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Abstract 

Unsupervised clustering poses unique challenges in clinical data due to heterogeneous 

size and mixed type. We hypothesize that these limitations can be overcome by 

calculating dissimilarity by combining multiple distance methods. A review of the 

literature suggests that solutions for mixed, clinical data are sparse and lack rigor. In an 

initial experiment on real clinical data, we find limitations in a common approach: 

converting a mixed data set to a single data type. To rigorously test dissimilarity metrics 

and clustering methods, we develop 32,400 simulations of realistic, mixed-type clinical 

data and test 3 clustering algorithms (hierarchical clustering, Partitioning Around 

Medoids, and self-organizing maps) on 5 single distance metrics (Jaccard Index, Sokal & 

Michener distance, Gower coefficient, Manhattan distance, Euclidean distance) and 3 

multiple distance methods of calculating dissimilarity (DAISY, Supersom, and Mercator, 

a method of our own devising). We apply the superior solution for a data mixture 

predominated by binary features, DAISY with Ward’s hierarchical clustering, to the data 

set from our initial experiment, and recover important prognostic features. These 

experiments raise future questions for clustering problems in clinical data, including 

identifying minimum size for successful clustering (relevant when clustering clinical 

trials) and addressing concerns for validation of sometimes variable outcome.
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Chapter 1. Introduction 

With improvements in data mining of the electronic medical record and the expansion of 

large clinical databases, the scale of data available for clinical knowledge discovery is 

increasing dramatically. This expanding data size and complexity demands new 

analytical approaches.[1, 2] Some analytical techniques refined in bioinformatics for 

the analysis of high-throughput data may provide translational methods to analyze 

large-scale clinical data, if they can be properly transformed. Pattern discovery with 

unsupervised machine learning (ML), a common approach for multi-omics data,[3, 4] 

has the potential to revolutionize our understanding of patient phenotypes and clinical 

outcomes.[5] However, clinical data, which are characterized by considerably greater 

heterogeneity than common high-throughput datasets, pose unique problems for 

unsupervised ML applications.[1]  

For two decades, clustering has been a common tool for pattern discovery in 

bioinformatics.[3, 4] Unsupervised analysis of high-throughput omics experiments have 

uncovered new patterns to annotate the genome, elucidate chromatin structure,[6] 

reveal molecular subtypes in cancer from gene expression,[7] and functionally segment 

the human genome by understanding histone modification.[8] In recent years, 

unsupervised ML began to be applied to clinical data. Clustering analyses have found 
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applications from heart disease,[9] chronic obstructive pulmonary disease,[10, 11] 

critical care,[12] and sepsis [13] to health services applications.[14]  

Clinical data pose unique challenges for clustering analyses. Unsupervised ML 

in bioinformatics commonly involves the uniform application of a mathematical 

distance metric to a matrix of continuous or binary data that are homogeneous in type. 

Unlike omics data, clinical data are heterogeneous, characterized by a mixture of data 

types, which can impede easy application of unsupervised ML in clinical informatics. 

Heterogeneity of data type raises new challenges in feature selection, choosing a 

distance metric that captures biological meaning, and visualizing clinical data. 

A Brief Survey of Clustering Algorithms 

Unsupervised ML broadly encompasses algorithms that aim to uncover hidden structure 

in data from input features alone. Clustering analyses, a subcategory of unsupervised ML, 

attempt to partition these input data into distinct groups based on calculated similarities 

between observations.[15] Clustering produces a taxonomy of subjects, and has useful 

applications at an early stage in an area of scientific research.[16] Clustering analyses 

require two fundamental steps, which may be implemented separately or simultaneously: 

the calculation of similarity, dissimilarity, or distance between features or subjects, 

followed by the application of an algorithm to uncover latent clusters.  

 Many general classes of clustering algorithms exist. Older approaches – and still 

the most popular methods [4] – include hierarchical and partitional algorithms. More 

recent methods include neural network-based clustering and kernel-based learning, 

arising from support vector machines.[3, 17] Hierarchical methods constitute the oldest 
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(and still some of the most popular) clustering algorithms.[16] Hierarchical algorithms 

construct clusters based on a similarity matrix, calculated a priori, and a linkage criterion 

to determine the distance between pairwise set of observations.[17] Hierarchical clusters 

may be partitioned as if growing from a single cluster (divisive hierarchical clustering) or 

formed from merging of singleton clusters (agglomerative hierarchical clustering).[3, 4] 

Hierarchical clusters are visualized as a dendrogram, where leaves (data objects) branch 

from a single root note (representing the entire data set), such that the distance in height 

between pairs or clusters increases with their dissimilarity.[3] In 1963, Ward published a 

general agglomerative procedure for cluster formation that merges optimally similar 

subjects based on an “objective function” that “reflects the criterion chosen by the 

investigator.”[18] Ward’s method is common use today, typically implemented with the 

error sum of squares.[14, 19-22] 

 Partitional methods include k-means and related algorithms and fuzzy 

clustering.[17] In k-means clustering, the algorithms initializes a number of points in 

space equal to a researcher-provided desired number of clusters. These cluster 

“centroids” describe the mean of the coordinates of the data points in the cluster. The 

algorithm then iteratively optimizes the membership of each remaining data point to one 

of these clusters, recalculating the positions of the centroids to reach fixed (assumed to be 

optimal) centroid positions and final cluster memberships.[23] K-means is considered a 

“staple” of clustering algorithms: historical, well-known, and influential. K-means 

produces compact clusters with less computational intensity than hierarchical methods, 

and is therefore suited to large data sets.[3, 16] K-modes clustering is an extension of k-
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means clustering for nominal data: a non-parametric method that iteratively reduces a 

loss function representing the count of mismatches between points,[24] implementing the 

Hamming distance. In k-medoids and the related algorithm PAM (Partitioning Around 

Medoids), a representative data point (a “medoid”) is chosen for each cluster center. 

Thus, distances do not need to be calculated at each iteration, as each distance can be 

obtained from a distance matrix, calculated a priori.[23, 25] In fuzzy clustering, a data 

point can be partitioned such that it belongs to more than one cluster, with its 

membership to multiple cluster described as a set of membership probabilities.[3, 17] The 

fuzzy c-means algorithm is the counterpart to k-means with fuzzy partitions.[3] 

Statistical finite mixture models, which “regard the observations to be clustered as 

a random sample from a finite mixture of distributions,” converge on conditional 

probabilities of group membership by maximum likelihood. The flexibility of statistical 

mixtures allows applications to mixed-type data. Early implementations included latent 

class analysis which calculates similarity between categorical variables based on 

observed and expected counts.[16, 26] Latent class methods were expanded in the 1970’s 

using maximum likelihood estimation from the EM (expectation, maximization) 

algorithm, an iterative method to maximize expected log-likelihood from given 

parameters.[27, 28] Due to their flexibility, finite mixture models are applied to mixed-

type data today, and the literature describing their modern application is extensive.[16] 

However, mixture models could be viewed as not true clustering analysis, better suited to 

a “mature” stage in research development in a field, requiring some a priori 

understanding of the nature of the data at hand.[16] Finite mixture model approaches to 
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uncovering latent subclasses present unique problems that differ from concerns in other 

clustering analyses.[16] Thus, to keep this manuscript focused in scope, we will not 

discuss mixture models further. 

 Less common clustering approaches include neural networks, particularly self-

organizing maps (SOM), and density-based clustering. Neural networks generate clusters 

through a competitive learning scheme, where input data are patterned into units through 

competition and weighting to produce the strongest output pattern.[3] SOM are shallow, 

unsupervised neural networks that create topographical, ordered, one- and two-

dimensional mappings in a lattice from similarities in high-dimensional data, from which 

cluster identities can be recovered.[3, 29] Traditional implementations of SOM can 

cluster continuous features but cannot handle categorical data. Instead, these techniques 

transform categorical features to binary and handle them as continuous features.[17]  

Density-based clustering clusters data points above a distance threshold and frequency 

threshold by computing a local density criterion as triangular similarity between points, 

evaluating the frequency of points within a certain distance as a density and cluster 

membership. Non-dense points are removed, allowing the algorithm to remove 

“noise.”[4, 30] Some instances of density-based clustering applied for the clustering of 

clinical data will be discussed later in this chapter. 

Clustering Approaches for Mixed-Type Data 

The general algorithms discussed in the previous section can be applied to cluster single-

type or mixed-type data. In the handling of mixed-type data, the method of expressing 

similarity or distance is a primary way in which clustering techniques differ.[16] The 
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problem of calculating similarity or dissimiliarity in mixed-type data is as old as 

clustering algorithms themselves. In 1966, Goodall [31] proposed a method of calculating 

similarity by ordering calculated similarity between pairs and expressing their similarity 

as “the complement of the probability that a random sample of two will have a similarity 

equal to, or greater than, the pair in question.” Variations on the method allowed its 

application to nominal, ordinal, binary, and continuous attributes, with the total 

probabilities calculated by a final ordering step.  

Modern approaches implement several methods of handling mixed data. One 

approach is to convert features to a single data type. The researcher may convert all 

categorical features to continuous.[17, 32] Conversely, continuous features can be 

transformed to categorical.[11, 32] However, data conversion risks information loss, so 

we consider mixed-data solutions that handle mixed data directly, without transformation, 

to be the most desirable approaches. 

The approach proposed by Goodall over 50 years ago – constructing a measure of 

dissimilarity for variables of each data type and combining them, possibly with a method 

of differential weighting, into a single coefficient – remains a dominant approach 

today.[16] In 1990, Chiodi [33] proposed an approach to iteratively partition data objects 

based on distinct measures of distance for continuous, ordinal, and nominal data. In 2002, 

Li and Biswas [34] implemented the Goodall similarity for agglomerative hierarchical 

clustering of simulated and real mixed-type data. More commonly, mixed-type 

approaches implement two methods of calculating similarity: one for continuous and one 

for categorical data. Often, the Hamming distance is used for categorical features with the 
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Minkowski distance (a generalization of the Euclidean and Manhattan distances),[35] the 

Euclidean distance,[36], or the Gower coefficient (which implements the Manhattan 

distance for continuous data)[33, 37, 38] for continuous features. Modha and colleagues 

[39] implement the Euclidean distance for continuous features with the cosine distance 

for categorical features. Huang’s k-Prototypes algorithm implements k-means for 

numeric data and k-modes for categorical features.[40, 41] Some approaches introduce 

cost and weighting functions between feature types to prevent imbalance between data 

types.[42] For example, Ahmad and Dey proposed an extension of the k-Prototypes 

algorithm where features are weighted by significance, with similarity and significance 

calculated as a function of co-occurrence of categorical and (discretized) continuous 

features.[43, 44] Regardless of the chosen solution, a common, core theme remains the 

same: clustering of mixed-type data implements a well-established algorithm (or some 

variation thereof) based on a mixed dissimilarity metric calculated to standardize a mixed 

data set into a homogeneous set of distances.  

Clinical Applications of Clustering Mixed Data   

Unsupervised clustering analyses have been used to uncover subgroups within clinical 

data since the 1960s.[19] Then and now, hierarchical methods have been a dominant 

approach for the clustering of clinical data.[14, 19-22] Recently, a few studies have 

applied k-means and k-medoids algorithms to cluster clinical data.[12, 45, 46] 

Increasingly, studies have emerged comparing traditional hierarchical clustering 

approaches to k-means, k-medoids, and density-based algorithms.[10, 11, 47, 48]  
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Studies clustering clinical data apply several approaches to integrating 

heterogeneous data. These include restricting data sets to only one data type, such as an 

experiment on Z-normalized continuous data in the critical care setting,[12] 

normalizing on frequency,[46] or transforming mixed-type data to categorical.[11] 

However, often no evidence or description of mixed data handling is reported.[45, 47] 

In many cases, analyses are applied to low-dimensional feature spaces as small as six or 

seven features.[10, 45] Within the recent studies assessed here, the most common 

distance metric employed was Euclidean distance, a metric more suited for continuous 

data, regardless of the data type being clustered.[11, 47] Often, no distance metric was 

reported.[12, 45, 46]  

We identified 4 recent studies, published in the past 3 years, comparing the 

performance of unsupervised algorithms on mixed-type, clinical data. Yan and 

colleagues [47] compared Ward’s agglomerative hierarchical clustering, k-medoids, 

and density-based clustering with the OPTICS algorithm to identify subgroups of high-

cost patients among a population burdened by comorbidities to inform care 

management strategies. Data were preprocessed by removal of variables with <1% 

variance, highly correlated features (Pearson correlation  > 0.85) and data imputation. 

An estimate for the number of k clusters was chosen by visualization with t-Distributed 

Stochastic Neighbor Embedding (t-SNE). All three algorithms were applied using the 

Euclidean distance, with the winning solution (and value of k) chosen by maximizing 

average silhouette width. Algorithm performance was compared with ridge regression 

models and inter-cluster variance. The three algorithms returned markedly distinct 
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results, especially density-based clustering. Hierarchical and k-medoids algorithms 

produced clusters of relatively uniform size. By ridge regression, k-medoids cluster 

identities appeared to be driven by a small number of dominant features, while density-

based clustering had a larger range for the next 11 variables than either hierarchical 

clustering or k-medoids, suggesting that a larger number of variables drive subgroup 

differentiation in the density-based algorithm. However, OPTICS returned clusters of 

an excessively broad range of sizes (from 3686 to 56 patients in a cluster) with 382 

outliers unclustered, suggesting the possibility of poor fit or distortion. The strength of 

the study lies in its large sample size: 6154 patients with 161 features remaining after 

pre-preprocessing. However, although the data in the study were mixed-type, Euclidean 

distance is the only metric used, and there is no evidence reported on ways mixed-type 

data were handled. 

Bose and colleagues [49] compared hierarchical clustering, k-means, and k-

medoids on a data set of 557 patients with heart failure utilizing home telehealth 

services. The Waikato Environment for Knowledge Analysis package was used to 

reduce 300 first search features to a small feature space of 7 variables for clustering. 

Clusters were validated by the Dunn Index, silhouette width, and connectivity. 

Although the study team reports clusters of roughly uniform size (153-233) that differ 

significantly by chi-square test or one-way analysis of variance, inspection of reported 

identifying features was discouraging. In a table of characterizing features of each 

cluster, most of these features are present in less than 60% of members within a cluster, 

suggesting weakness in the clustering output. The strength of this study is in study 
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design for mixed data: the team implemented the Gower dissimilarity, which has 

provisions for the continuous and nominal features present in the data set. However, 

small feature space limits the ability to truly assess the merits of the methods in 

comparison. 

Two teams have undertaken a comparison of hierarchical and partitioning 

algorithms in the setting of chronic obstructive pulmonary disease (COPD). Pikoula and 

colleagues [11] compared hierarchical and k-means clustering on a mixed data set of 

30,961 patients with COPD and 15 clinical features. Data type was predominated by 

binary data and contained continuous and categorical variables. Mixed data were 

handled by converting continuous variables to categorical, and Euclidean distance was 

implemented. The number of k clusters was selected by maximizing mean silhouette 

width. Cluster stability was assessed with iterative resampling of 30% of the training 

data set. Evaluation was tested against a non-parametric decision tree classifier: an 

unusual choice for a standard. In resampling, k-means demonstrated higher stability 

than hierarchical clustering. In an analysis of cluster identities in a small feature space, 

89% of variance resulted from 2 features, with low (often <50%) defining features in a 

cluster. Visualization did not produce discernably separate clusters. The means of 

mixed data handling in this study is concerning. First, discretization of continuous 

features to categorical results in information loss. Furthermore, as Chapter 4 will show, 

the Euclidean distance, although frequently unquestioningly viewed as “default” 

distance, is inappropriate for categorical features. 
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Across 10 cohorts of 17,146 patients with COPD, Castaldi and colleagues [10] 

demonstrated similar performance between k-medoids clustering and general 

hierarchical clustering. The features space consisted of 7 features: 6 continuous and 1 

categorical. Using unsupervised random forests for feature selection and similarity 

matrix calculation, the team recovered best performance with hierarchical clustering 

with removal of “poorly classifiable subjects,” but in some experiments this resulted in 

removal of up to 86% of subjects from a clustering approach, which suggests the 

potential for loss of biological meaning. Three spirometric measurements dominated 

cluster formation. No clear methods for handling mixed data were provided. 

These comparative studies may raise suggestions for the merits of one approach 

over another, but methodological problems in each raises concerns with these results. 

First, although many have used large sample sizes from patient cohorts, small feature 

spaces do not bring with them rich and nuanced information for knowledge discovery. 

Questionable or excessive methods for feature reduction, such as the implementation by 

Bose and colleagues [49] of the Waikato Environment for Knowledge Analysis, which 

reduced 300 features to 7, has real potential to introduce knowledge loss or bias. 

Similar attitudes towards outlier removal, such as those seen in Castaldi and colleagues 

[10] raise similar concerns for knowledge loss and bias, while increasing the difficulty 

of judging the true performance of an algorithm. The problem is compounded by poor 

handling of mixed data from using inappropriate distance metrics for a given data type 

[11] to ignoring it entirely [10, 47] Perhaps it is unsurprising that clustering outcomes 

of these experiments, regardless of type, often produced clusters with limited 
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coherence. When the percentage frequency of a defining feature in a cluster was 

reported in a study, the most common features defining a cluster had low frequencies, 

sometimes less than 50%. This indicates that the recovered clusters lacked strong 

identities and had reduced potential for clinical discovery.[11, 12, 45, 49] 

Outline of the Master’s Thesis 

Successes in bioinformatics show the promise of unsupervised ML in big data. As 

available data from cohorts and the electronic health record grow, clinical data – and 

therefore clinical research and patient care – can benefit from this promise. However, 

unlike omics data, mixed data types in clinical setting introduce an important problem. 

Many algorithms, both old standards (e,g., hierarchical clustering, k-medoids) and newer 

approaches (e.g., SOM) are readily available for clinical applications. These can be 

accessed through mixed-data centered approaches to calculating similarity and distance, 

without the need for the development of novel algorithms. The problem of calculating 

dissimilarity for mixed data remains unsolved, but an encouraging legacy is built on the 

idea of calculating distance within data types and combining these into a whole. 

However, these approaches have not been fully and fruitfully applied in the clinical 

realm. Often, clinical clustering in its current state is plague by poor handling of mixed 

data, producing poor results. 

 This thesis probes challenges within methods for unsupervised machine learning 

of clinical data resulting from heterogeneous size and, particularly, mixed data type. In it, 

we take 5 major steps to test the hypothesis that clustering methods that calculate 

dissimilarity on mixed-type clinical data from algorithmic combinations of multiple 
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distance metrics geared towards individual data subtypes outperform single-distance 

dissimilarity metrics for clustering knowledge discovery. Here, in Chapter 1, we began 

this process by establishing context with a survey of relevant algorithms and methods of 

calculating dissimilarity and their application to date in the clinical literature.  

In Chapter 2, we perform an initial experiment on a real clinical data set 

consisting of clinical features and biomarkers collected on 247 patients with chronic 

lymphocytic leukemia (CLL). Real clinical data sets lack a validation measure. However, 

we chose this disease as our case study because prognosis and risk factors of CLL are 

well understood, providing “biological validation” for our discoveries. In this experiment, 

we discretize all data types to binary, an approach raised in this chapter, and cluster 

mixed data as a single type. We find some success, but also elucidate limitations in the 

method. 

In response, we undertake a series of steps to explore best methods for clustering 

mixed type data. These tests require a gold standard of known cluster identities, which 

cannot be obtained from real data. Therefore, in Chapter 3 we generate a large series of 

simulations of mixed-type clinical data with known cluster identities. In Chapter 4, we 

test 5 distance metrics and 3 common clustering algorithms on these simulations and 

compare them to reveal the best of these methods for single and mixed data types. In 

Chapter 5 we return to our CLL data set from Chapter 2 with the best method we 

uncovered. This final experiment demonstrates improvement but also raises further 

questions. In summary, we address concluding results in Chapter 6. 
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Chapter 2. Clustering by Binary Transformation 

Calculating appropriate measures of distance or dissimilarity is complicated in mixed-

type data sets by the need for different data handling for each data type. The simplest or 

“most straightforward” approach to mixed-type data handling involves transforming all 

variables to the same data type.[50] For example, continuous variables can be converted 

to categorical variables by discretization into intervals.[50] In a clinical data setting, this 

approach was taken by Pikoula and colleagues,[11] who transformed continuous 

variables to categorical features for unsupervised machine learning in a mixed-type 

dataset of electronic health record data on patients with Chronic Obstructive Pulmonary 

Disorder.  

This chapter outlines a preliminary informatic experiment in data transformation 

before calculating dissimilarity. We present methods for a clustering approach based on 

rigorous, clinically-grounded decision-making to capture known markers of prognosis 

and outcome with high fidelity. In this experiment, we hypothesized that unsupervised 

ML, when applied to clinical data, could discover biologically significant clusters of 

patients with different prognoses. We chose Chronic Lymphocytic Leukemia (CLL), a 

disease with well-understood prognosis and outcomes, to “biologically validate” the 

discoveries generated by our methodologic approach. Using CLL as a case-study, we 

applied k-medoids clustering to a set of clinical features by transforming them to binary 
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vectors, exploring 10 metrics for calculating a distance matrix and two common 

methods of visualization. Although hierarchical algorithms are more commonly 

implemented in the clinical literature, we used k-medoids clustering in this chapter, as 

they are more novel and possibly more stable approaches to clinical data clustering. The 

two primary challenges for either of these approaches (e.g. hierarchical clustering or k-

means or k-medoids) are solutions for mixed-type data and associated concerns for 

selection of an appropriate distance metric. This paper transforms a mixed data set to 

binary features to eliminate conflict from multiple data types and assesses 10 distance 

metrics to make a judicious choice to maximize biological meaning recovery. 

Materials and Methods 

Samples and Clinical Findings 

This study uses deidentified data that were previously published. Originally, peripheral 

blood (PB) samples were obtained from 247 treatment-naïve CLL patients after obtaining 

informed consent at the University of Texas M.D. Anderson Cancer (MDACC).[51-53] 

The studies were approved by the Institutional Review Board. Clinical and routine 

laboratory data were obtained by review of the medical records. These data and sample 

testing included 23 markers with known and unknown prognostic significance. Key 

characteristics of the sample are summarize in Table 2.1. The somatic mutation status of 

immunoglobulin heavy chain variable region (IGHV) genes, and ZAP70 expression, 

measured by either flow cytometry or immunohistochemistry, were assessed on blood or 

bone marrow samples according to established protocols.[54-56] Mutated IGHV status 

and negative ZAP70 expression are associated with better prognosis. Common CLL-
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associated cytogenetic abnormalities were assessed by array-based SNP genotyping.[52, 

56] Cases were grouped according to the Döhner hierarchy, which ranks survival from 

longest to shortest in the following order: del(13)(q14.3); trisomy 12; FISH normal 

karyotype; (del(11)(q22.3); del(17)(p13.1).[57, 58] Our analysis included seven 

measures of outcome collected over 15 years of follow-up: overall survival (OS), time 

 Patients 

n (%) 

Total 247 

Sex  

Male 173 (70.0%) 

Female 74 (30.0%) 

Race  

Asian 1 (0.4%) 

Black 11 (4.5%) 

Hispanic 7 (2.8%) 

White 228 (92.3%) 

Rai Stage  

Low (0-2) 196 (79.4%) 

High (3-4) 51 (26.0%) 

Döhner Classification  

del13q 90 (36.4%) 

+12 37 (15.0%) 

FISH normal 73 (29.6%) 

del11q 34 (13.8%) 

del17p 13 (5.3%) 

IGHV Mutation Status  

Mutated 106 (43.1%) 

Unmutated 140 (56.9%) 

Treatment Status  

Never treated 20 (8.1%) 

Treated with FCR 227 (91.9%) 

Age at Diagnosis Years 

Minimum 26.74 

Median 55.87 

Maximum 82.41 

 

Table 2.1 Clinical characteristics of Chronic Lymphocytic Leukemia (CLL) patients. 
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from diagnosis to treatment (TTT), time from sample collection to treatment, event-free 

survival (EFS), progression-free survival (PFS), time-to-progression (TTP), and 

survival after treatment (TxOS). 

Clinical data transformation 

The clinical data are heterogeneous, and include binary, nominal, ordinal, and categorical 

features. Because our unsupervised ML approach requires homogenized data, we 

transformed all clinical features to a binary matrix. Reclassifying categorical and 

continuous data as binary required decision-making steps that inherently result in 

information loss.  So, we compared two distinct approaches to the transformation, which 

we refer to as “Data transformation A” and “Data transformation B”. 

Both transformations included several binary features, which can be subclassified 

into two types. For symmetric binary features, such as sex, both values are about equally 

likely and there is no reason to prefer coding either value as 0 or 1 in a vector of zeros 

and ones. In our data set, both the IGHV somatic mutation status and ZAP70 expression 

were symmetric and either presence or absence is relevant to predict clinical outcome. 

For asymmetric binary features, one of the values tends to be much rarer than the other 

and is usually coded as a “1”. This value is viewed as more informative since people who 

share the attribute have more in common that people who lack it. For example, clinical 

features such as anemia, splenomegaly, and hypogammaglobulinemia are asymmetric 

binary features of our data. For symmetric binary features in both data transformations, 

we retained two binary vectors – one vector for presence and one vector for absence of a 
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feature. For asymmetric binary features, we retained one vector capturing a positive 

result, or presence of a feature.[25] 

Discretization of continuous data into categories carries certain pitfalls, including 

information loss and the criteria by which intervals were chosen. Different approaches 

were taken based on the variable in question. For example, we binned age along decade 

lines (e.g., 40-49, 50-59) following common clinical conventions. For prolymphocyte 

count, which does not have interval conventions in clinical use, we demarcated bin size 

by plotting a histogram and selecting intervals that were both clinically sensible (e.g. all 

patients with a count of “0” were placed in a single bin and patients with a 

prolymphocyte count greater than 10 were placed in a bin, following the cutoff in clinical 

use) and contained similarly large patient populations. In data transformation A, we 

preserved categorical and continuous data in more detailed form than in data 

transformation B.  

For categorical data, we transformed each category into binary dummy variables 

and retained a set of vectors for each category. Thus, for the Döhner classification we 

retained 5 binary vectors, each corresponding to one cytogenetic abnormality. We 

binned categorical data along clinically interpretable lines. We binned age by decade 

and prolymphocyte count by percentage into 6 categories each. We converted these two 

sets of dummy variables using the same approach that we applied to categorical data. 

The greatest number of dummy variables for any given category was 6. 

In data transformation B, we converted all categorical and continuous features 

into two clinically meaningful binary categories. Each of these features was divided 
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along a meaningful clinical cutoff and retained as two symmetric binary vectors. For 

example, the continuous variable “age” was split into two vectors corresponding to age 

greater or less than 65 years, and prolymphocyte count was split into two vectors at a 

cutoff of 10%. Although this method of transformation was smoothly applied to 

continuous data, Döhner classification, an ordinal variable, could not be collapsed into 

two meaningful binary categories. Thus, we retained only the Döhner classification as a 

non-binary set of dummy variables, with a total of 5 vectors. 

Unsupervised machine learning 

We applied an identical ML workflow to both data transformations. We began with 

principal component analysis and clustering using the Thresher R package.[59, 60] Using 

the Mercator R package, we assessed 10 binary distance metrics representing meaningful 

groupings of 76 distance metrics.[61] Mercator provides streamlined tools for principal 

component analysis of dissimilarity matrices from different distance metrics, by 

application of the Thresher algorithm and several types of visualization. To select an 

appropriate distance metric, we recovered clusters at a range of k values, calculated the 

categorical distance between clusters, and visualized the similarity between distance 

metrics with hierarchical clustering. For analysis of both data transformations, we 

selected the Sokal and Michener distance for representativeness of trends among 

recovered clusters. Developed as a taxonomic tool, the Sokal and Michener distance 

dSOKALMICHENER tolerates symmetric binary variables and categorical data.[25, 62] This 

metric also benefits from ease of interpretability by calculating dissimilarity as a ratio of 

positive or negative concordant matches to all pairs:[61] 
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𝑑𝑆𝑂𝐾𝐴𝐿𝑀𝐼𝐶𝐻𝐸𝑁𝐸𝑅 =  
𝑁00 + 𝑁11

𝑁00 + 𝑁01 + 𝑁10 + 𝑁11
 

We recovered clusters using the Partitioning Around Medoids (PAM) 

algorithm.[25] The goodness-of-fit for each cluster was determined from the silhouette 

width, which quantitatively and visually represents the tightness of clustering as a 

function of the dissimilarity within versus between groups.[63] The number of clusters 

was determined by maximizing the average silhouette width. For each cluster, we defined 

“salient” clinical features as those that characterize greater than 75% of patients within a 

given cluster. We visualized clusters with both linear (multi-dimensional scaling, MDS) 

and nonlinear dimension reduction methods (t-stochastic neighbor embedding, t-

SNE).[64] To assess prognostic utility and evaluate our methodology, we performed 

survival analysis using a Cox proportional hazard model, evaluated with the log-rank test 

and visualized by Kaplan-Meier curves. 

Results 

Data transformation A 

After data transformation A, which preserved categorical features, our dataset contained 

39 binary vectors. PAM clustering on a dissimilarity matrix constructed on the Sokal and 

Michener distance returned k = 7 clusters (average silhouette width = 0.10). Survival 

analysis with a Cox proportional hazard model revealed a statistically significant 

association between seven clusters and OS from the time of diagnosis (log-rank test, p = 

0.0164; Figure 2.1.A) Visualization by MDS and t-SNE (Figure 2.1.B&C) demonstrated 

loose clusters arrayed along a gradient in the first dimension that mirror the OS order 

seen in the Kaplan-Meier curves. Visualizations of the other 9 tested distance metrics  
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using MDS and t-SNE mirrored similar patterns that reflected groupings of distance 

metric results described by Choi and colleagues.[61](Supplemental Figure A.2, A.3)  

Informative features that varied between clusters with differing survival outcomes 

included IGHV somatic mutation status, sex, ZAP70 expression, immunoglobulin light 

Figure 2.1 Data transformation A: Kaplan-Meier survival curve, MDS plot, and t-SNE 

plot for seven unsupervised clusters of CLL patients. Unsupervised machine learning, 

using k-means clustering with Partitioning Around Medoids (PAM) and the Sokal-

Michener distance yields seven clinical phenotypes with significant differences in overall 

survival (OS) (p = 0.0164). Clusters separated by MDS along the first dimension reflect 

OS outcomes. 

 



22 

 

chain subtype, hypogammaglobulinemia, anemia, and Döhner classification. A subset of 

informative features are presented in Table 2.2.A, with complete results as Supplemental 

Table A.1. The three clusters with the longest survival (A1, A2, A3) were associated with 

mutated IGHV status and lack of ZAP70 expression. The cluster with second-longest 

survival was the only cluster associated with female sex. The two clusters with shortest 

survival (A6, A7) were associated with unmutated IGHV status and ZAP70-positivity, 

regardless of sex. The clusters with second- and third-longest survival were associated 

with del(13q), the only Döhner classification abnormality identified by the analysis. Only 

two clusters were associated with dummy categorical features, specifically del(13q), all 

other clusters are based on informative binary features. Light chain subtypes lambda (A1) 

and kappa (A4, A6) were identified as salient features.  

Some common features characterized a majority of patients in many of the 

recovered clusters. In all clusters, 75% or more patients were diagnosed at low Rai stage 

(Rai stage < III). All clusters featured low CD38 except for cluster A4, which had high 

CD38. Some clusters were notable only for the absence of a common feature. All clusters 

had low beta-2 microglobulin except cluster A7. All clusters had low white blood cell 

counts at diagnosis except cluster A6. All clusters had typical Matutes except clusters A4 

and A7. 

Data transformation B 

Collapsing categorical values to binary classifiers reduced the dataset for 

transformation B to 39 features. Using the Sokal and Michener distance, PAM clustering 

recovered k = 6 clusters (average silhouette width = 0.17). Transforming categorical   
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Data Transformation A. 

Cluster Sex IGHV 

Status 

ZAP70 Döhner CD38 Light 

Chain 

Other 

A1 Male Mutated Negative  Low Lambda Hypogammaglobulinemia 

A2 Female Mutated Negative del13q Low   

A3 Male Mutated Negative del13q Low   

A4 Male Unmutated   High Kappa  

A5 Male Unmutated Negative  Low  Anemia 

A6  Unmutated Positive  Low Kappa  

A7  Unmutated Positive  Low  Anemia 

 

Data Transformation B. 

 Sex IGHV 

Status 

ZAP70 CD38 Age Prolymphocytes Light 

Chain 

Anemia 

B1  Mutated Negative Low Under 65 Under 10 Lambda  

B2  Mutated Negative Low Under 65 Under 10 Kappa  

B3 Male Unmutated   Under 65 Under 10  Anemia 

B4  Unmutated Positive Low Under 65 Under 10 Kappa  

B5 Male Unmutated Positive Low Over 65  Lambda Anemia 

B6 Male Unmutated Positive High Under 65 Under 10 Kappa  

 

Table 2.2 Informative, identifying features for clustered data transformations A and B. Presented in order of overall survival. 

Clusters are ordered by predicted survival outcome, from longest survival (A1 or B1) to shortest (A7 or B6). Characteristic 

features of each cluster, defined as a feature present in at least 75% of members of a given cluster, include known indicators of 

superior prognosis (IGHV-mutated status and female sex) and poor prognosis (ZAP70 positivity). Döhner classification, known 

to be one of the best predictors of prognosis in CLL, failed to be captured by the analysis for most clusters. For complete results 

and percentages, see Supplementary Table A.1. 
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features to binary form improved silhouette widths. Survival analysis by Cox 

proportional hazard on several outcome measures revealed statistically significant 

associations between six recovered clusters and TTP (log-rank test, p = 0.0451; Figure 

A.1) and the related metric, time from diagnosis to treatment (p = 0.0039; Figure A.1). 

Visualization by MDS and tSNE displayed loose clusters along a gradient that mirrored 

OS, but not other outcome measures, such as TTP (Figure 2.2.B&C). However, even 

though MDS separates clusters on the first dimension along the order of OS, the 

association between clusters and OS was not statistically significant (p = 0.391). 

Informative features that defined 75% of the patients in a given cluster, ordered 

by separation on MDS first dimension and OS, are presented in Table 2.2B, with 

complete results in supplemental Table A.1. Clusters with improved OS had mutated 

IGHV status and ZAP70-negativity. Clusters with shorter OS had unmutated IGHV status 

and ZAP70 positivity. The cluster with second-shortest survival was associated with 

older age (greater than 65 years) at the time of diagnosis. The cluster with shortest 

survival was associated with CD38 positivity. As in data transformation A, lambda (B1, 

B5) and kappa (B2, B4, B6) were alternately identified as salient features. 

As in data transformation A, some common features were represented in many clusters. 

For example, all clusters were associated with low Rai stage, except omissions in clusters 

B3 and B5. All clusters had typical immunophenotypes by Matutes score, except clusters 

B5 and B6, which had fewer than 75% of members with typical immunophenotypes, but 

no cluster was characterized by atypical immunophenotypes by Matutes. 
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Figure 2.2 Data transformation B. Kaplan-Meier survival curve, MDS plot, and t-

SNE plot for six unsupervised clusters of CLL patients. Unsupervised machine 

learning, using k-means clustering with Partitioning Around Medoids (PAM) and the 

Sokal-Michener distance yields seven clinical phenotypes with significant differences 

in time-to-progression (TTP) (p = 0.0451).(Supplemental Figure 1) Clusters 

separated by MDS along the first dimension reflect order of overall survival (OS) 

outcomes. 
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Discussion 

Applying methods common in bioinformatics to clinical data entails potential problems 

and pitfalls. The difficulties of these approaches are rooted in the nature of clinical data 

itself. The most important hurdle to overcome is clinical data’s heterogeneity. Our 

analysis captured symmetric, binary classifiers with high fidelity. Three of the best-

understood prognostic features in CLL are sex, IGHV mutation status, and ZAP70 

expression. Both data transformations identified these three features as salient and 

informative. Some common features proved uninformative because they characterized a 

majority of patients in most or all of the recovered clusters. Binary features for which one 

of the two categories predominated within the dataset, such as Rai stage or white blood 

cell count, were sufficiently common as to be identified as salient features in each cluster 

by our 75% cutoff. Such features are meaningless due to their frequency across the data 

as a whole. 

In data transformation A, a high proportion of categorical and binned continuous 

data led to loose clusters and low silhouette widths. Salient clinical features identified by 

our workflow failed to capture meaningful categorical data, including age, a well-

understood prognostic indicator. These limitations led us to explore data transformation 

B. Collapsing categorical data to binary form improved silhouette width and led to the 

inclusion of two important classifiers, age and prolymphocyte count, in cluster 

definitions. 

Both data transformations captured light chain subtype (lambda or kappa) as a 

salient feature for the majority of clusters. Light chain subtype is a commonly recorded 
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variable with known function in physiological B-cell development and differentiation. 

However, its role as a prognostic indicator is poorly understood. Furthermore, although 

light chain subtype helps distinguish cluster identities, the alternating pattern of light 

chain subtype along the survival spectrum in transformation B suggests that association 

with overall survival is unlikely. Our analysis captured several pairs of clusters 

differentiated by few features other than light chain subtype. In data transformation B, 

clusters B1 and B2 are differentiated only by light chain subtype. Applications of 

unsupervised ML to clinical data hold the potential to explore other poorly understood 

clinical features and their role in predicting treatment response or survival outcomes. 

Future work remains to refine methodologies to elucidate these clinical features. 

Critically, neither transformation succeeded in capturing what is perhaps the most 

important, best understood, prognostic indicator in CLL: the Döhner classification. Data 

transformation A identified a Döhner abnormality in two clusters only, and data 

transformation B failed to identify Döhner classification for any cluster at all. The 

Döhner classification was the only ordinal feature that could not be meaningfully 

collapsed into a binary form, which may explain why it was not well captured by either 

model. Another possible explanation arises because the Döhner classification is strongly 

associated with both IGHV mutation status and ZAP70 expression. Cases which only 

have del(13q) tend to be IGHV-mutated and negative for ZAP70 and have good 

prognosis. Cases with del(17p) or del(11q) tend to be IGHV-unmutated and positive for 

ZAP70 and have poor prognosis. Nevertheless, this finding suggests that important 

categorical factors with many levels may have less influence on clustering than associate 
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symmetric binary factors. It also reflects the fact that (by definition) unsupervised ML 

methods are inherently less powerful than supervised methods at finding factors relevant 

to a particular clinical outcome; we know that the Döhner classification is prognostic 

because it was found during supervised analyses of clinical data from CLL cohorts. 

A simple binary transformation and subsequent application of dissimilarity 

metrics uniformly across a clinical data set is clearly insufficient to capture all medically 

important facets within the data. Collapsing age to a binary classifier of greater or less 

than 65 years successfully led to its inclusion as a salient feature in data transformation B. 

However, patient ages in the data set ranged from less than 40 to over 80 years old at 

diagnosis. Clearly, rich and important clinical information was lost with at least some 

binary transformations. Ideally, the power of an application of unsupervised ML to 

clinical data would be in capturing details of clinical significance not previously 

identified. Collapsing continuous data to a binary classifier may prevent the realization of 

this important potential. 

Clinical data are inherently complex. Our dataset, though small, is representative 

of this complexity. These data contain features that are symmetric, balanced, and binary 

(e.g., sex); symmetric and binary, but strongly unbalanced (e.g., Rai stage); binary but 

asymmetric (e.g., anemia); nominal (e.g., Döhner classification); continuous on an 

interval scale (e.g., age); and continuous on a ratio scale (e.g., prolymphocyte count). 

Any unsupervised ML approach must capture and leverage this complexity. 

A primary methodological concern of our analysis and future directions is fitting 

an appropriate distance metric to a given problem. Here, we selected the Sokal and 
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Michener distance for appropriateness of data type, representativeness of other distance 

metrics, and representativeness of trends within our data. First, the Sokal and Michener 

distance, although originally developed for small, categorical data,[62] is appropriate for 

use in symmetric binary data,[25] such as the important features in our data that are 

prognostically meaningful both when absent or present. Second, the Sokal and Michener 

distance produces results highly correlated with other well-understood measures of binary 

distance, including Manhattan, Minkowski, and Gower distances, so we can view the 

Sokal and Michener distance as representative of other approaches to calculating 

dissimilarity. Finally, when visualizing our data across 10 distance metrics, the Sokal and 

Michener distance qualitatively reproduced plotting trends across multiple methods of 

calculating dissimilarity. 

Although clustering is a common approach in bioinformatics, both current 

bioinformatics and future clinical informatics applications can benefit from careful 

attention to this problem. Within the realm of bioinformatics, homogeneous datasets can 

easily be subjected to a single dissimilarity metric. However, analysts typically resort to 

software defaults, such as the Euclidean distance for continuous metrics, as opposed to 

selecting the metric that best fits the particular experiment. Failure to disclose distance 

metrics in the construction of a dissimilarity matrix or linkage metrics in hierarchical 

clustering is an impediment to reproducibility. In 1980, in response to publication of 

cluster experiments characterized by insufficient methodological reporting to allow 

reproducibility, Blashfield [19] called for reporting of the chosen similarity metric in all 

published clustering analyses. Forty years later, this recommendation and reporting need 
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still stands. Although using a default measure is convenient, thoughtlessly applying an 

artificial, mathematically-constructed distance metric may rest on faulty assumptions that 

an arbitrary metric can correspond to meaningful biological reality. 

Many distance metrics currently used in bioinformatics have their roots in 

taxonomic and speciation problems of the early- to mid-twentieth century.[61, 62] 

Clustering remains, in many ways, a taxonomic problem. Creating meaningful biological 

classifications requires thoughtful assignment of a distance metric to a particular set of 

data. Any solution for clustering clinical data must capture relationships between data 

types without information loss. Although the heterogeneity of clinical data stresses the 

most complex aspects of this problem, we argue that exploring multiple distance metrics 

to select the best fitting calculation of dissimilarity for a given data set should be an 

integral step in any unsupervised ML workflow. To tackle the heterogeneous data 

problem, Kaufman and Rousseuw [25] suggest clustering a dissimilarity matrix, as 

opposed to raw data. They sub-compartmentalize distinct data types, each requiring 

different solutions and metrics in the construction of a dissimilarity matrix, including 

symmetric or asymmetric binary data, ordinal, nominal, interval-scale continuous, and 

ratio-scale continuous. Each data type is subjected separately to targeted distance 

calculations, then recombined in a dissimilarity matrix for clustering. This methodology 

and more elegant solutions merit further exploration. The remainder of this thesis 

undertakes a series of experiments to probe the hypothesis generated in this preliminary 

experiment further. 
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Chapter 3. Simulations of Realistic Clinical Data 

Any evaluation of clustering methodologies in clinical data demands a known validation 

standard for comparison. The experiment described here in Chapter 2 relied on 

“biological validation”: testing a clustering methodology on a disease with well-

understood relationships between clinical features and patient outcomes. However, there 

are important underlying assumptions beneath biological validation as an approach. First, 

one of the primary benefits of understanding clinical data through clustering analyses is 

improved understanding of the interactions between features, both correlation and 

exclusion. In many clinical cases, interaction effects are far less understood than the 

individual effects of features. When interactions between features are identified in a 

clustering experiment, biological validation leaves us unable to assess the quality of our 

emergent findings. Secondly, we must assume that most or all information about the 

clustered features, their relationships to each other, and their relationships to the disease 

are known. This leaves us unequipped to deal with surprises: either new discovery, or the 

discovery that something previously believed is revealed to be wrong. The goal of any 

clustering experiment should be to uncover novel findings. However, biological 

validation leaves us unable to assess the validity of any novel findings that emerge 

through the approach.  
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 The best solution to the shortcomings of biological validation is the identification 

of a gold standard for analysis in which all cluster assignments of each feature are known. 

If it were possible to identify these with full certainty from clinical data, no further 

experiments in this thesis would be needed. However, artificial clinical data, simulated 

with known cluster identities, can serve to test and validate unsupervised ML algorithms. 

Here, when we refer to “clinical data,” we refer to a data set characterized by 

heterogeneity and measurement in a clinical setting. Clinical data sets vary widely in 

scale, from early-stage clinical trials with fewer than 100 patients to prospective cohorts 

following 10,000 patients to large-scale mining of electronic health records. They consist 

of data collected in the clinical setting, including demographic information, laboratory 

values, results of physical exam, disease and symptom histories, dates of visits or hospital 

length-of-stay, pharmacologic medications and dosing, and procedures performed, 

possibly with associated ICD-9 or -10 codes. The most salient, identifying feature of 

clinical data is that it is of mixed-type, consisting of continuous, categorical, and binary 

data. 

 Simulating realistic clinical data faces may challenges. The wide range in feature 

spaces and sample sizes demands simulation solutions that vary by orders of magnitude. 

Rather than simply simulating data of a single type, simulated clinical data must be of 

mixed-type, and must reflect the variation in distribution of these types found in clinical 

scenarios: Frequently, clinical data sets with mixed types of data are predominated by one 

type over the others. In addition, in order to conclusively test algorithms for use in 

clinical contexts, simulations of clinical data must replicate the noisiness of these data 
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that results from variation in human and technological features in measurement and the 

biological variation between individuals. 

 Although simulating realistic clinical data poses challenges, a real need exists, 

both for the experiments conducted in this thesis and for researchers at large, for these 

tools. As we demonstrate later in this chapter, there are a paucity of publicly available 

solutions. Clinically meaningful simulations are vital for testing and developing superior 

machine learning techniques for new clinical data challenges. This chapter offers a tool to 

meet this need. 

 In this chapter, we briefly review existing approaches to simulate mixed-type 

data. Finding the need for new development in this area, we identify an existing R-

package, Umpire, which was developed to simulate clusters of continuous, gene 

expression data. Although a package able to directly simulate mixed-type data would 

facilitate our process, mixed-type data can be constructed from judiciously binning 

continuous data to create categorical and binary features. We describe a process to adapt 

the Umpire gene expression simulations to the characteristics and behavior of clinical 

data, creating appropriately noisy, mixed-type data. Finally, we describe a cohort of 

simulations that could represent the range of clustering problems in a clinical context and 

apply these methods to generate many simulations. In Chapter 4, we describe the use of 

these simulations to test dissimilarity and clustering methods for mixed-type data. 
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Representative Clinical Simulations for Testing Mixed-Type Clustering Methods 

Our goal was to create a set of simulations that represent a spectrum of important 

problems that could be encountered in clinical data contexts. These simulations should 

meaningfully reflect sample sizes corresponding to multiple common study designs and 

mixtures of data types reflecting that seen in the published literature. In addition, the data 

we simulate must represent heterogeneity from biological variation and methods of data 

capture characteristic of clinical data. By generating representative structure and 

noisiness, we will be able to generalize the results of our tests algorithms to real data 

situations. 

 The central purpose of these simulations is to generate mixed-type data. However, 

our review of the literature encountered many data sets were composed of unbalanced 

mixtures predominated by a single data type.[10, 11, 65] For this reason, we chose to 

simulate 9 different mixtures of data types. As controls, we generated noisy but unbinned 

continuous data and control data sets of binary or categorical data alone. Because 

nominal and ordinal data require different clustering solutions [25] and because 

categorical data pose unique challenges in unsupervised ML, [38] we generate three types 

of categorical controls: data sets that are exclusively nominal, exclusively ordinal, and 

those containing a mixture of nominal and ordinal features. Mixed type data were 

Table 3.1. Parameters for simulations of clinical data. 

Patients 200, 800, 3200 

Features 9, 27, 81, 243 

Clusters 2, 6, 16 

Data types and 

mixtures 

Single data type: continuous, binary, nominal, ordinal, mixed 

categorical* 

Mixtures: balanced, continuous unbalanced, binary unbalanced, 

categorical unbalanced 
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generated in four mixtures: three mixtures that were dominated by continuous, binary, or 

categorical data, respectively, and a mixture that equally balanced all three data types. 

Balanced mixtures were 1/3 composed of each category. Unbalanced mixtures were 7/9 

composed of one dominant data type, with 1/9 dedicated to the remaining two types.  As 

such, parameters for number of features in a simulation were selected as powers of 9. 

We generated a comprehensive set of simulations designed to capture the breadth 

of clinical data applications seen in our review of the literature conducted in Chapter 

1.(Table 3.1) Clustering analyses have been implemented on data sets ranging from 

clinical trials with less than 200 patients and 10 or fewer features [10, 49] up to large, 

longitudinal cohorts with following 200 or more features on 1,000 or more patients.[12, 

47, 65] We represent this spectrum with three simulated patient populations, such that 

200 simulated patients represent a clinical trial; 3,200 simulated patients represent a large 

cohort; and 800 simulated patients represent a study of moderate size between these. 

Although many studies uncover small numbers of clusters (e.g. 4 or fewer), we created 

simulations open to the possibility of clinical data sets with many clusters. We create 

simulations of the minimum possible number of clusters (e.g. 2). Simulations with 6 

clusters represent a moderate number of clusters, as reflected in the literature. 

Simulations of 16 clusters represent a very large number of clusters that is hypothetically 

possible, but also a larger number of clusters than was seen in our review of the literature, 

thereby allowing us to capture a full spectrum of cluster possibilities. Finally, we 

generated 100 repeats of each simulation profile for a total of 32,400 simulations.  
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Existing Tools to Simulate Mixed Data 

We began this process with a search for existing R-packages to simulate mixed-type data. 

From this search, we uncovered one extant tool: KAMILA (k-means for mixed large 

data). KAMILA is an R-package implementing an algorithm for k-means clustering of 

mixed continuous and categorical data and a model for generating mixed-type simulated 

data.[66] KAMILA simulates mixed-type data sets, allowing the user to control cluster 

separation, parameterized as an overlap of cluster densities; to control the proportion of 

number of categorical and continuous variables; to assign error to a certain number of 

these variables; and to select the relative prevalence of each cluster as a vector of 

probabilities. KAMILA can be easily implemented to produce clusters that suggest 

clinically meaningful structure.(Figure 3.1) However, KAMILA fails to provide 

functionality crucial to our analyses: KAMILA can only be used to generate 2 clusters. 

Knowing that clinical data often contain more than two clusters, potentially many more, 

we cannot meaningfully test algorithms for a wider variety of mixed-type data problems 

without simulating data sets with a wider variety of numbers of clusters. Therefore, we 

proceeded to explore other solutions. 

Methods to Simulate Mixed-Type Clinical Data 

Unable to find an available tool to simulate complex, clinically realistic, mixed-type data, 

we chose to build our own as an extension of an existing tool for simulating gene 

expression data. The Ultimate Microarray Prediction, Inference, and Reality Engine 

(Umpire) was published in 2009 to “simulate complex, realistic microarray data” with a 

known, “ground truth” underlying structure.[67] Although Umpire was developed to  
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simulate gene expression data, parallels between microarray data and clinical data 

realities allow for translation of the method to simulate data that captures the behavior of 

clinical data. Instead of simulating cancer subtypes from many expressed genes measured 

across a sample, we re-frame our thinking to simulate clusters from clinical features 

measured across a sample of patients and adapt our models accordingly. Following the 

Umpire model, we ascribe cluster membership to the perturbation of correlated blocks of 

features, representing functional biological groups, by latent “hits” resulting from 

underlying etiological processes. To these simulations, we apply noise following a 

clinically representative Noise Model. We segment these data into binary or categorical 

features. Finally, we combine binary, categorical, and continuous features into mixtures 

to create mixed-type data sets. 

UMPIRE: A Base for Mixed-Type Simulations 

The Umpire R-Package can be used to simulate complex, heterogeneous data with known 

cluster identities and survival outcomes. Originally developed to simulate microarray 

Figure 3.1. Plots of simulated mixed-type clusters generated using the KAMILA R-

package. KAMILA (k-means for mixed large data) can be implemented to simulate 

mixed-type data reflecting a variety of patient populations and feature spaces. 

However, KAMILA can only be used to simulate data with a maximum of 2 clusters. 
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data, Umpire simulates continuous gene expression data. Genes are not simulated as 

independent entities, but rather as correlated blocks of fixed or variable size developed to 

simulate the functioning of genes in complex biological networks and pathways. Umpire 

simulates data with known clusters (“cancer subtypes”) of pre-defined size 

(“prevalence”) based on a multi-hit model of cancer. Under this model, cluster identity is 

defined by a number of informative, latent variables (“hits”). Each subject receives a 

combination of multiple “hits,” simulating population heterogeneity. The user defines 

correlation and cluster behavior for an unrestricted number of clusters. Each cluster is 

simulated with paired survival data, in the form of a binary outcome and length of follow 

up. To these simulated data, Umpire can be used to apply additional noise, mimicking 

biological variation and experimental random error. The final results of Umpire 

simulations are large, continuous data sets with “realistic” noise reflecting gene 

expression experiments with known cluster identities and survival outcomes.[67] 

Simulating Complex Data Structure 

Meaningful simulations of clinical data must represent the complexity, biological 

variation, and measurement error that accompany patient data. Because we know that 

clusters of equal size are unrealistic, we generate clusters of both equal and unequal sizes 

to increase the complexity in the structure of simulated clusters. We sample a vector r of 

sizes of k clusters of unequal prevalence from the Dirichlet distribution r ~ 

Dirichlet(α1,…, αk), choosing a set of parameters α that generate a wide variation in 

cluster size while ensuring that all clusters have patient members. For small numbers of 

clusters (e.g., k =2,6), we set all α = 10. For larger numbers of clusters (e.g.,  k = 16), we 



39 

 

set one quarter each of parameters α to 1, 2, 4, and 8, respectively, accepting only a 

vector of cluster sizes r in which every cluster has at least 1% of patients as members. 

(Figure 3.2) 

Simulating Clinically Meaningful Noise 

Clinical data are frequently victim to complex noisiness. Marlin and colleagues [68] 

argue that all clinical data “must be treated as fundamentally uncertain” due to human 

error in measurement and manual recording, variability in sampling frequencies, and 

variation within automatic monitoring equipment. Clinical experience teaches us that 

noise in clinical data arises from many sources. Here, I illustrate this with the example of 

the measurement of blood pressure, one of the most common clinical measurements 

taken. Some error arises from frequent changes in the person performing a measurement 

(e.g., nurses coming off and on shift, who may take a blood pressure with the same 

technique but achieve slightly different measurements). Random error also arises from 

changes in a measurement device (e.g., two separate clinics or two nurses in the same 

Figure 3.2. Simulated clusters with heterogeneous cluster sizes. Clusters are 

simulated with variation in size of membership, ensuring that, in simulations with 

large numbers of clusters, each cluster has at least 1% membership. Heterogeneity in 

cluster size is present across a range of number of clusters in a simulation. 
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clinic that take a blood pressure measurement differently – one with an automatic cuff 

and one by hand). Measurement error can arise from variation in the patients’ posture at 

the time of measurement (elevated with crossed legs), from the patient’s behavior an hour 

before arriving for the measurement (a cup of coffee or a cigarette), or from the time of 

day (lower in the morning). Noise in clinical data may also arise from individual 

biological variation that causes deviation in some measurements without association with 

the disease process of interest. However, because clinical measurements are integral to 

the provision of patient care, demanding high accuracy and reliability, we also assume 

that many clinical variables have low measurement error. For example, we would expect 

almost no error in the measurement of height, where deviations from time to time of half 

an inch on an adult 65 inches tall would be insignificant. 

 Umpire simulates additive and multiplicative noise on top of a simulated 

continuous data set. The true biological signal Sli, distorted by additive noise Eli and 

multiplicative noise Hli results in the observed signal Yli: 

𝑌𝑙𝑖 = exp(𝐻𝑙𝑖) 𝑆𝑙𝑖 + 𝐸𝑙𝑖 

The noise terms 𝐻𝑙𝑖 and 𝐸𝑙𝑖 are normally distributed, and the additive noise includes a 

bias term (ν). In the gene expression context, this bias term represents a global elevation 

in feature measurements unrelated to disease outcomes, from sources such as a low level 

of cross-hybridization across an array, contributing some level of signal at all genes. The 

multiplicative noise term H represents the experimental factors in gene expression data 

commonly related to normalization problems.[67] 

When we apply Umpire preset values for additive and multiplicative noise, we 

generate noise that is unrealistic both in conceptual model and quantity.(Figure 3.3) An 
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excessively high quantity of noise produces so much noise that simulated clusters lose 

coherence, with no identifiable clusters on visual inspection with t-SNE (Euclidean 

distance). This reflects a lack of fitness of the existing Umpire noise model for clinical 

data, with invalid key assumptions: 

1. Gene expression data have much larger values than clinical data (e.g., 0-65,000; 

mean 1000 or range 0-16 and median 3-4 on a log2 scale). Thus, Umpire’s 

parameter defaults are improperly scaled. 

2. The additive noise E bias term ν, simulating global elevation in mean additive 

noise, represents cross-hybridization across an array: an experimental situation 

without clinical analogue. 

3. The multiplicative noise term H represents the experimental factors in gene 

expression data commonly related to normalization problems, for which there are 

no clinical correlates. 

 We assume that the origin of most noise in clinical data from machine 

measurement noise. Within our simulations, for a given feature f measured on patient i, 

we model the observed signal Y from additive measurement noise E applied to the true 

biological signal S (a raw, simulated data set).  

𝑌𝑓𝑖 = 𝑆𝑓𝑖 + 𝐸𝑓𝑖 

We model the additive noise following the normal distribution E ~ N(0, τ) with mean 0 

and standard deviation τ.[67]  
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Figure 3.3. Two models for simulating experimental noise on clinical data. Using a 

simulated patient population of 800 patients with 81 features to represent a clinical 

experiment of moderate size, we simulate a range of cluster numbers and visualize 

raw data with 2 comparative noise models with t-Stochastic Neighbor Embedding (t-

SNE) plots. Raw data without noise (left) are compared to competing models for 

experimental noise simulated by Umpire defaults for gene expression data (center) 

and by our clinical noise model (right). Compared to the clinical model, the gene 

expression model generates excessive noise that elides cluster identities. Application 

of a clinical noise model to raw, continuous, simulated data qualitatively results in 

clusters with mild diffusion without obscuring coherent cluster identities. 
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In a clinical context, we assume that many features have very low noisiness (such 

as height or calibrated, automated lab values) and a small number have high noisiness 

(e.g. blood pressure), we model τ following the gamma distribution τ ~ Gamma(c, b) such 

that the mean standard deviation of the additive noise bc = 0.05. Thus, we create a 

distribution in which most features have very low noise while some are victim to very 

high noisiness.(Figure 3.4) 

 

Simulating Binary Features from Continuous Data 

We convert a continuous feature into a binary vector by selecting a cutoff and assigning 

values on one side of this demarcation to “zero” and the others to “one.” Ideally, we wish 

to divide a continuous feature at a meaningful level to create a binary feature in which the 

two components differ statistically. For each continuous feature we wish to convert to 

binary, we begin by calculating a “bimodality index” for the vector.[69] The bimodality 

Figure 3.4. A gamma distribution defines the standard deviation of additive noise in 

the clinical noise model. The noise is modeled with variability in the standard 

deviation of the noise, such that many features have low noise, but some have high 

noise (large standard deviations), as visualized in a scatterplot (left) and histogram of 

frequencies (right). 
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index assumes that a vector with bimodal expression can be described as a mixture of two 

normal distributions, calculated from the fraction of members in one distribution π or the 

other standardized distance between the means of the two populations δ = (μ1 – μ2)/σ: 

𝐵𝐼 =  [𝜋(1 − 𝜋)]1/2𝛿 > 1.1 

We bisect a feature with bimodal distribution, defined as a bimodal index of 1.1. 

 Although the bimodality index allows a statistically meaningful partition of a 

continuous feature into a binary vector, not all continuous features obey this distribution. 

For continuous features without bimodal distribution, we partition them to binary features 

by selecting an arbitrary cutoff between 5% to 35%. Although arbitrariness feels 

uncomfortable in an informatics sphere, we believe that this approach reflects a 

fundamental arbitrariness in many clinical definitions. For example, 

immunohistochemistry describes a histological technique in which a specimen slide is 

stained for expression of a biomarker of interest. This marker is evaluated visually by a 

pathologist by microscopy, who counts the frequency of this biomarker in cells of 

interest. A specimen is considered positive for the biomarker if some percentage of cells 

of interest, such as 20%, express the biomarker. Cells or persons with 19% expression 

probably show little difference from persons with 21% expression, and even making this 

distinction would be difficult. In binary clinical definitions resulting from physical exam, 

such as the assessment of hepatomegaly, or enlargement of the liver, physician judgement 

based on palpation is used to make the assessment. Like immunohistochemistry, there is 

a certain subjectivity in the measurement, even though it is obtained by a highly trained 

physician, and there is no precise demarcation where the separation lies. This 
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arbitrariness of cutoff pertains also to quantitative values, such as lab assessments. For 

example, an adult female with a hemoglobin of 12.0 is said to be anemic, even though the 

clinical presentation and symptoms of a woman with a hemoglobin of 11.9 probably do 

not differ from those of a woman with a hemoglobin of 12.1. The choice of an arbitrary 

cutoff reflects these clinical decision-making processes: along a spectrum of phenotype, a 

value is chosen based on experience to define the edge of the syndrome. By choosing an 

arbitrary cutoff, we replicate this process. 

 To reduce bias that could result if all low values were assigned “0” and all larger 

values were assigned “1,” we randomly choose for values above or below the cutoff to be 

assigned 0. We mark binary features in which 10% or fewer values fall into one category 

as asymmetric and mark the remainder as symmetric binary features. 

Simulating Categorical Features from Continuous Data 

To simulate a categorical feature, we rank a continuous feature from low to high and bin 

its components into categories, which we label numerically (i.e. 1, 2, 3, 4, 5). From our 

knowledge of clinical data, we know that common categorical features have relatively 

few categories, so, for each feature, we sample a number of categories between 3 and 9. 

 There are several approaches for drawing the cut points to bin a continuous 

feature. Distributing an equal number of observations into each bin does not reflect the 

realities we see in our data, so we eliminate this option. Dividing a continuous feature by 

values (e.g., dividing a feature of 500 observations between 1 and 100 into units of 1-10, 

11-20, etc.) could lead to overly disparate distributions of observations into categories. 
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Here, we risk very large categories at intermediate values and sparse tails. For c 

categories, we model a vector of R sizes along the Dirichlet distribution,  

𝑅𝑐~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼1, … , 𝛼𝑐) 

𝛼1 = ⋯ = 𝛼𝑐 = 20 

such that we create categories of unequal membership without overly sparse tails. 

 To generate an ordinal categorical feature, we bin a continuous feature and 

number its bins sequentially by value of observations (e.g., 1, 2, 3, 4, 5). To generate a 

nominal categorical feature, we number these bins in random order (e.g., 4, 2, 5, 1, 3). 

Evaluation of Mixed-Type Simulated Data 

Methods to Evaluate the Quality of Mixed-Type Simulated Data 

How can we identify successfully simulated clusters? Here, we define “good” clusters as 

having two characteristics: 

1. Identity. The cluster is defined (identified) by a core group of salient features that 

are strongly associated with that cluster assignment. Among real data, these 

clusters could be assessed to have strong, high-frequency features that distinguish 

one cluster from another. 

2. Distinctness. Distinct clusters are tightly grouped with separation from other 

clusters with minimal overlap. Separation between one group and another can be 

easily discerned. 

Because we wish to simulate realistic data, however, we seek to simulate clusters that 

possess both these properties “in moderation,” to mimic the noisiness of real data. We 

undertake tests of both of these properties iteratively in the development of our 
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simulation methods, first confirming the quality of continuous simulations with realistic 

additive noise, then confirming the quality of simulations of a single binned type, and 

finally assessing data mixtures. In all cases, the clusters we assess in the evaluation of 

these simulations are the “known” simulated cluster identities, without testing an 

additional clustering algorithm. 

We assess the property of identity quantitatively by looking at the number and 

strength of features defining a cluster relationship for each generated type of binned data. 

When we generate raw, continuous data from a Cancer Model, a subset of features within 

our simulation are perturbed in such a way that generates cluster identities. We assume, 

therefore, that some, but not all, features are significantly associated with the identity of 

the cluster to which they belong. In small feature spaces (e.g., 9 features), we expect 

percent of significant features to be as high as 100%. For large feature spaces, where 

many features are simulated as not belonging to a cluster for greater realism, we expect 

percent significant features to fall as low as 20%. We consider a mean percent significant 

features between 30% to 50% across all feature spaces to represent a clinically realistic 

scenario: where the researcher has clustered a data set of many features, each of unknown 

significance, and only a portion contribute to the formation of strong cluster identities.  

The process of adding clinically meaningful noise and binning continuous data 

into binary and categorical features by its nature increases the noisiness of these data. 

However, we assume that, allowing for some variation introduced by our method of 

allocating hits and extra blocks, noisy and binned data should retain a similar number and 

distribution of significant features as were present in the raw data. To assess this in noise-
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transformed continuous data, we construct a multivariate linear model, which we assess 

by ANOVA to obtain a p-value describing the significance of each feature to its cluster 

membership. In binary and categorical data, we repeat this process using the chi-squared 

test. We compared the percentage of significant features between data types with bean 

plots qualitatively and ANOVA or the Kruskal-Wallis test (assessing for the need for a 

non-parametric test with Bartlett’s test of equal variances) quantitatively. We analyzed 

the relationship between percent of significant features and mean silhouette with using 

linear regression. 

 We assess distinctness by 1 qualitative assessment (t-SNE plots) and 1 

quantitative assessment (silhouette width). Although we assess the “true” cluster 

assignments, both of these tests require the imposition of a distance metric. Thus, any 

data type that is ill-served by available methods for calculating distance will demonstrate 

poor performance on both measures. Therefore, we assume that a simulated data type that 

performs well under the test for identity but poorly on a test of distinctness demonstrates 

the shortcomings of available methods to calculate distance but not unfitness of simulated 

clusters. Limitations and appropriateness of distances for different data types will be 

explored more fully in Chapter 4. 

Initially, we assessed simulation distinctness qualitatively by visual inspection of 

T-distributed Stochastic Neighbor Embedding (t-SNE) plots, which visualize high-

dimensional data in low-dimensional space without imposition of a clustering 

algorithm.[64] As such, these plots allow the visual assessment of latent data structure 

without testing a specific clustering method. By default, t-SNE plots are often generated 
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using the Euclidean distance. Where appropriate and with support from the literature, we 

implemented distance metrics that were more fitting to the data type in question. For 

example, we visualized categorical data using the Gower coefficient and the Manhattan 

distance. The history and rationale for the choice of these distance metrics is described in 

Chapter 4. This initial filtering provided a subjective, working glimpse of the quality of 

our algorithm. However, more rigorous, objective evaluation was required to confirm the 

validity of our methods. 

 Quantitatively, we assessed the distinctness of simulated data clusters using two 

approaches. First, we assessed intrinsic properties of generated clusters and their behavior 

using silhouette width. Silhouette width is a measure of cluster tightness and separation. 

For a given object being clustered, a silhouette width of 1 represents maximum tightness 

and separation between clusters (impossibly optimal clustering) and a value of -1 

represents maximally sub-optimal clustering (clear misclassification). For this individual, 

a silhouette width of 0 describes an intermediate case where goodness of assignment to 

one cluster or another is approximately equal, and an assignment to either is unclear. 

Although individual silhouette widths can describe the state of each object being 

clustered, average silhouette width across a data set can describe a general state of 

clustering quality resulting from an algorithm.[63]  

We evaluated identity and distinctness of our simulated mixed-type data 

qualitatively and quantitatively, building over progressive rounds. First, we visualized 

and assessed the noise model. Next, we assessed the quality of our procedures for binning 

binary, nominal, and ordinal data. We conceptualize categorical data as presenting three 
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data problems, corresponding to nominal data, ordinal data, and a mixture of these two. 

As such, we assessed these three types of categorical data. Finally, we inspected our four 

mixtures of data types: a balanced mixture of continuous, categorical, and binary data and 

three unbalanced mixtures, each predominated by continuous, categorical, or binary data.   

Results of Evaluations of Clinical Simulations 

The first phase in simulating these data was the application of a representative clinical 

noise model. Henceforth, we will refer to the initial, raw, continuous simulated output 

prior to the application of the noise model as “raw” data and refer to continuous data 

produced as the result of the clinical noise model applied to raw data as “continuous” 

data. For initial comparison, we inspected 972 plots, representing 3 repeats of all desired 

combinations of parameters. (Table 3.1 in a later section of this chapter discusses chosen 

parameters and their rationale in detail.) “Noisy” continuous data qualitatively presented 

with a mild increase in cluster diffusion without obscuring cluster formation in sample 

sizes reasonable for clinical data.(Figure 3.3) Comparison of average silhouette width 

between raw and continuous by visual assessment of silhouette width, a measure of 

cluster tightness and separation, revealed similar high concordance with mild deviation 

from the raw standard. A paired, two-sample t-test found no difference in average 

silhouette between raw simulations and those with the clinical noise model applied.(p < 

0.0001)  

 Four data types were simulated as single-type data sets to act as controls for 

evaluation and assessment: continuous, binary, nominal, and ordinal. At three repetitions 

of our desired parameters, we generated 432 test simulations. We assessed the quality of 
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noisy and binned data through silhouette width and percentage of significant features. 

Binning continuous data to binary and categorical types increased variability between 

data sets. An increase in variation and noisiness is also represented in decreased value 

and increased variability of silhouette width, as clusters expand and their separation 

softens. Although adding noise to raw data to generate continuous data introduces only 

mild variability to simulations, binning binary and categorical data reduces average 

silhouette widths and increases their variability.(Figure 3.5)  

Figure 3.5. Paired scatter plots comparing average silhouette widths of raw 

simulated data, continuous data simulated with a clinical noise model, and mixed 

data types simulated with a clinical noise model. Binned data of three types were 

tested: binary, a mixture of nominal and ordinal data representing categorical data, 

and a balanced mixture of binary, categorical, and continuous data representing 

mixed data. Observation reveals concordance between raw and noisy data, with 

greater variation and depression of silhouette widths in binned data. 
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The mean average silhouette width for continuous, binary, nominal, and ordinal 

data types differ.(p < 0.0001 by Kruskal-Wallis rank sum test) (Table 3.2) Silhouette 

widths were highest among continuous data. Mean average silhouette widths for binary 

and ordinal data were higher than those of nominal data, which had the lowest mean 

value. Conversely, although variation was present in the percentage of significant 

features per simulation (p < 0.0001 by Kruskal-Wallis rank sum test), continuous data 

had the lowest percentage of significant features while binary, nominal, and ordinal data 

had elevated values.(Figure 3.6) Silhouette width was only weakly correlated with the 

percentage of significant features in a sample (linear refression; R2 = 0.085). Rather, 

silhouette widths cluster in a narrow range with wide variation in the percent of 

significant features in a simulation. (Figure 3.7)  

 

Table 3.2 Mean average silhouette width and percent significant features per 

simulations vary disparately by data type. 

Data Type Silhouette Width Significant Features (%) 

Continuous 0.072 33.4 

Ordinal 0.035 47.0 

Nominal -0.012 46.2 

Binary 0.036 46.1 
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Figure 3.6. Bean plots of mean silhouette width (top) and percent significant features 

(bottom) of four primary simulated data types. Continuous, binary, nominal, and 

ordinal are simulated from raw data and a clinically representative noise model. 

Significant association was defined as p < 0.01 by chi-squared test (binary and 

categorical data) or ANOVA (continuous data). Continuous data present with the 

highest average silhouette width and lower percent significant features per simulation 

than other data types. 
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Simulated binary data were visualized forming coherent clusters at 3 different 

distance metrics appropriate for binary data.(Figure 3.8)[61] 

 We assessed 108 simulations each of ordinal, nominal, and mixed categorical 

data. Although percentage of significant features did not vary (mean SF = 46.3%; p = 

0.92, ANOVA), mean silhouette width differed between the three data types (p < 0.0001, 

Kruskal-Wallis rank sum test). Mean silhouette width was highest among ordinal data 

(mean SW = 0.0346), lowest among nominal data (mean SW = -0.0123), and 

intermediate among mixed categorical data (mean SW = 0.0100).(Figure 3.9) With t-

SNE, clusters were most easily visualized among ordinal data, forming distinct 

Figure 3.7. Scatter plot of average silhouette width and percent of significant features 

for 423 simulations of four simulated data types (continuous, binary, nominal, ordinal). 

Silhouette widths cluster in a range of roughly -0.5 to 0.1 with only weak correlation to 

the percentage of significant features in a sample (linear refression; R2 = 0.085). 
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groupings. Nominal and mixed categorical data could be visualized using the Gower 

coefficient, but failed to coalesce using other distance metrics.(Figure 3.10)  

 

Figure 3.8. Representative visualizations of simulated, binary data with 3 distance 

metrics. Using a simulated patient population of 800 patients with 81 features to 

represent a clinical experiment of moderate size, we simulate a range of cluster 

numbers and visualize t-Stochastic Neighbor Embedding (t-SNE) plots. Coherent 

clusters can be visualized using 3 different distance metrics. Cluster distinctness and 

separation decreases as the number of clusters increases. 

 

 
 



56 

 

  

 

Figure 3.9. Bean plots of mean silhouette width (top) and percent significant features (bottom) 

of 3 types of simulated, categorical data. Significant association was defined as p < 0.01 by 

chi-squared test. Percent of significant features is the same among the three data types. Mean 

silhouette width is highest among ordinal data, lowest among nominal data, and intermediate 

in mixed categorical data. 
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 We assessed 432 simulations of mixed-type data: 108 simulations each of a 

balanced mixture and three unbalanced mixtures predominated by continuous, 

Figure 3.10. Representative visualizations of simulated, categorical data with 3 distance 

metrics. Using a simulated patient population of 800 patients, 81 features, and 6 clusters to 

represent a clinical experiment of moderate size, we simulate categorical data types 

(nominal, ordinal, and a mixture of these) and visualize with t-Stochastic Neighbor 

Embedding (t-SNE) plots. Ordinal data form distinguishable clusters with all 3 distance 

metrics. Distinct clusters are visualized in nominal and mixed categorical data with the 

application of the Gower coefficient, but diffuse with the application of the Manhattan and 

Euclidean distance. 
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categorical, or binary data (here referred to as “unbalanced continuous mixture”, 

“unbalanced categorical mixture”, and “unbalanced binary mixture”). Mean silhouette 

widths varied among the 4 mixtures (p = 0.0018, Kruskal-Wallis rank sum test). 

Unbalanced continuous mixtures had the highest mean silhouette width (0.037). The 3 

other mixtures had similar, lower mean silhouette widths (balanced = 0.012, unbalanced 

binary = 0.010, unbalanced categorical = 0.012). (Figure 3.11) We visualized using t-

SNE with a single distance metric, recovering distinct clusters. (Figure 3.12)  

Figure 3.11. Bean plots of mean silhouette width for four simulated data mixtures. 

Mean silhouette width is highest among an unbalanced mixture dominated by 

continuous features, with similar mean silhouette width amoung the remaining 3 data 

mixtures (unbalanced binary mixture, unbalanced categorical mixture, and balanced 

mixture.) 
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Figure 3.12. Representative visualizations of simulated, categorical data in 4 data 

type mixtures.  
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Discussion 

In this chapter, we outlined our process for constructing simulated data sets that can 

realistically mimic clinical data corresponding to clinical trials and cohort studies with 

known cluster identities, for downstream use testing clustering approaches. The 

foundation of our simulations is the Umpire R-package. Although this tool was originally 

developed to simulate continuous gene expression data, we chose to proceed with Umpire 

because of its ability to generate heterogeneous data with complex intra-cluster 

relationships. Having made clinically relevant adjustments to the noise model 

implemented in the package, we outlined our steps for binning and assessing binary, 

nominal, and ordinal data and combining these into mixtures. 

 In assessing binned data, we rely heavily on qualitative assessment (e.g. visual 

inspection of plots). Often, we chose to proceed with plots that looked fuzzy or imperfect. 

We argue that messy or imperfect plots are what we see in real clinical data, and that 

challenging simulations are needed to demonstrate relevant outcomes that can be 

reproduced on real data. Furthermore, some noise in plot results from the need for a 

dissimilarity matrix calculated on a single distance to be chosen to generate a given plot: 

the unsolved question that underlies this thesis. Therefore, we expect that, in generating 

plots of certain data types where we know clustering algorithms are less successful, such 

as categorical or mixed data types (Chapter 4), we may need to accept a certain level of 

imperfection to accommodate for the state of the art. These methods are inherently 

subjective, even when we supplement them with inspection of behavior of significant 

features or silhouette widths. We argue that, as there are no perfect data, there are no 
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perfect simulations. Our goal is simulations that approximate an experimental reality that 

is noisy and challenging. We assume that if we successfully generate simulations of this 

type, that we will fulfill our needs for algorithm testing in Chapter 4. 

 The clinical noise model applied low levels of noise to the simulated data, as 

represented by low levels of increased diffuseness of simulated clusters seen in low rates 

of change of average silhouette width. Although it could be argued that low levels of 

noise insufficiently perturb the data, rendering it unable to represent clinical reality, we 

argue that our clinical noise model, with some features having large standard deviations 

and others having little variability, is a biologically meaningful starting point. We also 

must acknowledge that, before the addition of noise, the hit function and correlated block 

method of cluster generation results in heterogeneous clusters. Furthermore, the binning 

process introduces significant additional noise, as seen in reduced value and increased 

variation in silhouette width in binned data. If our goal were to study noisy, continuous 

data alone, these simulations would require the addition of noise beyond that applied 

here. However, generation of excessive noise at an early simulation stage would be 

amplified by the binning process, resulting in indistinguishable clusters. 

 The most notable conclusion of this chapter results from the relationship between 

our chosen measures of identity and distinctness, which displayed only weak correlation. 

Simulated silhouette width, describing cluster tightness and simulation, were low (i.e. 

near 0) for many data types. Our experience with clinical data, both seen in the literature, 

from our analytic experience, and represented in the preliminary experiment presented in 

Chapter 2, suggests that low silhouette widths and fuzzy distinctions between clusters are 



62 

 

common, if not characteristic, of real, clinical data sets. We are able to view low 

silhouette widths as a faithful simulation of this characteristic of clinical data due to our 

second measure of assessment: the percentage of features significantly associated with 

cluster identities. Our method of simulating clusters, with a limited number of hits 

perturbing correlated blocks with some or many blocks uninvolved, dictates that driving, 

significant features will compose only a portion of the features in a given simulation. The 

presence of moderately high percentages of significant features demonstrates that we 

have created clusters that possess fuzzy boundaries around coherent identities demarcated 

by driving, meaningful features. In this sense, low silhouette widths confirm that we are 

simulating clinically representative data, while high percentages of significant, driving 

features indicate that these fuzzy clusters have been successfully simulated with coherent, 

feature-driven identities. Notably, that clusters can have coherent identities without 

distinctiveness that is captured by available means suggests room for growth in clustering 

methods, beginning with more careful distance selection. In this sense, low silhouette 

width may provide more telling information about means of calculating distance than the 

quality of simulated clusters. These questions are a staging ground for the tests in Chapter 

4. 

It is our belief that these simulations capture the characteristics of study design 

and behavior and error of clinical data in such a way that they can be meaningfully used 

to test clustering approaches for clinical contexts downstream (Chapter 4). 
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Chapter 4: Evaluation of 18 Methods for Clustering Mixed-Type Data 

Introduction 

In this project, we set out with the goal of evaluating best practices for calculating a dissimilarity 

matrix and clustering mixed-type, clinical data. In this chapter, we first describe our development 

of a tool, the Mercator R-package, a pipeline to facilitate the calculation of multiple methods of 

dissimilarity on high-dimensional data and visualize the results with multiple methods. Mercator 

was applied extensively in the experiments in Chapter 2. Next, we implement the 32,400 

simulations generated in Chapter 3 in a series of tests of 18 methods to undertake a clinical 

clustering problem. The methods we implement take the form of pairs of common clustering 

algorithms with methods for clustering dissimilarity. We implement 13 “algorithm-dissimilarity 

pairs” with hierarchical clustering, k-medoids, and self-organizing map algorithms that 

implement a single, common dissimilarity metric for binary, categorical, and continuous data on 

simulations of single-type and mixed-type data. Then, we test 5 mixed-metric dissimilarity 

methods on our 3 algorithms of choice on 4 types of mixed-type data simulations. These mixed-

metric methods of calculating dissimilarity include two existing approaches, including the 

DAISY algorithm proposed in 1990[70] and the Supersom extension of self-organizing maps 

proposed by Wehrens and Kruisselbrink,[71] and a novel method of our own devising: extending 

Mercator for a mixture of multiple distances. This allows us to make statements about the 

performance of our varying methods of calculating dissimilarity specific to each single and 

mixed data type; to make general statements about the performance of the three algorithms of 

choice; and to suggest best practices for clustering each data type simulated and tested here. 
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The Mercator R-Package 

Tools for calculating measures of dissimilarity and visualizing high-dimensional, big data in 

biomedical research are scattered. The limited distance metrics in common use, as seen in 

Chapter 1, and the potentially inappropriate analytic choices for mixed data sets that may follow, 

, may have roots in inaccessibility of high-quality tools for dissimilarity calculation, comparison, 

and visualization. Based on the type of data, an appropriate distance metric must be chosen to 

quantify a separation between data objects, based on the best fit for specific data types and 

experimental criteria. Thus, there is not one distance metric seen as superior to all others. 

Mercator is an R-package that provides a pipeline to calculate multiple single distance metrics 

and visualize them.[72] 

 First, Mercator takes the user input in the form of a data matrix of binary or continuous 

variable data. Second, some initial data filtering is performed using Thresher,[60] an R package 

that performs clustering using a combination of outlier detection, principal components analysis, 

and von Mises Fisher mixture models. By identifying significant features, Thresher performs 

feature reduction through the identification and removal of noninformative features and the 

nonbiased calculation of the number of groups (K) for downstream use. Third, the user calculates 

the appropriate distance metric based on data type and biological meaning. Mercator supports 10 

distance metrics representing core subgroups defined by Choi and colleagues [61]: Jaccard, 

Sokal & Michener, Hamming, Russell-Rao, Pearson, Goodman & Kruskal, Manhattan, 

Canberra, Binary and Euclidean. Finally, Mercator offers 5 visualization methods, including both 

standard techniques (hierarchical clustering, heat maps) and large-scale multi-dimensional 

visualizations (multidimensional scaling (MDS),[73] T-distributed Stochastic Neighbor 

Embedding (t-SNE)[64], and iGraph[74].) Users may easily mix and match distance metrics and 

visualization techniques to gain a better understanding of patterns in their data. Mercator 
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streamlines appropriate distance metric selection by facilitating visualization of clusters with 

multiple distances. 

Methods 

Clustering Algorithms 

For our clustering methods, we choose 3 algorithms with common use, representativeness of 

trends, and historical significance within the field. First, we use agglomerative hierarchical 

clustering with Ward’s criterion (HC), which we saw as the most commonly implemented 

algorithm on clinical data in chapter 1. Several related hierarchical clustering algorithms have 

been in use for over 50 years.[18] As such, they represent an important standard for comparison 

in any survey of clustering algorithms. Second, we represent partitioning algorithms, an 

important class of clustering algorithms in common use on clinical data sets, with Partitioning 

Around Medoids (PAM). PAM is a k-medoids clustering algorithm that is related to k-means. 

However, PAM resolves some problems in the k-means algorithm including greater robustness to 

outliers [47] and ability to implement a variety of distance metrics.[25] Third, we represent 

neural-network based clustering algorithms with self-organizing maps (SOM). The 

computational methods, advantages, and disadvantages are outlined in Table 4.1.[3, 4, 47] 
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Table 4.1. Features of 3 implemented clustering algorithms. 
Algorithm Year1 Class Computation

al Method 

Advantages Disadvantages 

Agglomerative 

hierarchical 

clustering with 

Ward’s method 

1963 Connectivity-

based. 

Sequential, 

bottom-up 

merging of 

objects into 

clusters to 

increase 

within-cluster 

error sum of 

squares 

1. Does not 

require a 

priori 

designation of 

number of 

clusters 

2. Can be 

implemented 

with a variety 

of distance 

metrics and 

linkage 

methods 

1. Geometric 

interpretation 

assumes objects 

are in 

Euclidean 

space 

2. Tends to result 

in 

hyperspherical 

clusters of 

similar size 

3. Not robust to 

outliers 

4. High 

computational 

cost with high-

dimensional 

data 

5. Requires 

designation of a 

level to cut the 

hierarchy to 

obtain a final 

cluster solution 

6. Every outlier 

observation is 

forced into a 

cluster 

Partitioning 

Around 

Mediods (PAM) 

(k-medoids) 

1990 Partitioning Iteratively 

defines a 

central 

observation 

within a 

cluster 

(medoid) and 

assigns each 

object to the 

nearest 

medoid 

1. Robust to 

outliers 

2. Can be 

implemented 

with a variety 

of distance 

metrics and 

linkage 

methods 

3. Low 

computational 

cost 

1. Requires a 

priori 

designation of 

number of 

clusters. 

2. Tends to result 

in 

hyperspherical 

clusters of 

similar size 

3. Every outlier 

observation is 

forced into a 

cluster 
1Year of 1st commonly available published citation 
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Table 4.1 continued. 
Self-organizing 

maps (SOM) 

1973-

1982 

Neural-

network based 

High-

dimensional 

data are 

projecting into 

a 1-D or 2-D 

lattice of 

neurons, 

preserving the 

proximity 

relationships 

of original 

data as a 

topological 

map 

1. Low 

computational 

intensity; very 

fast. 

2. Can be 

implemented 

with a variety 

of distance 

metrics and 

linkage 

methods 

1. Classically 

considered a 

method of 

visualization, 

not a clustering 

approach 

2. Every outlier 

observation is 

forced into a 

cluster 

3. Requires a 

priori 

designation of 

number of 

clusters. 

 

Distance Metrics 

In Chapter 1, we briefly outlined common approaches to calculating dissimilarity for mixed data. 

Many methods involved the combined use of two approaches for calculating distance: one for 

continuous data and another for categorical data. Several astute data scientists have suggested 

mixed data approaches that segregate data types more finely. In the 1971 publication of his 

mixed-distance coefficient, Gower defines three data types: qualitative (nominal), quantitative 

(continuous), and dichotomous (binary).[38] In Finding Groups in Data, Kaufman and 

Rousseeuw define 6 types of variables - symmetric binary, asymmetric binary, nominal, ordinal, 

interval, and ratio – each with different concerns with calculating distance.[25] 

Stanley Smith Stevens classically separates continuous data into ratio or interval data based 

on the presence or absence (respectively) of a true zero. Because ratio data contains a meaningful, 

true zero, ratios of data points can be compared, not only their differences.[75] Kaufman and 

Rousseeuw paradoxically define the difference between interval and ratio continuous variables 

logarithmically. By their definition, interval-scaled variables are positive or negative real numbers 

on a linear scale.[25] Examples of clinical interval-scaled variables include systolic blood pressure 

and temperature. Conversely, ratio-scaled variables are always positive and frequently describe 
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quantities that follow exponential growth or decay curves in time, such as bacterial growth or 

radioactive decay. They propose, that ratio variables, by this definition, can be treated as though 

they were interval-scaled, which can introduce distortion; they can be logarithmically transformed 

and converted to interval-scaled variables; or their ranks can be used in place of their values, 

treated as ordinal data.[25] The simulated data here thus represent the problems proposed by 

continuous data more generally or logarithmically transformed data by Kaufman and Rousseeuw’s 

definition. Dissimilarity between continuous variables can be calculated as distances in space. The 

most common distance metric for continuous data is the Euclidean distance. Also commonly 

implemented is the Manhattan or City-Block distance. Table 4.2 outlines features of these and 

other distance metrics implemented in experiments in this chapter. The Euclidean and Manhattan 

distances are generalized as the Minkowski distance:[25] 

𝑑(𝑖, 𝑗) = (|𝑥𝑖1 − 𝑥𝑗1|𝑞 + |𝑥𝑖2 − 𝑥𝑗2|𝑞 + ⋯ + |𝑥𝑖𝑝 − 𝑥𝑗𝑝|𝑞)
1/𝑞

 

Although binary data are frequently typed as a special case of nominal data and 

considered as a unit with the categorical data problem, as we saw in Chapter 1, both Gower and 

Kaufman and Rousseeuw give binary features special treatment. Kaufman and Rousseeuw 

separate dichotomous variables into 2 types. For symmetric variables, both possible states (i.e. 0 

or 1) carry equal value and weight. A classic example is the binary variable “sex.” Conversely, in 

asymmetric binary variables, the outcomes are not equally important, such that the presence of a 

relatively rare attribute is more valuable than its more common absence.[25, 61] Choi and 

colleagues clustered the behavior of 76 binary similarity and distance metrics on a random binary 

data set into 6 groups, which we used to inform the selection of the distance metrics 

implemented here.[61] Many dissimilarity metrics for binary data computed from a 2-by-2 

contingency table of co-occurring 0 or 1 values: 
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Table 4.2. Comparison of distance metrics 

Distance Data type Mathematical Expression Method 

Euclidean Continuous 𝑑(𝑖, 𝑗) = (|𝑥𝑖1 − 𝑥𝑗1|2 + |𝑥𝑖2 − 𝑥𝑗2|2 + ⋯

+ |𝑥𝑖𝑝 − 𝑥𝑗𝑝|2)
1/2

 

𝑑𝐵𝐼𝑁𝐴𝑅𝑌 = √(𝑏 + 𝑐)2 

Distance in 

real space 

Manhattan Continuous 𝑑(𝑖, 𝑗) = |𝑥𝑖1 − 𝑥𝑗1| + |𝑥𝑖2 − 𝑥𝑗2| + ⋯ + |𝑥𝑖𝑝 − 𝑥𝑗𝑝| 

𝑑𝐵𝐼𝑁𝐴𝑅𝑌 = 𝑏 + 𝑐 

Distance in 

real space 

Jaccard 

Index 

Asymmetric 

binary 
𝑑 =  

𝑎

𝑎 + 𝑏 + 𝑐
 Negative 

match 

exclusive 

Sokal & 

Michener 

Symmetric 

binary 
𝑑 =  

𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

Hamming-

like 

Gower Nominal, 

ordinal; 

binary, 

continuous1 

𝑠(𝑖, 𝑗) = ∑ 𝑠𝑖𝑗𝑘

𝑛

𝑘=1

∑ 𝛿𝑖𝑗𝑘

𝑛

𝑘=1

⁄  

𝑠𝑖𝑗𝑘; 𝐵𝐼𝑁𝐴𝑅𝑌 =  
𝑎

𝑎 + 𝑏 + 𝑐
 

𝑠𝑖𝑗𝑘;𝑁𝑂𝑀𝐼𝑁𝐴𝐿 = 1 𝑖𝑓 𝑥𝑖𝑘 = 𝑥𝑗𝑘; 

𝑠𝑖𝑗𝑘;𝑁𝑂𝑀𝐼𝑁𝐴𝐿 = 0 𝑖𝑓𝑥𝑖𝑘 ≠ 𝑥𝑗𝑘 

𝑠𝑖𝑗𝑘;𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝐴𝑇𝐼𝑉𝐸2 = 1 − |𝑥𝑖𝑘 − 𝑥𝑗𝑘| 𝑟𝑘⁄  

Simple 

matching 

1Although the Gower coefficient can be implemented for multiple data types, in this study it is 

implemented for only nominal and ordinal data. 
2 “Quantitative” = ordinal or continuous 

 

 

Table 4.3. Contingency table for the calculation of binary dissimilarity metrics. 

 Object j 

1 0 

Object i 1 a b 

0 c d 

 

For asymmetric binary data, we chose the Jaccard distance (1908), a negative match 

exclusive distance with easy interpretability.[25, 61] 

For symmetric binary data, we implement two related distances. In Chapter 1, we saw the 

most commonly implemented distance for binary and categorical data when two metrics were 

used in a mixed-type study was the Hamming distance: 

𝑑𝐻𝐴𝑀𝑀𝐼𝑁𝐺 = 𝑏 + 𝑐 

In Chapter 2, we clustered symmetric binary data using the Sokal & Michener distance: 
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𝑑𝑆𝑂𝐾𝐴𝐿&𝑀𝐼𝐶𝐻𝐸𝑁𝐸𝑅 =  
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

Choi clusters these distances together in the “Hamming-like” distances.[61] Furthermore, we can 

see that, given the same number of a+b+c+d patients in a sample (as occurs in our simulations), 

the Hamming distance and Sokal & Michener distance become equivalent: 

1 −  
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
=  

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 

Implementing self-organizing maps with the Kohonen R-package, we are provided with a limited 

set of distance metrics. For binary data, Kohonen implements a metric called, under “incorrect 

naming” (for “backwards compatibility”) a distance that “returns (for two binary vectors of 

length n) the fraction of cases in which the two vectors disagree.” This is calculated as “basically 

the Hamming distance divided by n,” which we see is analogous to the Sokal & Michener 

distance.[71] Because the Sokal & Michener distance is easily interpretable; is analogous to the 

common Hamming distance for our purposes; is analogous to the Kohonen “Tanimoto” distance 

for our purposes; and maintains continuity with the experiments performed in Chapter 2, we here 

implement the Sokal & Michener distance for symmetric binary data. 

 The Gower coefficient of similarity [38] is a historic mixed-distance metric for mixed-

type data, which, as we saw in Chapter 1, is still in use today. In its simplest implementation, the 

data types are unweighted. Gower’s coefficient provides solutions for three data types: binary, 

nominal (“qualitative”), and continuous (“quantitative”). The similarity Sij between features i and 

j is calculated from their similarity at each feature k and a marker δijk of whether a comparison at 

this point is possible (1) or not possible (0): 

𝑆𝑖𝑗 = ∑ 𝑠𝑖𝑗𝑘

𝑛

𝑘=1

∑ 𝛿𝑖𝑗𝑘

𝑛

𝑘=1

⁄  
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Similarity between binary features can be described by simple matching,[61] where a binary 

feature may be present, which Gower represents as + and is commonly represented as 1, or 

absent (-; 0): 

Table 4.4. Table for the calculation of binary Gower dissimilarity. 

  Values of k 

Individual i + + - - 

 j + - + - 

sijk 1 0 0 0 

δijk 1 1 1 0 

Concordance table equivalency a b c d 

We can see that, in the case that all features in a data set are binary, the Gower coefficient is 

equivalent to the Jaccard index. Dissimilarity between nominal features is calculated from simple 

matching with sijk = 1 if xik = xjk and sijk = 0 if xik ≠ xjk. Dissimilarity is calculated from the ratio of 

difference between objects to the range of values for the kth variable, rk. (Table 4.2) Here, we 

implement the Gower coefficient through the daisy function of the cluster R-package. In this 

implementation, the Gower coefficient can be implemented to calculate categorical distances but 

not continuous distance. For this and the binary equivalency with the Jaccard, we treat the Gower 

coefficient in this thesis a measure of categorical distance, and not as a mixed-distance metric per 

se. 

 The 5 measures of distance outlined in Table 4.2 have various availabilities based on the 

restrictions of the R-packages we implemented. The cluster R-package, used for HC through the 

hclust function,[76] and Mercator, used to implement PAM,[72] can be used with a wider variety 

of user-defined distance functions. The kohonen R-package,[71] used to implement SOM, 

provides a narrower range of package-restricted defaults. Table 4.5 describes the single distance 

measures used for each implemented algorithm in this study. 
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Table 4.5. Single distance metrics implemented with 3 clustering algorithms. 

Algorithm Distance Data Type 

Agglomerative 

hierarchical clustering 

with Ward’s method 

Jaccard Binary (asymmetric) 

Sokal-Michener Binary (symmetric) 

Gower Nominal; categorical 

Manhattan Ordinal; continuous; binary 

Euclidean Continuous; binary 

Partitioning Around 

Medoids (PAM) (k-

medoids) 

Jaccard Binary (asymmetric) 

Sokal-Michener Binary (symmetric) 

Gower Nominal; categorical 

Manhattan Ordinal; continuous; binary 

Euclidean Continuous; binary 

Self-organizing maps Tanimoto Binary 

Manhattan Ordinal; continuous; binary 

Euclidean Continuous; binary 

 

 For these 3 algorithms, we implemented 2 methods of single distance and 3 methods of 

calculated dissimilarity from the combination of multiple distance metrics, as allowed with 

package restrictions.(Table 4.6) Because the Manhattan distance and Euclidean distance can be 

applied to a variety of data types, albeit with varying efficacy, we applied these two distance 

with all 3 algorithms as single distance controls. First among our multiple-distance methods, we 

implemented the DAISY algorithm as currently available through the cluster R-package.[76] In 

this iteration, DAISY implements a strategy we saw in Chapter 1: the Gower coefficient for 

categorical and binary data paired with the Euclidean distance for continuous data. Because the 

Gower coefficient is implemented as a component of DAISY, we did not apply it separately to 

the data mixtures. Our remaining two solutions allowed the used to select a distance metric for a 

given data type. We used a combination of literature knowledge and results from our study of 

single-distance metrics to inform these choices. The “best” performing single distance metric for 

this purpose was defined as highest mean Adjusted Rand Index.(See following section) Our final 

choices are shown in Table 4.6 and our reasoning further explained in the Results section of this 
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chapter. SOM were implemented within package guidelines. We developed our third solution 

using the Mercator package, calculating distinct measures of distance following Kaufman and 

Rousseeuw’s guidelines [25] for the 5 data types present in these simulations. We combined 

these separate measures of distance as an unweighted sum of squares. In the implementation of 

DAISY and Mercator, distance cannot be calculated in the case of a data type containing only 1 

feature. This feature must be excluded from analysis. 

Table 4.6. Mixed distance metrics to calculate dissimilarity from mixed data 

Dissimilarity 

Method 

Clustering Algorithm Distance Metric Data Type 

Manhattan 

distance  

Hierarchical clustering 

PAM 

SOM 

Manhattan distance 

(single) 

Binary, ordinal, continuous 

Euclidean 

distance  

Hierarchical clustering 

PAM 

SOM 

Euclidean distance 

(single) 

Binary, continuous 

DAISY Hierarchical clustering 

PAM 

Gower coefficient Nominal, ordinal, binary 

Euclidean Interval-scaled continuous 

Mercator Hierarchical clustering 

PAM 

Jaccard Binary (asymmetric) 

Sokal-Michener Binary (symmetric) 

Gower coefficient Nominal 

Manhattan Ordinal 

Euclidean Continuous 

Supersom SOM Manhattan Categorical, binary 

Euclidean Continuous 

Clustering method validation 

Andreopoulos and colleagues [4] outline 7 “desirable features” to evaluate the “suitability” of a 

clustering method for a biomedical problem: scalability to high-dimensional data within 

reasonable computational limits, robustness to outliers, insensitivity to ordering of input 

objects, minimum user-specified input (including the need to specify the number of input 

lusters), ability to find arbitrary-shaped clusters, point proportion admissibility (such that 

adding or removing data redundancy does not change results), and ability to handle mixed-type 

data. Some of these qualities are properties of a clustering algorithm, not a method of 
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calculating dissimilarity, and therefore fall beyond the scope of this project.(Table 4.1) In these 

tests, we are able to assess two of Andreopoulos’ features: handling of mixed-type data and, 

secondarily, scalability within reasonable computational limits.  

Our central assessment of the 18 algorithm-dissimilarity pairs is their ability to accurately 

cluster single- and mixed-type data. There are three classes of methods for validation of a 

clustering algorithm: external criteria, internal criteria, and relative criteria. External criteria 

validate a clustering assignment against previous knowledge about the data in the form of a 

“gold standard” of known cluster identities. The cluster assignment is compared for consensus 

against this “ground truth.”[77, 78] Internal criteria validate the clustering assignment based 

exclusively on information intrinsic to the data.[78] These measures assess compactness, 

connectedness, separation, stability, predictive power, and/or correlation of clusters.[77] Relative 

criteria evaluate a clustering structure by comparison with other clustering schemes.[78, 79] 

In this study, our previous simulations have provided us with the ability to externally 

validate the clustering methods tested here because we have simulated “ground truth” cluster 

identities.(Chapter 3) There exists many statistics to score external validity against a ground 

truth, including the Jaccard coefficient (also a measure of binary distance discussed above), the 

Minkowski Score, the F-measure, the Fowles and Mallows Index, and the Rand Index.[77, 79, 

80] Based on matching of pairs of elements into the same or separate cluster assignments, the 

Rand Index [81] R calculates assignment concordance from a contingency table: 

𝑅 =  
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
 

The Adjusted Rand Index (ARI) [82] corrects the Rand Index for chance assignment into 

concordant clusters. Possible values range from 0 to 1, where 1 is perfect concordance. ARI is in 

common use and has been considered an important external validity measure for over 30 
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years.[80] For this reason, we implement it here. Many options also exist to assess internal 

validity. Silhouette width is a well-known internal measure that computes a score to assess both 

intra-cluster homogeneity or compactness and inter-cluster separation.[63, 77, 78] Silhouette 

width takes values from -1 (worst) to 1 (best) as measures of suitability of cluster assignment. An 

object with a silhouette width of 1 is located in an ideally well-fitting cluster. An object with a 

silhouette width of -1 falls in a maximally poorly-fitted cluster. An object with a silhouette width 

of 0 sits on the edge of belonging to 2 clusters. Average silhouette width (SW) describes the 

fitness of clustering assignments across the structure, and also takes values from -1 to 1.[63] It is 

in common use and reflects the experiment we performed in Chapter 2, and we continue with 

this measure in this chapter. In this study, we assess the quality of a clustering assignment with 

ARI or SW in two ways: quantitatively, by comparison of means, and qualitatively, by 

comparison of the distribution of these statistics across the test set. We visualize these patterns 

with beanplots.[83] Finally, because we have a known “ground truth” from our simulations, 

relative measures of validity have reduced use. We do not implement a relative measure here. 

 Andreopoulos [4] identifies scalability within reasonable computation limits as an 

important criterion of a clustering method for a biological problem. To reflect the computational 

realities of many biomedical projects, these experiments were run on a desktop personal 

computer. For DAISY and Mercator, we documented the CPU time charged for the execution of 

the calculation of the distance metric and for each clustering algorithm. SOM implements the 

calculation of distance and the clustering process in a single step, for which we documented CPU 

time. Computational time was compared by mean and standard deviation. When identified, 

slower runtimes within an algorithm were compared by simulation characteristics (number of 
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patients, features, or clusters and type of data mixture) by mean, standard deviation, ANOVA 

where applicable, and visualized. 

 These three assessments – external criterion, internal criterion, and computational 

scalability – were applied to repetitions of the simulations described in the previous chapter. The 

13 single distance metrics were tested on 100 simulation repeats for 34,200 test simulations. For 

reasons of computation intensity (discussed in a later section of the results of this chapter), mixed 

distance metrics were tested on a subset of 30 repeats of simulated data mixtures (4,320). Of 

these simulations, we identified that certain simulated combinations of features, patient 

populations, and clusters were implausible, given our knowledge of the literature: 

- 9 or 27 features simulating greater than 2 clusters 

- 200 or 800 patients simulating 16 or more clusters 

To produce the most realistic tests of these simulated clinical data mixtures, we removed 1,560 

simulations meeting the above criteria from analysis. Thus, we assessed the 5 mixed-distance 

methods of calculated dissimilarity on 2,760 unique simulations. 

Results 

Single-Distance Methods 

Clustering performance for each data type varied by both clustering algorithm and distance 

metric.(Table 4.7) On noisy simulations across each data type and distance metric, HC had 

higher ARI than PAM. HC had higher silhouette widths than PAM on continuous, ordinal, and 

mixed categorical data. The two algorithms had similar silhouette width performance for 

nominal and binary data. SOM had highest ARI and SW for all data types and distance metrics, 

except nominal data.  

Continuous data had higher ARI and SW across distance metrics compared to other data 

types. SOM with Euclidean distance produced the highest mean ARI (0.611 ± 0.336) and highest 
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mean SW (0.093 ± 0.051). Visualization with bean plots can show the consistency of high-

quality solutions from a given method. All distance methods and algorithms produced a range of 

ARI from very poor (near 0) to nearly perfect (near 1).(Figure 4.1) While PAM produces a bolus 

of clustering solutions with low ARI (0.1-0.5), HC and SOM produce a bolus of solutions with 

very high ARI. SW does not vary strongly across algorithms. 

Binary data had second highest ARI and SW across distance metrics compared to other 

distance types. SOM with Euclidean distance resulted in the highest mean ARI (0.516 ± 0.357) 

followed by SOM with Manhattan distance (0.513 ± 0.359). SOM with Manhattan distance also 

produced the highest mean SW (0.177 ± 0.120). Across HC or PAM, performance of the 4 

distance metrics in question (Jaccard, Sokal & Michener, Manhattan, and Euclidean) produced 

similar results. By visualization with bean plots, all distance methods and algorithms produced 

solutions spanning a range of ARI from 0 to 1.(Figure 4.2) PAM ARI’s were heavily weighted 

towards inaccurate solutions (ARI between 0 and 0.4). HC and SOM produced bipolar results, 

with ARI clustered either near 1 or near 2. The bolus of solutions near 1 was larger for SOM than 

HC. The strongest bipolar distribution of ARI resulted from the Tanimoto distance. SW were 

uniformly lower than for continuous data. PAM produced some solutions with low SW with a 

group of simulations with higher SW between 0.2-0.4. SOM with the Manhattan distance 

produced many solutions with lower silhouette widths, but resulted in a group of simulations 

with higher SW than other solutions, including PAM. The Tanimoto distance presented with the 

lowest range of SW, with a tail of many values less than 0. 

Nominal, ordinal, and categorical data had lowest ARI and SW across distance metrics, 

compared to continuous and binary data. Clustering solutions for nominal data produced the 

lowest ARI or any data type. Among nominal data, the HC with Gower distance produced the 
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solution with both highest mean ARI and largest ARI standard deviation (0.283 ± 0.298). The 

highest silhouette width was produced by SOM with the Manhattan distance (0.052 ± 0.046). 

PAM produced solutions with lower mean ARI but with the smallest standard deviations. (Table 

4.7) By visualization of ARI with bean plots, all methods produced a range of values with most 

solutions clustered near 0 with no evidence of the bipolar distribution seen in binary and 

continuous data. SW also clustered near 0, with PAM and SOM producing a fraction of solutions 

with elevated SW.(Figure 4.3) 

Clustering solutions of ordinal data produced intermediate ARI and SW. SOM with the 

Manhattan distance produced the solutions with highest mean ARI (0.405 ± 0.368) and SW 

(0.081 ± 0.044). The Gower distance had lower ARI and SW performance by quantitative 

measures and bean plot visualization than the Manhattan or Euclidean distance.(Figure 4.4) HC, 

PAM, and SOM all visualized with a range of ARI from 0 to 1. PAM solutions weighted towards 

0. SOM solutions displayed a bipolar distribution, with solutions clustered either near 0 or a 

bolus of solutions near 1. All implementations of the Manhattan and Euclidean distance resulted 

in range of SW weighted between 0 and 0.2. 

 Mixed categorical data resulted in low ARI and SW, like nominal data. SOM with the 

Manhattan distance produced the highest mean ARI (0.301 ± 0.342) and SW (0.066 ± 0.044). 

Like nominal data, visualization of mixed categorical data resulted in a range of solution ARI 

with a heavy distribution near 0.(Figure 4.5) SOM produced a small fraction of solutions near 1. 

The Euclidean and Manhattan distances with all 3 algorithms produced a range of SW between 0 

and 1, with PAM producing many low solutions and a portion of solutions with elevated SW. 
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Table 4.7 Results of single-distance methods for simulations of single data types 
  Data Type 

  Binary Nominal Ordinal Categorical1 Continuous 

Algorithm Distance ARI5 SW6 ARI5 SW6 ARI5 SW6 ARI5 SW6 ARI5 SW6 

HC2 Jaccard 0.430 ± 

0.342 

0.129 ± 

0.108 
-  -  -  -  -  -  -  -  

 Sokal & 

Michener 

0.433 ± 

0.341 

0.147 ± 

0.106 
-  -  -  -  -  -  -  -  

 Gower -  -  0.283 ± 

0.298 

0.024 ± 

0.020 

0.271 ± 

0.293 

0.023 ± 

0.019 

0.276 ± 

0.295 

0.023 ± 

0.020 
-  -  

 Manhattan 0.434 ± 

0.341 

0.148 ± 

0.107 

0.141 ± 

0.219 

0.035 ± 

0.038 

0.376 ± 

0.336 

0.064 ± 

0.042 

0.280 ± 

0.305 

0.049 ± 

0.039 

0.561 ± 

0.341 

0.06 ± 

0.050 

 Euclidean 0.426 ± 

0.343 

0.101 ± 

0.106 

0.047 ± 

0.100 

0.036 ± 

0.044 

0.335 ± 

0.327 

0.059 ± 

0.042 

0.211 ± 

0.272 

0.046 ± 

0.043 

0.602 ± 

0.345 

0.085 ± 

0.053 

PAM3 Jaccard 0.314 ± 

0.269 

0.133 ± 

0.131 
-  -  -  -  -  -  -  -  

 Sokal & 

Michener 

0.331 ± 

0.276 

0.156 ± 

0.138 
-  -  -  -  -  -  -  -  

 Gower -  -  0.103 ± 

0.105 

0.020 ± 

0.017 

0.096 ± 

0.097 

0.019 ± 

0.017 

0.099 ± 

0.100 

0.019 ± 

0.017 
-  -  

 Manhattan 0.331 ± 

0.276 

0.156 ± 

0.138 

0.044 ± 

0.057 

0.035 ± 

0.038 

0.207 ± 

0.195 

0.056 ± 

0.040 

0.121 ± 

0.137 

0.043 ± 

0.039 

0.373 ± 

0.277 

0.063 ± 

0.051 

 Euclidean 0.329 ± 

0.277 

0.109 ± 

0.125 

0.018 ± 

0.025 

0.038 ± 

0.045 

0.189 ± 

0.192 

0.055 ± 

0.044 

0.094 ± 

0.123 

0.044 ± 

0.045 

0.446 ± 

0.302 

0.076 ± 

0.056 

SOM4 Tanimoto 0.437 ± 

0.361 

0.086 ± 

0.114 
-  -  -  -  -  -  -  -  

 Manhattan 0.513 ± 

0.359 

0.177 ± 

0.120 

0.131 ± 

0.224 

0.052 ± 

0.046 

0.405 ± 

0.368 

0.081 ± 

0.044 

0.301 ± 

0.342 

0.066 ± 

0.044 

0.568 ± 

0.344 

0.083 ± 

0.049 

 Euclidean 0.516 ± 

0.357 

0.117 ± 

0.112 

0.092 ± 

0.188 

0.052 ± 

0.049 

0.380 ± 

0.368 

0.075 ± 

0.044 

0.274 ± 

0.337 

0.062 ± 

0.046 

0.611 ± 

0.336 

0.093 ± 

0.051 
1 A mixture of nominal and ordinal features.    2 Agglomerative hierarchical clustering with Ward’s criterion 
3 Partitioning Around Medoids     4 Kohonen self-organizing maps 
5 Adjusted Rand Index; mean ± standard deviation   6 Average silhouette width; mean ± standard deviation 
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Figure 4.1 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated continuous data.  
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Figure 4.2 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated binary data.  

 
 

  



82 

 

 

Figure 4.3 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated nominal data.  
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Figure 4.4 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated ordinal data.  
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Figure 4.5 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated mixed categorical data.  

 
 

Multiple-Distance Methods 

Here we arrive at the core question of this thesis: for a mixture of data types, does a 

dissimilarity matrix calculated from a mixture of data types result in superior clustering 

outcomes, as measured by extrinsic and intrinsic criteria? ARI and SW (mean ± standard 

deviation) for 2,760 plausible clinical simulations of data mixtures clustered with 3 

algorithms on 2 single distance controls and 3 mixed-distance dissimilarity metrics are 

displayed in Table 4.8. Because of the poor performance of the Tanimoto distance in 
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SOM on binary data, we supplemented the Manhattan distance for the treatment of binary 

data in Supersom. 

 For balanced, unbalanced binary, and unbalanced categorical mixtures, the 

DAISY algorithm with HC outperformed all tested algorithm-distance pairs by mean 

ARI. DAISY with HC resulted in the highest SW in balanced data, as well (0.099 ± 

0.085). However, for the other three data types, DAISY with PAM or HC resulted in low 

SW when compared with other methods. Supersom produced the highest SW for all 3 

unbalanced data types and the second highest SW for balanced data (0.098 ± 0.080), but 

produced low mean ARI compared to other methods. 

 For balanced mixtures, the superior solution was produced by DAISY with HC 

(mean ARI = 0.474 ± 0.352; mean SW = 0.099 ± 0.085), closely followed by Mercator 

with HC (mean ARI = 0.467 ± 0.366; mean SW = 0.093 ± 0.069). By visualization with 

bean plots, all algorithms tested produce solutions with a range of ARI between 0 and 1. 

(Figure 4.6) HC with Manhattan distance, DAISY, or Mercator results with a distribution 

with bipolar weighting. DAISY with HC and Mercator with HC are weighted heavily 

towards 1. SOM with the Manhattan distance presents with a strong bipolar distribution. 

ARI with PAM, regardless of distance metric, produces a distribution of solutions 

weighted towards 0. 

For unbalanced binary mixtures, the superior solution by mean ARI was produced 

by DAISY with HC (0.574 ± 0.324) with highest mean SW produced by Supersom 

(0.193 ± 0.137). By visualization with bean plots, DAISY and Mercator result in a range 

of ARI distributed across the range of 0 to 1, with DAISY with HC weighted towards 1. 
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(Figure 4.7) Implementations of the Euclidean distance and Supersom result in solutions 

near 0. The Manhattan distance implemented with HC or SOM results in a bipolar 

distribution of ARI. Higher SW are produced by single distance measures, SOM, and 

Supersom, with DAISY and Mercator producing SW below the overall mean. 

For unbalanced categorical mixtures, the highest mean ARI was produced by 

DAISY with HC (0.341 ± 0.311) with highest mean SW produced by Supersom (0.071 ± 

0.049). By visualization with bean plots, HC with DAISY or the Manhattan distance 

produces solutiosn with a range of ARI between 0 and 1.(Figure 4.8) SOM and Supersom 

produce bipolar distributions of ARI. SW are low, with single distance metrics, SOM, 

and Supersom outperforming DAISY and Mercator. 

For unbalanced continuous mixtures, the highest mean ARI solutions were 

produced by SOM with the single Manhattan distance (0.564 ± 0.392) with the highest 

mean SW produced by Supersom (0.174 ± 0.123). By visualization with bean plots, 

SOM, HC with single distances, and HC with DAISY produce bipolar distributions of 

ARI, with solutions with PAM, Mercator, and Supersom weighted towards 0.(Figure 4.9) 

DAISY and Mercator result in low SW, below the overall mean, compared to single 

distance metrics, SOM, or Supersom. 
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Table 4.8 Results of single- and mixed-distance methods for plausible, simulated mixed 

data types 
  Data Mixture Type 

  Balanced Binary 

Unbalanced 

Categorical 

Unbalanced 

Continuous 

Unbalanced 

Distance Algorithm ARI1 SW2 ARI1 SW2 ARI1 SW2 ARI1 SW2 

Manhattan HC3 0.430 

± 

0.357 

0.081 

± 

0.068 

0.349 

± 

0.366 

0.142 

± 

0.123 

0.267 

± 

0.303 

0.055 

± 

0.044 

0.472 

± 

0.385 

0.105 

± 

0.085 

 PAM4 0.203 

± 

0.210 

0.068 

± 

0.072 

0.204 

± 

0.228 

0.118 

± 

0.127 

0.121 

± 

0.135 

0.049 

± 

0.045 

0.271 

± 

0.258 

0.080 

± 

0.087 

 SOM5 0.460 

± 

0.278 

0.098 

± 

0.070 

0.402 

± 

0.417 

0.153 

± 

0.117 

0.288 

± 

0.338 

0.071 

± 

0.049 

0.564 

± 

0.392 

0.110 

± 

0.080 

Euclidean HC3 0.232 

± 

0.299 

0.079 

± 

0.083 

0.075 

± 

0.175 

0.156 

± 

0.141 

0.195 

± 

0.263 

0.053 

± 

0.050 

0.335 

± 

0.359 

0.119 

± 

0.105 

 PAM4 0.115 

± 

0.157 

0.077 

± 

0.089 

0.073 

± 

0.134 

0.140 

± 

0.144 

0.088 

± 

0.114 

0.052 

± 

0.053 

0.219 

± 

0.240 

0.101 

± 

0.109 

 SOM5 0.278 

± 

0.353 

0.097 

± 

0.085 

0.083 

± 

0.204 

0.160 

± 

0.136 

0.248 

± 

0.325 

0.069 

± 

0.053 

0.353 

± 

0.385 

0.123 

± 

0.100 

DAISY HC3 0.474 

± 

0.352 

0.099 

± 

0.085 

0.574 

± 

0.324 

0.091 

± 

0.053 

0.341 

± 

0.311 

0.034 

± 

0.026 

0.393 

± 

0.359 

0.060 

± 

0.043 

 PAM4 0.279 

± 

0.248 

0.084 

± 

0.093 

0.387 

± 

0.279 

0.077 

± 

0.060 

0.146 

± 

0.139 

0.025 

± 

0.020 

0.205 

± 

0.197 

0.041 

± 

0.034 

Mercator HC3 0.467 

± 

0.366 

0.093 

± 

0.069 

0.327 

± 

0.165 

0.089 

± 

0.064 

0.183 

± 

0.253 

0.054 

± 

0.045 

0.127 

± 

0.219 

0.085 

± 

0.068 

 PAM4 0.274 

± 

0.248 

0.074 

± 

0.071 

0.165 

± 

0.187 

0.069 

± 

0.064 

0.136 

± 

0.163 

0.030 

± 

0.032 

0.101 

± 

0.135 

0.065 

± 

0.061 

Supersom SOM5 0.243 

± 

0.312 

0.098 

± 

0.080 

0.061 

± 

0.158 

0.193 

± 

0.137 

0.270 

± 

0.326 

0.071 

± 

0.049 

0.079 

± 

0.190 

0.174 

± 

0.123 
1 Adjusted Rand Index; mean ± standard deviation 
2 Average silhouette width; mean ± standard deviation 
3 Agglomerative hierarchical clustering with Ward’s criterion 
4 Partitioning Around Medoids   5 Kohonen self-organizing maps 
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Figure 4.6 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated balanced data mixtures. 
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Figure 4.7 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated unbalanced, binary-dominant data mixtures.  
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Figure 4.8 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated unbalanced, categorical-dominant data mixtures.  
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Figure 4.9 Bean plots of adjusted rand index (top) and silhouette width (below) for 

simulated unbalanced, continuous-dominant data mixtures.  

 
 

Variability of Adjusted Rand Index Across Simulation Parameters 

Violin plots of clustering solutions displayed variability of ARI in the form of broad 

spectra and bipolar distributions. Here, we employ lattice plots to break down these 

results across number of simulated patients and features. For single data types, (Figures 

4.10-4.13) we plot using the Euclidean distance, calculated for all 4 single data types, and 

three algorithms (HC, PAM, and SOM). For binary data, we also plot the Tanimoto 

distance, which showed the strongest bipolar distribution in previous plots. For mixed 

data types, (Figures 4.14-4.15) we employ lattice plots to observe the behavior of the 

DAISY and Mercator multiple distance algorithms across simulation parameters. 
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 Across lattice visualizations of single distances, a common trend emerged: ARI 

varied strongly by number of features, but not by number of patients. ARI was lowest 

among simulations with 9 features and highest among simulations with 243 features. 

Intermediate features spaces displayed higher degrees of variability, represented by broad 

spectra of ARI across many simulations. Categorical simulations displayed poorer 

performance, even at larger feature spaces. Even at simulations with 243 features, ordinal 

simulations presented broad, variable spectra. Nominal data, characterized by poor 

performance at 81 or fewer features, presented with improved, though variable, 

performance at 243 features. This pattern of poor performance at low feature numbers 

and improved performance at higher feature spaces was also present with the DAISY and 

Mercator algorithms across data mixtures. 
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Figure 4.10 Lattice violin plot of ARI of continuous simulations by number of features 

and patients with 3 algorithms and Euclidean distance. 
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Figure 4.11 Lattice violin plot of ARI of binary simulations by number of features and 

patients with 3 algorithms with Euclidean and Tanimoto distance. 
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Figure 4.12 Lattice violin plot of ARI of nominal simulations by number of features and 

patients with 3 algorithms and Euclidean distance. 
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Figure 4.13 Lattice violin plot of ARI of ordinal simulations by number of features and 

patients with 3 algorithms and Euclidean distance. 
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Figure 4.14 Lattice violin plot of ARI of 4 dat mixtures with the DAISY distance 

algorithm and hierarchical clustering. 
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Figure 4.15 Lattice violin plot of ARI of 4 dat mixtures with the Mercator distance 

algorithm and hierarchical clustering. 

 
Computational Scalability of Mixed-Distance Methods 

CPU time to calculate a mixed-distance dissimilarity matrix varied by algorithm. Time 

costs predominantly resulted from time to calculate dissimilarity, not from time to 

execute a clustering algorithm.(Table 4.9) SOM, which calculates dissimilarity and 

clusters within a single process, had fastest overall execution for any simulation size 

(mean 0.533s), while the DAISY algorithm had the slowest CPU time averaged over all 

simulations sizes (mean 0.372s). 
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Table 4.9 Computational (CPU) time (s) for 3 algorithms to calculate mixed-distance 

dissimilarity 
Dissimilarity 

Algorithm 

Dissimilarity Time (s) Clustering Time (s) 

  HC1 PAM2 

DAISY 372.461 ± 983.599 0.105 ± 0.142 1.623 ± 3.611 

Mercator 99.859 ± 139.127 0.097 ± 0.13 1.598 ± 3.46 

Supersom3 0.533 ± 0.794 - - 
1 Agglomerative hierarchical clustering with Ward’s criterion 
2 Partitioning Around Medoids 
3 Kohonen self-organizing maps and their related mixed-distance implementation 

calculate dissimilarity and cluster in a single process. 

 

 Time to calculate dissimilarity with DAISY varied (min = 0.3s; max = 3869.72s = 

1hr4.5m). Mean CPU time for DAISY increased with increasing numbers of features and 

patients.(Figure 4.16) Mean time to cluster a data set with 200 patients was 12.88s, while 

mean time to cluster a data set of 3,200 patients was 1039.32s. Mean time to cluster a 

data set with 9 features was 2.42s, while mean time to cluster a data set of 243 features 

was 1111.907s. By interaction, calculating the DAISY dissimilarity was slowest in 

simulations with both large numbers of features and large numbers of patients.(Figure 

4.17) Comparatively, variation between data types was statistically significant (p < 

0.0001) but limited in range with balanced data requiring shortest mean time over all 

mixed-type simulations (292.89s) and unbalanced binary simulations requiring longest 

CPU time (489.05s). There was no significant difference in time to calculate dissimilarity 

by number of clusters in a simulation (p=0.99). 
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Figure 4.16 Mean CPU time to calculate DAISY dissimilarity for 4 simulation 

parameters 
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Figure 4.17. CPU time to calculate DAISY dissimilarity from the interaction of number 

of patients and number of features in a simulation. 

 
 
 

 Time to calculate dissimilarity with Mercator also varied (min = 0.01s; max = 

405.64s). However, both mean and max CPU time for the set of simulations was shorter 

than that of DAISY. Mean CPU time for Mercator increased with increasing numbers of 

patients.(Figure 4.18) Mean time to cluster a data set with 200 patients was 0.080s, while 

mean time to cluster a data set of 3,200 patients was 295.66s. Variation by number of 

clusters in a simulation was statistically significant (p=0.005) but comparatively limited 

in range, with shortest time for 2 clusters (93.80s) and longest time for 16 clusters 
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(109.00s). There was no significant difference in time to calculate dissimilarity by 

number of features (p=0.83) in a simulation or between different data types (p=0.98).  

 

Figure 4.18. CPU time to calculate Mercator dissimilarity for 4 simulation parameters 

 
 

Discussion 

In Chapter 1, we described 4 recently published studies that compared methods for 

clustering clinical data.[10, 11, 47, 49] The studies undertaken here are more extensive in 
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number, testing a larger number of methods than these studies, which appraised 2-3 

approaches each. More importantly, this chapter applied these tests to simulated data with 

a known ground truth for comparison, allowing a more rigorous and nuanced validation 

of methods than possible on real clinical data. Chapter 5 in this manuscript follows in 

their footsteps with an application of the best methods described here to real, clinical 

data. 

In our analysis of mixed data, we compared three measures of mixed distance. 

DAISY represents an old standard: an algorithm developed in the late 1980’s 

implementing, primarily, a distance coefficient developed in the early 1970’s. Supersom 

is a recent algorithm proposed as an extension to an existing neural net technology. 

Mercator is a proprietary solution, based on a pipeline we developed, to implement a 

wider variety of distance metrics. Surprisingly, Supersom were markedly outperformed 

by SOM using single distance alone, but these are troubled by a bipolar distribution of 

outcomes that suggests variability in results.  

DAISY produced the highest mean ARI for mixed data types for all mixtures 

except unbalanced mixtures dominated by continuous data. It is notable that an accurate 

solution, as measured by a high ARI, may present with a poor silhouette width. This 

observation should be of note and concern for researchers using silhouette widths to drive 

the selection of a particular algorithm or solution over another. DAISY produced broad 

ranges of solutions, suggesting that some have a high degree of accuracy and others 

lower. This suggestion of variability is of concern. DAISY also presented with an 

unexpected impediment to usability. Initial tests revealed extensive computational time 
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needed to calculate the DAISY dissimilarity. It is for this reason that the tests on mixed-

type data are performed on only a limited number of unique simulation repeats (30 

instead of 100). A researcher attempting to implement DAISY on a personal computer on 

very large data may find the time cost prohibitive. 

Mercator performed poorly compared to DAISY on all mixed types except for 

balanced data. However, it can be calculated, without optimization, much faster than 

DAISY, improving usability. Because Mercator is, at the moment, an unweighted 

combination of distance metrics, good performance on balanced data and mediocre 

performance on unbalanced mixtures is unsurprising. Future directions for a potential 

mixed-distance extension include pursuing weighting measures to improve application to 

unbalanced distance measures, potentially providing an option with comparable accuracy 

but reduced computational intensity. Furthermore, Mercator could be used to overcome 

the limitation in choice of distance metrics present in other packages, such as DAISY or 

Supersom, which confine the user to limited implementations. Offering the user greater 

choice in distance metric could allow improved customization for data mixtures. 

An important limitation arises in small data sets for both DAISY and Mercator: 

distance cannot be calculated within a given type if only one feature of that type is 

present. In this case, a single feature of a type is lost to analysis, removing important 

information. While this scenario is unlikely in large data sets, it is important in data sets 

with small features spaces, which featured prominently in our review in Chapter 1. The 

documentation of Supersom makes no note about handling single-type features, so it is 
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unclear if the package resolves the issue internally or if a lone feature is also lost to 

analysis. 

 Although we set out to study mixed-type data, this study revealed important 

conclusions about the analysis of single data types. First, we improved our understanding 

of the Sokal & Michener distance, and, by extension, the Hamming distance. Although 

the Hamming distance is commonly implemented for the handling of binary data in 

mixed-type studies, as we saw in chapter 3, this study shows little improvement in 

performance over the other distances assessed, including both distances commonly used 

for binary (Jaccard index) and continuous (Manhattan, Euclidean) data. 

 Perhaps more importantly, although we implemented distance metrics in common 

use for all single data types tested, we noted a strong disparity in ARI and SW between 

data types. Specifically, performance was good for continuous and binary data, 

intermediate for ordinal data, and poor for nominal and mixed categorical data. While 

high-quality solutions for binary and continuous data exist, and these can be implemented 

with overlapping distance metrics (i.e. Manhattan or Euclidean), we were unable to 

identify a strong solution for categorical data in this study. Given the frequency of 

categorical features in mixed clinical data, the absence of quality methods for this data 

type is concerning for analyzing mixed data problems. Future work analyzing mixed data 

may need to turn its head to solutions to generate high-quality clusters on their own, and 

then return to questions of combining distance metrics described here. 

 These studies provided unexpected insight, not only into the distance measures 

implemented, but into the algorithms chosen. PAM represents a newer algorithm than our 
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implementation of HC with Ward’s criterion. Unlike HC, PAM was developed with the 

intention of larger data sets analyzed on computers. It is in common use. SOM, 

implementing a neural net, also represent a more progressive technology. We included 

HC as a common standard, expecting that it would be outperformed by both techniques. 

What we found, however, was inconsistent performance of SOM (represented by the 

bipolar distribution of ARI). We also found almost universal performance of HC over 

PAM by mean ARI and mean SW. However, although PAM presented with lower ARI, it 

produced more stable solutions, as indicated by narrower standard deviation. Variability 

in a solution, seen in HC and SOM, can be as important a problem as inaccuracy. All 3 

algorithms carry benefits and risks, and the selection of one over another should be 

undertaken with grounding in the literature and attention to the data and the researcher’s 

goals, not by going along with a default. 

 In addition to quantitative measures (mean, range, etc.) to describe ARI and SW, 

we also described these methods qualitatively through the inspection of bean plots. The 

use of bean plots allowed us to describe the distribution of these values with greater 

nuance than mean and range alone. Importantly, they showed that a mean ARI often 

reflects the presentation of a wide range of values, either in the form of a spectrum (such 

as seen with DAISY) or a two-headed distribution (as seen with SOM). What is revealed 

is algorithms producing variable results: some excellent and some problematically poor. 

This is especially relevant in the bipolar distribution of SOM solutions, which almost 

exclusively produced excellent or poor results, with little middle ground. Further 

inspection revealed that the source of variability resulted from variation in feature size, 
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with small feature spaces resulting in solutions with low accuracy and large feature 

spaces resulting in more reliable solutions. Conversely, the number of patients in a 

simulation did not have a strong effect on the ARI of a solution. This suggests that there 

is some minimum threshold of feature number (approximately 200) that is necessary to 

undertake a clustering analysis in clinical data where a solution becomes more reliable.  

Not every clinical study will have at its disposal 200 or more features. In some 

cases, this may suggest that no clustering analysis should be performed. However, at 

intermediate ranges (approximately 100 features), solutions can be unreliable, but some 

solutions are of high quality. Even at large feature spaces, variability is present in 

solutions, particularly among categorical data types. In the absence of ground truth 

(which is obviously unavailable or there would be no point in undertaking clustering 

resource), an important challenge remains in identifying if the solution before the 

researcher is of good quality. In the absence of this test, certain techniques with high 

levels of variability, even if they often produce excellent solutions, may be too risky for 

research implementation. Important future work could seek to correlate other measures of 

validation that could be applied to real data with ARI, in order to identify a test that 

would indicate more accurate solutions. Given the numerous techniques available, 

including both external assessors of randomness and internal measures of consistency 

[79], identifying such a measure may provide fruitful. Because the simulations produced 

in Chapter 3 provide an opportunity for ground truth studies mimicking clinical data, 

such a study is feasible. 
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Chapter 5.  Concluding Experiment: Clustering Mixed-Type Data 

As a final experiment and test of concept, we return to our experiment from Chapter 2 

with best methods gleaned from our tests of algorithm-distance pairs in Chapter 4.  

Methods 

Here, we reanalyze data collected on 247 patients with chronic lymphocytic leukemia 

(CLL). These data include clinical signs and symptoms, physical exam results, laboratory 

value, immunophenotyping, and genetic and cytogenetic markers. Cytogenetic 

abnormalities are stored in two forms. The Döhner classification identifies a hierarchy of 

abnormalities to classify a cytogenetic phenotype. Although patients have a single 

Döhner classification, more than 1 cytogenetic abnormality may be present. Both the 

Döhner classification and the 4 individual markers for cytogenetic abnormality are 

included here. 

The data consists of 21 features: 4 continuous features, 2 nominal features, and 15 

binary features, 10 of which are symmetric binary and 5 of which are asymmetric binary. 

As this dataset contains 71.4% binary features, we classify it as an unbalanced, binary-

dominant mixture. Following the best performer for unbalanced, binary-dominant 

mixtures from Chapter 4, we calculate distance using the DAISY algorithm and 

implement hierarchical clustering using Ward’s agglomerative method. To select the 

number of clusters k, we plotted and selected peak average silhouette width at a range of 
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k from 2 to 12 clusters. Salient categorical features were uncovered as the most common 

category within a feature occurring in a given cluster. Salient binary features were 

defined as positive (present in >75% of patients in a given cluster) or negative (present in 

<25% of patients in a given cluster). Continuous features were described by mean and 

standard deviation, with differences in these values between clusters tested by ANOVA. 

We visualized using t-Stochastic Neighbor Embedding (t-SNE). Patient overall survival 

was modeled by Cox proportional hazard and visualized with Kaplan Meier curves. 

Results 

Based on peak silhouette width, we recovered 5 clusters (mean silhouette width = 0.26). 

Visualized with t-SNE, patients formed coherent, well-separated clusters.(Figure 5.1) 

 Cluster A, the largest cluster, contained 93 (37.7%) patients. Cluster E, the 

smallest cluster, contained 10 (4.0%) patients. Table 5.1 describes salient features and 

frequencies defining each of the 5 clusters. Salient differences characterizing cluster A 

included cytogenetic abnormality del13q, low CD38, and low beta-2-microglobulin. 

Cluster B was characterized by normal karyotype. Cluster C was characterized by del11q 

cytogenetic abnormality, unmutated IGHV status, positive ZAP70 expression, male sex, 

absent hypogammaglobulinemia, and the lowest prolymphocyte count of any of the 5 

clusters. Cluster D was characterized by trisomy 12 karyotype, male sex, and low beta-2-

microglobulin. Cluster E was associated with the del17p cytogenetic abnormality, 

unmutated IGHV status, hypogammaglobulinemia, and the highest prolymphocyte count 

of the 5 clusters. In all clusters, the dominant race was white, white blood cell count was 
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low, and massive splenomegaly was absent. Although prolymphocyte count varied, there 

were no statistically significant differences in continuous features between clusters. 

 The 5 clusters recovered were significantly associated with overall survival (Cox 

proportional hazard, p = 0.0108).(Figure 5.2) Patients in cluster A had longest survival. 

Patients in clusters B, C, and D had intermediate survival. Patients in cluster E had 

shortest survival. 

 
 

  

Figure 5.1. Visualization of 5 clusters of 247 patients with chronic lymphocytic 

leukemia with t-Stochastic Neighbor Embedding (t-SNE). T-SNE recovers 4 coherent 

clusters (A-D). A final cluster captures a small group of outliers (E). 
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Table 5.1. Salient features for 5 clusters of CLL patients recovered with hierarchical 

clustering and the DAISY dissimilarity metric. 

Cluster A B C D E 

Patients (n) 93 72 32 40 10 

Genetics 

Döhner 

Classification 

Del13q 

95.7% 

Normal 

97.2% 

Del11q 

100% 

Trisomy 

12 

92.5% 

Del17p 

100% 

    13q Abnormal 

100% 

Normal 

97.2% 

 Normal 

82.5% 

 

     12 Normal 

100% 

Normal 

100% 

Normal 

96.9% 

Abnormal 

65.0% 

Normal 

100% 

     11q Normal 

97.8% 

Normal 

98.6% 

Abnormal 

100% 

Normal 

100% 

Normal 

100% 

     17p Normal 

97.8% 

Normal 

98.6% 

Normal 

100% 

Normal 

100% 

Abnormal 

100% 

IGHV 

mutation 

status 

  Unmutated 

93.8% 

 Unmutated 

100% 

Demographics 

Race White 

95.7% 

White 

94.4% 

White 

90.6% 

White 

85% 

White 

80% 

Sex   Male 

84.4% 

Male 

75% 

 

Age at 

Diagnosis 

55.7 ± 10.9 54.8 ± 

11.1 

58.4 ± 10.9 58.7 ± 

10.1 

60.0 ± 10.5 

Clinical signs 

Rai Stage Low 

76.3% 

Low 

75.0% 

Low 

93.8% 

Low 

85% 

 

Massive 

splenomegaly 

Absent 

92.4% 

Absent 

90.3% 

Absent 

93.8% 

Absent 

92.5% 

Absent 

100% 

Laboratory values and immunophenotype 

ZAP70 

expression 

  Positive 

75.0% 

  

Beta-2 

microglobulin 

Low 

83.7% 

  Low 

75% 

 

WBC* Low 

90.2% 

Low 

79.2% 

Low 

87.5% 

Low 

87.5% 

Low 

80% 

CD38 Low 

88.4% 

    

Light chain 

subtype 

 Lambda 

75.7% 

Lambda 

84.4% 

 Lambda 

90.0% 
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Table 5.1 continued 

Matutes score Typical 

88.2% 

Typical 

86.8% 

Typical 

87.5% 

  

Hypogamma-

globulinemia 

  Absent 

75.9% 

 Present 

77.8% 

Hemoglobin 

(mean ± sd) 

12.9 ± 1.8 12.7 ± 1.7 13.6 ± 1.5 12.7 ± 1.6 11.7 ± 2.7 

Platelets 

(mean ± sd) 

173.6 ± 

63.7 

176.8 ± 

82.5 

202.3 ± 74.6 187.4 ± 

78.2 

193.1 ± 109 

Prolympho-

cytes  

(mean ± sd) 

3.9 ± 4.1 4.4 ± 3.2 3.5 ± 4.5 7.2 ± 5.9 9.9 ± 7.0 

*WBC = White blood cell count 

 

  Figure 5.2. Kaplan Meier curves of overall survival after diagnosis for 5 clusters of 

247 patients with chronic lymphocytic leukemia. The dominant cytogenetic 

abnormality by Döhner classification for each cluster is: A = Del13q, B = normal 

karyotype, C = Del11q, D = Tri12, E = 17p. 
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Discussion 

In this concluding experiment, we demonstrate that we can successfully recover the most 

important prognostic marker in CLL, Döhner classification, by unsupervised clustering 

on a clinical data set. We returned to our data set from chapter 2 with methods informed 

by knowledge gained in the production of this thesis. Identifying our data as an 

unbalanced, binary-dominant mixture, we applied the DAISY dissimilarity metric with 

hierarchical clustering: the best performing method for this data type identified by our 

experiments in chapter 4. Applications of these methods returned superior clusters 

compared to the initial experiment in chapter 2. Quantitatively, this concluding 

experiment uncovered clusters with a higher average silhouette width (initial average 

silhouette width = 0.17, concluding = 0.26). Qualitatively, visualized clusters in the 

concluding experiment had better tightness and separation.  

The recovered clusters were characterized by high frequencies of prognostic 

markers, in which the categorical Döhner classification, understood to be the most 

important prognostic marker in CLL, was a defining feature. This approach also 

recovered important binary prognostic markers, including sex, ZAP70 expression, and 

IGHV mutation status. Notably, this clustering approach failed to reveal statistically 

significant variation in continuous features. Although this could represent a limitation of 

the DAISY dissimilarity algorithm, other methodological concerns may merit further 

study. In some cases, continuous features may be more meaningfully represented as 

binary or ordinal features. For example, hemoglobin is relevant in clinical use as a marker 

of anemia (low hemoglobin) or polycythemia (high hemoglobin): The meaningfulness of 
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this continuous measure is as a categorical construct. In the same way, platelet count is 

meaningful in that it represents low, normal, or high values, but small, numeric variations 

are not clinically interpreted to have substantial meaning. The clinical interpretation of 

continuous features may need to drive their data type. 

In other cases, population homogeneity could also reduce the distinctiveness of a 

feature’s contribution to cluster formation. For instance, all 5 clusters recovered an age at 

diagnosis between 55 and 60 with a standard deviation of approximately 10. CLL is a 

disease of older adults. Older age greater than 65 years is understood to imply poor 

prognosis. However, in a small sample, age may not be a dominate driver of 

subclassification. This raises the point that clustering and subclassification is only one 

problem solving tool in understanding prognosis, risk, and outcome. Some important risk 

factors may not drive clustering, and additional approaches, including regression and 

supervised methods, must be brought to bear to fully understand these processes. 

These recovered clusters were strongly associated with overall survival. Survival is 

concordant with survival predicted by the Döhner classification, which predicts longest 

survival in patients with Del13q (Cluster A) and shortest survival in patients with Del17p 

(Cluster E). Among intermediate phenotypes, the Döhner classification predicts 

intermediate survival among patients with Tri12 and normal karyotype with poorer 

survival among patients with Del11q. In these data, the cluster characterized by normal 

karytotype (Cluster B) presents with intermediate survival. The survival curves of 

patients in clusters characterized by Tri12 (Cluster D) and Del11q (Cluster C) are more 

similar than predicted. Although this distortion in expected survival outcomes could 
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represent limitations in this clustering method, the size of this data set (247 patients) 

could be small enough that sample variability is the root of this result. 

 Some limitations of this approach did arise. In this data set, key prognostic 

information from cytogenetic tests was stored in 5 closely related fields comprised of a 

categorical field for Döhner classification and binary fields marking presence or absence 

of these 4, sometimes co-occurring, abnormalities. The clusters recovered were 

dominated by high and well-separated frequencies of these entities. This indicates that, 

especially in small data sets, a subgroup of features can drive the clustering process 

through relatedness of concept and collinearity. It merits future exploration if relatedness 

among different data types, such as the combination of categorical and binary fields, may 

more strongly drive a mixed-type clustering process than a single type. These limitations 

are in greater focus due to the small size of the data set: Small numbers of features 

increase the ability for a small subgroup to dominate clustering. In addition, we have seen 

in Chapter 4 that when some mixed-distance dissimilarities are calculated (i.e. with 

Mercator or DAISY) data types represented in only one feature may be lost to analysis. 

Although we described in Chapter 1 that clustering of data sets with small population 

sizes and small features spaces is common in unsupervised analysis of clinical data, we 

may need to consider that there is some minimum threshold below which clustering is 

inappropriate. 
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Chapter 6. Conclusion 

 This thesis set out to tackle core problems in unsupervised clustering of clinical 

data: clinical data are of heterogeneous size and mixed type. We hypothesized that these 

limitations could be overcome by implementing methods of dissimilarity using a mixture 

of formulae to calculate distance and undertook 5 steps towards a potential solution. 

 In Chapter 1, we began with a review of the current state of the literature for 

common clustering approaches, common applications of distance metrics for mixed-type 

data, and existing studies comparing methods for mixed-type, clinical data. We found 

that, although there were many clustering algorithms at our disposal, solutions for mixed-

type data, particularly within the clinical literature, were sparse and lacked rigor. 

Common approaches contained limited applications of distance-method mixtures, which 

encouraged us in our approach. 

 In Chapter 2, we applied a solution suggested in the literature for handling mixed-

type data: converting all features to a single data type. We chose a real data set on a 

disease with well-understood prognosis: chronic lymphocytic leukemia. A disease with 

well-understood prognosis does not allow us to make grand contributions to new 

understanding in the literature. However, perhaps more importantly for assessment of a 

method, a well-understood disease provides “biological validation,” allowing us to test 

the success of our clustering method against a standard. We transformed mixed data, 
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containing categorical, continuous, and binary features, to a binary feature space and 

clustered. Our success was mixed: important binary features were salient, but a crucial 

categorical feature – the Döhner cytogenetic classification, known to be one of the best 

prognostic markers for the disease – was not uncovered by the analysis. With an 

understanding of the limitations of a transformation to a single data type, including 

information loss and distortion in an unweighted transformation, we undertook further 

steps to explore our core problems. 

 A fundamental problem in the assessment of clustering algorithms is the inability 

to test a method against a known “ground truth.” In Chapter 3, we tackled this problem 

by developing realistic simulations (i.e. noisy, complex, and heterogeneous) of mixed-

type clinical data. We validated these simulations in three ways. First, we qualitatively 

inspected T-distributed Stochastic Neighbor Embedding (t-SNE) plots for realistic cluster 

shape. Second, we quantitatively assessed cluster form, compactness, and separation by 

silhouette width. Third, we assessed the statistical association of generated features with 

their cluster identity, taking this to signify clusters with sound foundations. Confirming 

that our simulations were biologically representative and of high quality, we generated 

32,400 simulations with parameters representing clinical data ranging from clinical trials 

to large cohorts. 

 With a “gold standard” available, in Chapter 4 we undertook a series of 18 tests of 

dissimilarity-algorithm pairs on single- and mixed-type data. These pairs consisted of the 

application of 5 related single distance metrics for binary, categorical, or continuous data 

(Jaccard index, Sokal & Michener or “Tanimoto” distance, Gower coefficient, Manhattan 
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distance, and Euclidean distance) and 3 methods for calculating dissimilarity from 

multiple distance metrics (DAISY, Supersoms, and our own proposed solution, 

Mercator). We applied these metrics with 3 algorithms: agglomerative hierarchical 

clustering with Ward’s criterion, Partitioning Around Medoids (PAM), and self-

organizing maps (SOM). Our analysis suggested the superiority of some solutions, 

particularly DAISY, for mixed type data. However, visualization with bean plots, which 

qualitatively captures a frequency distribution of measurements across a range, raised 

important concerns for reliability and reproducibility of clustering solutions across all 

simulated data types tested. 

 As a return to biological validation of a method, we returned to our data set from 

Chapter 2 using the best method suggested by our tests in Chapter 4: Ward’s method of 

hierarchical clustering with the DAISY dissimilarity method. This time, we captured 5 

clusters reflecting Döhner classification. However, our results raised concerns for bias 

that can arise in small data sets and small feature spaces. 

 The results of this thesis raise important concerns and avenues for future 

directions in clustering clinical data – or data of any type. Two key concerns arose that 

raise avenues for future exploration. First, evidence from our simulations, our tests in 

Chapter 4, and our concluding experiment in Chapter 5 suggest that some minimum 

threshold of patient population and, particularly, feature space is necessary for an optimal 

clustering solution. These experiments suggest that the impact of a number of patients 

greater than 200 may be small, but that large number of features (e.g., 200 or greater) 

may be required to obtain accurate and reliable clustering solutions. Future experiments 
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with simulations and/or random subsets of varying and progressive size from a large data 

set are important steps to define this standard. Finally, evidence of variability of solutions 

generated by clustering algorithms is of great concern. When an algorithm returns either 

an excellent solution or one that is very wrong, any answer it provides must be held as 

suspect. When the appropriate distance metric is employed, reliability in some large 

sample sizes and feature spaces is encouraging. However, the researcher may only have a 

feature space of intermediate size available for study, and issues with variability remain, 

particularly in categorical data types. Although it could be argued that clustering analyses 

of insufficiently large feature spaces should not be undertaken, important discoveries may 

arise from data sets with increased risk of variability. Future work testing methods of 

validation not requiring a gold standard (such as measures of entropy or intrinsic 

properties) for correlation with measures of ground truth (such as adjusted rand index) 

may be important steps to validate a solution on these data sets. In the absence of these 

measures, some clustering solutions with smaller feature spaces must be viewed with 

suspicion. Clustering holds promise for important subclassification problems in chronic 

and acute clinical medicine, but work remains to ensure that solutions are rigorous, valid, 

and reproducible. 

 In Chapter 3, we demonstrated that we can realistically simulated mixed-type, 

clinical data. These simulation methods may provide the tools needed to hone clustering 

approaches for mixed-type and clinical data. Because of easy manipulations of feature 

number and sample number, these simulations could be used to explore appropriate 

solutions for varying data set size. Such simulated data could establish boundaries for an 
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appropriate sample size and feature space to obtain a meaningful clustering solution or to 

explore new methods appropriate for data sizes that prove challenging. Because the 

simulations produced in this modification of Umpire generate a known, “ground truth” 

clustering assignment, they can be used to address variability of clustering results. By 

testing correlation between methods of cluster validation that do not assess ground truth 

(e.g., tests of entropy or intrinsic cluster properties) and gold standard validation (e.g., 

Adjusted Rand Index, Adjusted Mutual Information), these simulations could be used to 

identify a measure of validation for real data that better indicates a “true” solution. 

Finally, realistic, mixed-type, clinical simulations can be used to develop more advanced 

methods for clustering noisy, mixed-type data. Thus, although Chapter 4 identified 

important problems in clustering clinical data, Chapter 3 provides future directions to 

solve them. 

Clustering analysis in clinical contexts hold promise to improve the understanding 

of patient phenotype and disease course. Better subclassification of disease opens 

avenues for targeted treatments, precision medicine, and improved patient outcomes. 

Diseases with high morbidity and mortality but subtle presentation, such as sepsis and 

delirium, can benefit from subclassification to identify treatment response groups, 

prognosis, and underlying etiology. As an extension, rigorous subclassification could be 

used to inform clinical decision support and improve practical treatment outcomes. We 

hope this work opens the door for improvements in methods for unsupervised ML that 

can make these important advances a reality. 
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Appendix A. Supplemental Tables and Figures to Chapter 2 

Figure A.1. Data transformation B: Kaplan-Meier survival curves for time-to-progression 

and time from diagnosis to treatment. Unsupervised machine learning, using k-means 

clustering with Partitioning Around Medoids (PAM) and the Sokal-Michener distance 

yields seven clinical phenotypes with significant differences in time-to-progression (TTP) 

(p = 0.0451) and the related metric time from diagnosis to treatment (p = 0.0039). 
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Figure A.2. Multi-dimensional scaling (MDS) plots constructed from 9 different distance 

metrics in data transformation A. In selecting a distance metric for applying unsupervised 

machine learning using k-medoids clustering with Partitioning Around Medoids (PAM), 

we assessed 10 distance metrics representing meaningful groupings of 76 distance 

metrics for binary data. Similarity and difference between outputs of distance metrics 

grouped qualitatively. Although the Sokal & Michener distance was chosen for ease of 

interpretability, similar results were obtained from the Manhattan, Hamming, and 

Goodman & Kruskal distances. 
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Figure A.3. t-Stochastic Neighbor Embedding (t-SNE) plots constructed from 9 different 

distance metrics in data transformation A. In selecting a distance metric for applying 

unsupervised machine learning using k-medoids clustering with Partitioning Around 

Medoids (PAM), we assessed 10 distance metrics representing meaningful groupings of 

76 distance metrics for binary data. Similarity and difference between outputs of distance 

metrics grouped qualitatively. Although the Sokal & Michener distance was chosen for 

ease of interpretability, similar results were obtained from the Manhattan, Hamming, and 

Goodman & Kruskal distances. 
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Table A.1. Comprehensive identifying features of clusters for data transformations A and B, in order of overall survival. Clusters are 

ordered by predicted survival outcome, from longest survival (A1 or B1) to shortest (A7 or B6). Percentages represent frequency of a 

feature within a given cluster. Characteristic features of each cluster, defined as a feature present in at least 75% of members of a 

given cluster, include known indicators of superior prognosis (IGHV-mutated status and female sex) and poor prognosis (ZAP70 

positivity). Döhner classification, known to be one of the best predictors of prognosis in CLL, failed to be captured by the analysis for 

most clusters. 

 

Data Transformation A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1M = Male, F = Female 
2M = Mutated, U = Unmitated 
3Hypogammaglobulinemia 
4Beta-2 microglobulin 
5Prolymphocytes 

 

Cluster Sex1 IGHV 

Status2 

ZAP70 Döhner CD38 Light 

Chain 

Cytopenia RAI 

Stage 

WBC 

Count 

B2M4 Matutes 

A1 M 

89.5% 

M 

89.5% 

- 

84.2% 

 Low 

100% 

λ 

84.2% 

HGG3 

84.2% 

Low 

78.9% 

Low 

94.7% 

Low 

89.5% 

Typical 

78.9% 

A2 F 

79.3% 

M 

89.7% 

- 

86.2% 

del13q 

75.9% 

Low 

93.1% 

  Low 

86.2% 

Low 

96.6% 

Low 

82.8% 

Typical 

75.9% 

A3 M 

88.9% 

M 

80.6% 

- 

86.1% 

del13q 

80.6% 

Low 

83.3% 

  Low 

88.9% 

Low 

83.3% 

Low 

91.7% 

Typical 

80.6% 

A4 M 

85.2% 

U 

96.3% 

  High 

88.9% 

κ 

88.9% 

 Low 

100% 

Low 

81.5% 

Low 

85.2% 

 

A5 M 

84% 

U 

84% 

- 

 

 Low 

 

 

 

Anemia 

80% 

 Low 

80% 

High 

96% 

Typical 

80% 

A6  U 

94.7% 

+ 

89.5% 

 Low 

94.7% 

κ 

92.1% 

 Low 

92.1% 

 Low 

86.8% 

Typical 

86.8% 

A7  U 

86.4% 

+ 

90.9% 

 Low 

86.4% 

 Anemia 

81.8% 

Low 

81.8% 

Low 

81.8% 
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Table A.1 continued 

 

Data Transformation B. 

Cluster Sex1 IGHV 

Status2 

ZAP70 CD38 Age PL5 Light 

Chain 

Anemia RAI 

Stage 

WBC 

Count 

B2M4 Matutes 

B1  M 

91.3% 

- 

82.6% 

Low 

93.5% 

< 65 

82.6% 

< 10 

82.6% 

λ 

100% 

 Low 

84.8% 

Low 

95.7% 

Low 

91.3% 

Typical 

78.3% 

B2  M 

78.4% 

- 

97.3% 

Low 

86.5% 

< 65 

75.7% 

< 10 

83.8% 

κ 

100% 

 Low 

89.2% 

Low 

81.1% 

Low 

86.5% 

Typical 

78.4% 

B3 M 

76.9% 

U 

76.9% 

  < 65 

76.9% 

< 10 

80.8% 

 Anemia 

84.6% 

 Low 

84.6% 

High 

88.5% 

Typical 

84.6% 

B4  U 

95.5% 

+ 

93.2% 

Low 

95.5% 

< 65 

93.2% 

< 10 

86.4% 

κ 

86.4% 

 Low 

90.9% 

 Low 

86.4% 

Typical 

86.4% 

B5 M 

83.3% 

U 

83.3% 

+ 

83.3% 

Low 

91.7% 

> 65 

91.7% 

 λ 

83.3% 

Anemia 

83.3% 

 Low 

83.3% 

  

B6 M 

87.1% 

U 

96.8% 

+ 

80.6% 

High 

80.6% 

< 65 

83.9% 

< 10 

87.1% 

κ 

83.9% 

 Low 

100% 

Low 

80.6% 

Low 

87.1% 

 

1M = Male, F = Female 
2M = Mutated, U = Unmitated 
3Hypogammaglobulinemia 
4Beta-2 microglobulin 
5Prolymphocytes 

 

 

135 


