X,Y ∈ Pfin,1(H); (ii) is a direct

consequence of (i) and the fact that the function X → H : x :→ uxv is injective for all u, v ∈ H× and X ⊆ H ;

and (iii) and (iv) are immediate from (i) and (ii).

As for (v), let A ∈ A(Pfin,×(H)). Because A contains a unit of H , there is u ∈ H× such that 1H ∈ uA.

Then uA is an element of Pfin,1(H), and by Proposition 2.3.3(iii) it is also an atom of Pfin,×(H). Thus, if

X,Y ∈ Pfin,1(H) ⊆ Pfin,×(H) and uA = XY , then X or Y is the identity of Pfin,1(H). This means that uA

is an atom of Pfin,1(H), and hence A = u−1(uA) ∈ H×A(Pfin,1(H)), as wished.

Our ultimate goal is, for an arbitrary monoid H , to investigate factorizations in Pfin(H). However, this

is a difficult task in general, due to a variety of “pathological situations” that might be hard to classify in a

satisfactory way, see e.g. [FT18, Remark 3.3(ii)].

In practice, it is more convenient to start with Pfin,1(H) and then lift arithmetic results from Pfin,1(H)

to Pfin,×(H), a point of view which is corroborated by the simple consideration that Pfin(H) = Pfin,×(H)

whenever H is a group (i.e., in the case of greatest interest in Arithmetic Combinatorics).

In turn, we will see that studying the arithmetic of Pfin,×(H) is tantamount to studying that of Pfin,1(H),

in a sense to be made precise presently.

Proposition 3.1.3. Let H be a Dedekind-finite monoid. The following hold:

(i) The natural embedding ȷ : Pfin,1(H) ↪→ Pfin,×(H) is an essentially surjective equimorphism.

(ii) A(Pfin,×(H)) = H×A(Pfin,1(H))H×.

(iii) LPfin,1(H)(X) = LPfin,×(H)(X) for every X ∈ Pfin,1(H).

(iv) L(Pfin,×(H)) = L(Pfin,1(H)).

Proof. In view of Proposition 2.3.7, parts (iii) and (iv) are immediate from (i). Moreover, the inclusion from

left to right in (ii) is precisely the content of Proposition 3.1.2(v), and the other inclusion will follow from

(i) and Propositions 2.3.3(iii) and 3.1.2(iv). Therefore, we focus on (i) for the remainder of the proof.

(i) By Proposition 3.1.2(iv), ȷ satisfies (E1). Moreover, ȷ is essentially surjective, as any X ∈ Pfin,×(H)

contains a unit u ∈ H×, so u−1X ∈ Pfin,1(H) and X = u(u−1X) is associate to an element of Pfin,1(H).

To prove (E2), let A ∈ A(Pfin,1(H)). We aim to show that A is an atom of Pfin,×(H). Suppose that

A = XY for some X,Y ∈ Pfin,×(H). Then there are x ∈ X and y ∈ Y with xy = 1H ; and using that H is

Dedekind-finite, we get from Proposition 2.3.3(i) that x, y ∈ H×. It follows that

A = XY = (Xx−1)(xY ) and Xx−1, xY ∈ Pfin,1(H).
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But then Xx−1 = {1H} or xY = {1H}, since Pfin,1(H) is a reduced monoid and A is an atom of Pfin,1(H).

So, X or Y is a 1-element subset of H×, and hence A ∈ A(Pfin,×(H)).

It remains to show that ȷ satisfies (E3). Pick X ∈ Pfin,1(H). If X = {1H}, the conclusion holds

vacuously. Otherwise, let b := B1 ∗ · · · ∗Bn ∈ ZPfin,1(H)(X). Then there are u1 ∈ B1, . . . , un ∈ Bn such that

1H = u1 · · ·un; and as in the proof of (E2), it must be that u1, . . . , un ∈ H×. Accordingly, we take, for every

i ∈ [1, n], Ai := u0 · · ·ui−1Biu
−1
i · · ·u−1

1 , where u0 := 1H . Then

A1 · · ·An = X and 1H ∈ A1 ∩ · · · ∩ An;

and by Propositions 2.3.3(iii) and 3.1.2(v), A1, . . . , An are atoms of Pfin,1(H). This shows that a := A1 ∗
· · · ∗An ∈ ZPfin,1(H)(X). Since Ai ≃Pfin,×(H) Bi for each i ∈ [1, n] (by construction), we thus conclude that

a is Pfin,×(H)-equivalent to b, as wished.

The next example proves that Dedekind-finiteness is, to some extent, necessary for Proposition 3.1.3(ii),

and hence for the subsequent conclusions.

Example 3.1.4. Let B be the set of all binary sequences s : N≥1 → {0, 1}, and let H denote the monoid of

all functions B → B under composition. We will write H multiplicatively; so, if f, g ∈ H then fg is the map

B → B : s :→ f(g(s)). Further, let n ≥ 5 and consider the functions

L : B → B : (a1, a2, . . . ) :→ (a2, a3, . . . ) (left shift);

R : B → B : (a1, a2, . . . ) :→ (0, a1, a2, . . . ) (right shift);

P : B → B : (a1, a2, . . . ) :→ (an, a1, . . . , an−1, an+1, an+2, . . .) (cycle the first n terms).

In particular, P ∈ H×. Also, LR = idB but RL ̸= idB; whence H is not Dedekind-finite, and neither R nor

L is invertible. With this in mind, we will prove that A := {L, P} · {R,P} = {idB, LP, PR, P 2} is an atom

of Pfin,1(H), although it is not, by construction, an atom of Pfin,×(H).

Indeed, assume A = XY for some X,Y ∈ Pfin,1(H). Then X,Y ⊆ A, and it is clear that P 2 ̸= PRLP ,

or else RL = idB (a contradiction). Similarly, PRPR ̸= P 2 ̸= LPLP ; otherwise, P = RPR and hence R

is invertible, or P = LPL and L is invertible (again a contradiction). Lastly, we see that P 2 ̸= LP 2R, by

applying both P 2 and LP 2R to the constant sequence (1, 1, . . .).

It follows that P 2 must belong to X or Y , but not to both (which is the reason for choosing n ≥ 5).

Accordingly, let P 2 ∈ X \ Y (the other case is analogous). Then Y = {idB}, since one can easily check

that P 2LP, P 3R /∈ A, by noting that the action of P 2LP and P 3R differ from that of A on the sequences

(1, 1, . . .) and (1, 0, 1, 1, . . .). This makes A an atom of Pfin,1(H).
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3.2 Atomicity and Bounded Factorization in Power Monoids

We get from Proposition 3.1.3 that studying factorization properties of Pfin,1(H) is sufficient for studying

corresponding properties of Pfin,×(H), at least in the case when H is Dedekind-finite. Thus, as a starting

point in the investigation of the arithmetic of Pfin,1(H), one might wish to give a comprehensive description

of the atoms of Pfin,1(H). This is however an overwhelming task even in specific cases (e.g., when H is the

additive group of the integers), let alone the general case. Nevertheless, we can obtain basic information

about A(Pfin,1(H)) in full generality.

Lemma 3.2.1. Let H be a monoid and x ∈ H \ {1H}. The following hold:

(i) The set {1H , x} is an atom of Pfin,1(H) if and only if 1H ̸= x2 ̸= x.

(ii) If x2 = 1H or x2 = x, then {1H , x} factors into a product of atoms neither in Pfin,1(H) nor in Pfin,×(H).

Proof. (i) If x2 = 1H or x2 = x, then it is clear that {1H , x} = {1H , x}2, and therefore {1H , x} is not an atom

of Pfin,1(H). As for the converse, assume that {1H , x} = Y Z for some non-units Y, Z ∈ Pfin,1(H). Then

we get from Proposition 3.1.2 that Y and Z are 2-element sets, namely, Y = {1H , y} and Z = {1H , z} with

y, z ∈ H \ {1H}. Hence {1H , x} = Y Z = {1H , y, z, yz}, and immediately this implies x = y = z. Therefore,

{1H , x} = {1H , x, x2}, which is only possible if x2 = 1H or x2 = x.

(ii) Suppose that x2 = 1H or x2 = x. Then the calculation above shows that {1H , x} = {1H , x}2 and

there is no other decomposition of {1H , x} into a product of non-unit elements of Pfin,1(H). So, {1H , x} is

a non-trivial idempotent (hence, a non-unit) and has no factorization into atoms of Pfin,1(H).

It remains to prove the analogous statement for Pfin,×(H). Assume to the contrary that {1H , x} factors

into a product of n atoms of Pfin,×(H) for some n ∈ N>0. Then n ≥ 2, since {1H , x} is a non-trivial

idempotent (and hence not an atom itself). Consequently, we can write {1H , x} = Y Z, where Y is an atom

and Z a non-unit of Pfin,×(H). In particular, we get from parts (i), (ii), and (iv) of Proposition 3.1.2 that

both Y and Z are 2-element sets, say, Y = {u, y} and Z = {v, z}. It is then immediate that there are only

two possibilities: 1H is the product of two units from Y and Z, or the product of two non-units from Y and

Z. Without loss of generality, we are thus reduced to considering the following cases.

Case 1: uv = 1H . Then uz ̸= 1H (or else z = u−1 = v, contradicting the fact that Z is a 2-element set).

So uz = x, and similarly yv = x. Then y = xu = uzu and z = xv = vyv, and therefore

{u, y} = {u, uzu} = {1H , uz} · {u} = {1H , x} · {u} = {u, y} · {vu, zu}

However, this shows that {u, y} is not an atom of Pfin,×(H), in contrast with our assumptions.

Case 2: yz = 1H and y, z ∈ H \H×. Then u, v ∈ H×, by the fact that {u, y}, {v, z} ∈ Pfin,×(H); and

we must have uz = x, for uz = 1H would yield z = u−1 ∈ H×. In particular, x = uz is not a unit in H , so

uv = 1H and we are back to the previous case.
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We have just seen that, to even hope for Pfin,1(H) to be atomic, we must have that the “bottom layer”

of 2-element subsets of H consists only of atoms, and it will turn out that such a condition is also sufficient.

Before proving this, it seems appropriate to point out some structural implications of the fact that every

non-identity element of H is neither an idempotent nor a square root of 1H .

Lemma 3.2.2. Let H be a monoid such that 1H ̸= x2 ̸= x for all x ∈ H \ {1H}. The following hold:

(i) H is Dedekind-finite.

(ii) If x ∈ H and ⟨x⟩H is finite, then x ∈ H× and ⟨x⟩H is a cyclic group of order ≥ 3.

Proof. (i) Let y, z ∈ H such that yz = 1H . Then (zy)2 = z(yz)y = zy, and since H has no non-trivial

idempotents, we conclude that zy = 1H . Consequently, H is Dedekind-finite.

(ii) This is an obvious consequence of [Whi88, Ch. V, Exercise 4, p. 68], according to which every finite

semigroup has an idempotent. The proof is short, so we give it here for the sake of self-containedness.

Because ⟨x⟩H is finite, there exist n, k ∈ N>0 such that xn = xn+k, and by induction this implies that

xn = xn+hk for all h ∈ N. Therefore, we find that

(xnk)2 = x2nk = x(k+1)nx(k−1)n = xnx(k−1)n = xnk.

But H has no non-trivial idempotents, thus it must be the case that xnk = 1H . That is, x is a unit of H ,

and we have x−1 = xnk−1 ∈ ⟨x⟩H . So, ⟨x⟩H is a (finite) cyclic group of order ≥ 3.

Theorem 3.2.3. Let H be a monoid. Then Pfin,1(H) is atomic if and only if 1H ̸= x2 ̸= x for every

x ∈ H \ {1H}.

Proof. The “only if” part is a consequence of Lemma 3.2.1(ii). As for the other direction, assume that

1H ̸= x2 ̸= x for each x ∈ H \ {1H}, and fix X ∈ Pfin,1(H) with |X | ≥ 2. We wish to show that

X = A1 · · ·An, for some A1, . . . , An ∈ A(Pfin,1(H)).

If X is a 2-element set, the claim is true by Lemma 3.2.1(i). So let |X | ≥ 3, and suppose inductively that

every Y ∈ Pfin,1(H) with 2 ≤ |Y | < |X | is a product of atoms. If X is an atom, we are done. Otherwise,

X = AB for some non-units A,B ∈ Pfin,1(H), and by symmetry we can assume |X | ≥ |A| ≥ |B| ≥ 2.

If |A| < |X |, then both A and B factor into a product of atoms (by the inductive hypothesis), and so too

does X = AB. Consequently, we are only left to consider the case when |X | = |A|.

For, we notice that A ∪ B ⊆ AB = X (because 1H ∈ A ∩ B), and this is only possible if A = X (since

|A| = |X | and A ⊆ X). So, to summarize, we have that

|X | ≥ 3, |B| ≥ 2, and B ⊆ AB = X = A. (3.1)
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In particular, since B is not a unit of Pfin,1(H), we can choose an element b ∈ B \ {1H} ⊆ A. Hence, taking

Ab := A \ {b}, we have |Ab| < |A|, and it is easy to check that AbB = A = X (in fact, 1H is in Ab ∩B, and

therefore we derive from (3.1) that AbB ⊆ A = Ab ∪ {b} ⊆ AbB ∪ {b} ⊆ AbB ∪B = AbB).

If |B| < |A|, then we are done, becauseAb and B are both products of atoms (by the inductive hypothesis),

and thus so is X = AB = AbB. Otherwise, it follows from (3.1) and the above that

X = A = B = AbB and |A| ≥ 3, (3.2)

so we can choose an element a ∈ A \ {1H , b}. Accordingly, set Ba := B \ {a}. Then |Ba| < |B| (because
A = B and a ∈ A), and both Ab and Ba decompose into a product of atoms (again by induction). But this

finishes the proof, since it is straightforward from (3.2) that X = A = AbBa (indeed, 1H ∈ Ab ∩ Ba and

b ∈ Ba, so we find that AbBb ⊆ A = Ab ∪ {b} ⊆ AbBa ∪ {b} ⊆ AbBa ∪Ba = AbBa).

Now with Proposition 2.3.7 and Theorem 3.2.3 in hand, we can engage in a finer study of the arithmetic

of Power monoids; in particular, we may wish to study their (systems of) sets of lengths. However, we are

immediately met with a “problem” (i.e., some sets of lengths are infinite in a rather trivial way):

Example 3.2.4. Let H be a monoid with an element x of finite odd orderm ≥ 3, and set X := {xk : k ∈ N}.
Then it is clear that X is the setwise product of n copies of {1H , x} for every n ≥ m. This shows that the

set of lengths of X relative to Pfin,1(H) contains [m,∞] (and hence is infinite), since we know from Lemma

3.2.1 that {1H , x} is an atom of Pfin,1(H).

The nature of this problem is better clarified by our next result, and we will more thoroughly address it

in Section 4.1.

Theorem 3.2.5. Let H be a monoid. The following hold:

(i) If H is torsion-free and X ∈ Pfin,1(H), then supLPfin,1(H)(X) ≤ |X |2 − |X |.
(ii) Pfin,1(H) is BF if and only if H is torsion-free.

(iii) Pfin,×(H) is BF if and only if so is Pfin,1(H).

Proof. (i) Set n := |X | ∈ N>0, fix an integer ℓ ≥ (n − 1)n + 1, and suppose for a contradiction that

X = A1 · · ·Aℓ for some A1, . . . , Aℓ ∈ A(Pfin,1(H)). By the Pigeonhole Principle, there are an element x ∈ X

and a subset I ⊆ [1, ℓ] such that m := |I| ≥ n and x ∈ Ai for each i ∈ I. So, writing I = {i1, . . . , im}, we
find that xk ∈ Ai1 · · ·Aik ⊆ A1 · · ·Aℓ = X for every k ∈ [1,m], i.e., {1H , x, . . . , xm} ⊆ X . However, since H

is torsion-free, each power of x is distinct, and hence n = |X | ≥ m+ 1 > n (a contradiction).

(ii) First suppose for a contradiction that Pfin,1(H) is BF and has an element x of finite order m. Then

Pfin,1(H) is also atomic, and we know by Theorem 3.2.3 and Lemma 3.2.2(ii) that xm = 1H . If m is even,

then (xm/2)2 = 1H , contradicting the atomicity of Pfin,1(H) since, by Theorem 3.2.3, no non-identity element

of H can have order 2. If m is odd, then Example 3.2.4 shows that the set of lengths of {xk : k ∈ N} is

infinite, contradicting the assumption that Pfin,1(H) is BF.
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Conversely, assume H is torsion-free. Then all powers of non-identity elements are distinct, so Theorem

3.2.3 implies that Pfin,1(H) is atomic, and (i) gives an explicit upper bound on the lengths of factorizations.

(iii) The “only if” part follows from [FT18, Theorem 2.28(iv) and Corollary 2.29], so suppose that

Pfin,1(H) is BF. Then Pfin,1(H) is atomic, and hence, by Theorem 3.2.3, 1H ̸= x2 ̸= x for all x ∈ H \ {1H}.
By Lemma 3.2.2(i), this implies thatH is Dedekind-finite, so the natural embedding Pfin,1(H) ↪→ Pfin,×(H) is

an essentially surjective equimorphism by Proposition 3.1.3(i). The result is then an immediate consequence

of Proposition 3.1.3(iv).
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Chapter 4

Minimal Factorizations and Applications

Example 3.2.4 indicates that, in the presence of torsion in the ground monoid H , sets of lengths in Pfin,1(H)

blow up in a predictable fashion, with the result that most of the invariants classically studied in Factorization

Theory lose their significance. In the case of Example 3.2.4, this phenomenon is due to the existence of non-

trivial idempotents and has been previously addressed by many authors in the literature on commutative

rings and monoids (see Remarks 4.1.4 and 4.1.5). Here we strive for a “natural approach” that applies

to arbitrary monoids, spurring us to consider a refinement of the notions introduced in Section 2.1 and to

investigate some of their fundamental properties (see, in particular, Definition 4.1.3 and Proposition 4.1.8),

before focusing on the special case of power monoids.

4.1 Fundamentals of Minimal Factorizations

We start with the definition of a binary relation (in fact, a preorder) on the A(H)-words of a monoid H that

we shall use to “filter out the redundant factors” that may contribute to the factorizations of an element of

H (recall that, given a set X , we denote by F∗(X) the free monoid with basis X and by εX the identity of

F∗(X)).

Definition 4.1.1. Let H be a monoid. We denote by ≼H the binary relation on F∗(A(H)) determined

by taking a ≼H b, for some A(H)-words a and b of length h and k respectively, if and only if one of the

following conditions holds:

• a = εA(H) and b is arbitrary;

• a and b are non-empty words, say a = a1 ∗ · · · ∗ ah and b = b1 ∗ · · · ∗ bk, and there is an injection

σ : [1, h] → [1, k] such that bi ≃H aσ(i) for every i ∈ [1, h].

We shall write a ≺H b if a ≼H b but b ̸≼H a, and say that a word a ∈ F∗(A(H)) is ≼H-minimal (or simply

minimal) if there does not exist any

A(H)-word b such that b ≺H a.

The next result highlights a few basic properties of the relation introduced in Definition 4.1.1.
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Proposition 4.1.2. Let H be a monoid, and let a, b ∈ F∗(A(H)). The following hold:

(i) ≼H is a preorder (i.e., a reflexive and transitive binary relation) on F∗(A(H)).

(ii) If a ≼H b then |a| ≤ |b|.
(iii) a ≼H b and b ≼H a if and only if a ≼H b and |a| = |b|, if and only if a ≃H b.

Proof. Points (i) and (ii) are straightforward from our definitions.

As for (iii), set h := |a| and k := |b|. By part (ii), a ≼H b and b ≼H a only if a ≼H b and h = k; and it

is immediate to check that a ≃H b implies a ≼H b and b ≼H a. So, to finish the proof, assume that a ≼H b

and h = k. We only need to show that a ≃H b. For, we have (by definition) that a ≼H b if and only if

πH(a) = πH(b) and there is an injection σ : [1, h] → [1, k] such that ai ≃H bσ(i) for every i ∈ [1, h]. But σ is

actually a bijection (because h = k), and we can thus conclude that a ≃H b.

Definition 4.1.3. Let H be a monoid and x ∈ H . An H-word a is a ≼H-minimal factorization of x, or

simply a minimal factorization of x (in H), if a ∈ ZH(x) and a is ≼H -minimal. Accordingly,

Zm

H(x) := {a ∈ ZH(x) : a is ≼H -minimal} and Zm

H(x) := Zm

H(x)/ ≃H

shall denote, respectively, the set of ≼H-minimal factorizations and the set of ≼H-minimal factor-

ization classes of x (cf. the definitions from Section 2.1). In addition, we take

LmH(x) := {|a| : a ∈ Zm

H(x)} ⊆ N

to be the set of ≼H-minimal factorization lengths of x, and

Lm(H) := {LmH(x) : x ∈ H} ⊆ P(N)

to be the system of sets of ≼H-minimal lengths of H . Lastly, we say that the monoid H is

• BmF or bounded-minimally-factorial (respectively, FmF or finite-minimally-factorial) if LmH(x)

(respectively, Zm

H(x)) is finite and non-empty for every x ∈ H \H×;

• HmF or half-minimally-factorial (respectively, UmF or minimally factorial) if LmH(x) (respec-

tively, Zm

H(x)) is a singleton for all x ∈ H \H×.

Note that we may write Zm(x) for Zm

H(x), Lm(x) for LmH(x), etc. if there is no likelihood of confusion.

Remark 4.1.4. To the best of our knowledge, analogues of the notions introduced in Definition 4.1.3 have

only been considered so far in a commutative setting, with one significant example being offered by the work

of S. Chun, D.D. Anderson, and S. Valdes-Leon [CAVL11] on “reduced factorizations”.

In detail, let H be the multiplicative monoid of a (unital) ring R and fix a set A ⊆ R. We say that a

non-empty A-word a1 ∗ · · · ∗ an of length n is a minimal A-factorization of an element x ∈ R if πH(a) = x
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but x ̸= πH(b) for every non-empty A-word b = b1 ∗ · · · ∗ bm of length m ≤ n− 1 for which there exists an

injection σ : [1,m] → [1, n] such that bi ≃H aσ(i) for each i ∈ [1,m].

A minimal A(H)-factorization of a non-unit x ∈ R is the same as a ≼H -minimal factorization of x (as per

Definition 4.1.3). Moreover, it follows from Section 2.4 and Proposition 2.3.3(iv) that, if R is a commutative

ring and x is not the zero of R, then a minimal A(H)-factorization of x is, in the parlance of [CAVL11,

Definition 2.1 and Section 3], essentially the same as a strongly µ-reduced µ-factorization of x into very

strongly irreducible elements of R. Insofar as the discussion is restricted to commutative rings, one can thus

refer to [CAVL11] and [AFRS03] for a comparison of our approach to the study of “minimal factorizations”

with others in the literature, including the one by C.R. Fletcher [Fle69] and generalizations thereof where

the set A in the above consists of various types of “irreducible elements” of R (cf. Section 2.4).

Remark 4.1.5. Another approach for managing the “excess factorizations” arising from the presence of

torsion (though still in a commutative setting), was outlined by A. Geroldinger and G. Lettl in [GL90].

In short, let H be a commutative monoid and denote by A the set of all a ∈ H \H× such that b |H a

only if b ∈ H× or aH = bH . Given u ∈ H , we define

indGL
H (u) := inf{r ∈ N : uiH = ujH for all i, j ≥ r}.

Accordingly, we take a GL-factorization of a non-unit x ∈ H to be a non-empty A-word a = a1 ∗ · · · ∗ an

such that πH(a) = x and vHa (a) ≤ indGL
H (a) for every a ∈ A, where

vHa (a) :=
∣
∣{i ∈ [1, n] : ai = a}

∣
∣.

AGL-factorization is fundamentally the same as the “canonical form” of a factorization in the sense of [GL90];

and since it is easily checked that A(H) ⊆ A, every ≼H-minimal factorization is also a GL-factorization.

Moreover, the two notions coincide on the level of commutative, unit-cancellative monoids, in which case

A = A(H) and indGL
H (u) = ∞ for every non-unit u ∈ H . However, big differences exist in general. E.g., it

follows from Lemma 3.2.1(i) and the above that {0̄, 1̄} ∗ {0̄, 2̄} ∗ {0̄, 3̄} ∗ {0̄, 4̄} is an essential factorization of

Z/5Z in the reduced power monoid of the cyclic group (Z/5Z,+); but is not a minimal factorization as per

Definition 4.1.3, because Z/5Z = {0̄, 1̄}+ {0̄, 2̄}+ {0̄, 3̄}.

It is helpful, at this juncture, to observe some fundamental features of minimal factorizations.

Proposition 4.1.6. Let H be a monoid and let x ∈ H . The following hold:

(i) Any A(H)-word of length 0, 1, or 2 is minimal.

(ii) ZH(x) ̸= ∅ if and only if Zm

H(x) ̸= ∅.
(iii) If a ∈ Zm

H(x) and a ≃H b, then b ∈ Zm

H(x).

(iv) If K is a divisor-closed submonoid of H and x ∈ K, then Zm

K(x) = Zm

H(x) and LmK(x) = LmH(x).

(v) If H is commutative and unit-cancellative, then Zm

H(x) = ZH(x), and hence LmH(x) = LH(x).
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Proof. (i), (ii), and (iii) are an immediate consequence of parts (ii)-(iii) of Proposition 4.1.2 (in particular,

note that, if a is an A(H)-word of length 1, then πH(a) is an atom of H , and therefore πH(a) ̸= πH(b) for

every A(H)-word b of length ≥ 2); and (iv) follows at once from considering that, if K is a divisor-closed

submonoid of H and x ∈ K, then ZK(x) = ZH(x) and LK(x) = LH(x), see [FT18, Proposition 2.21(ii)].

(v) Assume H is commutative and unit-cancellative. It suffices to check that no non-empty A(H)-word

has a proper subword with the same product. For, suppose to the contrary that there exist a1, . . . , an ∈ A(H)

with
∏

i∈I ai = a1 · · ·an for some I " [1, n]. SinceH is commutative, we can assume without loss of generality

that I = [1, k] for some k ∈ [0, n − 1]. Then unit-cancellativity implies ak+1 · · · an ∈ H×, and we get from

parts (i) and (ii) of Proposition 2.3.3 that ak+1, . . . , an ∈ H×, which is however impossible (by definition of

an atom).

To further elucidate the behavior of minimal factorizations, we give an analogue of Proposition 2.3.3(iv)

showing that multiplying a non-unit by units does not change its set of minimal factorizations.

Lemma 4.1.7. Let H be a monoid, and fix x ∈ H \H× and u, v ∈ H×. Then there is a length-preserving

bijection Zm

H(x) → Zm

H(uxv), and in particular LmH(x) = LmH(uxv).

Proof. Given w, z ∈ H and a non-empty word z = y1 ∗ · · · ∗ yn ∈ F∗(H) of length n, denote by wzz the

length-n word ȳ1 ∗ · · · ∗ ȳn ∈ F∗(H) defined by taking ȳ1 := wy1z if n = 1, and ȳ1 := wy1, ȳn := ynz, and

ȳi := yi for all i ∈ [2, n− 1] otherwise. We claim that the function

f : Zm

H(x) → Zm

H(uxv)

a :→ uav

is a well-defined length-preserving bijection. In fact, it is sufficient to show that f is well-defined, since this

will in turn imply that the map g : Zm

H(uxv) → Zm

H(x) : b :→ u−1bv−1 is also well-defined (observe that

uxv ∈ H \H× and x = u−1uxvv−1), and then it is easy to check that g is the inverse of f .

For the claim, let a ∈ Zm

H(x), and note that, by parts (i) and (ii) of Proposition 2.3.3, |a| is a positive

integer, so that a = a1 ∗ · · · ∗ an for some a1, . . . , an ∈ A(H). In view of Proposition 2.3.3(iii), uav is a

factorization of uxv, and we only need to verify that it is also ≼H-minimal. For, suppose to the contrary

that b ≺H uav for some b ∈ F∗(A(H)). Then πH(b) = πH(uav) = uxv and, by Proposition 4.1.2(iii),

k := |b| ∈ [1, n− 1] (recall that uxv /∈ H×). So, b = b1 ∗ · · · ∗ bk for some atoms b1, . . . , bk ∈ H , and there

exists an injection σ : [1, k] → [1, n] such that bi ≃H aσ(i) for each i ∈ [1, k]. Define c := u−1bv−1.

By construction and Proposition 2.3.3(iii), there are c1, . . . , ck ∈ A(H) such that c = c1 ∗ · · · ∗ ck; and it

follows from the above that πH(c) = u−1πH(b)v−1 = x and ci ≃H aσ(i) for every i ∈ [1, k]. Since k < n, we

can thus conclude from Proposition 4.1.2(iii) that c ≺H a, contradicting the ≼H-minimality of a.

We saw in the previous section that equimorphisms transfer factorizations between monoids (Proposi-

tion 2.3.7). Equimorphisms have a similar compatibility with minimal factorizations, in the sense that an

23



equimorphism also satisfies a “minimal version” of condition (E3) from Definition 2.3.6.

Proposition 4.1.8. Let H and K be monoids and ϕ : H → K an equimorphism. The following hold:

(i) If x ∈ H \H× and b ∈ Zm

K(ϕ(x)), then there is a ∈ Zm

H(x) with ϕ∗(a) ∈ [b]≃K
.

(ii) LmK(ϕ(x)) ⊆ LmH(x) for every x ∈ H \H×.

(iii) If ϕ is essentially surjective then, for all y ∈ K \K×, there is x ∈ H \H× with LmK(y) ⊆ LmH(x).

Proof. (i) Pick x ∈ H \ H×, and let b ∈ Zm

K(ϕ(x)). Then b ̸= εA(K), otherwise ϕ(x) = πK(b) = 1K and,

by (E1), x ∈ ϕ−1(ϕ(x)) = ϕ−1(1K) ⊆ H× (a contradiction). Consequently, (E3) yields the existence of a

factorization a ∈ ZH(x) with ϕ∗(a) ∈ [b]≃K
, and it only remains to show that a is ≼H -minimal.

Note that n := |a| = |ϕ∗(a)| = |b| ≥ 1, and write a = a1 ∗ · · · ∗ an and b = b1 ∗ · · · ∗ bn, with

a1, . . . , an ∈ A(H) and b1, . . . , bn ∈ A(K). Then suppose to the contrary that a is not ≼H-minimal, i.e.,

there exist a (necessarily non-empty) A(H)-word c = c1 ∗ · · · ∗ cm and an injection σ : [1,m] → [1, n] such

that πH(c) = πH(a) = x and ci ≃H aσ(i) for every i ∈ [1,m]. Then

πK(ϕ∗(c)) = ϕ(c1) · · ·ϕ(cm) = ϕ(x) and ϕ(c1) ≃K ϕ(aσ(1)), . . . ,ϕ(cm) ≃K ϕ(aσ(m))

(recall that monoid homomorphisms map units to units; so, if u ≃H v, then ϕ(u) ≃K ϕ(v)); and together

with Proposition 4.1.6(iii), this proves that ϕ∗(c) ≺K b, contradicting the ≼K-minimality of b.

(ii) Fix x ∈ H \H×, and suppose LmK(ϕ(x)) ̸= ∅ (otherwise there is nothing to prove). Accordingly, let

k ∈ LmK(ϕ(x)) and b ∈ Zm

K(ϕ(x)) such that k = |b|. It is sufficient to check that k ∈ LmH(x), and this is

straightforward: Indeed, we have by (i) that ϕ∗(a) is K-equivalent to b for some a ∈ Zm

H(x), which implies

in particular that k = |ϕ∗(a)| = |a| ∈ LmH(x).

(iii) Assume ϕ is essentially surjective, and let y ∈ K \ K×. Then y = uϕ(x)v for some u, v ∈ K×

and x ∈ H , and neither x is a unit of H nor ϕ(x) is a unit of K (because ϕ(H×) ⊆ K× and y /∈ K×).

Accordingly, we have by Lemma 4.1.7 and part (ii) that LmK(y) = LmK(ϕ(x)) ⊆ LmH(x).

4.2 Minimal Factorizations in Power Monoids

Let H be a monoid. Similarly as in Section 3.2, we would like to simplify the study of minimal factorizations

in Pfin,×(H) as much as possible by passing to consideration of the reduced monoid Pfin,1(H). For, it is of

primary importance to make clear the nature of the relationship between minimal factorizations in Pfin,×(H)

and those in Pfin,1(H). We shall see that this is possible under some circumstances.

Proposition 4.2.1. Let H be a commutative monoid, and let X ∈ Pfin,1(H). The following hold:

(i) Zm

Pfin,1(H)(X) ⊆ Zm

Pfin,×(H)(X).

(ii) LmPfin,1(H)(X) = LmPfin,×(H)(X).

(iii) Lm(Pfin,1(H)) = Lm(Pfin,×(H)).
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Proof. (i) Let a be a minimal factorization of X relative to Pfin,1(H). In light of Proposition 4.1.6(i), a is a

non-empty A(Pfin,1(H))-word, i.e., a = A1 ∗ · · · ∗An for some atoms A1, . . . , An ∈ Pfin,1(H).

Assume for the sake of contradiction that a is not a minimal factorization relative to Pfin,×(H). Then

there exist a non-empty A(Pfin,×(H))-word b = B1 ∗ · · · ∗Bm and an injection σ : [1,m] → [1, n] with

X = A1 · · ·An = B1 · · ·Bm and B1 ≃Pfin,×(H) Aσ(1), . . . , Bm ≃Pfin,×(H) Aσ(m),

and on account of Proposition 4.1.2(iii) we must have 1 ≤ m < n. Since H is a commutative monoid, this

means in particular that, for each i ∈ [1,m], there is ui ∈ H× such that Bi = uiAσ(i). Thus we have

A1 · · ·An = B1 · · ·Bm = (u1Aσ(1)) · · · (umAσ(m)) = u · Aσ(1) · · ·Aσ(m),

where u := u1 · · ·um ∈ H×. In view of Proposition 3.1.2(ii), it follows that

|A1 · · ·An| =
∣
∣Aσ(1) · · ·Aσ(m)

∣
∣ ,

which is only possible if

X = A1 · · ·An = Aσ(1) · · ·Aσ(m),

because 1H ∈ Ai for every i ∈ [1, n], and hence Aσ(1) · · ·Aσ(m) ⊆ A1 · · ·An (note that here we use again that

H is commutative). So, letting a′ be the A(Pfin,1(H))-word Aσ(1) ∗ · · · ∗Aσ(m) and recalling from the above

that m ≤ n− 1, we see by Proposition 4.1.2(iii) that a′ ≺Pfin,1(H) a, which contradicts the hypothesis that a

is a minimal factorization of X in Pfin,1(H).

(ii) It is an immediate consequence of part (i) and Propositions 3.1.3(i) and 4.1.8(ii), when considering

that every commutative monoid is Dedekind-finite.

(iii) We already know from part (ii) that Lm(Pfin,1(H)) ⊆ Lm(Pfin,×(H)). For the opposite inclusion, fix

X ∈ Pfin,×(H). We claim that there exists Y ∈ Pfin,1(H) with LmPfin,×(H)(X) = LmPfin,1(H)(Y ). Indeed, pick

x ∈ X ∩H×. Then x−1X ∈ Pfin,1(H), and we derive from Lemma 4.1.7 and part (ii) that

LmPfin,×(H)(X) = LmPfin,×(H)(x
−1X) = LmPfin,1(H)(x

−1X),

which proves our claim and suffices to finish the proof (since X was arbitrary).

We will now discuss an instance in which equality in Proposition 4.2.1(ii) does not necessarily hold

true in the absence of commutativity, and the best we can hope for is the containment relation implied by

Proposition 4.1.8(ii) when ϕ is the natural embedding of Proposition 3.1.3(i).

Example 4.2.2. Let n be a (positive) multiple of 105, and p a (positive) prime dividing n2 + n + 1; note

that p ≥ 11 and 3 ≤ n mod p ≤ p − 3 (where n mod p is the smallest non-negative integer ≡ n mod p).

Following [Gor80, p. 27], we take H to be the metacyclic group generated by the 2-element set {r, s} subject

25



to ordH(r) = p, ordH(s) = 3, and s−1rs = rn. Then H is a non-abelian group of (odd) order 3p, and by

Theorem 3.2.3 and Propositions 2.3.7(ii) and 3.1.3(i), Pfin,1(H) and Pfin,×(H) are both atomic monoids.

We claim that X := ⟨r⟩H has minimal factorizations of length p − 1 in Pfin,1(H) but not in Pfin,×(H).

Pick g ∈ X \ {1H}. Clearly ordH(g) = p, and thus we get from Lemma 3.2.1(i) that {1H , g} is an atom of

Pfin,1(H). Then it is immediate to see that ag := {1H , g}∗(p−1) is a minimal factorization of X in Pfin,1(H);

most notably, ag is minimal since otherwise there should exist an exponent k ∈ [1, p−2] such that gp−1 = gk,

contradicting that ordH(g) = p. Yet, ag is not a minimal factorization ofX in Pfin,×(H). Indeed, Proposition

3.1.3(ii) and Lemma 3.2.1(i) guarantee that {1H , g} and {1H , gn} are associate atoms of Pfin,×(H), because

s−1gns = g and, hence, s−1{1, g}s = {1H , gn}. So, in view of Proposition 4.1.2(iii), it is straightforward

that

{1H , g}∗(p−2) ∗ {1H , gn} ≺Pfin,×(H) ag,

In particular, note here that we have used that 3 ≤ n mod p ≤ p− 3 to obtain

{1H , g, . . . , gp−2} ∪ {gn, gn+1, . . . , gn+p−2} = {1H , g, . . . , gp−1} = X.

Given that, suppose for a contradiction that X has a minimal factorization c of length p − 1 in Pfin,×(H).

Then by Propositions 3.1.3(i) and 4.1.8(i), c is Pfin,×(H)-equivalent to a ≼Pfin,1(H)-minimal factorization

a = A1 ∗ · · · ∗ Ap−1 of X of length p− 1; and we aim to show that a is Pfin,1(H)-equivalent to ag for some

g ∈ X \ {1H}, which is however impossible as it would mean that ag is a minimal factorization of X in

Pfin,×(H), in contradiction to what established in the above.

Indeed, let Bi be, for i ∈ [1, p− 1], the image of {k ∈ [0, p− 1] : rk ∈ Ai} ⊆ Z under the canonical map

Z → Z/pZ. Then a is a minimal factorization of X in Pfin,1(H) only if b := B1 ∗ · · · ∗ Bp−1 is a minimal

factorization of Z/pZ in the reduced power monoid of (Z/pZ,+), herein denoted by Pfin,0(Z/pZ).

We want to show that b is ≼Pfin,0(H)-minimal only if there is a non-zero x ∈ Z/pZ such that Bi = {0, x}
or Bi = {0,−x}, or equivalently Ai = {1H , rx̂} or Ai = {1H , r−x̂}, for every i ∈ [1, p− 1] (recall the notation

that x̂ is the lift of the residue class x to the interval [0, p− 1], established in Section 1.3). By the preceding

arguments, this will suffice to conclude that p − 1 /∈ LmPfin,×(H)(X), because it implies at once that a is

CPfin,1(H)-congruent to ag with g := rx̂ ∈ X \ {1H}.

To begin, let K be a subset of [1, p − 1], and define SK :=
∑

k∈K Bk and sK := {k ∈ K : |Bk| ≥ 3}.
Then we have by the Cauchy-Davenport inequality (see, e.g., [Gry13, Theorem 6.2]) that

SK = Z/pZ or |SK | ≥ 1 +
∑

k∈K

(

|Bk|− 1
)

≥ 1 + |K|+ sK . (4.1)

Now, let I and J be disjoint subsets of [1, p − 1] with |I ∪ J | = |I| + |J | = p − 2. We claim sI = sJ = 0.

Indeed, it is clear that SI∪J ̸= Z/pZ, otherwise b would not be a minimal factorization in Pfin,0(Z/pZ). So,

26



another application of the Cauchy-Davenport inequality, combined with (4.1), yields

|SI∪J | = |SI + SJ | ≥ |SI |+ |SJ |− 1 ≥ 1 + |I|+ |J |+ sI + sJ = p− 1 + sI + sJ . (4.2)

This suffices to prove that |SI + SJ | = p− 1 and sI = sJ = 0, or else SI∪J = Z/pZ (a contradiction).

It follows |B1| = · · · = |Bp−1| = 2. So, taking I in (4.2) to range over all 1-element subsets of [1, p− 1]

and observing that, consequently, |SJ | ≥ p − 1 − |SI | = p − 3 ≥ 8 > |SI |, we infer from Vosper’s theorem

(see, e.g., [Gry13, Theorem 8.1]) that there exists a non-zero x ∈ Z/pZ such that, for every i ∈ [1, p− 1], Bi

is an arithmetic progression of Z/pZ with difference x, i.e., Bi = {0, x} or Bi = {0,−x} (as wished).

We proceed with an analogue of Theorem 3.2.5(i) and then prove the main results of the section.

Proposition 4.2.3. Let H be a monoid and X ∈ Pfin,×(H). The following hold:

(i) If X ∈ Pfin,1(H), then a minimal factorization of X in Pfin,1(H) has length ≤ |X |− 1.

(ii) If H is Dedekind-finite, then a minimal factorization of X in Pfin,×(H) has length ≤ |X |− 1.

Proof. (i) The claim is trivial if X = {1H}, when the only factorization of X is the empty word; or if

X ∈ A(Pfin,1(H)), in which case |X | ≥ 2 and X has a unique factorization (of length 1). So, assume that

X is neither the identity nor an atom of Pfin,1(H), and let a be a minimal factorization of X (relative to

Pfin,1(H)). Then a = A1 ∗ · · · ∗An, where A1, . . . , An ∈ A(Pfin,1(H)) and n ≥ 2; and we claim that

A1 · · ·Ai " A1 · · ·Ai+1, for every i ∈ [1, n− 1].

In fact, let i ∈ [1, n− 1]. Since 1H ∈ Ai+1, it is clear that A1 · · ·Ai " A1 · · ·Ai+1; and the inclusion must be

strict, or else A1∗ · · ·∗Ai∗b ≺Pfin,1(H) a, where b := εA(Pfin,1(H)) if i = n−1 and b := Ai+2∗ · · ·∗An otherwise

(contradicting the minimality of a). Consequently, we see that 2 ≤ |A1 · · ·Ai| < |A1 · · ·Ai+1| ≤ |X | for all
i ∈ [1, n− 1], and this implies at once that n ≤ |X |− 1.

(ii) The conclusion is immediate from part (i) and Propositions 3.1.3(i) and 4.1.8(iii).

Theorem 4.2.4. Let H be a monoid. Then the following are equivalent:

(a) 1H ̸= x2 ̸= x for every x ∈ H \ {1H}.
(b) Pfin,1(H) is atomic.

(c) Pfin,1(H) is BmF.

(d) Pfin,1(H) is FmF.

(e) Every 2-element subset X of H with 1H ∈ X is an atom of Pfin,1(H).

(f) Pfin,×(H) is atomic.

(g) Pfin,×(H) is BmF.

(h) Pfin,×(H) is FmF.

(i) Every 2-element subset X of H with X ∩H× ̸= ∅ is an atom of Pfin,×(H).
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Proof. We already know from Theorem 3.2.3 and Lemma 3.2.1 that (b) ⇔ (a) ⇔ (e) and (i) ⇒ (a); while

it is straightforward from our definitions that (h) ⇒ (g) ⇒ (f). So, it will suffice to prove that (b) ⇒ (c) ⇒
(d) ⇒ (h) and (f) ⇒ (i).

(b) ⇒ (c): If X ∈ Pfin,1(H) is a non-unit, then ZPfin,1(H)(X) is non-empty, and by Propositions 4.1.6(ii)

and 4.2.3(i) we have that ∅ ≠ LmPfin,1(H)(X) ⊆ [1, |X |− 1]. So, Pfin,1(H) is BmF.

(c) ⇒ (d): Let X ∈ Pfin,1(H) be a non-unit. By Proposition 3.1.2(i), any atom of Pfin,1(H) dividing

X must be a subset of X , and there are only finitely many of these (since X is finite). Because a minimal

factorization of X is a bounded A(Pfin,1(H))-word (by the assumption that H is BmF), it follows that X

has finitely many minimal factorizations, and hence Pfin,1(H) is FmF (since X was arbitrary).

(d) ⇒ (h): Pick a non-unit X ∈ Pfin,×(H), and let u ∈ H× such that uX ∈ Pfin,1(H). Since Pfin,1(H) is

FmF (by hypothesis), it is also atomic. Hence, by Theorem 3.2.3 and Lemma 3.2.2(i), H is Dedekind-finite,

and so we have by Proposition 3.1.3(i) that the natural embedding Pfin,1(H) ↪→ Pfin,×(H) is an essentially

surjective equimorphism. In particular, we infer from Proposition 4.1.8(i) that any minimal factorization of

uX in Pfin,×(H) is CPfin,×(H)-congruent to a minimal factorization of uX in Pfin,1(H). However, this makes

Zm

Pfin,×(H)(uX) finite, whence Zm

Pfin,×(H)(X) must also be finite as a consequence of Lemma 4.1.7.

(f) ⇒ (i): Let X be a 2-element subset of H with X ∩H× ̸= ∅. Then X = uA for some unit u ∈ H×,

where A := u−1X is a 2-element subset of H with 1H ∈ H ; and since Pfin,×(H) is atomic (by hypothesis),

we are guaranteed by Lemmas 3.2.1 and 3.2.2(i) that A is an atom of Pfin,1(H) and H is Dedekind-finite.

Therefore, we conclude from Proposition 3.1.3(ii) that X ∈ A(Pfin,×(H)).

Theorem 4.2.5. Let H be a monoid. Then Pfin,1(H) is HmF if and only if H is trivial or a cyclic group of

order 3.

Proof. The “if” part is an easy consequence of Theorem 4.2.4 and Propositions 4.2.3(i) and 4.1.6(i), when

considering that, if H is trivial or a cyclic group of order 3, then 1H ̸= x2 ̸= x for all x ∈ H \ {1H} and

every non-empty subset of H has at most 3 elements.

As for the other direction, suppose Pfin,1(H) is HmF and H is non-trivial. Then Pfin,1(H) is atomic, and

we claim that H is a 3-group. By Theorem 3.2.3 and Lemma 3.2.2(ii), it suffices to show that x3 ∈ {1H , x, x2}
for every x ∈ H , since this in turn implies (by induction) that ⟨x⟩H ⊆ {1H , x, x2} and ordH(x) ≤ 3.

Assume to the contrary that x3 /∈ {1H , x, x3} for some x ∈ H , and set X := {1H , x, x2, x3}. By Theorem

4.2.4, a := {1H , x}∗3 and b := {1H , x} ∗ {1H , x2} are both factorizations of X in Pfin,1(H); and in light of

Proposition 4.1.6(i), b is in fact a minimal factorization (of length 2). Then a cannot be minimal, because

Pfin,1(H) is HmF and a has length 3. However, since Pfin,1(H) is a reduced monoid (and X is not an atom),

this is only possible if x3 ∈ X = {1H , x}2, a contradiction.

So, H is a 3-group, and as such it has a non-trivial center Z(H), see e.g. [Gor80, Theorem 2.11(i)]. Let

z be an element in Z(H) \ {1H}, and suppose for a contradiction that H is not cyclic. Then we can choose

some element y ∈ H \ ⟨z⟩H , and it follows from the above that K := ⟨y, z⟩H is an abelian subgroup of H
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with ordH(y) = ordH(z) = 3 and |K| = 9. We will prove that K has ≼Pfin,1(H)-minimal factorizations of

more than one length, which is a contradiction and finishes the proof.

Indeed, we are guaranteed by Theorem 4.2.4 that c := {1H , y}∗2 ∗ {1H , z}∗2 is a length-4 factorization of

K in Pfin,1(H); and it is actually a minimal factorization, because removing one or more atoms from c yields

an A(Pfin,1(H))-word whose image under πPfin,1(H) has cardinality at most 8 (whereas we have already noted

that |K| = 9). On the other hand, it is not difficult to check that A := {1H , y, z} is an atom of Pfin,1(H):

If {1H , y, z} = Y Z for some Y, Z ∈ Pfin,1(H) with |Y |, |Z| ≥ 2, then Y, Z ⊆ {1H , y, z} and Y ∩ Z = {1H},
whence Y Z = {1H , y} · {1H , z} = K ̸= A. This in turn implies that A∗2 is a length-2 factorization of K in

Pfin,1(H), and it is minimal by Proposition 4.1.6(i). So, we are done.

Corollary 4.2.6. Let H be a monoid. Then Pfin,1(H) is minimally factorial if and only if H is trivial.

Proof. The “if” part is obvious. For the other direction, assume by way of contradiction that Pfin,1(H) is

minimally factorial but H is non-trivial. Then Pfin,1(H) is HmF, and we obtain from Theorem 4.2.5 that

H is a cyclic group of order 3. Accordingly, let x be a generator of H . By Lemma 3.2.1(i) and Proposition

4.1.6(i), a := {1H , x}∗2 and b := {1H , x2}∗2 are both minimal factorizations of H in Pfin,1(H). However,

a ̸≃Pfin,1(H) b, because Pfin,1(H) is a reduced monoid. Therefore, Pfin,1(H) is not minimally factorial, so

leading to a contradiction and completing the proof.

At this point, we have completely characterized the correlation between the ground monoid H and

whether Pfin,1(H) has factorization properties such as atomicity, BFness, etc., and their minimal counter-

parts. In most cases, this extends to a characterization of whether the same properties hold for Pfin,×(H),

with the exception of the gap suggested by Theorem 4.2.5 and Corollary 4.2.6. In particular, it still remains

to determine the monoids H which make Pfin,×(H) HmF or minimally factorial. However, what we have

shown indicates, we believe, that the arithmetic of Pfin,1(H) and Pfin,×(H) is robust and ripe for more

focused study.

4.3 Cyclic Monoids and Interval Length Sets

For those monoids H with Pfin,1(H) atomic, we have by Proposition 3.2.2 that the semigroup generated

by an element x ∈ H is isomorphic either to Z/nZ or to N under addition. As such, we will concentrate

throughout on factorizations in Pfin,0(Z/nZ) and also mention some results on Pfin,0(N) which are discussed

in detail in [FT18, Section 4]. At the end we will return to the general case, where the preceding discussion

will culminate in a realization result (Theorem 4.3.7) for sets of minimal lengths of Pfin,1(H).

We invite the reader to review the notation x̂ and X̂ for lifting elements and subsets of Z/nZ to N (as

set in Section 1.3) before reading further. Also, note that, through the whole section, we have replaced the

notation Pfin,1(H) with Pfin,0(H) when H is written additively (cf. Example 4.2.2).
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Definition 4.3.1. Let X ∈ Pfin,0(Z/nZ). We say that a non-empty factorization a = A1 ∗ · · · ∗ Aℓ ∈ Z(X)

is a non-reducible factorization (or, more briefly, an NR-factorization) if max Â1 + · · ·+max Âℓ = max X̂ .

This condition on factorizations will allow us to bring calculations up to the integers, where sumsets

are more easily understood. More importantly, NR-factorizations are very immediately relevant to our

investigation of minimal factorizations.

Lemma 4.3.2. Any NR-factorization in Pfin,0(Z/nZ) is a minimal factorization.

Proof. Let a = A1 ∗ · · · ∗ Aℓ be an NR-factorization in Pfin,0(Z/nZ) of length ℓ, and assume for the sake

of contradiction that a is not minimal. Since Pfin,0(Z/nZ) is reduced and commutative, the factorizations

which are Pfin,0(Z/nZ)-equivalent to a are exactly the words Aσ(1) ∗ · · · ∗ Aσ(ℓ), where σ is an arbitrary

permutation of the interval [1, ℓ]. So, on account of Proposition 4.1.6(i), the non-minimality of a implies

without loss of generality that ℓ ≥ 3 and X := A1 + · · ·+Aℓ = A1 + · · ·+Ak for some k ∈ [1, ℓ− 1].

Now, let x ∈ X such that x̂ = max X̂. Using that a is an NR-factorization, and considering that, for

each i ∈ [1, ℓ], Ai is an atom of Pfin,0(Z/nZ) and hence max Âi ≥ 1, it follows from the above that

x̂ = max Â1 +max Â2 + · · ·+max Âℓ > max Â1 + · · ·+max Âk, (4.3)

On the other hand, since X = A1+ · · ·+Ak, there are a1 ∈ A1, . . . , ak ∈ Ak such that a1+ · · ·+ak = x, from

which we see that x̂ ≡ â1+ · · ·+ âk mod n. But it follows from (4.3) that 0 ≤ â1+ · · ·+ âk < x̂ < n, and this

implies x̂ ̸≡ â1 + · · ·+ âk mod n (recall that, by definition, X̂ ⊆ [0, n− 1]). We have found a contradiction,

showing that a was minimal and completing the proof.

We are aiming to find, for every k ∈ [2, n− 1], a set Xk ∈ Pfin,0(Z/nZ) for which Lm(Xk) = [2, k], on the

assumption that n ≥ 5 is odd: Surprisingly, most of the difficulty lies in showing that 2 ∈ Lm(Xk). To do

this, we first need to produce some large atoms.

Proposition 4.3.3. Let n ≥ 5 be odd. Then the following sets are atoms of Pfin,0(Z/nZ):

(i) Bh :=
{

0} ∪ {1, 3, . . . , h
}

for odd h ∈ [1, (n− 1)/2].

(ii) C1 :=
{

0, 2
}

, C3 :=
{

0, 2, 3, 4
}

, and Cℓ := Bℓ ∪
{

ℓ+ 1
}

for odd ℓ ∈ [5, (n− 1)/2].

Proof. (i) Let h ∈ [1, (n− 1)/2] be odd, and suppose that Bh = X + Y for some X,Y ∈ Pfin,0(Z/nZ). Then

X and Y are subsets of Bh, so

max X̂ +max Ŷ ≤ 2max B̂h = 2h ≤ n− 1.

Because 1 ∈ Bh, we must have 1 ∈ X ∪ Y . However, if 1 ∈ X and a ∈ Y for some a ∈ Bh \ {0}, then
1 + â ∈ X̂ + Ŷ is even, which is impossible since max X̂ + max Ŷ < n and B̂h \ {0} consists only of odd

numbers. Thus Y = {0}, and hence Bh is an atom.
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(ii) C1 is an atom by Lemma 3.2.1(i) and it is not too difficult to see that so is C3. Therefore, let ℓ ≥ 5

and suppose Cℓ = X + Y for some X,Y ∈ Pfin,0(Z/nZ) with X,Y ̸=
{

0
}

.

First assume that ℓ+ 1 /∈ X ∪ Y . Then X̂ and Ŷ consist only of odd integers, so x̂+ ŷ is an even integer

in the interval [2, n− 1] for all x ∈ X \
{

0
}

and y ∈ Y \
{

0
}

. However, X̂ + Ŷ = Ĉℓ and the only non-zero

even element of Ĉℓ is ℓ+1. Thus, it must be that X =
{

0, x
}

and Y =
{

0, y
}

for some non-zero x, y ∈ Z/nZ,

with the result that |X + Y | ≤ 4 < |Cℓ|, a contradiction.

It follows (without loss of generality) that ℓ+ 1 ∈ Y . ThenX ⊆
{

0, ℓ, ℓ+ 1
}

, for, if x ∈ X with 0 < x̂ < ℓ,

then x̂ + ℓ + 1 ∈ Ĉℓ, which is impossible since x̂ + ℓ + 1 ∈ [max Ĉℓ + 1, n − 1]. This in turn implies that

Y ⊆
{

0, 1, ℓ, ℓ+ 1
}

for similar reasons. As a consequence,

X + Y ⊆
{

0, ℓ, ℓ+ 1
}

+
{

0, 1, ℓ, ℓ+ 1
}

=
{

0, 1, ℓ, ℓ+ 1, 2ℓ, 2ℓ+ 1, 2ℓ+ 2
}

However, ℓ + 1 < 2ℓ ≤ n − 1, so we cannot have 2ℓ ∈ X + Y . Then 2ℓ + 1 = n, in which case 2ℓ+ 1 = 0

and 2ℓ+ 2 = 1; or 2ℓ+ 1 < n, so that 2ℓ+ 1, 2ℓ+ 2 /∈ Ch (recall that ℓ ≤ (n− 1)/2). In either case, we get

X + Y ⊆
{

0, 1, ℓ, ℓ+ 1
}

, hence |X + Y | ≤ 4 < |Cℓ|, which is a contradiction and leads us to conclude that

Cℓ is an atom.

Now that we have found large atoms in Pfin,0(Z/nZ), we can explicitly give, for each k ∈ [2, n− 1], an

element Xk ∈ Pfin,0(Z/nZ) which has a (minimal) factorization of length 2.

Lemma 4.3.4. Fix an odd integer n ≥ 5 and let k ∈ [2, n − 1]. Then the set Xk = {0, 1, . . . , k} has an

NR-factorization into two atoms in Pfin,0(Z/nZ).

Proof. We will use the atoms Bh and Cℓ as defined in Proposition 4.3.3. We claim that, for every r ∈ {0, 1}
and all odd h ∈ [1, (n− 1)/2],

B̂h+2r + Ĉh = [0, 2h+ 2r + 1] and Ĉh+2r + Ĉh = [0, 2r + 2h+ 2].

We will only demonstrate that B̂h + Ĉh = [0, 2h+ 1] (the other cases are an easy consequence). The claim

is trivial if h = 1 or h = 3, so suppose h ≥ 5. Then

B̂h + Ĉh ⊇ {1, 3, . . . , h}+ {0, h+ 1} = {1, 3, . . . , 2h+ 1}

and

B̂h + Ĉh ⊇ {1, 3, . . . , h}+ {1, h} = {2, 4, . . . , 2h},

so B̂h + Ĉh ⊇ [0, 2h+ 1]. This gives that B̂h + Ĉh = [0, 2h+ 1], since max B̂h +max Ĉh = h+ (h+ 1).

Accordingly, we now prove that Xk can be expressed as a two-term sum involving Bh and Cℓ, for some

suitable choices of h and ℓ depending on the parity of k.
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Case 1: k = 2m+ 1 (i.e., k is odd). Then it is immediate to verify that Xk = Bm +Cm if m is odd, and

Xk = Bm+1 + Cm−1 if m is even.

Case 2: k = 2m (i.e., k is even). Since X2 = B1 +B1 and X4 = B1 + B3, we may assume m ≥ 3. Then

it is seen that Xk = Cm + Cm−2 if m is odd, and Xk = Cm−1 + Cm−1 if m is even.

We are left to show that the decompositions given above do in fact correspond to minimal factorizations. As

an example, consider the case when k = 2m+ 1 and m is odd (the computation will be essentially identical

in the other cases). Then max B̂m +max Ĉm = 2m+ 1, so that Bm ∗Cm is an NR-factorization of Xk, and

is hence minimal by Proposition 4.3.2.

Lemma 4.3.5. Fix an odd integer n ≥ 3 and, for each k ∈ [2, n− 1], let Xk := {0, 1, . . . , k} ∈ Pfin,0(Z/nZ).

Then Lm(Xk) = [2, k].

Proof. We have already established in Lemma 4.3.4 that X2 has an NR-factorization of length 2. Now fix

k ∈ [3, n− 1] and suppose that, for all h ∈ [2, k − 1] and ℓ ∈ [2, h], Xh has an NR-factorization of length ℓ.

Choose some ℓ ∈ [2, k − 1]; Xk−1 has an NR-factorization a, and it is straightforward to see that {0, 1} ∗ a
is an NR-factorization of Xk. Letting ℓ range over [2, k − 1], this argument, Lemma 4.3.2, and Lemma

4.3.4 imply that Lm(Xk) ⊇ [2, k]. Moreover, Proposition 4.2.3(i) yields the other inclusion and so we have

Lm(Xk) = [2, k].

Lemma 4.3.6. Let H be a non-torsion monoid. Then L(Pfin,0(N)) ⊆ Lm(Pfin,1(H)), and for every k ≥ 2

there exists Yk ∈ Pfin,1(H) with Lm(Yk) = [2, k].

Proof. Suppose that y ∈ H has infinite order, and set Y := {yk : k ∈ N}. Clearly, Y is a submonoid

of H , and the (monoid) homomorphism (N,+) → Y : k :→ yk determined by sending 1 to y induces an

isomorphism Pfin,0(N) → Pfin,1(Y ). Since, by Proposition 3.1.2(iii), Pfin,1(Y ) is a divisor-closed submonoid

of Pfin,1(H), we thus have by parts (iv) and (v) of Proposition 4.1.6 that

L(Pfin,0(N)) = Lm(Pfin,0(N)) = Lm(Pfin,1(Y )) ⊆ Lm(Pfin,1(H)).

The rest of the statement now follows from the above and [FT18, Proposition 4.8].

Theorem 4.3.7. Assume H is a monoid such that 1H ̸= x2 ̸= x for all x ∈ H \ {1H}, and set N :=

sup{ordH(x) : x ∈ H}. Then [2, k] ∈ Lm(Pfin,1(H)) for every k ∈ [2, N − 1].

Proof. If H is non-torsion, this follows immediately from Lemma 4.3.6. Otherwise, let k ∈ [2, N − 1] and

y ∈ H with n := ordH(x) > k. Then Y := ⟨y⟩H ∼= Z/nZ, so we have by Proposition 3.1.2(iii), Lemma 4.3.5,

and Proposition 4.1.6(iv) that [2, k] ∈ Lm(Pfin,1(Y )) ⊆ Lm(Pfin,1(H)).
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Chapter 5

Partitions in the Natural Power Monoid

In [FT18, Section 4], Fan and Tringali took a thorough look at Pfin,0(N). They established, among other

things, some significant results on which sets may occur as sets of lengths of elements of Pfin,0(N). Several

of their results (which will be addressed further in Chapter 7) specify some elements of Pfin,0(N) with very

well-controlled sets of factorizations. To contrast with this, they also proved [FT18, Proposition 4.8], which

says that LPfin,0(N)([0, n]) = [2, n] for every n ≥ 2. In essence, the intervals [0, n] ∈ Pfin,0(N) seem to have

the most wild factorization behavior. However, as points are removed from [0, n], one expects a transition to

relative tameness as the set of factorizations becomes smaller. In this chapter, we formulate some additional

ways of understanding and quantifying the differences between wild and tame factorization behavior.

5.1 Algorithmic Approaches and Partition Type

In this section, we hope to indicate some practical methods that can be implemented to assist in computa-

tional approaches to factorization in Pfin,0(N). Specifically, we will outline some inductive approaches (i.e.,

recursive algorithms) for exhaustively finding all factorizations of a subset into atoms.

Consider the following algorithm for finding the prime factorization of an element n ∈ N:

• For every prime p ≤
√
n, check if p divides n.

– If no such p divides n then n is a prime; return the factorization n.

– If some p does divide n, find a factorization a of n/p and return p ∗ a.

One might wish to imitate this algorithm in Pfin,0(N). We would begin, for a given X ∈ Pfin,0(N), whether

there is some irreducible A which divides X . If A divides X , then there exists some Y with A + Y = X ;

however, since Pfin,0(N) is not cancellative, there is not a unique such Y . This is part of what derails an initial

attempt at a factorization algorithm. To make the best of our situation, we have the following definition

and proposition.

Definition 5.1.1. Let G be an abelian group, let H ⊆ G be a monoid, and let X,A ∈ Pfin,0(H). We define
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the saturated cofactor of A in X by

X :A :=
⋂

a∈A

(X − a)

X :A is the largest possible set Y such that X = A+ Y , in the sense of the following proposition.

Proposition 5.1.2. Let X,A ∈ Pfin,0(H).

(i) A+X :A ⊆ X .

(ii) If X = A+ Y then Y ⊆ X :A.

(iii) If A divides X if and only if A+X :A = X .

Proof. Point (i) is straightforward to see; suppose a ∈ A and x ∈ X :A. Then, by construction, x ∈ X − a so

that x+ a ∈ (X − a) + a = X .

For (ii), suppose y ∈ Y and a ∈ A. Then a+ y ∈ A+ Y = X , so y ∈ X − a; this was true for any a ∈ A,

so y ∈
⋂

a∈A(X − a) = X :A.

To see (iii), first suppose that A divides X ; then there is some Y so that A + Y = X . Then, using (ii)

and then (i), we have that X = A+ Y ⊆ A+ (X :A) ⊆ X , whence all the inclusions are equalities.

Now, if A divides X , Y := X :A is a somewhat canonical choice satisfying A+Y = X . With this in hand,

we can make another attempt at an algorithm for factoring in Pfin,0(N):

• For every atom A ! X , check if A divides X (that is, whether A+X :A = X).

– If no such A divides X then X is an atom; return X .

– If A divides X , return the set {A ∗ a : a ∈ ZPfin,0(H)(X)}.

This algorithm comes up short since it fails in general to obtain the entire set of factorizations of X , as we

will see now.

Example 5.1.3. Let H = N and take X := [0, n] for some odd n ≥ 11. We can show that A := {0, 1, 3}
and B := {0, 1, 3, . . . , n− 2, n− 3} are both atoms, and that X = A+B (so A ∗B is a factorization of X).

However, X :A = [0, n]∩ [−1, n−1]∩ [−3, n−3] = [0, n−3] ̸= B and X :B ̸= A. Thus the above algorithm will

find factorizations of the form A ∗ b for b a factorization of [0, n− 3] (and similarly B ∗ a for a a factorization

of [0, 3]), but it will fail to find A ∗B.

This example suggests an adjustment to the algorithm presented just above.

Definition 5.1.4. We define the function fac which assigns to a given X a set of factorizations of X (which

we will later assert is the entire set of factorizations of X). Given any X ∈ Pfin,0(H),

(1) Start with fac(X) = ∅.
(2) If X = {0}, return fac(X) = ∅.
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(3) If X is an atom, return fac(X) = {X}.
(4) For each atom A ⊆ X , if A+X :A = X ,

(5) For every subset Y ⊆ X :A with max(Y ) = max(X :A), if A+ Y = X ,

(6) For every b ∈ fac(Y ), add A ∗ b to fac(X).

(7) Return fac(X).

Proposition 5.1.5. For any X ∈ Pfin,0(N), fac(X) = ZPfin,0(N)(X).

Proof. We can prove this by inducting on the size of X . If |X | = 1 then X = {1} and ZPfin,0(H)(X) = ∅ =

fac(X) (in accordance with step (2) in the definition of fac). If |X | = 2 then, since H is reduced and contains

no nontrivial idempotents (as it lies inside G), X is an atom by Lemma 3.2.1. Hence ZPfin,0(H)(X) = {X} =

fac(X) by step (3).

It is apparent by construction that fac(X) ⊆ ZPfin,0(H)(X), so we only need to show that the other

inclusion holds. Suppose A1 ∗ · · · ∗ Ak ∈ ZPfin,0(H). Then A1 + (A2 + · · · + Ak) = X , so Proposition

5.1.2(iii) implies that A1 + (X :A1) = X . At this point, step (5) of the procedure for generating fac(X) will

find Y := A2 + · · · + Ak in its search of all subsets of X :A1. By induction, we have that A2 ∗ · · · ∗ Ak ∈
ZPfin,0(X)(Y ) = fac(Y ). Thus A1 ∗ · · · ∗Ak ∈ fac(X), as we wished.

This algorithm still proceeds by brute force, and can be computationally cumbersome. There are several

refinements that we can make by taking advantage of the specific situation of factoring inside Pfin,0(N).

Definition 5.1.6. For n ≥ 0, we distinguish the following collections of subsets:

P(n) = {X ⊆ [0, n] : 0, n ∈ X}

A(n) = A(Pfin,0(N)) ∩A(n)

N (n) = P(n) \ A(n)

Remark 5.1.7. Note that

• Pfin,0(N) =
⊔∞

n=0 P(n).

• For any m,n ≥ 0, P(m) + P(n) ⊆ P(m+n).

From this we see that the sets P(n) give a grading of our monoid.

For any nonunit x in a monoid H , the set ZH(x) houses the full data of the factorization behavior of x.

Since it is sometimes a tall order to understand all of the information of ZH(x) at once, we can consider the

set LH(x) to gain an incomplete yet often adequate understanding of ZH(x). With the following definition,

we aim to leverage the structure of Pfin,0(N) to formulate an invariant which contains more data than the set

of lengths. This will help us in our endeavor to develop a more effecient algorithm for factoring in Pfin,0(N),

and also in our larger goal to quanitfy the “wildness” of factorizations of [0, n].
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Definition 5.1.8. Let n ≥ 1. A partition of n is P = (m1, . . . ,mk), where m1 ≥ · · · ≥ mk ≥ 1 and

m1 + · · ·+mk = n. Each mi is said to be a part of P , and k is said to be the length or number of parts of

P . For brevity, we occasionally write P ⊢ n.

For a factorization a ∈ F∗(A(Pfin,0(N))) satisfying a = A1 ∗ · · · ∗Ak with max(A1) ≥ · · · ≥ max(Ak), the

partition type of any b ∈ [a]≃ is ptype(b) := (max(A1), . . . ,max(Ak)).

In general, for any X ∈ Pfin,0(N) and for any partition P = (m1, . . . ,mk) of max(X), we define the set

of factorizations of X and set of factorization classes of (partition) type P to be

ZP (X) := {a ∈ Z(X) : ptype(a) = P}

and

ZP (X) := {[a]≃ ∈ Z(X) : ptype(a) = P},

respectively. We also define the set of (partition) types of X to be

T(X) := {P ⊢ max(X) : ZP (X) ̸= ∅}.

Note that, since Pfin,0(N) is reduced, for any factorizations a, b ∈ F∗(A(Pfin,0(N))), a ≃ b if and only if

a and b are the same up to reordering of factors. This tells us that ptype as written above is well-defined.

Remark 5.1.9. There are some elementary observations to be made which connect factorization behavior

with partition type. Say X ∈ Pfin,0(N) with n = max(X).

(i) Z(X) =
⊔

P ZP (X), a disjoint union taken over all partitions P of n.

(ii) Z(n)(X) = ∅ if and only if X is not an atom.

Though the disjoint union in (i) is not too hard to see, it is not clear that each ZP (X) is nonempty. In fact,

we will soon see evidence to the contrary in Section 5.2.

To conclude this section, we suggest an outline of another algorithm for calculating sets of factorizations

in Pfin,0(N). In contrast with fac from Definition 5.1.4, this one will proceed constructively rather than

inductively.

First define, for X ∈ Pfin,0(N) and P = (m1, . . . ,mk) a partition of max(X), fac of type(X,P ) in the

following way: For every (A1, . . . , Ak) ∈ A(m1) × · · ·×A(mk), if A1 + · · ·+ Ak = X , then add A1 ∗ · · · ∗ Ak

to fac of type(X,P ).

After this, we can define a new function, fac by type(X). The end result is an algorithm of the following

form:

(1) Start with fac by type(X) = ∅.
(2) For each partition P = (m1, . . . ,mk) of max(X), if {0,m1}+ · · ·+ {0,mk} ⊆ X ,

(3) Add facs of type(X,P ) to fac by type(P ).
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(4) Return fac by type(X).

Though this procedure for generating fac by type(X) still relies on brute force, it does work fast relative

to fac—especially for “small” subsets X ⊆ N. It requires that one computes the sets A(m) for m < max(X),

which is a computational endeavor in its own right. However, calculating and recording the elements of A(m)

a single time compares favorably with fac, as fac essentially requires the calculation of all atoms which are

subsets of the input set X each time the algorithm is used. It also affords some opportunities for avoiding

unnecessary calculations; for instance, step (2) identifies which partition types are feasible by examining the

subsums Σ(P ) of P . We will have more to say about subsums in Section 5.3.

5.2 Admissible and Forbidden Types for Intervals

As alluded to in Remark 5.1.9, it is not always clear for which P is ZP (X) ̸= ∅ for a given X . In this section

we fully address this question in the case when X = [0, n] is an interval.

Proposition 5.2.1. Let X ∈ Pfin,0(N).

(i) Let n = max(X) + b. X + {0, b} = [0, n] if and only if X ∩ {k, k − b} ≠ ∅ for every k ∈ [0, n].

(ii) For any c ≥ 1, X + {0, 2c} = [0,max(X) + 2c] implies that {0, c} divides X .

Proof. For (i), we first prove the “only if” direction. Suppose k ∈ [0, n]; then k ∈ X + {0, b}. We must have

that k ∈ X + 0 or that k ∈ X + b, which is the same as saying k ∈ X or k − b ∈ X .

Conversely, suppose that k ∈ [0, n]. If k ∈ X ⊆ X + {0, b}, we are done. If k /∈ X , then we have by

assumption that k − b ∈ X , meaning k ∈ X + b ⊆ X + {0, b}. We conclude that X + {0, b} ⊇ [0, n], and the

other inclusion is clear since max(X + {0, b}) = max(X) + b = n.

For (ii), we use Proposition 5.1.2. Let Y = X :{0, c} = X ∩ (X − c); we know that {0, c} + Y ⊆ X , so

we just need to show the other inclusion. Suppose X # {0, c}+ Y ; then there is x ∈ X with x /∈ {0, c}+ Y .

This means that x /∈ X ∩ (X − c) and x /∈ X ∩ (X − c); all together, this means x+ c, x− c /∈ X . However,

this contradicts part (i), taking b = 2c and k = x+ c. Thus we must have X = {0, c}+X :{0, c}.

Proposition 5.2.2. Let n ≥ 1.

(i) For n ≥ 4, Z(n−2,2)([0, n]) = ∅.
(ii) For even n ≥ 4, Z(2,...,2)([0, n]) = ∅.
(iii) For odd n ≥ 5, Z(3,2,...,2)([0, n]) = ∅.
(iv) For even n ≥ 6, Z(4,2,...,2)([0, n]) = ∅.
(v) For odd n ≥ 7, Z(5,2,...,2)([0, n]) = ∅.

Proof. For (i), we can use the second part of Lemma 5.2.1 with c = 1 to see that there can be no atom A

with A+ {0, 2} = [0, n].
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It is easy to see (ii) because {0, 2} is the only atom in A(2), and no sum of the form {0, 2}+ · · ·+ {0, 2}
can contain 1, let alone a whole interval.

For (iii), write n = 2m + 1. We note that A(3) = {{0, 2, 3}, {0, 1, 3}}. Since 1 belongs to the interval,

if [0, 2m + 1] is to have a factorization of partition type (3, 2, . . . , 2), then that factorization must include

{0, 1, 3}. However, we see that

{0, 1, 3}+ (m− 1){0, 2} = {0, 1, 3}+ {0, 2, . . . , 2m− 2} = [0, 2m− 1] ∪ {2m+ 1}

which does not contain 2m = n− 1, so [0, 2m+ 1] cannot have a factorization of type (3, 2, . . . , 2).

The arguments for the remaining parts proceed along similar lines. For (iv), we note that the only atoms

in A(4) which contain 1 are {0, 1, 4} and {0, 1, 2, 4}. However, if n = 2m, we have

{0, 1, 2, 4}+ (m− 2){0, 2} = {0, 1, 4}+ {0, 2, . . . , 2m− 4} = [0, 2m− 2] ∪ {2m}

which again fails to contain n− 1.

Finally, we turn to (v). We similarly begin by observing that the only atoms in A(5) which contain 1 are

{0, 1, 5}, {0, 1, 2, 5}, and {0, 1, 3, 5}. Let n = 2m + 1. By calculations similar to those above, one can see

that n− 2 /∈ {0, 1, 2, 5}+ (m− 2){0, 2} and n− 1 /∈ {0, 1, 3, 5}+ (m− 2){0, 2}.

As we have just seen above, several partition types fail to appear because of the limited number of atoms

available in A(N) for small N . Even in A(5), where there are a few choices of atoms containing 1, there is

no atom which contains both 1 as well as enough “comparably larger” elements closer to 5. However, this

issue does not seem to arise for atoms with larger maximum; indeed, in A(7) we have several choices which

fit this requirement: for example, {0, 1, 2, 4, 6, 7}, and {0, 1, 3, 5, 6, 7} seem promising if one hopes to produce

factorizations of type (7, 2, . . . , 2). Indeed, the problems that occur for atoms of sizes between 2 and 5 do

not persist, for we have the following.

Our goal now will be to verify that intervals have factorizations of various partition types. To aid in this,

we will need a few classes of specifically structured “large atoms” to populate the sets A(N).

Proposition 5.2.3. Each of the following sets is an atom of Pfin,0(N) for the given values of the parameter

h.

(i) B2h−1 := {0, 1, 3, . . . , 2h− 1} for h ≥ 1.

(ii) B2h := {0, 1, 3, . . . , 2h− 1, 2h} for h ≥ 3.

(iii) C2h := {0, 2, 4, . . . , 2h} ∪ {1} for h ≥ 2.

(iv) C2h+1 := {0, 2, 4, . . . , 2h} ∪ {1, 2h+ 1} for h ≥ 3.

Proof. One who has read ahead will realize that, for h > 5, each of these is an instance of a residually

concentrated atom as defined and explored in Chapter 6. The proof is then finished by citing Proposition

6.1.4 and applying one of the algorithms from Section 5.1 to handle the comparatively cases when h ≤ 5.
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However, we will also give a direct proof which has the benefit of giving insight into the way in which these

atoms were constructed, and into how one might generally argue about factorizations in Pfin,0(N).

Beginning with (i), we suppose that there are X,Y ∈ Pfin,0(N) so that B2h−1 = X + Y . Without loss of

generality, 1 ∈ X . Then Y ⊆ B2h−1 cannot contain any nonzero elements; if y ∈ Y \ {0} then 1+ y ∈ B2h−1

is even, a contradiction. Thus Y = {0} and B2h−1 is an atom.

For (ii), we start similarly by assuming that B2h = X+Y and that 1 ∈ X . If y ∈ Y \{0}, then 1+y ∈ B2h

is even, meaning that y = 2h− 1. We now have that Y = {0} or Y = {0, 2h− 1}. In the first case, we are

done; but we are nearly done in the second case as well. Since max(X) + max(Y ) = 2h, it must be that

X = {0, 1}, so B2h = X + Y = {0, 1}+ {0, 2h− 1} = {0, 1, 2h− 1, 2h}. However, this is impossible since we

have assumed that h ≥ 3.

Turning to (iii), suppose that C2h = X+Y and that 1 ∈ X . We know that if Y has a nonzero even element

then C2h = X + Y contains the odd element y + 1 > 1. Thus Y ⊆ {0, 1}; but then C2h ⊆ {0, 1}+ {0, 1} =

{0, 1, 2}, which is incompatible with the assumption that h ≥ 2.

Finally, for (iv), let X and Y be subsets such that C2h+1 = X+Y , and say 1 ∈ X . Similarly to (iii), we see

that Y can have no nonzero even elements y unless y = 2h. This means that the only possibilities are Y = {0}
(in which case we are done), Y = {0, 1}, or max(Y ) = 2h. These last two cases are symmetric, so suppose

max(Y ) = 2h. Then X = {0, 1} and Y ⊆ {0, 1, 2h}, so C2h+1 ⊆ {0, 1} + {0, 1, 2h} = {0, 1, 2, 2h, 2h+ 1}.
This last inequality is seen to be infeasible by recalling that h ≥ 3.

We will see that the above constructions are helpful because sums of small numbers of these atoms will

be able to form relatively large intervals.

Lemma 5.2.4. If q ≥ r ≥ 3 then [0, q + r] ∈ A(q) +A(r); that is, there are atoms Aq ∈ A(q) and A′
r ∈ A(q)

such that Aq +A′
r = [0, q + r].

Proof. There are several cases to consider; roughly, these amount to when both, one of, or none of q and r

is large.

Case 1: q, r ≥ 6.

Subcase 1.a: q = 2s and r = 2t+ 1. Then

B2s + C2t+1 ⊇ {0, 1}∪ {2s− 1, 2s}+ {0, 1, 2, 4, . . . , , 2t, 2t+ 1}

= [0, 2t+ 2] ∪ [2s− 1, 2s+ 2t+ 1]

and, switching the roles of s and t in the calculation we just saw, we also have

B2s + C2t+1 ⊇ [0, 2s+ 1] ∪ [2t, 2s+ 2t+ 1].

Thus we conclude that [0, 2s+ 2t+ 1] ⊆ B2s + C2t+1 ⊆ [0, 2s+ 2t+ 1] and so Br + Cq = [0, q + r].
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Subcase 1.b: q = 2s+ 1 and r = 2t. Because the above computation does not depend on which of q and

r is smaller, we may recycle that argument to see that Cq +Br = [0, q + r].

Subcase 1.c: q = 2s+ 1 and r = 2t+ 1.

One can show that Cq + Cr = [0, q + r] by a calculation similar to the one above.

Subcase 1.d: q = 2s and r = 2t+ 1.

Again, similar methods will tell us that Bq + Cr = [0, q + r].

Case 2: 3 ≤ r ≤ 5 < q.

There are only a few possibilities here. Let A3 = {0, 1, 3}, A4 = {0, 2, 3, 4}, and A5 = {0, 2, 4, 5}; then we

can see that Bq +Ar = [0, q + r] when q is even and Cq +Ar = [0, q + r] when q is odd.

Case 3: 3 ≤ r ≤ q ≤ 5.

This leaves only a handful of (q, r) pairs to check; namely (3, 3), (4, 3), (5, 3), (4, 4), (5, 4), and (5, 5). By

judicious choice of atoms like A3, A4, and A5 in the previous case, the result can be realized for each of these

pairs.

Proposition 5.2.5. For h ≥ 2, each of the following subsets of N is an atom in Pfin,0(N):

(i) D3h := {0, 3, 6, . . . , 3h} ∪ {1, 3h− 1}.
(ii) D3h+1 := {0, 3, 6, . . . , 3h} ∪ {1, 3h+ 1}.
(iii) D3h+1 := {0, 3, 6, . . . , 3h} ∪ {1, 3h+ 1, 3h+ 2}.

Proof. As in the proof of Proposition 5.2.3, we note that these sets may be verified to be atoms by applying

Proposition 6.1.4. Yet we will, once again, outline a more direct argument for the sake of clarity.

The arguments for each are similar, but (i) and (ii) are comparatively easier than (iii), so we will just

prove (iii). Suppose that there are X and Y so that D3h+2 = X+Y . We may freely suppose that 1 ∈ X this

implies that Y ⊆ {0, 3h, 3h+ 1}. We cannot have max(Y ) = 3h, for then max(X) = 3h+ 2 −max(Y ) = 2.

This is impossible since 2 /∈ D3h+2.

If max(Y ) = 3h + 1 then X = {0, 1}, so D3h+2 ⊆ {0, 1} + {0, 3h, 3h + 1} = {0, 1, 3h, 3h+ 1, 3h + 2}.
However, this cannot be the case since 3, 6 ∈ D3h+2. The only remaining possibility is that Y = {0}, which
implies that D3h+2 is an atom, as we wished.

These atoms will help us obtain more decompositions of intervals, with the following rough justification:

we know that 3N + 2N = N \ {1}. We hope to mimic this for finite subsets by adding a truncated (and

slightly modified) copy of 3N to a truncated copy of 2N. To make this precise, we have the following lemma.

Lemma 5.2.6. For q ≥ 6 and t ≥ 2, there is an atom A ∈ A(q) with A+ t{0, 2} = [0, q + 2t].

Proof. This essentially depends on the congruence class of q modulo 6. In the spirit of the argument from

the preceding proposition, we demonstrate the result for the most representatively difficult of these cases.
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Suppose q ≡ 0(mod 6), so q = 3h for some even h. We first note that

D3h + t{0, 2} ⊇ {0, 6, . . . , 3h}+ {0, 2, 4, . . . , 2t}

= {0, 2, 4, . . . , 3h+ 2t}

and similarly that

D3h + t{0, 2} ⊇ {3, 9, . . . , 3(h− 1)} ∪ {1, 3h− 1}+ {0, 2, 4, . . . , 2t}

= {3, 5, . . . , 3h− 3 + 2t} ∪ {1, 3h− 1 + 2t}

= {1, 3, 5, . . . , 3h+ 2t− 1}

Putting these together, we see that D3h + t{0, 2} = [0, 3h+ 2t].

Remark 5.2.7. The most important details that make this argument work are

(i) 1, q − 1 ∈ Dq

(ii) {0, 2, 4} ⊆ t{0, 2}

Point (i) enables us to “perturb” t{0, 2} in a way which ensures that the points near the ends of the desired

interval are included. Point (ii) is significant because it allows us to include the middle portion of the interval

by covering it with “patches” of length 6. This is also a comforting constraint in light of Proposition 5.2.2,

which says that Dq + {0, 2} cannot be an interval since Dq is an atom.

Theorem 5.2.8. Let n ≥ 1 and suppose P is a partition of n with P /∈ {(n − 2, 2)} ∪ {(m, 2 . . . , 2) : 2 ≤
m ≤ 5}. Then ZP ([0, n]) ̸= ∅. In particular, for n ≥ 8, |T([0, n])| = p(n) − 4, where p(n) is the number of

integer partitions of n.

Proof. It is helpful to first classify the ways in which P can avoid being a partition not of the types prescribed

above. We have several possibilities.

Case 1: P = (q, 2, . . . , 2) with m ≥ 6.

Here, Lemma 5.2.6 implies that ZP ([0, n]) ̸= ∅.
Case 2: P has two parts, both of which are larger than 2.

The content of Lemma 5.2.4 is exactly that ZP ([0, n]) ̸= ∅ for any such partition.

Case 3: P = (m1, . . . ,mk) with k ≥ 3 and m1 ≥ m2 ≥ 3.

To resolve this possibility, we proceed by induction. The constraints on P imply that n ≥ 8. Enumerating

the factorizations of [0, 8] by hand (or, preferably, by computer) is not prohibitively difficult and indeed

confirms that [0, 8] has factorizations of every type other than those excluded in the statement of the theorem.

Suppose now that n > 8 and, for 8 ≤ m < n, [0,m] has factorizations of each type fitting the description

in (iii). Consider P ′ = (m1, . . . ,mk−1). If k = 3 then P ′ = (m1,m2) is a partition of n −mk as described

in case 2, and if k > 3 then P ′ is as in case 3. In any event, either by the result from case 2 or by our
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inductive assumption, we know that ZP ′

([0, n − mk]) ̸= ∅. Taking a′ ∈ ZP ′

([0, n − mk]), we have that

a := a′ ∗ {0,mk} ∈ ZP ([0, n]).

Case 4: P has smallest part equal to 1.

Finally, we have the partitions described in (iv): those with smallest part equal to 1. The result is

reasonable to check by hand for n = 1, 2, 3. We proceed by induction on n, assuming that n > 3 and that

the proposition is true for m < n. Let us write P = (m1, . . . ,mk, 1).

If k = 1, we can see that Cn−1 ∗ {0, 1} ∈ ZP ([0, n]), where Cn−1 is one of the atoms constructed

in Proposition 5.2.3. Similarly, if k = 2 we have by Lemma 5.2.4 that there are atoms A ∈ A(m1) and

A′ ∈ A(m2) with A+A′ = [0,m1 +m2], so A ∗A′ ∗ {0, 1} ∈ ZP ([0, n]).

Now assume that k > 2 and write P ′ = (m1, . . . ,mk). If mk = 1, then there is some a′ ∈ ZP ′

([0, n− 1])

by induction, so that a = a′ ∗ {0, 1} ∈ ZP ([0, n]). However, if mk > 1, set Q = (m1, . . . ,mk−1, 1) (a

partition of n−mk). Again, we have by induction that there is some b ∈ ZQ([0, n−mk]). Since k > 2 and

mk ≤ mi for all i ≥ 1, we also have that mk < n/2 and so n −mk > mk. This allows us to conclude that

a = b ∗ {0,mk} ∈ ZP ([0, n]), proving what we wished.

5.3 Subsums and Non-Intervals

We have just seen that intervals of the form [0, n] have factorizations of most partition types. There is a very

sharp dichotomy between the wildly varied factorization behavior of intervals and that of any other subset

of N, which we will see presently.

We have just seen that intervals of the form [0, n] have factorizations of almost every partition type.

However, this section will demonstrate that non-intervals a very far from satisfying this sort of behavior.

This helps us begin to distinguish intervals from the rest of Pfin,0(N) in a quantifiable way.

Definition 5.3.1. Let m1, . . . ,mk be integers. We will refer to S = (m1, . . . ,mk) as a sequence of integers.

Define the set of subsums of S to be Σ(S) :=
{∑

i∈I mi : I ⊆ [1, k]
}

.

Remark 5.3.2. The notion of “set of subsums” of a sequence can be compared with the similar notion which

appears in much of the literature on zero-sum problems in finite abelian groups; see [GHK06, Definition 5.1.1]

or many papers on zero-sum problems for similar notation in a different context. Our definition is nearly

identical, except for its inclusion of the empty sum. Since we are not focused on the appearance of zero

sums, including the empty sum does not put us at any disadvantage in our setting. To the contrary, it is

convenient for us as it allows us to express the set of subsums of S = (m1, . . . ,mk) as a sum in Pfin,0(Z):

Σ(S) = {0,m1}+ · · ·+ {0,mk}.

Lemma 5.3.3. Let m1, . . . ,mk be positive integers with m1 ≥ · · · ≥ mk ≥ 1 and let n = m1 + · · ·+mk. If

k > n/2 then Σ(m1, . . . ,mk) = [0, n].
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Proof. To prove this, we will induct on k; if k = 1 > n/2, then n ≤ 1 and the result is trivial. Now

suppose k > 1 and that, for any sequence T consisting of ℓ < k terms satisfying ℓ > max(Σ(T ))/2, Σ(T ) =

[0,max(Σ(T ))].

First observe that the maximum term of S is at least the average of the terms of S; that is, m1 ≥ n
k .

From here, we have
m2 + · · ·+mk

k − 1
=

n−m1

k − 1
≤ n− n/k

k − 1
=

n

k
< 2

Thus k − 1 > m2+···+mk

2 and we can apply the inductive hypothesis to T := (m2, . . . ,mk). Now we have

Σ(T ) = [0, n−m1], so Σ(S) = {0,m1}+ [0, n−m1] = [0, n−m1] ∪ [m1, n]. This union of intervals is equal

to [0, n] if m1 ≤ m2 + · · ·+mk + 1, so all that remains is to verify this last inequality.

From our assumption that k > n/2, we have k − 1 ≥ (n− 1)/2, so

m2 + · · ·+mk ≥ 1 + · · ·+ 1 = k − 1 ≥ n− 1

2
.

Using this inequality twice, we have that

m1 = n− (m2 + · · ·+mk) ≤ n− n− 1

2
=

n+ 1

2
≤ m2 + · · ·+mk + 1,

exactly as we wished.

Lemma 5.3.4. Let n be even and let P be a partition into n/2 parts. Then one of the following holds:

• Σ(P ) = [0, n].

• Σ(P ) = [0, n] \ {n/2} and P = (n/2 + 1, 1, . . . , 1).

• Σ(P ) = 2 · [0, n/2] and P = (2, . . . , 2)

Proof. Let P = (m1, . . . ,mk) with k = n/2 and m1 ≥ · · · ≥ mk ≥ 1. Note that the average size of the parts

of P is (m1 + · · ·+mk)/k = n/(n/2) = 2. Thus the smallest part mk satisfies mk ≤ 2.

If mk = 2 then m1 = n − (m2 + · · · + mk) ≤ n − (k − 1)(2) = n − (n/2 − 1)2 = 2. Thus we have

m1 = · · · = mk = 2 and so Σ(P ) = {0, 2} + · · · + {0, 2} = {0, 2, . . . , n} = 2 · [0, n/2] (recalling that

2 ·X = {2x : x ∈ X}, as opposed to 2X = X +X).

Suppose now that mk = 1. Then, since the average of the parts mi is equal to 2, we must have that the

greatest part m1 > 2. As a result,

m2 + · · ·+mk

k − 1
=

n−m1

n/2− 1
<

n− 2

n/2− 1
= 2,

so k − 1 > (m2 + · · ·+mk)/2; by Lemma 5.3.3, Σ(m− 2, . . . ,mk) = [0, n−m1].

Now we have Σ(P ) = {0,m1}+[0, n−m1] = [0, n−m1]∪ [m1, n], so Σ(P ) = [0, n] provided 2m1 < n+1.
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If not, then 2m1 ≥ n+ 2, so m1 ≥ n+2
2 . From this, it follows that

m2 + · · ·+mk = n−m1 ≤ n− n+ 2

2
=

n

2
− 1 = k − 1.

Since each mi ≥ 1, we must have m2 = · · · = mk = 1, so P = (n/2 + 1, 1, . . . , 1) and Σ(P ) = [0, n/2− 1] ∪
[n/2 + 1, n].

Theorem 5.3.5. Let X ∈ Pfin,0(N) and say n := max(X).

(i) If there is k ∈ L(X) with k > n/2 then X = [0, n]

(ii) If n/2 ∈ L(X) then X = [0, n], X = [0, n] \ {n/2}, or X = (n/2) · {0, 2}

Proof. Begin with (i): let n = max(X) and let a ∈ Z(X) be a factorization with length |a| = k. Then there

are integers m1 ≥ · · · ≥ mk ≥ 1 and atoms Ai ∈ A(mi) with a = A1 ∗ · · · ∗Ak. The result is immediate from

Lemma 5.3.3, since we have

X = A1 + · · ·+Ak ⊇ {0,m1}+ · · ·+ {0,mk} = Σ(m1, · · · ,mk) = [0, n]

and we know X ⊆ [0,max(X)] = [0, n].

The argument for (ii) is identical, except we instead use Lemma 5.3.4.

Corollary 5.3.6. If X ∈ Pfin,0(N) and X is not an interval or an atom, then L(X) ⊆ [2,max(X)/2]. In

particular, X has no factorizations of partition type P for any P with |P | > max(X)/2.

Proof. This is immediate, as it is the contrapositive of Theorem 5.3.5.

5.4 An Aside on Asymptotic Density in Numerical Monoid Rings

To complete our discussion of partition types, we show an application of the idea of partition types to an

area seemingly unrelated to power monoids. Rather than being a direct application of the concepts and

techniques we have formulated, it represents a more abstract ideological connection to the type of thinking

employed in the previous sections. An optimist might hope that the success found in the techniques employed

here can be extended far beyond the present scope.

The particular problem addressed here is directly informed and inspired by the work of S. Talbott,

C. O’Neill, R. Edmonds, and B. Kubik in [EKOT20]. They show that the atomic density of F2[x2, x3] is

asymptotically zero (see their Sections 2 and 3) and go on to give (in Section 4) an exact formula for counting

the atoms in F2[x2, x3] of any fixed degree. Here, we see that their approach can be generalized to show

that the atomic density in any numerical monoid polynomial ring is asymptotically zero. This is but one of

many questions along these lines in what promises to be a meaningful expansion on the study of numerical

monoids.
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Definition 5.4.1. A numerical monoid is an additive submonoid H ≤ N such that N \H is a finite set.

We set G(H) := N\H . The elements of this set are called the gaps of H , and g(H) := |G(H)| is called the

genus of H . Moreover, since G(H) is finite, it has a maximum; F (H) := max(G(H)) is called the Frobenius

number of H . Finally, for a finite set S = {s1, . . . , sr} ⊆ N, we will denote the numerical monoid generated

by S by ⟨s1, . . . , sr⟩.

We wish to study numerical monoid algebras, a family of polynomial rings constructed from numerical

monoids. These have been studied before in [ACIS93], [AJ95], and [Bar06], among other places.

Definition 5.4.2. Let H be a numerical monoid and let K be a field. Then the numerical monoid ring of

over K associated to H is K[H ] := K[xh : h ∈ H ].

Note that, if H = ⟨S⟩, then we may of course write K[H ] = K[xs : s ∈ S].

Example 5.4.3. Let H = ⟨3, 4⟩ = {0, 3, 4, 6, 7, 8, . . .} be the numerical semigroup generated by 3 and 4.

Then G(H) = {1, 2, 3, 5} and F (H) = 5. For any field K, K[H ] = K[x3, x4, x6, x7, x8, . . . ] ⊆ K[x] is the

ring of polynomials with coefficients in K whose xd coefficient is zero for d = 1, 2, 3, 5.

Before moving onward, we set some notation for some quantities which are necessary in the discussion

that follows.

Definition 5.4.4. LetK be a field and let n ∈ N. For any subset S ⊆ K[x], let S(n) := {f ∈ S : deg(f) = n}.
Let H be a numerical monoid, and let q be a prime power. For any n ∈ N, we define

aHq (n) := #{f ∈ Fq[H ](n) : f is irreducible in Fq[H ]}

to be the number of irreducibles in Fq[H ] of degree n. For convenience, we write ρHq (n) := aHq (n)/|Fq[H ](n)|
for the proportion of degree-n elements of Fq[H ] which are irreducible. The function ρHq is called the atomic

density of Fq[H ]. For the special case when H = N, we let aq(n) := aNq (n) and ρq(n) := ρNq (n).

The following can be considered the classical case of the main result of this section.

Proposition 5.4.5. Let q be a prime power and let n ∈ N. Then the number aq(n) of degree-n irreducibles

in Fq[x] satisfies aq(n) ≤ qn

n . In particular, ρq(n) → 0 as n → ∞.

Proof. This can be argued by counting the elements of Fqn and then applying the Möbius inversion formula.

We do not include the proof here, as it has already been presented well in [DF91, Section 14.3] and [LN97,

Section 2.3].

We seek to understand the atoms of Fq[H ], for an arbitrary numerical monoid H , in terms of the

irreducibles of Fq[x]. This next lemmas will aid us in doing so.

Lemma 5.4.6. Let q be a prime power, let N ∈ N be positive, and let k ≥ qN−1. If f1, . . . , fk ∈ Fq[x]

with fi(0) ̸= 0 then there is some a sub-product f of f1 . . . fk with f ∈ Fq + xNFq[x]. That is, there are

1 ≤ i1 < · · · < iℓ ≤ k with f = fi1 · · · fiℓ ∈ Fq + xNFq[x].
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Proof. If N = 1 then Fq + xNFq[x] = Fq[x], so the statement is trivial. Suppose, by way of induction, that

the statement of the lemma is true for some N ≥ 1, and let f1, . . . , fk ∈ Fq[x] with k ≥ qN and fi(0) ̸= 0 for

all i ≤ k.

Since k ≥ qqN−1, we can inductively apply the lemma q times to find g1, . . . , gq ∈ Fq + xNFq[x] with

g1 · · · gq|f1 · · · fk. To be precise, we may treat the qN polynomials as q separate collections of qN−1 poly-

nomials, applying the lemma to each collection. Notice, since each fi(0) ̸= 0, that any factor of f1 · · · fk –

in particular, each of the gi – also has nonzero constant term. Replacing gi with gi/gi(0) where needed, we

may assume that gi(0) = 1 for every i ∈ [1, q]

Let ai be the xN coefficient of gi, so that gi = aixN+1(mod xN+1). We then see, whenever 1 ≤ s < t ≤ q,

that

gs · · · gt ≡ (asx
N + 1) · · · (atxN + 1) ≡

(
t
∑

i=s

ai

)

xN + 1 (mod xN+1).

Now, if one of the q sums
∑t

i=1 ai for t ∈ [1, q] is zero, we see that h := g1 · · · gt ∈ Fq + xNFq[x]. On the

other hand, if none of these sums is zero, then two of them must be the same; suppose, for some s < t, that
∑s

i=1 ai =
∑t

i=1 ai. Then
∑t

i=s+1 ai =
∑t

i=1 ai −
∑s

i=1 ai = 0, so we have that h := gs+1 · · · gt has no xN

term. In either case, we have found an h ∈ Fq + xN+1Fq[x] such that h|g1 · · · gq|f1 · · · fk, as we wished.

Lemma 5.4.7. Let K be a field and H be a numerical monoid. Suppose g ∈ K[H ] with g(0) ̸= 0 and

h ∈ K[x] such that gh ∈ K[H ]. Then h ∈ K[H ].

Proof. Suppose to the contrary that h /∈ K[H ]. Then, writing h =
∑n

j=0 bjx
j , let d = min{j : bj ̸= 0 and j /∈

H}. Let g =
∑m

i=1 aix
i; then, since gh ∈ K[H ], the degree-d term of gh in 0. On the other hand, we may

also express the degree-d term of gh in terms of the ai and bj to get that

∑

i+j=d

aibj = 0

Since s + t ∈ H for all s, t ∈ H , any pair (i, j) appearing in the above sum must satisfy i /∈ H or j /∈ H .

However, ai = 0 for all i /∈ H and, because of the minimality of d, bj = 0 for all j /∈ H with j < d. As a

result, the only nonzero term in the sum is the (i, j) = (0, d) term, a0bd. Recalling that a0 = g(0) ̸= 0 and

that bd ̸= 0 by definition, a0bd ̸= 0. Thus gh has a nonzero xd term, which contradicts the assumption that

gh ∈ K[H ] and finishes the proof.

We can now give a characterization of the irreducibles of Fq[H ] in terms of those of Fq[x].

Proposition 5.4.8. Let H be a numerical monoid and let f ∈ Fq[H ] be irreducible. Then f = xmf1 · · · fk,
where

• f1, . . . , fk ∈ Fq[x] are irreducible with fi(0) ̸= 0 for each i ∈ [1, k]

• 0 ≤ m < 2(F (H) + 1)
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• 1 ≤ k < qF (H).

Proof. For our later convenience and to match our earlier notation, we will let N = F (H) + 1. Suppose

f ∈ Fq[H ] is irreducible; if f is also irreducible in Fq[x] then we are done, so suppose otherwise.

Case 1: x does not divide f . Then we may write f = f1 · · · fk for some irreducibles f1, . . . , fk ∈ Fq[x]

(and fi(0) ̸= 0 for each i). Suppose k ≥ qF (H) = qN−1; then, by Lemma 5.4.6, there is a g|f1 . . . fk with

g ∈ Fq + xNFq[x]t. Let h = (f1 · · · fk)/g. Since gh = f1 · · · fk = f ∈ Fq[H ], we must have that g(0) ̸= 0

(otherwise f(0) = 0 and f would be divisible by x). Now, by Lemma 5.4.7, h ∈ K[H ], which produces a

contradiction to the irreducibility of f in Fq[H ] and implies that k < qF (H).

Case 2: The remaining case is that f = xmf1 · · · fk, with m maximal (so x does not divide f1 · · · fk).
We need to show that m < 2(F (H) + 1) = 2N and that k < q. The first part is easy: if m ≥ 2N

then we may write f = xm−N (xNf1 · · · fk). Now we have produced a factorization of f in Fq[H ], for

xm−N , xN (f1 · · · fk) ∈ Fq + xNFq[x] ⊆ Fq[H ].

All that remains is to manage k; suppose k ≥ qN−1. Since x does not divide f1 · · · fk, we have that

fi(0) ̸= 0 for each i ≤ r and, as before, Lemma 5.4.6 gives us a g ∈ Fq + xNFq[x] with g|f1 · · · fk. Then,

choosing h ∈ Fq[x] so that gh = f1 · · · fk, we now wish to show that xmh ∈ Fq[H ]. Noting that g(xmh) ∈
K[H ] and g(0) ̸= 0 (since g|f1 · · · fk), Lemma 5.4.7 implies that xmh ∈ K[H ]. This yields a contradiction

and we conclude, as in the previous case, that k < q.

Proof. For our later convenience and to match our earlier notation, we will let N = F (H) + 1. Suppose

f ∈ Fq[H ] is irreducible; if f is also irreducible in Fq[x] then we are done, so suppose otherwise.

Case 1: x does not divide f . Then we may write f = f1 · · · fk for some irreducibles f1, . . . , fk ∈ Fq[x]

(and fi(0) ̸= 0 for each i). Suppose k ≥ qF (H) = qN−1; then, by Lemma 5.4.6, there is a g|f1 . . . fk with

g ∈ Fq + xNFq[x]t. Let h = (f1 · · · fk)/g. Since gh = f1 · · · fk = f ∈ Fq[H ], we must have that g(0) ̸= 0

(otherwise f(0) = 0 and f would be divisible by x). Then we claim that h ∈ Fq[H ]; if not, then there is

some d ∈ G(H) so that the xd term of h is axd for some a ∈ Fq \ {0}. Consequently, the xd coefficient of

f = gh is g(0)a ̸= 0, so f /∈ Fq[H ], a contradiction. However, this implies that g, h ∈ Fq[H ], which produces

a contradiction to the irreducibility of f in Fq[H ] and implies that k < qF (H).

Case 2: The remaining case is that f = xmf1 · · · fk, with m maximal (so x does not divide f1 · · · fk).
We need to show that m < 2(F (H) + 1) = 2N and that k < q. The first part is easy: if m ≥ 2N

then we may write f = xm−N (xNf1 · · · fk). Now we have produced a factorization of f in Fq[H ], for

xm−N , xN (f1 · · · fk) ∈ Fq + xNFq[x] ⊆ Fq[H ].

All that remains is to manage k; suppose k ≥ qN−1. Since x does not divide f1 · · · fk, we have that

fi(0) ̸= 0 for each i ≤ r and, as before, Lemma 5.4.6 gives us a g ∈ Fq + xNFq[x] with g|f1 · · · fk. Then,

choosing h ∈ Fq[x] so that gh = f1 · · · fk, we now wish to show that xmh ∈ Fq[H ]. However, since

g(xmh) = f ∈ Fq[H ], we can argue this in the same manner as in Case 1 (with our xmh playing the

role of h from Case 1). This yields a contradiction and we conclude, as in the previous case, that k < q.

Before finally reaching our main goal for the section, we need one more auxiliary result.
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Lemma 5.4.9. Let n ≥ k ≥ 1. Then

∑

m1,...,mk

1

m1 · · ·mk
≤ 2k−1 logk−1(n)

n
,

where the sum is taken over all partitions (m1, . . . ,mk) of n into k parts.

Proof. The result trivially holds If k = 1 because there is only one partition of n into one part. To show the

general case, we proceed by induction on k; suppose the lemma holds for a fixed k ≥ 1. We will show that

it holds for k + 1. For our later convenience, let M := ⌊n/(k − 1)⌋.

∑

m1,...,mk+1

1

m1 · · ·mk+1
≤

M
∑

m=1

1

m

∑

m1,...,mk

1

m1 · · ·mk
(inner sum taken over partitions of n−m)

≤
M∑

m=1

1

m

2k−1 logk(n−m)

n−m
(using the inductive hypothesis)

≤ 2k−1 logk−1(n)
M
∑

m=1

1

m(n−m)
(1)

Now, because 1
x(n−x) is decreasing on the interval (0, n/2) (and M = ⌊n/(k−1)⌋ ≤ n/2), a right Riemann

sum of width-1 rectangles is an under approximation of the area under the graph of 1
x(n−x) from x = 0 to

x = n/2. In particular, we may replace the sum in the last line with an integral to get

M
∑

m=1

1

m(n−m)
≤
∫ M

1

1

x(n− x)
dx

=
1

n

∫ M

1

[
1

x
+

1

n− x

]

dx (partial fraction decomposition of the integrand)

=
1

n

[
∫ M

1

1

x
dx+

∫ n−1

n−M

1

u
du

]

(substituting u = n− x)

=
1

n
[log(M)− log(1) + log(n− 1)− log(n−M)]

=
1

n
log

(
M(n− 1)

n−M

)

≤ 1

n
log(n2)

=
2

n
log(n) (2)
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Finally, stringing together the inequalities (1) and (2), we have

∑

m1,...,mkk+1

1

m1 · · ·mk+1
≤ 2k−1 logk−1(n)

(
2

n
log(n)

)

=
2k logk(n)

n

As we wished to show.

Now we are ready to prove our main result.

Theorem 5.4.10. Let H be a numerical monoid and let q be a prime power. Then lim
n→∞

ρHq (n) = 0.

Proof. Let n ∈ N. Since we wish to calculate a limit as n → ∞, we may assume n > F (H). Any polynomial

f ∈ Fq[H ](n) has the form f =
∑n

i=0 aix
i, where an ∈ Fq \ {0}, ai = 0 for all i ∈ G(H), and the remaining

ai can be freely chosen from Fq. Thus |Fq[H ](n)| = (q − 1)qn−g(H).

Next, we can make crude estimates on the number of each of the types of irreducibles from the char-

acterization given in Proposition 5.4.8. Let A≠0(n) = |{f ∈ Fq[H ](n) : f is irreducible and f(0) ̸= 0}| and
A0(n) = |{f ∈ Fq[H ](n) : f is irreducible and f(0) = 0}|.

Let M := qF (H); A≠0(n) is the number of degree-n elements which are products of k irreducibles for some

k ∈ [1,M−1]. This quantity is certainly no larger than the number of all tuples (f1, . . . , fk) of k irreducibles

of Fq[x] with k ∈ [1,M−1] and deg(f1 · · · fk) = n. For any such tuple, we know that deg(f1)+· · · deg(fk) = n,

so we can take a sum over all partitions of n into fewer than M parts to help us estimate A≠0(n) in the

following way:

A≠0(n) ≤

Number of degree n products
of k irreducibles of Fq[x]

︷ ︸︸ ︷
∑

m1,...,mk

k<M

aq(m1) · · · aq(mk)

=
∑

m1,...,mk

(
qm1

m1

)

· · ·
(
qmk

mk

)

=
∑

m1,...,mk

qn

m1 · · ·mk
(∗)

We can handle A0(n) similarly; for an irreducible f ∈ Fq[H ] which can be written as f = xmf1 · · · fk in

Fq[x], we similarly observe that deg(m1)+ · · ·+deg(mk) = n−m. Because m can take on at most 2F (H)+1

different values, we can estimate A0(n) (rather carelessly) by using the same bound we found for A≠0(n) in

(∗) another 2F (H) + 1 times. This yields that

aHq (n) = A≠0(n) +A0(n) ≤ (2F (H) + 2)
∑

m1,...,mk

k<M

qn

m1 · · ·mk
.
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Now we are in a position to show that limn→∞ ρHq (n) = 0:

ρHq (n) =
aHq (n)

|Fq[H ](n)|

≤ 2F (H) + 2

(q − 1)qn−g(H)

∑

m1,...,mk

k<M

qn

m1 · · ·mk

= C
M
∑

k=1

∑

m1,...,mk

1

m1 · · ·mk
(letting C := (2F (H) + 2)qg(H)/(q − 1))

≤ C
M
∑

k=1

2k−1 logk−1(n)

n
(by Lemma 5.4.9)

From here we can see that each summand tends to 0 as n → ∞ (and the number M of summands does not

depend on n), so it follows that ρHq (n) → 0 as n → ∞.
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Chapter 6

Enumerating Factorizations of Intervals

This chapter will continue to focus on the natural power monoid Pfin,0(N) and on the intervals [0, n]. We saw

in Theorem 5.2.8 that intervals have factorizations of almost every partition type, which already implies the

cardinality of ZPfin,0(N)([0, n]) is at least about as large as p(n), which is asmpytotic to 1
4n

√
3
exp

(

π
√

2n
3

)

(see [HR00], [Erd42], or [Nat02]). Thus the cardinality of ZPfin,0(N)([0, n]) grows at least sub-exponentially

in n; we show here that it in fact grows exponentially (Theorem 6.3.4). We will build toward this goal in

several steps, beginning with the construction of a large and easily parameterizable family of atoms.

6.1 Construction of Residually Concentrated Atoms

Definition 6.1.1. Let m ≥ 2, r ∈ [0,m− 1]. We will say that S ∈ Pfin,0(N) is r-concentrated (modulo

m) if

|S>0 ∩ (Nm+ t)| ≤ 1 for all t ∈ [0,m− 1] \ {r}. (∗)

Equivalently, if S is r-concentrated, then there are (unique) R,B ⊆ N such that

• 0 /∈ R ⊆ Nm+ r;

• 0 /∈ B ⊆ N \ (Nm+ r);

• S = {0} ∪R ∪B;

• For each b ∈ B and s ∈ S>0, s ≡ b(mod m) implies that s = b.

For our later convenience, let Xm,r be the collection of all subsets of N which are r-concentrated modulo

m.

We claim that many elements of the collection Xm,r are atoms of Pfin,0(N). Toward proving this, we give

the following lemmas. Throughout what follows, m, r, R, and B are all assumed to be as in Definition 6.1.1

unless otherwise specified.

Lemma 6.1.2. Let Z := {0} ∪ R ∪ B ∈ Xm,r and suppose that Z = X + Y . If there is x ∈ X with x ̸≡ 0

(mod m) then |Y ∩R| ≤ 1.
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Proof. If Y ∩ R = ∅ then the result is trivial, so suppose y, y′ ∈ Y ∩ R. Then x + y ≡ x + y′ ̸≡ r (mod m)

so, by the r-concentratedness of Z (condition (∗) in Definition 6.1.1), x + y = x + y′. From here it is clear

that y = y′ and the result follows.

The next lemma amounts merely to unpacking a sum decomposition of an r-concentrated set, but a

special case of this result will serve us several times in constructing atoms out of members of Xm,r.

Lemma 6.1.3. Let Z := {0} ∪ R ∪ B ∈ Xm,r, suppose that Z = X + Y , and say n1 = |X ∩ R| and
n2 = |Y ∩R|.

(i) Then |R| ≤ (1 + δ0̄(Y ∩B))n1 + (1 + δ0̄(X ∩B))n2 + δ0̄(R)n1n2 + |2B ∩R|, where

δ0̄(S) =

⎧

⎨

⎩

1 if S has an element s ≡ 0 (mod m)

0 otherwise.

(ii) If n1, n2 ≤ 1 then |R| ≤ 3 + |2B ∩R|.

Proof. For (i): first observe that X = {0} ∪ (X ∩ R) ∪ (X ∩ B) and Y = {0} ∪ (Y ∩ R) ∪ (Y ∩ B). Then,

since each of X and Y is the union of 3 sets, X + Y can be written as a union of 9 sets; namely, the sums

of each pair chosen from {{0}, X ∩R,X ∩B}× {{0}, Y ∩R, Y ∩B}, as in:

X + Y = {0} ∪ (X ∩R) ∪ (X ∩B) + {0} ∪ (Y ∩R) ∪ (Y ∩B)

= {0} ∪ (X ∩R) ∪ (X ∩B) ∪ (Y ∩R) ∪ (Y ∩B)

∪ (X ∩R+ Y ∩B) ∪ (X ∩B + Y ∩R)

∪ (X ∩R+ Y ∩R) ∪ (X ∩B + Y ∩B).

To bound the size of R = R ∩ (X + Y ), we will look at the intersection of R with each of these 9 sets.

Fortunately, it is easy to see that {0}, X ∩ B, and Y ∩ B have trivial intersection with R and that X ∩ R

and Y ∩R are already subsets of R. In total, these contribute |X ∩ R|+ |Y ∩R| = n1 + n2 to our running

estimate for |R|.
We turn toward examining the remaining sets; first look at R ∩ (X ∩ R + Y ∩ B). Suppose x ∈ X ∩ R

and y ∈ Y ∩B with x+ y ∈ R; then we must have y ≡ 0(mod m). If B has such a y then

|R ∩ (X ∩R+ Y ∩B)| ≤ |X ∩R + {y}| = |X ∩R| = n1.

Otherwise, X ∩R+ Y ∩B does not intersect R, so we have |R ∩ (X ∩R+ Y ∩B)| ≤ δ0̄(Y ∩B)n1.

If r ̸≡ 0(mod m) then R ∩ (X ∩ R + Y ∩ R) = ∅; on the other hand, if r ≡ 0(mod m) then (X ∩
R + Y ∩ R) ⊆ R, so we may say that |R ∩ (X ∩ R + Y ∩ R)| ≤ δ0̄(R)n1n2. Finally, we may note that

R ∩ (X ∩B + Y ∩B) ⊆ R ∩ 2B.

52



Putting all of these observations together, we obtain our desired estimate that |R| ≤ (1+ δ0̄(Y ))n1+(1+

δ0̄(X))n2 + δ0̄(R)n1n2 + |2B ∩R|.
We can see (ii) by using what we have just proved, and by showing that at most one of δ0̄(X ∩ B),

δ0̄(Y ∩B), and δ0̄(R) is nonzero. Firstly, note that

δ0̄(R) =

⎧

⎨

⎩

1 if r = 0

0 if r ̸= 0
.

By construction, B and R don’t share any residue classes modulom, soB cannot have any elements congruent

to 0 if R does (and vice-versa). All that remains is to see that X∩B and Y ∩B cannot both have an element

congruent to 0; if they do, then there is a single b ≡ 0(mod m) (by r-concentratedness) with b ∈ X ∩ Y ∩B.

However, we immediately see that this is impossible because we would have that 2b ∈ X + Y , but 2b ≡ b,

which contradicts the r-concentratedness of X + Y . Thus δ0̄(X ∩ B) + δ0̄(Y ∩ B) + δ0̄(R) ≤ 1 and the

inequality from (i) reduces to |R| ≤ (1+ δ0̄(Y ∩B) + (1+ δ0̄(X ∩B)) + δ0̄(R) + |2B ∩R| ≤ 3+ |2B ∩R|.

Proposition 6.1.4. Let m ≥ 2, r ∈ [0,m − 1], and let A := {0} ∪ R ∪ B with R and B as in Definition

6.1.1. If

(1) B ̸= ∅ or r ̸= 0,

(2) |R| > 3 + |R ∩ 2B|, and
(3) B ̸= {b} with b ≡ 0(mod m) such that {0, b} divides A,

then A is an atom in Pfin,0(N).

Proof. Suppose A = X + Y with X,Y ̸= {0}.
Case 1: max(A) ∈ B.

Then there exist x ∈ X>0 and y ∈ Y>0 such that x+ y = max(A). Since, by r-concentratedness, max(A)

is the only element of A of its residue class modulo m, x, y ̸≡ 0(mod m). Now, by two applications of Lemma

6.1.2, |X ∩R|, |Y ∩R| ≤ 1. Using Lemma 6.1.3, we see that |R| ≤ 3 + |R ∩ 2B| < |R|, a contradiction.

Case 2: max(A) ∈ R.

Subcase 2A: There are x ∈ X ∩B and y ∈ Y ∩B so that x+ y = max(A).

Then x, y ̸≡ max(A)(mod m), so x, y ̸≡ 0(mod m) and we may proceed as in the preceding case.

Subcase 2B: There are x ∈ X ∩R and y ∈ Y ∩R so that x+ y = max(A).

Now we have that r + r ≡ r (mod m), so r = 0. Since B ⊆ A = X + Y but R +R ⊆ Nm, we must have

B ⊆ X ∪ Y . However, if b ∈ B ∩X then b + y ≡ b(mod m), which is a violation of the r-concentratedness

of A (since y ̸= 0 and so b + y ̸= b). It must be that X ∩ B = ∅ (and similarly, Y ∩ B = ∅). Now

A = X + Y = {0} ∪ (X ∩ R) + {0} ∪ (Y ∩ R) ⊆ Nm, from which we conclude that B = ∅. This is a

contradiction to condition (2) in the statment of the proposition.

Subcase 2C: There are b ∈ X ∩B and y ∈ Y ∩R such that b+ y = max(A).
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Immediately, we have that b+r ≡ r (mod m), so b ≡ 0(mod m) and r ̸= 0. By Lemma 6.1.2, |X∩R| ≤ 1.

If x ∈ X \{0, b} then x ̸≡ 0(mod m) and so we also have |Y ∩R| ≤ 1, whence we may finish by using Lemma

6.1.3 as in Case 1.

Let us suppose, instead, that X = {0, b}. If c ∈ Y ∩ B then b + c ≡ c(mod m), which violates r-

concentratedness. Thus Y ∩ B = ∅ and so Y ⊆ {0} ∪R. From this, we can deduce that since the elements

of A = X + Y are either b or congruent to r, B = {b}. This yields a contradiction of condition (3), finishing

the proof.

6.2 Nacci Numbers and Sets with Bounded Maximum Gap

Definition 6.2.1. Let S = {s0, . . . , sk} ⊆ N be a nonempty subset with s0 < · · · < sk. We will say

that, for each i ∈ [1, k], si−1 and si are consecutive elements of S, and we define the maximum gap of S

maxgap(S) := max{si − si−1 : i ∈ [1, k]} to be the largest distance between consecutive elements of S.

For a fixed h ≥ 1, let Gh := {S ⊆ N : maxgap(S) ≤ h}.

For the sake of noting some concrete examples: we have maxgap([0, n]) = 1, maxgap({0, 2, 4, 6}) = 2,

and maxgap({0, 1, 2, 4, 8}) = 4. This is meant to be a rudimentary measure of how sparse a set S is.

Our next goal, for a fixed n and h, is to estimate the number of atoms with max(A) = n and maxgap(A) ≤
h; that is, the size of the set A(n) ∩ Gh. We have just shown the existence of a fairly sizable class of atoms

(the residually concentrated atoms) with a specific structure. Our next step is to exploit this structure to

gain a lower bound on the number of these atoms. Specifically, we would like to give a lower estimate for

the number of elements of A(n) ∩ Xm,r ∩ Gh, the collection of atoms with maximum equal to n, which are

r-concentrated (modulo m), and have a maximum gap of at most h.

Given S ∈ A(n)∩Xm,r, we may write S = {0}∪R∪B, where R ⊆ [1, n]∩ (Nm+r) and B ⊆ N\ (Nm+r).

We first observe that if maxgap(R) ∪ {0, n} ≤ h then maxgap(S) ≤ h. This is because R ⊆ S ⊆ [0, n], so

the consecutive elements of S are at least as close as those of R ∪ {0, n}. Thus, to find a lower bound on

the number of possible S ∈ P(n) ∩ Xm,r ∩ Gh, it suffices to find a lower bound on the number of possible R

arising from such S. We pivot now to characterizing such R to answer this question.

Lemma 6.2.2. Let m ≥ 2, r ∈ [0,m − 1], and h ≥ 2. Then the number of subsets R ⊆ [1, n] ∩ (Nm + r)

which satisfy maxgap({0, n} ∪R) ≤ h is at least |E(⌊n/m⌋, ⌊h/m⌋)|, where

E(N, t) := {ε⃗ ∈ {0, 1}N+1 : ε⃗ has no more than t consecutive zeros}.

Proof. Begin by defining a map

E(N, t) → {R ⊆ [1, (N + 1)m] ∩ (Nm+ r) : maxgap(R ∪ {0, (N + 1)m}) ≤ tm}

ε⃗→ Rε⃗
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where, for any ε⃗ = (ε0, . . . , εN) ∈ E(N, t), we set Rε⃗ := {εk(km + r) : k ∈ [0, N ]}. We wish to show that

this map is an injection, which will then prove the statement of the lemma when we take N = ⌊n/m⌋ and

t = ⌊h/m⌋.
Let ε⃗ ∈ E(N, t). It is immediate that Rε⃗ ⊆ [1, (N + 1)m] ∩ (Nm + r) since max(Rε⃗) ≤ Nm + r. To see

that maxgap(R ∪ {0, (N + 1)m}) ≤ tm, suppose that km+ r and (k + ℓ)m+ r are the consecutive elements

of Rε⃗ which are farthest apart. Then, by the definition of E(N, t), k ≤ t, so maxgap(R ∪ {0, (N + 1)m}) ≤
(k+ ℓ)m+ r− (km+ r) ≤ ℓm ≤ tm. What we have just observed amounts to showing that the map ε⃗→ Rε⃗

is well-defined and, from here, it is not too difficult to see that the map is injective.

Now that we can reframe our question in terms of counting special binary sequences, we make an aside

on the natue of the growth E(N, t) as N increases.

Definition 6.2.3. Let t ≥ 1. We will define a function ft : N → N by ft(N) = 2N+1 if N ≤ t and

ft(N) = ft(N − 1) + · · ·+ ft(N − t− 1)

for all N > t. We shall call ft(1), ft(2), . . . the sequence of t-nacci numbers (as f1 produces the familiar

sequence of Fibonacci numbers).

One notes that our notation differs from that of D. Wolfram in [Wol98]. For instance, in his notation,

k = 2 corresponds to the ordinary Fibonacci numbers, leading us to conclude that our t is the same as his

k + 1. Our initial values are also different; in particular, the first few terms of “traditional” nacci sequences

may be zero, with the first nonzero term being equal to 1. Thus our t-nacci numbers are the same, up to

some offset of indices, as the usual (k + 1)-nacci numbers. We keep our choice of notation here for the way

in which it assists in counting binary sequences which avoid long strings of 0s, which we will make precise

now.

Proposition 6.2.4. Let E(N, t) be as in Lemma 6.2.2. Then |E(N, t)| = ft(N) (with ft as above).

Proof. For N ≤ t, any sequence ε⃗ ∈ {0, 1}N+1 trivially satisfies the condition of having no more than

t consecutive zeros, so we see easily that |E(N, t)| = 2N+1 = ft(N). All that remains is to verify that

|E(N, t)| satisfies the same recurrence relation as ft(N). We set the notation, for each s ∈ [0, t], that

Es(N, t) := {ε⃗ ∈ E(N, t) : εs = 1 and εi = 0 for all i ∈ [0, s− 1]} (note that these sets are all well-defined,

for we adopt the convention that our sequences ε⃗ are zero-indexed; that is, of the form ε⃗ = (ε0, ε1, . . . , εN)).

We can see that E(N, t) =
⊔t

s=0 Es(N, t) for, given any ε⃗ ∈ E(N, t), the number of leading zeros in ε⃗ is

s ≤ t (this shows the left-to-right inclusion, and the other is clear by construction). To show the recurrence

from here, we merely need to determine |Es(N, t)|. We have that ε⃗ ∈ Es(N, t) if and only if

ε⃗ = (0, . . . , 0
︸ ︷︷ ︸

s leading zeros

, 1, ε⃗∗),
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where ε⃗∗ has length N+1−(s+1) = N−s, so ε⃗∗ ∈ E(N−s−1, t). Thus |Es(N, t)| = |E(N−s−1, t)| = ft(N−
s−1) which, with the disjoint union above, implies that |E(N, t)| = ft(N−1)+· · ·+ft(N−t−1) = ft(N).

Now that we have shown the atoms we are concerned with are counted (in part) by t-nacci numbers, we

borrow some general facts from [Wol98] about the rate of growth with respect to N of ft(N).

Proposition 6.2.5. Let t ≥ 1.

(i) The limit rt := lim
N→∞

ft(N+1)
ft(N) exists;

(ii) 2− 2−t < rt < 2.

Proof. Both of these facts (and others) are proved in [Wol98, Lemma 3.6 and Corollary 3.7].

6.3 Lower Bounds for Numbers of Atoms and Factorizations

Here we return to our main task of determining lower bounds for (1) the number of atoms with a given

maximum and (2) the number of factorizations of an interval. To aid us, we begin with a lemma that makes

practical use of a bounded maximum gap as a “density” condition.

Lemma 6.3.1. Let m ≥ 2, r ∈ [0,m− 1] and R ⊆ [1, n] ∩ (Nm + r) such that maxgap({0, n} ∪R) ≤ h. If

n ≥ kh then |R| ≥ k.

Proof. First observe that max(R) ≥ ⌊n/m⌋m and min(R) ≤ m. Now we note that R has |R| − 1 pairs of

consecutive elements, each of which has a difference no larger than h. Thus we get

⌊n/m⌋m−m ≤ max(R)−min(R) ≤ (|R|− 1)maxgap(R) ≤ (|R|− 1)h,

which in turn yields that

|R| ≥ (⌊n/m⌋ − 1)m

h
+ 1 =

⌊n/m⌋ − 1

h/m
+ 1 ≥ n/m− 2

h/m
+ 1 =

n− 2/m

h
+ 1 ≥ n

h
≥ k.

Now we are in a position to give a lower estimate for the number of atoms which are r-concentrated

modulo m and have fixed maximum and bounded maximum gap.

Lemma 6.3.2. Let m ≥ 2, r ∈ [0,m− 1], R ⊆ [1, n] ∩ (Nm + r), and B ⊆ N \ (Nm + r) such that, for all

b, b′ ∈ B, b ≡ b′ (mod m) only if b = b′. Set A := {0}∪R∪B and say that n := max(A). If maxgap(R) ≤ h,

|B| ≥ 2, and n > (|B|+ 3)h then A is an atom.

Proof. By construction, A is r-concentrated (modulo m). We can see that the assumption |B| ≥ 2 satisfies

conditions (1) and (3) of Proposition 6.1.4. To guarantee that A is an atom, we need to show that |R| >
3 + |R ∩ 2B|.
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Here, we note that R ∩ 2B ⊆ (Nm + r) ∩ 2B, so it suffices to estimate the number of possible pairs

(a, b) ∈ B×B such that a+ b ≡ r (mod m). Because of the assumption that B only has at most one element

of each congruence class modulo m, for any a ∈ B there is at most a single b ∈ B with a+ b ≡ r. Thus we

have |(Nm+ r) ∩ 2B| ≤ |B| and so

|R| > |B|+ 3 ≥ |(Nm+ r) ∩ 2B| ≥ |R ∩ 2B|+ 3,

where the first inequality follows from applying Lemma 6.3.1 and our assumption that n ≥ (|B|+ 3)h.

Proposition 6.3.3. Let h ≥ 2. Then, for sufficiently large n, the number |A(n)∩Gh| of atoms with maximum

equal to n and maximum gap bounded by h grows exponentially with respect to n, with a growth rate of at

least
√

(2− 2−⌊h/2⌋).

Proof. First fix m ∈ [2, h] and r ∈ [0,m − 1]. We can count the members of A(n) ∩ Xm,r ∩ Gh, which will

in turn give a lower bound for |A(n) ∩ Gh|. To enumerate members of the former, we have discovered (via

Lemma 6.3.2) that it is sufficient to count the number of

• subsets B ⊆ [1, n] \ (Nm+ r) such that |B ∩ (Nm+ s)| ≤ 1 for all s ∈ [0,m− 1] and

• subsets R ⊆ [1, n] ∩ (Nm+ r) such that maxgap({0, n} ∪R) ≤ h and |R| > |B|+ 3.

To guarantee that the atoms we enumerate have maximum equal to n, let us also impose the restriction that

n ∈ R ∪B. Whether n ∈ R or n ∈ B depends on if n ≡ r (mod m), but in either case we may always ensure

that n ∈ R ∪B.

Let us start by determining the number of feasible B. Since |B ∩ (Nm+ s)| ≤ 1 for all s ∈ [0,m− 1], we

have |[1, n] ∩ (Nm+ s)| ≥ ⌊n/m⌋ choices for each s. Assuming (in the worst case) that n ̸≡ r (mod m), one

of these choices is not free and we are forced to choose n ∈ B. This still leaves at least ⌊n/m⌋m−2 choices

for B.

Now we turn to count the subsets R fitting the specifications above. Assume n ≥ (m + 3)h. If R ⊆
[1, n] ∩ (Nm + r) such that maxgap({0, n} ∪ R) ≤ h then Lemma 6.3.1 yields that |R| > m + 2 ≥ |B| + 3

(where the second inequality follows from the restriction that B may have at most one element of any residue

class ̸≡ r modulo m). This ensures, by Lemma 6.3.2, that A := {0} ∪R ∪B is an atom.

The number of such R as specified above is at least |E(⌊n/m⌋, ⌊h/m⌋)| = f⌊h/m⌋(⌊n/m⌋) (Lemmas 6.2.2

and 6.2.4), whence Proposition 6.2.5 implies that the number of such R grows exponentially as n increases.

That is, there is some absolute constant Ch,m which depends possibly on m and h (but not on n) such that

|{R ⊆ [1, n] ∩ (Nm+ r) : maxgap({0, n} ∪R)}| ≥ f⌊h/m⌋(⌊n/m⌋) ≥ Ch,m(2− 2−⌊h/m⌋)⌊n/m⌋.

We conclude then that |A(n) ∩Gh| ≥ Ch,m(2− 2−⌊h/m⌋)⌊n/m⌋, so |A(n) ∩Gh| has an exponential growth rate

of at least (2− 2−⌊h/m⌋)1/m. One can further maximize this quantity by choosing m = 2 to obtain a growth

factor of at least
√

(2− 2−⌊h/2⌋).
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As a consequence of this, we may now produce many distinct factorizations of intervals into atoms.

Theorem 6.3.4. Let n ≥ 2. Then the number |Z([0, n])| of factorizations of the interval [0, n] into atoms

of Pfin,0(N) grows exponentially with n. Specifically, for every ε > 0 there is a constant C such that

|Z([0, n])| ≥ C
(

4
√
2− ε

)n
for all sufficiently large n.

Proof. Let P = (m1, . . . ,mk) be a partition of n such that m1 > m2. For notational hygiene, set m1 and let

Q = (m2, . . . ,mk) be the partition of n−m obtained by removing the first part of P .

Observe that, if A ∈ A(m1) ∩ Gn−m1
and a ∈ ZQ([0, n −m1]), then A ∗ a ∈ ZP ([0, n]). Indeed, we can

write A = {a0, a1, . . . , aℓ} with 0 = a0 < a1 < · · · < aℓ = m1 such that ai − ai−1 ≤ n−m1 for all i ∈ [1, ℓ].

Then

πPfin,0(N)(A ∗ a) = A+ [0, n−m1] =
ℓ⋃

i=0

([ai, ai + n−m1]) = [0, n],

where the last inequality follows since ai ≤ ai−1 + n − m1 for each i ∈ [1, ℓ], by the assumption that

maxgap(A) ≤ n−m1.

Also, suppose A,B ∈ A(m1) and a, b ∈ ZQ([0, n−m1]). Then, since m1 > m2 ≥ · · · ≥ mk, none of the

factors in b is equal to A (and similarly, none of the factors in a is equal to B). Thus A ∗ a is equivalent to

B ∗ b as a factorization in Pfin,0(N) if and only if A = B and a and b are equivalent factorizations, implying

that |ZP ([0, n])| ≥ |A(m1) ∩ Gn−m1
| · |ZQ([0, n−m1])|

From Proposition 6.3.3 it follows that, for any h ≥ 2, there is a constant Ch such that |A(M) ∩ Gh| ≥

Ch

(√
2− 2−h/2

)M
. Putting our observations together and using M := m1, we find that

|ZP ([0, n])| ≥ |A(m1) ∩ Gn−m1
| · |ZQ([0, n−m1])|
︸ ︷︷ ︸

≥1for large n

≥ C
(√

2− 2−(n−m1)
)m1

. (∗)

Now we may guarantee the desired rate of growth by making more specific assumptions about the partitions

P and Q involved above.

Assume N is large enough that 2−⌊N/2⌋ < ε and let n ≥ N . Choose a partition P = (m1, . . . ,mk) of n

such that m1 = ⌈n/2⌉; then Q = (m2, . . . ,mk) is a partition of ⌊n/2⌋. Note that |ZQ([0, ⌊n/2⌋])| ≥ 1 since

ZQ([0, ⌊n/2⌋]) ̸= ∅ by Theorem 5.2.8. Thus, using (∗) above for our specific choice of P , we obtain that

|Z([0, n])| ≥ |ZP ([0, n])|
(∗)
≥ C

(√

2− 2−⌊N/2⌋
)⌈n/2⌉

≥ C
(√

2− ε
)⌈n/2⌉ ≥ C

(
4
√
2− ε

)n

which shows that Z([0, n]) has at least the exponential growth rate we wished to demonstrate.

In the above argument, there are many choices for partitions P and Q which could have yielded similar

growth rates. By the nature of partition types, different choices of P or Q in fact yield disjoint sets of

factorizations. This means we could increase our lower estimate of |Z([0, n])|, possibly significantly. Though
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we will not pursue this here, it is worth remarking that a more thorough probe into this topic and application

of deeper analytic tools might yield a meaningfully higher rate of growth for |Z([0, n])|.
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Chapter 7

Length Sets in High-Dimensional Integer Lattices

From the point of view of geometry and other fields, setwise sums (also called Minkowski sums) of integer

lattice points are already well-studied. A geometer might typically be concerned with the nature of Minkowski

sum decompositions of polyhedra into convex polyhedra, or other questions with a similar geometric leaning

([Mor93] and [WG07] are some – but certainly not all – of the writings on problems of this sort). A arithmetic

combinatorialist, on the other hand, might care about problems such as establishing size estimates on sumsets

(comprehensive treatises on the subject include [TV06],[Gry13], or [GR09]). While these are interesting

questions on their own, they usually do not consider the algebraic aspects of setwise addition. For instance,

when geometers consider decompositions into convex polyhedra, one can effectively ignore the highly non-

cancellative nature of Minkowsi sum. Working in this way has great practical implications for geometric

problems, but leaves open many algebraic questions. We wish to determine how the inherent geometry of

the integer lattice interacts with algebraic and factorization theoretic questions.

In particular, we will focus on sets of lengths in Pfin,0(Nd). Frisch et al. show in [Fri13, FNR19] that rings

of integer-valued polynomials realize all possible subsets of N as sets of factorization lengths. Geroldinger

and Schmid give a result of a similar flavor for numerical monoids in [GS18]. Returning to the realm of

sumsets and power monoids, Fan and Tringali show some first realization results for length sets in [FT18].

They further conjecture that Pfin,0(N) realizes all possible subsets of N as sets of factorization lengths. That

is:

Conjecture 7.0.1. For any finite S ⊆ N≥2, there is W ∈ Pfin,0(N) such that LPfin,0(N)(W ) = S.

We aim to build toward to this conjecture by realizing new length sets in Pfin,0(Nd) and by demonstrating

some new methods for furthering research in this area.

7.1 Passage Between Power Monoids

It is perhaps most natural to study Pfin(G), for an abelian group G. In this section we will discuss why one

can sensibly reduce to the study of Pfin,0(N) and how we can incorporate Pfin,0(Nd) to aid us in understanding

Pfin,0(N). In broad terms, we will approach this reduction via the following steps:
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(1) Reduce from Pfin(G) to Pfin,0(G); we have done this already in Proposition 3.1.3 and its minimal

analogue, Proposition 4.2.1.

(2) Understand subset arithmetic of direct summands of G; by the Fundamental Theorem of Finitely

Generated Abelian Groups, this means understanding subset arithmetic in cyclic groups.

(i) Study Pfin,0(Z/nZ); a preliminary exploration into this topic can be found in Section 4.3.

(ii) Study Pfin,0(Z); by Lemma 7.1.1 below, one can instead study Pfin,0(N). Much has been said

about this case in Chapters 5 and 6 and in [FT18, Section 4].

(3) Connect Pfin,0(N) to Pfin,0(Nd); this is the content of this section and, in particular, Theorem 7.1.7.

Lemma 7.1.1. The embedding Pfin,0(N) ↪→ Pfin,0(Z) induced by the embedding N ↪→ Z is an essentially

surjective equimorphism. In particular, L(Pfin,0(Z)) = L(Pfin,0(N)).

Proof. The “essentially surjective” part is easily verified by noting that, for any Y ∈ Pfin,0(Z), Y −min(Y ) ∈
Pfin,0(N). Consequently, Y = (Y −min(Y )) + min(Y ), so Y is associate to an element of Pfin,0(N).

Now we aim to verify the properties of an essentially surjective equimorphism laid forth in Section 2.3.

that the only unit of Pfin,0(Z) is {0}, which does indeed pull back to {0} ∈ Pfin,0(N), satisfying (E1)

To see (E2) – that the embedding is atom-preserving – suppose A ∈ Pfin,0(N) is an atom and suppose

that A = X + Y for some X,Y ∈ Pfin,0(Z). Then, letting x = min(X) and y = min(Y ), there are

X ′, Y ′ ∈ Pfin,0(N) with X = x +X ′ and Y = y + Y ′. Since x + y = min(X) + min(Y ) = min(A) = 0, we

have that A = X + Y = (x +X ′) + (y + Y ′) = X ′ + Y ′ is a decomposition in Pfin,0(N), so (with no loss of

generality), X ′ = {0}. Then X = {x} is an invertible element of Pfin,0(Z) (so we actually have x = 0), and

A is an atom of Pfin,0(Z).

Finally, we verify (E3) Let X ∈ Pfin,0(N) such that there is a nontrivial factorization b = B1 ∗ · · · ∗Bk ∈
ZPfin,0(Z)(X). Then, letting bi = min(Bi) and Ai = Bi − bi for each i ∈ [1, k], we have that Ai ≃Pfin,0(Z) Bi

and so Ai is an atom of Pfin,0(Z) for each i ∈ [1, k]. Since Pfin,0(N) is a divisor-closed submonoid of Pfin,0(Z),

each Ai is also an atom of Pfin,0(N) (this is a straightforward exercise, or a consequence of [FT18, Lemma

2.2]). Furthermore, since
∑k

i=1 bi = min(Ai) = 0, we have that X = A1 + · · ·+ Ak, so a := A1 ∗ · · · ∗ Ak ∈
ZPfin,0(N)(X). Since Ai is associate to Bi, it is apparent that a ≃Pfin,0(Z) b.

The study of power monoids, in general, is vast and far transcends the already wild behavior of sumsets

in N. Indeed; the phenomena we discover in Pfin,0(N) are, in some sense, a lower bound for how pathological

we may expect factorization to be in power monoids.

Proposition 7.1.2. Let H be a non-torsion monoid. Then there is an equimorphism from Pfin,0(N) ↪→
Pfin,1(H), the reduced power monoid of H . In particular, L(Pfin,0(N)) ⊆ L(Pfin,1(H)).

Proof. This is part of the content of [FT18, Theorem 4.11]. We do not prove all the details here, but one

may start by considering the equimorphism induced by the embedding N ↪→ H which maps 1 :→ x for some

element x ∈ H with infinite order.

61



Of course, there is much more to be studied in Pfin,1(H) when we include subsets of ⟨x, y⟩ ⊆ H , especially

when x and y do not commute. At a minimum, what we have observed above does tell us that every behavior

encountered in Pfin,0(N) actually occurs in many more power monoids.

It is not always possible to find a large-scale structural embedding of the factorization behavior of one

monoid into another. However, it is possible for the study of factorizations of two monoids to be closely

linked in a somewhat weaker sense.

Definition 7.1.3. Let H and K be monoids. We will say that H is locally transferrable to K if, for

every non-unit x ∈ H , there is a homomorphism f : H → K such that

(LT1) f is atom-preserving; for every a ∈ A(H), f(a) ∈ A(K).

(LT2) f∗ : ZH(x) → ZK(f(x)) is a bijection (here f∗ is identified with the restriction to ZH(x) of the induced

map f∗ : F∗(A(H)) → F∗(A(K))).

We will refer to f as an x-transfer to K. One may also note that, by (LT1), f∗ : ZH(x) → ZK(f(x))

preserves factorization lengths.

The remaining results in this section highlight the motivating example for the definition of local trans-

ferrability; namely, the monoids Pfin,0(Nd) for d > 1.

Lemma 7.1.4. Let ϕ : H → K be a homomorphism of commutative monoids. If W ⊆ H is a subset with

the property:

(∗) For all x, y, z ∈ W , ϕ(x) = ϕ(y) + ϕ(z) if and only if x = y + z.

Then we have that

(i) The restriction ϕ|W is injective.

(ii) ϕ : Pfin,0(H) → Pfin,0(K) is an atom-preserving map.

(iii) The induced map ϕ∗ : ZPfin,0(H)(W ) → ZPfin,0(K)(ϕ(W )) is a (length-preserving) bijection.

(iv) ϕ is a W -transfer.

Proof. Point (i) is clear by taking z = 0 in property (∗). To see (ii), suppose A ⊆ W and ϕ(A) = Y + Z.

Then, since Y, Z ⊆ ϕ(A), we may write Y = ϕ(B) and Z = ϕ(C) for some B,C ⊆ A. For any a ∈ A,

ϕ(a) ∈ ϕ(B) + ϕ(C), so there are b ∈ B and c ∈ C with ϕ(a) = ϕ(b) + ϕ(c). By (∗), a = b + c ∈ B + C,

so A ⊆ B + C. A nearly identical argument yields the other inclusion, so that A = B + C. Thus, if A is an

atom, so too must be ϕ(A).

For (iii), we wish to see that ϕ∗ is a bijection; we will show that ϕ∗ has an inverse. Let b = B1 ∗ · · ·∗Bk ∈
ZPfin,0(K)(ϕ(W )). Each Bi = ϕ(Ai) for some Ai ⊆ W and, by (i), ϕ−1(ϕ(Ai)) = Ai. This implies that the

map sending b :→ ϕ−1(B1) ∗ · · · ∗ ϕ−1(Bk) is inverse to ϕ∗, which is all we needed to show.

Item (iv) is immediate from (i)-(iii).
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Remark 7.1.5. Note that property (∗) in Lemma 7.1.4 is not equivalent to the restriction ϕ|W being

injective, because we have not made any assumption of algebraic structure on W ; in particular, W is not

necessarily closed under addition.

Proposition 7.1.6. Let r ≥ 1 and W ∈ Pfin,0(Nr+1). Let N > 2max{πr(w) : w ∈ W}, where πr :

Nr+1 → N is the projection map from the rth coordinate. Define ϕ : Nr+1 → Nr by ϕ(w1, . . . , wr+1) =

(w1, . . . , wr−1, wr +Nwr+1). Then

(i) ϕ is a homomorphism.

(ii) For all x, y, z ∈ W , ϕ(x) = ϕ(y) + ϕ(z) if and only if x = y + z.

(iii) ϕ∗ : ZPfin,0(Nr+1)(W ) → ZPfin,0(Nr)(ϕ(W )) is a bijection.

Proof. It is easy to see (i), for this follows from the distributivity of multiplication in Z.

Point (ii) will follow from our choice of N (Recall that N > 2m, where m = max{πr(w) : w ∈ W}).
Let x, y, z ∈ W , writing x = (x1, . . . , xr+1), y = (y1, . . . , yr+1), and z = (z1, . . . , zr+1). Suppose that

ϕ(x) = ϕ(y) + ϕ(z); we will make a coordinate-wise comparison of both sides. We immediately have

xi = yi + zi for all i < r. For the rth component, we have xr + Nxr+1 = yr + Nyr+1 + zr + Nzr+1, so

xr − yr − zr = N(yr+1 + zr+1 − xr+1). Since

|xr − yr − zr| ≤ ||xr − yr|− |zr|| ≤ |xr − yr|+ |zr| ≤ 2m < N,

it must be that both sides of this last equation are equal to zero, so that xr = yr+zr and xr+1 = yr+1+zr+1.

Now we have x = y + z, as we wished.

Finally, (iii) follows from (i) and (ii) by Lemma 7.1.4.

Theorem 7.1.7. Let d > 1. Then Pfin,0(Nd) is locally transferrable to Pfin,0(N).

Proof. We can prove this by inducting on d. Begin with the case d = 2 and let X ∈ Pfin,0(N2) with X ̸= {0}.
Proposition 7.1.6 gives us an X-transfer to ϕ : Pfin,0(N2) → Pfin,0(N), so we are done.

Now suppose d > 2 and assume by way of induction that Pfin,0(Nd−1) is locally transferrable to Pfin,0(N).

Let X ∈ Pfin,0(Nd). As above, Proposition 7.1.6 yields an X-transfer ϕ to Pfin,0(Nd−1). Since we have

assumed Pfin,0(Nd−1) to be locally transferrable to Pfin,0(N), there is a ϕ(X)-transfer ψ : Pfin,0(Nd−1) →
Pfin,0(N). Then ψ ◦ ϕ : Pfin,0(Nd) → Pfin,0(N) is an X-transfer, so we conclude that Pfin,0(Nd) is locally

transferrable to Pfin,0(N).

7.2 Independence Arguments in Integer Lattices

Theorem 7.1.7 states that the factorization theory of Pfin,0(Nd) is locally included in that of Pfin,0(N).

Thus, to study Pfin,0(Nd), we need only look inside Pfin,0(N). Another perspective is the following: to study

factorizations in Pfin,0(N), we now have access to the space and geometric intuition afforded to us by working
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inside the d-dimensional lattice Nd. To make effective use of this intuition, we will formulate and exploit

some techniques suitable to this setting.

Throughout this section, all subsets of Nd that we instantiate will be assumed to be finite and to contain

0 (that is, they will be assumed to be elements of Pfin,0(Nd)). Furthermore, we will drop the subscripts from

the sets of factorizations (resp., lengths) of elements of Pfin,0(Nd), as in Z(X) (resp., L(X)).

Definition 7.2.1. First we set the notation that, for any subset X ⊆ Zd, ZX := ⟨X⟩Zd is the subgroup of

Zd generated by X . We say that subsets U and V of Nd are Z-independent (or V is Z-independent

from U) if ZU ∩ ZV = {0}.
We will say that subsets U1, . . . , Un ⊆ Nd are (totally) Z-independent if, for every pair of disjoint

subsets I, J ⊆ [1, n],
∑

i∈I Ui and
∑

j∈J Uj are Z-independent.

We begin by outlining some basic properties of Z-independence. More often than not, we will use these

without mention, or by simply citing “Z-independence.”

Proposition 7.2.2. Let u1, . . . , uk ∈ Nd be nonzero elements.

(i) {u1, . . . , uk} is a Z-linearly independent set if and only if {0, u1}, . . . , {0, uk} are totally Z-independent.

(ii) If
∑

i ui = 0 then ui = 0 for all i = 1, . . . , k.

(iii) If U1, . . . , Uk are totally Z-independent and ui, vi ∈ Ui for each i ∈ [1, k], then
∑

i ui =
∑

i vi implies

that ui = vi for i = 1, . . . , k.

Proof. (i) is a straightforward exercise in the definition of total Z-independence and (ii) is simply a conse-

quence of Nd being a reduced monoid.

For (iii), we can induct on k. The result is trivial if k = 1, so let k = 2. u1 + v1 = u2 + v2 implies that

u1 − v1 = v2 − u2 ∈ ZU1 ∩ ZU2 = {0}, so u1 = v1 and u2 = v2.

For the inductive step, suppose k > 2 and that the result holds for integers smaller than k. The equation
∑

i ui =
∑

i vi implies that u1 − v1 =
∑

i≥2(vi − ui), and we have that

u1 − v1 ∈ ZU1 ∩ Z(U2 + · · ·+ Uk) = {0},

yielding that u1 = v1 and
∑

i≥2 ui =
∑

i≥2 vi. By induction, the last equation implies that ui = vi for all i

and we are done.

Proposition 7.2.3. Let U, V ⊆ Nd be Z-independent and let A1, . . . , Ak be nonzero subsets with U + V =
∑k

i=1 Ai.

(i) U =
∑k

i=1 U ∩ Ai and V =
∑k

i=1 V ∩ Ai.

(ii) If U ∩ Ai = {0} then, for any V ′ ⊆ V , (U + V ′) ∩ Ai = V ′ ∩ Ai.

(iii) For each i, U ∩ Ai ̸= {0} or V ∩ Ai ̸= {0}.
(iv) k ≤ maxL(U) + max L(V ).
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Proof. (i) For each i, let ui ∈ U ∩ Ai. Then
∑

i ui ∈
∑

iAi = U + V , and there are u ∈ U and v ∈ V with
∑

i ui = u+ v. By Proposition 7.2.2(ii), v = 0 and
∑

i ui = u ∈ U

The other inclusion is similar; for any u ∈ U ⊆
∑

i Ai, we can find u1, . . . , uk ∈ U and v1, . . . , vk ∈ V

such that ui + vi ∈ Ai for each i and u =
∑

i(ui + vi). Again by Proposition 7.2.2(ii),
∑

i vi = 0, and each

vi = 0 by Proposition 7.2.2(i).

Moving on to (ii), it is sufficient to prove the result for i = 1 by renumbering the Ai if necessary. Suppose

u ∈ U , v ∈ V ′, and u+ v ∈ A1. Since U ∩A1 = {0}, we know from (i) that

U =
∑

i≥1

U ∩Ai =
∑

i≥2

U ∩ Ai,

so u + v + U ⊆ A1 +
∑

i≥2 Ai ⊆ U + V . Thus, for any w ∈ U , there are u′ ∈ U and v′ ∈ V so that

u + v + w = u′ + v′. By the Z-independence of U and V , v′ = v and so, since w ∈ U was arbitrary, we

actually have that u + v + U ⊆ U + v. We can cancel v to get u + U ⊆ U . Since |u + U | = |U | < ∞, we

must actually have u + U = U ; however, this implies that u = 0. We now have that v = u + v ∈ A1, so

(U + V ′) ∩ A1 ⊆ V ′ ∩ A1. The reverse inclusion is trivial since 0 ∈ U , so we are done.

(iii) follows quickly from (ii); suppose U ∩Ai = {0} = V ∩Ai. Then Ai = (U + V ) ∩Ai = V ∩Ai = {0},
where we used (ii) at the second equal sign. This contradicts the assumption that the Ai are nonzero subsets.

Finally, for (iv): let ℓ = maxL(U) and m = max L(V ). Without loss of generality, say [1, s] = {i :

U ∩ Ai ̸= {0}} and [t, k] = {i : V ∩ Ai ̸= {0}}. Since, by (i), U =
∑

i U ∩ Ai =
∑

i≤s U ∩ Ai, |[1, s]| ≤ ℓ

(similarly, |[t, k]| ≤ m). By (iii), [1, k] = [1, s] ∪ [t, k], so k ≤ ℓ+m as we wished.

Lemma 7.2.4. Let U, V1, . . . , Vm ⊆ Nd be totally Z-independent. Suppose each Vj is an atom, and let

V :=
∑

j Vj . Further suppose that A1, . . . , Ak are nonzero subsets with U + V =
∑k

i=1 Ai.

(i) There is a function f : [1,m] → [1, k] with Vj ⊂ Af(j) for each j ∈ [1,m].

(ii) For each h ∈ [1, k],

(

∑

j /∈f−1(h)

Vj

)

∩ Ah = {0}.

(iii) For each h ∈ [1, k], V ∩ Ah =
∑

j∈f−1(h)

Vj .

Proof. For (i), fix j ∈ [1,m]. Then, by Proposition 7.2.3(i), Vj =
∑

i Vj ∩ Ai. Since Vj is an atom, only one

summand on the right side of this equation can be zero; let f(j) denote the index of that summand. Then

we have Vj = Vj ∩Af(j) ⊆ Af(j).

Now let J := f−1(h) = {j : Vj ⊆ Ah} and call V ′ =
∑

j∈J Vj . Similarly, let K = [1,m] \ J and call

V ′′ =
∑

j∈K Vj . Because V1, . . . , Vm are totally Z-independent, V ′ and V ′′ are Z-independent.

We can prove (ii) as follows: for each j ∈ K, Vj ∩ Ah = {0}. Proposition 7.2.3(ii) and an easy induction

on |K| then yields that V ′′ ∩Ah = {0}, completing the proof.

For (iii): a similar induction on |J | shows that, for each i ̸= h, V ′ ∩ Ai = {0}. As a result, Proposition

7.2.3(i) implies that V ′ =
∑

i V
′ ∩ Ai = V ′ ∩ Ah. To conclude, we use Proposition 7.2.3(ii) to get that

V ∩ Ah = (V ′ + V ′′) ∩ Ah = V ′ ∩ Ah = V ′.
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Theorem 7.2.5. If V1, . . . , Vm ⊆ Nd are totally Z-independent atoms then V1 + · · · + Vm factors uniquely

(up to reordering of factors). That is, Z(V1 + · · ·+ Vm) = {V1 ∗ · · · ∗ Vm}.

Proof. Let V = V1 + · · ·+ Vm. The result will essentially follow from Lemma 7.2.4, taking U = {0}.
Let A1, . . . , Ak be atoms with V =

∑

iAi. As in Lemma 7.2.4(i), there is f : [1,m] → [1, k] with

Vj ⊆ Af(j) for each j ∈ [1,m]. We wish to show that f is a bijection.

To see that f is surjective, suppose h ∈ [1, k] \ f([1,m]). Then Vj ∩Ah = {0} for all j ∈ [1,m], so Lemma

7.2.4(ii) implies that Ah = V ∩ Ah = {0}. This is a contradiction since Ah is an atom and hence nonzero.

To demonstrate the injectivity of f , let h ∈ [1,m]; Lemma 7.2.4(iii) says thatAh = V ∩Ah =
∑

j∈f−1(h) Vj .

However, since Ah is an atom it must be the case that |f−1(h)| = 1.

Now f is a bijection with Vj = Af(j) for each j ∈ [1,m]. This proves that A1 ∗ · · · ∗Ak ≃ V1 ∗ · · · ∗ Vm,

as we wished.

We will now see how Theorem 7.2.5 allows us to partially recover [FT18, Proposition 4.9] which, for any

ℓ ≥ 1, gives sufficient conditions guaranteeing that a subset U ∈ Pfin,0(N) factors uniquely into exactly ℓ

atoms. Before giving the details of this process in the following example, we outline the intuition behind the

calculation.

To begin, we will look at the set V of vertices of an ℓ-dimensional cube in Nℓ. We will then iteratively

“flatten” the cube in one dimension at a time, essentially by removing a codimension-1 facet and placing it

“far away” from the rest of the set. Each step will preserve all relevant factorization data, per Proposition

7.1.6. After flattening to one dimension, we will then use Fan and Tringali’s result to verify that our initial

construction indeed factored uniquely.

Example 7.2.6. First recall the content of [FT18, Proposition 4.9]: Let a1, . . . , aℓ ∈ N such that a1 + · · ·+
ai <

1
2ai+1 for i ∈ [1, ℓ−2] and (if ℓ ≥ 2) a1+ · · ·+aℓ−1 < aℓ−aℓ−1. Then ZPfin,0(N)({0, a1}+ · · ·+{0, aℓ}) =

{{0, a1} ∗ · · · ∗ {0, aℓ}}.
There are many sequences of integers a1, . . . , aℓ satisfying the specified properties; for simplicity, let us

use the sequence given by ai = bi−1, for some integer b ≥ 3.

For i ∈ [1, ℓ], let ei ∈ Nℓ be the ith standard basis vector (whose entries are all zero, except for a 1 in the

ith coordinate). Let V = {0, e1} + · · · + {0, eℓ}; by Theorem 7.2.5, V factors uniquely. We will follow the

procedure given in Theorem 7.1.7 to “flatten” V into a subset of N which still factors uniquely. According

to this procedure, we need maps Nℓ → Nℓ−1 → · · · → N.

For i ∈ [1, ℓ − 1], define ϕi : Ni+1 → Ni by v :→ v̂ + bei (where v̂ is the vector consisting of the first

i components of v, and we have identified ei with the ith standard basis vector in Ni). Let Vℓ = V and

Vi = ϕi(Vi + 1) for i < ℓ. By Proposition 7.1.6, ϕi is a homomorphism which essentially preserves the set of

factorizations of Vi+1. Letting ϕ := ϕ1 ◦ · · · ◦ ϕℓ−1, we have that U := ϕ(V ) factors uniquely.

To see what elements actually comprise U , it is enough to check the value of ϕ on e1, . . . , eℓ (since ϕ is

a homomorpism). It is not too difficult to see that ϕ(ei) = bi−1, so that U = {0, 1}+ {0, b}+ · · ·+ {0, bℓ−1}
which is indeed already known to factor uniquely by Fan and Tringali’s result.
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7.3 Recovering the Two-Lengths Realization Result

Now we are in a position to obtain a high-dimensional version of [FT18, Proposition 4.10] which says that,

for any n ≥ 2, there is an element U ∈ Pfin,0(N) which has exactly two factorizations: one of length 2, and

one of length n + 1. Applying our viewpoint to Fan and Tringali’s result gives us some new insights on

their construction and how it may be pushed further. For now, we begin by fixing some notation for our

examination of Fan and Tringali’s construction.

Definition 7.3.1. Fix an integer n ≥ 2 and let d ≥ n. Let {e1, . . . , en} be a Z-linearly independent subset

of Zd.

For any I ⊆ [1, n], we will let eI :=
∑

i∈I ei. Further, let f := e[1,n] =
∑n

i=1 ei and let g := f + en.

Finally, we set

Un+1 :=
n
∑

i=1

{0, ei}+ {0, g}.

We will show (in Theorem 7.3.3) that Un+1 has exactly two factorizations. One of these factorizations

is apparent from the construction given, since any two element set is an atom of Pfin,0(Nd) (this is an easy

exercise, or one can look to [FT18, Proposition 4.1(iv)]). Before proving the Theorem, we construct a class

of atoms which will continue to appear through the remainder of the section.

Lemma 7.3.2. Let Un+1 be as in Definition 7.3.1, and let V ⊆ Nd be Z-independent from Un+1. Then the

set

B :=

(
n−1
∑

i=1

{0, ei}+ {0, g}+ V

)

∪ {f}

is an atom.

Proof. Suppose that B = X + Y . It will suffice to prove that one of X or Y is equal to {0}.
We first claim that f ∈ X ∪ Y ; in particular, that f cannot be written as the sum of two nonzero

elements of B. Suppose, for a contradiction, that one can write f = (δg + eI + v) + (δ′g + eJ + v′) for

some I, J ⊆ [1, n− 1], δ, δ′ ∈ {0, 1}, and v, v′ ∈ V . By Proposition 7.2.2(iii) and the assumption that V is

Z-independent from Un+1, v = v′ = 0. Since the en-coefficient of f is 1, δ = δ′ = 0. Now f = eI + eJ ;

however, since n /∈ I ∪ J , the en-coefficient must be 0, a contradiction.

We also similarly claim that g ∈ X ∪ Y . Suppose, for I, J, δ, δ′, v, v′ as above, that g = (δf + eI + v) +

(δ′f + eJ + v′). As before, v = v′ = 0. Now, since the en-coefficient of g is 2 but n /∈ I ∪ J , δ = δ′ = 1,

implying that g = 2f + eI + eJ . This gives a contradiction, as 2f + eI + eJ has an e1-coefficient of at least

2, but g has an e1-coefficient of 1.

We now have that f, g ∈ X ∪ Y . Noting that f + g /∈ B, we may say (without loss of generality) that

f, g ∈ X . Now we aim to show that Y = {0}. Suppose b := εg+eI+v ∈ Y for some ε ∈ {0, 1}, I ⊆ [1, n−1],

and v ∈ V . Then we must have f + b ∈ X + Y = B ⊆ Un+1 + V , so choose some u′ ∈ Un+1 and v′ ∈ V with

f+b = u′+v′. By the Z-independence of Un+1 and V , it must be that v′ = v and f+εg+eI = u′ ∈ Un+1∩B.
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We can finish the proof by noting that the only element of Un+1 ∩ B with an odd en coefficient is f ,

meaning that ε = 0 and I = ∅. Then f + b = f + v ∈ B, at which point we see that v = 0. Thus Y = {0}
as we wished.

Theorem 7.3.3. Let n ≥ 2 and let e1, . . . , en ∈ Nd be Z-linearly independent. Set f =
∑n

i=1 ei, g = f + en.

Then U :=
∑n

i=1{0, ei}+ {0, g} has exactly two factorizations in Pfin,0(Nd):

{0, e1} ∗ · · · ∗ {0, en} ∗ {0, g}
︸ ︷︷ ︸

length n+1

and

[
n−1
∑

i=1

{0, ei}+ {0, g}
]

∪ {f} ∗ {0, en}
︸ ︷︷ ︸

length 2

Our strategy for the proof imitates that of Fan and Tringali’s proof of [FT18, Theorem 4.10], but uses

Z-linear independence to stand in for parts of their arguments which relied on certain inequalities.

We aim to show that, if U = X + Y , then both X and Y are very neatly structured: roughly speaking,

it will turn out that each must be the set of vertices of some parallelepiped, thus implying that each

factors uniquely (by Theorem 7.2.5). Ranging over all decompositions X + Y will allow us to enumerate all

decompositions of U into atoms—of course, there will only end up being two of these, as we will see now.

To help us in this method for understanding sum decompositions, we will use the idea of a saturated

cofactor as formulated in Definition 5.1.1, as well as Proposition 5.1.2(ii). We recall them here (in notation

more convenient to the current situation) for ease of reading. If Y ⊆ U then the saturated cofactor of Y in

U is U :Y =
⋂

y∈Y (U − y). U :Y is the largest solution X to the equation X + Y = U in the sense that, if

X + Y = U , then X ⊆ U :Y .

Proof. Suppose U = X + Y for some X,Y ⊆ U with X,Y ̸= {0}. First we set some notation by analogy

with the proof of [FT18, Theorem 4.10]: IX := {i ∈ [1, n] : ei ∈ X}, IY := {i ∈ [1, n] : ei ∈ Y }. For further
convenience and compactness, we let eI :=

∑

i∈I ei for any I ⊆ [1, n].

Begin by noting that [1, n] = IX B IY ; indeed, for each i ∈ [1, n], ei ∈ X + Y , and it must be that

ei ∈ X ∪ Y since all the ei are linearly independent. Moreover, we cannot have ei ∈ X ∩ Y since 2ei /∈ U .

To prove some of the claims which follow, we will use a basic understanding of which linear combinations

of the ei appear as elements of U . Every element of U has one of the following forms:

(F1) eI : the coefficient to each ei is either 0 or 1.

(F2) g + eI : the en coefficient is either 2 or 3, and all other ei-coefficients are either 1 or 2.

We now wish to determine the structure of X and Y . For the ease of understanding the argument, we

state and prove several small claims about X (which will also hold for Y by symmetry).

Claim A. If I ⊆ IX then eI ∈ X .
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Suppose I = J BK with eJ ∈ X and eK ∈ Y . If K ̸= ∅ then let k ∈ K ⊆ IX ; we have 2ek + eK\{k} =

ek + eK ∈ X + Y , which is impossible unless K = [1, n], so that eK = f . However, since 1 ∈ K ⊆ I ⊆ IX ,

this implies that 2e1 + eK\{k} = e1 + eK ∈ X + Y , a contradiction to (F1)

Claim B. For I ! [1, n], eI ∈ X only if I ⊆ IX .

Suppose K := I ∩ IY is nonempty (otherwise, we are done). Then eI\K + 2eK = eI + eK ∈ X + Y has

at least one coefficient equal to 0 and at least one coefficient ≥ 2, which is a contradiction to (F1)

Claim C. If g + eI ∈ X then eI ∈ X .

Let K := I ∩ IY ; then g+ eI\K +2eK = (g+ eI)+ eK ∈ X+Y , which is not possible unless K = ∅ (since

no element of U has more than one coefficient > 2 by (F2)). This implies the desired conclusion.

Claim D. Exactly one of X or Y has an element of the form g + eI .

This is easy to see; if neither X nor Y has such an element then no element of X + Y has a coefficient

larger than two. On the other hand, if g + eJ ∈ X and g + eK ∈ Y then 2g + eJ + eK ∈ X + Y , which is a

contradiction to (F2) since this element has an en-coefficient ≥ 4.

Claim E. If g + eH ∈ X for some H ⊆ [1, n] then g + eI ∈ X for every I ⊆ IX with I ! [1, n].

Let I ⊆ IX with I ! [1, n]. Since g+ eI ∈ U = X+Y , we may write g+ eI = x+ y with x = δg+ eJ ∈ X

(for δ ∈ {0, 1}) and y = eK ∈ Y by Claim D. Now g + eI = δg + eJ + eK .

Case 1: If δ = 1 then eI = eJ + eK , hence I = J BK. Since I ̸= [1, n], K ! [1, n] and so K ⊆ IY by

Claim B. However, we now have that K = ∅ since K ⊆ I ⊆ IX . Thus g + eI = g + eJ ∈ X , as we wished.

Case 2: If δ = 0 then g+ eI = eJ + eK . We must have n ∈ J ∩K but, since IX ∩ IY = ∅, Claim B implies

that J +K = [1, n] and so eJ = eK = f . Moreover, I = [1, n− 1]. Now however, since [1, n− 1] ⊆ IX , we

have e1+f ∈ X+Y , which is a contradiction (no element of U has an en-coefficient of 1 and an e1-coefficient

of 2), finishing the proof of the claim.

Assume without loss of generality that g ∈ X . If IX = ∅ then IY = [1, n] so X = {0, g} by Claims B and

C, and Y =
∑n

i=1{0, ei} by Claim A. By Theorem 7.2.5, Y factors uniquely and we have {0, e1}∗ · · · {0, en}∗
{0, g} ∈ ZPfin,0(Nn)(U).

Now suppose IX ̸= ∅. Then, by Claims C and E,

X ⊇ {0, g}+
∑

i∈IX

{0, ei}. (1)

We can completely determine the structure of Y . First observe that we cannot have f = e[1,n] ∈ Y since

we would then have (g + eIX ) + f ∈ X + Y , but this is not an element of U . This allows us to use Claims

B, A, and D to say that Y =
∑

i∈IY
{0, ei} (with IY ̸= ∅, otherwise Y = {0}). Since the ei are linearly

independent, the {0, ei} are Z-independent, so Y factors uniquely as the sum of the {0, ei} for i ∈ IY by

Theorem 7.2.5.
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Now we can say more about the structure of X by calculating the saturated cofactor of Y in U . By

Proposition 5.1.2, we have

X ⊆ U :Y =
⋂

y∈Y

(U − y) =
⋂

K⊆IY

{eI − eK , g + eI − eK : I ⊆ [1, n]}
︸ ︷︷ ︸

=:UK

(2)

Recalling the forms (F1) and (F2) of all elements of U that we outlined earlier, we can similarly express

the forms of elements of U :Y :

(F1′) eI for I ⊆ IX . To see this, observe that eI = eI∪K − eK ∈ UK for any K ⊆ IY . On the other hand

note that, for H ⊆ [1, n] with H ∩ IY ̸= ∅, g+ eH /∈ UH∩IY , so these are the only elements of form (F1)

which remain in U :Y .

(F2′) g + eI for I ⊆ IX . For this, we observe g + eI∪K − eK ∈ UK . Similar to the argument just above, we

see that g + eH /∈ UH∩IY whenever H ∩ IY ̸= ∅.
(F3′) f ∈ U :Y only if IY = {n}. First, it is clear that f = e[1,n] ∈ U∅. For any K ⊆ IY with n ∈ K,

f = g + eK\{n} − eK ∈ UK . However, if n /∈ K but K is non-empty, then f /∈ UK = {eI , g + eI − eK :

I ⊆ [1, n]}. This is because eI − eK ̸= f (since K is non-empty), and g + eI − eK has an en coefficient

larger than 1 (since n /∈ K).

We now have, combining (1) and (2) with our work here, that

{0, g}+
∑

i∈IX

{0, ei} ⊆ X ⊆
[

{0, g}+
∑

i∈IX

{0, ei}
]

∪ {f},

so we have determined X almost exactly, up to the choice of whether f ∈ X .

First suppose f /∈ X . Then X = {0, g} +
∑

i∈IX
{0, ei} and, since IY ̸= ∅, IX ! [1, n]. Consequently,

{ei : i ∈ IX} ∪ {g} is a Z-linearly independent subset of Zn, so the summands of X are Z-independent by

Proposition 7.2.2(i). In turn, we have that X factors uniquely (by Theorem 7.2.5) as the sum of {0, g} and

the {0, ei} for i ∈ IX . This can only produce – up to reordering, of course – the factorization {0, g}∗{0, e1}∗
· · · ∗ {0, en} ∈ ZPfin,0(Nn)(U).

If f ∈ X , then X =
[

{0, g}+
∑

i∈IX
{0, ei}

]

∪ {f} (and Y = {0, en} per our considerations in (F3′)). By

Lemma 7.3.2, X is an atom, producing the factorization X ∗ {0, en} ∈ ZPfin,0(Nn)(U) and completing the

proof.

Remark 7.3.4. In the same vein as Example 7.2.6, one may use Theorem 7.3.3 to recover some cases of

[FT18, Proposition 4.8].
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7.4 A New Family of Length Sets

Our work thus far culminates in realizing a new family of sets, parameterized by two integers m and n, as

sets of lengths for elements of Pfin,0(Nd) (and consequently for elements of Pfin,0(N) by Theorem 7.1.7). This

builds toward Conjecture 7.0.1; but before explicitly showing how to construct these elements, we extract a

more general result that lies at the heart of what makes the construction work.

Lemma 7.4.1. Let U ∈ Pfin,0(Nd) be an element whose two longest factorizations have lengths M and

N , with M < N . Further assume that U has a unique longest factorization (of length N). Suppose

m ≥ 1 and that V1, . . . , Vm ⊆ Nd are atoms such that U, V1, . . . , Vm are totally Z-independent. Then

L(U + V1 + · · ·+ Vm) ∩ [M +m+ 1,∞] = {N +m}.

This Lemma is the workhorse of our main result, Theorem 7.4.2. Before descending into the details of

the proof, we highlight the broad strokes of our strategy. We start with a decomposition of U +V into many

(more than M + m) atoms. The result will easily follow if each atom involves only elements of U or only

elements of V . As such, most of our work will center around the case in which (at least) one atom contains

nontrivial sums from U + V .

In the spirit of the proofs of Theorem 7.2.5 and Theorem 7.3.3, we will get that this atom, call it A,

has neat enough structure for us to produce a nontrivial decomposition of the form A = U ∩ A + V ∩ A, a

contradiction.

Proof. For convenience, let V := V1+· · ·+Vm. Suppose that k > M+m and that there are atoms A1, . . . , Ak

with U + V = A1 + · · ·+Ak. By Proposition 7.2.3(iv), we know that k ≤ N +m.

By Proposition 7.2.3(iii), we can say (renumbering if necessary)

[1, s] = {i : U ∩ Ai ̸= {0}} and [t, k] = {i : V ∩ Ai ̸= {0}}.

Since we know that [1, k] = [1, s]∪ [t, k], we know that t ≤ s+ 1. The arguments to follow hinge on whether

these two intervals overlap. First suppose that the intervals overlap; i.e., that t ≤ s. We will show that this

cannot happen by showing that, in this case, As is not an atom.

Let J = {j ∈ [1,m] : Vj ⊆ As} and set V ′ =
∑

j∈J Vj ; we know by Lemma 7.2.4 that V ′ = V ∩ As. Also

let K = [1,m] \ J and V ′′ =
∑

j∈K Vj .

Claim A. V ′ = V ∩ As and V ′′ ∩As = {0}.

This follows directly from Lemma 7.2.4(ii), (iii).

Claim B. Ai ⊆ U for i < t and Ai ⊆ V for i > s.

Proposition 7.2.3(ii) implies both statements since V ∩ Ai = {0} for i < t (and U ∩ Ai = {0} for i > s).

Claim C. For all v ∈ V ′, U + v =
∑

i<s
U ∩Ai + (U + v) ∩ As.
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We will show both inclusions. First suppose u ∈ U . Then u+v ∈
∑k

i=1 Ai, and we can find u1, . . . , us ∈ U

and vt, . . . , vk ∈ V so that (by Claim B) ui ∈ Ai if i < t, ui+ vi ∈ Ai if t ≤ i ≤ s, and vi ∈ Ai if i > s. Then

we will have

u+ v =
∑

i<t

ui +
s
∑

i=t

(ui + vi) +
∑

i>s

vi,

whence the Z-independence of U, V1, . . . , Vm implies that u =
∑

i≤s ui, vs = v, and vi = 0 for all i ̸= s. Now

u+ v =
∑

i<s ui + (us + v) ∈
∑

i<s U ∩ Ai + (U + v) ∩ As.

For the other inclusion, let u1, . . . , us ∈ U with ui ∈ Ai for all i < s and us+v ∈ As. Then
∑

i≤s ui+v ∈
∑

i≤s Ai ⊆ U + V , so we can find u′ ∈ U and v′ ∈ V with

∑

i≤s

ui + v = u′ + v′,

at which point we can use Z-independence again to see that v′ = v, so that
∑

i≤s ui + v ∈ U + v.

Claim D. We have s > M .

Suppose instead that s ≤ M . Then U =
∑

i≤s U ∩ Ai has s ≤ m summands and V =
∑

i≥t V ∩ Ai

has |[t, k]| ≤ m summands (since V factors uniquely as the product of m atoms). Consequently, k =

|[1, s] ∪ [t, k]| ≤ |[1, s]|+ |[t, k]| ≤ M +m, contradicting the assumption that k > M +m.

Claim E. For all v ∈ V ′, (U + v) ∩ As = U ∩ As + v.

We can write (U + v) ∩ As = A + v for some A ⊆ U . Now U + v =
∑

i<s U ∩ Ai + (U + v) ∩ As =
∑

i<s U ∩ Ai + A+ v. We can cancel v from both sides of this set equality (since v is a unit in Pfin,0(Zn)),

yielding

U =
∑

i<s

U ∩ Ai +A. (DEC1)

On the other hand, Claim C (with v = 0) gives us the decomposition

U =
∑

i<s

U ∩ Ai + U ∩As. (DEC2)

We will now show that we can cancel the common factors that appear in these two decompositions. By

Claim D, s > M , so both decompositions (DEC1) and (DEC2) involve more than M atoms. However, U has

only one factorization with more than M atoms; call it b = B1 ∗ · · · ∗BN ∈ Z(U).

Then the atoms which appear in both decompositions (DEC1) and (DEC2) of U must be some reorderings

of the Bi. Renumbering if needed, there is some h for which
∑

i<s U ∩Ai = B1+ · · ·+Bh. By the uniqueness

of the atoms Bi, it must be that B1 + · · ·+Bh can be cancelled in the decompositions (DEC1) and (DEC2),

leaving

A = Bh+1 + · · ·+BN = U ∩As,
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and we have proved the claim.

Claim F. As is not an atom.

To see this, we compute

As = (U + V ) ∩ As = (U + V ′ + V ′′) ∩ As

= (U + V ′) ∩As (by Claim A and Proposition 7.2.3)

=
⋃

v∈V ′

(U + v) ∩ As

=
⋃

v∈V ′

(U ∩ As + v) (by Claim E)

= U ∩ As + V ′.

Since U ∩As and V ′ = V ∩As are both nonzero, As is not an atom. This is a contradiction which followed

from our assumption that some of the Ai may intersect nontrivially with both U and V .

Now suppose this does not occur; necessarily, s < t and we in fact have that t = s + 1 by Proposition

7.2.3(iii). For i ≤ s, since V ∩Ai = {0}, Proposition 7.2.3(ii) implies that Ai = (U + V )∩Ai = U ∩Ai ⊆ U .

Then we have, by Proposition 7.2.3(i), that U =
∑

i≤s U ∩ Ai =
∑

i≤s Ai. This means that s ∈ L(U) and,

by identical reasoning for V , that |[t, k]| = m. We conclude that k ∈ L(U) +m and, due to the assumption

that k > M +m, it must be the case that k = N +m.

Finally, we give some new evidence toward Conjecture 7.0.1 by constructing, for each m ≥ 1 and n ≥ 2,

a subset of Nd whose set of factorization lengths is exactly [2,m+ 2] ∪ {m+ n+ 1}.

Theorem 7.4.2. Fix n ≥ 2, m ≥ 1, and d ≥ m+n. Let Un+1 be as in Definition 7.3.1 so that, in particular,

Un+1 has exactly two factorizations, of lengths 2 and n+1, respectively. Suppose V1, . . . , Vm ⊆ Nd are atoms

such that Un+1, V1, . . . , Vm are totally Z-independent. Then L(Un+1+V1+· · ·+Vm) = [2,m+2]∪{m+n+1}.

Proof. For convenience, let U := Un+1 and V := V1 + · · · + Vm. We will start by verifying the values that

most clearly belong to L(U + V ). It is easiest to see that m + n + 1 = maxL(V ) + max L(U) ∈ L(U + V ).

For the rest, suppose 0 ≤ h ≤ m. Then, by Lemma 7.3.2,

Bh :=

⎛

⎝

n−1
∑

i=1

{0, ei}+ {0, g}+
∑

j∈[h+1,m]

Vj

⎞

⎠ ∪ {f}

is an atom. From here, it is straightforward to check that

U + V = {0, en}+Bh + V1 + · · ·+ Vh

so h+ 2 ∈ L(U + V ). As we allow h to range over [0,m], we get that [2,m+ 2] ∈ L(U + V ).
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For the other inclusion, we need to show that no other values are included in L(U + V ). To do this, we

note that U has a unique longest factorization by Theorem 7.3.3 and hence, using Lemma 7.4.1, L(U +V )∩
[m+ 3,m+ n+ 1] = {m+ n+ 1}.

Corollary 7.4.3. For every m ≥ 1 and n ≥ 2, there is an element W ∈ Pfin,0(N) with LPfin,0(N)(W ) =

[2,m+ 2] ∪ {m+ n+ 1}.

Proof. One simply needs to apply Theorems 7.4.2 and 7.1.7 to see that [2,m + 2] ∪ {m + n + 1} ∈
L(Pfin,0(Nd)) = L(Pfin,0(N)).

There is certainly room to progress further toward Conjecture 7.0.1. For instance, using Lemma 7.4.1,

which was the workhorse of proving Theorem 7.4.2, relied largely on constructing a set which had factoriza-

tions of different lengths and a unique longest factorization. The only such construction is that of Fan and

Tringali’s from [FT18, Proposition 4.10], or its Nd counterpart from Definitions 7.3.1. It would therefore be

of some interest to characterize the subsets of N which have a unique longest factorization into irreducibles.

Predicting a best path toward Conjecture 7.0.1 is difficult, but it is likely that most diretions of further

research into power monoids have potential to be revelatory.
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