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Abstract

The adjustment of students to a school environment is fundamentally linked

to the friendship networks they form with their peers. Consequently, the com-

plete picture of a student’ adjustment can only be obtained by taking into account

both their friendship network and their reported perceptions of the school envi-

ronment. However, there is a lack of flexible statistical models and methods that

can jointly analyze a social network with an item-response data matrix. In this

paper, we propose an extended latent space model for heterogeneous (multimodal)

networks (LSMH) and its extension LSMH-I, which combine the framework of la-

tent space modeling in network analysis with item response theory in psychomet-

rics. Using LSMH, we summarize the information from the social network and the

item responses in a person-item joint latent space. We use a Variational Bayesian

Expectation-Maximization estimation algorithm to estimate the item and person

locations in the joint latent space. This methodology allows effective integration,

informative visualization and prediction of social networks and item responses. We

apply the proposed methodology to data collected from 16 third-grade classrooms

comprised of 451 third-grade students’ self-reported friendships and school liking,

which were collected as part of the Early Learning Ohio project. Through the

person-item joint latent space, we are able identify students with potential ad-

justment difficulties and found consistent connection between students’ friendship

networks and their well-being. We believe that using LSMH, researchers will be

able to easily identify students in need of intervention and revolutionize the the

understanding of social behaviors.
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Chapter 1. Introduction

Understanding interactions among sets of entities, often represented as complex

networks, is a central research task in many data-intensive scientific fields, including:

Statistics, Machine learning, Physics, Biology, Psychology, and Economics (Watts

and Strogatz 1998; Barabási and Albert 1999; Albert and Barabási 2002; Jackson

et al. 2008; Girvan and Newman 2002; Shmulevich et al. 2002; Bickel and Chen 2009;

Bullmore and Sporns 2009; Rubinov and Sporns 2010). However, an overwhelming

majority of methodological and applied studies have only considered interactions

of one type among a set of entities of the same type. More recent studies have

pointed to the heterogeneous and multimodal nature of such interactions, whereby

a complex networked system is composed of multiple types of interactions among

entities that themselves are of multiple types (Kivelä et al. 2014a; Boccaletti et al.

2014; Mucha et al. 2010; Paul and Chen 2016, 2017; Sengupta and Chen 2015; Sun

et al. 2009; Liu et al. 2014; Ferrara et al. 2014; He et al. 2014; Nickel et al. 2016).

Social relationships are known to affect individual outcomes including dementia

(Fratiglioni et al. 2000), decision making (Kim and Srivastava 2007), adolescent

smoking (Mercken et al. 2010), and online behavior choices (Kwon et al. 2014).

At the same time, individual attributes, such as race, age, and gender can affect

whether and how people form friendships or romantic partnerships (Dean et al.

2017; McPherson et al. 2001). The effect of social relationships on individual out-

comes and its reciprocal are observable through disparities in the item responses

across different individuals when their friendship structures differ and through dis-

parities in the friendship structures when individuals’ attributes differ, respectively.

Therefore, a flexible joint modeling of the social relationships and the individual

outcomes is needed in order to effectively investigate their interrelationships.

In recent years, the integration of network analysis with psychometrics has

gained new ground, yet a flexible modeling of both social networks and item

responses is still lacking. Network Psychometrics, as the name suggests, is a

framework that connects network analysis with psychometrics by treating vari-

ables as nodes and pairwise correlations as edges (Borsboom and Cramer 2013;

Schmittmann et al. 2013; Epskamp et al. 2017). Under this framework, an ising
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model is shown to be statistically equivalent to an item response theory (IRT)

model, and therefore a similar fit to the data is obtained when applying the two

different models (Marsman et al. 2018). Though it is an important framework that

bridges a gap between network analysis and psychometrics, network psychometrics

can not be used to jointly model social networks and individual outcomes. A recent

development in this effort is Liu et al. (2018), which allows latent personality traits

as covariates in a structural equation model. Unlike Liu et al. (2018)’s approach

converting item responses to latent factors, we propose a model that preserves

item-level information using IRT. Our method is also different from Jin and Jeon

(2018)’s recent integration of network analysis with IRT to estimate IRT’s item and

person parameters. While only item responses are model through their approach,

both social networks and item responses are modeled through our approach, and

thus the relationship between social relationships and individual outcomes can be

examined.

A joint modeling of social networks and item responses is needed to study stu-

dents’ school adjustment in relation to their friendship. It is well known that friend-

ship structures affect students’ school adjustment (Ladd et al. 1996, 1997; Ladd and

Kochenderfer 1996; Erath et al. 2008; Bagwell et al. 1998; Kingery et al. 2011). For

example, close friendships with same-aged peers promote positive school attitude

and academic performance (Berndt and Keefe 1995; Wentzel et al. 2004). Stu-

dents with at least one friend show higher academic accomplishments compared to

students without friends (Wentzel et al. 2004). Friendships that provide emotional

support promote classroom involvement, while friendships with conflicts exacerbate

school adjustment problems in childhood (Ladd et al. 1996) and early adolescence

(Berndt and Keefe 1995). School adjustment also affects friendship formation as

students choose academically similar friends (Kindermann 2007; Rambaran et al.

2017; Shin and Ryan 2014). In particular, it is shown that students who adjust well

in schools befriend other academically-oriented students, whereas less academically-

oriented students tend to befriend those who are similarly disengaged (Ryan and

Deci 2000). Though there is extensive literature that investigates the relationships

between school adjustment and friendships, statistical models that effectively iden-
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tify students with potential adjustment difficulties while simultaneously using both

social networks and students’ survey responses are lacking. In addition, previous

studies often use univariate summary measures, like density of the friendship net-

work or the number of friends each student has, to simplify the analysis of friendship

networks, thus failing to explore the rich information and dependence structure as-

sociated with such complex networks.

To directly connect the analysis of social networks with the analysis of item

responses, we introduce the latent space random graph model for heterogeneous

networks (LSMH) and its extension for item diagnosis (LSMH-I), which jointly

analyze students’ friendship networks and their school adjustment survey results.

LSMH and LSMH-I retain information from friendship networks in their totality,

and therefore provide more nuance when studying friendship structures and their

relations to school adjustment. Using LSMH and LSMH-I, we create a joint latent

space, in which estimated latent item and person positions abide by same geometric

rules, for items and persons to coexist and interact. In other words, the latent

item positions are determined by the information from the friendship networks

and the item responses. Similarly, the latent person positions are determined by

the information from both social networks and item responses. The LSMH can

be used to effectively identify students with potential adjustment difficulties and

to understand how students’ friendships might influence their school adjustment,

or vice versa. Using LSMH-I, we calculate the item difficulty and discrimination

parameters taking into account both social networks and item responses.

The remainder of this paper is organized as follows. In section 2, we introduce

the motivating application and the school adjustment data. In section 3 we intro-

duce our models. Section 4 describes the estimation approach. Section 5 presents

a simulation study and Section 6 applies the proposed methodology to the school

adjustment data. Finally, in Section 7 we summarize our findings and discuss its

extensions and future directions.

3



Chapter 2. Application: Classroom friendship

and school adjustment data from the Early

Learning Ohio project

Understanding the relationship between friendships and school adjustment from

the Early Learning Ohio project is our motivation for the LSMH. Classrooms. The

sample in this study is drawn from a larger study called Early Learning Ohio, which

was developed in part to investigate how children grow and change in their academic

skills from pre-kindergarten through third grade. All research was conducted with

the approval of the Institutional Review Board. Teachers were recruited through

informational meetings with project personnel that took place at their schools.

Every child in an enrolled teacher’s classroom was eligible for participation, and

was asked to participate via an informational packet sent home to caregivers. On

average, 80% of children per classroom were enrolled in the study. Children who

were not consented did not participate in the child interviews. However when

collecting information about the social network, children were able to nominate any

child in the class as a friend, regardless of whether the child was an active study

participant. Current Sample. The sample in this study focuses on 16 selected third-

grade classrooms from one school district, located near central Ohio. Classrooms

spanned urban, suburban, and rural schools. The number of students in each

classroom ranges between 20 and 33.

Procedures. To incentivize participation in the study, caregivers received 10

dollars after completing a family questionnaire, and enrolled children received age

appropriate books at assessment periods in fall and spring. Children were assessed

in a quiet area of their school by a trained field assessor in the fall and spring.

Data used in the present study were collected via child interviews, which were

conducted by trained and experienced assessors to ensure accurate and reliable

administration. Measures. The social network measure was collected during an

individual interview between a student and a project-based assessor. The assessor

provided the student with a list of the names of all of the children in his or her

classroom, and asked the child to indicate who they liked to play with the most.
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Children’s responses were recorded, and an individual matrix of connections was

used as the basis for the social networks examined in this study. The child interview

questionnaire consists of 23 items. These items are based on Student Experience

scale, Perceived Peer Social Support Scale: The peer support at school scale, and

School Liking Questionnaire from Birch and Ladd (1997). There are 4 sub-scales

among the 23 items: three items measuring the negative student experiences, eleven

items measuring students’ perceived peer social support, six items measuring how

much students like school, three items measuring how lonely the students are. In

Figure 1, we present the collective responses of the 451 students by showing the

correlations of the items.

Figure 1: Correlations of items across all students
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Figure 2: Principal Component Analysis of
item sample correlation matrix

The items were designed to measure four psychological construct, namely: nega-

5



tive student experience, perceived peer social support, school-liking, and loneliness.

Three of the four sub-scales consist of items associated with only one type of emo-

tional affect, i.e., either a positive affect or a negative affect. There are only negative

items in the negative student experience and loneliness sub-scales and only positive

items in the perceived peer social support sub-scale. There are both negative and

positive items in fourth sub-scale, corresponding to school-liking. The consistency

of the emotional affect in one sub-scale helps us reduce the complexity of and inter-

pret the dimensions in the students’ responses to the child interview questionnaire.

Therefore, we re-coded the negative items (items 17, 18 and 21) in the school-liking

sub-scale to maintain its overall positive affect.

The dimensions in the students’ responses were examined using a principle com-

ponent analysis (PCA). The results show that 25.39%, 13.60% of the variability in

the questionnaire responses are explained by the first two components, respectively.

In Figure 2, we show the bi-plot of these two components. As can be seen, items in

the same sub-scale are positioned in similar directions. In particular, items 1,2 and

4 (the negative student experience items) are positioned in the similar directions as

items 22, 23 and 24 (the loneliness items). Together, they can be seen as items of

negative emotional affect (the NEA items). If we rotate the co-ordinate axes by 45

degrees clockwise, then the NEA items are differentiated from the perceived social

support (PSS) items (items 5–15) by the first dimension of the new co-ordinate

axes. We refer to this dimension as the NEA dimension since a student’s positive

position on this dimension indicates a high score on the NEA items and a low score

on the PSS items. The school liking (SL) items (items 16–21) are positioned in

the same direction as the second dimension of the new co-ordinate axes. We refer

to this dimension as the SL dimension since a student’s positive position on this

dimension indicates a high score on SL items. We believe that the NEA and SL

dimensions give us meaningful interpretations of the students’ responses, and we

aim to discover similar dimensions in the joint latent space model using LSMH.
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Chapter 3. Latent Space Model for

Heterogeneous Networks

Consider a more general yet similar scenario as the Early Learning Ohio Project,

where data are collected from a group of individuals about their friendships, and

also their attitudes or behavioral outcomes using a set of survey or test questions.

Optionally, additional information about the items, e.g. their relations to each

other, can also be found. Under such a scenario, the data can be represented as a

heterogenous multimodal network. In this section, we propose a latent space model,

LSMH to model such heterogeneous multimodal networks. Though modeling social

networks and item-response networks is our primary focus in this paper, LSMH can

also be used to model general heterogenous multimodal networks.

Let YI denote the N × N adjacency matrix of the social network among N

individuals. The (i, j) th element of the matrix YI , denoted as yIij is 1 if person i and

person j are related, for i, j = {1, 2, . . . , N} and i 6= j. Similarly, let YA be the M×

M adjacency matrix of the item relationship network among M items, whose (a, b)

th element, denoted as yAab is 1 if items a and b are related, for a, b = {1, 2, . . . ,M}

and a 6= b. Finally, let YIA denote the N ×M item response matrix, whose (i, a)

th element yIAia is 1 if person i responded positively or correctly (depending upon

context) to item a in the survey, for i = {1, 2, . . . , N} and a = {1, 2, . . . ,M}.

A multimodal network can be equivalently represented as a supra-adjacency

matrix (Kivelä et al. 2014b). We define an item-person supra-adjacency matrix as

a block matrix that has the friendship network adjacency matrix YI and the item

relationship adjacency matrix YA in the diagonal blocks and the item response

matrix YIA and its transpose YIA
T in the off-diagonal blocks (see Figure 3 (A)).

Using the proposed model LSMH, we define a item-person joint latent space as

a hypothetical multidimensional space, in which the locations of the persons and

the items follow predefined geometric rules reflecting each node’s connection with

another. Our formulation of the joint latent space is motivated by merging the

philosophy of Latent Space Model (LSM) framework with that of the Multidimen-

tional Item-Response Theory (MIRT). The LSM framework allows us to specify
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Figure 3: (A) item-person supra-adjacency matrix (B) The LSMH

and interpret the interactions among persons, whereas the MIRT framework allows

us to model the items into the same latent space as the persons, i.e. the joint latent

space. Next we briefly review the LSM and MIRT frameworks and then introduce

our model.

The Latent Space Model

The LSM, introduced by Hoff et al. (2002) assumes that each node i has a

latent position zi = (zi,1, zi,2, ..., zi,D)T in a D-dimensional Euclidean latent space

(Handcock et al. 2007; Gollini and Murphy 2016; Salter-Townshend and Murphy

2013; Salter-Townshend and McCormick 2017; Krivitsky et al. 2009; Friel et al.

2016) and that the probability of node i and node j forming a connection depends on

the distance between them in the latent space. The greater the distance is between

two latent positions, the less likely they form a connection. In Hoff et al. (2002),

the Euclidean distance |zi−zj | was proposed as the distance measure of undirected

networks, and the projection distance
zizj
|zj | was proposed as the distance measure

of directed networks. Extensions of Hoff et al. (2002)’s original latent space models

have been proposed in literature. In Handcock et al. (2007), a mixture of Gaussian

distributions was proposed to model the distribution of the latent variables zi

instead of only one Gaussian distribution in order to account for possible community

structures. A node specific random effect was included by Krivitsky et al. (2009)

to model the nodes’ differing “propensity” to form ties. This model was extended

to multiple networks by Gollini and Murphy (2016) and to bipartite networks by

Friel et al. (2016).
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The Multidimensional Item Response Theory

The multidimensional item response theory (MIRT) model, specifically the mul-

tidimensional two-parameter logistic model (Reckase 2009), is a multidimensional

extension of one of the most intensively studied model in psychometrics—namely,

the Item Response Theory (IRT) model (e.g. Embretson and Reise (2000); Mellen-

bergh (1994); Van Der Linden and Hambleton (1997)).

IRT and MIRT are models that mathematically represent locations of persons

in a hypothetical multidimensional space using the persons’ responses to a set of

items. To achieve this, it is assumed by Reckase (2009) that persons can be ranked

on each of the D dimensions that individuals differ. Under this assumption, person

i is attributed a latent vector of D personal characteristics, zi = (zi,1, zi,2, . . . , zi,D).

Using this latent vector, we describe the skills and knowledge of the person evalu-

ated by the items, which is conceptually different from the latent vector in LSM.

Similarly, item a, a = 1, 2, . . . ,M is represented by a latent vector of D item

characteristics, za = (za1, za2, . . . , zaD). In the MIRT framework, an item can be

assessed of its difficulty and sensitivity with respect to the respondents through the

estimated item discrimination and difficulty parameters.

The LSMH model

In this section, we define the latent space model for heterogeneous networks

(LSMH). We assume that the persons and items can be positioned in an item-

person joint latent space, which is a subset of the D dimensional Euclidean space

RD. Let ZI be a N × D matrix of latent person positions, each row of which is

a D dimensional vector ui = (ui1, ui2, . . . , uiD) indicating the latent position of

person i in the Euclidean space. Similarly, let ZA be a M × D matrix of latent

item positions, each row of which is a D dimensional vector va = (va1, va2, . . . , vaD)

indicating the latent position of item a in the Euclidean space. As shown in Figure

3 (B), LSMH is used to estimate the latent person and item positions ZI and

ZA using three data matrices: the friendship network YI , the item relationship

matrix YA and the item response matrix YIA. The data matrices YI and YA are
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modeled borrowing the philosophy of the LSM framework, and the data matrix

YIA is modeled borrowing the philosophy of the MIRT framework. In LSMH, we

extend the conditional independence assumption of LSM and MIRT by assuming

that the probability of forming any connection in an item-person supra-adjacency

matrix is independent of all other connections given the latent positions of the two

nodes involved.

In LSMH, the joint distribution of the elements of the item-person supra-

adjacency matrix can be written as

p(YI ,YA,YIA|ZI ,ZA, α0, α1, α2) =
N∏
i=1

N∏
j=1,j 6=i

p1(yIi,j |θIi,j)
M∏
a=1

N∏
b=1,b 6=a

p2(yAa,b|θAa,b)

N∏
i=1

M∏
a=1

p3(yIAi,a |θIAi,a ),

E(yIi,j |θIi,j) = g1(θIi,j), E(yAa,b|θAa,b) = g2(θAa,b), E(yIAi,a |θIAi,a ) = g3(θIAi,a ),

θIi,j = α0 − |ui − uj |2, θAa,b = α1 − |va − vb|2, θIAi,a = α2 + ui
Tva,

(1)

where gi(·) are the link functions, and pi(·|·) are the parametric families of distribu-

tions suitable for the type of data in the supra-adjacency matrix. We set the priors

ui
iid∼ N(0, λ2

0ID), and va
iid∼ N(0, λ2

1ID). α0, α1, α2, λ
2
0, λ

2
1 are unknown parameters

that need to be estimated.

If the data in YI , YA and YIA are binary, then the link functions g1(θIi,j), g2(θAa,b)

and g3(θIAi,a ) are logistic inverse link functions, i.e., g1(θIi,j) =
exp(α0−|ui−uj |2)

1+exp(α0−|ui−uj |2)
,

g2(θAa,b) = exp(α1−|va−vb|2)
1+exp(α1−|va−vb|2)

, and g3(θIAi,a ) = exp(α2+ui
T va)

1+exp(α2+ui
T va)

, and the pi(·|·) are

Bernoulli PDFs.

While it is common for the edges in the friendship networks to be binary, the

data in the item response matrix can be more general. If the data in YIA are

of discrete numerical scales, they can be modeled with other parametric families.

For example, we can use g2(θIAi,a ) = exp(α2 + ui
Tva) as the Poisson inverse link

function to model count data in YIA, and thus p3(yIAi,a |θIAi,a ) becomes the PDF of

the Poisson distribution. Alternatively, we can model the presence (or absence)

of an edge separately from the weight of the edge (if it is present). For example,
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a zero inflated normal distribution was used by Sewell and Chen (2016) to model

weighted edges, and the same goal was achieved by Agarwal and Xue (2019) using

a combination of Bernoulli distribution and a non-parametric weight distribution.

In a similar fashion, LSMH can be used to handle weighted edges. A zero

inflated Poisson model for the distribution of yIAi,a |θIAi,a can be seen as follows:

p3(yIAi,a |θIAi,a ) = (1− (κ(θIAi,a ))(yIAi,a=0) ×
{

(κ(θIAi,a )
∏ exp(−γ(θIAi,a ))γ(θIAi,a )y

IA
i,a

yIA!
i,a

}
κ(θIAi,a ) =

exp(α2 + ui
Tva)

1 + exp(α2 + ui
Tva)

γ(θIAi,a ) = exp(α2 + ui
Tva).

In LSMH, we use the squared Euclidean distances |ui − uj |2 and |va − vb|2

instead of the Euclidean distance. It is shown by Gollini and Murphy (2016) that

squared Euclidean distances are computationally more efficient and that the latent

positions obtained using squared Euclidean distances are extremely similar to those

obtained using Euclidean distances. In LSMH, we also use a global scalar inter-

cept instead of an item vector intercept, which is the functional form of MIRT to

model the YIA matrix. In the next section, we retain the item vector intercept and

introduce the latent space model for item, the LSMH-I.

The item relationship matrix comes from an exogenous source of information

regarding items, independent from the item response matrix and the friendship

network. For example, an item relationship matrix can be obtained from previously

known correlations of items. Alternatively, the latent item and person positions can

be estimated without the information in YA in that uis and vas can be estimated

without f(YA|ZA, α1) in Equation 1. To model students’ adjustment well-being

within their classroom, we use YA to incorporate responses to items outside of

their classroom, and thus our YA comes from an exogeneous source of information,

independent from YI or YIA.

In LSMH, the interactions among persons and the connections among items are

interpreted following the LSM distance framework. The probability of person i and

person j forming a friendly connection depends on the distance of ui and uj in
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the joint latent space. The smaller the latent distance between person i and j, the

higher the chance that person i and person j are friends. Similarly, the closer the

latent positions of item a and b are, the more likely that item a and b measure the

same individual attitudes or attributes. The relationships among persons and the

connections among items also retain the transitivity and reciprocity properties of

the LSM: if person i and j form a bond, and person i and k are also friends, then

person j befriending person i (reciprocity), and befriending person k (transitivity)

are both more likely. The same is true for relationships among items.

The interactions among persons and items are interpreted following the latent

space projection model framework (Hoff et al. 2002). In the latent space projection

model framework, we reparameterize ui
Tva with unit-length D-dimensional vectors

wi, wa, and scalars ci, ca. Let ui = ciwi and va = cawa. Then ui
Tva =

cicawi
Twa, which is the signed magnitude of the projection of ui in the direction

of va (cawi
Twa) multiplied by ci. The projection of ui in the direction of va can be

interpreted as the extent to which item a measures the attitudes and attributes of

person i. The angle between wi and wa captures the “similarity” between person

i and item a. Item a and person i are favorable to having ties when wi and wa are

in the same direction, i.e. wi
Twa > 0; are averse to having ties when wi and wa

are in the opposite directions, i.e. wi
Twa < 0 and are neutral to having ties when

the angle is a right angle, i.e. wi
Twa = 0. The magnitudes of ci and ca capture

the activity levels of node i and a (Hoff et al. 2002).

According to Reckase (2009), a coordinate system is necessary to specify the lo-

cations of the items and the persons for any model development, but the coordinates

themselves do not always coincide with meaningful dimensions. This arbitrariness

of coordinate system is seen in our item-person joint latent space. Each dimension

of the coordinate system is found through the optimization procedures, therefore

can seem arbitrary at times. Using an arbitrary set of coordinates to describe con-

structs is quite common. Yet, the arbitrariness of the coordinates does not limit

our interpretations of the relative positions and inter-relationships of the persons

and items in the joint latent space.
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The LSMH for Item (LSMH-I)

We propose an extension of the model in Equation 1 by replacing the scalar

intercept α2 with a vector of item specific “fixed effects”, β of length a. We call

this model LSMH-I.

θIAi,a = βa + ui
Tva, (2)

where βa is the ath element in vector β. In LSMH-I, the βa parameters are used

to model the inherent “properties” of the items and are similar to the “degree

correction” parameters in the degree corrected stochastic block models Zhao et al.

(2012) or the “sociability” parameters in the latent space models Krivitsky et al.

(2009). In LSMH-I, we also directly incorporate the functional form of MIRT,

which allows us to estimate item difficulty and discrimination parameters while

taking into account students’ friendship information.

In this paper, we follow Reckase (2009)’s notation and use Aa and Ba to sum-

marize the item discrimination and difficulty information in the multidimensional

space. In Reckase (2009), Aa is used as the multidimensional discrimination for

item a, which is also MDISCa in other articles. Ba is used to represent the mul-

tidimensional difficulty of item a, which is also represented by MDIFF. Regard-

less of the notations, an item with higher discrimination power more easily dis-

tinguishes persons with differing “ability”. A more difficult item requires higher

â[U+0080][U+009C]abilityâ[U+0080][U+009D] of the test takers to be answered

correctly. In our LSMH-I, Aa and Ba are defined as

Aa =

√√√√ D∑
d=1

v2
ad, Ba =

−βa√∑D
d=1 v

2
ad

, i = {1, . . . , N}, a = {1, . . .M}

where vad is the coordinate of item a on dimension d and βa is the intercept for

item a. Aa and Ba relate to the item response surface (IRS), which describes the

probability of a positive answer as a function of a person’s “ability” inD dimensions.

Aa represents the steepest slope of the IRS in the direction where item a is most

differentiable and most sensitive. Ba is the distance from the origin to the point

of steepest slope in the direction most differentiated by item a. Large values of Aa

13



and Ba indicate a high discrimination and high difficulty of an item respectively.

Both LSMH and LSMH-I can be used to jointly summarize information in the

social network and item response data. In modeling the item responses, both models

retain the term ui
Tva. The difference is that a global item intercept is used in the

LSMH, while a vector item intercept is used in the LSMH-I. If we are interested in

the outcomes of the persons, it is appropriate to apply LSMH. The global intercept

in the LSMH accounts for any mean differences in the estimated latent person and

item positions, which allows us to readily observe how persons are responding to

different items in the joint latent space. There is more reason to apply LSMH-

I with large datasets as they allow us to accurately estimate the βa parameters.

Using LSMH-I, we can also estimate item discrimination and difficulty parameters

that take into account the friendship information. Researchers should select the

appropriate model based on the research focuses.

The primary goal of our paper is to investigate students’ adjustment well-being

within each classroom using LSMH. A comprehensive study of the adjustment item

using LSMH-I is also possible. We propose a LSMH-I model that takes into ac-

count the item responses for all students in different classrooms and their friendship

networks within each classroom. We have C classroom friendship networks, and

we use Nc to denote the number of students in the cth classroom. We use Y c
I to

denote the corresponding cth classroom friendship network and use YIA to denote

the overall item-response matrix. Then,

p(Y 1
I , ...,Y

C
I ,YIA|ZI ,ZA, α1, ..., αC , βa) =

C∏
c=1

Nc∏
i=1

Nc∏
j=1,j 6=i

p(yI,ci,j |θ
I,c
i,j )

N∏
i=1

M∏
a=1

p(yIAi,a |θIAi,a ) (3)

θIAi,a = βa + ui
Tva, θI,ci,j = αc − |ui − uj |2, c = {1, . . . , C}, ,

, where N =
∑

cNc is the total number of students from the C classrooms. ui and

va are the latent positions of the ith student and ath item, and αc and βa are the

intercepts for the cth classroom and the ath item. The βa parameters model the

properties of the items, and the αc parameters model the variations in the density

14



of friendship networks in different classrooms.
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Chapter 4. The Variational Bayesian

Inference

We are interested in the posterior inference of the latent variables ui and va condi-

tioning on the observed data. The (conditional) posterior distribution is the ratio

of the joint distribution of the observed data and unobserved latent variables to the

observed data likelihood.

P (ZI ,ZA|YI ,YA,YIA) =
P (YI ,YA,YIA|ZI ,ZA)P (ZI ,ZA)

P (YI ,YA,YIA)
.

We can completely characterize the distribution of latent positions and thus obtain

the point and interval estimates by computing this posterior distribution. However,

to compute this conditional posterior, we need to evaluate the normalizing constant

in the denominator above, which involves integration over the latent variables. This

posterior distribution is therefore intractable. The variational inference algorithm

is commonly used to estimate latent variables whose posterior distribution is in-

tractable (Beal et al. 2003; Attias 1999; Beal et al. 2006; Blei et al. 2017). In network

analysis, the variational approach has been proposed for the stochastic blockmodel

(Daudin et al. 2008; Celisse et al. 2012), the mixed-membership stochastic block-

model (Airoldi et al. 2008), the multi-layer stochastic blockmodel (Xu et al. 2014;

Paul and Chen 2016), the dynamic stochastic blockmodel (Matias and Miele 2016),

the latent position cluster model (Salter-Townshend and Murphy 2013) and the

multiple network latent space model (Gollini and Murphy 2016). Here, we propose

a Variational Bayesian Expectation Maximization (VBEM) algorithm to approx-

imate the posterior of the person and the item latent positions in LSMH and in

LSMH-I. We propose a class of suitable variational posterior distributions for the

conditional distribution of (ZI ,ZA|YI ,YA,YIA) and obtain a distribution from

the class that minimizes the Kulback Leibler (KL) divergence from the true but

intractable posterior.

For LSMH, we assign the following variational posterior distribution: q(ui) =
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N(ũi, Λ̃0) and q(va) = N(ṽa, Λ̃1). We set the joint distribution as

q(ZI ,ZA|YI ,YA,YIA) =
N∏
i=1

q(ui)
M∏
a=1

q(va),

, where ũi, Λ̃0, ṽa, Λ̃1 are the parameters of the distribution, known as variational

parameters.

We can estimate the variational parameters by minimizing the Kullback-Leiber

(KL) divergence between the variational posterior q(ZI ,ZA|YI ,YA,YIA) and the

true posterior f(ZI ,ZA|YI ,YA,YIA). Minimizing the KL divergence is equivalent

to maximizing the following Evidence Lower Bound (ELBO) function Blei et al.
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(2017), (see detailed derivations in the Supplementary Materials)

ELBO = −Eq(ZI ,ZA,α0,α1,α2|YI ,YA,YIA)[
log q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)

log p(ZI ,ZA,YI ,YA,YIA|α0, α1, α2)
]

= −
∫
q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)

log
q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)

f(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)
d(ZI ,ZA, α0, α1, α2)

= −
∫ N∏

i=1

q(ui)
M∏
a=1

q(va)

log

∏N
i=1 q(ui)

∏M
a=1 q(va)

f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)
∏N
i=1 f(ui)

∏M
a=1 f(va)

d(ZI ,ZA, α0, α1, α2)

= −
N∑
i=1

∫
q(ui) log

q(ui)

f(ui)
dui −

M∑
a=1

∫
q(va) log

q(va)

f(va)
dva

+

∫
q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA) log f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)

d(ZI ,ZA, α0, α1, α2)

= −
N∑
i=1

KL[q(ui)|f(ui)]−
M∑
a=1

KL[q(va)|f(va)]

+ Eq(ZI ,ZA,α0,α1,α2|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)]

= −1

2

(
DN log(λ2

0)−N log(det(Λ̃0))
)
− N(Λ̃0)

2λ2
0

−
∑N

i=1 ũi
T ũi

2λ2
0

− 1

2

(
DM log(λ2

1)−M log(det(Λ̃1))
)
− M(Λ̃1)

2λ2
1

−
∑M

a=1 ṽa
T ṽa

2λ2
1

+
1

2
(MD +ND)

+ Eq(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA)]

After applying Jensen’s inequality (Jensen 1906), a lower-bound on the third term
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is given by,

Eq(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)]

≥
N∑
i=1

M∑
a=1

yIAia (α̃2 + ũi
T ṽa)

+

N∑
i=1

N∑
j=1,j 6=i

yIij

[
α̃0 − 2(Λ̃0)− (ũi − ũj)T (ũi − ũj)

]

+
M∑
a=1

M∑
b=1,b 6=a

yab

[
α̃1 − 2(Λ̃1)− (ṽa − ṽb)T (ṽa − ṽb)

]

−
N∑
i=1

M∑
a=1

log

(
1 +

exp(α̃2)

det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)1/2

exp
(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)−1
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

))

−
N∑
i=1

N∑
j=1,j 6=i

log

(
1 +

exp(α̃0)

det(I + 4Λ̃0)1/2
exp

(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

))

−
M∑
a=1

M∑
b=1,b 6=a

log

(
1 +

exp(α̃1)

det(I + 4Λ̃1)1/2
exp

(
− (ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

))

We use the Variational Expectation-Maximization (EM) algorithm (Jordan et al.

1999; Baum et al. 1970; Dempster et al. 1977) to maximize the ELBO function.

Following the variational EM algorithm, we replace the E step of the celebrated

EM algorithm, where we compute the expectation of the complete likelihood with

respect to the conditional distribution f(ZI ,ZA|YI ,YA,YIA), with a VE step,

where we compute the expectation with respect to the best variational distribution

(obtained by optimizing the ELBO function) at that iteration.

The detailed procedures are as follows. We start with the initial parameter,

Θ(0) = α̃
(0)
0 , α̃

(0)
1 , α̃

(0)
2 , and ũ

(0)
i , Λ̃

(0)
0 , ṽ

(0)
a , Λ̃

(0)
1 , and then we iterate the following

VE (Variational expectation) and M (maximization) steps. During the VE step, we

maximize the ELBO(q(Z),Θ) with respect to the variational parameters ũi, ṽa, λ̃0

and λ̃1 given the other model parameters and obtain ELBO(q∗(Z),Θ) . During the

M step, we fix ũi, ṽa, Λ̃0 and Λ̃1 and maximize the ELBO(q(Z),Θ) with respect

to α̃0, α̃1 and α̃2. To do this, we differentiate ELBO(q(Z),Θ) with respect to each
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variational parameter. Closed form update rules are obtained by setting the partial

derivatives to zero while introducing the first- and second-order Taylor series expan-

sion approximation of the log functions in ELBO(q(Z),Θ) (see detailed derivations

in supplementary material). The Taylor series expansions are commonly used in the

variational approaches. For example, three first-order Taylor expansions were used

by Salter-Townshend and Murphy (2013) to simplify the Euclidean distance in the

latent position cluster model, and first- and second-order Taylor expansions were

used by Gollini and Murphy (2016) to simplify the squared Euclidean distance in

LSM. Following the previous publications using Taylor expansions, we approximate

the three log functions in our ELBO(q(Z),Θ) function to find closed form update

rules for the variational parameters. The three log functions are

FIA =
N∑
i=1

M∑
a=1

log

(
1 +

exp(α̃2)

det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)1/2

exp
(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)−1
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

))

FI =
N∑
i=1

N∑
j=1,j 6=i

log

(
1 +

exp(α̃0)

det(I + 4Λ̃0)1/2

exp
(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

))

FA =

M∑
a=1

M∑
b=1,b 6=a

log

(
1 +

exp(α̃1)

det(I + 4Λ̃1)1/2

exp
(
− (ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

))

The closed form update rules of the (t+ 1)th iteration are as follows

VE-step: Estimate ũi
(t+1), ṽa

(t+1), Λ̃
(t+1)
0 and Λ̃

(t+1)
1 by minimizing
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ELBO(q(Z),Θ)

ũi
(t+1) =

[(
1

2λ0
+

N∑
j=1,j 6=i

(yIji + yIij)

)
I +HI(ũi

(t)) +
1

2
HIA(ũi

(t))

]−1

[
N∑

j=1,j 6=i
(yIji + yIij)ũj +

1

2

M∑
a=1

yIAia ṽa
(t) −GI(ũi

(t))

+
(
HI(ũi

(t)) +
1

2
HIA(ũi

(t))
)
ũi

(t) − 1

2
GIA(ũi

(t))

]

ṽa
(t+1) =

[(
1

2λ1
+

M∑
b=1,b 6=a

(yAba + yAab)

)
I +HA(ṽa

(t)) +
1

2
HIA(ṽa

(t))

]−1

[
M∑

b=1,b 6=a
(yAba + yAab)ṽb +

1

2

N∑
i=1

yIAia ũi
(t) −GA(ṽa

(t))

+
(
HA(ṽa

(t)) +
1

2
HIA(ṽa

(t))
)
ṽa

(t) − 1

2
GIA(ṽa

(t))

]

Λ̃
(t+1)
0 =

[(
1

λ0
+

∑N
i=1

∑N
j=1 y

I
ij

N

)
I +

2

N
GI(Λ̃

(t)
0 ) +

1

2
GIA(Λ̃

(t)
0 )

]−1

Λ̃
(t+1)
1 =

[(
1

λ1
+

∑M
a=1

∑M
b=1 y

I
ij

N

)
I +

2

M
GA(Λ̃

(t)
1 ) +

1

2
GIA(Λ̃

(t)
1 )

]−1

where GI(ũi
(t)), GA(ṽa

(t)), GIA(ũi
(t))and GIA(ṽa

(t)) are the partial derivatives

(gradients) of FI ,FA,FIA and FIA with respect to ũi, ṽa, ũi and ṽa, evaluated

at ũi
(t), ṽa

(t), ũi
(t) and ṽa

(t) respectively. In GI(ũi
(t)), the subscript I indicates

that the gradient is of function FI , and the subscript i in ũi
(t) indicates that the

gradient is with respect to ũi, evaluated at ũi
(t). Similarly, HI(ũi

(t)), HA(ṽa
(t)),

HIA(ũi
(t)) and HIA(ṽa

(t)) are the second-order partial derivatives of FI ,FA,FIA

and FIA with respect to ũi, ṽa, ũi and ṽa, evaluated at ũi
(t), ṽa

(t), ũi
(t) and ṽa

(t)

respectively.
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M-step: Estimate α̃
(t+1)
0 , α̃

(t+1)
1 and α̃

(t+1)
2 by maximizing ELBO(q(Z),Θ)

α̃
(t+1)
0 =

∑N
i=1

∑N
j=1 y

I
ij − gI(α̃

(t)
0 ) + α̃

(t)
0 hI(α̃

(t)
0 )

hI(α̃
(t)
0 )

α̃
(t+1)
1 =

∑M
a=1

∑M
b=1 y

A
ab − gA(α̃

(t)
1 ) + α̃

(t)
1 hA(α̃

(t)
1 )

hA(α̃
(t)
1 )

α̃
(t+1)
2 =

∑N
i=1

∑M
a=1 y

IA
ia − gIA(α̃

(t)
2 ) + α̃

(t)
2 hIA(α̃

(t)
2 )

hIA(α̃
(t)
2 )

, where gI(α̃
(t)
0 ), gA(α̃

(t)
1 ) and gIA(α̃

(t)
2 ) are the partial derivatives (gradients) of

FI ,FA and FIA with respect to α̃0, α̃1 and α̃2, evaluated at α̃
(t)
0 , α̃

(t)
1 and α̃

(t)
2 ; and

hI(α̃
(t)
0 ), hA(α̃

(t)
1 ) and hIA(α̃

(t)
2 ) are the second-order partial derivatives of FI ,FA

and FIA with respect to α̃0, α̃1 and α̃2, evaluated at α̃
(t)
0 , α̃

(t)
1 and α̃

(t)
2 .

The VBEM approach for LSMH-I is similar to the VBEM approach for LSMH

with the exception of α̃a, a = 1, 2, ...M replacing α̃2. Therefore, the closed form

update rule for α̃a is

α̃(t+1)
a =

∑N
i=1 y

IA
ia − gIA(α̃

(t)
a ) + α̃

(t)
a hIA(α̃

(t)
a )

hIA(α̃
(t)
a )

, where gIA(α̃
(t)
a ) is the partial derivative (gradient) of FIA with respect to α̃a,

evaluated at α̃
(t)
a ; and hIA(α̃

(t)
a ) is the second-order partial derivative of FIA with

respect to α̃a, evaluated at α̃
(t)
a .
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Chapter 5. Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the

proposed VBEM algorithm in comparison to two baseline procedures. We use the

area under the receiver operating characteristic curve (AUC) of predicting the pres-

ence or absence of a link from the estimated link probabilities as one evaluation

criteria. We use the average absolute error (AAE) of estimating the link probabil-

ities to assess the recovery of the true probabilities. We also assess the recovery of

the parameters using the distances between the estimated parameter values to the

true parameter values.

.8

Figure 4: The distributions of AUC values. Under the (left) first and
(right) second settings, the α values are 1, .5,−0.5 and 3, 3.5,−2 re-
spectively.

In Figure 4, we present the distributions of the AUC values for 100 simulations

for two sets of true α values: α0 = 1, α1 = .5, α2 = −0.5 (left panel) and α0 =

3, α1 = 3.5, α2 = −2 (right panel). The LSMH defined by Equation 1 is our data

generating model. The true values of λ0, λ1 are always set to be 1. We sample ZI

and ZA from the multivariate normal distributions using the pre-defined parameter

values. Following Equation 1, we produce link probabilities between items, between

persons and between items and persons using the inverse logistic link function.

Next, we generated 100 datasets each consisting of the matrices

YI ,YA and YIA. Each data point in the matrices was independently generated

from Bernoulli distribution using the corresponding link probability. We apply

the LSMH with the VBEM estimator to the simulated datasets and obtained the

posterior distributions of the latent positions and estimates for the fixed parameters.
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Figure 5: Results of 100 simulations. The distributions of the AAEs
when α values are 2, 1 and −2.

To estimate the probability of an edge in YI ,YA and YIA, we employ posterior

means as point estimates of the latent positions following Equation 1.

In the second and third rows of Figure 4, we compare the LSMH’s performance

against two “baseline” procedures. For the first “baseline” procedure, we fit LSMs

to YI and YA separately and calculated the link probability of an edge in YIA. The

LSMs are fitted using the variational inference method as described in Gollini and

Murphy (2016). Additionally, we apply a LSM to the item-person supra-adjacency

matrix (a block matrix consisting of YI , YA and YIA) for the second “baseline”

procedure. We refer to this method of applying the LSM as the supra-LSM. Con-

trary to our LSMH, the supra-LSM is fitted to YI ,YA and YIA indiscriminately

using a single α parameter and the same Euclidean distance measure across all

three matrices. From Figure 4, we can see that the AUC values are higher using

LSMH for YI and YA than those using supra-LSM; the AUC values are higher

using LSMH for YIA than those using separate LSMs.

In Figure 5, we present the absolute differences between the known link proba-

bilities and the estimated link probabilities; these distances are summarized through

the averages of the absolute difference (AAE) across cells in YI ,YA and YIA. As

can be seen, the medium of the AAEs are close to 0 using LSMH than those using
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the other two methods implying a much better model fit to the data using LSMH.

Figure 6: Results of 150 simulations.
Distribution of the distance between the true and estimated α0 (left),
α1 (middle) and α2 (right) with different true α values.

In Figure 6, we present the distributions of distances between estimated α values

and the true α values. Each density distribution includes results from 150 simu-

lations, with 50 simulations of one set of α values. The three sets of α values are

2, 2.5,−2 and 2.5, 2, ,−1.5 and 1.5, 2,−1. The distribution of distances for each α

is narrow and centered around 0, implying that the estimated α values are close to

the true α values even when the true α values are different.

Figure 7: Results of 50 simulations. Distributions of pairwise distance
ratios, comparing ũi with ui (left) and ṽa with va (right) when α values
are 2, 2.5,−2.

In Figure 7, we compare the pairwise distance from the estimated latent posi-

tions to those from the true latent positions. The distance between node i and j

using ũi and ũj should proportional to the distance between node i and j using
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ui and ui; that proportion should be close to 1 if the VBEM estimation algorithm

successfully maintained and recovered the relationship between node i and j. As

can be seen in both plots in Figure 7, these distributions are narrow and centered

around 1, implying successful recovery of the nodes’ relationships to each other

through the estimated latent positions.
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Chapter 6. Analysis of the Early Learning

Ohio Data

We applied LSMH to the data from each of the sixteen classrooms with D = 2 to

study the relationship between friendship circles and students’ well-being in order

to identify students with adjustment difficulties in each of these classrooms. We

chose one of the classrooms, classroom 36 to present in details the utility of LSMH,

while results from 3 other classrooms are also presented in brief summaries. There

were 28 students in classroom 36, 17 of which did not answer any item in the child

interview questionnaire, and 7 of which did not report their friendship information.

Using the non-missing data we were able to obtain a 11× 11 friendship matrix, YI ,

and a 11× 23 item response matrix, YIA from classroom 36.

We used the item relationship matrix YA to include into our model the students’

responses to the same items from other classrooms. In particular, the item relation-

ship matrix was derived from the pairwise correlations of the 23 items measured

over students across the remaining 15 classrooms. The YA matrix then provides a

source of information that is exogenous to or independent of the information from

classroom 36. Including the item responses from the other classrooms in this way,

we believe, will help solidify the positions of the items in relations to each other in

the joint latent space. Items with strong positive correlations were considered to be

connected in the item relationship matrix. We performed 253 one-tailed hypotheses

tests (H0 : ρ ≤ 0, Ha : ρ > 0) on the pairwise spearman’s correlations (Best and

Roberts 1975) of the 23 items. The items were considered to be connected in YA if

their correlations were significantly positive with adjusted p values (p ≤ .005). The

p values were adjusted to control for multiple comparisons following Benjamini and

Hochberg (1995). In this way, we have roughly one false positive connection in YA.

The density of YA is 0.2986767.

The results of LSMH from classroom 36 are shown in Figure 8 and Figure 11.

We performed varimax rotation on the resulting latent item and person positions to

improve the interpretability of the latent dimensions. The rotated latent positions

of the items in the joint latent space can be seen in Figure 8. In the joint latent
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Items in the Joint Latent Space
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Figure 8: The positions of the items in the joint latent space.
The items are colored according to their sub-scales.

space, the items are colored according to the sub-scales they belong to. Similar to

the PCA results, items from the same sub-scale are also found in similar directions.

The second dimension of the joint latent space differentiates the NEA items from

the PSS items. This dimension is similar to the first dimension of the PCA and

is interpreted as the NEA dimension. The first dimension of the joint latent space

has the same direction as the SL items and is interpreted as the SL dimension.

Joint versus Person Latent Space

The estimated latent positions of the persons and items are shown in Figure

9 as well as in Figure 11. In Figure 9, we present the latent positions along with

the directed friendship edges and directed item-response edges. In Figure 11, we

present the latent positions without the distraction of the edges. From Figure 9 to

Figure 11, we will see that the information from the rather complex item-response

edges is summarized through the latent positions of the students in relation to the

latent positions of the items. More specifically, through an interpretation of the

joint latent space, we are able to summarize students’ response patterns, and thus

assess their adjustment well-being.

To assess whether and how the latent person positions changed after adding

students’ survey responses, we applied the LSM to the students’ full social network
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Figure 9: Latent positions ũi and ṽa (left) with directed friendship
edges (middle) and with directed item-response edges (right) for the
joint modeling of the social network, the item relationship matrix and
the item response matrix from classroom 36. The grey ellipses represent
the 95% approximate credible intervals for the ũi. The red, blue and
green ellipses represent the 95% approximate credible intervals for the
ṽa in the NEA, PPS and SL sub-scale, respectively. The black edges
represent the directed friendship edges after adjusting for missing data.
The red, blue and green edges represent the students’ positive responses
to items under the NEA, PSS and SL sub-scales, respectively. Each
number represents a randomly assigned identification number of each
student.

from classroom 36. This full latent person space can be found in the left panel of

Figure 11. Due to 17 students’ missing item responses, there are more students

in the latent person space than in the joint latent space. Three major friendship

clusters were observed using Euclidean distances, shown as the three purple circles.

These friendship clusters were confirmed by the directed friendship edges in Figure

10. To help visually compare the joint latent space with joint latent space, we also

circled out the completely isolated students with red. These circles are not direct

products of our model. We refer to the cluster in the lower right quadrant (away

from the origin) as A, the cluster in the upper right quadrant (and close to the

origin) as B, and the cluster to the left of the origin as C. Students 1071, 1055,

959 and 1069 were positioned away from A, B and C, and therefore identified as

isolated students. Students 1053 and 1071 are more isolated than the average of

class 36 with only one friendship edge each.

In the joint latent space in Figure 11, each student is shown as a black dot

and is positioned following the predefined geometric rules. Euclidean distances are

used to describe the person-person and item-item links. The smaller the Euclidean
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Figure 10: The latent positions of the students for the full social network
in classroom 36 fitting the LSM. The directed arrows represent the
directed friendship edges in the network.

distance is between persons i and j, the more likely that person i and person j

are friends; the smaller the Euclidean distance is between items a and b, the more

likely that item a and item b measure similar adjustment attributes.

To interpret the links between item a and student i, we find Hoff et al. (2002)’s

latent space project model as most fitting. The links between item a and student

i are described with the dot product ui
Tva, which is the signed magnitude of the

projection of ui in the direction of va (cawi
Twa) multiplied by ci resulting in

cicawi
Twa. The magnitude of ci captures student i’s adjustment well-being, and

magnitude of ca captures the overall adjustment outcome of students measured by

item a. The angle between wi and wa captures the “similarity” between student i

and item a. Together, ui
Tva can be interpreted as the extent to which student i

and item a share characteristics, multiplied by the well-being of student i and the

adjustment outcome measured by item a. Items and the persons coexist and inter-

act in the joint latent space through the shared adjustment information following

the above geometric rules.

The positions of an item and a person are determined by the joint effect of how

students in classroom 36 responded to different items, the student’s friendships with
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Figure 11: The latent positions of the students in the (left) latent person
space and the (right) joint latent space

their peers and how similar the items are. By studying the positions of the students

in relations to the items and other students, we can identify students with potential

adjustment difficulties. For example, student 1055 seemed to be having a relatively

difficult time. Student 1055 was positioned high on the NEA dimension and low on

the SL dimension. Equivalently, the student was positioned at less-than-45-degree

angles to the NEA items and at more-than-90-degree angles to the PPS and SL

items. Meanwhile, most students in classroom 36 were positioned high on the SL

dimension and low on the NEA dimension. Equivalently, they were positioned at

more-than-90-degree angles to the NEA items and at less-than-45-degree angles to

the PPS and SL items. This position of student 1055 compared to other students

suggests that student 1055 had an opposite and unfavorable response pattern on

the different items. More specifically, student 1055 scored high on the NEA items

and low on the PSS and SL items while most students scored low on the NEA

items and high on the PSS and SL items. In addition, student 1055 student was

completely isolated in the latent person space. Taking both factors into account,

we suspect that student 1055 was experiencing difficulties adjusting to school. The

results were confirmed by the sum scores of items under each cluster for all students

(see Table 1).

The results from the joint latent space show that students of the same friendship

circle were more likely to have similar response patterns. In Figure 11, students
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PersonID Negative Affect (NEA) Support (PSS) School Liking (SL)

1055 6 3 3
1053 4 5 6

1052 6 10 6
1056 3 9 6

1057 6 10 4

1051 2 11 6
1054 1 11 6
1060 0 11 6
1061 2 11 6
1062 1 11 6
1072 0 10 0

u 2.818 9.273 5
sd 2.359 2.724 1.949

Table 1: Item sum scores for students in classroom 36

of the friendship circle B (students 1051, 1054, 1060, 1061, 1062 and 1072) were

positioned low on the NEA dimension, and high on the SL dimension. Students of

A (students 1052, 1056) were positioned close to 0 on the NEA dimension and also

on the SL dimension. Student 1057 of C were positioned close to 0 on the NEA

dimension and very low on the SL dimension. In general, we can see that students

who are close in Euclidean distances in the latent person space are more likely to

be at similar angles to different items (students’ responses to different items should

always be interpreted following the vector products of ũi and ṽa) in the joint latent

space. This similarity in latent positions of students from the same friendship circle

and dissimilarity of students from different friendship circles suggest that friends

respond to different items similarly. It is unclear whether this similarity is a result

of friendly connections or is the reason for friendship formation. The joint latent

space allows us to observe this connection readily and distinctively. Future research

should quantify and investigate further this connection between the friendship circle

and the adjustment well-being.

The joint latent space uniquely captures students’ individuality that is usually

lost with traditional methods. Similar to students 1052 and 1056, student 1057

was also well socially supported. All three students were well-connected in the

latent person space and positioned low in the NEA dimension. While students

1052 and 1056 were positioned neutral on the SL dimension, student 1057 was

positioned in the opposite direction. Contrary to the common belief that well

socially supported students have positive attitudes towards school, student 1057
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had negative attitude towards school. This unusual perception of student 1057 was

well captured in the joint latent space and would have been lost under traditional

methods. In particular, if we simply summarized students’ friendship information

with numbers of edges in the friendship network or if we simply summarized their

item responses with sum scores of items, information regarding individual students

such as student 1057 would have been lost. Using LSMH, we are able to capture

distinctive variability at the individual node level.

Figure 12: The person and joint latent spaces for classrooms (from top
to bottom) 04, 32 and 80.

Students’ experiences at school cannot be accurately reflected through their

friendship circles alone. For example, students of A perceived less social support,

felt more alone and encountered more negative experiences than those of B though

students of friends group A and B were both all well-connected in the latent person

space. This distinction in the well-being between students of A and B would not

be readily observed through analyses on only the friendship network. Another
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example can be found by comparing student 1055 and 1053. Student 1055 reported

negative attitude towards school (low on the SL dimension) while student 1053

reported fairly positive attitude though both were isolated in the latent person

space. Therefore, we are able to identify student 1055 as as potential candidate for

intervention, but not student 1053. Only when we take into account both sources

of information, can we obtain a more complete picture of a student’s well-being.

In Figure 12, we present the latent person and joint latent spaces from class-

rooms 04, 32 and 80 (top to the bottom). Students of the same friend groups,

circled by purple, are often positioned in proximity to each other in the joint latent

space. Isolated students, circled by red, are often positioned at smaller angles to

the NEA items than the well-supported students. Though this connection between

social support and students’ well-being is consistently observed, variations at the

individual nodes (i.e., the individuality of students) can also be observed. For ex-

ample, students 953 and 951 from classroom 32 are both identified as isolated in the

person latent space. However, in the joint latent space, student 953 was positioned

at less-than-90-degrees angle with the NEA items while student 951 was positioned

at more-than-90-degrees angle with the NEA items. This shows that student 951

perceived negative experiences while student 953 did not though both were socially

isolated. The latent person and joint latent spaces from the other 12 classrooms

can be found in the Supplementary Material.

Model Fit

We assessed the fit of the LSMH to the data and compared it with the fit from

fitting the LSMs to YI and YA separately and from fitting the supra-LSM to the

supra-adjacency matrix. We present the Receiver Operating Characteristic (ROC)

curves for predicting YI , YA and YIA from classroom 36 in the left panel of Figure

13. From left to right, each column presents the ROC curve for YI , YA and YIA

matrices; from top to bottom, each row presents the ROC curves from fitting the

LSMH, the LSMs separately and the supra-LSM.

The estimated ũi and ṽa from fitting LSMs separately included information

in YI and YA only. In comparison, the estimated ũi and ṽa from fitting the
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Figure 13: (A) Comparison of model fit to YI ,YA and YIA in terms of
ROC curves among the LSMH, the LSM fitted separately to YI and YA

and LSM fitted to the item-person supra-adjacency matrix (the supra-
LSM) for classroom 36. (B) A boxplot describing the distribution of
the AUC values on the three matrices over the 16 classrooms

LSMH included information in all three matrices. This difference in the ũi and ṽa

from fitting the LSMH versus fitting the LSMs separately is manifested through

an increase in the AUC values from .613 to .9072 for YIA and also an increase

from .9043 to .9414 for YI . The latter increase suggests that the ũi estimates were

improved by including the information in YA and YIA resulting in an increase of

fit for YI . Overall, the results in Figure 13 show that the fit of the LSMH to the

data is better than that of the separate LSMs and the supra-LSM.

In the right panel of Figure 13, we present the boxplot of AUC values from

predicting the three matrices using LSMH across all 16 classrooms. As can be seen,

LSMH fits the data from all classrooms well. In particular, LSMH fits YA really

well with the AUC values close to 1. The median of the AUC values for YI is higher

than that for YIA; the spread of the AUC values for YI is also higher indicating

greater variation in the fit for YI across classrooms. Both medians are close to 1

suggesting good model fit across all three matrices.

Prediction

The LSMH can be used to predict missing (unobserved) links. We predicted the

latent person positions of the 17 students from classroom 36 with missing item re-
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Figure 14: Predicted latent person positions of the missing students in
classroom 36.

sponse information using their friendship information, their friends’ item responses

and the item relationship matrix. The results can be seen in Figure 14. As can

be seen, students of the same friendship circles were predicted by LSMH to have

similar response patterns. For example, student 1070 was predicted to have similar

response patterns as students 1052 and 1056. Students 958, 1066 and 1075 were

predicted to have similar response patterns as student 1057. Isolated students (stu-

dents 1071, 1069, 959) were predicted to respond high on the NEA items and low

on the PSS and SL items.

Item

We applied the LSMH-I in Equation 2 with latent dimension D = 2 to the

data from classroom 36. Using LSMH-I, we can obtain the multidimensional item

discrimination and difficulty parameters taking into account the social network as

well as the item responses. We selected three representative items (item 1, 8 and

17), one from each sub-scale for an in-depth investigation, as we expect different

functioning in items under different sub-scales. The difficulty and discrimination

parameter estimates for the three items are shown in Table 2; the associated surface

plots and contour plots are shown in Figure 15. The surface plot of an item is

a plot, where the probability of a positive answer on this item is a function of
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students’ “abilities” in the D-dimensional space. The contour plot of an item

contains equiprobability lines of the item, where the same probability of a positive

answer can be expected for all students that fall on the line. In Figure 15, a red solid

line indicates the direction of a equiprobability line. A red dashed line indicates

the direction of the most rapid change in probabilities, which is also the direction

the item has the most discriminating power. The length of the red dashed line

indicates the discriminating power of the item. When the length is small, the item

discriminates students’ of different adjustment well-being well. This discriminating

power is summarized across the D dimensions by Aas in Table 2.

Item za,1 za,2 βa Aa Ba

1 2.5006 -0.5066 -2.6128 2.5515 1.0241

8 -0.6927 -0.5154 0.4024 0.8634 -0.4661

17 -0.1679 2.1860 -2.6899 2.1924 1.2269

Table 2: Item parameters and multidimensional statistics for the three test
items

Figure 15: The surface plot and contour plot for the probability
of positive response for items 1, 8 and 17

From Figure 15, we can see that the three items discriminate different dimen-

sions of students’ “abilities” and measure three different aspects of the school ad-

justment well-being. The red dashed line is almost parallel to the 1st dimension
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for item 1, almost parallel to the 2nd dimension for item 17, and is at 45 degree

angle between the 1st and the 2nd dimension for item 8. This suggests that item

1 discriminates students of differing “abilities” in the 1st dimension best. Item 17

discriminates students of differing “abilities” in the 2nd dimension best. Item 8

discriminates students’ of differing “abilities” in both dimensions. The same con-

clusion can be drawn from the surface plots and the absolute values of za,1 and za,2

in Table 2.

In Table 2, we summarize the difficulty information of item a across the D

dimensions using Ba. In a contour plot, the absolute value of Ba is the distance

between the .5 equiprobability line and the origin. A positive Ba suggests that the

.5 equiprobability line is to the left of the origin and that the item is difficult. A

negative Ba suggests that the .5 equiprobability line is to the right of the origin

and that the item is easy. Among the three items in Table 2, items 1 and 17 are

more difficult than item 8.

One can also aggregate item response data across classrooms for the purpose

of studying the properties of the items using LSMH-I in Equation 3. However,

since our primary goal is to understand students’ adjustment well-being within a

classroom, and not the assessment of the items, we do not investigate this direction

further using the present dataset.
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Chapter 7: Discussions and conclusion

The LSMH outlined in this article constitutes a principle strategy for jointly

analyzing social networks and item responses. We have argued for and presented

evidence that a joint analysis of friendships and individual outcomes is crucial in

understanding human behaviors. In particular, using LSMH, we analyzed the data

from the Early Learning Ohio Project, identified the students with potential ad-

justment difficulties and found consistent connections between students’ friendship

circles and school adjustment well-being. We have shown that our joint analysis

using LSMH provides more detailed information and more flexibility in analyzing

the social and item-response network data than other currently available statistical

models. Therefore, we believe that LSMH, as an exploratory analysis tool, can be

used to greatly help researchers understand how friendships and item responses are

intertwined and to inspire further model development in this area.

39



Supplementary Material for ”Joint Analysis of Social

and Item Response Networks with Latent Space

Models”

Selena Shuo Wang, Subhadeep Paul, Jessica Logan and Paul De Boeck 1

The Ohio State University

The Estimation Procedure for LSMH

Derivation of KL Divergence

We set the variational parameter as Θ = α̃0, α̃1, α̃2 and ũi, Λ̃0, ṽa, Λ̃1, where

q(ui) = N(ũi, Λ̃0), and q(va) = N(ṽa, Λ̃1). We set the variational posterior as:

q(ZI ,ZA|YI ,YA,YIA) =

N∏
i=1

q(ui)

M∏
a=1

q(va)

The Kullback-Leiber divergence between the variational posterior and the true pos-

terior is:

1E-mail: wang.10171@osu.edu, paul.963@osu.edu, logan.251@osu.edudeboeck.02@osu.edu
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KL[q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)|f(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)]

=

∫
q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)

log
q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)

f(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)
d(ZI ,ZA, α0, α1, α2)

=

∫ N∏
i=1

q(ui)

M∏
a=1

q(va)

log

∏N
i=1 q(ui)

∏M
a=1 q(va)

f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)
∏N
i=1 f(ui)

∏M
a=1 f(va)

d(ZI ,ZA, α0, α1, α2)

=
N∑
i=1

∫
q(ui) log

q(ui)

f(ui)
dui +

M∑
a=1

∫
q(va) log

q(va)

f(va)
dva

−
∫
q(ZI ,ZA, α0, α1, α2|YI ,YA,YIA)

log f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)d(ZI ,ZA, α0, α1, α2)

=

N∑
i=1

KL[q(ui)|f(ui)] +

M∑
a=1

KL[q(va)|f(va)]

−q(ZI ,ZA,α0,α1,α2|YI ,YA,YIA) [log f(YI ,YA,YIA|ZI ,ZA, α0, α1, α2)]
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,where each of the components are calculated as follows:

N∑
i=1

KL[q(ui)||f(ui)]

= −
N∑
i=1

∫
q(ui) log

f(ui)

q(ui)
dui

= −
N∑
i=1

∫
q(ui)

(
1

2

(
−D log(λ2

0) + log(det(Λ̃0))

− 1

λ2
0

ui
Tui + (ui − ũi)

T Λ̃−1
0 (ui − ũi)

))

=
1

2

(
DN log(λ2

0)−N log(det(Λ̃0))
)

+

N∑
i=1

1

2

(
1

λ2
0 q(ui)

[ui
Tui]−q(ui) [(ui − ũi)

T Λ̃−1
0 (ui − ũi)]

)

=
1

2

(
DN log(λ2

0)−N log(det(Λ̃0))
)

+

N∑
i=1

1

2λ2
0

(
Var(ui) +

(
q(ui)

[ui]
)2)− 1

2
ND

=
1

2

(
DN log(λ2

0)−N log(det(Λ̃0))
)

+
N(Λ̃0)

2λ2
0

+

∑N
i=1 ũi

T ũi

2λ2
0

− 1

2
ND

M∑
a=1

KL[q(va)||f(va)]

=
1

2

(
DM log(λ2

1)−M log(det(Λ̃1))
)

+
M(Λ̃1)

2λ2
1

+

∑M
a=1 ṽa

T ṽa
2λ2

1

− 1

2
MD

q(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA)] can be expanded into 6 components:

q(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA)]

=
∑N

i=1

∑M
a=1 yiaq(ZI ,ZA|YI ,YA,YIA)[α2 + ui

Tva]

+
∑N

i=1

∑N
j=1,j 6=i yijq(ZI ,ZA|YI ,YA,YIA)[α0 − (ui − uj)T (ui − uj)]

+
∑M

a=1

∑M
b=1,b 6=a yabq(ZI ,ZA|YI ,YA,YIA)[α1 − (va − vb)T (va − vb)]

−
∑N

i=1

∑M
a=1 q(ZI ,ZA|YI ,YA,YIA)[log(1 + exp(α2 + ui

Tva))]

−
∑N

i=1

∑N
j=1,j 6=i q(ZI ,ZA|YI ,YA,YIA)[log(1 + exp(α0 − (ui − uj)T (ui − uj)))]

−
∑M

a=1

∑M
b=1,b6=a q(ZI ,ZA|YI ,YA,YIA)[log(1 + exp(α1 − (va − vb)T (va − vb)))]
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First 3 components of q(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA)] are calcu-

lated as follows:

N∑
i=1

N∑
j=1,j 6=i

yijq(ZI ,ZA|YI ,YA,YIA)[α0 − (ui − uj)(ui − uj)T ]

=
N∑
i=1

N∑
j=1,j 6=i

yij

∫ (
α0 − (ui − uj)(ui − uj)T

)
q(ui)q(uj)d(ui,uj)

=

N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 −

∫
(ui − uj)(ui − uj)T q(ui)q(uj)d(ui,uj)

]

=
N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 −

∫ D∑
d=1

(uid − ujd)2q(ui)q(uj)d(ui,uj)

]

=
N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 −

[ D∑
d=1

[ ∫
u2
idq(uid)duid +

∫
u2
jdq(ujd)dujd

−
∫ ∫

2uidujdq(uid)q(ujd)duid, dujd
]]]

=
N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 − 2(Λ̃0)− (ũi − ũj)T (ũi − ũj)

]
M∑
a=1

M∑
b=1,b 6=a

yabq(ZI ,ZA|YI ,YA,YIA)[α1 − (va − vb)(va − vb)T ]

=

M∑
a=1

M∑
b=1,b 6=a

yab

[
α̃1 − 2(Λ̃1)− (ṽa − ṽb)T (ṽa − ṽb)

]
N∑
i=1

M∑
a=1

yiaq(ZI ,ZA|YI ,YA,YIA)[α2 + ui
Tva]

=

N∑
i=1

M∑
a=1

yia(α̃2 + ũi
T ṽa)
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The last 3 expectations of the log functions can be simplified using Jensen’s

inequality and q(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA)] can be written as:

q(ZI ,ZA|YI ,YA,YIA)[log f(YI ,YA,YIA|ZI ,ZA)]

≤
N∑
i=1

M∑
a=1

yia(α̃2 + ũi
T ṽa) +

N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 − 2(Λ̃0)− (ũi − ũj)T (ũi − ũj)

]

+
M∑
a=1

M∑
b=1,b 6=a

yab

[
α̃1 − 2(Λ̃1)− (ṽa − ṽb)T (ṽa − ṽb)

]

−
N∑
i=1

M∑
a=1

log(1 +q(ZI ,ZA|YI ,YA,YIA) [exp(α2 + ui
Tva)])

−
N∑
i=1

N∑
j=1,j 6=i

log(1 +q(ZI ,ZA|YI ,YA,YIA) [exp(α0 − (ui − uj)T (ui − uj))])

−
M∑
a=1

M∑
b=1,b 6=a

log(1 +q(ZI ,ZA|YI ,YA,YIA) [exp(α1 − (va − vb)T (va − vb))])

Recall ui,uj are D × 1 column vectors. Define u = ũi − ũj . Then we have,

ui − uj
iid
= N(u, 2Λ̃0), where u is a D × 1 vector and Λ̃0 is an n × n positive

semidefinite matrix. Further define Z = (2Λ̃0)−1/2(ui − uj − (ũi − ũj)). Then

clearly Z follows D dimensional multivariate standard normal distribution and its

density function is given by fZ(z) = 1√
2π

exp(−1
2zT z). Consequently, we have

ui − uj = 2Λ̃
1/2
0 Z + u.

Therefore, we can reparameterize

q(ZI ,ZA|YI ,YA,YIA)[exp(−(ui − uj)T (ui − uj))]

=q(ZI ,ZA|YI ,YA,YIA)

[
exp

(
−
(
ZT (2Λ̃0)1/2 + uT

)(
(2Λ̃0)1/2Z + u

))]

=q(ZI ,ZA|YI ,YA,YIA)

[
exp

(
− ZT (2Λ̃0)Z− 2ZT (2Λ̃0)1/2u− uTu)

)]

=
1√
2π

∫
exp

(
− ZT

(
2Λ̃0 +

1

2
I
)
Z− 2ZT (2Λ̃0)1/2u− uTu

)
dZ
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Now define Q = u(2Λ̃0 + 1
2I)−1(2Λ̃0)1/2. Then the above integral becomes

1√
2π

∫
exp

(
− (Z−Q)T (2Λ̃0 +

1

2
I)(Z−Q)− uTu + uT (2Λ̃0 +

1

2
I)−1(2Λ̃0)u

)
dZ

= exp
(
− uTu + uT (2Λ̃0 +

1

2
I)−1(2Λ̃0)u

)
det(I + 4Λ̃0)−

1
2

= exp
(
− uT (I + (2Λ̃0 +

1

2
I)−1(2Λ̃0))u

)
det(I + 4Λ̃0)−

1
2

= exp
(
− uT (4Λ̃0 + I)−1u

)
det(I + 4Λ̃0)−

1
2 .

The last line follows since for any two invertible matrices A and B, if A+B is also

invertible, then by Henderson and Searle (1981)

(A+B)−1 = A−1 −A−1B(I +A−1B)−1A−1.

Letting A = 4Λ̃0 and B = I gives:

Eq(ZI ,ZA|YI ,YA,YIA)[exp(−(ui − uj)T (ui − uj))]

= exp
(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)
det(I + 4Λ̃0)−

1
2

Following similar reparameterization, we find that

Eq(ZI ,ZA|YI ,YA,YIA)[exp(−(va − vb)T (va − vb))]

= exp
(

(ṽa − ṽb)T (4Λ̃1 + I)−1(ṽa − ṽb)
)

det(I + 4Λ̃1)−
1
2

Recall, Z follows D dimensional multivariate standard normal distribution and its

density function is given by fZ(z) = 1√
2π

exp(−1
2zT z). Consequently, we have
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ui
T = ZT Λ̃

1/2
0 + ũi

T and va = Λ̃
1/2
1 Z + ṽa. Therefore, we can reparameterize

q(ZI ,ZA|YI ,YA,YIA)[exp(ui
Tva)]

=q(ZI ,ZA|YI ,YA,YIA)

[
exp

(
(ZT Λ̃

1/2
0 + ũi

T )(Λ̃
1/2
1 Z + ṽa)

)]

=q(ZI ,ZA|YI ,YA,YIA)

[
exp

(
ZT (Λ̃0Λ̃1)1/2Z + ũi

T Λ̃
1/2
1 Z + ṽa

T Λ̃
1/2
0 Z + ũi

T ṽa

)]

=
1√
2π

∫
exp

(
ZT
(
Λ̃

1/2
0 Λ̃

1/2
1 − 1

2
I
)
Z +

(
ũi

T Λ̃
1/2
1 + ṽa

T Λ̃
1/2
0

)
Z + ũi

T ṽa

)
=

1√
2π

∫
exp

(
− 1

2
(Z−Q)T

(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)
(Z−Q)

+ ũi
T ṽa −QT

(
Λ̃

1/2
0 Λ̃

1/2
1 − 1

2
I
)
Q
)
d(Z),(

QT =
(
ũi

T Λ̃
1/2
1 + ṽa

T Λ̃
1/2
0

)(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)−1
)

= exp
(
ũi

T ṽa −QT
(
Λ̃

1/2
0 Λ̃

1/2
1 − 1

2
I
)
Q
)

det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)−1/2

= det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)−1/2

exp
(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)−1
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)

Finally, the Kullback-Leiber divergence between the variational posterior and the
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true posterior is

KL[q(ZI ,ZA|YI ,YA,YIA)||f(ZI ,ZA|YI ,YA,YIA)]

≥1

2

(
DN log(λ2

0)−N log(det(Λ̃0))
)

+
N(Λ̃0)

2λ2
0

+

∑N
i=1 ũi

T ũi

2λ2
0

− 1

2
ND

+
1

2

(
DM log(λ2

1)−M log(det(Λ̃1))
)

+
M(Λ̃1)

2λ2
1

+

∑M
a=1 ṽa

T ṽa
2λ2

1

− 1

2
MD

−
N∑
i=1

M∑
a=1

yia(α̃2 + ũi
T ṽa)−

N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 − 2(Λ̃0)− (ũi − ũj)T (ũi − ũj)

]

−
M∑
a=1

M∑
b=1,b 6=a

yab

[
α̃1 − 2(Λ̃1)− (ṽa − ṽb)T (ṽa − ṽb)

]

+
N∑
i=1

M∑
a=1

log

(
1 +

exp(α̃2)

det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)1/2

exp
(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)−1
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

))

+
N∑
i=1

N∑
j=1,j 6=i

log

(
1 +

exp(α̃0)

det(I + 4Λ̃0)1/2
exp

(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

))

+
M∑
a=1

M∑
b=1,b 6=a

log

(
1 +

exp(α̃1)

det(I + 4Λ̃1)1/2
exp

(
− (ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

))

Derivations of EM algorithms

E-step: Estimate ũi, ṽa, Λ̃0 and Λ̃1 by minimizing the KL divergence.

KLũi[q(ZI ,ZA|YI ,YA,YIA)||f(ZI ,ZA|YI ,YA,YIA)]

≥
∑N

i=1 ũi
T ũi

2λ2
0

−
N∑
i=1

M∑
a=1

yia(α̃2 + ũi
T ṽa)−

N∑
i=1

N∑
j=1,j 6=i

yij

[
α̃0 − 2(Λ̃0)− (ũi − ũj)T (ũi − ũj)

]

+
N∑
i=1

M∑
a=1

log

(
1 +

exp(α̃2)

det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)1/2

exp
(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)−1
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

))

+

N∑
i=1

N∑
j=1,j 6=i

log

(
1 +

exp(α̃0)

det(I + 4Λ̃0)1/2
exp

(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

))

+ Constũi
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To find the closed form updates of ũi, we use second-order Taylor-expansions of

Fia =
N∑
i=1

M∑
a=1

log

(
1 +

exp(α̃2)

det
(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)1/2

exp
(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
I− 2Λ̃

1/2
0 Λ̃

1/2
1

)−1
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

))
(0.4)

Fi =

N∑
i=1

N∑
j=1,j 6=i

log

(
1 +

exp(α̃0)

det(I + 4Λ̃0)1/2
exp

(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

))

(0.5)

To simplify the forms, we denote (I− 2Λ̃
1/2
0 Λ̃

1/2
1 )−1 as B. The gradients of Fi and

Fia with respect to ũi are

Gi(ũi) = −2(I + 4Λ̃0)−1
N∑

j=1,j 6=i
(ũi − ũj)

[
1 +

det(I + 4Λ̃0)1/2

exp(α̃0)
exp

(
(ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)]−1

Gia(ũi) =

M∑
a=1

((
.5Λ̃

1/2
1

(
B +BT

)
Λ̃

1/2
0 + I

)
ṽa + .5Λ̃

1/2
1

(
B +BT

)
Λ̃

1/2
1 ũi

)
[

1 +
det
(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TBT (Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

The second-order partial derivatives (Hessian matrices) of Fi,Fia with respect

to ũi are
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Hi(ũi) = −2(I + 4Λ̃0)−1

N∑
j=1,j 6=i

[
1 +

det(I + 4Λ̃0)1/2

exp(α̃0)
exp

(
(ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)]−1

I−
2(ũi − ũj)(ũi − ũj)T (I + 4Λ̃0)−1

1 + exp(α̃0)

det(I+4Λ̃0)1/2
exp

(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)


Hia(ũi) =
M∑
a=1

1 +
det
(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TBT (Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)−1

er : 1.3subfigpackage[
Λ̃

1/2
1 BΛ̃

1/2
1

+

((
.5Λ̃

1/2
1 BΛ̃

1/2
0 + I

)
ṽa + .5Λ̃

1/2
1 BΛ̃

1/2
1 ũi

)((
.5Λ̃

1/2
1 BΛ̃

1/2
0 + I

)
ṽa + .5Λ̃

1/2
1 BΛ̃

1/2
1 ũi

)T
1 + exp(α̃2)

det

(
I−2Λ̃

1/2
1 Λ̃

1/2
0

)1/2 exp
(
ũi

T ṽa + 1
2(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TBT (Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

) er : 1.3subfigpackage

With the Taylor-expansions of the log functions, we can obtain the closed form

update rule of ũi by setting the partial derivative of KL equal to 0. Finally, we

have

ũi =

[(
1

2λ0
+

N∑
j=1,j 6=i

(yji + yij)

)
I +Hi(ũi) +

1

2
Hia(ũi)

]−1

[
N∑

j=1,j 6=i
(yji + yij)ũj +

1

2

M∑
a=1

yiaṽa −Gi(ũi) +
(
Hi(ũi) +

1

2
Hia(ũi)

)
ũi

− 1

2
Gia(ũi)

]

ṽa =

[(
1

2λ1
+

M∑
b=1,b6=a

(yba + yab)

)
I +Ha(ṽa) +

1

2
Hia(ṽa)

]−1

[
M∑

b=1,b6=a
(yba + yab)ṽb +

1

2

N∑
i=1

yiaũi −Ga(ṽa) +
(
Ha(ṽa) +

1

2
Hia(ṽa)

)
ṽa

− 1

2
Gia(ṽa)

]

Similarly, we can obtain the closed form update rule for ṽa by taking the second
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order Taylor-expansion of Fa and Fia (see Equation 0.4)

Fa =
M∑
a=1

M∑
b=1,b6=a

log

(
1+

exp(α̃1)

det(I + 4Λ̃1)1/2
exp

(
−(ṽa− ṽb)T (I+4Λ̃1)−1(ṽa− ṽb)

))

The gradients of Fa,Fia with respect to ṽa are

Ga(ṽa) = −2(I + 4Λ̃1)−1
M∑

b=1,b6=a
(ṽa − ṽb)

[
1 +

det(I + 4Λ̃1)1/2

exp(α̃1)

exp
(

(ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)
)]−1

Gia(ṽa) =
N∑
i=1

((
.5Λ̃

1/2
0

(
B +BT

)
Λ̃

1/2
1 + I

)
ũi + .5Λ

1/2
0

(
B +BT

)
Λ

1/2
0 ṽa

)
[

1 +
det
(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TBT (Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

Hessian matrices of Fa and Fia with respect to ṽa are

Ha(ṽa) = −2(I + 4Λ̃1)−1
M∑

b=1,b6=a
(ṽa − ṽb)

[
1 +

det(I + 4Λ̃1)1/2

exp(α̃1)

exp
(

(ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)
)]−1

I− 2(ṽa − ṽb)(ṽa − ṽb)T (I + 4Λ̃1)−1

1 + exp(α̃1)

det(I+4Λ̃1)1/2
exp

(
− (ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

)


Hia(ṽa) =

M∑
a=1

1 +
det
(
I− 2Λ̃

1/2
1 Λ̃

1/2
0

)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TBT (Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)−1

28ver : 1.3subfigpackage[
Λ̃

1/2
0 BΛ̃

1/2
0

+

((
0.5Λ̃

1/2
0 BΛ̃

1/2
1 + I

)
ũi + .5Λ̃

1/2
0 BΛ̃

1/2
0 ṽa

)((
0.5Λ̃

1/2
0 BΛ̃

1/2
1 + I

)
ũi + 0.5Λ̃

1/2
0 BΛ̃

1/2
0 ṽa

)T
1 + exp(α̃2)

det

(
I−2Λ̃

1/2
1 Λ̃

1/2
0

)1/2 exp
(
ũi

T ṽa + 1
2(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TBT (Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

) 28ver : 1.3subfigpackage
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With the Taylor-expansions of the log functions, we can obtain the closed form

update rule of ṽa by setting the partial derivative of KL equal to 0. Then, we have

ṽa =

[(
1

2λ1
+

M∑
b=1,b 6=a

(yba + yab)

)
I +Ha(ṽa) +

1

2
Hia(ṽa)

]−1

[
M∑

b=1,b 6=a
(yba + yab)ṽb +

1

2

N∑
i=1

yiaũi −Ga(ṽa) +
(
Ha(ṽa) +

1

2
Hia(ṽa)

)
ṽa

− 1

2
Gia(ṽa)

]

To find the closed form updates of Λ̃0 and Λ̃1 we used the first-order Taylor-

expansions of Fi, Fa and Fia. The gradients of Fi and Fia with respect to Λ̃0

are:

Gi(Λ̃0) =
N∑
i=1

N∑
j=1,j 6=i

[
1 +

det(I + 4Λ̃0)1/2

exp(α̃0)
exp

(
(ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)]−1

4(I + 4Λ̃0)−1

(
(ũi − ũj)(ũi − ũj)T (I + 4Λ̃0)−1 − 1

2
I

)

Gia(Λ̃0) =
N∑
i=1

M∑
a=1

1

2

[
1 +

det(B−1)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

[
BΛ̃

1/2
1 Λ̃

−1/2
0 +

1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
B +BT

)
Λ̃
−1/2
0 z̃a +BT Λ̃

1/2
1 Λ̃

−1/2
0 BT

]

The gradients of Fa and Fia with respect to Λ̃1 are:

Ga(Λ̃1) =

M∑
a=1

M∑
b=1,b 6=a

[
1 +

det(I + 4Λ̃1)1/2

exp(α̃1)
exp

(
(ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

)]−1

4(I + 4Λ̃1)−1

(
(ṽa − ṽb)(ṽa − ṽb)T (I + 4Λ̃1)−1 − 1

2
I

)

Gia(Λ̃1) =

N∑
i=1

M∑
a=1

1

2

[
1 +

det(B−1)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

[
BΛ̃

1/2
0 Λ̃

−1/2
1 +

1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)T

(
B +BT

)
Λ̃
−1/2
1 z̃i

+BT Λ̃
1/2
0 Λ̃

−1/2
1 BT

]
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With the Taylor-expansions of the log functions, we can obtain the closed form

update rule of Λ̃0 Λ̃1 by setting the partial derivative of KL equal to 0. Then, we

have

Λ̃0 =

[(
1

λ0
+

∑N
i=1

∑N
j=1 yij

N

)
I +

2

N
Gi(Λ̃0) +

1

2
Gia(Λ̃0)

]−1

Λ̃1 =

[(
1

λ1
+

∑M
a=1

∑M
b=1 yij

N

)
I +

2

M
Ga(Λ̃1) +

1

2
Gia(Λ̃1)

]−1

M-step: Estimate α̃0, α̃1 and α̃2 by minimizing the KL divergence. To find

the closed form updates of α̃0, α̃1 and α̃2, we used second-order Taylor-expansions

of the log functions and set the partial derivatives of KL with respects to α̃0, α̃1

and α̃2 as zeros. Then we have

α̃0 =

∑N
i=1

∑N
j 6=i,j=1 yij − gi(α̃0) + α̃0hi(α̃0)

hi(α̃0)

α̃1 =

∑M
a=1

∑M
b6=a,b=1 yab − ga(α̃1) + α̃1ha(α̃1)

ha(α̃1)

α̃2 =

∑N
i=1

∑M
a=1 yia − gia(α̃2) + α̃2hia(α̃2)

hia(α̃2)
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where

gi(α̃0) =
N∑
i=1

N∑
j=1,j 6=i

[
1 +

det(I + 4Λ̃0)1/2

exp(α̃0)
exp

(
(ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)]−1

ga(α̃1) =
M∑
a=1

M∑
b=1,b6=a

[
1 +

det(I + 4Λ̃1)1/2

exp(α̃1)
exp

(
(ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

)]−1

gia(α̃2) =
N∑
i=1

M∑
a=1

[
1 +

det(B−1)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

hi(α̃0) =

N∑
i=1

N∑
j=1,j 6=i

[
1 +

det(I + 4Λ̃0)1/2

exp(α̃0)
exp

(
(ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)]−1

[
1 +

exp(α̃0)

det(I + 4Λ̃0)1/2
exp

(
− (ũi − ũj)T (I + 4Λ̃0)−1(ũi − ũj)

)]−1

ha(α̃1) =
M∑
a=1

M∑
b=1,b 6=a

[
1 +

det(I + 4Λ̃1)1/2

exp(α̃1)
exp

(
(ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

)]−1

[
1 +

exp(α̃1)

det(I + 4Λ̃1)1/2
exp

(
− (ṽa − ṽb)T (I + 4Λ̃1)−1(ṽa − ṽb)

)]−1

hia(α̃2) =
N∑
i=1

M∑
a=1

[
1 +

det(B−1)1/2

exp(α̃2)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

[
1 +

exp(α̃2)

det(B−1)1/2
exp

(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

The VBEM approach for LSMH-I is similar to the VBEM approach for LSMH

with the exception of α̃a, a = 1, 2, ...M replacing α̃2. Therefore, the closed form

update rule for α̃a is

α̃(t+1)
a =

∑N
i=1 yia − gia(α̃

(t)
a ) + α̃

(t)
a hia(α̃

(t)
a )

hia(α̃
(t)
a )
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where

gia(α̃a) =
N∑
i=1

[
1 +

det(B−1)1/2

exp(α̃a)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

hia(α̃a) =
N∑
i=1

[
1 +

det(B−1)1/2

exp(α̃a)

exp
(
− ũi

T ṽa −
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1

[
1 +

exp(α̃a)

det(B−1)1/2
exp

(
ũi

T ṽa +
1

2
(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)TB(Λ̃

1/2
1 ũi + Λ̃

1/2
0 ṽa)

)]−1
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The latent person spaces and joint latent spaces

of other classrooms

Figure 16: The Latent Spaces
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Figure 17: The Latent Spaces
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Figure 18: The Latent Spaces
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Figure 19: The Latent Spaces
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Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A.

(2014b). Multilayer networks. Journal of complex networks, 2(3):203–271.

Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D. (2009). Representing

61



degree distributions, clustering, and homophily in social networks with latent cluster

random effects models. Social networks, 31(3):204–213.

Kwon, K. H., Stefanone, M. A., and Barnett, G. A. (2014). Social network influence on

online behavioral choices: exploring group formation on social network sites. American

Behavioral Scientist, 58(10):1345–1360.

Ladd, G. W. and Kochenderfer, B. J. (1996). Linkages between friendship and adjustment

during early school transitions.

Ladd, G. W., Kochenderfer, B. J., and Coleman, C. C. (1996). Friendship quality as a

predictor of young children’s early school adjustment. Child development, 67(3):1103–

1118.

Ladd, G. W., Kochenderfer, B. J., and Coleman, C. C. (1997). Classroom peer acceptance,

friendship, and victimization: Destinct relation systems that contribute uniquely to

children’s school adjustment? Child development, 68(6):1181–1197.

Liu, H., Jin, I. H., and Zhang, Z. (2018). Structural equation modeling of social networks:

Specification, estimation, and application. Multivariate behavioral research, pages 1–17.

Liu, X., Liu, W., Murata, T., and Wakita, K. (2014). A framework for community

detection in heterogeneous multi-relational networks. Advances in Complex Systems,

17(06):1450018.

Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L., Maas,

H. v. d., and Maris, G. (2018). An introduction to network psychometrics: Relating

ising network models to item response theory models. Multivariate behavioral research,

53(1):15–35.

Matias, C. and Miele, V. (2016). Statistical clustering of temporal networks through a

dynamic stochastic block model. Journal of the Royal Statistical Society: Series B

(Statistical Methodology).

McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a feather: Homophily

in social networks. Annual review of sociology, 27(1):415–444.

Mellenbergh, G. J. (1994). A unidimensional latent trait model for continuous item re-

sponses. Multivariate Behavioral Research, 29(3):223–236.

Mercken, L., Snijders, T. A., Steglich, C., Vartiainen, E., and De Vries, H. (2010). Dynamics

of adolescent friendship networks and smoking behavior. Social networks, 32(1):72–81.

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J. P. (2010).

Community structure in time-dependent, multiscale, and multiplex networks. Science,

328(5980):876–878.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2016). A review of relational

62



machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.

Paul, S. and Chen, Y. (2016). Consistent community detection in multi-relational data

through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics,

10(2):3807–3870.

Paul, S. and Chen, Y. (2017). Spectral and matrix factorization methods for consistent

community detection in multi-layer networks. arXiv preprint arXiv:1704.07353.

Rambaran, J. A., Hopmeyer, A., Schwartz, D., Steglich, C., Badaly, D., and Veenstra, R.

(2017). Academic functioning and peer influences: A short-term longitudinal study of

network–behavior dynamics in middle adolescence. Child development, 88(2):523–543.

Reckase, M. D. (2009). Multidimensional item response theory models. In Multidimensional

Item Response Theory, pages 79–112. Springer.

Rubinov, M. and Sporns, O. (2010). Complex network measures of brain connectivity: uses

and interpretations. Neuroimage, 52(3):1059–1069.

Ryan, R. M. and Deci, E. L. (2000). Self-determination theory and the facilitation of in-

trinsic motivation, social development, and well-being. American psychologist, 55(1):68.

Salter-Townshend, M. and McCormick, T. H. (2017). Latent space models for multiview

network data. The annals of applied statistics, 11(3):1217.

Salter-Townshend, M. and Murphy, T. B. (2013). Variational bayesian inference for the

latent position cluster model for network data. Computational Statistics & Data Analysis,

57(1):661–671.

Schmittmann, V. D., Cramer, A. O., Waldorp, L. J., Epskamp, S., Kievit, R. A., and Bors-

boom, D. (2013). Deconstructing the construct: A network perspective on psychological

phenomena. New ideas in psychology, 31(1):43–53.

Sengupta, S. and Chen, Y. (2015). Spectral clustering in heterogeneous networks. Statistica

Sinica, pages 1081–1106.

Sewell, D. K. and Chen, Y. (2016). Latent space models for dynamic networks with weighted

edges. Social Networks, 44:105–116.

Shin, H. and Ryan, A. M. (2014). Early adolescent friendships and academic adjustment:

Examining selection and influence processes with longitudinal social network analysis.

Developmental Psychology, 50(11):2462.

Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (2002). Probabilistic boolean

networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics,

18(2):261–274.

Sun, Y., Yu, Y., and Han, J. (2009). Ranking-based clustering of heterogeneous infor-

63



mation networks with star network schema. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 797–806. ACM.

Van Der Linden, W. J. and Hambleton, R. K. (1997). Item response theory: Brief history,

common models, and extensions. In Handbook of modern item response theory, pages

1–28. Springer.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks.

nature, 393(6684):440.

Wentzel, K. R., Barry, C. M., and Caldwell, K. A. (2004). Friendships in middle school:

Influences on motivation and school adjustment. Journal of educational psychology,

96(2):195.

Xu, K. S., Kliger, M., and Hero Iii, A. O. (2014). Adaptive evolutionary clustering. Data

Mining and Knowledge Discovery, 28(2):304–336.

Zhao, Y., Levina, E., and Zhu, J. (2012). Consistency of community detection in networks

under degree-corrected stochastic block models. Ann. Statist, 40:2266–2292.

64


