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Abstract 

This dissertation is comprised of three chapters on education economics, focusing 

on college graduates transitioning into the labor market. In the first chapter, 

“Multidimensional Skill Mismatch among College Graduates,” I use college transcript 

data from a sample of college graduates in the 1997 National Longitudinal Survey of 

Youth (NLSY97) and occupational descriptors from the Occupation Information 

Network (O*NET) database to develop a novel “skill mismatch” index. This index 

measures the distance between a vector of skills acquired in college and a vector of skills 

required in the post-college occupation. By assessing various skill groups (mathematics, 

language, etc.), the skill mismatch index treats both workers and occupations as 

multidimensional entities. I provide evidence that the skill mismatch index is a 

refinement over previously developed empirical mismatch measures that rely on degree 

or college major to define mismatch.  

In the second chapter, “Measuring the STEM Wage Premium Among College 

Graduates,” I estimate the wage benefits associated with training in Science, Technology, 

Engineering, and Mathematics (STEM), and assess the sensitivity of the STEM wage 

premium to changes in the way STEM is measured. Measuring STEM can differ in two 

ways: the definition of STEM (i.e., determining what fields are STEM) and incorporating 

STEM training into the empirical analysis with a dichotomous or continuous measure of 
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STEM training. Using a sample of college graduates with college transcript data in the 

NLSY97, I compare a total of six measures STEM training: for three different definitions 

of STEM (based on lists published by three different U.S. government agencies), I 

construct a continuous measure of STEM training (based on the amount of STEM 

coursework completed in college) and a dichotomous measure (based on if the worker 

completed a STEM major). Although the results confirm the general finding that there is 

a STEM wage premium, they demonstrate that estimates of that premium are relatively 

insensitive to the definition of STEM training but highly sensitive to whether a 

dichotomous or continuous measure is used.  

In the third chapter, “Education and Job Matching: A Two Cohort Comparison,” I 

compare the incidence and log-wage penalty of overeducation and undereducation among 

two generations of college graduates. Mismatch is defined based on degree, where a 

worker is classified as overeducated (undereducated) is he completes a degree that is 

greater (less) than what is required by his occupation. Data for the older cohort (born 

1957-1964) is from the NLSY79 and the younger cohort (born 1980-1984) from the 

NLSY97. By directly comparing these two cohorts, this study provides unique insight 

into how the estimated overeducation/undereducation wage penalty has changed over the 

last few decades. When conditioning on a rich array of observables, the estimated 

overeducation wage penalty during the early career is roughly the same for men and 

women in both the older and younger cohorts. The estimated returns to undereducation 

shift from a small, not significant effect for the older cohort to a substantial, significant 

effect for the younger cohort.  



iv 

 

Acknowledgments 

Many thanks to my adviser, Audrey Light, for patiently guiding me through this 

process and helping me develop as a researcher. I am forever grateful to Audrey for her 

friendship and for the valuable professional and personal advice she imparted during my 

time at The Ohio State University. The tools she provided me and the guidance she gave 

me will last a lifetime. I would also like to thank Kurt Lavetti for introducing me to 

health economics and for giving me the opportunity to be his research assistant; because 

of Kurt, I discovered (and was able to pursue) my interest in health economics. I am 

grateful to Bruce Weinberg for always being open to chat and for providing interesting 

insights into my research. I also appreciate Daeho Kim, for providing advice and 

thoughtful discussions during the early stages of my dissertation, and both Hajime 

Miyazaki and Ana Ramirez, for providing support during my time as a graduate student. 

I am grateful to my family, friends, and colleagues for helping me through this 

process. A special thanks to Carol Kane for giving me my dream job and for serving as a 

mentor at work. Most importantly, I want to thank my parents and my sister for being my 

role models and providing me with the love, support, and wisdom I needed to get through 

this process. I know many of the opportunities I pursued were only available because of 

the hard work of my parents and I thank them for their endurance in creating a great life 

for me. This would not have been possible without them. 



v 

 

Vita 

June 2012………………….....B.S. Economics and Mathematics, Binghamton University 

June 2012…………..B.S. Management concentration in Finance, Binghamton University 

June 2013…………………………………....M.A. Economics, The Ohio State University 

June 2017……………………………………..Economist, American Medical Association 

 

Fields of Study 

 

Major Field: Economics 

 

 

 

 



vi 

 

 

 

 

Table of Contents 

 
Abstract ............................................................................................................................... ii 

Acknowledgments.............................................................................................................. iv 

Vita ...................................................................................................................................... v 

List of Tables ................................................................................................................... viii 

Chapter 1. Multidimensional Skill Mismatch Among College Graduates ......................... 1 

1.1 Introduction .............................................................................................................. .1  

1.2 Literature Review...................................................................................................... 3 

1.3 Data ........................................................................................................................... 8 

1.3.1 Sample Selection Criteria .................................................................................. 9 

1.3.2 Mismatch Variables ......................................................................................... 11 

1.3.3 Other Variables ................................................................................................ 16 

1.3.4 Descriptive Statistics of the Skill Mismatch Index .......................................... 18 

1.4 Estimation Strategy ................................................................................................. 23 

1.5 Results ..................................................................................................................... 26 

1.5.1 Wage Effects of Overeducation/Undereducation, Major Mismatch, and Skill 

Mismatch Index ........................................................................................................ 27 

1.5.2 Wage Effects of Skill Mismatch Index, Over and Under Skill Mismatch, and 

Subject-Specific Skill Mismatch............................................................................... 32 

1.6 Conclusion .............................................................................................................. 38 

Chapter 2. Measuring the STEM Wage Premium Among College Graduates ................. 51 

2.1 Introduction ............................................................................................................. 51 

2.2 Literature Review.................................................................................................... 55 

2.3 Data ......................................................................................................................... 60 

2.3.1 Sample Selection .............................................................................................. 61 

2.3.2 Measuring STEM ............................................................................................. 61 



vii 

 

2.3.3 Other Variables ................................................................................................ 65 

2.3.4 Descriptive Comparison of Alternative STEM Measures ............................... 67 

2.4 Estimation Strategy ................................................................................................. 71 

2.5 Results ..................................................................................................................... 72 

2.6 Conclusion .............................................................................................................. 79 

Chapter 3. Education and Job Matching: A Two Cohort Comparison ............................. 87 

3.1 Introduction ............................................................................................................. 87 

3.2 Literature Review.................................................................................................... 90 

3.3 Data ......................................................................................................................... 95 

3.3.1 Sample Selection .............................................................................................. 96 

3.3.2 Defining Overeducation and Undereducation ................................................. 97 

3.3.3 Other Variables ................................................................................................ 99 

3.3.4 Sample Summary Statistics ........................................................................... 101 

3.4 Estimation Strategy ............................................................................................... 104 

3.5 Results ................................................................................................................... 105 

3.5.1 Overeducation and Undereducation Wage Penalty During the Early Career. 105 

3.5.2 Overeducation and Undereducation Wage Penalty One and Five Years After 

Graduation............................................................................................................... 110 

3.6 Conclusion ............................................................................................................ 113 

References ....................................................................................................................... 121 

Appendix A. Appendix to Chapter 1 .............................................................................. 127 

Appendix B. Appendix to Chapter 2............................................................................... 148 

Appendix C. Appendix to Chapter 3............................................................................... 164 

 

 

 

 



viii 

 

List of Tables 

Table 1.1: Sample Selection Criteria ................................................................................ 41 

Table 1.2: Distribution of Skill Mismatch Index by Other Mismatch Measures.............. 42 

Table 1.3: Mismatch Examples of Select Worker-Occupation Pairs in the NLSY97 ...... 43 

Table 1.4: Means and Standard Deviations of Variables Used in Wage Regressions ...... 44 

Table 1.5: Coefficient Estimates for Mismatch Variables for Alternative Specifications, 

by Gender .......................................................................................................................... 48 

Table 1.6 Coefficient Estimates for Over/ Under Skill Mismatch Index and Subject-

Specific Skill Mismatch Index .......................................................................................... 49 

Table 1.7: Coefficient Estimates for Skill Mismatch Index, by Gender, for Cross-

Sectional Samples ............................................................................................................. 50 

Table 2.1: Means and Standard Deviations of Variables Used in Wage Regressions ...... 82 

Table 2.2: Distribution of STEM Measures by Gender .................................................... 84 

Table 2.3: Mean and Standard Deviation of Log-wage by STEM Definition by Gender 85 

Table 2.4: Estimated STEM Wage Premium .................................................................... 86 

Table 3.1: Means and Standard Deviations of Variables Used in Wage Regressions .... 116 

Table 3.2: Occupation and Major Distribution for Overeducated, Undereducated and 

Correctly Educated Workers, by Gender ........................................................................ 117 

Table 3.3: Coefficient Estimates for Overeducation and Undereducation for Men During 

the Early Career .............................................................................................................. 118 

Table 3.4: Coefficient Estimates for Overeducation and Undereducation for Women 

During the Early Career .................................................................................................. 119 

Table 3.5: Coefficient Estimates for Overeducation and Undereducation, One and Five 

Years After Graduation  .................................................................................................. 120 

Table A.1: List of Knowledge Categories in O*NET..................................................... 128 

Table A.2: List of O*NET Knowledge Categories and Scale Anchors for the High Level 

Scores .............................................................................................................................. 131 

Table A.3: Relating O*NET Knowledge Groups to NLSY97 Subject Areas ................ 132 

Table A.4: Five General Knowledge Dimensions used to construct Subject-Specific Skill 

Mismatch Index .............................................................................................................. 135 



ix 

 

Table A.5: Level of Education Categories in O*NET .................................................... 137 

Table A.6: Estimates Not Reported in Table 1.5 ............................................................ 138 

Table A.7: Estimates Not Reported in Table 1.6 ............................................................ 142 

Table A.8: Estimates Not Reported in Table 1.7 ............................................................ 145 

Table B.1: Estimates Not Reported in Table 2.4, NCES List ......................................... 149 

Table B.2: Estimates Not Reported in Table 2.4, ICE List ............................................. 154 

Table B.3: Estimates Not Reported in Table 2.4, NSF List ............................................ 159 

Table C.1: NLSY79 and NLSY97 Major Groupings ..................................................... 165 

Table C.2: Estimates Not Reported in Table 3.3 ............................................................ 168 

Table C.3: Estimates Not Reported in Table 3.4 ............................................................ 171 

Table C.4: Estimates Not Reported in Table 3.5, Men ................................................... 174 

Table C.5: Estimates Not Reported in Table 3.5, Women.............................................. 176 

 

 

 

 



1 

 

Chapter 1. Multidimensional Skill Mismatch among College Graduates 

1.1 Introduction  

Beginning with the works of Burdett (1978), Johnson (1978), Jovanovic (1979 a, b), and 

Mortensen and Pissarides (1994), job matching theory plays an essential role in 

understanding earnings differences among workers.  Match quality—defined as an 

idiosyncratic factor that uniquely determines worker productivity and, in turn, wages in a 

given job—is a widely-accepted theoretical concept, but no consensus exists on how to 

operationalize the concept empirically. Existing empirical studies have focused on 

empirical comparisons of educational attainment and educational job requirements; for 

example, Duncan and Hoffman (1981), Verdugo and Verdugo (1989), and Clark et al. 

(2017) examine differences in years of schooling or degree completed by the worker and 

years of schooling or degree required for his/her job, while Abel and Deitz (2015) and 

Robst (2007a) examine the relatedness of the worker’s field of study (college major) and 

his/her occupation. Each study in this empirical literature focuses on identifying the wage 

penalty associated with the measure of mismatch, as predicted by theory.  

In this chapter, I use data for a sample of college graduates from the 1997 

National Longitudinal Survey of Youth (NLSY97) to develop a novel empirical measure 

of mismatch. The measure proposed in this chapter is the distance between a vector of 

skills acquired in college and a vector of skills required in the post-college occupation. In 



2 

 

measuring worker skill, I depart from the convention of using degree or college major 

and instead use detailed information on college coursework. Specifically, I define the 

skill acquired in each subject (e.g. mathematics, language) based on the college credit 

hours earned by the worker in that subject.  In measuring occupational skill requirements 

(for the employer side of the match), I depart from the convention of using occupation 

and instead use data from Occupational Information Network (O*NET) to identify the 

depth of knowledge required in each subject area. My “skill mismatch index” is a single 

measure of the distance between skills acquired and skills required in several skill areas. 

The main advantage of the skill mismatch index over existing measures is that it 

measures mismatch in multiple skill dimensions and on a continuum. In contrast, 

measures that use degree or college major to define skill implicitly assume skill is 

homogeneous among workers who, for example, have the same degree or college major.  

I use the skill mismatch index to reexamine (and extend) the questions that are at 

the heart of this literature: What is the wage penalty associated with mismatch? Does the 

wage penalty associated with mismatch depend on whether the worker is over-skilled or 

under-skilled for his/her occupation? Does the wage penalty associated with mismatch 

vary across skills? Do the findings differ for men and women? To assess the value of this 

new measure, I also investigate how the skill mismatch index compares to existing 

mismatch measures that are based on comparing worker’s schooling/degree or major with 

their occupation.  

The analysis consists of the following steps. First, I compare my skill mismatch 

index (separately for men and women) with existing measures of mismatch. This 
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exploration reveals considerable variation in the skill mismatch index among workers 

classified as matched or mismatched based on existing measures.  Second, I estimate log-

wage models (separately for men and women) in which the key regressor is the skill 

mismatch index. I also explore flexible forms of the skill mismatch index, by 

differentiating over-skilling and under-skilling (i.e., dropping the restriction that 

comparable positive and negative values of the skill mismatch index have wage effects 

that are equal in magnitude but opposite in sign) and examining the skill mismatch effect 

across specific skills (i.e., dropping the assumption that mismatch parameters are 

identical for all skill areas). I estimate these models separately for men and women due to 

well-known gender differences in education and occupation.1 I estimate the models for 

the entire post-graduation period available in the data, as well as for two different cross-

sections (one and five years after graduation) to determine whether the results change 

over time. Third, I introduce alternative log-wage model specifications in which existing 

mismatch measures replace the skill mismatch index and systematically compare the 

performance of each measure.  

 

1.2 Literature Review  

Until recently, the empirical literature on worker-job match or mismatch consisted of two 

types of studies.  In the first type, mismatch is based on a one-dimensional comparison of 

                                                 
1 Several studies touch on gender differences in education and/or occupation. For example, Daymont and 

Andrisani 1984 find that preferences for occupational roles and majors account for a substantial proportion 

of the gender earnings gap. Zafar 2013 examines determinants of college major choice but also notes 

gender differences in preferences in the workplace. Sicherman 1996 notes gender differences in reasons for 

changing jobs. Cortes and Pan 2018 examine the relationship between occupational characteristics and 

gender differences in both occupational choice and wages. 
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a worker’s years of schooling or highest degree to the amount required by his/her 

occupations.  These studies compare labor market outcomes for workers who are 

overeducated (meaning years of schooling or highest degree exceeds what the occupation 

requires) and undereducated (meaning years of schooling or highest degree is less than 

what the occupation requires). In the second type of study, mismatch is based on a one-

dimensional comparison of college major (field of study) to occupation.  Such studies 

typically examine wage effects associated with major mismatch, meaning the worker’s 

college major is not closely related to his occupation.2 

Focusing first on the overeducation/undereducation approach, findings tend to be 

consistent across studies. Duncan and Hoffman (1981) and Verdugo and Verdugo (1989) 

establish the common estimation strategy used in the literature. Duncan and Hoffman 

(1981) find that the estimated effect on log-wages of one year of overeducation (0.029) is 

significantly lower than the estimated effect of a required year of schooling (0.063); 

while overeducated workers earn more than their coworkers, they face a wage penalty 

because their wages are lower than workers with the same level of schooling in jobs 

requiring their level of schooling. Verdugo and Verdugo (1989) estimate a log-wage 

penalty of 13% for overeducated workers compared to non-overeducated workers with 

identical schooling levels.  This finding is consistent with the theoretical expectation that 

lower match quality results in lower wages.  

                                                 
2 Examples of overeducation/undereducation studies include Duncan and Hoffman 1981; Rumberger 1987; Hartog and 

Oosterbeek 1988; Verdugo and Verdugo 1989; Alba-Ramirez 1993; Groot 1993; Robst 1995; Groot 1996; Kiker et al. 

1997; Dolton and Vignoles 2000; Groot and Maassen van den Brink 2000; Rubb 2003a; Rubb 2003b; Rubb 2003c; 

Groeneveld and Hartog 2004; Rubb 2006; Dolton and Silles 2008; Herrera-Idarraga et al. 2010; Clark et al. 2014. 

Examples of studies that incorporate major into mismatch include Frenette 2004; Robst 2007a; Robst 2007b; Robst 

2008; Freeman and Hirsch 2008; Ortiz and Kucel 2008; Boudarbat and Chernoff 2010; Nordin et al. 2010; Roksa and 

Levey 2010; Abel and Deitz 2015. 
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Subsequent studies extend the analysis by examining the career dynamics or 

mobility of overeducated workers (Clark et al. 2017; Sicherman 1991), characterizing 

workers who are overeducated (Clark et al. 2017), using differing methods to define 

occupational education requirements (Alba-Ramirez 1993; Chevalier 2003; Rumberger 

1987), comparing results across studies (Groot and Maassen van den Brink 2000; Hartog 

2000), and linking empirical findings to theoretical expectations (Leuven and Oosterbeek 

2011).  Many of these studies also examine the wage effects of undereducation. 

Sicherman (1991), for example, finds that undereducated workers receive a log-wage 

premium (0.072) relative to workers who are not undereducated or overeducated, and 

argues that these workers compensate for their lack of education with unobserved 

experience or skills.  

In the college major approach (Abel and Deitz 2015; Robst 2007a, 2007b, 2008), 

a mismatch is defined when the worker’s field of study does not closely relate to his 

occupation.  Robst (2007a, 2007b, 2008) identifies mismatch using data from the 

National Survey of College Graduates, where workers self-reported the extent to which 

their work relates to their highest degree field.  He finds that mismatched workers earn 

less than their matched counterparts (where the estimated log-wage penalty of 0.119 

reported in Robst (2007a) is a typical finding) and that this wage penalty is greater in 

majors that provide relatively more occupation-specific skills (e.g., business 

management, engineering, health professions) (Robst 2007a).   

Abel and Dietz (2015) also study major mismatch, but instead of using workers’ 

self-reported assessments they rely on a list published by the National Center for 
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Education Statistics (U.S. Department of Education) that links majors to their related 

occupations. They find that workers with a “correct” major-occupation match can expect 

to receive a log-wage benefit of 0.054. Additional studies have examined other features 

related to major mismatch: Boudarbat and Chernoff (2010) and Frenette (2004) study 

major as a determinant of mismatch, Ortiz and Kucel (2008) examine majors among 

overeducated workers, Roksa and Levey (2010) focus on occupational growth, and 

Freeman and Hirsch (2008) link majors and knowledge content of occupations in the 

market. 

Two recent studies depart from the approaches described above, and closely relate 

to the current chapter.  Hadavand et al. (2019) use college transcript data in the NLSY97 

to identify the number of “relevant” courses completed by each respondent, where 

“relevant” means the course was in a subject area listed by O*NET as being related to the 

respondent’s occupation; “number of relevant courses” serves as their (continuous) 

measure of match quality.  The authors insert this match quality measure into a standard, 

Mincer log-wage regression and find that each additional relevant course taken by the 

worker is associated with a wage increase of approximately seven percent. While 

Hadavand et al. (2019) introduce a valuable innovation by measuring the quantity of 

relevant skill acquired, the current chapter introduces an additional innovation by 

measuring the discrepancy between a coursework-based skill measure and occupational 

skill requirements.  

In the second recent study referred to above, Guvenen et al. (2018) measure skill 

mismatch by examining the gap in worker ability (using cognitive and noncognitive test 
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scores available in the 1979 cohort of the National Longitudinal Survey of Youth) and 

skills required for their occupation (characterized by O*NET occupation-specific skill 

descriptors).  They focus on three aggregate skill areas: mathematics/quantitative, verbal, 

and social. The authors find that poorly matched workers earn lower wages, even many 

years after they have left the occupation; for example, wages are predicted to be 2.05% 

lower for workers whose mismatch is one standard deviation above the mean relative to 

those at the mean. The current chapter is similar to Guvenen et al. (2018) in that it 

measures the discrepancy between skills acquired and skills required, using multiple skill 

areas. However, in contrast to the three aggregate skills used by Guvenen et al. (2018), 

the current study uses 30 knowledge dimensions (ranging from mathematics to 

management to biology).  Moreover, the method used to measure the skills levels differs:  

Guvenen et al. (2018) rely on aptitude tests, while the current study utilizes college 

coursework. Also, Guvenen et al. (2018) use factor loadings to weight each skill, while 

weights derived from O*NET data (described in section 1.3.2) are used in the current 

chapter. 

Many of the studies discussed above restrict their samples to men (e.g., Guvenen 

et al. 2018; Sicherman 1991; Verdugo and Verdugo 1989), although several also examine 

women (e.g., Dolton and Silles, 2001; Dolton and Vignoles, 2000; Groot, 1996). When 

including both genders, a common approach is to separate men and women in the 

regression analysis. For example, in the overeducation/undereducation literature, Duncan 

and Hoffman (1981) separate their sample into four race-sex sub groups, noting that the 

estimated return to a year of overeducation is nearly twice as high for white women 
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(0.052) as for white men (0.029). In the major mismatch literature, Robst (2007a) points 

out that there are substantial differences between men and women in major and career 

choice as well as reasons for accepting a position outside the major; the estimated wage 

penalty associated with working in a field not related to their degree (“major mismatch”) 

is smaller for women (-0.101) than for men (-0.119). Other studies pool men and women 

but control for gender in the regression analysis, such as Clark et al. (2017) in the 

overeducation/undereducation literature and Abel and Deitz (2015) in the major 

mismatch literature. Clark et al. (2017) argue that women may value non-financial factors 

(proximity to home, flexibility in working hours, etc.) that are typically associated with 

lower job requirements.  

 

1.3 Data  

My primary data source is the 1997 National Longitudinal Survey of Youth (NLSY97). 

The NLSY97 began in 1997 with 8,894 respondents (51.2% male) born between 1980 

and 1984. Respondents were interviewed annually from 1997 to 2011 and biennially 

from 2013 onward. Data are currently available through the round conducted in 2015-

2016.  

The NLSY97 provides detailed information on the education and employment 

experiences of respondents. Two features of the data allow for the construction of the 

skill mismatch index. First, college transcript data are available for many respondents 

who attended post-secondary institutions. This information was collected by the Post-

Secondary Transcript Study (PSTRAN) in 2012-2013; post-secondary transcripts were 
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obtained from universities attended by respondents who signed a waiver. The coursework 

data in the college transcripts are critical to the construction of the skill mismatch index. 

Second, the data contain detailed job histories of respondents, including occupation codes 

for jobs held. These occupation codes can be linked to data from the Occupation 

Information Network (O*NET), a database sponsored by the U.S. Department of Labor 

which contains occupation-specific descriptors that I use to measure the skills required 

for an occupation.  

 

1.3.1 Sample Selection Criteria  

Table 1.1 contains an overview of the sample selection criteria that I impose. I begin the 

sample selection for this analysis by restricting the sample to 2,354 respondents in the 

NLSY97 who have earned a bachelor’s degree. I also exclude respondents who do not 

have Armed Services Vocational Aptitude Battery (ASVAB) scores available.  The 

ASVAB is an aptitude test administered in 1997 to the respondents in the NLSY97; in 

this chapter, it serves as a measure of pre-college aptitude (see section 1.3.3 for details). 

Next, I exclude respondents who do not have college transcripts collected by the 

PSTRAN study.  The data do not indicate if all the respondent’s transcripts were 

collected so I drop respondents who appear to have incomplete transcript data, which I 

define as fewer than 15 credit-adjusted courses.3 The remaining sample contains 1,354 

respondents.  

                                                 
3 Credit-adjusted courses is total credit hours divided by the modal number of credit hours earned by the respondent at 

that university; this adjustment addresses the fact that universities may assign differing credit hours for the same 

course. 
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For the 1,354 respondents in the sample, I keep only post-college wage 

observations. My goal is to focus on terminal bachelor’s degree recipients. To contend 

with graduate school enrollment, I terminate the observation period when an individual 

re-enrolls in school for a period of at least three months. I delete wage observations if the 

average hourly wage is not between $0.50 and $250 per hour. This is done because the 

average hourly wage is computed by NLSY97 staff (using a procedure based on usual 

wage, time unit of pay, and usual hours worked), which can lead to extremely low and 

extremely high values. Observations that lack a 2002 Census occupation code, which 

indicates the respondent’s occupation/profession, are deleted because this information is 

needed to link the O*NET database. Lastly, I delete observations that have a valid 2002 

Census occupation code but do not have a corresponding entry in the O*NET database, 

because the occupational descriptors from the O*NET database are needed to construct 

the skill mismatch index. The final sample consists of 11,270 wage observations for 

1,313 respondents. There are 6,637 observations for 755 women and 4,633 observations 

for 558 are men. All observations are for wages earned within roughly 15 years of the 

respondent’s college graduation date. 

I also examine two cross-sections of the “panel data” sample described in the 

previous paragraph. To select the first cross-section, I select the wage observation that 

occurs within three months of the one-year mark after the respondent received his or her 

bachelor’s degree; if multiple observations qualify, then the one with the highest hours 

per week is used.  There are 558 men and 755 women in this cross-section. The second 

cross-section is constructed similarly, but tied to the five-year mark after college 
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graduation. Not all respondents are observed several years after graduation, so there are 

only 375 men and 490 women in this five-year cross-section.4  

 

1.3.2 Mismatch Variables  

In this subsection, I explain how NLSY97 and O*NET data are used to construct the skill 

mismatch index. I also describe the construction of over/undereducation and major 

mismatch measures, which are two previously developed measures of mismatch that I use 

for comparison.  

 

Skill mismatch index:  

The purpose of the skill mismatch index is to measure the disparity between skills 

required by the occupation and skills acquired by the worker for multiple skill 

dimensions. To identify the skill requirements of each occupation I use O*NET, a 

database that contains occupational descriptors for almost 1,000 occupations in the 2017 

release (version 22.1). For each occupation, O*NET provides “level scores” and 

“importance scores” for over 30 different knowledge dimensions (mathematics, 

education, etc.; see table A.1 for complete list). Level scores represent the depth (or 

amount) of knowledge required in a given dimension for the occupation, while 

                                                 
4 I select five years after graduation because the majority of respondents are observed at this milestone. Compared to 

the sample of respondents who have data five years after graduation, the sample is only 6.3% larger if I select four 

years after graduation, and more than 12% smaller if I select six years after graduation. 
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importance scores reflect how important knowledge in a given dimension is to the 

occupation.5 Both level and importance scores range from 0 to 100. 6 

I use a crosswalk to link the 2002 Census occupation codes associated with the 

11,270 wage observations in the NLSY97 sample to the Standard Occupational System 

(O*NET-SOC) codes in the O*NET database. Thus, for each wage observation, there is 

an associated level score and importance score for 30 knowledge dimensions.7 In cases 

where multiple O*NET-SOC codes map to a single 2002 Census code, I use the average 

level scores across the O*NET-SOC occupations. For comparability with the worker skill 

measure described below, I use the level score’s percentile rank in the sample distribution 

(for each knowledge dimension) as my measure of occupation skill requirements. 

To identify the skills acquired by workers, I use respondents’ college coursework 

data from the NLSY97. The NLSY97 used the 2010 College Course Map (CCM), a 

taxonomy system for coding post-secondary education courses developed by the National 

Center for Education Statistics (NCES), to code the transcripts collected by PSTRAN; 

                                                 
5 The O*NET website states “while the same skill can be important for a variety of occupations, the amount or level of 

the skill needed in those occupations can differ dramatically.” For example, occupations “Lodging Managers” and 

“Materials Science” have an importance score of 82 for the knowledge dimension “Mathematics;” this suggests that 

mathematics has a similar degree of importance in both occupations. However, Materials Science has a level score of 

83 in mathematics while Lodging Managers has a level score of 56; this suggests that the depth of knowledge required 

in mathematics is substantially higher for Materials Science. Thus, while Lodging Managers only require a moderate 

level of mathematics knowledge (enough training to manage financial activities), this knowledge is used heavily in the 

occupation. 
6 The level scores are constructed using responses from a survey fielded by O*NET. For all knowledge descriptors, 

respondents of the O*NET questionnaire are asked, for example, "what level of Economics and Accounting knowledge 

is needed to perform your current job?" Respondents are provided with scale anchors to guide them in scoring their 

occupations (see table A.2 for scale anchors). For example, in the knowledge descriptor Economics and Accounting, a 

level score ranging from 43-69 is associated with the ability to "develop financial investment programs for individual 

clients" and a score greater than 70 is associated with the ability to "keep a major corporation's financial records." 
7 The O*NET database contains information on 33 knowledge categories. However, I drop the “Clerical,” “Customer 

and Personal Service,” and “Personnel and Human Resources” categories as there are no corresponding coursework or 

subject areas, suggesting that college graduates would not be able to develop these skills in college through their 

coursework. 



13 

 

this allows subject areas and courses taken by respondents to be comparable across 

institutions.8  Because the subject areas used in the CCM taxonomy differ from the 30 

knowledge dimensions defined by O*NET, I map the former into the latter using a 

crosswalk I devised (see table A.3). For each knowledge dimension, I sum the total credit 

hours earned by the respondent and identify the percentile rank of that total in the sample 

distribution. This is my measure of worker skill in each knowledge dimension. 

I define the skill mismatch index as the sum over knowledge areas of the absolute 

value of the difference between the credit hour percentile rank and the level score 

percentile rank, weighted by the (normalized) importance score percentile rank. Letting 

𝑃𝐿j,k, 𝑃𝐶𝑖,𝑘, and 𝑃𝐼j,k represent the percentile ranks of the level score, credit hours, and 

importance score for occupation j, individual i, and knowledge dimension k, the skill 

mismatch index is defined as follows:  

𝑀𝑖,𝑗 =  ∑
𝑃𝐼j,k

∑ 𝑃𝐼j,k
30
𝑘=1

∗ |𝑃𝐶𝑖,k − 𝑃𝐿𝑗,k| 

30

𝑘=1

. 

Using the weight (
𝑃𝐼j,k

∑ 𝑃𝐼j,k
30
𝑘=1

 ) allows for knowledge areas that are more important to the 

occupation to have a higher weight in the average and thus contribute more to the skill 

mismatch index.9 The closer the skill mismatch index is to “0,” the better matched the 

worker's skills are to his occupation's skill requirements.  

                                                 
8 For example, courses related to financial mathematics are coded as “27.0305,” where the “27” indicates that it is a 

mathematics course. 
9 For example, if mathematics is important to the occupation but fine arts is not, then the discrepancy in the worker’s 

fine arts skills and the occupation’s fine arts skill requirements will have minimal influence on the skill mismatch 

index. 
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Over- and Under-Skill Mismatch Index: Because the skill mismatch index defined 

above is based on the absolute value of the difference between the percentile ranks of 

level score and credit hours, it does not distinguish between cases where skills are greater 

than what is required and cases where skills are less than what is required. This 

distinction may capture key differences in the direction of the mismatch; over-skilling 

may reflect excess, underutilized skills that have no place in a job with low skill 

requirements while under-skilling may reflect deficiencies in skills in a job with high 

skill requirements. Not examining differences in over- and under-skill mismatch is akin 

to grouping overeducation and undereducation together into a single mismatch category. 

Thus, I drop the restriction in the skill mismatch index that over-skilling and under-

skilling have equal (in magnitude) effects, and instead decompose the skill mismatch 

index into an over-skill mismatch index and an under-skill mismatch index: 

𝑀𝑖,𝑗
𝑂𝑣𝑒𝑟 =  ∑

𝑃𝐼j,k

∑ 𝑃𝐼j,k𝑘∈𝐾1𝑖𝑗

∗ 𝑀𝑎𝑥[𝑃𝐶𝑖,k − 𝑃𝐿𝑗,k, 0]

𝑘∈𝐾1𝑖,𝑗

 

𝑀𝑖,𝑗
𝑈𝑛𝑑𝑒𝑟 =  ∑

𝑃𝐼j,k

∑ 𝑃𝐼j,k𝑘∈𝐾2𝑖𝑗

∗ 𝑀𝑎𝑥[𝑃𝐿𝑗,k − 𝑃𝐶𝑖,k, 0]

𝑘∈𝐾2𝑖𝑗

 

Elements of the over (under) skill mismatch index are non-zero for knowledge 

dimensions where the credit hour percentile rank is greater (less) than the level score 

percentile rank, suggesting that the worker has greater (less) skill than what is required 

for his occupation. The over and under skill mismatch indexes are constructed in the 

same manner as the skill mismatch index, but use only the relevant subset of knowledge 

areas; i.e., 𝐾1𝑖𝑗 is the set of knowledge areas the respondent is over-skilled and 𝐾2𝑖𝑗 is the 
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set of knowledge areas the respondent is under-skilled. These refined indexes are 

convenient for identifying different wage effects of over-skill and under-skill. 

Subject-Specific Skill Mismatch Index: I also decompose the skill mismatch index 

into four separate measures that reflect skill mismatch in specific knowledge areas (k). 

Although the skill mismatch index has the advantage of being based on a wide range of 

skills, it does not distinguish whether mismatches in certain skill areas have a greater 

impact on wages than do mismatches in other skill areas. To address this issue, I drop the 

assumption that the skill mismatch parameter is constant across skill areas by replacing it 

with subject-specific skill mismatch indexes. This decomposition is important because it 

allows us to understand if there are specific skill areas that drive the wage effects of the 

skill mismatch index. To do this, I begin by aggregating information on workers' 

knowledge acquired and occupation knowledge requirements into four categories: (1) 

management and communications, (2) science, engineering, technology and mathematics 

(STEM), (3) arts and humanities, and (4) social sciences. Table A.4 provides a complete 

list of subject areas that fall into each of these four categories. The subject-specific skill 

mismatch indexes are constructed in the same manner as the skill mismatch index but 

only use the relevant subset of the K=30 knowledge areas.  

Overeducation and Undereducation: I define overeducation (undereducation) as 

a mismatch that occurs when the worker's highest degree is greater than (less than) what 

is required by his occupation. To identify the degree required for each occupation, I use a 

descriptor from O*NET that indicates the level of education necessary for the occupation. 

Table A.5 lists the education categories given by O*NET. Following a method similar to 
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Abel and Deitz (2015), I collapse them into three categories: less than a bachelor’s 

degree, bachelor’s degree, or greater than a bachelor’s degree.10 In my sample, 55% of 

men and 56% of women are overeducated while 11% of men and 16% of women are 

undereducated. 

Major Mismatch: Following Abel and Deitz (2015), I define major mismatch 

using a crosswalk developed by the NCES that links Standard Occupational 

Classification (SOC) codes to Classification of Instructional Programs (CIP) codes.11 A 

respondent has a major mismatch if his major is not associated with his occupation; i.e., 

the respondent’s major is not linked to the respondent’s occupation in the crosswalk.12 In 

the sample for this study, 73% of men and 76% of women have a major mismatch; these 

rates are similar to Abel and Deitz, 2015, who report that 73% of their sample has a 

major mismatch. 

 

1.3.3 Other Variables  

The dependent variable used in the analysis is the log of the average hourly wage, CPI-U 

deflated to 2006 dollars. In addition to the mismatch variable described in 1.3.2, I use a 

rich set of baseline controls:  The pre-college variables in the baseline controls include 

dummies that indicate if the respondent is black and Hispanic, as well as mother’s highest 

                                                 
10 Other methods for defining required education were tested, including using mean and mode level of education based 

on a national sample (CPS) as well as the corollary years of schooling. Ultimately, the Abel and Deitz (2015) criterion 

was implemented as it explained greater variation in log-wages than these other methods. 
11 The CIP taxonomy can be converted to the CCM taxonomy used in the NLSY97. The SOC taxonomy can be 

converted to the Census 2002 occupation codes used in the NLSY97. In the case where, say, multiple occupations in 

the SOC taxonomy (with differing lists of associated majors) map to a single occupation in the Census 2002, the 

associated major is only counted if at least 50% of the SOC occupations are associated with the major. 
12 The major-to-occupation associations are not mutually exclusive so it is possible for several occupations to be 

associated with the same major and several majors to be associated with the same occupation.  
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grade completed, mother’s employment status when the respondent was 16 years old, an 

indicator that the respondent’s primary language was English in 1997, and dummies that 

indicate family structure when the respondent was 16 years old (lived with both parents, 

lived only with mother, lived with mother and her partner, lived only with father, or 

other). I also include the 12 ASVAB sub-test scores. The ASVAB is a 12-part aptitude 

test that was administered to NLSY97 respondents in 1997-1998.13 The respondent’s 

final scores were scaled by the NLSY97 staff using item response theory and these scores 

capture multiple dimensions of the respondent’s pre-college ability. 

The in-college variables in the baseline controls include college grade point 

average (GPA), which I compute based on grades included in the transcript data), an 

indicator that is one if the respondent completed an Associate’s degree, age at graduation 

(receipt of bachelor’s degree), and years of labor market experience prior to college 

graduation. The post-college variables in the baseline controls include dummies that 

indicate if the respondent is married, cohabiting, residing in the South, residing in the 

West, residing in the Northeast, and residing in an urban area, as well as calendar year 

dummies, years of labor market experience after college graduation and its square, tenure 

and its square, and hours of work per week14; all the post-college variables are time-

varying.  

 

                                                 
13 The 12 sub-tests include general science, arithmetic reasoning, word knowledge, paragraph comprehension, 

mathematics knowledge, electronics information, auto information, shop information, mechanical comprehension, 

assembling objects, numerical operations, and coding speed. 
14 Hours of work per week is the number of hours worked per week at the time of the interview (or at the job's stop date 

if the respondent is no longer in that job at the time of the interview). 
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1.3.4 Descriptive Statistics of the Skill Mismatch Index  

In this section, I describe how the skill mismatch index relates to the 

overeducation/undereducation and major mismatch variables. I supplement this 

discussion by providing examples of the mismatch variables from the data. Following 

this, I examine the dependent variable and baseline controls for the entire sample as well 

as for subsamples defined by low and high skill mismatch values. 

In order to understand how the new measure constructed in this paper relates to 

existing measures, table 1.2 presents the distribution of the skill mismatch index for 

workers who are overeducated, correctly educated, and undereducated and workers with 

a major mismatch and major match. The mean skill mismatch for correctly educated 

workers (18.8 for men and 20.6 for women) is significantly lower than that of 

overeducated workers (27.0 for men and 26.0 for women) and similar-to that of 

undereducated workers (18.2 for men and 19.7 for women). The differences between 

overeducated and correctly educated workers is consistent with the fact that both 

overeducation and high skill mismatch indicate workers are not well matched with their 

occupation. However, the data also suggest that there may be differences in the level of 

mismatch among workers who are broadly categorized as overeducated. This is clearly 

seen in the spread of the skill mismatch index for overeducated workers:  the standard 

deviation is 10.4 for men and 9.7 for women, which is slightly greater than the standard 

deviation for the gender-specific samples.  Moreover, we see a minimum skill mismatch 

value of 6.5 (4.9) for an overeducated man (woman) and a maximum level of 60.0 (66.7) 

for a correctly educated man (woman). This suggests that some overeducated workers 
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develop skills necessary for their occupation (reflected in a low skill mismatch) and that 

there are correctly educated workers who lack skills necessary for their occupation 

(reflected in a high skill mismatch).  

The most surprising result of table 1.2 is how similar the skill mismatch index is 

for undereducated and correctly educated workers. The mean skill mismatch levels for 

these two groups of workers (18.2 vs. 18.8) are not significantly different from one 

another for men; for women, the mean values (19.7 vs. 20.6) are significantly different 

from one another, but the difference is small in magnitude. Because undereducation is a 

status of mismatch, we expect undereducated workers to have a higher mean skill 

mismatch than correctly educated workers. Since this is not the case, it is possible that for 

undereducated workers, the skill mismatch index reflects a previously unobserved 

element of the worker-occupation match. It could either be that, on average, these 

workers develop skills valued in their occupation despite not having a high enough 

degree to meet their occupations’ qualifications or that, despite the higher degree 

requirements, these occupations are actually similar to occupation’s requiring only 

bachelor’s degree (as seen with the similar skill requirements).  

Table 1.2 also provides the skill mismatch distribution of workers with a major 

match and major mismatch. Unsurprisingly, the mean skill mismatch is significantly 

higher for workers with a major mismatch (24.6 for men and 24.4 for women) compared 

to those with a major match (19.5 for men and 21.1 for women). However, within the 

major mismatch and major match categories, there is variation in the skill mismatch 

index that demonstrate differences among workers who fall into each category. There are 
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workers with a major match but a high skill mismatch (e.g., the maximum skill mismatch 

for workers with a major match is 54.7 for men and 49.2 for women) and workers with a 

major mismatch but a low skill mismatch (e.g., the minimum skill mismatch for workers 

with a major mismatch is 5.6 for men and 4.9 for women). Thus, table 1.2 illustrates that 

the implicit assumption of these categorical measures (that mismatch is homogenous 

among workers with the same degree or major) does not hold in the current sample. 

 Lastly, table 1.2 allows for comparisons between men and women. The mean 

skill mismatch for overeducated and major mismatched men is similar to that of women 

in the respective category; however, the mean skill mismatch for undereducated, 

correctly educated, and major matched men is significantly lower than that of women in 

the respective category. It appears that gender differences in the skill mismatch index 

primarily manifest when the other empirical measures indicate the worker is well-

matched to their occupation. Although there are significant differences between the 

genders, it is interesting to note that the magnitude of the difference is consistently small. 

Overall, the trends in table 1.2 not only show a link between skill mismatch and the other 

mismatch variables, but also that other mismatch variables suppress important variation 

in workers skill mismatch. 

To supplement the discussion in table 1.2, in table 1.3 I provide empirical 

examples, drawn from my data, for three worker-occupation pairs. For each worker-

occupation pair, I provide information related to the worker-occupation mismatch, 

worker’s college major and coursework, and the occupation’s title and skills. From table 

1.2, we saw that the categorical measures of empirical mismatch suppress differences in 
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skill mismatch among workers within each category. Consider person 1 in table 1.3: this 

worker may not seem well-matched to his job because he has a major mismatch; i.e., he 

majored in Social Sciences, but his occupation is Network and Computer Systems 

Administrator. However, the value of his skill mismatch index is 23.2, which is less than 

the sample mean (24.6, per table 1.2) among men with a major mismatch, suggesting a 

relatively low skill mismatch. This is in part because he earned credit hours outside of his 

major that are required for his occupation (e.g., he completed 9 credit hours in “computer 

and electronics,” a skill area for which his occupation requires a great depth of 

knowledge). This example illustrates the general point that the skill mismatch index 

incorporates training acquired by the respondent that may not be evident when only 

considering a categorical measure such as major or degree. More broadly, if 

overeducation is used to measure mismatch, then the three workers in table 1.3 are 

indistinguishable. If major mismatch is used to measure mismatch, then person 2 and 3 

are indistinguishable. If the skill mismatch index is used to measure mismatch, the three 

workers can be differentiated from each other and thus be ranked to determine who is 

more mismatched. Even differences across respondents who have the same occupation 

and/or the same major can also be captured with the skill mismatch index. This can be 

seen when comparing person 2 to person 3; both have the same occupation and major, but 

different credit hours are earned in the knowledge dimension that require the greatest 

skill – this contributes to the differing skill mismatch index and may assist in explaining 

any wage differences between the two respondents. Overall, table 1.3 shows that the skill 

mismatch index allows for a more refined comparison of mismatch between workers and 
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accounts for skills or components not incorporated in the other measures that impact how 

we assess the match of the worker-occupation pair.  

In table 1.4, I present the mean and standard deviation of the dependent log-wage 

variable and variables from the baseline control. The purpose of this table is to examine 

observable differences between observations with a “high skill mismatch” (above the 

median) and a “low skill mismatch” (below the median). The average ASVAB scores for 

arithmetic reasoning for both genders and mathematics knowledge for women is 

significantly higher for low skill mismatch compared to high skill mismatch workers, 

whereas word knowledge for both genders and paragraph comprehension for women are 

significantly lower for low skill mismatch compared to high skill mismatch workers. 

There are also differences in the family structure variables; for example, a significantly 

higher percentage of high skill mismatch men and women cited living with both parents 

at age 16. The mean hours worked per week and job tenure is lower for high skill 

mismatch workers for both genders. The latter is consistent with the finding in job 

matching theory that mismatched workers are more likely to separate from their job 

sooner (and thus have lower tenure). Most importantly, there is a substantial difference in 

the dependent variable between the two groups which seems to be present for both 

genders. This comparison of the high and low skill mismatch groups demonstrates that 

there are important differences in observables across skill mismatch, although it is 

interesting to note that these differences seem to be consistent across gender. 

 

1.4 Estimation Strategy  
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The method of parameterizing the log-wage model to incorporate an empirical mismatch 

variable is as follows: 

 log(𝑊𝑖𝑗𝑡) = 𝛽0 +  𝛽1𝑀𝑖𝑗+ 𝛽2𝑋𝑖𝑡 +  𝜀𝑖𝑡 +  𝜑𝑖𝑗 (1.1) 

where the dependent variable is the log of the average hourly wage for individual i in 

occupation j at time t, 𝑋𝑖𝑡 is the vector of baseline controls (discussed in 1.3.3),  𝜀𝑖𝑡 is an 

idiosyncratic stochastic shock, and  𝑀𝑖𝑗 is the empirical mismatch variable. It is likely 

that 𝑀𝑖𝑗 does not capture the entirety of the unobservable match quality; thus 𝜑𝑖𝑗 is the 

unobserved component of match quality that is not captured by the observed 𝑀𝑖𝑗. The 

main parameter of interest is 𝛽1, which is expected to be negative because greater 

mismatches reflects lower productivity and, thus, lead to lower wages. Thus, 𝛽1 

represents the estimated mismatch wage penalty.  

A general concern noted in the literature is that the assignment of the education 

acquired by workers, education requirements for occupations, and the worker-occupation 

match quality resulting from the search process is non-random (see Leuven and 

Oosterbeek 2011 for further discussion). For example, Arcidiacono et al. (2012) find 

evidence of pre-college ability sorting across majors.  Arcidiacono (2004) additionally 

notes that preferences for certain occupations play a role in major choice, Fouarge et al. 

(2014) find that economic preferences are related to occupation choice, and Kinsler and 

Pavan (2015) note that workers with higher ability levels may be more likely than others 

to work in related (well-matched) occupations.15 In the current study, it is likely that 

                                                 
15 Although none of these studies are part of the empirical mismatch literature, many of the conclusions and findings in 

these papers relate to concerns that underlie the empirical mismatch literature. 
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unobserved variables, particularly ability and preferences, are correlated with both wages 

and the mismatch variables. Most studies in the empirical mismatch literature do not 

address this endogeneity issue, but there are exceptions: some studies take an 

instrumental variable approach (Korpi and Tahlin 2009 use family background variables 

as instruments and Dolton and Silles 2008 use exogenous changes in the overeducation 

distribution as their instrument) or a fixed effects approach (Lindley and McIntosh 2010 

use individual fixed effects for their panel data). In the current chapter, I estimate 

equation 1.1 using ordinary least squares and a “selection on observables” strategy in 

which I condition on a rich array of individual characteristics (listed in section 1.3.3), 

including measures of pre-college ability (12 ASVAB sub-test scores), a measure of 

academic performance (college grade point average), and family background 

characteristics. Other studies have similarly implemented this approach by conditioning 

on pre-college test scores (or ability) and background/demographic variables that impact 

the demand for and/or choice of schooling to estimate the wage effects across majors or 

other education choices (see Hamermesh and Donald 2008 and Grogger and Eide 1995).  

There are two parts to the empirical analysis. First, I focus on comparing existing 

measures of mismatch to the newly developed skill mismatch index. I begin this part of 

the analysis by considering three alternative measures for 𝑀𝑖𝑗 in equation 1.1. First, I 

insert dummies that indicate if the respondent is overeducated and undereducated in the 

occupation for 𝑀𝑖𝑗.  Second, I insert a dummy that indicates if the respondent has a major 

mismatch for 𝑀𝑖𝑗.  Third, I insert the skill mismatch index as 𝑀𝑖𝑗. After investigating 

numerous functional forms, I found that a linear specification (meaning the relationship 
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between 𝑀𝑖𝑗  and log-wage is constrained to be linear) is sufficiently flexible for 

specifications that include the skill mismatch index.16 All regressions are estimated 

separately for men and women due to gender differences in education and occupation 

choice established in the literature (see section 1.2).  

I compare model quality across specifications using the Akaike Information 

Criterion (AIC). Information criteria measure predictive accuracy, are typically defined 

based on deviance, and are useful in evaluating different models on a common scale 

(Gelman et al., 2014). I use the AIC in this analysis, not only because it is applicable to 

the analytical framework used in the current study, but also because AIC does not require 

any of the models to be true to determine which is comparatively better. The main 

disadvantages of AIC, which are largely inapplicable to this paper, are that it does not 

perform well with large complex models or if the true model is of finite order (Gelman et 

al., 2014). It also tends to overfit models.  

I complete this first part of the analysis by comparing the estimated mismatch 

wage penalties of the different mismatch measures. The purpose of this is to assess if the 

proposed skill mismatch index is a refinement of the other measures, in that it offers 

additional or different insight into the mismatch wage penalty. To supplement this 

comparison, I also estimate an alternative to equation 1.1, where I modify equation 1.1 to 

                                                 
16 The linear specification best reflects the patterns in the data related to the skill mismatch index. The results of the 

Ramsey regression specification error test suggest that a linear functional form is the correct specification. I also 

examined other functional forms. When implementing the quadratic specification, the coefficient estimate was not 

significant. When including a cubic term, the coefficients have conflicting signs and/or are not significant. Further, 

there are no patterns in the data to suggest these polynomial functions are suited for the data. When implementing the 

quartile specification, the parameter estimates are significant with similar marginal effects for quartile 1-3; this suggests 

that the effect is similar at various points of the distribution although there is a higher penalty in quartile 4. The 

logarithmic function also has a significant estimate although there is nothing in the data patterns to suggest that this is a 

better choice.  
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include the overeducation/undereducation dummies, the major mismatch dummy, and the 

skill mismatch index in the same regression; I do this to examine how estimates of the 

empirical mismatch variables change when conditioned on each other. 

In the second part of the analysis, I focus exclusively on the skill mismatch index. 

I begin by examining flexible forms of the skill mismatch index. First, I drop the 

restriction that over-skilling and under-skilling have equal effects.  Instead, I estimate an 

alternative to equation 1.1, where I replace 𝑀𝑖𝑗 with the over and under skill mismatch 

index. Second, I drop the assumption that the skill mismatch parameter is the same for all 

skill areas; I estimate an alternative to equation 1.1, where I replace 𝑀𝑖𝑗 with four 

subject-specific skill mismatch indexes. Lastly, I estimate equation 1.1 for two alternative 

cross-sections of the data, defined one year and five years after college graduation (see 

section 1.3.1). This is done to examine if the estimates remain consistent at different 

points in time. 

 

1.5 Results  

In section 1.5.1, I present estimated log-wage parameters associated with the various 

mismatch variables (overeducation/undereducation, major mismatch, and skill mismatch 

index), and compare both the model fit and coefficient estimates.  This analysis is based 

on gender-specific samples of all post-college wage observations.  In section 1.5.2, I 

focus on the skill mismatch index, and present estimates for the over and under skill 

mismatch index and subject-specific skill mismatch index as well as for two cross-

sections of the data defined one year and five years after graduation.  
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1.5.1 Wage Effects of Overeducation/Undereducation, Major Mismatch, and Skill 

Mismatch Index  

In the first part of the analysis, I identify the wage penalty associated with mismatch, 

investigate how the skill mismatch index compares to existing mismatch measures that 

are based on comparing worker’s schooling/degree or major with their occupation, and 

consider how findings differ for men and women. 

Table 1.5 presents the estimated mismatch wage penalty for the different 

mismatch measures. Column 1 shows that the estimated log-wage penalty associated with 

overeducation and undereducation are, respectively, 0.234 and 0.219 among men.17,18 

The similarity in the overeducation and undereducation coefficient estimates suggests 

that the wage penalty for mismatch (when defined based on degree) is not sensitive to the 

direction of the mismatch. In column 2, I use major mismatch instead of 

overeducation/undereducation to operationalize worker-job mismatch in equation 1.1; the 

estimated log-wage penalty is 0.211 for men.19 The results of column 1 and 2 collectively 

reveal that existing categorical mismatch measures (overeducation/undereducation and 

major mismatch) imply roughly the same predicted wage loss of 0.22 log-points. 

                                                 
17The overeducation estimates in the current study differ from the literature at large; for example, the overeducation 

parameter estimate for men is -0.130 in Verdugo and Verdugo 1989. Earlier studies do not limit their samples to only 

college graduates and use older data as well as differing methods of defining acquired/required education.  
18 Most empirical studies find a wage benefit associated with undereducation (including Verdugo and Verdugo 1989 

and Sicherman 1991); however, the wage penalty found in table 1.5 is consistent with the theoretical expectation that 

mismatches are associated with (lower productivity and thus) lower wages. 
19 The major mismatch estimate in the current study differs from that of other studies; for example, Robst 2007a uses 

workers’ self-reports of the relatedness of their job to their highest degree field and identifies a major mismatch penalty 

of 0.1194.  Earlier studies use differing methods of defining major mismatch and do not limit the sample to bachelor’s 

degree holders. 



28 

 

For column 3, I estimate equation 1.1 using the skill mismatch index to reflect 

worker-job mismatch; the estimated coefficient for the skill mismatch index is -0.011 for 

men. Thus, an index of 10 is associated with a predicted wage penalty of 0.11 log-points. 

Because the standard deviation of the skill mismatch index is 10.00 (table 1.2), an 

incremental change of 10 in the index and the subsequent estimated wage penalty of 0.11 

is substantial. Further, because the estimated wage penalty for 

overeducation/undereducation and major mismatch is roughly 0.22 log-points, a skill 

mismatch index of 20 (equivalent to two standard deviations) is needed to estimate the 

same wage loss. An index of 20 is also similar to the median skill mismatch index (table 

1.2); this suggests that the overeducation/undereducation and major mismatch variables 

measure the middle of the skill mismatch distribution, but because these measures are 

categorical, they suppress interesting variation in the wage penalties of workers with 

differing degrees of mismatch. For example, workers at the median of the skill mismatch 

index distribution (index of 21.8) shifting to the 10th percentile (index of 9.5) experience 

about a 0.135 lower log-wage penalty while those shifting to the 90th percentile (index of 

42.5) experience an additional 0.228 log-wage penalty; while the categorical measures 

capture the wage penalty at the median, they will not capture these other differences. 

Table 1.5 reveals that many of these patterns are present for women, although 

there are several important differences between men and women. First, the magnitude of 

the estimated mismatch wage penalty is substantially higher (roughly 1.5 to 2.5 times) for 

men compared to women regardless of the measure of mismatch. Other studies (including 

Clark et al. 2017 and Robst 2007b) have noted that non-pecuniary factors, such as 
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flexible working hours, proximity to home, or child care, play a stronger role in the 

choice of jobs for women that may lead to gender differences in matching and, thus, 

differences in the subsequent wage penalty. Second, for women, the coefficient estimates 

in column 1 for overeducation (-0.124) differs from that of undereducation (-0.092); thus, 

the direction of the mismatch, when defined based on degree, matters more for women 

than it does for men. Third, although men and women have similar skill mismatch index 

distributions (e.g., the standard deviation is 9.06 for women and 10.00 for men), women 

have a substantially lower estimated wage penalty associated with the skill mismatch 

index (0.007 vs. 0.011 for men). Thus, there is a 0.12 predicted log point difference in 

wages for women who are one standard deviation below the mean compared to women 

who are one standard deviation above the mean; this is lower than the comparable 0.22 

finding for men discussed in the previous paragraph. The similarities in the dispersion of 

skill mismatches but differences in the wage penalty across gender suggests that 

estimates based off the overeducation/undereducation and major mismatch measures 

mask a greater spread of wage penalties for men compared to women. Fourth, because 

the coefficient estimate is -0.124 for overeducated women (column 1), the skill mismatch 

index must equal 18 (per column 3) to produce the same predicted wage loss. This is 

similar to men because 18 is slightly less than the median of the skill mismatch 

distribution and roughly two times the standard deviation (9.06). However, because the 

coefficient estimate for women is -0.092 (columns 1-2) for both undereducation and 

major mismatch, the index value must be 13 to produce the same predicted wage loss; 
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this is 1.5 times the standard deviation and, although still substantial, is relatively small 

compared to men. 

Column 4 of table 1.5 contains estimates for an alternative specification to 

equation 1.1, where I include all three mismatch variables in a single log-wage regression 

to compare how the coefficient estimates change when conditioned on other mismatch 

variables. For men, the coefficient estimates for overeducation and undereducation in 

column 4 (when conditioned on major mismatch and skill mismatch index) are 46% and 

7% less in absolute value than the respective coefficient estimates in column 1 (when not 

conditioned on major mismatch and skill mismatch index). The estimated coefficient for 

major mismatch in column 4 is 34% less in absolute value than that of column 2. The 

estimated coefficient for the skill mismatch index in column 4 is 18% less in absolute 

value than the estimate in column 3. Thus, while there are substantial changes in the  

coefficient estimates of overeducation and major mismatch when conditioning on the 

skill mismatch index, this is not the case for the skill mismatch index when conditioning 

on these two mismatch variables. That is, even when conditioned on other mismatch 

variables, the skill mismatch index points to substantial wage penalties; this suggests the 

skill mismatch index captures a mismatch effect that is not identified by the other 

measures. However, it should be noted that there is not a substantial change in the 

coefficient estimate for undereducation, which changes by even less than the skill 

mismatch index when moving from column 1 to column 4; thus, the undereducation 

indicator has enough independence from the skill mismatch index that the latter variable 
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fails to encompass elements of undereducation as effectively as it encompasses elements 

of overeducation and major mismatch.  

Similar results are seen for women in table 1.5.  When conditioned on the skill 

mismatch index, the coefficient estimates for overeducation and major mismatch (column 

4) substantially decrease in absolute value relative to what is seen in columns 1-2. 

Further, the coefficient estimate for the skill mismatch index is roughly -0.006, regardless 

of whether the regression conditions on the other mismatch variables (columns 3-4). 

Thus, the skill mismatch index effectively captures the mismatch penalty previously 

encompassed by the overeducation, undereducation and major mismatch variables. This 

finding is stronger for women than for men.  

The evidence presented thus far suggests that the skill mismatch measure is a 

refinement over the overeducation/undereducation and major mismatch measures because 

it in part captures the mismatch effects encompassed by these existing measures, while 

also allowing the wage penalty to vary with the degree of mismatch—an advantage that is 

not permitted by existing (categorical) measures.  

To enhance the argument that the skill mismatch index dominates other measures, 

I assess the relative quality of the three models using the AIC. This metric estimates the 

relative amount of information lost in the model; a lower AIC reflects a relatively higher 

quality model. Table 1.5 presents the AIC value for each specification, but because it is 

the relative value and not the absolute value of AIC that is important, I discuss the “AIC 

difference” (i.e., the difference between the model’s AIC value and the model with the 

minimum AIC) (Burnham and Anderson, 1998). For men, the AIC value of the skill 
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mismatch model (column 3) is 584 less than overeducation/undereducation model 

(column 1) and 547 less than the major mismatch model (column 2). For women, the AIC 

value of the skill mismatch model is 601 less than the overeducation/undereducation 

model and 547 lower than major mismatch model. Burnham and Anderson (1998) 

explain that because an information criterion is not a null hypothesis test, there are no 

tests of “significance;” however, they argue that an AIC difference greater than 10 is 

strong evidence against the model with the larger AIC statistic. Because this threshold is 

met when comparing the model with the skill mismatch index to the other models, the 

evidence strongly suggests that using the skill mismatch index results in a better model 

than does the use of alternative mismatch measures.20 

 

1.5.2 Wage Effects of Skill Mismatch Index, Over and Under Skill Mismatch, and 

Subject-Specific Skill Mismatch  

In the second part of the analysis, I further investigate the estimated skill mismatch wage 

penalty by asking whether the estimated wage penalty depends on whether the worker is 

over-skilled or under-skilled for his/her occupation, varies across skill areas, and differs 

across time.  

I begin by decomposing the skill mismatch index into an over and under skill 

mismatch index as described in section 1.3.2; table 1.6 presents the estimated log-wage 

penalty associated with over and under skill mismatch. For men, the coefficient estimate 

                                                 
20 I also investigated other metrics of model comparison, including R2, partial R2, BIC, and AICC, and consistently 

found that the “skill mismatch index” model fits the data better than models including overeducation/undereducation 

dummies or the major mismatch dummy.   
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for over skill mismatch is -0.008, which implies that a 10-unit increase in the index is 

predicted to lower the wage by 0.08 log points. This incremental change is substantial, 

because the standard deviation for the over skill mismatch distribution is 11.4 (and the 

mean is 36.9) for men.  Thus, the predicted difference in log-wage between a man one 

standard deviation above the mean and a man one standard deviation below the mean is 

0.18.21 The estimated log-wage penalty of under skill mismatch is -0.004, which is 

exactly half the magnitude of the estimated over-skill effect. The standard deviation for 

the under skill mismatch distribution is 9.0 (and the mean is 24.7) for men, so the 

predicted difference in log-wage between a man one standard deviation above the mean 

and a man one standard deviation below the mean is 0.07.22 Although significant, this 

suggests a small change compared to the over skill mismatch index.  

What is surprising about the results of column 1 in table 1.6, is that the magnitude 

of the log-wage penalty for over-skill and under-skill mismatch are not symmetric; this 

indicates that the direction of the mismatch does make a difference, despite the near-

equality of the estimated coefficients for the overeducation and undereducation variables 

in column 1 of table 1.5.  Men in this sample tend to have over skill mismatches that are 

greater in magnitude than the under skill mismatches and, although the standard deviation 

is only slightly higher for the over skill mismatch, there are other indications that the 

spread for the over skill mismatch is generally larger (than under skill mismatch) when 

comparing the percentiles (see footnote 21 and 22). The results suggest that the variation 

                                                 
21 Taking another example, a shift from the 10th percentile of the over skill mismatch distribution (16.6) to the 90th 

percentile (54.3) results in a predicted 0.30 log-point change in wages for men. 
22 The same shift considered in footnote 21, from the 10th percentile of the under skill mismatch distribution (11.7) to 

the 90th percentile (40.6) results in a predicted 0.12 log-point change in wages for men. 
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in the over skill mismatch is the driving force behind the wage penalty found for the skill 

mismatch index.   

Similar to men, over skill mismatch among women is associated with a significant 

wage penalty (-0.006, per column 1 of table 1.6) that is greater in magnitude than that of 

under skill mismatch (-0.002). However, the magnitude of the estimated over skill 

mismatch wage penalty is substantially lower for women than for men (-0.006 vs. -

0.008). For women, the standard deviation of the over skill mismatch is 11.64 (and the 

mean 35.6), which is similar to the standard deviation for men. The predicted difference 

in log-wage between a woman one standard deviation above the mean and a woman one 

standard deviation below the mean is 0.14—which is substantial, but notably lower than 

the comparable log-wage difference of 0.18 seen for men.23  Thus, despite men and 

women having similar over skill mismatch distributions, there is a gender difference in 

the estimated wage penalty. This may relate to gender differences in both curriculum and 

occupation choice, as the coursework women complete or the skill areas for the 

occupations they select may be less heavily penalized by mismatches than those for men. 

Further, the estimates are conditioned on family-oriented variables (marriage, children, 

etc.) that have enough independent variation from the skill mismatch index to explain 

variation in wages for women.  

Table 1.6 also reveals that under skill mismatch estimates also differ by gender.  

For women, the estimated coefficient for the under skill mismatch variable is a 

                                                 
23 Shifting from the 10th percentile of the over skill mismatch distribution (15.6) to the 90th percentile (54.4) results in a 

predicted 0.23 log-point change in wages for women.  
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statistically significant -0.002 (column 1), which is smaller in absolute value than the 

estimate of -0.004 for men.24 This suggests that deficiency in skills is far less important 

for women than for men, either because the occupations women choose compensate for 

these types of mismatches (via on-the-job training, etc.) or because the curricula women 

pursue compensate for the lack of skills in areas that do not match well.  

Turning to column 2 in table 1.6, I now examine the subject-specific skill 

mismatch indexes. Beginning with men, we see that only the 

management/communications skill mismatch and STEM skill mismatch indexes have a 

statistically significant, negative association with wages; both arts/humanities and social 

sciences have statistically insignificant coefficients, and the latter even has a positive 

association with wages. The coefficient estimate for management/communication skill 

mismatch is -0.001; because the standard deviation of the distribution is 23.9 (mean of 

35.6), the estimated difference in log-wage between a man who is one standard deviation 

above the mean and a man who is one standard deviation below the mean is only 0.05. 

For the STEM skill mismatch index, the coefficient estimate is -0.003, the standard 

deviation of the distribution is 15.5 (mean 33.6), and the estimated change in log-wage 

associated with a two standard deviation increment is 0.09.25  Clearly, this is a fairly 

substantial change in log-wage compared to the three other subject areas that I consider. 

                                                 
24 In Guvenen et. al (2018), the authors examine a comparable “positive” (similar-to over-skill) and “negative” (similar-

to under-skill) mismatch; they also find that the effect is not symmetric, although their estimated pattern is the opposite 

of what is seen in table 1.6 (the estimated coefficient of the negative mismatch variable is 4.2 times as large in absolute 

value as the estimated coefficient of the positive mismatch variable). 
25 Shifting from the 25th percentile of the STEM skill mismatch distribution (23.4) to the 75th percentile (39.6) results in 

a predicted 0.049 log-point change in wages for men.  
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These results reveal that the management/communication and STEM skill areas drive the 

results of the skill mismatch index for men noted in section 1.5.1.  

For women, both the management/communications and STEM skill mismatch 

indexes are associated with statistically significant wage penalties, as was also seen for 

men. The estimated management/communications skill mismatch index coefficient is -

0.001 for women, which is identical to the estimate for men; the standard deviation (27.2) 

and mean (38.5) for women are also similar to those for men, so there is no evidence of 

gender differences in the effects of management/communication skill mismatch. The 

STEM skill mismatch index has a statistically significant coefficient of -0.001 for 

women, which is substantially smaller than the -0.003 men.  The standard deviation 

(14.4) and mean (34.2) for women are similar to those for men, so the estimated change 

in log-wage associated with a two standard deviation change in the index for women 

(0.03) is much smaller than the comparable estimate (0.09) for men. In contrast to what 

was seen among men, for women the estimated effects of the STEM skill mismatch index 

are statistically significant but smaller in magnitude than the estimated effects of the 

management/communication skill mismatch index. In addition, the estimated coefficient 

for the social science skill mismatch index is a statistically significant -0.002 for women, 

whereas the estimate for men is an insignificant 0.001. Because the standard deviation for 

the social science skill mismatch index is 13.2 (and the mean 33.7), the estimated log-

wage difference between women who are one standard deviation above the mean and 

women who are one standard deviation below the mean is 0.05. In effect, both the social 
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science and STEM skill mismatch indexes capture for women what the STEM skill 

mismatch index alone captures for men. 

As my final exploration, I estimate wage effects of the skill mismatch index using 

two cross-sections of the data, defined one and five years after college graduation, to 

learn whether the wage penalties change over time; table 1.7 presents the coefficient 

estimates for the simplest specification corresponding to column 3 in table 1.5. For men, 

we see that the estimated wage penalty is 0.010 in the first year after graduation and 

0.013 after five years. Compared to the 0.011 estimated wage penalty for the full 

(longitudinal) sample (table 1.5), the estimate for the first year after graduation is slightly 

lower and the estimate five years after graduation is higher.26 This points to a slight 

upward trend in the estimated wage penalties over time, although none of the three point 

estimates are statistically distinguishable from one another. The “insignificant” upward 

trend is surprising because we expect a downward trend in the estimated wage penalty 

over time as mismatched workers seek to exit their poor matches for improved ones. This 

notion is supported by research on early career job mobility and wage growth that 

provides evidence of workers engaging in a high volume of early career job changes that 

are driven by wage growth.27 However, Robst 2007b notes that amenities such as flexible 

hours, constraints on the job search, and demand side factors (such as the availability of 

an occupation that matches well) may prevent workers from changing jobs for better 

                                                 
26 Recall that the estimates presented in table 1.5 use observations anywhere from 0 to 15 years after college 

graduation; on average, both men and women are each observed 4.7 years after graduation. 
27For example, Topel and Ward (1992) note that job “attachments” early career are fragile and wages grow rapidly 

during this early career phase (with job changes accounting for a third of early-career wage growth). Likewise, Bartel 

and Borjas (1981) show that there are significant wage gains among young men that are movers (when examining wage 

growth before, during, and after job changes).  
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matches and wages. Thus, as workers are “left behind” by not shifting to better matches, 

it plausible that the estimated mismatch wage penalty will grow over time as suggested 

by my findings.  

For women, the coefficient estimate associated with one year after graduation (-

0.008) and five years after graduation (-0.007) are even more similar to each other than 

what was seen for men, and also more similar to the estimate for the entire sample (-

0.007) found in table 1.5.  In short, the weak, upward trend in the estimated wage penalty 

seen for men does not exist for women. This, too, is surprising because we expect a 

downward trend in the wage penalty as women with mismatches seek out and improve 

their match; however, it is possible that non-pecuniary factors (marriage, children, etc.) 

prevent this from occurring. 

 

1.6 Conclusion 

In this chapter, I develop a novel empirical measure of mismatch using data from a 

sample of college graduates in the NLSY97 and occupational descriptors from O*NET. 

The skill mismatch index identifies the disparity between the skills acquired by workers 

in college and the skills required in their post-college occupation for multiple skill areas; 

this multi-dimensional metric is measured on a continuum. This new measure serves as 

an alternative to existing categorical measures of mismatch that rely on degree or major 

to determine mismatch (i.e., overeducation/undereducation and major mismatch).  

I use the skill mismatch index to reexamine the wage penalty associated with 

mismatch. First, I establish that there is a significant and substantial negative association 
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between skill mismatch and log-wages. For men, the wage penalty associated with the 

overeducation/undereducation and major mismatch measures is roughly the same as that 

of the median skill mismatch index. However, the results suggest that workers at the 

median of the skill mismatch index distribution shifting to the 10th percentile have a 

lower wage penalty of 0.135 log-points while those shifting to the 90th percentile have a 

greater wage penalty of 0.228 log-points; these differences are not captured by the 

existing categorical measures of mismatch. For women, the estimated wage penalty is 

consistently smaller (roughly half) than that of men, regardless of the mismatch measure 

used. Nonetheless, the qualitative patterns in the findings are the same as men. Second, a 

comparison of model quality using the AIC statistic reveals that the model using the skill 

mismatch index provides a better model fit compared to the models using 

overeducation/undereducation and major mismatch.  

I extend the main question by examining if mismatch depends on whether the 

worker is over-skilled or under-skilled for his/her occupation. I find that there is a wage 

penalty associated with both over and under-skilling, however the penalty is not 

symmetric as the estimated wage penalty for the over skill mismatch index is twice (three 

times) as large as that of the under skill mismatch index for men (women). The results 

suggest that the variation in the over skill mismatch index are driving the estimated skill 

mismatch wage penalty. I also extend the main question by examining if mismatches 

depend on subject-specific skill areas. I find that, for men, the STEM skill mismatch 

index has the greatest, significant negative effect on wages followed by the management 

and communication skill mismatch index. For women, management and communication 
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skill mismatch index has the greatest negative impact on wages, followed by social 

sciences and STEM; the results suggest that, in effect, both the social science and STEM 

skill mismatch index capture what the STEM skill mismatch index alone captures for 

men. These results point towards the importance of skills matching in specific skill areas 

that differ across gender. The final exploration examines the estimated wage penalty for 

the skill mismatch index using only two cross-sections of the data. Although there is a 

slight (insignificant) upward trend in the estimated skill mismatch wage penalty for men 

from one to five years after graduation, the results generally suggest the estimated skill 

mismatch wage penalty is consistent over time. 

 Overall, this paper introduces a unique approach to the empirical mismatch 

literature that has proven to be a refinement of existing measures. Nonetheless, this 

chapter represents the beginning of a new approach to this topic and additional research 

can be done to advance the literature. This includes directly examining gender differences 

in the estimated wage penalty associated with the skill mismatch index, analyzing the 

demand for occupations and majors in the labor market not considered in this chapter, 

assessing the factors that determine curriculum and occupation choice, and implementing 

alternative estimation strategies. 
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Table 1.1: Sample Selection Criteria 

Criterion 
Number of 

Respondents 

Number of 

Wage 

Observations 
 

Respondents interviewed in 1997 8,984  

Respondents who complete a bachelor's degree 2,354 52,695 

Remaining respondents with ASVAB scores available 2,026 46,080 

Remaining respondents with at least one transcript 1,471 35,214 

Remaining respondents with at least 15 credit-adjusted courses 1,354 32,469 
 

Remaining respondents with at least one wage after completion of bachelor's  

   Degree 
1,348 16,085 

Remaining respondents with at least one wage prior to re-enrollment 1,325 12,062 

Remaining respondents with at least one valid wage, occupation, and O*NET  

   Descriptors 
1,313 11,270 
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Table 1.2: Distribution of Skill Mismatch Index by Other Mismatch 

Measures  

 

Gender Mismatch Measure 

Skill Mismatch Index 

mean sd min median max 

 

 

Men 

Overeducated 26.97* 10.38 6.52 25.56 73.88 

Correctly Educated 18.76 7.92 4.94 18.10 60.02 

Undereducated 18.21 4.82 8.28 17.44 36.10 

Major Mismatch 24.62 10.46 5.56 22.98 73.88 

Major Match 19.46+ 7.84 4.94 18.54 54.74 

All 23.17 10.00 4.94 21.82 73.88 

 

 

Women 

Overeducated 26.01* 9.70 4.86 24.56 75.78 

Correctly Educated 20.59 7.14 5.56 20.18 66.72 

Undereducated 19.66* 6.52 8.36 18.38 43.80 

Major Mismatch 24.41 9.60 4.86 22.72 75.78 

Major Match 21.07+ 6.88 5.56 20.38 49.16 

All 23.49 9.06 4.86 21.96 75.78 
Note: * Indicates a statistically different mean from correctly educated workers at the 1% level; + indicates a 
statistically different mean from major match workers at the 1% level. 
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Table 1.3: Mismatch Examples of Select Worker-Occupation Pairs in the NLSY97 
   Highest Level Score  

Person 

Skill 

Mismatch 

Index 

Over-

educated 

Major 

Mismatch 
Occupation Category 

Level 

Score 

Credit 

Hours 

Earned 

Major 

1 16.9 X √ 

Network and 

Computer 

Systems 

Administrator 

Computers 

and 

Electronics 

96 9 Social Sciences 

2 14.8 X X 
Financial 

Manager 

Economics 

and 

Accounting 

77 13 

Business, Management, 

Marketing, and Related 

Support Services 

3 17.2 X X 
Financial 

Manager 

Economics 

and 

Accounting 

77 18 

Business, Management, 

Marketing, and Related 

Support Services 
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Table 1.4: Means and Standard Deviations of Variables Used in Wage Regressions 

  Men Women 

  

High skill 

mismatch 

(>p50) 

Low skill 

mismatch 

 (= or < p50) 

All 

High skill 

mismatch 

(>p50) 

Low skill 

mismatch  

(= or < p50) 

All 

Dependent variable             

Log of average hourly wage 
2.69* 2.87 2.78+ 2.60* 2.76 2.68 

(0.61) (0.61) (0.62) (0.55) (0.57) (0.56) 

Independent variables         

ASVAB scores:         

    General science 
0.31 0.34 0.33+ -0.01* 0.06 0.03 

(0.72) (0.75) (0.74) (0.71) (0.69) (0.70) 

    Arithmetic reasoning 
0.38* 0.45 0.42+ 0.12* 0.16 0.14 

(0.76) (0.74) (0.75) (0.76) (0.71) (0.73) 

    Work knowledge 
0.16* 0.08 0.12+ -0.02* -0.12 -0.07 

(0.73) (0.74) (0.74) (0.75) (0.74) (0.74) 

    Paragraph comp. 
0.37 0.37 0.37 0.40* 0.33 0.36 

(0.73) (0.72) (0.72) (0.65) (0.69) (0.67) 

    Numerical operations 
20.34 20.08 20.21+ 19.69 19.77 19.73 

(6.04) (6.08) (6.06) (5.30) (5.26) (5.28) 

    Coding speed 
7.66 7.60 7.63+ 8.26 8.14 8.20 

(3.19) (3.16) (3.17) (2.94) (2.87) (2.90) 

Continued 
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Table 1.4 continued 

    Auto information 
-0.82* -0.75 -0.78+ -1.07 -1.07 -1.07 

(0.53) (0.57) (0.56) (0.43) (0.44) (0.44) 

    Shop information 
-0.55 -0.52 -0.53+ -0.92* -0.99 -0.96 

(0.60) (0.64) (0.62) (0.50) (0.51) (0.51) 

    Mathematics knowledge 
0.69 0.71 0.70+ 0.59* 0.65 0.62 

(0.86) (0.80) (0.83) (0.83) (0.78) (0.80) 

    Mechanical comp. 
0.04 0.05 0.05+ -0.30* -0.35 -0.32 

(0.62) (0.71) (0.67) (0.57) (0.57) (0.57) 

    Electronics comp. 
-0.19* -0.14 -0.17+ -0.63* -0.69 -0.66 

(0.77) (0.80) (0.78) (0.60) (0.62) (0.61) 

    Assembling objects 
0.14 0.14 0.14+ 0.11 0.11 0.11 

(0.92) (0.85) (0.89) (0.81) (0.81) (0.81) 

Mother's highest grade  

    completed 
14.55 14.57 14.56+ 14.09* 13.84 13.96 

 (2.35) (2.59) (2.47) (2.59) (2.99) (2.80) 

1 if mother employed (when    

   resp is age 16) 
0.74 0.73 0.74 0.71* 0.75 0.73 

1 if English is primary  

   language (1997) 
0.98* 0.95 0.96+ 0.98* 0.97 0.97 

Family Structure (age 16)         

  1 if live with both parents 0.80* 0.76 0.78+ 0.73* 0.68 0.71 

  1 if live with mother only 0.09* 0.15 0.12+ 0.16 0.17 0.16 

  1 if live with mother and  

        Partner 
0.05 0.04 0.04+ 0.07 0.06 0.07 

Continued 
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Table 1.4 continued 

  1 if live with father only 0.05* 0.02 0.03 0.03* 0.05 0.04 

1 if Hispanic 0.10* 0.13 0.12+ 0.08* 0.13 0.10 

1 if black 0.13 0.12 0.12+ 0.14* 0.17 0.15 

1 if Associate degree 0.13 0.15 0.14 0.12* 0.17 0.15 

Age at receipt of Bachelor’s degree 
23.00* 23.34 23.17+ 22.72* 22.98 22.85 

(1.73) (2.04) (1.90) (1.73) (1.95) (1.85) 

College grade point average 
2.62 2.61 2.62+ 2.84 2.81 2.82 

(0.69) (0.64) (0.67) (0.59) (0.58) (0.59) 

1 if cohabiting 0.12 0.11 0.11+ 0.14 0.14 0.14 

1 if married 0.24 0.22 0.23+ 0.30* 0.25 0.27 

1 if children 0.18 0.17 0.17+ 0.27* 0.21 0.24 

Hours worked per week 
36.49* 37.89 37.19+ 32.05* 33.67 32.86 

(15.72) (14.82) (15.29) (14.8) (15.03) (14.94) 

Tenure 
2.36* 2.55 2.45+ 2.11* 2.27 2.19 

(2.40) (2.78) (2.6) (2.26) (2.33) (2.30) 

Pre-degree experience 
3.96 4.10 4.03 3.86* 4.10 3.98 

(2.44) (2.65) (2.55) (2.27) (2.49) (2.38) 

Experience 
3.63 3.57 3.60+ 3.23* 3.48 3.36 

(3.08) (2.86) (2.97) (2.78) (2.81) (2.80) 

Continued 
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Table 1.4 continued 

1 if urban 0.87* 0.90 0.88 0.89 0.89 0.89 

1 if reside in northeast 0.17 0.17 0.17+ 0.16 0.15 0.16 

1 if reside in south 0.31* 0.36 0.34 0.34 0.35 0.35 

1 if reside in west 0.19* 0.25 0.22 0.23 0.23 0.23 

Number of obs. 2316 2317 4633 3313 3324 6637 
Note: * Indicates a statistically different mean in the variable between high and low skill mismatch at the 5% level; + indicates a statistically different mean in the variable 

between men and women at the 5% level. Additional regressors include dummy variables for calendar year, tenure squared, and experience squared. Excluded variables are 
“1 if reside in north central” and “1 if other family structure.” 
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Table 1.5: Coefficient Estimates for Mismatch Variables for Alternative Specifications, by Gender 

Mismatch Measure 
Men Women 

(1) (2) (3) (4) (1) (2) (3) (4) 

1 if overeducated 
-0.234** 

 

 
-0.126** -0.124**  

 
-0.086** 

(0.035)   (0.036) (0.027)  
 (0.029) 

1 if undereducated 
-0.219**   -0.204** -0.092*  

 -0.085 

(0.054)   (0.055) (0.043)  
 (0.044) 

1 if major mismatch 
 -0.211** 

 
-0.139**  -0.092** 

 
-0.056* 

 (0.033)  (0.033)  (0.026)  (0.027) 

Skill mismatch index 
 

 -0.011** -0.009**   -0.007** -0.006** 
 

 (0.001) (0.001)   (0.001) (0.001) 

N 4633 4633 4633 4633 6637 6637 6637 6637 

AIC Criterion 7792 7755 7208 7055 10107 10053 9506 9412 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors (clustered at the individual level) are in 

parenthesis. The dependent variable is the log of the CPI-U-deflated, average hourly wage. Coefficient estimates of other regressors can be found in table A.6. 
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Table 1.6: Coefficient Estimates for Over/Under Skill Mismatch and Subject Specific Skill 

Mismatch Index, by Gender 

Mismatch Measure 
Men Women 

(1) (2) (1) (2) 

Over skill mismatch 
-0.008**   -0.006**  

(0.001)   -0.001  

Under skill mismatch 
-0.004*   -0.002  

(0.001)   -0.001  

Management/communication skill mismatch 
  -0.001*   -0.001* 

  (0.001)   (0.001) 

STEM skill mismatch 
  -0.003**   -0.001* 

  (0.001)   -0.001 

Arts/humanities skill mismatch 
  -0.001   0.000 

  (0.001)   (0.000) 

Social science skill mismatch 
  0.001   -0.002* 

  (0.001)   (0.001) 

N 4633 4633 6637 6637 

R2 0.199 0.182 0.179 0.170 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors (clustered at the individual 

level) are in parenthesis. The dependent variable is the log of the CPI-U-deflated, average hourly wage. Coefficient estimates of other regressors can be found in 
table A.7. 
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Table 1.7: Coefficient Estimates for Skill Mismatch Index, by Gender, for Cross-Sectional 

Samples 

Mismatch Measure: 

Men Women 

One Year After 

Graduation 

Five Years 

After 

Graduation 

One Year After 

Graduation 

Five Years 

After 

Graduation 

Skill mismatch index 
-0.010** -0.013** -0.008** -0.007* 

(0.003) (0.003) (0.002) (0.003) 

N 558 375 755 490 

R2 0.296 0.282 0.206 0.262 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification based on a one-year and five-year 

cross-section.  Standard errors are in parenthesis. Coefficient estimates of other regressors can be found in table A.8. 
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Chapter 2. Measuring the STEM Wage Premium Among College Graduates 

2.1 Introduction  

Wage benefits associated with training in Science, Technology, Engineering and 

Mathematics (STEM) have garnered significant interest in the U.S., with agencies 

including the National Center for Education Statistics (NCES), U.S. Department of 

Commerce, and National Science Foundation (NSF) publishing regular studies on the 

topic.28 While researchers consistently find that STEM training has a positive association 

with wages, the magnitude of the estimated wage premium varies. For example, Noonan 

(2017) finds that STEM majors receive a 12% wage premium while Kinsler and Pavan 

(2015) find that science degrees are associated with a 24% wage premium. The lack of 

consensus on the magnitude of the estimated STEM wage premium can reflect 

differences across studies in sample composition and estimation techniques, but it can 

also be influenced by how STEM is measured.  

In this chapter, I assess the sensitivity of the estimated STEM wage premium to 

two distinct dimensions of STEM measurement. First, I consider the definition of STEM; 

i.e., which fields are considered to be STEM. While certain fields, such as mathematics 

and engineering, are common to any STEM definition, there is no consensus as to 

                                                 
28 See https://nces.ed.gov/programs/raceindicators/indicator_reg.asp for NCES data on STEM degrees, 

https://nsf.gov/nsb/sei/edTool/index.html for the NSF STEM Education Resource Center, and 

https://www.commerce.gov/news/fact-sheets/2017/03/stem-jobs-2017-update for STEM updates from the U.S. 

Department of Commerce. 

https://nces.ed.gov/programs/raceindicators/indicator_reg.asp
https://nsf.gov/nsb/sei/edTool/index.html
https://www.commerce.gov/news/fact-sheets/2017/03/stem-jobs-2017-update%20for%20the%20U.S
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whether other fields (e.g., health care, agriculture and natural resources, economics) 

should be considered STEM (Noonan 2017, U.S. Department of Education 2017). 

Second, I consider the distinction between dichotomous and continuous measures of 

STEM. It has long been the norm to consider STEM as a “yes/no” distinction (Beede et 

al. 2011, Graham and Smith 2005, Jiang 2017, Noonan 2017). However, Light and Rama 

(2019) (hereafter referred to as LR) depart from this convention in proposing a non-

dichotomous “STEM-intensity of coursework” measure. They measure the percentage of 

total college credit hours contributed by STEM courses which ranges, obviously, from 0 

to 100. I systematically introduce changes in both dimensions of STEM measurement 

(while using a uniform sample and estimation method) to assess their effects on the 

estimated STEM wage premium.  

Throughout my analysis, I use a uniform sample of college graduates drawn from 

the 1997 National Longitudinal Survey of Youth (NLSY97). I use three published lists of 

STEM fields developed by the NCES, NSF, and U.S. Immigration and Customs 

Enforcement (ICE) to construct three alternative, dichotomous STEM measures and three 

analogous continuous measures based on the LR “STEM-intensity of coursework” 

approach. Although some researchers construct their own list of STEM fields, I focus on 

three lists published by government agencies because they are used in related studies and 

effectively capture differences across virtually all definitions. I separately analyze men 

and women due to well-known gender differences in major choice (Robst 2007a) that 

relate to the decision to acquire STEM training.  
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I use ordinary least squares to identify the STEM wage premium, controlling for a 

rich array of covariates and inserting one of the three dichotomous or continuous 

measures of STEM training into the log-wage model. Because evidence suggests that the 

three continuous STEM measures have a nonlinear relationship with log-wages, I also 

estimate the STEM wage premium using a quartile specification, where dummies that 

indicate the worker’s quartile in the gender specific (and definition specific) STEM-

intensity of coursework distribution are used. I compare the coefficient estimates across 

measures to draw conclusions about the sensitivity of the STEM wage premium based on 

the STEM measure used.  

I begin the analysis by comparing the three dichotomous STEM measures. The 

log-wage premium associated with STEM ranges from 0.09 to 0.18 for men and 0.03 to 

0.13 for women; this spread suggests that the estimated STEM wage premium under the 

dichotomous measure is sensitive to the definition of STEM (i.e., the list of fields 

included in STEM), particularly when STEM=1 expands beyond “hard” sciences 

(engineering, mathematics, etc.) to include “soft” sciences (economics, psychology, etc.). 

However, this sensitivity is not apparent under the continuous STEM measure. 

For men, using the linear specification the estimated log-wage premium associated with a 

10 percentage point increase in STEM-intensity of coursework is 0.05 for all three 

definitions.  Using the quartile specification, the estimated log-wage premium associated 

with moving from quartile 1 to quartile 4 of the STEM-intensity of coursework 

distribution is 0.22 for all three definitions. For women, there is some sensitivity to the 

definition used for the continuous measure:  depending on the definition, the linear 



 

54 

 

specification produces an estimated log-wage premium ranging from 0.025 to 0.038 for a 

10 percentage point increase, while the estimated log-wage premium for the quartile 

specification ranges from 0.078 to 0.111 when moving from quartile 1 to quartile 4. 

Nonetheless, this sensitivity is less than what is found when using the dichotomous 

measure. 

As the preceding discussion suggests, the results are highly sensitive to whether 

the dichotomous or non-dichotomous measure of STEM is used. For men, the estimated 

log-wage benefit of shifting from low (quartile 1) to high (quartile 4) levels of STEM 

training under the non-dichotomous measure exceeds the estimated log-wage benefit of 

shifting from STEM=0 to STEM=1 under the dichotomous measure by 0.046 to 0.133 

log-points. This reflects the fact that a quartile 1-to-4 comparison in the STEM-intensity 

of coursework distribution isolates a more pronounced gap in marketable skill than does 

the comparison between relatively heterogeneous pools of STEM majors and non-STEM 

majors. Similar to LR, I conclude that compared to the non-dichotomous measure, the 

dichotomous measure underestimates the wage benefit associated with completing high 

levels of STEM training. Further, because sensitivity to the STEM definition depends on 

the dichotomous/non-dichotomous distinction while sensitivity of the dichotomous/non-

dichotomous distinction depends less on the definition used, I conclude that differences 

in the STEM wage premium are primarily driven by the method used to isolate workers 

with the highest echelon of STEM training rather than by the fields/courses included as 

STEM (NCES vs. ICE vs. NSF). 



 

55 

 

I find that the magnitude of the estimated STEM wage premium is consistently 

smaller for women than for men across definitions and the dichotomous/non-

dichotomous distinction. This is mainly due to women pursuing less STEM-intensive 

curriculums (e.g., women in quartile 4 of the gender-specific STEM-intensity of 

coursework distribution are less STEM-intensive then are men in quartile 4) and 

completing STEM majors that garner relatively lower premiums (e.g., men are more 

likely than women to major in engineering, which tends to have higher wages than other 

hard sciences). Under the dichotomous measure, the gender gap in the estimated STEM 

premium grows as the definition of STEM broadens.  This is not the case under the non-

dichotomous measure, because as the definition of STEM broadens to include soft 

sciences, women are not more likely to complete relatively more STEM coursework than 

men, even though they are more likely to be classified as a STEM major.  

 

2.2 Literature Review  

I begin by discussing existing estimates of the STEM wage premium that are based on a 

dichotomous measure of STEM but utilize different definitions of STEM. Each study 

uses either the NCES, ICE, or NSF list of STEM fields referred to in the introduction, or 

a slight variation on one of these lists. I describe each list in detail in section 2.3.2. For 

now, it is important to note that the NCES list of STEM fields is the narrowest and the 

NSF list is the broadest.    

I focus first on studies that rely on the NCES definition of STEM, where only 

traditional “hard” sciences (engineering, mathematics, biology, etc.) are classified as 
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STEM. Kinsler and Pavan (2015) use a “science degree” classification, which includes all 

majors from the NCES list of STEM fields except mathematics. Using data from the 

Baccalaureate and Beyond Longitudinal Study (collected in 1993 with follow-ups in 

1994, 1997, 2003), they initially estimate a wage premium of 23.9% (compared to 

workers with a non-science and non-business degree) using ordinary least squares; they 

examine only men and control for demographic characteristics as well as SAT scores 

(pre-college ability) and major-specific grade point average (GPA). The authors also 

develop a structural model of major choice and labor market outcomes, with which they 

estimate a wage premium of 20.2% for science degrees. Beede et al. (2011) and Noonan 

(2017) classify STEM majors in a manner similar to the NCES definition.29 Beede et al. 

(2011) use data from the 2009 American Community Survey to estimate a log-wage 

model via ordinary least squares, and control for observables such as age, education 

attainment, and region of residence; they estimate the STEM wage premium to be 12% 

for men and 9% for women. Noonan (2017) draw their sample from the 2015 American 

Community Survey; using ordinary least squares (controlling for demographic and 

geographic characteristics), they estimate the STEM wage premium to be 13% for 

women and 11% for men. Cataldi et al. (2014) use the NCES list to identify STEM 

majors among a pooled sample of men and women from the 2012 Baccalaureate and 

Beyond data. They find a 31% unconditional difference in the median earnings of full-

                                                 
29 The majors classified as STEM in Beede et al. (2011) and Noonan (2017) match the NCES list, except the two 

studies broadly allows for “life sciences” majors which is more inclusive than the analogous “biology and biomedical 

sciences” under the NCES definition. Beede et al. (2011), Noonan (2017), and Kinsler and Pavan (2015) do not 

explicitly indicate that they use the “NCES definition” of STEM fields. However, the fields they list as STEM closely 

match the fields on the NCES list.  
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time workers who completed a STEM major ($65,000) compared to non-STEM majors 

($49,500).  

Funk et al. (2018) classify STEM majors similar to the ICE list; in addition to the 

traditional “hard” sciences, this list also classifies other fields, such as health, as STEM 

(see section 2.3.2). For a pooled sample of men and women from the 2014-2016 

American Community Survey, they find a 33% unconditional difference in the median 

STEM degree earnings ($81,011) compared to the median non-STEM degree earnings 

($60,828). Baird et al. (2017) use a pooled sample of men and women from the 2015 

American Community Survey. Using U.S. Census Bureau major codes, they develop a 

list of STEM fields which is similar to the NSF list (i.e., a list, broader than the NCES or 

ICE lists, that includes fields such economics, social sciences, psychology). They find an 

unconditional difference of 19.6% in the hourly wages for workers with a STEM 

bachelor’s degrees ($37.67 per hour) compared to workers with a non-STEM bachelor’s 

degree ($31.50). As this summary of the literature demonstrates, existing studies utilize 

different definitions of STEM, data sources, samples, and estimation strategies—and 

produce a wide range of estimates of the STEM wage premium.30  

Other studies examine the wage premium of specific college majors, although 

they do not explicitly group majors into STEM. Such studies often find that traditional 

STEM majors have the greatest wage premium, although other majors that may be 

                                                 
30 Several other studies examine labor market outcomes related to STEM training although they do not explicitly 

identify the percent difference in earnings for STEM majors compared to non-STEM majors. For example, Jiang 

(2017) uses the ICE definition for STEM and finds that men (women) in STEM majors and occupations earn $9,925 

($13,651) more than those in non-STEM majors and occupations. Graham and Smith (2005) study the gender 

differential in Science and Engineering (S&E); the list of S&E fields they use is similar-to the NCES list. From the 

summary statistics it can be discerned that men (women) with both an S&E degree and job unconditionally earn 3.1% 

(20.0%) more than those without both an S&E degree and job.  
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considered STEM in some lists but not others are also found to have substantial wage 

benefits. Altonji et al. (2014) construct a sample of workers from multiple data sources 

(collected during 1976 to 2011) and, using ordinary least squares, find that chemical and 

electrical engineering majors have the highest estimated returns for men.31 However, 

fields such as finance and economics also have high estimated returns — even higher 

than some traditional STEM fields such as mathematics, physics, and earth and other 

physical sciences. Similar results are found for women with differing magnitudes. Altonji 

et al. (2012) use data from the 2009 American Community Survey to estimate the returns 

to majors. Using ordinary least squares (controlling for ethnicity, race, degree, and 

potential experience) they note that the estimated log-wage gap between general 

education and electrical engineering (0.561) is close to the gap between college and high 

school graduates (0.577) for men. Finance (0.518), economics (0.517), accounting 

(0.431), and nursing (0.408) also have high estimated returns, not unlike traditional 

STEM fields such as mathematics (0.426). They find similar results for women, but with 

differing magnitudes.  Hamermesh and Donald (2008) use a sample of University of 

Texas at Austin graduates. After adjusting for non-response bias and conditioning on 

background and ability variables, they find that engineering and “hard” business (finance, 

actuarial sciences, business engineering) are the highest-paying majors for a pooled 

sample of men and women; these majors pay roughly three times that of the lowest-

paying major (education). As a group, these studies show that there is variation in the 

                                                 
31 The authors standardize the major fixed effects (mean = 0 and standard deviation = 1); the earnings premium for 

chemical engineering is 1.90, electrical engineering is 1.48, finance is 1.42, economics is 1.40, mathematics is 0.71, 

physics is 0.69, and earth and other physical sciences is 0.07.  
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estimated wage returns even among majors that are traditionally considered STEM (e.g., 

engineering vs. mathematics) and high estimated returns to some majors that are not 

STEM (e.g., finance) or that are defined as STEM only in certain lists (e.g., economics, 

actuarial sciences, nursing). This suggests that the fields included in the STEM definition 

play an important role in explaining the differing estimated STEM wage premium.  

Instead of using a dichotomous measure of STEM, Light and Rama (2019) (LR) 

define STEM on a continuum to identify the estimated wage benefits of STEM training. 

Using the NLSY97, LR construct a “STEM-intensity of coursework” measure, calculated 

as the percentage of total credit hours earned through STEM coursework (based on a 

match between NLSY97 postsecondary transcript course codes and the ICE list of STEM 

fields). This measure enables the authors to differentiate a non-STEM major who 

completes a high proportion of STEM courses from another respondent in the same major 

who does not take many STEM courses. In fact, the authors demonstrate that there is high 

variation in the STEM-intensity of coursework among both STEM and non-STEM 

majors. The authors also construct an analogous “STEM-intensity of occupation” 

measure, where they sum occupation-specific scores (from the Occupation Information 

Network database) that indicate the knowledge required for seven STEM skill areas 

(mathematics, engineering, etc.) as a percentage of the maximum possible score in these 

seven skill areas. Due to nonlinear patterns in the data, LR replace the continuous STEM-

intensity variables with quartile indicators that better fit the data. After controlling for a 

rich array of covariates (including family background and pre-college ability test scores), 

they estimate a substantial wage premium for workers in the 4th quartile of both STEM-
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intensity distributions (0.443 for men and 0.321 for women) using ordinary least squares. 

Additionally, LR provide evidence that a dichotomous measure of STEM (also based on 

the ICE list) understates the value of completing a high-intensity STEM curriculum for 

men and women.  

Despite the lack of consensus on the wage premium associated with STEM 

training, no prior study has asked how much of the variation is attributable to the 

definition of STEM. Further, aside from LR, no prior study has considered the value of 

departing from the standard “yes/no” (dichotomous) measure of STEM. This study 

tackles both issues in a unified framework that eliminates variation in data source, 

sample, model specification and estimation method. 

 

2.3 Data  

I use data from the National Longitudinal Survey of Youth 1997 (NLSY97). The 

NLSY97 is a U.S. based survey that collects data on a sample of 8,894 young men and 

women born between 1980 and 1984. Respondents were between the ages of 12 and 18 

during the first-round interview in 1997. Respondents were interviewed annually until 

2011 (rounds 1-15) and biennially from 2013 (round 16) onward. Data are currently 

available through 2015-2016 (round 17).  

An important feature of the NLSY97 is that college transcript data are available 

for many respondents who attended post-secondary institutions. This information was 

collected by the Post-Secondary Transcript Study (PSTRAN) in 2012-2013; post-

secondary transcripts were obtained from universities attended by respondents who 
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signed a waiver. Data on college courses and majors contained in the transcripts were 

coded using the 2010 College Course Map (CCM), a system for coding post-secondary 

education courses developed by the NCES. The coursework and major data in the college 

transcripts are critical to the construction of both the dichotomous and continuous 

measures of STEM. 

 

2.3.1 Sample Selection  

The sample selection process follows chapter 1 (see table 1.1 for complete details), and 

produces a sample consisting of respondents with a bachelor’s degree, Armed Services 

Vocational Aptitude Battery (ASVAB) test scores (discussed in section 2.3.3), college 

transcript data, and a valid post-college wage. The final sample has 1,313 respondents 

with 11,270 wage observations; 755 women have 6,637 wage observations and 558 men 

have 4,463 wage observations. 

 

2.3.2 Measuring STEM  

I consider two dimensions of STEM measurement: (1) fields that are classified as STEM 

and (2) dichotomous or continuous measure of STEM.  

 

Dimension 1: Determining fields that are STEM 

I utilize three published lists developed by government agencies that define what 

fields are considered to be STEM. Each published list follows or can be converted (using 

a crosswalk) to the CCM taxonomy used to code the NLSY97 transcript data. I confine 
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my attention to these three lists because they are used in the related literature and capture 

relevant differences across definitions of STEM. 

The first list was produced by the National Center for Education Statistics 

(NCES), a federal entity located within the U.S. Department of Education’s Institute of 

Education Sciences that collects and analyzes data related to education. The NCES 

regularly releases studies on post-secondary education, including analyses related to 

STEM degrees. The following 2-digit CCM codes (majors) are classified as STEM based 

on the NCES list: biological and biomedical sciences, computer and information 

sciences, engineering and engineering technologies, mathematics and statistics, and 

physical sciences and science technologies.32 A large number of college majors that fall 

into these aggregate fields are classified as STEM, including chemistry, astronomy, 

physics, geology, etc., but this classification excludes a number of highly technical 

majors (economics, geographic information systems, environmental sciences, etc.) in the 

social sciences and health fields. 

The second list was developed by U.S. Immigration and Customs Enforcement 

(ICE), a federal agency under the jurisdiction of the Department of Homeland Security 

(DHS) that enforces immigration laws. International students who attend college on an F-

1 visa can qualify for the “24-Month STEM Opt Extension” which provides the option of 

engaging in practical training in the U.S. after they complete their degree. To be eligible, 

students must have completed a degree from the ICE “STEM Designated Degree 

Program” list. Although DHS drew upon the NCES list of STEM fields, it modified the 

                                                 
32 The NCES list of STEM degrees can be found at https://nces.ed.gov/programs/raceindicators/indicator_reg.asp 

https://nces.ed.gov/programs/raceindicators/indicator_reg.asp
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list to provide a “straightforward and objective measure” for designated school officials 

to identify STEM fields (U.S. Department of Homeland Security, 2016). In contrast to 

the NCES list, ICE lists a very large number of 6-digit CCM codes that are classified as 

STEM; each code includes a 2-digit subject area followed by a 4-digit course title.33 The 

list includes many of the same STEM fields in the NCES list as well as several additional 

6-digit CCM codes including econometrics, environmental sciences, and geographic 

information sciences. 

The third list comes from the National Science Foundation (NSF), an independent 

federal agency that promotes science and research. The “STEM Education Data” 

webpage is a resource developed by the NSF that compiles their related research for 

individuals to learn more about STEM training at all education levels. Their list of STEM 

fields includes the ones on the NCES list as well as additional 2-digit CCM codes 

(majors) such as psychology and social sciences.34 

 

Dimension 2: Dichotomous and continuous measures of STEM training 

For the dichotomous measure of STEM, workers are categorized as having 

completed either a STEM major or a non-STEM major. Because there are three published 

lists that determine what fields are STEM, I construct three dichotomous STEM 

measures. For the NCES and NSF lists, this entails a simple match between the 2-digit 

                                                 
33 ICE’s STEM Designated Degree Program List can be found at 

https://www.ice.gov/sites/default/files/documents/Document/2016/stem-list.pdf. Additional details on the 24-Month 

Opt STEM extension can be found at https://www.ice.gov/sevis/practical-training 
34 The NSF list of STEM degrees can be found at https://www.btaa.org/docs/default-source/diversity/nsf-approved-

fields-of-study.pdf?sfvrsn=1bc446f3_2 

https://www.ice.gov/sites/default/files/documents/Document/2016/stem-list.pdf
https://www.ice.gov/sevis/practical-training
https://www.btaa.org/docs/default-source/diversity/nsf-approved-fields-of-study.pdf?sfvrsn=1bc446f3_2
https://www.btaa.org/docs/default-source/diversity/nsf-approved-fields-of-study.pdf?sfvrsn=1bc446f3_2
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CCM codes on the list and the 2-digit CCM code of the respondent’s major provided by 

the NLSY97. The ICE list provides 6-digit CCM codes that they classify as STEM (a 2-

digit subject area followed by a 4-digit course title). Following LR, if the majority of the 

4-digit course codes listed under the corresponding 2-digit subject area in the CCM 

taxonomy are also on the ICE list, then that 2-digit subject area is classified as a STEM 

major. The STEM major lists build on each other: all STEM majors included in the 

NCES list are also included in the ICE and NSF lists, and all STEM majors included in 

the ICE list are also on the NSF list. 

 The continuous measure of STEM is the STEM-intensity of coursework measure 

developed by LR. Unlike the dichotomous measure, where the respondent has either 

completed a STEM major or not, this continuous measure assigns a numerical value that 

reflects the intensity of STEM in the respondent’s training. This is calculated as the credit 

hours earned in STEM courses as a percentage of all credit hours earned by the 

respondent.35 Again, because there are three published lists that determine what fields are 

STEM, I construct three measures of STEM-intensity of coursework. For the NCES and 

NSF definitions, all courses taken by the respondent for which the subject area (the first 

2-digits of the 6-digit CCM code) can be found on the NCES and NSF lists are classified 

as STEM. For example, NCES considers the major/subject area “biological and 

biomedical sciences” to be STEM so all courses taken by the respondent in this subject 

                                                 
35 For the STEM-intensity of coursework measure, I only include credit hours earned for courses that began prior to 

when the respondent completed his bachelor’s degree. I do not include remedial and failed courses. The number of 

credit hours earned for each course is normalized by dividing by the mode number of credit hours earned by the 

respondent at the university. I do this to ensure that the credit hours of each respondent are on the same scale since the 

number of credit hours earned per course can vary depending on university attended by the respondent. 
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area contribute to the STEM-intensity of coursework measure. The ICE list provides 6-

digit CCM codes, which not only indicate the subject area but also the course title. Thus, 

only courses completed by the respondent that have a 6-digit CCM code found on the 

ICE list are classified as STEM courses.  

In contrast to the dichotomous measure—where an increasing number of 

respondents are classified as STEM=1 when I switch from the NCES list to the ICE list 

to the NSF list—the continuous measure is not necessarily smallest when I use the NCES 

list because of the distinction between 2-digit and 6-digit codes. For example, the NCES 

list (which consists of 2-digit CCM codes) implicitly includes all courses under the 2-

digit “Computer and Information Sciences” as STEM courses, whereas the ICE list of 6-

digit codes only includes a subset of courses in that field; thus, courses like “Computer 

Logic and/or Digital Logic” are considered STEM under the NCES definition, but are 

excluded from the ICE list of STEM courses. Nonetheless, the ICE list is relatively 

broader than the NCES list. Both the NCES and ICE lists are narrower than the NSF list.  

 

2.3.3 Other Variables  

The dependent variable in my regression analysis is the natural log of the average hourly 

wage, CPI-U deflated to 2006 dollars. In addition to the STEM measures described in 

2.3.2, I use a range of covariates in the regression analysis. Pre-college variables include 

race and ethnicity indicators, mother’s highest grade completed, and dummies that 

indicate whether the respondent’s mother was employed when the respondent was 16 

years old, whether English was the respondent’s primary language in 1997, and the 
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respondent’s family structure at age 16 (i.e., if the respondent lived with both parents, 

lived with the mother and her partner, lived only with the mother, lived only with the 

father, or another family structure). I also include scores for the 12-Armed Services 

Vocational Aptitude Battery (ASVAB) sub-tests. The ASVAB is an aptitude test 

completed by respondents in 1997-1998, at ages 12-18. The 12 ASVAB sub-tests are 

general science, arithmetic reasoning, word knowledge, paragraph comprehension, 

mathematics knowledge, electronics information, auto information, shop information, 

auto and shop information, mechanical comprehension, numerical operations, and 

assembling objects. I use scores based on item response theory that were constructed by 

NLSY97 staff and allow for direct comparisons across respondents. 

The baseline controls also include the following in-college variables: a dummy 

that indicates whether the respondent completed an associate degree, age at graduation, 

college grade point average (GPA) (which I compute based on transcript data), and years 

of labor market experience from age 16 to college graduation. The post-college variables 

include dummies that indicate if the respondent is married, is cohabiting, resides in an 

urban area, and has children. The following are also post-college variables in the baseline 

controls: region of residence dummies (i.e., resides in the south, west, or northeast), year 

dummies, years of labor market experience after college graduation and its square, years 

of tenure and its square, and average hours of work per week. All post-college controls 

are time-varying and are measured at the time the wage is earned. Table 2.1 provides the 

means and standard deviations for variables used in the regression analysis. 
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2.3.4 Descriptive Comparison of Alternative STEM Measures 

In table 2.2, I show the distribution of the six alternative STEM training measures by 

gender. When using the (narrowest) NCES definition, 21% of men completed a STEM 

major.36 In comparison, 26% are STEM majors under the ICE definition and 42% are 

STEM majors under the (broadest) NSF definition. The 21 percentage point spread across 

STEM major definitions demonstrates that the dichotomous STEM measure is sensitive 

to the list used to define STEM.  

There is a 28-percentage point spread across definitions for women: 8% are 

STEM majors under the NCES definition, 15% under the ICE definition, and 36% under 

the NSF definition. Although the percentage of women who are STEM majors is less 

than men for all three definitions, the gender gap narrows as the definition of STEM 

broadens; i.e., men are 2.6 times more likely than women to be STEM under the NCES 

definition, 1.7 times more likely under the ICE definition, and 1.2 times more likely 

under the NSF definition. This indicates that women are far less likely than men to be 

drawn into the STEM = 1 designation when only hard sciences are included as STEM 

majors; only when soft sciences are included as STEM majors does the proportion of 

women in STEM=1 begin to rival that of men.  

Table 2.2 also shows that the continuous STEM-intensity of coursework measure 

is sensitive to which fields are considered STEM. For men, as the definition of STEM 

broadens from the NCES list to the ICE list to the NSF list, the mean STEM-intensity of 

                                                 
36 Following LR, I use the administrative transcript data from the NLSY97 to identify the respondent’s major. 

However, unlike LR, when a respondent’s major was not clearly identified through the transcript data, I use the self-

reported major indicated by the respondent as part of an interview. 
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coursework (along with other points in the distribution) increases. For men, all three 

definitions yield similar standard deviations and interquartile ranges:   the difference 

between p25 and p75 is 29.0 under the NCES definition, 30.1 under the ICE definition, 

and 35.6 under the NSF definition. Thus, the distribution of the continuous measure does 

not appear to be sensitive to the definition used.  

There are two important differences for women. First, women have a lower mean 

STEM-intensity of coursework compared to men across all three definitions. However, 

unlike the dichotomous measure, as the definition broadens the gender difference under 

the non-dichotomous measure scarcely shrinks (from 7.6 percentage points under the 

NCES list to 4.7 under the ICE list to 2.7 under the NSF list). This is because, compared 

to men, women are not more likely to complete relatively more STEM coursework as the 

definition of STEM expands to include more courses, even though they are more likely to 

be classified as a STEM major as the definition broadens to include the softer sciences. 

Second, although the standard deviation is roughly similar across definitions, unlike what 

is seen for men the interquartile range differs across definitions, from 10.8 percentage 

points under the NCES definition to 18.4 under the ICE definition to 30.5 under the NSF 

definition. Thus, as the definition broadens, the STEM-intensity of coursework increases 

for both genders, but the distribution remains the same for men while the distribution 

becomes less skewed for women. 

In table 2.3, I report the mean log-wage for various subsamples to examine how 

the unconditional wage benefit of STEM training differs across definitions. In the top 

panel, I segment the sample based on the dichotomous measure. Focusing first on men, 
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the top row of table 2.3 shows that the mean log-wage for STEM majors common to all 

three lists (math, engineering, etc.) is 2.92. As the definition of STEM broadens to the 

ICE list, STEM majors (e.g., health, agriculture) with a substantially lower mean log-

wage (2.80) are introduced into the pool of STEM majors.37 When the definition of 

STEM further broadens to the NSF list, the softer science majors (e.g., social sciences, 

psychology) introduced into the pool of STEM majors have an even lower mean log-

wage (2.74).38 Thus, broadening the STEM major definition from the NCES to the ICE to 

the NSF list results in respondents with comparatively lower wages becoming STEM=1. 

In the bottom row, the mean log-wage of majors that are STEM=0 under all three 

definitions (history, foreign language, etc.) is 2.75; surprisingly, this is not significantly 

different than the mean (2.74) for STEM majors introduced under the NSF list.  In other 

words, majors who are STEM=1 only on the NSF list do not have an unconditional wage 

benefit.  

Table 2.3 reveals similar patterns for women, although there are two differences 

compared to men. First, for women, the mean log-wage of non-STEM majors for all three 

definitions is significantly higher than STEM majors introduced under the NSF list (2.68 

compared to 2.61), suggesting an unconditional wage penalty for women in the softer 

sciences classified as STEM=1. Second, women have a lower mean log-wage compared 

                                                 
37 Because the ICE list is broader than the NCES list, respondents who are STEM = 1 in the ICE list can be either 

STEM = 1 on the NCES list (e.g., engineering and math majors) or STEM = 0 on the NCES list (e.g., health and 

agriculture majors). In table 2.3, I compare respondents who are STEM on both the ICE and NCES lists (e.g., 

engineering and math majors) to the respondents who are STEM on the ICE list but not the NCES list (e.g., health and 

agriculture majors).  
38 The difference in the mean log-wage for STEM majors common to all three lists (2.92) and STEM majors introduced 

in the ICE list (2.80) are significantly different at the 1% level. The difference in the mean log-wage for the STEM 

majors introduced in the ICE list (2.80) and the STEM majors introduced in the NSF list (2.74) are significantly 

different at the 1% level. 
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to men for all four sample segments. However, the gender difference varies substantially 

across segments, with gaps of 0.11 among STEM=1 under the NCES definition (which is 

confined to hard sciences) and 0.13 for the new STEM=1 under the NSF definition 

(which includes softer sciences), but only 0.01 for the new STEM=1 majors under the 

ICE definition (which includes health, agriculture, etc.). This points to gender differences 

in wages of traditional hard sciences (NCES definition) and soft sciences (only in the 

NSF definition), but not for “in-between” majors such as health and agriculture that are  

first introduced in the ICE definition. 

The bottom panel of table 2.3 compares the mean log-wage across definitions for 

each quartile of the STEM-intensity of coursework distribution. For men, the mean log-

wage is lowest in quartile 1 for all three definition and within 0.02 log-points of each 

other definition. Compared to quartile 1, the mean log-wage for quartile 2 in all three 

definitions is 0.04 to 0.07 log-points higher; it is within 0.03 log-points of each other 

definition. Thus far, patterns in the data are similar across definitions. However, 

compared to quartile 2, the mean log-wage for quartile 3 is substantially higher under the 

NCES (by 0.07 log-points) and ICE (by 0.10 log-points) lists, but remains the same under 

the NSF list. This suggests there is no unconditional wage benefit for quartile 3 under the 

NSF list while there is a substantial benefit under the other two lists.39 The differences in 

quartile 3 are corrected in quartile 4, as all three definitions have a mean log-wage of 

roughly 2.90; this is a substantial increase from quartile 3 (by 0.11 log-points in the 

                                                 
39 As the definition of STEM broadens from only including courses in the hard sciences on the NCES list to include 

additional technical fields found on the ICE list, there is an increase in the mean log-wage for quartile 3; however, as 

courses from the soft sciences are included as STEM (as is the case under the NSF definition), there are now 

respondents shifting into quartile 3 that bring down the mean log-wage. 
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NCES list, 0.07 log-points in the ICE list, and 0.15 log-points in the NSF list). Thus, the 

lack of an increase in the mean log-wage from quartile 2 to 3 that occurs only under the 

NSF list is compensated by an increase from quartile 3 to 4 that is greater than the other 

lists. Overall, there is a substantial wage increase in the shift from quartile 2 to 3 only 

under the NCES and ICE lists, and another wage increase in the shift from quartile 3 to 4 

under all three lists. 

The patterns for women differ than those for men. For the NCES and NSF lists 

the mean log-wage in quartile 1 is roughly the same as quartile 2, while the mean log-

wage is lower in quartile 3 (by 0.06 log-points). The mean log-wage in quartile 4 is 2.78, 

which is substantially higher than that of quartile 3 (by 0.17 log-points). In contrast, for 

the ICE list, the mean log-wage in quartile 1 is the lowest and increases in increments of 

0.02 (to quartile 2), 0.04 (to quartile 3), and 0.10 (to quartile 4) log-points. Although 

there are differences in the patterns for women across definitions, the mean log-wage for 

quartile 4 is 2.78 and substantially higher than that of quartile 1 for all three lists. 

 

2.4 Estimation Strategy  

To estimate the STEM wage premium, I use the following specification: 

 logWit =  𝛽1𝑆𝑇𝑖  +  𝛽2𝑋𝑖𝑡 + 𝜀𝑖𝑡 (2.1) 

where the dependent variable is the log of the average hourly wage for individual i at 

time t, 𝑋𝑖𝑡 represents the baseline controls (discussed in section 2.3.3), and 𝑆𝑇𝑖 is the 

measure of STEM training. The main parameter of interest is 𝛽1, which represents the 
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STEM wage premium. Specification 2.1 is estimated using ordinary least squares, 

separately for men and women.  

I begin the analysis by considering the six alternative (three dichotomous and 

three continuous) measures for 𝑆𝑇𝑖 in specification 2.1. Following the same process as 

LR, I experimented with various functional forms and found (a) nonlinear patterns in the 

relationship between the continuous measures and log-wage; and (b) that quartile 

indicators best reflect patterns in the data for all three definitions of STEM.40  Thus, I also 

examine an alternative to specification 2.1, where I replace 𝑆𝑇𝑖 with dummies that 

indicate the worker’s quartile in the gender- and definition-specific STEM-intensity of 

coursework distribution.  

 

2.5 Results  

Table 2.4 presents estimates of the STEM wage premium using alternative measures of 

STEM training.  Within gender, each panel refers to a separate regression that was used 

to produce the parameter estimate (or set of three parameter estimates) corresponding to a 

unique combination of STEM list (NCES/ICE/NSF) and STEM measure 

(dichotomous/non-dichotomous). After examining how the results change when varying 

the definition of STEM using the three published lists, I compare the results of the 

dichotomous measure to that of the non-dichotomous measure.  

                                                 
40 Results of the Ramsey regression specification error test suggest that a linear functional form is not the correct 

specification. However, introducing squared or cubic terms (or even interactions) does not fit the data as well as the 

quartile indicators. LR expand upon the failure of these alternatives and provide evidence that the quartile indicators 

implemented both in LR and the current study are robust.  
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I begin by examining the estimates for men. The first panel (top row) of Table 2.4 

presents the estimates of specification 2.1 using the dichotomous measure of STEM 

training. The estimated wage benefit of STEM=1 is 0.177 under the NCES definition, 

0.154 under the ICE definition, and 0.087 under the NSF definition; the first two 

estimates are not statistically distinguishable, but the latter is significantly smaller than 

the others at a 1% significance level. Because the NCES and ICE estimates are roughly 

twice the magnitude of the NSF estimate, it is clear that inferences about the wage benefit 

of STEM training are highly sensitive to the definition used when STEM is measured 

dichotomously. As noted in section 2.3.4, the NSF list includes social sciences and 

psychology majors that pay, on average, less than “hard science” STEM majors and 

roughly the same as the remaining non-STEM majors. Because these “soft science” 

majors make up a large proportion of STEM majors under the NSF definition, we see a 

substantial decrease in the estimated STEM wage premium when they are included as 

STEM.  

In the second panel (second row) of table 2.4, I present estimates of specification 

2.1 using the continuous measure of STEM training. The estimated log-wage premium 

associated with a 10-percentage point increase in STEM-intensity of coursework is 0.045 

under the NCES definition, 0.046 under the ICE definition, and 0.043 under the NSF 

definition; each estimate is statistically distinguishable from zero, but statistically 

indistinguishable from each other. In contrast to what was found when using the 

dichotomous measure, the estimated STEM wage premium is entirely insensitive to the 

definition of STEM when STEM is measured non-dichotomously. This is because, as 
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seen in table 2.2, the spread of the STEM-intensity of coursework distribution remains 

roughly the same when the STEM definition broadens.  

A more nuanced comparison of the first and second panels in table 2.4 reveals 

that the estimated wage benefit of shifting from low to high levels of STEM training is 

understated in the dichotomous measure compared to the continuous measure. For 

example, the 21% of STEM majors identified by the NCES definition can be likened to 

the 79th percentile of the STEM-intensity of the coursework distribution—and 0.211 is 

the estimated wage premium of a shift from the average STEM-intensity of coursework 

of men below the 79th percentile (for whom 13.2% of coursework is STEM) to the 

average STEM-intensity of coursework of men above the 79th percentile (for whom 

60.1% of coursework is STEM). This is higher than 0.177 (the estimated STEM 

coefficient under the NCES definition), which represents the estimated wage premium of 

a shift from the average of men with STEM = 0 to the average of men with STEM = 1.   

Because there are nonlinear patterns in the relationship between the continuous 

STEM measures and log-wage, I present an alternative to specification 2.1 in the third 

panel, where STEM-intensity of coursework is replaced with dummies that indicate the 

worker’s quartile in the gender- and definition-specific STEM-intensity of coursework 

distribution. For all three definitions, the estimated log-wage premium for high levels of 

STEM training (a shift from quartile 1 to quartile 4), is 0.22. This reaffirms the finding 
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from the second panel that the non-dichotomous measure is not sensitive to the definition 

used.41  

Comparing the results of the first and third panels in table 2.4 reaffirms the 

finding that the estimated wage benefit of shifting from low to high levels of STEM 

training is understated by the dichotomous measure compared to the non-dichotomous 

measure. This is because shifting from quartile 1 to quartile 4 of the STEM-intensity of 

coursework distribution (using the non-dichotomous measure) results in an estimated 

STEM wage premium that is higher than shifting from STEM=0 to STEM=1 (using the 

dichotomous measure) by 0.046 log-points under the NCES definition, 0.061 log-points 

under the ICE definition, and 0.133 log-points under the NSF definition.42 This 

comparison suggests that the estimates are highly sensitive to the dichotomous/non-

dichotomous distinction. This sensitivity reflects the fact that male workers in quartile 4 

of the non-dichotomous distribution are more “select” (i.e., more STEM-intensive) than 

are men for whom STEM=1 under the dichotomous definition. Further, as additional 

fields are classified as STEM, the pool of men in STEM=1 (dichotomous measure) 

continues to broaden while the narrow pool of men in quartile 4 (non-dichotomous 

                                                 
41 However, it is important to note that some of the underlying patterns differ across definitions. Under both the NCES 

and ICE definitions, the 0.22 log-wage premium is the result of a significant, incremental increase from quartile 2 to 

quartile 3 and another significant, but smaller incremental increase from quartile 3 to quartile 4. In contrast, under the 

NSF definition, the incremental change from quartile 2 to quartile 3 is not significant and the lion’s share of the 

estimated payoff is associated with the move from quartile 3 to quartile 4. As the definition of STEM broadens from 

the NCES and ICE lists to the NSF list with the inclusion of softer sciences, men in the fourth quartile see increases in 

their STEM-intensity of coursework that are similar to, if not greater than men elsewhere in the distribution (thus 

keeping them in the highest echelon of STEM training even when the quartile cut offs and STEM-intensity of 

coursework values are derived from the NSF list) while men in the third quartile do not consistently have similar 

increases in their STEM-intensity of coursework (thus displacing them to lower quartiles when the quartile cut offs and 

the STEM-intensity of coursework values are derived from the NSF list). 
42 The differences are calculated using the results row 1 and row 3. For example, under the NCES definition, the wage 

premium of STEM Major = 1 (dichotomous measure) is 0.177 and the wage premium of STEM-intensity of 

coursework quartile 4 (non-dichotomous measure) is 0.223, resulting in a difference of 0.046 log-points 
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measure) remains static; the latter occurs because as the definition of STEM expands, the 

STEM-intensity of coursework increases for men throughout the distribution, leaving the 

identity of men in quartile 4 largely unchanged. We saw that sensitivity to the definition 

used depends heavily on the dichotomous/non-dichotomous distinction, but here we see 

that the sensitivity of the dichotomous/non-dichotomous distinction does not depend on 

the definition used. In other words, sensitivities in the results for men are primarily driven 

by the method used to isolate workers with the highest echelon of STEM training (i.e., 

the dichotomous/non-dichotomous distinction) rather than the fields/courses included as 

STEM (i.e., the hard sciences in the NCES definition vs. the introduction of the soft 

sciences in the NSF definition).  

Turning to estimates for women in table 2.4, we see three main gender 

differences. First, the STEM wage premium is consistently lower for women than for 

men, regardless of the STEM list used or whether STEM is measured dichotomously or 

non-dichotomously. Under the dichotomous measure, the estimated STEM wage 

premium for women is 15% to 72% less than men, in part because women pursue 

different STEM majors from men, that increasingly have lower premiums as the 

definition of STEM broadens.43 Under the continuous measure (second panel), the 

estimated STEM wage premium for women is 17% to 41% less than men, in part because 

women have less STEM-intensive curriculums; in particular, women in quartile 4 tend to 

                                                 
43 For example, among STEM=1 under the NCES definition, 67% of men are computer science or engineering majors 

compared to only 33% of women and, among majors that are STEM=1 only under the NSF definition, 55% of men are 

social science majors compared to 33% of women. Previous studies have demonstrated that estimated returns differ by 

college major (see section 2.2), and these differences seem to grow when shifting away from the hard sciences towards 

the soft sciences; e.g., Altonji et al. 2014, after standardizing the major fixed effects, find the wage premium of 

engineering, chemistry, biology, mathematics, physics etc. ranges from 0.69 to 1.9 while the wage premium of 

economics, psychology, agricultural sciences, etc. has a much larger range from -1.0 to 1.4.   
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be “less STEM” than their male counterparts (e.g., table 2.2 shows that the 75th percentile 

STEM-intensity of coursework under the NCES definition is twice has high for men as 

for women). As a result, we also see that under the non-dichotomous measure (third panel 

of table 2.4), the estimated wage premium associated with moving from quartile 1 to 

quartile 4 is 48% to 64% smaller for women than for men.44  

Although it is noteworthy to compare the estimated wage premium of quartile 4 

over quartile 1 across genders in the third panel, this comparison must be qualified 

because the quartiles are based on gender-specific STEM-intensity of coursework 

distributions. Thus, in the fourth panel of table 2.4 I present estimates for the STEM wage 

premium using dummies that indicate the worker’s quartile in the definition specific, but 

not gender specific, STEM-intensity of coursework distribution. Even in the fourth panel, 

we see that the quartile 4 estimates for women remain 32% to 47% lower than the 

estimates for men.45 Thus, the results show a gender difference in the estimated STEM 

wage premium that remains consistent across definitions under the non-dichotomous 

measure but grows as the definition broadens under the dichotomous measure. 

                                                 
44 It should also be noted that the underlying pattern from the shift to quartile 1 to quartile 4 of the NCES and ICE 

definitions differ by gender. For men, this premium is the result of a significant incremental shift from quartile 2 to 3 

and quartile 3 to 4 whereas for women, it is solely the result of a significant incremental shift from quartile 3 to quartile 

4. This is because women pursue less STEM-intensive curriculums then men; table 2.2 shows that the threshold for 

quartile 4 is substantially lower for women compared to men. Thus, quartile 3 and quartile 4 both capture STEM-

intensive workers for men but only quartile 4 will do the same for women. 
45 Many of the trends noted in the third panel are present in fourth panel. However, one notable difference is that the 

quartile 4 estimates for men are not the same across definition in the fourth panel as they were in the third panel. For 

example, the NCES quartile 4 estimate (0.179) is lower than the other two definitions (0.216 under the ICE list and 

0.209 under the NSF list). Because women pursue less training in the hard sciences, men previously in quartile 3 in the 

gender-specific quartile cutoffs get shifted into quartile 4 when using the entire sample of men and women in 

determining the quartile cutoffs. This makes the pool of quartile 4 broader and dilutes it with workers who have 

comparative lower STEM-intensities, thus leading to a lower estimate.  
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Second, there is more sensitivity in the estimates for women than for men. Under 

the dichotomous measure, both genders are sensitive to the definition used, with the NSF 

definition leading to substantially smaller estimates than the NCES and ICE definitions. 

However, under the non-dichotomous measure, men have the same estimates across 

definitions while women’s estimates exhibit some sensitivity:  in the second panel, for 

example, the ICE definition results in an estimate of 0.038, which is somewhat higher 

than the estimates (0.030 and 0.025) under the NCES and ICE definitions; a similar 

pattern is seen in the third panel. As the STEM definition expands from the NCES list to 

the ICE list, women do not see an increase in the estimated wage premium under the 

STEM=1 designation but they do see an increase in the estimated wage premium 

associated with STEM-intensity of coursework. This suggests that the additional STEM 

coursework included under the ICE definition (for the non-dichotomous measure) is 

associated with higher wages that are not brought to bear under the dichotomous 

definition. 

Third, under the NCES and ICE definitions the estimated wage premium is 

greater for women under the dichotomous measure (0.129 and 0.130, respectively) than 

under the non-dichotomous measure (0.089 and 0.111, respectively). Because women 

pursue relatively less STEM-intensive curriculums, quartile 4 in the non-dichotomous 

measure becomes less exclusive compared to STEM=1 under the dichotomous measure; 

e.g., under the NCES definition 25% of women are in quartile 4 but only 8% of women 

are STEM majors. However, examining the results of the second panel shows that, 

compared to the continuous measure, the dichotomous measure understates the STEM 
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wage premium for women. For example, the 8% of STEM majors identified by the NCES 

definition can be likened to the 92nd percentile of the STEM-intensity of the coursework 

distribution—and 0.149 is the estimated wage premium of a shift from the average 

STEM-intensity of coursework of women below the 92nd percentile (for whom 12.3% of 

coursework is STEM) to the average STEM-intensity of coursework of women above the 

92nd percentile (for whom 62.1% of coursework is STEM). This is higher than 0.129 (the 

estimated STEM coefficient under the NCES definition), which represents the estimated 

wage premium of a shift from the average of women with STEM = 0 to the average of 

women with STEM = 1.   

Overall, comparing the results of men and women demonstrates that inferences 

about gender differences are affected by which workers are classified as STEM.  This, in 

turn, depends on whether we focus on workers with the highest competition rates of 

STEM coursework or simply workers with a STEM major (STEM =1), and also on 

whether the STEM definition includes the hard sciences only, as in the NCES definition, 

or is extended to include soft sciences as under the NSF definition.  

 

2.6 Conclusion  

In this chapter, I use transcript data from the NLSY97 to construct alternative measures 

of STEM training and I examine the extent to which the estimated STEM wage premium 

is sensitive to the measure used. I vary the measure of STEM training by, first, alternating 

between three government lists that identify STEM fields and, second, using either a 

dichotomous measure (STEM major equal to 0 or 1) or a continuous measure (the STEM-
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intensity of coursework). The major findings for men are as follows. First, the 

dichotomous STEM measure is sensitive to the definition used:  broadening the definition 

of STEM beyond the traditional “hard” sciences (engineering, mathematics, etc.) to 

include other technical and science-based fields (health, etc.) has minimal impact on the 

estimated STEM wage premium, but further expanding the definition to include the 

“softer” sciences (social sciences, psychology, etc.) results in substantially lower 

estimates. In contrast, the STEM-intensity of coursework measure is less sensitive to the 

definition used:  estimates in the linear specification are not significantly different across 

definitions and estimates in the preferred quartile specification maintain similar patterns 

across definitions; for example, the estimated STEM wage premium associated with the 

highest (quartile 4) STEM-intensity is not significantly different across definitions. 

Second, when comparing the dichotomous and non-dichotomous STEM measures, the 

results for all three definitions indicate the dichotomous measure underestimates the 

wage benefits of completing a curriculum with high STEM-intensities for men– a finding 

also found by LR. Because the sensitivity of the definition used depends on the 

dichotomous/non-dichotomous distinction while the sensitivity of the dichotomous/non-

dichotomous distinction depends less on the definition used, I conclude that the 

sensitivities of the estimated STEM wage premium are driven by the dichotomous/non-

dichotomous distinction rather than the definition used. Collectively, the results point 

towards the robustness of the STEM-intensity of coursework measure but not the STEM 

major measure. 
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The simplicity of this analysis has allowed us to learn about the importance of the 

STEM training measures used in estimating the STEM wage premium. Given the 

revelations related to both the sensitivity of the dichotomous/non-dichotomous 

distinction, the literature would benefit from additional research using the non-

dichotomous measure. LR has already conducted a study examining both STEM 

occupation and coursework intensities. Additional studies could directly examine gender 

differences in the estimated STEM wage premium, analyze the demand for STEM 

training in the labor market, assess the factors that determine choice of STEM training, or 

estimate the STEM wage premium by further distinguishing types of STEM training 

(e.g., separating the components of STEM training by each subject area or course type). 

.  
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Table 2.1: Means and Standard Deviations of Variables Used in 

Wage Regressions 

  Men Women 

Dependent variable    

Log of average hourly wage 2.78* 2.68 

  (0.62) (0.56) 

Independent variables    

ASVAB scores:    

    General science 
0.33* 0.03 

(0.74) (0.70) 

    Arithmetic reasoning 
0.42* 0.14 

(0.75) (0.73) 

    Work knowledge 
0.12* -0.07 

(0.74) (0.74) 

    Paragraph comprehension 
0.37 0.36 

(0.72) (0.67) 

    Numerical operations 
20.21* 19.73 

(6.06) (5.28) 

    Coding speed 
7.63* 8.20 

(3.17) (2.90) 

    Auto information 
-0.78* -1.07 

(0.56) (0.44) 

    Shop information 
-0.53* -0.96 

(0.62) (0.51) 

    Mathematics knowledge 
0.70* 0.62 

(0.83) (0.80) 

    Mechanical comprehension 
0.05* -0.32 

(0.67) (0.57) 

    Electronics comprehension 
-0.17* -0.66 

(0.78) (0.61) 

    Assembling objects 
0.14* 0.11 

(0.89) (0.81) 

Mother's highest grade completed 14.56* 13.96 

1 if mother employed (when resp was age 16) 0.74 0.73 

1 if English is primary language (1997) 0.96* 0.97 

Continued 
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Table 2.1 continued 

Family Structure (age 16)    

  1 if live with both parents 0.78* 0.71 

  1 if live with mother only 0.12* 0.16 

  1 if live with mother and partner 0.04* 0.07 

  1 if live with father only 0.03 0.04 

1 if Hispanic 0.12* 0.10 

1 if black 0.12* 0.15 

1 if Associate degree 0.14 0.15 

Age at receipt of Bachelor’s degree 
23.17* 22.85 

(1.90) (1.85) 

College grade point average 
2.62* 2.82 

(0.67) (0.59) 

1 if cohabiting 0.11* 0.14 

1 if married 0.23* 0.27 

1 if children 0.17* 0.24 

Hours worked per week 
37.19* 32.86 

(15.42) (14.95) 

Tenure 
2.45* 2.19 

(2.60) (2.30) 

Pre-degree experience 
4.03 3.98 

(2.55) (2.39) 

Experience 
3.60* 3.36 

(2.97) (2.80) 

1 if urban 0.88* 0.89 

1 if reside in northeast 0.17* 0.16 

1 if reside in south 0.34* 0.35 

1 if reside in west 0.22* 0.23 

Number of observations 4,633 6,637 
Note: *Significantly different for men and women at the 5% level. Additional regressors include dummy 

variables for calendar year, tenure squared, and experience squared. 
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Table 2.2: Distribution of STEM Measures by Gender 

Gender List Measure N Mean Sd Min P25 P50 P75 Max 

 

 

 

Men 

NCES 

list 

STEM major 558 0.21             

STEM-intensity of coursework 558 25.04 22.57 0.00 8.63 14.96 37.57 84.03 

ICE 

list 

STEM major 558 0.26             

STEM-intensity of coursework 558 29.60 20.75 0.00 13.04 22.64 43.08 83.74 

NSF 

list 

STEM major 558 0.42             

STEM-intensity of coursework 558 46.34 21.25 6.90 28.95 43.23 64.55 100.00 

 

 

Women 

NCES 

list 

STEM major 755 0.08             

STEM-intensity of coursework 755 17.43 16.92 0.00 7.27 11.71 18.06 87.79 

ICE 

list 

STEM major 755 0.15             

STEM-intensity of coursework 755 24.89 18.15 0.00 12.44 19.35 30.85 87.79 

NSF 

list 

STEM major 755 0.36             

STEM-intensity of coursework 755 43.62 19.72 2.41 27.91 41.38 58.39 100.00 
Note: “STEM major” is an indicator that equals one if the respondent completed a STEM major and zero otherwise. “STEM-intensity of coursework” is the percentage 
of total credit hours the respondent earned in STEM courses. Qualifying fields and/or courses for STEM major and STEM-intensity of coursework are determined based 

the corresponding published list (NCES, ICE, NSF).  All variables are time-invariant, and the statistics presented in this table include only one observation per 

respondent.  p25, p50, and p75 refer to 25th, 50th, and 75th percentile. 
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Table 2.3: Mean and Standard Deviation of Log-wage by STEM Definition by Gender 

   

Men Women 

Resp. Obs. 

Log-wage 

Resp. Obs. 

Log-wage 

Measure List Mean Sd Mean Sd 

Dichotomous 

STEM=1 in NCES,      

  STEM=1 in ICE,  

  STEM=1 in NSF 

118 877 2.92 0.60 57 443 2.81 0.62 

STEM=0 in NCES,  

  STEM=1 in ICE,  

  STEM=1 in NSF 

26 228 2.80 0.50 60 547 2.79 0.51 

STEM=0 in NCES,  

  STEM=0 in ICE,  

  STEM=1 in NSF 

90 814 2.74 0.62 154 1356 2.61 0.56 

STEM=0 in NCES,  

  STEM=0 in ICE,   

  STEM=0 in NSF 

324 2714 2.75 0.62 484 4291 2.68 0.56 

Non-

Dichotomous 

Quartile 1 in NCES list 134 1168 2.69 0.62 182 1671 2.67 0.57 

Quartile 1 in ICE list 136 1172 2.67 0.64 167 1678 2.62 0.54 

Quartile 1 in NSF list 132 1160 2.69 0.64 167 1660 2.67 0.58 

Quartile 2 in NCES list 129 1153 2.73 0.62 173 1650 2.67 0.58 

Quartile 2 in ICE list 123 1148 2.73 0.57 175 1643 2.64 0.58 

Quartile 2 in NSF list 126 1159 2.76 0.59 185 1661 2.66 0.54 

Quartile 3 in NCES list 134 1154 2.80 0.59 192 1663 2.61 0.54 

Quartile 3 in ICE list 140 1164 2.83 0.63 201 1660 2.68 0.55 

Quartile 3 in NSF list 137 1157 2.76 0.61 195 1661 2.61 0.55 

Quartile 4 in NCES list 161 1158 2.91 0.61 208 1653 2.78 0.55 

Quartile 4 in ICE list 159 1149 2.90 0.60 212 1656 2.78 0.56 

Quartile 4 in NSF list 163 1157 2.91 0.60 208 1655 2.78 0.57 
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Table 2.4: Estimated STEM Wage Premium  
 Men Women 

  STEM list STEM list 

STEM measure NCES ICE NSF NCES ICE NSF 

1 if STEM major 
0.177** 0.154** 0.087* 0.129* 0.130** 0.024 

(0.045) (0.041) (0.035) (0.057) (0.037) (0.027) 

STEM-intensity 

of coursework 

0.045** 0.046** 0.043** 0.030** 0.038** 0.025** 

(0.008) (0.009) (0.009) (0.008) (0.008) (0.006) 

STEM-intensity 

of coursework 

quartile (with 

gender specific 

cut-offs) 

  

  

        

  1 if quartile 2 
0.013 0.045 0.070 -0.009 -0.016 -0.046 

(0.046) (0.045) (0.050) (0.036) (0.036) (0.036) 

  1 if quartile 3 
0.138** 0.176** 0.073 -0.083* 0.044 -0.046 

(0.047) (0.050) (0.046) (0.034) (0.034) (0.034) 

  1 if quartile 4 
0.223** 0.215** 0.220** 0.089* 0.111** 0.078* 

(0.048) (0.050) (0.050) (0.035) (0.033) (0.035) 

STEM-intensity 

of coursework 

quartile (no 

gender specific 

cut-offs) 

  

  

        

  1 if quartile 2 
-0.006 0.055 0.067 -0.024 0.008 -0.028 

(0.049) (0.048) (0.051) (0.034) (0.035) (0.034) 

  1 if quartile 3 
0.118* 0.177** 0.074 -0.037 0.024 -0.045 

(0.047) (0.051) (0.049) (0.034) (0.032) (0.034) 

  1 if quartile 4 
0.179** 0.216** 0.209** 0.107** 0.147** 0.110** 

(0.046) (0.048) (0.049) (0.039) (0.036) (0.037) 

N 4633 4633 4633 6637 6637 6637 
Note: ** and * indicates significance at the 1% level and 5% level, respectively. A separate regression was used to produce each 

parameter estimate or set of three parameter estimates corresponding to a unique STEM measure/STEM list combination for each 
gender; in all, twelve regressions were used for each gender.  STEM wage premium estimates from specification 2.1 is in the top 

panel (top row) using the dichotomous measure and second panel (second row) using the continuous measure. STEM wage 

premium estimates from the alternative to specification 2.1 that uses quartile indicators for the STEM-intensity of coursework 
measure are in the bottom two panels (non-dichotomous measure); the third panel uses the distribution of each gender to determine 

the quartiles while the fourth panel uses the entire sample (both men and women) to determine the quartiles. Standard errors 

(clustered at the individual level) are in parenthesis. Coefficient estimates for other regressors can be found in table B.1 for the 
NCES list, table B.2 for the ICE list, and table B.3 for the NSF list. 
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Chapter 3: Education and Job Matching: A Two Cohort Comparison 

3.1 Introduction 

Beginning with the works of Freeman (1976) and Duncan and Hoffman (1981), 

researchers have been interested in matches between workers’ attained schooling and the 

schooling required for their jobs. A worker is overeducated (undereducated) if he has 

completed more (less) schooling than what is required for his job. Overeducation 

suggests that workers’ skills are underutilized, thus making completed educational 

investments less profitable for the individual and less productive for society (Duncan and 

Hoffman 1981). In fact, most researchers (including Rumberger 1987; Verdugo and 

Verdugo 1989; Clark et al. 2017) find a significant wage penalty associated with 

overeducation. As our society and policies increasingly emphasize the pursuit of higher 

education, we must grapple with the fact that segments of our educated population may 

continue to underutilize skills and face a resulting wage penalty.  

Despite interest in (and exhaustive research on) this topic, we know little about 

changes over time in the consequences of overeducation. This is because differences 

across studies prevent direct comparisons. Meta-analyses and literature reviews (e.g., 

Groot and Maassen van den Brink 2000; Hartog 2000; and Leuven and Oosterbeek 2011) 

find varying wage penalties and incidences of overeducation, even with data from the 

same year; this is due to different data sources, samples, estimation strategies, and 
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methods of defining a job’s education requirements.46 In this chapter, I systematically 

compare the wage effects of overeducation and undereducation for two cohorts of college 

graduates born approximately two decades apart to develop a better understanding of how 

the consequences of these mismatches have changed over time.  

For the analysis, I use data on college graduates in the 1997 National Longitudinal 

Survey of Youth (NLSY97) and the 1979 National Longitudinal Survey of Youth 

(NLSY79). 47 The respondents from the NLSY97 were born between 1980 and 1984, and 

respondents from the NLSY79 were born between 1957 and 1964. I define each 

respondent’s level of education as his or her highest degree completed and, combining 

the approaches of Clark et al. (2017) and Abel and Deitz (2015), the level of education 

required for an occupation as the most common (modal) degree held by workers in that 

occupation, based on data from the Current Population Survey. I examine respondents 

during their early career, defined as the first 15 years after college graduation. Because 

several studies (including McGoldrick and Robst 1996 and García-Mainar 2014) have 

documented gender differences in overeducation (driven by differences in occupation 

choice, degree specialization, etc.) and gender roles have evolved over the past few 

decades, I conduct the analysis separately for men and women. 

I begin the analysis by examining the incidence of overeducation and 

undereducation. The rates of overeducation for men are 42% for the older cohort and 

                                                 
46 For example, Dolton and Vignoles (2000) report 29% of male workers are overeducated from their 1986 sample and 

Alba-Ramirez (1993) report 15% of male workers are overeducated from their 1985 sample. 
47 The two studies are part of the same National Longitudinal Survey and were designed for cross-cohort comparisons. 

The NLSY website provides instructions on how to make the data sets comparable. Further, methodology from the 

NLSY79 was used to inform the NLSY97. The survey questionnaires also suggest a similar approach to data collection 

for both data sets. 
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51% for the younger cohort; for women, 44% of the older cohort are overeducated 

compared to 50% of the younger cohort.  Because these cross-cohort findings are based 

on a uniform methodology, this is the best evidence to date that overeducation has 

increased substantially over time (by 6-9 percentage points for my timeframe), while the 

unconditional gender gap in overeducation has remained small, yet reversed sign (i.e., 

women are two percentage points more likely than men to be overeducated in the 1979 

cohort vs. one percentage point less likely in the 1997 cohort).   In contrast, 

undereducation is much less common than overeducation and declining across cohorts for 

men and women:  the rates for men (women) are 9% (7%) for the older cohort and 4% 

(5%) for the younger cohort.  The unconditional gender gap in undereducation is just as 

small (1-2 percentage points) as is the gap in overeducation, but the sign reversal is in the 

opposite direction.   

Turning to the main analysis (examining wage penalties associated with 

overeducation and undereducation for both cohorts), I estimate an overeducation wage 

penalty of roughly 0.27 during the early career for both men and women, in both the 

NLSY97 and the NLSY79.  This finding of gender and cohort stability is based on a 

regression that controls for a rich array of observables that does not include occupational 

indicators. However, when occupation dummies are incorporated into the regression 

model (that is, when education mismatch penalties are identified “within” occupation), 

gender and cohort differences in the estimated wage penalty of overeducation emerge.  

Specifically, the estimated wage penalty increases across cohorts by three percentage 

points (from -0.207 to -0.244) for men and by nine percentage points (from -0.181 to -
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0.275) for women, and the gender gap reverses across cohorts (i.e., the penalty is three 

percentage points larger for men in the 1979 cohort, and three percentage points larger 

for women in the 1997 cohort).  Clearly, the within-occupation wage penalty associated 

with overeducation has grown across cohorts, especially for men.  

For undereducation, the primary finding is that the estimated wage effect—for 

men and women, with or without occupational controls—grew from a small, statistically 

insignificant, positive effect for the earlier cohort to a large, negative effect for the later 

cohort.  Specifically, the estimated, within-occupation wage penalty to undereducation is 

0.050 (0.020) for men (women) in the 1979 cohort (both of which are statistically 

indistinguishable from zero) and -0.282 (-0.190) for men (women) in the 1997 cohort.  

As I demonstrate in section 3.5.1, the lack of an undereducation wage penalty for the 

earlier cohort is attributable to the fact that many undereducated workers in the NLSY79 

hold occupations that closely resemble those of correctly educated workers; i.e., 

undereducated workers are “barely” classified as undereducated.   

 

3.2 Literature Review  

In this section, I focus on studies that examine overeducation and undereducation. 

Overeducation and undereducation refers to situations where a worker has, respectively, 

more and less education than his occupation requires. In discussing this literature I focus 

on three issues: (1) how both acquired and required education have been measured and, 

therefore, how overeducation and undereducation have been defined, (2) how wage 

effects of overeducation and undereducation have been identified, and (3) what has been 
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done to compare findings across studies. Unless otherwise specified, most studies do not 

focus solely on college graduates. 

Studies use differing methods to define overeducation and undereducation. Some 

studies use data where respondents self-report whether their education and qualifications 

match the job’s requirements.  For example, Chevalier (2003) and Chevalier and Lindley 

(2009) use data from a U.K.-based survey where respondents assessed the extent to 

which their qualifications matched their job. However, most studies first devise a method 

to define the education acquired by the worker and required for the job, before 

constructing a measure of overeducation and undereducation. For example, Rumberger 

(1987) defines education acquired by the worker based on years of schooling completed 

and defines the job’s required education based on a professional, objective analysis of the 

occupation’s requirements (found in the Dictionary of Occupation Titles); he then defines 

overeducation (undereducation) as cases where the years of schooling exceeds (is less 

than) the required amount. Abel and Deitz (2015) also define the job’s required education 

based on an external analysis of the occupation’s requirements (using the Occupation 

Information Network), but define the education acquired by the worker as his highest 

degree; overeducation is represented by a dummy variable equal to one if the worker’s 

degree is greater than the required degree. In contrast, Clark et al. (2017) define acquired 

education by grouping workers into categories based on years of schooling completed 

(i.e., 12-13 years, 14-15 years, etc.) while education required for the job is based on the 

modal education completed by workers from a national sample in that occupation; 

overeducation (undereducation) is then defined by if the schooling attained is higher 
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(lower) than the schooling requirements. Duncan and Hoffman (1981) and Sicherman 

(1991) use data from the Panel Study of Income Dynamics, where respondents indicated 

both their level of education and the level of education required to obtain their job; 

overeducation (undereducation) is defined as having a level of education greater (less) 

than what is required. Other studies use different combinations of these methods of 

defining acquired education, required education, and overeducation/undereducation; see 

Leuven and Oosterbeek 2011, McGuinness 2006, or Sloane 2003 for a literature review. 

Studies that assess the wage penalty associated with overeducation or 

undereducation differ in their specifications, estimation strategies, and controls. The two 

primary specifications were established by Duncan and Hoffman (1981) and Verdugo 

and Verdugo (1989). In Duncan and Hoffman (1981), years of required schooling and 

schooling in excess or deficit of what is required are separately included in a Mincer-type 

earnings regression.  The authors find that the estimated return to a “required year” of 

schooling is 0.063 (i.e., workers in jobs that require more schooling have higher wages), 

while the return to an “overeducated year” is 0.029 (i.e., workers with excess schooling 

earn more than others in their job, but, because 0.029 is less than 0.063, they earn less 

than those in jobs requiring more schooling) and the return to an “undereducated year” is 

-0.042; all three estimates are statistically significant at conventional significance levels. 

This suggests, for example, that college-educated workers in a high school job earn less 

than college-educated workers in a college job but earn more than high school workers in 

a high school job.   
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Several studies, including Allen and van der Velden (2001), also use this 

approach. In contrast, Verdugo and Verdugo (1989) insert dummies into the wage 

regression that indicate if the worker is overeducated and undereducated; the amount by 

which the worker is overeducated or undereducated is not reflected in this approach. 

They find a statistically significant estimate of -0.130 for overeducated workers and 

0.096 for undereducated workers. Abel and Deitz (2015) and Chevalier (2003) implement 

a similar approach.  

Virtually all studies of overeducation/undereducation (including both Duncan and 

Hoffman 1981 and Verdugo and Verdugo 1989) utilize a linear regression framework, 

but relatively few address endogeneity concerns (due to effects of unobserved ability, 

preferences, motivation, and other factors on both overeducation/undereducation and 

wages).  An instrumental variable approach is employed by both Korpi and Tahlin (2009) 

(using family background variables as instruments) and Dolton and Silles (2008) (using 

exogenous changes caused by labor market rigidities in the overeducation distribution as 

instruments). Lindley and McIntosh (2010) use individual fixed effects to absorb the 

effects of any time-invariant, person-specific unobservables. Some studies control for a 

rich array of covariates to account for self-selection on ability; for example, Clark et al. 

(2017) incorporate pre-college ability test scores (AFQT) into their analysis.  

In addition to differing in how mismatch is controlled for, existing studies also 

differ in the set of conditioning factors. Most condition on worker characteristics (age, 

race, ethnicity, etc.). Studies that focus solely on college graduates often incorporate 

measures related to the respondent’s field of study; for example, Chevalier (2003) and 
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Allen and van der Velden (2001) include field of study dummies and Abel and Deitz 

(2015) incorporates college major match (i.e., a dummy that indicates if the respondent is 

in an occupation that relates to his major) in their analyses. Controlling for job 

characteristics is less common, but Duncan and Hoffman (1981) and Sicherman (1991) 

include indicators for occupation categories and Chevalier (2003) includes indicators for 

firm size.  

Most studies on overeducation and undereducation focus on workers and 

occupations at all degree levels. Only a few studies examine the wage effects of 

overeducation and undereducation specifically for college graduates. Abel and Deitz 

(2015) study college-educated men and women; using OLS and controlling for several 

covariates (including metro unemployment rate and agglomeration) they estimate a log-

wage benefit of 0.244 for a college degree match (meaning the college educated worker 

is in a “college education” occupation). Chevalier (2003) studies graduates from a U.K. 

university and, after controlling for a rich array of education and job characteristics, finds 

that “genuinely” overeducated workers (i.e., overeducated workers who are dissatisfied 

with their match) have an estimated log-wage penalty of 0.264. Allen and van der Velden 

(2001) study higher education graduates from Europe and Japan and find that an 

additional year of overeducation is associated with an 8% decrease in wages.  

Additional research has focused on reviewing and comparing studies on 

overeducation and undereducation. Hartog (2000) compares a large number of empirical 

studies from several countries, conducted with data spanning two decades; the author 

assesses differences in methods used to define required education as well as the incidence 
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and wage penalty of overeducation and undereducation. Groot and Maassen van den 

Brink (2000) conduct a meta-analysis of overeducation studies, concluding that there is 

no indication of mismatches in education having increased significantly in the past 20 

years. Despite the thorough work conducted in both studies, differences in data sources, 

estimation strategies, and definitions of overeducation make it difficult to compare 

studies and understand how both the incidence of overeducation and its effect on labor 

market outcomes have changed over time. The literature can benefit from a direct 

comparison across time that uses a consistent data source and uniform estimation and 

sampling strategies. Additionally, most studies rely on cross-sectional data, and are 

unable to track the evolution of overeducation over an individual’s career. Thus, the 

literature can also benefit from a study that learns about the time-varying effects of 

overeducation for a single cohort. 

 

3.3 Data  

My primary data sources are the 1997 National Longitudinal Survey of Youth (NLSY97) 

and the 1979 National Longitudinal Survey of Youth (NLSY79). The NLSY97 is a 

survey of young men and women that began in 1997 with a sample of 8,894 respondents 

born between 1980 and 1984. Respondents were interviewed annually from 1997 to 2011 

and biennially from 2013 onward; data are currently available through the 2015-2016 

round. The NLSY79 is a survey of young men and women that began in 1979 with a 

sample of 12,686 respondents born between 1957 and 1964. Respondents were 

interviewed annually through 1994 and biennially through 2014.  Data were available 
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through the 2014-2015 round when I conducted this analysis. Both the NLSY97 and 

NLSY79 provide detailed information on schooling attainment and previously held jobs 

including average hourly wages (computed by NLSY staff) and occupation codes. 

Additionally, respondents of both the NLSY97 and NLSY79 completed the Armed 

Services Vocational Aptitude Battery (ASVAB), a multi-part test that measure 

respondents’ aptitudes in various academic and vocational topics. The ASVAB was 

administered to NLSY97 respondents in 1997-1998 when they were ages 12-18, and to 

NLSY79 respondents in 1980 when they were ages 15-23. Armed Forces Qualifications 

Test (AFQT) scores, which are a widely-used measure of pre-college ability, can be 

constructed with scores on four ASVAB subtests (writing knowledge, mathematical 

knowledge, arithmetic reasoning, and paragraph comprehension).  

 

3.3.1 Sample Selection  

I begin the sample selection for my analysis by only considering the 2,354 respondents in 

the NLSY97 and the 2,685 respondents in the NLSY79 who have completed a bachelor’s 

degree and have their graduation date available in the data. Among the respondents with 

a bachelor’s degree, I exclude an additional 328 from the NLSY97 and 83 from the 

NLSY79 who are missing the ASVAB/AFQT score.  

For the remaining 2,026 respondents in the NLSY97 and 2,602 respondents in the 

NLSY79, I keep only post-bachelor’s degree wage observations. I terminate the 

observation period when the respondent re-enrolls in graduate school, is fifteen years past 

the graduation date, or is last interviewed (whichever comes first). The 15-year cutoff is 
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imposed to increase the comparability of the samples because most respondents in the 

NLSY79 are observed far longer than NLSY97 respondents.48 I delete wage observations 

if the average hourly wage is not between $0.50 and $250 or if the occupation code is not 

available.  

The final sample for the NLSY97 consists of 1,930 respondents (with 15,525 

wage observations): 794 are male (with 6,384 wage observations) and 1,136 are female 

(with 9,141 wage observations). The final sample for the NLSY79 has 2,266 respondents 

(with 24,671 wage observations): 1,039 are male (with 11,941 wage observations) and 

1,227 are female (with 12,730 wage observations). The final NLSY79 sample is about 

17% larger than the NLSY97 sample because more respondents were initially surveyed in 

the NLSY79 then the NLSY97 (12,686 vs 8,894) and because NLSY79 respondents have 

had far longer to complete college and earn post-college wages. To contend with the fact 

that “late” observations (6-15 years after college graduation) are much more common in 

the NLSY79 sample than in the NLSY97 sample, a portion of my analysis is conducted 

with fixed, uniform experience levels (1 year and 5 years).  

 

3.3.2 Defining Overeducation and Undereducation  

The education required for an occupation is determined using the Current Population 

Survey (CPS), a monthly survey of U.S. households that includes the education level and 

occupations of respondents.49 Similar to Clark et al. (2017), I define education required 

                                                 
48 The earliest bachelor’s degree in the NLSY97 sample was completed in 2000 and the current round was conducted in 

2015-2016.  
49 Unlike earlier chapters in this dissertation, the O*NET database is not used to determine level of education. This is 

because O*NET was first constructed and released in 1998 with subsequent updates occurring every 6-12 months. 
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for an occupation by using the modal education acquired by workers in the same 

occupation in the CPS data.50,51 However, I modify this approach based on the work of 

Abel and Deitz (2015) by collapsing the schooling/degree levels into the following three 

degree categories: (1) less than a bachelor’s degree, (2) a bachelor’s degree, or (3) greater 

than a bachelor’s degree. The education category that the plurality of CPS respondents 

belonged to for a given occupation is defined as the required level of education. This 

approach is based on realized matches because it relies on the education levels of other 

members of the population who have already matched to the same occupation to 

determine the occupation’s degree requirements. Hartog (2000) points out that this 

method does not define required education based on the technological requirements of a 

job because it measures allocation determined by hiring standards and labor market 

conditions. Although not ideal, this may have interesting implications in the current 

study, because labor market conditions and hiring standards, which may have differed 

when respondents in the NLSY79 and the NLSY97 graduated, are now reflected in the 

mismatch measures.  

                                                 
While it is useful for the NLSY97 cohort, it is less relevant for the early jobs of the NLSY79 cohort. The precursor to 

O*NET is the US department of labor funded Dictionary of Occupation Titles (DOT), which had four releases between 

1938 and 1991. However, these two databases are fundamentally different sources of occupation descriptors as the 

DOT is a task-based database while O*NET is a skill-based database. As a result, the way the education-oriented 

information is collected and presented is different between the databases and thus, not comparable (e.g., DOT identifies 

“General Education Development” on a scale from 1 to 6, which is a more objective estimate of occupation training 

requirements made by experts in the field; researchers have developed different methods to convert this scale into years 

of schooling, none of which are universally accepted. In contrast, O*NET surveys individuals within an occupation on 

what they think is required for their occupation). Using the CPS data allows for a consistent method of defining the 

required level of education for an occupation during this vast period of 1980-present.  
50 Occupation is defined using the 1980 and 2000 three-digit Census Occupation Classification (the most refined 

definition of occupation available in the Census taxonomy).  
51 The March CPS data from the year in which the respondent started their occupation is used. Because the occupation 

taxonomy is often updated, if the data is unavailable or the occupation coding taxonomy differed between the NLSY 

and the CPS, then the closest year to when the respondent started their occupation that also has CPS data with a 

matching occupation taxonomy is used.  
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Based on the required level of education defined above, a respondent in the 

NLSY97 and NLSY79 is overeducated if his job requires a degree less than a bachelor’s 

degree. Similarly, a respondent is undereducated if his job requires a degree greater than 

a bachelor’s degree and correctly educated if his job requires a bachelor’s degree.  

 

3.3.3 Other Variables  

The dependent variable is log average hourly wage, CPI-U deflated to 2006 dollars. In 

addition to the overeducation and undereducation measures described in the previous 

section, I also use a set of baseline controls in the regression analysis. The variables 

included in the baseline controls are the same for the NLSY97 and NLSY79 samples and, 

in most cases, are constructed in a similar manner. The pre-college variables in the 

baseline controls include dummies that indicate race and ethnicity, mother’s highest 

degree completed, and AFQT score. The in-college variables in the baseline controls 

include an indicator that the worker completed an Associate’s degree, and age at 

graduation. The baseline controls also include several post-college variables, including 

dummies that indicate if the respondent is married, is cohabiting, is residing in an urban 

area, and has any children. Further, region of residence dummies (resides in the south, 

west, or northeast), year of wage observation dummies, years of labor market experience 
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after college graduation, its square, and its cube, tenure, its square, and its cube, and 

hours of work per week are included.52,53 

In addition to the baseline controls, in select specifications I also control for 

occupation and/or college major dummies.54 A related body of literature provides 

compelling evidence that major-specific and occupation-specific factors are related to 

both wages and overeducation/undereducation. Studies have shown that estimated wage 

returns vary by major (e.g., Altonjii et al. 2012 and Altonji et al. 2014) and occupation 

(e.g., Sullivan 2010). Other studies have shown that overeducation relates to majors (e.g., 

Frenette 2004 finds that overqualification varies considerably by major field at the 

bachelor degree level) as well as occupations (e.g., Duncan and Hoffman 1981 note 

substantial differences in overeducation incidence by occupation group and Verdugo and 

Verdugo 1989 find the estimated returns to overeducation/undereducation vary 

substantially across occupation groups). If certain occupation groups command a wage 

premium over others, then it stands to reason that the returns to non-college jobs are 

closer to college jobs in certain occupation groups but not others. For example, 

professional and management occupations both contain non-college jobs, yet non-college 

jobs in these occupation groups may require skilling that make college graduates 

attractive enough for employers to pay more to hire compared to employers for non-

                                                 
52 Both the NLSY79 and NLSY97 have a plethora of family background variables, cognitive and non-cognitive test 

scores, etc. that the other data set does not have. Upon investigating these additional covariates, I found that they did 

not provide any additional insights. For these reasons, I choose not to include these variables in the current study.  
53 Hours of work per week is the number of hours worked per week at the time of the interview (or at the job's stop date 

if the respondent is no longer in that job at the time of the interview). 
54 The occupation groupings were determined based off of the Census 2000 one-digit occupation codes. Because some 

of the earlier NLSY79 occupations are coded using the Census 1980 codes, I map them into these groups as well. The 

major groupings are based on a taxonomy I created that can be seen in table C.1. 
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college jobs in other occupation groups. Thus, considering within occupation and within 

major variation is important in identifying the overeducation wage penalty. 

 

3.3.4 Sample Summary Statistics  

Table 3.1 presents means and standard deviations of the dependent and independent 

variables, by cohort and gender. I begin by examining the rates of overeducation and 

undereducation. For men, 42% are overeducated in the NLSY79 compared to 51% in the 

NLSY97; because a consistent approach was used to construct both samples, this change 

would suggest overeducation has increased substantially (by 9 percentage points) over 

this time frame. Similarly, for women, 44% are overeducated in the NLSY79 compared 

to 50% in the NLSY97. Although the (unconditional) gender gap in overeducation is 

small, the direction of the gap differs as women are two percentage points more likely 

than men to be overeducated in the NLSY79 but one percentage point less likely than 

men to be overeducated in the NLSY97. 

In contrast, the incidence of undereducation is substantially lower compared to 

that of overeducation. For men, 9% in the NLSY79 are undereducated compared to 4% in 

the NLSY97; for women, 7% in the NLSY79 are undereducated compared to 5% in the 

NLSY97. Unlike overeducation, the rates of undereducation are declining across cohorts 

for both genders. Although the (unconditional) gender gap in undereducation is small and 

similar to that of overeducation, the direction of the gap is reversed; i.e., in the NLSY79, 

women are more likely to be overeducated but less likely to be undereducated then men 
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and in the NLSY97, women are less likely to be overeducated but more likely to be 

undereducated then men. 

Within gender, the means for most demographic and regional variables are similar 

for the two cohorts, as is the mean of the dependent variable; the latter is consistent with 

evidence that real wages among college graduates have not grown over the time period 

spanned by the two cohorts’ early careers.55  However, there are differences across 

cohorts in various family/background variables. For example, women in the NLSY79 

compared to the NLSY97 are more likely to be married (29% compared to 26%) and to 

have children (26% compared to 23%), and have lower average AFQT scores (65.6 

compared to 67.5). Studies have shown differences across generations that may account 

for the NLSY79 and NLSY97 differences; for example, Bialik and Fry (2019) find that 

the percentage of women between ages 25 and 37 who are married is substantially lower 

among millennials compared to baby boomers.  

 The data also show a higher percentage of respondents in the NLSY97 completed 

an Associate degree; this suggests differences between the two cohorts in the path taken 

to complete bachelor’s degree. Compared to the NLSY79, the NLSY97 cohort has a 

lower mean age at graduation (25 compared to 23 for women), tenure (3 years compared 

to 2 years for women), and experience (11 years compared to 7 years for women); this is 

because the observation window is longer for the NLSY79 cohort compared to the 

NLSY97.56  

                                                 
55 Research suggests there has not been a substantial increase in real wages due to purchasing power despite nominal 

wages increasing. See the Congressional Research Services report: https://fas.org/sgp/crs/misc/R45090.pdf  
56 These differences are an unavoidable result of my decision to examine observations in the early career (up to fifteen 

years after graduation). Because more NLSY79 respondents than NLSY97 respondents are observed over the entirety 

https://fas.org/sgp/crs/misc/R45090.pdf
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In table 3.2, I present the percentage of respondents who are overeducated, 

correctly educated, and undereducated for each occupation and college major. I begin by 

examining the occupation groups in the top panel of table 3.2. While the clerical, 

services, and farmers, laborers, etc. occupation groups are almost entirely made up of 

overeducated workers, the management, professional, and sales occupation groups have a 

mix of overeducated and correctly educated workers. For men in the NLSY79, roughly 

two-thirds of management occupations are correctly educated and a third are 

overeducated; in the NLSY97 closer to three-quarters of management occupations are 

correctly educated and a quarter are overeducated. Similar patterns are present for 

women. For men in professional occupations, 64.8 percent are correctly educated in the 

NLSY79 compared to 69.6 percent in the NLSY97; however, 21.2 percent are 

undereducated in the NLSY79 compared to 9.7 percent in the NLSY97 and only 14.4 

percent are overeducated in the NLSY79 compared to 20.7 percent in the NLSY97. 

These cohort differences in professional occupations are not present for women. 

Nonetheless, the top panel suggests in most cases, there variation in the mismatch status 

within occupation group and this differs substantially across cohorts. 

In the bottom panel of table 3.2 I examine the overeducation, correctly educated, 

and undereducation distribution for each college major. For 

management/communications majors, there is roughly a 50/50 split in the percentage that 

are overeducated and correctly educated; this is consistent across cohorts and gender. 

                                                 
of this time frame, there are imbalances in my sample. Thus, I also examine two cross-sections of the data to ensure the 

results are robust over time.  
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However, for STEM majors, 34.5 percent of men in the NLSY79 are overeducated 

compared to 44.6 percent in the NLSY97 and 10.3 percent of men in the NLSY79 are 

undereducated compared to 2.6 percent in the NLSY97. This suggests that there are 

differences in the mismatch distribution within each major group. Although these cohort 

differences are not present for women in STEM, there are both gender and cohort 

differences in the mismatch distribution for arts/humanities, social sciences, and other 

majors. 

 

3.4 Estimation Strategy  

My goals are to identify the wage penalties associated with overeducation and 

undereducation, and assess differences across cohorts and genders. To estimate the wage 

penalty, I use the following specification established by Verdugo and Verdugo (1989):  

log(𝑤𝑖𝑗𝑡) = 𝛽1𝐼𝑂𝑖𝑗𝑡 + 𝛽2𝐼𝑈𝑖𝑗𝑡 +  𝛽3𝑋𝑖𝑡 + 𝜀𝑖𝑡 

 

(3.1) 

where the dependent variable is the log of the average hourly wage for individual i in 

occupation j at time t. The two independent variables of interest are 𝐼𝑂𝑖𝑗𝑡 and 𝐼𝑈𝑖𝑗𝑡, 

indicators that equal one if respondent i is, respectively, overeducated and undereducated 

in occupation j and zero otherwise; thus, 𝛽1 and 𝛽2 represent the estimated mismatch 

wage penalty. The vector 𝑋𝑖𝑡 represents a rich array of covariates described in section 

3.3.3 (including the baseline controls, occupation fixed effects, and major fixed effects). I 

estimate equation 3.1 using ordinary least squares, separately for the two cohorts and for 

each gender; as indicated in section 3.3.3, I first use only baseline controls, then add 
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occupation fixed effects and/or major fixed effects to determine if the wage penalty 

differs when identified using within occupation and/or within major variation. I also 

estimate equation 3.1 for two cross-sections of the data to examine if the wage penalty 

remains consistent throughout the observation window.    

 

3.5 Results  

In section 3.5.1, I discuss the estimated wage penalty associated with overeducation and 

undereducation during the early career, by cohort and gender. In section 3.5.2, I examine 

the estimated wage penalty associated with overeducation and undereducation for two 

cross-sections of the data, defined one year and five years after graduation. I compare the 

estimates between the two cross-sections for each cohort and then compare any 

differences across cohorts to understand changes in the associated wage penalty during 

workers’ careers. 

 

3.5.1. Overeducation and Undereducation Wage Penalty During the Early Career 

I present estimates of the wage penalty associated with overeducation and undereducation 

during the early career in both cohorts for men in table 3.3 and women in table 3.4. Each 

column presents a separate regression that was used to produce the two parameter 

estimates (overeducation and undereducation) corresponding to different set of controls 

(e.g., baseline controls only, inclusion of occupation group dummies, inclusion of major 

group dummies, or inclusion of both occupation/major group dummies).   
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I begin my analysis by examining the overeducation coefficient estimates in 

column 1; i.e., the results are based on a specification that includes baseline controls only 

in addition to the over/undereducation indicators. For men, the estimated coefficient for 

overeducation is -0.271 in the NLSY79 and -0.279 in the NLSY97. Since the estimates 

only differ by a small and imprecise amount (0.008 log-points), it appears that the 

estimated wage penalty for overeducation is stable over the time frame examined. This 

finding is also present for women; i.e., the estimated coefficient for overeducation is -

0.278 in the NLSY79 and -0.283 in the NLSY97, a difference of only 0.005 log-points. 

Further, because the estimated wage penalty is only slightly higher for women than men 

(a gap of 0.007 log-points in the NLSY79 and 0.004 log-points in the NLSY97), there is 

gender stability in the results over this time frame. Overall, the results suggest an 

overeducation wage penalty of roughly 0.27 during the early career for both genders in 

both cohorts when estimates are based on a regression that controls for a rich array of 

observables. 

Turning to column 2, I introduce occupation group dummies into the regression 

models. For both cohorts and genders, the estimated wage penalty is lower in column 2 

compared to column 1 as some of the variation in wages due to the occupation dummies 

was previously attributed to the overeducation/undereducation distinction in column 1; 

the wage penalty changes more for the older cohort than the younger cohort. Unlike 

column 1, there are substantial cohort and gender differences when the estimated 

overeducation/undereducation wage penalties are identified “within” occupation. For 

men (table 3.3), the estimated wage penalty increases by 0.037 log-points (from -0.207 in 
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the NLSY79 to -0.244 in the NLSY97); for women (table 3.4), the estimated wage 

penalty increases even more by 0.094 log-points (from -0.181 in the NLSY79 to -0.275 in 

the NLSY97). Thus, the within-occupation wage penalty associated with overeducation 

(column 2) has grown substantially over this time frame even though the wage penalty 

identified using total variation (column 1) is stable. Also different from column 1 is a 

substantial gender gap in the wage penalty (roughly 0.03 log-points for both cohorts); the 

direction of the gap differs across cohorts, as the estimated overeducation wage penalty 

for women is higher than for men in the NLSY79 but lower in the NLSY97. 

In column 3, I incorporate major group dummies when estimating equation 3.1 to 

identify the overeducation/undereducation penalties “within” major. Although the 

estimated wage penalties for men (table 3.3) in both cohorts is lower in column 3 

compared to column 1, it is not as low as column 2. For women (table 3.4), the estimates 

in column 3 remain within 0.006 log-points of the column 1 estimates for both cohorts 

(although the penalty slightly increases for the NLSY97 and decreases for the NLSY79). 

The difference in the penalties across cohorts in column 3 are small and imprecise (0.000 

for men and 0.004 for women); this is similar to column 1 and suggests that there is 

stability in the estimated wage penalty over this time frame whether or not estimates are 

identified using within major variation. However, there are substantial gender differences 

in column 3 (that are not present in column 1) as the estimated wage penalty is roughly 

0.02 log-points higher for women compared to men in both cohorts. Nonetheless, this gap 

is slightly smaller than that of column 2 (i.e., wage penalty identified “within” 

occupation). 
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In column 4, I include both occupation and major group dummies in estimating 

equation 3.1. From these results, it is clear that there are substantial cohort and gender 

differences in the overeducation/undereducation wage penalties when identified using 

within occupation and within major variation. The estimated log-wage penalty increases 

by 0.031 log-points for men (from -0.199 for the NLSY79 to -0.230 for the NLSY97) and 

by an even greater 0.075 log-points for women (from -0.203 for the NLSY79 to -0.278 

for the NLSY97). Given the results of column 2 and 3, these differences appear to be 

driven by the inclusion of occupation group dummies (and would suggest some of the 

variation between major groups overlaps with that of occupation groups). However, 

unlike columns 1-3 where the gender gap (if any) is roughly the same for both cohorts, 

there appears to be a more substantial cohort difference in column 4; the estimated wage 

penalty is only 0.004 log-points higher for women compared to men in the NLSY79 

while it is 0.048 in the NLSY97.  

I now shift my analysis to examining the undereducation coefficient estimates. 

Returning to column 1, I estimate equation 3.1 conditioning on only the baseline controls 

in addition to the over/undereducation dummies. For men (table 3.3), the estimated 

coefficient for undereducation is (not significant) -0.010 in the NLSY79 and -0.297 in the 

NLSY97. Unlike overeducation, there is a substantial cohort difference (of 0.287 log-

points) in the undereducation wage penalty. This suggests that the undereducation wage 

penalty has considerably increased over the time frame examined. Further, the direction 

of the mismatch matters a great deal for the younger cohort unlike the older cohort. The 

lack of an undereducation wage penalty for the older cohort is attributable to the fact that 
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many undereducated workers in the NLSY79 hold occupations that closely resemble 

those of correctly educated workers; i.e., undereducated workers in the older cohort are 

“barely” classified as undereducated.  Recall that required education is defined based on 

whether the plurality of respondents in the CPS had less than, equal to, or greater than a 

bachelor’s degree for a given occupation. For the occupations of undereducated workers, 

the average percentage of CPS respondents with a degree greater than a bachelor’s degree 

is 76% for the NLSY97 and 59% for the NLSY79. This suggests the undereducated 

occupations for the older cohort were less firm in their undereducation status than that of 

the younger cohort. Similar qualitative patterns are apparent for women (table 3.4) since 

the coefficient estimates for undereducation are not significant (albeit positive) in the 

NLSY79 (0.026) but becomes a substantial negative effect in the NLSY97 (-0.196). 

However, the gender gap in the wage penalties varies across cohorts; it shifts from 0.036 

log-points in the NLSY79 to an even greater 0.101 log-points in the NLSY97. 

Nonetheless, for both cohorts, the wage penalty is greater for men.  

The qualitative patterns for the estimated returns to undereducation discussed in 

column 1 are apparent when introducing occupation fixed effects (column 2), major fixed 

effects (column 3) or both (column 4) to the regression. For all three columns, the 

undereducation wage penalty for men (table 3.3) remains small and imprecise (albeit 

positive) for the NLSY79 and changes by 0.333 (column 2), 0.252 (column 3), or 0.296 

(column 4) log-points to a substantial wage penalty for the NLSY97. Likewise, for 

women (table 3.4), the undereducation wage penalty is small and imprecise (and still 

positive) for the NLSY79 and changes by 0.210 (column 2/3) or 0.199 (column 4) log-
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points to a substantial wage penalty for the NLSY97. The gender gap in the (not 

significant) undereducation estimates vary across columns for the NLSY79; the inclusion 

of the occupation group dummies results in undereducated men having a greater wage 

benefit (by 0.031 log-points) while the inclusion of major group dummies is the reverse 

(women have a greater wage benefit of 0.018 log-points). However, for the NLSY97, 

men consistently have a larger wage penalty associated with undereducation that 

considerably narrows from 0.092 log-points (column 2) when including the occupation 

group dummies to 0.059 log-points (column 3) when including the major group dummies 

and 0.053 (column 4) when including both sets of fixed effects. 

 

3.5.2. Overeducation and Undereducation Wage Penalty One Year and Five Years 

After Graduation 

Because respondents in the NLSY79 are observed for a longer period after college 

graduation than are respondents in the NLSY97, in the previous section I restricted both 

panels to wage observations in the first 15 years after graduation to enhance 

comparability. However, not all respondents in either cohort are observed for the entirety 

of this 15-year window, due to survey attrition in both cohorts and the fact that many 

NLSY97 respondents are too young to reach the 15-year milestone prior to the last (2015-

16) interview. To ensure that my findings are not driven by differences between the two 

samples in the proportion of observations associated with “low” versus “high” experience 

levels, in this section I examine two cross-sections defined at experience levels of one 

and five years.  To clarify, all respondents, regardless of cohort, are one year (five years) 
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beyond the college graduation date in the first (second) cross-section. Table 3.5 presents 

the estimated overeducation and undereducation effect for cross-sections of the data. 

For men, the estimated wage penalty associated with overeducation for one year 

after graduation is -0.222 for the NLSY79 and -0.235 for the NLSY97; this is, 

respectively, 0.023 log-points greater and 0.005 log-points smaller than the estimated 

wage penalty for the entire sample (found in table 3.3). In contrast, the estimated wage 

penalty for five years after graduation is the same as the entire sample for the NLSY79 

and smaller by 0.009 log-points for the NLSY97. This suggests that the overeducation 

wage penalty decreases over time (e.g., the wage penalty is greater one year compared to 

five years after graduation). This is consistent overeducation being indictive of a bad 

match (quality), resulting in such workers changing jobs sooner to improve their matches 

(Sicherman, 1991); this would inevitably reduce the wage penalty over time.57 However, 

because the gap between the two cohorts is smaller for each cross-section (e.g., 0.013 

log-points one year and 0.022 log-points five year after graduation) compared to the 

entire sample (e.g., 0.031 log-points in table 3.3), it appears that the unbalanced sample 

has some influence in the magnitude of the estimates found in table 3.3 but not enough to 

alter the qualitative patterns noted in the previous section.  

Similar patterns are present for women: the wage penalty slightly decreases from 

one year to five years after graduation for both the NLSY79 (from -0.204 to -0.195) and 

                                                 
57 It should be noted that the decrease in the overeducation wage penalty over time is at odds with the slight (not 

significant) increase in the skill mismatch index wage penalty over time discussed in chapter 1 (where I explained the 

wage penalty may increase due to non-pecuniary factors impacting occupation selection). However, because 

overeducated workers can have high skill mismatches and correctly educated workers can have low skill mismatches, it 

is plausible that factors impacting occupation selection that drive up the skill mismatch index wage penalty can occur 

simultaneously with the decrease in the overeducation wage penalty.   
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the NLSY97 (from -0.284 to -0.246); the estimate for the entire sample falls in this range 

for both cohorts (found in table 3.3). Because in each cohort there are greater changes in 

the wage penalty for one gender (men in the NLSY79 and women in the NLSY97) but 

relative stability for the other gender, the gender gap narrows from one year after 

graduation (0.013 for the NLSY79 and 0.049 for the NLSY97) to five years after 

graduation (0.004 for the NLSY79 and 0.025 for the NLSY97); the gender gap of the 

entire sample (0.004 for the NLSY79 and 0.048 for the NLSY97) falls in this range.58  

Turning to the undereducation wage penalty, for both genders in the NLSY79, the 

estimates are not significant for both cross-sections and the entire sample. Nonetheless, 

because the magnitude of the estimates vary (e.g., for men in both cross-sections the 

wage benefit is greater than that of the entire sample and for women there is a wage 

benefit one year after graduation but a penalty five years after graduation), the gender gap 

fluctuates (0.011 one year after graduation and 0.130 five years after graduation) even 

though the returns to undereducation are consistently greater for men. 

For the NLSY97, the coefficient estimate for undereducation changes from 

(significant) -0.275 one year after graduation to a (not significant) -0.110 five years after 

graduation, suggesting the undereducation wage penalty decreases to a not significant or 

less substantial amount in later years.59 However, for women, the estimated wage penalty 

                                                 
58 In the case of the NLSY79, women have a lower wage penalty than men in both cross-sections but the reverse is true 

for the entire sample. This occurs because other cross-sections show that the wage penalty is lower for men than 

women and women tend to have low fluctuations in their rates rather than the consistent and sharp downward trend 

men have. 
59 Although the estimate for the entire sample is less than that of both cross-sections, it should be noted that other 

earlier cross-sections (e.g., two years and three years after graduation) have substantially greater wage penalties. In 

general, it appears that the undereducation wage penalty is significant and substantial the first few years after 

graduation, but becomes smaller and, in some cases, imprecise several years after graduation. 
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for undereducation is relatively consistent at -0.179 one year after graduation and -0.189 

five years after graduation.60 Due to the substantial changes in the undereducation 

estimates for men but relative stability for women, men have a greater penalty one year 

after graduation (by 0.096 log-points) - as found in the entire sample - but women have a 

greater penalty five years after graduation (by 0.079 log-points). This suggests the gender 

gap in the undereducation estimates for the entire sample is sensitive to the cross-sections 

included. 

The results of table 3.4 generally show that the overeducation wage penalty 

decreases from one to five years after graduation in both cohorts regardless of gender; the 

undereducation wage penalty appears to be consistent (i.e., not significant in the NLSY79 

and roughly the same for women in the NLSY97) except for men in the NLSY79 (where 

the penalty decreases substantially from one to five years after graduation). The results 

also point to the fact that the differences in the volume of observations available for both 

samples impact the results, but most of the qualitative patterns discussed for the entire 

sample in section 3.5.1 are present for the cross-sections; this points to the robustness of 

the results presented in table 3.3. 

 

3.6 Conclusion 

Since in the 1970s, a plethora of research examining the incidence of and returns to 

overeducation and undereducation have been developed. Nonetheless, little is known 

                                                 
60 Although the estimate for the entire sample (-0.167) is greater than that of both cross-sections, results from other 

cross-sections of the data show that the undereducation wage penalty for women in the NLSY97 fluctuates usually 

within 0.02 log-points of the estimate for the entire sample without any definitive trend. 
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about the changes over time in the consequences of overeducation and undereducation as 

studies in this vast literature utilize different data sources, sampling techniques, and 

methods of defining overeducation/undereducation. This study contributes to the 

literature by using a consistent estimation strategy to compare the wage penalty 

associated with overeducation for two cohorts of college graduates born decades apart.  

The results show that the incidence of overeducation increased for men and 

women by, respectively, nine and six percentage points while the incidence of 

undereducation decreased by, respectively, five and two percentage points. When 

conditioning on a rich array of covariates, the estimated log-wage penalty associated with 

overeducation is roughly -0.27 for both men and women in both cohorts. However, past 

research suggests that identifying education mismatch penalties within occupation and 

major is the best strategy given the strong ties between wages, occupation/major, and 

overeducation/undereducation. When conditioned on occupation dummies, the 

coefficient estimates differ across cohorts such that the log-wage penalty for 

overeducation increases when shifting from the NLSY79 to the NLSY97 for both 

genders.  

For undereducation, regardless of conditioning on occupation and major fixed 

effects, the coefficient estimates for undereducation are not significant for the NLSY79 

but suggest a substantial wage penalty for the NLSY97. Patterns in the data suggest that 

this is the result of both an increased wage penalty and a greater likelihood of the 

NLSY79 over the NLSY97 for undereducated jobs to more closely resemble correctly 

educated jobs. In the last part of the analysis, the estimated wage penalty of 
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overeducation slightly decreases from one year to five years after graduation (when 

conditioning on occupation and major fixed effects) regardless of the worker’s cohort. 

This suggests that the overeducation wage penalty decreases over the worker’s career 

regardless of when the worker first entered the labor market.  The returns to 

undereducation remained consistent when examining one year and five years after 

graduation for both cohorts and genders, except for men in the NLSY97 (where the 

overeducation wage penalty decreased from one to five years after graduation).  Overall, 

this study provides compelling evidence on what has changed in 

overeducation/undereducation over generations. 
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Table 3.1: Means and Standard Deviations of Variables Used in Wage 

Regressions 

  NLSY79 NLSY97 

  Men Women Men Women 

Dependent variable       

Log of average hourly wage 
2.78 2.65 2.81 2.68 

(0.64) (0.61) (0.66) (0.58) 

Independent variables       

1 if Overeducated 0.42 0.44 0.51 0.50 

1 if Undereducated 0.09 0.07 0.04 0.05 

Ability test score 
72.43 65.55 71.85 67.49 

(23.32) (23.91) (22.59) (22.79) 

1 if Hispanic 0.09 0.11 0.11 0.11 

1 if black 0.20 0.22 0.14 0.17 

1 if Associate degree  0.05 0.10 0.12 0.13 

Age at receipt of Bachelor’s  

    degree 

24.35 25.44 23.15 22.9 

(4.63) (6.37) (1.9) (1.93) 

1 if reside in northeasta 0.19 0.20 0.19 0.16 

1 if reside in southa 0.35 0.39 0.33 0.36 

1 if reside in westa 0.18 0.18 0.22 0.23 

1 if marrieda 0.22 0.29 0.22 0.26 

1 if childrena 0.21 0.26 0.17 0.23 

Tenurea 
3.08 2.93 2.4 2.18 

(3.59) (2.14) (2.51) (2.33) 

Experiencea 
11.40 11.05 7.17 6.58 

(5.42) (5.40) (5.92) (5.53) 

Hours worked per weeka 
41.39 35.91 36.87 32.85 

(12.17) (12.36) (15.43) (15.17) 
Note: Standard deviation is in parenthesis. Ability test score is the ASVAB Math/Verbal percentile in the 

NLSY97 and the AFQT score in the NLSY79. Additional regressors include dummy variables for calendar 

year, tenure squared and cubed, experience square and cubed. 

aVariable is time-varying for a given individual.  
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Table 3.2:  Percentage of Overeducated, Undereducated and Correctly Educated Workers in each Occupation and 

Major Group, by Gender and Cohort 

  

Men Women 

NLSY79 NLSY97 NLSY79 NLSY97 

Over Correct Under Over Correct Under Over Correct Under Over Correct Under 

Occupations                       

  Management 34.1 63.0 2.9 21.3 76.4 2.4 25.7 65.2 9.1 13.6 82.4 4.0 

  Professional 14.1 64.8 21.2 20.7 69.6 9.7 18.1 70.1 11.8 21.3 69.0 9.7 

  Services 92.2 7.9 0.0 98.1 1.9 0.0 96.3 3.7 0.0 98.5 1.5 0.0 

  Sales 52.4 47.6 0.0 61.8 38.2 0.0 64.0 36.1 0.0 73.5 26.5 0.0 

  Clerical 92.5 7.6 0.0 99.9 0.2 0.0 95.0 5.0 0.0 99.1 0.9 0.0 

  Farmers, laborers,  

    etc. 
97.8 2.2 0.0 98.0 2.1 0.0 97.2 2.8 0.0 99.4 0.6 0.0 

Majors                         

  Mgmt/comm.  45.8 51.9 2.3 50.5 48.1 1.4 45.5 50.7 3.8 50.6 48.2 1.2 

  STEM  34.5 55.2 10.3 44.6 52.9 2.6 41.9 50.2 8.0 44.1 51.2 4.7 

  Arts/humanities  54.5 33.0 12.5 59.8 33.4 6.8 48.9 42.8 8.3 60.0 34.9 5.2 

  Social sciences  45.3 44.8 10.0 54.6 38.6 6.8 41.6 49.6 8.8 45.5 47.4 7.1 

  Other  46.1 38.8 15.1 52.6 43.8 3.7 47.8 45.0 7.1 54.8 41.7 3.6 
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Table 3.3: Coefficient Estimates for Overeducation and Undereducation for Men During the Early 

Career 

  (dependent variable is log-wage) 

  
NLSY79 NLSY97 

(1) (2) (3) (4) (1) (2) (3) (4) 

1 if  

  Overeducated  

-0.271** -0.207** -0.257** -0.199** -0.279** -0.244** -0.257** -0.230** 

(0.024) (0.031) (0.025) (0.031) (0.028) (0.042) (0.026) (0.039) 

1 if  

  Undereducated  

-0.010 0.051 0.022 0.076 -0.297** -0.282** -0.230** -0.220** 

(0.050) (0.052) (0.049) (0.050) (0.043) (0.045) (0.042) (0.044) 

Baseline  

  Controls 
Yes Yes Yes Yes Yes Yes Yes Yes 

Occupation  

  Group  

  Indicators 

  Yes 

 

Yes  Yes 

 

Yes 

Major Group  

  Indicators 
  

  
Yes Yes   

  
Yes Yes 

N 11919 11919 11919 11919 6384 6384 6384 6384 

R2 0.270 0.287 0.280 0.295 0.172 0.179 0.196 0.200 
Note: ** significant at 1% level, * significant at 5% level. Standard errors (clustered at the individual level) are in parenthesis. Coefficient estimates of other 

regressors can be found in table C.2.  
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Table 3.4: Coefficient Estimates for Overeducation and Undereducation for Women During the 

Early Career 

  (dependent variable is log-wage) 

  
NLSY79 NLSY97 

(1) (2) (3) (4) (1) (2) (3) (4) 

1 if  

  Overeducated  

-0.278** -0.181** -0.281** -0.203** -0.283** -0.275** -0.277** -0.278** 

(0.019) (0.025) (0.019) (0.024) (0.019) (0.027) (0.019) (0.027) 

1 if  

  Undereducated  

0.026 0.020 0.040 0.032 -0.196** -0.190** -0.171** -0.167** 

(0.050) (0.051) (0.047) (0.048) (0.041) (0.041) (0.040) (0.040) 

Baseline   

  Controls 
Yes Yes Yes Yes Yes Yes Yes Yes 

Occupation  

  Group  

  Indicators 

  Yes 

 

Yes  Yes 

 

Yes 

Major Group  

  Indicators 
  

  
Yes Yes   

  
Yes Yes 

N 12696 12696 12696 12696 9141 9141 9141 9141 

R2 0.228 0.248 0.253 0.271 0.168 0.170 0.186 0.188 
Note: ** significant at 1% level, * significant at 5% level. Standard errors (clustered at the individual level) are in parenthesis. Coefficient estimates of other 
regressors can be found in table C.3.  
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Table 3.5: Coefficient Estimates for Overeducation and Undereducation, One and Five Years after Graduation 
 Men Women 

  

NLSY79 NLSY97 NLSY79 NLSY97 

One year 

after 

graduation 

Five years 

after 

graduation 

One year 

after 

graduation 

Five years 

after 

graduation 

One year 

after 

graduation 

Five years 

after 

graduation 

One year 

after 

graduation 

Five years 

after 

graduation 

1 if 

Overeducated  

-0.222** -0.199** -0.235** -0.221** -0.204** -0.195** -0.284** -0.246** 

(0.061) (0.064) (0.078) (0.079) (0.051) (0.059) (0.033) (0.051) 

1 if 

Undereducated  

0.093 0.103 -0.275* -0.110 0.082 -0.027 -0.179* -0.189* 

(0.102) (0.098) (0.139) (0.095) (0.076) (0.073) (0.074) (0.081) 

Baseline  

    Controls 
Yes Yes Yes Yes Yes Yes Yes Yes 

Occupation  

    Group  

    Indicators 

Yes Yes Yes Yes Yes Yes Yes Yes 

Major Group   

    Indicators 
Yes Yes Yes Yes Yes Yes Yes Yes 

N 1035 825 794 541 1223 853 1136 602 

R2 0.324 0.366 0.258 0.247 0.336 0.307 0.238 0.187 
Note: ** significant at 1% level, * significant at 5% level. Standard errors (clustered at the individual level) are in parenthesis. Coefficient estimates of other regressors can be 

found in table C.4 for men and table C.5 for women 
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Table A.1: List of Knowledge Categories in O*NET 

Administration and Management: Knowledge of business and management principles involved in strategic planning, human 

resources modeling, leadership technique, etc. 

Biology: Knowledge of plant and animal organisms, their tissues, cells, functions, interdependencies, and interactions with each 

other and the environment. 

Building and Construction: Knowledge of materials, methods, and the tools involved in the construction or repair of buildings 

and structures such as highways and roads. 

Chemistry: Knowledge of the chemical composition, structure, and properties of substances and of the chemical processes and 

transformations that they undergo. 

Clerical: Knowledge of administrative and clerical procedures and systems such as word processing, managing files and records, 

stenography and transcription, etc. 

Communications and Media: Knowledge of media production, communication, and dissemination techniques and methods.  

Computers and Electronics: Knowledge of circuit boards, processors, chips, electronic equipment, computer hardware and 

software, including applications and programming. 

Customer and Personal Service: Knowledge of principles and processes for providing customer and personal services 

Design: Knowledge of design techniques, tools, and principles involved in production of precision technical plans, blueprints, 

drawings, and models. 

Economics and Accounting: Knowledge of economic and accounting principles and practices, the financial markets, banking and 

the analysis and reporting of financial data. 

Education and Training: Knowledge of principles and methods for coursework and training design, teaching and instruction for 

individuals and groups 

Continued 
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Table A.1 continued 

Engineering and Technology: Knowledge of the practical application of engineering science and technology  

English Language: Knowledge of the structure and content of the English language including the meaning and spelling of words, 

rules of composition, and grammar. 

Fine Arts: Knowledge of the theory and techniques required to compose, produce, and perform works of music, dance, visual 

arts, drama, and sculpture. 

Food Production: Knowledge of techniques and equipment for planting, growing, and harvesting food products (both plant and 

animal) for consumption 

Foreign Language: Knowledge of the structure and content of a foreign (non-English) language 

Geography: Knowledge of principles and methods for describing the features of land, sea, and air masses 

History and Archeology: Knowledge of historical events and their causes, indicators, and effects on civilizations and cultures. 

Law and Government: Knowledge of laws, legal codes, court procedures, precedents, government regulations, executive orders, 

agency rules, and political process. 

Mathematics: Knowledge of arithmetic, algebra, geometry, calculus, statistics, and their applications. 

Mechanical: Knowledge of machines and tools, including their designs, uses, repair, and maintenance. 

Medicine and Dentistry: Knowledge of the information and techniques needed to diagnose and treat human injuries, diseases, 

and deformities.  

Personnel and Human Resources: Knowledge of principles and procedures for personnel recruitment, selection, training, 

compensation and benefits, labor relations, etc. 

Philosophy and Theology: Knowledge of different philosophical systems and religions. This includes their basic principles, 

values, ethics, ways of thinking, customs, etc. 

Physics: Knowledge and prediction of physical principles, laws, their interrelationships, and applications 

Production and Processing: Knowledge of raw materials, production processes, quality control, costs, etc. for maximizing the 

effective manufacture and distribution 

Continued 
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Table A.1 continued 

Psychology: Knowledge of human behavior and performance  

Public Safety and Security: Knowledge of relevant equipment, policies, procedures, and strategies to promote effective local, 

state, or national security operations 

Sales and Marketing: Knowledge of principles and methods for showing, promoting, and selling products or services.  

Sociology and Anthropology: Knowledge of group behavior and dynamics, societal trends and influences, human migrations, 

ethnicity, cultures and their history and origins. 

Telecommunications: Knowledge of transmission, broadcasting, switching, control, and operation of telecommunications 

systems. 

Therapy and Counseling: Knowledge of methods, and procedures for diagnosis, treatment, and rehabilitation of physical and 

mental dysfunctions, and for career counseling 

Transportation: Knowledge of principles and methods for moving people or goods by air, rail, sea, or road, including the relative 

costs and benefits 

Information from O*NET; For full descriptions see https://www.onetonline.org/find/descriptor/browse/Knowledge/  
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Table A.2: List of O*NET Knowledge Categories and Scale Anchors for the High-Level Scores 

 Knowledge Descriptor High Scale Anchor (Level Score of ~70-100) 

Administration and Management Manage a $10 million company 

Biology Isolate and identify a new virus 

Building and Construction Build a high-rise office tower 

Chemistry Develop a safe commercial cleaner 

Clerical Organize a storage system for company forms 

Communications and Media Write a novel 

Computers and Electronics Create a program to scan computer disk for viruses 

Customer and Personal Service 
Respond to a citizen's request for assistance after a major 

disaster 

Design Develop detailed plans for a high-rise office building 

Economics and Accounting Keep a major corporation's financial records 

Education and Training Design a training program for new employees 

Engineering and Technology Plan for the impact of weather in designing a bridge 

English Language Teach a college English class 

Fine Arts Design an artistic display for a major trade show 

Food Production Run a 100,000 acre farm 

Foreign Language 
Write an English language review of a book written in a foreign 

language 

Geography 
Develop a map of the world showing mountains, deserts, and 

rivers 

History and Archeology Determine the age of bones for placing them in fossil history 

Law and Government Serve as a judge in a federal court 

Mathematics Derive a complex mathematical equation 

Mechanical Overhaul an airplane jet engine 

Medicine and Dentistry Perform open heart surgery 

Personnel and Human Resources 
Design a new personnel selection and promotion system for the 

army 

Philosophy and Theology Compare the teachings of major philosophers 

Physics Design a cleaner burning gasoline engine 

Production and Processing Manage an international shipping company distribution center 

Psychology Treat a person with severe mental illness 

Public Safety and Security Command a military operation 

Sales and Marketing Develop a marketing plan for a nationwide telephone system 

Sociology and Anthropology Create a new theory about the development of civilizations 

Telecommunications Develop a new, world-wide telecommunications network  

Therapy and Counseling Counsel an abused child 

Transportation Control air traffic at a busy airport 
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Table A.3: Relating O*NET Knowledge Groups to NLSY97 Subject Areas 

O*NET Groups that directly relate to NLSY97 Subject Areas 

ONET Group Transcript Categories 

Building and 

Construction  
Construction Trades 

Communications and 

Media  
Communication, Journalism, and Related Programs 

Computers and 

Electronics  
Computer and Information Sciences and Support Services 

Education and 

Training  
Education 

English Language  English Language and Literature/Letters 

Foreign Language  Foreign Languages, Literatures, and Linguistics 

Mathematics  Mathematics and Statistics 

Mechanical  Mechanic and Repair Technologies/Technicians 

Public Safety and 

Security  

Homeland Security, Law Enforcement, Firefighting and 

Related Protective Services 

Telecommunications  
Communications Technologies/Technicians and Support 

Services 

Transportation  Transportation and Materials Moving 

Psychology  Psychology 

O*NET Groups that relate to multiple NLSY97 Subject Areas 

ONET Group Transcript Categories 

Biology  Biological and Biomedical Sciences 
 Natural Resources and Conservation Biology 

Law/Government  Legal Professions and Studies 

 Public Administration and Social Service Professions 

(Partial) 
 Citizenship Activities 

Medicine/Dentistry  Health-Related Knowledge and Skills 
 Health Professions and Related Programs 
 Residency Programs (e.g., Medical) 
 Biological and Biomedical Sciences (Partial) 

Philosophy/Theology  Philosophy and Religious Studies 
 Theology and Religious Vocations 

Food Production  
Agriculture, Agriculture Operations, and Related Services 

  
Continued 
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Table A.3 continued 

Engineering and 

Technology  
Engineering 

 Engineering Technologies and Engineering-Related Fields 
 Military Technologies and Applied Sciences 

Design  Architecture and Related Services 
 Visual and Performing Arts (Partial) 
 Family and Consumer Sciences (Partial) 

Customer and 

Personal Service  
Interpersonal and Social Skills 

 Personal and Culinary Services (Partial) 

History and 

Archeology  
History 

 Social Sciences (Partial) 

Production and 

Processing  
Precision Production 

  
Business, Management, Marketing, and Related Support 

Services (Partial) 

Multiple O*NET Groups match one or more NLSY97 Subject Areas 

ONET Group Transcript Categories 

Chemistry  Physical Sciences (Partial) 

Physics  Physical Sciences (Partial) 

Administration and 

Management  

Business, Management, Marketing, and Related Support 

Services (Partial) 

Economics and 

Accounting  

Business, Management, Marketing, and Related Support 

Services (Partial) 
 Social Sciences (Sociology and Economics) 

Sales and Marketing  
Business, Management, Marketing, and Related Support 

Services (Partial) 

Sociology and 

Anthropology  
Social Sciences (Partial) 

Geography  Social Sciences (Partial) 

Fine Arts  Visual and Performing Arts (Partial) 

Therapy and 

Counseling  
Family and Consumer Sciences (Partial) 

 Education (Partial) 

 Public Administration and Social Service Professions 

(Partial) 

  Health Professions and Related Programs (Partial)  
 Continued 
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Table A.3 continued 

O*NET Group doesn't match with NLSY97 Subject Areas or vice versa 

ONET Group Transcript Categories 

Clerical  N/A 

Personnel and Human 

Resources  
N/A 

Other Parks, Recreation and Leisure Studies 
 Basic Skills and Developmental/Remedial Education 
 Citizenship Activities 
 Leisure and Recreational Activities 
 High School/Secondary Diplomas and Certificates 
 Other 

  
Multi/Interdisciplinary Studies (This mapped into several 

areas) 
Data: O*NET and College Course Mapping 2010. Note: “Partial” indicates that only a subset of courses is included in the O*NET 
group 
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Table A.4: Five General Knowledge Dimensions used to construct Subject-Specific Skill Mismatch Index 

Knowledge 

Category 

O*NET Knowledge Descriptors NLSY97 Subject Areas 

MANAGEMENT 

and 

COMMUNICATION 

Administration and Management, Sales and 

Marketing, Communications and Media, 

Customer and Personal Service, Personnel 

and Human Resources, Telecommunications 

Business, Marketing, Communication and related programs, 

Communications technologies, Communication, Journalism, 

and Related Programs, Military Science, Leadership, and 

Operational Art 

STEM 

Biology, Chemistry, Computers and 

Electronics, Engineering and Technology, 

Mathematics, Medicine and Dentistry, 

Physics 

Agriculture and natural resources, Natural Resources and 

Conservation, Architecture and Related Services, Biological 

and biomedical sciences, Computer and information 

sciences, Engineering, Engineering technologies, Health 

professions and related programs, Mathematics and 

statistics, Military technologies and applied sciences, 

Physical sciences, Science technologies. 

ARTS and 

HUMANITIES 

English Language, Fine Arts, Design, 

Foreign Language, Philosophy and 

Theology 

English language and literature/letters, Family and consumer 

sciences/human sciences, Foreign languages, literatures, and 

linguistics, Liberal arts and sciences, general studies, and 

humanities, Library science, Philosophy and religious 

studies, Theology and religious vocations, Visual and 

performing arts 

Continued 
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Table A.4 continued 

SOCIAL SCIENCES 

Geography, History and Archeology, Law 

and Government, Sociology and 

Anthropology, Therapy and Counseling, 

Education and Training, Economics and 

Accounting, Psychology  

Area, ethnic, cultural, gender, and group studies, Education, 

Legal professions and studies, Public administration and 

social services, Social sciences, History, Psychology 

 

 

  

OTHER 

Public Safety and Security, Transportation, 

Building and Construction, Clerical, 

Mechanical, Production and Processing, 

Food Production 

Homeland security, law enforcement, and firefighting, 

Multi/interdisciplinary studies, Construction, Parks, 

recreation, leisure, and fitness studies, Transportation and 

materials moving, Precision production, Mechanic and 

Repair Technologies/Technicians, Other, Personal and 

Culinary Services 

Note: The following “courses” are not grouped above: Basic Skills and Developmental/Remedial Education, Citizenship Activities, Health-Related Knowledge and Skills, High School/Secondary 

Diplomas and Certificates, Interpersonal and Social Skills, Leisure and Recreational Activities, Personal Awareness and Self-Improvement, Residency Programs  
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Table A.5: Level of Education Categories in O*NET 

Less than a High School Diploma 

High School Diploma (or GED or High School Equivalence Certificate) 

Post-Secondary Certificate - awarded for training completed after high school (for example, in 

Personnel Services, Engineering-related Technologies, Vocational Home Economics, Construction 

Trades, Mechanics and Repairers, Precision Production Trades) 

Some College Courses 

Associate degree (or other 2-year degree) 

Bachelor's Degree 

Post-Baccalaureate Certificate - awarded for completion of an organized program of study; designed 

for people who have completed a Baccalaureate degree but do not meet the requirements of academic 

degrees carrying the title of Master. 

Master's Degree 

Post-Master's Certificate - awarded for completion of an organized program of study; designed for 

people who have completed a Master's degree but do not meet the requirements of academic degrees at 

the doctoral level. 

First Professional Degree - awarded for completion of a program that o requires at least 2 years of 

college work before entrance into the program, includes a total of at least 6 academic years of work to 

complete, and provides all remaining academic requirements to begin practice in a profession 

Doctoral Degree 

Post-Doctoral Training 
*Data: O*NET 
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 Table A.6: Estimates Not Reported in Table 1.5  

Model 
 Men Women  

(1) (2) (3) (4) (1) (2) (3) (4) 

ASVAB scores:           
 

   General science 
-0.029 -0.008 -0.011 -0.023 -0.045 -0.050 -0.043 -0.050 

(0.039) (0.040) (0.038) (0.038) (0.034) (0.036) (0.034) (0.036) 

   Arithmetic reasoning 
0.061 0.054 0.041 0.060 0.030 0.034 0.027 0.039 

(0.039) (0.041) (0.039) (0.039) (0.032) (0.034) (0.031) (0.033) 

   Work knowledge 
-0.088* -0.078* -0.053 -0.073* -0.035 -0.034 -0.033 -0.030 

(0.036) (0.037) (0.035) (0.035) (0.033) (0.035) (0.033) (0.035) 

   Paragraph comp. 
-0.045 -0.050 -0.049 -0.049 -0.002 0.005 0.003 0.006 

(0.036) (0.036) (0.034) (0.035) (0.026) (0.028) (0.026) (0.027) 

   Numerical operations 
-0.001 -0.002 -0.001 -0.001 0.003 0.003 0.003 0.002 

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) 

   Coding speed 
0.009 0.004 0.005 0.008 0.005 0.005 0.004 0.006 

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) 

   Auto information 
0.044 -0.010 -0.025 0.013 -0.047 -0.048 -0.055 -0.054 

(0.042) (0.044) (0.042) (0.041) (0.033) (0.034) (0.032) (0.033) 

   Shop information 
0.052 0.054 0.045 0.058 -0.081** -0.082** -0.069* -0.068* 

(0.043) (0.045) (0.043) (0.041) (0.030) (0.031) (0.031) (0.031) 

   Mathematics knowledge 
0.055 0.096* 0.070 0.059 0.090** 0.084** 0.086** 0.084** 

(0.041) (0.041) (0.040) (0.039) (0.027) (0.028) (0.027) (0.027) 

Continued
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Table A.6 continued  

   Mechanical comp. 
-0.030 -0.060 -0.052 -0.031 0.037 0.025 0.033 0.018 

(0.043) (0.044) (0.040) (0.040) (0.031) (0.034) (0.031) (0.033) 

   Electronics info 
-0.012 0.009 0.005 -0.018 -0.028 -0.026 -0.027 -0.028 

(0.037) (0.038) (0.036) (0.035) (0.029) (0.030) (0.029) (0.029) 

   Assembling objects 
-0.006 -0.009 -0.001 -0.001 -0.015 -0.019 -0.016 -0.022 

(0.026) (0.028) (0.027) (0.026) (0.020) (0.021) (0.020) (0.021) 

Mother’s highest grade  

    completed 

0.018* 0.016* 0.018* 0.017* 0.002 0.000 0.002 -0.000 

(0.008) (0.008) (0.008) (0.008) (0.005) (0.005) (0.005) (0.005) 

1 if mother employed 

when resp age 16 

-0.014 -0.012 -0.013 0.002 -0.001 -0.002 -0.010 -0.012 

(0.040) (0.043) (0.040) (0.039) (0.029) (0.030) (0.029) (0.030) 

1 if English primary 

language 

0.080 0.135 0.153 0.117 -0.037 -0.081 -0.026 -0.081 

(0.079) (0.092) (0.087) (0.077) (0.061) (0.063) (0.063) (0.069) 

1 if live with mom/dad 
0.083 0.098 0.131 0.158 -0.122 -0.148* -0.109 -0.133 

(0.093) (0.091) (0.088) (0.093) (0.069) (0.074) (0.071) (0.077) 

                   mom only 
0.069 0.102 0.116 0.125 -0.153* -0.171* -0.140 -0.153 

(0.100) (0.100) (0.097) (0.099) (0.071) (0.075) (0.072) (0.079) 

                   mom/partner 
0.141 0.133 0.166 0.206* -0.229** -0.249** -0.210** -0.226* 

(0.104) (0.104) (0.098) (0.104) (0.080) (0.087) (0.080) (0.088) 

                   dad only 
0.032 0.055 0.119 0.147 -0.159 -0.182 -0.169 -0.189 

(0.138) (0.136) (0.134) (0.135) (0.097) (0.100) (0.096) (0.100) 

1 if Hispanic 
0.036 0.049 0.038 0.038 -0.025 -0.042 -0.034 -0.046 

(0.060) (0.061) (0.057) (0.056) (0.048) (0.049) (0.047) (0.050) 

 
Continued 
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Table A.6 continued  

1 if black 0.068 0.047 0.067 0.057 -0.077 -0.096* -0.083* -0.097* 

 (0.057) (0.059) (0.056) (0.054) (0.040) (0.043) (0.041) (0.043) 

1 if Associate degree 
0.013 0.030 0.027 0.006 -0.029 -0.031 -0.044 -0.031 

(0.050) (0.054) (0.051) (0.051) (0.031) (0.032) (0.032) (0.033) 

Age at receipt of  

    Bachelor’s degree 

0.002 -0.005 -0.004 0.003 -0.003 -0.007 -0.002 -0.008 

(0.017) (0.018) (0.017) (0.017) (0.011) (0.012) (0.011) (0.012) 

College grade point 

average 

0.019 0.016 0.025 0.023 0.013 0.011 0.023 0.008 

(0.026) (0.027) (0.025) (0.026) (0.024) (0.025) (0.024) (0.024) 

1 if cohabiting 
0.071 0.089* 0.090* 0.072 0.091** 0.086** 0.090** 0.086** 

(0.038) (0.039) (0.037) (0.038) (0.027) (0.028) (0.026) (0.028) 

1 if married 
0.044 0.041 0.042 0.037 0.096** 0.088** 0.094** 0.079** 

(0.035) (0.037) (0.035) (0.033) (0.027) (0.028) (0.026) (0.028) 

1 if children  
-0.015 -0.001 -0.007 0.001 -0.052 -0.034 -0.054 -0.036 

(0.039) (0.041) (0.039) (0.037) (0.029) (0.031) (0.028) (0.030) 

Hours worked per week 
-0.002 -0.002 -0.003 -0.002 0.001 0.002 0.002 0.001 

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) 

Job tenure (T) 
0.062** 0.062** 0.061** 0.061** 0.051** 0.048** 0.049** 0.047** 

(0.010) (0.011) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) 

T2/10 
-0.004** -0.004** -0.004** -0.004** -0.002* -0.002* -0.002* -0.002* 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Pre-degree experience  
0.011 0.010 0.012 0.011 0.013 0.011 0.013 0.012 

(0.010) (0.010) (0.010) (0.010) (0.007) (0.008) (0.007) (0.008) 
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Table A.6 continued  

Experience (X) 
0.077** 0.071** 0.071** 0.080** 0.071** 0.077** 0.073** 0.076** 

(0.020) (0.021) (0.020) (0.020) (0.015) (0.016) (0.015) (0.016) 

X2/10 
-0.001 -0.001 -0.000 -0.001 -0.004** -0.004** -0.004** -0.004** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

1 if urban 
0.045 0.044 0.036 0.039 0.039 0.041 0.038 0.038 

(0.032) (0.034) (0.033) (0.032) (0.021) (0.021) (0.021) (0.021) 

1 if reside in northeast 
0.058 0.041 0.033 0.044 0.071 0.073 0.072 0.074 

(0.049) (0.052) (0.049) (0.048) (0.041) (0.042) (0.041) (0.042) 

                    South 
0.049 0.055 0.031 0.041 -0.039 -0.037 -0.035 -0.041 

(0.043) (0.046) (0.042) (0.041) (0.034) (0.035) (0.033) (0.035) 

                    West 
0.141** 0.134* 0.104* 0.129** 0.111** 0.110** 0.108** 0.106** 

(0.050) (0.053) (0.051) (0.048) (0.039) (0.041) (0.039) (0.040) 

Constant 
2.002** 2.108** 2.270** 1.935** 2.210** 2.369** 2.222** 2.604** 

(0.442) (0.455) (0.434) (0.430) (0.305) (0.330) (0.304) (0.333) 

N 4633 4633 4633 4633 6637 6637 6637 6637 

R2 0.194 0.192 0.211 0.200 0.170 0.169 0.177 0.175 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors (clustered at the individual level) are in parenthesis. All 

specifications include dummy variables for calendar years 2002-16 (2006 excluded). Excluded variables are “1 if reside in north central” and “1 if other family structure.” The dependent 

variable is the log of the CPI-U-deflated, average hourly wage.   
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 Table A.7: Estimates Not Reported in Table 1.6 

 Coefficient Estimates for Over/Under Skill Mismatch Index 

and Subject-Specific Skill Mismatch Index, by Gender 

 

  Men Women 

 (1) (2) (1) (2) 

     

ASVAB scores:       

   General science 
-0.024 -0.019 -0.048 -0.044 

(0.038) (0.039) (0.034) (0.034) 

   Arithmetic reasoning 
0.057 0.072 0.028 0.026 

(0.039) (0.039) (0.031) (0.031) 

   Work knowledge 
-0.080* -0.087* -0.027 -0.035 

(0.035) (0.036) (0.033) (0.033) 

   Paragraph comp. 
-0.051 -0.044 0.005 0.001 

(0.036) (0.035) (0.027) (0.026) 

   Numerical operations 
-0.000 -0.002 0.003 0.003 

(0.004) (0.004) (0.003) (0.003) 

   Coding speed 
0.008 0.008 0.005 0.004 

(0.007) (0.007) (0.006) (0.006) 

   Auto information 
0.013 0.027 -0.054 -0.050 

(0.040) (0.042) (0.032) (0.032) 

   Shop information 
0.053 0.058 -0.070* -0.075* 

(0.042) (0.043) (0.030) (0.031) 

   Mathematics knowledge 
0.065 0.067 0.085** 0.092** 

(0.039) (0.041) (0.027) (0.027) 

   Mechanical comprehension 
-0.024 -0.043 0.034 0.038 

(0.041) (0.042) (0.031) (0.031) 

   Electronics information 
-0.007 -0.014 -0.027 -0.029 

(0.035) (0.036) (0.029) (0.029) 

   Assembling objects 
-0.002 -0.002 -0.016 -0.015 

(0.026) (0.026) (0.020) (0.020) 

Mother’s highest grade completed 
0.018* 0.017* 0.001 0.002 

(0.008) (0.008) (0.004) (0.005) 

 
Continued 
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Table A.7 continued  

1 if mother employed when worker was 

age 16 

0.001 -0.009 -0.012 -0.006 

(0.040) (0.040) (0.029) (0.029) 

1 if English primary language 
0.109 0.070 -0.027 -0.030 

(0.073) (0.083) (0.061) (0.063) 

1 if live with mother/father 
0.144 0.126 -0.108 -0.120 

(0.095) (0.097) (0.072) (0.067) 

                   mother only 
0.111 0.110 -0.142 -0.151* 

(0.100) (0.103) (0.074) (0.069) 

                   mother/partner 
0.211 0.165 -0.211* -0.235** 

(0.110) (0.110) (0.082) (0.079) 

                   father only 
0.127 0.070 -0.171 -0.168 

(0.137) (0.138) (0.095) (0.094) 

1 if Hispanic 
0.035 0.032 -0.043 -0.032 

(0.057) (0.060) (0.047) (0.046) 

1 if black 
0.056 0.043 -0.082* -0.079 

(0.054) (0.055) (0.040) (0.041) 

1 if Associate degree 
-0.007 0.010 -0.048 -0.035 

(0.051) (0.052) (0.031) (0.031) 

Age at receipt of Bachelor’s degree 
-0.001 -0.002 -0.005 -0.003 

(0.017) (0.018) (0.011) (0.011) 

College grade point average 
0.021 0.018 0.023 0.024 

(0.026) (0.027) (0.023) (0.024) 

1 if cohabiting 
0.070 0.076 0.089** 0.087** 

(0.038) (0.039) (0.026) (0.026) 

1 if married 
0.031 0.049 0.096** 0.099** 

(0.034) (0.035) (0.026) (0.026) 

1 if children  
0.002 -0.005 -0.049 -0.051 

(0.038) (0.039) (0.028) (0.028) 

Hours worked per week 
-0.002 -0.001 0.001 0.002 

(0.002) (0.002) (0.001) (0.001) 

Job tenure (T) 
0.063** 0.064** 0.050** 0.049** 

(0.010) (0.010) (0.009) (0.009) 

T2 
-0.004** -0.005** -0.002* -0.002* 

(0.001) (0.001) (0.001) (0.001) 

Pre-degree experience  
0.010 0.012 0.013 0.012 

(0.010) (0.010) (0.007) (0.007) 
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Table A.7 continued  

Experience (X) 
0.076** 0.076** 0.067** 0.074** 

(0.020) (0.020) (0.015) (0.015) 

X2 
-0.001 -0.001 -0.004** -0.004** 

(0.001) (0.001) (0.001) (0.001) 

1 if urban 
0.038 0.049 0.033 0.039 

(0.031) (0.032) (0.021) (0.022) 

1 if reside in northeast 
0.044 0.052 0.075 0.074 

(0.048) (0.049) (0.041) (0.041) 

                    South 
0.028 0.061 -0.041 -0.036 

(0.042) (0.042) (0.033) (0.033) 

                    West 
0.124* 0.149** 0.107** 0.111** 

(0.049) (0.049) (0.039) (0.039) 

Constant 
1.574** 2.044** 1.982** 2.209** 

(0.446) (0.443) (0.303) (0.306) 

N 4633 4633 6637 6637 

R2 0.199 0.182 0.179 0.170 
Note:  ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors 

(clustered at the individual level) are in parenthesis. All specifications include dummy variables for calendar years 2002-16 (2006 

excluded). Excluded variables are “1 if reside in north central” and “1 if other family structure.” The dependent variable is the log 
of the CPI-U-deflated, average hourly wage.   
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Table A.8: Estimates Not Reported in Table 1.7 

 Coefficient Estimates for Skill Mismatch Index, by Gender, for Cross-

Sectional Samples 

Model 

Men Women 

One Year 

After 

Graduation 

Five Years 

After 

Graduation 

One Year 

After 

Graduation 

Five Years 

After 

Graduation 

ASVAB scores:         

   General science 
-0.028 0.069 -0.035 -0.061 

(0.056) (0.072) (0.046) (0.059) 

   Arithmetic reasoning 
0.192* 0.057 0.057 0.083 

(0.076) (0.064) (0.035) (0.047) 

   Work knowledge 
-0.097* -0.060 -0.063 -0.014 

(0.047) (0.064) (0.038) (0.050) 

   Paragraph comp. 
-0.154** -0.129* 0.010 0.035 

(0.052) (0.063) (0.042) (0.045) 

   Numerical operations 
0.001 -0.006 0.002 0.005 

(0.006) (0.007) (0.004) (0.005) 

   Coding speed 
0.008 0.009 -0.004 -0.000 

(0.009) (0.011) (0.009) (0.008) 

   Auto information 
0.014 -0.021 -0.065 -0.018 

(0.068) (0.073) (0.053) (0.053) 

   Shop information 
0.057 0.097 0.026 -0.089 

(0.063) (0.076) (0.042) (0.051) 

   Mathematics knowledge 
-0.016 0.037 0.070 0.107* 

(0.070) (0.077) (0.041) (0.047) 

   Mechanical 

comprehension 

-0.099 -0.055 -0.047 -0.009 

(0.057) (0.068) (0.043) (0.049) 

   Electronics information 
0.063 -0.013 0.035 -0.041 

(0.047) (0.061) (0.041) (0.048) 

   Assembling objects 
0.024 0.009 0.001 -0.063 

(0.037) (0.050) (0.033) (0.036) 

Mother’s highest grade  

    completed 

0.015 0.006 -0.006 0.001 

(0.012) (0.013) (0.007) (0.007) 

Continued 
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Table A.8 continued 

1 if mother employed 

when resp. was 16 

0.017 0.049 0.008 0.062 

(0.063) (0.072) (0.040) (0.045) 

1 if English primary 

language 

0.083 0.106 0.032 0.157 

(0.113) (0.098) (0.072) (0.108) 

1 if live with mother/father 
0.080 0.145 -0.110 -0.056 

(0.128) (0.205) (0.074) (0.121) 

                   mother only 
-0.087 -0.020 -0.150* -0.150 

(0.144) (0.217) (0.076) (0.130) 

                   mother/partner 
0.080 0.055 -0.160 -0.202 

(0.155) (0.240) (0.083) (0.135) 

                   father only 
-0.078 0.208 -0.074 -0.138 

(0.205) (0.240) (0.111) (0.143) 

1 if Hispanic 
0.114 0.082 -0.031 0.002 

(0.088) (0.092) (0.071) (0.066) 

1 if black 
0.029 0.119 0.039 -0.066 

(0.095) (0.096) (0.057) (0.063) 

1 if Associate degree 
0.003 -0.065 -0.064 -0.110 

(0.078) (0.081) (0.049) (0.056) 

Age at receipt of  

    Bachelor’s degree 

-0.009 0.017 -0.021 -0.026 

(0.029) (0.031) (0.017) (0.022) 

College grade point  

    average 

0.011 0.051 -0.018 -0.010 

(0.043) (0.046) (0.032) (0.044) 

1 if cohabiting 
0.085 -0.001 0.108* 0.202** 

(0.066) (0.089) (0.049) (0.076) 

1 if married 
0.132* 0.016 0.062 0.067 

(0.061) (0.079) (0.041) (0.047) 

1 if children  
-0.080 0.019 -0.096* -0.036 

(0.071) (0.075) (0.045) (0.048) 

Hours worked per week 
-0.010* -0.012** -0.003 -0.002 

(0.004) (0.004) (0.002) (0.003) 

Job tenure (T) 
0.085** 0.056 0.073* 0.082** 

(0.033) (0.031) (0.029) (0.025) 

T2 
-0.008** -0.003 -0.006 -0.005* 

(0.003) (0.002) (0.003) (0.002) 

Pre-degree experience  
0.015 -0.008 0.016 0.013 

(0.016) (0.018) (0.011) (0.012) 

Continued 
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Table A.8 continued 

Experience (X) 
0.034 0.145 0.030 0.265* 

(0.105) (0.108) (0.093) (0.116) 

X2 
0.011 -0.006 0.013 -0.025 

(0.012) (0.012) (0.016) (0.014) 

1 if urban 
-0.046 0.100 0.049 0.082* 

(0.071) (0.074) (0.041) (0.040) 

1 if reside in northeast 
0.195* 0.114 0.242** 0.006 

(0.077) (0.106) (0.064) (0.091) 

                    south 
0.192** 0.060 0.035 -0.015 

(0.065) (0.085) (0.056) (0.051) 

                    west 
0.240** 0.135 0.172** 0.121* 

(0.081) (0.099) (0.051) (0.057) 

Constant 
2.928** 1.899* 3.129** 2.187** 

(0.707) (0.781) (0.481) (0.574) 

N 558 375 755 490 

R2 0.296 0.282 0.206 0.262 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard 
errors (clustered at the individual level) are in parenthesis. All specifications include dummy variables for calendar years 

2002-16 (2006 excluded). Excluded variables are “1 if reside in north central” and “1 if other family structure.” The 

dependent variable is the log of the CPI-U-deflated, average hourly wage.   
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Appendix Table B.1: Estimates Not Reported in Table 2.4, NCES List 

Estimated STEM Wage Premium 

  Men Women 

  STEM Measure 

Variables 
1 if STEM 

Major 

STEM-

Intensity 

of Crswk 

STEM-

Intensity 

of Crswk 

Quartile 

(with 

gender 

specific 

cut-offs) 

STEM-

Intensity 

of Crswk 

Quartile 

(no gender 

specific 

cut-offs) 

1 if STEM 

Major 

STEM-

Intensity 

of Crswk 

STEM-

Intensity 

of Crswk 

Quartile 

(with 

gender 

specific 

cut-offs) 

STEM-

Intensity 

of Crswk 

Quartile 

(no gender 

specific 

cut-offs) 

ASVAB scores:                 

   General science 
-0.033 -0.050 -0.048 -0.042 -0.050 -0.058 -0.050 -0.046 

(0.040) (0.039) (0.038) (0.039) (0.034) (0.034) (0.033) (0.034) 

   Arithmetic   

      reasoning 

0.077* 0.051 0.048 0.049 0.023 0.020 0.022 0.016 

(0.039) (0.040) (0.039) (0.040) (0.031) (0.031) (0.031) (0.031) 

   Work knowledge 
-0.078* -0.046 -0.061 -0.073 -0.037 -0.020 -0.029 -0.024 

(0.039) (0.038) (0.037) (0.038) (0.033) (0.034) (0.033) (0.033) 

   Paragraph comp. 
-0.038 -0.035 -0.027 -0.023 0.007 0.009 0.005 0.002 

(0.035) (0.035) (0.034) (0.034) (0.027) (0.026) (0.026) (0.026) 

Continued 
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Table B.1 continued 

   Numerical  

      operations 

-0.001 0.001 0.001 0.001 0.004 0.003 0.003 0.003 

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) 

   Coding speed 
0.009 0.007 0.006 0.006 0.004 0.004 0.006 0.005 

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) 

   Auto  

      information 

0.037 0.031 0.032 0.041 -0.051 -0.057 -0.055 -0.048 

(0.043) (0.041) (0.042) (0.042) (0.033) (0.033) (0.032) (0.033) 

   Shop  

      information 

0.060 0.041 0.050 0.048 -0.081** -0.087** -0.084** -0.090** 

(0.043) (0.041) (0.042) (0.042) (0.030) (0.031) (0.030) (0.030) 

   Mathematics 

      knowledge 

0.049 0.050 0.057 0.055 0.084** 0.078** 0.086** 0.082** 

(0.041) (0.040) (0.040) (0.040) (0.027) (0.027) (0.026) (0.027) 

   Mechanical  

      comprehension 

-0.045 -0.030 -0.031 -0.031 0.037 0.039 0.034 0.032 

(0.043) (0.041) (0.041) (0.042) (0.031) (0.031) (0.030) (0.031) 

   Electronics  

      information 

-0.026 -0.032 -0.029 -0.029 -0.026 -0.023 -0.024 -0.026 

(0.037) (0.036) (0.036) (0.036) (0.030) (0.029) (0.028) (0.029) 

   Assembling  

      objects 

-0.011 -0.013 -0.017 -0.011 -0.016 -0.024 -0.022 -0.017 

(0.027) (0.027) (0.027) (0.028) (0.020) (0.020) (0.019) (0.019) 

Mother’s highest    

    grade 

0.015 0.015 0.015 0.016* 0.003 0.003 0.002 0.002 

(0.008) (0.008) (0.008) (0.008) (0.005) (0.004) (0.004) (0.004) 

1 if mother empl.  

   when R age 16 

-0.016 -0.016 -0.017 -0.015 0.004 -0.004 0.005 0.002 

(0.041) (0.041) (0.041) (0.041) (0.030) (0.029) (0.029) (0.029) 

1 if english   

   primary lang 

0.063 0.094 0.120 0.111 -0.029 -0.026 -0.059 -0.037 

(0.080) (0.077) (0.080) (0.080) (0.060) (0.061) (0.066) (0.063) 

Continued 
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Table B.1 continued 

         

1 if live with  

    mom/dad 

0.145 0.133 0.134 0.138 -0.103 -0.113 -0.130* -0.114 

(0.097) (0.097) (0.094) (0.095) (0.068) (0.068) (0.065) (0.066) 

        mom only 
0.139 0.131 0.136 0.142 -0.140* -0.142* -0.171** -0.153* 

(0.104) (0.103) (0.100) (0.101) (0.069) (0.070) (0.066) (0.068) 

        mom/partner            
0.179 0.165 0.174 0.194 -0.219** -0.219** -0.235** -0.224** 

(0.109) (0.112) (0.109) (0.109) (0.078) (0.079) (0.076) (0.077) 

        dad only 
0.081 0.082 0.075 0.097 -0.139 -0.146 -0.154 -0.144 

(0.138) (0.135) (0.134) (0.136) (0.096) (0.097) (0.091) (0.094) 

1 if Hispanic 
0.048 0.040 0.032 0.039 -0.022 -0.027 -0.005 -0.021 

(0.058) (0.057) (0.058) (0.058) (0.047) (0.047) (0.044) (0.046) 

1 if black 
0.053 0.044 0.049 0.048 -0.083* -0.095* -0.074 -0.086* 

(0.057) (0.054) (0.055) (0.056) (0.041) (0.041) (0.039) (0.040) 

1 if Associate’s  

    degree 

0.005 0.024 0.022 0.021 -0.033 -0.026 -0.036 -0.033 

(0.051) (0.049) (0.050) (0.050) (0.032) (0.032) (0.031) (0.032) 

Age at receipt of  

    Bachelor’s deg. 

0.003 0.002 0.000 0.002 -0.001 -0.000 -0.004 -0.003 

(0.018) (0.017) (0.018) (0.018) (0.011) (0.011) (0.011) (0.011) 

College grade  

    point average 

0.009 0.015 0.024 0.023 0.023 0.019 0.028 0.018 

(0.027) (0.027) (0.027) (0.027) (0.024) (0.024) (0.024) (0.024) 

1 if cohabiting 
0.051 0.050 0.050 0.053 0.088** 0.093** 0.094** 0.096** 

(0.039) (0.039) (0.039) (0.039) (0.026) (0.026) (0.026) (0.026) 

1 if married 
0.051 0.046 0.044 0.044 0.099** 0.098** 0.103** 0.102** 

(0.035) (0.035) (0.034) (0.034) (0.027) (0.026) (0.026) (0.026) 

Continued 
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Table B.1 continued 

1 if children  -0.009 -0.008 -0.018 -0.014 -0.047 -0.042 -0.047 -0.043 

 (0.039) (0.038) (0.039) (0.039) (0.028) (0.028) (0.028) (0.028) 

Hours worked per  

    week 

-0.001 -0.001 -0.001 -0.001 0.002* 0.002* 0.002* 0.002* 

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) 

Job tenure (T) 
0.060** 0.058** 0.060** 0.060** 0.050** 0.048** 0.049** 0.048** 

(0.010) (0.010) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) 

T2/10 
-0.044** -0.043** -0.044** -0.044** -0.020* -0.018* -0.018* -0.018* 

(0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) 

Pre-degree  

    experience  

0.012 0.013 0.011 0.009 0.013 0.012 0.013 0.013 

(0.010) (0.010) (0.010) (0.010) (0.007) (0.007) (0.007) (0.007) 

Experience (X) 
0.087** 0.090** 0.086** 0.085** 0.076** 0.077** 0.072** 0.074** 

(0.021) (0.020) (0.020) (0.020) (0.015) (0.015) (0.015) (0.015) 

X2/10 
-0.014 -0.014 -0.014 -0.014 -0.042** -0.042** -0.040** -0.041** 

(0.013) (0.013) (0.013) (0.013) (0.011) (0.011) (0.011) (0.011) 

1 if urban 
0.041 0.043 0.048 0.047 0.039 0.039 0.044* 0.041 

(0.032) (0.032) (0.031) (0.031) (0.021) (0.022) (0.022) (0.022) 

1 if reside in  

    northeast 

0.057 0.039 0.051 0.041 0.071 0.072 0.063 0.069 

(0.050) (0.050) (0.049) (0.049) (0.041) (0.041) (0.040) (0.041) 

                    south 
0.055 0.044 0.050 0.050 -0.036 -0.044 -0.044 -0.042 

(0.043) (0.043) (0.042) (0.042) (0.034) (0.034) (0.033) (0.033) 

                    west 
0.145** 0.130** 0.148** 0.141** 0.111** 0.105** 0.096* 0.103** 

(0.050) (0.049) (0.049) (0.049) (0.040) (0.039) (0.038) (0.039) 

Continued 
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Table B.1 continued 

Constant 1.739** 1.665** 1.660** 1.607** 1.964** 1.932** 2.089** 2.059** 
 (0.447) (0.438) (0.445) (0.450) (0.303) (0.300) (0.295) (0.298) 

N 4633 4633 4633 4633 6637 6637 6637 6637 

R2 0.183 0.191 0.190 0.187 0.167 0.171 0.174 0.171 
Note: ** and * indicates significance at the 1% level and 5% level, respectively. Each column represents a separate regression using the NCES list but a different STEM dichotomous/non-

dichotomous distinction. Estimates from specification 2.1 using the dichotomous measure are in the first column and using the non-dichotomous measure are in the second column. Estimates 
from the alternative to specification 2.1 that uses quartile indicators for the STEM-intensity of coursework distribution are in the third and fourth columns (non-dichotomous measure); the 

third column uses the distribution of each gender to determine the quartiles while the fourth column uses the entire sample (both men and women) to determine the quartiles. Standard errors 

(clustered at the individual level) are in parenthesis. Coefficient estimates for the STEM wage premiums can be found in table 2.4. 
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Appendix Table B.2: Estimates Not Reported in Table 2.4, ICE List 

Estimated STEM Wage Premium  
 Men Women 

  STEM Measure 

Variables 
1 if STEM 

Major 

STEM-

Intensity of 

Coursework 

STEM-

Intensity of 

Crswk 

Quartile 

(with 

gender 

specific 

cut-offs) 

STEM-

Intensity of 

Crswk 

Quartile 

(without 

gender 

specific 

cut-offs) 

1 if STEM 

Major 

STEM-

Intensity of 

Coursework 

STEM-

Intensity of 

Crswk 

Quartile 

(with 

gender 

specific 

cut-offs) 

STEM-

Intensity of 

Crswk 

Quartile 

(without 

gender 

specific cut-

offs) 

ASVAB 

scores:               

   General  

       science 

-0.022 -0.048 -0.046 -0.042 -0.053 -0.057 -0.048 -0.054 

(0.039) (0.039) (0.038) (0.038) (0.034) (0.033) (0.034) (0.034) 

   Arithmetic    

      reasoning 

0.070 0.048 0.049 0.051 0.024 0.015 0.020 0.017 

(0.040) (0.040) (0.040) (0.040) (0.031) (0.030) (0.031) (0.031) 

   Work  

      knowledge 

-0.084* -0.042 -0.055 -0.059 -0.036 -0.021 -0.025 -0.027 

(0.038) (0.038) (0.037) (0.036) (0.033) (0.033) (0.033) (0.033) 

   Paragraph  

      comp. 

-0.040 -0.037 -0.036 -0.038 0.002 0.011 0.002 0.009 

(0.035) (0.035) (0.035) (0.035) (0.027) (0.026) (0.027) (0.026) 

Continued 
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Table B.2 continued 

   Numerical  

      operations 

-0.001 0.001 0.001 0.001 0.004 0.003 0.003 0.003 

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) 

   Coding speed 
0.008 0.006 0.005 0.005 0.004 0.004 0.004 0.005 

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) 

   Auto info. 
0.034 0.025 0.029 0.025 -0.051 -0.058 -0.058 -0.054 

(0.042) (0.042) (0.043) (0.042) (0.033) (0.033) (0.033) (0.033) 

   Shop info. 
0.060 0.047 0.051 0.052 -0.081** -0.086** -0.089** -0.085** 

(0.043) (0.041) (0.042) (0.042) (0.031) (0.031) (0.031) (0.031) 

   Mathematics  

      knowledge 

0.061 0.054 0.064 0.062 0.081** 0.076** 0.080** 0.076** 

(0.041) (0.040) (0.040) (0.040) (0.027) (0.026) (0.027) (0.027) 

   Mechanical  

      comp. 

-0.049 -0.034 -0.032 -0.035 0.039 0.034 0.030 0.032 

(0.043) (0.042) (0.041) (0.041) (0.031) (0.031) (0.031) (0.031) 

   Electronics     

      info. 

-0.025 -0.025 -0.020 -0.017 -0.026 -0.017 -0.018 -0.015 

(0.037) (0.036) (0.035) (0.035) (0.029) (0.029) (0.029) (0.029) 

   Assembling  

      objects 

-0.010 -0.014 -0.016 -0.010 -0.015 -0.020 -0.016 -0.017 

(0.027) (0.027) (0.027) (0.027) (0.020) (0.020) (0.020) (0.020) 

Mother’s  

   highest grade 

0.016* 0.013 0.012 0.013 0.002 0.004 0.003 0.003 

(0.008) (0.008) (0.008) (0.008) (0.005) (0.004) (0.005) (0.005) 

1 if mom emp  

   when R 16 

-0.006 -0.011 -0.013 -0.009 0.000 -0.003 -0.002 -0.003 

(0.041) (0.041) (0.041) (0.041) (0.030) (0.029) (0.029) (0.030) 

1 if English  

   prim lang. 

0.066 0.080 0.097 0.097 -0.039 -0.040 -0.041 -0.042 

(0.080) (0.077) (0.076) (0.075) (0.059) (0.061) (0.063) (0.062) 
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Table B.2 continued 

1 if live with  

   mom/dad 

0.131 0.135 0.148 0.144 -0.091 -0.116 -0.126 -0.118 

(0.097) (0.095) (0.092) (0.092) (0.070) (0.067) (0.065) (0.066) 

                    

   mom only 

0.130 0.139 0.165 0.152 -0.125 -0.142* -0.154* -0.148* 

(0.103) (0.101) (0.099) (0.098) (0.072) (0.068) (0.066) (0.067) 

                    

   mom/partner 

0.169 0.187 0.209 0.210* -0.198* -0.217** -0.233** -0.225** 

(0.109) (0.110) (0.108) (0.107) (0.081) (0.078) (0.076) (0.077) 

   dad only 
0.075 0.080 0.089 0.084 -0.131 -0.153 -0.164 -0.158 

(0.138) (0.135) (0.135) (0.135) (0.096) (0.095) (0.096) (0.093) 

1 if Hispanic 
0.040 0.049 0.048 0.049 -0.021 -0.021 -0.018 -0.023 

(0.058) (0.058) (0.058) (0.058) (0.047) (0.046) (0.045) (0.045) 

1 if black 
0.053 0.042 0.050 0.052 -0.081* -0.094* -0.089* -0.094* 

(0.056) (0.053) (0.055) (0.054) (0.041) (0.041) (0.040) (0.041) 

1 if Associate’s  

   degree 

0.011 0.029 0.026 0.033 -0.045 -0.027 -0.035 -0.033 

(0.051) (0.049) (0.049) (0.050) (0.030) (0.031) (0.031) (0.032) 

Age bachelor’s  

   degree 

0.004 0.003 -0.002 0.001 0.001 -0.001 -0.002 -0.002 

(0.018) (0.017) (0.018) (0.018) (0.011) (0.011) (0.011) (0.011) 

College grade  

    point avg. 

0.013 0.019 0.024 0.026 0.025 0.021 0.022 0.021 

(0.027) (0.027) (0.027) (0.027) (0.024) (0.024) (0.024) (0.024) 

1 if cohabiting 
0.050 0.049 0.045 0.045 0.090** 0.089** 0.089** 0.091** 

(0.040) (0.039) (0.039) (0.038) (0.026) (0.025) (0.026) (0.026) 

1 if married 
0.044 0.045 0.042 0.044 0.097** 0.096** 0.100** 0.098** 

(0.035) (0.034) (0.034) (0.034) (0.026) (0.026) (0.027) (0.026) 
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Table B.2 continued 

1 if children  
-0.008 -0.009 -0.015 -0.016 -0.043 -0.044 -0.048 -0.045 

(0.039) (0.038) (0.040) (0.039) (0.028) (0.028) (0.028) (0.028) 

Hours worked  

   per week 

-0.001 -0.001 -0.001 -0.001 0.002* 0.002* 0.002* 0.002* 

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) 

Job tenure (T) 
0.063** 0.059** 0.060** 0.060** 0.050** 0.047** 0.047** 0.047** 

(0.010) (0.010) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) 

T2/10 
-0.047** -0.044** -0.045** -0.045** -0.021* -0.019* -0.018* -0.019* 

(0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) 

Pre-degree  

   experience  

0.010 0.013 0.012 0.012 0.013 0.012 0.013 0.013 

(0.010) (0.010) (0.010) (0.010) (0.007) (0.007) (0.007) (0.007) 

Experience (X) 
0.085** 0.089** 0.084** 0.085** 0.076** 0.076** 0.076** 0.076** 

(0.020) (0.020) (0.020) (0.020) (0.015) (0.015) (0.015) (0.015) 

X2/10 
-0.012 -0.014 -0.014 -0.013 -0.041** -0.041** -0.042** -0.041** 

(0.013) (0.013) (0.013) (0.013) (0.011) (0.011) (0.011) (0.011) 

1 if urban 
0.049 0.048 0.051 0.050 0.042* 0.038 0.039 0.039 

(0.032) (0.032) (0.031) (0.031) (0.021) (0.021) (0.022) (0.021) 

1 if reside in  

   northeast 

0.054 0.039 0.045 0.044 0.073 0.074 0.067 0.072 

(0.049) (0.050) (0.050) (0.050) (0.041) (0.041) (0.041) (0.041) 

                    

south 

0.056 0.045 0.047 0.045 -0.038 -0.042 -0.044 -0.039 

(0.043) (0.043) (0.042) (0.042) (0.034) (0.034) (0.033) (0.033) 

                    

west 

0.143** 0.127** 0.140** 0.134** 0.108** 0.108** 0.102** 0.108** 

(0.050) (0.049) (0.048) (0.049) (0.039) (0.038) (0.038) (0.038) 
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Table B.2 continued 

Constant 
1.724** 1.638** 1.733** 1.655** 1.922** 1.940** 1.993** 2.005** 

(0.446) (0.439) (0.451) (0.452) (0.300) (0.296) (0.298) (0.297) 

N 4633 4633 4633 4633 6637 6637 6637 6637 

R2 0.182 0.189 0.189 0.189 0.170 0.176 0.171 0.172 
Note: ** and * indicates significance at the 1% level and 5% level, respectively. Each column represents a separate regression using the ICE list but a different STEM dichotomous/non-

dichotomous distinction. Estimates from specification 2.1 using the dichotomous measure are in the first column and using the non-dichotomous measure are in the second column. Estimates 

from the alternative to specification 2.1 that uses quartile indicators for the STEM-intensity of coursework distribution are in the third and fourth columns (non-dichotomous measure); the third 

column uses the distribution of each gender to determine the quartiles while the fourth column uses the entire sample (both men and women) to determine the quartiles. Standard errors 
(clustered at the individual level) are in parenthesis. Coefficient estimates for the STEM wage premiums can be found in table 2.4. 
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Appendix Table B.3: Estimates Not Reported in Table 2.4, NSF List 

Estimated STEM Wage Premium  
 Men Women 

  STEM Measure 

Variables 

1 if 

STEM 

Major 

STEM-

Intensity of 

Crswk 

STEM-

Intensity of 

Crswk 

Quartile 

(with 

gender 

specific 

cut-offs) 

STEM-

Intensity of 

Crswk 

Quartile (no 

gender 

specific cut-

offs) 

1 if 

STEM 

Major 

STEM-

Intensity of 

Crswk 

STEM-

Intensity of 

Crswk 

Quartile 

(with 

gender 

specific 

cut-offs) 

STEM-

Intensity of 

Crswk 

Quartile (no 

gender 

specific 

cut-offs) 

ASVAB scores:                 

   General  

      science 

-0.019 -0.031 -0.054 -0.028 -0.048 -0.050 -0.054 -0.056 

(0.040) (0.039) (0.034) (0.039) (0.035) (0.034) (0.034) (0.034) 

   Arithmetic  

      reasoning 

0.070 0.050 0.024 0.055 0.029 0.024 0.024 0.020 

(0.040) (0.040) (0.031) (0.040) (0.032) (0.031) (0.031) (0.031) 

   Work  

     knowledge 

-0.099** -0.063 -0.034 -0.065 -0.037 -0.028 -0.034 -0.034 

(0.037) (0.036) (0.033) (0.037) (0.033) (0.033) (0.033) (0.033) 

   Paragraph  

      comp. 

-0.040 -0.033 0.005 -0.037 -0.001 -0.000 0.005 0.011 

(0.036) (0.036) (0.027) (0.036) (0.027) (0.027) (0.027) (0.027) 

Continued 
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Table B.3 continued 

   Numerical  

      operations 

-0.001 0.000 0.003 -0.000 0.003 0.003 0.003 0.003 

(0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) 

   Coding  

      speed 

0.008 0.007 0.004 0.006 0.004 0.004 0.004 0.004 

(0.007) (0.007) (0.006) (0.007) (0.006) (0.006) (0.006) (0.006) 

   Auto info. 
0.041 0.035 -0.048 0.028 -0.048 -0.053 -0.048 -0.045 

(0.042) (0.042) (0.033) (0.043) (0.033) (0.033) (0.033) (0.033) 

   Shop info. 
0.060 0.037 -0.084** 0.045 -0.083** -0.080* -0.084** -0.083** 

(0.042) (0.042) (0.030) (0.043) (0.031) (0.031) (0.030) (0.030) 

   Math  

      know. 

0.058 0.051 0.080** 0.056 0.087** 0.081** 0.080** 0.080** 

(0.041) (0.040) (0.027) (0.041) (0.027) (0.027) (0.027) (0.026) 

   Mechanical  

      comp. 

-0.044 -0.038 0.038 -0.042 0.038 0.035 0.038 0.043 

(0.044) (0.043) (0.031) (0.042) (0.031) (0.031) (0.031) (0.031) 

   Electronics  

      info. 

-0.019 -0.016 -0.017 -0.020 -0.026 -0.022 -0.017 -0.019 

(0.037) (0.036) (0.029) (0.036) (0.030) (0.029) (0.029) (0.029) 

   Assembling  

      objects 

-0.003 -0.007 -0.017 -0.007 -0.013 -0.014 -0.017 -0.020 

(0.026) (0.026) (0.020) (0.026) (0.020) (0.020) (0.020) (0.020) 

Mom’s highest  

   grade 

0.017* 0.016* 0.003 0.017* 0.002 0.002 0.003 0.003 

(0.008) (0.008) (0.005) (0.008) (0.005) (0.005) (0.005) (0.005) 

1 if mom emp 

   When R 16 

-0.002 0.000 0.000 0.002 0.001 -0.001 0.000 -0.001 

(0.041) (0.039) (0.029) (0.039) (0.030) (0.030) (0.029) (0.029) 

1 if English   

   prim language 

0.073 0.079 -0.040 0.088 -0.030 -0.023 -0.040 -0.039 

(0.078) (0.074) (0.061) (0.078) (0.059) (0.063) (0.061) (0.060) 

Continued 
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Table B.3 continued 

1 if live with  

   mom/dad 

0.121 0.109 -0.103 0.111 -0.123 -0.121 -0.103 -0.098 

(0.094) (0.100) (0.063) (0.098) (0.067) (0.066) (0.063) (0.063) 

   mom only 
0.099 0.091 -0.143* 0.103 -0.156* -0.150* -0.143* -0.137* 

(0.102) (0.107) (0.065) (0.104) (0.069) (0.068) (0.065) (0.064) 

                      

   mom/partner 

0.171 0.143 -0.222** 0.153 -0.235** -0.234** -0.222** -0.219** 

(0.107) (0.114) (0.077) (0.112) (0.079) (0.078) (0.077) (0.077) 

   dad only 
0.043 0.032 -0.126 0.023 -0.162 -0.154 -0.126 -0.123 

(0.140) (0.148) (0.091) (0.144) (0.096) (0.096) (0.091) (0.091) 

1 if Hispanic 
0.035 0.031 -0.026 0.044 -0.025 -0.028 -0.026 -0.025 

(0.060) (0.058) (0.048) (0.059) (0.047) (0.048) (0.048) (0.048) 

1 if black 
0.047 0.042 -0.080 0.050 -0.081* -0.093* -0.080 -0.078 

(0.056) (0.055) (0.041) (0.056) (0.041) (0.042) (0.041) (0.041) 

1 if Associate’s  

   degree 

0.016 0.026 -0.037 0.032 -0.036 -0.039 -0.037 -0.034 

(0.052) (0.049) (0.030) (0.050) (0.031) (0.030) (0.030) (0.030) 

Age at receipt of  

    Bachelor’s deg. 

0.005 0.004 -0.001 0.003 -0.001 0.000 -0.001 -0.002 

(0.018) (0.017) (0.011) (0.017) (0.012) (0.011) (0.011) (0.011) 

College grade  

    point average 

0.013 0.015 0.022 0.019 0.023 0.024 0.022 0.019 

(0.027) (0.027) (0.023) (0.027) (0.024) (0.024) (0.023) (0.023) 

1 if cohabiting 
0.055 0.049 0.094** 0.054 0.092** 0.090** 0.094** 0.094** 

(0.039) (0.039) (0.027) (0.039) (0.027) (0.026) (0.027) (0.026) 

1 if married 
0.048 0.041 0.098** 0.047 0.100** 0.095** 0.098** 0.096** 

(0.035) (0.034) (0.026) (0.034) (0.027) (0.026) (0.026) (0.026) 

Continued 
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Table B.3 continued 

1 if children  
-0.003 0.002 -0.047 0.003 -0.050 -0.046 -0.047 -0.045 

(0.039) (0.038) (0.028) (0.038) (0.029) (0.028) (0.028) (0.028) 

Hours worked per 

week 

-0.001 -0.001 0.002* -0.001 0.002* 0.002* 0.002* 0.002* 

(0.002) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) 

Job tenure (T) 
0.063** 0.062** 0.049** 0.063** 0.051** 0.048** 0.049** 0.049** 

(0.010) (0.010) (0.009) (0.010) (0.009) (0.009) (0.009) (0.009) 

T2/10 
-0.047** -0.047** -0.020* -0.048** -0.021* -0.020* -0.020* -0.021* 

(0.008) (0.008) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009) 

Pre-degree 

experience  

0.010 0.012 0.013 0.012 0.012 0.012 0.013 0.013 

(0.010) (0.010) (0.007) (0.010) (0.007) (0.007) (0.007) (0.007) 

Experience (X) 
0.083** 0.088** 0.075** 0.086** 0.074** 0.075** 0.075** 0.074** 

(0.021) (0.020) (0.015) (0.020) (0.015) (0.015) (0.015) (0.015) 

X2/10 
-0.013 -0.014 -0.041** -0.013 -0.041** -0.041** -0.041** -0.041** 

(0.013) (0.013) (0.011) (0.013) (0.011) (0.011) (0.011) (0.011) 

1 if urban 
0.051 0.058 0.044* 0.052 0.041 0.040 0.044* 0.046* 

(0.032) (0.031) (0.021) (0.032) (0.022) (0.021) (0.021) (0.021) 

1 if reside in 

northeast 

0.055 0.044 0.071 0.040 0.069 0.066 0.071 0.074 

(0.050) (0.050) (0.041) (0.049) (0.041) (0.041) (0.041) (0.040) 

                    south 
0.057 0.050 -0.037 0.046 -0.035 -0.041 -0.037 -0.035 

(0.043) (0.043) (0.034) (0.044) (0.034) (0.034) (0.034) (0.034) 

                    west 
0.147** 0.129** 0.108** 0.130** 0.108** 0.103** 0.108** 0.112** 

(0.050) (0.049) (0.039) (0.049) (0.040) (0.039) (0.039) (0.039) 

Continued 
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Table B.3 continued 

Constant 
1.678** 1.527** 2.013** 1.617** 1.988** 1.885** 2.013** 2.031** 

(0.453) (0.442) (0.302) (0.444) (0.305) (0.302) (0.302) (0.301) 

N 4633 4633 6637 4633 6637 6637 6637 6637 

R2 0.177 0.188 0.171 0.186 0.164 0.171 0.171 0.174 
Note: ** and * indicates significance at the 1% level and 5% level, respectively. Each column represents a separate regression using the NSF list but a different STEM dichotomous/non-

dichotomous distinction. Estimates from specification 2.1 using the dichotomous measure are in the first column and using the non-dichotomous measure are in the second column. Estimates 

from the alternative to specification 2.1 that uses quartile indicators for the STEM-intensity of coursework distribution are in the third and fourth columns (non-dichotomous measure); the 
third column uses the distribution of each gender to determine the quartiles while the fourth column uses the entire sample (both men and women) to determine the quartiles. Standard errors 

(clustered at the individual level) are in parenthesis. Coefficient estimates for the STEM wage premiums can be found in table 2.4. 
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Table C.1: NLSY79 and NLSY97 Major Groupings 

Major Groupings List of Majors Constructed 

by NLSY79 

List of Majors 

Constructed by NLSY97 

CCM Taxonomy used by 

NLSY97 

MANAGEMENT and 

COMMUNICATION 

Business and management, 

Communications 

Business management, 

Communications 

Business, Marketing, 

Communication and related 

programs, Communications 

technologies, Communication, 

Journalism, and Related 

Programs, Military Science, 

Leadership, and Operational Art 

STEM Agriculture and natural 

resources, Architecture and 

environmental design, 

Computer and information 

sciences, Engineering, 

Biological Sciences, 

Mathematics, Military 

Sciences, Health professions, 

Physical sciences 

Agriculture and natural 

resources, 

Architecture/Environmental 

design, 

Computer/Information 

science, Engineering, 

Biological sciences, 

Nursing, Other health 

professions, Pre-dental, Pre-

med, Pre-vet, Mathematics, 

Physical sciences 

Agriculture and natural 

resources, Natural Resources and 

Conservation, Architecture and 

Related Services, Biological and 

biomedical sciences, Computer 

and information sciences, 

Engineering, Engineering 

technologies, Health professions 

and related programs, 

Mathematics and statistics, 

Military technologies and 

applied sciences, Physical 

sciences, Science technologies. 

Continued 



 

 

 

1
6
6
 

Table C.1 continued 

ARTS and 

HUMANITIES 

Foreign languages, Home 

economics, Letters, Theology, 

Fine and applied arts 

Foreign languages, Home 

economics, English, 

Philosophy, 

Theology/religious studies, 

Fine and applied arts 

English language and 

literature/letters, Family and 

consumer sciences/human 

sciences, Foreign languages, 

literatures, and linguistics, 

Liberal arts and sciences, general 

studies, and humanities, Library 

science, Philosophy and 

religious studies, Theology and 

religious vocations, Visual and 

performing arts 

SOCIAL SCIENCES Area studies, Education, Law, 

Library Science, Public 

Affairs and services, 

Psychology, Social sciences, 

History 

Area studies, Ethnic studies, 

Education, Pre-law, 

Psychology, Anthropology, 

Archaeology, Criminology, 

Economics, Political 

science and government, 

Sociology, History 

Area, ethnic, cultural, gender, 

and group studies, Education, 

Legal professions and studies, 

Public administration and social 

services, Social sciences, 

History, Psychology 

Continued 
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Table C.1 continued 

OTHER Interdisciplinary studies Interdisciplinary studies, 

Other 

Homeland security, law 

enforcement, and firefighting, 

Multi/interdisciplinary 

studies, Construction, Parks, 

recreation, leisure, and fitness 

studies, Transportation and 

materials moving, Precision 

production, Mechanic and 

Repair 

Technologies/Technicians, 

Other, Personal and Culinary 

Services 
Note: The NLSY97 originally asked respondent's majors using a list they constructed and later switched to using the CCM taxonomy. The NLSY79 asked for 

respondent's majors using a list they constructed. Because of the various lists of majors used, I map the majors from each of the three lists into five broad 

categories that are used in this assessment.  
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Appendix Table C.2: Estimates Not Reported in Table 3.3, Men 

  
NLSY79 NLSY97 

(1) (2) (3) (4) (1) (2) (3) (4) 

ASVAB 
0.005** 0.005** 0.005** 0.005** -0.001 -0.000 -0.000 -0.000 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

1 if Hispanic 
-0.036 -0.042 -0.046 -0.053 -0.034 -0.021 -0.054 -0.043 

(0.055) (0.052) (0.056) (0.052) (0.054) (0.054) (0.053) (0.054) 

1 if black 
-0.058 -0.052 -0.055 -0.049 -0.002 -0.001 0.001 0.002 

(0.046) (0.045) (0.045) (0.044) (0.046) (0.046) (0.045) (0.045) 

1 if Associate degree 
0.048 0.031 0.043 0.029 0.021 0.024 0.049 0.050 

(0.080) (0.079) (0.080) (0.079) (0.047) (0.047) (0.042) (0.042) 

Age at receipt of Bachelor’s  

    degree 

-0.015** -0.013** -0.015** -0.013** 0.007 0.008 0.003 0.003 

(0.003) (0.003) (0.003) (0.003) (0.013) (0.013) (0.013) (0.013) 

1 if reside in northeast 
0.131** 0.131** 0.147** 0.143** 0.055 0.053 0.064 0.062 

(0.042) (0.040) (0.042) (0.040) (0.047) (0.047) (0.047) (0.047) 

                    south 
0.042 0.041 0.046 0.041 0.053 0.053 0.056 0.056 

(0.037) (0.036) (0.036) (0.035) (0.041) (0.041) (0.040) (0.039) 

                    west 
0.126** 0.130** 0.139** 0.137** 0.143** 0.141** 0.137** 0.136** 

(0.045) (0.044) (0.045) (0.044) (0.047) (0.046) (0.046) (0.046) 

1 if married 
0.054 0.044 0.042 0.033 0.032 0.028 0.014 0.012 

(0.032) (0.031) (0.032) (0.031) (0.031) (0.031) (0.030) (0.030) 

Continued 
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Table C.2 continued 

1 if children  
0.129** 0.129** 0.127** 0.126** 0.021 0.019 0.011 0.010 

(0.032) (0.031) (0.031) (0.030) (0.035) (0.034) (0.034) (0.033) 

Job tenure (T) 
0.114** 0.114** 0.114** 0.113** 0.077** 0.076** 0.064** 0.063** 

(0.022) (0.021) (0.021) (0.021) (0.018) (0.017) (0.018) (0.018) 

T2/10 
-0.085** -0.081** -0.084** -0.080** -0.057 -0.053 -0.039 -0.037 

(0.032) (0.031) (0.031) (0.031) (0.034) (0.034) (0.034) (0.034) 

T3/100 
0.007* 0.007* 0.007* 0.007* 0.006 0.003 -0.002 -0.004 

(0.003) (0.003) (0.003) (0.003) (0.015) (0.015) (0.015) (0.015) 

Experience (X) 
0.046** 0.044** 0.048** 0.047** 0.118** 0.113** 0.120** 0.116** 

(0.013) (0.013) (0.013) (0.013) (0.025) (0.025) (0.026) (0.026) 

X2/10 
-0.026** -0.026** -0.028** -0.027** -0.121** -0.118** -0.124** -0.122** 

(0.008) (0.008) (0.008) (0.008) (0.044) (0.043) (0.044) (0.043) 

X3/100 
0.004** 0.004** 0.004** 0.004** 0.075** 0.074** 0.075** 0.074** 

(0.002) (0.002) (0.001) (0.001) (0.025) (0.025) (0.025) (0.025) 

Hours worked per week 
0.004** 0.003** 0.003** 0.002* -0.002 -0.002* -0.003* -0.003** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

1 if Management 

Occupation 

  0.347**  0.324**   0.206**  0.167** 

  (0.052)  (0.053)   (0.054)  (0.053) 

      Professional 
  0.206**  0.188**   0.141**  0.114* 

  (0.059)  (0.061)   (0.050)  (0.049) 

      Sales 
  0.152**  0.125*   0.126*  0.099 

  (0.054)  (0.055)   (0.051)  (0.051) 

Continued 
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Table C.2 continued 

      Clerical 
  0.056  0.041   0.095  0.074 

  (0.048)  (0.049)   (0.053)  (0.051) 

      Farming, construction, 

etc. 

  0.059  0.040   0.179**  0.149** 

  (0.052)  (0.053)   (0.049)  (0.047) 

1 if Management 
   0.209** 0.150*    0.274** 0.253** 

   (0.068) (0.067)    (0.056) (0.055) 

      STEM 
   0.231** 0.223**    0.278** 0.271** 

   (0.067) (0.066)    (0.056) (0.057) 

      Arts and Humanities 
   0.074 0.068    0.109 0.101 

   (0.068) (0.066)    (0.056) (0.055) 

      Other 
   0.102 0.085    0.253** 0.245** 

   (0.081) (0.077)    (0.064) (0.063) 

Constant 
2.785** 2.627** 2.670** 2.542** 2.445** 2.301** 2.347** 2.244** 

(0.157) (0.157) (0.164) (0.164) (0.302) (0.302) (0.297) (0.298) 

N 11919 11919 11919 11919 6384 6384 6384 6384 

R2 0.270 0.287 0.280 0.295 0.172 0.179 0.196 0.200 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors (clustered at the individual level) are in parenthesis. 

Coefficient estimates of other regressors can be found in table 3.3. All regressions include year dummies. Excluded variables are “1 if social sciences major,” “1 if reside in north 

central,” and “1 if services occupation.” 
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Appendix Table C.3: Estimates Not Reported in Table 3.4 

  
NLSY79 NLSY97 

(1) (2) (3) (4) (1) (2) (3) (4) 

ASVAB 
0.003** 0.003** 0.002** 0.002** 0.001 0.001 0.000 0.000 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

1 if Hispanic 
0.112** 0.115** 0.092* 0.094* -0.028 -0.025 -0.023 -0.021 

(0.042) (0.042) (0.040) (0.039) (0.034) (0.034) (0.033) (0.033) 

1 if black 
0.036 0.033 0.038 0.036 -0.032 -0.033 -0.033 -0.035 

(0.036) (0.036) (0.034) (0.033) (0.027) (0.027) (0.027) (0.027) 

1 if Associate degree 
0.099* 0.085 0.064 0.051 -0.016 -0.016 -0.023 -0.023 

(0.045) (0.044) (0.044) (0.043) (0.026) (0.026) (0.026) (0.026) 

Age at receipt of Bachelor’s  

    degree 

-0.004 -0.003 -0.005* -0.004* -0.013 -0.012 -0.012 -0.011 

(0.002) (0.002) (0.002) (0.002) (0.009) (0.009) (0.009) (0.009) 

1 if reside in northeast 
0.169** 0.163** 0.168** 0.161** 0.137** 0.136** 0.132** 0.131** 

(0.039) (0.038) (0.038) (0.036) (0.035) (0.035) (0.034) (0.034) 

                    south 
0.060 0.062 0.051 0.052 -0.003 -0.003 -0.014 -0.015 

(0.034) (0.033) (0.031) (0.030) (0.028) (0.028) (0.026) (0.027) 

                    west 
0.190** 0.194** 0.186** 0.187** 0.131** 0.127** 0.125** 0.122** 

(0.044) (0.043) (0.041) (0.040) (0.032) (0.032) (0.031) (0.031) 

1 if married 
0.041 0.038 0.044 0.042 0.048* 0.049* 0.045* 0.045* 

(0.024) (0.023) (0.023) (0.022) (0.022) (0.023) (0.021) (0.022) 

Continued 
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Table C.3 continued 

1 if children  
-0.006 -0.008 -0.016 -0.016 -0.026 -0.025 -0.021 -0.021 

(0.026) (0.026) (0.025) (0.024) (0.023) (0.023) (0.023) (0.023) 

Job tenure (T) 
0.190** 0.186** 0.191** 0.189** 0.049** 0.048** 0.045** 0.044** 

(0.021) (0.021) (0.021) (0.020) (0.012) (0.012) (0.012) (0.012) 

T2/10 
-0.241** -0.234** -0.248** -0.243** -0.026 -0.022 -0.022 -0.020 

(0.043) (0.042) (0.044) (0.042) (0.024) (0.023) (0.023) (0.023) 

T3/100 
0.073** 0.071** 0.076** 0.074** 0.004 0.003 0.004 0.003 

(0.015) (0.014) (0.015) (0.015) (0.012) (0.012) (0.012) (0.012) 

Experience (X) 
0.025 0.022 0.028* 0.026 0.148** 0.149** 0.148** 0.148** 

(0.014) (0.014) (0.014) (0.014) (0.018) (0.018) (0.018) (0.018) 

X2/10 
-0.002 -0.001 -0.002 -0.002 -0.231** -0.234** -0.231** -0.232** 

(0.008) (0.008) (0.008) (0.008) (0.036) (0.036) (0.036) (0.036) 

X3/100 
0.001 0.001 0.001 0.001 0.118** 0.119** 0.118** 0.119** 

(0.002) (0.001) (0.001) (0.001) (0.021) (0.021) (0.021) (0.021) 

Hours worked per week 
0.003** 0.002* 0.003** 0.002* -0.002* -0.002** -0.002** -0.002** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

1 if Management 

Occupation 

  0.455**  0.431**   0.065  0.034 

  (0.060)  (0.060)   (0.038)  (0.039) 

      Professional 
  0.282**  0.243**   0.001  -0.014 

  (0.059)  (0.059)   (0.036)  (0.036) 

      Sales 
  0.186**  0.183**   -0.022  -0.033 

  (0.069)  (0.070)   (0.042)  (0.042) 

Continued 
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Table C.3 continued 

      Clerical 
  0.173**  0.175**   0.030  0.021 

  (0.053)  (0.053)   (0.029)  (0.030) 

      Farming, construction,  

         etc. 

  0.273**  0.256**   -0.073  -0.071 

  (0.072)  (0.072)   (0.064)  (0.063) 

1 if Management 
   0.119** 0.078    0.162** 0.152** 

   (0.042) (0.042)    (0.038) (0.038) 

      STEM 
   0.257** 0.252**    0.200** 0.203** 

   (0.044) (0.043)    (0.037) (0.037) 

      Arts and Humanities 
   -0.024 -0.023    0.029 0.031 

   (0.040) (0.039)    (0.033) (0.033) 

      Other 
   -0.031 -0.041    0.145** 0.142** 

   (0.056) (0.056)    (0.038) (0.038) 

Constant 
1.970** 1.775** 1.925** 1.752** 2.724** 2.703** 2.644** 2.641** 

(0.121) (0.127) (0.124) (0.129) (0.210) (0.212) (0.211) (0.213) 

N 12696 12696 12696 12696 9141 9141 9141 9141 

R2 0.228 0.248 0.253 0.271 0.168 0.170 0.186 0.188 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors (clustered at the individual level) are in parenthesis. 

Coefficient estimates of other regressors can be found in table 3.3. All regressions include year dummies. Excluded variables are “1 if social sciences major,” “1 if reside in north 
central,” and “1 if services occupation.” 
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Appendix Table C.4: Estimates Not Reported in Table 3.5, Women  

  
NLSY79 NLSY97 

(1) (2) (1) (2) 

 
One year 

after 

graduation 

Five years 

after 

graduation 

One year 

after 

graduation 

Five years 

after 

graduation 

ASVAB 
0.003** 0.004** -0.002 -0.001 

(0.001) (0.001) (0.001) (0.001) 

1 if Hispanic 
0.020 0.002 0.027 -0.054 

(0.070) (0.074) (0.071) (0.069) 

1 if black 
-0.039 -0.120 0.022 -0.011 

(0.069) (0.077) (0.085) (0.084) 

1 if Associate’s degree 
-0.026 0.040 0.103 0.085 

(0.092) (0.124) (0.061) (0.057) 

Age at receipt of    

    Bachelor’s degree 

-0.010** -0.011* -0.007 0.003 

(0.004) (0.005) (0.025) (0.021) 

1 if reside in northeast 
0.155* 0.162* 0.161* -0.003 

(0.069) (0.065) (0.075) (0.067) 

                    south 
0.095 0.077 0.076 0.107 

(0.058) (0.059) (0.069) (0.058) 

                    west 
0.201** 0.092 0.140 0.199* 

(0.067) (0.065) (0.077) (0.081) 

1 if married 
0.155** 0.045 0.127 0.036 

(0.059) (0.065) (0.067) (0.066) 

1 if children  
0.087 0.088 -0.096 -0.056 

(0.058) (0.062) (0.068) (0.063) 

Job tenure (T) 
0.043 0.239** 0.097 -0.004 

(0.061) (0.075) (0.052) (0.055) 

T2/10 
0.110 -0.627** -0.143 0.132 

(0.146) (0.165) (0.095) (0.115) 

T3/100 
-0.081 0.245** 0.061 -0.097 

(0.085) (0.063) (0.044) (0.059) 

Experience (X) 
0.054 0.067 0.096 0.279** 

(0.035) (0.037) (0.055) (0.069) 

X2/10 
-0.039 -0.040 -0.077 -0.440** 

(0.023) (0.023) (0.116) (0.141) 

Continued 
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Table C.4 continued 

X3/100 
0.008 0.007 0.046 0.236** 

(0.004) (0.004) (0.063) (0.082) 

Hours worked per 

week 

0.001 0.000 -0.002 -0.006* 

(0.002) (0.003) (0.003) (0.003) 

1 if Occupation is 

   Management 

0.320** 0.368** 0.226* 0.289* 

(0.123) (0.096) (0.107) (0.113) 

      Professional 
0.166 0.122 0.334** 0.179 

(0.120) (0.099) (0.111) (0.106) 

      Sales 
0.365** 0.259* 0.112 0.193 

(0.139) (0.117) (0.116) (0.100) 

      Clerical 
0.198 0.030 0.229* 0.148 

(0.119) (0.097) (0.103) (0.090) 

      Farming,  

         construction, etc. 

0.114 0.143 0.254* 0.217* 

(0.126) (0.110) (0.099) (0.095) 

1 if Management 
0.137 0.096 0.255** 0.260** 

(0.096) (0.096) (0.086) (0.083) 

      STEM 
0.166 0.208* 0.121 0.266** 

(0.094) (0.095) (0.080) (0.074) 

      Arts & Humanities 
0.062 0.027 -0.002 0.045 

(0.094) (0.098) (0.096) (0.073) 

      Other 
0.103 0.089 0.188 0.296** 

(0.123) (0.116) (0.101) (0.089) 

Constant 
2.372** 2.545** 2.381** 2.178** 

(0.283) (0.319) (0.571) (0.464) 

N 1035 825 794 541 

R2 0.324 0.366 0.258 0.247 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors 
(clustered at the individual level) are in parenthesis. Coefficient estimates of other regressors can be found in table 3.4. All 

regressions include year dummies. Excluded variables are “1 if social sciences major,” “1 if reside in north central,” and “1 if 

services occupation.” 
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Appendix Table C.5: Estimates Not Reported in Table 3.5, Women  

  
NLSY79 NLSY97 

(1) (2) (1) (2) 

 
One year 

after 

graduation 

Five years 

after 

graduation 

One year 

after 

graduation 

Five years 

after 

graduation 

ASVAB 
0.002 0.001 0.001 0.001 

(0.001) (0.001) (0.001) (0.001) 

1 if Hispanic 
-0.044 0.113 -0.005 -0.027 

(0.072) (0.068) (0.046) (0.059) 

1 if black 
0.067 0.012 -0.022 0.034 

(0.051) (0.056) (0.052) (0.060) 

1 if Associate’s degree 
0.118* 0.017 -0.041 -0.031 

(0.059) (0.061) (0.047) (0.052) 

Age at receipt of  

    Bachelor’s degree 

-0.004 -0.005 0.015 -0.012 

(0.003) (0.003) (0.014) (0.016) 

1 if reside in northeast 
0.203** 0.173** 0.192** 0.077 

(0.055) (0.062) (0.061) (0.062) 

                    south 
0.108* 0.008 0.070 -0.006 

(0.046) (0.053) (0.051) (0.053) 

                    west 
0.221** 0.162* 0.176** 0.154** 

(0.063) (0.072) (0.052) (0.051) 

1 if married 
0.098* -0.001 -0.001 0.111* 

(0.043) (0.042) (0.040) (0.056) 

1 if children  
0.035 0.014 -0.021 -0.091 

(0.043) (0.049) (0.042) (0.051) 

Job tenure (T) 
0.238** 0.154* 0.031 0.025 

(0.052) (0.068) (0.026) (0.035) 

T2/10 
-0.315** -0.107 0.009 -0.029 

(0.090) (0.222) (0.044) (0.076) 

T3/100 
0.095** -0.030 -0.015 0.025 

(0.030) (0.162) (0.018) (0.041) 

Experience (X) 
0.030 0.033 0.170** 0.117** 

(0.030) (0.037) (0.044) (0.040) 
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Table C.5 continued 

X2/10 
-0.001 0.003 -0.197 -0.136 

(0.018) (0.023) (0.105) (0.087) 

X3/100 
0.001 -0.002 0.085 0.059 

(0.003) (0.004) (0.065) (0.049) 

Hours worked per week 
-0.001 0.003 0.000 -0.006** 

(0.002) (0.002) (0.002) (0.002) 

1 if Occupation is 

   Management 

0.302** 0.381** 0.211** 0.099 

(0.108) (0.128) (0.082) (0.088) 

      Professional 
0.147 0.253* 0.233** 0.020 

(0.103) (0.123) (0.071) (0.077) 

      Sales 
0.156 0.121 -0.119 0.067 

(0.128) (0.140) (0.087) (0.097) 

      Clerical 
0.089 0.113 -0.115 -0.010 

(0.101) (0.113) (0.064) (0.065) 

      Farming,  

         construction, etc. 

0.110 0.217 -0.101 -0.303 

(0.134) (0.130) (0.108) (0.208) 

1 if Management 
0.000 0.047 0.127 0.136* 

(0.061) (0.075) (0.066) (0.064) 

      STEM 
0.232** 0.194* 0.227** 0.163** 

(0.064) (0.077) (0.068) (0.060) 

      Arts & Humanities 
-0.101 -0.066 -0.009 0.063 

(0.060) (0.070) (0.059) (0.057) 

      Other 
-0.020 -0.128 0.129 0.125 

(0.085) (0.094) (0.067) (0.070) 

Constant 
1.857** 1.850** 1.667** 2.499** 

(0.253) (0.264) (0.353) (0.396) 

N 1223 853 1136 602 

R2 0.336 0.307 0.238 0.187 
Note: ** significant at 1% level, * significant at 5% level. Each column corresponds to a separate specification. Standard errors 
(clustered at the individual level) are in parenthesis. Coefficient estimates of other regressors can be found in table 3.4. All regressions 

include year dummies. Excluded variables are “1 if social sciences major,” “1 if reside in north central,” and “1 if services occupation.” 

 

 


