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Abstract

Over the last decade, technologies derived from convolutional neural networks (CNNs)

called Deep Learning applications, have revolutionized fields as diverse as cancer detec-

tion, self-driving cars, virtual assistants, etc. On the other hand, organizations have be-

come heavily reliant on providing near-instantaneous insights to the end-user based on vast

amounts of data collected from various sources in real-time. The most common method of

increasing the processing capability of these applications is to execute them in a distributed

manner over in large clusters. However, users of such applications are typically not experts

in the nuances of distributed systems and find the already challenging task of scaling these

applications quite difficult. Consequently, there is limited knowledge among the commu-

nity to run such applications in an optimized manner. The performance question for these

software stacks has typically been addressed by employing bespoke hardware better suited

for such compute-intensive operations. However, such a degree of performance is only ac-

cessibly at increasingly high financial costs leaving only big corporations and government

with resources sufficient enough to employ them at a large scale. For such users to make

effective use of resources at their disposal, concerted efforts are necessary to figure out

optimal hardware and software configurations. This study is one such step in this direc-

tion as we use the Roofline model to perform a systematic analysis of representative Deep

Learning models and identify opportunities for black-box/application-aware optimizations.

We also use the Roofline model to guide the architectural enhancements needed to design
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accelerated Message Brokers, called Frieda, necessary for optimized stream processing

pipelines. Using the findings from our study, we are able to obtain up to 3.5X speedup

compared to vanilla TensorFlow with default configurations. Moreover, compared with

Kafka, Frieda exhibits a reduction of up to 98% in 99.9th percentile latency for micro-

benchmarks and up to 31% for full-fledged stream processing pipeline constructed using

Yahoo! Streaming Benchmark.
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This is dedicated to the people who wait; good things are on their way.
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Chapter 1: Introduction

With the convergence of High-Performance Computing (HPC), Big Data, and Artificial

Intelligence (AI), researchers and developers have started paying more attention to accel-

erating the performance of AI models, applications, and frameworks. Under the umbrella

of AI, Deep Learning (DL) has been gaining more momentum as a new promising tech-

nology to solve many challenging problems facing society, such as cancer detection [18],

self-driving cars [22], natural language processing [61], and so on. Deep Learning frame-

works and applications have been heavily leveraging HPC technologies to improve their

performance and scalability.

Taking TensorFlow [6] as an example, a lot of optimized designs have been proposed

in the community to improve its performance with different approaches. From the net-

work perspective, InfiniBand [4], RoCE [3], High Speed Ethernet, etc. are used to improve

the tensor communication performance in TensorFlow with high-performance communi-

cation libraries, such as gRPC [1], RDMA-gRPC [8], MPI [44] etc. From the computation

perspective, TensorFlow-based Deep Learning workloads have been taking advantage of

many advanced computing capabilities available on CPUs, GPUs, TPUs [29], and so on.

For CPU-based platforms, Intel TensorFlow [2] can accelerate Deep Learning workloads

with the latest AVX512 technology on x86 CPUs. For GPU-based platforms, cuDNN [10]
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and NCCL [5] have become the standard building blocks for high-performance and scalable

Deep Learning training on GPU devices.

In the same vein, more so than ever is there a need to process, analyze and generate in-

sights from data in real-time i.e. before it gets obsolete. Businesses are focusing more and

more to set up infrastructures that would help them gain valuable insights about their cus-

tomers in real-time so that they can satisfy the changing customer needs as soon as possible

and thus gain a competitive advantage over their rivals. Common examples of businesses

that are heavily dependent on analyzing data in real-time include online advertisements,

stock markets, etc.

To process data in real-time, a stream processing pipeline needs to be constructed.

There are multiple ways to construct such a pipeline. However, in its most basic form,

it is formed by stream source(s) initially writing data to an intermediate queue. A Stream

Processing Engine (SPE) then consumes data from this queue to perform actual compu-

tations on it. To an uninformed observer, the purpose of the messaging queue, called the

Message Broker (MB), might be unclear. The existence of a message broker in the pipeline

is necessitated by the inherently ephemeral nature of the data stream. Unlike in Batch

Processing, the input data in a real-time data processing system does not come from a per-

sistent source. Instead, these streams of data come in real-time from a myriad of external

sources, on which the pipeline has no control. And for this reason, in the event of a fault

in the pipeline, it becomes impractical to replay the data from the stream source. More-

over, a stream source can have multiple consumers. The MB, in this case, provides an

interface where multiple consumers can consume data coming from the same source with-

out requiring different connections to the same stream source. Therefore, any production
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scale streaming pipeline is bound to have some variant of message brokers facilitating the

communication between stream producers and consumers.

The most practical technique to scale these applications to process large amounts of

data has been to execute them in a distributed manner over a cluster of interconnected

processing units. However, the task of getting the optimal performance out of such a dis-

tributed hardware and software configuration is non-trivial and is made more complicated

by the unique communication and computation profile of each individual application; a set

of configurations that bring the best out of one set of application may be sub-optimal for

another. As many of the end-users of these applications are not distributed systems expert,

the hardware resources available to them often go unutilized as the users, in many cases,

do not possess the skills to dig deep and identify the performance bottlenecks their applica-

tion is facing and, if possible, remove them. Therefore, to be able to get the best whatever

hardware resources are available to the end-user, extensive studies need to be performed to

figure out the tools, methodologies, and heuristics that allow the user to do so.

1.1 Motivation

Even though there exists significant literature addressing performance enhancements

for Deep Learning and Stream Processing workloads, we find that there is a lack of per-

formance models to systematically guide optimizations for them. Coming up with a useful

and insightful performance model is not a trivial task. This is because these workloads

typically have very complex and deep software and hardware stacks [42], which can not

be easily abstracted as a simple and meaningful model. Due to the lack of useful perfor-

mance models for these applications, researchers and developers typically use ad-hoc or

experiential approaches to optimize the performance of their workloads, which may not be
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efficient. These approaches also can not exactly identify where the bottlenecks lie and how

much more improvement can be expected with possible further optimizations.

To shed light on how to solve these challenges facing such users, we propose a simple

and effective approach to systematically analyze and optimize the performance of Deep

Learning and Stream Processing workloads with the Roofline model [60]. The Roofline

model is a very useful and insightful visual performance model for multi-core architectures.

To this end, this paper performs comprehensive profiling and analysis of Deep Learning

and Stream Processing workloads run on various hardware configurations.

From the DL perspective, we make use of the Roofline model to identify bottlenecks in

a step-by-step manner and resolve them accordingly.

The optimizations obtained in our study broadly focus on two major directions of im-

proving the computational efficiency at minimal levels of concurrency and communica-

tional efficiency at high levels of concurrency. We find that a visual tool that helps identify

particular avenues of improvement along these directions will be very useful for the com-

munity.

Our studies demonstrate that such a performance analysis approach for Deep Learning

workloads with the Roofline model is efficient for achieving near-peak performance on

target platforms. In a nutshell, this study makes the following key contributions:

• Present detailed profiling and analysis of CPU-based distributed training of Deep

Neural Networks (DNNs);

• Provide guidelines to show how a performance model, such as the Roofline model,

may be used to optimize the execution of DNN workloads;
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• Suggest optimal values for some key parameters which may be used by non-expert

users to get high performance for CPU-based Deep Learning.

Using this approach to optimize distributed training of DNNs, we are able to obtain

up to 3.5X performance improvement over vanilla TensorFlow using the default configura-

tions.

On the Stream Processing end, we first used the Roofline model to identify the key

areas which become a bottleneck in the stream processing pipeline and then use it to guide

the architectural optimizations required to design a high-performance MB, called Frieda,

which is necessary for an accelerated stream processing pipeline. Frieda provides Remote

Direct Memory Address (RDMA) [55]-based communication support along with advanced

designs specifically aimed towards curtailing tail latencies. Frieda not only reduces the

end-to-end latency of the streaming pipeline but also increases the total throughput that it

can support.

In a nutshell, from the perspective of Stream Processing, this paper makes the following

key contributions:

• Analysis of design bottlenecks in Kafka which contribute to higher tail latencies.

• Mathematical model explaining the reasons for tail latency in practical systems.

• Design and implementation of Frieda, a high-performance message broker which

resolves these bottlenecks.

• Extensive experimental evaluation based on message broker based micro-benchmarks

as well as end-to-end streaming applications.
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We run our experiments in both single broker as well as multi-broker cluster environ-

ments. We observe an improvement in latency of up to 98% for Kafka Producer micro-

benchmarks and up to 32% for Yahoo! Streaming application benchmark.

1.2 Organization of this Thesis

The rest of this thesis is organized as follows.

Chapter 2 introduces the topics and concepts relevant to this thesis.

Chapter 3 contains a comprehensive performance analysis of Distributed TensorFlow

and discusses the optimizations derived from it.

Chapter 4 describes the details of the implementation of Frieda, and the insights ob-

tained from the Roofline analysis of Kafka that guided its architecture.

Chapter 5 summarizes the results of the thesis and gives pointers to future research that

can be based on this work.
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Chapter 2: Background

2.1 Tensorflow

Tensorflow [6] is a Machine Learning framework developed at Google which provides

an implementation of various functions and modules commonly used in Machine Learning

algorithms. It also provides the functionality to make use of various resources available

within a system, such as multi-core processors, GPUs, etc, to accelerate the performance

of the applications developed using it. Distributed TensorFlow allows users to scale appli-

cations along both inter-node and intra-node directions. Note that in this paper we adapt

the data-parallelism [35] approach to partition and scale our algorithms. In this approach,

multiple replicas of the same model are launched on the processing units available while

the training data is partitioned equally across these replicas. Subsequently, different mech-

anisms, such as the ones described below, are used to aggregate the results of these replicas

to obtain a global state. A contrasting approach is the model-parallelism [14] where in-

stead of data, the layers of the machine learning model itself are partitioned across various

processing units while the same data is fed to each unit. Moreover, the modular imple-

mentation of TensorFlow enables many different communication paradigms and gradient

update models to be used underneath the algorithm layer. This study focuses on the two

such widely used paradigms which are described in detail below.
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2.1.1 Parameter Server

The Parameter Server model [36] is an approach used to perform distributed Machine

Learning at scale. It includes the abstractions of the parameter server (PS) processes and

worker processes. Workers execute replicas of the actual Machine Learning algorithm

while the PS stores global parameters required by each replica. The process of transmission

of gradients to the PS and subsequent aggregation can be performed in synchronous as well

as asynchronous manner. A recent study [9] has shown that synchronous weight updates

with replication for stragglers result in faster convergence and better accuracy compared to

the asynchronous approach, therefore we use the synchronous approach in our experiments

as well.

Parameter	Server
Worker	1 Worker	NWorker	2

Barrier

∆g1 ∆g2 ∆gN

∆G

Aggregation

∆G=f(∆g1, ∆g2, ∆g3)

Figure 2.1: Parameter Server (PS) model with synchronous gradient updates: One or more
PSs distribute work (through broadcast) and aggregate results (through reduction).
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Figure 2.1 describes how the parameter server model works with synchronous updates.

Each of the workers involved compute their own local gradients. After a certain number

of iterations, the participating worker replicas share their local gradient vectors with the

parameter server and wait at a barrier. The parameter server then aggregates all the re-

ceived gradients to obtain a global view of the model, which is then broadcasted to all the

workers, which can then begin the next set of iterations. For greater scalability, the ratio

of parameter servers to workers can be increased. However, figuring out the optimal ra-

tio is non-trivial and having excessive servers may saturate the network. Moreover, using

the parameter server approach to scale a sequential implementation of a Deep Learning

model requires significant changes in order to configure the distribution of resources and

the communication pattern between them in an optimal manner.

2.1.2 Horovod

Horovod [52] is a runtime developed for decentralized distributed Machine Learning

by Uber. Instead of using separate parameter servers to store the global parameters, each

worker in a Horovod cluster keeps a copy of all the parameters. In the synchronization

phase, each worker takes part in a bandwidth optimal ring-based allreduce [48] aggrega-

tion. The ring-based allreduce algorithm is implemented using NVIDIA Collective Com-

munication Library (NCCL2) [5] for GPUs and MPI on CPUs. Compared to the parameter

server approach, using Horovod to distribute sequential machine learning code requires

minimal changes.

Figure 2.2 shows how the ring-allreduce algorithm is used for synchronizing gradients

in Horovod operates. Each node sends 2 × (N-1) messages to each of its two neighbors.

First N-1 messages received are added to the receiving node’s buffer whereas the second
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Worker	A

Worker	B Worker	C

Worker	A

Worker	B Worker	C

Worker	A

Worker	B Worker	C
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Figure 2.2: Ring-allreduce, which optimizes for bandwidth and memory usage over latency.

round of N-1 messages replaces the values held in the receiving node’s buffer. After 2 ×

(N-1) iterations, each worker has a globally synchronized view of all the parameters.

2.2 Roofline Model and Roofline Trajectories

The Roofline model [60] is a performance analysis technique which makes use of mem-

ory access profiles and compute operations to identify if the application is memory bound

or compute-bound. Traditionally, Floating Point Operations Per Second (FLOPS) have

been used to quantify the compute operations performed but recently many studies have

come up with bespoke, platform-specific units as well. For example, [59] introduces a

data-centric variant of the Roofline model which better captures the behavior of typical ap-

plications running on commodity clusters by including not only floating point but all other

integer-based operations as well. However, FLOPS is suitable for many HPC and Machine

Learning applications as they are known to be fairly floating-point operations intensive.
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Roofline trajectories [24] is an extension to the original Roofline model where indi-

vidual points pertaining to Roofline profile at different concurrency levels are connected

to generate a scaling trajectory. It is highly suited for our study considering the focus on

scalability and concurrency which is why we use for our analysis.
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Figure 2.3: Roofline Trajectories characterize the application using operational intensity
and machine computational bounds. The connected points form a line showing the general
trend with which application responds with regards to varying concurrency.

Figure 2.3 shows a typical Roofline Trajectories plot. The x-axis represents Operational

Intensity (OI) 1 which is a unit for measuring the floating-point operations performed per

byte of memory accessed. The vertical axis represents the computational performance

obtained in GFLOPS. The sloped line starting from the origin represents the range of Op-

erational Intensity for which the performance of the application will be bound by memory

bandwidth. The point at which it terminates is called the ridge point, which is the point

1OI = NUM FLOP/MEM ACC, where NUM FLOP means the number of floating-point opera-
tions performed and MEM ACC means the bytes of memory accessed.

11



beyond which all Operational Intensities represent the compute-bound region. The red

horizontal line denotes the peak floating-point performance of the hardware the experi-

ments are executed on. The individual points on the graph represent various applications

and the region that they lie in based on their OIs and operations executed, which in our case

are obtained by reading performance counters using tools such as perf [13]. The connected

points form a line showing the general trend with which each application responds with

regards to varying concurrency.

2.3 Kafka and its relation to Stream Processing

Apache Kafka is a distributed commit log designed using the publish-subscribe archi-

tecture. The bulk of the heavy lifting in a Kafka cluster is done by brokers. These are

the central components of a Kafka cluster and have the responsibility of receiver messages

from any number of producers, commit them to disk and replicate them in the cluster if

configured to do so. They also allow consumers to consume messages from any position in

the commit log. The main data abstraction in Kafka comes from the concept of a topic. A

topic corresponds to an independent log corresponding to a usually logically related data.

A topic in Kafka can have any number of partitions, which provide the basic level of paral-

lelism for that topic for both writes as well as reads. Producer, at the time of topic creation,

specifies the number of partitions as well as a replication factor for that topic. Each broker

in the Kafka cluster will act as a leader of any number of partitions. The responsibility of

leadership is equally divided among the Broker cluster. The replication factor specifies how

many brokers the messages in a topic should be written to before a message is considered

committed successfully. In the trivial case of the replication factor set to 1, the message is

only committed to the partition leader. However, in the case of a replication factor greater
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than 1, it is written to brokers who are followers of that partition, in addition to the partition

leader, the total number of which aggregates to the replication factor.

Producers in a Kafka pipeline write to one particular topic, however, a consumer can

consume messages from any number of topics. When a producer starts committing records

to a topic, the first message that it sends is assigned the offset 0, and this offset increases

atomically for each subsequent message sent. Brokers store messages for every partition

in the order of increasing offsets. In the trivial case, consumers specify the offset of a

particular partition in a particular topic it wants to consume messages from. It commits

locally the last message offset successfully consumed so that in case of a failure, it can

resume consuming messages from the position it left off. Making the Consumer stateful in

this way allows the Brokers to be freed from this consumer state bookkeeping making the

read and writes to the Kafka broker very cheap in terms of resource consumption.

Kafka relies on a Zookeeper [21] cluster to maintain global state about broker identities,

topics, and their corresponding partition leaders, in-sync replicas, etc. This is done to allow

the broker cluster to be fault-tolerant. In the case of broker failure, it can restart and fetch

the global cluster state and resume its responsibility in the cluster.

Figure 2.4 shows the internal workings of Kafka. Kafka Broker consists of multiple

Processor threads dedicated to handling all requests from a particular client. The Handler

threads perform the actual operations of writing and reading new records, committing off-

sets, etc. Clients have a similar architecture to Brokers with the difference lying in Clients

having a single Producer thread and no Handler threads.

Lastly, partitions of Kafka topics are guaranteed to have messages written to and read

from them in an ordered fashion. This is critical for message processing semantics that

are employed higher up in the stream processing pipeline where a streaming application
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Figure 2.4: Overview of Kafka’s architecture

may require at least once or even exactly-once message processing requirement. Kafka

ensures this by processing requests from a channel in a strictly sequential manner, where

no new requests are processed until the response for the last processed request has been

sent out. This sequential processing of records, although a straightforward mechanism to

ensure responses are sent out in the expected order, contributes significantly to the time

taken to process requests. This is because new requests coming in from the same client

are not processed until the response for the last request received is written to the respective

socket.

The loose coupling of Kafka’s architecture lends itself quite well to a wide variety of

use cases. It can be used as a log aggregator, as a publish-subscribe system allowing a

diverse set of applications to read from and write to it, etc. However, this paper focuses on

Kafka’s role as a Message Broker in a real-time stream processing pipeline. This role and
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the motivation for choosing it have been described in detail in [26] and it also dictates the

parameters we try to optimize in our designs for the enhanced Kafka library detailed in the

succeeding sections.

2.4 InfiniBand & RDMA

InfiniBand is low latency, high bandwidth interconnect popular in HPC clusters. The

InfiniBand Enhanced Data Rate (EDR) channel provides a bandwidth of 100Gbps with

an adapter latency of 0.5ms. Besides providing fast network I/O, InfiniBand also provides

advanced features including hardware offloaded communication and Remote Direct Access

Memory (RDMA) based communication. As the communication in an InfiniBand channel

is offloaded to the HCA, the CPU is freed to perform other operations. The semantics

for performing this offloaded communication is provided by the RDMA protocol whereby

remote processes can write to and write from a host’s buffer without involving the host

in the process. InfiniBand also provides a wrapper the Internet Protocol over InfiniBand

(IPoIB) [12] wrapper protocol to allow applications using socket-based TCP/IP stack to be

communicated over the InifniBand network.

15



Chapter 3: Performance Analysis and Optimization of Distributed

TensorFlow

3.1 Performance Analysis Methodology

Determining the method to be utilized to obtain a set of performance optimizations for

a particular application is a non-trivial task. Such a task is complicated even further in

the case of distributed Machine Learning frameworks because of the sheer quantity of in-

dependent layers of communications and computation involved. Therefore, in this study,

we adopt a step by step approach where insights from one step are used as a guide for

the subsequent so that a comprehensive set of optimizations are obtained covering many

different facets of the system under consideration. The first step in our methodology in-

volves running baseline experiments to determine the performance metrics obtained using

just the out-of-the-box implementation. These experiments are then analyzed to identify

and isolate potential bottlenecks. In the next step, we attempt to remove these bottlenecks

by performing application-agnostic, black box optimizations targeting the framework that

the end-user application is running on. These optimizations do not modify the client ap-

plication, which in our case is the Machine Learning algorithm, but rather optimize the

operations of the framework the application executes on, which is TensorFlow for this

study. Lastly, application-aware optimizations are performed to tune the application itself
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to extract further performance gains based on the optimizations implemented in the preced-

ing step. This method, when applied to distributed Machine Learning using TensorFlow,

and the optimizations derived as such are explained in detail in subsequent sections.

The official TensorFlow repository provides benchmarks2 of various Convolutional

Neural Networks (CNNs) which we use in our study. Of the many networks available, we

select four commonly used and extensively studied models - Alexnet [35], Inception3 [58],

Resnet50 [20], and Vgg16 [54] - which are based on the ImageNet [15] image classifica-

tion dataset. These represent models with varying degree of computation and communica-

tion intensities covering a broad range of implementations of the broad spectrum of Deep

Learning models.

The experiments are carried on Chameleon Cloud [31], an NSF funded cloud testbed.

The hardware specifications of the ‘Skylake’ nodes that are used to carry out all the exper-

iments presented in this study are summarized in Table 4.1.

Resource Specification
CPU Intel(R) Xeon(R) Gold 6126 @ 2.60GHz

Cores × sockets 12 × 2
Memory 192 GB @ 119.21 GiB/s3

Disk 240 GB HDD
NIC Ethernet (10 Gbps)
OS CentOS release 7.5.1804

Table 3.1: Cluster Configuration

The names and versions of different frameworks and compilers used in this study are

summarized in Table 4.2.

2https://github.com/tensorflow/benchmarks
3https://en.wikichip.org/wiki/intel/xeongold/6126
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Software Version
Tensorflow 1.13

Intel-Tensorflow 1.13
Python 2.7.1
MPICH 3.3.1
Horovod 0.16.4

gcc 4.8.5

Table 3.2: Software Configuration

Even though the focus of this study has been on homogeneous, CPU-based clusters, the

approach described in this study can easily be extended to heterogeneous GPU or hybrid

CPU/GPU clusters. Tools such as nvprof 4 and NVIDIA Nsight 5 kernel profile utility can

be used to extract the relevant performance counters on NVIDIA GPU-based systems, as

has been described in other similar works [33, 23]. As a guideline, the following steps may

be performed to achieve the task for a given architecture:

1. Launch the relevant performance counter retrieval tool as a daemon. As mentioned

earlier, on Intel CPU based architectures perf may be used while nvporf may be used

for NVIDIA GPUs.

2. Launch the application that needs to be profiled. In our case, these were DL models

executed on TensorFlow.

3. Once the application terminates, use the counters obtained to calculate the number

of FLOP executed, number of bytes of memory accessed and time taken.

4https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
5https://developer.nvidia.com/tools-overview
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(a) The counters to obtain memory accesses are

CAS COUNT.WR and CAS COUNT.RD on CPUs while dram read transactions

and dram write transactions on NVIDIA GPUs.

(b) An approprite multitplier (64 for Intel Skylake, 32 for NVIDIA Volta) can be

used to convert the conter values to actual memory bytes accessed.

(c)

OI =
FLOP

(Reads + Writes)×Multiplier
(3.1)

4. Use these metrics to construct a Roofline profile to guide optimizations.

3.2 Baseline Experiments

In this section, we analyze the performance characteristics of running distributed Deep

Learning on vanilla Tensorflow using PS and Horovod as the variable update models. We

use a variant of the Roofline model [24], in which we plot scaling trajectories, rather than

points, at full concurrency; the trajectories are helpful in observing the overall trend in

performance attained with respect to changes in the level of concurrency.

3.2.1 Profiling

The experiments described in this section are performed on the real ImageNet data

set. However, some preliminary experiments are performed with synthetic data as well.

We observe that, barring minor experimental variability, the results obtained with real data

are matching the ones obtained using the synthetic data. Moreover, the actual memory

bandwidth achieved on a system is often less than the theoretical peak. To measure the
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maximum achievable memory bandwidth, STREAM6 benchmark was used. All the ex-

periments described in this study are performed with a batch size of 64, unless specified

otherwise.

Parameter Server Model

Setting up a TensorFlow cluster allows for various configurations of PS and worker

processes, described in Section 2.1.1, to run on the resources available. However, the

number of such processes to launch and their mutual ratio is a heuristic that often needs

to be optimized as it can have a significant performance impact. The launched worker

processes per node (PPN) is a parameter we have tuned before we launch our detailed

experiments. We run some preliminary experiments to arrive at an optimal value for PPN.

Figure 3.1: Throughput variations in response to varying PPN. Increasing PPN from 1 to 2
and then 4 yields significant improvements in throughput but for PPN values beyond 4 the
throughput remains fairly stable.

6https://www.cs.virginia.edu/stream/
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Figure 3.1 shows the aggregate throughput obtained with varying numbers of worker

PPN. We observe a sharp increase in aggregate throughput when PPN is increased from

1 to 4, after which it starts to stabilize. Other factors are also needed to be considered

for an optimal PPN value; launching multiple processes per node rapidly increases the job

startup time and the benchmark itself would have issues outputting the correct logs for each

process at higher PPN values. Taking these factors into account, we decide to set worker

PPN to 4 for the experiments described in this section as it can represent a reasonable

balance between desired concurrency and ease of implementation.

Binding processes to cores by setting their affinity is a frequently used optimization

technique for parallel applications. We have tried various configurations of process affini-

ties also taken into account the Non-Uniform Memory Access (NUMA) configuration of

the processing element, on which the experiments are executed. Regardless, the best perfor-

mance is obtained without making the use of processing affinities at all. Instead, allowing

processes and the threads launched by them to freely migrate among cores can deliver the

best performance for TensorFlow-based training. This phenomenon has also been observed

in other Python or Java-based applications [39].

Different levels of concurrency are tested against a varying number of PS to see how

well the distributed training can scale. Figure 3.2 and Figure 3.3 show Roofline plots for

different DNNs executed using varying levels of concurrency, for nodes running PS and

worker, respectively. As described in detail later in Section 4.1.1, unoptimized TensorFlow

does not perform Advanced Vector Extensions (AVX) or Fused Multiply Add (FMA) in-

structions thus the peak attainable floating performance comes out to be: 2 sockets × 12
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cores/socket × 3.7(GHz) clock rate with Turbo boost × 8 Single Precision (SP) FLOPs/-

cycle = 710.4 GFLOPS, which is denoted by the dotted red line “Peak FLOPS 256” in the

graphs.
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Figure 3.2: Roofline plots for PS nodes. Significantly less raw operations are executed
compared to the worker nodes which is expected. Increasing number of PS results in down-
ward shift of trajectories as each PS becomes responsible for fewer network parameters to
be aggregated.

From Roofline plots for nodes running PS shown in Figure 3.2, we observe that the task

is not very compute intensive as FLOPS generated are in the ballpark of 1 MFLOPS to 1

GFLOPS, which is orders of magnitude less than nodes running worker processes as shown

in Figure 3.3. Keeping the number of PS constant, increasing the number of workers leads

to an upward shift for the data points in Figure 3.2 as the number of workers across which

the gradients need to be synchronized also increases for each PS. Similarly, for any given

number of workers, adding more PS to the system leads to fewer parameters that each PS

is responsible for synchronizing across the system. As a result, the corresponding Roofline

trajectories also show a downward shift. Note that the results for PS nodes are plotted

against a logarithmic scale.
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Figure 3.3: Roofline plots for worker nodes. Trajectories for Alexnet show variations pro-
portional to the level of concurrency suggesting its communication overhead is significant.
A reduction in the length of trajectories for Alexnet may also be observed in response to
increasing number of PS as gradient exchange becomes faster. Stable trajectories for other
models indicate decent overlap between communication and computation.
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Figure 3.4: Throughput obtained by various DNNs, which may be matched to Roofline tra-
jectories from Figure 3.3. Throughput for Alexnet almost follows a logarithmic trajectory,
which shows improvement as more PS are added. All other models show linear speedup
with minimal changes in response to increasing number of PS.
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Figure 3.3 and Figure 3.4 show the Roofline trajectories for worker nodes and through-

put obtained by the model, respectively. This helps in comparing the actual application

performance with the black box approach of the Roofline model. The model which is able

to generate FLOPS closest to the peak performance is Vgg16. If more workers are added to

the system, while keeping the number of PS unchanged, we see an almost 2X (8.2 img/sec

with 4 workers vs 16.3 img/sec with 16 workers for Vgg16) increase in throughput for

a proportional increase in workers, for all models barring Alexnet. These models show

a scaling efficiency upwards of 90%, with Resent50 turning out to be the most scalable

model at 100% scaling efficiency. This is observable from the Roofline data points as well

as the OIs for all models barring Alexnet show little change. Alexnet, however, at best

shows a scaling efficiency of 37% using as many as 4 PS. The OI for Alexnet also shows

a steady decline in response to an increase in concurrency in the system. This suggests

that communication costs start to dominate at higher concurrency levels. When looked at

in conjunction with the PS Roofline plot, we interestingly see that while the data points at

the worker end decline, the ones at the PS show an upward trend indicating that PS has to

perform more work to synchronize gradients across the system. Consequently, the workers

have to wait longer at the barrier in-between successive steps while the synchronization

takes place.

The Roofline plot for PS is not included from this section onwards for the sake of

brevity as it did not show any notable change compared to the one shown in Figure 3.2.

It should be noted that all data points obtained using the PS approach are under the

memory-bound region of the Roofline plot which implies that adding more computational

resources will not necessarily lead to a gain in application performance. This is ever more

relevant in the case of Alexnet where we observe that an increase in concurrency leads to
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almost a vertical decline in raw performance without a drastic change in OI. This suggests

that overheads pertinent to concurrency dominate and simple increase in processing power

will not benefit the performance much. Instead, approaches that may result in an improve-

ment in OI should be considered. The use of Horovod as a gradient update layer is a step

in this direction.

Horovod

In this section, we carry out the same experiments as described in Section 3.2.1 but

perform them using Horovod as the gradient update layer.
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(a) Roofline plot
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(b) Throughput

Figure 3.5: Roofline trajectories for Horovod show increased OIs for all models compared
to the PS approach (Figure 3.3). For Alexnet, there is a reduction in the length of Roofline
trajectory which is also reflected in the almost linear speedup of the throughput.

From Figure 3.5, we can see a marked improvement in application throughput with

Horovod as compared to the PS approach, which becomes even more pronounced at higher

levels of concurrency. The OIs are also much higher for Horovod, improving as much as
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2X (2.0 FLOP/byte vs 4.2 FLOP/byte) compared to the PS approach for Vgg16. The raw

floating-point performance, however, is within the same ballpark.

The scaling efficiency of experiments with Horovod is equal or better than the ones ob-

tained with the PS approach. For Alexnet, however, the bandwidth optimal ring-allreduce

algorithm shows its benefits leading to a scaling efficiency of 66%, a marked improvement

from 37% obtained with as many as 4 PS in the system.

3.2.2 Analysis

The Roofline plots discussed in Section 4.1 help understand the computational and

memory/network I/O footprint of various DNNs implemented in TensorFlow. However,

we need to take a deeper look at what kind of floating-point operations are performed at

what degree of memory access rate to get a deeper understanding of how we can improve

the performance of these applications.

Figure 3.6 is helpful in understanding why there is a difference in OI for the same

experiments run using PS and Horovod approach. Figure 3.6(a) shows the OI breakdown

at worker nodes of experiments run with varying numbers of PS while Figure 3.6(b) is

for Horovod. As expected, NUM FLOP and MEM ACC do not vary much if we add

more PS to the system while increasing the number of workers leads to an increase in both

NUM FLOP and MEM ACC. That is because adding more PS reduces the workload for

each PS but the worker task remains unchanged. As far as Horovod is concerned, the bars of

NUM FLOP in Figure 3.6(b) are generally not as high as for similar PS based experiments.

However, MEM ACCs are, on average 2X lower for all models leading to a much higher

OI.
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Figure 3.6: OI breakdown of TensorFlow worker with PS and Horovod. Memory accesses
are higher than FLOP executed for Inception and Resnet50 resulting in an OI of less than
1 for PS. For Horovod, however, the ratio between NUM FLOP and MEM ACC is much
higher than the ones observed for PS.
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Figure 3.7: FP breakdown of TensorFlow worker with PS and Horovod. 256-bit SP in-
structions constitute the majority of all FP instructions executed despite Horovod using a
different aggregation mechanism.
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Based on the above profiling results, we can conclude that Horovod is much more effi-

cient with the data that it processes as for each byte of memory accessed, it performs more

number of FLOP than using the PS approach. Next, we take a look at the distribution of

different kinds of floating-point (FP) instructions performed by TensorFlow using different

methods of gradient update.

From Figure 3.7, we can see that vanilla TensorFlow mostly makes use 256-bit SP FP

instructions. As a result, the maximum FLOPS that can be performed has an upper bound

denoted by Peak FLOPS 256 line on the Roofline graph. For the DNNs to perform closer

to the theoretical peak, the multiple FMA units available have to be used in conjunction

with the 512-bit AVX registers.

3.2.3 Insights

The Roofline plots coupled with the throughput gradients are quite helpful in under-

standing the general behavior of DNN models. For instance, the Roofline trajectories are

shown in Figure 3.3 of all models barring Alexnet suggest that these are computationally

dense models with communicational requirements which do not become a bottleneck even

at higher levels of concurrency. The corresponding throughput numbers, as described in

Figure 3.4, verify this claim as we see an almost linear speedup for all models barring

Alexnet.

Alexnet seems to be an anomaly in this case requiring deeper investigation. There is

a drop in performance per node of almost 70% (311 GLOPS vs 98 GFLOPS) for Alexnet

even with 4 PS in the system. This corresponds with the throughput numbers for Alexnet

which show sub-par speedup with an almost logarithmic trajectory. However, even with

poor speedup, the absolute speedup for Alexnet is orders of magnitude higher than that
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of the next best performing model (i.e., Resent50). This indicates that, as opposed to

other models, Alexnet is quite intensive in terms of communication but is not too dense

computationally. The observation can be verified by analyzing the number of operations

that need to be executed by the processing element and network parameters that need to

be exchanged. Alexnet has 60 million network parameters which have to be synchronized

relatively frequently as it contains only 25 layers. Resent50, on the other hand, has only 25

million network parameters spread out over 50 layers thus not requiring synchronization as

often.

3.3 Black Box Optimizations

From the graphs discussed in the previous section, we find that in order to improve the

application performance and take the Roofline data points closer to the theoretical peak,

some optimizations need to be performed. The data discussed so far indicates that the

choice of underlying gradient update model significantly influences whether the computa-

tion is bandwidth bound, i.e. PS-based approach, or compute-bound i.e. Horovod.

3.3.1 Profiling

To start with, we decide to use Intel MKL enabled TensorFlow. Intel-TensorFlow makes

use of AVX, AVX2 and AVX512 registers to perform Fused Multiply Addition (FMA) in-

structions enabling applications to perform FP operations much closer to the theoretical

peak provided by the hardware. Note that the peak attainable performance with AVX512

FMA instructions may not be calculated using the formula described in Section 3.2.1, as

having 512-bit vector instructions reduces the maximum clock rate7. Therefore we use the

7https://www.intel.com/content/dam/www/public/us/en/documents/
specification-updates/xeon-scalable-spec-update.pdf
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Figure 3.8: MKL enabled TensorFlow worker with PS. The use of vectorized instructions
pushes the maximum attainable performance to Peak FLOPS 512. As a result, the raw
application performance also shows an upward movement compared to the ones shown
without MKL in Figure 3.3.

value of 652.8 × 2 sockets = 1305.6 GFLOPS provided by Intel in their official documen-

tation 8 as the maximum attainable FLOPS with AVX512 instructions, denoted by the solid

red “Peak FLOPS 512” line.

We are able to figure out the appropriate configuration to get the most out of MKL

enhanced Intel-TensorFlow. We have tried a series of configurations and at two MPI pro-

cesses/node and 12 OMP threads/MPI process, we are able to obtain the best scalability.

Note that for vanilla TensorFlow, the best performance is achieved by using four MPI pro-

cesses/node.

Parameter Server Model

Figure 3.8 shows the Roofline plot of MKL enabled TensorFlow with PS for gradient

update while Figure 3.9 summarizes the throughput achieved. The use of AVX-512 enabled

FMA instructions by MKL not only leads to a significant increase in OI for all models but

8https://www.intel.com/content/dam/support/us/en/documents/
processors/APP-for-Intel-Xeon-Processors.pdf
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Figure 3.9: Throughput of MKL enabled TensorFlow worker with PS. Significant improve-
ment in speedup is observed for all models except Alexnet as gains from faster computation
are compensated with losses from more frequent gradient exchanges resulting in minimal
net improvement.

also results in the Roofline trajectories shifting upwards. The result is pronounced with

Vgg16 with four workers performing at 1200 GFLOPS, which is merely 8% less than the

peak performance. The improvement in raw performance is supported by throughput num-

bers as well with almost 2X improvement in performance for Inception (72 img/sec vs 170

img/sec), Resnet50 (74 img/sec vs 130 img/sec), and Vgg16 (50 img/sec vs 100 img/sec

with 32 workers) using only 2 PS. Alexnet, however, does not show marked improvement

in throughput, which can be seen from the Roofline plot as well as it shows the least im-

provement in raw performance compared to other DNNs tested. We can also observe an

increase in length and variability in Roofline trajectories compared to vanilla TensorFlow

(Figure 3.3) indicating that although the use of vectorized instructions speed up the pass

through the layers of a DNN, the network parameters have to be synchronized more often

which leads to a decline in raw performance per node proportional to the level of concur-

rency in the system.
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(a) Roofline plot
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(b) Throughput

Figure 3.10: MKL enabled TensorFlow worker with Horovod. Similar trends in Roofline
trajectories and throughput are observed as in Figure 3.8 and Figure 3.9 for PS, respec-
tively. However, the bandwith optimal ringa-allreduce algorithm seems to overlap compu-
tation and communication more effectively resulting noticeable improvements over the PS
counterpart.

From Figure 3.10, we can see that using Horovod for gradient update seems to bring

the most out of MKL enabled TensorFlow as a quicker pass through DNN layers (because

of vectorized instructions) is complemented by a bandwidth optimal gradient update algo-

rithm (i.e., ring-based allreduce). MKL-enabled TensorFlow with Horovod leads to less

time spent in both computation and communication with neither becoming a bottleneck for

the other. This is not observed to be the case in any of the prior experiments.

We see greater than 2X improvement for Resnet50 (98 img/sec vs 273 img/sec with

16 workers) and Vgg16 (49 img/sec vs 101 img/sec with 16 workers) while Inception3

shows a speedup of 3X (73 img/sec vs 215 img/sec with 16 workers) compared to vanilla

TensorFlow. Alexnet, however, shows severely poor scalability as at eight nodes it shows a
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decline of 25% in throughput compared to vanilla TensorFlow even though at one node the

observed speedup is 2X (101 img/sec vs 198 img/sec). The Roofline trajectory for Alexnet

provides cues for this behavior. Comparing Figure 3.5 and Figure 3.10 at eight nodes,

the raw performance also shows a decline of 41% however the performance at minimal

concurrency (i.e., two workers on one node) improves by about 70%. This indicates that

although vectorized instructions improve pass through the layers significantly, the overhead

incurred from synchronizing 60 million network parameters frequently at higher levels of

concurrency actually leads to performance degradation.

As shown in Figure 3.10, at minimal concurrency (i.e., one node) we do get very close

to the theoretical peak performance for Vgg16. However, Intel-TensorFlow does not scale

as well as vanilla. Doubling the number of resources for vanilla TensorFlow leads to a

proportional increase in throughput as well. However, for Intel-TensorFlow it is less than

proportional. This trend is evident in the Roofline plot as well where data points for Intel-

TensorFlow show a much greater decline in response to an increase in resources (higher

communication costs) than vanilla TensorFlow.

3.3.2 Analysis

The graphs discussed in Section 3.3 indicate that using optimizations provided by MKL,

the throughput of DNNs run on TensorFlow is improved by at least an order of magnitude,

which is also indicated by the upward movement Roofline trajectories crossing the Peak

256 line and getting ever so closer to the theoretical peak of the Peak 512 line. Further

analysis of the data is performed to understand the exact cause of this improvement and if

further insights can be obtained leading to even greater benefits.
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Figure 3.11: OI breakdown of MKL enabled TensorFlow worker with PS and Horovod.
There is a significant decline in memory accesses compared to vanilla TensorFlow (Fig-
ure 3.6(a)). As a result the OIs are orders of magnitude higher.
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Figure 3.12: Breakdown of FP operations performed by MKL-enabled TensorFlow worker
with PS and Horovod. MKL-enabled TensorFlow almost exclusively makes use of 512-
bit SP vectorized instructions resulting in a much higher FP operations count than that
observed with vanilla TensorFlow (Figure 3.12(a)).
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Comparing Figure 3.3 and Figure 3.8, we can see that the OIs obtained with the same

experiments run with MKL-enabled TensorFlow are higher than those obtained with vanilla

TensorFlow. That is because, as depicted in Figure 3.11(a) and Figure 3.11(b), the number

of raw FP operations executed by vanilla TensorFlow are much higher than those of Intel-

TensorFlow, no matter which gradient update layer is used. However, Intel-TensorFlow

performs fewer memory accesses to execute the same number of floating-point operations

which results in it having much higher OI, with both PS and Horovod approaches.

It can be observed from Figure 3.12(a) and Figure 3.12(b) that MKL enabled Tensor-

Flow almost exclusively performs 512-bit SP floating-point instructions, which helps it

to achieve FLOPS much closer to the theoretical peak. We also see that vanilla Tensor-

Flow mostly uses 256-bit SP instructions where one such instruction performs 8 actual

FLOPs. Intel-TensorFlow, on the other hand, almost exclusively uses 512-bit SP instruc-

tions which are equal to 16 FLOPs. Even though the magnitude of 256-bit SP instructions

executed by vanilla TensorFlow is much higher than 512-bit SP instructions executed by

Intel-TensorFlow, the actual number of FP instructions executed does not vary much, as is

evidenced by Figure 3.11(b).

3.3.3 Insights

Initially, the experiments with MKL were executed with the worker PPN set to 4.

However, even though it yields better performance than other values of PPN, the gains in

speedup were not nearly as much as expected from using vectorized instructions. We sus-

pected that thread management might be an issue. A cursory analysis indicated that, with

default configurations, as many as 200 threads were launched by TensorFlow per worker.

As MKL enabled TensorFlow makes use of OpenMP threads to distribute workload among
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all the cores available, launching extraneous threads has detrimental effects on the perfor-

mance. We did some further experimentation and concluded that with MKL enabled, the

case of worker PPN setting to 2 can give the best performance which is what we have used

for all experiments described in this section. This has been verified by other studies as

well9.

Guidelines provided by Intel to get the best performance also suggest using channel first

NCHW (Batch Size, Channel, Height, Width) data encoding format instead of the channel

last NHWC (Batch Size, Height, Width, Channel) data encoding format, which is the de-

fault data format used for all experiments described in this study. We have performed a

number of experiments with the recommended NCHW format as well however we could

not observe any observable benefits. It should be noted that this does not necessarily in-

dicate that there are no performance gains to be had from using the NCHW format for

training on CPUs. Instead, it merely indicates that for the experiments performed in this

study, the choice of data format could not have significant effects.

3.4 Application-aware Optimizations

This section describes our attempts to tweak the performance derived from using vec-

torized instructions in TensorFlow even further.

3.4.1 Profiling

The black box optimizations performed in the previous section yield performance en-

hancements for all DNNs tested. However, the gains are less pronounced for Alexnet than

for other models. To address this discrepancy, characteristics particular to Alexnet have

9https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-
recommendations-for-inference
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to be considered. Knowing that network communication significantly impacts the perfor-

mance of Alexnet, we decide to increase the batch size of the input data to 128. This

is done particularly to improve the performance of Alexnet. From the perspective of the

DNN model itself, increasing the batch size results in more data being processed before

gradients have to be synchronized. This should be helpful for models such as Alexnet with

a large number of network parameters spread out over not as many layers.
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(b) Throughput

Figure 3.13: Roofline plots and throughputs using Horovod and batch size=128. Increased
batch size benefits Alexnet the most, leading to an upward shift by more than 200 GFLOPS
for each Roofline data point compared to similar experiments with batch size=64 (Fig-
ure 3.10(a)). This translates to improvement in throughput as well with 2X improvement
at 8 nodes compared to Figure 3.10(b).

Figure 3.13 shows the Roofline plots using Horovod for gradient update with batch size

increased to 128. As can be seen from the graph, increasing the batch size significantly

improves the throughput obtained by Alexnet which is 3.5X improvement compared to

vanilla Tensorflow with 1 PS and 8 Nodes for workers (700 img/sec vs 200 img/sec). This

indicates that because Alexnet is more communication-bound than other models, when we

37



increase the batch size, the gradients have to be updated after relatively larger amounts of

data is processed thus amortizing the communication costs over a longer stretch of compu-

tation. The increase in throughput is not as pronounced for other models indicating their

implementations overlap computation and communication to a reasonable degree.

3.4.2 Analysis
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Figure 3.14: OI breakdown of MKL enabled TensorFlow worker with Horovod and batch
size=128. The reason for improvement in the performance of Alexnet can be seen here
as the FP operations performed increase by a factor of two compared to experiments with
batch size=64 (Figure 3.11(b)).

Figure 3.14 shows the breakdown of OIs for experiments with batch size set to 128.

Focusing on Alexnet and comparing its OI breakdown results with batch size set to 64 in

Figure 3.11(b), we observe that the number of floating-point operations performed gets

increased by a factor of two when the batch size is set to 128. However, memory accesses

remain constant. As a result, there is an upward shift in not only the Roofline trajectories

of all models but also an increase in the application throughput obtained, most pronounced

with Alexnet.
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3.5 Related Work

The original Roofline [60] paper suggests various optimizations that could be per-

formed on workload bound by memory bandwidth and/or computational power and applies

them to traditional scientific workloads. Since then it has been used to profile and opti-

mize various architectures such as Intel KNL [16], NVIDIA GPUs [38], Google TPUs [28]

and applications, including but not limited to, disaster detection [46], large scale simula-

tions [33], wireless network detection [51] and even matrix multiplication [34].

There have not been many studies analyzing and profiling the performance of dis-

tributed Deep Learning. The few that exist [7, 53, 42, 32] do not focus on Roofline model

based performance analysis and optimizations on CPUs. [7] and [53] analyze the overall

execution time of different frameworks but do not discuss techniques for performance im-

provement. In [32], the authors use Alexnet alone as a representative model to analyze the

performance of different distributed Machine Learning frameworks using GPUs. They can

speed up training by 2X using only framework-specific options. However, their study does

not include the effects of gradient exchange between nodes over a network. Recently, the

Roofline model has also been applied to analyze the performance of Deep Learning mod-

els, mostly focusing on bespoke FPGA accelerator implementations, such as in [63] and

[43].
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Chapter 4: Characterization of Kafka and Architectural Details of

Frieda

4.1 Analysis and Modeling

In this section, we first use the Roofline model to analyze the raw compute throughput

generated by Kafka running at different levels of concurrency and then use that to identify

potential bottlenecks. From there on, we dive deeper into the causes of the bottlenecks and

the ways they could be mitigated.

4.1.1 Analysis

To start our analysis, we conduct a basic experiment where we run a typical Kafka

workload with varying levels of concurrency for the number of producers participating in

the experiments and generate a Roofline plot to see how the performance at the broker end

varies as a result. The results of this experiment are shown in Figure 4.1.

We observe a steady increase in raw performance at the broker end as the number of

concurrent producers are increased from 2 to 8, which is because there is a proportional

increase in the work that the broker has to do log and persist the messages coming from

each client. However, at 16 producers, we observe a sharp decline. At this level of con-

currency, Kafka becomes overwhelmed by the sheer amount of messages coming it’s way
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Figure 4.1: Roofline plot of Kafka producer benchmark with varrying levels of concurrent
producers

and is unable to process them within reasonable latency bounds causing the entire system

to just crash. This tells indicates that there is a bottleneck in Kafka’s design which gets

magnified at higher levels of concurrency, However, we need to dig deeper to first identify

the bottleneck and discuss its possible solutions.

There are a variety of reasons why observed latencies of big data pipelines, and stream

processing pipelines in general, may vary on a spectrum. However, it is possible to de-

sign a pipeline where the latency remains constant throughout the application’s life cycle.

Figure 4.2(a) describes such a hypothetical system with a sender sending messages to a

receiver which does some processing and sends out a corresponding response. Both the

sender and receiver allocate send and receive buffers to store the messages before they are

flushed. However, in this case, requests are sent by the sender in a completely sequential

manner i.e. a new request is only sent after the response for the previous request has been
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received. This allows both the sender and receiver to reuse the send and receive buffers, as a

result, there is no extra cost of transferring messages as once the pre-allocation and prepara-

tion of buffers are done for the first message, there is no need to do it again. Consequently,

the latency of this pipeline remains constant as T1= T2= T3.

Sender Receiver

T1

T2

T3

Reused	Send	Buffers

Reused	Receive	Buffers

Buffer	pair	allocation	cost

Pre-Allocation

Sender Receiver

New/unused	Send	Buffers

New/unused	Receive	Buffers

T1

T2

T3

Buffer	pair	allocation	cost

(a)	No	tail	latency (b)	Tail	latency

Figure 4.2: A scenario which results in tail latency

Even though latency guarantees provided by the system mentioned above are highly

desirable, the throughput provided by such a system is untenable as such a system has no

message transfer overlap. However, for practical systems, the transfer of messages has to be

overlapped to ensure the system has acceptable throughput guarantees. In order to support
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overlap of message transfer, resource contention is an unavoidable side effect, as is shown

in Figure 4.2(b). Messages are sent one after the other, without having to wait for their

responses. However, new send/receive buffers have to be allocated at both the sender and

the receiver each time a message is transferred. This system has a higher throughput than

the one in Figure 4.2(a), however, the overhead incurred compounds as more messages are

sent. Consequently, we observe that the message latencies in such vary on a range, as is

shown in the figure where T1 6= T2 6= T3 i.e. when the size of the messages is similar. The

latency for REQ#2 i.e. T2, can be considered to fall on the tail-end of the latency spectrum.

One important thing to note here is that the reuse of buffers is one of the many optimizations

that can be done in a system where there is no contention for resources (Figure 4.2(a)). This

includes buffer management, message reordering overheads, I/O scheduling, etc.

4.1.2 Modeling

As is described in the above Section 4.1.1, it is possible to design a distributed system

with little or no variation throughout its latency spectrum i.e Figure 4.2(a). The average

( Tavg) and tail latency ( Ttail) for such a system, as represented by the 99th percentile, can

be expressed formally using Equations 1 and 2 respectively.
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L and B denote the latency and the bandwidth of the underlying network whereas the

size of each message is represented by MsgSz and N represents the number of messages
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sent. As messages in such a system are in a strictly sequential manner, the Tavg is es-

sentially just the time taken to transfer each message, averaged over all the messages sent

(N). Ttail, on the other hand, is represented by the latency of the 99th percentile message

processed ranked in order of increasing latency.

However, such a system is impractical for real-life applications due to the poor through-

put it offers. As a consequence, practical systems have a degree of overlap in the manner

in which messages are sent and received, whereby messages of certain window size (W)

will be sent in an asynchronous manner. The ´Tavg and ´Ttail of such a system, as shown in

Figure 4.2(b), can be elaborated using Equations 3 and 4.
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For such a system, ´Tavg is the latency of sending all the messages in any one window,

averaged over all windows, the number of which is denoted by (N/W). Similarly, ´Ttail, can

be calculated by first obtaining the 99th percentile latency of messages in each window,

and then determining the 99th percentile of this set of latencies.

The reason why messages within a window might have varying latencies and thus con-

tributing to a more pronounced tail of the latency distribution, is explained in Equation

5.
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The latency of a message j in a window is given by L + MsgSz
B

+ O(W,R). The

L + MsgSz
B

is common from Equation 2. However, there is a contention overhead, denoted

by O(W,R), to ensure the overlapped transfer of messages. This overhead is a function of

both the number of messages transferred in that window (W), as well as the contention in

the resources (R) which the sending of these messages in an asynchronous fashion incurred.

Buffer management, as described in earlier sections, is just one of such overheads that

could be incurred and are going to exist in every streaming pipelines, regardless of the

frameworks utilized to implement the pipeline. In subsequent sections, we examine what

these overheads are in a Kafka based streaming pipeline.

4.2 Design

This section first identifies the bottlenecks in vanilla Kafka implementation and then

describes the design of Frieda which attempts to mitigate the effect of these bottlenecks.

4.2.1 Sources of Tail-Latency

In Section 4.1.1, we described how certain design choices in data processing frame-

works could contribute to varying message processing latencies. In this section, we will

discuss, from the perspective of Kafka as Message Broker in a stream processing pipeline,

what are the design choices that end up being a source of uneven latencies. Figure 4.3 gives

an overview of these sources.

1 TCP/IP: Kafka uses TCP/IP stack for communication between its various com-

ponents. As is shown in [19], network I/O over TCP/IP is slow as it involves context

switches from user space to kernel space which is detrimental for low-latency applications.

Moreover, as the network-related bookkeeping tasks such as flow/congestion control and
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Figure 4.3: Sources of Tail Latency in Kafka

handling of unordered messages has to be handled by the CPU, certain messages end up

waiting for more than others for them to be processed by CPU.

2 Handling Ordered Responses: Kafka provides guarantees to its clients that all the

requests will be responded to in-order. To ensure that, Kafka processes each request from

a client in sequential order i.e. a new request will not be offloaded to handler threads to

be processed until the response for the previous request has been sent. As a result, some

messages end up waiting for more than the others before they are being processed and

handled by Kafka.

3 Buffer Management: For every new message that is sent or received by Kafka,

a buffer is created on the fly. Operations required for preparing memory buffers, such as
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allocation and regsitration [57][45], are known to be costly operations affecting the perfor-

mance of applications. This issue has already been explained in detail in Section 4.1 using

Figure 4.2.

4.2.2 High-Performance design of Frieda

We design Frieda from the ground up to use the high-performance, RDMA-based com-

munication engine. We also implement some key designs ensuring the bottlenecks con-

tributing to Kafkas’s subpar performance are resolved in our framework. The use of RDMA

as Frieda’s communication paradigm implies that we offload all the network I/O related

tasks to the Host Channel Adapter (HCA). This not only allows the CPU to focus more on

Kafka’s framework-specific tasks but also paves the way for a cleaner implementation of

sophisticated designs to restrict tail latencies. A high-level view of Frieda’s architecture is

shown in Figure 4.4.
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Figure 4.4: High Performance Design of Frieda
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In the following subsections, we will describe advanced architectural designs incorpo-

rated in Frieda to drastically reduce tail latencies in the pipeline.

Dynamic Eager Flush

Frieda’s communication runtime is based on a Dynamic Eager Flush policy. We imple-

ment an abstraction of RdmChannel, which performs the same role as SocketChannel in

TCP based Kafka. However, it gives us fine-grained control of the exact semantics accord-

ing to which messages can be written to the wire. The Kafka protocol ensures that each

message in Kafka is prepended by 4 bytes representing the size of the overall message. Ev-

ery time a new message’s header is written to Kafka, we use this information to keep track

of the size of the entire message. Kafka’s higher-level writes to channel in distinct invo-

cations of RdmaChannel’s multiple write methods. The tracker notifies the RdmaChannel

as soon as the full message has been collected. When this event occurs, we flush the mes-

sage to the HCA which in turn immediately writes it to the wire. Unlike for Kafka, we

do not have to send or receive buffers of a predefined size which have to be filled before

the messages are eventually flushed. This Dynamic Eager Flush design helps remove the

bottleneck of unnecessary waiting of messaging in socket queues which we observed in

Kafka’s design.

Continuous Polling

Another design feature in Frieda to ensure its sensitivity to tail latency is what we

call the Continuous Polling design. We implement a dedicated Polling Engine whose sole

responsibility is to poll the HCA for new messages coming in from any of the connected

RdmaChannels. This ensures that the Processors need not poll for new messages at each

iteration of their thread loop. Instead, the Polling Engine distributed the messages in queues
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unique to each processor thread thus overlapping the process of polling for new records and

performing other operations.

Adaptive Buffer Management

In order to ensure that buffer management does not become a performance bottleneck

for Frieda, we implement an approach of pre-registering a pool of buffers of different sizes.

Whenever a new buffer is required at the application layer, we intercept the request and

return an idle buffer from our pool which closely matches the required size. When a buffer

completes its lifecycle through the application logic, we put it back to the pool. In this, we

ensure that once buffers are pre-registered at the start of the application, there is no further

cost of issuing buffers for new requests.

Hardware-offloaded Message Ordering

Frieda is implemented using the RDMA RC protocol which ensures the ordering of

messages, performed by the HCA. As a result, Frieda ensures that the CPU is free from

performing the expensive task of message re-ordering. However, there is a catch to using

this approach. As shown in this paper [41], in order to achieve the optimum performance

from RDMA, an approach for selecting between Eager and Rendevous protocol based on

message size has to be adopted. As shown in Figure 4.5, this approach leads to cases where

even though a Request to Send (RTS) for a large message is received before subsequent

small messages, the actual transfer of these small messages finished before the prior large

message. That is because the small messages are sent using the Eager protocol where the

message itself is piggybacked with its header and delivered in just a single message. The

large message, on the other hand, first has its RTS delivered to the remote side which then

does on RDMA READ from the sender processes memory. When this is done, the remote
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process sends the sender the FIN message indicating the message transfer has finished.

However, during the time this Rendezvous operation takes place, the messages delivered

using the Eager protocol are already received at the remote side and as a result, the remote

side receives messages in a different order than how they were sent by the sender. Similar

out-of-order scenarios may happen for RDMA Write based rendezvous protocols as well.

Sender	Side	Order Receiver	Side	Order

RDMA	Read

Sender	Side	Order Receiver	Side	Order

RDMA Read

Small	Message

Large	Message

(a)	In	order (b)	Out	of	order

Figure 4.5: Un-ordered Messages with Eager and Rendezvous protocols

In order to resolve this issue and also process the incoming messages in a parallel man-

ner, we introduce an Asynchronous Message Processing Engine (AMPE). Using AMPE,

we remove the bottleneck of having to process messages from each client in a sequential

manner to ensure ordered delivery of responses. In order to achieve this, each new request

is offloaded to a handler thread as soon as it is received, but we maintain a data structure

that keeps track of the order in which new requests are received by putting them in appro-

priate slots dictated by their sequence IDs. When the handler threads return a response for

a particular message, it is put in its corresponding request’s slot. Consequently, when the
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processing thread comes around to sending the responses, it polls the data structures for the

first contiguous set of requests for which responses have been put in the slots. This not only

ensures that the processing of messages is parallelized but guarantees that the responses are

delivered in order.

Overlapped Processing

Unlike Kafka, we design Frieda in a way so as to allow it to process multiple requests

in parallel. Using our Overlapped Processing design, we avoid processing requests from

clients in a sequential manner to maintain message order. Instead, we process multiple re-

quests from a client in an overlapped fashion. To ensure the ordered delivery of responses,

we keep a track of the sequence in which messages from a particular client were received

while associating an empty response bucket with each of them. These requests are then

dispatched to the handler threads without requiring them to wait. The fully formed re-

sponses are then put in the buckets of appropriate requests maintaining their order. When

the processor threads in their event loop come around to actually writing completed re-

sponses, we write the first set of contiguous responses that have been completed. In this

way, we not only maintain the order in which the requests are responded to but also enable

the overlapped processing of messages by the broker.

As shown by our evaluations in the subsequent section, these designs help in drastically

reducing the message processing time, not only in terms of tail latencies but across the

spectrum.

Design Choices: While designing a distributed system, the decision of whether to imple-

ment certain functionalities on the client or the server is a crucial one. In our case, most of

the optimizations mentioned above could be implemented on both the broker and the client

end. However, such a discussion is more nuanced when it comes to ensuring Overlapped
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Processing in the pipeline. As a consequence of Overlapped Processing and the fact that

Kafka clients expect ordered responses to their requests, there is a need to reorder the re-

sponses produced by handler threads at the server. We first implemented the bucket based

message reordering logic mentioned above at the broker end. However, this did not yield

good performance as the broker becomes an overburdened entity in the pipeline ensuring

message ordering for all the participating clients. We decided to stick with Kafka’s design

philosophy of having a stateless server and pushing all such extraneous logic to the clients.

This not only guarantees the correctness of the system but also ensures high performance

in the entire pipeline.

4.3 Evaluation and Results

We use a two-pronged strategy to evaluate Frieda. First, we perform some microbench-

marks to evaluate the performance of basic message broker operations. Then, we plug in

Frieda in a full-fledged streaming pipeline using HiBench to evaluate the benefit of having

a high-performance Message Broker on the entire pipeline. The experiments were carried

on two clusters, an in-house OSU-RI2 (Cluster A) and SDSC Comet (Cluster B), the speci-

fications of which are summarised in Table 4.1. Software and their corresponding versions

used for the experiments performed are described in Table 4.2. Smaller-scale experiments

were run on Cluster A whereas Cluster B was used for larger-scale runs. In all the exper-

iments mentioned below, the broker, as well as each of the producers, was launched on

separate nodes. A colocated Zookeeper was launched for each of the brokers used in the

experiment.
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Cluster A Cluster B
Nodes 20 1,984
CPU 2.4GHz 14 cores x2 2.5GHz 12 cores x2

Memory 512 GB 128 GB
Disk 400 GB SSD & 4 x 2 TB HDD 320 GB SSD & 80GB HDD
HCA IB EDR (100Gbps) IB FDR (54Gbps)
OS CentOS release 7.2 CentOS release 6.7

Table 4.1: Cluster Configuration

Software Version
Apache Kafka 0.11.1.0

Apache Zookeeper 3.4.8

Table 4.2: Software Configuration

4.3.1 Microbenchmarks

Kafka comes bundled with a utility to evaluate producer performance and we use the

same utility to compare the performance of Kafka and Frieda. The utility operates by

writing messages of configurable message size and replication factor. For every record that

is sent by the producer, the broker sends out an acknowledgment, and the time it takes for

a record to be sent to the broker and its acknowledgment to arrive back at the producer

considered to be the latency of the record. As an RDMA implementation for Kafka is not

available, we run Kafka using the Internet Protocol over InfiniBand (IPoIB) [12] over the

InfiniBand network. Note that in all the graphs presented, the legends are marked based

on the network protocol that is used by each framework i.e. Kafka utilizes IPoIB whereas

Frieda makes use of RDMA.
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Figure 4.6: Percentile Latencies for 2 Producers
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Figure 4.7: Percentile Latencies for 4 Producers

In the first step, we have a single broker - multiple producer setup wherein for differ-

ent cluster sizes we vary the size of messages emitted to evaluate how latency varies in

response. These experiments were carried on Cluster A. Figure 4.6, 4.7, 4.8 and 4.9 show

the results of these experiments in terms of percentile latencies. As expected, increasing

the number of Producers significantly increases the latency of the pipeline. However, the

latency in Frieda degrades gracefully as opposed to vanilla Kafka. We observe significantly

reduced tail latencies for Frieda throughout these experiments. For 2 concurrent clients, we

54



see a decrease of 82% and 67% in 99.9th percentile latency of Frieda compared with Kafka

for small and large messages respectively. This trend continues as we increase the number

of concurrent producers, getting improvements of 78% and 33%, 72% to 48% and 41%

to 53% in 99.9th percentile latency of small and large messages for 4, 8 and 16 Producers

respectively.
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Figure 4.8: Percentile Latencies for 8 Producers
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Figure 4.9: Percentile Latencies for 16 Producers

4 Brokers with Replication

In most cases, production environments set up a replicated cluster of Kafka brokers

whereby each record written to anyone broker is replicated to K number of other brokers.
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This value of K is configurable using the replication-factor property set during topic cre-

ation. This is done to ensure the durability of the committed records, such that even if only

one of the replicated brokers is alive, the cluster would still be able to function though with

compromised performance.
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Figure 4.10: Latencies with 4x Replication

In order to test our Frieda in this environment, we set up a cluster of 4 Kafka brokers

while also setting the replication-factor = 4, implying that every message has to be repli-

cated to all 4 Kafka brokers for it to be considered fully committed. In this experiment,

we also try to evaluate how well does Frieda scales compared to vanilla Kafka and in order

to do so, we take large-scale numbers using 16, 32 and 64 producers, respectively. As the

effect of message size on the performance has been thoroughly evaluated in the first set of

experiments, we restrict this experiment to a payload of 100 bytes, which can be consid-

ered a representative message size for a typical streaming processing environment. Cluster

B was used to perform these experiments. The effects on percentile latency of these exper-

iments are shown Figure 4.10(a) and 4.10(b) respectively. For 16 concurrent clients in a
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replicated setting, we see a reduction of about 25% in 99.9th percentile latency for Frieda.

However, as we increase the number of producers to 32, we observe that the percentile

latencies for Kafka explode while Frieda’s performance is still commendable, showing a

decrease of about 98% in 99.9th percentile latency compared to Kafka. The degradation

in performance for Kafka is so severe that with 64 concurrent producers, Kafka Brokers

quickly become overwhelmed by the huge amount records needing to be processed causing

producers to throw timeout exceed warnings as multiple records fail to be acknowledged

by brokers within a specified duration. Even after multiple runs, we were unable to finish

the experiment for Kafka for this configuration so we show the results for Frieda only for

which the performance for this configuration is comparable to 32 concurrent producers.

This behavior of Kafka can be attributed to the fact that TCP based communication, which

Kafka is based on, takes away precious CPU cycles leaving not nearly enough resources

for the application to operate at the desired performance level. To see if the default Kafka

implementation would fare any better in the case of 64 clients but with replication disabled,

we restart the experiment with replication-factor = 1. However, even in these somewhat

relaxed circumstances, the default Kafka cluster was unable to cope with such a high rate

of incoming messages.

Throughput Analysis

Although minimizing latency is the main goal of our work, our designs do not compro-

mise on throughput for improved latency. We present the results of producer benchmark in

terms of aggregated throughput for both single and multi-broker cluster in Figure 4.11(a)

and 4.11(b). Increasing the number of producers increases the total throughput of the Kafka

broker, up to the point where the broker is saturated to its processing limits. We observe,

from Figure 4.11(a), an increase in throughput of 4x to 10x for different message sizes for
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8 Producers respectively. Similar improvements are observed for the multi-broker envi-

ronment as shown in Figure 4.11(b). Similar to the earlier latency based results, we were

unable to obtain throughput numbers for 64 producers for Kafka as it became unresponsive

under the extensive workload.
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Figure 4.11: Throughput with different cluster configurations

This improvement primarily originates from the NIC offloaded nature of RDMA com-

munication, where host CPUs are not involved in the actual process of data communication

from the network, thus allowing them to spend more clock cycles on non-network tasks.

4.3.2 Yahoo! Streaming Benchmark

After ensuring enhanced performance for producer based operations across various

cluster configurations and message sizes, we test Frieda with a real-life streaming appli-

cation. For this purpose, we use the Yahoo! Streaming Benchmark (YSB) [11]. The

benchmark uses a streaming pipeline based on an advertisement application. Kafka pro-

ducer(s) emits messages containing data pertaining to different advertisement campaigns to

a Kafka cluster. An SPE than fetches those messages, deserializes them and filters out a set
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of events based on a predefined predicate. It then takes a projection of the relevant field and

performs a join on them with data contained in an in-memory Redis instance. This database

is used to maintain a windowed count of relevant events processed per campaign. Finally,

the latency is calculated as the time from the start of a window until the acknowledgment

for the last event in the window is received. This benchmark was originally designed to

test the performance of various SPEs in a typical streaming pipeline. The SPEs that can be

benchmarked with this application include Storm, Spark Streaming, Flink as well as Kafka

Streams. Kafka Streams10 is a streaming framework built on top of Kafka. For our experi-

ments, we were able to seamlessly integrate Frieda in the streaming pipeline by providing

required client libraries used to read and write data for the consumers and producers in the

pipeline, respectively.
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Figure 4.12: Latency distribution of Kafka and Frieda with YSB

For this experiment, we used a single broker with 8 concurrent producers emitting data

at an aggregated rate of 120,000 records/sec. The results of this experiment are shown

in Figure 4.12. The jumps in latency for Kafka based IPoIB and Frieda based RDMA

10https://kafka.apache.org/documentation/streams
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experiments are due to the committime=1000ms configured for both runs. Kafka Streams

uses committime parameter to specify after how much time would the results of a streaming

pipeline will be committed to a persistent store. This is similar to the mini-batch adopted

in Spark Streaming [62]. The lower end of the latency spectrum is similar for both Kafka

as well as Frieda with the latter having slightly lower latencies. However, from the 50th

percentile onwards, Frieda significantly outperforms Kafka as shown by a reduction of

about 31% in 99 percentile latency.

4.4 Related Work

Researches on streaming Big Data processing and the associated processing engines

have been performed in the literature. Most of these studies typically focus on investi-

gating the performance impact on end-to-end average latency of the streaming pipeline in

response to varying input message rate. Qian et al. [49] compare the performance of Spark

Streaming, Storm, and Samza on standardized micro-benchmarks such as grep, projection,

etc. Chintapalli et al. [11] evaluate the performance of Storm, Spark Streaming, and Flink

using an application designed to mimic a real-life stream processing scenario. Both of these

studies base their results on end-to-end average latency of the streaming pipeline. More-

over, these studies are limited to low-speed networks, such as 1GigE. Inoubli et al. [25]

perform an exhaustive performance analysis of streaming as well as batch frameworks.

They evaluate Spark, Storm, Flink, and Hadoop on the metrics of performance, scalability

and resource utilization. The performance comparison focuses mainly on the framework’s

internal processing rather than the overall pipeline while also excluding the messaging mid-

dleware from the picture. In our previous work [26], we evaluated the performance of Flink
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and Kafka on cutting-edge networking technologies such as 40GigE and InfiniBand EDR,

which show the potential of using high-speed interconnects for streaming data processing.

Du and Gupta [17] implement adaptive timeout and load balancing techniques to cur-

tail tail latency in Apache Storm. Suresh et al. [56] make use of a replica based scheme to

minimize tail latency in their proposed system C3. Kamburugamuve et al. [30] use RDMA

to improve the performance of Heron streaming framework and show considerable bene-

fits. However, their implementation can not fit in an arbitrary stream processing pipeline

as shown by the need to modify the Yahoo! Streaming Benchmarking (YSB). YSB, mim-

icking a generic stream processing pipeline, uses Kafka producers to generate data into the

streaming pipeline. However, for this work, the authors had to implement custom Heron

spouts to perform this task.

Recently, a lot of research works have been proposed in the field for accelerating Big

Data stacks to fully take advantage of modern high-performance interconnects and proto-

cols. Several research works have focused on exploiting advanced features like RDMA in

key-value stores including RDMA-Memcached [27], RAMCloud [47], MICA [37], to im-

prove the response time and throughput of the application servers deployed on HPC clus-

ters. For offline data-intensive workloads such as Hadoop and Spark, high-performance

solutions such as RDMA-Hadoop [50] and RDMA-Spark [40] have been designed to de-

liver much higher performance compared to just using the traditional TCP/IP or IP-over-IB

based protocols. However, these studies are not focusing on streaming data processing and

they do not pay attention to the problem that how to significantly reduce tail latency with

RDMA technology.

Compared to the related work described above, this paper mainly focuses on how to

significantly reduce both average latency and tail latency for the modern streaming data
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processing pipeline by proposing several tools and technologies, including but not limited

to RDMA. The motivation, design goals, and achievements are quite different than the re-

lated studies as listed above. To the best of our knowledge, this paper is the first work to

propose native RDMA-based, latency-centric designs for message brokers from the per-

spective of a stream processing pipeline.
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Chapter 5: Contributions and Future Work

In this study, we propose the use of the Roofline model to analyze various CNN models

implemented in TensorFlow for CPU. We are able to identify various bottlenecks that allow

us to significantly improve the performance of these CNN models. We hope that our study

would be helpful for scientists, especially those who may not have enough knowledge of

low-level systems, to optimize their Deep Learning model training processes and maximize

the performance. Using various optimizations described in this study, we are able to achieve

a maximum speedup in throughput of 3.5X for Alexnet at a concurrency level of 8 nodes.

Moreover, we proposed using high-performance message brokers to accelerate an arbi-

trary stream processing pipeline. To this effect, we designed and implemented Frieda, an

RDMA-enhanced high-performance message broker with a plug and play interface for any

arbitrary stream processing pipelines. Through our evaluations, we were able to show that

tail latencies in a stream processing pipeline could be significantly reduced by the use of

a message broker like Frieda specialized to deal with this issue. As more and more HPC

resources get utilized by Big-Data applications, Frieda poses as an ideal Message Broker

enabling streaming pipelines to best utilize the resources provided.

For future work, we would like to understand how the choice of network interconnect -

InfiniBand, RoCE, High-Speed Ethernet, etc. - and the network channels used to commu-

nicate over them - gRPC, MPI, etc. - influence the performance of Deep Learning models.
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Furthermore, we would also like to extend our study to incorporate the ever-expanding

landscape of processing elements suitable for Deep Learning, such as GPUs, TPUs, and

FPGAs. Moreover, since DL applications are notorious for their soaring power require-

ments, we would also like to explore if our approach can be used to generate optimizations

that can reduce the energy consumption of the applications without incurring a significant

performance penalty.

In addition to that, we would like to optimize our designs for large messages as these do

not show as much benefit for small messages which are typical of stream processing. This

would render Frieda usable for other use-cases where large messages are common such as

log aggregation. Moreover, we would like to evaluate Frieda with SPEs other than Kafka

Streams to determine if our designs our generic enough to provide benefits regardless of

the SPE used.
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