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Abstract

The aim of this paper is two-fold: (i) to establish the associated TQ-local homo-

topy theory for algebras over a spectral operad O as a left Bousfield localization of the

usual model structure on O-algebras, which itself is almost never left proper, in gen-

eral, and (ii) to show that every homotopy pro-nilpotent structured ring spectrum is

TQ-local. Here, TQ is short for topological Quillen homology, which is weakly equiv-

alent to O-algebra stabilization. As an application, we simultaneously extend the

previously known connected and nilpotent TQ-Whitehead theorems to a homotopy

pro-nilpotent TQ-Whitehead theorem. We also compare TQ-localization with TQ-

completion and show that TQ-local O-algebras that are TQ-good are TQ-complete.

Finally, we show that every (−1)-connected O-algebra with a principally refined Post-

nikov tower is TQ-local, provided that O is (−1)-connected.
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Chapter 1: Introduction

Homotopy groups and stable homotopy groups of spaces are central invariants in

algebraic topology.

Homotopy groups π∗ are very powerful but difficult to compute in practice. For

instance, they can completely classify topological spaces (under mild technical as-

sumptions) up to homotopy equivalence. However, even the homotopy groups of the

2-sphere πn(S2) are not entirely known.

Stable homotopy groups πs∗ are comparatively easier to work with, at the expense

of losing certain information. However, if we are working with nice spaces, nothing will

be lost by working stably: A map between nilpotent spaces is a homotopy equivalence

if and only if it is a stable equivalence.

Spectra naturally arise in lots of different areas of geometry and topology. One

can think of spectra as “chain complexes of spaces”. Analogous to ordinary chain

complexes, there is a well-behaved smash product of spectra [20, 36, 43, 56]. This

enables us to do “homotopical algebra” with spectra. For example, we can work with

ring spectra which are commutative up to coherent homotopy.

Structured ring spectra are spectra with extra algebraic structure encoded by the

action of an operad O [22, 39, 44]. For a fixed operad O, denote by AlgO the category of

O-algebras. For each O-algebra X, there is an analogous notion of homotopy groups
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πi(X) := colimn πi+n(Xn) defined as homotopy groups of the underlying spectrum

[54, 55]. A map f : X → Y of O-algebras is called a weak equivalence if it induces

π∗ isomorphisms. For technical reasons we work with reduced operads O; such O-

algebras are non-unital.

Topological Quillen (TQ) homology [2, 4, 24, 31, 38, 41] for O-algebras naturally

arises as the topological analog of Quillen homology of ordinary commutative algebras

[1, 48]; see also [23, 28]. It turns out that under appropriate connectivity conditions,

TQ is 1-excisive and agrees to order 1 with the identity functor on O-algebras [13, 32,

40] in the sense of Goodwillie calculus [29]. Hence TQ-homology is weakly equivalent

to stabilization Ω∞Σ∞ in O-algebras [3, 32, 46, 52, 53].

When TQ-homology is iterated, built into a cosimplicial TQ-resolution of the form

X // TQX
//// TQ2Xoo

////
//
TQ3X · · ·oo oo

and then glued all together with a homotopy limit, it gives the TQ-completion

c : X → X∧TQ [8, 32], analogous to Bousfield-Kan [10] completion for spaces. This

construction can be viewed as a method to extract “the part of an O-algebra that

TQ-homology detects”.

It is proved in [15] that the TQ-completion c : X → X∧TQ is a weak equivalence if

X is 0-connected—in other words, 0-connected O-algebras are already TQ-complete;

here, O is assumed to be levelwise (−1)-connected. We also know from [32] that every

0-connected O-algebra is the homotopy limit of a tower of nilpotent O-algebras, in

other words, X is homotopy pro-nilpotent; here we say that X is nilpotent if all the

n-ary and higher operations O[t]∧X∧t → X of X are trivial for each n large enough

(Definition 3.4.1 and 4.0.1).
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What about the larger class, for instance, of homotopy pro-nilpotent O-algebras—

are the TQ-completion maps always weak equivalences?

In this paper, we will show the comparison map is a weak equivalence for all

homotopy pro-nilpotent O-algebras, provided that one replaces “TQ-completion” with

“TQ-localization”.

Our first step is to construct the TQ-localization as a “better” model than TQ-

completion for “the part of an O-algebra that TQ-homology detects”. TQ-completion

is known to only be “the right model” when the O-algebra X is TQ-good (i.e., when

the comparison map from X to its TQ-completion is a TQ-equivalence) analogous to

the situation for spaces [10], but homotopy pro-nilpotent O-algebras are not expected

to be TQ-good in general. However, TQ-localization always gives “the right model”

for the part of the O-algebra X that TQ-homology sees (at the expense of a much larger

construction); just like Bousfield’s localization construction [9] for pointed spaces.

We say an O-algebra X is TQ-local if every TQ-homology equivalence f : A→ B

between cofibrant objects induces equivalence of mapping spaces Hom(B,X) →

Hom(A,X). Intuitively, X is called TQ-local if mapping into X can not tell the

difference between TQ-homology equivalent objects.

Following the arguments in [9, 27, 37], in light of the cellular ideas in [35], we build

TQ-localization by establishing the TQ-local homotopy theory (Theorem 4.3.14) for

O-algebras (without any connectivity assumptions).

Here a potential wrinkle is the well-known failure of O-algebras to be left proper

in general (e.g., associative ring spectra are not left proper, also see [49, 2.10]); we

show that exploiting an observation in [25, 26] enables the desired TQ-localization to

be constructed by localizing with respect to a particular set of TQ-equivalences. Here
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the upshot is that: if X is a cofibrant O-algebra, then its weak TQ-fibrant replacement

l : X → LTQX is the TQ-localization of X (Theorem 4.3.17). By construction, the

comparison map l : X → LTQX is a cofibration that is also a TQ-equivalence such

that LTQ(X) is TQ-local.

Another useful observation is that the homotopy limit of a small diagram of TQ-

local O-algebras is TQ-local (Proposition 5.1.6). By leveraging the TQ-local homotopy

theory of O-algebras with the fact, proved in [14], that M -nilpotent O-algebras are

TQ|NilM -complete, we get the following result (to be proved in Chapter 5).

Theorem 1.0.1 (Homotopy pro-nilpotent TQ-localization theorem). Let X be a fi-

brant O-algebra.

(a) If X is nilpotent, then X is TQ-local.

(b) If X is homotopy pro-nilpotent, then X is TQ-local.

(c) If X is the homotopy limit of any small diagram of nilpotent O-algebras, then

X is TQ-local.

(d) If X is connected and O,R are (−1)-connected, then X is TQ-local.

As an application, we obtain the following homotopy pro-nilpotent TQ-Whitehead

theorem that simultaneously extends the previously known connected and nilpotent

TQ-Whitehead theorems.

Theorem 1.0.2 (Homotopy pro-nilpotent TQ-Whitehead theorem). A map X → Y

between homotopy pro-nilpotent O-algebras is a weak equivalence if and only if it is

a TQ-homology equivalence; more generally, this remains true if X, Y are homotopy

limits of small diagrams of nilpotent O-algebras.
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We also prove that TQ-completion always factors through TQ-localization and

show that TQ-local O-algebras that are TQ-good are already TQ-complete (Theorem

5.2.1).

The rest of this thesis is organized as follows.

Chapter 2 will review the basic ideas and construction regarding stabilization of

topological spaces.

Chapter 3 will review the relevant notations and constructions of structured ring

spectra, in particular, we introduce Topological Quillen homology of structured ring

spectra. We will also discuss some previously known TQ-Whitehead theorems

Chapter 4 gives the construction of TQ-local homotopy theory as well as TQ-

localization maps.

Chapter 5 proves Theorem 1.0.1 and Theorem 1.0.2. We also provide a comparison

of TQ-completion and TQ-localization, followed by a discussion on principally refined

Postnikov towers.
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Chapter 2: Whitehead theorem for spaces with respect to

stabilization

2.1 Stabilization of spaces

Homotopy groups of spaces are central invariants in algebraic topology. They are

extremely useful and powerful, but also quite difficult to compute in practice. Today

we still don’t completely know the homotopy groups of the 2-sphere.

One aspect of the difficulty is that when we consider (reduced) suspension X →

ΣX of a n-connected pointed space X, Freudenthal suspension theorem tells us the

comparison map

πi(X)→ πi+1(ΣX)

is an isomorphism for i ≤ 2n; is an surjection for i = 2n + 1; but there is no general

result for larger i.

It suggests we could only find simple patterns of homotopy groups at lower levels.

However, for arbitrary i, once we iterate the suspension

πi(X)→ πi+1(ΣX)→ πi+2(Σ2X) · · ·

the connectivity will increase along the way. Freudenthal suspension theorem tells

us the sequence will eventually stabilize, meaning that the comparison maps will
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eventually become all isomorphism. Motivated by this phenomenon, we study stable

homotopy groups of spaces.

Definition 2.1.1. Let X be a pointed connected topological space. We define its

i-th stable homotopy group as

πsi (X) := colim
n≥0

πi+n(ΣnX) = colim
n≥0

πn(ΩnΣnX)

where Ω stands for taking based loop space.

Using the unit η : id→ ΩΣ of the (Σ,Ω)-adjunction, we can also define space-level

stabilization.

Definition 2.1.2. Let X be a pointed connected topological space. We define stabi-

lization of X as the homotopy colimit of the sequence

QX := hocolim
n≥0

(ΩΣX → Ω2Σ2X → Ω3Σ3X → · · · )

where the structure map ΩnΣnX → Ωn+1Σn+1X is defined as ΩnηΣn for each n ≥ 1.

Then there is a natural stabilization map X → QX. Applying π∗ to this map

we get π∗(X) → π∗(QX) ∼= πs∗(X). Freudenthal suspension theorem tells us the

stabilization map X → QX is (2n+ 1)-connected when X is n-connected.

Stable homotopy groups only remember information of a space that remains after

sufficiently many applications of the suspension functor. Also the Hurewicz type

result above suggests the stable homotopy groups only remember the lower level

unstable homotopy groups depending on the connectivity of the space, hence losing

much information. However, as we will see in Theorem 2.3.2, if we are working with

nice spaces, then we will be able to “recover” a space from its stabilization using

Bousfield-Kan type completion.
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2.2 Bousfield-Kan completion

Carlsson [11] shows we can iterate the stabilization map to form a Bousfield-Kan

[10] type completion with respect to stabilization Q.

In more detail, we construct cosimplicial resolution by iterating the stabilization

map

X // QX
//// Q2Xoo

////
//
Q3X · · ·oo oo

Taking homotopy limit gives the natural Q-completion map

c : X → X∧Q

Proposition 2.2.1. A map f : X → Y is a Q-equivalence (πs∗-isomorphism) if and

only if the induced map f∧Q : X∧Q → Y ∧Q is a weak equivalence.

Proof. The “if” direction is proved using retract argument and the “only if” direction

is because holim∆ preserves weak equivalences. See [10, I.5].

One can think of Q-completion as “constructing an approximation of X out of

stabilization”. We will see in Theorem 2.3.2 that the Q-completion map c : X → X∧Q

is a weak equivalence for any nilpotent space X. In particular, if X is 1-connected

(simply connected), we can provide some intuition why we expect the approxima-

tion map to be a weak equivalence. The following argument appears in the work of

Blomquist-Harper [7], following the idea of Dundas [18].

Let X be a 1-connected space. Consider the stabilization map X → QX. We

have seen the stabilization map is 3-connected, hence QX is also 1-connected. We

want to find better approximation of X, but simply applying stabilization map to

QX wouldn’t help. Our approach here is to consider the map X → QX as an

8



object and apply stabilization to this map. We can show the resulting “2-dimensional

stabilization map” is “4-connected”.

More precisely, consider the cube

X //

��

QX

��
QX // QQX

(2.1)

as described above. Blomquist-Harper [7] proved the 2-cube (2.1) is 4-cartesian. Let

T2X be the homotopy limit of the punctured cube (without the initial object)

QX

��
QX // QQX

Then the 2-cube (2.1) is 4-cartesian means the map X → T2X is 4-connected. Hence

T2X is a “one-level better approximation” of X compared to QX.

Using similar idea, we can apply stabilization map to the 2-cube (2.1) to get

a 3-cube. Let T3X be the homotopy limit of the punctured 3-cube (without the

initial object). One can show the 3-cube is 5-cartesian, meaning the map X →

T3X is 5-connected. In this way, we build T4X,T5X,T6X, · · · as better and better

approximations of X.

Let T∞X be the homotopy limit of such approximations (note there are naturally

induced structure maps TnX → Tn−1X)

T∞X := holim
n

TnX

Then X → T∞X is a weak equivalence. It is proved in Blomquist-Harper [7] that

T∞X is weakly equivalent to X∧Q. Hence c : X → X∧Q is a weak equivalence for 1-

connected space X.

9



2.3 Q-Whitehead theorem for nilpotent spaces

We first recall the definition for nilpotent spaces.

Definition 2.3.1. A pointed connected space X is called nilpotent if it has a princi-

pally refined Postnikov tower.

In more detail, by principally refined Postnikov tower we mean a Postnikov tower

...

��
P2X

��
P1X

��
X //

::

CC

P0X ' ∗

for X such that each structure map PnX → Pn−1X (n ≥ 1) can be factored as a

finite composition of maps

PnX = Mtn → · · · →M2 →M1 →M0 = Pn−1X

such that, for each tn ≥ i ≥ 1, the map Mi → Mi−1 fits into a homotopy pullback

diagram of the form

Mi
//

��

∗fat

��
Mi−1

// K(Gi, n+ 1)

where ∗fat is a contractible space and K(Gi, n+ 1) is an Eilenberg-MacLane space.

Intuitively, a connected space is nilpotent if it can be constructed as certain

“twisted product” of Eilenberg-MacLane spaces. One can think of a principally re-

fined Postnikov tower as the dual notion of a CW structure.
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One can show a connected space X is nilpotent if and only if π1X is a nilpotent

group and π1X acts nilpotently on higher homotopy groups. See, for example, May-

Ponto [45].

As important examples, the class of nilpotent spaces contains all simply connected

spaces and connected loop spaces. It also satisfies other nice closure properties. For

example, if a connected space F is the fiber of some fibration E → B where E,B are

both nilpotent, then F is also nilpotent. Hence the class of nilpotent spaces is a well

behaved, yet general enough, class of spaces to work with.

Carlsson [11] proved the following result.

Theorem 2.3.2. For any nilpotent space X, the Q-completion map c : X → X∧Q is

a weak equivalence.

An easy corollary is the Q-Whitehead theorem for nilpotent spaces.

Theorem 2.3.3. Let f : X → Y be a map of nilpotent spaces. Then f is a weak

equivalence if and only if f is a Q-equivalence.

Proof. In the following commutative square

X
∼ //

α

��

X∧Q

β

��
Y ∼ // Y ∧Q

both horizontal maps are weak equivalences by Theorem 2.3.2. Hence α is a weak

equivalence if and only if β is a weak equivalence, if and only if f is a Q-equivalence

following Proposition 2.2.1.
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Chapter 3: TQ-homology of structured ring spectra and

previously known TQ-Whitehead theorems

3.1 Structured ring spectra

Spectra are used everywhere in modern algebraic topology. One can think of

spectra as the topological analog of chain complex of abelian groups. Point-set level

models for the symmetric monoidal smash product of spectra were desired for a long

time. The first satisfying model was given by Elmendorf-Kriz-Mandell-May in terms

of S-modules [20]. After that, several other models were also constructed using, for

example, symmetric spectra [36, 55] and orthogonal spectra [43]. One important

consequence of these models is that the point-set level well behaved smash product

∧ enables us to do algebra with spectra.

For definiteness, here we choose to work with symmetric spectra. However, all of

our main results should also hold in other models of spectra.

Definition 3.1.1. A ring spectrum (resp. commutative ring spectrum) R is just a

monoid (resp. commutative monoid) in the symmetric monoidal category of sym-

metric spectra. For a commutative ring spectrum R, we let ModR be the category of

R-modules (in the category of symmetric spectra).
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Operads are gadgets to describe algebraic structures more general than rings and

modules. An operad O in ModR consists of a sequence of R-modules O[n] (n ≥ 0)

satisfying certain conditions so that we could use O[n] to describe n-ary multiplica-

tions of O-algebras. In particular, an O-algebra X is equipped with a sequence of

compatible maps

O[n] ∧Σn X
∧n → X

For those readers who are unfamiliar with operads, some good places to learn about

operads include [39, 44, 50].

In the rest of this paper, we fix an (arbitrary) operad O and work in the category

AlgO of O-algebras in ModR, where R is a commutative monoid in the category of

symmetric spectra.

Recall that when we discuss stabilization of spaces in Chapter 2, we always assume

our spaces are pointed. In order to draw the analogy, we work with reduced operads.

In other words, we assume O[0] = ∗ to be trivial so that O-algebras are non-unital.

For technical reasons, we also assume the natural maps R → O[1] and ∗ → O[n]

are flat stable cofibrations [32] in R-modules for each n ≥ 0; see, for instance, [15,

2.1, 6.12].

Unless otherwise specified, our results will hold for any operad O satisfying these

assumptions. In particular, our results could specialize to the study of non-unital

associative ring spectra, non-unital commutative ring spectra, and non-unital En

ring spectra.

13



3.2 Topological Quillen homology

Now we are ready to define Topological Quillen (TQ) homology for O-algebras.

Unless otherwise specified, when we talk about (co)fibrations of O-algebras, we are

always working with the positive flat stable model structure on AlgO [32, 55].

TQ-homology and its relative form, topological Andre-Quillen (TAQ) homology,

first introduced in [2] for commutative ring spectra (see also [3, 4, 24, 38]), are de-

fined as derived indecomposables of O-algebras analogous to Quillen homology of

commutative algebras [1, 48]; see also [23, 28].

More precisely, let τ1O be the operad where τ1O[1] = O[1] and τ1O[k] = ∗ for

k 6= 1. Factoring the canonical truncation map O → τ1O in the category of operads

as O→ J → τ1O, a cofibration followed by a weak equivalence (see [32]), we get the

corresponding change of operads adjunction

AlgO
Q // AlgJ
U
oo (3.1)

with left adjoint on top, where Q(X) = J ◦O (X) and U denotes the forgetful functor

(or less concisely, the “forget along the map O→ J functor”).

Definition 3.2.1. Let X be an O-algebra. The Topological Quillen homology (or

TQ-homology, for short) of X is

TQ(X) := RU(LQ(X))

the O-algebra defined via the indicated composite of total right and left derived func-

tors. If X is cofibrant, then TQ(X) ' UQ(X) and the unit of the (Q,U) adjunction

in (3.1) is the TQ-Hurewicz map X → UQX of the form X → TQ(X).

14



TQ-homology has been shown to enjoy properties analogous to the ordinary ho-

mology of spaces; see, for instance, [2, 3, 13, 15, 32, 40]. Furthermore, it turns out

that TQ-homology is weakly equivalent to stabilization Ω∞Σ∞ in the category of

O-algebras, under connectivity assumptions; see, for instance, [3, 40, 46, 52, 53]; a

simple proof using Goodwillie’s functor calculus [29] is given in [32, 1.14].

3.3 TQ-Whitehead theorem for 0-connected objects

Analogous to the construction for spaces, one can define TQ-completion of O-

algebras. Let Z be a cofibrant O-algebra and consider the cosimplicial resolution of

Z with respect to TQ-homology of the form

Z // (UQ)Z // // (UQ)2Z
oo ////// (UQ)3Z · · ·

oooo

(3.2)

in AlgO, denoted Z → C(Z), with coface maps obtained by iterating the TQ-Hurewicz

map id → UQ (Definition 3.2.1) and codegeneracy maps built from the counit map

of the adjunction (Q,U) in the usual way. Taking the homotopy limit (over ∆) gives

the TQ-completion map [15, 32] of the form

Z → Z∧TQ = holim∆ C(Z) ' holim∆ C̃(Z) (3.3)

in AlgO, where C̃(Z) denotes any functorial fibrant replacement functor (̃−) on AlgO

(obtained, for instance, by running the small object argument with respect to the

generating acyclic cofibrations in AlgO) applied levelwise to the cosimplicial O-algebra

C(Z).

Theorem 3.3.1 (Ching-Harper [15]). If Z is a 0-connected O-algebra and O,R are

(−1)-connected, then the natural map Z → Z∧TQ is a weak equivalence.
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Consequently, we can recover the previously known 0-connected TQ-Whitehead

theorem.

Theorem 3.3.2. A map X → Y between 0-connected O-algebras is a weak equivalence

if and only if it is a TQ-homology equivalence. Here, we are assuming O,R are (−1)-

connected.

Proof. This is proved in the exact manner as Theorem 2.3.3.

3.4 TQ-Whitehead theorem for nilpotent objects

Could we generalize 0-connected TQ-Whitehead theorem? In particular, could

we get rid of connectivity assumptions? As an attempt in this direction, Ching-

Harper studied nilpotent O-algebras [14], which are O-algebras with “truncated” ring

structures.

Definition 3.4.1. Let X be an O-algebra and M ≥ 2. We say that X is M-nilpotent

if all the M -ary and higher operations O[t] ∧X∧t → X of X are trivial (i.e., if these

maps factor through the trivial R-module ∗ for each t ≥M). An O-algebra is nilpotent

if it is M -nilpotent for some M ≥ 2.

For example, if X is a non-unital commutative ring spectra, then X/Xn is n-

nilpotent.

Ching-Harper studied a different TQ-completion construction which is specifically

defined for nilpotent O-algebras [14].

For each n ≥ 1, let τnO be the operad associated to O where

(τnO)[t] :=

{
O[t] for t ≤ n

∗ otherwise
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and consider the associated commutative diagram of operad maps

O

++

// Jn

∼
��

// J1

∼
��

J

τnO // τ1O

where the upper horizontal maps are cofibrations of operads, the left-hand and bottom

horizontal maps are the natural truncations, and the vertical maps are weak equiva-

lences of operads; for notational simplicity, here we take J = J1. The corresponding

change of operad adjunctions have the form

AlgO
Rn // AlgJn
Vn
oo

Qn // AlgJ
Un

oo AlgO
Q // AlgJ
U
oo

with left adjoints on top, where Rn = Jn ◦O (−), Qn = J ◦Jn (−), Q = J ◦O (−), and

Vn, Un, U denote the indicated forgetful functors; in particular, the adjunction on the

right, which coincides with adjunction (3.1), is the composite of the adjunctions on

the left.

Let n ≥ 1 and define M := n+ 1. Note every M -nilpotent O-algebra is naturally

weakly equivalent to a cofibrant Jn-algebra (regarded as an O-algebra via forgetful

functor) [14]. Now we recall the TQ|NilM -completion construction for cofibrant Jn-

algebras.

Let X be a cofibrant Jn-algebra and consider the cosimplicial resolution

X // (UnQn)X //// (UnQn)2X
oo ////// (UnQn)3X · · ·

oo oo

in AlgJn , denoted X → N(X), with coface maps obtained by iterating the unit

map id → UnQn of the adjunction (Qn, Un) and codegeneracy maps built from the

counit map in the usual way. Applying the forgetful functor Vn gives the diagram
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VnX → VnN(X) of the form

VnX // Vn(UnQn)X //// Vn(UnQn)2X
oo ////// Vn(UnQn)3X · · ·

oooo

in AlgO. Taking the homotopy limit (over ∆) gives the TQ|NilM -completion map

VnX → X∧TQ|NilM
= holim∆ VnN(X) ' holim∆

˜VnN(X) (3.4)

in AlgO, where ˜VnN(X) denotes any functorial fibrant replacement functor (̃−) on

AlgO applied levelwise to the cosimplicial O-algebra VnN(X).

Theorem 3.4.2 (Ching-Harper [14]). Let X be a cofibrant Jn-algebra, then the in-

duced TQ|NilM -completion map VnX ' X∧TQ|NilM
is a weak equivalence.

Consequently, we get the nilpotent TQ-Whitehead theorem.

Theorem 3.4.3. A map X → Y between nilpotent O-algebras is a weak equivalence

if and only if it is a TQ-homology equivalence.

Proof. Without loss of generality, we assume X is j-nilpotent and Y is k-nilpotent

where j ≤ k. Then X is also k-nilpotent. Note that up to weak equivalence, k-

nilpotent O-algebras can naturally be replaced by cofibrant Jk−1-algebras [14]. Hence

without loss of generality, we may assume X → Y is a map between cofibrant Jk−1-

algebras. The rest of the proof is analogous to the proof of Theorem 2.3.3.
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Chapter 4: TQ-localization of structured ring spectra

In Chapter 3, we have reviewed the result of Ching-Harper [15] (see Theorem

3.3.1) that the TQ-completion map X → X∧TQ is a weak equivalence for 0-connected

X; here, O,R are assumed to be (−1)-connected.

Francis-Gaitsgory [21, 3.4.5] conjectured that (i) the TQ-completion map should

be a weak equivalence for a larger class of O-algebras called homotopy pro-nilpotent

O-algebras.

Definition 4.0.1. An O-algebra is homotopy pro-nilpotent if it is weakly equivalent

to the homotopy limit of a tower of nilpotent O-algebras (Definition 3.4.1).

It is worth pointing out that homotopy pro-nilpotent O-algebras need not be

nilpotent; the following describes a large class of such O-algebras.

Proposition 4.0.2. If X is a 0-connected O-algebra and O,R are (−1)-connected,

then X is homotopy pro-nilpotent.

Proof. This is proved in Harper-Hess [32, 1.12] by showing that the homotopy com-

pletion tower of X converges strongly to X.

Our main result, Theorem 1.0.1, is that conjecture (i) is true in general, provided

that in the comparison map we replace “TQ-completion” with “TQ-localization”. The
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intuition is that TQ-localization provides a “better” model than TQ-completion for

“the part of an O-algebra that TQ-homology detects”. TQ-completion is known to

only be “the right model” when the O-algebra X is TQ-good (i.e., when the com-

parison map from X to its TQ-completion is a TQ-equivalence) analogous to the

situation for spaces [10], but homotopy pro-nilpotent O-algebras are not expected to

be TQ-good in general. However, TQ-localization always gives “the right model” for

the part of the O-algebra X that TQ-homology sees (at the expense of a much larger

construction); just like Bousfield’s localization construction [9] for pointed spaces.

In this Chapter, we will establish the TQ-local homotopy theory for O-algebras,

where the upshot is that: if X is a cofibrant O-algebra, then its weak TQ-fibrant

replacement X → LTQ(X) is the TQ-localization of X.

In Chapter 5, we will prove homotopy pro-nilpotent O-algebras are TQ-local by

leverage the TQ-local homotopy theory with the fact, proved in [14], that M -nilpotent

O-algebras are TQ|NilM -complete.

4.1 Detecting TQ-local O-algebras

Definition 4.1.1. A map i : A→ B of O-algebras is a strong cofibration if it is a

cofibration between cofibrant objects in AlgO.

Definition 4.1.2. Let X be an O-algebra. We say that X is TQ-local if (i) X

is fibrant in AlgO and (ii) every strong cofibration A → B that induces a weak

equivalence TQ(A) ' TQ(B) on TQ-homology, induces a weak equivalence

Hom(A,X)
'←−− Hom(B,X) (4.1)

on mapping spaces in sSet.

20



Remark 4.1.3. The intuition here is that the derived space of maps into a TQ-local

O-algebra cannot distinguish between TQ-equivalent O-algebras (Proposition 4.1.8),

up to weak equivalence.

It is not difficult to show the following TQ-Whitehead theorem for TQ-local O-

algebras.

Proposition 4.1.4 (TQ-local Whitehead theorem). A map X → Y between TQ-local

O-algebras is a weak equivalence if and only if it is a TQ-homology equivalence.

Proof. This follows from the definition of TQ-local O-algebras; see, for instance,

Hirschhorn [35, 3.2.13].

Evaluating the map (4.1) at level 0 gives a surjection

hom(A,X)← hom(B,X)

of sets, since acyclic fibrations in sSet are necessarily levelwise surjections. This

suggests that TQ-local O-algebras X might be detected by a right lifting property and

motivates the following classes of maps (Proposition 4.1.13); compare with Bousfield

[9].

Definition 4.1.5 (TQ-local homotopy theory: Classes of maps). A map f : X → Y

of O-algebras is

(i) a TQ-equivalence if it induces a weak equivalence TQ(X) ' TQ(Y )

(ii) a TQ-cofibration if it is a cofibration in AlgO

(iii) a TQ-fibration if it has the right lifting property with respect to every cofibration

that is a TQ-equivalence
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(iv) a weak TQ-fibration (or TQ-injective fibration; see Jardine [37]) if it has the

right lifting property with respect to every strong cofibration that is a TQ-

equivalence

A cofibration (resp. strong cofibration) is called TQ-acyclic if it is also a TQ equiva-

lence. Similarly, a TQ-fibration (resp. weak TQ-fibration) is called TQ-acyclic if it is

also a TQ-equivalence.

Remark 4.1.6. The additional class of maps (iv) naturally arises in the TQ-local

homotopy theory established below (Theorem 4.3.14); this is a consequence of the

fact that the model structure on AlgO is almost never left proper, in general (e.g.,

associative ring spectra are not left proper); see, for instance, [49, 2.10]. In the very

few special cases where it happens that AlgO is left proper (e.g., commutative ring

spectra are left proper), then the class of weak TQ-fibrations will be identical to the

class of TQ-fibrations.

Proposition 4.1.7. The following implications are satisfied

strong cofibration =⇒ cofibration

weak equivalence =⇒ TQ-equivalence

TQ-fibration =⇒ weak TQ-fibration =⇒ fibration

for maps of O-algebras.

Proof. The first implication is immediate and the second is because TQ preserves

weak equivalences, by construction. The third implication is because the class of

TQ-acyclic cofibrations contains the class of TQ-acyclic strong cofibrations. For the

last implication, recall that a map is a fibration in AlgO if and only if it has the right
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lifting property with respect to the set of generating acyclic cofibrations. Since the

generating acyclic cofibrations have cofibrant domains [57], they are contained in the

class of strong cofibrations that are weak equivalences, and hence they are contained

in the class of TQ-acyclic strong cofibrations. It follows immediately that every weak

TQ-fibration is a fibration.

Proposition 4.1.8. Let X be a fibrant O-algebra. Then X is TQ-local if and only if

every map f : A→ B between cofibrant O-algebras that is a TQ-equivalence induces

a weak equivalence (4.1) on mapping spaces.

Proof. It suffices to verify the “only if” direction. Consider any map f : A→ B

between cofibrant O-algebras that is a TQ-equivalence. Factor f as a cofibration i

followed by an acyclic fibration p in AlgO. Since f is a TQ-equivalence and p is a

weak equivalence, it follows that i is a TQ-equivalence. The left-hand commutative

diagram induces

A
f //

i
��

B

B′
p

FF Hom(A,X) Hom(B,X)
(∗)oo

(#)uu
Hom(B′, X)

(∗∗)

OO

the right-hand commutative diagram. Since p is a weak equivalence between cofibrant

objects and X is fibrant, we know that (#) is a weak equivalence, hence (∗) is a weak

equivalence if and only if (∗∗) is a weak equivalence. Since i is a strong cofibration,

by construction, this completes the proof.

Proposition 4.1.9. Consider any map f : X → Y of O-algebras. Then the following

are equivalent:

(i) f is a weak TQ-fibration and TQ-equivalence
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(ii) f is a TQ-fibration and TQ-equivalence

(iii) f is a fibration and weak equivalence

Proof. We know that (iii) ⇒ (ii) because weak equivalences are TQ-equivalences

(Proposition 4.1.7) and acyclic fibrations have the right lifting property with respect

to cofibrations. Note that (ii) ⇒ (i) by Proposition 4.1.7, hence it suffices to verify

the implication (i) ⇒ (iii). Suppose f is a weak TQ-fibration and TQ-equivalence;

let’s verify that f is an acyclic fibration. Since every generating cofibration for AlgO

is a strong cofibration, it suffices to verify that f has the right lifting property with

respect to strong cofibrations. Let i : A→ B be a strong cofibration. We want to

verify that the left-hand solid commutative diagram

A
g //

i
��

X

f
��

B
h
// Y

A
g′ //

i

��

X̃
g′′ //

f ′
��

X

f

��
B

h
//

ξ

??

Y

in AlgO has a lift. We factor g as a cofibration followed by an acyclic fibration

A
g′−→ X̃

g′′−→ X in AlgO. It follows easily that the composite f ′ := fg′′ is a weak

TQ-fibration and TQ-equivalence with cofibrant domain. To verify that the desired

lift ξ exists, it is enough to check that f ′ is an acyclic fibration.

We factor f ′ as a cofibration followed by an acyclic fibration X̃
j−→ Ỹ

p−→ Y in AlgO,

and since f ′, p are TQ-equivalences, it follows that j is a TQ-equivalence. Hence j is

a TQ-acyclic strong cofibration and the left-hand solid commutative diagram

X̃

j

��

X̃

f ′

��
Ỹ p

//

η
??

Y

X̃

f ′

��

j // Ỹ

p

��

η // X̃

f ′

��
Y Y Y

(4.2)
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has a lift η. It follows that the right-hand diagram commutes with upper horizontal

composite the identity map; in particular, f ′ is a retract of p. Therefore f ′ is an

acyclic fibration which completes the proof.

The following is proved, for instance, in [15, 7.6].

Proposition 4.1.10. If A is a cofibrant O-algebra and K ∈ sSet, then there are

isomorphisms Q(A⊗̇K) ∼= Q(A)⊗̇K in AlgJ (Definition 3.2.1), natural in A,K.

Proposition 4.1.11. If j : A→ B is a strong cofibration in AlgO and i : K → L is

a cofibration in sSet, then the pushout corner map

A⊗̇LqA⊗̇K B⊗̇K → B⊗̇L

in AlgO is a strong cofibration that is a TQ-equivalence if j is a TQ-equivalence.

Proof. We know that the pushout corner map is a strong cofibration by the simplicial

model structure on AlgO (see, for instance, [32]), hence it suffices to verify that Q

applied to this map is a weak equivalence. Since Q is a left Quillen functor, it follows

that the pushout corner map

Q(A)⊗̇LqQ(A)⊗̇K Q(B)⊗̇K → Q(B)⊗̇L

is a cofibration that is a weak equivalence if Q(A) → Q(B) is a weak equivalence,

and Proposition 4.1.10 completes the proof.

Proposition 4.1.12. If j : A→ B is a strong cofibration and p : X → Y is a weak

TQ-fibration of O-algebras, then the pullback corner map

Hom(B,X)→ Hom(A,X)×Hom(A,Y ) Hom(B, Y ) (4.3)

in sSet is a fibration that is an acyclic fibration if either j or p is a TQ-equivalence.
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Proof. Suppose j is a TQ-acyclic strong cofibration and p is a weak TQ-fibration.

Consider any cofibration i : K → L in sSet. We want to show that the pullback

corner map (4.3) satisfies the right lifting property with respect to i.

K

��

//Hom(B,X)

��
L //

44

Hom(A,X)×Hom(A,Y ) Hom(B, Y )

A⊗̇LqA⊗̇K B⊗̇K
(∗)
��

// X

��
B⊗̇L //

77

Y

(4.4)

The left-hand solid commutative diagram has a lift if and only if the corresponding

right-hand solid commutative diagram has a lift. Noting that (∗) is a TQ-acyclic

strong cofibration (Proposition 4.1.11) completes the proof of this case. Suppose j is

a strong cofibration and p is a weak TQ-fibration. Consider any acyclic cofibration

i : K → L in sSet. We want to show that the pullback corner map (4.3) satisfies the

right lifting property with respect to i. The left-hand solid commutative diagram in

(4.4) has a lift if and only if the corresponding right-hand solid commutative diagram

has a lift. Noting that p is a fibration (Proposition 4.1.7) and (∗) is an acyclic

cofibration (see, for instance, [32, Section 6]) completes the proof of this case. The

case where j is a strong cofibration and p is a TQ-acyclic weak TQ-fibration is similar;

this is because p is an acyclic fibration (Proposition 4.1.9).

Proposition 4.1.13 (Detecting TQ-local O-algebras: Part 1). Let X be a fibrant

O-algebra. Then X is TQ-local if and only if X → ∗ satisfies the right lifting property

with respect to every TQ-acyclic strong cofibration A→ B of O-algebras (i.e., if and

only if X → ∗ is a weak TQ-fibration).

Proof. Suppose X is TQ-local and let i : A→ B be a TQ-acyclic strong cofibration.

Let’s verify that X → ∗ satisfies the right lifting property with respect to i. We know

that the induced map of simplicial sets (4.1) is an acyclic fibration, hence evaluating
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the induced map (4.1) at level 0 gives a surjection

hom(A,X)← hom(B,X)

of sets, which verifies the desired lift exists. Conversely, consider any TQ-acyclic

strong cofibration A → B of O-algebras. Let’s verify that the induced map (4.1)

is an acyclic fibration. It suffices to verify the right lifting property with respect

to any generating cofibration ∂∆[n] → ∆[n] in sSet. Consider any left-hand solid

commutative diagram of the form

∂∆[n]

��

//Hom(B,X)

��
∆[n] //

88

Hom(A,X)

A⊗̇∆[n]
∐

A⊗̇∂∆[n] B⊗̇∂∆[n]

(∗)
��

// X

��
B⊗̇∆[n] //

66

∗

in sSet. Then the left-hand lift exists in sSet if and only if the corresponding right-

hand lift exists in AlgO. The map (∗) is a TQ-acyclic strong cofibration by Proposition

4.1.11, hence, by assumption, the lift in the right-hand diagram exists.

Remark 4.1.14. Since the generating acyclic cofibrations in AlgO have cofibrant do-

mains, the fibrancy assumption on X in Proposition 4.1.13 could be dropped; we keep

it in, however, to motivate later closely related statements (Propositions 4.2.11 and

4.3.7).

4.2 Cell O-algebras and the subcell lifting property

Suppose we start with an O-algebra A. It may not be cofibrant, so we can run

the small object argument with respect to the set of generating cofibrations in AlgO

for the map ∗ → A. This gives a factorization in AlgO as ∗ → Ã → A a cofibration

followed by an acyclic fibration. In particular, this construction builds Ã by attaching
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cells; we would like to think of Ã as a “cell O-algebra”, and we will want to work with

a useful notion of “subcell O-algebra” obtained by only attaching a subset of the cells

above. Since every O-algebra can be replaced by such a cell O-algebra, up to weak

equivalence, the idea is that this should provide a convenient class of O-algebras to

reduce to when constructing the TQ-localization functor; this reduction strategy—to

work with cellular objects—is one of the main themes in Hirschhorn [35], and it plays

a key role in this paper. The first step is to recall the generating cofibrations for AlgO

and to make these cellular ideas more precise in the particular context of O-algebras

needed for this paper.

Recall from [32, 7.10] that the generating cofibrations for the positive flat stable

model structure on R-modules is given by the set of maps of the form

R⊗GH
m∂∆[k]+

iH,k
m // R⊗GH

m∆[k]+ (m ≥ 1, k ≥ 0, H ⊂ Σm subgroup)

in R-modules. For ease of notational purposes, it will be convenient to denote this

set of maps using the more concise notation

SH,km

iH,k
m // DH,k

m (m ≥ 1, k ≥ 0, H ⊂ Σm subgroup)

where SH,km and DH,k
m are intended to remind the reader of “sphere” and “disk”,

respectively. In terms of this notation, recall from [32, 7.15] that the generating

cofibrations for the positive flat stable model structure on O-algebras is given by the

set of maps of the form

O ◦ (SH,km )
id◦(iH,k

m ) // O ◦ (DH,k
m ) (m ≥ 1, k ≥ 0, H ⊂ Σm subgroup) (4.5)

in O-algebras.
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Definitions 4.2.1–4.2.4 below appear in Hirschhorn [35, 10.5.8, 10.6] in the more

general context of cellular model categories; we have tailored the definitions to exactly

what is needed for this paper; i.e., in the context of O-algebras.

Definition 4.2.1. A map α : W → Z in AlgO is a relative cell O-algebra if it can be

constructed as a transfinite composition of maps of the form

W = Z0 → Z1 → Z2 → · · · → Z∞ := colim
n

Zn ∼= Z

such that each map Zn → Zn+1 is built from a pushout diagram of the form

∐
i∈In O ◦ (SHi,ki

mi
)

qi∈In id◦(iHi,ki
mi

)
��

(∗) // Zn

��∐
i∈In O ◦ (DHi,ki

mi
) // Zn+1

(4.6)

in AlgO, for each n ≥ 0. A choice of such a transfinite composition of pushouts is

a presentation of α : W → Z as a relative cell O-algebra. With respect to such a

presentation, the set of cells in α is the set tn≥0In and the number of cells in α is

the cardinality of its set of cells; here, t denotes disjoint union of sets.

Remark 4.2.2. We often drop explicit mention of the choice of presentation of a

relative cell O-algebra, for ease of reading purposes, when no confusion can result.

Definition 4.2.3. An O-algebra Z is a cell O-algebra if ∗ → Z is a relative cell

O-algebra. The number of cells in Z, denoted #Z, is the number of cells in ∗ → Z

(with respect to a choice of presentation of ∗ → Z).

Definition 4.2.4. Let Z be a cell O-algebra. A subcell O-algebra of Z is a cell O-

algebra Y built by a subset of cells in Z (with respect to a choice of presentation of
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∗ → Z). More precisely, Y ⊂ Z is a subcell O-algebra if ∗ → Y can be constructed

as a transfinite composition of maps of the form

∗ = Y0 → Y1 → Y2 → · · · → Y∞ := colim
n

Yn ∼= Y

such that each map Yn → Yn+1 is built from a pushout diagram of the form

∐
j∈Jn O ◦ (S

Hj ,kj
mj )

qj∈Jn id◦(i
Hj,kj
mj

)
��

(∗∗) // Yn

��∐
j∈Jn O ◦ (D

Hj ,kj
mj ) // Yn+1

in AlgO, where Jn ⊂ In and the attaching map (∗∗) is the restriction of the corre-

sponding attaching map (∗) in (4.6) (taking W = ∗), for each n ≥ 0.

Definition 4.2.5. Let Z be a cell O-algebra. A subcell O-algebra Y ⊂ Z is finite if

#Y is finite (with respect to a choice of presentation of ∗ → Z); in this case we say

that Y has finitely many cells.

Remark 4.2.6. Let Z be a cell O-algebra. A subcell O-algebra Y ⊂ Z can be described

by giving a compatible collection of subsets Jn ⊂ In, n ≥ 0, (with respect to a choice

of presentation for ∗ → Z); here, compatible means that the corresponding attaching

maps are well-defined. It follows that the resulting subcell O-algebra inclusion Y ⊂ Z

can be constructed stage-by-stage

∗ = Y0
// Y1

��

// Y2

��

// . . . // Y∞

��

∼= // Y

��
∗ = Z0

// Z1
// Z2

// . . . // Z∞
∼= // Z

as the indicated colimit.
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Proposition 4.2.7. Let Z be a cell O-algebra. If A ⊂ Z and B ⊂ Z are subcell

O-algebras, then there is a pushout diagram of the form

A ∩B

��

// A

��
B // A ∪B

(4.7)

in AlgO, which is also a pullback diagram, where the indicated arrows are subcell O-

algebra inclusions.

Proof. This is proved in Hirschhorn [35, 12.2.2] in a more general context, but here is

the basic idea: Consider ∗ → Z with presentation as in (4.6) (taking W = ∗). Suppose

that Sn ⊂ In and Tn ⊂ In, n ≥ 0, correspond to the subcell O-algebras A ⊂ Z and

B ⊂ Z, respectively. Then it follows (by induction on n) that Sn ∩ Tn ⊂ In and

Sn ∪ Tn ⊂ In, n ≥ 0, are compatible collections of subsets and taking A ∩ B ⊂ Z

and A ∪ B ⊂ Z to be the corresponding subcell O-algebras, respectively, completes

the proof. Here, we are using the fact that every cofibration of O-algebras is, in

particular, a monomorphism of underlying symmetric spectra, and hence an effective

monomorphism [35, 12.2] of O-algebras.

The following is proved in [12, I.2.4, I.2.5].

Proposition 4.2.8. Let M be a model category (see, for instance, [19, 3.3]).

(a) Consider any pushout diagram of the form

A

i
��

f // B

��
C

g // D

in M, where A,B,C are cofibrant and i is a cofibration. If f is a weak equiva-

lence, then g is a weak equivalence.
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(b) Consider any commutative diagram of the form

A0

'
��

A1

'
��

//oo A2

'
��

B0 B1
//oo B2

in M, where Ai, Bi are cofibrant for each 0 ≤ i ≤ 2, the vertical maps are weak

equivalences, and A0 ← A1 is a cofibration. If either B0 ← B1 or B1 → B2 is

a cofibration, then the induced map

A0 qA1 A2
'−−→ B0 qB1 B2

is a weak equivalence.

The following proposition, which is an exercise left to the reader, has been ex-

ploited, for instance, in [6, 2.1] and [35, 13.2.1]; it is closely related to the usual

induced model structures on over-categories and under-categories; see, for instance,

[19, 3.10].

Proposition 4.2.9 (Factorization category of a map). Let M be a model category and

z : A→ Y a map in M. Denote by M(z) the category with objects the factorizations

X : A→ X → Y of z in M and morphisms ξ : X→ X′ the commutative diagrams of

the form

X :

ξ
��

A // X

ξ
��

// Y

X′ : A // X ′ // Y

in M. Define a map ξ : X→ X′ to be a weak equivalence (resp. fibration, resp.

cofibration) if ξ : X → X ′ is a weak equivalence (resp. fibration, resp. cofibration)

in M. With these three classes of maps, M(z) inherits a naturally occurring model
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structure from M. Since the initial object (resp. terminal object) in M(z) has the

form A = A
z−→ Y (resp. A

z−→ Y = Y ), it follows that X is cofibrant (resp. fibrant)

if and only if A→ X is a cofibration (resp. X → Y is a fibration) in M.

Proof. This appears in [6, 2.1] and is closely related to [19, 3.10] and [47, II.2.8].

The following subcell lifting property can be thought of as an O-algebra analog of

Hirschhorn [35, 13.2.1] as a key step in establishing localizations in left proper cellular

model categories. One technical difficulty with Proposition 4.1.13 for detecting TQ-

local O-algebras is that it involves a lifting condition with respect to a collection

of maps, instead of a set of maps. Proposition 4.2.10 provides our first reduction

towards eventually refining the lifting criterion for TQ-local O-algebras to a set of

maps. Even though the left properness assumption in [35, 13.2.1] is almost never

satisfied by O-algebras, in general, a key observation, that goes back to the work of

Goerss-Hopkins [26, 1.5] on moduli problems, is that the subcell lifting argument only

requires an appropriate pushout diagram to be a homotopy pushout diagram—this is

ensured (Proposition 4.2.8) by the strong cofibration condition in Proposition 4.2.10.

Proposition 4.2.10 (Subcell lifting property). Let p : X → Y be a fibration of O-

algebras. Then the following are equivalent:

(a) The map p has the right lifting property with respect to every strong cofibration

A→ B of O-algebras that is a TQ-equivalence.

(b) The map p has the right lifting property with respect to every subcell O-algebra

inclusion A ⊂ B that is a TQ-equivalence.

Proof. Since every subcell O-algebra inclusion A ⊂ B is a strong cofibration, the

implication (a) ⇒ (b) is immediate. Conversely, suppose p has the right lifting
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property with respect to every subcell O-algebra inclusion that is a TQ-equivalence.

Let i : A→ B be a strong cofibration of O-algebras that is a TQ-equivalence and

consider any solid commutative diagram of the form

A

i
��

g // X

p

��
B

h
//

ξ
>>

Y

in AlgO. We want to verify that a lift ξ exists. The first step is to get subcell O-

algebras into the picture. Running the small object argument with respect to the

generating cofibrations in AlgO, we first functorially factor the map ∗ → A as a

cofibration followed by an acyclic fibration ∗ → A′
a−→ A, and then we functorially

factor the composite map A′ → A → B as a cofibration followed by an acyclic

fibration A′
i′−→ B′

b−→ B. Putting it all together, we get a commutative diagram of

the form

A′

i′

��

a // A

i
��

g // X

p

��
B′

b // B
h // Y

where i′ is a subcell O-algebra inclusion, by construction. Furthermore, since i is a

TQ-equivalence and a, b are weak equivalences, it follows that i′ is a TQ-equivalence.

Denote by M the pushout of the upper left-hand corner maps i′ and a, and consider

the induced maps c, d, α of the form

A′

i′

��

a // A

i

��

g //

d

xx

X

p

��

M
α

  

ξ′

77

B′

c

EE

b // B h //

ξ

EE

Y
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Since B′, A′, A are cofibrant and i′ is a cofibration, we know that M is a homotopy

pushout (Proposition 4.2.8); in particular, since a is a weak equivalence, it follows

that c is a weak equivalence. Since c, b are weak equivalences, we know that α is a

weak equivalence. By assumption, p has the right lifting property with respect to

i′, and hence with respect to its pushout d. In particular, a lift ξ′ exists such that

ξ′d = g and pξ′ = hα. It turns out this is enough to conclude that a lift ξ exists such

that ξi = g and pξ = h. Here is why: Consider the factorization category AlgO(pg)

(Proposition 4.2.9) of the map pg, together with the objects

B : A
i−→ B

h−→ Y, X : A
g−→ X

p−→ Y, M : A
d−→M

hα−→ Y

Note that giving the desired lift ξ is the same as giving a map of the form

X : A // X // Y

B :

ξ

OO

A // B

ξ

OO

// Y

in AlgO(pg). Also, we know from above that a lift ξ′ exists; i.e., we have shown there

is a map of the form

X : A // X // Y

M :

ξ′

OO

A //M

ξ′

OO

// Y

in AlgO(pg). We also know from above that the map α is a weak equivalence, and

hence we have a weak equivalence of the form

M :

α'
��

A //M

α'
��

// Y

B : A // B // Y

in AlgO(pg). Since i, d are cofibrations, we know that B,M are cofibrant in AlgO(pg),

and since p is a fibration, we know that X is fibrant in AlgO(pg) (Proposition 4.2.9).
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It follows that the weak equivalence α : M→ B induces an isomorphism

[M,X]
∼=←−− [B,X]

on homotopy classes of maps in AlgO(pg), and since the left-hand side is non-empty,

it follows that the right-hand side is also non-empty; in other words, there exists a

map [ξ] ∈ [B,X]. Hence we have verified there exists a map of the form ξ : B→ X in

AlgO(pg); in other words, we have shown that the desired lift ξ exists. This completes

the proof of the implication (b)⇒ (a).

Proposition 4.2.11 (Detecting TQ-local O-algebras: Part 2). Let X be a fibrant

O-algebra. Then X is TQ-local if and only if X → ∗ satisfies the right lifting property

with respect to every subcell O-algebra inclusion A ⊂ B that is a TQ-equivalence.

Proof. This follows immediately from Proposition 4.2.10.

4.3 TQ-local homotopy theory

The purpose of this section is to establish a version of Proposition 4.2.10 (see

Proposition 4.3.6), and hence a corresponding version of Proposition 4.2.11 (see

Proposition 4.3.7), that includes a bound on how many cells B has. Once this is

accomplished, we can run the small object argument to prove the key factoriza-

tion property (Proposition 4.3.12) needed to establish the associated TQ-local ho-

motopy theory on O-algebras (Theorem 4.3.14) and to construct the associated TQ-

localization functor on cofibrant O-algebras as a weak TQ-fibrant (Definition 4.3.15)

replacement functor. Our argument can be thought of as an O-algebra analog of the

bounded cofibration property in Bousfield [9, 11.2], Goerss-Jardine [27, X.2.13], and

Jardine [37, 5.2], mixed together with the subcell inclusion ideas in Hirschhorn [35,

2.3.7].
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Proposition 4.3.1. Let i : A→ B be a strong cofibration and consider the pushout

diagram of the form

A

��

i // B

��
∗ // B//A

(4.8)

in AlgO. Then there is an associated cofibration sequence of the form

Q(A)→ Q(B)→ Q(B//A)

in AlgJ and corresponding long exact sequence of abelian groups of the form

· · ·TQs+1(B//A)→ TQs(A)→ TQs(B)→ TQs(B//A)→ TQs−1(A)→ · · · (4.9)

where TQs(X) := πsTQ(X) denotes the s-th TQ-homology group of an O-algebra

X and π∗ denotes the derived (or true) homotopy groups of a symmetric spectrum

[54, 55].

Proof. This is because Q is a left Quillen functor and hence preserves cofibrations

and pushout diagrams.

Definition 4.3.2. Let κ be a large enough (infinite) regular cardinal such that

κ >
∣∣⊕s,m,k ⊕H TQs

(
O ◦ (DH,k

m /SH,km )
)∣∣

where the first direct sum is indexed over all s ∈ Z, m ≥ 1, k ≥ 0 and the second

direct sum is indexed over all subgroups H ⊂ Σm.

Remark 4.3.3. The significance of this choice of regular cardinal κ arises from the

cofiber sequence of the form

Q(Zn)→ Q(Zn+1)→
∐
i∈In

Q
(
O ◦ (DHi,ki

mi
/SHi,ki

mi
)
)

in AlgJ associated to the pushout diagram (4.6).
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Proposition 4.3.4. Let Z be a cell O-algebra with less than κ cells (with respect to

a choice of presentation ∗ → Z). Then

∣∣⊕sTQs(Z)
∣∣ < κ

where the direct sum is indexed over all s ∈ Z.

Proof. Using the presentation notation in (4.6) (taking W = ∗), this follows from

Remark 4.3.3, together with Proposition 4.3.1, by induction on n. In more detail:

Since Z0 = ∗ we know that | ⊕s TQs(Z0)| < κ. Let n ≥ 0 and assume that

∣∣⊕sTQs(Zn)
∣∣ < κ (4.10)

We want to show that
∣∣⊕sTQs(Zn+1)

∣∣ < κ. Consider the long exact sequence in

TQ-homology groups of the form

· · · → TQs(Zn)→ TQs(Zn+1)→
⊕
i∈In

TQs

(
O ◦ (DHi,ki

mi
/SHi,ki

mi
)
)
→ . . . (4.11)

associated to the cofiber sequence in Remark 4.3.3. It follows easily that

∣∣TQs(Zn+1)
∣∣ ≤ ∣∣TQs(Zn)⊕

⊕
i∈In

TQs

(
O ◦ (DHi,ki

mi
/SHi,ki

mi
)
)∣∣ < κ

and hence
∣∣⊕sTQs(Zn+1)

∣∣ < κ. Hence we have verified, by induction on n, that (4.10)

is true for every n ≥ 0; noting that Z ∼= Z∞ = colimn Zn (by definition) completes

the proof.

Proposition 4.3.5 (Bounded subcell property). Let M be a cell O-algebra and L ⊂

M a subcell O-algebra. If L 6= M and L ⊂ M is a TQ-equivalence, then there exists

A ⊂M subcell O-algebra such that

(i) A has less than κ cells
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(ii) A 6⊂ L

(iii) L ⊂ L ∪ A is a TQ-equivalence

Proof. The main idea is to develop a TQ-homology analog for O-algebras of the closely

related argument in Bousfield’s localization of spaces work [9]; we have benefited from

the subsequent elaboration in Goerss-Jardine [27, X.3]. We are effectively replacing

arguments in terms of adding on non-degenerate simplices with arguments in terms

of adding on subcell O-algebras; this idea to work with cellular structures appears

in Hirschhorn [35] assuming left properness; however, the techniques can be made to

work without the left properness assumption as indicated below.

To start, choose any A0 ⊂M subcell O-algebra such that

(i) A0 has less than κ cells

(ii) A0 6⊂ L

Here is the main idea, which is essentially a small object argument idea: We would

like L ⊂ L∪A0 to be a TQ-equivalence (i.e., we would like TQ∗(L∪A0//L) = 0), but

it might not be. So we do the next best thing. We build A1 ⊃ A0 such that when we

consider the following pushout diagrams in AlgO

L

��

// L ∪ A0

��

// L ∪ A1

��
∗ // L ∪ A0//L

(#) // L ∪ A1//L

which are also homotopy pushout diagrams in AlgO, the map (#) induces

TQ∗(L ∪ A0//L)→ TQ∗(L ∪ A1//L) (4.12)
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the zero map; in other words, we construct A1 by killing off elements in the TQ-

homology groups TQ∗(L ∪ A0//L) by attaching subcell O-algebras to A0, but in a

controlled manner. Since L ∪ A0 ⊂ M is a subcell O-algebra, it follows that M is

weakly equivalent to the filtered homotopy colimit

M ∼= colim
Fi⊂M

(L ∪ A0 ∪ Fi) ' hocolim
Fi⊂M

(L ∪ A0 ∪ Fi)

indexed over all finite Fi ⊂M subcell O-algebras and hence

0 = TQ∗(M//L) ∼= colim
Fi⊂M

TQ∗(L ∪ A0 ∪ Fi//L)

where the left-hand side is trivial by assumption. Hence for each 0 6= x ∈ TQ∗(L ∪

A0//L) there exists a finite Fx ⊂M subcell O-algebra such that the induced map

TQ∗(L ∪ A0//L)→ TQ∗(L ∪ A0 ∪ Fx//L)

sends x to zero. Define A1 := (A0∪∪x 6=0Fx) ⊂M subcell O-algebra. By construction

the induced map (4.12) on TQ-homology groups is the zero map. Furthermore, the

pushout diagram in AlgO

L ∩ A0

��

// L

��
A0

// L ∪ A0

implies that L ∪ A0//L ∼= A0//L ∩ A0, hence from the cofiber sequence of the form

L ∩ A0 → A0 → L ∪ A0//L

in AlgO and its associated long exact sequence in TQ∗ it follows that A1 ⊂M subcell

O-algebra satisfies

(i) A1 has less than κ cells
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(ii) A1 6⊂ L

Now we repeat the main idea above, but replacing A0 with A1: We would like

L ⊂ L ∪ A1 to be a TQ-equivalence (i.e., we would like TQ∗(L ∪ A1//L) = 0), but it

might not be. So we do the next best thing. We build A2 ⊃ A1 such that the induced

map TQ∗(L ∪ A1//L) → TQ∗(L ∪ A2//L) is zero by attaching subcell O-algebras to

A1, but in a controlled manner, . . . , and so on: By induction we construct, exactly

as above, a sequence of subcell O-algebras

A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ An+1 ⊂ . . . (4.13)

satisfying (n ≥ 0)

(i) An has less than κ cells

(ii) An 6⊂ L

(iii) TQ∗(L ∪ An//L)→ TQ∗(L ∪ An+1//L) is the zero map

Define A := ∪nAn. Let’s verify that L ⊂ L ∪A is a TQ-equivalence; this is the same

as checking that TQ∗(L∪A//L) = 0. Since (4.13) is a sequence of subcell O-algebras,

it follows that L ∪ A is weakly equivalent to the filtered homotopy colimit

L ∪ A ∼= colim
n

(L ∪ An) ' hocolim
n

(L ∪ An)

and hence

TQ∗(L ∪ A//L) ∼= colim
n

TQ∗(L ∪ An//L)

In particular, each x ∈ TQ∗(L∪A//L) is represented by an element in TQ∗(L∪An//L)

for some n, and hence it is in the image of the composite map

TQ∗(L ∪ An//L)→ TQ∗(L ∪ An+1//L)→ TQ∗(L ∪ A//L)
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Since the left-hand map is the zero map by construction, this verifies that x = 0.

Hence we have verified L ⊂ L∪A is a TQ-equivalence, which completes the proof.

The following is closely related to [9, 11.3], [27, X.2.14], and [37, 5.4], together

with the subcell ideas in [35, 2.3.8].

Proposition 4.3.6 (Bounded subcell lifting property). Let p : X → Y be a fibration

of O-algebras. Then the following are equivalent:

(a) the map p has the right lifting property with respect to every strong cofibration

A→ B of O-algebras that is a TQ-equivalence.

(b) the map p has the right lifting property with respect to every subcell O-algebra

inclusion A ⊂ B that is a TQ-equivalence and such that B has less than κ cells

(Definition 4.3.2).

Proof. The implication (a) ⇒ (b) is immediate. Conversely, suppose p has the right

lifting property with respect to every subcell O-algebra inclusion A ⊂ B that is a

TQ-equivalence and such that B has less than κ cells. We want to verify that p

satisfies the lifting conditions in (a); by the subcell lifting property, it suffices to

verify that p satisfies the lifting conditions in Proposition 4.2.10(b). Let A ⊂ B be a

subcell O-algebra inclusion that is a TQ-equivalence and consider any left-hand solid

commutative diagram of the form

A

⊂
��

g // X

p

��
B

h
//

ξ
>>

Y

A

⊂
��

g // X

p

��
As ⊂

//

ξs

77

B
h
// Y

(4.14)

in AlgO. We want to verify that a lift ξ exists. The idea is to use a Zorn’s lemma

argument on an appropriate poset Ω of partial lifts, together with Proposition 4.3.5,
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following closely [27, X.2.14] and [35, 2.3.8]. Denote by Ω the poset of all pairs

(As, ξs) such that (i) As ⊂ B is a subcell O-algebra inclusion that is a TQ-equivalence

and (ii) ξs : As → X is a map in AlgO that makes the right-hand diagram in (4.14)

commute (i.e., ξs|A = g and pξs = h|As), where Ω is ordered by the following relation:

(As, ξs) ≤ (At, ξt) if As ⊂ At is a subcell O-algebra inclusion and ξt|As = ξs. Then by

Zorn’s lemma, this set Ω has a maximal element (Am, ξm).

We want to show that Am = B. Suppose not. Then Am 6= B and Am ⊂ B is

a TQ-equivalence, hence by the bounded subcell property (Proposition 4.3.5) there

exists K ⊂ B subcell O-algebra such that

(i) K has less than κ cells

(ii) K 6⊂ Am

(iii) Am ⊂ Am ∪K is a TQ-equivalence

We have a pushout diagram of the left-hand form

Am ∩K

��

// Am

��
K // Am ∪K

Am ∩K

��

// Am
ξm // X

p

��
K //

ξ

55

B
h
// Y

in AlgO where the indicated maps are inclusions, and by assumption on p, the right-

hand solid commutative diagram in AlgO has a lift ξ. It follows that the induced map

ξm ∪ ξ makes the following diagram

A

��

g // X

p

��
Am //

ξm

33

Am ∪K //

ξm∪ξ

99

B
h
// Y
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in AlgO commute, where the unlabeled arrows are the natural inclusions. In particular,

since K 6⊂ Am, then Am 6= Am ∪ K, and hence we have constructed an element

(Am ∪ K, ξm ∪ ξ) of the set Ω that is strictly greater than the maximal element

(Am, ξm), which is a contradiction. Therefore Am = B and the desired lift ξ = ξm

exists, which completes the proof.

Proposition 4.3.7 (Detecting TQ-local O-algebras: Part 3). Let X be a fibrant O-

algebra. Then X is TQ-local if and only if X → ∗ satisfies the right lifting property

with respect to every subcell O-algebra inclusion A ⊂ B that is a TQ-equivalence and

such that B has less than κ cells (Definition 4.3.2).

Proof. This follows immediately from Proposition 4.3.6.

Proposition 4.3.8. If f is a retract of g and g is a TQ-acyclic strong cofibration,

then so is f .

Proof. This is because strong cofibrations and weak equivalences are closed under

retracts and Q is a left Quillen functor.

Proposition 4.3.9. Consider any pushout diagram of the form

A

i
��

// X

j

��
B // Y

(4.15)

in AlgO. If X is cofibrant and i is a TQ-acyclic strong cofibration, then j is a TQ-

acyclic strong cofibration.

Proof. Applying Q to the diagram (4.15) gives a pushout diagram of the form

Q(A)

(∗)
��

// Q(X)

(∗∗)
��

Q(B) // Q(Y )
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in AlgO. Since (∗) is an acyclic cofibration by assumption, it follows that (∗∗) is an

acyclic cofibration, which completes the proof.

Proposition 4.3.10. The class of TQ-acyclic strong cofibrations is (i) closed under

all small coproducts and (ii) closed under all (possibly transfinite) compositions.

Proof. Part (i) is because strong cofibrations are closed under all small coproducts

and Q is a left Quillen functor, and part (ii) is because strong cofibrations are closed

under all (possibly transfinite) compositions and Q is a left Quillen functor.

Definition 4.3.11. Denote by ITQ the set of generating cofibrations in AlgO and by

JTQ the set of generating acyclic cofibrations in AlgO union the set of TQ-acyclic strong

cofibrations consisting of one representative of each isomorphism class of subcell O-

algebra inclusions A ⊂ B that are TQ-equivalences and such that B has less than κ

cells (Definition 4.3.2).

Proposition 4.3.12. Any map X → Y of O-algebras with X cofibrant can be factored

as X → X ′ → Y a TQ-acyclic strong cofibration followed by a weak TQ-fibration.

Proof. We know by [35, 12.4] that the set JTQ permits the small object argument [35,

10.5.15], and running the small object argument for the map X → Y with respect to

JTQ produces a functorial factorization of the form

X
j−→ X ′

p−→ Y

in AlgO. We know that j is a TQ-acyclic strong cofibration by Propositions 4.3.9 and

4.3.10. Since JTQ contains the set of generating acyclic cofibrations for AlgO, we know

that p is a fibration of O-algebras, and hence it follows from Proposition 4.3.6 that p

is a weak TQ-fibration, which completes the proof.
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Proposition 4.3.13. Suppose p : X → Y is a map of O-algebras.

(a) The map p is a weak TQ-fibration if and only if it satisfies the right lifting

property with respect to the set of maps JTQ (Definition 4.3.11).

(b) The map p is a TQ-acyclic weak TQ-fibration if and only if it satisfies the right

lifting property with respect to the set of maps ITQ (Definition 4.3.11).

Proof. Part (a) was verified in the proof of Proposition 4.3.12 and part (b) is because

p is an acyclic fibration (Proposition 4.1.9).

Our main result, Theorem 4.3.14, is that the TQ-local homotopy theory for O-

algebras (associated to the classes of maps in Definition 4.1.5) can be established

(e.g., as a semi-model structure in the sense of Goerss-Hopkins [24] and Spitzweck

[58], that is both cofibrantly generated and simplicial) by localizing with respect

to a set of strong cofibrations that are TQ-equivalences; see, for instance, Mandell

[42], White [59], and White-Yau [60] where semi-model structures naturally arise in

some interesting applications. A closely related (but different) notion of semi-model

structure is explored in Fresse [22].

Theorem 4.3.14 (TQ-local homotopy theory: Semi-model structure). The category

AlgO with the three distinguished classes of maps (i) TQ-equivalences, (ii) weak TQ-

fibrations, and (iii) cofibrations, each closed under composition and containing all

isomorphisms, has the structure of a semi-model category in the sense of Goerss-

Hopkins [26, 1.1.6]; in more detail:

(a) The category AlgO has all small limits and colimits.
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(b) TQ-equivalences, weak TQ-fibrations, and cofibrations are each closed under

retracts; weak TQ-fibrations and TQ-acyclic weak TQ-fibrations are each closed

under pullbacks.

(c) If f and g are maps in AlgO such that gf is defined and if two of the three maps

f, g, gf are TQ-equivalences, then so is the third.

(d) Cofibrations have the left lifting property with respect to TQ-acyclic weak TQ-

fibrations, and TQ-acyclic cofibrations with cofibrant domains have the left

lifting property with respect to weak TQ-fibrations.

(e) Every map can be functorially factored as a cofibration followed by a TQ-acyclic

weak TQ-fibration and every map with cofibrant domain can be functorially

factored as a TQ-acyclic cofibration followed by a weak TQ-fibration.

Furthermore, this semi-model structure is cofibrantly generated in the sense of Goerss-

Hopkins [26, 1.1.7] with generating cofibrations the set ITQ and generating TQ-acyclic

cofibrations the set JTQ (Definition 4.3.11), and it is simplicial in the sense of [26,

1.1.8].

Proof. Part (a) follows from the usual model structure on O-algebras (see, for in-

stance, [32]). Consider part (b). It is immediate that TQ-equivalences are closed

under retracts (since weak equivalences are). We know that cofibrations are closed

under retracts (e.g., by the usual model structure on O-algebras). Noting that any

right lifting property is closed under retracts and pullbacks, together with Proposition

4.3.13, verifies part (b). Part (c) is because weak equivalences satisfy the two-out-

of-three property. Part (d) follows from Proposition 4.1.9 and Definition 4.1.5. The
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first factorization in part (e) follows from Proposition 4.1.9 by running the small ob-

ject argument with respect to the set ITQ and the second factorization in part (e) is

Proposition 4.3.12 (obtained by running the small object argument with respect to

the set JTQ). This semi-model structure is cofibrantly generated in the sense of [26,

1.1.7] by Proposition 4.3.13 and is simplicial in the sense of [26, 1.1.8] by Proposition

4.1.12.

Definition 4.3.15. An O-algebra X is called TQ-fibrant (resp. weak TQ-fibrant) if

X → ∗ is a TQ-fibration (resp. weak TQ-fibration).

Proposition 4.3.16. An O-algebra X is TQ-local if and only if it is weak TQ-fibrant.

Proof. This follows from Proposition 4.1.13 and Remark 4.1.14.

Let X be an O-algebra and run the small object argument with respect to the set

ITQ for the map ∗ → X; this gives a functorial factorization in AlgO as a cofibration

followed by an acyclic fibration ∗ → X̃
'−−→ X; in particular, X̃ is cofibrant. Now run

the small object argument with respect to the set JTQ for the map X̃ → ∗; this gives

a functorial factorization in AlgO as X̃ → L(X̃)→ ∗ a TQ-acyclic strong cofibration

followed by a weak TQ-fibration; in particular, L(X̃) is TQ-local and the natural

zigzag X ' X̃ → L(X̃) is a TQ-equivalence. Hence we have verified the following

theorem.

Theorem 4.3.17. If X is an O-algebra, then (i) there is a natural zigzag of TQ-

equivalences of the form X ' X̃ → LTQ(X̃) with TQ-local codomain, and if fur-

thermore X is cofibrant, then (ii) there is a natural TQ-equivalence of the form

X → LTQ(X) with TQ-local codomain.
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Proof. Taking LTQ(X̃) := L(X̃) for part (i) and LTQ(X) := L(X) for part (ii) com-

pletes the proof.
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Chapter 5: TQ-Whitehead theorem for homotopy

pro-nilpotent structured ring spectra

In Chapter 4, we established the TQ-local homotopy theory for O-algebras, where

the upshot is that: if X is a cofibrant O-algebra, then its weak TQ-fibrant replacement

X → LTQ(X) is the TQ-localization of X. By construction, the comparison map

X → LTQ(X) is a cofibration that is also a TQ-equivalence such that LTQ(X) is

TQ-local. Intuitively, the TQ-localization LTQ(X) can be thought of as “the part of

X that TQ-homology sees”.

In this Chapter we attack the following question: When is the comparison map

X → LTQ(X) a weak equivalence? In other words, when is an O-algebra X already

TQ-local? For instance, we know from [15] that every connected O-algebra is TQ-

complete and hence X ' LTQ(X), but we also know from [32] that every connected

O-algebra is the homotopy limit of a tower of nilpotent O-algebras and hence X

is homotopy pro-nilpotent (Definition 4.0.1); here, R,O were assumed to be (−1)-

connected.

This leads us to one of the motivations of our work: what amounts to the “first

half” of a conjecture of Francis-Gaitsgory [21, 3.4.5] that (i) the natural map com-

paring X with its TQ-completion should be a weak equivalence for every homotopy

pro-nilpotent O-algebra X. Our main result, Theorem 1.0.1, is that (i) is true in
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general, provided that in the comparison map we replace “TQ-completion” with “TQ-

localization”. Our strategy of attack is to leverage the TQ-local homotopy theory of

O-algebras with the fact, proved in [14], that M -nilpotent O-algebras are TQ|NilM -

complete.

In this Chapter, we also compare TQ-localization with TQ-completion and show

that TQ-local O-algebras which are TQ-good are already TQ-complete (Theorem

5.2.1). Moreover, we show that O-algebras which admit a principally refined Postnikov

tower are TQ-local (Theorem 5.3.3), provided that mild connectivity assumptions are

satisfied.

5.1 TQ-local O-algebras and TQ|NilM -resolutions

The purpose of this section is to prove that homotopy pro-nilpotent O-algebras

are TQ-local (Theorem 1.0.1) by verifying that TQ|NilM -resolutions of M -nilpotent

O-algebras have TQ-local fibrant replacements in AlgO (Proposition 5.1.8). Similarly,

we will also show that TQ-complete O-algebras are already TQ-local (Proposition

5.1.9).

We start by reviewing some basic properties of TQ-local O-algebras. In particular,

we will show in Proposition 5.1.6 that the homotopy limit of a small diagram of TQ-

local O-algebras is TQ-local.

Recall from Definition 4.1.2 that an O-algebra X is called TQ-local if (i) X is

fibrant in AlgO and (ii) every TQ-acyclic strong cofibration A → B induces a weak

equivalence

Hom(A,X)
'←−− Hom(B,X)
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on mapping spaces in sSet. We have seen in Proposition 4.1.13 that a fibrant O-

algebra X is TQ-local if and only if X → ∗ satisfies the right lifting property with

respect to every TQ-acyclic strong cofibration A→ B in AlgO.

Proposition 5.1.1. Let Y be a fibrant object in AlgJ . Then UY ∈ AlgO is TQ-local.

Proof. This follows from Proposition 4.1.13 by using the (Q,U) adjunction (3.1).

Next we observe that the TQ-local property is preserved by weak equivalences

between fibrant O-algebras.

Proposition 5.1.2. Let X → Y be a weak equivalence between fibrant objects in

AlgO. Then X is TQ-local if and only if Y is TQ-local.

Proof. Let A → B be a TQ-acyclic strong cofibration. Consider the commutative

diagram of mapping spaces of the form

Hom(A,X)

∼
��

Hom(B,X)

∼
��

oo

Hom(A, Y ) Hom(B, Y )oo

in sSet. Since the vertical maps are weak equivalences, it follows that the top map is

a weak equivalence if and only if the bottom map is a weak equivalence.

This observation generalizes as follows.

Proposition 5.1.3. Consider any weak equivalence X → Y in AlgO. Let X ′, Y ′ be

fibrant replacements of X, Y , respectively, in AlgO. Then X ′ is TQ-local if and only

if Y ′ is TQ-local.
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Proof. By assumption, the comparison map X → X ′ is an acyclic cofibration and Y ′

is fibrant. Then it follows immediately (via lifting) that there exists a map ξ that

makes the diagram

X ∼ //

∼
��

Y

∼
��

X ′
ξ // Y ′

in AlgO commute. By Proposition 5.1.2, X ′ is TQ-local if and only if Y ′ is TQ-local

since ξ is a weak equivalence between fibrant objects.

Proposition 5.1.4. Let X be an O-algebra and suppose X ′, X ′′ are fibrant replace-

ments of X in AlgO. Then X ′ is TQ-local if and only if X ′′ is TQ-local.

Proof. This follows from Proposition 5.1.3.

The following generalization of Proposition 5.1.1 will be used in our proof of

Propositions 5.1.7 and 5.1.8.

Proposition 5.1.5. Let Y be a (not necessarily fibrant) object in AlgJ , then every

fibrant replacement of UY in AlgO is TQ-local.

Proof. Let UY → ŨY be a fibrant replacement of UY in AlgO; in particular, UY →

ŨY is an acyclic cofibration. Let Y ′ be a fibrant replacement of Y in AlgJ . Then it

follows immediately (via lifting) that there exists a map ξ that makes the diagram

UY
∼ //

∼
��

UY ′

��
ŨY

ξ

<<

// ∗

in AlgO commute. Since UY ′ is TQ-local (Proposition 5.1.1) and ξ is a weak equiva-

lence between fibrant objects, ŨY is TQ-local by Proposition 5.1.2.
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Proposition 5.1.6 (Preservation of the TQ-local property: Homotopy limits). The

homotopy limit of a small diagram of TQ-local O-algebras is TQ-local.

Proof. This follows from the definition of TQ-local O-algebras; see, for instance, Dror

Farjoun [16, 1.A.8, 1.G] and Hirschhorn [35, 19.4.4]. Here is another, essentially

equivalent, proof: It follows from Proposition 4.1.4 that the homotopy limit in AlgO

of a small diagram of TQ-local O-algebras is weakly equivalent to its homotopy limit

calculated in the TQ-local homotopy theory (Theorem 4.3.14); hence, verifying that

the homotopy limit in AlgO is TQ-local reduces to the usual fibrancy property of

homotopy limits in a homotopy theory (in this case, in the TQ-local homotopy theory);

see, for instance, Hirschhorn [35, 18.5.2], together with Ching-Harper [15, 8.9] for a

discussion of homotopy limits in the context of O-algebras.

Proposition 5.1.6 is the main advantage of working with TQ-localization instead of

TQ-completion (at the expense of a much larger construction). For instance, consider

any pullback diagram of the form

A //

��

B

p
��

C // D

in AlgO. It follows from Proposition 5.1.6 that if B,C,D are TQ-local and p is a

fibration, then A is TQ-local. Taking C = ∗, for instance, shows that TQ-local

O-algebras play nicely with fibration sequences; this is not expected to be true, in

general, if we replace “TQ-local” with “TQ-complete” (but see [51]).
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Proposition 5.1.7. If Z is a cofibrant O-algebra, then the TQ-completion (3.3) Z∧TQ

of Z is the homotopy limit of a small diagram of TQ-local O-algebras.

Proof. We want to show that the ∆-shaped diagram C̃(Z) in (3.3) is objectwise TQ-

local; i.e., that C̃(Z)s is TQ-local for each s ≥ 0. This follows from Proposition 5.1.5.

In more detail: Consider the case s = 0. Let Y := QZ ∈ AlgJ . Then UY = (UQ)Z,

hence it suffices to verify that ŨY is TQ-local which is true by Proposition 5.1.5. Sim-

ilarly, consider the case s ≥ 1. Let Y := Q(UQ)sZ ∈ AlgJ . Then UY = (UQ)s+1Z,

hence it suffices to verify that ŨY is TQ-local and Proposition 5.1.5 completes the

proof.

Proposition 5.1.8. If X is a cofibrant Jn-algebra, then the TQ|NilM -completion

X∧TQ|NilM
of X is the homotopy limit of a small diagram of TQ-local O-algebras.

Proof. We want to show that the ∆-shaped diagram ˜VnN(X) in (3.4) is objectwise

TQ-local; i.e., that ˜VnN(X)s is TQ-local for each s ≥ 0. This follows from Proposition

5.1.5. In more detail: Consider the case s = 0. Let Y := QnX ∈ AlgJ , then

UY = Vn(UnQn)X and hence it suffices to verify that ŨY is TQ-local; this is true by

Proposition 5.1.5. Similarly, consider the case s ≥ 1. Let Y := Qn(UnQn)sX ∈ AlgJ .

Then UY = Vn(UnQn)s+1X and hence it suffices to verify that ŨY is TQ-local; this

is true by Proposition 5.1.5 which completes the proof.

Proposition 5.1.9. If X is an M-nilpotent O-algebra (resp. Z is an O-algebra) for

some M ≥ 2, then its TQ|NilM -completion X∧TQ|NilM
(resp. TQ-completion Z∧TQ) is

TQ-local.
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Proof. By Proposition 5.1.6, it suffices to verify that X∧TQ|NilM
(resp. Z∧TQ) is the

homotopy limit of a small diagram of TQ-local O-algebras. Now the result follows

from Propositions 5.1.8 and 5.1.7, respectively.

Proposition 5.1.10. Let M ≥ 2.

(a) If X is an M-nilpotent O-algebra, then the natural map X ' X∧TQ|NilM
is a weak

equivalence.

(b) If Z is a 0-connected O-algebra and O,R are (−1)-connected, then the natural

map Z ' Z∧TQ is a weak equivalence.

Proof. Part (a) is proved in Ching-Harper [14, 2.12] and part (b) is proved in Ching-

Harper [15, 1.2].

Now we are ready to show Homotopy pro-nilpotent O-algebras are TQ-local.

Proof of Theorem 1.0.1. Part (a) follows from Propositions 5.1.9 and 5.1.10. Part (b)

and Part (c) follow from part (a), together with Proposition 5.1.6. Part (d) follows

from part (c), together with Proposition 4.0.2; alternately, it follows from Propositions

5.1.9 and 5.1.10.

Remark 5.1.11. It is worth pointing out (Proposition 5.1.4) that if some fibrant re-

placement of an O-algebra X is TQ-local, then every fibrant replacement of X is

TQ-local.

As an application, we obtain the following homotopy pro-nilpotent TQ-Whitehead

theorem that simultaneously extends the previously known 0-connected and nilpotent

TQ-Whitehead theorems.
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Proof of Theorem 1.0.2. This follows from Theorem 1.0.1, together with Proposition

4.1.4.

5.2 Comparing TQ-localization with TQ-completion

In this section we discuss the relation between TQ-localization and TQ-completion.

Let X be a cofibrant O-algebra. We constructed the TQ-localization map X →

LTQ(X) by running the small object argument in Theorem 4.3.17. By construction,

LTQ(X) is TQ-local and the TQ-localization map X → LTQ(X) is a TQ-acyclic strong

cofibration (Definition 4.1.5).

The TQ-completion map X → X∧TQ can be thought of as an approximation of the

TQ-localization map. For instance, we know that the TQ-completion X∧TQ of X is

always TQ-local (Proposition 5.1.9).

Theorem 5.2.1 (Recognizing when TQ-local O-algebras are TQ-complete). Let X

be a cofibrant O-algebra. Then the TQ-completion map c : X → X∧TQ factors through

the TQ-localization map l : X → LTQ(X) via a commutative diagram of the form

X
c //

l
��

X∧TQ

��
LTQ(X)

ξ
::

// ∗

in AlgO. Furthermore, if X is TQ-local, then the following are equivalent:

(i) The natural map X → X∧TQ is a TQ-equivalence; i.e., X is TQ-good.

(ii) The natural map X ' X∧TQ is a weak equivalence; i.e., X is TQ-complete.

(iii) The comparison map ξ is a weak equivalence.
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Proof. This is analogous to the Bousfield-Kan completion of spaces [10]. Since X∧TQ

is TQ-local and l : X → LTQ(X) is a TQ-acyclic strong cofibration, there exists a

lift ξ that makes the diagram commute (Proposition 4.1.13) in AlgO. Suppose X is

TQ-local, then l is a TQ-equivalence between TQ-local objects, hence a weak equiva-

lence by the TQ-local Whitehead theorem (Proposition 4.1.4). Therefore ξ is a weak

equivalence if and only if c is a weak equivalence. This verifies (ii) ⇔ (iii). Since

X,X∧TQ are TQ-local, c is a TQ-equivalence if and only if c is a weak equivalence by

the TQ-local Whitehead theorem. This verifies (i) ⇔ (ii).

It is worth pointing out the following two propositions.

Proposition 5.2.2. A map f : X → Y between O-algebras is a TQ-homology equiv-

alence if and only if the induced map f∧TQ : X∧TQ → Y ∧TQ is a weak equivalence.

Proof. This is proved by arguing exactly as in [10, I.5], but here is the basic idea: The

“if” direction is proved using retract argument and the “only if” direction is because

holim∆ preserves weak equivalences.

Proposition 5.2.3. Let X be an O-algebra, then the following are equivalent:

(i) X is TQ-good.

(ii) X∧TQ is TQ-complete.

(iii) X∧TQ is TQ-good.

Proof. This follows from exactly the same argument as in [10, I.5].
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5.3 Postnikov towers and TQ-localization

In this section we assume that O,R are (−1)-connected. We show that a (−1)-

connected O-algebra is TQ-local if it has a principally refined Postnikov tower.

Proposition 5.3.1. Let X be a (−1)-connected cofibrant O-algebra. Then there exists

a coaugmented tower {X} → {Xn} (the Postnikov tower of X) of the form

X

�� �� $$ ''
∗ = X−1 X0

oo X1
oo X2

oo · · ·oo

in AlgO such that for each n ≥ −1:

(a) Xn is a cofibrant and fibrant O-algebra.

(b) the structure map X → Xn is (n+1)-connected and πkXn = ∗ for all k ≥ n+1.

(c) the structure map Xn+1 → Xn is a fibration.

Proof. The Postnikov tower can be constructed using small object arguments anal-

ogous to the arguments in [13, 17, 20, 55]. In more detail: Let In be the set of

n-connected generating cofibrations in AlgO and let J be the set of generating acyclic

cofibrations in AlgO (see, for instance, [30]). Start by setting X−1 = ∗. For each

n ≥ 0, we inductively run the small object argument with respect to In+1

⋃
J to fac-

tor the map X → Xn−1 in AlgO as X → Xn → Xn−1. Then X → Xn is a cofibration,

Xn → Xn−1 is a fibration and πkXn = ∗ for all k ≥ n + 1. By assumption, O,R are

(−1)-connected, hence X → Xn is (n + 1)-connected by the small object argument

construction.

Analogous to the definition for spaces, principal Postnikov towers and principally

refined Postnikov towers are defined as follows.
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Definition 5.3.2. Let X be a (−1)-connected O-algebra. We say that a Postnikov

tower {Xn} of X is principal if for each n ≥ 0, the structure map Xn → Xn−1 fits

into a homotopy pullback diagram of the left-hand form

Xn
//

��

∗fat

��
Xn−1

// K(πnX,n+ 1)

Mi
//

��

∗fat

��
Mi−1

// K(Gi, n+ 1)

(5.1)

in AlgO, where ∗fat is an O-algebra that is weakly equivalent to ∗ (i.e., a “fat point”

in AlgO) and K(πnX,n + 1) is an object in AlgO with πnX as the only nontrivial

homotopy group concentrated at level n+ 1.

We say that {Xn} is principally refined if, for each n ≥ 0, the structure map

Xn → Xn−1 can be factored as a finite composite Xn = Mtn → · · · → M2 → M1 →

M0 = Xn−1 of maps such that, for each tn ≥ i ≥ 1, the map Mi → Mi−1 fits into a

homotopy pullback diagram of the right-hand form (5.1) in AlgO, where the Gi’s are

abelian groups and K(Gi, n + 1) is an object in AlgO with Gi as the only nontrivial

homotopy group concentrated at level n+ 1. In particular, every principal Postnikov

tower is principally refined.

Theorem 5.3.3. Let X be a fibrant O-algebra. If X,O,R are (−1)-connected and X

has a principally refined Postnikov tower, then X is TQ-local.

Proof. We know that every 0-connected fibrant O-algebra is TQ-local (Theorem 1.0.1),

hence, in particular, each Eilenberg-MacLane object K(Gi, n + 1) appearing in the

principally refined Postnikov tower of X has TQ-local fibrant replacements in AlgO.

By inducting up the principally refined Postnikov tower, it follows that each Xn is

TQ-local (Proposition 5.1.6). Since X is the homotopy limit of its Postnikov tower
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{Xn}, which is objectwise TQ-local, it follows that X is TQ-local (Proposition 5.1.6)

which completes the proof.

We provide some examples of (−1)-connected algebras which admit principally

refined Postnikov towers.

(i) Let X be a cofibrant 0-connected O-algebra. Analogous to results in [2, 5, 17,

34], one can show that the Postnikov tower of X is principal.

(ii) Consider ΩX for any 0-connected cofibrant O-algebra X. Since the loop functor

Ω commutes with homotopy pullbacks in AlgO, ΩX has a principal Postnikov

tower by applying Ω to the principal Postnikov tower of X.

(iii) Consider UY for any (−1)-connected cofibrant J-algebra Y . The category AlgJ

is Quillen equivalent to Algτ1O
∼= ModO[1] [32, 7.21], hence the homotopy category

of AlgJ is stable. Therefore, the Postnikov tower of Y in AlgJ is already principal.

Applying forgetful functor U induces principal Postnikov tower for UY in AlgO.

(iv) One can construct additional examples by pulling back quotient towers along

cocellular maps as described in [45, 3.3].
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[1] M. André. Homologie des algèbres commutatives. Springer-Verlag, Berlin, 1974.
Die Grundlehren der mathematischen Wissenschaften, Band 206.
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