
Generating Comprehensible Equations from Unknown
Discrete Dynamical Systems Using Neural Networks

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

John M. Maroli, M.S.

Graduate Program in Department of Electrical and Computer Engineering

The Ohio State University

2019

Dissertation Committee:

Ümit Özgüner, Advisor

Keith Redmill, Co-Advisor

Yingbin Liang

c© Copyright by

John M. Maroli

2019

Abstract

This research presents a novel framework for generating system equations from the

input-output data of unknown discrete dynamical systems. The two-step process consists

of system identification followed by a black box input-output analysis in the likes of

Monte Carlo sample-based global sensitivity analysis. System identification is performed

using temporal convolutional networks trained with only input-output data. A structured

approach to network design and training is detailed for yielding accurate identification

models and a benchmark is performed using a publicly available dataset known as the

Silverbox. The trained identification model serves as a system emulator that can be excited

at low computational cost, allowing for detailed sample-based sensitivity analysis. The key

to the analysis is an imagined decomposition of the the model into a sum of less complex

constituent functions of all input combinations. A method for sampling the constituent

functions is presented to not only determine relevant constituents, but to estimate them

as well. The sum of relevant constituent functions is equal to the original model, which

parallels the source system of the original input-output data. The imagined decomposition

of the identification model allows for a potentially complex estimation problem to be broken

down into many smaller and less complex problems.

The analysis resultant is a human comprehensible mathematical model for the discrete

dynamical system, where comprehensibility implies that the equation gives insight into

system operation. The presented framework helps to shed light on black box identification

ii

models, and the system equation extracted from the identification model can be used

as a transparent replacement for the original model. This aids in a myriad of practical

applications such as control, stability analysis, and software verification. The framework

is fully implemented and made publicly available. A number of synthetic examples are

presented along with data-driven analysis of the Silverbox dataset, vehicle dynamics data,

and simulated motor cooling data.

iii

to my wife, Kimberly . . .

to our baby in heaven.

"Sometimes the smallest things take up the most room in your heart."

- Winnie the Pooh

iv

Acknowledgments

I thank my wife, Kimberly, for her unconditional love and support throughout my

graduate education. I thank my parents, John and Patricia, for raising me to be who I am

today and for their constant love and support in all my endeavors. I thank my extended

family and friends for their loving encouragement and support throughout my life, especially

during these past few years. Most of all, I thank God for providing me with the passion and

perseverance to complete my Ph.D.

I thank my advisor, Professor Ümit Özgüner, and co-advisor, Professor Keith Redmill,

for their guidance in my education and research. I thank Professor Lisa Fiorentini for her

willing assistance in helping me find my research direction and her passion for teaching

others. I thank the many other instructors I had at The Ohio State University over my 8 and

a half years of undergraduate and graduate education, of whom there are too many to name.

v

Vita

May 2015 . B.S. Electrical and Computer Engineering,
The Ohio State University

May 2019 . M.S. Electrical and Computer Engineer-
ing, The Ohio State University

August 2015 - May 2019 . Graduate Research Associate,
The Ohio State University

May 2013 - Present .Engineering Student Trainee,
NASA Glenn Research Center

vi

Publications

[1] J. Jing, J. M. Maroli, Y. B. Salamah, M. Hejase, L. Fiorentini, and Ü. Özgüner.
“Control Method Designs and Comparisons for Tractor-Trailer Vehicle Backward
Path Tracking”. In: 2019 American Control Conference (ACC). July 2019, pp. 5531–
5537.

[2] J. M. Maroli, Ü. Özgüner, and K. Redmill. “A Framework for Automated Collabo-
rative Fault Detection in Large-Scale Vehicle Networks”. In: 2019 IEEE Intelligent
Vehicles Symposium (IV). June 2019, pp. 1923–1927. DOI: 10.1109/IVS.2019.
8814176.

[3] M. Hejase, J. Jing, J. M. Maroli, Y. Bin Salamah, L. Fiorentini, and Ü. Özgüner.
“Constrained Backward Path Tracking Control using a Plug-in Jackknife Preven-
tion System for Autonomous Tractor-Trailers”. In: Proceedings of the 2018 21st
International Conference on Intelligent Transportation Systems (ITSC). Nov. 2018,
pp. 2012–2017. DOI: 10.1109/ITSC.2018.8569262.

[4] D. Yang, J. M. Maroli, L. Li, M. El-Shaer, B. A. Jabr, K. Redmill, F. Özgüner, and
Ü. Özgüner. “Crowd Motion Detection and Prediction for Transportation Efficiency
in Shared Spaces”. In: Proceedings of the 2018 IEEE International Science of Smart
City Operations and Platforms Engineering in Partnership with Global City Teams
Challenge (SCOPE-GCTC). Apr. 2018, pp. 1–6. DOI: 10.1109/SCOPE-GCTC.2018.
00007.

[5] J. M. Maroli, Ü. Özgüner, K. Redmill, and A. Kurt. “Automated rotational calibration
of multiple 3D LIDAR units for intelligent vehicles”. In: Proceedings of the 2017
IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).
Oct. 2017, pp. 1–6. DOI: 10.1109/ITSC.2017.8317598.

[6] G. Ozbilgin, Ü. Özgüner, O. Altintas, H. Kremo, and J. Maroli. “Evaluating the
requirements of communicating vehicles in collaborative automated driving”. In: Pro-
ceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV). June 2016, pp. 1066–
1071. DOI: 10.1109/IVS.2016.7535521.

Fields of Study

Major Field: Electrical and Computer Engineering

vii

https://doi.org/10.1109/IVS.2019.8814176
https://doi.org/10.1109/IVS.2019.8814176
https://doi.org/10.1109/ITSC.2018.8569262
https://doi.org/10.1109/SCOPE-GCTC.2018.00007
https://doi.org/10.1109/SCOPE-GCTC.2018.00007
https://doi.org/10.1109/ITSC.2017.8317598
https://doi.org/10.1109/IVS.2016.7535521

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1 Motivation and Problem Statement . 1
1.2 Related Work . 4

1.2.1 System Identification . 4
1.2.2 Rule Extraction . 5
1.2.3 Sensitivity Analysis . 6

1.3 Overview and Outline . 9

2. System Identification using Neural Networks 11

2.1 Choosing an Identification Model . 12
2.2 Neural Network Model Implementation 15
2.3 Temporal Convolutional Networks . 18
2.4 The Silverbox Benchmark . 21

2.4.1 Existing Benchmark Results . 24
2.4.2 Establishing a Fair Benchmark 28
2.4.3 TCN Identification Performance 31

2.5 Summary and Conclusions . 36

viii

3. Equation Generation Methodology . 37

3.1 Model Interpretation . 41
3.2 Model Excitation . 43
3.3 Response Analysis . 45

3.3.1 Methodology . 46
3.3.2 Example Walkthrough . 53

3.4 Genetic Algorithm Tuning . 58
3.5 Summary and Conclusions . 61

4. Application Analysis and Examples . 63

4.1 Implementation . 63
4.1.1 Model Creation . 67
4.1.2 Model Analysis . 68
4.1.3 Template Functions . 69

4.2 Verbose Example . 72
4.3 Synthetic Experiments . 77

4.3.1 Verbose Example Extension . 77
4.3.2 Noise Resilience . 78
4.3.3 Periodic Functions . 82
4.3.4 Modified Product Functions . 84
4.3.5 Taylor Series Expansions . 86
4.3.6 Missing Template Functions . 87
4.3.7 Models Undefined at or around 0 88
4.3.8 Higher Dimensional Product Functions 90

4.4 Data-Driven Experiments . 91
4.4.1 Silverbox Analysis . 91
4.4.2 Vehicle Roll Analysis . 100
4.4.3 Motor Cooling Analysis . 104

4.5 Summary and Conclusions . 108

5. Conclusion . 109

5.1 Contributions . 109
5.2 Future Work . 110
5.3 Concluding Remarks . 112

Appendices 113

A. Python Code . 113

ix

List of Tables

Table Page

2.1 Silverbox benchmark results for test set simulation. 27

2.2 Silverbox benchmark results for test set one-step-ahead prediction. 27

2.3 Top performing model metrics. 32

2.4 Top model performance under different test sets. 35

3.1 Example walkthrough sample points. 56

3.2 Analysis methodology example walkthrough. 57

4.1 Relevant parameters in model_parameters. 68

4.2 Relevant parameters in analysis_parameters. 69

4.3 List of template functions in the implementation. 70

4.4 Example construction of input instances and analysis values. 75

4.5 Product function Taylor Series expansion. 86

4.6 Product function contributions for the Silverbox. 93

4.7 Product function contributions for the Silverbox after retraining. 95

4.8 One-step-ahead RMSE of Silverbox models in mV. 96

x

List of Figures

Figure Page

1.1 The process flow from input-output data to system equation through decom-
position of a virtual system identification model. 3

2.1 The series-parallel identification model. 13

2.2 The parallel identification model. 14

2.3 Example TCN with L = 2 levels and filter size K = 3. The full effective
history of the network can be seen, extending from x[k] to x[k−12]. 21

2.4 The nonlinear spring-mass damper system with identical dynamics to the
Silverbox electrical circuit. 22

2.5 Input and output data from the Silverbox. 23

2.6 A detailed view of samples 40001 to 41000. Horizontal lines mark the range
of the training data and a vertical line marks the proposed test/training division. 29

2.7 A detailed view of samples 127001 to 128000. Horizontal lines mark the
range of the training data and a vertical line marks the proposed datset cutoff. 30

2.8 Error metrics for TCN models (left) with K = 3, L = 2 and FNN models
(right) trained on samples 1-40585 having a single hidden layer of varying
hidden node counts. 32

3.1 The overall framework of the equation generation methodology. The primary
goal is converting input-output data into a comprehensible system equation. 40

3.2 An example chromosome representing an estimated system equation. . . . 59

xi

3.3 The probability density function of the triangular distribution. 60

3.4 The crossover and mutation operations used to create members in successive
generations. 61

4.1 Plots showing 1000 samples for each product function of significance as
extracted from the TCN model: (a) f̂2(u1[k−1]); (b) f̂4(y1[k−2]); (c)
f̂6(u1[k],y1[k−1]) . 76

4.2 Effect of varied process error on the example system. 79

4.3 Effect of varied process error above the noise floor. 80

4.4 Effect of varied measurement error on the example system. 81

4.5 Effect of varied measurement error above the noise floor. 82

4.6 System vs. estimated equation response with a missing template function. . 88

4.7 Plots showing 1000 samples for each product function of significance as
extracted from the TCN trained on the Silverbox dataset: (a) f̂ (y1[k−1]);
(b) f̂ (y1[k−3]); (c) f̂ (y1[k−4]); (d) f̂ (u1[k]) 94

4.8 Plots showing 1000 samples for each product function of significance as
extracted from the retrained TCN for the Silverbox dataset: (a) f̂ (y1[k−1]);
(b) f̂ (y1[k−3]); (c) f̂ (y1[k−4]); (d) f̂ (u1[k]); (e) f̂ (y1[k−1],y1[k−3]) . . 99

4.9 The test track used for vehicle data collection: (a) Aerial view; (b) Vehicle
path. 100

4.10 Vehicle data from a lap of the Winding Road Course. 101

4.11 One-step-ahead and simulation prediction using the estimated equation. . . 103

4.12 The sampled product functions from the initial TCN of the vehicle roll
data: (a) f̂ (y[k−1]), 92.9% magnitude, 99.9% variance; (b) f̂ (u2[k]), 1.0%
magnitude, 0.0% variance; (c) f̂ (u1[k],y[k−1]), 0.6% magnitude, 0.0%
variance. 104

4.13 The electric vehicle cooling system. 106

xii

4.14 Simulation of the electric vehicle motor temperature. 106

4.15 The sampled product functions from the retrained TCN of the motor cooling
data (constant not shown): (a) f̂ (u2[k]), 48.1% magnitude, 49.3% variance;
(b) f̂ (u1[k]), 42.6% magnitude, 47.3% variance; (c) f̂ (u1[k],u2[k]), 9.3%
magnitude, 3.4% variance. 107

xiii

Chapter 1: Introduction

The rise of machine learning has yielded substantial advancements to system identifica-

tion and modelling at the cost of transparency and human comprehension. Neural networks

models have generality and accuracy that is difficult to outperform without domain specific

knowledge, however their structure makes it challenging to gain insight into systems that

they represent. As such, neural network identification models are commonly likened to

opaque black boxes. This obscurity hinders human comprehension and weakens trustwor-

thiness. Additionally, many classical control and stability analysis techniques cannot be

applied to black box models and software verification becomes computationally expensive if

not impossible to perform. For these reasons, a general methodology for generating human

comprehensible equations of unknown discrete dynamical systems typically represented by

black box models is needed.

1.1 Motivation and Problem Statement

Neural networks are well known for their ability to approximate generic functions,

being declared universal function approximators [1]. They have also been demonstrated as

effective for both identification and control of nonlinear dynamical systems [2][3]. Neural

network models have been shown to provide accuracy at least as good as conventional system

modelling methods [4]. Recurrent neural networks (RNN) are no more than dynamical

1

systems themselves, while feedforward neural networks (FNN) are static systems. With

a series of input and/or output delays, FNNs can also be trained to represent dynamical

systems when the delays are exposed to the network input.

Identification of dynamical systems using both feedforward and recurrent neural network

architectures is formally presented in the seminal work of Narendra et. al. [2]. Neural

networks can be used to model complex and highly nonlinear systems for which no classical

models exist. While neural networks perform well for modelling systems, their trained

structure generally gives little information about the systems they represent. In the case

where a neural network is used to model an unknown system characterized only by input-

output data, it is as if we have a black box model of a black box. This compounding obscurity

weakens the human trustworthiness of the system model as well as the whole of neural

network identification models. It is becoming increasingly important to explain black box

models for not only human trustworthiness, but for legal reasons as well [5]. The General

Data Protection Regulation (GDPR), adopted by the European Parliament and turned into

law in 2018, requires the "meaningful explanations of the logic involved" in automated

decision making. There are a myriad of other reasons as to why black box system models

are undesirable. From a control perspective, many classical control and stability analysis

techniques cannot be applied to these systems. Software verification becomes a challenge as

well, with no succinct way to verify the models [6].

In this work, we perform identification of discrete dynamical systems using a neural

network variant and then introduce a method for analyzing trained neural networks to

generate approximate equations for the systems they represent. In this way, we use a neural

network as a tool to extract a system equation from a system [7]. Neural networks are

primarily chosen for both their identification performance and their low computational cost

2

System
Data

Neural Network
Identification

Model

Component
Data

Component
Data

Component
Data

Component
Model

Component
Model

Component
Model

System
Equation

Model

Figure 1.1: The process flow from input-output data to system equation through decomposi-
tion of a virtual system identification model.

for forward propagation of input samples. They are also some of the biggest offenders

when it comes to having a lack of model transparency and are a prime example of an

opaque system. Our analysis sheds light on the black box model that neural networks

are often viewed as when used for system identification, and by proxy exposes the black

box system modelled by the neural network. We refer to the analysis process as system

equation extraction, which draws concepts from the established fields of neural network rule

extraction and sensitivity analysis.

The identification and analysis procedures are combined to create a framework for

modelling generic systems. This combined framework parses input-output data to generate

a mathematical model of the underlying system in the form of a discrete dynamical system

equation. The identification process creates a virtual model of the system that is then

computationally analyzed. The analysis builds a system equation based on a decomposition

of the identification model, breaking down the complexity of generating the equation into

less complex fragments. This eases the process of creating mathematical system models

and allows for the modelling of systems with compounding complexity. The process flow is

presented in Fig. 1.1 and is regarded as the main contribution of this work.

3

1.2 Related Work

There are three primary areas of literature from which the presented work draws in-

spiration. The ultimate goal of this analysis is the generation of a mathematical model

of a system using input-output data. In essence, this goal is system identification. The

neural network identification methods used in this work accomplish the task of creating an

accurate mathematical model with high generalization to generic systems, however they

lack transparency. Other identification methods that may have transparency generally lack

accuracy or generality. In attempt to obtain the accuracy and generality of neural networks

while keeping model transparency, neural network rule extraction was examined. In the

spirit of generating a system equation, the extraction of human understandable regression

rules from neural networks was desired. This leads into sensitivity analysis, which is utilized

in this work to generate a transparent system equation with the neural network properties of

accuracy and generality.

1.2.1 System Identification

The primary goal of system identification is to create a mathematical model of a dynami-

cal system using measured data. The problem is ultimately finding a model amongst a set

of candidates that fits the data [8]. Rather than finding a single candidate model to fit the

original data in this work, multiple candidate models are found to fit less complex fragments

of the decomposed model. The summand of these fragments is then the overall model fitting

the original data.

This work contains two levels of system identification as seen in Fig. 1.1. The initial

identification model is created from the model class of neural networks, chosen for the ability

to yield high accuracy and applicability to generic systems. The low computational cost of

4

propagating an input through a neural network model is also advantageous for performing

sensitivity analysis, where propagation of many inputs may be computationally expensive.

For this reason, machine learning is a popular choice for the construction of meta-models to

be paired with sensitivity analysis [9]. The second level of system identification operates on

a decomposition of the first level to fit basic equation models to the decomposed fragments.

This process can use any standard curve-fitting techniques [10].

The foundations of neural network system identification are presented in the seminal

work of Narendra and Parthasarathy [2]. Neural network based control is also presented

to compliment identification. The work is extended in [3] by Levin and Narendra with the

additional study of observability. Another foundational work for neural network system

identification shows the building of generic nonlinear autoregressive moving average with

exogenous inputs (NARMAX) [11] models using neural networks [12]. Similar work

pertaining to nonlinear autoregressive with exogenous inputs (NARX) models is presented

in [13]. These works provide a basis for neural network system identification that has since

grown exponentially, particularly with the rise of machine learning in the past decade. The

discussion of neural network system identification is continued in Chapter 2.

1.2.2 Rule Extraction

Rule extraction aims to extract human understandable rule sets from a neural network

that provide similar (ideally identical) function to the original network. An early survey of

rule extraction techniques by Andrews, Diederich, and Tickle [14] provides a conglomerate

of methods as well as a widely used taxonomy for classifying them. Their work is extended

and consolidated in [15][16][17]. Three main categories for neural network rule extraction

techniques arise: decompositional, eclectic, and pedagogical. Decompositional techniques

5

rely on the analysis of the neural network itself (e.g. individual network weights), while

pedagogical techniques extract rules from input-output relationships. Eclectic techniques

are a hybrid of the aforementioned methods, with no clear belonging in one group or the

other. A fourth group, deemed compositional, is brought up to address rule extraction from

ensembles of neurons rather than individual neurons as in the decompositional approach.

We view our goal of system equation extraction as a rule extraction problem where we

extract a single rule (an equation) from a neural network trained for regression (the neural

network identification model). A number of existing works present methods for extracting

rules from neural networks trained for regression. The work of Setiono et. al. [18][19] holds

notable significance, extracting linear rules in the form of if condition, then consequence.

While this method does not provide the generic system equation we desire, it does extract a

number of linear equations providing a close approximation to the original neural network.

Saito and Nakano [7] proposed another method for extracting regression rules from neural

networks around the same time, where the consequential portions of the if...then... rules

are expressed as polynomial equations. The methods proposed in these prior works are

decompositional in nature, and rely on knowledge of the underlying neural network. To

perform system equation extraction in the most general form (from a black box model)

and avoid limiting ourselves to particular neural network architectures, we look into purely

pedagogical approaches.

1.2.3 Sensitivity Analysis

Neural network sensitivity analysis can be used in a strict pedagogical fashion to perform

rule extraction from neural networks. The early work of Ruck et. al. [20] looks at examining

the sensitivity of a network’s outputs to its inputs in order to determine the usefulness of

6

each input feature. While their work uses weight analysis to do this and would fall on the

decompositional end of the rule extraction spectrum, their concept of sensitivity analysis to

determine network input importance is paramount in the field of rule extraction. The work

of Kewley et. al. [21] is a seminal work using neural network sensitivity analysis in a purely

pedagogical manner. All input variables but one at a time are held at their average values

while the one input is varied over its entire range. The variability is measured at the network

outputs, capturing the sensitivity of the output to each input. The most important inputs are

deduced to be the most sensitive, and insensitive inputs are found to be removable without

significant pitfalls. The input-output relationships gathered help further understanding of

the neural network model. An extension to the work is made by Embrechts et. al. [22] that

likens [21] to one dimensional sensitivity analysis (1-D SA) and introduces two dimensional

sensitivity analysis (2-D SA). In 2-D SA, all combinations of two input variables are varied

over their allowable ranges in an attempt to understand how pairs of inputs effect the output.

To reduce computational burden, 1-D SA is used to identify and eliminate insignificant

inputs prior to the use of 2-D SA. The possibility for 3-D SA is mentioned, implying a

more general n-D SA. Cortez et. al. [23] later use the n-D SA implication as part of a

basis to introduce a novel sensitivity analysis visualization approach that they call Global

Sensitivity Analysis (GSA) for determining overall neural network input importance (global

sensitivity analysis is also a much broader category of sensitivity analysis discussed later).

They later extend their work in [24] and introduce three new sensitivity analysis methods,

comparing them to 1-D SA and GSA. Notably, they emphasize that the sensitivity analysis

methods examined could be used on almost any black box model, making them all purely

pedagogical.

7

One of the earliest works focusing on pedagogical rule extraction comes from Saito and

Nakano [25]. They extract symbolic knowledge from a neural network trained to diagnose

diseases when given symptoms. For their analysis, the inputs to the network are set so

that a single symptom is exhibited, and the resultant disease diagnosis is observed. This

is performed for all symptoms individually, and then the effect of having no symptoms on

the disease prediction is subtracted from each network output. The resultant is the effect

of a single symptom (input) on a disease (output). Despite their work being one of the

earliest in the field of neural network rule extraction, it draws significant relation to this

research. They are essentially isolating the contributions of the one-combinations of inputs

(individual inputs), while our analysis is expanded to isolate all combinations. This concept

of combinatoric analysis can be seen in the work of Vahed and Omlin [26][27]. They

observe the effects of all possible combinations of input strings on recurrent neural networks,

detailing the first purely pedagogical rule extraction approach for recurrent networks.

The previous works detailed in this section pertain to sensitivity analysis in the scope

of neural networks. A broader class of sensitivity analysis methods for examining generic

models is known as global sensitivity analysis (not to be confused with the GSA method of

[23]). These methods attempt to quantify output uncertainty due to the uncertainty in the

input variables and combinations of input variables. This usually equates to determining

which inputs and input combinations effect the output. One of the most famous global

sensitivity analysis methods comes from I. M. Sobol. In his seminal work [28], it is shown

that an integral function can be decomposed into summands of different dimensions, and

likewise the variance of the function can be decomposed into the variances of the summands.

This concept is used to establish which inputs or groups of inputs contribute to the output

variance of a model and provides an estimate of model sensitivity. The most notable

8

contribution is the introduction of Sobol indices, which represent the contributed portion of

variance of each summand to the total variance of the model. The use of variance to compute

sensitivity is commonly referred to as variance-based sensitivity analysis. An important

expansion on the work of Sobol was the introduction of a "total effect" parameter index to

measure the contribution of each input parameter to the model variance as opposed to the

contribution of each summand [29]. Further work by Sobol on estimating the influence of

individual inputs or groups of inputs on the model output is presented in [30].

It is important to note that the decomposition of a function is a recurring theme in sensi-

tivity analysis that existed before the work of Sobol. The Analysis of Variance (ANOVA)

decomposition breaks up the variance of a model output into terms of increasing dimension-

ality. In this way, the function decomposition that empowers the creation of Sobol indices

also empowers ANOVA. A number of other techniques using similar function decomposition

are surveyed in [31]. The function decomposition of a generic function f (x) with input

x = (x1, ...,xn) as noted in [30] is

f (x) = f0 +∑
i

fi (xi)+∑
i< j

fi j
(
xi,x j

)
+ · · ·+ f12..n (x1,x2, . . . ,xn) . (1.1)

This effectively breaks f (x) into a summand of 2n functions covering all unique combina-

tions of input variables. The analysis technique presented in Chapter 3 is driven by this

same decomposition.

1.3 Overview and Outline

The predominant contribution of this work is a new framework to generate discrete

dynamical system equations from input-output data. System identification is first performed

on the data and then the identification model is analyzed using a sample-based sensitiv-

ity analysis. Constructing an accurate system identification model is a key prerequisite

9

to the analysis. System identification is examined in Chapter 2, where an accurate and

generalizable identification method is presented. The model analysis framework is then

presented in Chapter 3. The framework is an automated and iterative process that generates

a comprehensible discrete dynamical system equation. Chapter 4 presents an in-depth

analysis of the framework pertaining to practical use with a full implementation in Python.

A multitude of synthetic examples are examined and real-world data is analyzed pertaining

to vehicle systems.

10

Chapter 2: System Identification using Neural Networks

This work pertains to identification of observable systems described by the state equa-

tions

x[k+1] = f (x[k],u[k])
y[k] = h(x[k]) (2.1)

where f (·) and h(·) represent generic functions, x[k] ∈ Rn is the system state at time

k, y[k] ∈ Rp is the system output, and u[k] ∈ Rm is the system input. Systems without

measurable states are the focus in this work, so an input-output model is desired. The output

equation for y[k] can be expanded using the state equation as follows:

y [k] = h [x(k)]

= h [f [x(k−1) ,u(k−1)]]

= h [f [f [x(k−2) ,u(k−2)] ,u(k−1)]]

= h [f [f [f [x(k−3) ,u(k−3)] ,u(k−2)] ,u(k−1)]]

= h [f [f [f [f [... f [x(0) ,u(0)] ...] ,u(k−3)] ,u(k−2)] ,u(k−1)]] .

It becomes easy to see that y[k] is a function of the initial state x[0] and the input trajectory

u[k−1], ...,u[0]. Since the system is assumed to be observable, the states can be determined

using the outputs. With this information, it is now apparent that y[k] can be determined

strictly from past outputs and past inputs.

11

The work of [3] provides analytical justification for representing (2.1) in the form of the

input-output model

y [k] = F (y [k−1] , ...,y [k−n] ,u [k−1] , ...,u [k−n]) . (2.2)

In this model, the system output is calculated as a function of n past outputs along with n

past inputs. The goal of identification is to determine F , or approximate it as best as possible.

The identification model approximation of F is referred to as F̂ . A more generic form of

(2.2) is used in this work to account for an input delay d ≥ 0:

y [k] = F (y [k−1] , ...,y [k−n] ,u [k−d] , ...,u [k−d−n+1]) . (2.3)

Note that (2.2) is the case of (2.3) when d = 1, allowing for control of the system through

u[k] to be computed using the output feedback of y[k]. Uncontrolled systems can be modelled

using d = 0.

2.1 Choosing an Identification Model

Setting up a suitable identification model forms a basis for system identification [2].

Two major identification models are used in this work: the series-parallel model and the

parallel model. A neural network variant is chosen to implement both identification models.

The goal of identification is to approximate F with F̂ , a suitable task for neural networks

since they are universal function approximators. While both models are examined, the

series-parallel model is preferred in this work since it is essentially the input-output system

model of (2.2).

The series-parallel identification model, shown in Fig. 2.1, produces an estimate of the

system output ŷ[k] ∈ Rp using inputs from u[k−d], ...,u[0] and outputs from y[k−1], ...,y[0].

12

y[k]

ŷ[k]

-Model

u[k]
Plant

e[k]Σ
+

z-1y[k­1]

Figure 2.1: The series-parallel identification model.

The series-parallel model mimics the system input-output realization of (2.2) and is repre-

sented by

ŷ [k] = F̂ (y [k−1] , ...,y [k− ly] ,u [k−d] , ...,u [k−d− lu +1]) . (2.4)

The number of states n is assumed to be unknown in the identification task, so ly past outputs

and lu past inputs are used. Both ly and lu must be set sufficiently large so that they are

greater than n for successful identification. After training, the series-parallel model is simply

a static mapping of past inputs and outputs to the estimated output.

The parallel identification model is shown in Fig. 2.2. It is similar to the series-parallel

model, but with one key difference: it uses past output estimates ŷ[k−1], ..., ŷ[0] in place of

actual past outputs. The parallel model is represented by

ŷ [k] = F̂ (ŷ [k−1] , ..., ŷ [k− ly] ,u [k−d] , ...,u [k−d− lu +1]) . (2.5)

The parallel model is recurrent in nature, making neural network representation more

complicated. The parallel model encounters stability problems during training, with no

guarantee of parameter convergence and no guarantee that the output error will tend towards

zero [2]. A simplified version of the parallel identification model is obtained by ignoring

past output estimates:

ŷ [k] = F̂ (u [k−d] , ...,u [k−d− lu +1]) . (2.6)

13

y[k]

ŷ[k]

-Model

u[k]
Plant

e[k]Σ
+

Figure 2.2: The parallel identification model.

This simplified model is a static mapping, eliminating the problem of recurrence. The

model analysis methodology presented in Chapter 3 relies on a static map model, so the

series-parallel model and simplified parallel model are the focus of this work.

A full parallel model can still be implemented using a neural network without the

training issues that occur because of recurrence, so long as the network is trained in a

series-parallel fashion and then used as a parallel model. This often works well enough

when the series-parallel model is sufficiently accurate [2]. The past system outputs in the

series-parallel model are simply replaced with past estimated outputs when switching from

training to operation. Operation of a series-parallel model as a parallel model in this fashion

can be used to simulate a system, estimating the future output trajectory using only the input

trajectory. While this can be done with the simplified parallel model, a larger number of

past inputs are generally needed if the system in question is a function of past outputs.

Having an accurate simulation model of a system is beneficial as it allows the system

output to be estimated without actual measurement. This enables the creation of computer

models and system observers for example. Simulation models in this work are trained

as series-parallel models and converted to parallel models. The series-parallel models

themselves perform one-step-ahead prediction, which is also a valuable prediction metric

that can be extended to generic n-step-ahead prediction.

14

Identification models other than the two described can be obtained by expanding the

model input. Measured system states, for example, could be included in the identification

model at the input or output side. The neural network used as the identification model is a

static function map trained to yield a specific ŷ[k] for each set of arguments to F̂ . As such,

ŷ[k] and the arguments of F̂ can be adjusted to contain any relevant model variables. The

focus of this work is restricted to the series-parallel and simplified parallel input-output

models since we intend to examine black box systems.

2.2 Neural Network Model Implementation

Neural networks are selected to represent F̂ since they are universal function approxi-

mators and work in a diverse variety of applications. As a preliminary disclaimer to avoid

notation confusion, we emphasize that x is used to depict a neural network input for the

remainder of this work, and is representative of a system’s state only where explicitly stated.

The variable x is commonly used in both control and machine learning literature.

An overview of neural network system identification is provided in this section with

notation adapted to compliment discrete dynamical systems. The network’s goal is to

generate an estimate of the system output ŷ[k] belonging to an estimated output sequence

ŷ[k], ..., ŷ[0] using an input sequence x[k], ...,x[0], where x[k], ...,x[0] ∈ Rq are inputs to the

neural network identification model F̂ . The network output ŷ[k] is a prediction of the real

system output y[k] from the sequence of observed outputs y[k], ...,y[0].

In practice, the entire input sequence from time 0 to k is either not needed or not available

for use in predicting y[k]. The length l of the input sequence from time k and prior that is

used to predict the output is referred to as the effective history of the network in this work.

15

These input values are gathered to create an input matrix x̄[k], defined as

x̄ [k] =
[
x [k] x [k−1] · · · x [k− l +1]

]
. (2.7)

These select values of the input sequence directly correspond to inputs of the neural network.

Constraining the input sequence in this manner sets the neural network input dimension

to lq. Since the effective history of the network will likely not cover all past inputs, the

network can be functionally represented by the input-output relationship

ŷ[k] = F̂(x̄[k]). (2.8)

The neural network input-output relationship is easily related to the series-parallel identifica-

tion model by defining the input at each time k as

x [k] =
[

y [k−1]
u [k−d]

]
. (2.9)

If l = n, then the functional relationship of the neural network model in (2.8) mimics the

generic input-output model of (2.3). As mentioned before, n is assumed to be unknown,

so setting l to a sufficiently large value such that l ≥ n is needed for proper identification.

Setting l for the neural network input in this manner is effectively equivalent to setting ly = lu

in the identification model, and is done for simplicity. The simplified parallel identification

model is represented similarly by defining the input at each time k as

x [k] = u [k−d] . (2.10)

For the most generality in representing discrete dynamical systems of the form (2.1), the

series-parallel model is recommended. The simplified parallel model is used when it is

known that past outputs are not needed to estimate the current system output. Estimating a

system that is a function of past outputs using the parallel model will require a longer history

16

of past inputs than needed due to the recursive calculation of the output. In this case, using

past outputs leads to a simpler model with fewer overall arguments. A long input history

requirement for a parallel model indicates that a series-parallel model should be tried.

Once an identification model has been chosen, it must be set up for training. Training

data is obtained by recording sequences of input-output data from the plant, this is true

regardless of whether the series-parallel or parallel identification models are used. Input-

output data can be gathered as a system runs under normal operation, or it can be gathered

when the system is purposefully excited. A sufficient and diverse amount of data must be

collected for proper training, however this is entirely application dependent. More complex

systems will generally require more data for training. Training requires input-output data

pairs from the system in the form of (x̄[k],y[k]). The error between the system output and

the network predicted output e[k] = y[k]− ŷ[k] is used to train the network. Any standard

neural network optimization method can be used, however the Adam [32] optimizer is used

for all training in the context of this work. When sufficiently trained, the network output

ŷ[k] serves as an estimate for the sequence output y[k] given input x̄[k].

Before training can begin, the input data and output data should be normalized to be of

zero mean and unit covariance. This is accomplished by subtracting the mean of all input

samples µ(x) from each individual input sample and then dividing each resultant by the

standard deviation of all input samples σ (x). The output training data is normalized likewise

for training with mean µ(y) and covariance σ (y). The model is then trained to minimize

ei[k]. After training, all inputs to the network must be normalized using µ(x) and σ (x), and

all outputs must be reconstituted through multiplying by σ (y) and then adding µ(y). The

input-output relationship of (2.8) is modified to yield (2.11):

17

ŷ[k] = σyF̂
(

x̄[k]−µx

σx

)
+µy. (2.11)

2.3 Temporal Convolutional Networks

The neural network variant used in this work as the identification model is known as the

temporal convolutional network (TCN). This variant is beneficial for system identification,

although it is not a requirement for the equation generation methodology presented in

Chapter 3. The only requirement of the analysis is that a static system model exists with the

specified input-output structure (a static model always yields the same output given the same

input sequence, in opposition to dynamic models). For identification, the TCN is trained

using corresponding input-output data pairs from a system in the same manner as a standard

FNN.

The TCN is described and evaluated for sequence modelling tasks in [33]. It is shown to

yield better overall performance than RNNs for sequence modelling despite RNNs having

a theoretical ability to capture infinitely long sequence history. As was demonstrated with

FNNs in early system identification work [2], convolutional neural networks (CNNs) can still

represent dynamical systems using delays despite lacking recurrent connections. The TCN

likewise does not require recurrent connections. Recent work on sequence modelling proves

that stable recurrent neural networks are well approximated by FNNs, and demonstrates that

often recurrent models can and should be replaced by non-recurrent models for sequence

modelling tasks [34]. Other recent advances in sequence modelling are gravitating towards

convolutional architectures as opposed to recurrent architectures as well, as is the case with

WaveNet [35]. WaveNet is a precursor to the TCN which introduced a new architecture that

relies on dilated causal convolutions, a predominant aspect of TCNs. The TCN demonstrates

18

benefits over standard CNNs for sequence modelling, most notably an increased sequence

history. Identification of dynamical systems using convolutional neural networks is presented

in [36]. The performance of CNNs is compared to FNNs in regards to dynamical system

identification, where the CNN is found to outperform the FNN in the presence of noise.

Performance without noise is similar, although the CNN has more hidden layers and less

hidden nodes than FNNs used for system modelling. The promising performance of CNNs

for dynamical system identification along with the demonstrated superiority of TCNs for

sequence modelling tasks inspired the investigation of TCNs for system identification in

this work.

As mentioned with generic neural network identification model implementation, the

TCN’s goal is to again generate an estimate of the system output ŷ[k] belonging to an

estimated output sequence ŷ[k], ..., ŷ[0] using an input sequence x[k], ...,x[0]. The TCN

architecture is deliberately kept simple, with two key attributes: the output must be kept to

the same length as the input, and there can be no information leakage from the future to

the past. To keep the output and input lengths equal, a 1D fully-convolutional network is

used with each hidden layer equal in size to the input layer. Zero padding is added to keep

layer sizes equal. The number of time steps exposed to the network defines the input and

output length, not the dimensionality of either. The network uses only causal convolutions

to prevent information leakage.

To expand the effective history l of the network, dilated causal convolutions are used to

yield a history that grows exponentially with network depth. A dilation factor D introduces a

fixed buffer of size D−1 between taps of the convolution filter of size K. Rather than using

a simple convolutional layer for each level, a generic residual module is employed to help

stabilize deeper and larger TCNs. The dilation factor for each residual block is determined

19

as D = 2i, where i is the level of the residual block starting from 0. Each residual module

includes two layers of dilated causal convolution of dilation factor D and filter size K with

weight normalization, nonlinearity, and dropout. An optional 1x1 convolution is added from

the input to the output of each residual to account for inputs and outputs of different widths.

Examining the network structure, the effective history of the network can be determined as

l = (K−1)(2L+1−1)−K +2. (2.12)

The TCN architecture must be specified in order to train a successful system identification

model. In designing the network and determining the filter size K and number of levels L,

the effective history l of the network must be taken into account. The values of K and L

must be selected such that l is greater than or equal to the input x[k−n] needed to determine

the output y[k]. Since the system is assumed to be unknown, K and L must be selected to be

sufficiently large.

An example TCN with L = 2 levels and filter size K = 3 is shown in Fig. 2.3. Each

level is represented by a residual block consisting of an input layer, hidden layer, and

output layer. When connecting residuals, the result of the output layer of one residual

becomes the input layer of the next residual. This connection is simplified in the middle

layer of Fig. 2.3 to showcase the network effective history calculation. It can be seen

that the effective history of the network is l = 13, so we would represent this network as

ŷ[k] = F̂
([

x[k] · · · x[k−12]
])

.

Every kernel leg in the network contains hidden neurons that are independent from the

network effective history and are not visible in Fig. 2.3. The number of these hidden neurons

effects the network’s ability to learn functions. More hidden neurons in each leg equates to

better function approximation since a neural network with a single hidden layer containing a

large number of hidden nodes can approximate any continuous function [1]. Increasing the

20

x[k]x[k­12] ... Input

Output

R
esidual block

k = 3, d = 1
R
esidual block

k = 3, d = 2

y[k]y[k­12] ...

Figure 2.3: Example TCN with L = 2 levels and filter size K = 3. The full effective history
of the network can be seen, extending from x[k] to x[k−12].

hidden neuron count, however, increases required training effort. In this work, sufficiently

large values were experimentally chosen for each trained network. If computational burden

is not an issue, a high number of neurons per layer can be selected initially, yielding good

approximation potential.

After the TCN structure is setup, training can begin as with the generic neural network

formulation. Input-output data pairs from the system in the form of (x̄[k],y[k]) are gathered

with regard to the format of x[k] for the chosen identification model. It should be noted that

while a standard FNN would have lq individual inputs without regards to order or position,

the TCN has l inputs of dimension q with a significant order.

2.4 The Silverbox Benchmark

The identification capabilities of TCNs and standard feedforward neural networks

(FNNs) are benchmarked and compared using the Silverbox dataset: a publicly available

dataset from a circuit equivalent to a nonlinear spring-mass damper. The TCN is found

to have superior performance in simulation of the test portion of the dataset. The goal of

21

Figure 2.4: The nonlinear spring-mass damper system with identical dynamics to the
Silverbox electrical circuit.

the benchmark study is to establish the TCN as a suitable identification method to use in

the analysis methodology of Chapter 3. Published benchmark results are surveyed and

compared to the TCN results. Analysis of existing results reveals testing variances that

effect model performance, so guidelines for fair comparison of models on the Silverbox

benchmark are also presented.

The Silverbox is a nonlinear electrical circuit governed by the following second-order

differential equation

mÿ(t)+dẏ(t)+ k1y(t)+ k3y3 (t) = u(t) . (2.13)

It is predominantly linear with a cubic nonlinearity. The dynamics are identical to that of

the nonlinear spring-mass damper system shown in Fig. 2.4. In the spring-mass damper, a

known force u(t) is applied to mass m and displacement y(t) is measured. Constants k1 and

k3 describe the nonlinear spring and d describes the damper. Like the spring-mass damper,

the Silverbox system has a single input and single output. The input u(t) and output y(t) are

each represented by a voltage measurement since the Silverbox is an electrical circuit. Noise

is inherent in the system and the measurements. The dataset, formally introduced by [37],

consists of 131072 samples taken at a frequency of 107/214 Hz. The input was generated

22

0 2 4 6 8 10 12 14
104

-0.2

-0.1

0

0.1

0.2

In
pu

t

Silverbox Dataset

0 2 4 6 8 10 12 14
Sample Number 104

-0.4

-0.2

0

0.2

0.4

O
ut

pu
t

Figure 2.5: Input and output data from the Silverbox.

from a discrete time reference signal converted into an analog signal using zero-order

hold reconstruction. The reconstructed signal was then passed through an analog low-pass

filter. The reference signal consists of two parts that divide the dataset. The first part is

white Gaussian noise with amplitude varied linearly from zero to its maximum value and

filtered through a 9th order discrete 200 Hz Butterworth filter. Per the dataset description,

the reference for this signal consists of 40000 samples. The second part consists of 10

realizations of a random odd multisine, each separated by 100 zeros. The dataset is shown

in Fig. 2.5. Benchmark performance on the dataset is typically obtained by first breaking the

dataset into two portions based on how it was created. The dataset resembles an arrow, and

the head of the arrow containing the white Gaussian noise is used as the test set for testing

identification performance. The body of the arrow containing the multisines is used for

estimation of the identification model and is referred to as the training set. The input reaches

149 mV in the test set and 101 mV in the training set, while the output reaches 300 mV

and 231 mV respectively. Because of this, extrapolation must be performed to accurately

identify the system.

23

The identification problem is formulated using the series-parallel model without input

delay as follows:

ŷ [k] = F̂
([

y [k−1] ... y [k− l]
u [k] ... u [k− l +1]

])
. (2.14)

The TCN is trained with the training set to perform one-step-ahead (OSA) prediction using

the l most recent output measurements and inputs. The error metric of interest in the

Silverbox benchmark is the RMSE performance of the identification model on the test set.

Measuring OSA performance involves computing the RMSE between all calculated ŷ[k] and

their corresponding ground truth values y[k]. While the series-parallel identification model

is trained to perform OSA prediction, the RMSE of the test set in free simulation is the

metric of focus for the Silverbox dataset. Free simulation begins with the OSA formulation

of (2.14) and iteratively replaces past output measurements with past output estimates at

each step. After l steps, the simulation values are calculated as

ŷ [k] = F̂
([

ŷ [k−1] ... ŷ [k− l]
u [k] ... u [k− l +1]

])
. (2.15)

This is essentially the full parallel model, however it is important to note that the TCN

was trained as a series-parallel model due to the issues mentioned in Section 2.1 with the

recursive nature of the parallel model. When all ŷ[k] are computed using simulation, the

RMSE is calculated as done with the OSA prediction.

2.4.1 Existing Benchmark Results

A diverse assortment of nonlinear system identification methods have been applied to

the Silverbox dataset with published benchmark results. Works reporting simulation results

on the test set are compiled in Table 2.1, while works reporting OSA results are shown in

Table 2.2. Values marked with a * were not explicitly stated, but derived from plots. It

should be emphasized that most of the works do not present the goal of obtaining the best

24

benchmark result. The dataset is commonly used to compare variants of similar models

under the same scope, as well as to show the effectiveness of parameter reduction. This

results in some variance among the published works that prohibits fair comparison based on

simulation or OSA RMSE alone. Terms for establishing a fair identification performance

benchmark on the Silverbox dataset are presented later in Section 2.4.2.

The first simulation benchmark results come from six works at a special session of the

2004 IFAC Symposium on Nonlinear Control Systems (NOLCOS 2004) focused on the

Silverbox. In [38], a plethora of grey box and black box identification techniques were

applied using a MATLAB toolbox with the best result obtained using a neural network

having a single hidden layer of 30 neurons, a sigmoid activation function, the 10 most

recent output measurements, the 11 most recent input measurements, and a custom cubic

regressor to match the cubic nonlinearity of the system. Least-squares support-vector

machine (LS-SVM) variants are compared in the work of [39], with the best result coming

from a fixed-size LS-SVM in the primal space with partial least squares (FS-PLS). The

model is split into linear and nonlinear blocks by [40] where fast estimation of the linear

portion is performed followed by the nonlinear portion. Another block structure separating

linear and nonlinear portions is proposed in [41]. A weighted combination of local linear

state-space models is used by [42]. In [43], different dynamic neural network architectures

are applied, with a multilayer perceptron having special weight initialization achieving the

best result.

Many simulation benchmark results have come from the Silverbox dataset following

NOLCOS 2004. The work of [39] is further developed in [44] and [45], where a partially

linear LS-SVM (PL-LSSVM) is proposed to improve the performance of existing black-box

models when it is evident that linear regressors are present. The best reported simulation

25

benchmark of 0.26 mV is presented in [46] using a polynomial nonlinear state-space

(PNLSS) model. Identification of the system in another block-like form referred to as a linear

fractional representation (LFR) is performed in [47]. The linear portion is estimated using

standard identification techniques while the static nonlinearity is modelled using piecewise

affine (PWA) identification techniques. Simulation metrics are reported as a measure of

model fit, but the RMSE is not reported. An initialization scheme for nonlinear state-space

models is applied in [48]. Nonlinear dynamic system identification is transformed into

an approximate static problem, where system dynamics and nonlinear terms are identified

separately. In [49], the effective number of parameters in nonlinear identification benchmarks

is studied for fair comparison of models from different classes. In their work, a neural

network based nonlinear state-space (NN-NLSS) model was applied to the Silverbox. The

work of [50] reduces PNLSS to a simpler LFR general block structure with an assumed

polynomial static nonlinearity, dubbed Poly-LFR. In [51], an identification model based on

a nonlinear autoregressive exogenous (NARX) model with filtered regressors is presented

where the nonlinear regression is implemented with sparse Gaussian processes (GP-FNARX).

Two schemes for reducing the effective number of parameters are presented in [52] based on

fixed-size LS-SVM (FS-LSSVM): fixed-size ordinary least squares (FS-OLS) and fixed-size

ridge regression (FS-RR) with truncation through singular value decomposition (SVD). In

[53], unprecisiated fuzzy logic (FLu) is added to fuzzy logic to yield extended fuzzy logic

(FLe) for addressing open-world problems (such as system identification). The work of

[54] introduces a sub-class of recursive linear-in-the-parameters nonlinear filters known as

recursive functional link polynomial filters (RFLiP). These filters are a type of universal

approximator and are tested in simulation on the Silverbox, however the performance

metric given is normalized mean square error (NMSE) instead of RMSE. In [55], online

26

system identification is performed by extending randomized single-hidden layer feedforward

networks (SLFNs). A type of randomized SLFN known as a random vector functional link

network (RVFL) is combined with the robust learning rule named normalized least mean

M-estimate (NLMM). In [56], robust variants of fixed-size least squares support vector

regression (FS-LSSVR) models are introduced to handle non-Gaussian noise and outliers.

Table 2.1: Silverbox benchmark results for test set simulation.

Author Ref Method RMSE Simulation Training Validation
Ljung [38] Neural network + cubic regressor 0.30 1 - 40495 40586 - 127410 N/A
Paduart [40] Physical block-oriented 0.71 Head Body N/A
Hjalmarsson [41] Physical block-oriented 0.96 1 - 40000 40001 - Body N/A
Verdault [42] Weighted local linear state-space 1.3 1 - 40495 40585 - 49192 N/A
Sragner [43] Special multilayer perceptron 7.8 1 - 40000 40001 - 125000 N/A
Espinoza [39] FS-PLS 0.318 1 - 40000 40001 - 85000 85001 - End
Espinoza [45] PL-LSSVM 0.271 1 - 40000 40001 - 85000 85001 - End
Paduart [46] PNLSS 0.26 1 - 40700 40701 - Body N/A
Pepona [47] PWA-LFR N/A 1 - 40000 50001 - 52000 N/A
Marconato [48] Nonlinear state-space 0.34 1 - 40000 40001 - 80000 85001 - 125000
Marconato [49] NN-NLSS 0.33* Unclear Unclear N/A
Van Mulders [50] Poly-LFR 0.35 Head Body N/A
Sabahi [53] Extended Fuzzy Logic (FLe) 9.10 Unclear Unclear N/A
Carini [54] RFLiP N/A Unclear Unclear N/A
Mattos [55] RVFL-NLMM 10* 1 - 40000 40001 - End N/A
Santos [56] FS-LSSVR 0.76* 1 - 40000 40001 - 85000 85001 - End
Maroli — TCN (fair) 2.18 1 - 40585 40586 - 85000 85001 - 127500
Maroli — TCN (1-40000) 1.74 1 - 40000 40001 - 127500 N/A

Table 2.2: Silverbox benchmark results for test set one-step-ahead prediction.

Author Ref Method RMSE Test Training Validation
Sragner [43] Special multilayer perceptron 0.765 1 - 40000 40001 - 125000 N/A
Espinoza [45] PL-LSSVM 0.057 1 - 40000 40001 - 85000 85001 - End
Frigola [51] GP-FNARX 0.07* Unclear Unclear N/A
Castro [52] FS-OLS and FS-RR 0.054 1 - 39000* 39001 - 91400* 91401 - End*
Mattos [55] RVFL-NLMM 3* 1 - 40000 40001 - End N/A
Maroli — TCN (fair) 0.214 1 - 40585 40586 - 85000 85001 - 127500
Maroli — TCN (1-40000) 0.227 1 - 40000 40001 - 127500 N/A

27

2.4.2 Establishing a Fair Benchmark

Among published literature, there is disagreement on the subset of samples used for

the test set as well as model selection methods. Information on the test, training, and

validation subsets of the dataset is included in Table 2.1 and Table 2.2. Some ranges are

based on assumptions left to the reader. The majority of works use samples 1-40000 to test

their models and use samples 40001 onward for training. This is presumably because the

introduction of the dataset details that the first part of the reference signal used to create

the dataset consists of 40000 samples. A problem arises, however, when using samples

40001 to 40585 for model training: extrapolation performance is no longer fully tested.

Careful examination of the dataset in Fig. 2.6 indicates that the white Gaussian noise of

increasing amplitude continues approximately through sample 40585. Horizonal lines in

the plot indicate the range of the test data; it can be seen that samples between 40001 and

40585 violate these bounds. Including them in the training set would limit the extent of

extrapolation tested, although some extrapolation would still be tested since the limits of

both the input and output data in samples 1 to 40000 exceed the limits in samples 40001 to

40585.

The last portion of the dataset, referred to as the tail of the arrow, is examined in similar

detail in Fig. 2.7. This section includes samples 127500 to 131072 and is excluded in part

or in whole from the majority of the examined works. It is not described in the dataset

introduction but resembles the Gaussian noise of increasing amplitude from the test signal.

For this reason, it should be left out of the training and validation sets to increase the

identification challenge.

The work of [57] examines the Silverbox dataset before publication and uses samples 1

to 40700 for model testing. It is mentioned that models are extrapolated when the test set

28

4 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.1
104

-0.2

-0.1

0

0.1

0.2

In
pu

t

Silverbox Dataset Samples 40001 - 41000

4 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.1
Sample Number 104

-0.4

-0.2

0

0.2

0.4

O
ut

pu
t

Figure 2.6: A detailed view of samples 40001 to 41000. Horizontal lines mark the range of
the training data and a vertical line marks the proposed test/training division.

amplitude reaches the training set maximum of 0.1V. This sets precedence for use of the

dataset in a way that tests extrapolation performance, which can only be done when using

samples after 40586 for training. The works of [57], [38], [42], [46], and [47] are therefore

the only ones examined that explicitly test their model extrapolation performance. Both [50]

and [49] state that extrapolation is tested, but do not explicitly state the testing and training

sample subsets. [48] states that extrapolation is tested as well, but is not explicit with the

testing and training sample subsets. They leave the assumption that samples 1-40000 are for

testing, which would not fully test extrapolation.

Model extrapolation makes the identification problem more difficult, so comparison

of models performing extrapolation to non-extrapolating models is unfair. There is need

for a consensus on the Silverbox dataset so that models can be compared for both their

identification and extrapolation performance. For this reason, we set forth the following

guidelines for benchmarking system identification methods using the Silverbox dataset:

29

1.27 1.271 1.272 1.273 1.274 1.275 1.276 1.277 1.278 1.279 1.28
105

-0.1

-0.05

0

0.05

0.1

In
pu

t

Silverbox Dataset Samples 127000 - 128000

1.27 1.271 1.272 1.273 1.274 1.275 1.276 1.277 1.278 1.279 1.28
Sample Number 105

-0.2

-0.1

0

0.1

0.2

O
ut

pu
t

Figure 2.7: A detailed view of samples 127001 to 128000. Horizontal lines mark the range
of the training data and a vertical line marks the proposed datset cutoff.

1. Model training/estimation should be performed on a subset A of samples 40586 to

127500. This is referred to as the training set.

2. Selection of the final model should be based on model performance over the samples

of Ac (samples not in A), known as the validation set.

3. Testing should be performed on samples 1 to 40585, known as the test set. Both

simulation and one-step-ahead RMSE metrics should be reported. This tests model

identification with extrapolation.

4. Testing should be performed on samples 1 to 32473 and both simulation and one-

step-ahead RMSE metrics should be reported. This strictly tests model identification

performance without extrapolation.

30

2.4.3 TCN Identification Performance

The TCN and FNN identification models were trained and evaluated adhering to the

guidelines established in Section 2.4.2. All models were implemented using PyTorch [58]

in Python with the TCN implemented as in [33]. The model formulations both contain

many high level parameters, some of which were fixed to limit the search space of available

models while keeping the comparison between the TCN and FNN fair. The number of

input and output measurements available to the models was limited to 10 each (n = 10).

Additionally, the Adam optimizer was used for training both models with ReLU activation

functions and batch sizes of 512.

The following TCN model configurations were trained with a learning rate of 0.002 and

with varying hidden node counts: L=1 K=6, L=2 K=3, and L=3 K=2. The configuration with

L=2 and K=3 yielded the best performance and was chosen for reporting. Error metrics for

25 models of this configuration with varying numbers of hidden nodes in each kernel leg are

shown in Fig. 2.8. Each model was trained for 1500 epochs, at which point further training

was not beneficial. The epoch yielding the lowest validation RMSE for each model was

selected to present error metrics for that model. The TCN with 22 hidden nodes yielded the

best validation performance compared to other models, with its metrics shown in Table 2.3.

Training, validation, and test metrics are reported based on OSA prediction. A trailing

"E" represents model metrics with extrapolation, while "NE" represents metrics without

extrapolation.

FNN models were trained with a learning rate of 0.001 for 7500 epochs, at which point

further training was not beneficial. Network configurations having 1, 2, and 3 hidden layers

with varying node counts were trained with no significant difference between configurations.

As a result, metrics for an FNN with a single hidden layer are reported. Fig. 2.8 shows

31

metrics for all tested FNN models with a single hidden layer. The best results were obtained

with 40 hidden nodes.

0 10 20 30 40 50
Hidden Nodes

10-4

10-3

10-2

R
M

SE
 (V

)

TCN Model Error Metrics

0 20 40 60 80 100
Hidden Nodes

10-4

10-3

10-2

R
M

SE
 (V

)

FNN Model Error Metrics

Train
Validation
Test E
Test NE
Simulation E
Simulation NE

Figure 2.8: Error metrics for TCN models (left) with K = 3, L = 2 and FNN models (right)
trained on samples 1-40585 having a single hidden layer of varying hidden node counts.

Table 2.3: Top performing model metrics.

Metric TCN RMSE mV FNN RMSE mV
Train 0.0764 0.0667
Validation 0.0785 0.0927
Test E 0.214 0.261
Test NE 0.136 0.0926
Simulation E 2.18 11.2
Simulation NE 0.907 9.13

Comparing the best FNN and TCN models, it is evident that the TCN holds a significant

advantage over the FNN in simulation performance. The TCN model obtains a simulation

32

RMSE of 2.18 mV, while the FNN model only achieves an RMSE of 11.2 mV. The perfor-

mance gap is similar when simulation without extrapolation is examined, with the TCN

achieving 0.907 mV and the FNN 9.13 mV. Interestingly, training error, validation error, and

test error are similar. This is true even with models having different hidden node counts as

seen in the plots of Fig. 2.8. The plots also highlight the disparity in simulation performance

between the TCN and FNN, as well as show trends evident when increasing model complex-

ity. The simulation performance of the FNN is best with low hidden node counts, getting

worse and then plateauing above 40 hidden nodes. The TCN enjoys the opposite effect,

continually improving as the number of hidden nodes increases and eventually plateauing.

It should be noted that the FNN has a lower number of parameters given the same hidden

node count. The top performing FNN with 40 hidden nodes has 881 parameters, while

the top TCN with 22 hidden nodes has 4753 parameters. The TCN model, however, still

outperforms the best FNN model in simulation performance when parameter counts are

considered. The tested TCN model with 8 hidden nodes has 721 parameters and yielded

an RMSE of 0.0971 mV for training, 0.107 mV for validation, 0.335 mV for testing, 0.108

mV for testing without extrapolation, 2.90 mV for simulation, and 0.719 mV for simulation

without extrapolation.

Comparing results among literature is not straightforward due to the inconsistencies

in model creation and testing. The TCN results presented in Table 2.3 can be compared

fairly to the results of [38], [42], and [46], which achieve top simulation values of 0.30

mV, 1.3 mV, and 0.26 mV respectively. All of these models outperform the selected TCN

on the full simulation with an RMSE of 2.18 mV, however the TCN’s simulation without

extrapolation RMSE of 0.907 mV is more competitive. This shows that the extrapolation

performance of the TCN is poor in comparison to it’s identification performance. The TCN

33

has the advantage of generalizing to any nonlinear system since it is a black box model. The

results presented by [38] are for a grey box model, meaning that some information about the

system was leveraged to improve the presented black box neural network model. In their

case, a cubic regressor was used knowing that the system contained a cubic nonlinearity. The

results presented by [42] are for a black-box model, which also presents a simulation without

extrapolation RMSE on samples 1-25000 of 0.7 mV. The best available benchmark results

found in [46] are from a black box PNLSS model, however it is noted that the superior

performance is due to the correspondence between the PNLSS model and the structure of

the silverbox with a cubic feedback in the output.

A subset of models examined in [38] best match the FNN models in this work and

so effort was made to reproduce them. The best black box model from their work using

a nonlinear autoregressive exogenous (NARX) structure and no custom regressor was a

sigmoidal neural network with a single hidden layer of 75 hidden units. This model is most

similar to the FNN in this work and achieved a simulation RMSE of 0.52 mV when trained

in MATLAB. Our FNN implementation using PyTorch in Python was not able to attain these

results, bringing about questions on differences in either the model platforms or test setup.

We obtained a simulation RMSE of 10 mV while trying to reproduce their work, using the

same training and test sets, ReLU activation (which outperformed sigmoidal activation), a

batch size of 512, 7500 epochs, the Adam optimizer with a learning rate of 0.001, 75 hidden

units, and the same regressor of y[k−1],y[k−2],u[k],u[k−1],u[k−2].

The results of the TCN created under the established guidelines are presented in Table 2.1

and Table 2.2. For a more direct comparison to other literature, TCN and FNN models tested

on samples 1-40000 and trained on samples 40001-127500 are also presented. Table 2.4

shows a direct comparison of these TCN and FNN models to the models created and tested

34

under the established fair guidelines. It is apparent that the fair guidelines create a more

challenging simulation task. The presented models tested on samples 1-40000 were chosen

using the validation RMSE in the same manner as the models tested under fair guidelines.

Interestingly, both models had different hidden node counts than their fair counterparts: the

TCN had 20 and the FNN had 82.

Table 2.4: Top model performance under different test sets.

Metric Fair RMSE mV 1-40k RMSE mV
TCN Test E 0.214 0.227
TCN Test NE 0.136 0.109
TCN Simulation E 2.18 1.74
TCN Simulation NE 0.907 0.689
FNN Test E 0.261 0.249
FNN Test NE 0.0926 0.0807
FNN Simulation E 11.2 10.6
FNN Simulation NE 9.13 8.7

It is important to note that the models chosen based on validation data were not always

the best performing models. The TCN with 50 hidden nodes had the best simulation with

extrapolation performance of 1.23 mV while the TCN with 36 hidden nodes had the best

simulation without extrapolation performance of 0.289 mV. This is approaching the noise

level of 0.25 mV mentioned by [46]. This performance cannot be fairly reported since model

selection would rely on the test data being known, however more diverse validation data

better resembling the test data may lead to selection of these superior models. The validation

data used for model selection was dissimilar from the test data since it was generated from

multisines as opposed to Gaussian noise.

35

2.5 Summary and Conclusions

In this chapter, identification of nonlinear systems using neural networks was investigated.

The use of TCNs to implement identification models was presented and then tested on the

Silverbox dataset. Benchmark results were compared between TCN and standard FNN

architectures, and both were compared to published results. Analysis of the dataset and

published works yielded inconsistencies among testing methods, so guidelines for fair

benchmarking on the Silverbox dataset were proposed. The selected TCN configuration

yielded a simulation RMSE of 2.18 mV and a simulation without extrapolation RMSE of

0.907 mV on the Silverbox dataset using the established testing guidelines. The simulation

results show that the TCN performs poorly at extrapolation compared to existing methods,

however it is more competitive with strict simulation. One-step-ahead results of the TCN

were comparative to the standard FNN, however the TCN presents as far superior to the FNN

with simulation. Analysis of all TCN models showed that better simulation performance

was achieved by models not selected based on validation performance. This indicates

that more diverse validation data would lead to selection of a TCN model yielding top

ranking simulation performance. In conclusion, the TCN is a powerful nonlinear system

identification method useful for modelling black-box systems with competitive one-step-

ahead prediction and high-ranking simulation performance.

36

Chapter 3: Equation Generation Methodology

The primary contribution of this work is a model analysis technique built into a struc-

tured framework for generating comprehensible equations describing discrete dynamical

systems. The input to the framework is input-output data from a system, and the result is

a mathematical model representing the system in the form of an equation. The resultant

requirements are as follows: first and foremost, the equation must accurately represent the

relationship of the input-output data. The equation must also be comprehensible, meaning it

is concise, yields insight into the system operation, and takes user inclination into account.

A concise system equation includes only relevant inputs and includes the minimum number

of terms needed to meet accuracy requirements. The inputs and functional relationships

included in the system equation should give insight into the dynamics of the system and help

relate the system to other like systems. Anyone using the framework should also have some

degree of control over the system equation format so that they can impart prior knowledge

of the system on the process.

At a high level, the framework accomplishes two main tasks. First, a model of the

input-output data is created in the form of a TCN. Second, the model is analyzed through

a form of sample-based sensitivity analysis to build a discrete dynamical system equation.

The initial system equation model is the result of an in-depth sensitivity analysis of the

TCN identification model. The TCN presented in Chapter 2 is trained on input-output data

37

pairs to create the identification model in this work, although any model can be used in

the analysis process so long as it is accurate and represents a static mapping of inputs to

outputs. This chapter presents the analysis technique, which is based on a decomposition of

the initial identification model into less complex identification problems. The identification

and analysis procedures are integrated into an automated framework for reliably generating

equations from input-output data.

The overall framework is presented in Fig. 3.1. It begins with input-output data and ends

in a refined system equation describing the functional relationship of the data. The central

branch of the framework is comprised of four main processes. The first process is training

of the identification model, followed by model excitation and then response analysis. The

response analysis yields an initial equation which is refined in the final genetic algorithm

tuning process. The key to the analysis is the interpretation of the identification model. The

model is re-imagined as a sum of non-additively separable "product functions" in the spirit

of the function decomposition (1.1). The term "product functions" is not standardized but

rather liberally defined in this work. It is a key aspect in the analysis technique described

in Section 3.1. Sample points from each of these product functions are generated through

specific model excitations propagated through the model input. The sample points are

analyzed to determine which product functions contribute to the model response and then

curve fitting is used to estimate the contributing product functions. The sum of product

functions becomes the initial estimated system equation. The first three processes of the

framework’s central branch encompass the sample-based sensitivity analysis and form the

backbone of the framework. The remainder of the framework exists to supplement the

analysis and add robustness.

38

After generating an initial system equation, the relevant inputs from the input-output

data are known. The inputs that don’t contribute to the output are removed from the

identification model training data and it is retrained in attempt to improve accuracy by

eliminating irrelevant information. After retraining, excitation and analysis are repeated to

yield a new estimated system equation. The accuracy of the equation is checked against the

original input-output data at this point. If accuracy is not satisfactory then it is possible that

the model excitation was not exhaustive enough to illicit a useful response for the analysis.

The number of excitation instances is expanded in this case and model analysis is repeated

until the estimated system equation fits the input-output data. If successive analysis attempts

fail to yield an accurate estimated equation, then the analysis ends. If the data is determined

to fit the estimated system equation, then genetic algorithm tuning commences. Genetic

algorithm tuning is the fourth step in the central branch of the framework and the final

step of the analysis. The goal of the tuning process is to adjust equation parameters and

coefficients to better model the original input-output data.

The result of the framework is ultimately a refined system equation that describes the

discrete dynamical system from which the input-output data originated. The different

processes in the framework are described in this chapter. Section 3.1 details the model

interpretation that enables the analysis, specifically the re-imagining of the model as a sum

of modified product functions. Identification model training is done as was described in

Chapter 2. Section 3.2 describes the process for exciting the model while the significance

of the excitations and response analysis process are detailed in Section 3.3. The genetic

algorithm parameter tuning process is described in Section 3.4 and conclusions are presented

in Section 3.5.

39

Input-Output
Data

Identification
Model Training

Excite Identification
Model

Response Analysis

Identify and Remove
Irrelevant Inputs

Identification
Model

Input
Instances

Model
Responses

Estimated
System Equation

Input-Output
Data

Process
Input

Process
Result

Process

Genetic Algorithm
Match Tuning

Refined
System Equation

Yes

NoDoes the
data fit the

model?

Yes

No

First Pass?

< 5

> 5

Iteration
Count?

Key

Expand Excitation
Instances

Failure

Figure 3.1: The overall framework of the equation generation methodology. The primary
goal is converting input-output data into a comprehensible system equation.

40

3.1 Model Interpretation

The key to the presented methodology is the interpretation of the identification model.

As discussed in Chapter 2, the model F̂ produces an estimated system output ŷ[k] using

the model input x̄[k]. Again, x̄[k] can be defined for a series-parallel model using (2.9),

a modified parallel model using (2.10), or a custom identification model. To set up the

analysis, a more in-depth view of the models is presented. The series-parallel model predicts

an estimate ŷ[k] of the current system output y[k] using the l input values u[k], ...,u[k− l +1]

and l output values y[k−1], ...,y[k− l]. An input delay of d = 0 is assumed for simplicity

of exposition. Expanding the model input based on the dimension of u and y yields the

following structure:

x̄[k] =



u1[k] · · · u1[k− l +1]
...

um[k] · · · um[k− l +1]
y1[k−1] · · · y1[k− l]

...
yp[k−1] · · · yp[k− l]


. (3.1)

The parallel model predicts an estimate ŷ[k] of the current system output y[k] using the l

input values u[k], ...,u[k− l +1]. Expanding the model input in a similar fashion yields

x̄[k] =


u1[k] u1[k−1] · · · u1[k− l +1]
u2[k] u2[k−1] · · · u2[k− l +1]

...
...

um[k] um[k−1] · · · um[k− l +1]

. (3.2)

For analysis of the identification model, the input is viewed in the generic form

x̄[k] =


x1[k] x1[k−1] · · · x1[k− l +1]
x2[k] x2[k−1] · · · x2[k− l +1]

...
...

xq[k] xq[k−1] · · · xq[k− l +1]

 (3.3)

where q = m+ p for the series-parallel model and q = m for the parallel model. It then

follows that the input matrix x̄[k] contains ql elements.

41

The identification model is re-imagined as a sum of modified product functions. In the

context of this work, a product function is defined such that it is not additively separable

into functions of its arguments [59]. The product functions must contain unique sets of

arguments and may only be constant in the special case where there are no arguments,

f (/0) = c 6= 0. Examples are f (x1,x2) = x1·x2 and sin(x1)·x2
2 since we cannot write these

functions as g(x1,x2)+h(x1)+ c. Another example of a non-additively separable product

function is f (x1) = x1 + x2
1 since we cannot separate out a function of another variable or

a non-zero constant. Product functions themselves are constituted from product functions

multiplied together as well. It is trivial to show that any function can be written equivalently

by a sum of product functions as described. A function of three elements, for example, can

be broken down as follows:

F (x1,x2,x3) = f1 (x1,x2,x3)+ f2 (x1,x2)+ f3 (x1,x3)+ f4 (x2,x3)

+ f5 (x1)+ f6 (x2)+ f7 (x3)+ f8 (/0) .

Note that a product function exists for each subset of the power set of the input arguments.

The product functions in this work are modified such that their value at an all-zero

input is equal to zero. This prevents them from being true product functions as previously

defined but is a key aspect of the model analysis to be examined further in Section 3.3.1.

An example of a product function that needs modification to fit this requirement is ex since

ex = 1 at x = 0. The modified product function form becomes ex−1. As another example,

the modified product function form of sin(x+ c) is simply sin(x+ c)− sin(c).

All uses of product functions in this work refer to the modified variety. Formally, the

system is re-imagined as the sum of all possible modified product functions

F (x̄ [k]) =
|P(x̄[k])|

∑
X̄i∈P(x̄[k])

fi (X̄i) (3.4)

42

where all ql elements of the input x̄[k] are considered function arguments. The sum of

functions now contains a generic function fi corresponding to each unique combination of

input arguments X̄i, yielding a total of 2ql product functions. As noted before, the unique

combinations of arguments of x̄[k] are obtained from its power set. The identification model

F̂ approximates F as a sum of f̂ approximating f . Many of the product functions will be

zero in practice, so identifying the non-zero product functions will give an accurate estimate

of the system function. Through targeted excitation of the identification model and analysis

of the responses, each non-zero product function is determined to generate an equivalent

function to the model.

3.2 Model Excitation

The model is purposefully excited in such a way as to extract information about the

constituent product functions. The model is viewed as a static mapping from l inputs

belonging to Rq to a single output ŷ[k]. Let x̄i be a unique instance i of x̄[k] with elements xs

from s = 1, ...,ql

x̄i =


x1 x2 · · · xl

xl+1 xl+2 · · · x2l

· · · · · · . . . · · ·
x(q−1)l+1 x(q−1)l+2 · · · xql

 (3.5)

where each element xs can be either 0 or non-zero. The non-zero elements hold a value of 1

in this work, and x̄i is used as an element-wise multiplicative mask to nullify particular model

inputs. Since there are ql elements in x̄i, it follows that there exist 2ql unique combinations

for x̄i. Each excitation mask x̄i corresponds to a fi(X̄i) in (3.4) where the non-zero elements

of x̄i correspond to the members of X̄i. For example, the x̄i with non-zero inputs x1,x2, ...

corresponds to the X̄i containing x1[k],x1[k−1], Each mask x̄i is used in the determination

of each fi.

43

Let the output of the model corresponding to input i be calculated as

ŷi = F̂(x̄i). (3.6)

Let X be the set containing all combinations of x̄i, and let Ŷ be the set containing the

corresponding outputs as follows

X =
{

x̄0, x̄1, . . . , x̄2ql−1
}

Ŷ =
{

ŷ0, ŷ1, . . . , ŷ2ql−1
}. (3.7)

The model output ŷi is easy to calculate since it is simply the result given input x̄i. Analysis

of the model response is detailed in Section 3.3 as this section is focused on the model

excitation preceding analysis, however a brief overview of analysis objectives is needed.

The goal of decomposing the identification model into product functions is to create several

easy identification problems rather than trying to solve a very large and potentially difficult

identification problem. The overall model function F̂ is a sum of all f̂i(X̄i). The excitations

are created to sample the product functions so that they can be estimated individually as

smaller identification problems.

For ease of exposition, f̂i will represent a numeric resultant of the function f̂i(X̄i). The

product function values f̂i are determined through analysis of the model response. One of the

primary analysis tasks is to obtain point pairs from each product function in the form {x̄i, f̂i}

for fitting a function to f̂i(X̄i). The model excitation described up to this point is sufficient

for yielding a single numeric value per product function for each x̄i. More data points per

product function are needed for analysis, which is accomplished through multiples of each

excitation mask x̄i. Let γ(v) be the vth multiplier for the input, defined as a matrix of equal

dimension to x̄i whose elements are individually drawn from a uniform distribution over the

model input range. Let Γ be referred to as the sweep set, containing r unique multipliers

Γ =
{

γ
(1), . . . ,γ(r)

}
. (3.8)

44

Let ŷ(v)i represent the model output for the input multiplied by γ(v) using the Hadamard

product (element-wise matrix multiplication) as shown:

ŷ(v)i = F̂
(

γ
(v) ◦ x̄i

)
. (3.9)

These input-output point pairs can be grouped into sets in a similar fashion to X and Ŷ . Let

X (v) contain all γ(v) ◦ x̄i and let Ŷ (v) contain all corresponding ŷ(v)i for multiplier v:

X (v) =
{

γ(v) ◦ x̄0,γ
(v) ◦ x̄1, . . . ,γ

(v) ◦ x̄2ql−1

}
Ŷ (v) =

{
ŷ(v)0 , ŷ(v)1 , . . . , ŷ(v)2ql−1

} . (3.10)

These input-output values are used in the analysis to obtain a point pair {γ(v) ◦ x̄i, f̂ (v)i } for

each product function. It follows that using Γ, r corresponding input-output sets are obtained

that provide enough information to extract r points per product function.

3.3 Response Analysis

After the identification model is trained and excited, the responses are analyzed to

estimate the equation of the system that it represents. The analysis method is based on

examining the effect of the carefully designed input instances on the output of the model. The

input instances allow sampling of the model in a decomposed form, aiding in determining

which product functions are present in the overall model function. After isolating the most

significant product functions, their equations are estimated using standard curve fitting

techniques. The analysis yields an equation that is approximate to the model, but in the form

of (2.3). This sheds light on the black box identification model and can provide valuable

information for system analysis, control, software verification, and a breadth of related

fields. The analysis methodology is presented in Section 3.3.1 with a step-by-step example

walkthrough in Section 3.3.2.

45

3.3.1 Methodology

The first step in the analysis is to determine the structure of F̂ by first determining which

product functions are significant. Significant product functions are later estimated. By

definition of the product functions, the significant inputs to the model are also revealed. It is

recommended to obtain input-output set pairs {X (v),Ŷ (v)} using an initial sweep set with

r ≥ 25 for determining which product functions are significant. The analysis is detailed using

the default set pairs {X ,Ŷ} and is to be repeated for every additional pair. As mentioned

earlier, each input-output set pair yields a single point {x̄i, f̂i} for each product function.

Analysis begins with examination of Ŷ , which contains responses of the overall model.

The overall model may be complex and consist of many different functional relationships

between any number of inputs. The concept of product functions is used to decompose the

model into less complex fragments in order to more easily identify it. Starting with the base

case, if F̂ itself was equivalent to a single product function then all elements of Ŷ would be

identical except for one ŷi. It would follow that F̂ = f̂i(X̄i) for the corresponding i. For the

breadth of scenarios where the model is not represented by a single product function, each

ŷi may be the equivalent resultant of a sum of product functions. In this case, each ŷi may

be "contaminated" with additive elements that must be removed to isolate the contribution

of each product function to F̂ . This is a concept found in [25] that we extend.

To determine what must be removed from each ŷi, we carefully examine its makeup.

While ŷi is numerically determined using (3.6), it is structurally defined as a sum of non-

additively separable product functions with unique argument combinations as seen in (3.4).

The input instances x̄i are designed so that product function responses f̂i can be isolated.

Each x̄i is used to determine if a product function of it’s non-zero elements f̂i(X̄i) makes

a significant contribution to the model output. Since we are examining all combinations

46

of x̄i, we are in turn examining product functions of all input combinations. This method

of excitation is meaningful because of the product function modification enforcing a zero

output with a zero input, allowing each excitation to target a specific product function. Every

zero input nullifies the response of all product functions containing that input. This concept

can be used to isolate individual product functions.

Recall the breakdown of a generic function of three inputs from Section 3.1. There exist

23 = 8 combinations of x̄i, which evaluate as

F (0,0,0) = f0 (/0)

F (x1,0,0) = f3 (x1)+ f 0 (/0)

F (0,x2,0) = f2 (x2)+ f 0 (/0)

F (0,0,x3) = f1 (x3)+ f 0 (/0)

F (x1,x2,0) = f6 (x1,x2)+ f3 (x1)+ f2 (x2)+ f 0 (/0)

F (x1,0,x3) = f5 (x1,x3)+ f3 (x1)+ f1 (x3)+ f 0 (/0)

F (0,x2,x3) = f4 (x2,x3)+ f2 (x2)+ f1 (x3)+ f 0 (/0)

F (x1,x2,x3) = f7 (x1,x2,x3)+ f6 (x1,x2)+ f5 (x1,x3)+ f4 (x2,x3)

+ f3 (x1)+ f2 (x2)+ f1 (x3)+ f0 (/0) .

It can be seen that any product function having a single zero input is equal to zero (note

that f (/0) technically does not have any zero inputs). With this constraint, the value of

the function with an all zero input becomes f (/0). The value of the function with a single

non-zero input becomes the sum of f (/0) and the product function containing the non-zero

input. Since f (/0) is known, the product function containing the non-zero input can be

47

calculated by subtraction. All product functions can be calculated in this manner:

f0 (/0) = F (0,0,0)

f1 (x3) = F (0,0,x3)− f0 (/0)

f2 (x2) = F (0,x2,0)− f0 (/0)

f3 (x1) = F (x1,0,0)− f0 (/0)

f4 (x2,x3) = F (0,x2,x3)− f2 (x2)− f1 (x3)− f0 (/0)

f5 (x1,x3) = F (x1,0,x3)− f3 (x1)− f1 (x3)− f0 (/0)

f6 (x1,x2) = F (x1,x2,0)− f3 (x1)− f2 (x2)− f0 (/0)

f7 (x1,x2,x3) = F (x1,x2,x3)− f6 (x1,x2)− f5 (x1,x3)− f4 (x2,x3)

− f3 (x1)− f2 (x2)− f0 (/0) .

The key observations from this example are that 1) a point value for each product function

can be determined given any input x̄i and that 2) the calculation is recursive in nature. A

point value is obtained for each product function since F(·) evaluates to a real number and

the recursive nature allows all product function values to be computed starting from f0. It

can be seen in the example that given any input to F , values for f0, ..., f7 can be calculated.

Extending this to the 2ql model inputs x̄i, numeric values f̂i for all product functions can

be calculated using the model responses ŷi. This pattern is formally represented in the next

paragraph.

Each product function is defined based on the following recursive relationship

f̂i (X̄i) = ŷi−g(P(X̄i)−{X̄i}) (3.11)

where g is a helper function operating on a set of sets to isolate each f̂i(X̄i) by removing the

contribution of other product functions:

g(A) =
|A|

∑
α=1

(
f̂i (X̄i) |X̄i ∈ A

)
. (3.12)

48

The value of g is the sum of the product functions of argument combinations in the power

set of X̄i except for X̄i itself since f̂i(X̄i) is being determined. Essentially, f̂i(X̄i) is the output

of the model for the input x̄i minus the "contaminant" product functions. This is recursive

in nature since f̂i(X̄i) depends on other product functions that have not yet been assigned a

numeric value. For each f̂i(X̄i) to be computed numerically, the product functions for all

proper subsets of X̄i must be computed first. The value of all f̂i(X̄i), can be calculated by

starting with the base case where X̄i is the empty set. This special case where all elements

of x̄i are equal to 0 is assigned to i = 0. We define the corresponding ŷ0 as the network bias,

which numerically represents f̂0(X̄0) where X̄0 = /0. Using f̂0(/0), we can calculate all f̂i(X̄i)

for X̄i containing one element as fi(X̄i) = ŷi− f̂0(/0). Extending this pattern and following

(3.11), we obtain the value of each product function f̂i for the input x̄i.

Since multiple point values from each product function must be obtained, the set of

multipliers Γ is used to perform a sweep over the input and this process is repeated. Recall

that model excitation using Γ yields X (v) and Ŷ (v) for each element γ(v) in Γ. The r values

in Γ yield r points per product function in the form of {(γ(v) ◦ x̄i, f̂ (v)i } after the recursive

analysis. The sweep length must therefore be selected to provide sufficient coverage of the

input space while considering computational burden, since complexity grows linearly with r.

The point pairs will later be used to estimate each product function through curve fitting,

however it must be emphasized that not all product functions need to be estimated.

Since the process of extracting a single point pair per product function is computationally

burdensome, a smaller number of points are first obtained for each product function to

determine which ones contribute significantly to the model. This is accomplished using

a smaller sweep set referred to as the initial sweep set. Product functions that contribute

significantly are later sampled in detail using a much larger sweep set referred to as the

49

detailed sweep set. Product functions that are deemed insignificant are discarded to save

computational time. Let z(v)i be defined as the magnitude of the isolated contribution

z(v)i = | f (v)i |. (3.13)

The average magnitude of each product function across the r samples is simply

zi =
r

∑
v=1

z(v)i
r
. (3.14)

The set Z contains all zi analogous to X̄ and Ŷ

Z = {z0, . . . ,z2q−1} . (3.15)

The magnitude contribution set Z is used to help identify significant product functions. To

aid in this task, another set S is introduced in the spirit of Sobol indices [28], containing the

variances si across the samples of each product function:

S = {s0, . . . ,s2q−1} . (3.16)

The identification model at this point has been reimagined as a sum of product functions,

although realistically most of those product functions will not contribute to the overall

model. To simplify the extracted equation, insignificant product functions are discarded and

F̂ is represented as a sum of significant product functions. The sets Z and S respectively

hold information on the average magnitude contribution and the variance of each product

function. Information from both are used since they hold advantages in different scenarios.

Large constants or functions with large responses in a narrow range will have low variance

but high magnitude and so are better detected by examination of Z. On the other end of the

spectrum, functions with small responses in a narrow range will have both low magnitude

and variance. These functions are in practice better identified by examination of S.

50

Searching through Z and S to find the indices with large magnitudes and/or variances will

yield the significant product functions. Product functions corresponding to zi > εz and/or

si > εs are determined to be significant, where εz,εs > 0 are the thresholds for significance.

The product functions that are summed to yield F̂ are defined based on the level of accuracy

desired in the approximation, which can be adjusted with εz,εs. The analysis as implemented

in this work selects a product function if either zi > εz or si > εs. The approximation can be

represented by

F̂ ≈
2ql−1

∑
i=0

(
f̂i (X̄i) |zi > εz∨ si > εs

)
. (3.17)

Average magnitude and variance contribution were chosen as selection criteria in this work,

however other metrics can be substituted or added based on the nature of the product

functions in question. A function with a relatively low magnitude response at most input

values with an extremely large response in a narrow input range may better be detected with

max. The estimated area under the curve formed from the input-output point pairs can also

be used as a measure of product function contribution, or weight can be assigned to product

function response based on the input distribution if it is heavily biased. Although εz and εs

are simply constants, they are defined strategically to aid in understanding of the analysis.

εz is defined as a fraction of the total average magnitude minus the constant magnitude

∑Z− z0 and εs is likewise defined as a fraction of the total variance ∑S. In this way, the

desired percent contribution of each product function to the total average magnitude or total

variance can be used as a threshold. The constant magnitude z0 is subtracted from the sum

of magnitudes so that a large constant doesn’t inhibit product function detection.

The generic product functions f̂i(X̄i) contributing most to F̂ are known at this point

along with their corresponding arguments and samples, though the functions themselves

are unknown. The product functions are estimated by curve fitting, however the r samples

51

from each product function used for determining the overall structure of F̂ are likely not

numerous enough. This is due to a few key reasons. The number of samples needed to

determine if a product function is present is far less than the samples needed to fit a curve

to the function, especially for higher dimensional data. The model excitation and response

analysis is computationally expensive, so it is desirable to use the minimum number of

excitations possible to determine the product functions in the model. Potential product

functions that do not exist in the model have no need to undergo curve fitting, and so their

sample points are not used in this process. To decrease overall computational time while

avoiding wasteful computations, the minimal r samples are used to initially detect product

functions. Product functions determined to be present are then targeted to produce additional

response samples for curve fitting using a larger detailed sweep set.

The relevant inputs to F̂ are obtained to produce targeted excitations that yield sam-

ples for curve fitting. Each X̄i where zi > εz or si > εs represents a set of relevant inputs.

Obtaining samples from each product function is again a recursive process. For product

function arguments X̄i, multiples of the input instance x̄i and multiples of all input instances

pertaining to subsets of the power set of X̄i must be generated. The responses are analyzed

using (3.11) to yield samples for curve fitting. At this point, the samples belong to product

functions of the decomposed model, which will generally be much simpler functions than

the original model. Because of this, standard curve fitting techniques can be used [10] to

estimate each product function. For this work, the curve_fit() method of SciPy in Python

is used to perform curve fitting [60].

At this point, we have determined an equation approximate to the model as a sum of

product functions. For a well trained identification model with a response that closely

matches its corresponding dynamical system, the approximated function can be assumed to

52

represent the system equation. The last step in our analysis is to relate the approximation

that we obtained in (3.17) to the system input-output model in (2.2). To do this, we replace

F̂ and all elements of x̄i in (3.17) with their analogous counterparts from (2.2); y[k] replaces

F̂ and elements of x̄[k] replace elements of x̄i. We now have a discrete dynamical system

input-output model that is approximate to our identification model.

3.3.2 Example Walkthrough

The example system in this section is intentionally simple to aid in explanation of

the analysis methodology. Assume that the following discrete dynamical system is to be

identified using only input and output measurements:

y [k] =−0.5u [k−1]+0.5y [k−2]2 +0.5u [k]y [k−1] .

For simplicity of the example, it is known that the system equation is of the form

y [k] = F (u [k] ,u [k−1] ,y [k−1] ,y [k−2]) .

A series-parallel identification model is selected and represented by the TCN as follows:

ŷ [k] = F̂ (x̄ [k])

where

x̄ [k] =
[

u1 [k] u1 [k−1]
y1 [k−1] y1 [k−2]

]
.

The TCN is typically trained at this point using the input-output data as described in

Chapter 2, however the actual system equation is used as the model to illustrate the analysis

methodology. This is an ideal scenario where the model perfectly matches the system.

Analysis begins with creation of the input instances X = {x̄0, . . . , x̄15} where the unique

instances x̄i of x̄[k] are of the form

x̄i =

[
x1 x2
x3 x4

]
.

53

The model response Ŷ = {ŷ0, . . . , ŷ15} is obtained. Each input instance is shown in Table 3.2

with its corresponding index and the model response. The analysis seeks to represent the

model F̂ as a sum of estimated product functions, whose general form is determined by (3.4)

as

F̂ = f̂0 (X̄0)+ · · ·+ f̂15 (X̄15) .

A sample for each product function is obtained using Ŷ along with the recursive relationship

of (3.11) and (3.12) as follows:

f̂0 (X̄0) = ŷ0

f̂1 (X̄1) = ŷ1− f̂0 (X̄0)

f̂2 (X̄2) = ŷ2− f̂0 (X̄0)

f̂3 (X̄3) = ŷ3− f̂0 (X̄0)

f̂4 (X̄4) = ŷ4− f̂0 (X̄0)

f̂5 (X̄5) = ŷ5− f̂1 (X̄1)− f̂2 (X̄2)− f̂0 (X̄0)

f̂6 (X̄6) = ŷ6− f̂1 (X̄1)− f̂3 (X̄3)− f̂0 (X̄0)

· · ·

f̂15 (X̄15) = ŷ15−

(
14

∑
α=0

f̂α (X̄α)

)
.

At this point, the product functions are usually sampled many times to determine which

ones contribute significantly to the model output. The analysis calls for the use of an initial

sweep set Γ, however the simplicity of this example only requires a single sample obtained

using X and Ŷ . The average magnitude contribution zi is simply | f̂i| with only one sample,

however Z would normally be computed using (3.13), (3.14), and (3.15). The variance si is

not used since a single sample has no variance. All f̂i and zi are shown in Table 3.2.

54

It is evident in Table 3.2 that z2, z4, and z6 are non-zero and therefore represent significant

product functions. The insignificant zi will likely be slightly above zero when the model

is not ideal, so significance is established by exceeding the threshold εz. Using (3.17), the

general structure of the estimated equation is determined

F̂ = f̂2 (X̄2)+ f̂4 (X̄4)+ f̂6 (X̄6) .

This is further broken down based on the definition of X̄i:

F̂ = f̂2 (x2)+ f̂4 (x4)+ f̂6 (x1,x3) .

This is then related back to the system input-output model in (2.2) to give the general form

of the estimated system equation as a sum of product functions:

ŷ [k] = f̂2 (u1 [k−1])+ f̂4 (y1 [k−2])+ f̂6 (u1 [k] ,y1 [k−1]) .

At this point, the model would normally be retrained after removing irrelevant inputs,

however it was assumed that irrelevant inputs were not visible to the network. All that

remains is to estimate f̂2, f̂4, and f̂6. Typically, a detailed sweep set is created with a

large number of multiplicands to compute the input-output point pairs using (3.9). For this

example, we assume that Γ =
{

γ(1),γ(2),γ(3),γ(4),γ(5)
}

contains 5 values as follows:

Γ =

{[
−1 −1
−1 −1

]
,

[
−0.5 −0.5
−0.5 −0.5

]
,

[
0 0
0 0

]
,

[
0.5 0.5
0.5 0.5

]
,

[
1 1
1 1

]}
.

In practice, Γ should contain many more values and the elements within each γ(v) should

be different. When multiplied by the input instances in X , 5 sets of inputs X (1), ...,X (5) are

created that yield 5 sets of outputs Ŷ (1), ...,Ŷ (5). Using the recursive relationship, 5 samples

of each product function are obtained and shown in Table 3.1.

It is evident that f̂2(x2) =−0.5x2 and f̂4(x4) = 0.5x2
4 even with a low number of points,

however a larger number of points is needed to properly fit the functions with confidence.

55

Table 3.1: Example walkthrough sample points.

i f̂ (1) f̂ (2) f̂ (3) f̂ (4) f̂ (5)

2 0.5 0.25 0 -0.25 -0.5
4 0.5 0.125 0 0.125 0.5
6 0.5 0.125 0 0.125 0.5

The elements of each γ(v) must also be different as evidenced by the example samples for f̂6.

Without different elements, the samples for f̂4 and f̂6 would be identical and the curve fitting

process would fail to differentiate them. With sufficient sampling, the product functions are

properly identified to yield the equation of the original system.

56

Table 3.2: Analysis methodology example walkthrough.

i x̄i X̄i ŷi f̂i zi > εz?

0
[

0 0
0 0

]
/0 0 0 0

1
[

1 0
0 0

]
{x1} 0 0 0

2
[

0 1
0 0

]
{x2} -0.5 -0.5 0.5 X

3
[

0 0
1 0

]
{x3} 0 0 0

4
[

0 0
0 1

]
{x4} 0.5 0.5 0.5 X

5
[

1 1
0 0

]
{x1,x2} -0.5 0 0

6
[

1 0
1 0

]
{x1,x3} 0.5 0.5 0.5 X

7
[

1 0
0 1

]
{x1,x4} 0.5 0 0

8
[

0 1
1 0

]
{x2,x3} -0.5 0 0

9
[

0 1
0 1

]
{x2,x4} 0 0 0

10
[

0 0
1 1

]
{x3,x4} 0.5 0 0

11
[

1 1
1 0

]
{x1,x2,x3} 0 0 0

12
[

1 1
0 1

]
{x1,x2,x4} 0 0 0

13
[

1 0
1 1

]
{x1,x3,x4} 1 0 0

14
[

0 1
1 1

]
{x2,x3,x4} 0 0 0

15
[

1 1
1 1

]
{x1,x2,x3,x4} 0.5 0 0

57

3.4 Genetic Algorithm Tuning

Once the iterative analysis process has yielded an estimated system equation that fits

the original input-output data, genetic algorithm tuning is used to refine the estimate. The

estimated system equation serves as a model in itself with various coefficients and parameters.

At this step, the equation is a sum of product functions that have been individually determined

via curve fitting. It is a good approximate of the input-output data relationship and so the

equation parameters should be close to optimal. The genetic algorithm is used to make

slight adjustments to the parameters of the equation as a whole since they were initially

determined on a product function by product function basis.

Genetic algorithms (GA) are a class of optimization techniques inspired by the biological

concept of evolution. Their goal is typically to optimize parameters in order to maximize a

heuristic function using operators such as crossover and mutation. Operators are applied to

a group of individuals known as a population to create a new population. Each successive

population group is referred to as a generation. The work in [61] gives an overview of

genetic algorithms and explains ’why’ and ’when’ they should be used as an optimization

tool.

A brief overview of genetic algorithms is given in the context of this work. The

genetic algorithm problem formulation begins with a definition of the individuals in a

population. Each individual is represented as an array of equation parameters represented

by floating point numbers. In genetic algorithm terminology, this array is the chromosome

representing the individual. An example estimated system equation is shown as follows with

the corresponding chromosome representation in Fig. 3.2.

F (x1,x2,x3) = 0.50x1
2 +0.25x2−1.00sin(2.00x3)+0.75

58

0.50 0.25 -1.00 2.00 0.75

Figure 3.2: An example chromosome representing an estimated system equation.

The initial population is created from a set number of individuals with variations between

them. These variations introduce population diversity, which is necessary for the genetic

algorithm to explore a variety of potential solutions. In this work, the assumption is made

that the parameters are near their optimal values since the estimated system equation has

been verified against the original system input-output data. As a result, the parameters of

individuals in the initial population are drawn from a distribution centered around the original

estimate. A single distribution is defined for each parameter. A triangular distribution [62]

is used in this work since it is conceptually simple and the equation parameters have user-

defined minimum and maximum values. The triangular distribution has a lower limit a,

upper limit b, and mode c. Let α be an original parameter estimate, αmin be the user-defined

minimum value, and αmax be the user-defined maximum value. Each parameter is drawn

from its corresponding distribution with c = α , a≥αmin, and b≤αmax. The upper and lower

distribution limits in this work are defined by

a = c− (c−αmin)

3
(3.18a)

b = c+
(αmax− c)

3
. (3.18b)

The divisor of 3 moves a and b closer to the mode and can be modified as desired. This

is not necessary but does help to tighten the distribution. Another benefit of the triangular

distribution is that it allows skew towards either a or b. This can help to introduce diversity

59

Probability Density Function

Figure 3.3: The probability density function of the triangular distribution.

to the population when c is biased heavily towards the minimum or maximum parameter

values. The triangular distribution probability density function is shown in Fig 3.3.

The initial population of individuals is referred to as the first generation. After every

population is created, it must be evaluated using a heuristic function designed to drive the

behavior of individuals in the population. The heuristic function used in this work is the

mean squared error (MSE) between the estimated function using an individual’s parameters

and the input-output data, with the goal being to minimize the MSE. The genetic operators

of crossover and mutation are applied on the top performing members of each generation to

yield an identically sized population of new individuals constituting the new generation. The

crossover operation creates a new individual using a combination of the chromosomes from

two individuals of the previous generation. The mutation operation makes a random change

to the resultant of the crossover operation. Both the crossover and mutation operations are

shown in Fig 3.4.

A cloning operation is included in the genetic algorithm tuning to preserve the best

performing parameter set in future generations. The parameter set having the lowest MSE is

directly copied to the next generation before the crossover and mutation operations begin.

60

0.55 0.23 -1.01 1.98 0.71

0.45 0.30 -1.10 2.10 0.80

0.45 0.23 -1.10 2.10 0.71

Parent 1

Parent 2

Child

Crossover Operation

Mutation Operation

0.45 0.23 -1.10 2.10 0.71 Child

0.45 0.23 -1.10 2.05 0.71 Mutated Child

Figure 3.4: The crossover and mutation operations used to create members in successive
generations.

When creating the initial population, the parameters of the original equation estimate are

introduced as a population member. The top performing member of each generation is

guaranteed to have an MSE that is less than or equal to the original individual with this

formulation. The genetic algorithm tuning process is run for a set number of generations

and then the best member of the final generation is used as the parameter set for the final

refined system equation.

3.5 Summary and Conclusions

In this chapter, a comprehensive framework for generating discrete dynamical system

equations from input-output data was introduced. The TCN identification model from

Chapter 2 was combined with a new variant of sample-based sensitivity analysis. The

analysis procedure operates on an imagined function decomposition of the model to break

down the identification problem into multiple smaller problems. The smaller identification

problems are less complex and easier to solve than the full identification problem, and the

61

sum of the smaller models yields the full model. The smaller models are estimated using

standard curve fitting techniques and summed to yield a full equation of the original model.

The analysis yields an equation equivalent to black box identification models like

the TCN, however it can operate on any input-output model. This chapter presented the

theoretical basis of the analysis and built a framework around it to convert input-output

data into a discrete dynamical system equation. The main contribution of this work is the

analysis, with the full framework existing to facilitate practical application and to increase

the accuracy of generated equations.

62

Chapter 4: Application Analysis and Examples

The system identification and sensitivity analysis techniques developed in this work are

implemented for practical application in this chapter with comprehensive operational study

and examples. The framework presented in Chapter 3 is implemented in Python and made

available both in Appendix A and publicly at https://github.com/Jmmaroli/eqn-gen.

The implementation follows the process diagram of Fig. 3.1 using 4 key functions. The first

function implements the TCN system identification of Chapter 2 and the second function

implements the sensitivity analysis from Chapter 3. The third function evaluates equation

estimates produced by the analysis and the fourth function performs genetic algorithm

tuning. The implementation is further detailed in Section 4.1, with Section 4.2 presenting

computed results for the example walkthrough of Section 3.3.2. Section 4.3 presents a

myriad of synthetic experiments designed to highlight important aspects of the analysis and

Section 4.4 shows application of the framework to real systems. The implementation work

is summarized and conclusions are drawn in Section 4.5.

4.1 Implementation

The Python implementation shown in Appendix A is used for all analyses in this section.

The code structure reflects the framework structure as shown in Fig. 3.1, with 4 core functions

created to represent framework processes. Identification model training is performed by the

63

https://github.com/Jmmaroli/eqn-gen

function

model_dictionary = create_model(model_parameters,

input_data,

output_data,

input_mask)

The argument model_parameters is a dictionary of parameters pertaining to the TCN

model, input_data and output_data are arrays containing the input and output data

respectively, and input_mask is the binary mask over x̄[k] used to remove insignificant

inputs during model training. The input-output data arrays take the form

input_data=

x1 [k−N] · · · xq [k−N]
...

x1 [k] · · · xq [k]

 (4.1a)

output_data=

y1 [k−N] · · · yq [k−N]
...

y1 [k] · · · yq [k]

 (4.1b)

where N is the number of data points observed. This form facilitates application since data is

often recorded at discrete time steps from the start of a file to the end. The function creates a

TCN based on information defined in model_parameters and then formats the input-output

data for training. After training is performed, the identification model is returned along with

various metrics, all contained in model_dictionary.

64

The trained model is excited and then analyzed to yield an estimated system equation

using the function

model_function, output_mask = analyze_model(analysis_parameters,

model_dictionary,

input_data,

output_data,

input_mask)

The argument analysis_parameters is a dictionary of parameters and settings specific to

the analysis and model_dictionary is passed in from the output of create_model(). The

input_data and output_data arrays are used as a reference for verifying that potential

product functions improve the MAE of the estimate and input_mask serves the same

purpose as it does for create_model(). The function returns a representation of the

estimated equation, model_function, and a binary mask identifying important inputs to

the model, output_mask. The output mask is used as the input mask for model retraining

after an initial analysis is performed.

Determination of fit for estimated equations is handled by the function

metrics = evaluate_function(model_function,

input_data,

output_data)

where model_function is passed in from the output of create_model() and the input_data

and output_data arrays are the same as before. The function returns metrics, which

holds the MAE and RMSE of the estimated equation in comparison to the original input and

65

output data for each dimension of the output. The maximum and minimum response values

are also returned.

The final core function performs genetic algorithm tuning of an estimated system

equation to produce a refined system equation

model_function_tuned = tune_model(tuning_parameters,

model_function,

input_data,

output_data)

The arguments are identical to evaluate_function() with the addition of tuning_parameters

to specify the GA population size and number of generations. The output model_function_tuned

represents a refined system equation with tuned parameters.

The 4 core functions are used to implement the overall framework, which is represented

by the function estimate_equation described in Algorithm 1. This single function fulfills

the framework that was laid out in Fig. 3.1. The initial model is trained and called mdl_v1,

which is analyzed to yield an equation estimate fcn_v1 and a mask of significant inputs

to be used for model retraining: msk_v2. The retrained model is called mdl_v2, which is

analyzed to yield fcn_v2. The estimates fcn_v1 and fcn_v2 are evaluated based on the

original data to yield metrics met_v1 and met_v2. The first two equation estimates are

combined on a channel by channel basis to yield fcn_v3. If the fit of fcn_v3 is poor, then

it is recreated using a larger initial sweep set until the fit is deemed to be good. At this

point, genetic algorithm tuning is performed on fcn_v3 to yield the final generated equation

fcn_v4.

66

Algorithm 1 Overall framework implementation
Input: model_parameters, analysis_parameters, input_data, output_data
Output: printed system equation
Function estimate_equation():

mdl_v1 = create_model()
fcn_v1, msk_v2 = analyze_model(mdl_v1)
met_v1 = evaluate_function(fcn_v1)

mdl_v2 = create_model(msk_v2)
fcn_v2 = analyze_model(mdl_v2)
met_v2 = evaluate_function(fcn_v2)

foreach output channel, c do
if met_v2[c] better than met_v1[c] then

fcn_v3[c] = fcn_v2[c]
met_v3[c] = met_v2[c]

else
fcn_v3[c] = fcn_v1[c]
met_v3[c] = met_v1[c]

end
end

if fcn_v3 fit is poor then
while fcn_v3 fit is poor do

if iteration > limit then
exit

end
// increase excitation instances in model_parameters
// recreate fcn_v3 as done above without recreating mdl_v1

iteration++
end

end

fcn_v4 = tune_model(fcn_v3)
print(fcn_v4)

4.1.1 Model Creation

The function create_model() initializes and trains the model based on the parameters

in model_parameters. The parameters most relevant to the structure of the TCN and the

exposition of this work are described in Table 4.1; all other parameters are detailed in the

67

code. The TCN is created with L residual blocks set by levels, a kernel size of K set by

ksize, and nhid units per kernel leg. A total of l samples are exposed to the network, set

by history, and the number of training epochs is set by epochs.

Table 4.1: Relevant parameters in model_parameters.

Name Description
epochs The number of training epochs
ksize Kernel size
levels Number of residual blocks
nhid Hidden units in each kernel leg

history Samples exposed to the network

4.1.2 Model Analysis

The function analyze_model() accepts the model defined in model_dictionary and

performs analysis based on the parameters in analysis_parameters. The parameters most

relevant to the analysis process and the exposition of this work are described in Table 4.2;

all other parameters are detailed in the code. The product function candidates are contained

in a single object: functions (see fitting_functions() in Appendix A for the exact

definition). The number of samples obtained for initial detection of product functions is set

by sweep_initial, while the number obtained for detailed sampling and curve fitting of

product functions is set by sweep_detailed.

If the MAE of the overall equation is not improved as a result of adding a product

function and the contribution of the product function as measured by zi and si is low, then

the product function is omitted from the equation. The percent contribution threshold

for potential inclusion is defined by contrib_thresh, while contrib_thresh_omit sets

68

the limit for conditional inclusion based on MAE such that contrib_thresh_omit >

contrib_thresh.

Table 4.2: Relevant parameters in analysis_parameters.

Name Description
functions The product function candidates

sweep_initial Number of initial samples
sweep_detailed Number of samples for curve fitting
contrib_thresh Percent contribution for inclusion

contrib_thresh_omit Percent contribution for conditional inclusion

4.1.3 Template Functions

The model analysis fits function templates to the samples from each product function.

These functions are defined in the functions argument of analyze_model(). For each

detected product function, all template functions of the same dimension as the product

function are fit to the samples for that product function. Metrics of fit for each template

function are calculated and used to select the one that best resembles the product function.

The metric used for evaluating product functions in this work is magnitude average error

(MAE), which is conceptually simple. Popular metrics of fit such as R2 cannot be used since

the majority of template functions are nonlinear. Other metrics such as MSE or RMSE can

be substituted for MAE if desired, however they are not as easily interpreted. The template

functions included in the implementation of this work are shown in Table 4.3, however any

number of template functions could be included.

In the most straightforward case, the template function yielding the best MAE is chosen

to represent the corresponding product function. This generally yields a more accurate,

albeit complex, overall system equation. Just as the TCN model can suffer from overfitting,

69

Table 4.3: List of template functions in the implementation.

Functions of 1 Variable
ax1
ax1

2 +bx1
ax1

3 +bx1
2 + cx1

ax1
4 +bx1

3 + cx1
2 +dx1

ax1
5 +bx1

4 + cx1
3 +dx1

2 + ex1
ax1

2

ax1
3

a
(
ebx1−1

)
asin(bx1 + c)− sin(c)
a tanh(bx1)
a tanh(b(x1 + c))+d (x1 + c)− (a tanh(bc)+dc)
Functions of 2 Variables
ax1x2
ax1x2 +bx1

2x2 + cx1x2
2

ax1x2 +bx1
2x2 + cx1x2

2 +dx1
3x2 + ex1

2x2
2 + f x1x2

3

ax1x2 +bx1
2x2 + cx1x2

2 +dx1
3x2 + ex1

2x2
2 + f x1x2

3 +gx1
4x2 +hx1

3x2
2 + ix1

2x2
3 + jx1x1

4

ax1 (ex2−1)
ax2 (ex1−1)
a tanh(bx1− c) tanh(dx2− e)−a tanh(−c) tanh(−e)
a tanh(bx2− c) tanh(dx1− e)−a tanh(−c) tanh(−e)
Functions of 3+ Variables
ax1x2x3
ax1x2x3x4
ax1x2x3x4x5

product function template selection must overcome overfitting as well. For example, samples

of a product function that is clearly linear by inspection may yield a lower MAE when a

higher order polynomial function is fit to them. To overcome this problem, a weight is

assigned to each product function to give advantage to ones that are preferred. These are

generally simpler functions, although the weights could be used to steer product function

selection based on user preference (e.g. if the user prefers a linear equation unless accuracy

is significantly effected).

To limit the space of function parameters and coefficients a,b,c, ..., reasonable bounds

are specified for each parameter of each template function. The upper and lower bounds

70

of each parameter are arguments to the curve_fit() function of SciPy and greatly aid

in quick parameter estimation. In the function asin(bx1 + c)− sin(c) for example, c can

be bounded to [−π,π] since sine is periodic. Other functions can be bounded based on

reasonable expectation, such as limiting quartic or quintic polynomial coefficients to [−1,1]

if large output values are not expected.

It is important to note that the template functions do not absolutely have to meet the

multiplicative requirement of product functions, although they must give a 0 output for a

0 input. For example, f (x1,x2) = ax1 +bx2 could be used as an approximation of the true

product function for f (x1,x2). This greatly increases the flexibility of the framework by

allowing many types of numerical approximations to be introduced. Of notable significance,

finite differences can be used as template functions, allowing for the approximation of

derivatives. Finite differences are mathematical expressions of the form

f (x+b)− f (x+a) .

The first derivative can be approximated using finite differences as

f ′ (x)≈ f (x+h)− f (x)
h

,

and the second derivative can be approximated in similar fashion as

f ′′ (x)≈ f (x+h)−2 f (x)+ f (x−h)
h2 .

Template functions can be constructed based on derivative approximations or any other

numerical approximation to fit the samples of each product function. While the actual

product functions are multiplicative in nature, curve fitting is an approximation itself and so

multiplicity is not required after sampling the product functions.

71

4.2 Verbose Example

The example system in this section is the same as the system from Section 3.3.2. The

purpose of this section is to illustrate the operation of the implemented framework while

drawing parallels to the analysis theory. Recall that the following discrete dynamical system

is to be identified using only input and output measurements:

y [k] =−0.5u [k−1]+0.5y [k−2]2 +0.5u [k]y [k−1] .

Again for simplicity of the example, it is known that the system equation is of the form

y [k] = F (u [k] ,u [k−1] ,y [k−1] ,y [k−2]) .

A TCN is setup to be trained using input-output data from the system. The TCN is designed

with L=1 and K=2 so that its effective history is greater than 2. Arguments outside the

minimum required effective history are ignored since it is known they are not in the system

equation. A series-parallel identification model is selected and represented by the TCN as

follows:

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[

u1 [k] u1 [k−1]
y1 [k−1] y1 [k−2]

]
.

A large sequence of system input-output data is recorded where the system input is drawn

from U(−1,1). From this system input-output data, 25000 pairs of training data are gathered

for the TCN. Each pair consists of a network input from the recorded sequence in the form

of x̄ [k], and the corresponding system output y1[k]. The TCN is trained until the response is

satisfactorily close to the modeled system. For this example, training was performed over

100 epochs using an initial learning rate of 0.002 with the Adam optimizer. The MAE of the

trained network in reference to the input-output data is 3.638e-03.

72

Analysis begins with the creation of the excitation instances. The unique instances x̄i of

x̄[k] are of the form

x̄i =

[
x1 x2
x3 x4

]
and it follows that there are 16 of them: X = {x̄0, . . . , x̄15}. Table 4.4 shows the input

instances and corresponding analysis information for each index in similar fashion to

Table 3.2 of the example walkthrough in Section 3.3.2.

The excitation instances in X are used in conjunction with an initial sweep set Γ con-

taining r = 25 multipliers to yield input sets X (1), ...,X (25). The inputs are propagated

through the TCN model to yield output sets Ŷ (1), ...,Ŷ (25). The recursive relationship of

(3.11) and (3.12) is used to obtain 25 samples f̂ (1)i , ..., f̂ (25)
i of each product function. These

samples are used to compute the average magnitude contribution of each product function

Z = {z0, ...,z15} from (3.13), (3.14), and (3.15). The sample variances S = {s0, ...s15} are

computed as well for each product function in accordance with (3.16). The product functions

where either zi > εz or si > εs are used to estimate the overall model F̂ as in (3.17). The

analysis implementation dynamically defines εz and εs so that product functions contributing

at least 5% to the total average magnitude or sum of variances are included in the model

(contrib_thresh=5%).

As in Section 3.3.2, examination of Z and S show that the model takes the form

ŷ [k] = f̂2 (u1 [k−1])+ f̂4 (y1 [k−2])+ f̂6 (u1 [k] ,y1 [k−1]) .

At this point, the model would normally be retrained after removing irrelevant inputs,

however it was assumed that irrelevant inputs were not visible to the network. All that

remains is to estimate f̂2, f̂4, and f̂6. For this, a detailed sweep set Γ is created with r = 1000

multipliers to compute the input-output point pairs of each product function. The point

73

pairs are plotted in Fig. 4.1 for visual illustration. A curve is fit to the set of points for each

function using SciPy to yield

f̂2 (u1[k−1]) =−0.497u1[k−1]

f̂4 (y1[k−2]) = 0.498y1[k−2]2

f̂6 (u1[k],y1[k−1]) = 0.464u1[k]y1[k−1].

The first round of the analysis is now complete and the resultant estimate of the system

equation learned by the TCN is

ŷ [k] =−0.497u1 [k−1]+0.498y1 [k−2]2 +0.464u1 [k]y1 [k−1] .

The equation is compared to the original input-output data and found to have a MAE of

5.098e-03. This is close to the MAE of 3.638e-03 for the TCN. Since the estimated equation

is determined to satisfactorily fit the original system data, genetic algorithm tuning now

begins. The refined system equation after 25 generations of tuning is

ŷ [k] =−0.500u1 [k−1]+0.500y1 [k−2]2 +0.500u1 [k]y1 [k−1] .

The parameters are truncated for brevity although evaluation is performed using the 64 bit

floating point parameter values. The MAE is now only 5.204e-05, which is better than

the original estimate and the TCN. The refined system equation is close to the original

example equation, however it was extracted entirely offline from the trained TCN without

the presence of the original system.

74

Table 4.4: Example construction of input instances and analysis values.

i x̄i X̄i zi si > εz,εs?

0
[

0 0
0 0

]
{ /0} 0.0034 0.0000

1
[

1 0
0 0

]
{x1} 0.0087 0.0001

2
[

0 1
0 0

]
{x2} 0.6821 0.3555 X

3
[

0 0
1 0

]
{x3} 0.0122 0.0001

4
[

0 0
0 1

]
{x4} 0.5875 0.2070 X

5
[

1 1
0 0

]
{x1,x2} 0.0127 0.0002

6
[

1 0
1 0

]
{x1,x3} 0.3712 0.2202 X

7
[

1 0
0 1

]
{x1,x4} 0.0154 0.0006

8
[

0 1
1 0

]
{x2,x3} 0.0118 0.0001

9
[

0 1
0 1

]
{x2,x4} 0.0441 0.0055

10
[

0 0
1 1

]
{x3,x4} 0.0342 0.0022

11
[

1 1
1 0

]
{x1,x2,x3} 0.0176 0.0008

12
[

1 1
0 1

]
{x1,x2,x4} 0.0122 0.0003

13
[

1 0
1 1

]
{x1,x3,x4} 0.0379 0.0055

14
[

0 1
1 1

]
{x2,x3,x4} 0.0126 0.0003

15
[

1 1
1 1

]
{x1,x2,x3,x4} 0.0198 0.0009

75

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

(b)

-0.4
1

-0.2

0

0.5 1

0.2

0.5

0.4

0

0.6

0
-0.5 -0.5

-1 -1

(c)

Figure 4.1: Plots showing 1000 samples for each product function of significance as extracted
from the TCN model: (a) f̂2(u1[k−1]); (b) f̂4(y1[k−2]); (c) f̂6(u1[k],y1[k−1])

76

4.3 Synthetic Experiments

The purpose of this section is to provide synthetic experiments that demonstrate the use

of the equation generation framework; showing its robustness as well as its limitations. The

experiments all include a defined system that is excited with 25000 samples of uniform

random noise to yield input-output data. The framework then operates on the input-output

data without knowledge of the system, starting with TCN system identification and continu-

ing to analysis as in Fig. 3.1. The framework produces MAE results for 1) the initial TCN

identification model, 2) the initial estimated equation, 3) the retrained TCN identification

model, 4) the second estimated equation, and 5) the final GA tuned system equation.

4.3.1 Verbose Example Extension

The example of Section 4.2 is repeated, dropping assumptions about the system format

to demonstrate typical use of the equation generation implementation. A longer effective

history is desirable when analyzing an unknown system for the initial analysis so that all

significant system inputs are detected. The effective history is therefore increased from 2 to

5. The input-output data is organized in the fashion of the series-parallel model and used to

train a TCN in the format

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[

u1 [k] u1 [k−1] u1 [k−2] u1 [k−3] u1 [k−4]
y1 [k−1] y1 [k−2] y1 [k−3] y1 [k−4] y1 [k−5]

]
.

The MAE of the TCN model is 6.081e-3. Analysis is performed with an initial sweep set of

size 25 and a detailed sweep set of size 1000 to yield the initial estimated system equation

ŷ [k] =−0.497u1 [k−1]+0.442y1 [k−2]2 +0.459u1 [k]y1 [k−1] .

77

The initial equation has an MAE of 8.503e-3. The corresponding input mask used to nullify

insignificant inputs for retraining is simply[
1 1 0 0 0
1 1 0 0 0

]
.

The TCN is retrained without exposure to insignificant inputs, yielding an MAE of 2.833e-03.

Analysis is performed again with the same sweep set sizes to yield

ŷ [k] =−0.507u1 [k−1]+0.502y1 [k−2]2 +0.485u1 [k]y1 [k−1] .

The second equation has a corresponding MAE of 3.893e-3, which is then tuned by genetic

algorithm over 25 generations to yield the final refined system equation

ŷ [k] =−0.500u1 [k−1]+0.500y1 [k−2]2 +0.501u1 [k]y1 [k−1] .

This equation is the third and final equation produced by the analysis, and yields an MAE

better than that of both TCN models and both estimated equations: 1.014e-4.

4.3.2 Noise Resilience

The discrete dynamical system state equations (2.1) can be extended to include process

noise v and measurement noise w in their formulation:

x [k+1] = f (x [k] ,u [k] ,v [k])
y [k] = h(x [k] ,w [k]) . (4.2)

Both noise sources are assumed to be white Gaussian. Process noise is inherent in the

evolution of the system state and effects the determination of future states. Measurement

noise does not effect the system state but effects the output measurement y[k]. The effect of

these noises on the equation generation framework is examined by extension of the system

in Section 4.3.1.

78

4.3.2.1 Process Noise

Process noise v is introduced into the system additively as follows

y [k] =−0.5u [k−1]+0.5y [k−2]2 +0.5u [k]y [k−1]+ v [k] .

Increasing levels of noise drawn from N (µ,σ2) are added to examine the effect of different

levels of process noise on the system. Let v[k] ∼N (0,σ2) where σ is varied between 0

and 0.16 in increments of 0.02. A significant amount of process noise will make the system

itself unstable, which occurs when σ > 0.16. The MAE at each σ is reported in Fig. 4.2

for the 2 TCN models and 3 equation models generated by the framework, along with the

magnitude average of the noise signal. Examination of the plot shows that the MAE values

for all models in the framework lie just above the noise floor. Exact relationships are difficult

to derive from the plot since the values are so close. The magnitude average of the noise

signal is subtracted from the MAE of each model to yield the MAE above the noise floor,

presented in Fig. 4.3. The TCN models generally have a similar or worse MAE to their

extracted equations, while the GA tuned equation is superior to all models.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Error Standard Deviation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
ag

ni
tu

de
 A

ve
ra

ge
 E

rro
r

Magnitude Average Error (Process Noise)

TCN 1
EQN 1
TCN 2
EQN 2
EQN GA
Noise

Figure 4.2: Effect of varied process error on the example system.

79

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Error Standard Deviation

0

2

4

6

8

10

M
ag

ni
tu

de
 A

ve
ra

ge
 E

rro
r

10-3 Magnitude Average Error Above Noise Floor (Process Noise)

TCN 1
EQN 1
TCN 2
EQN 2
EQN GA

Figure 4.3: Effect of varied process error above the noise floor.

The framework demonstrates resilience to process noise, which can be attributed to the

initial TCN model. Neural networks themselves are good at ignoring noise while learning

relationships within data. The extracted equation is effectively generated after having much

of the noise removed by the TCN, explaining its close performance to the TCN.

4.3.2.2 Measurement Noise

Measurement noise w does not effect the evolution of system states, but only the

measurement itself. Let ỹ represent the recorded measurements of the system output used to

build the identification model. The measurement is the result of additive measurement noise

as follows

y [k] =−0.5u [k−1]+0.5y [k−2]2 +0.5u [k]y [k−1]

ỹ [k] = y [k]+w [k] .

The TCN model is trained on pairs of x̄[k] and ỹ[k]. Let w[k]∼N (0,σ2) where σ is varied

between 0 and 2.20 in increments of 0.02. This represents a ratio of the magnitude average

noise to the magnitude average measurement from 0% to 99%. The MAE at each σ is

80

reported in Fig. 4.4 for the 2 TCN models and 3 equation models, along with the magnitude

average of the noise signal. The MAE of all models is around the noise level of the system,

indicating strong resistance to measurement noise. A closer examination of the information

is provided by subtracting the magnitude average of the noise from the MAE of each model

as seen in Fig. 4.5. Green vertical lines on the plot represent 50%, 75%, 90%, and 95%

measurement noise ratios. Below 50% measurement noise, the 5 models follow the trend

of the process noise with the TCN models having similar or better performance to their

extracted equations and the GA tuned model having the best performance. The area between

50% and 95% is rather convoluted, with no clear distinction in model performance. Above

95%, the TCN models generally outperform the equation models, although performance

below the noise floor is based on chance.

0 0.5 1 1.5 2 2.5
Error Standard Deviation

0

0.5

1

1.5

2

M
ag

ni
tu

de
 A

ve
ra

ge
 E

rro
r

Magnitude Average Error (Measurement Noise)

TCN 1
EQN 1
TCN 2
EQN 2
EQN GA
Noise

Figure 4.4: Effect of varied measurement error on the example system.

The plots show that the framework demonstrates significant resilience to measurement

noise. This can again be attributed to the initial TCN model and the general ability of

neural networks to ignore noise while learning underlying relationships. Noise resilience is

81

0 0.5 1 1.5 2 2.5
Error Standard Deviation

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

M
ag

ni
tu

de
 A

ve
ra

ge
 E

rro
r

Magnitude Average Error Above Noise Floor (Measurement Noise)

TCN 1
EQN 1
TCN 2
EQN 2
EQN GA

50% 75% 90% 95%

Figure 4.5: Effect of varied measurement error above the noise floor.

therefore another justification for the choice of neural network identification models in the

framework.

4.3.3 Periodic Functions

Periodic functions can be a source of trouble for the framework. Notably, insufficient

initial sampling can lead to missed detection of periodic functions since there may be

multiple points at which they equal zero. While improbable with a larger number of samples,

a small initial sampling may not detect the product function by only sampling the zero

points. Take the simple example system

y [k] = sin(4πu [k])+u [k−1] . (4.3)

Assume that no initial sweep set is used, and rather just a single point per product function

is extracted from the default X and Y . It follows that f (u[k]) = sin(4πu [k]) cannot be

82

detected since f (0) = f (1) = 0. Even with an initial sweep set, the periodicity of sine could

potentially cause missed detection.

The system is excited with input drawn from U [−1,1] and then the input-output data is

analyzed using the framework. The TCN is formulated as

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[
u1 [k] u1 [k−1] u1 [k−2]

]
and has a corresponding MAE of 2.588e-2. An initial sweep set is not used for analysis,

which yields the estimated equation

y1 [k] = 1.035u1 [k−1]

with a corresponding MAE of 3.193e-1. The TCN is retrained based on the input mask[
0 1 0

]
to yield a corresponding MAE of 3.198e-1. Analysis of the retrained TCN model

yields

y [k] = 10
(

e0.104u1[k−1]−1
)
,

having a corresponding MAE of 3.201e-1. Both equation estimates and the retrained TCN

are an order of magnitude worse than the original TCN, triggering the framework to increase

the initial and detailed sweep sizes and perform analysis again. Analysis with an initial

sweep set of just 5 elements produces the equation

y [k] = 0.496sin(12.593u1 [k−1]−0.005)− sin(−0.005)+1.035u1 [k−1] .

which has a much improved MAE of 1.854e-2. A new input mask
[
1 1 0

]
is created for

retraining, yielding a TCN with a corresponding MAE of 2.364e-2. Analysis yields the

equation

y [k] = 0.489sin(12.631u1 [k−1]+0.008)− sin(0.008)+0.992u1 [k−1]

83

with a corresponding MAE of 1.486e-2. The GA tuning step produces the final equation

y [k] = 0.501sin(12.568u1 [k−1]−0.002)− sin(−0.002)+1.001u1 [k−1]

with a corresponding MAE of 2.367e-3, outperforming the TCN models and prior equation

estimates. The resultant equation appears slightly different than the original system equation

due to the requirement that modified product functions must be 0 with a 0 input. This is

explained further in Section 4.3.4.

4.3.4 Modified Product Functions

Recall that product functions in this work are defined as non-additively separable func-

tions of their input arguments. The definition is modified to allow for additive separability

in the case of functions where a 0 input does not yield a 0 output: a necessary condition to

derive the recursive relationship in (3.11) and (3.12). A prime example of a product function

that must be modified is ex. The need for product function modification is demonstrated

through analysis of the example system

y [k] = eu1[k].

The functional decomposition of this system with input instance x̄i = [x1] follows

F (x1) = ex1 = f1 (x1)+ f0 (/0)

where the individual product functions are calculated by

f0 (/0) = F (0)

f1 (x1) = F (x1)− f0 (/0) .

From the analysis theory, the all 0 input x̄0 is used to determine the model bias. This is the

constant contribution of the product function f0(/0). By examining the example system, it

84

is clear that there is no constant term. In fact, the only product function is f1(x1). Without

modification of the product function ex, the analysis would indicate that both f1(x1) and

f0(/0) are present in the system. It would assert that f0(/0) = 1 and then try to fit template

product functions to F(x1)− f0(/0), which is ex−1. Without modification, there would not

exist a product function matching ex−1 since it is additively separable. This founds the case

for product function modification. By allowing ex−1 to be classified as a product function,

the analysis still asserts that f0(/0) = 1 exists in the model, however a template function now

exists for F(x1)− f0(/0). The resultant model is constructed as the sum of product functions

F (x1) = (ex1−1)+1,

which is easily seen to be equivalent to ex1 . In similar fashion, all product functions where

an all 0 input does not yield a 0 output are modified. This makes the resultant equation

slightly more complex, but it is a necessary cost associated with the analysis.

Brief results from the framework implementation are reported for the example system.

The system is excited with input drawn from U [−1,1] and then the input-output data is

analyzed using the framework with the TCN formulation

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[
u1 [k] u1 [k−1] u1 [k−2]

]
.

Initial TCN training and analysis yields the correct input mask
[
1 0 0

]
. Retraining,

analysis, and GA tuning are performed to yield the final equation

y [k] = 1.000
(

e0.999u1[k]−1
)
+1.001.

The MAE values at each step in the analysis process are presented as follows:

85

TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
3.111e-3 2.410e-3 9.776e-4 8.490e-4 6.213e-4

4.3.5 Taylor Series Expansions

The implemented framework’s use of curve fitting means that it is susceptible to many

of the same issues associated with curve fitting. A notable issue is that the Taylor Series

expansion of a function can be fit to samples describing the function instead of the function

itself. This can be seen looking again at the simple example system

y [k] = eu1[k].

The Taylor Series expansion of ex is denoted as

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · .

This example further examines the results from Section 4.3.4. For both the initial and

retrained model analysis, the MAE of each fit template function is calculated for each

product function and examined. The MAE value for the modified product function template

ex− 1 is presented with the MAE values for the polynomial product function templates

representing the Taylor Series expansion in Table 4.5. The values are based on analysis of

the retrained TCN model.

Table 4.5: Product function Taylor Series expansion.

Product Function Template MAE
a
(
ebx1−1

)
4.979e-4

ax1 1.758e-1
ax1

2 +bx1 2.291e-2
ax1

3 +bx1
2 + cx1 3.206e-3

ax1
4 +bx1

3 + cx1
2 +dx1 5.791e-4

ax1
5 +bx1

4 + cx1
3 +dx1

2 + ex1 3.857e-4

86

It is evident that the MAE of the Taylor Series expansion of ex− 1 corresponding to

the 5th order polynomial is in fact lower than the MAE of ex− 1 itself. Choosing the

5th order polynomial leads to a much more complex system equation though, which is

undesirable when the goal of the framework is to generate comprehensible equations. The

weight associated with each template product function is used to help remedy this problem,

penalizing the high order polynomial and giving selection advantage to the exponential

function. Adjusting the weights is a matter of user preference, effecting automatic selection

of product functions. Equal weights leads to an accurate and complex function that is often

overfit, so weighting should be done heuristically to prefer simpler functions.

4.3.6 Missing Template Functions

When a template function is missing that would otherwise best fit the product function

samples, it is simply approximated using existing template functions. This is the general

case with any curve fitting problem. The template functions shown in Section 4.1.3 are used

to analyze the following system

y [k] =
1

u1 [k]+1
.

The system is excited with input drawn from U [−0.75,0.75] and then the input-output data

is analyzed using the framework with the TCN formulation

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[
u1 [k] u1 [k−1] u1 [k−2]

]
.

Initial training and analysis are performed, yielding the correct input mask
[
1 0 0

]
.

Retraining, analysis, and GA tuning are then performed to yield the system equation

estimate

y [k] = 0.373
(

e−2.738u1[k]−1
)
+0.969.

87

The MAE that is calculated at each step of the framework is reported as follows:

TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
3.640e-2 4.425e-2 5.423e-3 5.919e-2 4.276e-2

The MAE of the final GA tuned equation is worse than both TCN models, which is a result

of the equation structure not resembling the original system. The estimated equation is still

a good representation of the modeled system, as evidenced by the response plot of Fig. 4.6.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.5

1

1.5

2

2.5

3

3.5

4
System vs Estimated Equation Response

System
Estimate

Figure 4.6: System vs. estimated equation response with a missing template function.

4.3.7 Models Undefined at or around 0

The framework requires product functions to have a 0 output for a 0 input, but what

if a system is not defined at or around the 0 input? This is permissible in the framework

provided all the template product functions are defined at the 0 input. The input data is

simply mean-centered and then analysis is performed. After analysis, the shift needed to

center the input data is used to modify the final function. This yields a more complex product

88

function that requires some simplification, but is equally effective in producing accurate

estimated equations.

To illustrate the operation of the framework on models undefined at or around a 0 input,

the following example system is analyzed

y [k] = u1 [k]
2.

The input is drawn from U [1,2] and then the input-output data is analyzed using the

framework with the TCN formulation

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[
u1 [k] u1 [k−1] u1 [k−2]

]
.

Initial TCN training and analysis yields the correct input mask
[
1 0 0

]
. Retraining,

analysis, and GA tuning are performed to yield the final equation

y [k] = 1.002(u1 [k]−1.500)2 +3.000(u1 [k]−1.500)+2.250.

Examination of the equation shows that in a similar fashion to product functions needing

modification, models undefined at or around zero are determined to contain product functions

not in the original system. The product functions that don’t exist in the original system,

however, will cancel out to yield the original system equation. The MAE of the final GA

tuned equation is better than both TCN models and their corresponding equation estimates,

in line with accuracy trends seen in models defined at 0. The MAE at each step of the

framework is reported as follows:

TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
2.867e-3 3.835e-3 1.728e-3 1.526e-3 2.060e-4

89

4.3.8 Higher Dimensional Product Functions

Product functions with more than 2 arguments cannot easily be visualized, and so manu-

ally examining their samples is not feasible. Since the framework operates without human

intervention, this is not an issue provided template functions are defined for product func-

tions containing higher numbers of arguments. To illustrate the operation of the framework

on models containing product functions with more than 2 arguments, the following example

system is analyzed

y [k] = u1 [k]u1 [k−2]u1 [k−4]u1 [k−6]u1 [k−8] .

The input is drawn from U [−1,1] and then the input-output data is analyzed using the

framework with the TCN formulation

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[
u1 [k] u1 [k−1] · · · u1 [k−9]

]
.

Initial TCN training and analysis yields the correct input mask, however retraining and

secondary analysis produce a worse estimate. The initial equation estimate is GA tuned to

yield the final equation

y [k] = 1.000u1 [k]u1 [k−2]u1 [k−4]u1 [k−6]u1 [k−8] .

Examination of the results alone does not indicate any significant difference from usage of

the framework on systems containing product functions of 1 or 2 variables, however key

model and analysis parameter changes are needed to obtain results for systems containing

higher order product functions. Notably, more TCN training epochs were needed in this

example for the error to reach a satisfactory level (100 epochs vs. 10-30 epochs in all other

synthetic experiments). Emphasis must be placed on training the TCN network sufficiently

for the framework to succeed since the equation estimate of the sensitivity analysis is based

90

solely on the TCN. For the analysis, larger initial and detailed sweep sets were required

(initial and detailed sweep sets of size 250 and 5000 used vs. 25 and 1000 in all other

synthetic experiments). Since the accuracy of the framework improves with larger sweep

sets, it is recommended to use the largest sweep set possible considering computational

expense to increase successful detection and identification of higher dimensional product

functions. The MAE at each step of the framework is reported as follows:

TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
4.250e-3 1.027e-3 6.046e-3 1.540e-2 1.134e-7

4.4 Data-Driven Experiments

This section demonstrates application of the implemented framework to real-world

systems. We assume no prior knowledge of the systems examined before processing the

input-output data. The framework is often run multiple times and in multiple configurations

to gather information about the systems in question.

4.4.1 Silverbox Analysis

The Silverbox dataset used for identification benchmarking in Section 2.4 is analyzed

using the implemented equation generation framework. Recall that the Silverbox is a

circuit equivalent of a nonlinear spring-mass damper system in the likes of an automotive

suspension, described by the continuous equation

mÿ(t)+dẏ(t)+ k1y(t)+ k3y3 (t) = u(t) .

It has a single input u(t) and single output y(t) that are represented in discrete time by u[k]

and y[k]. The input represents applied force and the output represents displacement, however

91

both are voltages in the dataset since the Silverbox is a circuit. For further detail, refer back

to Section 2.4.

A TCN model is formulated with K=3, L=2, and 22 hidden units per kernel leg. This is

chosen based on the most successful simulation model reported in Section 2.4.3, although

a smaller history and fewer training epochs are used due to the diminishing returns on

accuracy for increased computational effort. There is also a point where improving the

accuracy of the TCN model does not effect the selection and fitting of product functions.

The TCN is formulated as a series-parallel model as follows:

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[

u1 [k] u1 [k−1] u1 [k−2] u1 [k−3] u1 [k−4]
y1 [k−1] y1 [k−2] y1 [k−3] y1 [k−4] y1 [k−5]

]
.

Training is performed over 100 epochs using samples 40585-85000. Error metrics are

reported as MAE and RMSE to be both consistent with the analysis work and in consensus

with Silverbox literature. The training one-step-ahead prediction MAE is 0.503 mV and the

RMSE is 0.642 mV. The validation error MAE as reported on samples 85001-127500 is

0.497 mV and the RMSE is 0.643 mV.

The framework is used to analyze the system twice; once with weight towards linear

product functions, and once with no product function weighting. The initial TCN model is

identical for both analyses, as is the initial magnitude and variance contributions. An initial

sweep set with 250 elements is used to yield 250 points per product function for determining

the average magnitude contribution and variance contribution of each product function. The

identified product functions and their corresponding magnitude and variance contributions

based on a 2% contribution cutoff are shown in Table 4.6. This corresponds to an input mask

of
[

1 0 0 0 0
1 0 1 1 0

]
for later retraining. The product functions determined to be significant

are sampled using a detailed sweep set containing 1000 elements. Plots of the resultant

samples for each product are shown in Fig 4.7.

92

Table 4.6: Product function contributions for the Silverbox.

Product Function zi/∑(Z) si/∑(S)
f (y1[k−1]) 4.6% 24.8%
f (y1[k−3]) 4.1% 24.2%
f (y1[k−4]) 2.2% 6.5%

f (u1[k]) 1.9% 4.4%

Examination of the sampled product functions reveals that the Silverbox system is

predominantly linear, which is consistent with the findings of other Silverbox literature.

Manual examination of the product function plots of one or two variables proves to be a

power visual tool for learning about systems. Product functions of higher orders cannot

be easily visualized and examined, leaving their estimation solely to the framework. The

framework process up to this point is identical regardless of the template product function

weights, and the analysis is now split based on weighting schemes as previously mentioned.

Since the system is predominantly linear, analysis is first performed with higher weight on

the linear template product function. The system equation is initially estimated as

y [k] = 0.484y [k−1]−0.418y [k−3]−0.231y [k−4]+0.480u [k] ,

having a one-step-ahead prediction MAE of 12.48 mV and an RMSE of 15.53 mV. When

analysis is performed without any weight assigned to template product functions, the system

equation is initially estimated as

y [k] = 40.0y[k−1]5−3.37y [k−1]4−3.38y [k−1]3 +28.6y [k−1]2 +0.543y [k−1]

+7.87y [k−3]5−1.79y [k−3]4−1.07y [k−3]3 +0.144y [k−3]2−0.395y [k−3]

−4.99y [k−4]5 +0.207y [k−4]4 +0.396y [k−4]3−0.0525y [k−4]2−0.237y [k−4]

+1.00tanh(1.38(u [k]−0.0558))−0.891(u [k]−0.0558)+0.0272,

93

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.1

-0.05

0

0.05

0.1

0.15

(b)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(c)

-0.1 -0.05 0 0.05 0.1
-0.05

0

0.05

(d)

Figure 4.7: Plots showing 1000 samples for each product function of significance as
extracted from the TCN trained on the Silverbox dataset: (a) f̂ (y1[k−1]); (b) f̂ (y1[k−3]);
(c) f̂ (y1[k−4]); (d) f̂ (u1[k])

having a one-step-ahead prediction MAE of 11.02 mV and an RMSE of 14.01 mV. While the

accuracy of the estimate has improved, the equation is much more complex. The framework

generally suffers from overfitting without weighting the template product functions. As is

the general case with system identification, there is an accuracy versus complexity trade-off.

Both weighted and non-weighted analyses are performed again after retraining of the

TCN model using the input mask. The same retrained TCN is used for both analyses

94

since the input mask is based on the contribution of product functions, and is therefore

identical. The retrained TCN model has a corresponding training one-step-ahead prediction

MAE of 1.880 mV and a RMSE of 2.369 mV. The validation MAE is 1.887 mV and the

RMSE is 2.381 mV. The model is excited with an initial sweep set of 250 elements and

the corresponding product functions are identified based on a 2% contribution cutoff and

shown in Table 4.7. Of particular interest is the fact that a product function not present in the

initial model analysis is present in the retrained model analysis. As with the initial model, a

detailed sweep set of 1000 elements is used to sample the product functions of the retrained

model. The plots are shown in Fig. 4.8.

Table 4.7: Product function contributions for the Silverbox after retraining.

Product Function zi/∑(Z) si/∑(S)
f (y1[k−1]) 38.9% 51.7%
f (y1[k−3]) 30.0% 38.0%
f (y1[k−4]) 12.9% 6.5%

f (u1[k]) 9.0% 2.8%
f (y1[k−1],y1[k−3]) 2.4% 0.4%

Analysis continues with curve fitting for the samples of each product function. Linear

functions are again fit to the most significant 4 product functions with weighting, and

nonlinear functions are fit without weighting. In both analysis cases, the least significant

product function f̂ (y1[k−1],y1[k−3]) cannot be fit using template functions in a way that

improves the MAE of the overall equation estimate. Since it is of low significance and does

not improve the estimate, it is dropped. The sum of product function estimates with and

without template product function weighting is finally tuned by GA. The estimated equation

with weighting favoring linear functions is

y [k] = 1.057y [k−1]−0.896y [k−3]+0.334y [k−4]+0.476u [k] ,

95

having a one-step-ahead prediction MAE of 2.993 mV and RMSE of 3.637 mV. The MAE

before GA tuning is 4.914 mV and the RMSE 6.075 mV. Without weighting, the estimated

equation is

y [k] =−12.3y[k−1]5 +4.06y [k−1]4−0.646y [k−1]3−0.221y [k−1]2 +1.05y [k−1]

+33.0y [k−3]5−0.291y [k−3]4−3.30y [k−3]3−0.114y [k−3]2−0.850y [k−3]

−0.00287tanh(34.6(y [k−4]−1.76e−5))+0.346(y [k−4]−1.76e−5)−6.14e−4

+99.4u [k]5 +26.9u [k]4−4.49u [k]3−0.469u [k]2 +0.518u [k] ,

having a one-step-ahead prediction MAE of 2.359 mV and RMSE of 2.958 mV. The MAE

before GA tuning is 3.769 mV and the RMSE 4.778 mV. A third analysis was performed

afterwards using a heuristically tuned balanced weighting scheme to yield the final estimated

equation with linear and nonlinear terms

y [k] = 0.981tanh(1.50(y [k−1]+0.0421))−0.415(y [k−1]+0.0421)−0.0455

−0.865y [k−3]

−0.00386tanh(34.4(y [k−4]+1.76e−5))+0.358(y [k−4]+1.76e−5)−6.13e−4

+0.518u [k] .

The one-step-ahead error metrics for the linear, nonlinear, and mixed equations are summa-

rized for easy comparison in Table 4.8.

Table 4.8: One-step-ahead RMSE of Silverbox models in mV.

Model TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
Linear 0.643 15.53 2.381 6.075 3.637

Nonlinear 0.643 14.01 2.381 4.778 2.958
Mixed 0.643 15.46 2.381 3.816 2.777

96

There are a few key observations to be made by examining the error metrics of the three

equations. First and foremost, there is an increase in error between the initial TCN and

retrained TCN. This indicates that there is likely useful information in some of the inputs

deemed to be insignificant, which can be caused by the 2% contribution cutoff being too

high. A second indicator of this is that the initial equation estimate has a much higher error

than the initial TCN it was extracted from, which could also be caused and/or exacerbated

by a lack of well-fitting product function templates. Lowering the cutoff threshold may

give more accurate results, however the equation complexity may grow. Therefore, the

analysis should be performed with a desired acceptable level of error predefined. The metrics

show that equation generated using heuristically tuned balanced weighting outperforms the

equations with no weighting and with weighting heavily biased toward the linear product

function. This shows that carefully tuning the weights can prevent overfitting.

The analysis was performed again with a 1% contribution cutoff using the balanced

product function weighting, however the final estimated equation was more complex and

not as accurate. The error metrics are reported as follows:

TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
0.643 10.65 0.705 5.970 3.552

The initial equation contained 6 product functions of a single argument and 2 of two

arguments. The second and final equations contained 6 product functions of a single

argument and 2 of three arguments. Comparison of the initial and retrained TCN models

indicates that the significant inputs were properly identified for retraining. This points

to a lack of proper template functions as the reason for increased error in the equation

estimates. To increase the framework’s accuracy in generating an equation, the product

97

function samples should be inspected to come up with better template functions. Ideally, if

enough template functions exist, then manual inspection is not needed.

To compare the estimated equations to the Silverbox identification methods surveyed in

Section 2.4, the equation models are run in free simulation. The linear equation achieves

a simulation RMSE of 15.380 mV, which is competitive amongst linear models for the

Silverbox. An RMSE of 14.9 mV is achieved for a linear model in [42], while a slightly

better linear model with an RMSE of 14.4 mV is obtained in [38]. Similar results of

14.8 mV and 14.9 mV are obtained for linear models in [40]. A linear model obtains an

RMSE of 9.90 mV in [43], and another linear model obtains an RMSE of 13.7 mV in [46].

The nonlinear equation achieves a simulation RMSE of 18.590 mV, further supporting the

suspicion that the model suffers from overfitting. The mixed equation created using balanced

template product function weights achieves a simulation RMSE of 12.563 mV. While the

performance of the mixed equation surpasses the performance of the strict linear equation, it

is not very competitive against the top nonlinear identification models for the Silverbox. It

does, however, offer full transparency and simplicity. The performance of the framework

on the Silverbox dataset could be improved with further tuning and the addition of more

template product functions. The Silverbox is used to demonstrate the use of the framework

on real systems, so top tier equation results are not pursued.

98

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(b)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(c)

-0.1 -0.05 0 0.05 0.1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(d)

-0.03

-0.02

0.2

-0.01

0

0.1 0.2

0.01

0.10

0.02

0.03

0-0.1 -0.1
-0.2 -0.2

(e)

Figure 4.8: Plots showing 1000 samples for each product function of significance as extracted
from the retrained TCN for the Silverbox dataset: (a) f̂ (y1[k−1]); (b) f̂ (y1[k−3]); (c)
f̂ (y1[k−4]); (d) f̂ (u1[k]); (e) f̂ (y1[k−1],y1[k−3])

99

4.4.2 Vehicle Roll Analysis

The framework is used to generate a discrete dynamical system equation for the roll of

a vehicle. The vehicle, a 2017 Lincoln MKZ, was equipped with a Dataspeed Inc. ADAS

(Advanced Driver Assistance Systems) Kit and run autonomously with path and velocity

profiling controllers on the Winding Road Course at Transportation Research Center Inc.

(TRC) in East Liberty, Ohio. An aerial view of the test track is provided in Fig 4.9 along

with the vehicle path on the track. Data from three full laps and one partial lap around the

track is used for the analysis, with the variables of interest being velocity, steering angle,

and vehicle roll. Data from the first lap is shown in Fig. 4.10. The sample period is 0.05

second.

(a)

600 700 800 900 1000 1100 1200 1300
Position X (m)

-1850

-1800

-1750

-1700

-1650

-1600

-1550

-1500

-1450

-1400

-1350

Po
si

tio
n

Y
(m

)

Vehicle Path

(b)

Figure 4.9: The test track used for vehicle data collection: (a) Aerial view; (b) Vehicle path.

The analysis begins with formulation of the identification problem and the TCN. A

dynamics equation describing vehicle roll is desired. Velocity and steering angle are major

factors in vehicle roll, so they are chosen as the inputs to the system. Let y represent vehicle

100

0 50 100 150 200 250 300
-4

-2

0

2

An
gl

e
(d

eg
)

Roll

0 50 100 150 200 250 300
0

5

10

Ve
lo

ci
ty

 (m
/s

)

Velocity

0 50 100 150 200 250 300
Time (s)

-100

0

100

200

An
gl

e
(d

eg
)

Steering Angle

Figure 4.10: Vehicle data from a lap of the Winding Road Course.

roll, and u1, u2 represent vehicle velocity and steering angle respectively. The TCN is

formulated as follows to predict the current roll using past roll, velocity, and steering angle

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =

 u1 [k] u1 [k−1] u1 [k−2]
u2 [k] u2 [k−1] u2 [k−2]

y [k−1] y [k−2] y [k−3]

 .
A kernels size of 2 is used with 2 residual blocks and 32 hidden nodes per kernel leg. A

dropout rate of 10% is used on hidden nodes to assist with training and prevent overfitting.

Dropout is needed in this problem to prevent the TCN from learning to predict roll using

only past roll values. The TCN is trained for 150 epochs on 90% of the data, leaving 10%

of the data for validation. A training MAE of 2.344e-02 degrees and a validation MAE of

4.446e-02 degrees are obtained. A cutoff of 0.5% magnitude and variance contribution is

used to determine which product functions are significant.

101

An initial equation is generated and the TCN is retrained by masking off the irrelevant

inputs, however this leads to worse performance with a training MAE of 4.203e-02 degrees

and a validation MAE of 5.434e-02 degrees. As a result, the equation extracted from the

initial TCN is tuned by GA to yield

y [k] = 9.93e−1y [k−1]+4.81e−4u1 [k]y [k−1]+1.95e−4u2 [k] .

The final equation has a corresponding MAE of 2.116e-02 degrees, outperforming the initial

TCN model. This is an optimal success case for the framework. As formulated, the equation

and TCN produce a one-step-ahead prediction of the roll angle. The one-step-ahead and

simulation roll angle predictions estimated using the equation are compared to the original

angle data in Fig. 4.11. One-step-ahead performance is excellent, however simulation

performance does not see the same success. The simulated system equation is stable across

the test data and follows general trends in the original roll angle data, but the MAE is 1.190

degrees as opposed to the OSA MAE of 0.021 degrees. As a result, the estimated equation

is well suited for N-step-ahead prediction but is not suitable as a system observer or full

simulation model.

The simulation performance of the equation is directly related to the performance of the

TCN it was extracted from. Since the equation outperforms the TCN, better performance

cannot be expected from the analysis. The limiting factor is the trained TCN, which indicates

that more information is needed during training to improve the analysis resultant equation.

Notably, road grade is not included in the TCN model although it effects the roll angle.

The course is relatively flat, but such low roll angles in the training data are susceptible to

corruption by slight road grades. Completing the course at higher speeds would also illicit

higher roll angles, helping with system excitation for identification. Training data diversity

on different courses would also help with increasing the TCN accuracy.

102

0 50 100 150 200 250 300
Time (s)

-4

-3

-2

-1

0

1

2

3

4

An
gl

e
(d

eg
)

Equation One-Step-Ahead and Simulation Prediction vs Ground Truth

Truth
OSA
Sim

Figure 4.11: One-step-ahead and simulation prediction using the estimated equation.

The equation performance is already better than the TCN performance, but it can still be

improved. The sampled product functions are shown in Fig. 4.12 with their magnitude and

variance contributions, yielding insight into the equation generation process. The equation

accurately represents the two most dominant product functions, however representation of

the least dominant product function f̂ (u1[k],y[k−1]) is poor. While it is best approximated

with the template function au1[k]y[k−1], it would be better fit with a piecewise function of

two planes. Expanding the template product functions may likely increase the performance

of the equation model in this scenario.

103

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

(a)

-150 -100 -50 0 50 100 150
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(b)

-0.2
0 4

-0.15

-0.1

25

-0.05

0

0

10

0.05

-2
15 -4

(c)

Figure 4.12: The sampled product functions from the initial TCN of the vehicle roll data:
(a) f̂ (y[k−1]), 92.9% magnitude, 99.9% variance; (b) f̂ (u2[k]), 1.0% magnitude, 0.0%
variance; (c) f̂ (u1[k],y[k−1]), 0.6% magnitude, 0.0% variance.

4.4.3 Motor Cooling Analysis

A simulated electric vehicle motor cooling system is analyzed using the framework to

model the relationship between the motor temperature and the cooling system inlet and outlet

temperatures. The goal is to create a predictor of the motor temperature using only the inlet

and outlet temperatures. The cooling system is part of the electric vehicle model from the

104

Simulink example “Electric Vehicle Configured for HIL” [63] and is shown in Fig. 4.13. Let

y represent motor temperature and let u1 and u2 represent the inlet and outlet temperatures

respectively. Data is collected with a period of 2 seconds over a simulation duration of

20000 seconds. The vehicle throttle and the scenario road grade are varied randomly every

30 seconds between 0−50% and 0−5◦ respectively. The TCN is formulated as

ŷ [k] = F̂ (x̄ [k]) , x̄ [k] =
[

u1 [k] u1 [k−1] · · · u1 [k−6]
u2 [k] u2 [k−1] · · · u2 [k−6]

]
and trained on data from 5000−18500 seconds (data prior to 5000 seconds is discarded

as the motor had not yet reached a stable temperature). A total of 100 training epochs are

used with a kernel size of 3, 2 residual blocks, 48 hidden nodes in the kernel, and a dropout

rate of 5%. A cutoff of 1.0% magnitude and variance contribution is used to determine

significant product functions, which are shown in Fig. 4.15. The GA tuned final equation is

ŷ [k] =−0.149(u1 [k]−69.4)2 +6.71(u1 [k]−69.4)

−30.3tanh(0.116((u2 [k]−68.2)+18.2))−5.50((u2 [k]−68.2)+18.2)+130

+0.133(u1 [k]−69.4)(u2 [k]−68.2)

+76.047.

Metrics at each step of the analysis process are reported as follows:

TCN 1 EQN 1 TCN 2 EQN 2 EQN GA
7.994e-1 4.363e+0 1.003e+0 3.341e+0 9.348e-1

Data from 18500−20000 seconds is used for validation and testing. Since the model

takes the form of a simplified parallel model, it is always running in a similar fashion to

simulation. Simulation of the test section is shown in Fig. 4.14 along with the ground truth

data. The simulation MAE over the test set is 1.001 ◦C. Overall, simulation performance

105

follows performance of the actual system well. Since the GA tuned equation error is similar

to the error of the best TCN model, the framework was successful at generating an equation.

If further improvement is desired, then the TCN model will likely need to be changed with

the addition of more variables.

Radiator

Hose	Inlet

1

Outlet2

Env

Hose	Outlet

Pump

3

Inlet

H
p

A T
	i
n

H
e
n
v B

P
h
i

Heat	Exch.

Characteristic

T

Hose

Radiator

Expansion	Tank

Figure 4.13: The electric vehicle cooling system.

0 500 1000 1500
Time (s)

65

70

75

80

85

Te
m

pe
ra

tu
re

 (C
)

Cooling System Equation Simulation Prediction vs Ground Truth

Truth
Sim

Figure 4.14: Simulation of the electric vehicle motor temperature.

106

One of the key benefits of this framework is the flexibility of the model structure.

Many combinations of input and output variables can be tested to generate predictors. The

framework will automatically identify the most important inputs and input relationships. In

this way, creative predictors can be generated with little effort.

-8 -6 -4 -2 0 2 4 6 8
-30

-20

-10

0

10

20

30

40

50

(a)

-8 -6 -4 -2 0 2 4 6 8
-40

-30

-20

-10

0

10

20

30

40

50

(b)

(c)

Figure 4.15: The sampled product functions from the retrained TCN of the motor cooling
data (constant not shown): (a) f̂ (u2[k]), 48.1% magnitude, 49.3% variance; (b) f̂ (u1[k]),
42.6% magnitude, 47.3% variance; (c) f̂ (u1[k],u2[k]), 9.3% magnitude, 3.4% variance.

107

4.5 Summary and Conclusions

An implementation of the framework established in Chapter 3 was provided in this

chapter for generating discrete dynamical system equations from input-output data. The

strengths and weaknesses of the framework were analyzed and the implementation was

used to examine synthetic and real-world systems. The framework was demonstrated to

be successful at decomposing identification problems into a series of less complex curve

fitting problems. It was often observed that the resultant equation yielded better accuracy

than the neural network model it was derived from. This indicates that some portion of

underlying system dynamics were discovered by the framework, or at least approximated

well. While neural network models are generic and generally very accurate, they are often

much more complex than needed and have many parameters. The equation model generated

by the framework is far simpler than the neural network model and attempts to determine

underlying system structure as a means to reduce model complexity. Once the system

structure is estimated, then the genetic algorithm tuning adjusts the equation parameters to

better match the original input-output data. The framework proves to be a powerful and

generic analysis tool in examination of discrete dynamical systems.

108

Chapter 5: Conclusion

In this work, neural network based system identification was combined with a form of

sensitivity analysis to yield a framework for generating comprehensible discrete dynamical

system equations from input-output data. The framework was implemented and the imple-

mentation evaluated for performance on both synthetic and real systems. The framework

was demonstrated to successfully determine or approximate system structure and yield

accurate system equations.

5.1 Contributions

The fundamental contribution from this body of work is an advancement in the state

of systems analysis. The presented analysis framework is a pragmatic tool for not only

generating comprehensible system equations for input-output data, but for understanding

the underlying dynamics of a system as well. The framework sheds light on black box

systems and black box models alike by either exposing their structure or providing a

clear approximation. The framework also breaks down models, allowing for complex

identification problems to be reduced to a series of much simpler curve fitting problems.

The analysis framework is the resultant of combining neural network based system

identification with a form of sensitivity analysis. A neural network variant, known as the

temporal convolutional network, was investigated in this work for identification capabilities

109

and shown to yield benefits over traditional feedforward neural networks in free running

simulation performance. This indicates that it is preferred for use as an observer or parallel

system identification model and has superior N-step-ahead prediction capabilities. For this

reason, along with the generalization capacity of neural networks, the temporal convolutional

network was chosen for the identification portion of the framework.

The identification model created using a temporal convolutional network is analyzed

with a form of sensitivity analysis introduced in this work. The analysis is applicable to

generic models, so its contribution is not limited to the presented framework. The analysis

process is powered by a unique interpretation of a functional decomposition of the model,

providing a way to sample functional fragments of the model. This decomposition simplifies

the creation of the equation model by breaking the overall identification problem into a

series of smaller and less complex curve fitting problems. The sum of functional fragments

is then equivalent to the full equation model. This process allows for analysis of increasingly

complex systems.

The system identification and sensitivity analysis methods were combined and aug-

mented to yield the presented system equation generation framework. Iterative processes

and conditional operations were integrated into the framework to increase the success rate

of identifying a system’s structure and increase the accuracy of the resultant equation. The

final analysis framework is a robust and powerful system analysis tool.

5.2 Future Work

Future work can be categorized under either system identification, model analysis, or

the framework implementation. The temporal convolutional network used for system identi-

fication has many high level parameters within itself, such as number of residual blocks and

110

kernel size. The relationship between these parameters and the structure of systems should

be identified. For example, does a kernel size of 2 lead to better identification of product

functions of 2 arguments? Beyond temporal convolutional networks, a multitude of other

neural network variants exist that could be examined. The temporal convolutional network

was chosen in this work due to the potential for success exhibited by other convolutional

architectures on sequence modelling problems and the gap in existing literature studying its

identification capabilities.

The model analysis may show improvement with better sampling techniques. Currently,

random uniform sampling is used to obtain product function samples. More intelligent

sampling procedures typically seen in sensitivity analysis such as Latin hypercube sampling

[64] may likely improve the analysis. Determining the optimal sensitivity measure (or

combination thereof) will also likely improve the analysis by increasing the accuracy of

detecting product functions present in the model. A comparison of sensitivity measures

should be conducted in future work.

The framework implementation has much room for expansion in future work. The list of

template product functions included in the presented implementation can be added to based

on real use of the framework to create a robust library of functions. Ideally, templates could

be shared between those using the framework to accomplish this task. Template functions

for product functions of more than three arguments must be defined as well. Among the

template functions, better selection methods should be examined. Template functions are

currently chosen based on heuristic weighting, which allows for user preference but hinders

the level of autonomy achieved by the framework. Among both the system identification and

template function selection, issues with overfitting must be better mitigated. The function

111

weighting helps reduce overfitting of template functions while dropout reduces overfitting

during temporal convolutional network identification.

5.3 Concluding Remarks

This work presents a framework for generating equations of discrete dynamical systems

using input-output data and provides a publicly available implementation - a tool to be used

for system analysis. The framework sheds light on black box systems and affords a new

level of transparency in system identification. The resultant equation models produced by

the framework can serve as substitutes for opaque models where transparency is desired

or required. This allows for new modelling options in fields where black box models are

undesirable, such as control, stability analysis, and software verification. In summary, the

presented framework is a new instrument in the domain of systems analysis that gener-

ates comprehensible discrete dynamical system equations from input-output data using a

methodical and transparent process.

112

Appendix A: Python Code

Listing A.1: Example usage of the implemented framework.
1 import numpy as np
2
3 from lib.fitting_functions import fitting_functions
4 from estimate_equation import estimate_equation
5
6 if __name__ == "__main__":
7
8 model_parameters = {
9 "epochs": 20, # upper epoch limit

10 "cuda": False , # use the GPU
11 "dropout": 0.0, # dropout applied to layers
12 "clip": -1, # -1 means no clip
13 "ksize": 3, # kernel size
14 "levels": 2, # number of levels
15 "nhid": 64, # number of hidden units per layer
16 "batch_size_train": 32, # batch size for training
17 "train_loss_full": 0, # [1] full loss , [0] avg over batches
18 "lr": 0.002, # learning rate
19 "lr_grad_period": 20, # decay period for learning rate
20 "lr_grad_rate": 0.5, # decay multiplier after decay period
21 "optimizer": ’Adam’, # optimizer to use
22 "history": 5, # number of time sample inputs to the network
23 "test_data": 0.2, # test data proportion
24 "seed": 1111, # random seed
25 "visual": False , # plot training metrics
26 "save_visual": True , # save training metric plot
27 }
28
29 analysis_parameters = {
30 "functions": fitting_functions (), # an object containing template product functions
31 "sweep_initial": 25, # elements in initial sweep set for significance detection
32 "sweep_detailed": 1000, # elements in detailed sweep set for curve fitting
33 "contrib_thresh": 0.05, # minimum product function significance for inclusion [0.00 -1.00]
34 "contrib_thresh_omit": 0.10, # threshold for conditional product function inclusion
35 "use_f_weight": True , # use product function weighting
36 "seed": 1111, # analysis rng seed for reproducability
37 "verbose": True , # print details of analysis
38 "visual": False , # show plots of available 2D and 3D product function samples
39 "save_visual": True , # save plots of available 2D and 3D product function samples
40 "GA_population": 250, # population size for GA tuning
41 "GA_generations": 100 # number of generations in GA tuning
42 }
43
44 # Verbose example extension.
45 # y[k] = -0.5*u[k-1] + 0.5*y[k-2]^2 + 0.5*u[k]y[k-1]
46 input_data = 2*(np.random.rand (25000 , 2) -0.5)
47 output_data = np.zeros ([25000 , 1])
48
49 for i in range(2, 25000):
50 u_k0 = input_data[i, 0]
51 u_k1 = input_data[i-1, 0]
52 y_k1 = output_data[i-1, 0]
53 y_k2 = output_data[i-2, 0]
54 input_data[i, 1] = y_k1
55 input_data[i-1, 1] = y_k2
56
57 output_data[i, 0] = -0.5* u_k1 + 0.5* pow(y_k2 ,2) + 0.5* u_k0*y_k1
58
59 # Estimate the equation using input -output data.
60 estimate_equation(model_parameters , analysis_parameters , input_data , output_data)

113

Listing A.2: The estimate_equation() function which executes the overall framework.
1 # Estimate a discrete dynamical system equation for input_data and output_data.
2 # Author: John M. Maroli
3
4 import copy
5
6 from lib.create_model import create_model
7 from lib.analyze_model import analyze_model
8 from lib.evaluate_function import evaluate_function
9 from lib.tune_model import tune_model

10
11 FORMAT = ’%.3e’
12
13 def estimate_equation(model_parameters , analysis_parameters , input_data , output_data):
14
15 sweep_initial = analysis_parameters["sweep_initial"]
16 sweep_detailed = analysis_parameters["sweep_detailed"]
17 input_mask = 1
18
19 # Initial round of training.
20 print("Initial training and analysis")
21 print("==")
22 model_dictionary_v1 = create_model(model_parameters , input_data , output_data , input_mask)
23
24 model_function_v1 , new_mask = analyze_model(analysis_parameters , model_dictionary_v1 ,
25 input_data , output_data , input_mask)
26 metrics_v1 = evaluate_function(model_function_v1 , input_data , output_data)
27
28 for channel_id , channel_metrics in enumerate(metrics_v1):
29 print("Channel y" + str(channel_id +1) + " metrics")
30 print("MAE : " + str(FORMAT%channel_metrics["MAE"]))
31 print("RMSE : " + str(FORMAT%channel_metrics["RMSE"]))
32 print("MAX : " + str(FORMAT%channel_metrics["MAX"]))
33 print("MIN : " + str(FORMAT%channel_metrics["MIN"]))
34 print()
35
36 # Model retraining after first analysis.
37 print("Masked retraining and analysis")
38 print("==")
39 print("New mask")
40 print(new_mask)
41 print ()
42 model_dictionary_v2 = create_model(model_parameters , input_data , output_data , new_mask)
43 model_function_v2 , _ = analyze_model(analysis_parameters , model_dictionary_v2 ,
44 input_data , output_data , new_mask)
45 metrics_v2 = evaluate_function(model_function_v2 , input_data , output_data)
46
47 for channel_id , channel_metrics in enumerate(metrics_v2):
48 print("Channel y" + str(channel_id +1) + " metrics")
49 print("MAE : " + str(FORMAT%channel_metrics["MAE"]))
50 print("RMSE : " + str(FORMAT%channel_metrics["RMSE"]))
51 print("MAX : " + str(FORMAT%channel_metrics["MAX"]))
52 print("MIN : " + str(FORMAT%channel_metrics["MIN"]))
53 print()
54
55 model_function_v3 = []
56 metrics_v3 = []
57 for c in range(0, len(metrics_v2)):
58 if metrics_v2[c]["MAE"] < metrics_v1[c]["MAE"]:
59 print("Channel y" + str(c+1) + " improved")
60 model_function_v3.append(model_function_v2[c])
61 metrics_v3.append(metrics_v2[c])
62 else:
63 print("Channel y" + str(c+1) + " did not improve")
64 model_function_v3.append(model_function_v1[c])
65 metrics_v3.append(metrics_v1[c])
66 print("MAE : " + str(FORMAT%metrics_v1[c]["MAE"]) + " -> " + str(FORMAT%metrics_v2[c]["MAE"]))
67 print("RMSE : " + str(FORMAT%metrics_v1[c]["RMSE"]) + " -> " + str(FORMAT%metrics_v2[c]["RMSE"]))
68 print ()
69
70 # Check if data fits the model and re-analyze if needed.
71 mae_percent_range = []
72 for c in range(0, len(metrics_v3)):
73 mae_percent_range.append(metrics_v3[c]["MAE"]/(metrics_v3[c]["MAX"]-metrics_v3[c]["MIN"]))
74 # Threshold value for deeper analysis as MAE percent of total range.
75 if any(value > 0.10 for value in mae_percent_range):
76 hf_loop_limit = 5
77 hf_loop_count = 1
78 while hf_loop_count <= hf_loop_limit:
79 hf_sweep_initial = sweep_initial *(5* hf_loop_count)
80 hf_sweep_detailed = sweep_detailed *(int (0.5* hf_loop_count)+1)
81
82 hf_analysis_parameters = copy.deepcopy(analysis_parameters)
83 hf_analysis_parameters["sweep_initial"] = hf_sweep_initial
84 hf_analysis_parameters["sweep_detailed"] = hf_sweep_detailed
85
86 # Perform higher fidelity analysis on initial model.

114

87 print("##")
88 print("Poor fit: higher fidelity analysis required")
89 print("Increasing initial sweep multiples from {:d} to {:d}".format(sweep_initial , hf_sweep_initial))
90 print("##")
91 print ()
92 print("High fidelity analysis iteration " + str(hf_loop_count))
93 print("==")
94 model_function_v1 , new_mask = analyze_model(hf_analysis_parameters , model_dictionary_v1 ,
95 input_data , output_data , input_mask)
96 metrics_v1 = evaluate_function(model_function_v1 , input_data , output_data)
97
98 for channel_id , channel_metrics in enumerate(metrics_v1):
99 print("Channel y" + str(channel_id +1) + " metrics")

100 print("MAE : " + str(FORMAT%channel_metrics["MAE"]))
101 print("RMSE : " + str(FORMAT%channel_metrics["RMSE"]))
102 print("MAX : " + str(FORMAT%channel_metrics["MAX"]))
103 print("MIN : " + str(FORMAT%channel_metrics["MIN"]))
104 print ()
105
106 # Perform higher fidelity analysis on retrained model.
107 print("Masked retraining and analysis")
108 print("==")
109 print("New mask")
110 print(new_mask)
111 print()
112 model_dictionary_v2 = create_model(model_parameters , input_data , output_data , new_mask)
113 model_function_v2 , _ = analyze_model(hf_analysis_parameters , model_dictionary_v2 ,
114 input_data , output_data , new_mask)
115 metrics_v2 = evaluate_function(model_function_v2 , input_data , output_data)
116
117 for channel_id , channel_metrics in enumerate(metrics_v2):
118 print("Channel y" + str(channel_id +1) + " metrics")
119 print("MAE : " + str(FORMAT%channel_metrics["MAE"]))
120 print("RMSE : " + str(FORMAT%channel_metrics["RMSE"]))
121 print("MAX : " + str(FORMAT%channel_metrics["MAX"]))
122 print("MIN : " + str(FORMAT%channel_metrics["MIN"]))
123 print ()
124
125 # Combined analysis evaluation.
126 model_function_v3 = []
127 metrics_v3 = []
128 for c in range(0, len(metrics_v2)):
129 if metrics_v2[c]["MAE"] < metrics_v1[c]["MAE"]:
130 # Retrained model results are better.
131 print("Channel y" + str(c+1) + " improved")
132 model_function_v3.append(model_function_v2[c])
133 metrics_v3.append(metrics_v2[c])
134 else:
135 # Initial model results are better.
136 print("Channel y" + str(c+1) + " did not improve")
137 model_function_v3.append(model_function_v1[c])
138 metrics_v3.append(metrics_v1[c])
139 print("MAE : " + str(FORMAT%metrics_v1[c]["MAE"]) + " -> " + str(FORMAT%metrics_v2[c]["MAE"]))
140 print("RMSE : " + str(FORMAT%metrics_v1[c]["RMSE"]) + " -> " + str(FORMAT%metrics_v2[c]["RMSE"]))
141 print()
142
143 # Check if the data fits the model.
144 mae_percent_range = []
145 for c in range(0, len(metrics_v3)):
146 mae_percent_range.append(metrics_v3[c]["MAE"]/(metrics_v3[c]["MAX"]-metrics_v3[c]["MIN"]))
147 if all(value < 0.10 for value in mae_percent_range):
148 print("Higher fidelity analysis was successful")
149 break
150
151 # Set a limit on depth of analysis.
152 hf_loop_count = hf_loop_count + 1
153 if hf_loop_count == hf_loop_limit:
154 print("WARNING: Higher fidelity analysis failed to fit data ,")
155 print(" parameter tuning will still be attempted")
156 break
157 print()
158
159 print("Genetic algorithm tuning")
160 print("==")
161 tuning_parameters = {"GA_population": analysis_parameters["GA_population"],
162 "GA_generations": analysis_parameters["GA_generations"],
163 "visual": analysis_parameters["visual"],
164 "save_visual": analysis_parameters["save_visual"]}
165 model_function_v4 = tune_model(tuning_parameters , model_function_v3 , input_data , output_data)
166 metrics_v4 = evaluate_function(model_function_v4 , input_data , output_data)
167
168 model_function_v5 = []
169 metrics_v5 = []
170 for c in range(0,len(metrics_v4)):
171 if metrics_v4[c]["MAE"] < metrics_v3[c]["MAE"]:
172 print("Channel y" + str(c+1) + " improved")
173 model_function_v5.append(model_function_v4[c])
174 metrics_v5.append(metrics_v4[c])

115

175 else:
176 print("Channel y" + str(c+1) + " did not improve")
177 model_function_v5.append(model_function_v3[c])
178 metrics_v5.append(metrics_v3[c])
179 print("MAE : " + str(FORMAT%metrics_v3[c]["MAE"]) + " -> " + str(FORMAT%metrics_v4[c]["MAE"]))
180 print("RMSE : " + str(FORMAT%metrics_v3[c]["RMSE"]) + " -> " + str(FORMAT%metrics_v4[c]["RMSE"]))
181
182 print ()
183
184 print("Final estimation")
185 print("==")
186 # Print GA tuned equations.
187 for idc , channel_function in enumerate(model_function_v5):
188 y_str = "y" + str(idc +1) + "[k] = "
189 for idf , product_function in enumerate(channel_function):
190 if product_function["estimate_string"] != None:
191 y_str = y_str + product_function["estimate_string"]
192 if idf < len(channel_function) - 1:
193 y_str = y_str + " + "
194 print(y_str)
195 print()

Listing A.3: The create_model() function which creates and trains a TCN model.
1 # Generate a TCN model from input output data.
2 #
3 # Input and output are time series , each row is a time entry and each column
4 # is a dimension of the data. Most recent data is the last column.
5 #
6 # Example input: Example output:
7 # x1[k-n] x2[k-n] x3[k-n] y1[k-n] y2[k-n]
8 #
9 # x1[k-2] x2[k-2] x3[k-2] y1[k-2] y2[k-2]

10 # x1[k-1] x2[k-1] x3[k-1] y1[k-1] y2[k-1]
11 # x1[k] x2[k] x3[k] y1[k] y2[k]
12 #
13 # Training data is rearanged into input ’X_train ’ and output ’Y_train ’.
14 # Each row of ’X_train ’ is a sample of length ’history ’ and dimension
15 # ’input_channels ’ in the following format (ex: history = 4):
16 #
17 # x1[k-3] x1[k-2] x1[k-1] x1[k]
18 # x2[k-3] x2[k-2] x2[k-1] x2[k]
19 # x3[k-3] x3[k-2] x3[k-1] x3[k]
20 #
21 # Note that this matrix is flipped right -left in the dissertation.
22 #
23 # Each row of ’Y_train ’ is a sample of length 1 and dimension
24 # ’output_channels ’ in the following format:
25 # y1[k]
26 # y2[k]
27 #
28 # The goal of the TCN is to predict y[k] given x[k] .. x[k-n]
29 #
30 # The mask is in the same format as ’X_train ’ and determines which inputs
31 # are hidden from the TCN. Element -wise multiplication is used to set input
32 # elements to 0 with the mask.
33
34 import torch
35 import torch.optim as optim
36 import torch.nn.functional as F
37 import numpy as np
38 import time
39 import os
40 import matplotlib.pyplot as plt
41 from lib.model import TCN
42 import pyprind # Progress bar
43
44 FORMAT = ’%.3e’
45
46 def count_parameters(model):
47 return sum(p.numel() for p in model.parameters () if p.requires_grad)
48
49 def create_model(model_parameters , inputData , outputData , inputMask =1):
50
51 epochs = model_parameters["epochs"] # upper epoch limit
52 cuda = model_parameters["cuda"] # use the GPU
53 dropout = model_parameters["dropout"] # dropout applied to layers
54 clip = model_parameters["clip"] # -1 means no clip
55 ksize = model_parameters["ksize"] # kernel size
56 levels = model_parameters["levels"] # number of levels
57 nhid = model_parameters["nhid"] # number of hidden units per layer
58 batch_size_train = model_parameters["batch_size_train"] # batch size for training
59 train_loss_full = model_parameters["train_loss_full"] # [1] full loss , [0] avg over batches
60 lr = model_parameters["lr"] # learning rate
61 lr_grad_period = model_parameters["lr_grad_period"] # decay period for learning rate
62 lr_grad_rate = model_parameters["lr_grad_rate"] # decay multiplier after decay period

116

63 optimizer = model_parameters["optimizer"] # optimizer to use
64 history = model_parameters["history"] # number of time sample inputs to the network
65 test_data = model_parameters["test_data"] # test data proportion
66 seed = model_parameters["seed"] # random seed
67 visual = model_parameters["visual"] # plot training metrics
68 save_visual = model_parameters["save_visual"] # save training metric plot
69
70 torch.manual_seed(seed)
71
72 # Get the current data output folder if saving data and plots.
73 if save_visual:
74 if not os.path.exists(’./ output ’):
75 os.mkdir(’./ output ’)
76 model_dir_count = 1
77 while os.path.exists(’./ output/model_ {}’.format(model_dir_count)):
78 model_dir_count = model_dir_count + 1
79 os.mkdir(’./ output/model_ {}’.format(model_dir_count))
80
81 # Create the TCN network.
82 print("Initializing TCN model ...")
83 history_eff = (ksize -1)*(pow(2,levels +1) -1) -(ksize -1) + 1
84 input_length = inputData.shape [0]
85 output_length = outputData.shape [0]
86 if input_length != output_length:
87 print("Input and output data must be the same length.")
88 exit
89 input_channels = inputData.shape [1] # dimension of x[k]
90 output_channels = outputData.shape [1] # dimension of y[k]
91 channel_sizes = [nhid]* levels
92 model = TCN(input_channels , output_channels , channel_sizes , ksize , dropout=dropout)
93 print("The network has ", levels , " hidden levels with a kernel size of ", ksize , sep=’’)
94 print("The oldest input that can be seen is x[k-", history_eff -1, "]", sep=’’)
95 if history_eff > history: print("WARNING: Effective history exceeds input history ,")
96 if history_eff > history: print(" inputs beyond x[k-" + str(history -1) + "] are not visible")
97 print("The network contains " + str(count_parameters(model)) + " parameters")
98 print ()
99

100 # Format the training and test data.
101 samples = input_length - history + 1
102 train_samples = int(np.round((1- test_data)*samples))
103 test_samples = samples -train_samples
104 X_train = np.zeros([train_samples , input_channels , history])
105 Y_train = np.zeros([train_samples , output_channels])
106 X_test = np.zeros([test_samples , input_channels , history])
107 Y_test = np.zeros([test_samples , output_channels])
108 input_range = []
109 input_shift = []
110 shiftedInputData = np.copy(inputData)
111 for i in range(0, input_channels):
112 minRange = min(inputData[:,i])
113 maxRange = max(inputData[:,i])
114 if minRange <= 0 and maxRange >= 0:
115 # No shifting required , the zero point is in the input range.
116 input_range.append ([minRange , maxRange])
117 input_shift.append (0)
118 else:
119 # Adjust the input channel to center it about zero.
120 shift = (minRange + maxRange)/2
121 shiftedInputData [:,i] = shiftedInputData [:,i] - shift
122 input_shift.append(shift)
123 input_range.append ([minRange -shift , maxRange -shift])
124 for i in range(0, train_samples):
125 X_train[i,:,:] = shiftedInputData[i:(i+history)].T
126 Y_train[i,:] = outputData[i+history -1].T
127 for i in range(train_samples ,samples):
128 X_test[i-train_samples ,:,:] = shiftedInputData[i:(i+history)].T
129 Y_test[i-train_samples ,:] = outputData[i+history -1].T
130
131 # Normalize data to be mean centered with unit covariance.
132 # Apply input mask.
133 mu_x = np.mean(X_train ,axis =0)
134 sig_x = np.var(X_train ,axis =0)
135 mu_y = np.mean(Y_train ,axis =0)
136 sig_y = np.var(Y_train ,axis =0)
137 mu_y_t = torch.tensor(mu_y , dtype=torch.float)
138 sig_y_t = torch.tensor(sig_y , dtype=torch.float)
139 X_train = torch.tensor (((X_train -mu_x)/sig_x)*inputMask ,dtype=torch.float)
140 Y_train = torch.tensor ((Y_train -mu_y)/sig_y ,dtype=torch.float)
141 X_test = torch.tensor (((X_test -mu_x)/sig_x)*inputMask ,dtype=torch.float)
142 Y_test = torch.tensor ((Y_test -mu_y)/sig_y ,dtype=torch.float)
143
144 # Move data to the GPU if one is present.
145 if cuda:
146 model.cuda()
147 X_train = X_train.cuda()
148 Y_train = Y_train.cuda()
149 X_test = X_test.cuda()
150 Y_test = Y_test.cuda()

117

151 mu_y_t = mu_y_t.cuda()
152 sig_y_t = sig_y_t.cuda()
153
154 # Define the training function.
155 optimizer = getattr(optim , optimizer)(model.parameters (), lr=lr)
156 def train(epoch):
157 model.train()
158 batch_idx = 1
159 epoch_loss = 0
160 for i in range(0, X_train.size()[0], batch_size_train):
161 if i + batch_size_train > X_train.size()[0]:
162 x, y = X_train[i:], Y_train[i:]
163 else:
164 x, y = X_train[i:(i+batch_size_train)], Y_train[i:(i+batch_size_train)]
165 optimizer.zero_grad ()
166 output = model(x)
167 loss = F.mse_loss(output*sig_y_t+mu_y_t , y*sig_y_t+mu_y_t)
168 loss.backward ()
169 if clip > 0:
170 torch.nn.utils.clip_grad_norm(model.parameters (), clip)
171 optimizer.step()
172 batch_idx += 1
173 epoch_loss += loss.data.item()
174 return epoch_loss / (batch_idx - 1)
175
176 # Define test loss function.
177 def evaluateTestLoss ():
178 model.eval()
179 output = model(X_test)
180 test_loss = F.mse_loss(output*sig_y_t+mu_y_t , Y_test*sig_y_t+mu_y_t)
181 return test_loss.data.item()
182
183 # Train the network
184 print("Training TCN model ...")
185 progress_bar = pyprind.ProgBar (2*epochs , monitor=True)
186 testLossHistory = list()
187 trainLossHistory = list()
188 for ep in range(1, epochs +1):
189 trainloss = train(ep)
190 testloss = evaluateTestLoss ()
191 if train_loss_full == 1:
192 # Calculate training loss over all training data. More accurate but uses more RAM.
193 if cuda : model.cpu()
194 trainloss = F.mse_loss(model(X_train.cpu())*sig_y_t+mu_y_t , Y_train.cpu()*sig_y_t+mu_y_t)
195 if cuda : model.cuda()
196 testLossHistory.append(testloss)
197 trainLossHistory.append(trainloss)
198 if ep % lr_grad_period == 0:
199 lr = lr*lr_grad_rate
200 progress_bar.update ()
201 progress_bar.update ()
202 time.sleep (0.5)
203 print ()
204
205 # Plot training and test loss.
206 if save_visual == True or visual == True:
207 plt.figure ()
208 ax = plt.subplot (1,1,1)
209 plt.plot(trainLossHistory)
210 plt.plot(testLossHistory)
211 plt.legend ([’Training Loss’,’Test Loss’])
212 plt.title(’Training and Test Loss’)
213 plt.xlabel(’Epoch’)
214 plt.ylabel(’MSE Loss’)
215 ax.set_yscale("log", nonposy=’clip’)
216 if save_visual == True: plt.savefig(’./ output/model_ {}/ loss.pdf’.format(model_dir_count))
217 if visual == True: plt.show()
218 print("Min train: epoch " + str(np.argmin(trainLossHistory)+1))
219 print("Min test: epoch " + str(np.argmin(testLossHistory)+1))
220 print ()
221
222 # Calculate data fit metrics on the CPU.
223 model.cpu()
224 X_data = torch.cat([X_train.cpu(), X_test.cpu()], dim=0)
225 Y_data = torch.cat([Y_train.cpu(), Y_test.cpu()], dim=0)
226 Y_pred = np.zeros([samples , output_channels])
227 Y_pred = torch.tensor(Y_pred , dtype=torch.float)
228 batch_size_test = 128
229 for i in range(0, samples , batch_size_test):
230 if i + batch_size_test > samples:
231 Y_pred[i:] = model(X_data[i:])
232 else:
233 Y_pred[i:(i+batch_size_test)] = model(X_data[i:(i+batch_size_test)])
234 Y_err = (Y_data.detach ().cpu().numpy()*sig_y+mu_y) - (Y_pred.detach ().cpu().numpy ()*sig_y+mu_y)
235 Y_err_train = Y_err [0: train_samples]
236 Y_err_test = Y_err[train_samples :]
237 mae = []
238 mse = []

118

239 rmse = []
240 for i in range(0, output_channels):
241 mae.append ({})
242 mse.append ({})
243 rmse.append ({})
244 mae[i]["total"] = (np.mean(abs(Y_err[:, i])))
245 mae[i]["train"] = (np.mean(abs(Y_err_train [:, i])))
246 mae[i]["test"] = (np.mean(abs(Y_err_test [:, i])))
247 mse[i]["total"] = (sum(pow(Y_err[:, i], 2))/len(Y_err[:, i]))
248 mse[i]["train"] = (sum(pow(Y_err_train [:, i], 2))/len(Y_err_train [:, i]))
249 mse[i]["test"] = (sum(pow(Y_err_test [:, i], 2))/len(Y_err_test [:, i]))
250 rmse[i]["total"] = np.sqrt(mse[i]["total"])
251 rmse[i]["train"] = np.sqrt(mse[i]["train"])
252 rmse[i]["test"] = np.sqrt(mse[i]["test"])
253 print("TCN channel " + str(i+1) + " metrics")
254 print("Total MAE: " + str(FORMAT%mae[i]["total"]) + " MSE: " + \
255 str(FORMAT%mse[i]["total"]) + " RMSE: " + str(FORMAT%rmse[i]["total"]))
256 print("Train MAE: " + str(FORMAT%mae[i]["train"]) + " MSE: " + \
257 str(FORMAT%mse[i]["train"]) + " RMSE: " + str(FORMAT%rmse[i]["train"]))
258 print("Test MAE: " + str(FORMAT%mae[i]["test"]) + " MSE: " + \
259 str(FORMAT%mse[i]["test"]) + " RMSE: " + str(FORMAT%rmse[i]["test"]))
260 print ()
261
262 # Assemble the function output.
263 modelDictionary = {
264 "model": model ,
265 "model_parameters": model_parameters ,
266 "history_eff": history_eff ,
267 "mu_x": mu_x ,
268 "sig_x": sig_x ,
269 "mu_y": mu_y ,
270 "sig_y": sig_y ,
271 "input_channels": input_channels ,
272 "output_channels": output_channels ,
273 "input_range": input_range ,
274 "mae": mae ,
275 "mse": mse ,
276 "rmse": rmse ,
277 "input_shift": input_shift
278 }
279
280 return modelDictionary

Listing A.4: The analyze_model() function which analyzes a trained TCN model.
1 # Analyze a model to generate an equation.
2 #
3 # Input is the model , template fitting functions , and the sweep set.
4 # The sweep set is an array of multiples to use in the fitting process.
5
6 import time
7 import itertools
8 import multiprocessing
9 import numpy as np

10 from joblib import Parallel , delayed
11 from scipy.optimize import curve_fit
12 import pyprind # Progress bar
13 import torch
14 import matplotlib.pyplot as plt
15 from mpl_toolkits.mplot3d import Axes3D
16 import mat4py
17 import os
18
19 from lib.evaluate_function import evaluate_function
20
21 # Format of function parameters.
22 FORMAT = ’%.3e’
23
24 def analyze_model(analysis_parameters , model_dictionary , input_data , output_data , input_mask =1):
25
26 functions = analysis_parameters["functions"]
27 sweep_initial = analysis_parameters["sweep_initial"]
28 sweep_detailed = analysis_parameters["sweep_detailed"]
29 contrib_thresh = analysis_parameters["contrib_thresh"]
30 contrib_thresh_omit = analysis_parameters["contrib_thresh_omit"]
31 use_f_weight = analysis_parameters["use_f_weight"]
32 seed = analysis_parameters["seed"]
33 np.random.seed(seed)
34 verbose = analysis_parameters["verbose"]
35 visual = analysis_parameters["visual"]
36 save_visual = analysis_parameters["save_visual"]
37
38 # Check inputs for validity.
39 if sweep_initial < 1:
40 print("ERROR: analyze_model parameter sweep_initial must be >= 1")
41 return None , None

119

42 if sweep_detailed < 100:
43 print("ERROR: analyze_model parameter sweep_detailed must be >= 100")
44 return None , None
45
46 # Function for indexing the large impulse array.
47 def array_to_int(num_list): # [1,2,3]
48 str_list = map(str , num_list) # [’1’,’2’,’3’]
49 num_str = ’’.join(str_list) # ’123’
50 num = int(num_str , 2) # 123
51 return num
52
53 model = model_dictionary["model"]
54 history = model_dictionary["model_parameters"]["history"]
55 history_eff = model_dictionary["history_eff"]
56 mu_x = model_dictionary["mu_x"]
57 sig_x = model_dictionary["sig_x"]
58 mu_y = model_dictionary["mu_y"]
59 sig_y = model_dictionary["sig_y"]
60 input_channels = model_dictionary["input_channels"]
61 output_channels = model_dictionary["output_channels"]
62 input_range = model_dictionary["input_range"]
63 input_shift = model_dictionary["input_shift"]
64
65 # Establish tensor types of certain variables for computation.
66 mu_y_t = torch.tensor(mu_y , dtype=torch.float)
67 sig_y_t = torch.tensor(sig_y , dtype=torch.float)
68
69 # Get the current data output folder if saving data and plots.
70 if save_visual == True:
71 if not os.path.exists(’./ output ’):
72 os.mkdir(’./ output ’)
73 analysis_dir_count = 1
74 while os.path.exists(’./ output/analysis_ {}’.format(analysis_dir_count)):
75 analysis_dir_count = analysis_dir_count + 1
76 os.mkdir(’./ output/analysis_ {}’.format(analysis_dir_count))
77
78 # Generate every possible combination of impulses.
79 if history < history_eff:
80 history_eff = history
81 combination_count = pow(2, input_channels *(history_eff))
82 combinations = [x for x in range(0, input_channels *(history_eff))]
83 impulse_array = np.zeros([combination_count , input_channels , history])
84 # Loop through every combination of subsets of constituants
85 for combination_id in range(0, len(combinations)+1):
86 for subset in itertools.combinations(combinations , combination_id):
87 impulse = np.zeros ([1, 1, input_channels *(history_eff)])
88 for element in subset:
89 impulse[0, 0, input_channels *(history_eff) -1-element] = 1
90 index = array_to_int(impulse[0, 0, :]. astype(int))
91 impulse_shaped = np.reshape(impulse , [input_channels , history_eff])
92 # Add buffer elements to account for a history longer than scope.
93 impulse_array[index , :, (history -history_eff):history] = impulse_shaped
94
95 # Generate the impulse sweep set for creating multiples of impulses.
96 if sweep_initial != 1:
97 impulse_sweep_set = 2*np.random.rand(sweep_initial , input_channels , history)-1
98 # Bound sweep set to be within range of the original input data.
99 for i in range(0, input_channels):

100 min_value = input_range[i][0]
101 max_value = input_range[i][1]
102 impulse_sweep_set [:, i, :] = impulse_sweep_set [:, i, :]*(max_value -min_value)+min_value
103
104 # Obtain the output for input impulses.
105 print("Exciting model ...")
106 model.cpu()
107 if sweep_initial != 1:
108 impulse_response = np.zeros ([combination_count , output_channels , sweep_initial])
109 else:
110 impulse_response = np.zeros ([combination_count , output_channels , 1])
111 batch_idx = 1
112 batch_size_analyze = 256
113 progress_bar = pyprind.ProgBar(len(range(0, combination_count , batch_size_analyze)), monitor=True)
114 # Calculate the bias at the zero point.
115 model_input = np.copy(impulse_array [0:1, :, :])
116 bias = model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))*sig_y_t+mu_y_t
117
118 # Calculate the response from all impulse combinations.
119 for i in range(0, combination_count , batch_size_analyze):
120 if i + batch_size_analyze > combination_count:
121 # Handle the last batch.
122 impulse = impulse_array[i:]
123 if sweep_initial > 1:
124 for j in range(0, sweep_initial):
125 mult = impulse_sweep_set[j, :, :]
126 model_input = mult*impulse*input_mask
127 output = (model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))*sig_y_t+mu_y_t).

detach ().cpu().numpy ()
128 impulse_response[i:, :, j] = output

120

129 else:
130 model_input = impulse*input_mask
131 output = (model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))*sig_y_t+mu_y_t).detach

().cpu().numpy()
132 impulse_response[i:, :, 0] = output
133 else:
134 # Handle a standard size batch.
135 impulse = impulse_array[i:(i+batch_size_analyze)]
136 if sweep_initial > 1:
137 for j in range(0, sweep_initial):
138 mult = impulse_sweep_set[j, :, :]
139 model_input = mult*impulse*input_mask
140 output = (model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))*sig_y_t+mu_y_t).

detach ().cpu().numpy ()
141 impulse_response[i:(i+batch_size_analyze), :, j] = output
142 else:
143 model_input = impulse*input_mask
144 output = (model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))*sig_y_t+mu_y_t).detach

().cpu().numpy()
145 impulse_response[i:(i+batch_size_analyze), :, 0] = output
146 batch_idx += 1
147 progress_bar.update ()
148 #impulse_response = impulse_response.detach ().numpy()
149 time.sleep (0.5) # Allows progress bar to finish printing elapsed time.
150 print ()
151
152 def process_subcombination(subcombination):
153 sub_impulse = np.zeros([input_channels*history])
154 # Determine index of combination in impulse_response
155 for element in subcombination:
156 sub_impulse[input_channels*history -1-element] = 1
157 sub_index = array_to_int(sub_impulse.astype(int))
158 # Loop through all subcombinations
159 subsub_indices = []
160 for l in range(0, len(subcombination)+1):
161 for subsubcombination in itertools.combinations(subcombination , l):
162 if subcombination != subsubcombination:
163 subsub_impulse = np.zeros([input_channels*history])
164 # Determine index of subcombination in impulse_response
165 for element in subsubcombination:
166 subsub_impulse[input_channels*history -1-element] = 1
167 subsub_index = array_to_int(subsub_impulse.astype(int))
168 subsub_indices.append(subsub_index)
169 return sub_index , subsub_indices
170
171 # Analyze responses (note: progress bar is not linear with computation time)
172 print("Analyzing responses ...")
173 progress_bar = pyprind.ProgBar(combination_count , monitor=True)
174 num_cores = multiprocessing.cpu_count ()
175 for combination_id in range(0, len(combinations)+1):
176 # Loop all combinations
177 results = Parallel(n_jobs=num_cores)(delayed(process_subcombination)(subcombination) \
178 for subcombination in itertools.combinations(combinations , combination_id))
179 for each in results:
180 sub_index = each [0]
181 subsub_indices = each [1]
182 for subsub_index in subsub_indices:
183 impulse_response[sub_index , :, :] = impulse_response[sub_index , :, :] - \
184 impulse_response[subsub_index , :, :]
185 progress_bar.update ()
186 time.sleep (0.5) # Allows progress bar to finish printing elapsed time.
187 print ()
188
189 # Examine the impulse response for all combinations and generate a function.
190 print("Estimating system equation ...")
191 # Create a mask of relevant inputs for later model retraining.
192 new_mask = np.zeros([input_channels , history])
193 # Create a sweep set for curve fitting.
194 fit_sweep_set = np.random.rand(sweep_detailed , input_channels , history)
195 for i in range(0, input_channels):
196 min_value = input_range[i][0]
197 max_value = input_range[i][1]
198 fit_sweep_set [:, i, :] = fit_sweep_set [:, i, :]*(max_value -min_value)+min_value
199 model_function = []
200 for channel_id in range(0, output_channels):
201 # Function for the output channel is a sum of product functions.
202 channel_function = []
203 # Get the magnitude average point value of each product function contribution.
204 Z = np.sum(abs(impulse_response [:, channel_id , :]), 1)/sweep_initial
205 # Get the variance of each product function.
206 S = np.var(impulse_response [:, channel_id , :], 1)
207 total_variance = sum(S)
208 # Get indices of responses from largest to smallest.
209 response_indices = np.flip(np.argsort(Z), 0)
210 # Get indices of variances from largest to smallest.
211 variance_indices = np.flip(np.argsort(S), 0)
212
213 # Identify the top responses.

121

214 if verbose:
215 print("##")
216 print("Estimate of channel " + str(channel_id +1))
217 print("##")
218 candidate_limit = min(25, len(response_indices))
219 sig_indexes = []
220 for k in range(0, candidate_limit):
221 sig_index = response_indices[k]
222 sig_response = Z[sig_index]
223 z_sorted = np.flip(np.sort(Z[1:], 0), 0)
224 contribution_magnitude = sig_response/sum(z_sorted)
225 if contribution_magnitude > contrib_thresh:
226 sig_indexes.append(sig_index)
227 for k in range(0, candidate_limit):
228 sig_index = variance_indices[k]
229 sig_variance = S[sig_index]
230 contribution_variance = sig_variance/total_variance
231 if contribution_variance > contrib_thresh and sig_index not in sig_indexes:
232 sig_indexes.append(sig_index)
233
234 # Estimate equations for top responses.
235 for sig_index in sig_indexes:
236 sig_response = Z[sig_index]
237 sig_variance = S[sig_index]
238 sig_impulse = impulse_array[sig_index:sig_index+1, :, :]
239 if verbose: print("Response ID " + str(sig_index) + " contribution:")
240
241 # Process a product function if the response is significant.
242 # Significance is % contribution to total magnitude or variance.
243 # Bias is not included in magnitude significance.
244 z_sorted = np.flip(np.sort(Z[1:], 0), 0)
245 contribution_magnitude = sig_response/sum(z_sorted)
246 contribution_variance = sig_variance/total_variance
247 if sig_index is not 0:
248 if verbose: print("Magnitude : " + str(’%.1f’%(contribution_magnitude *100)) + "%")
249 if verbose: print("Variance : " + str(’%.1f’%(contribution_variance *100)) + "%")
250 else:
251 if verbose: print("Bias contribution omitted from calculation.")
252 if verbose: print("==")
253 if contribution_magnitude > contrib_thresh or contribution_variance > contrib_thresh:
254
255 # Determine the arguments of the product function.
256 arg_list = []
257 for input_id in range(0, input_channels):
258 for element_id , element in enumerate(sig_impulse [0, input_id , :]. astype(int)):
259 if element == 1:
260 delay = history - 1 - element_id
261 arg_list.append ({"input_channel": input_id , "delay": delay})
262 new_mask[input_id , element_id] = 1
263
264 # Create the product function template string.
265 f_list = []
266 f_str = "f("
267 for _, arg in enumerate(arg_list):
268 f_list.append("x" + str(arg["input_channel"]+1) + "(k-" + str(arg["delay"]) + ")")
269 for arg_num , arg_str in enumerate(f_list):
270 f_str = f_str + arg_str
271 if arg_num < len(f_list) -1:
272 f_str = f_str + ","
273 if len(arg_list) == 0:
274 f_str = f_str + "0"
275 f_str = f_str + ")"
276
277 # Estimate the product function.
278 def fcn_empty(_):
279 return 0
280 def txt_empty(_):
281 return ""
282 dct_empty = {
283 "txt": "?",
284 "txt_fcn": txt_empty ,
285 "fcn": fcn_empty ,
286 "upper": [],
287 "lower": [],
288 "weight": 1.0
289 }
290 product_function = {
291 "arg_list": arg_list ,
292 "template_string": f_str ,
293 "estimate_string": "f(?)",
294 "parameters": [],
295 "function": dct_empty ,
296 "shift": []
297 }
298 if len(arg_list) > 0:
299 # Obtain sample points for curve fitting.
300 x_data = np.zeros([sweep_detailed , input_channels , history])
301 y_data = np.zeros([sweep_detailed , output_channels])

122

302 for idx in range(0, sweep_detailed):
303 mult = fit_sweep_set[idx , :, :]
304 model_input = mult*sig_impulse*input_mask
305 x_data[idx , :, :] = model_input
306 y_data[idx , :] = (model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))).

detach ().numpy()*sig_y+mu_y
307 # Recursively subtract contributions from product functions of arguments.
308 contribution_list = []
309 for idf in range(0, len(arg_list)):
310 new_contributions = []
311 for arg_combination in itertools.combinations(arg_list , idf):
312 arg_impulse = np.zeros([sweep_detailed , input_channels , history])
313 for arg in arg_combination:
314 arg_impulse [:, arg["input_channel"], history -1-arg["delay"]] = 1
315 model_input = arg_impulse * fit_sweep_set
316 output = (model(torch.tensor ((model_input -mu_x)/sig_x , dtype=torch.float))).detach ().

numpy ()*sig_y+mu_y
317 for contribution in contribution_list:
318 output = output - contribution
319 new_contributions.append(output)
320 contribution_list [0:0] = new_contributions
321 for contribution in contribution_list:
322 y_data = y_data - contribution
323
324 # Format data for curve fitting
325 arg_count = len(arg_list)
326 x_data_fit = np.zeros ([arg_count , sweep_detailed])
327 y_data_fit = np.zeros ([sweep_detailed])
328 arg = 0
329 for i in range(0, input_channels):
330 for j in range(0, history):
331 if sig_impulse [0, i, j] == 1:
332 x_data_fit[arg , :] = x_data[:, i, j]
333 y_data_fit [:] = y_data[:, channel_id]
334 product_function["shift"]. append(input_shift[i])
335 arg = arg + 1
336
337 # Plot 2D and 3D data for visual inspection.
338 if save_visual == True or visual == True:
339 if arg_count == 1:
340 plt.figure ()
341 plt.scatter(x_data_fit [0], y_data_fit , marker=’.’)
342 plt.title(product_function["template_string"])
343 plt.xlabel(f_list [0])
344 if save_visual == True:
345 plt.savefig(’./ output/analysis_ {}/{}. pdf’.format(analysis_dir_count , \
346 product_function["template_string"]))
347 pltDict = {"x": x_data_fit [0]. tolist (),
348 "y": y_data_fit.tolist ()}
349 mat4py.savemat(’./ output/analysis_ {}/{}. mat’.format(analysis_dir_count , \
350 product_function["template_string"]), pltDict)
351 if visual == True: plt.show()
352 if arg_count == 2:
353 plt.figure ()
354 ax = plt.axes(projection=’3d’)
355 ax.scatter3D(x_data_fit [0], x_data_fit [1], y_data_fit , c=y_data_fit , marker=’o’)
356 ax.set_title(product_function["template_string"])
357 ax.set_xlabel(f_list [0])
358 ax.set_ylabel(f_list [1])
359 if save_visual == True:
360 plt.savefig(’./ output/analysis_ {}/{}. pdf’.format(analysis_dir_count , \
361 product_function["template_string"]))
362 pltDict = {"x": x_data_fit [0]. tolist (),
363 "y": x_data_fit [1]. tolist (),
364 "z": y_data_fit.tolist ()}
365 mat4py.savemat(’./ output/analysis_ {}/{}. mat’.format(analysis_dir_count , \
366 product_function["template_string"]), pltDict)
367 if visual == True: plt.show()
368
369 # Estimate the product function using curve fitting.
370 if arg_count in functions:
371 candidate_functions = functions[arg_count]
372 else:
373 candidate_functions = []
374 product_function["estimate_string"] = product_function["template_string"]
375 best_fit = 100
376 for f in candidate_functions:
377 try:
378 popt , pcov = curve_fit(f["fcn"],
379 x_data_fit ,
380 y_data_fit ,
381 bounds =(f["lower"], f["upper"]),
382 maxfev =250000)
383 pcount = len(popt)
384 err = y_data_fit -f["fcn"](x_data_fit , *popt)
385 # Compute root mean squared error.
386 rmse = np.sqrt(sum(pow(err , 2))/sweep_detailed)
387 # Compute mean average error.

123

388 mae = np.mean(abs(err))
389 # Compute one standard deviation errors (just the normal std).
390 #std = np.sqrt(np.diag(pcov))
391 if verbose:
392 print("Fit for " + f["txt_fcn"](arg_list , product_function["shift"], *popt))
393 print("MAE : " + str(FORMAT%mae))
394 print("RMSE : " + str(FORMAT%rmse))
395 #print("STD : " + str(std))
396 f_weight = 1.0
397 if use_f_weight == True: f_weight = f["weight"]
398 if mae/f_weight < best_fit:
399 best_fit = mae/f_weight
400 product_function["parameters"] = popt
401 product_function["function"] = f
402 product_function["estimate_string"] = f["txt_fcn"](arg_list ,
403 product_function["shift"],
404 *popt)
405 if verbose: print("Current best fit for Response " + str(sig_index))
406 if verbose: print()
407 # Perform curve fitting with different parameter initializations in attempt to

improve fit.
408 fit_iterations = 5* pcount
409 for _ in range(1, fit_iterations):
410 pinit = np.random.rand(pcount)*(np.array(f["upper"])-np.array(f["lower"])) \
411 + np.array(f["lower"])
412 popt_new , pcov = curve_fit(f["fcn"],
413 x_data_fit ,
414 y_data_fit ,
415 bounds =(f["lower"], f["upper"]),
416 p0=pinit ,
417 maxfev =10000)
418 err = y_data_fit -f["fcn"](x_data_fit , *popt_new)
419 # Compute root mean squared error.
420 rmse = np.sqrt(sum(pow(err , 2))/sweep_detailed)
421 # Compute mean average error.
422 mae = np.mean(abs(err))
423 if mae/f_weight < 0.999* best_fit:
424 best_fit = mae/f_weight
425 product_function["parameters"] = popt_new
426 product_function["function"] = f
427 product_function["estimate_string"] = f["txt_fcn"](arg_list ,
428 product_function["shift"],
429 *popt_new)
430 if verbose:
431 print("Revised fit for " + f["txt_fcn"](arg_list ,
432 product_function["shift"],
433 *popt_new))
434 print("MAE : " + str(FORMAT%mae))
435 print("RMSE : " + str(FORMAT%rmse))
436 print("Current best fit for Response " + str(sig_index))
437 print()
438 except Exception as e:
439 if best_fit == 100:
440 product_function["estimate_string"] = product_function["template_string"]
441 if verbose:
442 print("Warning: Fit could not be estimated for " + f["txt"] + ",")
443 print(" " + str(e))
444 print("")
445 else:
446 # Handle constant bias at the zero point.
447 channel_bias = bias[0, channel_id]. detach ().numpy()
448 channel_bias_str = str(’%.3f’%channel_bias)
449 product_function["parameters"] = [channel_bias]
450 def fcn_bias(x, a):
451 return a
452 def txt_bias(argList , argShift , a):
453 return str(’%.3f’%a)
454 dct_bias = {
455 "txt": "a",
456 "fcn": fcn_bias ,
457 "txt_fcn": txt_bias ,
458 "upper": [2* channel_bias],
459 "lower": [0],
460 "weight": 1.0
461 }
462 product_function["function"] = dct_bias
463 product_function["estimate_string"] = channel_bias_str
464 if verbose:
465 print("Constant " + channel_bias_str)
466 print()
467
468 # Check if the candidate product function improves the accuracy of the model.
469 if sig_index > 0:
470 current_function = [channel_function]
471 candidate_function = [channel_function + [product_function]]
472 current_metrics = evaluate_function(current_function ,
473 input_data ,
474 output_data [:, channel_id:channel_id +1])

124

475 candidate_metrics = evaluate_function(candidate_function ,
476 input_data ,
477 output_data [:, channel_id:channel_id +1])
478
479 # Include product functions that are above a threshold and improve the overall MAE.
480 if candidate_metrics [0]["MAE"] > current_metrics [0]["MAE"]:
481 if verbose:
482 print("Warning: Candidate product function worsens overall MAE.")
483 print(" MAE increases from " + str(FORMAT%current_metrics [0]["MAE"])+\
484 " to " + str(FORMAT%candidate_metrics [0]["MAE"]) + ".")
485 if contribution_magnitude < contrib_thresh_omit \
486 and contribution_variance < contrib_thresh_omit:
487 if verbose: print(" Candidate product function omitted.")
488 else:
489 channel_function.append(product_function)
490 if verbose: print(" Candidate product function added.")
491 else:
492 if verbose: print("Overall MAE declines from " + str(FORMAT%current_metrics [0]["MAE"]) \
493 + " to " + str(FORMAT%candidate_metrics [0]["MAE"]) + ".")
494 channel_function.append(product_function)
495 else:
496 channel_function.append(product_function)
497 else:
498 # Stop building the channel equation.
499 if verbose:
500 print("Insignificant product function response.")
501 print ()
502 print("##")
503 print("Channel " + str(channel_id +1) + " function completed.")
504 print("##")
505 break
506 if verbose: print()
507
508 # Print the completed equation for the current output channel.
509 if verbose: print("System equation")
510 if verbose: print("==")
511 # Print the function template for the current output channel.
512 y_str = "y" + str(channel_id +1) + "[k] = "
513 for idf , product_function in enumerate(channel_function):
514 y_str = y_str + product_function["template_string"]
515 if idf < len(channel_function) - 1:
516 y_str = y_str + " + "
517 print(y_str)
518 y_str = "y" + str(channel_id +1) + "[k] = "
519 for idf , product_function in enumerate(channel_function):
520 if product_function["estimate_string"] != None:
521 y_str = y_str + product_function["estimate_string"]
522 if idf < len(channel_function) - 1:
523 y_str = y_str + " + "
524 print(y_str)
525 print()
526
527 model_function.append(channel_function)
528
529 return model_function , new_mask
530
531 # Future work: Use better fit metric than weighted MAE.
532 # https :// autarkaw.org /2008/07/05/ finding -the -optimum -polynomial -order -to-use -for -regression/

Listing A.5: evaluate_function() evaluates performance of equation estimates.
1 # Evaluate the function generated by model analysis.
2
3 import numpy as np
4
5 def evaluate_function(model_function , input_data , output_data):
6
7 metrics = []
8
9 data_length = input_data.shape [0]

10 output_channels = output_data.shape [1]
11
12 #for channel in range(0, len(model_function)):
13 for channel_id , channel_function in enumerate(model_function):
14
15 channel_y = np.zeros([data_length , output_channels])
16 max_delay_overall = 0
17
18 for _, product_function in enumerate(channel_function):
19
20 arg_list = product_function["arg_list"]
21 arg_count = len(arg_list)
22 arg_shift = product_function["shift"]
23 if arg_count > 0:
24
25 max_delay = max([arg["delay"] for arg in arg_list])

125

26 if max_delay > max_delay_overall:
27 max_delay_overall = max_delay
28
29 # Arrange input data to be fed into product function.
30 x = np.zeros([arg_count , data_length -max_delay])
31 for i, arg in enumerate(arg_list):
32 input_channel = arg["input_channel"]
33 delay = arg["delay"]
34 if delay > 0:
35 x[i] = input_data [(max_delay -delay):-delay , input_channel]-arg_shift[i]
36 else:
37 x[i] = input_data [(max_delay -delay):, input_channel]-arg_shift[i]
38
39 # Feed input data to product function.
40 params = product_function["parameters"]
41 y_est = product_function["function"]["fcn"](x, *params)
42 channel_y[max_delay:, channel_id] = channel_y[max_delay:, channel_id] + y_est
43 else:
44 # No arguments = bias term.
45 params = product_function["parameters"]
46 bias = product_function["function"]["fcn"](_, *params)
47 channel_y[:, channel_id] = channel_y[:, channel_id] + bias
48
49 # Calculate the error.
50 y_err = output_data[max_delay_overall:, channel_id] - channel_y[max_delay_overall:, channel_id]
51 y_err = y_err[max_delay_overall +1:]
52 mae = np.mean(abs(y_err))
53 rmse = np.sqrt(sum(pow(y_err , 2))/len(y_err))
54 ymax = np.max(output_data[max_delay_overall:, channel_id])
55 ymin = np.min(output_data[max_delay_overall:, channel_id])
56
57 channel_metrics = {
58 "MAE": mae ,
59 "RMSE": rmse ,
60 "MAX": ymax ,
61 "MIN": ymin ,
62 }
63 metrics.append(channel_metrics)
64
65 return metrics
66
67 # Future work: examine MAE vs RMSE
68 # https :// medium.com/human -in-a-machine -world/mae -and -rmse -which -metric -is-better -e60ac3bde13d

Listing A.6: The tune_model() function which performs genetic algorithm optimization.
1 # Tune model parameters using a genetic algorithm.
2
3 import random
4 import copy
5 import time
6 import os
7 import numpy as np
8 import pyprind
9 import matplotlib.pyplot as plt

10
11 from lib.evaluate_function import evaluate_function
12
13 def tune_model(tuning_parameters , model_function , input_data , output_data):
14
15 population_size = tuning_parameters["GA_population"]
16 generation_count = tuning_parameters["GA_generations"]
17 visual = tuning_parameters["visual"]
18 save_visual = tuning_parameters["save_visual"]
19
20 if save_visual == True:
21 # Setup the most recent analysis directory to store GA tuning metrics.
22 if not os.path.exists(’./ output ’):
23 os.mkdir(’./ output ’)
24 analysis_dir_count = 1
25 while os.path.exists(’./ output/analysis_ {}’.format(analysis_dir_count)):
26 analysis_dir_count = analysis_dir_count + 1
27 analysis_dir_count = analysis_dir_count - 1
28 if not os.path.exists(’./ output/analysis_ {}’.format(analysis_dir_count)):
29 os.mkdir(’./ output/analysis_ {}’.format(analysis_dir_count))
30
31 # Tune each channel individually.
32 model_function_tuned = copy.deepcopy(model_function)
33 for channel_id , channel_function in enumerate(model_function_tuned):
34
35 # Get population details.
36 parameter_count = 0
37 upper_bounds = []
38 lower_bounds = []
39 parameters = []
40 for fcn_id , product_function in enumerate(channel_function):

126

41 parameter_count = parameter_count + len(product_function["parameters"])
42 upper_bounds.extend(product_function["function"]["upper"])
43 lower_bounds.extend(product_function["function"]["lower"])
44 parameters.extend(product_function["parameters"])
45
46 # Create the initial population of parameters.
47 population = np.random.rand(population_size , parameter_count)
48 # Member of initial estimate.
49 for member_id in range(0, 1):
50 population[member_id , :] = parameters
51 # Members near initial estimate.
52 for member_id in range(1, population_size):
53 lower_bounds_dist = np.array(parameters) - (np.array(parameters) - np.array(lower_bounds))/3
54 upper_bounds_dist = np.array(parameters) + (np.array(upper_bounds) - np.array(parameters))/3
55 # Triangular distribution chosen because it is bounded.
56 population[member_id , :] = np.random.triangular(lower_bounds_dist ,parameters ,upper_bounds_dist)
57
58 # Execute genetic algorithm.
59 print("Tuning channel " + str(channel_id +1) + "...")
60 top_heuristic = np.zeros(generation_count)
61 progress_bar = pyprind.ProgBar(generation_count , monitor=True)
62 for generation_id in range(0, generation_count):
63 # Evaluate generation.
64 heuristic = np.zeros(population_size)
65 for member_id in range(0, population_size):
66 # Substitute the product function parameters
67 parameter_index = 0
68 for fcn_id , product_function in enumerate(channel_function):
69 product_function["parameters"] = list(
70 population[member_id , parameter_index:parameter_index+len(product_function["

parameters"])])
71 parameter_index = parameter_index + len(product_function["parameters"])
72 # Evaluate the new channel function
73 metrics = evaluate_function ([channel_function],
74 input_data ,
75 output_data [:, channel_id:channel_id +1])
76 heuristic[member_id] = metrics [0]["MAE"]
77
78 # Perform crossover of best members , clone best member.
79 # Rank from smallest to largest MAE.
80 member_rank = np.argsort(heuristic)
81 upper_rank = member_rank [0:int(len(member_rank)/2)]
82 population [0, :] = population[member_rank [0]]
83 top_heuristic[generation_id] = heuristic[member_rank [0]]
84 for member_id in range(1, population_size):
85 parents = random.sample(list(upper_rank), k=2)
86 crossover_point = random.randint(0, parameter_count)
87 child = np.concatenate ((population[parents [0], :crossover_point], population[parents [1],

crossover_point :]))
88 population[member_id , :] = child
89
90 # Perform mutations of new members.
91 for member_id in range(1, population_size):
92 if np.random.rand() < 0.25:
93 mutation_mask = np.random.randint(2, size=parameter_count)
94 mutation_degree = 0.1*2*(np.random.rand(parameter_count) -0.5)
95 mutation = mutation_mask*mutation_degree
96 population[member_id , :] = population[member_id , :] + mutation
97 progress_bar.update ()
98 time.sleep (0.5) # Allows progress bar to finish printing elapsed time.
99

100 # Assign new parameters to product function.
101 parameter_index = 0
102 for fcn_id , product_function in enumerate(channel_function):
103 product_function["parameters"] = list(
104 population [0, parameter_index:parameter_index+len(product_function["parameters"])])
105 if len(product_function["parameters"]) > 0:
106 parameter_index = parameter_index + len(product_function["parameters"])
107 product_function["estimate_string"] = product_function["function"]["txt_fcn"](
108 product_function["arg_list"],
109 product_function["shift"],
110 *product_function["parameters"])
111 print()
112
113 # Plot GA tuning metrics.
114 if save_visual == True or visual == True:
115 plt.figure ()
116 plt.plot(top_heuristic)
117 plt.title(’Top MAE vs Generation ’)
118 plt.xlabel(’Generation ’)
119 plt.ylabel(’MAE’)
120 if save_visual == True: plt.savefig(’./ output/analysis_ {}/ ga_mae.pdf’.format(analysis_dir_count))
121 if visual == True: plt.show()
122
123 return model_function_tuned
124
125 # Future: In GA tuning , use a parameter confidence interval to limit the search space.
126 # http :// kitchingroup.cheme.cmu.edu/blog /2013/02/12/ Nonlinear -curve -fitting -with -parameter -confidence -intervals/

127

Listing A.7: fitting_functions() returns an object with the template product functions.
1 # Define the template product functions.
2
3 import numpy as np
4
5 # Polynomials.
6 #===#
7 def fcn_poly1_1(x,a):
8 return a*x[0]
9 def txt_poly_1(argList ,argShift ,a):

10 if all(shift == 0 for shift in argShift):
11 return "{:.2e}*x{:d}[k-{:d}]".format(
12 a,argList [0]["input_channel"]+1, argList [0]["delay"])
13 else:
14 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})".format(
15 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
16
17 def fcn_poly2_1(x,a,b):
18 return a*pow(x[0] ,2) \
19 + b*x[0]
20 def txt_poly2_1(argList ,argShift ,a,b):
21 if all(shift == 0 for shift in argShift):
22 return "{:.2e}*x{:d}[k-{:d}]^2 + " \
23 "{:.2e}*x{:d}[k-{:d}]".format(
24 a,argList [0]["input_channel"]+1, argList [0]["delay"],
25 b,argList [0]["input_channel"]+1, argList [0]["delay"])
26 else:
27 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2 + " \
28 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})".format(
29 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
30 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
31
32 def fcn_squared_1(x,a):
33 return a*pow(x[0] ,2)
34 def txt_squared_1(argList ,argShift ,a):
35 if all(shift == 0 for shift in argShift):
36 return "{:.2e}*x{:d}[k-{:d}]^2".format(
37 a,argList [0]["input_channel"]+1, argList [0]["delay"])
38 else:
39 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2".format(
40 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
41
42 def fcn_poly3_1(x,a,b,c):
43 return a*pow(x[0] ,3) \
44 + b*pow(x[0] ,2) \
45 + c*x[0]
46 def txt_poly3_1(argList ,argShift ,a,b,c):
47 if all(shift == 0 for shift in argShift):
48 return "{:.2e}*x{:d}[k-{:d}]^3 + " \
49 "{:.2e}*x{:d}[k-{:d}]^2 + " \
50 "{:.2e}*x{:d}[k-{:d}]".format(
51 a,argList [0]["input_channel"]+1, argList [0]["delay"],
52 b,argList [0]["input_channel"]+1, argList [0]["delay"],
53 c,argList [0]["input_channel"]+1, argList [0]["delay"])
54 else:
55 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3 + " \
56 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2 + " \
57 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})".format(
58 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
59 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
60 c,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
61
62 def fcn_cubed_1(x,a):
63 return a*pow(x[0] ,3)
64 def txt_cubed_1(argList ,argShift ,a):
65 if all(shift == 0 for shift in argShift):
66 return "{:.2e}*x{:d}[k-{:d}]^3".format(
67 a,argList [0]["input_channel"]+1, argList [0]["delay"])
68 else:
69 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3".format(
70 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
71
72 def fcn_poly4_1(x,a,b,c,d):
73 return a*pow(x[0] ,4) \
74 + b*pow(x[0] ,3) \
75 + c*pow(x[0] ,2) \
76 + d*x[0]
77 def txt_poly4_1(argList ,argShift ,a,b,c,d):
78 if all(shift == 0 for shift in argShift):
79 return "{:.2e}*x{:d}[k-{:d}]^4 + " \
80 "{:.2e}*x{:d}[k-{:d}]^3 + " \
81 "{:.2e}*x{:d}[k-{:d}]^2 + " \
82 "{:.2e}*x{:d}[k-{:d}]".format(
83 a,argList [0]["input_channel"]+1, argList [0]["delay"],
84 b,argList [0]["input_channel"]+1, argList [0]["delay"],
85 c,argList [0]["input_channel"]+1, argList [0]["delay"],
86 d,argList [0]["input_channel"]+1, argList [0]["delay"])

128

87 else:
88 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^4 + " \
89 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3 + " \
90 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2 + " \
91 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})".format(
92 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
93 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
94 c,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
95 d,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
96
97 def fcn_poly5_1(x,a,b,c,d,e):
98 return a*pow(x[0] ,5) \
99 + b*pow(x[0] ,4) \

100 + c*pow(x[0] ,3) \
101 + d*pow(x[0] ,2) \
102 + e*x[0]
103 def txt_poly5_1(argList ,argShift ,a,b,c,d,e):
104 if all(shift == 0 for shift in argShift):
105 return "{:.2e}*x{:d}[k-{:d}]^5 + " \
106 "{:.2e}*x{:d}[k-{:d}]^4 + " \
107 "{:.2e}*x{:d}[k-{:d}]^3 + " \
108 "{:.2e}*x{:d}[k-{:d}]^2 + " \
109 "{:.2e}*x{:d}[k-{:d}]".format(
110 a,argList [0]["input_channel"]+1, argList [0]["delay"],
111 b,argList [0]["input_channel"]+1, argList [0]["delay"],
112 c,argList [0]["input_channel"]+1, argList [0]["delay"],
113 d,argList [0]["input_channel"]+1, argList [0]["delay"],
114 e,argList [0]["input_channel"]+1, argList [0]["delay"])
115 else:
116 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^5 + " \
117 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^4 + " \
118 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3 + " \
119 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2 + " \
120 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})".format(
121 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
122 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
123 c,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
124 d,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
125 e,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
126
127 def fcn_poly22_2(x,a):
128 return a*x[0]*x[1]
129 def txt_poly22_2(argList ,argShift ,a):
130 if all(shift == 0 for shift in argShift):
131 return "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]".format(
132 a,argList [0]["input_channel"]+1, argList [0]["delay"],
133 argList [1]["input_channel"]+1, argList [1]["delay"])
134 else:
135 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})".format(
136 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
137 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1])
138
139 def fcn_poly33_2(x,a,b,c):
140 return a*pow(x[0],1)*pow(x[1],1) \
141 + b*pow(x[0] ,2)*pow(x[1] ,1) \
142 + c*pow(x[0] ,1)*pow(x[1] ,2)
143 def txt_poly33_2(argList ,argShift ,a,b,c):
144 if all(shift == 0 for shift in argShift):
145 return "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}] + " \
146 "{:.2e}*x{:d}[k-{:d}]^2*x{:d}[k-{:d}] + " \
147 "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]^2".format(
148 a,argList [0]["input_channel"]+1, argList [0]["delay"],
149 argList [1]["input_channel"]+1, argList [1]["delay"],
150 b,argList [0]["input_channel"]+1, argList [0]["delay"],
151 argList [1]["input_channel"]+1, argList [1]["delay"],
152 c,argList [0]["input_channel"]+1, argList [0]["delay"],
153 argList [1]["input_channel"]+1, argList [1]["delay"])
154 else:
155 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e}) + " \
156 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2*(x{:d}[k-{:d}] -{:.2e}) + " \
157 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})^2".format(
158 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
159 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
160 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
161 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
162 c,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
163 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1])
164
165 def fcn_poly44_2(x,a,b,c,d,e,f):
166 return a*pow(x[0],1)*pow(x[1],1) \
167 + b*pow(x[0] ,2)*pow(x[1] ,1) \
168 + c*pow(x[0] ,1)*pow(x[1] ,2) \
169 + d*pow(x[0] ,3)*pow(x[1] ,1) \
170 + e*pow(x[0] ,2)*pow(x[1] ,2) \
171 + f*pow(x[0] ,1)*pow(x[1] ,3)
172 def txt_poly44_2(argList ,argShift ,a,b,c,d,e,f):
173 if all(shift == 0 for shift in argShift):
174 return "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}] + " \

129

175 "{:.2e}*x{:d}[k-{:d}]^2*x{:d}[k-{:d}] + " \
176 "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]^2 + " \
177 "{:.2e}*x{:d}[k-{:d}]^3*x{:d}[k-{:d}] + " \
178 "{:.2e}*x{:d}[k-{:d}]^2*x{:d}[k-{:d}]^2 + " \
179 "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]^3".format(
180 a,argList [0]["input_channel"]+1, argList [0]["delay"],
181 argList [1]["input_channel"]+1, argList [1]["delay"],
182 b,argList [0]["input_channel"]+1, argList [0]["delay"],
183 argList [1]["input_channel"]+1, argList [1]["delay"],
184 c,argList [0]["input_channel"]+1, argList [0]["delay"],
185 argList [1]["input_channel"]+1, argList [1]["delay"],
186 d,argList [0]["input_channel"]+1, argList [0]["delay"],
187 argList [1]["input_channel"]+1, argList [1]["delay"],
188 e,argList [0]["input_channel"]+1, argList [0]["delay"],
189 argList [1]["input_channel"]+1, argList [1]["delay"],
190 f,argList [0]["input_channel"]+1, argList [0]["delay"],
191 argList [1]["input_channel"]+1, argList [1]["delay"])
192 else:
193 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e}) + " \
194 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2*(x{:d}[k-{:d}] -{:.2e}) + " \
195 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})^2 + " \
196 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3*(x{:d}[k-{:d}] -{:.2e}) + " \
197 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2*(x{:d}[k-{:d}] -{:.2e})^2 + " \
198 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})^3".format(
199 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
200 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
201 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
202 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
203 c,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
204 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
205 d,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
206 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
207 e,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
208 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
209 f,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
210 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1])
211
212 def fcn_poly55_2(x,a,b,c,d,e,f,g,h,i,j):
213 return a*pow(x[0],1)*pow(x[1],1) \
214 + b*pow(x[0] ,2)*pow(x[1] ,1) \
215 + c*pow(x[0] ,1)*pow(x[1] ,2) \
216 + d*pow(x[0] ,3)*pow(x[1] ,1) \
217 + e*pow(x[0] ,2)*pow(x[1] ,2) \
218 + f*pow(x[0] ,1)*pow(x[1] ,3) \
219 + g*pow(x[0] ,4)*pow(x[1] ,1) \
220 + h*pow(x[0] ,3)*pow(x[1] ,2) \
221 + i*pow(x[0] ,2)*pow(x[1] ,3) \
222 + j*pow(x[0] ,1)*pow(x[1] ,4)
223 def txt_poly55_2(argList ,argShift ,a,b,c,d,e,f,g,h,i,j):
224 if all(shift == 0 for shift in argShift):
225 return "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}] + " \
226 "{:.2e}*x{:d}[k-{:d}]^2*x{:d}[k-{:d}] + " \
227 "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]^2 + " \
228 "{:.2e}*x{:d}[k-{:d}]^3*x{:d}[k-{:d}] + " \
229 "{:.2e}*x{:d}[k-{:d}]^2*x{:d}[k-{:d}]^2 + " \
230 "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]^3 + " \
231 "{:.2e}*x{:d}[k-{:d}]^4*x{:d}[k-{:d}] + " \
232 "{:.2e}*x{:d}[k-{:d}]^3*x{:d}[k-{:d}]^2 + " \
233 "{:.2e}*x{:d}[k-{:d}]^2*x{:d}[k-{:d}]^3 + " \
234 "{:.2e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]^4".format(
235 a,argList [0]["input_channel"]+1, argList [0]["delay"],
236 argList [1]["input_channel"]+1, argList [1]["delay"],
237 b,argList [0]["input_channel"]+1, argList [0]["delay"],
238 argList [1]["input_channel"]+1, argList [1]["delay"],
239 c,argList [0]["input_channel"]+1, argList [0]["delay"],
240 argList [1]["input_channel"]+1, argList [1]["delay"],
241 d,argList [0]["input_channel"]+1, argList [0]["delay"],
242 argList [1]["input_channel"]+1, argList [1]["delay"],
243 e,argList [0]["input_channel"]+1, argList [0]["delay"],
244 argList [1]["input_channel"]+1, argList [1]["delay"],
245 f,argList [0]["input_channel"]+1, argList [0]["delay"],
246 argList [1]["input_channel"]+1, argList [1]["delay"],
247 g,argList [0]["input_channel"]+1, argList [0]["delay"],
248 argList [1]["input_channel"]+1, argList [1]["delay"],
249 h,argList [0]["input_channel"]+1, argList [0]["delay"],
250 argList [1]["input_channel"]+1, argList [1]["delay"],
251 i,argList [0]["input_channel"]+1, argList [0]["delay"],
252 argList [1]["input_channel"]+1, argList [1]["delay"],
253 j,argList [0]["input_channel"]+1, argList [0]["delay"],
254 argList [1]["input_channel"]+1, argList [1]["delay"])
255 else:
256 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e}) + " \
257 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2*(x{:d}[k-{:d}] -{:.2e}) + " \
258 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})^2 + " \
259 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3*(x{:d}[k-{:d}] -{:.2e}) + " \
260 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2*(x{:d}[k-{:d}] -{:.2e})^2 + " \
261 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})^3 + " \
262 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^4*(x{:d}[k-{:d}] -{:.2e}) + " \

130

263 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^3*(x{:d}[k-{:d}] -{:.2e})^2 + " \
264 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})^2*(x{:d}[k-{:d}] -{:.2e})^3 + " \
265 "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})^4".format(
266 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
267 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
268 b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
269 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
270 c,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
271 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
272 d,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
273 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
274 e,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
275 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
276 f,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
277 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
278 g,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
279 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
280 h,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
281 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
282 i,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
283 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
284 j,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
285 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1])
286
287 def fcn_linear_3(x,a):
288 return a*x[0]*x[1]*x[2]
289 def txt_linear_3(argList ,argShift ,a):
290 if all(shift == 0 for shift in argShift):
291 return "{:.3e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]*x{:d}[k-{:d}]".format(
292 a,argList [0]["input_channel"]+1, argList [0]["delay"],
293 argList [1]["input_channel"]+1, argList [1]["delay"],
294 argList [2]["input_channel"]+1, argList [2]["delay"])
295 else:
296 return "{:.3e}*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})*(x{:d}[k-{:d}] -{:.2e})".format(
297 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
298 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
299 argList [2]["input_channel"]+1, argList [2]["delay"],argShift [2])
300
301 def fcn_linear_4(x,a):
302 return a*x[0]*x[1]*x[2]*x[3]
303 def txt_linear_4(argList ,argShift ,a):
304 if all(shift == 0 for shift in argShift):
305 return "{:.3e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]*x{:d}[k-{:d}]*x{:d}[k-{:d}]".format(
306 a,argList [0]["input_channel"]+1, argList [0]["delay"],
307 argList [1]["input_channel"]+1, argList [1]["delay"],
308 argList [2]["input_channel"]+1, argList [2]["delay"],
309 argList [3]["input_channel"]+1, argList [3]["delay"])
310 else:
311 return "{:.3e}*(x{:d}[k-{:d}] -{:.2e})*" \
312 "(x{:d}[k-{:d}] -{:.2e})*" \
313 "(x{:d}[k-{:d}] -{:.2e})*" \
314 "(x{:d}[k-{:d}] -{:.2e})".format(
315 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
316 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
317 argList [2]["input_channel"]+1, argList [2]["delay"],argShift [2],
318 argList [3]["input_channel"]+1, argList [3]["delay"],argShift [3])
319
320 def fcn_linear_5(x,a):
321 return a*x[0]*x[1]*x[2]*x[3]*x[4]
322 def txt_linear_5(argList ,argShift ,a):
323 if all(shift == 0 for shift in argShift):
324 return "{:.3e}*x{:d}[k-{:d}]*x{:d}[k-{:d}]*x{:d}[k-{:d}]*x{:d}[k-{:d}]*x{:d}[k-{:d}]".format(
325 a,argList [0]["input_channel"]+1, argList [0]["delay"],
326 argList [1]["input_channel"]+1, argList [1]["delay"],
327 argList [2]["input_channel"]+1, argList [2]["delay"],
328 argList [3]["input_channel"]+1, argList [3]["delay"],
329 argList [4]["input_channel"]+1, argList [4]["delay"])
330 else:
331 return "{:.3e}*(x{:d}[k-{:d}] -{:.2e})*" \
332 "(x{:d}[k-{:d}] -{:.2e})*" \
333 "(x{:d}[k-{:d}] -{:.2e})*" \
334 "(x{:d}[k-{:d}] -{:.2e})*" \
335 "(x{:d}[k-{:d}] -{:.2e})".format(
336 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
337 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
338 argList [2]["input_channel"]+1, argList [2]["delay"],argShift [2],
339 argList [3]["input_channel"]+1, argList [3]["delay"],argShift [3],
340 argList [4]["input_channel"]+1, argList [4]["delay"],argShift [4])
341 #===#
342
343 # Exponentials.
344 #===#
345 def fcn_exp_1(x,a,b):
346 return a*(np.exp(b*x[0]) -1)
347 def txt_exp_1(argList ,argShift ,a,b):
348 if all(shift == 0 for shift in argShift):
349 return "{:.2e}*(e^({:.2e}*x{:d}[k-{:d}]) -1)".format(
350 a,b,argList [0]["input_channel"]+1, argList [0]["delay"])

131

351 else:
352 return "{:.2e}*(e^({:.2e}*(x{:d}[k-{:d}] -{:.2e})) -1)".format(
353 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
354
355 def fcn_exp_lin12_2(x,a):
356 return a*x[0]*(np.exp(x[1]) -1)
357 def txt_exp_lin12_2(argList ,argShift ,a):
358 if all(shift == 0 for shift in argShift):
359 return "{:.2e}*x{:d}[k-{:d}]*(e^(x{:d}[k-{:d}]) -1)".format(
360 a,argList [0]["input_channel"]+1, argList [0]["delay"],
361 argList [1]["input_channel"]+1, argList [1]["delay"])
362 else:
363 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(e^(x{:d}[k-{:d}] -{:.2e}) -1)".format(
364 a,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],
365 argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1])
366
367 def fcn_exp_lin21_2(x,a):
368 return a*x[1]*(np.exp(x[0]) -1)
369 def txt_exp_lin21_2(argList ,argShift ,a):
370 if all(shift == 0 for shift in argShift):
371 return "{:.2e}*x{:d}[k-{:d}]*(e^(x{:d}[k-{:d}]) -1)".format(
372 a,argList [1]["input_channel"]+1, argList [1]["delay"],
373 argList [0]["input_channel"]+1, argList [0]["delay"])
374 else:
375 return "{:.2e}*(x{:d}[k-{:d}] -{:.2e})*(e^(x{:d}[k-{:d}] -{:.2e}) -1)".format(
376 a,argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],
377 argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
378 #===#
379
380 # Sinusoidal functions.
381 #===#
382 # This function is hard to fit , so forms with less parameters are included.
383 def fcn_sin_1(x,a,b,c):
384 return a*np.sin(b*x[0]+c)-a*np.sin(c)
385 def txt_sin_1(argList ,argShift ,a,b,c):
386 if all(shift == 0 for shift in argShift):
387 return "{:.2e}*sin ({:.2e}*x{:d}[k-{:d}]+{:.2e}) -{:.2e}".format(
388 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],c,(a*np.sin(c)))
389 else:
390 return "{:.2e}*sin ({:.2e}*(x{:d}[k-{:d}] -{:.2e})+{:.2e}) -{:.2e}".format(
391 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],c,(a*np.sin(c)))
392
393 def fcn_tanh_1(x,a,b):
394 return a*np.tanh(b*x[0])
395 def txt_tanh_1(argList ,argShift ,a,b):
396 if all(shift == 0 for shift in argShift):
397 return "{:.2e}*tanh ({:.2e}*x{:d}[k-{:d}])".format(
398 a,b,argList [0]["input_channel"]+1, argList [0]["delay"])
399 else:
400 return "{:.2e}*tanh ({:.2e}*(x{:d}[k-{:d}] -{:.2e}))".format(
401 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0])
402
403 def fcn_tanhx_1(x,a,b,c,d):
404 return a*np.tanh(b*(x[0]+c)) + d*(x[0]+c) - (a*np.tanh(b*c)+d*c)
405 def txt_tanhx_1(argList ,argShift ,a,b,c,d):
406 if all(shift == 0 for shift in argShift):
407 return "{:.2e}*tanh ({:.2e}*(x{:d}[k-{:d}]+{:.2e})) + " \
408 "{:.2e}*(x{:d}[k-{:d}]+{:.2e}) - " \
409 "{:.2e}".format(
410 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],c,
411 d,argList [0]["input_channel"]+1, argList [0]["delay"],c,
412 (a*np.tanh(b*c)+d*c))
413 else:
414 return "{:.2e}*tanh ({:.2e}*((x{:d}[k-{:d}] -{:.2e})+{:.2e})) + " \
415 "{:.2e}*((x{:d}[k-{:d}] -{:.2e})+{:.2e}) - " \
416 "{:.2e}".format(
417 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],c,
418 d,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],c,
419 (a*np.tanh(b*c)+d*c))
420
421 def fcn_tanh12_2(x,a,b,c,d,e):
422 return a*np.tanh(b*x[0]-c)*np.tanh(d*x[1]-e) - a*np.tanh(-c)*np.tanh(-e)
423 def txt_tanh12_2(argList ,argShift ,a,b,c,d,e):
424 if all(shift == 0 for shift in argShift):
425 return "{:.2e}*tanh ({:.2e}*x{:d}[k-{:d}] -{:.2e})*" \
426 "tanh ({:.2e}*x{:d}[k-{:d}] -{:.2e}) - " \
427 "{:.2e}".format(
428 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],c,
429 d,argList [1]["input_channel"]+1, argList [1]["delay"],e,
430 (a*np.tanh(-c)*np.tanh(-e)))
431 else:
432 return "{:.2e}*tanh ({:.2e}*(x{:d}[k-{:d}] -{:.2e}) -{:.2e})*" \
433 "tanh ({:.2e}*(x{:d}[k-{:d}] -{:.2e}) -{:.2e}) - " \
434 "{:.2e}".format(
435 a,b,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [0],c,
436 d,argList [1]["input_channel"]+1, argList [1]["delay"],argShift [1],e,
437 (a*np.tanh(-c)*np.tanh(-e)))
438

132

439 def fcn_tanh21_2(x,a,b,c,d,e):
440 return a*np.tanh(b*x[1]-c)*np.tanh(d*x[0]-e) - a*np.tanh(-c)*np.tanh(-e)
441 def txt_tanh21_2(argList ,argShift ,a,b,c,d,e):
442 if all(shift == 0 for shift in argShift):
443 return "{:.2e}*tanh ({:.2e}*x{:d}[k-{:d}] -{:.2e})*" \
444 "tanh ({:.2e}*x{:d}[k-{:d}] -{:.2e}) - " \
445 "{:.2e}".format(
446 a,b,argList [1]["input_channel"]+1, argList [1]["delay"],c,
447 d,argList [0]["input_channel"]+1, argList [0]["delay"],e,
448 (a*np.tanh(-c)*np.tanh(-e)))
449 else:
450 return "{:.2e}*tanh ({:.2e}*(x{:d}[k-{:d}] -{:.2e}) -{:.2e})*" \
451 "tanh ({:.2e}*(x{:d}[k-{:d}] -{:.2e}) -{:.2e}) - " \
452 "{:.2e}".format(
453 a,b,argList [1]["input_channel"]+1, argList [1]["delay"],argShift [0],c,
454 d,argList [0]["input_channel"]+1, argList [0]["delay"],argShift [1],e,
455 (a*np.tanh(-c)*np.tanh(-e)))
456 #===#
457
458 # Return a list containing template functions for argCount number of arguments.
459 def fitting_functions ():
460
461 #===#
462 # Functions of 1 variable.
463 #===#
464 dct_poly1_1 = {
465 "txt": "a*x1",
466 "txt_fcn": txt_poly_1 ,
467 "fcn": fcn_poly1_1 ,
468 "upper": [10],
469 "lower": [-10],
470 "weight": 1.0
471 }
472 dct_poly2_1 = {
473 "txt": "a*x1^2 + b*x1",
474 "txt_fcn": txt_poly2_1 ,
475 "fcn": fcn_poly2_1 ,
476 "upper": [10, 10],
477 "lower": [-10, -10],
478 "weight": 0.55
479 }
480 dct_squared_1 = {
481 "txt": "a*x1^2",
482 "txt_fcn": txt_squared_1 ,
483 "fcn": fcn_squared_1 ,
484 "upper": [10],
485 "lower": [-10],
486 "weight": 1.0
487 }
488 dct_poly3_1 = {
489 "txt": "a*x1^3 + b*x1^2 + c*x1",
490 "txt_fcn": txt_poly3_1 ,
491 "fcn": fcn_poly3_1 ,
492 "upper": [10, 10, 10],
493 "lower": [-10, -10, -10],
494 "weight": 0.20
495 }
496 dct_cubed_1 = {
497 "txt": "a*x1^3",
498 "txt_fcn": txt_cubed_1 ,
499 "fcn": fcn_cubed_1 ,
500 "upper": [10],
501 "lower": [-10],
502 "weight": 1.0
503 }
504 dct_poly4_1 = {
505 "txt": "a*x1^4 + b*x1^3 + b*x1^2 + c*x1",
506 "txt_fcn": txt_poly4_1 ,
507 "fcn": fcn_poly4_1 ,
508 "upper": [100, 100, 10, 10],
509 "lower": [-100, -100, -10, -10],
510 "weight": 0.15
511 }
512 dct_poly5_1 = {
513 "txt": "a*x1^5 + b*x1^4 + b*x1^3 + b*x1^2 + c*x1",
514 "txt_fcn": txt_poly5_1 ,
515 "fcn": fcn_poly5_1 ,
516 "upper": [100, 100, 10, 10, 10],
517 "lower": [-100, -100, -10, -10, -10],
518 "weight": 0.10
519 }
520 #===#
521 dct_exp_1 = {
522 "txt": "a*(e^(b*x1) -1)",
523 "txt_fcn": txt_exp_1 ,
524 "fcn": fcn_exp_1 ,
525 "upper": [10, 5],
526 "lower": [-10, -5],

133

527 "weight": 0.25
528 }
529 #===#
530 dct_sin_1 = {
531 "txt": "a*sin(b*x1+c) - a*sin(c)",
532 "txt_fcn": txt_sin_1 ,
533 "fcn": fcn_sin_1 ,
534 "upper": [10, 10*3.14159 , 3.14159] ,
535 "lower": [0, 0, -3.14159] ,
536 "weight": 0.25
537 }
538 dct_tanh_1 = {
539 "txt": "a*tanh(b*x1)",
540 "txt_fcn": txt_tanh_1 ,
541 "fcn": fcn_tanh_1 ,
542 "upper": [1000, 10],
543 "lower": [-1000, 0.001] ,
544 "weight": 0.25
545 }
546 dct_tanhx_1 = {
547 "txt": "a*tanh(b*(x1+c)) + d*(x1+c) - (a*tanh(b*c)+d*c)",
548 "txt_fcn": txt_tanhx_1 ,
549 "fcn": fcn_tanhx_1 ,
550 "upper": [1000, 100, 100, 100],
551 "lower": [-1000, 0.001, -100, -100],
552 "weight": 0.25
553 }
554 #===#
555
556 #===#
557 # Functions of 2 variables.
558 #===#
559 dct_poly22_2 = {
560 "txt": "a*x1*x2",
561 "txt_fcn": txt_poly22_2 ,
562 "fcn": fcn_poly22_2 ,
563 "upper": [10],
564 "lower": [-10],
565 "weight": 1.0
566 }
567 dct_poly33_2 = {
568 "txt": "a*x1*x2 + b*x1^2*x2 + c*x1*x2^2",
569 "txt_fcn": txt_poly33_2 ,
570 "fcn": fcn_poly33_2 ,
571 "upper": [10, 10, 10],
572 "lower": [-10, -10, -10],
573 "weight": 0.5
574 }
575 dct_poly44_2 = {
576 "txt": "a*x1*x2 + b*x1^2*x2 + c*x1*x2^2 + d*x1^3*x2 + e*x1^2*x2^2 + f*x1*x2^3",
577 "txt_fcn": txt_poly44_2 ,
578 "fcn": fcn_poly44_2 ,
579 "upper": [10, 10, 10, 10, 10, 10],
580 "lower": [-10, -10, -10, -10, -10, -10],
581 "weight": 0.4
582 }
583 dct_poly55_2 = {
584 "txt": "a*x1*x2 + b*x1^2*x2 + c*x1*x2^2 + d*x1^3*x2 + e*x1^2*x2^2 + " \
585 "f*x1*x2^3 + g*x1^4*x2 + h*x1^3*x2^2 + i*x1^2*x2^3 + j*x1*x2^4",
586 "txt_fcn": txt_poly55_2 ,
587 "fcn": fcn_poly55_2 ,
588 "upper": [10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
589 "lower": [-10, -10, -10, -10, -10, -10, -10, -10, -10, -10],
590 "weight": 0.3
591 }
592 #===#
593 dct_exp_lin12_2 = {
594 "txt": "a*x1*(e^(x2) -1)",
595 "txt_fcn": txt_exp_lin12_2 ,
596 "fcn": fcn_exp_lin12_2 ,
597 "upper": [10],
598 "lower": [-10],
599 "weight": 0.5
600 }
601 dct_exp_lin21_2 = {
602 "txt": "a*x2*(e^(x1) -1)",
603 "txt_fcn": txt_exp_lin21_2 ,
604 "fcn": fcn_exp_lin21_2 ,
605 "upper": [10],
606 "lower": [-10],
607 "weight": 0.5
608 }
609 #===#
610 dct_tanh12_2 = {
611 "txt": "a*tanh(b*x1 -c)*tanh(d*x2-e) - a*tanh(-c)*tanh(-e)",
612 "txt_fcn": txt_tanh12_2 ,
613 "fcn": fcn_tanh12_2 ,
614 "upper": [1000, 1, 100, 1, 100],

134

615 "lower": [-1000, 0.001, -100, 0.001, -100],
616 "weight": 0.5
617 }
618 dct_tanh21_2 = {
619 "txt": "a*tanh(b*x2 -c)*tanh(d*x1-e) - a*tanh(-c)*tanh(-e)",
620 "txt_fcn": txt_tanh21_2 ,
621 "fcn": fcn_tanh21_2 ,
622 "upper": [1000, 1, 100, 1, 100],
623 "lower": [-1000, 0.001, -100, 0.001, -100],
624 "weight": 0.5
625 }
626 #===#
627
628 #===#
629 # Functions of 3+ variables.
630 #===#
631 dct_linear_3 = {
632 "txt": "a*x1*x2*x3",
633 "txt_fcn": txt_linear_3 ,
634 "fcn": fcn_linear_3 ,
635 "upper": [10],
636 "lower": [-10],
637 "weight": 1.0
638 }
639
640 dct_linear_4 = {
641 "txt": "a*x1*x2*x3*x4",
642 "txt_fcn": txt_linear_4 ,
643 "fcn": fcn_linear_4 ,
644 "upper": [10],
645 "lower": [-10],
646 "weight": 1.0
647 }
648
649 dct_linear_5 = {
650 "txt": "a*x1*x2*x3*x4*x5",
651 "txt_fcn": txt_linear_5 ,
652 "fcn": fcn_linear_5 ,
653 "upper": [10],
654 "lower": [-10],
655 "weight": 1.0
656 }
657 #===#
658
659 input_1_list = [dct_poly1_1 ,
660 dct_poly2_1 ,
661 dct_poly3_1 ,
662 dct_poly4_1 ,
663 dct_poly5_1 ,
664 dct_squared_1 ,
665 dct_cubed_1 ,
666 dct_exp_1 ,
667 dct_sin_1 ,
668 dct_tanh_1 ,
669 dct_tanhx_1 ,
670]
671
672 input_2_list = [dct_poly22_2 ,
673 dct_poly33_2 ,
674 dct_poly44_2 ,
675 dct_poly55_2 ,
676 dct_exp_lin12_2 ,
677 dct_exp_lin21_2 ,
678 dct_tanh12_2 ,
679 dct_tanh21_2 ,
680]
681
682 input_3_list = [dct_linear_3]
683
684 input_4_list = [dct_linear_4]
685
686 input_5_list = [dct_linear_5]
687
688 functionDictionary = {
689 1: input_1_list ,
690 2: input_2_list ,
691 3: input_3_list ,
692 4: input_4_list ,
693 5: input_5_list
694 }
695
696 return functionDictionary

135

Bibliography

[1] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.

[2] K. S. Narendra and K. Parthasarathy. “Identification and control of dynamical systems
using neural networks”. In: IEEE Transactions on Neural Networks 1.1 (Mar. 1990),
pp. 4–27.

[3] A. U. Levin and K. S. Narendra. “Control of nonlinear dynamical systems using
neural networks. II. Observability, identification, and control”. In: IEEE Transactions
on Neural Networks 7.1 (Jan. 1996), pp. 30–42.

[4] J. D. Donne and U. Ozguner. “A comparative study of neural vs. conventional
methods for modeling and prediction”. In: Proceedings of the 1992 IEEE International
Symposium on Intelligent Control. IEEE, Aug. 1992, pp. 548–553. DOI: 10.1109/
ISIC.1992.225047.

[5] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. “A survey of methods for explaining black box models”.
In: ACM computing surveys (CSUR) 51.5 (2018), p. 93.

[6] Henrik Jacobsson. “Rule extraction from recurrent neural networks: A taxonomy and
review”. In: Neural Computation 17.6 (2005), pp. 1223–1263.

[7] Kazumi Saito and Ryohei Nakano. “Extracting regression rules from neural networks”.
In: Neural Networks 15.10 (2002), pp. 1279–1288.

[8] Lennart Ljung. “System identification”. In: Wiley Encyclopedia of Electrical and
Electronics Engineering (2001).

[9] Paul Duffy. “Machine Learning for Sensitivity Analysis of Probabilistic Environmen-
tal Models”. In: 2015.

[10] Peter Lancaster and Kestutis Salkauskas. Curve and surface fitting: an introduction.
Academic press, 1986.

[11] Sheng Chen and Steve A Billings. “Representations of non-linear systems: the NAR-
MAX model”. In: International Journal of Control 49.3 (1989), pp. 1013–1032.

[12] Sheng Chen, SA Billings, and PM Grant. “Non-linear system identification using
neural networks”. In: International journal of control 51.6 (1990), pp. 1191–1214.

136

https://doi.org/10.1109/ISIC.1992.225047
https://doi.org/10.1109/ISIC.1992.225047

[13] José Maria P Menezes Jr and Guilherme A Barreto. “Long-term time series prediction
with the NARX network: An empirical evaluation”. In: Neurocomputing 71.16-18
(2008), pp. 3335–3343.

[14] Robert Andrews, Joachim Diederich, and Alan B Tickle. “Survey and critique of
techniques for extracting rules from trained artificial neural networks”. In: Knowledge-
Based Systems 8.6 (1995), pp. 373–389.

[15] Alan B Tickle, Mostefa Golea, Ross Hayward, and Joachim Diederich. “The truth
is in there: current issues in extracting rules from trained feedforward artificial
neural networks”. In: Proceedings of International Conference on Neural Networks
(ICNN’97). Vol. 4. IEEE, 1997, pp. 2530–2534.

[16] Alan Tickle, Robert Andrews, Mostefa Golea, and Joachim Diederich. “The Truth
is in There: Directions and Challenges in Extracting Rules From Trained Artificial
Neural Networks”. In: IEEE Transactions on Neural Networks 9 (Feb. 2000).

[17] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich. “The truth will come to
light: directions and challenges in extracting the knowledge embedded within trained
artificial neural networks”. In: IEEE Transactions on Neural Networks 9.6 (Nov.
1998), pp. 1057–1068. ISSN: 1045-9227. DOI: 10.1109/72.728352.

[18] Rudy Setiono, Wee Kheng Leow, and Jacek M Zurada. “Extraction of rules from
artificial neural networks for nonlinear regression”. In: IEEE transactions on neural
networks 13.3 (2002), pp. 564–577.

[19] RUDY Setiono. “Techniques for extracting classification and regression rules from
artificial neural networks”. In: Computational intelligence: The experts speak (2003),
pp. 99–114.

[20] Dennis W Ruck, Steven K Rogers, and Matthew Kabrisky. “Feature selection using a
multilayer perceptron”. In: Journal of Neural Network Computing 2.2 (1990), pp. 40–
48.

[21] R. H. Kewley, M. J. Embrechts, and C. Breneman. “Data strip mining for the virtual
design of pharmaceuticals with neural networks”. In: IEEE Transactions on Neural
Networks 11.3 (May 2000), pp. 668–679. ISSN: 1045-9227. DOI: 10.1109/72.
846738.

[22] Mark J Embrechts, Fabio A Arciniegas, Muhsin Ozdemir, and Robert H Kewley.
“Data mining for molecules with 2-D neural network sensitivity analysis”. In: Interna-
tional Journal of smart engineering system design 5.4 (2003), pp. 225–239.

[23] P. Cortez and M. J. Embrechts. “Opening black box Data Mining models using
Sensitivity Analysis”. In: 2011 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM). Apr. 2011, pp. 341–348. DOI: 10.1109/CIDM.2011.5949423.

[24] Paulo Cortez and Mark J Embrechts. “Using sensitivity analysis and visualization
techniques to open black box data mining models”. In: Information Sciences 225
(Mar. 2013), pp. 1–17.

137

https://doi.org/10.1109/72.728352
https://doi.org/10.1109/72.846738
https://doi.org/10.1109/72.846738
https://doi.org/10.1109/CIDM.2011.5949423

[25] Kazumi Saito and Ryohei Nakano. “Medical diagnostic expert system based on PDP
model”. In: IEEE 1988 International Conference on Neural Networks. Vol. 1. July
1988, pp. 255–262. DOI: 10.1109/ICNN.1988.23855.

[26] A. Vahed and C. W. Omlin. “Rule extraction from recurrent neural networks using
a symbolic machine learning algorithm”. In: ICONIP’99. ANZIIS’99 ANNES’99
ACNN’99. 6th International Conference on Neural Information Processing. Proceed-
ings (Cat. No.99EX378). Vol. 2. IEEE, Nov. 1999, pp. 712–717. DOI: 10.1109/
ICONIP.1999.845683.

[27] A Vahed and Christian W Omlin. “A machine learning method for extracting symbolic
knowledge from recurrent neural networks”. In: Neural Computation 16.1 (Jan. 2004),
pp. 59–71.

[28] Ilya M Sobol. “Sensitivity estimates for nonlinear mathematical models”. In: Mathe-
matical modelling and computational experiments 1.4 (1993), pp. 407–414.

[29] Toshimitsu Homma and Andrea Saltelli. “Importance measures in global sensitivity
analysis of nonlinear models”. In: Reliability Engineering & System Safety 52.1
(1996), pp. 1–17.

[30] Ilya M Sobol. “Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates”. In: Mathematics and computers in simulation 55.1-3 (2001),
pp. 271–280.

[31] GEB Archer, Andrea Saltelli, and IM Sobol. “Sensitivity measures, ANOVA-like
techniques and the use of bootstrap”. In: Journal of Statistical Computation and
Simulation 58.2 (1997), pp. 99–120.

[32] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[33] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling”. In: arXiv preprint
arXiv:1803.01271 (2018).

[34] John Miller and Moritz Hardt. “When recurrent models don’t need to be recurrent”.
In: arXiv preprint arXiv:1805.10369 4 (2018).

[35] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. “Wavenet:
A generative model for raw audio”. In: CoRR abs/1609.03499 (2016).

[36] M. Lopez and W. Yu. “Nonlinear system modeling using convolutional neural net-
works”. In: 2017 14th International Conference on Electrical Engineering, Computing
Science and Automatic Control (CCE). IEEE, Oct. 2017, pp. 1–5. DOI: 10.1109/
ICEEE.2017.8108894.

[37] T. Wigren and J. Schoukens. “Three free data sets for development and benchmarking
in nonlinear system identification”. In: 2013 European Control Conference (ECC).
July 2013, pp. 2933–2938.

138

https://doi.org/10.1109/ICNN.1988.23855
https://doi.org/10.1109/ICONIP.1999.845683
https://doi.org/10.1109/ICONIP.1999.845683
https://doi.org/10.1109/ICEEE.2017.8108894
https://doi.org/10.1109/ICEEE.2017.8108894

[38] Lennart Ljung, Qinghua Zhang, Peter Lindskog, and Anatoli Juditski. “Estimation of
grey box and black box models for non-linear circuit data”. In: IFAC Proceedings
Volumes 37.13 (2004). 6th IFAC Symposium on Nonlinear Control Systems 2004
(NOLCOS 2004), Stuttgart, Germany, 1-3 September, 2004, pp. 399–404. ISSN:
1474-6670.

[39] Marcelo Espinoza, Kristiaan Pelckmans, Luc Hoegaerts, Johan A.K. Suykens, and
Bart De Moor. “A comparative study of ls-svm’s applied to the silver box identifica-
tion problem”. In: IFAC Proceedings Volumes 37.13 (2004). 6th IFAC Symposium on
Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 Septem-
ber, 2004, pp. 369–374. ISSN: 1474-6670.

[40] J. Paduart, G. Horvath, and J. Schoukens. “Fast identification of systems with nonlin-
ear feedback”. In: IFAC Proceedings Volumes 37.13 (2004). 6th IFAC Symposium on
Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 Septem-
ber, 2004, pp. 381–385. ISSN: 1474-6670.

[41] Håkan Hjalmarsson and Johan Schoukens. “On Direct Identification of Physical
Parameters in Non-Linear Models”. In: IFAC Proceedings Volumes 37.13 (2004). 6th
IFAC Symposium on Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart,
Germany, 1-3 September, 2004, pp. 375–380. ISSN: 1474-6670.

[42] Vincent Verdult. “Identification of Local Linear State-Space Models: The Silver-Box
Case Study”. In: IFAC Proceedings Volumes 37.13 (2004). 6th IFAC Symposium on
Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 Septem-
ber, 2004, pp. 393–398. ISSN: 1474-6670.

[43] László Sragner, Johan Schoukens, and Gábor Horváth. “Modelling of a slightly
nonlinear system: a neural network approach”. In: IFAC Proceedings Volumes 37.13
(2004). 6th IFAC Symposium on Nonlinear Control Systems 2004 (NOLCOS 2004),
Stuttgart, Germany, 1-3 September, 2004, pp. 387–392. ISSN: 1474-6670.

[44] M. Espinoza, J. A. K. Suykens, and Bart De Moor. “Kernel based partially linear
models and nonlinear identification”. In: IEEE Transactions on Automatic Control
50.10 (Oct. 2005), pp. 1602–1606. ISSN: 0018-9286.

[45] Marcelo Espinoza Tapia. “Structured Kernel Based Modeling and its Application to
Electric Load Forecasting”. In: (2006).

[46] Johan Paduart, Lieve Lauwers, Jan Swevers, Kris Smolders, Johan Schoukens, and
Rik Pintelon. “Identification of nonlinear systems using Polynomial Nonlinear State
Space models”. In: Automatica 46.4 (2010), pp. 647–656. ISSN: 0005-1098.

[47] E. Pepona, S. Paoletti, A. Garulli, and P. Date. “Identification of Piecewise Affine
LFR Models of Interconnected Systems”. In: IEEE Transactions on Control Systems
Technology 19.1 (Jan. 2011), pp. 148–155. ISSN: 1063-6536.

139

[48] Anna Marconato, Jonas Sjöberg, Johan Suykens, and Johan Schoukens. “Identifica-
tion of the Silverbox Benchmark Using Nonlinear State-Space Models”. In: IFAC
Proceedings Volumes 45.16 (2012). 16th IFAC Symposium on System Identification,
pp. 632–637. ISSN: 1474-6670.

[49] A. Marconato, M. Schoukens, Y. Rolain, and J. Schoukens. “Study of the effec-
tive number of parameters in nonlinear identification benchmarks”. In: 52nd IEEE
Conference on Decision and Control. Dec. 2013, pp. 4308–4313.

[50] Anne Van Mulders, Johan Schoukens, and Laurent Vanbeylen. “Identification of
systems with localised nonlinearity: From state-space to block-structured models”.
In: Automatica 49.5 (2013), pp. 1392–1396. ISSN: 0005-1098.

[51] R. Frigola and C. E. Rasmussen. “Integrated pre-processing for Bayesian nonlin-
ear system identification with Gaussian processes”. In: 52nd IEEE Conference on
Decision and Control. Dec. 2013, pp. 5371–5376.

[52] R. Castro, S. Mehrkanoon, A. Marconato, J. Schoukens, and J. A. K. Suykens.
“SVD truncation schemes for fixed-size kernel models”. In: 2014 International Joint
Conference on Neural Networks (IJCNN). July 2014, pp. 3922–3929.

[53] F. Sabahi and M. R. Akbarzadeh-T. “Extended Fuzzy Logic: Sets and Systems”. In:
IEEE Transactions on Fuzzy Systems 24.3 (June 2016), pp. 530–543. ISSN: 1063-
6706.

[54] A. Carini and G. L. Sicuranza. “Recursive functional link polynomial filters: An
introduction”. In: 2016 24th European Signal Processing Conference (EUSIPCO).
Aug. 2016, pp. 2335–2339.

[55] César Lincoln C Mattos, Guilherme A Barreto, and Gonzalo Acuña. “Randomized
Neural Networks for Recursive System Identification in the Presence of Outliers: A
Performance Comparison”. In: International Work-Conference on Artificial Neural
Networks. Springer. 2017, pp. 603–615.

[56] José Daniel A. Santos and Guilherme A. Barreto. “Novel sparse LSSVR models
in primal weight space for robust system identification with outliers”. In: Journal
of Process Control 67 (2018). Big Data: Data Science for Process Control and
Operations, pp. 129–140. ISSN: 0959-1524.

[57] J. Schoukens, J.G. Nemeth, P. Crama, Y. Rolain, and R. Pintelon. “Fast approximate
identification of nonlinear systems”. In: Automatica 39.7 (2003), pp. 1267–1274.
ISSN: 0005-1098.

[58] Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. “Preparing for the unknown:
Learning a universal policy with online system identification”. In: arXiv preprint
arXiv:1702.02453 (2017).

[59] Wassily Leontief. “A note on the interrelation of subsets of independent variables of
a continuous function with continuous first derivatives”. In: Bulletin of the American
mathematical Society 53.4 (Apr. 1947), pp. 343–350.

140

[60] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python. [Online; accessed January 3, 2019]. 2001–.

[61] Kim-Fung Man, Kit-Sang Tang, and Sam Kwong. “Genetic algorithms: concepts and
applications [in engineering design]”. In: IEEE transactions on Industrial Electronics
43.5 (1996), pp. 519–534.

[62] Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical
distributions. John Wiley & Sons, 2011.

[63] MathWorks. Electric Vehicle Configured for HIL. https://www.mathworks.com/
help/physmod/sps/examples/electric-vehicle-configured-for-hil.
html. Accessed: 2018-01-26.

[64] Jon C Helton and Freddie Joe Davis. “Latin hypercube sampling and the propagation
of uncertainty in analyses of complex systems”. In: Reliability Engineering & System
Safety 81.1 (2003), pp. 23–69.

141

https://www.mathworks.com/help/physmod/sps/examples/electric-vehicle-configured-for-hil.html
https://www.mathworks.com/help/physmod/sps/examples/electric-vehicle-configured-for-hil.html
https://www.mathworks.com/help/physmod/sps/examples/electric-vehicle-configured-for-hil.html

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Motivation and Problem Statement
	1.2 Related Work
	1.2.1 System Identification
	1.2.2 Rule Extraction
	1.2.3 Sensitivity Analysis

	1.3 Overview and Outline

	2. System Identification using Neural Networks
	2.1 Choosing an Identification Model
	2.2 Neural Network Model Implementation
	2.3 Temporal Convolutional Networks
	2.4 The Silverbox Benchmark
	2.4.1 Existing Benchmark Results
	2.4.2 Establishing a Fair Benchmark
	2.4.3 TCN Identification Performance

	2.5 Summary and Conclusions

	3. Equation Generation Methodology
	3.1 Model Interpretation
	3.2 Model Excitation
	3.3 Response Analysis
	3.3.1 Methodology
	3.3.2 Example Walkthrough

	3.4 Genetic Algorithm Tuning
	3.5 Summary and Conclusions

	4. Application Analysis and Examples
	4.1 Implementation
	4.1.1 Model Creation
	4.1.2 Model Analysis
	4.1.3 Template Functions

	4.2 Verbose Example
	4.3 Synthetic Experiments
	4.3.1 Verbose Example Extension
	4.3.2 Noise Resilience
	4.3.3 Periodic Functions
	4.3.4 Modified Product Functions
	4.3.5 Taylor Series Expansions
	4.3.6 Missing Template Functions
	4.3.7 Models Undefined at or around 0
	4.3.8 Higher Dimensional Product Functions

	4.4 Data-Driven Experiments
	4.4.1 Silverbox Analysis
	4.4.2 Vehicle Roll Analysis
	4.4.3 Motor Cooling Analysis

	4.5 Summary and Conclusions

	5. Conclusion
	5.1 Contributions
	5.2 Future Work
	5.3 Concluding Remarks

	Appendices
	A. Python Code

