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Abstract

Widespread adoption of Plug-in Electric Vehicles (PEVs) brings significant so-

cial and economic benefits. The development and promotion of PEV are essential

to scale up the transition to electric mobility. Overall, the large-scale integration

of PEV can lead us towards a more connected and environmentally friendly world.

However, without proper preparation and management, the massive PEV charging

could exert an increasingly disruptive influence on the electric power grid. The goal

of this dissertation is to propose algorithms and methods for grid operators and elec-

tric utilities to accurately analyze PEV’s charging impact on the power system from

both distribution and transmission voltage levels. The practical impact metrics pro-

vide an important tool to develop proper mitigation strategies through infrastructure

planning.

PEVs are characterized as a stochastic and impulsive electric load, which means

they are of high power density and vary in a fast and discrete manner. These load

characteristics make conventional assessment methods unsuitable. This dissertation

first proposes an algorithm, which captures the inter-temporal response of grid assets

and allows fast assessment through an integrated interface. To realize these advanta-

geous features, we establish analytic models for two generic classes of grid assets and

recast their cost functions in the statistical settings of PEV charging.
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The proposed impact analysis algorithm can be developed into software planning

tool and embedded into utilities’ strategy of impact mitigation. The current auto

industry has envisioned the ability to recharge PEV at speeds comparable to the

traditional gas refueling. This trend has facilitated the integration of Fast Charg-

ing Stations (FCS) into transportation service infrastructure. This dissertation, for

the first time, proposes a graph-computing based integrated FCS location planning

model, which maximizes PEV charging convenience while ensuring the power grid’s

reliability. The proposed model is cast as a multi-objective mixed-integer problem

and solved by the cross-entropy optimization algorithm, in which the computational

efficiency is significantly improved with graph parallel computing techniques.

On the transmission level PEV charging impact, this dissertation proposes a

Graph-computing based Cascading Failure Evolution (G-CFE) analysis to predict

potential cascading outages induced by FCS on power transmission systems. Funda-

mentally different from the existing cascading analysis tools, which are based on DC

power flow or require a long computation time, the proposed method greatly improves

accuracy by using AC power flow, while guaranteeing the analyzing speed with graph

parallel computing techniques. The proposed G-CFE model can accurately capture

the stochastic PEV charging patterns with Monte-Carlo simulation and be easily

scaled to various network configurations through a graph-based scheme.
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Chapter 1: Introduction

1.1 Background and Motivation

Plug-in Electric Vehicles (PEV) have become increasingly popular in our daily

traveling routine. PEVs use energy storage, usually in the form of battery banks,

that are designed to be recharged using utility grid power [1]. The world has seen a

myriad of benefits that PEV promise. They help us reduce greenhouse gas (GHG)

emissions and our dependence on fossil fuels [2, 3]. They can lead us towards a more

connected and environmentally friendly world. The development and promotion of

PEV are essential to scale up the transition to electric mobility.

According to the International Energy Agency (IEA), the zero-emission mobility

is expanding at a rapid pace. In 2018, the global PEV fleets exceeded 5.1 million, up

2 million from the previous year, and the worldwide PEV penetration target is 30% of

total market share by 2030 (i.e., EV30@30 Campaign) [4]. Country-specific market

status and targets, shown in Table 1.1, further illustrate the continued push towards

massive PEV adoption [4–9]. Technology advances and policy incentives continuously

serve as the key enablers for such PEV penetration trend.

One obstacle of the massive PEV adoption is the range anxiety, which is a common

phenomenon defined as the urge to charge PEV when its battery’s State of Charge

1



Table 1.1: Global Leading PEV Market Status and Ambitions

Country New PEV Sales
in 2018

Cumulative Sales
through 2018

PEV
Market Share

Penetration
Targets

USA 361,320 1123,370 2.45% 10% in 2025

China 1078,530 2306,300 4.48% 20% by 2025

Norway 72,690 249,000 46.42% 100% by 2025

Netherlands 29,160 148,490 6.57% 100% by 2035

UK 50,360 184,030 2.10% 100% by 2040

Japan 49,750 255,100 1.13% 30% by 2030

Note: Market share is based on the total market size of each country

(SOC) falls below a threshold. The charging accessibility, convenience, and efficiency

greatly affect people’s intention to own PEV. To address the range anxiety concern,

fast charging infrastructure has been developed and deployed worldwide to further

escalate the momentum for transportation electrification. Tesla has been developing

a network of supercharging stations with power level up to 150 kW [10]. In Western

Europe, since 2018, the joint venture Ionity has opened over 100 fast-charging stations

toward its goal of 400 by 2020. At these stations, a PEV driver can stop for 15 to 45

minutes and recharge a vehicle as fast as its on-board charger permits, e.g., all the

way up to 350 kW [11]. China remains the world’s largest PEV market in 2018, where

the utility State Grid Corporation has paved the way for the charging infrastructure

development and ambitious penetration target [12]. It can be seen that automakers,

utilities, charging hardware manufacturers and other power sector stakeholders are

all participating in boosting investment of fast charging infrastructure.
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The assumed trajectory for the electric power grid decarbonisation effort is consis-

tent with transportation electrification and further strengthens GHG emission reduc-

tions from PEV. When the power grid interacts with PEV through charging activities,

it observes an unconventional type of load. PEV loads consume much higher power.

Table 1.2 shows the charging levels, terminal voltages and connection configurations

regarding current charging technology [13–15]. For example, at DC Level 2, it is

possible to charge a 25 kWh battery pack in less than 10 minutes. This magnitude of

power requirements far exceed the peak power demand for an average household in

the U.S. Moreover, the Power Electronics-interfaced (PE-interfaced) configuration of

PEV charger can ramp up to full charging power almost instantaneously. For exam-

ple, it only takes 7 seconds for a 2016 Ford Focus Electric to reach its full charging

power after connecting to the grid. Therefore, the PEV charging characteristics are

of high power demand and impulsive.

Table 1.2: PEV Charging Level, Terminal Voltage and Configuration

Charging
Level

Terminal
Voltage

Power
per Vehicle

Charging
Time

System Level
Connection

AC Level 1 120 V
1-phase

2 kW 10∼13 h Residential/Commercial
Secondary Customer

120 V and 240 VAC Level 2 240 V
1-phase

20 kW 1∼4 h

AC Level 3 240 V
3-phase

43.5 kW ∼1 h

DC Level 1 200∼450 V 36 kW 0.5∼1.44 h Commercial
Primary/Secondary

Customer 480 V
DC Level 2 200∼450 V 96 kW 0.2∼0.58 h

DC Level 3 200∼800 V 200 kW ∼10 min

Ultra-Fast
Charging

(UFC)

≥800 V 500 kW ∼Gas
Refueling

Sub-transmission
Primary Customer

26 kV or 69 kV

Note: Ultra-Fast Charging is not yet finalized
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These charging activities add additional demand to a power grid that may be

already struggling to meet its regular obligations, which present challenges. Both

transmission system and distribution system can observe the loading stress induced by

PEV charging in various effects. The transmission systems (above 138 kV ) transport

power from generating units to all the power delivery systems within its operation

region. Distribution systems operate from 2 kV to 35 kV , delivering electricity from

substations, which are connected to the transmission system. Power networks that are

operated between 35 kV and the transmission voltage level (138 kV ) are referred to

as the sub-transmission level [16].1 Accurately and efficiently assessing these charging

impacts from both voltage levels plays a crucial role in managing the power grid and

maintaining the operating reliability.

1.2 Literature Review

The charging impacts of high penetration of PEVs have been studied at both

distribution and transmission voltage levels. At the distribution level, studies have

been focused on residential charging and conventional commercial charging, ranging

from 120 V to 480 V , as shown in Table 1.2 [17–19]. PEV charging impact is assessed

in terms of charger modeling and load behavior characterization in [20–22], with re-

sults obtained by either hardware experiments or field measurements. In [23, 24],

battery degradation protection strategy and associated costs are further considered

when optimally coordinating the PEV charging schedules. Ref. [25, 26] investigate

the charging impact on overall power quality, and in particular, voltage profile along

1The voltage level classification varies by operators, electric administrative regions, and countries.
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the distribution feeder, considering uncertainties of charging patterns. Ref. [27] pro-

poses a four-quadrant charger operation technique to properly manage the charging,

satisfying feeder voltage and peak demand constraints. The design of coordinated

charging strategies for impact mitigation has been presented in [28–30].

On aggregate of charging infrastructure and corresponding impacts, existing stud-

ies have focused on the interaction between PEV charging stations and the distributed

generation (DG) as well as energy storage (ES) [31–35]. Furthermore, distribution

expansion planning [36], maximum PEV penetration capability [37], and grid asset

depreciation analysis [38], etc., have been studied under the scope of distribution level

PEV charging impact.

At the transmission level, literature has assessed the aggregate of lower level PEV

charging on their participation in electricity markets [39–41]. The frequency regula-

tion [42, 43] and congestion management [44, 45] under PEV integration have been

investigated as well. Furthermore, the charging coordination with DG [46], worst

contingencies identification [47], and transmission expansion planning [48], etc., have

been studied under the scope of transmission level PEV charging impact.

As illustrated in Section 1.1 and Table 1.2, the ambition of Ultra-Fast Charging

(UFC) is to boost the charging speed to a level that is comparable to the tradi-

tional gas refueling. With such high-power requirements, the connection topology

and configuration between fast charging infrastructure and the power grid requires

adjustment. High-power demand may require a high connecting voltage level, neces-

sitating UFC connections at the transmission/sub-transmission system instead of the

traditional medium/low-voltage distribution system. Such a configuration is similar

5



to a large industrial load center of primary customer grade. So far, besides concep-

tual proposals and a few pilot projects, the feasibility, topology, and potential grid

impacts of UFC have yet to be thoroughly studied.

1.3 Dissertation Structure

This dissertation focuses on the integration of PEV into the electric power system,

where the grid impact analysis and corresponding charging infrastructure planning

have been elaborated throughout the dissertation. The remaining of this dissertation

is organized as follows.

Chapter 2 proposes an integrated algorithm for evaluating grid assets depreciation

under high penetration of PEVs, which is a typical distribution level charging impact.

The fidelity of the proposed method is demonstrated on a set of real-world power

distribution networks. The results of the case study have been developed impact

analysis and predictive planning software prototype in the chapter. This chapter

also analyzes the mechanism and impact of dynamic loss of voltage stability under

grid-side disturbances by studying a PEV-connected rudimentary system.

Based on the distribution level impact metrics developed in Chapter 2, Chapter 3

proposes a graph-computing based integrated location planning model for PEV fast

charging stations (FCS). The proposed model considers the requirements for FCS in

both aspects of power supply and transportation, thus guaranteeing reliable power

grid operation as well as economic planning decisions. To ensure fast convergence of

the planning process, the chapter further proposes a graph-based cross-entropy (CE)

optimization algorithm, which enhances computational efficiency with graph parallel
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computing technique. The integrated planning model and graph-based implementa-

tion have been validated on a synthetic network.

Chapter 4 takes the PEV’ charging impact assessment to the transmission level

and proposes a Graph-computing based Cascading Failure Evolution (G-CFE) anal-

ysis to predict potential cascading outages induced by Ultra-Fast Charging Station

(UFCS) on power transmission systems. The proposed G-CFE model is the first effort

to analyze PEV’s disruptive impact on transmission power grids. The advantages of

the proposed method is validated in a real-world provincial transmission system.

Finally, in Chapter 5, the contributions of this dissertation are summarized and

future works are recommended.
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Chapter 2: Distribution Level PEV Charging Impact

2.1 Introduction

As described in Chapter 1, the impact of high penetration of PEVs on the power

grid has been studied at two voltage levels: distribution (below 26 kV) and transmis-

sion. In this chapter, we investigate the distribution level PEV charging impact.

Distinct from conventional electric loads, PEV loads are stochastic and impulsive,

which means they are of high power density and vary in a fast and discrete manner.

Prior works have shown that these load characteristics result in negative impacts on

the power grid, including disruptively varying voltage profiles along the feeder and

overloading of service transformers, etc. [14, 29, 49–52]. This will consequently affect

the operating state of grid assets and induce lifetime depreciation over the long term.

With increasing PEV penetration and improving fast/ultra-fast charging technologies,

it is critical for electric utilities to accurately quantify the impact of PEV loads on grid

assets and plan for equipment replacement and infrastructure expansion accordingly,

to ensure service reliability.

Static analysis and Time-Series (TS) analysis have been utilized to assess grid

assets’ response under high penetration of PEVs. Most of the static analysis results

in the consideration of maximum PEV loads induced by coincidental charging. For
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example, [53] shows that the energy losses can increase up to 40% in off-peak hours

and the investment cost can increase up to 15% of total distribution network costs

for a scenario of 60% PEV penetration level. In [54], the case study shows that both

peak-to-average ratio (PAR) and loss increment are big concerns to the widespread

PEVs due to the coincidence of daily peak load and charging activities. The lim-

itation of this approach is that only the worst cases are considered, and thus tend

to overestimate the negative impact. Improving on this approach, other work, such

as [55, 56], considers the probabilistic distribution of PEV loads connected in the

system. In [55], Roulette wheel selection concept is used to take various uncertain-

ties into account, thus quantifies the congestion and security risk impact of PEV in

the form of probabilistic distribution functions. While these assessments allow more

accurate input of PEV charging, an inherent deficiency of the static analysis is em-

bedded from the assumption of fixed grid configurations. Hence, they cannot capture

the inter-temporal response of grid assets. These deficiencies can be alleviated in TS

analysis.

TS analysis feeds time-series load profiles to power flow analysis and monitors

power grid’s response. A few studies adopt TS analysis in PEV’s impact assessment,

under deterministic or stochastic settings. Ref. [56] simulated four PEV charging

scenarios, considering stochastic nature in charging start time, and thus concludes

that a 20% level of PEV penetration would lead to a 35.8% increase in peak load for

uncontrolled charging scenario. However, the results of these studies do not naturally

fulfill utilities’ needs of quantifying the long-term cost induced by PEV. This is be-

cause (i) the existing studies are simulation-based, and thus the conclusions drawn
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cannot be generalized to other power systems; (ii) TS analysis only shows the electri-

cal response (e.g., voltage, power, etc.), but grid asset depreciation could depend on

response in other dimensions (e.g., winding temperature, mechanical fatigue, etc.);

and most importantly (iii) the load flow resulted from the TS analysis are taken in

the form of annual average in the evaluation [57], which makes the impulsive charging

characteristics invisible. In other words, the load spikes caused by PEV charging can

be easily averaged off in the assessment and shown harmless, while they could greatly

reduce the lifetime of the grid assets in reality.

Therefore, in this chapter, we propose an integrated algorithm that evaluates the

temporal and multi-dimensional operating state of grid assets under the umbrella of

TS analysis [38,58]. The contributions of the proposed algorithm are twofold:

(i) It provides an approach to conveniently assess PEV’s impact on grid assets.

The PEV charging profiles are pre-processed through Monte Carlo Simulation (MCS),

which ensures consideration of stochastic charging patterns, fed into TS analysis and

asset lifetime estimation. The outputs are presented through an integrated interface.

(ii) Inter-temporal response of grid assets is considered. Compared to existing

methods, which assess grid assets based on their average loading, the proposed algo-

rithm considers assets’ operating frequency and temperature variation. These factors

could lead to significant differences in the assessment, as demonstrated in the numer-

ical cases.

Following the charging impact evaluation algorithm, this chapter then establishes a

new context where the power-electronics-based (PE-based) load, represented by PEV,

dominates the total load composition in power distribution systems. Under the new

context, the mechanism and impacts of voltage instability under large disturbances
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have been analytically explored [59]. Finally, the chapter introduces a software pro-

totype, wherein the author developed asset depreciation analysis module, that serves

as an impact visualization tool and predictive planning guideline under the increasing

PEV penetration [60].

Note that the response of grid assets is defined as the inter-temporal operating

state change. Throughout the chapter, “grid assets” and “power delivery equipment”

are used interchangeably. In addition, although the proposed algorithm can be applied

to any power systems, we only examine its effectiveness in simple settings, where

mitigation method on PEV charging is not applied.

2.2 Analytic Models of Integrated Evaluation Algorithm

The proposed integrated charging impact evaluation algorithm is outlined in

Fig. 2.1. In general the algorithm combines time-series power flow (TSPF) analy-

sis with off-line asset degradation impact assessment.

2.2.1 Total Cost of Ownership Analysis in Utility Practice

Grid assets can be classified into two categories based on their lifetime depreci-

ation procedures: continuous loading equipment and discrete operating equipment.

The former’s depreciation rate depends on their thermal loading, while the latter’s de-

pends on the operating frequency. Examples are transformers, which depreciate faster

under heavy loading, and voltage regulators (VR), which exhaust after operating for

a certain number of times.

Total Cost of Ownership (TCO) analysis is commonly adopted by utilities to

assess the long-term cost of the equipment, which accounts for the present value of

capital cost and operating depreciation. The TCO of discrete operating equipment is
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Figure 2.1: Workflow of Integrated Charging Impact Evaluation Algorithm

conventionally evaluated independent of loading conditions. For continuous loading

equipment, its TCO is exemplified by a transformer and expressed as (2.1), with

terms expanded in (2.2) - (2.5) [61]

TCO = Co + CL · A+ LL ·B, (2.1)

where Co is the bid price (i.e., capital cost) of the transformer, the rest of the terms

are operating costs. CL,LL are transformer core loss and load loss in kW provided

by manufacturers, A and B are core loss and load loss factor in $/kW

A = DC +N · PEC (2.2)

B = (RF ·DC + LoF · PEC) · P̂ 2, (2.3)
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where DC represents the levelized hourly demand cost in $/kW − hr, N is the total

hours in the analyzing period, RF is the transformer responsibility factor indicating

the relationship between transformer peak load and transformer load at the system

peak time, P̂ is the normalized peak loading, calculated as the ratio of peak loading

to the transformer rating ŝ/sR, PEC is the present value of energy cost in $/kWh,

which depends on the normal transformer insulation life Tins, interest rate i, and

energy cost EC

PEC = EC · (1 + i)Tins − 1

i(1 + i)Tins
, (2.4)

and LoF is the transformer loss factor depending on the annual average loading savg

of the transformer, calculated as

LoF = γ
savg
ŝ

+ (1− γ)(
savg
ŝ

)2, (2.5)

where γ is the dynamic load factor constant.

In (2.1), the last term LL · B models the depreciation induced from transformer

loading. From (2.3) and (2.5), it can been seen that average annual loading is used

to approximate the time-varying loading. This conventional assessment method can

occasionally capture the long-term overloading [57]. However, they are incapable of

capturing short-term overloading induced from impulsive PEV loads, because the

“load spikes” of charging could be easily averaged off.

2.2.2 Grid Asset Depreciation Model (GADM)

Lifetime depreciation models of grid assets under the same category take similar

forms. In this section, we present the dynamic models of transformers and VR to

represent the continuous loading equipment and discrete operating equipment, re-

spectively. These models are adopted to assess the equipment’s temporal response in
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the proposed algorithm. We also derive their corresponding Loss of Life (LoL) met-

rics. This Grid Asset Depreciation Model (GADM) and the subsequent re-established

TCO evaluation serve as the core of the proposed impact evaluation algorithm.

Continuous Loading Equipment

The distribution transformer’s lifetime depends on the internal winding hot-spot

temperature QHST , which is directly related to the loading level s(t) at each instant

[62]. The dynamics of this thermal model has the following general form in terms of

continuous time differential equations

Q̇TO(t) = f1(E2[K(t)], QTO(t)) (2.6)

Q̈H(t) = f2(Ey[K(t)], Q̇H(t)) (2.7)

QHST (t) = QTO(t) + τH · Q̇H(t), (2.8)

where QTO is the top-oil temperature, E[K(t)] is the expectation of load factor K(t) =

s(t)/sR at each instant obtained from distribution power flow analysis embedded

with MCS, Q̇H is the hot-spot temperature dynamic over top-oil, τH is the hot-spot

temperature time constant, and y is the winding exponent power. The compact form

of the dynamic system model of (2.6) - (2.8) can be written as a stochastic function

of continuous loading level

Q̇X = f(QX , s(t)|µ, σ) (2.9)

QHST = aT ·QX , (2.10)

where QX = [QTO Q̇H ] and a = [1 τH ]T .
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Then, the LoL for transformer LT during any time span [t1, t2] is derived as in

(2.11). The transformer’s expected lifetime Tx can be found by solving LT (0, Tx) = 1.

LT (t1, t2) =
1

Tins

∫ t2

t1

FAA(t)dt, (2.11)

where FAA is the accelerated aging factor defined in (2.12) [63]

FAA(QHST ) = exp(α− β

QHST (t) + Ω
), (2.12)

where α, β and Ω are thermal constants of the transformer. When FAA(t) > 1, the

lifetime of the transformer is shortened at instant t.

Discrete Operation Equipment

Voltage regulator (VR) is essentially a type of tap changing transformer. In the

power distribution system, VR are installed to regulate the voltage deviation to within

predetermined range. Impulse loads, such as PEV, tend to cause time-varying and

salient voltage deviation, which may result in more frequent tap operations. VR’s

lifetime is determined by its mechanical durability and specified as the total number

of effective tap operations. The operation policy of VR can be expressed as follow

h(n) =


(V (n)− VR) · 1

κ
, if V (n) ∈ [hmin, ε] ∪ [ε̄, hmax]

hmax, if h(n− 1) + ∆h(n) ≥ hmax

hmin, if h(n− 1)−∆h(n) ≤ hmin

, (2.13)

where h(n) is the VR tap position at the nth (discrete) instant and dependent on

its nodal voltage magnitude V (n) as calculated from power flow, VR is the reference

voltage magnitude, κ is the VR step-size, [ε, ε̄] is VR’s dead-band, and hmax, hmin are

maximum and minimum tap position, beyond which the VR will be saturated.

By observing the change of tap positions triggered by voltage variation, the LoL of

VR LV during any time span [n1, n2] can be obtained in (2.14), and the VR’s lifetime
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Tv can be estimated by solving LV (0, Tv) = 1.

LV (n1, n2) =
1

Nop

n2∑
n1

|h(n)− h(n− 1)|, (2.14)

where Nop is the VR’s empirical maximum number of tap operations.

Re-established TCO Evaluation

The outputs of TS analysis enable us to accurately assess the LoL of power delivery

equipment in the grid with PEV loads during any time span of interest. In this section,

we re-establish the TCO formulation for grid asset long-term cost assessment. For

VR, the TCO can be simply expressed as

TCOV (n1, n2) = LV (n1, n2) · CV
o , (2.15)

where LV (n1, n2) is specified in (2.14) and CV
o is VR’s capital cost.

For transformers, the TCO can be formulated as

TCOT (t1, t2) =LT (t1, t2) · CT
o (2.16)

+ CL · A(t1, t2) + LL ·B(s, t1, t2),

where LT (t1, t2) is specified in (2.11) and other parameters are specified in Section

2.2.1. PEC in (2.4) is modified to reflect the future cost in [t1, t2] to the present day

value as

PEC =
EC

i
[

1

(1 + i)t1
− 1

(1 + i)t2
], (2.17)

and the parameter LoF in (2.5) is modified to capture time-varying loading level

under stochastic PEV charging patterns as

LoF (s, t) = γ
E[s(t)]

ŝ
+ (1− γ)(

E[s(t)]

ŝ
)2. (2.18)
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In both (2.15) and (2.16), the first term reflects the capital cost of the equipment

due to the accelerated depreciation resulted from extra PEV loading stress, while

the other terms in (2.16) reflects the operating cost induced from stochastic TS load

profiles. Therefore, the re-established TCO evaluation, with TS analysis and GADM,

can accurately capture any overloading form.

2.3 Case Study of Integrated Evaluation Algorithm

To demonstrate the validity of the proposed algorithm, case studies of real-world

distribution systems are carried out in this section. Simulation results of grid asset

depreciation state and long-term cost evaluation are presented.

2.3.1 Test System Topology and Simulation Setup

The integrated methodology outlined in Section 2.2 has been applied to three

large-scale power distribution systems in Columbus metropolitan area, Ohio. These

three areas can be demographically categorized as in Table 2.1.

Table 2.1: Demographic Categorization of Power Distribution Systems

Community Electric Service Area (km2) Connected Capacity (kVA)
Urban 2.820 16,793

Suburban 5.568 11,661
Rural 6.786 7,707

These areas have comparable amount of base load, i.e., connected capacity. The

electric circuit data obtained from American Electric Power (AEP) is originally for-

matted in CYME, a commercial-grade power system simulation software widely used

by electric utilities. Due to the customized simulation setup and the need for flexible
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PEV load integration, all data has been firstly converted to the format compatible

in OpenDSS [64], an open-source power distribution system simulator. The entire

algorithm hereafter is demonstrated with MATLAB and OpenDSS.

The topology of electric circuit from CYME and corresponding network atlas from

Google Maps are shown in Fig. 2.2. The main feeder of power distribution circuit

has been sketched in the map by black solid line and the locations of the substation

for each area have been labeled by blue marker for illustrative purpose. The urban

circuit has the longest main feeder and the highest density of sub-feeders throughout

the network, whereas the suburban circuit has a relatively sparse distribution of sub-

feeders, followed by rural circuit which has a simple tree topology and the lowest

sub-feeder density.

In terms of load condition, the “base load” shown in Fig. 2.3 serves as the bench-

mark in the case study. It is recorded at the substation of each area in a 15-minute

resolution for one year and assumed that no PEVs are connected in this benchmark

case. In addition to circuit configuration, these three areas also differ in loading de-

mographics. The urban and suburban circuits are mainly comprised of residential and

commercial load type, whereas the industrial load type dominates the rural circuit. As

shown in Fig. 2.3c, the envelope of the load profile in the rule area is stretched wider

because some industrial loads are constantly running at their full capacity during the

work time while completely off during the night, weekend, and holidays.

2.3.2 Simulated PEV Charging Scenarios

The total load at any location h in the network is the summation of the base

load P b
h and aggregated PEV load P PEV

h , i.e., Ph(t) = P b
h(t) +

∑
P PEV
h (t). There

18



(a) Urban Area (b) Suburban Area (c) Rural Area

Figure 2.2: Topology of Power Distribution Systems

are multiple factors that collectively affect individual PEV’s daily charging profile

P PEV (t). In this case study, the following three typical aspects are considered: (i)

charging level; (ii) battery capacity; and (iii) vehicle type.

For each aforementioned aspect, two specifications are assumed. The PEV can

utilize “slow-charging” level P = 19.2 kW , which is commonly used in residential

household as expedited home charging level, or “fast-charging” level P = 120 kW ,

which is a widely used DC public charging level exemplified by Tesla supercharger

[13, 65]. The battery capacity are assumed to be either “short-range” C = 40 kWh
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(a) Urban Area (b) Suburban Area (c) Rural Area

Figure 2.3: Yearly Profile of Base Load

or “long-range” C = 60 kWh.2 As for the vehicle type, we assume that the PEV is

either used as commuter or as ride-service (e.g., Uber, shuttle, cab, etc.).

The charging level and vehicle type collaboratively determine the stochastic PEV

charging behavior, which is modeled by two random variables: the charging start time

ts and the charging period ∆t. The latter is an explicit function of initial State of

Charge (SOC) of battery at the beginning of charging action, given battery capacity

C and charging level P , i.e., ∆t = C · (1− SOC)
/
P .

In terms of vehicle types, for the commuter who utilizes slow-charging, we assume

that charging occurs immediately after getting back home from work, and the charg-

ing period ∆t is determined by the mileage driven for daily commute. According

to National Household Travel Survey [66], the individual commuter’s departure/ar-

rival time and daily driving mileage are assumed to follow Normal distribution. For

the commuter who utilizes fast-charging, we assume that charging occurs either en

2The 2018 Nissan LEAF is equipped with 40 kWh battery pack and the 2018 Chevrolet Bolt EV
is equipped with 60 kWh battery pack.
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route to work or on the way home. Whether or not the vehicle charges en route is

determined by a range anxiety threshold τ = 30%, as opposed to the slow-charging

commuter case where every PEV charges at home every night. The ride-service type

of PEVs will be driving for daily service from 7 am to 9 pm and charge en route when-

ever the SOC falls below the threshold τ . The average speed for different time in a

day is used to formulate their multiple charging need [67]. Noted that the ride-service

PEV is only considered to utilize fast-charging level and equipped with long-range

battery due to the inherent requirement of vehicle usage.

From an aggregation point of view, it is assumed that each area studied has either

500 or 1000 PEV fleets in order to observe progressive impacts. The number of fleets

simulated in this case study is consistent with the penetration goal set by the U.S. that

every household owns a PEV in the future [68,69]. For some states such as California,

the PEV penetration goal in coming decades has been even more aggressive, as almost

2 fleets per household [70,71]. Accordingly, the particular case of 500 and 1000 PEVs

fall in the reasonable median of the PEV density. All simulated charging scenarios

determined by aforementioned factors are summarized and indexed in Table 2.2.

The aggregated PEV charging profile of 500 fleets in a randomly selected 3-day

period for all charging scenarios (viz. Table 2.2) is shown in Fig. 2.4. It can be seen

that even though the slow-charging commuter has lower charging power individually,

it’s much easier for them to have coincidental charging than fast-charging commuter

scenario due to the concentration of home charging events. Utilizing fast-charging

level, the PEV only needs to recharge every 3-4 days and has a shorter period needed

for each charging action. Moreover, the en route fast-charging actions have been

split equally into departure and arrival charging, i.e., the aggregated daily charging
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Table 2.2: Summary of Simulated PEV Charging Scenarios

Vehicle Type No. of Fleets Charging Level Battery Scenario Index

Commuter

500
Slow-charging

Short-range 1
Long-range 2

Fast-charging
Short-range 3
Long-range 4

1000
Slow-charging

Short-range 5
Long-range 6

Fast-charging
Short-range 7
Long-range 8

Ride-service
500

Fast-charging Long-range
9

1000 10

of fast-charging commuter has two spikes as compared to the single higher spike of

slow-charging commuter. On the other hand, the fast-charging ride-service scenario

reveals the most significant loading stress among all scenarios. Individual ride-service

PEV will be charging en route multiple times (1∼4) during their service hours every

day. The battery capacity imposes less influence on aggregated charging profile than

the other two factors.

To truly reflect stochastic PEV charging patterns, Monte-Carlo Simulation (MCS)

is implemented in TS analysis. The power flows in the grid are simulated in multiple

iterations under total TS load profiles and are fed into the GADM simultaneously.

The law of large numbers indicates that as the sample size gets sufficiently large, the

expected value of model outputs can be approximated by taking the sample mean of

the MCS output results. For example, the E[K(t)] in (2.6) and (2.7) is the expectation

of load factor K(t) at each instant obtained from averaging the power flow result over

MCS iterations. In this case study, every charging scenario has been iterated 100
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Figure 2.4: Aggregated PEV Charging Profile of Random 3-day Period

times in MCS, with 500 or 1000 PEVs’ yearly charging profiles randomly allocated

in the area each iteration.

2.3.3 Grid Asset Depreciation Analysis

Transformer Depreciation induced by PEV Charging

This section presents the lifetime depreciation evaluation of substation transformer

induced by PEV charging. The thermal parameters related to transformer LoL esti-

mation are collectively selected from [62,63,72]. Note that the substation transformers

are assumed to have the same rating sR = 10 MVA and thermal parameters in all

three areas due to the lack of field measurement and ceteris paribus in the case study.

23



Moreover, the normal insulation life of substation transformer has been selected as

25% retained tensile strength Tins = 15.41 yr (135, 000 hr) [62].

The transformer’s accumulated LoL based on thermal model (2.6) - (2.11) are

exemplified by Fig. 2.5, demonstrating two specific charging scenarios and benchmark

case for all areas. The abrupt increase of degradation after 0.4 year in each one-year

period is mainly attributed to the shape of base load as shown in Fig. 2.3. All

three areas’ base load have the similar pattern that the envelope of load curve starts

to stretch upward in mid-May. As the simulated PEV load profile has no seasonal

fluctuation, the total load profile pattern will be consistent with the base load. Hence,

the degradation will start to speed up as it is highly related to the loading level.

(a) Benchmark (b) Scenario 1 (c) Scenario 9

Figure 2.5: Accumulated Transformer Loss of Life

When the same charging scenario is applied to different demographic areas, it can

be seen that the transformer in suburban area is the most prone to induce depreci-

ation, followed by urban and rural area, thus revealing the grid’s topological impact
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under the same charging scenario. On the other hand, when different charging sce-

narios are applied to the same area, it can be observed that the ride-service type of

PEV will induce more drastic burden to the asset than commuter type (cf. Fig. 2.5b

& Fig. 2.5c). The utility must consider the upgrade of transformer to a higher rating.

Otherwise, according to the GADM, the current 10 MVA transformer will endure

an extremely high overloading burden that makes the transformer reach End of Life

(EoL) within a year.

Fig. 2.6 provides a zoom-in look of LoL pattern in a one-year period, comparing

benchmark with scenario 1 and 4. It can be seen that the rate of LoL, i.e., the stiffness

of LoL curve, is increased under impulsive PEV charging load, thus the lifetime of

transformer is greatly shortened. Moreover, the scenario 1 has a more detrimental

effect to transformer than scenario 4 does due to the concentration of home charging

events.

Figure 2.6: Zoom-in Look of One-year LoL in Urban Area
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Table 2.3: Summary of Estimated Transformer Lifetime

Area Charging Scenario Index Yearly LoL (%) Lifetime (yr)

Urban

Benchmark 0.19 15.41
1 1.36 15.41
2 1.18 15.41
3 0.53 15.41
4 0.43 15.41
5 27.64 3.62
6 19.69 5.08
7 1.63 E+03 ε
8 1.01 15.41
9 1.05 E+03 ε
10 1.82 E+06 ε

Suburban

Benchmark 0.51 15.41
1 4.15 15.41
2 3.58 15.41
3 1.52 15.41
4 1.31 15.41
5 93.81 1.07
6 66.26 1.51
7 24.73 4.04
8 2.98 15.41
9 3.22 E+03 ε
10 6.56 E+06 ε

Rural

Benchmark 0.16 15.41
1 0.98 15.41
2 0.86 15.41
3 0.40 15.41
4 0.30 15.41
5 19.40 5.15
6 13.80 7.25
7 5.22 15.41
8 0.74 15.41
9 0.66 E+03 ε
10 1.63 E+06 ε

The transformer depreciation evaluation of all simulated charging scenarios is

summarized in Table 2.3. The Yearly LoL indicates the percent loss of life regarding
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normal insulation life Tins per year, thus the estimated lifetime can be obtained

as 100/(Yearly LoL). If this value is longer than 15.41 yr, then the corresponding

charging scenario is considered to have no noticeable impacts on transformer. On

the other hand, there are several charging scenarios for each area that will greatly

reduce transformer’s lifetime. For certain drastic case such as ride-service type of PEV

charging, the estimated lifetime can even be shortened to ε < 0.5 yr, which shows

an urgent need for the upgrade of equipment. All charging scenarios that impose

such salient impact on transformer lifetime and thus considered to be unacceptable

for utilities are marked in shade in the Table 2.3.

Note that the LoL is very sensitive to the transformer rating and certain thermal

parameters, thus the estimated lifetime under each charging scenario only falls in

a ballpark range, depending on the accuracy of selected parameters. Therefore, in

addition to considering the estimated lifetime as an absolute reference, utilities could

compare the charging scenario’s relative LoL with each other, due to the consistent

pattern of LoL for all simulated charging scenarios.

Voltage Regulator Depreciation induced by PEV Charging

This section presents the state evaluation of VR induced by PEV charging. We

assume that there are two three-phase VRs installed at midway through the feeder in

each area. The step-size of VR tap is selected as κ = 0.0065. The yearly simulation

monitored their tap operations. Fig. 2.7 shows the tap operation in a randomly se-

lected 10-day period for urban area, comparing the VR operating frequency regarding

number of PEV fleets with the benchmark. The temporal response of VR is strongly

correlated with PEV daily charging activities. Moreover, the increasing number of

27



PEV causes greater voltage deviation and more salient TS load profile, thus induce

more frequent VR tap operations.

(a) Benchmark (b) Scenario 9 (c) Scenario 10

Figure 2.7: VR Tap Operation of Random 10-day Period in Urban Area

Fig. 2.8 shows the total counts of VR tap operations under multiple scenarios

for each area with 500 PEV fleets. The inherent unbalanced loading of distribution

system causes the different number of tap operations annually for each phase of VR.

More importantly, it reveals an insightful observation that the VR operation is highly

affected by the impulsiveness of charging activities. Admittedly, Scenario 1 has a

higher loading impact due to concentrated home charging actions, however, Scenario

4 has a higher impact on VR operations due to the more frequent charging activities

(cf. Fig. 2.4). The subsequent LoL of VR can be derived based on (2.14). It indicates

a consistent pattern of lifetime depreciation as in Fig. 2.8.

Note that the two three-phase VRs successively installed at the middle of feeder

share the burden of voltage adjusting requirement under highly impulsive PEV loads.
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(a) Urban Area (b) Suburban Area (c) Rural Area

Figure 2.8: Number of Tap Operations Per Year

The more VRs installed in the system, the more controllability of the voltage profile

is available in real time, but meanwhile induce more capital investment. The utility

is facing more challenges with the current trend of increasing PEV penetration when

dealing with such trade-off [73,74].

2.3.4 Effect of Demographics on Asset Depreciation

All previous case studies exclude the demographic discrepancy embedded in dif-

ferent areas, and only consider one charging scenario at each simulation. This section

serves as an extended case study to particularly analyze the demographic impact on

grid assets, where we have mixed charging scenarios at each simulation. The compar-

ing metrics have been modified as follows. For each area, the PEV penetration level

(PL) is defined as the ratio of coincidental charging load to the total base load.

PL =

∑
P PEV

P b
× 100 (2.19)
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The three areas have different percent composition of slow/fast-charging PEV

based on their demographic nature, as shown in Table 2.4. Note that in this study

we assume that the percentage of fast-charging (120 kW ) PEV is in descending order

of suburban (highest), urban, and rural area (lowest). This assumption is justified

by the fact that the suburban area has the highest possibility for PEV to utilize en

route fast-charging facility.3 Hence, it is expected that the power grid in suburban

area will be exposed to the most impulsive and drastic PEV load, which induces the

most depreciation and long-term cost for the grid assets.

To observe progressive impact, multiple PL scenarios, i.e., benchmark (no PEV),

50%, 100%, 200% and 300%, are investigated. Same reasoning mentioned in Sec-

tion 2.3.2, the setup and upper bound of PL is set based on the scenario that every

household owns a PEV, which is predicted realistic in the near future. Note that this

study does not intend to draw an exhaustive conclusion for various charging and pen-

etration scenarios, but rather, to propose an integrated algorithm that helps utility

interpret PEV’s impact. Based on (2.19) and Table 2.4, the detailed number of PEV

fleets for slow-charging and fast-charging can be determined respectively, which in

total make up the PL of interest.

Table 2.4: Percent Composition of Two Charging Levels

Slow-charging Fast-charging
Suburban Area 60% 40%

Urban Area 70% 30%
Rural Area 80% 20%

3For example, the only Tesla Supercharging Station currently built in Columbus is not located
in downtown (urban area), but in Grove City (suburban area).
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The long-term cost of transformer is estimated with the modified method de-

scribed in Section 2.2.2 and compared with the conventional TCO formulation de-

scribed in Section 2.2.1. The results are compared over normal lifetime Tins. If the

transformer is exhausted at Tx ≤ Tins due to the extra stress imposed by PEV loads,

then a new transformer is purchased and its induced cost (capital cost and operating

cost) is added to the total cost. The parameters associated with TCO evaluation of

the substation transformer are obtained from an anonymous vendor and in [61], as

summarized in Table 2.5.

Table 2.5: TCO Parameters and Specifications

Parameters Value
sR [MVA] 10
CL [kW] 13.2
LL [kW] 53

DC [$/kW-yr] 120
RF 0.81

EC [$/kWh] 0.05
γ 0.2

i [%] 5
Co [$] 70,000

Evaluation Period [yr] 15.41

The TCO of transformer in suburban area estimated with two methods are shown

in Fig. 2.9. It can be seen that the results of both methods indicate that the long-

term cost of the transformer is greatly increased with increasing PL. Moreover,

results are very close at low PL, and when PL is greater than 200%, the proposed

method assesses much higher long-term cost than conventional TCO. This difference

in trend is attributed to the fact that substation transformers are usually over-sized for

reliability concerns. Therefore, a relatively low PL is not likely to cause a noticeable
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adverse impact on transformer operation. However, when the grid hosts more PEV,

the impact can only be captured accurately with the proposed TCO method.

Figure 2.9: TCO of Transformer in Suburban Area

In this case, the derivation of PL is based on a proportion of electric load in

each area, which gives us a relatively conservative estimation of charging impact. For

example, under 300% PL, the suburban area will have 498 fleets in total, which could

likely be an understatement considering the case study results in Section 2.3.3. But

still, we can observe a ∼ 5% accuracy improvement of cost estimation as compared to

current utility practice for the lower PL case and a 30% ∼ 40% accuracy improvement

for the more drastic PL cases.

A further question to ask is whether it is more reasonable to use a transformer

with larger rating under high PL, which will essentially bring the results of the two

methods to the same values. The answer could be case dependent. For example,

sometimes a larger transformer could cost more than replacing a small transformer
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after its end of life, while other times the reverse is true. Nevertheless, even if the

planning strategy might conceal the inaccuracy of the conventional TCO method,

the fidelity of the proposed method is demonstrated at every PL. Moreover, the

proposed method enables evaluation of equipment long-term cost over any time span

of interest, which provides great flexibility to utilities’ planning work.

2.4 Impact of PEV Charger Dynamics on Voltage Stability

2.4.1 Motivation

Following the charging impact evaluation algorithm in Section 2.2 - 2.3, this sec-

tion then establishes a new context where the power-electronics-based (PE-based)

load, represented by PEV, dominates the total load composition in a power distribu-

tion system. In the new context, we explored the mechanism and impacts of voltage

instability under grid-side large disturbances.

Voltage instabilities have been well studied in literature with both static and dy-

namic approaches [75–77]. The static approach is based on power flow equations,

estimating if the system is stable, and deducing the stability margin through voltage-

reactive power sensitivity, eigenvalues of the power flow Jacobian and continuation

power flow (CPF) techniques [75, 78]. The dynamic approach considers system dy-

namics induced by physical devices, such as generators, induction motors and self-

restoring loads. The analysis techniques under dynamic approaches include time-

domain simulation, linear/nonlinear system theories, etc. [79]. Note that the term

“static” is inspired by the steady-state analysis tool, i.e., power flow. Nevertheless,

the voltage stability analysis is dynamic by nature, as the driving force of voltage

instability is the load’s dynamic attempt to restore power consumption.
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Hence, thorough studies have been conducted regarding the load-driven mecha-

nism of voltage instability, either in generic forms of nonlinear models with first-order

dynamics of voltage dependent loads, or in specific forms derived for individual de-

vices (e.g., induction motor) [80,81]. The application of singular perturbation theory

made possible the decomposition of entire system dynamics into two widely separate

time scales [82], as shown in (2.20) and (2.21), enabling great simplification when

corresponding analysis techniques have been applied.

ẋS = fS(xS, xF ) (2.20)

εẋF = fF (xS, xF ), (2.21)

where, xS, xF are vectors of slow and fast variables, respectively, and the system

is separated into a slow subsystem (2.20) and fast subsystem (2.21) due to small

parameter ε.

The transient response for the impedance network is very fast compared to the

slower dynamics of load-driven voltage instability, and thus can be formally eliminated

by setting ε = 0. This approximation has reformed dynamic properties of the system,

as (2.21) degenerates into the algebraic equation (2.22), which is also the equilibrium

condition for the fast subsystem (2.21).

0 = fF (xS, xF ) (2.22)

Equations (2.20) and (2.22) constitute the Differential-Algebraic (D-A) system. In

particular, for a long-term characteristic component such as a load tap changer (LTC),

the time-scale decomposition simplifies the analysis through the quasi-steady-state

(QSS) approximation by assuming all short-term dynamics, including synchronous

generator, induction motor, etc., operate at equilibrium. This singularly perturbed
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model is shown in (2.23) - (2.25) [81].

żc = hc(x, y, zc) (2.23)

0 = f(x, y, zc) (2.24)

0 = g(x, y, zc), (2.25)

where, without loss of generality, (2.23) models the long-term dynamics of continuous

state variables zc, (2.24) refers to the equilibrium condition of short-term dynamic

states x through singular perturbation, and (2.25) denotes the steady-state condition

of network (i.e., power flow) for algebraic states y.

The fundamental assumption for this time-scale decomposition is that when grid-

side large disturbances (e.g., loss of a line or generation) are imposed, the response of

electromagnetic transients on the impedance network always settle fast enough and

are stable. Thus, before a disturbance, the grid operation point can be found by

intersecting the Constant Power Load (CPL) characteristic curve with the network

P−V characteristics, as shown in Fig. 2.10. Post disturbance, the network character-

istic shrinks drastically due to the change of network topology. Thus, the CPL curve

no longer intersects the post-disturbance network P − V curve, indicating voltage

instability [81].

However, as an ongoing trend, the landscape of power system loads has been

significantly altered by the power-electronics-based (PE-based) load, in particular,

PEV, gradually dominating the total load composition. The inherent high-bandwidth

control of PE-based loads makes the assumption, on which the singular perturbation

analysis is based, no longer valid. The dynamics of PE-based loads belong to neither

long-term nor short-term characteristics regarding conventional time-scale decoupling,
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Figure 2.10: P − V Curve Demonstration of Voltage Instability

but fall into one that is comparable to a network’s instantaneous response. Therefore,

we must resort to component-level analysis to evaluate grid-side response under large

grid disturbance.

As the first step toward studying the voltage stability under this new context, this

section investigates the interaction between a large grid-side disturbance and PEV

charger load, which is modeled with a representative PE structure. This work demon-

strates voltage instability induced from PE-based load response to grid-side distur-

bance. Furthermore, it proposes a technique for estimating the Region of Attraction

(ROA) of stable equilibria, which implies a critical clearing time for disturbance [83].

Despite the exemplification with a rudimentary system, the proposed technique can

be extended to analyze power grids of a greater scale.
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2.4.2 Modelling of PEV Charger and Dynamic Analysis

System Configuration

Appropriate dynamic modeling of PEV loads is critical to study the voltage in-

stability mechanism induced by large disturbances and to design preventive actions

at component level. The PE structure within the charger is generally comprised of

a cascaded system, which contains a grid-connected converter (AC/DC Rectifier), a

load-side converter (DC/DC Converter) and a battery [84]. Such integrated configu-

ration, as a whole, is designed to have constant power consumption at the load side

regardless of input variations. Moreover, despite the reactive compensation require-

ment in certain applications, the high bandwidth PE controller generally ensures

pure active power absorption from the grid with unity power factor. The system

configuration is shown in Fig. 2.11.

Figure 2.11: System Configuration

Dynamic System Modelling

The CPL characteristics are embedded with AC three-phase grid-connected sys-

tem. A baseline model has been adopted, combining source and line dynamics with
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an infinite bandwidth CPL in order to simulate a PEV charger’s short-term char-

acteristics [85]. The system equivalent circuit in dq frame is shown in Fig. 2.12.

Figure 2.12: System Equivalent Circuit in dq Frame

The abc-to-dq transformation has been widely used in stability analysis of PE-

based interface [86]. It makes all phase quantities fixed with each other, thereby

leading to constant self and mutual inductance. Hence, it reduces the complexity of

AC grid-connected load system analysis and allows the whole system to be analyzed in

a DC manner. The three-phase power consumption of a PEV charger is expressed in

(2.26). For convenience, we assume no q-axis current going through charger Iq,in = 0,

i.e., the charger is regulated at unity power factor. This assumption does not affect

the conclusions of the analysis, and can be relaxed in the augmented form of (2.32).

PPEV =
3

2
VdId,in (2.26)
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Under the equivalent circuit, the system state-space model of an AC grid-connected

PEV charger is

ẋ = f(x,u,p), (2.27)

where f : D 7→ R4 is continuously differentiable and D ⊂ R4 is a domain that contains

the equilibrium point of (2.27) x∗ ∈ E := {x∗ ∈ D : f(x∗) = 0}.

By KVL and KCL, the detailed model is given in (2.28) - (2.31).

İd = −R
L
Id + ωIq −

1

L
Vd +

Ed
L

(2.28)

İq = −ωId −
R

L
Iq −

1

L
Vq +

Eq
L

(2.29)

V̇d =
1

Ceq
Id −

2PPEV
3CeqVd

+ ωVq (2.30)

V̇q =
1

Ceq
Iq − ωVd, (2.31)

where the system state variables are line currents and load voltages x = [Id Iq Vd Vq]
T ,

the input variables u = [Ed Eq PPEV ]T are grid (source) voltage and charger demand,

and the system parameter set is p = {ω, R, L, Ceq} where ω is the line frequency,

R,L are line resistance and inductance, respectively, and Ceq is the equivalent capac-

itance representing combined shunt capacitance and charger’s dynamic effects.

The state Jacobian matrix of this highly-coupled, high-dimensional dynamic sys-

tem can be expressed in (2.32).

J =
∂f

∂x
=


−R
L

ω − 1
L

0
−ω −R

L
0 − 1

L
1
Ceq

0 2PPEV

3CeqV 2
d

ω

0 1
Ceq

−ω 0

 (2.32)

The distribution systems are characterized by their high R/X ratio [87]. For

instance, for a 12 kV distribution line the ratio could be larger than 10. Under this
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circumstance, we can approximate the reactance X = ωL ≈ 0 due to the line damping

effect τ = R/L = R/(X/ω) = Rω/X > 10ω. Hence, the hereafter analysis is based on

the decoupling assumption. Moreover, since the charger is operating in unity power

factor (i.e., d-axis dominant), we assume that d-axis states (Vd and Id) are the main

states, which dictate the major dynamics of the system, whereas q-axis states (Vq

and Iq) are independent elements that are coupled to each other but decoupled from

active elements. Through this decoupling, the dynamic analysis can be conducted in

the planar system g : D 7→ R2 and the reduced model can be written as

V̇d = −2PPEV
3CeqVd

+
1

Ceq
Id (2.33)

İd = − 1

L
Vd −

R

L
Id +

Ed
L
, (2.34)

where the state variable set becomes x = [Vd Id]
T , input variables u = [Ed PPEV ]T ,

and p = {R, L, Ceq}.

The corresponding reduced Jacobian matrix is expressed as

Jr =

[
2PPEV

3CeqV 2
d

1
Ceq

− 1
L
−R
L

]
. (2.35)

Dynamic System Analysis

The static stability of the operating condition can be obtained by observing the

spectrum spec(Jr) of (2.35) evaluated at a specific parameter set p∗ and equilibrium

point x∗ ∈ E := {x∗ ∈ D : g(x∗) = 0}. The sufficient condition for a particular

loading value PPEV to be stable is such that spec(J) ⊂ C− := {λ ∈ spec(J) ∩

C : <[λ] < 0}. Hence, it is possible to find a demand upper bound Pmax
PEV and to

identify the closeness of the current operating point to the voltage collapse point [88].
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However, the above linearization-based approach is limited to analyzing the local

stability at the equilibrium point. It can neither assess the robustness of equilibrium,

nor predict the system behavior when (2.32) becomes ill-conditioned. To understand

the finite stability of the system, we have the following proposition.

Proposition. The structure of three-phase charger dynamics determines that the

system exhibits unstable limit cycle Γ(x0) = {x ∈ D : x = Φg
t (x0), t ∈ [0,+∞]},

where Φg
t (x0) is the flow of the state space model ẋ = g(x,u,p) passing through initial

condition x0. The interior of this limit cycle implies a Region of Attraction (ROA)

A of a Locally Asymptotically Stable (LAS) equilibrium, where A := int(Γ(x0)) =

{x0 ∈ R2 : lim
t→∞
|x(t,x0)| = x∗}, ∀x∗ ∈ E s.t. x∗ is LAS.

(a) Pre-Disturbance Stable
Operation

(b) Post-Disturbance Unsta-
ble Operation

(c) Trajectory Interaction
with ROA

Figure 2.13: Phase Portrait Analysis

The ROA A of an initial pre-disturbance stable equilibrium is an open, connected

and invariant set bounded by unstable limit cycle, as shown in the illustrative phase

portrait Fig. 2.13a, where for any initial operating condition (Id0, Vd0) starting inside

the ROA, the system trajectory will spiral toward the stable equilibrium point 1.
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Suppose the system undergoes a large disturbance that makes the post-disturbance

equilibrium unstable, then the original stable equilibrium point 1 becomes the initial

condition for the new unstable system. This causes the trajectory devolving away, as

shown in Fig. 2.13b. When the system is restored to original stable operation through

fault-clearing, whether or not the trajectory converges depends on where the system

operating point is when fault-clearing occurs. For example, as shown in Fig. 2.13c, if

the fault is cleared when diverging state trajectory reached point 2 (outside ROA),

then it diverges away; on the other hand, if the fault is cleared at point 3 (within

ROA), the state trajectory will converge back to the stable equilibrium 1 and the

fault-clearing is successful.

The proposition is confirmed through bifurcation diagram analysis as shown in

Fig. 2.14, obtained by simulating a system with the following parameters also used

throughout Section 2.4.3: R = 0.0064 Ω, L = 1.698 µH, Ceq = 29.333 µF , Ed =

392.125 V , PPEV = 19200 W . These values were selected to make the initial operating

condition start at LAS equilibrium and be realistically consistent with short-line

distribution-connected PEV charger model as described in Section 2.4.2.

In the bifurcation diagram, as parameter PPEV varies, the stable state (Id or

Vd) branch is denoted by the thick solid curve, and an unstable branch by the thin

curve. Changes in stability occurs at the bifurcation point, where the stability of

an equilibrium is lost through its interaction with a limit cycle. The unstable limit

cycle exists prior to bifurcation, shrinks and eventually disappears as it coalesces

with a stable equilibrium at bifurcation point. Afterwards, the equilibrium becomes

unstable, resulting in growing oscillating instability. This series of phenomenon falls

in the case of subcritical Hopf Bifurcation (HB). The circles emanating from the Hopf
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bifurcation point yield an estimation of maximum magnitude of unstable limit cycle

under a specific value of PPEV .

(a) Id vs. PPEV (b) Vd vs. PPEV

Figure 2.14: Bifurcation Diagram of Parameter PPEV

The validation of HB is reflected in the reduced state Jacobian Jr as in (2.35). In

particular, the HB occurs when a pair of complex conjugate eigenvalues lies exactly

on the imaginary axis. However, the HB analysis provides more information than

standard linear stability theory because it also considers the effect of non-linearity

and predicts oscillatory instability through limit cycle interaction. Therefore, such

bifurcation analysis is best thought of as a supplementary tool that helps to explain

the form of the instability when the stable equilibrium is lost.

2.4.3 Simulation of Charger Response to Grid Disturbance

In the time-domain analysis, the ROA implies a critical fault clearing time, after

which the state trajectory originating from the pre-disturbance stable equilibrium

have already drifted out of ROA and are not able to converge. Note that the ROA
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and trajectories are assumed to be bounded in first quadrant (Id, Vd) ⊂ R+ based

on the assumption that the power flow is unidirectional, i.e., from source to PEV

charger.

The occurrence and clearance of grid-side large disturbance could be a tripping and

ensuing re-closing of the generation/transmission equipment or sudden incremental

aggregation of consumption. In particular, two scenarios have been considered as

large disturbance in this simulation: (A) sudden source voltage drop, which means

a decrease of input variables Ed and Eq; (B) power demand surge, which means an

increase of input variable PPEV . The system response under disturbance has been

simulated through MATLAB.

For both scenarios, the disturbance occurs at t = 0.05 s and is cleared at tclear.

The three-phase line voltage and current response for scenarios (A) and (B) have

been observed in Fig. 2.15 and Fig. 2.16, respectively. In scenario (A), the fault

clearing times are selected at tclear = 0.085 s and tclear = 0.15 s, respectively. As

observed in Fig. 2.15a, both voltage and current resume pre-disturbance values after

a certain tolerable perturbation. However, when the fault clearing has been delayed to

tclear = 0.15 s, the line state will exceed the acceptable range, as shown in Fig. 2.15b,

which will trip the protection in the charger. Such dynamic loss of stability implies

that the critical clearing time for scenario (A) is within the range tAcr ∈ (0.085, 0.15)s.

Similar implication has been observed for scenario (B), with tBcr ∈ (0.068, 0.08)s.

Estimation of the critical clearing time is more complicated and will be detailed

in future works. A general direction is to integrate searching algorithms with the

Boundary Controlling Unstable (BCU) Equilibrium Point method [89]. The system’s

energy functions can be constructed at the closest and farthest unstable equilibria,
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respectively, corresponding to the inner and outer perimeters of the ROA. A searching

algorithm, e.g., bisection method, can be applied with the starting points defined as

the spheres of the two energy functions to estimate the critical clearing time.

(a) Stable Response when tclear = 0.085 s (b) Unstable Response when tclear = 0.15 s

Figure 2.15: Critical Clearing Time Implication for Scenario (A)

(a) Stable Response when tclear = 0.068 s (b) Unstable Response when tclear = 0.08 s

Figure 2.16: Critical Clearing Time Implication for Scenario (B)
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2.5 Distribution Grid Response Monitor

In this section, we introduce a software prototype, Distribution Grid Response

Monitor (DGROM), which serves as a charging impact visualization tool and predic-

tive planning guideline under the increasing PEV penetration [67]. Fig. 2.17 shows

the system architecture of this software. The prototype is developed in MATLAB

Graphic User Interface (GUI), OpenDSS, and CYME. The GUI takes user’s data in-

puts. The Power System Definition module generates the comprehensive power grid

model using the input data of PEV charging, base load, and the grid configuration.

In particular, the PEV Definition module derives PEV charging patterns and profiles

based on the criteria as illustrated in Section 2.3.2. This data is reformatted for the

Time-Series Power Flow (TSPF) analysis in prediction of the charging effects.

Figure 2.17: Architecture of Software Prototype
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The GADM, predictive planning, and visualization modules then process the

TSPF results, generate the impact metrics and provide mitigation strategy. All func-

tional modules of DGROM are demonstrated in Fig. 2.18. To facilitate a customized

input requirement, multiple alphabetical string analysis algorithms have been imple-

mented in the developing phase. Distinct from related studies, DGROM assesses the

impact of PEVs by considering multiple charging characteristics (e.g., driving habits,

charging stations, PEV types, etc.) and their interactions. Moreover, DGROM pro-

vides a range of predictions for infrastructure upgrading requirements in the distri-

bution grid.

Figure 2.18: Dashboard of Software Prototype
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2.6 Summary

With constantly increasing PEV penetration and improving fast charging tech-

nologies, it is critical for utilities to quantify the impact of PEV charging on grid

assets and plan for equipment replacement or infrastructure expansion to ensure ser-

vice reliability. The unique impulsive characteristics of PEV loads make conventional

assessment methods of load impact unsuitable. To address this challenge, this chapter

proposes an algorithm for evaluating grid assets depreciation under high penetration

of PEVs. Compared to the existing evaluation methods, which are case-specific or

static, the proposed algorithm provides convenient assessment through an integrated

interface and is capable of capturing the inter-temporal response of grid assets. In

addition, TS analysis and MCS are deployed to ensure the algorithm’s accurate and

robust performance by accounting for the random charging patterns over time and

space. The results of the case study have been developed impact analysis and pre-

dictive planning tools for utilities.

Following the charging impact evaluation algorithm, this chapter establishes a

new context where the PE-based load, represented by PEV charger, dominates the

total power consumption. By studying a PEV-connected rudimentary system, we

analyze the mechanism and impact of dynamic loss of voltage stability under grid-side

disturbances. The Region of Attraction (ROA) of the stable equilibrium condition is

estimated through nonlinear system theories, which implies a critical clearing time for

grid disturbance. This implication is demonstrated through time-domain simulation.

48



Chapter 3: Location Planning of PEV Fast Charging

Infrastructure

3.1 Introduction

With the development of battery and charging technologies, the auto industry

has envisioned the ability to recharge PEV at speeds that are comparable to the

traditional gas refueling. In addition, multiple charge ports are built in a cluster,

bringing total power draw in a Fast Charging Station (FCS) to 1 ∼ 6 MW (estimated

parking 4 ∼ 12 vehicles). Pilot projects aiming to bring FCS to passenger vehicles

have been undertaken worldwide. For example, Porsche installed a prototype 350 kW ,

800 V FCS at their Berlin office in July 2017. Tesla rolled out its 250 kW V3

supercharger in early 2019, with 1 MW backend infrastructure splitting to 4 charging

stalls.

Promotion of these fast charging infrastructure can mitigate range anxiety and

facilitate long-distance travel by PEV [90]. On planning the increasing penetration

of FCS, two key aspects are taken into considerations in existing studies: power sup-

ply and transportation. On the side of power supply, FCS planning should consider

the reliability requirement of the existing distribution grid, operation, and capital
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costs [14,91–93]. Capacity sizing and economic evaluation of on-site distributed gen-

eration or energy storage for the infrastructure have been considered in FCS planning

paradigm as well [94, 95]. Further complications might be introduced by PEV’s im-

pulsive loading characteristics, end users’ stochastic charging behaviors, and battery

degradation [22, 24, 96–98]. On the side of transportation, as a capital-intensive in-

frastructure in the transportation network, the siting of FCS must allow for complete

and efficient travel service [99]. In addition, the estimation of individual mobility

of PEV drivers under a fine spatiotemporal resolution has been considered in the

planning paradigm [100].

While those works have addressed the aspects of power supply and transporta-

tion separately, FCS location planning requires simultaneous consideration of both

aspects. Ignoring either aspect could lead to sub-optimal economic decisions, even

transportation or power grid operation problems. For example, locating an FCS close

to the head of the feeder may minimize power delivery losses. However, this location

may be less accessible to PEV drivers due to geographic constraints. A few liter-

ature have studied the problem in such an integrated manner. For example, [101]

and [102] have incorporated the investment and operational cost of FCS considering

traffic constraints in their planning models. In [103], FCS planning has the twin ob-

jectives of maximizing the number of visits of PEV and minimizing voltage deviation.

In [104], a two-stage stochastic programming is formulated to minimize investment

and operational cost by siting FCS jointly with on-site photovoltaic (PV), under PEV

driving range constraints in the highway network. The integrated planning scheme

in [105] further considered the permissible waiting time and service radius of FCS,

thus strengthened the transportation network constraints.
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The results of these studies, nevertheless, cannot quantify the long-term impacts

of massive FCS because (i) They only considered the direct cost of charging facilities

while ignoring the induced cost of its supporting power supplying infrastructure. (ii)

The interaction of the transportation and power grid dynamic responses and their

operational requirements are overlooked. (iii) The planning results are limited to

small-scale scenarios [105–107]. No computationally efficient methods are available

to guarantee converged solutions in large-scale FCS planning problems.

To address the above limitations, in this chapter, we propose a graph-computing

based integrated location planning model, which maximizes PEV charging conve-

nience while ensuring the power grid’s reliability. In addition, the proposed work

captures PEV’s charging impacts on long-term costs of critical grid assets [108]. The

contributions of this work are threefold:

(i) Proposed a graph modeling scheme for power and transportation coupled net-

work integrated with PEV trip chains. Its representation of different entities’ rela-

tionship allows for a) fast and easy model establishment; b) efficient implementation

of distribution power flow; and c) flexible model extension under expanding networks

and increasing PEV penetration.

(ii) The inter-temporal response of grid assets is considered in the power aspect

of the proposed model, which enables the evaluation of critical equipment’ long-term

cost over any time span of interest.

(iii) The proposed planning model and cross-entropy (CE) solving method are

implemented in a graph-computing platform, in which the Node-based Parallel Com-

puting (NPC) technique has been applied to improve computational efficiency.
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This chapter assumes that the power grid operates in the steady-state. The dy-

namic response of grid assets is defined as the inter-temporal state change. In ad-

dition, the mitigation methods against PEV’s negative impacts, such as coordinated

charging, are out of the scope of this work. Finally, the “distribution system” and

“power grid” are used interchangeably throughout the chapter.

3.2 Integrated FCS Location Planning Model

3.2.1 Workflow

The workflow of the integrated location planning model and graph-based solving

implementation is shown in Fig. 3.1.

The program is initialized with all possible combinations of FCS candidate lo-

cations (i.e., 2n, where n is the number of all candidate locations), one of which

represents a FCS placement strategy. Those combinations are sampled with a prede-

termined distribution, and only a subset of them (e.g., M combinations) are analyzed

for their costs. Given one sample of FCS placement strategy, the Flow Capturing

Module (FCM) calculates the capital cost and captured charging volume, and mean-

while, generates the charging profiles at each station. Next, Time-Series Power Flow

(TSPF) analysis is performed using the total load, composed of charging profiles and

the base load. The output from the TSPF containing the power grid inter-temporal

response are fed to the Grid Asset Depreciation Module (GADM) to estimate the long-

term costs of grid assets (e.g., the transformer and voltage regulator cost). Hence,

this grid asset cost, representing cost of power supply, and the FCS cost and revenue,

representing transportation cost, are integrated together as the total cost.
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Figure 3.1: Workflow of Location Planning Model

The total costs are obtained for all the samples of FCS placement strategies and

fed to the Cross-Entropy (CE) optimization module, which ranks the strategies by

cost and generates a sampling distribution associated with top-ranked strategies.

If the outputs of CE meet the stopping criterion, we have identified the optimal

FCS placement. Otherwise, the FCS combinations are sampled again with the new

distribution obtained, and the process repeats.

The computing modules, i.e., FCM and CE, are elaborated in the Section 3.2.3

and Section 3.3. The other two modules, i.e., Time-Series Power Flow (TSPF) and

Grid Asset Depreciation Module (GADM), are adopted from Chapter 2, thus the

detailed elaboration is omitted in this chapter.
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3.2.2 Power Aspects

Chapter 2 has shown that the impulsive and high-power characteristics of PEV

charging, especially when aggregated at FCS level, induce rapid variations to volt-

age profiles along the distribution feeder and overload transformers more frequently.

These effects cause detrimental impacts to the grid’s operating status and long-term

cost of its assets. The power aspects in FCS location planning, from utilities’ point

of view, are aiming at accurately quantifying the impact of increasing PEV charging

on these critical assets and coordinating the replacement as well as expansion, to en-

sure grid service reliability. We adopted the GADM and re-established TCO analysis

proposed in Chapter 2, Section 2.2.2 as the power supply considerations, which are

integrated with the transportation requirements in Section 3.2.5.

3.2.3 Transportation Aspects

One of the key considerations for FCS location planning in transportation aspect

is the charging accessibility. Flow Capturing Model (FCM) is commonly employed

to locate urban service facilities, such as gas stations and retail facilities. Given a

departure time, an average speed of each road segment, and an origin-destination pair

(O-D pair), the trip chain of a PEV is determined and timestamped by a common

rationale such as the shortest distance route. If this trip chain passes through a FCS,

it is considered being captured. Therefore, for a set of candidate FCS, we can evaluate

the total captured traffic volume as the number of trip chains captured. In this

work, the proposed planning model does not consider posterior impacts of charging

facilities. That is, the typical driving rationales (e.g., shortest distance, minimum

traveling time, toll avoidance, etc.) determine the routes; the locations of FCS do
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not alter the routes but only capture the routes. The FCM is integrated with power

supply requirements and consideration of PEV owner’s range anxiety in Section 3.2.5.

We omit the full implementation details of FCM and refer to [109,110].

3.2.4 Power-Transportation Coupled Network Modeling

The graph computing is based on the Graph Database (GDB) that applies seman-

tic queries with vertices, edges, and attributes to store data in a graph structure [111].

As its data structure counterpart, the traditional Relational Database (RDB) uses

a collection of interlinked tables (join tables) to store the structured records and re-

lational interconnections [112]. GDB structure is suitable for modeling the pairwise

relationship between objects in a network. It allows for efficient data retrieval, pro-

cessing, and storage as well as a flexible model extension under expanding networks

with increasing PEV penetration. For this reason, we adopt a graph-based network

approach in the FCS planning to model the power grid and transportation network.

The model is detailed below.

Denote the power network by a collection of vertices and edges, which forms an

undirected graph GP = (VP , EP), where VP is the vertex class of distribution nodes,

and EP ⊆ VP × VP is the edge class of distribution line segments. The node and

line related information are stored as “attributes” of vertices and edges in the graph

model. For example, a simple radial distribution system is shown in Fig. 3.2. The

three-phase node voltage magnitudes, phase angles and connected load configuration

are three typical sets of attributes associated with VP . Each line segment between

node i and j, denoted by ei,j ∈ EP , is characterized by the attributes of resistance

zri,j, reactance zii,j, capacity P i,j, etc.
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Figure 3.2: Graph Formulation of Distribution Feeder

To accelerate the data processing and computation, a Node-based Parallel Com-

puting (NPC) technique was developed based on the work in [113, 114]. The NPC

performs local computation at each node of VP by forming the 3× 3 generalized line

matrices for distribution power flow (DistFlow) analysis [115] and storing them as

node attributes simultaneously.

The transportation network can be similarly modeled as a graph structure GT =

(VT , ET ), where VT is the vertex class of transportation nodes, and ET ⊆ VT × VT is

the edge class of road segments. Individual PEV’s information, including their inter-

mediate location on trip chains, are stored as attributes in a special class, VPEV ⊂ VT .

Furthermore, the mapping between two networks can be established through an ad-

ditional edge class, E∗ ∈ E(VP ,VT ), which connects the geographically “overlapping”
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distribution nodes and transportation nodes. Fig. 3.4b illustrates the graphic pre-

sentation of the power and transportation network, wherein the red dash lines rep-

resent E∗. Therefore, a complete description of the coupled network is written as

G = GP ∪ GT .

3.2.5 Putting it All Together

Integrating the cost functions proposed under the graph-based model, the FCS

planning problem is elaborated as below. For conciseness, all the time variables, based

on which the power flow is formulated, are omitted without causing ambiguity.

The objective function is the summation of the direct cost of FCS installation, its

induced revenue, and long-term cost on the power grid assets.

minimize
x,y

c1
∑
k∈K

xk − c2
∑
q∈Eq

fqyq

+
∑
m∈M

TCOT
m(sm) +

∑
l∈L

TCOV
l (Vl)

(3.1)

The first term in (3.1) stands for the installation cost of FCS. c1 is the coefficient of

FCS capital cost. The sole decision variable in the formulation is xk, which indicates

the placement of FCS, as

xk =

{
1, a FCS is placed at k

0, otherwise.

∀k ∈ K ⊆ VT (3.2)

where K is the set of candidate FCS locations.

The second term in (3.1) is the induced charging revenue. Coefficient c2 transforms

the captured traffic volume into the monetary income. We consider a PEV is captured

by a FCS if (i) the FCS is accessible to a PEV, and (ii) the PEV’s State of Charge

(SOC) is low enough, which is estimated by range anxiety. The accessibility of PEV
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to FCS are represented by yq, which is an auxiliary variable dependent on xk. It

equals to 1 if and only if the trip chain q passes through a FCS, written as

yq =

{
1, if xk = 1 and q(k, ·) 6= ∅
0, otherwise.

∀q ∈ Eq ⊂ ET (3.3)

where Eq is the set of pre-determined PEV trip chains, q(k, ·) 6= ∅ indicates that k is

a node on trip chain q.

Remark 1. The times of a trip chain passes through FCS is not cumulative. That is,

yq = 1 even if there exists multiple nodes k = k1, ..., kn and xk = 1 for k on q.

To model the effects of range anxiety, fq is introduced. Range anxiety is a common

phenomenon defined as the urge to charge PEV when its battery’s SOC falls below a

threshold [110]. fq is the number of PEVs traveling on trip chain q, which hits range

anxiety, calculated as

fq =
∑

p∈p(·,q)

Rap (3.4)

Rap =

{
1, SOCp ≤ τ

0, otherwise.
∀p ∈ P , q ∈ Eq

where P is the set of PEV, Rap is the range anxiety indicator of the pth PEV, p(·, q)

are set of PEV on trip chain q, SOCp is the pth PEV’s SOC, and τ is the PEV

owner’s range anxiety threshold.

To estimate SOCp in (3.4), we assume that each PEV begins its daily trip with a

full battery capacity C in kWh. The SOC when PEV starts charging can be obtained

as

SOCp = 1−Dp/Rp, ∀p ∈ P (3.5)
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where Dp is the mileage driven when pth PEV arrived at any FCS, Rp is the maximum

range of the PEV determined by battery capacity Cp. Dp is estimated in FCM as

described in Section 3.2.3. Thus, the charging duration Tp can be calculated as

Tp =
Cp(1− SOCp)

P PEV
p

, ∀p ∈ P (3.6)

where P PEV
p is the charging power for a given vehicle model. Tp is used together with

timestamped trip chains to model the nodal power as detailed in (3.10).

The third and fourth term in (3.1) represent the long-term cost on the power grid.

TCOT and TCOV are daily TCO of substation transformers and VRs. They are

functions of the apparent power sm and nodal voltage Vl, respectively, as defined in

(2.16) and (2.15). M and L are the sets of transformers and VRs, representing the

continuous loading equipment and discrete operating equipment, and M,L ⊂ VP .

The apparent power of transformer m can be calculated as

sm = (P 2
m +Q2

m)1/2 (3.7)

Pm =
∑

i∈(VP<m)

PA
i + P loss

m (3.8)

Qm =
∑

i∈(VP<m)

Qo
i +Qloss

m (3.9)

In (3.8) and (3.9), the summation is carried over nodes at the downstream of

transformer m, i.e., i ∈ (VP < m). Qo
i is the base load reactive power at node i ∈ VP ,

and PA
i is the aggregate load at node i ∈ VP , calculated as

PA
i =

{∑
p∈p(i) P̃

PEV
p + P o

i , if i ∈ K
P o
i , otherwise.

(3.10)

where p(i) ⊂ P denote the set of PEV, which trip chains are captured by FCS at

node i. P̃ PEV
p equals P PEV

p when the PEV is charging at the studied time instance,

and equals 0 otherwise.
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The total real and reactive power losses measured at transformer m, P loss
m and

Qloss
m are function of nodal voltages. The voltage magnitude at node j is estimated as

V 2
j =V 2

i − 2(zri,jP
A
i + zii,jQ

o
i )

+[(zri,j)
2 + (zii,j)

2]
(PA

i )2 + (Qo
i )

2

V 2
i

, ∀ei,j ∈ EP (3.11)

where zri,j and zii,j are the resistance and reactance of the branch ei,j.

The FCS planning is constrained by the total number of FCS, NFCS,

∑
k∈K

xk = NFCS (3.12)

The FCS location is further subject to the reliability requirements of the distri-

bution system. First, voltage magnitude must be within a predefined range as

Vi ≤ Vi ≤ Vi, ∀i ∈ VP (3.13)

where the upper and lower bound of voltages, Vi and Vi, are determined according to

the ANSI standards [116]. Secondly, the power flow must be within the lines’ power

delivery capacity, written as

−P i,j ≥ Pi,j ≤ P i,j, (3.14)

where power flow Pi,j on branch ei,j ∈ EP can be calculated with (3.8) and (3.10)

using KCL.

3.3 Solving the Proposed Model

The planning problem in (3.1) - (3.14) is a generalization of Knapsack Problem

(KP) [117]. KP and its variants, i.e., combinatorial problems are NP -hard [118]. The

consideration of power grid cost and reliability requirements further complicated the
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Algorithm 1 CE Optimization Algorithm
Parameters:
|K|: cardinality of set K; M : number of sample solutions in each iteration; γ: rarity
parameter.

1: Initialize v ∈ R|K|[0,1].

2: while v is non-degenerate (i.e., ∃ vk ∈ (0, 1)) do
3: Sample M solution vectors X1, . . . ,XM based on the PMF f and the v̂.
4: Evaluate S(Xi) for i = 1, . . . ,M
5: Select all the vectors X∗i that satisfy I{S(Xi) ≤ γ}
6: v← the mean of X∗i
7: end while
8: end

problem by adding nonlinear terms in the objective function, i.e., TCOT , TCOV , as

well as nonlinear constraints (3.13) - (3.14). In this section, we propose a graph-based

Cross-Entropy (CE) method to solve the formulated problem.

3.3.1 Principle of the Cross-Entropy (CE) Method

CE method was first proposed in [119]. It unifies many existing population-based

optimization heuristics and is easy to implement for a diverse range of problems, such

as mixed-integer nonlinear programming, optimal policy search, clustering, etc. The

basic idea behind the CE method is that locating an optimal solution within the

search space is a rare event. Hence, by gradually steering the sampling distribution

of the search, we can make the rare event more likely to occur [120]. For this purpose,

CE is used as a measure of closeness between two sampling distributions.

The proposed algorithm is summarized in Algorithm 1. Suppose the search space

is the set of candidate FCS locations K (viz. (3.2)) and its cardinality is |K|. We

vectorize the decision variables xk, k ∈ K in (3.1) as x ∈ {0, 1}|K|. Hence, the
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deterministic problem (3.1) - (3.14) can be casted into the probabilistic space by

randomizing its solution vector x. In the rest of the paper, X stands for the random

vector of x, while Xk stands for the k-th element of X, that is, the random variable

of xk. The algorithm carries out an adaptive importance sampling process iteratively,

and each iteration has two steps [121].

In the first step, we sample M vectors, {X1,X2, . . . ,XM}, in the solution space

under a family of Probability Mass Functions (PMF), f : RM×|K| → RM
[0,1]. Since X

is a binary vector, a simple choice for the PMF could be the multivariate Bernoulli

distribution. Equation (3.15) gives the k-th PMF in the t-th iteration

f
(t)
k = v

(t)
k X

(t)
k + (1− v(t)k )(1−X(t)

k ) (3.15)

where v
(t)
k ∈ R[0,1] is the Bernoulli parameter. The vector of vk is denoted as v ∈ R|K|[0,1].

In the second step, we update the parameter vector v(t) of the PMF f (t) based on

the performance of the sampled solutions in the t-th iteration, X
(t)
i . The updating

rule for the k-th parameter can be written as

vt+1,k =

∑M
i=1(I{S(X

(t)
i ) ≤ γ} ·X(t)

i,k)∑M
i=1 I{S(X

(t)
i ) ≤ γ}

, k = 1, . . . , |K| (3.16)

where Xi,k ∈ {0, 1} is the k-th element of the Xi. I{·} is an indicator function, which

equals 1 when the condition in the bracket holds, and equals 0 otherwise. S(Xi)

represents the objective function (3.1) evaluated at the sampled solution Xi. γ is a

predetermined parameter. The solution vectors that satisfy S(Xi) ≤ γ are referred

to as elite samples and are denoted as X∗i . It can be easily seen that (3.16) updates

the k-th Bernoulli parameter with the mean of the elite samples’ k-th elements.
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Finally, X
(t)
i is an optimal solution, if v(t) becomes a binary vector. This is because

based on (3.15) and (3.16), once v
(t)
k becomes 0 or 1, it will remain that value in the

future iterations.

Remark 2. To avoid the guided search getting trapped in local minimum , the smooth

updating technique may be used so that v̂(t+1) = αv(t+1)+(1−α)v(t), where α ∈ [0, 1]

is the smoothing parameter.

3.3.2 A Parallel Implementation

For large-scale complex networks, high dimension nonlinear constraints result in a

high dimension search space and likely prohibitive computational burden. Grounded

in the graph computing platform elaborated in Section 3.2.4, we propose a paralleled

implementation based on the MapReduce mechanism [122]. It allow for leveraging the

available computing resources such as high-performance servers or cloud computing

to accelerate the computing process. Fig. 3.3 illustrates the parallel implementation

of the proposed algorithm.

MapReduce uses a split-apply-combine strategy for assigning the work to differ-

ent computing threads to achieve parallelism. In each iteration, five phrases, “input”,

“splitting/mapping”, “apply”, “reducing”, and “final result” are created. The “input”

phase generates samples, Xi, i = 1, · · · ,M according to the probability distribution

f and v. Then each sample, Xi, is mapped with one computing node handled by a

worker in the computing resource partition process. The calculation in each comput-

ing node can be paralleled through the hierarchical group synchronization mechanism

in bulk synchronous parallel (BSP) [123]. The performance function value, S(Xi), of

each sample is obtained at the local computing node in the “apply” phase. In the
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“reducing” phase, the elite samples, X∗i , are generated based on the rarity parameter,

γ. In the “final result” phase, the probability vector, v, is updated and the algorithm

is ready for next iteration. In general, a sufficiently large sample size and problem

cardinality is the premise to achieve a reasonable speedup factor [124].

Figure 3.3: Framework of Paralleled CE Method based on MapReduce Mechanism

3.4 Case Study

3.4.1 Simulation Setup

The integrated location planning model with paralleled CE solving algorithm is

tested on a synthetic network, i.e., 25-node transportation network coupled with

IEEE 123-node distribution test feeder, both of which are commonly analyzed in

corresponding research communities [109, 125]. All transportation nodes are geo-

graphically mapped to IEEE 123-node system, i.e., VT ⊂ VP . The detailed mapping

relationship is shown in Table 3.1. It is also assumed that every node in VT is a candi-

date location of FCS, which brings the planning problem cardinality to n = |X | = 25.
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Table 3.1: Mapping Relationship of Coupled Networks

Transportation Node ID
Distribution Node ID

01
30

02
26

03
24

04
48

05
47

06
51

07
46

08
42

Transportation Node ID
Distribution Node ID

09
22

10
19

11
65

12
108

13
62

14
09

15
104

16
98

Transportation Node ID
Distribution Node ID

17
67

18
61

19
57

20
54

21
13

22
01

23
06

24
17

25
86

The topology of the transportation network alone and the power-transportation

coupled network are shown in Fig. 3.4a and Fig. 3.4b, respectively. The number on

each road segment represents the normalized distance between two adjacent nodes.

We assume that the per-unit distance in Fig. 3.4a is 10 miles, e.g., the distance

of segment (1,2) is 4 units, which corresponds to 40 miles. Fig. 3.4a also illustrates

three PEV trip chains in the transportation network obtained by the shortest distance

algorithm, highlighted by red, green, and yellow. The respective O-D pairs are (1,16),

(8,18), and (15,24).

(a) Illustration of Shortest Distance Trip
Chain for 3 PEVs

(b) Illustration of Power-Transportation Cou-
pled Network

Figure 3.4: Synthetic Test Network
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As a predictive planning guideline, this case study investigates 2 scenarios of total

PEV amounts in the system, i.e., 500 and 1000 PEV fleets. The scenario setting

of PEV amounts falls in the reasonable median of the load capacity in the 123-

node feeder while taking into account the proactive PEV penetration trend. Each

individual PEV has a pre-determined random departure time and O-D pair, as well

as a trip chain q generated by the shortest distance algorithm, all of which serve as

the input of FCM.

Table 3.2: Parameter Specification of Transportation Aspects

Parameter Value

Number of PEV Fleets
500
1000

Range R 200 mi
Battery Capacity C 50 kWh

MPG 4 mi/kWh
Charging Level P PEV 120 kW

Avg. Speed 30 mph
Range Anxiety Threshold τ 40 %

c1 $ 115
c2 $ 7.5

The detailed parameter specification of the aforementioned transportation aspects

is summarized in Table 3.2. Levelized daily capital cost coefficient c1, which represents

the hardware and installation cost of FCS, is estimated to be c1 = $115/day, where

we assume there are 10 charge ports in every FCS [126]. The cost coefficient c2, which

represents the service revenue for captured charging at FCS, is selected by assuming

every charging activity will recharge from range anxiety threshold (τ = 0.4) to the

full battery capacity, and the unit price for charging service is $0.5/min according

to an industry pilot project [127]. The specifications regarding power supply aspects
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and related TCO parameters in this case study are summarized in Table 3.3. A

detailed distribution feeder dataset can be referred to [125]. The case studies are

implemented on a server with the graph-computing platform, TigerGraph v2.3. The

testing environment is summarized in Table 3.4.

Table 3.3: Power Grid Specifications and TCO Parameters

Parameter Value
Transformer Rating (sR) [MVA] 5

Permitted Voltage Range ([Vi,Vi]) [p.u.] [0.95, 1.05]
Transformer Core Loss (CL) [kW] 13.2
Transformer Load Loss (LL) [kW] 53

Levelized Yearly Demand Cost (DC) [$/kW-yr] 120
Responsibility Factor (RF ) 0.81
Energy Cost (EC) [$/kWh] 0.05

Dynamic Load Factor Constant (γ) 0.2
Interest Rate (i) [%] 5

Transformer Capital Cost (CT
o ) [$] 70,000

VR Capital Cost (CV
o ) [$] 4,500

Normal Transformer Lifetime [yr] 15.41
Empirical Maximum Number of VR Operations 200,000

Table 3.4: Testing Environment of Graph Platform

Hardware Environment
CPU 4 sockets × 16 cores × 2 threads @2.50 GHz

Memory 64 GB
Software Environment

Operating System Linux CentOS 6.8
Graph Platform TigerGraph v2.3
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Figure 3.5: Convergence of Objective Function Value
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Figure 3.6: Evolution of Decision Variable Vector
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3.4.2 Location Planning Results

The performance function S(X) in CE algorithm is equivalent to the objective

function of the planning model in (3.1). Hence, the convergence of S(X) indicates

the minimization of objectives simultaneously. The distribution system operating

constraints in (3.13) - (3.14) are enforced by adding penalty terms with a sufficiently

large coefficient cp in the objective function. Without loss of generality, the resource

capacity NFCS constraint in (3.12) is not considered in this particular case study, as

it’s up to the practitioner to decide the amount of available resources.

The FCS location planning results are presented in Fig. 3.5 and Fig. 3.6. As

observed in Fig. 3.5a and Fig. 3.5b, the total cost, i.e., objective function value,

converges in less than 15 CE iterations. The “Average” is the mean value of 1000

samples of objective function value, and “Best” is the smallest value among 1000

samples of objective function value. Furthermore, Fig. 3.6a and Fig. 3.6b shows

the evolution of decision variable vector v̂t, which converges to a binary vector that

corresponds to the optimal solution. The CE stopping criteria is that the maximum

difference among any components in decision variable vector v̂t between iterations are

less than ε = 0.001. Therefore, the optimal locations to place FCS for 500 PEVs and

1000 PEVs are X = {4, 9, 12, 20, 22} and X = {4, 8, 9, 10, 12, 13, 14, 23}, respectively.

It can be observed that the transportation aspects outweigh the power supply

aspects with the selection of cost coefficients in this particular case study. In other

words, the profits from capturing more charging actions overcome the negative im-

pacts on the capital and long-term cost of grid assets. The planning model tends to

add more capital investment, i.e., build more FCS, when the number of PEV fleets
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increased. Depending on case-by-case engineering practice, regions, demographic dis-

crepancy, etc., multiple cost coefficient combinations can be applied to the proposed

planning model. To incorporate a diverse range of cost items or structures, we can

easily modify the objective function (3.1) without fundamentally changing the solving

mechanism and raising the computational burden.

3.4.3 Effect of Grid Operating Constraints on Solution

The constraints in (3.13) - (3.14) set the distribution system operating bounds that

ensure the grid reliability and grid assets’ viability. This section compares the optimal

solution performance before and after adding these operating constraints. Fig. 3.7

shows the substation transformer’s daily loading at the optimal solution condition. It

can be observed that the transformer rating, i.e., 5 MVA, effectively bounds the total

load profile at the substation, which mitigates the negative charging impact on the

transformer and subsequent TCO, as the asset degradation is sensitive to overloading

frequency. Furthermore, the optimal solution changes after adding the constraints,

as shown in the summary Table 3.5. The hard power flow constraints have confined

the incentive to build more FCS for more captured demand at the expense of grid

asset depreciation. For example, the daily TCOT is reduced by ∼ 50% ($ 7.018 →

$ 3.677) after enforcing the operating constraint.

Fig. 3.8 presents the voltage profile at an end node (node 48, Phase A) of the test

feeder at the optimal solution condition. As opposed to the transformer flow limit, the

voltage constraints do not saliently affect the solution nor the overall cost in this case.

This is because, under 500 or 1000 PEV fleets, all nodes’ voltage profiles are staying

within the acceptable range [0.95, 1.05] due to multiple VR’s regulation, and thus no
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Figure 3.7: Substation Transformer Loading at Optimal Solution
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Figure 3.8: End Node Voltage Profile at Optimal Solution

violation of voltage bound occurs in any sample. With more PEV integrated into the

system, it is more likely to observe the noticeable smoothing effect of voltage bounds.

Nevertheless, even if the over-planning strategy in the distribution system might
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Table 3.5: Comparison of Planning Results

Result at
Optimal Solution

Without
Operating Constr.

With
Operating Constr.

Planned Sites
{4,6,8,9,10,

12,13,14,18,22}
{4,8,9,10,

12,13,14,23}
TCOT $ 7.018 $ 3.677

Maximum Loading 5594.43 kVA 4942.81 kVA
Daily VR Operations 346 364

Captured PEV Volume 556 502

conceal the internal complexity of problem structure, the fidelity of the proposed

method in the power aspect is demonstrated at various PEV penetration scenarios.

3.4.4 Discussion on Computational Efficiency

When the search space of the planning problem becomes more complex, as in the

real-world coupled network with thousands of electric and transportation nodes, the

computing time required increases accordingly, as does the need for parallel implemen-

tation. The total run time of the planning model is shown in Fig. 3.9 to demonstrate

the parallel computing capability under the proposed graph-based scheme. With the

increasing number of computing threads, the average computing time of the entire

solving process reduces. As future work, it would be promising to implement the

proposed planning model and solving platform on the real-world, large-scale system,

as shown in Fig. 3.10.

3.4.5 Discussion on Solution Quality

Table 3.6 summarizes the parameters of CE optimization algorithm used in this

particular case study. Under this set of parameter, the convergence of objective

function value and the evolution of decision variable vector (viz. Fig. 3.5 and Fig. 3.6)
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Figure 3.9: Graph Parallel Computing Performance

Figure 3.10: Large-scale, Real-World Power-Transportation Coupled Network

show a good alignment and decisive guideline to the solving process. Note that it

generally takes a fine tuning of these parameters in order to reach a desirable trade-

off between solution quality and computational efficiency. For example, when the
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problem cardinality, i.e., |K|, increases as in large-scale, real-world case, the number

of CE samplesM needs to be raised accordingly. Further, the rarity parameter γ needs

to be tuned to achieve an empirically desirable “effective” elite sample amounts.

Table 3.6: Parameters of CE Optimization Algorithm

Parameter Value
Problem Cardinality |K| 25
Number of Samples M 1000

Rarity Parameter γ 2%
Smoothing Parameter α 0.7

Stopping Criteria Threshold ε 0.001

3.5 Summary

With the development of charging technologies, the auto industry has envisioned

the ability to recharge PEVs at speeds comparable to the traditional gas refueling.

This chapter proposed a graph-computing based integrated location planning model

for PEV fast charging stations (FCS). The proposed model considers the requirements

for FCS in both aspects of power supply and transportation, thus guaranteeing re-

liable power grid operation as well as economic planning decisions. The proposed

formulation contains integer decision variables and nonlinear terms in objective func-

tions as well as constraints. To ensure fast convergence of the solution, we further

propose a graph-based cross-entropy (CE) optimization algorithm, which enhances

computational efficiency with graph parallel computing technique. The proposed

model and algorithm are validated on a synthetic power and transportation coupled

network. This work is the initial effort to address the interdisciplinary FCS planning

problem.
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Chapter 4: Transmission Level PEV Charging Impact

4.1 Motivation and Related Works

This chapter starts to investigate PEV’s charging impact on the power transmis-

sion system. Under the ambition of boosting the charging speeds that are comparable

to traditional gas refuelling, Ultra-Fast Charging Station (UFCS) has been conceptu-

alized and piloted into the charging infrastructure development [128,129]. At present,

there is no standardised power rating or terminal configuration to define UFCS due to

the lack of wide-spread implementation, as shown in Table 1.2. A working definition

is that the charging level of UFCS can reach up to 500 kW ∼ 1 MW , per vehicle per

charge, and connected to three-phase DC power.

Under this context, individual UFCS brings total station power draw to 2∼6 MW

(estimated parking 4∼12 vehicles), which is comparable to industrial loads [130]. To

support and accommodate such a high power draw, UFCS’s connection point to the

power grid has been considered at the transmission/sub-transmission level instead

of the medium/low voltage distribution network [131]. Similar to certain industrial

loads, UFCS serve as a primary customer with direct power supply from transmission

system. Besides conceptual proposals and a few pilot projects detailed in Chapter 3,

Section 3.1, the feasibility, topology, and business model of UFCS have yet to be
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thoroughly studied. At the transmission level, literature has assessed UFCS and

aggregate of lower level PEV charging in their participation in electricity markets

[39–41], frequency regulation [42, 43], congestion management [44, 45], coordination

with renewable energy resources [46], and transmission expansion planning [48], etc.

However, the fast growth of PEV and UFCS could exert more disruptive impact

on the power grid, including cascading failure. Cascading failure is one of the most

catastrophic phenomena that can occur in power transmission systems. The 2003

North American cascading failure left an estimated 50 million people without power

in 9 states for more than 4 days, resulting in an estimated total financial loss of 10

billion U.S. dollars [132]. Due to its significance, cascading failure analysis is con-

ducted by utilities and Regional Transmission Operators (RTO) during the transmis-

sion planning stage. However, such long-term forecasts often have to accommodate

uncertainties through over-planning, which considers the worst case of the maximum

coincidental load, leading to high cost or even reliability issues.4

On the other hand, to prevent the system from catastrophic failures, RTOs and

some utilities conduct routine cascading studies in day-ahead outage scheduling, al-

lowing them taking timely actions to assure system reliability. Such cascading studies

are deterministic and use DC power flow approximations to accelerate the conver-

gence, which could lead to incorrect decisions that impact end users. Given the

highly stochastic nature of PEV charging, incorporating detailed loading models in

AC power flow analysis is highly desirable to achieve accurate results. However, this

would require an extensive computation time. While a few research have been devoted

4For example, the increased line capacitance will lead to over-voltage during the off-peak hours.
This phenomenon has been observed in states of high PEV penetration, such as California.
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to cascading failure analysis, they cannot address both of the above problems simul-

taneously. For example, [133] and [134] present analytic models for cascading failure

analysis based on the theory of self-organized criticality. Those models describe load

change with slow dynamics and describe grid topological change with fast dynamics.

Therefore, they are not suitable for capturing frequent load changes induced by PEV

charging. [135] proposes a GPU-based LU-factorization solver which allows for fast

analysis of massive power flows. However, the solver is grounded in DC power flow

and cannot guarantee the same accuracy as AC power flow. [136] developed an inter-

action graph to predict cascading outages based on historical grid response. While

using AC power flow, this method requires long runtime and can only be implemented

offline.

To address the above problems, in this chapter we propose a methodology based

on graph-computing techniques to investigate the cascading failures induced by large-

scale PEV integration aggregated at UFCS level. In particular, the contributions of

this work are threefold:

(i) Proposed a graph modeling method for PEV-integrated transmission system.

The representation of the grid topology allows for a) fast model establishment with

a faithful presentation of PEV charging patterns at multiple UFCS; and b) efficient

implementation of AC power flow.

(ii) Developed an online method for stochastic cascading outage analysis, wherein

spatial and temporal stochasticity of the PEV charging behavior are embedded under

the umbrella of Monte-Carlo Simulation (MCS).
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(iii) Grounded in the above results, developed a graph-computing based cascading

failure evolution (G-CFE) analysis, which encompasses line-tripping, island-detection,

and generation/load re-dispatch in a closed loop.

The Node-based Parallel Computing (NPC), HierArchical Parallel Computing

(HAPC), and Breadth-first Search (BFS) based graph traversal have been applied

to improve computational efficiency. The proposed G-CFE analysis will enable RTOs

and utilities to conduct accurate cascading studies in transmission systems which

are highly penetrated with PEV and take timely actions to assure grid operation

reliability.

The proposed G-CFE analysis is not limited to analyze systems of uncertainties

induced by PEV charging, and can be applied to analyze the system with other

uncertainties, such as intermittent renewable outputs and base load spikes. The later

uncertainties, nevertheless, generally present less discreteness than PEV charging and

is acceptable to be modeled in aggregates. Therefore, we do not explicitly discuss

the performance of the proposed method regarding those uncertainties. In addition,

this work assumes that the power grid operates in the steady-state. Finally, the

“transmission system” and “power grid” are used interchangeably throughout this

chapter.

4.2 PEV-integrated Power Grid Graph Modeling

4.2.1 Graph based Stochastic PEV Integration

As illustrated in Chapter 3, Section 3.2.4, graph is a data structure based on

graph database (GDB), which is suitable for modeling pairwise relationship between

objects in a network. In this chapter, a graph-based grid model has been adopted as
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the natural representation of power transmission system, as denoted by an undirected

graph G = (Vbus, E line), where Vbus is the vertex class of electric buses, and E line ⊆

Vbus×Vbus is the edge class of transmission lines. The bus and line related information

are stored as “attributes” of vertices and edges in the power grid graph model.

Grounded in the graph-based power grid modeling, the PEV’s charging is modeled

as a relationship between PEV objects and electric bus objects. This relationship is

implemented as the “PEV-TO-GRID” edge class EPEV−G connecting “PEV” vertex

class VPEV and Vbus, as seen in the left-hand side of Fig. 4.1. Hence, the full graph

of a power grid with PEVs is G = (Vbus,VPEV , E line, EPEV−G). For the vertex class

Vbus, all one-hop neighbors of a node are said to be in the first level corresponding to

that node, and two-hop neighbors are in the second level, and so forth.

Figure 4.1: Workflow of Graph based Stochastic PEV Integration
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To consider stochastic charging patterns and locations of PEVs, Monte-Carlo Sim-

ulation (MCS) of power flows is implemented in the time-series (TS) analysis, which

records the power grid response by running power flow over consecutive time in-

stants. The working principle is shown on the right-hand side of Fig. 4.1. The PEV’s

charging locations are selected based on multiple factors, e.g., demographics, regula-

tory conditions, societal considerations, etc., which are elaborated in Section 4.4. In

each iteration of MCS, the total demand is re-established as the sum of a new set

of stochastic PEV loads and the deterministic base load. The law of large numbers

indicates that as the sample size gets large enough, the expected value of the model

outputs can be approximated by the sample mean of the MCS results.

4.2.2 PEV Charging Profile Modeling

A stochastic method is developed to determine individual PEV’s daily charging

profile. To simplify the generation process, we assume that all PEVs utilize the

lithium-ion battery, and thus the real power demanded by a PEV remains constant

during its charging duration [137]. Based on PEV specs on the market [138], we

characterize a PEV load as below:

The State of Charge (SOC) when individual trip starts is

SOC = 1− Dt

R
, (4.1)

where Dt (mile) is the mileage traveled since the last charge, R (mile) is the PEV’s

driving range. The corresponding charging duration tr (h) is

tr =
C · (1− SOC)

c
, (4.2)
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where C (kWh) is the battery capacity, c (kW) is either the residential charging level,

cr, or the public charging level, cp, depending on its charging location. Based on PEV

driving surveys, we adjust the parameter Dt to follow Gaussian distributions [139].

The PEV users’ charging intention is mainly characterized by a range anxiety

threshold SOCTH , below which the driver will look for UFCS. The SOCTH is defined

as a Normal distributed random variable according to a driver survey [140].

SOCTH ∼ N (µTH , σ
2
TH), (4.3)

where µTH and σ2
TH are mean and variance of SOCTH . Furthermore, the use type of

vehicle is categorized as the following two groups.

Commuting Vehicles: Private commuters are the most common usage of ve-

hicle, which departure in the morning for work and return home in the evening.

The daily commuting time Tc (h) and one-way distance Dc (mile) follow a Normal

distribution

Tc ∼ N (µtc, σ
2
tc); Dc ∼ N (µdc, σ

2
dc). (4.4)

Based on the common office hour from 9 am to 5 pm, the vehicle is en route from

(9− Tc) am until (17 + Tc) pm. Hence, the SOC in (4.1) for commuting PEVs is

SOC = 1− 2Dc

R
. (4.5)

Ride Service Vehicles: Ride service vehicle becomes an increasingly impor-

tant component of the transportation system, especially in the densely populated

metropolitan area. PEVs have entered this market, e.g., London and Montreal have

both introduced PEV cabs [141,142]. Moreover, many PEV owners have turned their

vehicles into app-based ride service vehicles. As compared to commuting vehicles

81



which have a relatively regular driving pattern, ride service vehicle has more flexi-

bility, i.e., the en route duration, speed and charging anxiety are more divergent.

Therefore, the driving pattern is additionally characterized by the average speed vr

(mph). A ride service vehicle starts daily trip at tr,s with the speed vr. The mileage

traveled before charging can then be written as

Dr = (1− SOCTH) ·R, (4.6)

where the driver will only recharge at the public charging station with charging level

cp when SOC < SOCTH .

4.3 Graph-computing based Cascading Failure Evolution

4.3.1 Graph based Power Flow Analysis

Power flow analysis is the precursory step of cascading outage analysis. We

adopted the graph-computing based fast decoupled power flow (FDPF) algorithm

that has been proposed in the work [143]. The FDPF has the following iteration

scheme

∆P/V = B′∆θ (4.7)

∆Q/V = B′′∆V, (4.8)

where V, ∆P, and ∆Q are vectors of bus voltage magnitude, real power injection

increment, and reactive power injection increment, respectively. The real power in-

jection P is the difference between total generation and total demand that consists of

stochastic PEV loads and the deterministic base load. ∆θ and ∆V are vectors of bus

voltage phase angle and magnitude increment, respectively. B′ and B′′ are constant
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Jacobian matrices deduced from Ybus matrix. An illustration of Ybus matrix formu-

lation for a 10-bus system is shown in Fig. 4.2. The diagonal elements are stored as

an attribute of Vbus and the off-diagonal elements are stored as an attribute of E line.

Each row of Ybus matrix corresponds to a node and is formed simultaneously since it

only requires the information from its one-hop neighbors.

Figure 4.2: Ybus Matrix Formulation for a 10-bus System

To accelerate the computation in FDPF, a graph-based parallel computing tech-

nique was developed based on the prior work [143, 144]. It mainly consists of two

parts. First, the Node-based Parallel Computing (NPC) performs local computation

at each node of Vbus and VPEV by forming B′ and B′′ in (4.7) - (4.8), updating sys-

tem states V and θ, and calculating branch flow. Second, the HierArchical Parallel

Computing (HAPC) is used to formulate the elimination tree from the graph G. The

elimination tree is then layered from leaf nodes to the root node. The detailed for-

mulation process is illustrated in a 10-node graph, as seen in Fig. 4.3 [145]. From

bottom-up, HAPC performs the computation for nodes at the same layer in parallel,
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and the layer next to it is performed after. With HAPC, the LU factorization of B′,

B′′ matrices, which is the most time-consuming process in each power flow iteration,

is performed efficiently. Besides the advantages of parallelism in problem formula-

tion and solving process using graph-computing based FDPF, the entire power flow

analysis is running in memory, thus saving heavy time cost induced by Input/Output

operation between disk and memory. Therefore, with the graph-computing based

FDPF, the computation process is highly in parallel, and the computation speed is

significantly lifted. The detailed iterative workflow of the graph-computing based

FDPF is shown in Fig. 4.4, where NPC and HAPC implementation are highlighted

in blue and magenta, respectively. The total PEV charging demand (see Sec. 4.2), in

combination with generation and base load profiles, is fed to the input of FDPF.

Figure 4.3: Forming Elimination Tree from the Graph
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Figure 4.4: Graph-computing based FDPF

4.3.2 Graph-computing based Cascading Failure Evolution
(G-CFE)

Cascading failure evolution is a mechanism in which the failure of grid components

propagates to cause a large blackout of power transmission systems. As failures occur,

the power system evolves successively weakened so that the chance of further failures

is increased. In this work, we considered transmission lines tripped by overloading
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relays.5 Once the first outage alters the topology of the power grid, the power flow

distribution is changed throughout the remaining system. The subsequent power flows

could also exceed the relays’ settings, which lead to more line outages. The process

repeats until the system stabilizes, i.e., no further overloading event occurs [146].

After the line tripping occurrence, island detection needs to be conducted, because

the tripped line could likely be a bridge, also known as a cut-edge, which splits the

system into islands, i.e., the grid becomes a disconnected graph. In this study, the

Breadth-First Search (BFS) based graph traversal is implemented within G-CFE

model for island detection. The BFS starts at the root of the power grid graph G and

visits all of its neighboring nodes at the present level in parallel before moving on to

the nodes at the next level. The slack bus is selected as the root in the model for

practical reasons. The nodes traversed in a searching path will be marked as visited.

If the number of visited nodes through a complete searching path is less than the

cardinality of the entire vertex set, then an islanding occurrence is detected.

(a) No Islanding Detected (b) Islanding Detected

Figure 4.5: BFS based Graph Traversal for Island Detection

5In practice, System Integration Protection (SIP) may be armed under a cascading failure, which
desensitize relays to prevent them from tripping. This mechanism is not included in this work to
simplify the demonstration of the proposed analysis.

86



The illustration of such hierarchical parallel BFS traversal for island detection is

shown in an exemplary network in Fig. 4.5. The tripped line(6, 13) indicated by a

dashed line in Fig. 4.5a is not a cut-edge, thus no islanding occurrence is detected.

However, this tripping will cause the node 13 to be visited in color-coded Level 3

instead of Level 2 (cf. Fig. 4.5b), as the BFS traversal starts from the root node

5. On the other hand, the cut-edge line(7, 8) in Fig. 4.5b is tripped, and thus one

islanding occurrence is detected. Some generation (and/or load) may be lost upon an

islanding occurrence. Hence, the demand-supply balance in the mainland is adjusted

by decreasing the demand (supply) by the same factor at all demand (supply) nodes.

This adjustment corresponds to the load shedding (generation curtailing) [146].

Fig. 4.6 shows the iterative workflow of the G-CFE model. Let fe,∀e ∈ E line be

the active power flow on each line and f e be the corresponding capacity. Let Ok

and Ik denote the set of line outages and set of islanding occurrence during the kth

round of cascading failure, respectively. Let O∗ and I∗ denote the set of cumulative

line outages and islanding occurrences until the current round. In this study, the set

of initial outages O0 is determined by the overloaded line whose flow fe exceeds the

rating f e due to the penetration of PEV. This process is repeated until completing

the m = 1, . . . ,M MCS runs for every time instant t = 1, . . . , T .

In TS analysis, the G-CFE model is reset every time instant. The cascading outage

that evolves in one time instant would not affect the starting status of the power grid in

the subsequent instant. With the failure set O∗ and I∗ obtained, qualitative analysis

can be conducted to conclude the relationship between base load and PEV charging

demand, and how various factors, such as the power network topology, concentration
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Figure 4.6: Workflow of G-CFE Model

of UFCS, and protection settings, lead to the cascading failures. Analysis can also be

conducted to identify critical components that are prone to be affected.
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4.4 Case Study

4.4.1 Simulation setup

The validity of the proposed method for UFCS impact assessment has been demon-

strated on a large-scale provincial transmission system in Sichuan, China. The ge-

ographic area of Sichuan province, overlaid with the backbone transmission lines

marked in blue, is shown in Fig. 4.7. This system has 2749 buses and 2917 trans-

mission lines in total, with multiple voltage levels including 220 kV , 110 kV , 35 kV ,

10 kV , etc. According to local utility practice, the transmission line is set to trip

when the loading level reaches 125% of the line rating.

Figure 4.7: Provincial Transmission System in China

The base load at each bus h in the network P b
h is formed with data from the

SCADA’s record on a typical summer day in the simulated system, with 15-min

resolution. The normalized TS base load curve of one bus is shown in Fig. 4.8.
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Figure 4.8: Normalized Time-series Base Load Curve

The total load profile at any location is the summation of P b
h and the aggregated

UFCS load P PEV
h , which is generated by the model elaborated in Section 4.2.2. We

assume a satisfactory PEV charging profile could be created using data from a segment

of the PEV market rather than taking into account every PEV currently available to

consumers. The PEV can utilize residential charging level cr = 19.2 kW or public

fast charging level cp = 120 kW . The battery capacity is assumed to be C = 40 kWh

or C = 60 kWh. Overall, there are three groups of PEV, a) commuting vehicle with

cr level and C = 40 kWh; b) commuting vehicle with cp level and C = 60 kWh;

and c) ride service vehicle with cp level and C = 60 kWh, which formed a 1 : 2 : 2

composition ratio of total PEV amounts in the study. Probabilistic parameters for

generating individual PEV’s charging profile have been detailed in [60] and thus

omitted here.
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Aiming at providing predictive planning guideline, this case study investigates four

scenarios of PEV amounts ranging from 10,000 to 40,000 in the step of 10,000. The

scenarios of PEV amounts are consistent with the penetration goal set by the provin-

cial government. As of December 2017, there are around 23,000 PEVs in Sichuan,

and the provincial government is targeting for 100,000 PEVs on the road by 2020.

Hence, the particular cases of up to 40,000 PEVs fall in the reasonable median of the

PEV density in the studied area. As for charging locations, 50 out of 2749 buses have

been selected to be candidate locations of UFCS, based on demographic information

that imitates the siting of the expressway service area. For example, currently there

are 40 UFCS built along expressways which radiate from the capital city of Sichuan

province. In 100 MCS runs, all PEV charging profiles will be randomly allocated to

these 50 candidate locations during each iteration.

The case studies are implemented on a server with the graph-computing platform,

TigerGraph v2.3. The testing environment is shown in Table 4.1.

Table 4.1: Testing Environment of Graph Platform

Hardware Environment
CPU 2 CPUs × 6 cores @2.10 GHz

Memory 64 GB
Software Environment

Operating System Linux CentOS 6.8
Graph-computing Platform TigerGraph v2.3
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(a) Number of PEV: 10,000

(b) Number of PEV: 20,000

(c) Number of PEV: 30,000

(d) Number of PEV: 40,000

Figure 4.9: No. of Total Tripped Lines

(a) Number of PEV: 10,000

(b) Number of PEV: 20,000

(c) Number of PEV: 30,000

(d) Number of PEV: 40,000

Figure 4.10: No. of Islanding Occurrence

4.4.2 G-CFE Results

Fig. 4.9 and Fig. 4.10 demonstrate the main results in the case study. There

are two key metrics in G-CFE output that proved most insightful when performing

analysis. These include a) the number of total tripped lines after completing the

CFE, i.e., the cardinality of set O∗; and b) the number of islanding occurrence in the

CFE, i.e., the cardinality of set I∗.
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The y-axis in both figures shows the occurrence percentage of color-coded impact

metrics in 100 MCS runs. Compared to the benchmark case where no PEV loads

have been integrated into the tested system, the frequency and severity of cascading

outages increased with the increasing PEV penetration. In this particular case study,

there exists a noticeable difference between the 10,000 and 20,000 PEV cases. In

the 10,000 PEV case, there is a maximum probability of approximately 20% for a

multi-line (≥ 2) tripping event to occur. However, there was a 100% probability of

a first-round line failure that led to cascading outages for the 20,000 PEV case. The

30,000 and 40,000 PEV cases continued such trend with an initial line tripping that

almost surely led to cascading outages in a broader range of time. Additionally, for

20,000 ∼ 40,000 PEV cases, the system could end up with at most 6 tripped lines and

multiple islanding occurrences until stabilized. These observations show that there is

not only an increase in the probability of cascading failure but also an increase in the

potential severity as the total number of PEV increased.

4.4.3 Performance Evaluation

Result Accuracy

As elaborated in Section 4.3.1, this study adopted a graph based FDPF algorithm,

i.e., AC power flow, instead of the commonly used DC power flow in the CFE model.

The NPC and HAPC have enabled the proposed model to yield more accurate power

flow results without sacrificing computational efficiency. Fig. 4.11 demonstrates the

noticeable deviation of G-CFE results between AC and DC power flow algorithm,

ceteris paribus. As a linear approximation of AC power flow, DC power flow ignores

reactive power, assumes lossless transmission line and all bus voltage magnitude to be

1 p.u. Therefore, the CFE tools using DC approximation tends to underestimate the
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adverse impact in some cases while overestimating in others, causing inconsistency

during analysis.

(a) Average No. of Total Tripped Lines (b) Average No. of Islanding Occurrence

Figure 4.11: Performance Comparison of Power Flow Algorithm in G-CFE Model

Computational Efficiency

We benchmark the computational performance of the graph-computing based

FDPF with the MATPOWER based FDPF. MATPOWER is an open-source power

system simulation tool that scales quite well to large systems, and thus is representa-

tive among other software serving as a benchmark. The average computing time of a

snapshot power flow for the tested system comparing MATPOWER-FDPF and the

proposed method is shown in Table 4.2. The computing time is reduced by enabling
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multiple threads through NPC and HAPC in the graph platform. Conversely, due to

the sequential implementation in MATPOWER-FDPF, the average computing time

is irrelevant to the number of computing threads.

Table 4.2: Computing Time Comparison

Average Computing Time (ms)
No. of Threads

Implementation 1 2 4 8
MATPOWER-FDPF ∼112 ∼112 ∼112 ∼112

Graph-FDPF 33.85 26.99 22.92 20.88

The four functional modules of G-CFE model, i.e., PEV integration, graph-FDPF,

line tripping, and island detection, as illustrated in Fig. 4.6, are all implemented in

the graph platform with parallel computing enabled. The computing time of each

functional module, per iteration per time instant, is shown in Fig. 4.12 to demon-

strate its parallelism. With the increasing number of computing threads, the average

computing time of each module reduces. Note that the average computing time in

Table 4.2 and Fig. 4.12 are calculated by running the case study repetitively 10 times

and obtaining the average.

4.5 Summary

The Ultra-Fast Charging Stations (UFCS) could exert disruptive influences on the

power grid. This chapter proposes a methodology, a graph-computing based cascading

failure evolution (G-CFE) analysis, for assessing and predicting the cascading outages

induced by large-scale PEV aggregated at UFCS level on power transmission systems.

In comparison to the existing cascading analysis tools, which approximate with DC
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Figure 4.12: Computing Time of Functional Modules in G-CFE Model

power flow or require a long computation time, the proposed method allows utilities

and grid operators to actively analyze PEV’s disruptive impacts on bulk transmission

systems, providing important insights to improve power system reliability.

In the development of G-CFE, this work makes two additional contributions: it a)

proposed a graph modeling method, which allows for the flexible model establishment

of the power grid with a detailed presentation of PEV charging patterns; and b)

developed a method for stochastic cascading failure analysis. The advantages of the

proposed method is validated in a provincial power system in China.
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Chapter 5: Conclusion and Future Work

5.1 Conclusions

The current electric power grid has been increasingly penetrated with Plug-in Elec-

tric Vehicles (PEV). Distinct from traditional electric load, PEV loads are stochastic

and impulsive, especially when aggregated at fast charging infrastructure. The PEV

loading characteristics make conventional grid impact assessment methods unsuitable.

The objective of this dissertation is to propose algorithms and methods for power grid

operators and electric utilities to accurately analyze PEV’s charging impact on the

power system from both distribution and transmission voltage levels. The practi-

cal impact metrics provide an important tool to develop proper mitigation strategies

through infrastructure planning.

5.2 Contributions

The contributions made in this dissertation are summarized as follows.

5.2.1 Distribution Level PEV Charging Impact

• Provides an approach to accurately and conveniently assess PEV’s impact on

the grid assets. The PEV charging profiles are pre-processed through Monte-

Carlo simulation, which ensures consideration of stochastic charging patterns,

97



fed into time-series analysis and asset lifetime estimation. The outputs are

presented through an integrated interface.

• Inter-temporal response of grid assets is considered. Compared to existing meth-

ods, which assess grid assets based on their average loading, the proposed algo-

rithm considers assets’ operating frequency and temperature variation. These

factors lead to significant differences in the utility assessments.

• The above two engineering advantages are realized under a unified mathemat-

ical framework, in which we establish analytic models of two generic classes of

grid assets (i.e., continuous and discrete operating assets) and recast their cost

functions in the statistical settings of PEV charging. Distinct from simulation-

based methods, the proposed method is analytic, and thus greatly reduce the

computation resources and data required for accurate assessment.

• Following the integrated algorithm for evaluating PEV’s impact on the state of

power grid assets, we further introduce a software prototype that serves as an

impact visualization tool and predictive planning guideline under the increasing

PEV penetration.

5.2.2 Location Planning of PEV Fast Charging Stations

• Proposes a graph modeling scheme for power and transportation coupled net-

work integrated with PEV traffic flows. The representation of different entities’

relationship allows for a) fast and easy model establishment; b) efficient im-

plementation of distribution power flow; and c) flexible model extension under

expanding networks and increasing PEV penetration.
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• The inter-temporal response of grid assets is considered in the power supply as-

pect of the proposed model, which enables the evaluation of critical equipment’

long-term cost over any time span of interest.

• The proposed planning model and cross-entropy optimization solving method

are implemented in a graph-computing platform, in which the Node-based Par-

allel Computing technique has been applied to improve the computational effi-

ciency.

5.2.3 Transmission Level PEV Charging Impact

• Proposes a graph modeling method for PEV-integrated power transmission sys-

tem, in which the representation of grid topology allows for a) fast model es-

tablishment with a faithful presentation of PEV charging patterns at multiple

UFCS; and b) efficient implementation of AC power flow.

• Develops an online method for stochastic cascading failure analysis, wherein

spatial and temporal stochasticity of the PEV charging behavior are embedded

under the umbrella of Monte-Carlo simulation.

• Grounded in the above results, developed a graph-computing based cascad-

ing failure evolution (G-CFE) model, which encompasses line-tripping, island-

detection, and generation/load re-dispatch in a closed loop.

5.3 Recommendation for Future Work

The recommended future works for this dissertation are summarized as follows.
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5.3.1 PEV Charging Impact on Power Grid Asset

In Chapter 2, the integrated algorithm for grid asset impact evaluation and the

visualization software prototype based on that are appealing to the industry practi-

tioner, especially utility planner. The future work could extend the functionalities of

the visualization interface and incorporate more flexible planning schemes.

5.3.2 Planning of PEV Fast Charging Infrastructure

In Chapter 3, the proposed charging infrastructure location planning model has

been validated on a synthesized coupled network. It would be promising to implement

the proposed planning model and graph-based solving platform on the real-world,

large-scale system in future work. The high-performance graph-computing based

solving scheme could be further verified.

5.3.3 Online Prediction for Transmission Cascading Outages

In Chapter 4, the proposed Graph-computing based Cascading Failure Evolution

(G-CFE) analysis is the first effort to analyze PEV’s disruptive impact on the power

transmission systems. More extensive impact metrics based on the developed tool,

e.g., N-1 contingency analysis, transient stability analysis, etc., can further improve

grid operators’ ability to anticipate and prevent possible issues arising under increase

penetration of PEV on a large scale. These could be incorporated in future work.
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Appendix A: MATLAB Source Code

This appendix includes the MATLAB code used in the simulations of Chapter 3.

% This MATLAB function calculates the performance function

value (objective function in Equation (3.1)) in each

Cross -Entropy iteration %

% This is the key step of integrated FCS location planning

problem , as elaborated in Chapter 3 %

function cost = performance_CE_augmented(binary_fcs ,

path_full ,shortest_dist ,Departure ,base_load)

n = 500;

cardi = 25;

[npop ,~] = size(binary_fcs);

node_fcs = zeros(npop ,cardi);

for i = 1:npop

node_fcs(i,1: length(find(binary_fcs(i,:)))) = find(

binary_fcs(i,:));

end

locb = zeros(n,cardi ,npop);

for k = 1:npop

for i = 1:n

[~,locb(i,:,k)] = ismember(node_fcs(k,:),path_full

(i,:));

end

end

fcs_passed = zeros(n,cardi ,npop);

first_index = zeros(n,npop);

index = zeros(n,npop);

for k = 1:npop

for i = 1:n

B = locb(i,:,k);

C = min(B(B>0));
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fcs_passed(i,:,k) = sort(locb(i,:,k));

if length(unique(fcs_passed(i,:,k)))==2

first_index(i,k) = 0;

index(i,k) = 0;

elseif isempty(C)==1

first_index(i,k) = 0;

index(i,k) = 0;

else

first_index(i,k) = C;

temp_index = find(fcs_passed(i,:,k) ==

first_index(i,k));

index(i,k) = temp_index (1);

end

end

end

Range = 200;

volume = ones(n,npop);

speed = 30;

PEVpower = 120;

starttime = zeros(n,npop);

starttime_quarter = zeros(n,npop);

squares = zeros(n,96,npop);

period = zeros(n,npop);

period_quarter = zeros(n,npop);

endtime = zeros(n,npop);

for m = 1:npop

for i = 1:n

if first_index(i,m)==0

volume(i,m) = 0;

continue

end

if first_index(i,m)~=0

if path_full(i,first_index(i,m))~=0

if shortest_dist(path_full(i,1),path_full(

i,first_index(i,m))) >=Range /10

volume(i,m) = 0;

elseif shortest_dist(path_full(i,1),

path_full(i,first_index(i,m))) >0.5*

Range /10 && shortest_dist(path_full(i

,1),path_full(i,first_index(i,m)))<

Range /10
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starttime(i,m) = Departure(i)+

shortest_dist(path_full(i,1),

path_full(i,first_index(i,m)))*10/

speed;

starttime_quarter(i,m) = ceil(

starttime(i,m)*4)/4;

if starttime_quarter(i,m) >=24

starttime_quarter(i,m) =

starttime_quarter(i,m) -24;

end

period(i,m) = shortest_dist(path_full(

i,1),path_full(i,first_index(i,m)))

*10/4/ PEVpower;

period_quarter(i,m) = ceil(period(i,m)

*4) /4;

endtime(i,m) = starttime_quarter(i,m)

+ period_quarter(i,m);

for j = 1:96

tmp = j/4;

if tmp >= starttime_quarter(i,m)

&& tmp < endtime(i,m)

squares(i,j,m) = PEVpower;

end

end

elseif shortest_dist(path_full(i,1),

path_full(i,first_index(i,m))) <=0.5*

Range /10

if index(i,m) == cardi

volume(i,m) = 0;

continue

end

for k = 1:cardi -index(i,m)

if path_full(i,fcs_passed(i,index(

i,m)+k,m))~=0

if shortest_dist(path_full(i

,1),path_full(i,fcs_passed(

i,index(i,m)+k,m))) >0.5*

Range /10
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starttime(i,m) = Departure

(i)+ shortest_dist(

path_full(i,1),

path_full(i,fcs_passed(

i,index(i,m)+k,m)))

*10/30;

starttime_quarter(i,m) =

ceil(starttime(i,m)*4)

/4;

if starttime_quarter(i,m)

>=24

starttime_quarter(i,m)

=

starttime_quarter(i

,m) -24;

end

period(i,m) =

shortest_dist(path_full

(i,1),path_full(i,

fcs_passed(i,index(i,m)

+k,m)))*10/4/ PEVpower;

period_quarter(i,m) = ceil

(period(i,m)*4)/4;

endtime(i,m) =

starttime_quarter(i,m)

+ period_quarter(i,m);

for j = 1:96

tmp = j/4;

if tmp >=

starttime_quarter(i

,m) && tmp <

endtime(i,m)

squares(i,j,m) =

PEVpower;

end

end

break

end

end

if k==cardi -index(i,m)

volume(i,m) = 0;

end

end
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end

end

end

end

end

cost = zeros(npop ,1);

for k = 1:npop

aaa = sum(squares);

Profile_unit = aaa(1,:,k);

Volume = sum(volume);

margin = 0.05;

DC = 120;

DC_hour = DC /35040;

RF = 0.81;

int = 0.05;

r = 0.0322;

g = 0.01;

N = 24;

yr = 15.41;

FCR = 0.1211;

Total_rating_TF = 10000;

[row ,column] = size(( Profile_unit '+( base_load *10000)))
;

K_factor_3002_500RIDE = (Profile_unit '+( base_load
*10000))/Total_rating_TF;

faa_3002_500RIDE=zeros(row ,column);

feqa_3002_500RIDE = zeros(1,column);

LOL_3002_500RIDE = zeros(1,column);

for i = 1: column

hours = 96;

Qa = 30;

Qhs_yearly = zeros(hours ,1);

Dt = 15; k22 = 2; t_w = 5; k21 = 2; del_th_hr =

40; y = 1.3;

t_o = 150; k11 = 0.5; R = 10; x = 0.9; del_th_or =

60;

del_th_h1 = zeros(hours ,1);

del_th_h2 = zeros(hours ,1);

th_o = zeros(hours ,1);

del_th_h1 (1) = 53.2;

del_th_h2 (1) = 26.6;
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th_o (1) = 63.9;

Qhs_yearly (1) = th_o (1)+del_th_h1 (1) - del_th_h2

(1);

for j=2: hours

del_th_h1(j) = del_th_h1(j-1) + (Dt/(k22*t_w))

*(k21*del_th_hr *( K_factor_3002_500RIDE(j,i)

^y)-del_th_h1(j-1));

del_th_h2(j) = del_th_h2(j-1) + ((Dt*k22)/t_o)

*((k21 -1)*del_th_hr *( K_factor_3002_500RIDE(

j,i)^y)-del_th_h2(j-1));

th_o(j) = th_o(j-1) + (Dt/(k11*t_o))*((((1+(

K_factor_3002_500RIDE(j,i)^2)*R)/(1+R))^x)*

del_th_or -(th_o(j-1) - Qa));

Qhs_yearly(j) = th_o(j) + del_th_h1(j) -

del_th_h2(j);

end

faa_3002_500RIDE (:,i) = exp (((15000/383) -(15000./(

Qhs_yearly + 273))));

feqa_3002_500RIDE (:,i) = 0.25* sum(faa_3002_500RIDE

(:,i))/24;

LOL_3002_500RIDE (:,i) = (feqa_3002_500RIDE (:,i)

*24/135000) *100;

end

LOL = LOL_3002_500RIDE;

if 100/( LOL_3002_500RIDE *365) <yr

yr_PEV = 100/( LOL_3002_500RIDE *365);

else

yr_PEV = 15.41;

end

peak_300 = max(( Profile_unit '+( base_load *10000)));
X = (1+r)/(1+ int);

CRF_mod_300 = ((int *(1+ int)^yr_PEV)/((1+ int)^yr_PEV -1)

);

PL_square_mod_300 = (peak_300/Total_rating_TF)^2*(((1+

int)^yr_PEV - (1+g)^(2* yr_PEV))/((1+ int)^yr_PEV *

((1+ int) -(1+g)^2)))*CRF_mod_300;

load_factor_300 = (Profile_unit '+( base_load *10000))/
peak_300;

LoF_mod_300 = 0.2* load_factor_300 +0.8*( load_factor_300

).^2;

A_mod_300 = ((DC+(N*margin))/FCR)*X*((1-X^yr_PEV)/(1-X

))*CRF_mod_300;
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B_mod_unit_300 = PL_square_mod_300 *((RF*DC_hour) +

LoF_mod_300 *( margin /4));

B_mod_sum_300 = (sum(B_mod_unit_300)/FCR)*X*((1-X^

yr_PEV)/(1-X))*CRF_mod_300;

TCO_modified = 70000* LOL+A_mod_300 *13.2+ B_mod_sum_300

*53;

cost_daily = TCO_modified /( yr_PEV *365);

cost(k) = cost_daily + nnz(binary_fcs(k,:))*0.5 -

Volume(k)*0.1;

end

end

% get random departure time for 500 PEV fleets %

Dep_time = (randi (97 ,[500 ,1]) -1)/4;

% get 500 random OD pairs of PEV %

n = 500;

OD = zeros(n,2);

for i = 1:n

OD(i,:) = randperm (25 ,2);

end

% input the transportation graph component (vertex and

edge) and generate the detailed trip chains by shortest

-distance algorithm %

n = 500; %number of PEVs

G = graph(s,t,weights);

plot(G,'EdgeLabel ',G.Edges.Weight);

%find shortest path for 500 PEVs and get the intermediate

nodes for all PEV

path = zeros(n,20);

dist = zeros(n,1);

for i = 1:n

[p,d] =shortestpath(G,O(i),D(i));

path(i,1:( length(p) -2)) = p(2:(end -1));

dist(i) = d;

end

path_truncate = path;

path_truncate (:,~any(path_truncate ,1)) = [];
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Appendix B: Graph Computing Implementation

This appendix includes the graph computing implementation source code used

in Chapter 3 and Chapter 4, written in Graph-SQL, C++ and Linux shell scripting

language.

// Graph schema of the 25-node transportation network

coupled with the 123-node distribution test feeder , as

the case study in Chapter 3

// Power Distribution System Graph

CREATE VERTEX bus_D (primary_id cid string , exId string ,

flag uint , IDNO uint , bus_type uint , PdA double , QdA

double , PdB double , QdB double , PdC double , QdC double ,

DGvoltage_A double , DGvoltage_B double , DGvoltage_C

double , DG_Type string , CapA double , CapB double , CapC

double , Load_Model string , BW_reg double , PT_reg double

, CT_reg double , vol_reg_A double , vol_reg_B double ,

vol_reg_C double , control_phase_reg string , Tap_A int ,

Tap_B int , Tap_C int , Vbase double , node_phases string ,

area uint , pos_x double , pos_y double , loc_x double ,

loc_y double , Pab_tri double , PF_tri double , CapA_cal

double , CapB_cal double , CapC_cal double , PdA_cal

double , QdA_cal double , PdB_cal double , QdB_cal double ,

PdC_cal double , QdC_cal double , PdAB_cal double ,

QdAB_cal double , PdBC_cal double , QdBC_cal double ,

PdCA_cal double , QdCA_cal double , VAmag_cal double ,

VAang_cal double , VBmag_cal double , VBang_cal double ,

VCmag_cal double , VCang_cal double , V_unbalance double ,

startnode string) WITH STATS="OUTDEGREE_BY_EDGETYPE"
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CREATE DIRECTED EDGE backe_D (from bus_D , to bus_D ,

edge_name string , flag uint , Nt double , connection_T

string , Raa double , Rab double , Rac double ,Rba double ,

Rbb double , Rbc double ,Rca double , Rcb double , Rcc

double , Xaa double , Xab double , Xac double , Xba double ,

Xbb double , Xbc double , Xca double , Xcb double , Xcc

double , Baa double , Bab double , Bac double , Bba double ,

Bbb double , Bbc double , Bca double , Bcb double , Bcc

double ,linelength double , Config string , PdA_dis double

, QdA_dis double , PdB_dis double , QdB_dis double ,

PdC_dis double , QdC_dis double , Load_Model_dis string ,

Int_1_x double , Int_1_y double , Int_2_x double , Int_2_y

double , Int_3_x double , Int_3_y double , IAmag_cal

double , IAang_cal double , IBmag_cal double , IBang_cal

double , ICmag_cal double , ICang_cal double)

CREATE DIRECTED EDGE foree_D (from bus_D , to bus_D ,

edge_name string , flag uint , Nt double , connection_T

string , Raa double , Rab double , Rac double ,Rba double ,

Rbb double , Rbc double ,Rca double , Rcb double , Rcc

double , Xaa double , Xab double , Xac double , Xba double ,

Xbb double , Xbc double , Xca double , Xcb double , Xcc

double , Baa double , Bab double , Bac double , Bba double ,

Bbb double , Bbc double , Bca double , Bcb double , Bcc

double , linelength double , Config string , PdA_dis

double , QdA_dis double , PdB_dis double , QdB_dis double ,

PdC_dis double , QdC_dis double , Load_Model_dis string ,

Int_1_x double , Int_1_y double , Int_2_x double ,

Int_2_y double , Int_3_x double , Int_3_y double ,

IAmag_cal double , IAang_cal double , IBmag_cal double ,

IBang_cal double , ICmag_cal double , ICang_cal double)

CREATE VERTEX switchnode_D (primary_id cid string , exId

string , switch_phases string , from_bus string , to_bus

string , switch_status string , flag uint , Config string ,

loc_x double , loc_y double , startnode string)

CREATE VERTEX customer_D (primary_id cid string , exId

string , loadpoint string , PA double , QA double , PB

double , QB double , PC double , QC double)
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CREATE DIRECTED EDGE switchlinkF_D (from bus_D , to

switchnode_D , flag uint )

CREATE DIRECTED EDGE switchlinkT_D (from switchnode_D , to

bus_D , flag uint )

CREATE DIRECTED EDGE customerlink_D (from bus_D , to

customer_D , edge_name string )

CREATE DIRECTED EDGE link_D (from bus_D , to bus_D , Raa

double , Rab double , Rac double ,Rba double , Rbb double ,

Rbc double ,Rca double , Rcb double , Rcc double , Xaa

double , Xab double , Xac double , Xba double , Xbb double ,

Xbc double , Xca double , Xcb double , Xcc double , Gaa

double , Gab double , Gac double , Gba double , Gbb double ,

Gbc double , Gca double , Gcb double , Gcc double , Baa

double , Bab double , Bac double , Bba double , Bbb double ,

Bbc double , Bca double , Bcb double , Bcc double , hBaa

double , hBab double , hBac double , hBba double , hBbb

double , hBbc double , hBca double , hBcb double , hBcc

double , K double , flag int) with reverse_edge="

reverse_link_D"

// Transportation network graph

TYPEDEF TUPLE <rowindex INT , h1 DOUBLE ,h2 DOUBLE ,h3 DOUBLE

,h4 DOUBLE ,h5 DOUBLE ,h6 DOUBLE ,h7 DOUBLE ,h8 DOUBLE ,h9

DOUBLE ,h10 DOUBLE ,h11 DOUBLE ,h12 DOUBLE ,h13 DOUBLE ,h14

DOUBLE ,h15 DOUBLE ,h16 DOUBLE ,h17 DOUBLE ,h18 DOUBLE ,h19

DOUBLE ,h20 DOUBLE ,h21 DOUBLE ,h22 DOUBLE ,h23 DOUBLE ,h24

DOUBLE ,

h25 DOUBLE > ShortDistance

CREATE VERTEX node_trans(primary_id nId int , exId int ,

coupled_bus int , IDNO int , weight double , loc_x double ,

loc_y double , Short_D ShortDistance) WITH STATS="

OUTDEGREE_BY_EDGETYPE"

CREATE DIRECTED EDGE link_trans(from node_trans , to

node_trans , edge_name string , length double , speed_rush

double , speed_other double) with reverse_edge="

reverse_link_trans"
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CREATE DIRECTED EDGE conn_coupled_D(from node_trans , to

bus_D)

// Traffic flow graph

// 500 PEV flows

CREATE VERTEX node_traffic(primary_id vId string , exId

string , N1 uint , N2 uint , N3 uint , N4 uint , N5 uint , N6

uint , N7 uint , N8 uint , N9 uint , N10 uint , Dist double

, Departure double) WITH STATS="OUTDEGREE_BY_EDGETYPE"

//The "Sample" vertex to store N sample feasible solutions

CREATE VERTEX sample_sol(primary_id sId string , exId

string) WITH STATS="OUTDEGREE_BY_EDGETYPE"

create graph powerflow_graph(bus_D , backe_D , foree_D ,

switchnode_D , switchlinkF_D , switchlinkT_D , customer_D ,

customerlink_D , link_D , node_trans , link_trans ,

conn_coupled_D , node_traffic , YearIndex , MonthIndex ,

DayIndex , Y2M , M2D , ofDay , reactive , curr , voltage ,

powerfactor , energy , YIndex , MIndex , DIndex , Yr2Mo ,

Mo2Day , VoltageA , VoltageB , VoltageC , sample_sol)

EXPORT SCHEMA powerflow_graph

// Loading grid data into the defined graph schema:

set sys.data_root="./input"

DROP JOB load_powerflow_D

CREATE LOADING JOB load_powerflow_D FOR graph

powerflow_graph

{

load "./input/Node123bus_IES.csv"

TO VERTEX bus_D VALUES($"bus_id",$0,$1,$2,$3,$4,$5
,$6,$7,$8,$9,$10 ,$11 ,$12 ,$13 ,$14 ,$15 ,$16 ,$17 ,
$18 ,$19 ,$20 ,$21 ,$22 ,$23 ,$24 ,$25 ,$26 ,$27 ,$28 ,$29
,_,$30 ,$31 ,$32 ,$33 ,_,_,_,_,_,_,_,_,_,_,_,_,_,_,
_,_,_,_,_,_,_,_,_,_,_,_,_),

TO VERTEX switchnode_D VALUES($"switch_id",$34 ,$35
,$36 ,$37 ,$38 ,$39 ,$40 ,$41 ,$42 ,_)

using Separator=",", Header="true";
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// FCS planning related loading jobs

load "./input/Node_transportation.csv"

TO VERTEX node_trans values($"transnode_id",$0,$1,
$2,$3,$4,$5,ShortDistance($0,$6,$7,$8,$9,$10 ,
$11 ,$12 ,$13 ,$14 ,$15 ,$16 ,$17 ,$18 ,$19 ,$20 ,$21 ,$22
,$23 ,$24 ,$25 ,$26 ,$27 ,$28 ,$29 ,$30)),

TO EDGE conn_coupled_D values($0,$1) //The edge

coupling power and transportation network

using Separator=",", Header="true";

load "./input/Link_transportation.csv"

TO EDGE link_trans values($0,$1,_,$2,$3,$4)
using Separator=",", Header="true";

load "./input/Node_traffic.csv"

TO VERTEX node_traffic values($"PEV_id",$0,$1,$2,
$3,$4,$5,$6,$7,$8,$9,$10 ,$11 ,$12)

using Separator=",", Header="true";

load "./input/sample.csv"

TO VERTEX sample_sol values($"sample_id",$0)
using Separator=",", Header="true";

load "./input/Lineconfig123bus.csv"

TO VERTEX lineconfig_D VALUES($"config_id",$0,$1,
$2, $3, $4, $5, $6, $7, $8, $9,$10 ,$11 ,$12 ,$13 ,
$14 ,$15 ,$16 ,$17 ,$18 ,$19 ,$20 ,$21 ,$22 ,$23 ,$24 ,$25
,$26 ,$27 ,$28 ,$29 ,$30 ,$31 ,$32 ,$33 ,$34)

using Separator=",", Header="true";

load "./input/Branch123bus_IES.csv"

TO EDGE backe_D values($1,$0,_,$2,$3,$4,$5,$6,$7,
$8,$9,$10 ,$11 ,$12 ,$13 ,$14 ,$15 ,$16 ,$17 ,$18 ,$19 ,
$20 ,$21 ,$22 ,$23 ,$24 ,$25 ,$26 ,$27 ,$28 ,$29 ,$30 ,$31
,$32 ,$33 ,$34 ,$35 ,$36 ,$37 ,$38 ,$39 ,$40 ,$41 ,$42 ,
$43 ,$44 ,$45 ,$46 ,_,_,_,_,_,_),

TO EDGE foree_D values($0,$1,_,$2,$3,$4,$5,$6,$7,
$8,$9,$10 ,$11 ,$12 ,$13 ,$14 ,$15 ,$16 ,$17 ,$18 ,$19 ,
$20 ,$21 ,$22 ,$23 ,$24 ,$25 ,$26 ,$27 ,$28 ,$29 ,$30 ,$31
,$32 ,$33 ,$34 ,$35 ,$36 ,$37 ,$38 ,$39 ,$40 ,$41 ,$42 ,
$43 ,$44 ,$45 ,$46 ,_,_,_,_,_,_),

TO EDGE switchlinkF_D values($47 ,$48 ,$49),

112



TO EDGE switchlinkT_D values($50 ,$51 ,$52)
using Separator=",", Header="true";

load "./input/Node_transportation.csv"

TO EDGE conn_coupled_D values($0,$1)
using Separator=",", Header="true";

load "./input/transformer.csv"

TO EDGE transformer_D values($0,$1,$2,$3,$4,$5,$6
,$7,$8,$9,$10 ,$11 ,$12 ,$13 ,$14 ,$15 ,$16 ,$17)

using Separator=",", Header="true";

load "./input/renewable.csv"

TO EDGE XF_res_D values($0,$1,$2,$3,$4,$5,$6,$7,
$8,$9,$10 ,$11 ,$12 ,$13 ,$14 ,$15 ,$16 ,$17)

using Separator=",", Header="true";

load "./input/nodeCEO.csv"

TO VERTEX DG VALUES($"DGID",$"DGID",_),
TO VERTEX prob VALUES($"probID",$"probID",_,

_),

TO VERTEX planSample VALUES($"sampleID",$"sampleID
",_),

TO VERTEX plan VALUES($"planID",$"planID",_,
_,_,_,_),

TO EDGE getProb VALUES($"probCopy",$"sampleID
")

using Separator=",", Header="true";

}

clear graph store -HARD

RUN LOADING JOB load_powerflow_D

// The following query implements Cross -Entropy algorithm

in graph -computing platform to solve for integrated FCS

location planning problem in Chapter 3

CREATE QUERY Flow_capture(int NumSample , double alpha ,

double ratio) FOR GRAPH powerflow_graph

{
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TYPEDEF tuple <double cost , double h1 , double h2, double

h3 , double h4, double h5, double h6, double h7, double

h8 , double h9, double h10 , double h11 , double h12 ,

double h13 , double h14 , double h15 , double h16 , double

h17 , double h18 , double h19 , double h20 , double h21 ,

double h22 , double h23 , double h24 , double h25 > costtup

;

// Initialization

ListAccum <costtup > @@strategy;

SumAccum <double > @@cost_single;

ListAccum <int > @List;

SumAccum <double > @cost;

SumAccum <double > @@Best;

SumAccum <double > @@Mean;

SumAccum <double > @@Diff;

MaxAccum <float > @@Max_diff;

ArrayAccum <SumAccum <double >> @@prob [25];

ArrayAccum <SumAccum <double >> @@prob_last [25];

@@cost_single = 0;

@@Max_diff = 10000;

// @@prob is the evolving solution vector

FOREACH k IN RANGE [0 ,24] DO

@@prob[k] += 0.5;

END;

FOREACH k IN RANGE [0 ,24] DO

@@prob_last[k] = @@prob[k];

END;

//clear

@@strategy.clear ();

T0 = {node_traffic .*};

T1 = {node_trans .*};

T2 = {sample_sol .*};

// starting Cross -Entropy Optimization Algorithm

while @@Max_diff >= 0.05 limit 10 do

print @@Best;
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print @@prob TO_CSV "/home/tigergraph/output/

solution.csv";

foreach j in range [0 ,24] do

@@prob[j] = alpha * @@prob[j] + (1-alpha)

* @@prob_last[j];

end;

CallSet = select s from T2:s

Post -Accum

s.@List = [0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0],

foreach i in range [0 ,24] do

s.@List.update(i,get_random(@@prob[i]))

end ,

//parse s.@List into a string binary_str

string binary_str = "",

foreach i in range [0 ,24] do

binary_str = binary_str + "\"" + to_string(i+1) +

"\"" + ":" + to_string(s.@List.get(i)) + ","

end ,

binary_str = "{" + trim(TRAILING "," FROM binary_str

) + "}",

//pass the string binary_str into get_cost () query

to return the sample cost

s.@cost = get_cost(binary_str),

@@strategy += costtup(s.@cost , s.@List.get(0), s.

@List.get (1), s.@List.get (2), s.@List.get (3), s.

@List.get (4), s.@List.get (5), s.@List.get (6), s.

@List.get (7), s.@List.get (8), s.@List.get (9), s.

@List.get (10), s.@List.get (11), s.@List.get (12),

s.@List.get (13), s.@List.get (14), s.@List.get (15)

, s.@List.get (16), s.@List.get (17), s.@List.get

(18), s.@List.get (19), s.@List.get (20), s.@List.

get (21), s.@List.get (22), s.@List.get (23), s.

@List.get (24));

foreach m in range [0 ,24] do

@@prob_last[m] = @@prob[m];

end;

@@Best = update_strategy(@@strategy , @@prob ,

NumSample , ratio);
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@@Max_diff = 0;

foreach x in range [0 ,24] do

@@Max_diff += abs(abs(@@prob_last[x]) -

abs(@@prob[x]));

end;

@@Mean = get_cost_mean(@@strategy , NumSample ,

ratio);

@@Diff = abs(abs(@@Mean) - abs(@@Best));

print @@Max_diff;

end;

}

INSTALL QUERY Flow_capture

// Graph schema of the provincial transmission system in

Sichuan , China , as the case study in Chapter 4

// Transmission System Graph

create vertex Gnode (primary_id cid string , exId uint ,

flag uint , Pg double , Qg double , Vm double , Vr double ,

Vs double , qUp double , qLower double , Pld double , Qld

double , V1 double , G double , B double , EV_conn int ,

EV_P double , Ratio_PL double , Ratio_QL double , Ratio_PG

double , Ratio_QG double , base_kV double , ifisland int ,

bus_name string) with stats="OUTDEGREE_BY_EDGETYPE"

// Add EV_conn to set up EV connection with Gnode , add

EV_P to attach EV (load) profile to Gnode

create directed edge connected (from Gnode , to Gnode , G

double , B double , hB double , K double , Kcount int , BIJ

double , flag int , P_TLPF double , Q_TLPF double , CAP

double , reverse int , I_lim double , status int)

// Transportation graph

CREATE VERTEX EV(primary_id vId string , exId string , flag

int , EV_P double) WITH STATS="OUTDEGREE_BY_EDGETYPE"
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CREATE DIRECTED EDGE EV2BUS(from EV, to Gnode , busname

string , selection int) with reverse_edge="

reverse_link_trans"

create graph cascading_graph(Gnode , connected , EV, EV2BUS)

EXPORT SCHEMA cascading_graph

// Loading grid data into the defined graph schema:

DROP JOB load_cascading

CREATE LOADING JOB load_cascading FOR graph

cascading_graph

{

// loading job for transmission system

load "$sys.data_root/sc_20180824_10500nodeinfo.csv"
to vertex Gnode values($"bus_id",$0, $"type", $"

generation_p", $"generation_Q", $"voltage", $"voltage",
$"angle", $"MAX_Q", $"Min_Q", $"load_P", $"load_Q", $"

angle", $"G", $"B", $"EV_conn", _, $"ratio_PL", $"
ratio_QL", $"ratio_PG", $"ratio_QG", $"base_kV", $"
ifisland", $"bus_name")

using Separator=",", Header="true";

// loading job for PEV profile

// switch between different number of total PEVs

load "$sys.data_root/Vertex_EV.csv"
TO VERTEX EV values($"PEV_id",$0,$1,$2)
using Separator=",", Header="true";

load "$sys.data_root/sc_20180824_10500edgeinfo.csv"
to edge connected values($0, $1,reduce(add(_getG($"R", $"X

"))),reduce(add(_getB($"R", $"X"))), reduce(add($"B")),
reduce(add($"transformer_final_turns_ratio")), reduce(

add (1)), reduce(add(divide($"X"))),$"type", _, _,

reduce(add($29)), 1, reduce(add($"limit")), $"status"),
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to edge connected values($1, $0,reduce(add(_getG($"R", $"X
"))),reduce(add(_getB($"R", $"X"))), reduce(add($"B")),
reduce(add(_minus($"transformer_final_turns_ratio"))),
reduce(add(1)), reduce(add(divide($"X"))),$"type", _,

_, reduce(add($29)), -1, reduce(add($"limit")), $"
status")

using Separator=",", Header="true";

// loading job for PEV -BUS connection

// switch between different number of total PEVs

load "$sys.data_root/Edge_EV2BUS.csv"
TO EDGE EV2BUS values($0,$1,$2, _)

using Separator=",", Header="true";

}

clear graph store -HARD

RUN LOADING JOB load_cascading

// The following queries are performing necessary graph

operations for the Graph -computing based Cascading

Failure Evolution (G-CFE) model

drop query EV_assign

drop query cfe_model

drop query island_detect

create query EV_assign (vertex s, int MC) for graph

cascading_graph

{

SumAccum <double > @EV_P;

T0 = {s};

T0 = select v from T0:v - (:e) - Gnode:t

where t.EV_conn == MC

accum

e.selection = 1;

}

install query EV_assign

// Define G-CFE query
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create query cfe_model(int i,int j) FOR GRAPH

cascading_graph returns (SumAccum <int >)

{

typedef tuple <double p_flow , double capacity >

triplineflowtup;

ListAccum <triplineflowtup > @@TripLineFlow;

ListAccum <string > @@Trippedline;

SumAccum <int > @@Status = 0;

MapAccum <int ,int > @reverseMap;

@@TripLineFlow.clear ();

T0 = {Gnode .*};

// Set the status of overloading line to be 0 (trip it!)

and record the name of tripped line

TripSet = select s from T0:s - (connected:e)-> Gnode:t

where ((e.status == 1 and abs(e.CAP) != 0 and e.K == 0

and abs(e.P_TLPF) > e.CAP and s.base_kV <= 220 and t

.base_kV >= 10) or (e.status == 1 and abs(e.CAP) !=

0 and e.K != 0 and abs(e.P_TLPF) > e.CAP))

accum

e.status = 0,

s.@reverseMap += (t.exId -> 1),

@@Trippedline += s.bus_name + "-" + t.bus_name + ", ",

@@TripLineFlow += triplineflowtup(e.P_TLPF , e.CAP),

@@Status += 1;

reverseSet = select s from T0:s - (connected:e) -> Gnode

:t

where (e.status == 1)

accum

IF (t.@reverseMap.containsKey(s.exId) == true and

s.@reverseMap.containsKey(t.exId) == false)

THEN

e.status = 0,

@@Status += 1,

@@Trippedline += s.bus_name + "-" + t.

bus_name + ", ",

@@TripLineFlow += triplineflowtup(e.P_TLPF

, e.CAP)

END;
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print "Tripped_Line" + "," + "Line_Flow" + "," + "

Line_Capacity" + "," + "MC:" + TO_STRING(i) + "

," + "Time:" + TO_STRING(j+1) TO_CSV "/home/

tigergraph/cascading_failure_PEV/output/

tripped_line.csv";

print @@Trippedline TO_CSV "/home/tigergraph/

cascading_failure_PEV/output/tripped_line.csv";

print @@TripLineFlow TO_CSV "/home/tigergraph/

cascading_failure_PEV/output/tripped_line.csv";

return @@Status /2;

}

install query cfe_model

// Define island detection query

create query island_detect () FOR GRAPH cascading_graph

returns (SumAccum <int >)

{

SumAccum <int > @visited = 0;

SumAccum <int > @island = 0;

SumAccum <int > @@NumofNodes = 0;

SumAccum <int > @@Counter = -1;

SumAccum <int > @@islandcounter = 0;

SumAccum <double > @@Net;

SumAccum <double > @@SumPg;

SumAccum <double > @@SumPld;

T0 = {Gnode .*};

// Islanding detection

SlackSet = select s from T0:s

where (s.flag == 3)

post -accum

s.@visited = 1,

@@NumofNodes += 1,

@@SumPg += s.Pg,

@@SumPld += s.Pld;

while (@@Counter != 0) do

@@Counter = 0;

SlackSet = select t from SlackSet:s - (connected:e

)-> Gnode:t

where (e.status == 1 and t.@visited == 0)

post -accum
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t.@visited = 1,

@@Counter += 1,

@@NumofNodes += 1,

t.@island = 1,

t.ifisland = 1,

@@SumPg += t.Pg,

@@SumPld += t.Pld;

end;

//The following block is to calculate the net power of

all island nodes

IF (@@NumofNodes != T0.size()) THEN

islandSet = select s from T0:s

where (s.@visited == 0)

post -accum

@@Net += s.Pg - s.Pld ,

@@SumPg += s.Pg,

@@SumPld += s.Pld;

//The following block is to conduct load shedding or

generation curtail

IF (@@Net >= 0 ) THEN

sheddingSet = select s from T0:s

where (s.@visited == 1)

post -accum

s.Pld = s.Pld * (1 - @@Net/@@SumPld);

ELSE IF (@@Net < 0) THEN

sheddingSet = select s from T0:s

where (s.@visited == 1)

post -accum

s.Pg = s.Pg * (1 + @@Net/@@SumPg);

END;

END;

return @@NumofNodes;

}

install query island_detect
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Vazquez. Optimal operation of aggregated electric vehicle charging stations
coupled with energy storage. IET Generation, Transmission & Distribution,
12(5):1127–1136, 2017.

[42] Jun Tan and Lingfeng Wang. Coordinated optimization of PHEVs for frequency
regulation capacity bids using hierarchical game. In 2015 IEEE Power & Energy
Society General Meeting, pages 1–5. IEEE, Jul 2015.

[43] Chioke B. Harris and Michael E. Webber. The impact of vehicle charging loads
on frequency regulation procurements in ERCOT. In ISGT 2014, pages 1–5.
IEEE, Feb 2014.

[44] Visvakumar Aravinthan and Ward Jewell. Controlled electric vehicle charging
for mitigating impacts on distribution assets. IEEE Transactions on Smart
Grid, 6(2):999–1009, 2015.

[45] Vijaykumar Prajapati et al. Congestion management of power system with
uncertain renewable resources and plug in electrical vehicle. IET Generation,
Transmission & Distribution, 2019.

[46] Yin Yao, David Wenzhong Gao, and James Momoh. Dual-optimisation of
power sources including plug-in electric vehicles and renewable energy resources

125



at transmission-level system. The Journal of Engineering, 2019(5):3448–3454,
2019.

[47] Xuan Wu, Antonio J Conejo, and Nima Amjady. Robust security constrained
acopf via conic programming: Identifying the worst contingencies. IEEE Trans-
actions on Power Systems, 33(6):5884–5891, 2018.

[48] Saeed Naghdizadegan Jahromi, Alireza Askarzadeh, and Amir Abdollahi. Mod-
elling probabilistic transmission expansion planning in the presence of plug-in
electric vehicles uncertainty by multi-state Markov model. IET Gen., Trans. &
Dist., 11(7):1716–1725, May 2017.

[49] Yunfei Mu, Jianzhong Wu, Nick Jenkins, Hongjie Jia, and Chengshan Wang. A
Spatial–temporal Model for Grid Impact Analysis of Plug-in Electric Vehicles.
Applied Energy, 114:456–465, 2014.

[50] Francis Mwasilu, Jackson John Justo, Eun-Kyung Kim, Ton Duc Do, and Jin-
Woo Jung. Electric vehicles and smart grid interaction: A review on vehicle
to grid and renewable energy sources integration. Renewable and sustainable
energy reviews, 34:501–516, 2014.

[51] Qiuming Gong, Shawn Midlam-Mohler, Vincenzo Marano, and Giorgio Rizzoni.
Study of PEV Charging on Residential Distribution Transformer Life. IEEE
Transactions on Smart Grid, 3(1):404–412, 2012.

[52] Murat Yilmaz and Philip T Krein. Review of the Impact of Vehicle-to-grid
Technologies on Distribution Systems and Utility Interfaces. IEEE Transactions
on Power Electronics, 28(12):5673–5689, 2013.

[53] Luis Pieltain Fernandez, Tomas Gomez San Roman, Rafael Cossent, Carlos Ma-
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[82] Petar Kokotović, Hassan K Khalil, and John O’reilly. Singular perturbation
methods in control: analysis and design. SIAM, 1999.

[83] Hassan K Khalil. Noninear systems. Prentice-Hall, New Jersey, 2(5):5–1, 1996.

[84] CH Dharmakeerthi and N Mithulananthan. PEV load and its impact on static
voltage stability. In Plug In Electric Vehicles in Smart Grids, pages 221–248.
Springer, 2015.

[85] Silva Hiti. Modeling and control of three-phase PWM converters. PhD thesis,
1995.

[86] Damon Bazargan, Shaahin Filizadeh, and Ani M Gole. Stability analysis of
converter-connected battery energy storage systems in the grid. IEEE Trans-
actions on Sustainable Energy, 5(4):1204–1212, 2014.

[87] Ulas Eminoglu and M Hakan Hocaoglu. A new power flow method for radial
distribution systems including voltage dependent load models. Electric power
systems research, 76(1):106–114, 2005.

[88] Luis Herrera, Wei Zhang, and Jin Wang. Stability analysis and controller design
of dc microgrids with constant power loads. IEEE Transactions on Smart Grid,
2015.

[89] Hsiao-Dong Chiang, Felix F Wu, and Pravin P Varaiya. A bcu method for
direct analysis of power system transient stability. IEEE Transactions on Power
Systems, 9(3):1194–1208, 1994.

[90] David Howell, Steven Boyd, Brian Cunningham, Samm Gillard, Lee Slezak,
Shabbir Ahmed, Ira Bloom, Andrew Burnham, Keith Hardy, Andrew N Jansen,
et al. Enabling fast charging: A technology gap assessment. Technical report,
2017.

[91] Zhipeng Liu, Fushuan Wen, and Gerard Ledwich. Optimal planning of electric-
vehicle charging stations in distribution systems. IEEE Transactions on Power
Delivery, 28(1):102–110, 2012.

[92] Hongcai Zhang, Zechun Hu, Zhiwei Xu, and Yonghua Song. An integrated
planning framework for different types of pev charging facilities in urban area.
IEEE Transactions on Smart Grid, 7(5):2273–2284, 2015.

[93] Lizi Luo, Wei Gu, Suyang Zhou, He Huang, Song Gao, Jun Han, Zhi Wu, and
Xiaobo Dou. Optimal planning of electric vehicle charging stations comprising
multi-types of charging facilities. Applied energy, 226:1087–1099, 2018.

129



[94] Soodeh Negarestani, Mahmud Fotuhi-Firuzabad, Mohammad Rastegar, and
Abbas Rajabi-Ghahnavieh. Optimal sizing of storage system in a fast charging
station for plug-in hybrid electric vehicles. IEEE transactions on transportation
electrification, 2(4):443–453, 2016.

[95] Daijiafan Mao, Hussam J Khasawneh, Mahesh S Illindala, Benjamin L
Schenkman, and Daniel R Borneo. Economic evaluation of energy storage op-
tions in a microgrid with flexible distribution of energy and storage resources.
In 2015 IEEE/IAS 51st Industrial & Commercial Power Systems Technical
Conference (I&CPS), pages 1–7. IEEE, 2015.

[96] Tianyang Zhang, Xi Chen, Zhe Yu, Xiaoyan Zhu, and Di Shi. A monte carlo
simulation approach to evaluate service capacities of ev charging and battery
swapping stations. IEEE Transactions on Industrial Informatics, 14(9):3914–
3923, 2018.

[97] Giambattista Gruosso, Giancarlo Storti Gajani, Zheng Zhang, Luca Daniel, and
Paolo Maffezzoni. Uncertainty-aware computational tools for power distribution
networks including electrical vehicle charging and load profiles. IEEE Access,
7:9357–9367, 2019.

[98] Zohreh Fotouhi, Massoud Reza Hashemi, Hamed Narimani, and Islam Safak
Bayram. A general model for ev drivers’ charging behavior. IEEE Transactions
on Vehicular Technology, 68(8):7368–7382, 2019.

[99] Ahmed Abdalrahman and Weihua Zhuang. Pev charging infrastructure siting
based on spatial-temporal traffic flow distribution. IEEE Transactions on Smart
Grid, 2019.
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