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Abstract

Speech is the most important means of human communication. In real environ-

ments, speech is often corrupted by acoustic inference, including noise, reverberation

and competing speakers. Such interference leads to adverse effects on audition, and

degrades the performance of speech applications. Inspired by the principles of hu-

man auditory scene analysis (ASA), computational auditory scene analysis (CASA)

addresses speech separation in two main steps: segmentation and grouping. With

noisy speech decomposed into a matrix of time-frequency (T-F) units, segmentation

organizes T-F units into segments, each of which corresponds to a contiguous T-F

region and is supposed to originate from the same source. Two types of grouping

are then performed. Simultaneous grouping aggregates segments overlapping in time

to simultaneous streams. In sequential grouping, simultaneous streams are grouped

across time into distinct sources. As a traditional speech separation approach, CASA

has been successfully applied in various speech-related tasks. In this dissertation, we

revisit conventional CASA methods, and perform related tasks from a deep learning

perspective.

As an intrinsic characteristic of speech, pitch serves as a primary cue in many

CASA systems. A reliable estimate of pitch is important not only for extracting

harmonic patterns at a frame level, but also for streaming voiced speech in sequential
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grouping. Based on the types of interference, we can divide pitch tracking in two

categories: single pitch tracking in noise and multi-pitch tracking.

Pitch tracking in noise is challenging as the harmonic structure of speech can

be severely contaminated. To recover the missing harmonic patterns, we propose

to use long short-term memory (LSTM) recurrent neural networks (RNNs) to model

sequential dynamics. Two architectures are investigated. The first one is conventional

LSTM that utilizes recurrent connections to model temporal dynamics. The second

one is two-level time-frequency LSTM, with the first level scanning frequency bands

and the second level connecting the first level through time. Systematic evaluations

show that both proposed models outperform a deep neural network (DNN) based

model in various noisy conditions.

Multi-pitch tracking aims to extract concurrent pitch contours of different speak-

ers. Accurate pitch estimation and correct speaker assignments need to be achieved

at the same time. We use DNNs to model the probabilistic pitch states of two simul-

taneous speakers. Speaker-dependent (SD) training is adopted for a more accurate

assignment of pitch states. A factorial hidden Markov model (FHMM) then integrates

pitch probabilities and generates the most likely pitch tracks. Evaluations show that

the proposed SD DNN-FHMM framework outperforms other speaker-independent

(SI) and SD multi-pitch trackers on two-speaker mixtures.

Speaker-independent multi-pitch tracking has been a long-standing difficulty. We

extend the DNN-FHMM framework, and use an utterance-level permutation invari-

ant training (uPIT) criterion to train the system with speaker-independent data. A
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speaker separation front end is further added to improve pitch estimation. The pro-

posed SI approach substantially outperforms all other SI multi-pitch trackers, and

largely closes the gap with SD methods.

Besides exploring deep learning based pitch tracking as cues for CASA, we di-

rectly address talker-independent monaural speaker separation from the perspectives

of CASA and deep learning, resulting in what we call a deep CASA approach. Simul-

taneous grouping is first performed for frame-level separation of the two speakers with

a permutation-invariantly trained neural network. Sequential grouping then assigns

the frame-level separated spectra to distinct speakers with a clustering network. Com-

pared to a uPIT system which conducts frame-level separation and speaker tracking in

one stage, our deep CASA framework achieves better performance for both objectives.

Evaluation results on the benchmark WSJ two-speaker mixture database demonstrate

that deep CASA significantly outperforms other spectral-domain approaches.

In talker-independent speaker separation, generalization to an unknown number

of speakers and causal processing are two important considerations for real-world

deployment. We propose a multi-speaker extension to deep CASA for C concurrent

speakers (C ≥ 2), which works well for speech mixtures with up to C speakers even

without the prior knowledge about the speaker number. We also propose extensive

revisions to the connections, normalization and clustering algorithm in deep CASA

to make a causal system. Experimental results on the WSJ0-2mix and WSJ0-3mix

databases show that both extensions achieve the state-of-the-art performance. The

development of the deep CASA approach in this dissertation represents a major step

towards solving the cocktail party problem.
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Chapter 1: Introduction

1.1 Motivation

Audition is one of the most important senses of human perception. Without the

capability of hearing, we would miss so much information, as well as the delight and

chroma of the world. As a kind of the auditory signal, human speech contains rich

information: not only phonetics, syntax and semantics which correspond to the key

components of a language, but also loudness and articulation, through which we can

tell the identity, emotion, and even health of a speaker [82]. Speech is an inseparable

part of our daily communication. It is even of greater importance in the early stage

of human history. Before the invention of writing, which can be traced back several

millennia, speech is the sole media by which human culture is recorded and inherited.

Without speech and audition, we would never be who we are today.

The speech sound reaches our ears usually not in a clean forms. In real acoustic

environments, speech is contaminated by various types of interference, such as traffic

noise, industrial noise, music, and competing speakers. Through millions years of

evolution, the human vocal tract has developed to produce vowels like [i] and [u],

which are more robust to environmental noise than consonants [72] [87] . On the

other hand, a normal-hearing listener excels at attending to the target speech in the
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presence of interference. Cherry uses the term “cocktail party effect” to describe the

phenomenon of the human listener extracting a single sound source while filtering out

other sources [15]. Bregman attributes this effect to auditory scene analysis (ASA)

[9], and summarizes the ASA process of the human auditory system into two stages:

segmentation and grouping. In segmentation, the input sound is decomposed into

auditory segments, each originating from the same sound source. In the grouping

stage, segments likely from the same source are organized into a stream. Following

the principles of ASA, computational auditory scene analysis (CASA) [107] aims to

realize speech separation with machines. The segmentation stage of CASA forms

time-frequency (T-F) segments of an input signal, each corresponding to a contigu-

ous region of T-F units originating from the same sound source. The grouping stage

of CASA has two subprocesses: simultaneous grouping and sequential grouping. Si-

multaneous grouping aggregates T-F segments overlapping in time to simultaneous

streams. In sequential grouping, simultaneous streams are grouped across time into

auditory streams, each corresponding to a distinct source. A main computational

goal in CASA is an ideal binary mask (IBM), which is a binary T-F matrix where

each T-F unit is either labeled as 1 if it is dominated by the target speech, or 0 if

dominated by interference [106]. The CASA principles have been successfully applied

in a variety of speech applications, including pitch estimation [51], speech recognition

[85], signal to noise ratio (SNR) estimation [86] and speaker identification [124].

Many CASA methods make use of auditory features like pitch to perform binary

mask estimation. For example, Hu and Wang [50] utilize pitch for frame-level simul-

taneous grouping, and expand the target speech along time using the continuity of

pitch. In [51], a tandem algorithm is further developed to perform pitch estimation
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and mask estimation in an iterative fashion. The tandem algorithm first estimates

pitch on T-F segments with high cross-channel correlation values, and expands pitch

using temporal continuity. The estimated pitch is then used to predict the associ-

ated binary masks. The masks are used in turn to refine the pitch contours. Pitch

and mask estimation operate jointly and iteratively to produce a set of consistent

pitch-mask pairs. In [52], the outputs of the tandem algorithm are clustered into two

sources for talker-independent speaker separation. The clustering is performed by a

search to maximize the ratio of between- and within-group speaker distances while

penalizing within-group concurrent pitch contours. Substantial SNR gain has been

achieved across a range of input SNRs.

Due to paramount importance of pitch in CASA, and its broad utilization in

other speech applications, such as automatic speech recognition [12] and emotion

recognition [65], robust pitch estimation of human speech is considered a fundamental

problem in speech processing. Many algorithms have been designed for robust pitch

estimation over the last few decades [8] [16] [101]. They achieve good performance

under clean or modestly noisy conditions, but fail to produce consistent results when

speech is severely interfered by noise or other speakers.

Recently, a resurgence of research in artificial neural networks (NNs), also known

as “deep learning”, marks a major milestone in machine learning. Countless neural

networks, including feedforward deep neural networks (DNNs), recurrent neural net-

works (RNNs) and convolutional neural networks (CNNs), have been explored over

the past decade for supervised classification/regression [22] [43], reinforcement learn-

ing [84] and unsupervised generation [32]. These models are able to handle inputs
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of various types, such as one-dimensional features, two-dimensional images and se-

quential data, and produce excellent results in many speech applications, e.g., pitch

tracking [35], speech separation [108], speech recognition [42], speaker recognition

[97], speech synthesis [89], and voice conversion [47]. In [35], spectral features are

fed to a DNN and an RNN to predict frame-level probabilities of pitch states, which

are then connected by a hidden Markov model (HMM) to generate continuous pitch

contours. The DNN-HMM framework outperforms other models in a variety of noise

conditions. These successes motivate us to explore how the latest progress of deep

learning benefits pitch tracking in the presence of different types of interference.

On the other hand, with the rapid development of deep learning, speech separa-

tion has been formulated as a supervised learning problem [106]. Typically, a DNN is

used to map noisy features to some ideal T-F masks, e.g., the IBM and the ideal ratio

mask (IRM), that can separate the target speech from the mixture. If the acous-

tic features, training targets, training data and learning machines are well chosen,

supervised speech separation can generate high-quality results in both matched and

unmatched test conditions [14]. In [110], a DNN-based system is trained for monaural

speech enhancement. It outperforms the pitch-based tandem algorithm [51] by a large

margin. Based on these observations, we ask two questions. Is pitch still important

to deep learning based speech separation? Is the CASA framework outdated in the

era of deep learning?

For the first question, the answer might be no. In [13], Chen et al. utilize pitch

as part of a complementary feature set for deep learning based speech separation.

No improvement can be made if the additional pitch based feature is derived using a

pitch tracking algorithm PEFAC [31]. Such a result is due to the fact that PEFAC
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Figure 1.1: Incorporating pitch to deep learning based speech separation. (a) Pitch
based features estimated by signal processing based models. (b) Pitch based features
estimated by deep learning models. (c) Two-stage speech separation.

makes many mistakes in low SNR conditions, which in turn degrades the performance

of deep separation models. This system is illustrated in Fig. 1.1a. To improve the

performance of pitch estimation, we can train a DNN based pitch tracker, and use the

derived pitch estimates as additional features for DNN based separation, as shown in

Fig. 1.1b. The two DNNs can be optimized jointly. Our preliminary results indicate

such a model introduces only a marginal improvement. On the other hand, clean

speech contains much richer information than clean pitch. If clean speech is given,

one can almost perfectly obtain the corresponding clean pitch. However, if clean

pitch and noisy speech are given, it is difficult to get a perfect reconstruction of clean

speech. Based on these facts, we train an alternative model, as shown in Fig. 1.1c. In

this system, an initial estimate of clean speech is used as additional features, and these

features are expected to contain richer information than pitch based features. This is

also known as two-stage speech separation [126]. Our preliminary results indicate the
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two-stage system consistently outperforms DNNs with pitch based features. Although

pitch may not be critical for speech separation, it can be used for many other audio

processing tasks like emotion recognition [65] and musical note detection.

Is CASA outdated? We think not. For speech enhancement, namely single-

speaker separation in noisy conditions, conventional CASA methods are no longer

competitive. With data-driven large scale training, deep learning based speech en-

hancement outperforms cue-based CASA methods in a variety of conditions [110].

Simultaneous grouping and sequential grouping in CASA can be effectively achieved

within one stage using sequence models like CNNs and RNNs. However, in the case of

multi-speaker separation, where the goal is to separate several concurrent speakers,

the concept of CASA is still valuable. Many deep learning based speaker separa-

tion models utilize multiple output layers in the network, each corresponding to one

speaker source. These studies assume that the output-speaker pairing does not change

between training and testing. It has been shown that such talker-dependent train-

ing leads to significant intelligibility improvement for hearing impaired listeners [38].

However, talker-dependent training does not generalize to untrained speakers. Talker-

independent speaker separation has to address the permutation problem [40] [64], i.e.,

how the output layers are tied to the underlying speakers. To tackle this problem, a

data-driven output alignment algorithm is proposed: permutation invariant training

(PIT) [64]. PIT examines all possible label permutations for each utterance during

training, and uses the one with the lowest utterance-level loss to train the separa-

tion network, which leads to significant improvement for talk-independent separation.

However, the one-stage PIT system optimizes simultaneous grouping and sequential

grouping at the same time, which seems too difficult for multi-speaker separation.
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Even with PIT’s well designed output-target alignment, the outputs still switch be-

tween different speakers during inference for challenging mixtures. On the other hand,

the divide-and-conquer strategy of CASA is well suited for this task. In CASA, si-

multaneous grouping and sequential grouping are performed in turn, so sequential

grouping benefits from the short-term separation results, and better speaker track-

ing can be achieved. It would be interesting to exploit CASA principles for speaker

separation in the deep learning paradigm.

Although microphone-array approaches are widely used for denoising and multi-

source tracking, monaural (single-microphone) solutions are more flexible in terms of

deployment and may help array-based techniques [108]. All systems described in this

dissertation operate on monaural recordings.

1.2 Objectives

This dissertation is concerned with CASA related tasks using deep learning tech-

niques. There are two main objectives: robust pitch estimation and talker-independent

speaker separation, which are presented in turn as follows:

• Robust single pitch tracking. Pitch is an important cue for conventional CASA

methods and many other applications. Based on the type of interference, we di-

vide pitch tracking tasks into two categories: noise-robust single-pitch tracking

and multi-pitch tracking. Noise-robust single-pitch tracking deals with single-

speaker utterances mixed with non-speech noises. Spectral-, temporal- and

spectrotemporal-domains approaches have been proposed for this task, but they

do not perform well in the presence of strong nonstationary noise, as harmonic
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patterns can be severely corrupted. Exploiting long spectral and temporal con-

text is a key to complete the missing information buried in noise. We investigate

deep sequence models along both the time and frequency dimension for pitch

probability estimation.

• Speaker-dependent multi-pitch tracking. Multi-pitch tracking is concerned with

mixtures of concurrent speakers. Compared to single-pitch tracking, this poses

new challenges as both pitch estimation and speaker assignment need to be

addressed. If speaker-dependent (SD) data is given, models can be trained

speaker-dependently to differentiate the target speaker from competing speakers

in a mixture. We explore deep learning based speaker-dependent models for

multi-pitch tracking. We also investigate the generalization of the models by

exposing them to speaker-independent data and various SNR conditions.

• Speaker-independent multi-pitch tracking. SD models are not practical for many

real applications, as both the SD training data and identities of speakers need to

be provided. We extend the SD multi-pitch tracking framework, and investigate

PIT techniques for speaker-independent training. Speech separation and pitch

tracking are considered a chicken-and-egg problem in the speech community.

We explore how speech separation can help pitch tracking in the multi-speaker

setting.

• Deep CASA for talker-independent speaker separation. As mentioned earlier,

although CASA methods are not competitive for speech enhancement in the

era of deep learning, the concept of simultaneous and sequential grouping is
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still valuable for speaker separation. We redesign the CASA method for talker-

independent speaker separation using deep learning techniques. Various models

and training targets are explored for the two grouping stages. To better un-

derstand the difference between one-stage speaker separation and deep CASA,

we analyze their frame-level separation and speaker tracking performance in

details.

• Generalization of deep CASA. Deep CASA is designed for two-speaker mixtures

and needs to be extended to more complex acoustic environments. We explore

a multi-speaker extension to deep CASA, and test the model without the prior

knowledge about the speaker number. We also explore causal-separation exten-

sions to deep CASA for real-time processing.

1.3 Background

In this section, we review existing pitch tracking and speaker separation ap-

proaches. First, we discuss single- and multi-pitch tracking. Then, we introduce

recently proposed deep learning based talker-independent speaker separation.

1.3.1 Noise-robust single-pitch tracking

Although many algorithms have been proposed for single pitch tracking [8] [16]

[101], they do not produce consistent results when speech is severely interfered by

noise. The difficulty of pitch tracking in noise stems from the fact that both temporal

continuities and harmonic patterns are corrupted. Recently, many studies try to

address the noise-robustness issue for pitch tracking, and most of them consist of two

stages. In the fist stage, pitch candidates or pitch probabilities are estimated for each
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time frame of speech using temporal, spectral, or spectrotemporal domain information

[107]. Temporal-domain methods analyze the periodic cue of speech. For example

RAPT [101] captures peaks in normalized autocorrelation functions (ACFs). YIN

[16] proposes a number of modifications to the autocorrelation method to improve

the accuracy of pitch estimation. Spectral-domain methods are based on harmonic

modeling. For instance, PEFAC [31] uses non-linear amplitude compression and a

comb-filter to suppress noise in the spectrogram, and selectes pitch candidates from

harmonic peaks. Han and Wang [35] feed spectral features to a DNN and an RNN

to predict frame-level probabilities of pitch states. Spectrotemporal methods first

decompose the signal into a series of sub-bands, and then perform temporal analysis

on each frequency channel. For example, Lee and Ellis [67] apply principle component

analysis on subband autocorrelation functions, and feed the derived features into a

multilayer perceptron for pitch score estimation. Wang and Hansen [105] decompose

speech into overlapped time-frequency segments, and select pitch candidates using

likelihood scores for each segment. After the estimation of pitch candidates and

probabilities, the second stage integrates local pitch clues into continuous pitch tracks

using dynamic programming or HMMs.

1.3.2 Multi-pitch tracking

A number of studies have investigated the problem of monaural multi-pitch track-

ing. Wu et al. [119] propose a probabilistic representation of pitch and track con-

tinuous pitch contours with an HMM. Sha and Saul [95] model the instantaneous

frequency spectrogram with nonnegative matrix factorization (NMF) and use the in-

ferred weight coefficients to determine pitch candidates. Bach and Jordan [4] propose
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direct probabilistic modeling of the spectrogram and track several pitches with a fac-

torial HMM (FHMM). Christensen and Jakobsson [18] describe statistical, filtering

and subspace methods for both single- and multi-pitch estimation. Hu and Wang [51]

propose a tandem algorithm that performs pitch estimation and voiced speech segre-

gation jointly, producing a set of pitch contours and their associated binary masks.

Jin and Wang [60] improve [119] by designing new techniques for channel selection

and pitch score estimation in the context of reverberant and noisy signals. The above-

mentioned studies build a general system without modeling the characteristics of any

specific speaker, and can thus be denoted by speaker-independent models.

Although most speaker-independent models perform well for estimating pitch pe-

riods, they can not assign pitch estimates to the underlying speakers for multi-pitch

tracking. To alleviate this problem, Hu and Wang [52] build their system on the tan-

dem algorithm [51] and group simultaneous pitch contours into two speakers using a

constrained clustering algorithm. Similarly, Duan et al. [25] take the pitch estimates

of speaker-independent multi-pitch trackers as input and stream pitch points by clus-

tering. However, both approaches achieve limited improvement as individual pitch

contours and points are usually too short to contain enough speaker information for

clustering.

On the other hand, speaker-dependent models have been investigated. Wohlmayr

et al.[117] model the probability of pitch periods using speaker-dependent Gaus-

sian mixture models (GMMs), and then use a speaker-dependent FHMM to track

pitches of two simultaneous speakers. They have shown significant improvement over

a speaker-independent approach [119].
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1.3.3 Talker-dependent speaker separation

The goal of monaural speaker separation is to estimate C independent speech

signals xc(n), c = 1, ..., C, from a single-channel recording of speech mixture y(n),

where y(n) =
∑C

c=1 xc(n) and n indexes time. Many studies focus on the co-channel

situation where C = 2.

A lot of deep learning based speaker separation systems [24] [54] [123] address this

problem in the T-F domain, where short-time Fourier transform (STFT) is calculated

using an analysis window w(n) with fast Fourier transform (FFT) length N and frame

shift R:

Y (t, f) =
∞∑

n=−∞

w(n− tR)y(n)e−j2πfn/N (1.1)

Xc(t, f) =
∞∑

n=−∞

w(n− tR)xc(n)e−j2πfn/N (1.2)

Y (t, f) = X1(t, f) +X2(t, f) (1.3)

where t and f denote the frame and frequency, respectively. The magnitude STFT

of the mixture signal |Y (t, f)|, together with other spectral features, are fed into a

neural network to predict a T-F mask Mc(t, f) for each speaker c. The masks are

multiplied by the mixture to estimate the original sources:

|X̃c(t, f)| = Mc(t, f)� |Y (t, f)| (1.4)

Here � denotes element-wise multiplication, and |X̃c(t, f)| denotes the estimated

magnitude STFT of speaker c. An estimate of complex STFT X̂c(t, f) can be ob-

tained by coupling |X̃c(t, f)| with noisy phase. In the end, separated waveforms are

resynthesized using inverse STFT (iSTFT):

x̂c(n) =

∑∞
t=−∞w(n− tR) 1

N

∑N−1
f=0 X̂c(t, f)ej2πfn/N∑∞

t=−∞w
2(n− tR)

(1.5)
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Figure 1.2: Illustration of the permutation problem for talker-independent speaker
separation.

Various training targets of |X̃c(t, f)| have been explored for supervised speech

separation [109]. Phase-sensitive approximation (PSA) is found to be effective as

it accounts for errors introduced by the noisy phase [26] [64]. In PSA, the desired

reconstructed signal is defined as: |Xc(t, f)|�cos(φc(t, f)), where φc(t, f) is the phase

difference between Y (t, f) and Xc(t, f). Overall, the training loss at each frame is

computed as:

JPSAt =
F∑
f=1

2∑
c=1

||Mc(t, f)� |Y (t, f)| − |Xc(t, f)| � cos(φc(t, f))|| (1.6)

where || · || denotes the l1 norm.

The above formulation works well only when each output layer is tied to a training

target signal with similar characteristics. For instance, we may tie each output to a

specific speaker, leading to talker-dependent training. We may also tie two outputs

with male and female speakers respectively, leading to gender-dependent training.

However, for talker-independent training data, how to select output-speaker pairing

becomes a nontrivial problem. Think of a training set consisting of three female

speakers, as illustrated in Fig. 1.2. For the mixture of speakers 1 and 2, we can tie

Output 1 to speaker 1, and Output 2 to speaker 2. For the mixture of speakers 1
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and 3, again Output 1 can be tied to speaker 1, and Output 2 tied to speaker 3.

However, it is hard to decide the pairing for the mixture of speakers 2 and 3. If

output-speaker pairing is not arranged properly, conflicting gradients may be gener-

ated during training, preventing the neural network from converging. This is referred

to as the permutation problem [40] [64].

1.3.4 Permutation invariant training

Frame-level permutation invariant training (denoted by tPIT) [64] overcomes the

permutation problem in talker-independent speaker separation by providing target

speakers as a set instead of an ordered list, and output-speaker pairing for a given

frame t, is defined as the pairing that minimizes the loss function over all possible

speaker permutations P . For tPIT, the frame-level training loss in Eq. 1.6 is rewritten

as:

J tPIT−PSAt = min
θ(t)∈P

∑
f,c

||Mc � |Y | − |Xθc(t)| � cos(φθc(t))|| (1.7)

We omit (t, f) in M,Y,X, and φ for brevity. In (1.7), θc(t) indexes the speaker

paired with output c at frame t. θ(t) includes all C output-speaker pairings at frame

t, and corresponds to one speaker permutation. The tPIT objective scans all P

permutations, and utilizes the permutation with the minimum frame-level loss. A

diagram of the tPIT objective is given in Fig. 1.3.

tPIT does a good job in separating two speakers at the frame level [64] [77].

However, due to its locally optimized training objective, an output layer may be tied

to different speakers at different frames, and the correct speaker assignment may

swap frequently. If we reassign the outputs with respect to the minimum loss for each
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Figure 1.3: Diagram of the tPIT technique.

speaker, tPIT can almost perfectly reconstruct both speakers [77]. One such example

is given in Fig. 5.4.

Optimal speaker assignments are not obtainable in practice as the targets are

not given beforehand. To address this issue, an utterance-level PIT (uPIT) fixes

output-speaker pairing c ↔ θc(t) for a whole utterance, which corresponds to the

pairing that provides the minimum utterance-level loss over all possible permutations.

Recent uPIT improvements include new network structure [68] [120] and new training

objectives [68]. Conv-TasNet [81] extends uPIT to the waveform domain using a

convolutional encoder-decoder structure. FurcaNeXt [96] integrates gated activations

and ensemble learning into Conv-TasNet, and reports very high performance.
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1.3.5 Deep clustering

Deep clustering (DC) [40] looks at the permutation problem in talker-independent

speaker separation from a different perspective. In DC, an RNN with bi-directional

long short-term memory (BLSTM) is trained to estimate an embedding vector Vi ∈

R1×D for the i-th T-F unit of the mixture Yi = Y (t, f), where i corresponds to T-F

indices t and f . Similarly, Ai ∈ R1×C is a one-hot label vector representing which

source in a mixture dominates the i-th T-F unit. Vertically stacking the N T-F bins,

the embedding matrix V ∈ RN×D and the label matrix A ∈ RN×C are formed. The

Frobenius norm between the affinity matrix of embedding vectors (VVT ) and the

affinity matrix of the label vectors (AAT ) is used as the training objective in DC:

J = ||VVT −AAT ||2F (1.8)

where || · ||F is the Frobenius norm. DC avoids the permutation problem due to the

permutation-invariant property of affinity matrices. As training unfolds, embedding

vectors of T-F units dominated by the same source are drawn closer together, and

embeddings of those units dominated by different sources become farther apart. Clus-

tering these embedding vectors using the K-means algorithm assigns each T-F unit

to one of the speakers in the mixture, which can be viewed as binary masking for

speech separation.

The original DC system is proposed in [40]. Several upgrades, including deeper

network, recurrent dropout and end-to-end training are proposed in [56]. In [80],

a concept of attractors is introduced to DC to enable ratio masking and real-time

processing. Alternative training objectives, together with a chimera network which

simultaneously estimates DC embeddings and uPIT outputs, are proposed in [111]. In
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[112], iterative phase reconstruction is integrated into the chimera network to alleviate

phase distortions. In [113], a phase prediction network is further added to [112] to

estimate the clean phase of each speaker source.

1.4 Organization of dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, we investigate the performance of deep sequence models for noise-

robust single-pitch tracking. Long short-term memory (LSTM) RNNs are trained

to capture long-term dynamics of speech harmonics along time and frequency. The

Viterbi algorithm is then applied to connect probabilistic outputs from LSTM RNNs,

and generates the final pitch estimate. The models are trained using speaker-dependent

data. We evaluate the pitch tracking performance with detection rate and voicing

detection errors [67], and compare the proposed models with speaker-independent

and speaker-dependent DNNs.

Chapter 3 presents DNNs for multi-pitch estimation. Speaker-dependent and

speaker-pair-dependent DNNs are proposed to model the probabilistic pitch states of

two concurrent speakers in a close data set. To relax the constraints, several exten-

sions, including gender-dependent models, speaker adaptation and gain adaptation

are introduced. Estimated pitch states are fed into an FHMM to infer the most likely

pitch tracks. We compare our methods with other speaker-independent and speaker-

dependent multi-pitch trackers on two-speaker mixtures. The total pitch error [117]

and overall multi-pitch accuracy [25] are reported. We also investigate the general-

ization of the proposed methods using noisy two-speaker mixtures and three-speaker

mixtures.
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Chapter 4 presents speaker-independent extensions to the DNN-FHMM multi-

pitch tracking framework. To improve speaker tracking, BLSTM RNNs are used as

the learning machine. We adopt the uPIT technique to address the label permutation

problem during training. A speaker-separation BLSTM RNN is further added to the

system as front-end processing for multi-pitch tracking. The models are trained and

evaluated on different sets of speakers.

In Chapter 5, a deep learning based CASA approach is proposed for talker-

independent speaker separation, denoted by deep CASA. Similar to conventional

CASA methods, simultaneous grouping and sequential grouping are performed seri-

ally in deep CASA. Simultaneous grouping separates speakers at the frame level with

a permutation-invariantly trained neural network. In sequential grouping, the frame-

level outputs are assigned to different speakers with a sequence model. We compare

deep CASA with uPIT and DC on the public WSJ0-2mix database [40] using four

objective metrics.

Chapter 6 presents multi-speaker and causal-separation extensions to deep CASA.

In the multi-speaker extension, we update the sequential grouping module in deep

CASA to tackle the factorial increase of label permutations. The multi-speaker ex-

tension can be deployed without the prior knowledge about the speaker number. For

causal processing, temporal connections, normalization, and clustering algorithms

are extensively revised. The proposed extensions are compared with state-of-the-art

approaches on the benchmark WSJ0-2mix and WS0-3mix databases [40].

Chapter 7 summarizes the contributions of this dissertation and discusses future

directions.
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Chapter 2: Time and Frequency Domain Long Short-term

Memory for Noise Robust Pitch Tracking

Pitch tracking in noisy speech is a challenging task as temporal and spectral

patterns of the speech signal are both corrupted. This chapter presents LSTM based

models for pitch probability estimation. Two architectures are investigated. The

first one is conventional LSTM that utilizes recurrent connections to model temporal

dynamics. The second one is two-level time-frequency LSTM, with the first level

scanning frequency bands and the second level connecting the first level through time.

The Viterbi algorithm then takes the probabilistic output from LSTM to generate

continuous pitch contours. Experiments show that both proposed models outperform

a DNN based model in most conditions. Time-frequency LSTM achieves the best

performance at negative SNRs. The work presented in this chapter has been published

in [76].

2.1 Introduction

Pitch of human speech refers to the fundamental frequency of vocal fold vibrations.

A reliable estimate of pitch is useful for various applications, including automatic

speech recognition [12], speech separation [107] and emotion recognition [65].
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Given that speech has long-term dependency in the time domain, it is natural

to exploit temporal dynamics for pitch tracking. However, most pitch tracking algo-

rithms only analyze speech signals within short-time windows when predicting frame-

level pitch probabilities/candidates, resulting in inaccurate pitch estimates at noise-

dominant frames. To address this problem, Han and Wang [35] propose to use a

standard RNN to estimate pitch probabilities over time. Such RNNs are designed

to model sequential data, but they suffer from the vanishing and exploding gradient

problem [7], and can not propagate information over a long span. LSTM RNNs [45]

use gates to stabilize gradient propagation, and are shown to be good at modeling

long-term dependencies in many applications such as automatic speech recognition

[34] [69] and machine translation [98].

In this study, we extend the RNN based pitch tracking framework, and propose

to use LSTM to model the posterior probability that a frequency bin (pitch state)

is pitched given frame-level log-spectrogram features. To our knowledge, this is the

first study that uses LSTM for pitch tracking in noisy speech. Another important

characteristic of voiced speech is that its harmonics are evenly spaced in frequency.

When some frequency bands are contaminated by noise, we can still estimate the

fundamental frequency from other reliable bands. To leverage this observation, we

further propose a two-level LSTM structure. The first level is frequency-domain

LSTM (F-LSTM) that scans segments of log-spectrogram along the frequency axis to

detect harmonic patterns. The second level is time domain LSTM (T-LSTM), which

takes the output of F-LSTM, and models pitch probabilities through time. The overall

structure is denoted by time-frequency LSTM (TF-LSTM) in this study. Recently, a

similar TF-LSTM network has been shown to outperform conventional LSTM in an
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automatic speech recognition task [69]. Once all frame-level pitch probabilities are

derived, we use the Viterbi algorithm [27] to generate continuous pitch contours.

The rest of the chapter is organized as follows. The proposed system is described

in the next section. In Section 2.3, we present experimental results and comparisons.

A conclusion is given in Section 2.4.

2.2 System description

The proposed pitch tracking algorithm consists of two stages: pitch probability

estimation and Viterbi decoding.

In the first stage, we extract the log-spectrogram feature yt from a noisy utterance

sampled at 16 kHz, where t denotes the frame index. Neural networks then use yt as

input to estimate the posterior probability of pitch states p(xt|yt), where xt denotes

the pitch state at frame t. We quantize the frequency range 60 to 404 Hz into 67 bins

(s1, s2, ..., s67) using 24 bins per octave on a logarithmic scale. Each si corresponds

to a state in xt. The logarithmic division of pitch states is due to the fact that

resolved pitch frequencies follow a quasi-logarithmic scale in the range [60, 404] Hz

approximately [107]. A more accurate representation would be to divide the low-

frequency pitch states on a linear scale, and the high-frequency pitch states on a

logarithmic scale, like the cochleagram [107]. We adopt the logarithmic scale used

in [35] for simplicity. This frequency resolution provides two bins per semitone, and

gives less than 3% of relative frequency difference between adjacent pitch states. A

non-pitched state s0 is incorporated into xt to represent unvoiced speech or silence.

p(xt = si|yt) equals 1 if the groundtruth pitch is in the frequency bin of si, and 0

otherwise. We introduce a DNN as a baseline model in Section 2.2.2 . LSTM and
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TF-LSTM are described in Section 2.2.3 and Section 2.2.4. In the second stage, we

use the Viterbi algorithm to connect frame-level probabilities and track pitch through

time.

2.2.1 Feature extraction

The feature used in study is based on log-spectrogram. To get this feature, the

signal is first divided into 32 ms frames with a 10 ms frame shift. We then apply a

Hamming window to each frame and derive the spectrogram using 1024-point FFT.

Lastly, we compute the logarithm of the amplitude spectrum, and pick bins 2 to 129

(corresponding to a frequency range up to 2000 Hz) as the 128-dimensional feature

for each frame. We do not pick all bins in the spectrogram as the energy of high

frequency harmonics is relatively low, and the frequency range up to 2000 Hz covers

at least 5 harmonics of human speech, enough for continuous pitch tracking.

Since neighboring frames contain useful information, we splice a 15-frame window

of features as the DNN’s input. For LSTM and TF-LSTM, although the history of

input is stored in their memory cells, it is still helpful to apply a context window so

that they can receive richer input information at each time step. Taking the model

size and computational cost into consideration, we splice a 7-frame window for the

input of LSTM and TF-LSTM.

2.2.2 DNN based pitch probability estimation

We first utilize a DNN as a baseline model to estimate the posterior probability of

pitch states when the frame-level feature vector is given, i. e., p(xt|yt). The DNN has

four hidden layers, each with 1600 rectified linear units [30]. The output layer contains

68 soft-max units, corresponding to the number of pitch states. A cross-entropy cost

22



function, mini-batch gradient descent, Adam optimization algorithm [62] and dropout

regularization [44] are used during training. The initial learning rate is 0.001, and a

learning rate decay of 0.7 each epoch is used. The training stops after 30 epochs.

2.2.3 LSTM based pitch probability estimation

To better encode the temporal patterns of human speech, we use LSTM for pitch

probability estimation in this subsection. LSTM is composed of a series of recurrently

connected memory blocks [45]. Each memory block has a memory cell which stores

the temporal state of the network, an input gate which controls the amount of input

activation added to the memory cell, a forget gate which adaptively resets the memory

cell and an output gate which controls the amount of information passed from the

memory cell to the output. In this work, we followed the LSTM architecture in [122]:

it = σ(Wxixt +Whiht−1 + bi) (2.1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2.2)

ct = ft�ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (2.3)

ot = σ(Wxoxt +Whoht−1 + bo) (2.4)

ht = ot�tanh(ct) (2.5)

where it, ft, ct and ot denote the input gate, forget gate, memory cell and output

gate. xt and ht denote the input and output of the memory block. W terms and b

terms denote different weight matrices and biases. σ is the logistic sigmoid function.

� represents element-wise multiplication.
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Figure 2.1: Diagram of TF-LSTM.

Our LSTM has four hidden layers, each with 512 hidden units. All layer only

contain uni-directional recurrent connections. The output layer is a soft-max layer

with 68 units. The number of parameters in LSTM is similar to that in the baseline

DNN. To train LSTM, we use a backpropagation through time (BPTT) step of 100.

The learning rate decay is set to 0.45 per epoch. Other training recipes follow the

baseline DNN.
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2.2.4 TF-LSTM based pitch probability estimation

In this subsection, we introduce TF-LSTM which models both temporal and spec-

tral dynamics of speech. A diagram of proposed TF-LSTM is shown in Fig. 2.1.

The intention of this architecture is to first use F-LSTM to scan different frequency

bands of the log-spectrogram, where useful pitch information can be extracted from

relatively clean bands, and propagates along the frequency axis to further affect sub-

sequent noisy bands. The output of F-LSTM is then collected and fed to T-LSTM

to track pitch through time. A similar network has been applied to automatic speech

recognition tasks and shown to outperform DNN based and conventional LSTM based

neural networks [69].

To implement TF-LSTM, we first divide the 128×7-dimensional feature yt along

the frequency axis into overlapped frequency segments. Each frequency segment

contains 24×7 units, and has 16×7 overlapped units with each neighboring frequency

segment. In other words, the stride of frequency segments is 8. F-LSTM, which

is one layer bidirectional LSTM with 256 units per direction, takes all frequency

segments in a frame as input. Therefore F-LSTM is unrolled on the frequency axis

(128−24)/8+1 = 14 times at each frame. All parameters in F-LSTM are chosen from

a development set. The output of F-LSTM is then fed into T-LSTM. Because we have

256×2×14 output units from F-LSTM at each frame, it is inefficient to feed all of them

to T-LSTM. We explore two methods to address this problem. The first method only

keeps the last outputs in the F-LSTM sequence (red dashed arrows in Fig. 2.1) for T-

LSTM, denoted by TF-LSTM-L (TF-LSTM last). Here the last outputs can be viewed

as embedding vectors of the log-spectrogram. The second method concatenates all

output units in F-LSTM and uses a 512-unit linear transformation layer to reduce
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its dimensionality, denoted by TF-LSTM-C (TF-LSTM concatenation). We compare

the two methods in Section 2.3. T-LSTM has three 512-unit hidden layers and a

68-unit soft-max output layer. Other details and training recipes follow conventional

LSTM.

2.2.5 Viterbi decoding

After the estimation of p(xt|yt), we use the Viterbi algorithm [27] to connect all

probabilities along time. The hidden state in the Viterbi algorithm corresponds to

xt, and the observation corresponds to yt. We use the training data to compute

prior probabilities p(xt = si) and transition matrices. Emission probabilities can be

computed using the estimated posterior probabilities divided by the prior p(xt = si).

The Viterbi algorithm generates a sequence of the most likely pitch states, which is

then converted to mean frequencies of the corresponding frequency bins. In the end,

a three-frame moving average window is applied to smooth pitch estimates.

2.3 Evaluation results and comparisons

We use the Mocha-TIMIT database [118] for experimental comparisons. This

database consists of 460 utterances from both a male and a female speaker. Because

the male speaker is less challenging for pitch tracking tasks, we use the female speaker

in the following experiments for speaker-dependent learning. The training set is

created by mixing 400 utterances of the female speaker with 10,000 noises from a

sound-effect library (available at http://www.sound-ideas.com). Each clean utterance

is mixed 100 times with a random segment of a random noise at a random SNR from

-5 to 5 dB. The total duration of the training set is 44 hours. The test set includes 20

untrained utterances from the Mocha-TIMIT female speaker. Six noises, i. e., babble
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noise [48], factory noise [102], speech shape noise (SSN), cocktail-party noise [49],

crowd playground noise [49] and crowd music noise [49], are used for test, and all of

them are untrained. Each test utterance is mixed with the six test noises at -10, -5,

0, 5 and 10 dB, resulting in a total of 600 test mixtures. The groundtruth pitch is

derived by applying the RAPT [101] algorithm on laryngograph signals. We manually

remove erroneous pitch in unvoiced regions to improve the quality of the groundtruth

pitch.

We use two metrics to evaluate pitch estimates: detection rate (DR) and voicing

decision error (VDE) [67]. DR indicates the percentage of correctly estimated voiced

frames. VDE computes the percentage of frames that are misclassified in terms of

pitched and unpitched decision:

DR =
N0.05

Np

, VDE =
Nn→p +Np→n

N
(2.6)

Here N0.05 is the number of frames whose estimated pitch deviates less than 5% from

the groundtruth pitch. Nn→p and Np→n are the number of frames misclassified as

pitched and unpitched respectively. Np is the number of pitched frames, and N is the

total number of frames. Higher DR and lower VDE indicate better pitch estimates.

We compare our methods with two state-of-the-art pitch tracking algorithms: PE-

FAC [31] and Han and Wang [35]. PEFAC is a representative unsupervised approach

that performs relatively well in low SNR conditions. Han and Wang’s approach

used the same DNN/RNN-HMM framework as ours, and was trained on a speaker-

independent dataset. Two of Han and Wang’s training noises are seen in our test

set.

Table 2.1 and Table 2.2 list the DR and VDE of different approaches, where all

values are averaged across six noise types. As shown in the tables, all supervised
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Table 2.1: Comparison of approaches in terms of DR.

SNR (dB) -10 -5 0 5 10

PEFAC 0.373 0.555 0.657 0.696 0.714

Han and Wang DNN 0.434 0.635 0.728 0.755 0.756

Han and Wang RNN 0.406 0.633 0.727 0.755 0.763

Proposed DNN 0.664 0.861 0.934 0.953 0.958

Proposed LSTM 0.706 0.876 0.938 0.956 0.959

Proposed TF-LSTM-L 0.714 0.880 0.937 0.954 0.958

Proposed TF-LSTM-C 0.711 0.878 0.938 0.954 0.957

Table 2.2: Comparison of approaches in terms of VDE.

SNR (dB) -10 -5 0 5 10

PEFAC 0.337 0.262 0.192 0.142 0.112

Han and Wang DNN 0.295 0.221 0.149 0.103 0.095

Han and Wang RNN 0.301 0.226 0.165 0.120 0.108

Proposed DNN 0.247 0.131 0.062 0.047 0.041

Proposed LSTM 0.228 0.119 0.063 0.048 0.043

Proposed TF-LSTM-L 0.221 0.116 0.059 0.046 0.042

Proposed TF-LSTM-C 0.204 0.112 0.061 0.047 0.042

learning approaches produce better results than PEFAC across all SNRs. A standard

RNN was used by Han and Wang to model temporal dynamics, but it does not

outperform their DNN based approach in most cases, which is due to the fact that

such RNNs are more difficult to train and can not model long-term effects. By

virtue of the large training set, speaker-dependent training [74] and better training

recipes, the proposed methods show significant improvements over Han and Wang’s

approach. When the SNR is positive, all proposed methods generate exceptionally
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accurate pitch estimates while making few voicing decision mistakes. When it comes

to negative SNRs, the LSTM based method produces clearly higher DRs and lower

VDEs than the DNN based method, indicating that the capacity of sequence modeling

makes LSTM better at processing very noisy speech. TF-LSTM-L and TF-LSTM-C

both outperform LSTM at negative SNRs. They yield comparable results in terms of

DR, and TF-LSTM-C achieves a VDE of 0.204 at -10 dB, significantly lower than all

other approaches. Such improvement is attributed to the frequency scanning module

in TF-LSTM, which makes the model better at distinguishing unpitched signals from

voiced speech.

Fig. 2.2 compares the performance of the proposed DNN, LSTM and TF-LSTM-C

in different noises, which is consistent with the results in Table 2.1 and 2.2. A major

improvement of LSTM and TF-LSTM-C comes from negative SNRs. LSTM outper-

forms the DNN in most negative SNR conditions. TF-LSTM-C generates similar DR

as LSTM, but consistently lower VDE in all cases.

2.4 Conclusion

In this chapter, we have introduced LSTM for robust pitch tracking in noisy

speech. Both conventional LSTM and two-level TF-LSTM are utilized to estimate

probabilistic pitch states. TF-LSTM first uses F-LSTM to scan harmonic patterns,

and then uses T-LSTM to connect frequency-domain activations. Thanks to the

power of sequence modeling, both LSTM based models outperform a DNN based

model. TF-LSTM further reduces the VDE of conventional LSTM by 10% at -10

dB. In the future, we will incorporate sub-band features into TF-LSTM. We will also
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Figure 2.2: DR and VDE for (a) babble noise, (b) factory noise, (c) SSN, (d) cocktail-
party noise, (e) crowd playground noise, (f) crowd music noise.
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perform speaker-independent training to evaluate how well TF-LSTM generalizes to

untrained speakers.
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Chapter 3: Speaker-dependent Multi-pitch Tracking using

Deep Neural Networks

Multi-pitch tracking is important for speech and signal processing. However, it is

challenging to design an algorithm that achieves accurate pitch estimation and correct

speaker assignment at the same time. In this chapter, DNNs are used to model the

probabilistic pitch states of two simultaneous speakers. To capture speaker-dependent

information, two types of DNN with different training strategies are proposed. The

first is trained for each speaker enrolled in the system (speaker-dependent DNN), and

the second is trained for each speaker pair (speaker-pair-dependent DNN). Several

extensions, including gender-pair-dependent DNNs, speaker adaptation of gender-

pair-dependent DNNs and training with multiple energy ratios, are introduced later

to relax constraints. An FHMM then integrates pitch probabilities and generates the

most likely pitch tracks with a junction tree algorithm. Experiments show that the

proposed methods substantially outperform other speaker-independent and speaker-

dependent multi-pitch trackers on two-speaker mixtures. With multi-ratio training,

the proposed methods achieve consistent performance at various energies ratios of the

two speakers in a mixture. The work presented in this chapter has been published in

[73] [75].
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3.1 Introduction

This chapter is concerned with multi-pitch tracking when two speakers are talk-

ing simultaneously in a monaural recording. We propose a speaker-dependent and

discriminative technique to model the pitch probability at each time frame. Specifi-

cally, we use DNNs to model the posterior probability that a pair of frequency bins

(pitch states) is pitched given frame-level observations. A DNN is a feedforward neural

network that contains more than one hidden layer [43]. Recently, Han and Wang [35]

use DNNs to model the posterior probability of pitch states for single-pitch tracking

in noisy conditions, which motivates the use of DNNs for multi-pitch tracking in this

study. To leverage individual speaker characteristics, we train a DNN for each speaker

enrolled in the system, denoted by speaker-dependent DNNs or SD-DNNs. We also

train DNNs for different pairs of speakers, denoted by speaker-pair-dependent DNNs

or SPD-DNNs. We then extend the DNN based models to relax practical constraints.

To deal with untrained speakers, we train three gender-pair-dependent DNNs (male-

male, male-female and female-female, denoted by GPD-DNNs) as a generalization

of SPD-DNNs. GPD-DNNs only require gender information during testing. With

insufficient training data, direct training of SD-DNNs or SPD-DNNs may result in

overfitting. To examine this issue, we conduct a fast adaptation of GPD-DNNs for

each speaker pair with limited training data. Also, the utterances of the two speakers

in a mixture usually have different energy ratios, leading to a ratio mismatch between

training and test. We address this problem by including various speaker energy ratios

in training, denoted by the multi-ratio training.

After estimating the posterior probability of pitch states, we use an FHMM for

pitch tracking. Under the framework of the FHMM, the pitch state of each speaker
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Figure 3.1: Diagram of the proposed multi-pitch tracker.

evolves within its own Markov chain, while the emission probability is derived using

the posterior probability estimated by DNNs. We then use the junction tree algorithm

[61] to infer the most likely pitch tracks.

The rest of the chapter is organized as follows. The next section gives an overview

of the system architecture. Feature extraction is discussed in Section 3.3. The de-

tails of DNN based posterior probability estimation are introduced in Section 3.4.

Section 3.5 describes the FHMM for multi-pitch tracking. Experimental results and

comparisons are presented in Section 3.6. Finally, we conclude the chapter and discuss

related issues in Section 3.7.

3.2 System overview

A diagram of the proposed multi-pitch tracker is illustrated in Fig. 3.1. The

input to the system is a speech mixture vt sampled at 16 KHz:

vt = u1t + u2t (3.1)

where u1t and u2t are utterances of two speakers. Given the mixture, our system first

extracts frame-level features ym with a frame shift of 10 ms, which corresponds to

the first module in the diagram.

In the second stage, features are fed into DNNs to derive the posterior probability

of pitches at frame m, i. e., p(x1m, x
2
m|ym), where x1m and x2m denote pitch states of
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two speakers at frame m. Both x1m and x2m have 68 states (s1, s2, s3, . . . , s68), where

s1 refers to an unvoiced or silent state, and s2 to s68 encode different pitch frequencies

ranging from 60 to 404 Hz [35]. Specifically, we quantize the pitch frequency range

60 to 404 Hz using 24 bins per octave on a logarithmic scale, resulting in a total

of 67 bins. This frequency resolution provides two bins per semitone, and gives less

than 3% of relative frequency difference between adjacent pitch states, adequate for

continuous pitch tracking. p(x1m = si, x2m = sj|ym) equals one if groundtruth pitches

fall into the ith and jth frequency bins respectively. We propose two types of DNN

to estimate the posterior probability, which are the speaker-dependent DNNs and

the speaker-pair-dependent DNNs. We also explore several extensions. The detailed

settings of DNNs can be found in Section 3.4.

The final module converts the posterior probability p(x1m, x
2
m|ym) to the emission

probability of an FHMM p(ym|x1m, x2m). The junction tree algorithm is then applied

to infer the most likely pitch tracks. Note that in the following sections, a pitch

contour refers to a continuous pitch trajectory from the same speaker, and a pitch

track refers to a set of pitch contours from the same speaker.

3.3 Feature extraction

Features should encode the information of pitch and speaker identity at the same

time. We compare three features: cochleagram, log spectrogram and mel-frequency

cepstral coefficients in our study. Cochleagram and log spectrogram are signal repre-

sentations shown to be effective for speech separation, automatic speech recognition

and speaker recognition. Unique harmonic structure of each speaker is reflected in

both cochleagram and log spectrogram. Mel-frequency cepstral coefficients (MFCCs)
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are widely used in speech processing, and they are investigated here as a representa-

tive cepstral feature found to be useful for pitch estimation long ago [88].

3.3.1 Cochleagram

To get the cochleagram feature, we first decompose the input signal in time-

frequency domain by using a bank of 64 gammatone filters whose center frequencies

range from 50 Hz to 8000 Hz. Gammatone filters model the impulse responses of audi-

tory filters and are widely used [46]. We divide each subband signal into 20 ms frames

with a 10 ms frame shift. The cochleagram is derived by computing the energy of each

subband signal at each frame. We then loudness compress the cochleagram with a

cubic root operation to get the final 64-dimensional cochleagram feature (for a Matlab

implementation see http://web.cse.ohio-state.edu/pnl/shareware/cochleagram/).

3.3.2 Log spectrogram

To get the spectrogram feature, the signal is first divided into 32 ms frames

with a 10 ms frame shift. The frame length of log spectrogram is longer than that

of the other two features in order to produce a finer resolution of the frequency axis.

We then apply a Hamming window to each frame and derive the spectrogram using

1024-point FFT. Lastly, we compute the logarithm of the amplitude spectrum, and

pick bins 2-65 (corresponding to a frequency range up to 1000 Hz) as the frame-

level feature vector. The dimensionality of this feature is 64, and it is proposed by

Wohlmayr et al. [117] in their GMM-FHMM based multi-pitch tracker.
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3.3.3 Mel-frequency cepstral coefficients

To compute MFCCs, we divide the input signal into 20 ms frames with a 10 ms

frame shift. The power spectrogram is derived using short-time Fourier transform

filtered by a Hamming window. Next we use a bank of 64 mel scale filters to convert

the power spectrogram into mel scale. Lastly, logarithm compression and discrete

cosine transform are applied to compute 31-dimensional MFCCs [10].

3.3.4 Incorporating temporal context

To make use of the temporal context, we concatenate neighboring frames into

one feature vector. Denoting the feature vector extracted within frame m as ŷm, we

have:

ym = [ŷm−d, . . . , ŷm, . . . , ŷm+d] (3.2)

where d is chosen to be 5 (see Section 3.6.2).

3.4 DNN based pitch probability modeling

DNNs have been successfully applied in various speech processing applications.

In this section, we first introduce two types of DNN for posterior probability estima-

tion. Next we extend the models to relax practical constraints.

3.4.1 Speaker-dependent DNNs

The goal of DNNs is to model the posterior probability that a pair of pitch

states occurs at frame m, i. e., p(x1m, x
2
m|ym). However, this would be difficult without

the prior knowledge of the underlying speakers. We first focus on training speaker-

dependent DNNs to model the posterior probability.
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According to the chain rule in probability theory:

p(x1m, x
2
m|ym) = p(x1m|ym)p(x2m|x1m,ym) (3.3)

we can estimate p(x1m|ym) and p(x2m|x1m,ym) in turn to get p(x1m, x
2
m|ym). In this

study, we estimate the pitch-state probability of speaker one p(x1m|ym) by training

a DNN. The input layer of the DNN corresponds to the frame-level feature vector

of the mixture. There are four hidden layers in the DNN, and each hidden layer

has 1024 rectified linear units (ReLU) [30]. The reason we choose ReLU instead of

sigmoid is that it alleviates the overfitting problem, leading to faster and more effec-

tive training/adaptation. The output layer has 68 softmax output units, denoted by

(O1
1, O

2
1, . . . , O

68
1 ), where Oj

1 estimates p(x1m = sj|ym). Hence there are 67 ’0’s and

a ’1’ in the desired output. The value ’1’ corresponds to the frequency bin of the

groundtruth pitch. We use cross-entropy as the cost function. The standard back-

propagation algorithm and dropout regularization [44] are used to train the network,

with no pretraining. We adopt mini-batch stochastic gradient descent along with a

momentum term (0.9) for the optimization. The choice of DNN parameters is justi-

fied in Section 3.6.2. The training data contain mixtures of speaker one and a set of

interfering speakers.

Fig. 3.2 compares the groundtruth and estimated pitch-state probabilities of

speaker one in a female-female test mixture. As shown in the figure, the DNN rather

accurately models the conditional probability of x1m, even without knowing x2m. There-

fore the same type of DNN can be used to model p(x1m|x2m,ym) or p(x2m|x1m,ym).

In the next step, we train another DNN to model p(x2m|x1m,ym) using exactly

the same structure and training methodology as for the first DNN. The output of the

DNN is denoted by (O1
2, . . . , O

68
2 ). The original posterior probability p(x1m, x

2
m|ym)
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Figure 3.2: Pitch probability modeling of the first speaker in a female-female mixture
at 0 dB. (a) Groundtruth probabilities of pitch states. (b) Probabilities of pitch states
estimated by a DNN.

can then be obtained by:

p(x1m = si, x2m = sj|ym) = Oi
1O

j
2 (3.4)

Because we train a DNN for each enrolled speaker, we denote this model as the

speaker-dependent DNN (SD-DNN).

3.4.2 Speaker-pair-dependent DNNs

A speaker-pair-dependent DNN (SPD-DNN) is a DNN trained on a specific pair

of speakers. The structure of an SPD-DNN is quite similar to that of an SD-DNN. The

input layer corresponds to the frame-level feature vector. There are four hidden layers

with 1024 ReLU units. Instead of estimating the probability for only one speaker, we

concatenate the pitch-state probabilities of the other speaker into the DNN output.

The resulting output layer has 136 units, denoted by (O1
1, . . . , O

68
1 , O

1
2, . . . , O

68
2 ). To
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correctly model the probability distribution, the activation function of the output

layer is a softmax function. Assuming that output units before applying the activation

function have values (v11, . . . , v
68
1 , v

1
2, . . . , v

68
2 ), we have:

Oj
i =

exp(vji )∑68
k=1 exp(v

k
i )

, for i = 1 or 2, 1 ≤ j ≤ 68 (3.5)

Other training details exactly follow SD-DNNs. The posterior probability of pitch

states is estimated by:

p(x1m = si, x2m = sj|ym) = Oi
1O

j
2 (3.6)

Because SPD-DNNs are trained on speaker pairs, they should accurately capture

the underlying speaker information. On the other hand, for a system with N speakers

enrolled, we need to train N SD-DNNs, but N(N−1)
2

SPD-DNNs.

3.4.3 Extensions

SD-DNNs and SPD-DNNs utilize detailed speaker information to estimate the

posterior probability of pitch states. In this section, we introduce extensions to relax

their practical constraints.

Gender-pair-dependent DNN

SD-DNNs and SPD-DNNs are not applicable to untrained speakers. To deal

with this constraint, we extend our speaker-dependent models to gender-dependent

ones. In this way, only the genders of the two underlying speakers are needed during

testing.

A straightforward way to design a gender-dependent model is to follow the struc-

ture of SD-DNNs and train two DNNs for male and female speakers, respectively. This

idea works well for male-female mixtures, but can not distinguish the two speakers of
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the same gender. Therefore we build our gender-dependent model by extending SPD-

DNNs to gender-pair-dependent DNNs or GPD-DNNs. We train three GPD-DNNs

for different gender pairs: male-female, male-male and female-female. The structure

of a GPD-DNN is chosen to be the same as an SPD-DNN for simplicity. For the

male-female GPD-DNN, the pitch-state probabilities of the male speaker correspond

to the first 68 output units, and the female speaker the remaining output units.

For same-gender GPD-DNNs, the first 68 output units correspond to the speaker

with lower average pitch, and the other output units correspond to the speaker with

higher average pitch. Although this layout may lead to incorrect speaker assignment

at some frames, it provides a reasonable way to distinguish two speakers with the

little information available. Other training aspects exactly follow SPD-DNNs.

Adaptation of GPD-DNNs with limited training data

SD-DNNs and SPD-DNNs would overfit if we could not collect enough training

data. One way to address this problem is to perform speaker adaptation of GPD-

DNNs with limited data. Speaker adaptation of DNNs has been studied in automatic

speech recognition. Two typical approaches include incorporating speaker-dependent

information into DNN’s input [1, 93] and regularized retraining [71, 121]. In the

first approach, speaker dependent information, like i-vectors and speaker codes, is

incorporated into the input of DNNs and the original features are projected into a

speaker-normalized space. In regularized retraining, the weights of DNNs are modified

using the adaptation data. To ensure that the adapted model does not deviate too

much from the original model, a regularization term is added to the cost function.

Both approaches substantially improve the performance of unadapted DNNs.
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We use regularized retraining to perform speaker adaptation. For each new

speaker pair, we retrain all the weights of the corresponding GPD-DNN on limited

adaptation data with a relatively small learning rate (0.001) and a weight decay (L2

regularization) of 0.0001. Other training aspects follow those for training SPD-DNNs.

Multi-ratio training

Utterances of the two speakers in a mixture usually have different energy ratios.

A ratio mismatch between training and test may result in performance degradation

for supervised algorithms. Under the framework of GMM-FHMM, Wohlmayr and

Pernkopf [115] alleviate this problem by adding a gain parameter to the mean vectors

of each GMM. An expectation-maximization (EM) based algorithm is then performed

to estimate the gains for each test mixture. They further extend the EM-like frame-

work to adapt model parameters to untrained acoustic environments and speakers

[116]. However, it is unclear how to apply these techniques to DNNs.

Generally speaking, the performance of supervised learning is sensitive to the

information contained in the training set. Therefore a simple and effective way for

improving generalization is to enlarge the training set by including various acoustic

conditions [14]. In this study, we perform multi-condition training by creating mix-

tures at different speaker energy ratios, denoted by multi-ratio training. The resulting

DNNs are denoted by ratio-adapted DNNs. The details of multi-ratio training are

given in Section 3.6.

3.5 Factorial HMM inference

Once all posterior probabilities are estimated by DNNs, we use a factorial HMM

to infer the most likely pitch tracks. A factorial HMM is a graphical model that
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Figure 3.3: A factorial HMM with two Markov chains.

contains several Markov chains [29]. In this study, we only discuss the case of two

Markov chains, as shown in Fig. 3.3.

The hidden variables (x1m, x2m) are the pitch states of two speakers, and the

observation variable is the feature vector ym. The Markov assumption implies that

ym is independent of all variables given x1m and x2m. Assuming the total number of

frames is M , we denote the sequence of variables in boldface: X =
⋃M
m=1{x1m, x2m},

Y =
⋃M
m=1{ym}. The overall joint probability of the model is given by:

p(X,Y) = p(x11)p(x
2
1)p(y1|x11, x21)

M∏
m=2

p(x1m|x1m−1)p(x2m|x2m−1)p(ym|x1m, x2m) (3.7)

Prior probabilities and transition matrices of the hidden variables are computed

from single-speaker recordings in the training set either speaker-dependently (for SD-

DNNs and SPD-DNNs) or gender-dependently (for GPD-DNNs). To avoid a prob-

ability of zero, Laplace smoothing is applied during the computation, where we add

one to each possible observation. The emission probability can be computed using

the estimated posterior probability and Bayes rule:

p(ym|x1m, x2m) =
p(x1m, x

2
m|ym)p(ym)

p(x1m)p(x2m)
(3.8)

43



where p(ym) is a constant for all feature vectors.

Once all probabilities are derived, we apply the junction tree algorithm to infer

the most likely sequence of pitch states. The first step of this algorithm is to convert

the directed graphical model to an undirected graphical model. In the next step,

the nodes in the undirected graph are arranged to form a junction tree, where belief

propagation is performed. For more details on the junction tree algorithm, we refer

the interested reader to [61] and [117]. The time complexity of the junction tree

algorithm is O(2 × 683 × M) in our study. We then convert derived pitch states

to the mean frequencies of the corresponding frequency bins. Because the resulting

frequencies correspond to a rough sampling of possible pitch frequencies, we use a

moving average window of length three to smooth frequencies and get final pitch

estimates.

3.6 Evaluations and comparisons

3.6.1 Corpus and error measurement

For evaluations, we first use the GRID database [20], which is also used in [117]

hence facilitating our comparisons. The corpus consists of 1000 sentences spoken by

each of 34 speakers (18 male, 16 female). Two male and two female speakers (No. 1,

2, 18, 20, same as [117]), denoted by MA1, MA2, FE1 and FE2, are selected to train

and test the proposed methods, except for GPD-DNNs which are tested on the same

four speakers but trained on another set of speakers. We denote these four speakers

as Set One. For each speaker in Set One, 950 sentences are selected for training,

40 sentences are used for choosing the best DNN weights during training, and the

remaining ten sentences are used for testing. Note that all test sentences used in [117]
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are also included in our test set. Another ten male and nine female speakers (No. 3,

5, 6, 9, 10, 12, 13, 14, 17, 19; 4, 7, 11, 15, 16, 21, 22, 23, 24)1 are used in the training

of SD-DNNs and GPD-DNNs, where again for each speaker we select 950 sentences

for training, and 40 sentences for selecting the best DNN weights. We denote these

nineteen speakers as Set Two. Reference pitches are extracted from single-speaker

sentences using RAPT [101], which outperforms other pitch trackers on clean speech

signals [23]. Although RAPT makes minor mistakes like pitch halving and doubling,

these errors are not severe. Since the main challenge in multi-pitch tracking is the

interference of another pitched sound, we treat thus derived pitch as groundtruth.

To mix two sentences u1t and u2t , we first select a speaker ratio R in dB, and

amplify one of the speakers by R dB. A mixture with a speaker ratio of R dB is created

by combining the resulting sentences using: vt = 10R/20u1t + u2t or vt = u1t + 10R/20u2t .

Note that if we choose a speaker ratio of 0 dB, the two equations to derive vt are

the same. For comparison reasons, we use a matched speaker ratio of 0 dB in the

training and test of SD-DNNs, SPD-DNNs, GPD-DNNs and adaptation of GPD-

DNNs. Unmatched speaker ratios are used to test multi-ratio training. The details

of the training and test set are as follows:

• SD-DNNs: training mixtures are created by mixing each sentence of the target

speaker in Set One with 60 random sentences in Set Two at 0 dB. Thus there are

57000 training mixtures created for every target speaker. The test is conducted

within Set One. We exhaustively mix test sentences for each speaker pair in

Set One at 0 dB, resulting in a total of 10×10×6 = 600 test mixtures.

1This list follows the gender-dependent training set in [117]. However, since speaker No. 8 is
wrongly marked as a female speaker in their training set, we eliminate this speaker in our study.
Results show that the elimination leads to little performance change.
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• SPD-DNNs: for each speaker pair in Set One, we build the training set by mixing

sentences of the two speakers at 0 dB. We make sure that each sentence of one

speaker is randomly mixed with 60 sentences of the other speaker. Therefore

57000 mixtures are created to train each speaker pair. We use the same test set

as for SD-DNNs.

• GPD-DNNs: the training is conducted within Set Two. For the male-female

case, we randomly create 57000 mixtures at 0 dB. For the same-gender case, we

divide the training speakers into two groups, with the first group having higher

average pitch. We then create 57000 training mixtures by randomly mixing the

utterances in the first group and those in the second group at 0 dB. The same

test set is used as for SD-DNNs.

• Adaptation of GPD-DNNs: For each speaker pair in Set One, we randomly

select 100 mixtures from the SPD-DNN’s training set as the adaptation data.

The same test set is used as for SD-DNNs.

• Multi-ratio training: the training is conducted for both SD-DNNs and SPD-

DNNs. Mixtures are no longer created at 0 dB in this experiment. Instead,

we randomly amplify one of the two speakers with a random ratio out of

R = {-12,6,0,6,12} dB for each training mixture. As for the test set, we al-

ternately amplified one of the two sentences with a ratio out of R = {-15,-12,-

9,-6,−3,0,3,6,9,12,15} dB, which gives 10×10×6×2 = 1200 mixtures at each

speaker energy ratio, and 13200 mixtures in total; note that each mixture at 0

dB appears twice in test.

46



In addition, we test our proposed methods using the FDA database [5] where

the groundtruth pitches are derived from laryngograph data.

We evaluate pitch tracking results using the error measure proposed in [117],

which jointly evaluates the performance in terms of pitch accuracy and speaker as-

signment. Assuming that the ground truth pitch tracks are F 1
m and F 2

m, we globally

assign each estimated pitch track to a groundtruth pitch track based on the minimum

mean square error and denote the assigned estimated pitch tracks as f 1
m and f 2

m. The

pitch frequency deviation of speaker i, i∈{1, 2}, is:

∆f im =
|f im − F i

m|
F i
m

(3.9)

The voicing decision error Eij, i 6= j, denotes the percentage of time frames where i

pitch points are wrongly detected as j pitch points. For each speaker i, the permu-

tation error Ei
Perm is set to one at time frames where the voicing decision for both

estimates is correct, but ∆f im exceeds 20%, and f im is within the 20% error bound of

the other reference pitch, i. e., the error is due to incorrect speaker assignment. The

overall permutation error EPerm is the percentage of time frames where either E1
Perm

or E2
Perm is one. Next, for each speaker i, the gross error Ei

Gross is set to one at time

frames where the voicing decision for both estimates is correct, but ∆f im exceeds 20%

with no permutation error. The overall gross error EGross is the percentage of time

frames where either E1
Gross or E2

Gross is one. The fine detection error Ei
F ine is defined

as the average of ∆f im in percent at time frames where ∆f im is smaller than 20%.

EFine = E1
Fine + E2

Fine. The total error is used as the overall performance measure:

Etotal = E01 + E02 + E10 + E12 + E20 + E21 + EPerm + EGross + EFine (3.10)
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3.6.2 Parameter selection

Because all proposed DNNs have similar structure, we conduct parameter selec-

tion for SPD-DNNs only. The best performing parameters are used in other models.

We use a new pair of male speakers (No. 26 and 28 in the GRID corpus) as the

development set. For each speaker, 950 sentences are used for training, 40 sentences

are used for choosing the best DNN weights during training and 10 sentences are

used for test. Besides the matched 0 dB training and test condition, we also train

the SPD-DNN with multi-ratio training. The details of the training and test set fol-

low Section 3.6.1. The results of multi-ratio training are averaged across all speaker

ratios.

The size of the training set has strong impact on DNN’s performance. We create

five training sets by randomly mixing each sentence of one speaker with 5, 20, 40, 60

and 80 sentences of the other speaker, resulting in 4750, 19000, 38000, 57000, 76000

mixtures. An SPD-DNN is trained for each training set. The results are given in

Fig. 3.4a. In general, the total error decreases with the increase of the training size,

and the improvement becomes small when the training size reaches 57000. Taking

the computational cost into consideration, we choose 57000 training mixtures in the

subsequent experiments.

Features are important to the system. As shown in Fig. 3.4b, we compare three

features: cochleagram, log spectrogram and MFCCs. We adopt the cochleagram

feature in the subsequent experiments as it outperforms other two features.

To incorporate temporal dynamics, a context window is applied to the input

feature. We have explored three values of the window size d (see Section 3.3.4). In

Fig. 3.4c, the total error substantially decreases when d is increased from 3 to 5, and
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Figure 3.4: Average Etotal of SPD-DNNs with different (a) sizes of training set, (b)
features, (c) sizes of context window, (d) numbers of hidden units, (e) numbers of
pitch states.
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remains the same when d reaches 7. Therefore we choose d = 5 for the cochleagram

feature.

Next, we investigate the number of hidden units used in SPD-DNNs. Three

numbers are compared: 512, 1024 and 1536. As shown in Fig. 3.4d, the total error

is reduced by more than 1.1% when the number is increased from 512 to 1024. How-

ever, further increasing the number of hidden units does not significantly boost the

performance.

As described in Section II, we follow [35] to use 68 pitch states to quantize the

frequency range from 60 to 404 Hz. Another speaker-dependent multi-pitch tracking

algorithm [117] quantizes the frequency range from 80 to 500 Hz into 170 pitch states.

We compare the two pitch quantizations using SPD-DNNs. The results are given in

Fig. 3.4e. Basically, more pitch states do not lead to better performance, probably

because the frequency resolution with 170 pitch states is too fine for DNNs to make

accurate probability estimates.

Other parameters, including the type of activation functions, the number of hid-

den layers, learning rate and mini-batch, are also chosen from the same development

set.

3.6.3 Results and comparisons

We present our results, and compare with two state-of-the-art multi-pitch track-

ers: Jin and Wang [60] and Wohlmayr et al. [117]. Jin and Wang’s approach is

designed for noisy and reverberant signals. They use correlogram to select reliable

channels and track continuous pitch contours with an HMM. Wohlmayr et al. model
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speakers with GMMs, and use a mixture maximization model to obtain a proba-

bilistic representation of pitch states. An FHMM is then applied to track pitch over

time. The GMM-FHMM structure could also be extended to be gender-dependent.

We denote Wohlmayr et al.’s speaker-dependent and gender-dependent models as

Wohlmayr et al. SD and Wohlmayr et al. GD, respectively. Wohlmayr et al. train

their models on the GRID database with groudtruth pitches obtained also by RAPT.

The test mixtures used in their study are included in our test set, and we directly

adopt the trained GMM/FHMM models posted on their website for comparison.

Table 3.1: ETotal for different multi-pitch trackers on 600 test mixtures of the GRID
Corpus.

E01 E02 E10 E12 E20 E21 EGross EFine EPerm ETotal

Jin and Wang
Mean 4.54 1.25 6.97 5.51 1.94 12.81 4.80 6.93 6.47 51.21

Std 2.34 1.38 3.55 3.33 2.16 5.54 4.65 3.17 5.34 11.71

Wohlmayr et al. SD
Mean 1.81 0.06 5.89 2.68 1.39 10.81 0.93 2.79 0.37 26.73

Std 1.64 0.26 3.42 2.18 2.06 5.26 1.14 0.73 0.79 9.49

SD-DNN
Mean 1.98 0.13 2.01 5.70 0.07 2.74 0.72 2.32 1.01 16.69

Std 1.61 0.40 2.02 5.57 0.27 2.06 1.25 0.84 2.23 7.90

SPD-DNN
Mean 1.69 0.07 1.59 3.19 0.05 2.55 0.52 1.95 0.15 11.77

Std 1.42 0.26 1.54 2.09 0.24 1.94 0.91 0.33 0.54 3.29

We first evaluate the SD-DNN and SPD-DNN based methods. Table 3.1 com-

pares the SD-DNN and SPD-DNN based methods with the other multi-pitch track-

ers on 600 test mixtures. Speaker-dependent approaches perform substantially bet-

ter than the speaker-independent approach, and our SD-DNN and SPD-DNN based

methods cut ETotal by more than 10% compared to Wohlmayer et al. SD. The ma-

jor improvement in ETotal comes from E21, which implies that our methods estimate

pitch more accurately when the two speakers are both voiced. The SPD-DNN method
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Figure 3.5: Etotal of different approaches tested on six pairs of speakers. Error bars
depict the mean and standard deviation of a method on the test mixtures of a given
speaker pair.

performs better than the SD-DNN method, which is not surprising as SPD-DNNs are

trained on individual speaker pairs. We further illustrate ETotal for each of the six

speaker pairs in Fig. 3.5. As shown in the figure, our methods have lower errors across

all pairs. SD-DNNs and SPD-DNNs perform comparably on five speaker pairs, and

the latter achieve significantly lower ETotal on the most difficult pair of MA1-MA2.

Fig. 3.6 illustrates pitch tracking results on a test mixture of MA1-MA2. Jin and

Wang’s approach fails to assign pitches to the underlying speakers. Wohlmayr et al.’s

approach works better in terms of speaker assignment, but performs poorly when

two pitch tracks are close to each other. Moreover, their resulting pitch contours

lack continuity. The SD-DNN produces much smoother pitch contours. However, it

still has incorrect speaker assignment at a few frames. The SPD-DNN generates very

good pitch tracks in both pitch accuracy and speaker assignment.
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Figure 3.6: Multi-pitch tracking results on a test mixture (pbbv6n and priv3n) of
the MA1-MA2 speaker pair. (a) Groundtruth pitch (lines and dotted lines) and
estimated pitch (circles and crosses) by Jin and Wang. (b) By Wohlmayr et al. SD.
(c) By SD-DNN. (d) By SPD-DNN.

To further analyze the above-mentioned improvement achieved by our proposed

methods, we compare our SD-DNN based method with Wohlmayr et al. SD using the

same feature, namely the log spectrogram feature described in Section 3.3.2, and the

same training data, i. e., 497 training utterances per speaker. Specifically, we train

the SD-DNN based method using three settings: (1) 497 training utterances per

speaker with log spectrogram feature, (2) 497 training utterances per speaker with
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Table 3.2: Average ETotal for SD-DNN and Wohlmayr et al. SD on 600 test mixtures
of the GRID Corpus.

Training utterances per speaker 497 950

Feature type Log spectrogram Cochleagram Cochleagram

SD-DNN 19.02 17.22 16.69

Wohlmayr et al. SD 26.73 - -

cochleagram feature, and (3) 950 training utterances per speaker with cochleagram

feature (the proposed training setting). Results on the 600 test mixtures are shown in

Table 3.2. When using exactly the same feature and training data, the SD-DNN based

method significantly outperforms Wohlmayr et al. SD. If we replace SD-DNN’s input

feature with cochleagram, the total error further decreases. Lastly, increasing the

training size slightly boosts SD-DNN’s performance. In conclusion, although features

and training sizes have an effect, the use of DNNs makes the most contribution to

performance gains.

Next, we evaluate three extensions to the previous models. Fig. 3.7 shows the

performance of the GPD-DNN based method. It significantly outperforms Wohlmayer

et al.’s gender dependent model on all speaker pairs. The average ETotal of GPD-DNN

is 15.89% lower than Wohlmayr et al.’s gender-dependent model, and even 5.46% lower

than Wohlmayr et al.’s speaker-dependent model. However, the performance gap

between GPD-DNNs and SD-DNNs/SPD-DNNs is larger than 4.5%. Therefore one

should use SD-DNN/SPD-DNN based methods when speaker-dependent information

is available.

Fig. 3.8 shows the performance of GPD-DNN adaptation. Four models are

compared across all speaker pairs: (1) GPD-DNNs, (2) SPD-DNNs directly trained
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Figure 3.7: Etotal of gender-dependent approaches. Error bars depict the mean and
standard deviation of a method on the test mixtures of a speaker pair.

with 100 mixtures per speaker pair, (3) GPD-DNNs adapted with 100 mixtures per

speaker pair, (4) SPD-DNNs trained with 57000 mixtures per speaker pair. As shown

in the figure, SPD-DNNs trained with limited data perform better than GPD-DNNs

on same-gender mixtures, but worse than GPD-DNNs on different-gender mixtures.

GPD-DNN adaptation consistently outperforms the first two methods, resulting in 5%

reduction in average ETotal. The results indicate the power of GPD-DNN adaptation

for small training sizes.

Generalization to different speaker energy ratios is crucial to supervised multi-

pitch trackers. Fig. 3.9 shows the performance of SD-DNN, SPD-DNN, and Wohlmayr

et al.’s speaker-dependent models at various speaker ratios. All models are trained at

0 dB, and results are averaged across all speaker pairs at each speaker ratio. As shown

in the figure, the total error increases significantly when the speaker ratio deviates

from 0 dB. Errors are not symmetric with respect to 0 dB, as we only scale the level
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Figure 3.8: Performance of GPD-DNN adaptation. Error bars depict the mean and
standard deviation of a method on the test mixtures of a speaker pair.

of one speaker in order to create a specified ratio. For Wohlmayr et al.’s speaker-

dependent model, when the speaker ratio is positive, the mixture becomes dominated

by the amplified speaker, misleading the GMM of the weak speaker. For the SD-DNN

and SPD-DNN based methods, it is hard for DNNs to recognize the weak speaker

when the speaker ratio is too low. We then apply multi-ratio training for SD-DNNs

and SPD-DNNs, and compare them with Jin and Wang’s unsupervised multi-pitch

tracker as well as the gain-adapted version of Wohlmayr et al.’s speaker-dependent

models [115]. Note that, unlike multi-ratio training, gain adaptation in [115] uses an

expectation-maximization based framework to estimate gains in test mixtures, thus

no additional training is needed. The results are given in Fig. 3.10. The performance

of multi-ratio trained DNNs remains high across all speaker ratios. At 0 dB, multi-

ratio trained SD-DNNs and SPD-DNNs produce only 0.03% and 0.34% higher errors
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Figure 3.9: Results of different approaches tested on eleven speaker ratios. Each data
point represents Etotal averaged across 1200 test mixtures.

than SD-DNNs and SPD-DNNs trained in the matched 0 dB condition, indicating

their strong generalization ability.

Noise robustness is also an important issue in multi-pitch estimation. We evalu-

ate Jin and Wang’s model, Wohlmayr et al.’s speaker dependent model, the SD-DNN

based model and the SPD-DNN based model, when a speech shape noise (SSN) and

a babble noise are mixed with two-speaker utterances. SSN is a stationary noise

with no pitch, and babble noise is nonstationary with pitched portions. Specifically,

we generate 100 test mixtures of MA1-MA2 at the speaker ratio of 0 dB. The test

mixtures are then mixed with SSN and babble noise at the SNR of 5, 10, 20 and

Inf dB. Here the SNR refers to the ratio of two-speaker-mixture power to the noise

power, and Inf dB corresponds to the noise-free condition. Importantly, no retraining

is performed for any system. The multi-pitch tracking results in background noise
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Figure 3.10: Results of different approaches tested on eleven speaker ratios. Each
data point represents Etotal averaged across 1200 test mixtures.

are given in Fig. 3.11. As shown in the figure, our methods remain robust to both

kinds of noise, and outperform the comparison models.

In the above experiments, we use RAPT to extract the groundtruth pitch from

single speaker recordings, which is not error-free as mentioned previously. We now

evaluate our methods on the FDA database [5], where the groundtruth pitch is directly

given by laryngograph data. The corpus consists of recordings of 50 sentences by each

of two speakers (a male and a female). For each speaker, we choose 40 sentences for

testing and 40 test mixtures are created by mixing the test sentences at 0 dB. Because

the dataset is not large enough for training SD-DNNs and SPD-DNNs, we conduct

experiments with GPD-DNN and GPD-DNN adaptation. A ratio-adapted GPD-

DNN trained on the GRID database is used for pitch-state probability estimation.

We also perform speaker adaptation of the GPD-DNN with 10 adaptation sentences

per speaker, i. e., 10×10 adaptation mixtures. We compare the two methods with
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(a) (b)

Figure 3.11: ETotal of different approaches tested on the MA1-MA2 speaker pair
mixed with (a) speech shape noise, (b) babble noise.

Jin and Wang’s speaker-independent model as well as the gain-adapted version of

Wohlmayr et al.’s gender-dependent model. ETotal of different approaches is shown

in Fig. 3.12. Results indicate that our GPD-DNN based method outperforms other

approaches. The adaptation of the GPD-DNN further reduces the average total error

by 8.69%.

In addition to ETotal, we use another metric to compare the performance in this

experiment: overall multi-pitch accuracy used by [25]. To compute this accuracy,

we first assign each estimated pitch track to a groundtruth pitch track. For each

estimated pitch track, we call a pitch estimate at a frame correct if it deviates less

than 10% from its corresponding groundtruth pitch. The overall multi-pitch accuracy

is defined as:

Accuracy =
TP

TP + FP + FN
(3.11)
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Figure 3.12: Results of different approaches tested on the FDA corpus. (a) Jin and
Wang. (b) Wohlmayr et al. GD with gain adaptation. (c) Ratio-adapted GPD-DNN.
(d) Speaker adaptation of GPD-DNN. Error bars depict the mean and standard
deviation of a method on the test mixtures.

where TP (true positive) is the total number of correctly estimated pitches, FP (false

positive) is the total number of pitches that appear in some estimated pitch track but

do not belong to the corresponding groundtruth pitch track, and FN (false negative)

denotes the total number of pitches that appear in some groundtruth pitch track but

do not belong to the corresponding estimated pitch track. Different assignments of

estimated pitch tracks give us different accuracies, and we choose the highest value to

represent the overall accuracy. Similar to Fig. 3.12, the GPD-DNN and GPD-DNN

adaptation achieve accuracies of 70.02% and 82.61%. The other two approaches have

accuracies lower than 50%.

Table 3.3: Running time comparion for different approaches.

Jin-Wang Wohlmayr et al. SD SD-DNN SPD-DNN

Time (s) 7.77 20.12 0.60 0.43
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Lastly, we compare the computational complexity of different approaches. We

directly use Jin and Wang’s [60] and Wohlmayer et al.’s [117] program on their au-

thors’ websites. Jin and Wang’s [60] program is implemented in Java, and Wohlmayer

et al.’s [117] program is implemented in Matlab. Our program is a mixture of Matlab

and Caffe (a deep learning framework). One hundred mixtures with the total length

of 179.7 s are created for this evaluation. The test is performed on a machine with an

Intel i7-4770k CPU (3.5 GHz) and 32 GB memory. All computations are performed

on the CPU within a single thread. Table 3.3 shows the average processing time per

one second mixture. Results indicate that our methods are a lot more efficient. There

are two main reasons why Wohlmayr et al. SD is slower. First, the number of pitch

states used in Wohlmayr et al.’s SD is 170, while in our study it is 68. Second, the

mixmax interaction model in Wohlmayr et al.’s SD occupies 85% of total running

time. In our study the corresponding module is DNN, and it only takes less than 0.4

second for one second mixture.

In addition to the above comparisons, we have compared with [52], where a

clustering algorithm is used to group short pitch contours into two speakers. We

found that this method performs better than Jin and Wang’s method, but worse than

Wohlmayr et al.’s speaker-dependent method. NMF based approaches have been used

in multi-pitch tracking [91, 95]. Since a gain-adapted GMM-FHMM based approach

has been shown to match the performance of an NMF-FHMM based approach at

various speaker energy ratios [91, 115], we do not directly compare our methods with

NMF based algorithms.
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3.7 Concluding remarks

We have proposed speaker-dependent and speaker-pair-dependent DNNs to esti-

mate the posterior probabilities of pitch states for two simultaneous speakers. Taking

advantage of discriminative modeling and speaker-dependent information, our ap-

proach produces good pitch estimation in terms of both accuracy and speaker assign-

ment, and significantly outperforms other state-of-the-art multi-pitch trackers. The

SPD-DNN based method performs especially well when the two speakers have close

pitch tracks. In order to relax constraints, we have introduced three extensions to

SD-DNNs and SPD-DNNs. Gender-pair-dependent DNNs are designed for untrained

speakers during testing, and they perform substantially better than other speaker-

independent and gender-dependent approaches on both GRID and FDA databases.

Given limited speaker-dependent training data, speaker adaptation is effective for re-

ducing tracking errors. Lastly, multi-ratio trained SD-DNNs and SPD-DNNs produce

consistent results across various speaker ratios.

To apply our speaker-dependent models requires that the identities of the two

speakers be known beforehand. Recently, Zhao et al. [125] propose a DNN-based

cochannel speaker identification algorithm, which can reliably identify the speakers

in two-speaker mixtures. Such an algorithm could be used to first identify the two

speakers in an input mixture, thus helping select trained SD-DNNs or SPD-DNNs

for pitch estimation. When the speakers in a mixture are not enrolled, we can use

a similar cochannel gender pair detection algorithm as a front end for gender-pair-

dependent multi-pitch tracking. Our experiments show that the accuracy of such a

gender pair detector is perfect.
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Figure 3.13: Multi-pitch tracking results by SD-DNNs on a three-speaker test sample
by mixing MA1, FE1 and FE2 at equal sound levels.

Although the proposed models are designed for two-speaker mixtures, they can

be extended to mixtures with more than two speakers. To illustrate this extension,

Fig. 3.13 shows an example when three speakers, i. e., MA1, FE1 and FE2 in the

GRID database, are mixed in one test sample with equal energy ratio between every

pair of speakers. We first use three SD-DNNs trained on the GRID database to esti-

mate pitch-state probabilities for the three speakers. An FHMM with three Markov

chains is then employed to connect all probabilities. No retraining is performed for

this experiment. As shown in the figure, our algorithm does a decent job tracking

three pitch tracks simultaneously. Extensions to more speakers can be achieved in

a similar manner. It is worth noting that this relatively straightforward extension

is an advantage of our speaker-dependent modeling and our use of FHMM that is

not shared by the HMM based model in [60]. Many multi-pitch trackers deal with

interfering speakers and additive noise at the same time [60, 119]. We have illustrated

the noise-robustness of our models without retraining. Better results are expected if

we further include noise corrupted mixtures in the training data set.
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To make use of the temporal context, we concatenate neighboring frames into a

feature vector. Such a method can only capture temporal dynamics in a limited span.

On the other hand, RNNs have self connections through time. Studies have shown

that RNNs are good at modeling sequential data like handwriting [33] and speech

[104]. We explore RNNs for multi-pitch tracking in the next chapter.
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Chapter 4: Permutation Invariant Training for

Speaker-independent Multi-pitch Tracking

Speaker-independent multi-pitch tracking has been a long-standing problem in

speech processing. In this study, we extend the NN-FHMM framework in the previous

chapter, and use the utterance-level permutation invariant training (uPIT) criterion

for multi-pitch tracking. Separated speech and label permutations from a speaker

separation uPIT-RNN have been further incorporated to improve pitch tracking. We

evaluate our methods on the GRID database. Results indicate that the proposed

joint speaker separation - pitch tracking system with matched uPIT label permuta-

tions outperforms all other gender-dependent and speaker-independent multi-pitch

trackers. The improvement is more significant for challenging same-gender mixtures.

The work presented in this chapter has been published in [78].

4.1 Introduction

In this chapter, we apply the uPIT method to train a speaker-independent (SI)

BLSTM-RNN for multi-pitch tracking. We follow the framework in the previous

chapter, and compare an SI uPIT-BLSTM with SPD-BLSTM and GPD-BLSTM for

pitch state estimation. Later, we find that by performing multi-pitch tracking alone,

uPIT does not lead to good results for same-gender speaker pairs. We extend our

65



system by using speaker separation (SS) uPIT-BLSTM as a front end. Three new

structures are explored. For the first structure, we directly apply the RAPT [101]

single-pitch tracking algorithm after uPIT based speaker separation. The second

structure combines SS with multi-pitch tracking, by using the outputs of uPIT-SS as

additional features for uPIT based multi-pitch tracking. Lastly, we modify the second

structure by using the label permutation in uPIT-SS for the multi-pitch tracking

network. Consistent improvements are achieved with the third structure.

In the remainder of this chapter, after giving an overview in Section 4.2, the

uPIT based systems are introduced in Section 4.3. Section 4.4 describes the FHMM

for multi-pitch tracking. Experimental results and comparisons are presented in Sec-

tion 4.5. A conclusion is given in Section 4.6.

4.2 Speaker-pair and gender-pair dependent pitch probabil-
ity estimation

4.2.1 Overview

The pitch tracking algorithm in the previous chapter consists of two stages:

pitch probability estimation and FHMM. We review the first stage in this section.

The input to the system is a speech mixture vt: vt = u1t + u2t , where u1t and u2t are

utterances of two speakers. Given the mixture, our system first extracts frame-level

log magnitude short-time discrete Fourier transform (STFT) features ym. We then

feed ym into neural networks to estimate the posterior pitch probabilities at frame m,

i. e., p(x1m, x
2
m|ym). x1m and x2m denote pitch states of the two speakers at frame m. We

quantize the frequency range 60 to 404 Hz into 67 bins using 24 bins per octave on a

logarithmic scale. Each bin corresponds to one pitch state. An additional pitch state

represents silence or unvoiced speech. p(x1m(s1), x
2
m(s2)|ym) equals one if groundtruth
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pitches fall into the sth1 and sth2 frequency bins respectively. Since BLSTM-RNNs [45]

make better use of the temporal context, we use BLSTM-RNNs instead of DNNs in

this study.

An SPD-BLSTM is a BLSTM-RNN trained on a specific pair of speakers. Apart

from the network structure, an SPD-BLSTM is the same as the SPD-DNN in the

previous chapter. There are two 68-unit softmax output layers in SPD-BLSTM, with

each one estimating the pitch state of the ith speaker p(xim|ym). Denoting the ith

output layer at frame m by Oi
m, we can write the frame-level cross-entropy loss as:

Jm = −
2∑
i=1

68∑
s=1

p(xim(s)|ym) log(Oi
m(s)) (4.1)

where s indices 68 pitch states. The final frame-level pitch probability is estimated

by:

p(x1m, x
2
m|ym) = O1

mO
2
m (4.2)

The SPD-BLSTM multi-pitch model is denoted by SPD-PITCH in this chapter.

SPD-PITCH is not applicable to untrained speakers, we thus introduce GPD

BLSTM-RNNs (similar to the GPD-DNNs in the previous chapter) to relax this

constraint, denoted by GPD-PITCH.

4.3 uPIT for SI pitch probability estimation

4.3.1 uPIT based SI multi-pitch tracking

The output-speaker pairing in GPD-PITCH provides a reasonable way to dif-

ferentiate two speakers with little information available. It leads to good results for

different-gender mixtures since speech of male and female is intrinsically different in

terms of pitch range, timbre, etc. However, for same-gender mixtures, GPD-PITCH’s
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output-speaker pairing is suboptimal. The order of average pitch of two same-gender

speakers usually varies across utterances. Moreover, other important characteristics

of speech, including timbre, unvoiced speech, etc., can not be reflected by average

pitch.

Utterance-level permutation invariant training (uPIT) [64] has been proposed to

replace rule-based label arrangements. In uPIT, the two training labels are provided

as a whole set instead of an ordered list, and the output-label pairing i ↔ θi, for a

given utterance, is defined as the pairing that minimizes the utterance-level training

loss over all possible speaker permutations P . Taking the cross-entropy loss as an

example, the optimal permutation is presented as:

θ∗ = argmin
θ∈P

−
∑
m

2∑
i=1

68∑
s=1

p(xθ
i

m(s)|ym) log(Oi
m(s)) (4.3)

θ∗ is used for all frames within a training utterance. The frame-level loss can then be

calculated as:

JuPITm = −
2∑
i=1

68∑
s=1

p(xθ
i
∗
m(s)|ym) log(Oi

m(s)) (4.4)

In this chapter, we train an SI-BLSTM-RNN with uPIT to predict the pitch

states of two speakers, denoted by uPIT-PITCH. As the training unfolds, we expect

uPIT-PITCH to learn the correct output permutation for both different-gender and

same-gender mixtures.

4.3.2 uPIT based speaker separation followed by single pitch
tracking

uPIT is originally proposed for monaural speaker separation (SS). Therefore, an

alternative way to apply uPIT for multi-pitch tracking is to first perform uPIT based
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SS, and then track the separated signals of the two speakers using conventional single

pitch tracking algorithms.

In this study, we follow the uPIT based SS framework in [64], and train a

BLSTM-RNN to predict the spectra of two speakers. Magnitude STFT of the mixture

is used as the input feature. Two T-F masks are then predicted and multiplied with

the mixture STFT, to generate the phase sensitive approximation (PSA) [64] of the

two speakers’ spectra. The uPIT criterion is used during training. During inference,

the estimated outputs are coupled with the noisy phase of the mixture to resynthe-

size two time-domain signals. In the end, the RAPT [101] algorithm is applied to the

resulting signals for pitch tracking. This approach is denoted by uPIT-SS-RAPT.

4.3.3 uPIT based speaker separation followed by uPIT based
multi-pitch tracking

uPIT-SS-RAPT gives excellent performance if the speaker separation module

works properly. However, for some challenging same-gender mixtures, where uPIT-

SS struggles with, directly applying RAPT on top of uPIT-SS is error-prone. There

are two main reasons. First, speaker assignment errors in uPIT-SS directly affect the

pitch assignment in RAPT. Second, the masked signals contain some artifacts which

may degrade the performance of RAPT.

To overcome these issues, we concatenate the two outputs form uPIT based

speaker separation with the magnitude STFT of the mixture to form a new input to

uPIT-PITCH. A diagram of the network is shown in Fig 4.1. The left module corre-

sponds to uPIT-SS, which is trained first as the base. The right module corresponds

to uPIT-PITCH. We do not feed the two outputs of uPIT-SS to separate networks for

single-pitch tracking, because that may compound the assignment errors generated
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Figure 4.1: Diagram of uPIT-SS-PITCH.

by uPIT-SS. Input features in the right module are pre-processed using logarithmic

compression before feeding into the BLSTM-RNN. Lastly, it should be noted that the

label permutations of the two modules are optimized independently. We denote the

network by uPIT-SS-PITCH in this study.

4.3.4 uPIT based speaker separation followed by multi-pitch
tracking with matched label permutation

One observation in the inference of uPIT-PITCH is that for some same-gender

speaker pairs, the speaker assignment of pitch estimates swaps very often across

time. One possible reason is that the pitch label itself is not informative enough to

correctly assign same-gender speakers to different labels. On the other hand, much
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Figure 4.2: Diagram of uPIT-SS-PERM-PITCH.

richer information (unvoiced speech, timbre) is contained in SS’s training targets,

which may lead to better optimized label permutation during training.

To take advantage uPIT-SS’s label permutation, we modify uPIT-SS-PITCH,

and use the label permutation in the SS module for that in the pitch module, which

is denoted by uPIT-SS-PERM-PITCH. A diagram of the system is shown in Fig 4.2.

There is a dashed line connecting the label permutations of the two modules, meaning

that the permutations are matched. Better utterance-level label permutation for pitch

tracking might be achieved with this structure.
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4.4 FHMM inference

After BLSTM based pitch probability estimation, we use a factorial HMM to in-

fer the most likely pitch tracks. The hidden variables are the pitch states of two speak-

ers (x1m, x2m), and the observation variable is the feature vector ym. Prior probabili-

ties and transition matrices of the hidden variables are computed from single-speaker

training data either speaker-dependently for SPD-PITCH, or speaker-independently

for all other models. Laplace smoothing is applied during the computation. We then

compute the emission probability of the FHMM from the estimated posterior prob-

ability, and apply the junction tree algorithm to infer the most likely sequence of

pitch states. In the end, frame-level pitch states are converted back to the centers of

frequency bins, and smoothing is applied to get a continuous pitch track.

4.5 Experimental results and comparisons

4.5.1 Experimental setup

We conduct experiments on the GRID database [20], which consists of 1,000

sentences spoken by each of 34 speakers. Two male and two female speakers (No. 1,

2, 18, 20) are selected for testing, denoted by Set One. For each speaker in Set One, we

randomly select 10 utterances, and mix them with every other speaker in Set One at

-9, -6, -3, 0, 3, 6, and 9 dB. In total, 10×10×7 test mixtures are generated for each of

the 6 speaker pairs. We report results with respect to different gender combinations,

and absolute energy differences between two test speakers. SPD-PITCH is trained

within Set One, where 60,000 training mixtures are generated for each speaker pair

by randomly mixing 900 training utterances of both speakers at a random energy

ratio between -5 and 5 dB. Set Two is used to train all speaker-independent models,
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where another 10 male and 10 female speakers (No. 3, 5, 6, 9, 10, 12, 13, 14, 17, 19;

4, 7, 11, 15, 16, 21, 22, 23, 24, 27) with 900 training utterances each, are selected. For

GPD-PITCH, the 60,000-mixture male-female training set is generated by randomly

mixing male utterances with female utterances in Set Two at between -5 and 5 dB.

We then divide same-gender speakers in Set Two into two groups based on their

average pitch. For each same-gender pair, 60,000 mixtures are produced by mixing

utterances from different groups at between -5 and 5 dB. Lastly, an SI training set for

all uPIT based models is generated by randomly mixing different-speaker utterances

within Set Two at between -5 and 5 dB.

Reference pitch is extracted from single-speaker utterances using the RAPT

algorithm [101]. All mixtures are sampled at 16 kHz. We extract STFT features

using a frame length of 32ms, a frame shift of 10 ms, and the square root of Hanning

window.

Results are reported using the error measure ETotal proposed in [117], which

jointly evaluates the performance in terms of pitch accuracy and speaker assignment.

ETotal combines the percentile representation of voicing decision errors, permutation

errors, gross errors and fine errors. The lower, the better.

4.5.2 Models

All pitch estimation BLSTM-RNNs in this study share the same structure. There

are three 500-unit (per direction) BLSTM layers in the model. Two output layers with

the softmax activation function are then used to predict pitch states. The networks

are trained with the Adam optimization algorithm [62] and dropout regularization

[44]. The initial learning rate is set to 0.001, and we decrease the learning rate by a
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Table 4.1: ETotal (%) of different multi-pitch tracking approaches with respect to
different gender combinations, and absolute energy differences.

Methods
Same-Gender Different-Gender

0 dB 3 dB 6 dB 9 dB 0 dB 3 dB 6 dB 9 dB

Wohlmayr et al. SD 31.0 31.5 32.6 34.1 26.0 26.6 27.1 28.3

SPD-PITCH 12.4 12.4 12.8 13.9 11.5 11.6 11.8 12.5

GPD-PITCH 25.7 26.0 27.3 29.6 14.3 14.6 15.2 16.3

uPIT-PITCH 25.1 24.9 24.4 25.2 14.8 14.8 15.4 16.7

ratio of 0.8 when the validation loss stops decreasing for over 4 epochs. The maximum

number of epochs is 30 for SPD-PITCH, and 100 for all other models.

The uPIT based speaker separation network contains 3 BLSTM layers, each with

896 units per direction. Two 257-unit ReLU [30] output layers are used to predict

phase sensitive masks. The initial learning rate is set to 0.0002. All other training

recipes follow the pitch BLSTM.

We compare all our methods with Wohlmayr et al.’s speaker-dependent GMM-

FHMM model with gain adaptation [91, 117], which represents the state-of-the-art

for SD multi-pitch tracking. The SD models in [91, 117] are trained within Set One,

with the same RAPT based reference pitch. We would like to thank M. Wohlmayr,

M. Stark, and F. Pernkopf for providing their pitch tracking code to us.

4.5.3 Results and comparisons

Multi-pitch trackers without speaker separation modules are compared in Ta-

ble 4.1. All proposed SPD/GPD/SI systems significantly outperform Wohlmayr et

al.’s SD models, which reflects the excellent modeling capacity of neural networks.

Due to the usage of speaker-dependent information, SPD-PITCH achieves the best re-

sults among all systems. GPD-PITCH yields slightly worse ETotal than SPD-PITCH
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Table 4.2: ETotal (%) of joint speaker separation - multi-pitch tracking systems with
respect to different gender combinations, and absolute energy differences.

Methods
Same-Gender Different-Gender

0 dB 3 dB 6 dB 9 dB 0 dB 3 dB 6 dB 9 dB

uPIT-SS-RAPT 25.4 25.6 26.0 28.8 12.4 12.7 13.4 15.4

uPIT-SS-PITCH 24.6 24.6 24.2 26.2 14.5 14.6 15.0 16.3

uPIT-SS-PERM-PITCH 23.8 23.4 23.5 25.3 14.3 14.5 15.1 16.5

on different-gender mixtures, and far worse ETotal on same-gender mixtures. This

result is expected since same-gender mixtures are a lot more challenging for speaker-

independent approaches, and the heuristic label assignments in GPD-PITCH exacer-

bate this problem. uPIT-PITCH matches GPD-PITCH’s performance on different-

gender mixtures, and outperforms GPD-PITCH on same-gender mixtures by a small

margin, which shows that the label permutations optimized by uPIT lead to bet-

ter generalization. However, the improvement is still relative small, thus we further

introduce speaker separation to help multi-pitch tracking.

Table 4.2 reports the results of all joint SS-PITCH systems. uPIT-SS-RAPT

achieves very good results on different-gender mixtures, primarily due to the fact

that the same single pitch tracking algorithm, RAPT, is shared between uPIT-SS-

RAPT and the reference pitch. To be more specific, when the separation module

works well, uPIT-SS-RAPT tends to generate exactly the same pitch as the reference

pitch, which also includes consistent pitch errors, and voicing decision errors in the

reference pitch. The errors made by RAPT are regularized by BLSTM-RNNs during

training, and thus are regarded as incorrect estimates for BLSTM based pitch track-

ers. However, for uPIT-SS-RAPT, since the errors are consistent with the reference
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pitch, it would be recognized as correct estimation. On the other hand, uPIT-SS-

RAPT works relatively poorly on same-gender mixtures, which implies that inac-

curate results of speaker separation have an adverse effect on pitch tracking. With

the help of the additional input feature, uPIT-SS-PITCH consistently outperforms

uPIT-PITCH. There is only one exception, which is for same-gender mixtures at the

level difference of 9 dB. The reason is that severe mismatch happens in this condition,

so that the additional input may be too noisy to provide useful information. Lastly,

with matched label permutation, uPIT-SS-PERM-PITCH generates the best results

among speaker-independent models for same-gender mixtures. For different-gender

mixtures, uPIT-SS-PERM-PITCH matches the male-female GPD-PITCH, which is

specifically trained for male-female mixtures, and has optimally assigned label per-

mutations.

4.6 Conclusion

In this study, we have introduced utterance-level permutation invariant training

for multi-pitch tracking. BLSTM-RNNs with two probabilistic pitch outputs are used

as the base model. SPD, GPD and uPIT-SI training are compared. For uPIT based

pitch estimation, several extensions have been proposed, including incorporating out-

puts and label permutations in uPIT based speaker separation. Experimental results

show that our final model, uPIT-SS-PERM-PITCH, achieves the best results among

all GPD and SI models, especially for same-gender speaker pairs. In the future, we

will explore multi-target training and joint optimization for speaker separation and

multi-pitch tracking.
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Chapter 5: A Deep CASA Approach to Talker-independent

Monaural Speaker Separation

We address talker-independent monaural speaker separation from the perspec-

tives of deep learning and CASA. Specifically, we decompose the speaker separation

task into the stages of simultaneous grouping and sequential grouping. Simultaneous

grouping is first performed in each time frame by separating the spectra of differ-

ent speakers with a permutation-invariantly trained neural network. In the second

stage, the frame-level separated spectra are sequentially grouped to different speakers

by a clustering network. The proposed deep CASA approach optimizes frame-level

separation and speaker tracking in turn, and produces excellent results for both ob-

jectives. Experimental results on the benchmark WSJ0-2mix database show that the

new approach achieves the state-of-the-art results with a modest model size. The

work presented in this chapter has been published in [77] [79] .

5.1 Introduction

Speech usually occurs simultaneously with interference in real acoustic environ-

ments. Interference suppression is needed in a wide variety of speech applications,

including automatic speech recognition, speaker identification, and hearing aids. One

particular kind of interference is the speech signal from competing speakers. Although
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human listeners excel at attending to a target speaker even without any spatial cues

[11] [36], speech separation remains a challenge for machines despite decades of re-

search. In this chapter, we address monaural speaker separation in the case of two

concurrent speakers, which is also known as co-channel speech separation.

DC and PIT represent major approaches to talker-independent speaker sepa-

ration. There are, however, limitations. As indicated in [64] [77], uPIT sacrifices

frame-level performance for the sake of utterance-level assignments. The speaker

tracking mechanism in uPIT works poorly for same-gender mixtures. On the other

hand, DC is better at speaker tracking, but its frame-level separation is not as good

as ratio masking used in tPIT.

Inspired by CASA, PIT and DC, we proposed a deep learning based two-stage

method in our preliminary study [77] to perform talker-independent speaker sepa-

ration. The method consists of two stages, a simultaneous grouping stage and a

sequential grouping stage. In the first stage, a tPIT-BLSTM is trained to predict the

spectra of the two speakers at each frame without speaker assignment. This stage

separates spectral components of the two speakers at the same frame, corresponding

to simultaneous grouping in CASA. In the sequential grouping stage, frame-level sep-

arated spectra and the mixture spectrogram are fed to another BLSTM to predict

embedding vectors for the estimated spectra, such that the embedding vectors corre-

sponding to the same speaker are close together, and those corresponding to different

speakers are far apart. A constrained K-means algorithm is then employed to group

the two spectral estimates at the same frame across time to different speakers. This

stage corresponds to sequential grouping in CASA.
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In this chapter, we adopt the same divide-and-conquer strategy but improve

its realization in major ways, resulting in what we call a deep CASA approach. In

the simultaneous grouping stage, we utilize a UNet [92] convolutional neural network

(CNN) with densely-connected layers [53] to improve the performance of frame-level

separation. A frequency mapping layer is added to deal with inconsistencies between

different frequency bands. To overcome the effects of noisy phase in inverse STFT,

we explore complex STFT objectives and time-domain objectives as the training tar-

gets. In the sequential grouping stage, we introduce a new embedding representation

and weighted objective function. In addition, we leverage the latest development in

temporal convolutional networks (TCNs) [6] [66] [81] [90], and use a TCN for sequen-

tial grouping, which greatly improves speaker tracking. A new dropout scheme is

proposed for TCNs to overcome the overfitting problem. The evaluation results and

comparisons demonstrate the resulting system achieves better frame-level separation

and speaker tracking at the same time compared to uPIT and [77].

The rest of the chapter is organized as follows. We introduce the proposed

algorithm, including the simultaneous and sequential grouping stages, in Section 5.2.

Section 5.3 presents experimental results, comparisons and analysis. Conclusion and

related issues are discussed in Section 5.4.

5.2 Deep CASA approach to monaural speaker separation

As reported in [64] [77], uPIT considerably improves the separation performance

with a default output assignment. But it has the following shortcomings. First,

uPIT’s output-speaker pairing is fixed throughout a whole utterance, which prevents

frame-level loss to be optimized as in tPIT. As a result, uPIT always underperforms
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tPIT if their outputs are optimally reassigned. Second, uPIT addresses separation

and speaker tracking simultaneously and due to limited modeling capacity of a neural

network, uPIT does not work well for speaker tracking, especially for same-gender

mixtures.

We employ a divide and conquer idea to break down monaural speaker separa-

tion into two stages. In the simultaneous grouping stage, a tPIT based neural network

separates spectral components of different speakers at the frame-level. The sequen-

tial grouping stage then streams frame-level estimates belonging to the same speaker.

Unlike uPIT, separation and tracking are optimized in turn in the deep CASA frame-

work. The two stages are detailed in the following subsections. Notations used in

this chapter follow those in Section 1.3.

5.2.1 Simultaneous grouping stage

Baseline system

We adopt the tPIT framework described in [77] as the baseline simultaneous

grouping system. The magnitude STFT of the mixture is used as the input. BLSTM

is employed as the learning machine. The system is trained using the loss function in

Eq. 1.7. In the end, frame-level spectral estimates are passed to the second stage for

sequential grouping.

Alternative training targets for tPIT

As mentioned, the PSA training target partially accounts for STFT phase, unlike

the ideal binary mask (IBM) and ideal ratio mask (IRM).

IBMi(t, f) =

{
1, if |Xi(t, f)| > |Xj 6=i(t, f)|
0, otherwise

(5.1)
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IRMi(t, f) =
|Xi(t, f)|∑2
j=1 |Xj(t, f)|

(5.2)

However, PSA cannot completely restore the phase information in clean sources,

because it uses noisy phase during iSTFT. Recently, complex ratio masking [114]

(cRM) attempts to restore clean phase. The complex ideal ratio mask (cIRM) is

defined in the complex STFT domain, with real and imaginary parts. When applied

to the complex STFT of the mixture, it perfectly reconstructs clean sources:

Xc(t, f) = cIRMc(t, f)⊗ Y (t, f) (5.3)

where ⊗ denotes point-wise complex multiplication.

We propose complex ratio masking to perform monaural speaker separation. In-

stead of directly using the cIRM as the training target, we first multiply the complex

mixture by the estimated complex mask cRMc to perform complex domain recon-

struction:

X̂c(t, f) = cRMc(t, f)⊗ Y (t, f) (5.4)

The reconstructed sources are then compared with clean sources to form the training

objective:

J tPIT−CAt = min
θ(t)∈P

∑
f,c

[ |Re(X̂c −Xθc(t))|+ |Im(X̂c −Xθc(t))| ] (5.5)

where the l1 norm is applied to both the real and imaginary parts of the loss. We call

this training objective complex approximation (CA).

We also consider a training objective based on time-domain signal-to-noise ratio

(SNR). The proposed framework consists of two steps: First, we organize all frame-

level complex estimates X̂c with respect to the minimum frame-level loss, so that

each organized output X̂Θc(t) corresponds to a single speaker. The frame-level loss
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Figure 5.1: Diagram of the Dense-UNet used in simultaneous grouping. Gray blocks
denote dense CNN layers. DS blocks denote downsampling layers and US blocks
denote upsampling layers. Skip connections are added to connect layers at the same
level. The inputs, masks and outputs can be defined in either magnitude or complex
STFT domain.

for organization can be defined in three domains: the complex STFT, magnitude

STFT and time domain. In each domain, we compare the estimates and ground-

truth targets, and calculate the l1 norm of the difference as the loss. We find that

the complex STFT loss leads to slightly better separation performance. Second, we

apply iSTFT (Eq. 1.5) to X̂Θc(t)(t, f), and compute utterance-level SNR for the final

time-domain estimates x̂Θc(t)(n):

J tPIT−SNR =
2∑
c=1

10 log

∑
n xc(n)2∑

n (xc(n)− x̂Θc(t)(n))2
(5.6)

Convolutional neural networks for simultaneous grouping

Partly motivated by the recent success of DenseNet [53] and UNet [92] in mu-

sic source separation [58] [99], we propose a Dense-UNet structure for simultaneous

grouping. UNet is a natural choice for spectral-domain source separation. With the
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“hourglass” architecture and skip connections, UNet models global patterns and pre-

serves fine-grained details in the spectrogram. The use of DenseNet is validated by our

preliminary experiments where the proposed Dense-UNet significantly outperforms a

standard UNet for speaker separation.

The proposed Dense-UNet is shown in Fig. 5.1, and it is based on a UNet archi-

tecture [92]. It consists of a series of convolutional layers, downsampling layers and

upsampling layers. The first half of the network encodes utterance-level STFT feature

maps into a higher level of abstraction. Convolutional layers and downsampling layers

are alternated in this half, allowing the network to model large T-F contexts. Con-

volutional layers and upsampling layers are alternated in the second half to project

the encoded features back to its original resolution. In this study, we use strided

2 × 2 depthwise convolutional layers [17] as downsampling layers. Strided transpose

convolutional layers are used as upsampling layers. Skip connections are added be-

tween the layers at the same hierarchical level in the encoder and decoder, and they

are important for UNet. As the model goes deeper, the feature maps are projected

to more and more abstract representations of the mixture at different resolutions. If

skip connections are removed, the network can still produce coarse masks, lacking

fine-grain details. Such a phenomenon is discussed in [58].

Next, we replace convolutional layers in the original UNet with densely-connected

CNN blocks (DenseNet) [53]. The basic idea of DenseNet is to decompose one convo-

lutional layer with many channels into a sequence of densely connected convolutional

layers with fewer channels, where each layer is connected to every other layer in a

feedforward fashion:

zl = Hl([zl−1, zl−2, ..., z0]) (5.7)
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where z0 denotes the input feature map, zl the output of the lth layer, [...] concate-

nation, and Hl the lth convolutional layer followed by ELU (exponential linear unit)

activation [19] and layer normalization [3]. The DenseNet structure has shown excel-

lent performance in image classification [53] and music source separation [99]. In this

study, all output layers zl in a dense block have the same number of channels, denoted

by K. The total number of layers in each dense block is denoted by L. As shown in

Fig. 5.1, we alternate 9 dense blocks with 4 downsampling layers and 4 upsampling

layers. After the last dense block, we use a 1× 1 CNN layer to reorganize the feature

map, and then output two masks.

In CNNs, convolutional kernels are usually applied across the entire input field.

This is reasonable in the case of visual processing, where similar patterns can appear

anywhere in the visual field with translation and rotation. However, in the auditory

representation of speech, patterns that occur in different frequency bands are usu-

ally different. A generic CNN kernel may result in inconsistent outputs at different

frequencies. To address this problem, Takahashi and Mitsufuji [99] split the spectral

input into several subbands, and train band-dependent CNNs, leading to a substantial

rise in model size.

We propose a frequency mapping layer which effectively alleviates this problem

with a significant reduction of parameters. The basic idea is to project inconsistent

frequency outputs to an organized space using a fully-connected layer. We replace

one CNN layer in each dense block with a frequency mapping layer. The input to a

frequency mapping layer is a concatenation of CNN layers z0l = [zl−1, zl−2, ..., z0] ∈

RT×F×K′ , where T and F denote time and frequency respectively, K ′ the number

of channels in the input. z0l is passed to a 1 × 1 convolutional layer, followed by
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ELU activation and layer normalization, to reduce the number of channels to K.

The resulting output is denoted by z1l ∈ RT×F×K . We then transpose the F and K

dimension of z1l to get z2l ∈ RT×K×F . Next, z2l is fed to a 1 × 1 convolutional layer,

followed by ELU activation and layer normalization, to output z3l ∈ RT×K×F . This

layer can also be viewed as a frequency-wise fully connected layer, which takes all

frequency estimates as the input and reorganize them in a different space. Finally, z3l

is transposed back, and the output of the frequency mapping layer zl ∈ RT×F×K is

generated.

5.2.2 Sequential grouping stage

Baseline system

In this stage, we group frame-level spectral estimates across time using a cluster-

ing network, which corresponds to sequential grouping in CASA. In deep clustering

based speaker separation, T-F level embedding vectors estimated by BLSTM are

clustered into different speakers. We extend this framework to frame-level speaker

tracking.

Fig. 5.2 illustrates our sequential grouping. We first stack the mixture spectro-

gram and two spectral estimates (including real, imaginary and magnitude STFT)

as the input to the system. A neural network then projects frame-level inputs to a

D-dimensional embedding vector V(t) ∈ R1×D. The target label is a two-dimensional

indicator vector, denoted by A(t). During the training of tPIT, if the minimum loss

is achieved when X̂1(t) is paired with speaker 1, and X̂2(t) is paired with speaker 2,

we set A(t) to [1 0]. Otherwise, A(t) is set to [0 1]. In other words, A(t) indicates

the optimal output assignment of each frame. V(t) and A(t) can be reshaped into a
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Figure 5.2: Diagram of the sequential grouping stage. We use BLSTM or TCN as
the neural network in this stage.

T × D matrix V, and a T × 2 matrix A, respectively. A permutation independent

objective function [40] is:

JDC = ||VVT −AAT ||2F (5.8)

where || · ||F is the Frobenius norm. Optimizing JDC forces V(t) corresponding to

the same optimal assignment to get closer during training, and otherwise to become

farther apart.

Because we care more about the speaker assignment of frames where the two

outputs are substantially different, a weight w(t) = |LD(t)|∑
t |LD(t)| is used during training

where LD(t) represents the frame-level loss difference (LD) between the two possible

speaker assignments. LD(t) is large if two conditions are both satisfied: 1) the
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frame-level energy of the mixture is high; 2) the two frame-level outputs, X̂1(t, f)

and X̂2(t, f), are quite different, so that the losses with respect to different speaker

assignments are significantly different. w(t) can be used to construct a diagonal

matrix W = diag(w(t)). The final weighted objective function is:

JDC−W = ||W1/2(VVT −AAT )W1/2||2F (5.9)

This objective function emphasizes frames where the speaker assignment plays an

important role.

During inference, the K-means algorithm is first applied to cluster V(t) into

two groups. We then organize frame-level outputs according to their K-means labels.

Finally, iSTFT is employed to convert complex outputs to the time domain.

Temporal convolutional networks for sequential grouping

Temporal convolutional networks (TCNs) have been used as a replacement for

RNNs, and have shown comparable or better performance in various tasks [6] [66]

[81] [90]. In TCNs, a series of dilated convolutional layers are stacked to form a deep

network, which enables very long memory. In this study, we adopt a TCN similar to

Conv-TasNet [81] for sequential grouping, as illustrated in Fig. 5.3.

In the proposed TCN, input features are first passed to a 2-D dense CNN block,

a 1× 1 convolutional layer and a layer normalization module, to perform frame-level

feature preprocessing. The 1 × 1 convolutional layer here refers to a 1-D CNN layer

with a kernel size of 1. The preprocessed features are then passed to a series of dilated

convolutional blocks, with an exponentially increasing dilation factor (20, 21, ..., 2M−1)

to exploit large temporal contexts. Next, the M stacked dilated convolutional blocks
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Figure 5.3: Diagram of the TCN used in sequential grouping. Outputs from the
previous stage are fed into a series of dilated convolutional blocks to predict frame-
level embedding vectors. The dilation factor of each block is marked on the right.
The detailed structure of a dilated convolutional block is illustrated in the large gray
box. The network within the dashed box can be also used for uPIT based speaker
separation.

are repeated 3 times to further increase the receptive field. Lastly, the outputs are

fed into a 1× 1 convolutional layer for embedding estimation.

In each dilated convolutional block, a bottleneck input with B channels I0 ∈

RT×B is first passed to a 1 × 1 convolutional layer, followed by PReLU (parametric

rectified linear unit) activation [37] and layer normalization, to extend the number

of channels to H, with output denoted by I1 ∈ RT×H . A depthwise dilated convo-

lutional layer [17] with kernel S ∈ R3×H , followed by PReLU activation and layer

normalization, is then employed to capture the temporal context. The number 3 here

indicates the size of the temporal filter in each channel, and there are H depthwise

separable filters in the kernel. We adopt non-causal filters to exploit both past and

future information, with a dilation factor from 20,... 2M−1, as in [81]. The output of

this part is denoted by I2 ∈ RT×H , which is then passed to a 1×1 convolutional layer
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to project the number of channels back to B, denoted by I3 ∈ RT×B. In the end, an

identity residual connection combines I3 and I0 and forms the final output.

Overfitting is a major concern in sequence models. If not regularized properly,

sequence models tend to memorize the patterns in the training data, and get trapped

in local minima. To address this issue, various dropout techniques [28] [83] [94] have

been proposed for RNNs. Consistent improvement has been achieved if dropout is

applied to recurrent connections [83]. Meanwhile, a simple dropout scheme for TCNs

is used in [6], i.e., dropping I3 in each dilated convolutional block, but it does not

yield satisfactory performance in our experience. Based on these findings, we design a

new dropout scheme for the TCN model, denoted by dropDilation. In dropDilation,

the dilated connections in depthwise dilated convolutional layers are dropped with a

probability of (1 − p), where p denotes the keep rate. To be more specific, a binary

mask, m = [m−d 1 md]
T ∈ R3×1, is multiplied with each depthwise dilated con-

volutional kernel S ∈ R3×H during training, with m−d and md drawn independently

from a Bernoulli distribution Bernoulli(p). In dropDilation, we only drop the dilated

connections while keeping the direct connections to preserve local information.

5.3 Evaluation and comparison

5.3.1 Experimental setup

We use the WSJ0-2mix dataset, a monaural two-talker speaker separation dataset

introduced in [40], for evaluations. WSJ0-2mix has a 30-hour training set and a 10-

hour validation set generated by selecting random speaker pairs in the Wall Street

Journal (WSJ0) training set si tr s, and mixing them at various SNRs between 0 dB

and 5 dB. Evaluation is conducted on the 5-hour open-condition (OC) test set, which
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is similarly generated using 16 untrained speakers from the WSJ0 development set

si dt 05 and si et 05. All mixtures are sampled at 8 kHz. STFT with a frame length

of 32ms, a frame shift of 8 ms, and a square root Hanning window is taken for the

whole system.

We report results in terms of signal-to-distortion ratio improvement (∆SDR)

[103], perceptual evaluation of speech quality (PESQ) [57], and extended short-

time objective intelligibility (ESTOI) [59], to measure source separation performance,

speech quality and speech intelligibility, respectively. We also report the final result

in terms of scale-invariant signal-to-noise ratio improvement (∆SI-SNR) [81] for a

systematical comparison with other competitive systems.

5.3.2 Models

Simultaneous grouping models

Two models are evaluated for simultaneous grouping: BLSTM and Dense-UNet.

The baseline BLSTM contains 3 BLSTM layers, with 896×2 units in each layer.

In each dense block of Dense-UNet, the number of channels K is set to 64, the total

number of dense layers L is set to 5, and all CNN layers have a kernel size of 3×3 and

a stride of 1 × 1. The middle layer in each dense block is replaced with a frequency

mapping layer. We use valid padding (a term in CNN literature referring to no input

padding) for the last CNN layer in each dense block, and same padding (padding the

input with zeros so that the output has the same dimension as the original input) for

all other layers. The input STFT is zero-padded accordingly.

For both models, when trained with J tPIT−PSAt , the magnitude STFT of the

mixture is adopted as the input, and ELU activation is applied to output layers for
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phase-sensitive mask estimation. If J tPIT−CAt or J tPIT−SNR is used for training, a

stack of real and imaginary STFT is used as the input, and linear output layers are

used to predict the real and imaginary parts of complex ratio masks separately.

Both networks are trained with the Adam optimization algorithm [62] and

dropout regularization [44]. The initial learning rate is set to 0.0002 for BLSTM,

and 0.0001 for Dense-UNet. Learning rate adjustment and early stopping are em-

ployed based on the loss on the validation set.

Sequential grouping models

Two models are evaluated for sequential grouping: BLSTM and TCN. Both

models are trained on top of a well-tuned simultaneous grouping model.

The baseline BLSTM contains 4 BLSTM layers, with 300×2 units in each layer.

In TCN, the maximum dilation factor is set to 26 = 64, to reach a theoretical receptive

field of 8.128s. The number of bottleneck units B is selected as 256. The number

of units in depthwise dilated convolutional layers H is set to 512. Same padding is

employed in all CNN layers. DropDilation with p = 0.7 is applied during training.

A 2-D dense CNN block is used in both models for frame-level feature prepro-

cessing, with K = 16, L = 4, a kernel size of 1× 3 (T ×F ) and a stride of 1× 1. The

dimensionality of embedding vectors D is set to 40. Both networks are trained with

the Adam optimization algorithm, with an initial learning rate of 0.001 for BLSTM,

and 0.00025 for TCN. Learning rate adjustment and early stopping are again adopted.
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Table 5.1: Average ∆SDR, PESQ and ESTOI for simultaneous grouping models with
optimal output assignment on WSJ0-2mix OC.

Objective # of param. ∆SDR (dB) PESQ ESTOI (%)

Mixture - - 0.0 2.02 56.1

tPIT BLSTM PSA 46.3M 13.0 3.13 86.7

tPIT Dense-UNet PSA 4.7M 14.7 3.41 90.5

tPIT Dense-UNet CA 4.7M 18.6 3.57 93.8

tPIT Dense-UNet SNR 4.7M 19.1 3.63 94.3

One stage uPIT models

To systematically evaluate the proposed methods, we train a Dense-UNet and

a TCN with SNR objectives and uPIT training criterion, i.e., JuPIT−SNR. Other

training recipes follow those in the previous subsections.

5.3.3 Results and comparisons

We first evaluate the simultaneous grouping stage. Table 5.1 summarizes the

performance of tPIT models with respect to different network structures and training

objectives. For all models, outputs are organized with the optimal speaker assignment

before evaluation. Scores of mixtures are presented in the first row. Compared

to BLSTM, Dense-UNet drastically reduces the number of trainable parameters to

4.7 million, and introduces significant performance gain. The frequency mapping

layers in our Dense-UNet introduce a 0.3 dB increment in ∆SDR, 0.1 increment in

PESQ, 0.8% increment in ESTOI and a parameter reduction of 0.9 million. Next, we

switch from magnitude STFT to complex STFT, and change the training objective to

J tPIT−CAt . This change leads to large improvement, revealing the importance of phase
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Table 5.2: Average ∆SDR, PESQ and ESTOI for tPIT and uPIT based Dense-UNet
trained with SNR objectives.

Output Assign. ∆SDR (dB) PESQ ESTOI (%)

tPIT Dense-UNet
Optimal 19.1 3.63 94.3

Default 0.0 1.99 55.8

uPIT Dense-UNet
Optimal 17.0 3.40 91.6

Default 15.2 3.24 88.9

information for source separation. The SNR objective further outperforms the CA

objective. We thus adopt tPIT Dense-UNet trained with J tPIT−SNR for simultaneous

grouping in the following evaluations.

Table 5.2 compares tPIT and uPIT based Dense-UNet in terms of both opti-

mal and default output assignments. Both models are trained with SNR objectives.

Thanks to the utterance-level output-speaker pairing, uPIT’s default assignment is

improved by a large margin over tPIT. However, since frame-level loss is not optimized

in uPIT, there is a significant gap between uPIT and tPIT with optimal assignment.

Fig. 5.4 illustrates the differences between tPIT and uPIT based Dense-UNet

in more details. Because SNR objectives lead to less structured outputs in the T-F

domain, the models illustrated in the figure are trained with CA objectives. Speaker

assignment swaps frequently in the default outputs of tPIT. However, if we organize

the outputs with the optimal assignment, the outputs almost perfectly match the

clean sources, as shown in the fourth row. On the other hand, the default outputs of

uPIT are much closer to the clean sources compared to tPIT. However, for this same-

gender mixture, uPIT makes several assignment mistakes in the default outputs, e.g.,

from 2s to 2.5s, and from 5s to 5.2s. If we optimally organize uPIT’s outputs, as in the
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last row, we can see uPIT exhibits much worse frame-level performance than tPIT.

In some frames, e.g., around 4.9s, the predicted frequency patterns are totally mixed

up. These observations reveal uPIT’s limitations in both frame-level separation and

speaker tracking for challenging speaker pairs.
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Figure 5.4: Speaker separation results of PIT based models in log-scale magnitude
STFT. Two models, tPIT Dense-UNet and uPIT Dense-UNet, are trained with CA
objectives. The complex outputs from the models are converted to log magnitude
STFT for visualization. (a) A male-male test mixture. (b) Speaker 1 in the mixture.
(c) Speaker 2 in the mixture. (d) tPIT’s output 1 with default assignment. (e) tPIT’s
output 2 with default assignment. (f) tPIT’s output 1 with optimal assignment.
(g) tPIT’s output 2 with optimal assignment. (h) uPIT’s output 1 with default
assignment. (i) uPIT’s output 2 with default assignment. (j) uPIT’s output 1 with
optimal assignment. (k) uPIT’s output 2 with optimal assignment.
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Table 5.3: Comparison of different sequential grouping methods on WSJ0-2mix OC.

Simul. Group. Seq. Group. ∆SDR (dB) PESQ ESTOI (%)

tPIT Dense-UNet BLSTM 16.4 3.31 90.8

tPIT Dense-UNet TCN 17.9 3.49 92.9

uPIT Dense-UNet - 15.2 3.25 89.0

uPIT Dense-UNet Optimal 17.0 3.40 91.6

uPIT TCN - 13.5 3.06 85.9

uPIT TCN Optimal 14.9 3.19 88.1

Next, we evaluate different sequential grouping models in Table 5.3. The first

two models are trained on top of the tPIT Dense-UNet with the SNR objective. As

shown in the table, TCN substantially outperforms BLSTM, both having around 8

million parameters. In BLSTM only neighboring frames are recurrently connected.

On the other hand, in TCN, each frame is linked to neighboring and distant frames,

facilitating utterance-level speaker tracking. The dropDilation technique in our TCN

introduces 0.5 dB ∆SDR gain compared to conventional dropout [6].

In the last four rows of Table 5.3, we report the results of uPIT models. The

first uPIT model is trained using Dense-UNet, and it significantly underperforms both

deep CASA systems. Even if the outputs are optimally reassigned, uPIT Dense-UNet

still systematically underperforms deep CASA (tPIT Dense-UNet + TCN), due to

its frame-level separation errors. We also train a TCN model with uPIT objectives,

and it yields much worse results than uPIT Dense-UNet.

To further analyze the differences between deep CASA and uPIT, we present

frame assignment error (FAE) for the best performing deep CASA system and the
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Table 5.4: Frame assignment errors for different methods for frames with significant
energy (at least -20 dB relative to maximum frame-level energy).

Simul. Group. Seq. Group. Frame Assign. Errors (%)

tPIT Dense-UNet TCN 1.38

uPIT Dense-UNet - 3.43

uPIT TCN - 3.07

two uPIT based models in Table 5.4. FAE is defined as the percentage of incorrectly

assigned frames in terms of the minimum frame-level loss. As shown in the table,

uPIT Dense-UNet generates the highest FAE, because the network is not specifically

designed for sequence modeling. uPIT TCN slightly outperforms uPIT Dense-UNet

due to its long receptive field. However, because uPIT TCN does not handle frequency

patterns as well, its overall separation performance is worse than uPIT Dense-UNet.

Deep CASA cuts FAE by half compared to uPIT models. Such results demonstrate

the benefits of the proposed divide-and-conquer strategy, which optimizes frame-level

separation and speaker tracking in turn, and achieves better performance in both

objectives.

Fig. 5.5 displays the scatter-plots of ∆SDR for deep CASA, uPIT Dense-UNet

and uPIT TCN, where color indicates density. Generally speaking, ∆SDR is higher

when mixture SDR is lower. Compared to the two uPIT based models, deep CASA

not only improves the average results, but also reduces outlier cases, i.e., test samples

with ∆SDR far from the dense central region. Such an observation is also reflected

by standard deviations, which are 4.2 dB ∆SDR, 0.35 PESQ, and 5.9% ESTOI for

deep CASA, 5.5 dB ∆SDR, 0.49 PESQ, and 9.8% ESTOI for uPIT Dense-UNet, and

4.7 dB ∆SDR, 0.45 PESQ, and 9.3% ESTOI for uPIT TCN.
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Table 5.5: Average ∆SDR, PESQ and ESTOI for deep CASA and uPIT with respect
to different gender combinations.

Model Gender Comb. ∆SDR (dB) PESQ ESTOI (%)

tPIT Dense-UNet + TCN Assign.

Female-Male 18.9 3.57 93.9

Female-Female 15.7 3.32 90.5

Male-Male 17.2 3.45 92.5

uPIT Dense-UNet

Female-Male 17.4 3.43 92.0

Female-Female 11.0 2.90 83.6

Male-Male 13.7 3.12 86.8

tPIT Dense-UNet + Opt. Assign.

Female-Male 19.4 3.64 94.4

Female-Female 18.8 3.61 93.9

Male-Male 18.7 3.62 94.3

Table 5.5 compares deep CASA and uPIT systems with respect to different gen-

der combinations. Both systems achieve better results on male-female combinations

than same gender conditions. The performance gap is larger for female-female mix-

tures, consistent with the observation in [70]. This might be due to the unbalanced

gender distribution in WSJ0-2mix OC, which contains 1086 male-male mixtures, but

only 394 female-female mixtures. On the other hand, the performance gap between

different gender combinations is much smaller in deep CASA than in uPIT, likely

because deep CASA is better at speaker tracking.

Fig. 5.6 illustrates the results of deep CASA. As shown in the second row, tPIT

Dense-UNet trained with SNR objectives generates entirely different default outputs

compared to the same model trained with CA (cf. Fig. 5.4). The optimal assignments

alternate almost every frame, leading to striped patterns. To study the phenomenon,

we analyze the overall training process of tPIT Dense-UNet trained with J tPIT−SNR.

At the beginning, the SNR objective leads to similar outputs as the CA objective.
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Figure 5.5: Scatter-plots of ∆SDR for different methods on WSJ0-2mix OC. (a)
Deep CASA (tPIT Dense-UNet + TCN Assign. without joint optimization). (b)
uPIT Dense-UNet. (c) uPIT TCN.

However, because there is 75% overlap between neighboring frames in the proposed

STFT, models trained with SNR only need to make accurate predictions every other

frame, with frames in between left blank. Such patterns start to occur after a few

hundred training steps. The competing speaker then gradually fills in the blanks, and

the striped patterns are thus formed. As shown in Fig. 5.6(f), the K-means labels

predicted by the sequential grouping system almost perfectly match the optimal labels

in speech-dominant frames. However, organizing the default outputs with respect to

the K-means labels leads to magnitude STFT that is quite different from the clean

sources. Residual patterns from the interfering speaker still exist in some frames.

If we convert the complex outputs in Fig. 5.6(g) and (h) to the time-domain, these

residual patterns will be cancelled by the overlap-and-add operation in iSTFT due

to their opposite phases. In the last row, we apply iSTFT and STFT in turn to the

organized complex outputs, and the new results can almost perfectly match the clean

sources.
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Figure 5.6: Speaker separation results of the deep CASA system, with tPIT Dense-
UNet trained with SNR objectives for simultaneous grouping and TCN for sequential
grouping. The same test mixture is used as in Fig. 5.4. The complex outputs from
the models are converted to log magnitude STFT for visualization. (a). Speaker
1 in the mixture. (b) Speaker 2 in the mixture. (c) tPIT’s output 1 with default
assignment. (d) tPIT’s output 2 with default assignment. (e) Optimal assignment
(black and white bars represent two different assignments). (f) K-means assignment.
(g) tPIT’s output 1 with K-means assignment. (h) tPIT’s output 2 with K-means
assignment. (i) tPIT’s output 1 with K-means assignment after iSTFT and STFT.
(j) tPIT’s output 2 with K-means assignment after iSTFT and STFT.

Simultaneous and sequential grouping are optimized in turn in the above deep

CASA systems. We now consider joint optimization, where the two stages are trained

together with small learning rates (1/8 of the initial learning rates) for 40 epochs.

For the simultaneous grouping module, we organize the outputs using estimated K-

means labels, and compare them with the clean sources to form an SNR objective.
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Table 5.6: Number of parameters, average ∆SDR, ∆SI-SNR, PESQ and ESTOI for
various state-of-the-art systems evaluated on WSJ0-2mix OC.

# of param. ∆SDR (dB) ∆SI-SNR (dB) PESQ ESTOI (%)

Mixture - 0.0 0.0 2.02 56.1

uPIT [64] 92.7M 10.0 - 2.84 -

Conv-TasNet [81] 5.1M 15.6 15.3 3.24 -

Wang et al. [113] 56.6M 15.4 15.2 3.45 -

FurcaNeXt [96] 51.4M 18.4 - - -

Deep CASA 12.8M 18.0 17.7 3.51 93.2

IBM - 13.8 13.4 3.28 89.1

IRM - 13.0 12.7 3.68 92.9

PSM - 16.7 16.4 3.98 96.0

Meanwhile, the sequential grouping module is trained using the weighted objective in

Eq. 5.9. As joint training unfolds, we observe smoother outputs. Joint optimization

introduces slight but consistent improvement in all three metrics (on average by 0.1

dB ∆SDR, 0.02 PESQ, and 0.3% ESTOI, and a reduction of standard deviation by

0.2 dB ∆SDR, 0.02 PESQ, and 0.4% ESTOI).

Finally, Table 5.6 compares the deep CASA system with joint optimization and

other state-of-the-art talker-independent methods on WSJ0-2mix OC. For all meth-

ods, we list the best reported results, and leave unreported fields blank. The numbers

of parameters in different methods are estimated according to their papers. The uPIT

system [64] is the basis of this study. Conv-TasNet [81] extends uPIT to the waveform

domain, where a TCN is utilized for separation. We have also trained a similar uPIT

TCN in this work. However, due to the different domains of signal representation, our

uPIT TCN yields slightly worse results than Conv-TasNet, which suggests that better

performance may be achieved by extending the deep CASA framework to the time
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domain. In [113], a phase prediction network is trained on top of a DC network. It

yields high PESQ. FurcaNeXt [96] produces very high ∆SDR. The deep CASA system

generates slightly lower ∆SDR results, but has much fewer parameters. In addition,

deep CASA yields the best results in terms of ∆SI-SNR, PESQ and ESTOI. The

last three rows present the results of the IBM, IRM and ideal phase-sensitive mask

(PSM) with the STFT configuration in Section 5.3.1. Deep CASA systematically

outperforms the ideal masks in terms of SDR and SI-SNR. However, there is still

room for improvement in terms of PESQ.

5.4 Concluding remarks

We have proposed a deep CASA approach to talker-independent monaural speaker

separation. Simultaneous grouping is first conducted to separate two speakers at the

frame level. Sequential grouping is then employed to stream separated frame-level

spectra into two sources. The deep CASA algorithm optimizes frame-level separation

and speaker tracking in turn in the two-stage framework, leading to much better per-

formance than DC and PIT. Our contributions also include novel techniques such as

complex ratio masking, SNR objectives, Dense-UNet with frequency mapping layers

and TCN with dropDilation. Experimental results on the benchmark WSJ0-2mix

dataset show that the proposed algorithm produces the state-of-the-art results, with

a modest model size.

A major difference between our sequential grouping stage and deep clustering is

that embedding operates at the T-F unit level in DC, and at the frame level in deep

CASA. There are several advantages to our approach. First, DC excels at speaker

tracking due to clustering, but it is not better than ratio masking for frame-level
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separation. Therefore, divide and conquer is a natural choice. Second, deep CASA is

more flexible. Almost all DC based algorithms are built on time-frequency process-

ing. Our sequential grouping works on frame-level outputs, which can be produced

by estimating magnitude STFT, complex masks, or even time-domain signals. In

addition, we reduce the computational complexity of clustering from O(FT ) in DC

to O(T ) in deep CASA.
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Chapter 6: Multi-speaker and Causal-separation Extensions

to Deep CASA

In the previous chapter, we have proposed a deep CASA approach to talker-

independent monaural speaker separation. Although deep CASA achieves state-of-

the-art results on the benchmark WSJ0-2mix dataset, it has limitations. First, deep

CASA is designed for only two concurrent speakers, and can not be straightforwardly

extended to three-speaker mixtures or more. Second, to achieve better performance

in frame-level separation and speaker tracking, non-causal components have been

adopted extensively in deep CASA, making it unsuitable for real-time speech ap-

plications, e.g., telecommunication. To address the first limitation, we propose a

multi-speaker extension to deep CASA for C concurrent speakers (C ≥ 2), which

works well for speech mixtures with up to C speakers without the prior knowledge

about the speaker number. To achieve causal processing, we revise the connections,

normalization and clustering algorithms in the system. Experimental results on the

benchmark WSJ0 -2mix and -3mix databases show that both extensions achieve ex-

cellent results.
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6.1 Introduction

Interference from competing speakers is considered a big challenge for automatic

speech processing systems and hearing-impaired listeners. Inspired by human ASA

mechanisms, deep CASA breaks down the speaker separation task into two stages, si-

multaneous grouping and sequential grouping. Compared to one stage systems which

optimize the two objectives at the same time, deep CASA substantially mitigates the

incorrect assignment of speakers, and leads to significant improvements in speaker sep-

aration. Although deep CASA represents a step towards solving the cocktail party

problem, it has limitations from the viewpoint of real-world deployment.

First, deep CASA is designed for only two concurrent speakers. The frame-level

embedding vector in sequential grouping encodes only two possible speaker assign-

ments. In real acoustic environments, the number of concurrent speakers may go

beyond two. As the number of speakers increases, the number of possible speaker

assignments, each corresponding to a unique embedding pattern, grows factorially,

which poses a problem for both the training and inference of sequential grouping.

uPIT based algorithms [64], e.g., Conv-TasNet [81], solve this problem naturally by

adding output layers for additional speakers. Clustering based methods, e.g., DC

[40] and deep attractor networks (DAN) [80], address this problem by adjusting the

number of sources in clustering. However, if the number of speakers is not given

beforehand, DC and DAN fail to operate properly as the speaker number is needed

for clustering. To tackle this problem, Higuchi et al. [41] perform source counting

by computing the rank of the covariance matrix of the embedding vectors. An accu-

racy of 67.3% is achieved for counting 2- and 3-speaker mixtures, far from practical

usage. On the other hand, a C-output uPIT model can be directly applied to speech
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mixtures with up to C speakers, without the prior knowledge about the speaker

number, as some of the outputs can be trained to generate silence as a placeholder.

Recently, more DC based methods [111] [112] [113] start to incorporate uPIT as a

parallel training target, and use the spectral outputs from uPIT during inference,

to address the problem of unknown speaker number for DC. Another direction for

speaker-number-independent separation is to recursively remove one speaker at a time

from the mixture [63] [100]. In [100], a one-and-rest permutation invariant training

(OR-PIT) algorithm is proposed to train such a network. A binary classifier is trained

to produce the stopping signal for the system. Satisfactory results have been achieved

on 2- and 3-speaker mixtures.

On the other hand, causal processing is a major concern in many real-time appli-

cations, including telecommunication and hearing aids. Telecommunication, such as

mobile communication, involves real-time interaction, and is sensitive to processing

delay. For hearing prosthesis, a processing delay longer than 10 ms may create arti-

facts caused by the misalignment between real and processed signals [39]. Deep CASA

utilizes both past and future information for separation and speaker tracking. There-

fore, it is important to extend deep CASA to causal processing. uPIT based methods

address this problem using causal temporal connections. Clustering based methods

like DC [40] and DAN [80] struggle to operate causally, as centroids/attractors are

hard to estimate in an online fashion. One solution is, again, incorporating uPIT tar-

gets as additional outputs. Recently, a low-latency multi-headed DC-uPIT method

[2] has been proposed, which is not fully causal, but uses limited future frames for

separation. This paper shows the importance of future information for speaker track-

ing.
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In this chapter, we propose multi-speaker and causal-processing extensions to

deep CASA. In the multi-speaker extension, a new embedding system is used to

address the factorial growth of label permutations. Like uPIT [64] based methods, the

multi-speaker extension trained on C speakers produces excellent results for speech

mixtures with up to C speakers, with no knowledge about the speaker number. In the

causal-separation extension, we replace all non-causal connections and normalization

in deep CASA. We also propose two causal clustering algorithms for the sequential

grouping stage, both matching the performance of non-causal clustering.

The rest of the chapter is organized as follows. Section 6.2 presents the multi-

speaker extension to deep CASA. Causal-separation extensions are introduced in

Section 6.3. Section 6.4 presents experimental results, comparisons and analysis.

Conclusions and related issues are discussed in Section 6.5.

6.2 Multi-talker extension to deep CASA

The goal of monaural speaker separation is to separate C speakers xc(n), c =

1, ..., C, from a single-channel recording of speech mixture y(n). Deep CASA has been

proposed in the previous chapter, which functions well for the co-channel situation

where C = 2, but can not be readily extended to more speakers. In this section,

we present a multi-speaker extension to deep CASA for C concurrent speakers (C ≥

2). The extension is presented in two parts: simultaneous grouping and sequential

grouping. All symbols and notations follow those in Chapter 5.

6.2.1 Simultaneous grouping

The simultaneous grouping stage separates spectral components of the C speak-

ers at the frame level. The same Dense-UNet is adopted as in Chapter 5. There are
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Figure 6.1: Diagram of the Dense-UNet used in multi-speaker simultaneous grouping.
Gray blocks denote dense CNN layers. DS blocks denote downsampling layers and
US blocks denote upsampling layers. Skip connections are added to connect layers
at the same level. The inputs, masks and outputs are defined in the complex STFT
domain.

C output layers in the model, matching the total number of speakers, as shown in

Fig. 6.1. The time-domain SNR objective J tPIT−SNR is used to tune the network:

J tPIT−SNR =
C∑
c=1

10 log

∑
n xc(n)2∑

n (xc(n)− x̂Θc(t)(n))2
(6.1)

where x̂Θc(t)(n) denotes the organized waveform estimate of speaker c using min-

imum frame-level loss. Other details, including the number of layers, downsam-

pling/upsampling, and frequency mapping, follow those in Section 5.2.1.

6.2.2 Sequential grouping

The sequential grouping stage tracks all frame-level spectral estimates, and as-

signs them to the C speakers. A diagram of the multi-speaker extension of sequential

grouping is illustrated in Fig. 6.2. Mixture spectrogram and C spectral estimates

(including real, imaginary and magnitude STFT) are stacked to form the input to

the network.
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Figure 6.2: Diagram of multi-speaker sequential grouping.

In Chapter 5, a TCN projects frame-level inputs to a D-dimensional embedding

vector V(t) ∈ R1×D, which indicates the optimal output assignment of each frame. In

the case of two concurrent speakers, there are only two possible output assignments,

i.e., swap or no swap. The trained V(t) exhibits two unique patterns accordingly.

However, when the number of speakers C increases, the number of possible assign-

ments is C! = 1 × 2 × ... × C, and it becomes intractable to use one vector V(t) to

represent all the assignments. Even if V(t) can be trained to convey C! patterns, it

is difficult to figure out the pattern-assignment pairing during inference.

To avoid these problems, we use a TCN to predict C embedding vectors at each

frame Vc(t) ∈ R1×D, each corresponding to one output X̂c(t) of the Dense-UNet, as

shown in Fig. 6.2. The target label for Vc(t) is a C-dimensional indicator vector,
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denoted by Ac(t). During the training of tPIT, if the minimum loss is achieved when

X̂c(t) is paired with speaker c′, the c′th element of Ac(t) is set to 1, and all other

elements are set to 0. In other words, Ac(t) indicates the optimal speaker assignment

of X̂c(t). Similar to Section 5.2.2, a weight wc(t) = |LD(t)|∑
t |LD(t)| is used during training

to emphasize frames where the speaker assignment plays an important role. LD(t)

denotes the frame-level loss difference (LD) between the minimum and maximum loss.

wc(t) can be used to construct a CT ×CT diagonal weight matrix W = diag(wc(t)).

Vc(t) and Ac(t) can be reshaped into a CT ×D matrix V and a CT ×C matrix A,

respectively. The final weighted objective function between V and A is:

JDC−W = ||W1/2(VVT −AAT )W1/2||2F (6.2)

where || · ||F is the Frobenius norm, and W1/2 denotes the element-wise square root of

W. Optimizing JDC−W forces Vc(t) corresponding to the same speaker to get closer

during training, and Vc(t) corresponding to different speakers to become farther

apart. The trained Vc(t) exhibits C unique patterns, each corresponding to one

speaker.

During inference, the K-means algorithm is first applied to cluster Vc(t) into C

groups. However, if no post-processing is conducted, several embeddings at one frame

may be assigned to the same speaker. We thus design a constrained clustering algo-

rithm to force the frame-level embeddings to different labels, as given in Algorithm 1.

The input to the algorithm includes C centroids calculated using the K-means algo-

rithm. In each frame, the resulting permutation Θ(t) corresponds to the assignment

that maximizes the sum of similarities between embeddings and centroids. After the

constrained clustering algorithm, frame-level outputs are organized according to their

labels, and resynthesized to the time domain.
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Algorithm 1 Constrained clustering

Input: Embedding vectors Vc(t), K-means centroids µc

Output: Frame-level labels of all outputs Θ(t) (resulting permutation)

1: for t in {1,...,T} do

2: Θ(t)← argmax
θ(t)∈P

C∑
c=1

Vθc(t)(t)µ
T
c

3: end for

Although multi-speaker deep CASA is designed for C concurrent (C ≥ 2) speak-

ers, if trained properly, a C-speaker system can generate good results for speech

mixtures with less than C speakers, without prior knowledge about the exact speaker

number. In such cases, some of the channels produce significantly weaker outputs than

other channels, corresponding to silence. The details are presented in Section 6.4.3.

6.3 Causal-separation extension to deep CASA

In this section, we present an extension to achieve causal processing of deep

CASA. We analyze the extension from three aspects: temporal convolutions, normal-

ization and clustering.

6.3.1 Temporal convolutions

Dense-UNet and TCN consist of a series of temporal convolutional layers, which

are non-causal in the original deep CASA system. The left part of Fig 6.3a illustrates

a non-causal temporal convolutional layer in TCN. To generate the output of frame

T , future information from frame T + 1 is used, making the layer non-causal. In

the causal-processing extension, we directly change non-causal convolutions to their

causal versions when the temporal resolution stays the same in the input and output,

as shown in the right part of Fig 6.3a.
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Figure 6.3: Temporal convolutions in deep CASA.

There are two special types of temporal convolutional layers in Dense-UNet,

downsampling and upsampling layers. Temporal downsampling is achieved using

strided convolutional layers of size 2. Upsampling layers are transpose convolutional

layers of size 2. Fig. 6.3b illustrates one pass of temporal downsampling and upsam-

pling. During the downsampling process, inputs from every two frames are encoded

into one single unit, which halves the temporal resolution. The upsampling layer

then projects the encodings to the original resolution. As a result of encoding, the

output at frame T − 1 requires inputs at both frame T − 1 and T , making the lay-

ers non-causal. Since there is no solution to fix the non-causality of such layers, we

remove all frame-wise downsamplings and upsamplings in Dense-UNet, but keep the

frequency-wise downsamplings and upsamplings.
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6.3.2 Normalization

Normalization is utilized extensively in deep CASA to accelerate training and

stabilize neuron activations. Empirical results indicate that the choice of normaliza-

tion significantly impacts the performance of speaker separation [81]. In non-causal

deep CASA, standard layer normalization (LN) [3] is adopted, where the features

are normalized over all but the batch dimension. Take Dense-UNet as an example.

Feature maps in Dense-UNet have 4 dimensions: z ∈ RB×T×F×K , where B, T , F , K

denote batch, time, frequency and channel, respectively. A global mean and variance

are calculated for each training sample in a batch, and are then utilized to normalize

the feature map:

E[z] =
1

TFK

∑
t,f,k

z(b, t, f, k) (6.3)

V ar[z] =
1

TFK

∑
t,f,k

(z(b, t, f, k)− E[z])2 (6.4)

LN(z) =
z− E[z]√
V ar[z] + ε

� γ + β (6.5)

where γ,β ∈ R1×1×1×K are trainable gain and bias, and ε is a small constant added

to variance to avoid dividing by zero. The means and variances are calculated on a

whole utterance in both training and inference, which makes layer normalization not

applicable to a causal setup.

In this study, we explore three causal normalization techniques as substitutes

for layer normalization. In standard batch normalization (BN) [55], features are

normalized over all but the channel dimension during training:

E[z] =
1

BTF

∑
b,t,f

z(b, t, f, k) (6.6)

V ar[z] =
1

BTF

∑
b,t,f

(z(b, t, f, k)− E[z])2 (6.7)
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BN(z) =
z− E[z]√
V ar[z] + ε

� γ + β (6.8)

where γ,β ∈ R1×1×1×K are trainable gain and bias. Mean and variance gathered in

the training phase are utilized for all test utterances. Since recalculation of statistics

is not needed, batch normalization is causal during inference.

Because of the complexity of Dense-UNet/TCN, a small batch size is used (4

or 8) during training. Channel-dependent mean and variance in BN may fluctuate

severely across mini-batches. We propose a channel-independent version of batch

normalization (ciBN) to overcome this issue. In ciBN, features are normalized over

all dimensions during training:

E[z] =
1

BTFK

∑
b,t,f,k

z(b, t, f, k) (6.9)

V ar[z] =
1

BTFK

∑
b,t,f,k

(z(b, t, f, k)− E[z])2 (6.10)

ciBN(z) =
z− E[z]√
V ar[z] + ε

� γ + β (6.11)

Mean and variance gathered in training are used for inference.

We also consider a causal version of layer normalization (cLN), where the features

are normalized in a causal fashion.

E[z(t = τ)] =
1

τFK

∑
t≤τ,f,k

z(b, t, f, k) (6.12)

V ar[z(t = τ)] =
1

τFK

∑
t≤τ,f,k

(z(b, t, f, k)− E[z(t = τ)])2 (6.13)

cLN(z(t = τ)) =
z(t = τ)− E[z(t = τ)]√

V ar[z(t = τ)] + ε
� γ + β (6.14)

where z(t = τ) denotes the τth frame of the feature map. In cLN, normalization is

conducted frame by frame, with frame-dependent mean and variance calculated using
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all previous frames. A similar normalization technique was used in the causal version

of Conv-TasNet [81].

The three normalization techniques can also be applied to the TCN in the se-

quential grouping stage. All operations stay the same, but the frequency dimension

is neglected.

6.3.3 Clustering

Once embedding vectors are generated, a clustering step is needed to assign them

to different speakers. Most clustering based speaker separation algorithms, e.g., deep

clustering and deep CASA, perform this step in an offline fashion. In deep clustering,

the K-means algorithm iteratively generates centroids of clusters using all embedding

vectors in the whole utterance. It is difficult to make a causal extension to K-means

for deep clustering, as embedding vectors corresponding to some clusters may not be

present in the beginning part of an utterance. Therefore, the number of clusters is

unclear for causal processing.

On the other hand, in the setting of multi-talker deep CASA, there are C em-

bedding vectors in each frame, each belonging to a unique cluster. The design of

causal clustering becomes much easier. The details are given in Algorithm 2.
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Algorithm 2 Causal clustering for multi-speaker deep CASA

Input: Embedding vectors Vc(t), frame-level energy of the mixture E(t), energy
threshold α, maximal queue size Smax

Output: Frame-level labels of all outputs Θ(t)

for c in {1,...,C} do
Qc ← NEW FIFO QUEUE()

Qc.enqueue(Vc(1))
µc ← Qc.mean()
Θc(1)← c

end for
Eavg ← E(1), t← 2
while t ≥ 2 do

Θ(t)← argmax
θ(t)∈P

C∑
c=1

Vθc(t)(t)µ
T
c

for c in {1,...,C} do
if E(t) > αEavg then

Qc.enqueue(VΘc(t)(t))
if Qc.size() ≥ Smax then

Qc.dequeue()
end if
µc ← Qc.mean()

end if
end for
Eavg ← ((t− 1)Eavg + E(t))/t
t← t+ 1

end while

At the start of the algorithm, C first-in-first-out (FIFO) queues are created to

store embedding vectors belonging to the clusters. Each embedding vector in the first

frame is pushed to one of the queues to form the initial data. Centroids of the clusters

are calculated as mean values of the queues. Starting from frame 2, each embedding

vector is assigned to a unique cluster using the assignment that maximizes the sum of

similarities between embeddings and centroids. If the energy of the current frame is

insignificant, we move to the next frame. Otherwise, we push the embedding vectors

to their corresponding queues, and update the centroids. In order to keep the centroids
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relatively local to the current frame, we remove the oldest item in the queue when

the maximal queue size Smax is reached. To decide whether a frame has significant

energy, we keep track of the average frame energy Eavg. Frames weaker than αEavg

is considered uninformative, and would not be used for centroids calculation. The

frame-level assignment continues until all frames are processed. The two parameters

α and Smax are set to 0.3 and 20 in our study.

Algorithm 3 Causal clustering for two-speaker deep CASA

Input: Embedding vectors V(t), frame-level energy of the mixture E(t), energy
threshold α, similarity threshold ρ, maximal queue size Smax

Output: Frame-level label Θ(t)

for c in {1,2} do
Qc ← NEW FIFO QUEUE()

end for
Q1.enqueue(V(1))
µ1 ← V(1), Eavg ← E(1), Θ(1)← 1, t← 2
while t ≥ 2 do

if Q2.empty() then
if V(t− 1)V(t)T < ρ then

Θ(t)← 2
else

Θ(t)← 1
end if

else
Θ(t)← argmax

c∈{1,2}
V(t)µT

c

end if
if E(t) > αEavg or (Q2.empty() and Θ(t) == 2) then

QΘ(t).enqueue(V(t))
if QΘ(t).size() ≥ Smax then

QΘ(t).dequeue()
end if
µΘ(t) ← QΘ(t).mean()

end if
Eavg ← ((t− 1)Eavg + E(t))/t
t← t+ 1

end while
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We also design a causal clustering algorithm for the original two-speaker deep

CASA system, as shown in Algorithm 3. In two-speaker deep CASA, each frame only

has one embedding vector, indicating the frame-level optimal assignment. At the first

frame, we create 2 FIFO queues to store embedding vectors. The first embedding

vector is pushed to the first queue. Starting from frame two, if the second queue is

empty, we check the similarity of embedding vectors between the current frame and

the previous frame. If the similarity is lower than ρ, we set the current frame to cluster

2, and push the embedding vector to the second queue. Otherwise the current frame

is set to cluster 1, and the checking continues. Once the second queue loads the first

item, the algorithm starts to follow the same process as in Algorithm 2. The energy

threshold α, similarity threshold ρ, and Smax, are set to 0.3, 0.5 and 20, respectively.

Both Algorithm 2 and 3 are easy to implement and fast during inference.

6.4 Evaluation and comparison

6.4.1 Experimental setup

We evaluate our system on two-speaker and three-speaker separation datasets,

WSJ0-2mix and WSJ0-3mix [40]. Both datasets have a 30-hour training set and

a 10-hour validation set generated by selecting random speakers in the Wall Street

Journal (WSJ0) training set, and mixing them at various SNRs between 0 dB and

5 dB. Evaluation is conducted on the 5-hour open-condition (OC) test set, which is

similarly generated using 16 untrained speakers from the WSJ0 development set. All

mixtures are sampled at 8 kHz. STFT with a frame length of 32ms, a frame shift of

8 ms, and a square root Hanning window is calculated for the whole system.
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Performance is evaluated in terms of signal-to-distortion ratio improvement

(∆SDR) [103], perceptual evaluation of speech quality (PESQ) [57], and extended

short-time objective intelligibility (ESTOI) [59]. We also report results in terms of

scale-invariant signal-to-noise ratio improvement (∆SI-SNR) [81] for a systematical

comparison with other systems.

6.4.2 Models

Both multi-speaker and causal-separation extensions adopt the basic structure

of Dense-UNet and TCN as in Chapter 5.

In Dense-UNet, the number of channels K is set to 64, the total number of dense

layers L is set to 5, and all CNN layers have a kernel size of 3 × 3 and a stride of

1 × 1. The middle layer in each dense block is replaced with a frequency mapping

layer. The network is optimized with respect to J tPIT−SNR.

In TCN, the maximum dilation factor is set to 26 = 64. The number of bottle-

neck units B is selected as 256. The number of units in depthwise dilated convolu-

tional layers H is set to 512. DropDilation with p = 0.7 is applied during training.

Both networks are trained with the Adam optimization algorithm [62]. The

initial learning rate is set to 0.0001 for Dense-UNet, and 0.00025 for TCN. Learning

rate adjustment and early stopping are employed based on the loss on the validation

set.

For multi-speaker deep CASA with C speakers, we change the number of output

layers in Dense-UNet to C, and number of embedding vectors in TCN to C, with 40

dimensions for each embedding vector. For causal deep CASA, temporal connections,

normalization and clustering are modified as described in Section 6.3.
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Table 6.1: Average ∆SDR, PESQ, ESTOI and frame assignment errors for deep
CASA evaluated on WSJ0-2mix OC.

# of param. ∆SDR (dB) PESQ ESTOI (%) Frame Assign. Errors

Mixture - 0.0 2.02 56.1 -

Two-speaker deep CASA 12.8M 17.9 3.49 92.9 1.38%

Multi-speaker deep CASA (C = 2) 12.8M 17.7 3.47 92.6 1.69%

Deep CASA with optimal spk. assign. 4.7M 19.1 3.63 94.3 0.00%

6.4.3 Results and comparisons

We first evaluate the multi-speaker extension to deep CASA. Unlike two-speaker

deep CASA in Chapter 5, the multi-speaker extension is more flexible and can be

applied to C-speaker mixtures, C ∈ {2, 3, ...}. Table 6.1 compares two-speaker deep

CASA with multi-speaker deep CASA when C = 2. The two models share the

same simultaneous grouping module, but have different embedding configurations and

clustering strategies in sequential grouping. Both systems are trained and evaluated

on the WSJ0-2mix dataset, without joint optimization. As shown in the table, the

two-speaker system slightly outperforms the multi-speaker extension in terms of all

four metrics. The results reflect the principle of Occam’s razor. When the number of

concurrent speakers is fixed to 2, one embedding vector per frame is enough to indicate

the optimal output assignment. The extra embedding vectors in multi-speaker deep

CASA do not convey much information, and lead to worse performance during testing.

We then evaluate multi-speaker deep CASA for three-speaker mixtures. A multi-

speaker (C = 3) model is trained and tested on WSJ0-3mix. Table 6.2 presents the

results of simultaneous grouping with the optimal output assignment. Table 6.3 sum-

marizes the final results of multi-speaker deep CASA with TCN sequential grouping,

and compares it with other state-of-the-art methods on WSJ0-3mix. For all methods,
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Table 6.2: Average ∆SDR, PESQ and ESTOI for simultaneous grouping with the
optimal output assignment on WSJ0-3mix OC.

∆SDR (dB) PESQ ESTOI (%)

Mixture 0.0 1.66 38.5

tPIT Dense-UNet 17.5 3.16 86.7

Table 6.3: Number of parameters, average ∆SDR, ∆SI-SNR, PESQ and ESTOI for
various state-of-the-art systems evaluated on WSJ0-3mix OC.

# of param. ∆SDR (dB) ∆SI-SNR (dB) PESQ ESTOI (%)

Mixture - 0.0 0.0 1.66 38.5

uPIT [64] 92.7M 7.7 - - -

ADANet [80] 9.1M 9.4 9.1 2.16 -

Conv-TasNet [81] 5.1M 13.1 12.7 2.61 -

Wang et al. [113] 56.6M 12.5 12.1 2.77 -

Multi-speaker deep CASA 12.8M 14.6 14.3 2.77 80.8

IBM - 13.6 13.3 2.86 82.1

IRM - 13.0 12.6 3.44 88.6

PSM - 16.8 16.4 3.80 93.7

we list the best reported results, and leave unreported fields blank. The numbers of

parameters in different methods are estimated according to their papers. Two impor-

tant observations can be made out of the two tables. First, for multi-speaker deep

CASA, the performance gap between the optimal and estimated speaker assignment

rises from 1.4 dB ∆SDR for two speakers to 3.9 dB for three speakers. This is due

to the fact that as the number of speakers increases, the number of possible output

permutations rises factorially. Our multi-speaker model keeps the assignment errors

to a fairly low level despite the difficulty of the problem. Second, our three-speaker

model outperforms all existing systems, including the initial uPIT [64], anchored deep

attractor network [80], Conv-TasNet [81], and phase reconstruction network [113] in
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Table 6.4: Average ∆SDR, PESQ and ESTOI for simultaneous grouping with the
optimal output assignment on WSJ0-2mix OC and WSJ0-3mix OC .

# of output Training set
WSJ0-2mix OC WSJ0-3mix OC

∆SDR (dB) PESQ ESTOI (%) ∆SDR (dB) PESQ ESTOI (%)

2 WSJ0-2mix 19.1 3.63 94.3 - - -

3 WSJ0-3mix 18.6 3.54 93.5 17.5 3.16 86.7

3 WSJ0-2mix, WSJ0-3mix 19.1 3.58 94.1 17.5 3.13 86.5

all metrics. The improvements in ∆SDR and ∆SI-SNR are quite significant. Our

PESQ score matches Wang et al.’s result [113], possibly because phase reconstruction

is optimized jointly in the time and spectral domain in [113], and PESQ is more

relevant to spectral patterns. Despite the success of multi-speaker deep CASA, there

is a speech quality (PESQ) gap from ideal masks.

Although multi-speaker deep CASA is designed for C concurrent speakers, if

trained properly, it can be used to separate speech mixtures with up to C speakers,

without prior knowledge of the speaker number. To illustrate the flexibility of multi-

speaker deep CASA, we train and test a three-speaker model on both the WSJ0-2mix

and WSJ0-3mix datasets, i.e., on both two- and three-speaker mixtures. To be able

to train the three-speaker models with WSJ0-2mix, we extend WSJ0-2mix with a

third ”silent” channel, which consists of white Gaussian noise with an energy level

40 dB below that of the mixture. During evaluation, we select the outputs with a

significant energy as active speakers.

Table 6.4 compares simultaneous grouping of multi-speaker deep CASA trained

with different numbers of speakers. For all models, outputs are organized with the

optimal speaker assignment before evaluation. The three-speaker Dense-UNet trained

on WSJ0-2mix and WSJ0-3mix slightly underperforms the models with matched
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Table 6.5: Average ∆SDR, ∆SDR, PESQ and ESTOI for various speaker-number-
independent systems evaluated on WSJ0-2mix OC and WSJ0-3mix OC.

WSJ0-2mix OC WSJ0-3mix OC

∆SDR (dB) ∆SI-SNR (dB) PESQ ESTOI (%) ∆SDR (dB) ∆SI-SNR (dB) PESQ ESTOI (%)

uPIT [64] 10.1 - - - 7.8 - - -

OR-PIT [100] 15.0 14.8 3.12 - 12.9 12.6 2.60 -

Multi-speaker deep CASA 17.9 17.7 3.43 92.5 14.5 14.3 2.75 80.6

training/test speaker numbers on respective datasets, but outperforms the three-

speaker Dense-UNet trained on WSJ0-3mix in terms of two-speaker separation.

Table 6.5 illustrates the final results of three-speaker deep CASA trained on

WSJ0-2mix and WSJ0-3mix, and compares it with other state-of-the-art speaker-

number-independent approaches trained on WSJ0-2mix and WSJ0-3mix. All com-

parison approaches are uPIT based, as deep clustering based methods do not per-

form well when the number of speakers is unknown. The results are reported for

both WSJ0-2mix OC and WSJ0-3mix OC. The proposed system substantially out-

performs the other two approaches in terms of all four metrics. A slight performance

drop is observed when we switch from speaker-number-dependent training to speaker-

number-independent training.

Next, we evaluate the causal-separation extension to deep CASA for two-speaker

mixtures. Different simultaneous grouping models are compared in Table 6.6. Out-

puts are organized with the optimal speaker assignment before evaluation. The first

row corresponds to Dense-UNet with non-causal connections and normalization. A

modest performance drop is observed if we switch to the causal version. Two nor-

malization techniques are evaluated. BN leads to negligibly better results than ciBN.

122



Table 6.6: Average ∆SDR, PESQ and ESTOI for simultaneous grouping models with
the optimal output assignment on WSJ0-2mix OC.

Normalization Causal ∆SDR (dB) PESQ ESTOI (%)

Non-causal Dense-UNet LN 7 19.1 3.63 94.3

Causal Dense-UNet BN 3 18.0 3.52 93.2

Causal Dense-UNet ciBN 3 17.8 3.52 93.0

Table 6.7: Average ∆SDR, PESQ and ESTOI for sequential grouping models on
WSJ0-2mix OC.

Seq. Group. Normalization Clustering Causal ∆SDR (dB) PESQ ESTOI (%)

Two-speaker TCN BN Causal 3 13.9 3.02 87.0

Two-speaker TCN ciBN Causal 3 14.6 3.12 88.5

Two-speaker TCN cLN Causal 3 15.1 3.19 89.5

Multi-speaker TCN cLN Causal 3 14.8 3.15 89.0

Due to slow training, we did not use cLN for causal Dense-UNet, and leave it as

future work.

Table 6.7 compares different sequential grouping models for causal deep CASA.

All TCNs are causal, and trained on top of the causal Dense-UNet with BN. All

clustering algorithms in this table are also causal. The first three rows compare three

normalization techniques under the two-speaker Deep CASA setup. Thanks to the

matched calculation of mean and variance in the training and test, cLN significantly

outperforms the other two techniques. We also train a causal TCN with cLN under the

multi-speaker setup, which performs slightly worse than that under the two-speaker

setup, consistent with the results in Table 6.1.
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Table 6.8: Average ∆SDR, PESQ and ESTOI for causal TCN on WSJ0-2mix OC.

Seq. Group. Normalization Clustering Causal ∆SDR (dB) PESQ ESTOI (%)

Two-speaker TCN cLN Offline 7 15.2 3.19 89.5

Multi-speaker TCN cLN Offline 7 14.8 3.16 89.0

Table 6.8 reports results for causal TCN with non-causal clustering. All settings

in the table follow the last two rows of Table 6.7 except for the clustering algorithms.

The causal clustering algorithms in Table 6.7 yield almost the same results as non-

causal offline clustering, demonstrating the effectiveness of the proposed algorithm.

Finally, Table 6.9 compares causal deep CASA and other state-of-the-art talker-

independent causal methods on WSJ0-2mix OC. The Listen and Group system [70]

estimates frame-level spectral outputs in an autoregressive fashion. It consists of

two stages. In the first stage, the frame-level mixture and source estimates from

the previous frame are transformed into mid-level representations. The second stage

groups mid-level representations to two sources. We present the fully causal version of

Listen and Group, which has no look-aheads for phase reconstruction. Other models

include causal versions of uPIT, LSTM-TasNet and Conv-TasNet. As demonstrated

in the table, our causal deep CASA system outperforms all existing methods by a

large margin.

6.5 Concluding remarks

We have proposed multi-speaker and causal-separation extensions to deep CASA

for talker-independent speaker separation. In the multi-speaker extension, we redesign
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Table 6.9: Number of parameters, average ∆SDR, ∆SI-SNR, PESQ and ESTOI for
various state-of-the-art causal systems evaluated on WSJ0-2mix OC.

# of param. Causal ∆SDR (dB) ∆SI-SNR (dB) PESQ ESTOI (%)

Mixture - - 0.0 0.0 2.02 56.1

uPIT [64] 46.3M 3 7.0 - - -

Conv-TasNet [81] 5.1M 3 11.0 10.6 - -

LSTM-TasNet [81] 5.1M 3 11.2 10.8 - -

Listen and Group [70] 8.2M 3 11.0 - - -

Causal deep CASA 12.8M 3 15.1 14.9 3.19 89.5

the sequential grouping stage to deal with the situation where the number of concur-

rent speakers is greater than 2. The extension works well even if the speaker number is

not given beforehand. In the causal-separation extension, we extensively revise tem-

poral connections and normalization, and propose two causal clustering algorithms.

Experimental results on the benchmark WSJ0-2mix and WSJ0-3mix datasets show

that the proposed extensions outperform all published results for speaker separation

under the multi-speaker and causal setup. This study represents a major step towards

speaker separation in real-world applications.

Future work includes examining the performance of causal deep CASA with

an unknown number of speakers beyond three. Noise- and reverberation-robust ex-

tensions also need to be explored to deal with more realistic acoustic environments

[21].
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Chapter 7: Conclusions and future work

7.1 Contributions

As a traditional separation approach inspired by human auditory scene analysis

principles, CASA has been proven effective in a variety of speech applications [51]

[85] [86] [124]. In this dissertation, we have investigated CASA from a deep learning

perspective. Specifically, we have explored deep learning based pitch tracking in

the presence of noise and competing speakers, with speaker-dependent and speaker-

independent training. We have also proposed a deep CASA framework for talker-

independent speaker separation, which realizes CASA mechanisms in a deep learning

model. Extensions to deep CASA in Chapter 6 have been shown to generalize well

to an unknown number of speakers and causal processing, representing a big stride

in solving the cocktail party problem.

In Chapter 2, we have introduced LSTM for noise-robust single-pitch tracking.

Both conventional LSTM and TF-LSTM are utilized for pitch probability estimation.

We find that larger training sets and speaker-dependent training greatly benefit the

performance of deep learning. Thanks to the power of sequence modeling, both

LSTM based models outperform a feedforward DNN model. With the frequency
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scanning mechanism, TF-LSTM achieves better performance in low SNR conditions,

and reduces the voicing decision errors of conventional LSTM by 10% at -10 dB.

Chapter 3 presents SD-DNNs and SPD-DNNs for multi-pitch estimation. Thanks

to discriminative modeling and speaker-dependent information, SD-DNNs and SPD-

DNNs produce good pitch estimates in terms of both accuracy and speaker assign-

ments, and significantly outperform other SD and SI models. SPD-DNNs perform

almost the same on same-gender and different-gender speech mixtures, demonstrating

the power of SD modeling. During the training of GPD-DNNs, the output-speaker

pairing is based on heuristics, which does a reasonable job but slightly underperforms

uPIT based methods, as pointed out in Chapter 4. Given limited speaker-dependent

training data, speaker adaptation of GPD-DNNs is very effective for reducing pitch

errors, especially for same-gender speaker pairs, mostly due to the fact that the subop-

timal label assignments in GPD-DNNs are corrected during adaptation. Multi-ratio

trained SD-DNNs and SPD-DNNs produce consistent results across various speaker

ratios, which shows the generalization of DNNs when exposed to multi-condition

training data.

Chapter 4 presents speaker-independent extensions to the NN-FHMM multi-

pitch tracking framework. The uPIT technique is adopted to address the label per-

mutation problem during training, which leads to better performance than heuristic

GPD models. The best results are achieved by the uPIT-SS-PERM-PITCH model,

which indicates that speaker separation benefits multi-pitch tracking, not only with

the separated speech, but also with its label permutation during training.
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In Chapter 5, deep CASA is proposed to address talker-independent speaker

separation. The deep CASA approach follows CASA principles, and optimizes frame-

level separation and speaker tracking in the two-stage framework, leading to much

better performance than DC and PIT. Various deep learning techniques have been

proposed in this study, including frequency mapping layers and drop dilation, leading

to cumulative improvements in the final results.

Chapter 6 presents multi-speaker and causal-separation extensions to deep CASA.

Sequential grouping is redesigned in the multi-speaker extension to address the facto-

rial increase of label permutations. The multi-speaker extension substantially outper-

forms the competing systems in terms of ∆SDR and ∆SNR. But the PESQ improve-

ment is still limited. When tested with an unknown number of speakers, the multi-

speaker extension generalizes well, and only slightly underperforms the matched-

speaker-number models. In the causal-separation extension, temporal connections,

normalization, and clustering algorithms are extensively modified for real-time pro-

cessing. Causal deep CASA produces the best results on WSJ0-2mix OC. However,

detailed results indicate that the performance on same-gender mixtures are much

worse than different-gender mixtures. Better sequence models are needed to address

this issue.

7.2 Future work

In this dissertation, we have proposed several deep learning based pitch tracking

algorithms in the presence of noise and competing speakers. Although pitch may not

be critical to speech separation in the era of deep learning, it is still useful for other

audio processing tasks. Singing pitch detection and note detection are important
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real-world applications of pitch tracking. If enough training data are collected, we

can extend our speaker-independent multi-pitch tracking framework to address these

two tasks. Attention needs to be given to real-time implementation. One should

explore more causal sequence models. Model compression is also needed for efficient

deployment.

Deep CASA represents a big step towards solving the cocktail party problem. To

further extend the deep CASA framework, the following aspects need to be considered:

• Extension to time-domain processing. As mentioned in Chapter 5, the time-

domain Conv-TasNet [81] yields much better results than a spectral-domain

counterpart of Conv-TasNet. It would be interesting to see how deep CASA

performs with processing in the time domain [90].

• Extension to noisy mixtures. The most straightforward noise-robust extension

to deep CASA is to treat noise as another source, and use an additional layer

for noise in the output. However, since noise has different characteristics from

speech, this may not be a good solution. A two-stage system, with the first

stage for denoising and the second stage for speaker separation, may be better.

• Extension to room reverberation. A two-stage deep CASA system has been

readily extended to perform 2-talker speaker separation and dereverberation

[21]. Future extension is needed to incorporate more speakers and non-speech

noise.

• Iterative processing of simultaneous grouping and sequential grouping. In the

tandem algorithm [51], an iterative process of pitch estimation and mask es-

timation is performed, which produces a set of consistent pitch-mask pairs.
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However, in our deep CASA framework, simultaneous grouping is performed

first without any information from sequential grouping. It would be interesting

to explore how the iterative processing in [51] can be applied to deep CASA.
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