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Abstract

Titanium (Ti) and its alloys have a wide range of applications in biomedical, automotive

and aerospace industries due to their excellent strength to weight ratio and corrosion resis-

tance. Alpha phase Ti has hexagonal closed packed (hcp) structure that shows anisotropic

plastic deformation; 〈a〉 type slip on prism planes is the easiest to activate but cannot ac-

commodate deformation along the 〈c〉 axis. The low temperature ductility of Ti is linked to

twinning. Therefore, understanding the mechanisms behind the twin nucleation and growth

in Ti alloys is important from both theoretical and industrial application points of view. To

that end, the present study seeks a better understanding of the atomic scale processes in-

volved in twin nucleation mechanisms and the effect of alpha-stabilizing solutes such as

interstitial oxygen, substitutional aluminum and rare earth elements on twinning. System-

atic molecular dynamics (MD) simulations are used to identify the underlying mechanism

of twin nucleation from dislocation/grain boundary interactions. Density functional theory

(DFT) simulations are employed to examine the effect of oxygen interstitials on the twin-

ning behavior of Ti. A systematic framework has been developed to predict the diffusion

of interstitial elements near the twin boundaries in hcp alloys. Next, uncertainty that arises

from first-principles calculations in predicting diffusion coefficients are quantified. Finally,

solute segregation to the twin boundaries as a new mechanism for dynamic strain aging

(DSA) is investigated in Ti and other hcp alloys.
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Chapter 1: Introduction

One of the major goals of the science and engineering community is increasing both

strength and ductility of structural materials. Traditional methods for strengthening rely on

the controlled generation of internal defects, and thereby increase in strength at the cost

of reducing ductility and toughness. Defects are typically categorized into: point defects -

vacancies or interstitials- where an atom is missing from a perfect crystal or an atom oc-

cupies a site within the perfect crystal, line defects -dislocations- around which a line of

atoms are missing or misaligned, and planar defects -grain boundaries, stacking faults or

twin boundaries- that can be treated as 2D interfaces. Presence of defects in crystalline

materials is inevitable, yet these defects can be controlled to improve the mechanical prop-

erties. Accurate study of these defects via computational methods provide invaluable tools

to identify their role on mechanical and electronic properties of materials.

Titanium (Ti) and its alloys have high demand in biomedical, automotive, and aerospace

industries due to their relatively light weight, high strength and corrosion resistance. The

low temperature phase of Ti, known as α-Ti, has a hexagonal close-packed (hcp) crystal

structure with lattice parameters of a = 2.93 Å, c = 4.61 Å and a c/a ratio of 1.577, which

is lower than the ideal value of 1.633 for a close-packed lattice. Unlike cubic crystal struc-

tures, the deformation of hcp materials is anisotropic meaning that the mechanical proper-

ties in this class of materials depend on the direction of loading. In strengthening processes,
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the trade-off between increasing ductility and strength is attributed to the anisotropic plastic

deformation in hcp materials. Low-temperature ductility of this class of materials is linked

to twinning- an important deformation mechanism where the number of active slip systems

is limited. In ductile Ti, more than one twin system is active under both tension and com-

pression while in less ductile metals, such as magnesium (Mg), only one twinning mode is

operative. The aim of this dissertation is to understand the fundamental reasons underlying

different twinning behaviors by comparing the twin nucleation and growth mechanisms in

pure and alloyed hcp metals.

1.1 Deformation twinning in hcp metals

The mechanical properties of hcp metals are strongly dependent on the combination

of active deformation modes, both slip and twinning. Slip system is defined as the set

of symmetrically identical slip planes and associated family of slip directions for which

dislocation motion can easily occur and lead to plastic deformation. The two most likely

Burgers vectors in hcp crystals are 〈a〉 and 〈c + a〉. Possible slip systems for both slip

directions are shown in Figure 1.1. Figure 1.2 compares the critical resolved shear stress

(CRSS) for activation of 〈a〉-type slip on basal and prism planes with 〈c+a〉-type pyramidal

slip in a Ti alloy. CRSS is the resolved component of applied stress which starts moving

the dislocation and is a measure of slip system activity. As shown in Figure 1.2, 〈a〉-type

slip on prism planes requires the lowest CRSS over the range of temperatures and therefore

is the easiest deformation mode to activate in Ti.

In 1928, it was von Mises who first pointed out that for a polycrystalline material to

be able to undergo ductile plastic deformation, five independent slip systems are necessary

[16]. To satisfy the von Mises criterion under the constraint that 〈a〉-type slip is restricted,
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Figure 1.1: Basal, prismatic and pyramidal slip modes with (a) 〈a〉-type and (b) 〈c + a〉-type Burgers vector
in hcp Ti. Pyr. I and Pyr. II denote to the pyramidal-I and pyramidal-II planes, respectively.

Figure 1.2: Critical resolved shear stress for 〈a〉 and 〈c + a〉 Burgers vectos slips as a function of temperature
in single crystal Ti-6.6Al. The figure is adapted from [4].
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ductile deformation is accommodated by activation of the 〈c+a〉 slip mode and deformation

twinning. Deformation twinning is a process in which a part of the crystal undergoes a

homogenous shear such that it produces the original crystal structure in a new orientation.

The interface between these two crystals -twin boundary- is a highly symmetrical interface,

often with one crystal called “twin” oriented as the mirror image of the parent crystal called

“matrix”. The surface along which the lattice points are shared between the matrix and twin

crystals is called twinning plane.

Various twin activities have been observed under applied tension or compression par-

allel to the ~c axis. Figure 1.3 shows the possible twinning planes and shear directions for

different twin modes in Ti. The {101̄2} and {112̄1}modes are activated during tension while

the {101̄1} and {112̄2}modes are activated during compression. Among those, {101̄2} is the

most commonly observed twin in Ti.

1.2 Improving mechanical properties via alloying

One of the most effective methods to improve or control the mechanical properties of

materials is by alloying and chemistry change. Despite brilliant mechanical features, Ti

sees limited use at high temperatures due to its high reactivity with oxygen (O) requiring

expensive steps to prevent oxidation. On the other hand, this high oxygen reactivity leads

to the rapid formation of stable oxide layers, providing high corrosion resistance [1]. In-

creasing the oxygen content also enhances the tensile strength of Ti, but has a detrimental

effect on the ductility [17]. The strengthening mechanisms in Ti are mostly based on the

role of solutes on hindering the dislocation motion. This is also true for oxygen atoms

which hinder the dislocation motion and low temperature twinning. Figure 1.4 depicts
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Figure 1.3: Twinning planes and the corresponding shear directions of possible twin modes in Ti activated
under the tension or compression along the ~c axis. Pyr. I and Pyr. II indicate the pyramidal-I and pyramidal-II
planes, respectively.

the engineering stress-displacement curves for Ti samples with different oxygen concen-

trations from different nano-compression tests captured from in situ transmission electron

microscopes (TEM) analyses [5]. As shown, the Ti-0.1wt% O sample exhibited the lowest

strength, but with substantial work hardening upon yielding. By enhancing the O con-

tent to 0.3wt%, the yield strength increased to 2.5 GPa, which is 8 times greater than for

Ti-0.1wt% O (∼ 320 MPa). However, this incredible increase in strength of Ti comes at

the cost of reducing ductility, which is associated with the suppression of twinning in the

presence of oxygen in Ti alloys. The mechanism underlying the twin suppression in the

presence of oxygen solutes has remained an open question in the literature. Therefore, un-

derstanding the effect of oxygen and other alloying elements on the twin nucleation and

growth is an important research area.
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Figure 1.4: The engineering stress-displacement curves of the compression tests at different oxygen concen-
trations in Ti. The figure is adapted from [5].

It is generally believed that twins grow rapidly; however, previous studies show the

very slow growth of twins in the presence of impurities [18, 19, 20, 21]. It has been re-

ported that the increase in oxygen solutes leads to further suppression of {101̄2} twinning

at low temperatures [22]. The study performed by Oberson et al. suggests that twinning in

α-Ti is controlled by the diffusion of oxygen away from the boundary [19]. They attributed

the slow growth of the twins to the time necessary for repositioning of the octahedral sites

occupied by oxygen atoms due to the shear and shuffle mechanism during the twin for-

mation. However, this crystallographic study does not take into the account any of the

energetic analysis in the interaction between oxygen atoms and the neighboring Ti atoms.

Consequently, identifying the responsible mechanisms for twin suppression in presence of
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oxygen solutes requires quantitative and accurate description of energetics as well as solute

diffusivities near the twin boundaries.

Another important effect of solutes on mechanical properties of metals is the serrated

flow phenomenon. Many dilute solid solutions exhibit the Portvein-LeChatelier effect

(PLC) in technologically important metals. This phenomenon occurs at certain strain-rate

and temperature conditions in which inhomogeneous deformation is observed, dominated

by strain localization which leads to the serrated stress-strain curves. PLC is the macro-

scopic pattern associated with dynamic strain aging (DSA), which causes stress flow insta-

bility in the presence of solutes. DSA has been previously attributed to dislocations pinned

by the solutes by forming a Cottrell atmosphere. Some experimental evidence interestingly

identified the occurrence of DSA in single crystals oriented in favor of twinning in Ti-O [6]

and Mg-rare earth elements alloys [23, 24, 25]. Figure 1.5 is selected from [6] and shows

the appearance of serrated flow at higher temperatures in single crystal Ti samples with

active {101̄2} twin deformation mode. DSA in Ti has also been characterized in other ex-

perimental studies, and is believed to be caused by diffusion of interstitial elements such as

O and carbon (C) [26, 27]. This suggests that similar to the solute/dislocation interaction,

solutes can segregate to the twins, pin them and thereby impede the twin growth resulting

in DSA. To study this phenomenon, it is important to investigate the role of solute pinning

on the twin growth.

The overarching goal of this dissertation is (1) to provide a systematic framework to

study the mechanisms underlying the twin nucleation and growth in Ti; (2) to obtain a

complete and quantitative picture of thermodynamics and kinetics of oxygen near Ti twin

boundaries and the effect of oxygen on the mobility of twinning dislocations; and (3) to
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Figure 1.5: True tensile stress versus true strain curves for Ti single crystals that are favored for (101̄2)
twinning tested between 78 and 773 K. The figure is adapted from [6].

understand the strengthening effects due to solute segregation to the twin boundaries and

the corresponding impact on dynamic strain aging.

1.3 Modeling techniques

Over the past two decades, the growing power of computers has supplied a great incen-

tive to the development of methods and code interfaces to tackle a vast range of scientific

issues and provided robust computational tools. At the atomistic level, the two most com-

mon approaches to model the interaction between atoms are classical simulations using

empirical interatomic potentials and ab-initio quantum mechanical methods. Molecular

dynamics (MD) and molecular statics (MS) are the two common methods to follow the

motion of atoms or determine their equilibrium position. With empirical potentials, clas-

sical MD and MS can treat very large numbers of atoms, whereas when using ab initio

forces, the system size is much more limited. These methods are based on linking the

forces to acceleration using Newton’s equation of motion [28, 29]. The relaxed (ground
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state) configuration of atoms is found by minimizing the total energy of a system using

conjugate gradient or other numerical approaches. In classical MD and MS, interatomic

potentials are used, which are obtained by fitting to the experimental or quantum mechani-

cal databases with crystal structure and physical property data. Since interatomic potentials

have traditionally been fitted to properties of perfect crystals or at best simple defects such

as point defects, they often have only limited transferability to systems with defects such

as dislocations, impurities or stacking faults. Making interatomic potentials that reproduce

extended-defect properties well is an active research area and frequently uses DFT-results

for defect structures as fitting data.

Modern first-principles ab initio methods are typically based on Kohn-Sham density

functional theory (DFT)[30]. In DFT, the energy and interatomic forces are calculated from

the energy-minimized electron distribution around a given set of ion cores using quantum

mechanics. Thus, no potentials need to be fitted, and changing interactions around defects,

interfaces, solutes, etc., can naturally be described “out of the box” for more or less all

elements of the periodic table up to the actinides, which is not possible in classical meth-

ods. In order to make this approach feasible for system sizes beyond a few atoms, which

is needed for solid-state simulations, electrons are described by their density distribution

and not by their wave functions, which is exact for the ground state (Hohenberg-Kohn the-

orem [31]). The most common iterative approach to find the ground state density is based

on the Kohn-Sham equations [30]. Since this approach is fundamentally a single-particle-

in-an-effective-field approach, it eliminates all many-body interactions such as exchange

(which is expressed mostly in spin-interactions- no magnetism would be possible without

exchange) and electronic correlations, without which especially the behavior of the elec-

trons in d and f - orbitals often can not be described satisfactorily. To include these effects
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into DFT calculations, a number of exchange-correlation functionals have been proposed

in the literature. The most commonly used functionals are based on the local density ap-

proximation (LDA) and the generalized gradient approximation (GGA) [32, 33]. In our

work, the electronic structure modeling is mostly done with the Vienna ab initio simulation

package (VASP) [34], which is a modern plane wave basis density functional code. VASP

is a powerful tool to compute an approximate solution to the many-body Schrodinger equa-

tion. Due to the high computational cost of these calculations, simulation size is limited

and cannot be incredibly large.

DFT methods can be used for all types of atomistic calculations, MD, structural relax-

ation, determination of kinetic parameters such as diffusion coefficients, binding energies,

or vibrational properties and resulting free energies. More details about these methods will

be provided in the following chapters where such methods will be applied.

1.4 Scope

In the following chapters, a systematic framework is developed to study the twin nucle-

ation and growth mechanisms in Ti and other hcp alloys. Chapter 2 explains twin nucleation

mechanisms as a result of dislocation and symmetrical tilt grain boundaries interaction.

Chapter 3 studies the twin nucleation mechanism from a random grain boundary due to

the slip activity in an adjacent grain known as “slip-induced twinning”. Chapter 4 presents

DFT prediction of oxygen diffusion near the (101̄2) twin boundary in Ti. Here, a framework

is developed to predict the diffusion rate of solutes around the twin boundaries from DFT

evaluated site and transition energies and an exact solution to the master equation. Chap-

ter 5 focuses on the uncertainty analysis involved in predicting diffusivities from first prin-

ciples with an application to Mg/Al alloys in stable and metastable hcp and face-centered
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cubic (fcc) phases. Chapter 6 introduces the role of interstitial solutes segregation to the

twin boundaries on the strain-rate and temperature dependence of twin growth. Chapter 7

extends the theory proposed for interstitial solutes to the vacancy-mediated substitutional

solutes segregation to the twin boundary and the corresponding effects on the twin growth.

The developed models predict the strain-rate and temperature conditions of dynamic strain

aging in Ti and Mg alloys due to the solute/twin boundary interactions. Chapter 8 summa-

rizes the results and discusses the future directions in this area of research.
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Chapter 2: Atomistic modeling of dislocation interactions with

symmetrical tilt grain boundaries in titanium

The work described in this chapter is a modified version of the following reference
that has been published by M.S. Hooshmand et al. M.H. performed all the simula-
tions. M.G. and M.M. designed and supervised the project. Manuscript was written
by M.H. and revised by M.G. and M.M.

M.S. Hooshmand, M.J. Mills, M. Ghazisaeidi, “Atomistic modeling of dislocation
interactions with twin boundaries in Ti”, Modelling and Simulation in Materials
Science and Engineering (2017) (link)

Dislocation/grain boundary interactions play an important role in plastic deformation

and mechanical properties of materials. Many fundamental material properties such as

strength, ductility, fracture and damage evolution are affected by grain boundary structure.

In this chapter, we study the interaction between prismatic screw 〈a〉, prismatic edge 〈c〉

and pyramidal mixed 〈c+a〉 dislocations with (1̄011) and (1̄013) twin boundaries in tita-

nium using atomistic simulations. Depending on the slip systems, atomic structure of twin

boundary and stress/strain states, different components are nucleated. In all of the cases,

twinning dislocations are nucleated on the boundary. The results also show that in some

cases, partial dislocations transmit through the boundary leaving behind a stacking fault in

the second grain. In the case of 〈c〉 and 〈c+a〉/ (1̄013) interactions, (1̄012) twin embryo is

nucleated in the neighboring grain. This study outlines some of the mechanisms underlying

twin formation in Ti.
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2.1 Introduction

Mechanical properties of materials, such as strength and ductility, are governed by dis-

location motion. Grain boundaries (GB) may impede the dislocation motion, therefore

increasing the strength of material. Allowing the mobility of dislocations enhances the duc-

tility and also eases the plastic deformation accommodation. In addition, GBs can act as

nucleation sites for other lattice defects. Depending on the interacting components, trans-

mission, annihilation, absorption or immobilization of lattice dislocations at the boundary

can occur. In this chapter, we present a systematic study of dislocation/boundary interac-

tions in Ti.

Symmetrical tilt grain boundaries (STGB) are special type of grain boundaries with

a mirror symmetry between two crystals rotated with respect to a particular axis on the

boundary plane. Only the tilt axis and tilt angle are required to describe the crystallography

of STGBs. Depending on the angle of rotations, STGBs are categorized to either low or

high angle tilt grain boundaries. Among different active twin modes in hcp systems, three

of them namely {1̄011}, {1̄012} and {1̄013} have been drawn so much attention and their

activity have been reported in many experimental observations [35, 36, 37, 38, 39, 40].

Figure 2.1 shows the crystallographic planes corresponding to these twin modes sharing

the same [1̄21̄0] tilt axis. {1̄011} and {1̄013} twins occur under uniaxial contraction for all

c/a ratios along the c−axis, unlike {1̄012} twins.

Several groups have investigated the atomic structures of STGBs and dislocation/ bound-

ary interactions in hcp systems both experimentally and computationally. Wang et al. stud-

ied the atomic structures of STGBs in Mg and Ti over the range of 0◦ to 90◦ tilt angles

[41, 42]. In another study from the same group, interaction between 〈a〉-type basal dislo-

cation pile-ups and GBs in Mg has been modeled using molecular dynamics [43]. Various
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Figure 2.1: Schematic representation of (1̄011), (1̄012) and (1̄013) planes sharing common zone axis [1̄21̄0]
in an hcp crystal structure.

studies on dislocation/GB interactions in other hcp systems have been done by Serra et al.

[44, 45, 46]. There is also substantial evidence from transmission electron microscopy

[47, 48] and theoretical analysis [39, 49, 50] that facet nucleation and disconnections play

important roles on the plastic deformation mechanisms. A review paper by Kacher et al.

experimentally observed that the glissile components nucleated from the dissociation of in-

coming dislocation on the boundary can result in migration of twin boundary (TB), thereby

thickening or thinning the twin region [51].

Despite various theoretical and experimental studies, twin nucleation mechanisms as a

result of lattice dislocations other than 〈a〉-type basal have not been addressed in Ti. As
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it is explained in Chapter 1 , the dominant slip mode in Ti is prismatic 〈a〉-type slip. In

addition, the relationship between twinning and 〈c〉 or 〈c+a〉 is essential in understanding

the mechanistic theory underlying the slip stimulated twinning in polycrystalline materials.

Through a systematic approach, we study the interaction of screw 〈a〉, prismatic edge 〈c〉

and pyramidal mixed 〈c+a〉 dislocations with (1̄011) and (1̄013) twin boundaries.

2.2 Computational method

Dislocation/TB interactions in this study have been done using molecular dynamics

approach at 0 K temperature. LAMMPS package [52] and a modified embedded atom

method (MEAM) potential for Ti [53] have been implemented. This potential reproduces

well a set of experimentally measured properties in Ti. First, we model the twin boundary

structures and calculate the excess potential energies. The tilt axis for the interfaces has

been chosen to be [1̄21̄0] along z direction and boundary plane lies on xz plane. To calculate

the interface energy, two boundaries are simulated in each modeling cell to preserve the

periodicity along y axis, as well as x and z directions. The periodic length along y and z

are 90 nm and 0.293 nm, respectively. Periodicity along the x direction is 1.06 nm, 0.69 nm

and 1.78 nm for (1̄011), (1̄012) and (1̄013) STGBs, respectively. The relaxed structure and

potential energy map of these three boundaries using periodic boundary conditions in all

directions are shown in the Figure 2.2

In order to check the validity of implemented MEAM potential, we also compared the

excess interface energies with density functional theory (DFT). DFT calculations are per-

formed using the VASP package [34] with Projector augmented-wave potentials within the

generalized gradient approximation of the exchange-correlation functional as determined

by Perdew-Burke-Ernzerhof (GGA-PBE) [33]. A plane-wave cut-off energy of 300 eV is
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Figure 2.2: Structure and potential energy (PE) per atom for three STGBs in Ti: (a)-(b) (1̄011) TB, (c)-(d)
(1̄012), (e)-(f) (1̄013) TB . The color coding the left columns shows the potential energy of each atom. In
the right column, common neighbor analysis is shown where the blue and red colors present hcp bulk and
non-hcp structure indicative of the interface, respectively.

used for pure Ti. A 14× 14× 8 k-point mesh for the unit cell is well converged and it is ad-

justed for the supercell dimensions. This k-point mesh gives an energy accuracy of 1 meV

atom−1 for bulk Ti. Table 2.1 summarizes the GB energy for aforementioned STGBs pre-

dicted by the MEAM potential and DFT calculations and compared with the reported DFT

values by Kumar et al. [54]. Here, we use (1̄011) and (1̄013) in the subsequent disloca-

tion/boundary interactions.
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Table 2.1: Excess potential energy (PE) for three STGBs

STGB Basal-GB misorientation
Excess PE(mJ

m2 )
MEAM DFT DFT[54]

(1̄011) 61.52◦ 111.80 100.30 75.30
(1̄012) 42.66◦ 171.30 308.39 297.60
(1̄013) 31.56◦ 324.82 345.11 326.50

For simulations of dislocation/boundary interactions, dimensions along x and y direc-

tions are chosen to be 70 nm and 60 nm, respectively. As depicted schematically in Fig-

ure 2.3, fixed boundary conditions are applied along x and y directions and periodic bound-

ary conditions are applied along the dislocation line lying in the z direction. The cell

dimension along this dislocation is 10 times the length of one periodic distance (2.9304 Å).

The dislocations are introduced by displacing all the atoms according to the anisotropic

displacement of the dislocation [55, 56].

Figure 2.3: Bicrystal cell for dislocation/boundary simulations: two grains are indicated with red and blue
atomic colors, respectively. Atoms in green color are fixed in their positions during relaxation.

In the next sections, we study three different lattice dislocations: 〈a〉 screw dislocation

on {101̄0} prism planes, 〈c〉 edge dislocation on {101̄0} prism planes and 〈c + a〉 mixed
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dislocation on {101̄1} pyramidal-I planes, interacting with (1̄011) and (1̄013) boundaries.

We also study the dislocation/boundary interaction under various shear strain components

γxy, γxz and γyz.

2.3 Twinning dislocations corresponding to (1̄011), (1̄012) and (1̄013)
boundaries

In hcp systems, twinning dislocations are characterized by both Burgers vectors (b) and

a step height h = qd0, in which d0 is the unit distance between adjacent twin planes and q is

an integer number defining the atomic layers. Previous works discussed different methods

for generating the topology of twinning dislocations in Mg [49, 57, 58]. Here, we represent

how to construct the twinning dislocations in different boundaries in Ti. Figure 2.4 shows

the dichromatic pattern corresponding to (1̄011) and (1̄013) boundaries. Dichromatic pat-

tern consists of lattice sites of two crystals in their twin related orientations, superimposed

with the sites of one of the grains (parent grains) where the atoms coincide exactly at the

interface. The set of Burgers vectors of admissible interface dislocations is the difference

between translation vectors of ~tµ and ~tλ represented in the same reference frame defined as

follows:

~b = ~tµ − ~tλ (2.1)

Starting with a dislocation-free coherent twin boundary, we define ~tλ and ~tµ translation

vectors as shown in the Figure 2.4 for each boundary and with a specified step height. The

right half of the coherent twin geometry is then shifted by these translation vectors on each

side of the twin boundary. This creates a step and breaks the coherency. This mismatch is
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restored by imposing the Burgers vector expressed in Equation 2.1. The generated defect

has both dislocation and step characters.

!" !#
!#

!"$%

&'

$%
&'

()1011) ()1013)(a) (b)

!" !#

!"
!#

.

//

.

Figure 2.4: Dichromatic pattern for (a) (1̄011) and (b) (1̄013) twin boundaries. ~tλ and ~tµ are the translation
vectors for generating the step character. Two and four step height dislocation Burgers vectors are shown in
this figure. Blue and red color atoms are representative of λ and µ crystallographic orientations which are
mirrored about the boundary planes. Yellow colored atoms correspond to the λ crystallographic orientation
repeated through entire cell to construct dichromatic pattern. ~b2 and ~b4 denote two step and four step Burgers
vectors, respectively.

Analysis of the dichromatic pattern for (1̄011) and (1̄013) TBs show that there are two

possible step heights with minimal shuffle and b magnitudes: q = 2 and q = 4 step height

twinning dislocations. In both of the boundaries, the dislocation character of q = 2- step

height is of mixed type, while that corresponding to q = 4- step height is pure edge. (1̄012)

twinning dislocation (TD), however, has a q = 2- step height and a pure edge dislocation

character. These TDs are shown in Figure 2.5. The line direction for these dislocations is

along [1̄21̄0] zone axis. The Burgers vector components of these dislocations are listed in

the Table 2.2.

Burgers vectors for the twinning dislocations explained above are given by the follow-

ing equations where bt,2 and bt,4 are the 2-step and 4-step height TDs in each boundary and
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[1$012$]

[1$011]

[3$032$]

[1$013]

[1$011]

[1$012]

(1$011)

(1$011)

(1$013)

(1$013)

(1$012)

(a) (b)

(c) (d)

(e)

Figure 2.5: (1̄011), (1̄013) and (1̄012) Twinning dislocations in Ti: (a),(c) 2 and 4-step height (1̄011) TB.
(b),(d) 2 and 4-step height (1̄013) TB. (e) 2-step height (1̄012) TB. Color coding is the common neighbor
analysis (CNA) [7]. Blue atoms have hcp coordinates while red atoms show the defective regions.

Table 2.2: Burgers vectors of (1̄011), (1̄012) and (1̄013) twinning dislocations in Titanium (Å): Lattice
parameter and c/a ratio are: a = 2.9304 Å and κ = 1.5964. ρe, b2e, b2s, bt,2 and bt,4 are TD coefficient,
2-step edge, 2-step screw components, resultant 2-step height mixed and 4-step height pure edge Burgers
vector, respectively. Sign convention in all following Burgers vector notations are right hand side start to
finish convention.

Coefficients Burgers vector
TB ρe |b2e| |b2s| |bt,2| |bt,4|

(1̄011) 0.0905 0.4818 1.4651 1.5423 0.9636
(1̄012) 0.0813 0.5615 - 0.5615 -
(1̄013) 0.0321 0.2869 1.4651 1.4930 0.5739

κ is the c/a ratio. Lattice parameter and c/a ratio for Ti are: a = 2.9304 Å and κ = 1.5964.
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b(1̄011)
2 = b(1̄011)

t,2−edge + b(1̄011)
t,2−screw =

1
2
ρ(1̄011)

e [1̄012̄] ±
1
6

[12̄10] (2.2a)

b(1̄011)
t,4 = ρ(1̄011)

e [1̄012̄] (2.2b)

ρ(1̄011)
e =

(4κ2 − 9)
(3 + 4κ2)

(2.2c)

b(1̄013)
t,2 = b(1̄013)

t,2−edge + b(1̄013)
t,2−screw =

1
2
ρ(1̄013)

e [3̄032̄] ±
1
6

[12̄10] (2.3a)

b(1̄013)
t,4 = ρ(1̄013)

e [3̄032̄] (2.3b)

ρ(1̄013)
e =

(4κ2 − 9)
(27 + 4κ2)

(2.3c)

b(1̄012)
t,2−edge = ρ(1̄012)

e [1̄011] (2.4a)

ρ(1̄012)
e =

(3 − κ2)
(κ2 + 3)

(2.4b)

2.4 Dislocation/boundary interactions

2.4.1 Interactions of the prismatic 〈a〉 screw dislocation with (1̄011)
boundary

Figure 2.6(a) shows the interaction of 〈a〉-type screw dislocation with (1̄011) twin

boundary under strain. The slip on the prismatic plane in top grain, results in nucleation of

(1̄011) twin dislocations. In order to study the behavior of defects under strain, we apply

incremental values of shear strain components. We find that TD with lower Peierls stress
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starts to move under γxy = −0.011. This shows that the initial 〈a〉-type screw dislocation

dissociates into two glissile (1̄011) TDs on the boundary as presented in Figure 2.6(b).

[1$012$]
[1$011]

(./0.
(1$011)

(c)

(12) (1$011)

(e)

(+,-
(b)

(1$011)

()

(*+

(d)
(1$011)

()

(*+

(f)
(1$011)

Ṩ
(a)

(1$011)

x

y

z

(+,-(+,-

(+,-(+,-

(+,-

Figure 2.6: Interactions with (1̄011) TB. (a) Glissile twinning dislocations are created on the boundary as a
result of an 〈a〉 screw dislocation. (b) γxy = −0.011 shear strain is applied which moves the twinning dislo-
cation. (c) presents the interaction of an 〈c〉 prism edge dislocation with the boundary under no shear strain.
(d) Applying γxy = −0.01, γyz = −0.0083 shear strains creates two twinning dislocations as well a dissociated
lattice dislocation the adjacent grain. (e) depicts the 〈c + a〉 mixed pyramidal dislocation interaction with the
(1̄011) boundary with no shear strain. (f) shows that applying γyz = −0.01 shear strain results in nucleation
of a twinning dislocation and an extended lattice dislocation in the adjacent grain, similar to (d). bt,2, bst and
br are 2-step height (1̄011) TD, Shockley partial and the residual dislocation, respectively.
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The Burgers vector reaction in the top grain using a Miller-Bravais [59] hexagonal

crystal reference frame is given by:

1
3

[1̄21̄0](101̄0)︸             ︷︷             ︸
b〈a〉 screw

−→

(
1
2
ρ(1̄011)

e [1̄012̄]︸           ︷︷           ︸
b(1̄011)

t,2−edge

+
1
6

[12̄10]︸   ︷︷   ︸
b(1̄011)

t,2−screw

)
(1̄011) +

(
−

1
2
ρ(1̄011)

e [1̄012̄]︸              ︷︷              ︸
−b(1̄011)

t,2−edge

+
1
6

[12̄10]︸   ︷︷   ︸
b(1̄011)

t,2−screw

)
(1̄011)

where the edge and screw components of the TD Burgers vectors are obtained from Equa-

tion 2.2. Two generated TDs have the same sign screw and opposite sign edge components.

In the boundary cartesian reference frame shown in Figure 2.6, the above Burgers vector

components are given as follows:

b〈a〉screw = a

001
 , b(1̄011)

t,2−edge =
a
2
·

4κ2 − 9
√

3 + 4κ2

100
 , b(1̄011)

t,2−screw =
a
2

001


where a and κ represent the lattice constant and c/a ratio and b(1̄011)
t,2−edge and b(1̄011)

t,2−screw indicate

the 2-step height edge and screw components, respectively.

2.4.2 Interactions of the prismatic 〈c〉 edge and pyramidal mixed 〈c + a〉
dislocations with (1̄011) boundary

In this section, we study the interaction between an edge 〈c〉 on {101̄0} prism planes and

mixed 〈c + a〉 on {101̄1} pyramidal-I planes and the (1̄011) boundary. Figure 2.6(c) shows

the former interaction. Applying two shear components of γxy = −0.01 and γyz = −0.0083

leads to further dislocation reactions, creating three types of reaction products as shown in

Figure 2.6(d). These products include two {101̄1} TDs, which have opposite signs Burgers

vectors and move in opposite directions under applied strain, a partial dislocation entering

the second grain and a residual sessile dislocation on the boundary. Color code in the figure
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shows the common neighbor analysis featured in Ovito [7]. The partial dislocation in the

second grain is leaving behind a basal stacking fault, suggesting a basal dissociation of an

〈a〉-type dislocation. We analyze the nucleated 〈a〉 dislocation in more detail, to determine

its Burgers vector direction and deduce the entire dislocation reaction at the boundary.

Figure 2.7 shows that the trailing partial is located at the boundary which makes it

difficult to identify the character of residual component on the boundary. The leading

partial, however, passes through the boundary and could be analyzed. Given that the line

direction is fixed, the nucleated 〈a〉 dislocation could either be of mixed or screw characters

as shown in Figure 2.8. The mixed dislocation (AC or BC) dissociates into Aδ and δC or Bδ

and δC partials. In both cases, the δC partial has a pure edge character. On the other hand,

if the 〈a〉 dislocation has a screw character (AB), the resulting Shockley partials would be

Aδ and δB, both of which are mixed dislocations. We then analyzed the character of the

leading partial using Nye tensor analysis [60]. The result of this analysis which is shown

in the Figure 2.8(c)-(f) indicates that the leading partial is of pure edge character (δC), thus

revealing that the nucleated 〈a〉 must be of mixed type (either AC or BC). Therefore, the

Burgers vector reaction of a 〈c〉 edge interacting with (1̄011) boundary would be:

[0001](101̄0)︸          ︷︷          ︸
b〈c〉 edge

−→ b(1̄011)
t,2−1 + b(1̄011)

t,2−2 + bst,mixed + bst,edge + br

24



In the boundary cartesian reference frame, each of the reaction components in the above

equations are given by:

b〈c〉edge = a·κ
√

3+4κ2


−2κ
−
√

3
0

 , b(1̄011)
t,2−1 = a

2


4κ2−9
√

3+4κ2

0
1

 , b(1̄011)
t,2−2 = a

2


− 4κ2−9
√

3+4κ2

0
−1


AC dissociation: b(1̄011)

st,mixed = a
√

3


−

√
3

2
√

4κ2+3
− κ
√

4κ2+3√
3

2

 , b(1̄011)
st,edge = a

√
3


−

√
3

√
4κ2+3

− 2κ
√

4κ2+3
0


BC dissociation: b(1̄011)

st,mixed = a
√

3


−

√
3

2
√

4κ2+3
− κ
√

4κ2+3

−
√

3
2

 , b(1̄011)
st,edge = a

√
3


−

√
3

√
4κ2+3

− 2κ
√

4κ2+3
0


Similar behavior is also observed as a result of the pyramidal-I mixed 〈c+a〉 interaction

with (1̄011) boundary. Figure 2.6(e) shows this interaction. During this interaction, a

glissile (1̄011) TD , a Shockely partial trailed by a basal stacking fault in the second grain,

and a sessile residual component at the boundary are formed. Note that unlike in case of

the 〈c〉 dislocation, this reaction occurs even in the absence of applied strain. Figure 2.6(f)

shows the 〈c + a〉 dislocation interaction with the (1̄011) GB under γyz = −0.01 shear strain

where the TD glides under strain. The dislocation reaction is given by:

−
1
3

[21̄1̄3](1̄011)︸               ︷︷               ︸
b〈c + a〉 mixed

−→ b(1̄011)
t,2 + bst,mixed + bst,edge + br
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where, in boundary cartesian reference frame:

b〈c+a〉mixed = a
2

−
√

3 + 4κ2

0
−1

 , b(1̄011)
t,2 = a

2


− 4κ2−9
√

3+4κ2

0
−1

 , b(1̄011)
st,mixed = a

√
3


−

√
3

2
√

4κ2+3
− κ
√

4κ2+3√
3

2


b(1̄011)

st,edge = a
√

3


−

√
3

√
4κ2+3

− 2κ
√

4κ2+3
0

 .
In the above equations, b(1̄011)

t,2 , bst,mixed, bst,edge and br are the Burgers vectors for 2-step

height (1̄011) TD, the mixed type Shockley partial, the edge type Shockley partial and the

residual dislocation, respectively.
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Figure 2.7: Nye tensor analysis on the partial dislocations corresponding to the stacking fault in the second
grain: (a) 〈c〉 prism edge (b) 〈c + a〉 pyramidal mixed dislocation interactions with (1̄011) STGB. Edge com-
ponents (c)-(d) and Screw components (e)-(f) of the partial dislocation which is passed through the boundary
is plotted for 〈c〉 and 〈c + a〉 dislocations, respectively. This shows that for both cases, the leading partials is
pure edge, suggesting the nucleated 〈a〉 dislocation must be of mixed type.
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Figure 2.8: Possible dissociation scenarios for an 〈a〉 dislocation on basal planes. In all of our disloca-
tion/boundary interaction simulations, line direction is fixed and is chosen along [1̄21̄0]. Burgers vector AB
corresponds to a screw dislocation, while Burgers vectors AC or BC correspond to mixed type dislocations.
Further analysis of possible Shockley partial Burgers vectors reveal that only δC is of pure edge character.
This partial dislocation can only be created by dissociation of a mixed 〈a〉 dislocation, i.e AC or BC.

2.4.3 Interactions of the prismatic 〈a〉 screw dislocation with (1̄013)
boundary

Figure 2.9 shows the interaction of prismatic screw 〈a〉 dislocation and (1̄013) boundary.

Without applying any strain, the screw 〈a〉 dislocation creates 2-step and 4-step height

(1̄013) TDs on the boundary. Figure 2.9(b) and (c) show the evolution of defects under

γyz = −0.016 and γyz = −0.018 shear strains, respectively. All of the nucleated TDs are

glissile and move under the shear strain. The Burgers vector reaction for this interaction,

in both hexagonal and boundary cartesian reference frames, is given by:

γyz = −0.0157 :
1
3

[1̄21̄0](1̄013)︸             ︷︷             ︸
b〈a〉 screw

−→ 2 ×
(

b(1̄013)
t,2−edge + b(1̄013)

t,2−screw︸                 ︷︷                 ︸
b(1̄013)

t,2

)
− b(1̄013)

t,4
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b〈a〉screw = a

001
 , b(1̄013)

t,2 = a
2


4κ2−9
√

27+4κ2

0
1

 , b(1̄013)
t,4 = a


4κ2−9
√

27+4κ2

0
0


γyz = 0 and γyz = −0.01789 :

1
3

[1̄21̄0](1̄013)︸             ︷︷             ︸
b〈a〉 screw

−→
(

b(1̄013)
t,2−edge + b(1̄013)

t,2−screw︸                 ︷︷                 ︸
b(1̄013)

t,2−1

)
+

(
− b(1̄013)

t,2−edge + b(1̄013)
t,2−screw︸                 ︷︷                 ︸

b(1̄013)
t,2−2

)

b〈a〉screw = a

001
 , b(1̄013)

t,2−1 = a
2


4κ2−9
√

27+4κ2

0
1

 , b(1̄013)
t,2−2 = a

2


− 4κ2−9
√

27+4κ2

0
1


where b(1̄013)

t,2−edge and b(1̄013)
t,2−screw are edge and screw components of 2-step height (1̄013) TD, re-

spectively. The above reactions show that there is no residual sessile dislocation remaining

on the boundary.

These simulations show that as the shear strain increases, 4-step height TDs with oppo-

site Burgers vectors are formed more frequently (cf. Figure 2.9(c) ). These type of twinning

dislocations are marked by defective regions on the twin boundary in the form of “islands”

and “zigzags”. The term “island” refers to the dislocation-free shifted part of the boundary

in between two opposite sign Burgers vectors. “zigzag” kinks are formed when two dislo-

cations with opposite sign Burgers Vectors meet at the same point. We check the stability

of these zigzag kinks and islands in separate simulations. Two 4-step height (1̄013) TDs

with opposite signs Burgers vectors are applied to the (1̄013) GB at three atomic distance

from each other. The relaxed geometry of these structures are shown in the Figure 2.10 and

confirms that the zigzag and islands on the (1̄013) boundary are both stable. Figure 2.11

shows that under the shear strain of γxy = −0.007, two opposite sign TDs move apart from

each other.
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Figure 2.9: Interaction of 〈a〉 dislocation with (1̄013) TB. (a) Shows the relaxed geometry after the disloca-
tion is introduced at the boundary under zero strain. The interaction results in two 4-step height and 2-step
height TDs. (b) Shows the relaxed cell under γyz = −0.016 shear strain resulting in the TDs to move. (c)
Shows the configurations of defects at γyz = −0.018. By increasing the shear strain, zigzag kinks are formed.
Note that the net Burgers vector content of these defects is zero. Black atom is highlighted to be used as a
reference. S , bt,2 and bt,4 show [1̄21̄0] screw dislocation, 2-step and 4-step height (1̄013) TDs, respectively.

2.4.4 Interactions of the pyramidal 〈c + a〉 dislocation with (1̄013) bound-
ary

In this section, we study the interaction of a 〈c + a〉 mixed type dislocation on the

pyramidal-I plane with the (1̄013) boundary. Figure 2.12(a) shows the relaxed structure

under no applied shear strain where a defective region is nucleated in the neighboring

grain. We applied various components of shear strain in combination to analyze the nu-

cleated defects. Figure 2.12(b)-(d) show the geometry under the effect of two shear strain
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Figure 2.10: Formation of zigzag kinks on (1̄013). Two opposite sign pure edge 4-step height (1̄013) form
a stable zigzag. (a) Shows the relaxed (1̄013) zigzag, which is a stable configuration. (b) Shows the relaxed
stable island which consists of two opposite sign 4-step height (1̄013) TDs.

components γxy = −0.005, γyz = −0.027 after 400, 700 and 1300 relaxation steps, respec-

tively. As it is shown, the defective nucleus in the second grain grows as the shear applied.

The misorientation angle between inside and outside of the nucleus region is approximately

42.66◦, which matches that of a (1̄012) twin boundary (cf. Table 2.1 ), confirming that the

defective region is in fact a (1̄012) twin nucleus. More in-depth analysis of the boundary

of this defect also shows that the generated nucleus is bounded by Basal-to-Prismatic (BP)

boundaries, which are extensively observed during the growth of (1̄012) twins in hcp sys-

tems [61]. BP facets show abrupt changes in the orientation from the prismatic plane in

one grain to the basal plane in the other grain. This interaction marks a possible (1̄012)
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Figure 2.11: γxy = −0.007 shear strain applied on (1̄013) 4-step island. Figures are snapshots of the simula-
tion after: (a) 0, (b) 200 and (c) 550 relaxation steps, respectively. Note that the right 4-step height dislocation
in (a) moves in the [3̄032̄] direction. The kinks formed in (b) move in the opposite directions. Green and
purple dots are to be used as a reference.

twin nucleation mechanism as a result of 〈c + a〉 dislocation interactions with grain bound-

aries. Other reaction products include two “zigzag” structures– 4-step height (1̄013) TDs

with opposite Burgers vectors– and a 2-step height (1̄013) TD. The dissociation reaction

for mixed 〈c + a〉 dislocation at the (1̄013) boundary is given by:

−
1
3

[21̄1̄3](1̄013)︸               ︷︷               ︸
b〈c + a〉 mixed

−→ b(1̄013)
t,2−1 + b(1̄013)

t,2−2 + b(1̄012)
t,2 + br
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where

b〈c+a〉 mixed = a
2


− 9+4κ2
√

27+4κ2

4
√

3κ
√

27+4κ2

−1

 , b(1̄013)
t,2−1 = a

2


4κ2−9
√

27+4κ2

0
1

 , b(1̄013)
t,2−2 = a

2


− 4κ2−9
√

27+4κ2

0
−1


b[101̄1̄](1̄012)

t,2 = a
2

3−κ2

κ2+3


−18+4κ2
√

27+4κ2

− 10
√

3κ
√

27+4κ2

0


and b(1̄013)

t,2 , b(1̄012)
t,2 and br are 2-step height (1̄013), (1̄012) and residual component remained

on the boundary, respectively.

2.4.5 Interactions of the prismatic edge 〈c〉 dislocation with (1̄013)
boundary

Next, we study the interaction of prismatic edge 〈c〉 dislocation with (1̄013) boundary.

Figure 2.13(a) shows the relaxed structure under no shear strain. In the absence of applied

strain, a (1̄012) twin embryo nucleates as a result of this interaction. This is another source

for (1̄012) twin nucleation. In addition, two 4- step height (1̄013) TDs are formed on

the right and left side of twin embryo. Upon applying the shear strain of γyz = −0.03,

additional defects are nucleated as shown in the Figure 2.13(b), and in more detail, in

Figure 2.13(c)-(f). Two 2-step height (1̄013) TDs are formed on the right side of the (1̄012)

twin embryo. In addition, 4-step height (1̄013) kinks as well as (1̄013) island and simple 2

and 4-step height TDs are nucleated on the left side of the twin embryo. Besides the above

reaction products, an 〈a〉-type dislocation is also nucleated, similar to the one observed in

the interactions with (1̄011) boundary explained in Section 2.4.2. This dislocation glides

on the basal planes of the second grain under the applied strain. In order to determine the

character of this dislocation and consequently the vector representation of Burgers vector,

Nye tensor analysis is performed. The edge and screw components of the Nye tensor

distribution, presented in Figure 2.14, clearly show that the dislocation dissociates into
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Figure 2.12: 〈c+a〉 dislocation interaction with (1̄013) TB. (a) Depicts the relaxed geometry under no applied
strain. A defective region is nucleated in the neighboring grain. (b)-(d) Show the geometry under simulta-
neous application of γxy = −0.005, γyz = −0.027 after 400, 700 and 1300 relaxation steps, respectively. 2,
4-step height TDs, 4-step (1̄013) zigzags are formed on the boundary and (1̄012) twinning is nucleated in the
other grain. Twin nucleus is bounded by

{
1̄012

}
as well as basal-prismatic facets. bpyr, bt,2, bt,4 and bt,1̄012

show 〈c + a〉 mixed, 2-step, 4-step height (1̄013) twinning and (1̄012) twinning dislocations, respectively.
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two partials with identical screw components and equal and opposite edge components.

Referring back to the Figure 2.8 reveals that the dissociated partials of this case are Aδ and

δB. This suggests that the nucleated 〈a〉 dislocation has the screw character. The dislocation

reaction follows the equations below:

[0001](101̄0)︸          ︷︷          ︸
b〈c〉 edge

−→
(

2b(1̄013)
t,2−1 + b(1̄013)

t,4−1︸             ︷︷             ︸
right side of embryo

)
+

(
b(1̄013)

t,2−2 + 2b(1̄013)
t,4−2︸             ︷︷             ︸

left side of embryo

)
+ bst + b(1̄012)

t,2 + br

where

b〈c〉edge = a·κ
√

27+4κ2


−2κ
−3
√

3
0

 , b(1̄013)
t,2−1 : a

2


4κ2−9
√

27+4κ2

0
1

 , b(1̄013)
t,2−2 = a

2


− 4κ2−9
√

27+4κ2
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−1


b(1̄013)

t,4−1 = a
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√

27+4κ2

0
0

 , b(1̄013)
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
− 4κ2−9
√
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0
0
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√
3

2
√
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3
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√

3


3
√

3
2
√

27+4κ2
κ

√
27+4κ2
√

3
2


b[1̄011̄](1̄012)

t,2 : a
2 ·

3−κ2

κ2+3


18+4κ2
√

27+4κ2

− 2
√

3κ
√

27+4κ2

0


and b(1̄013)

t,2 , b(1̄013)
t,4 , b(1̄012)

t,2 , bst and br in above equations are 2-step, 4-step height (1̄013),

(1̄012) TD, stacking fault and residual dislocation on the boundary, respectively.

2.5 Concluding Remarks

In this chapter, we studied the interaction of three dislocation systems, with two sym-

metric tilt (twin) boundaries in Ti using atomistic simulations. The results reveal new

mechanisms of twin nucleation and growth as a result of these interactions. In both cases

of (1̄011) and (1̄013), screw 〈a〉-type dislocation generates the corresponding twinning
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Figure 2.13: Prismatic edge 〈c〉 dislocation interaction with the (1̄013) boundary. (a) Relaxed geometry is
shown under no applied strain. A well-defined (1̄012) twin embryo is nucleated in the neighboring grain (b)
Additional defects are created upon application of γyz = −0.03 shear strain. The insets in (c)-(f) provide
a closer look at these defects as follows. (c) 2-step height (1̄013) TD, (d)-(e) (1̄012) twin embryo and a
dissociated basal dislocation in the second grain and (f) 2-step, 4-step height and zigzag kinks on the bound-
ary. Basal-Prism facet as well as (1̄012) TD is represented on the twin embryo. bedge, bt,2, bt,4,bt,1̄012 and BP
show 〈c〉 edge, 2-step, 4-step height (1̄013) twinning, (1̄012) twinning dislocations and Basal-Prism interface,
respectively.

dislocations on each boundary. Nucleation of TDs on (1̄011) twin boundary, from an im-

pingement of 〈a〉 type screw dislocation, is consistent with earlier atomistic simulations of
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Figure 2.14: Nye tensor analysis on the basal dislocation, nucleated from the interaction of a prismatic 〈c〉
edge dislocation with the (1̄013) boundary. (a) Shows a section of Figure 2.13. The dissociated dislocation is
magnified in (b) and reoriented such that basal planes are aligned horizontally. Edge and screw components
are shown in (c) and (d), respectively. The partial dislocations have the same edge component, with opposite
signs, and the same sign screw component. The Nye tensor analysis shows that both partials are mixed type
dislocations, suggesting that the original 〈a〉 type dislocation must have been of screw character.

Serra and Bacon in model hcp systems [45] and experimental observations of dislocation

interaction with twin boundaries [51].

New TDs are generated on both (1̄011) and (1̄013) twin boundaries as a result of 〈c〉

and 〈c + a〉 dislocations. The interaction of these dislocations with (1̄011) boundary lead

to the 〈a〉 type slip on the basal planes in the neighboring grain. In case of the (1̄013)

twin boundary, (101̄2) twin embryo has been nucleated in the adjacent grain. This embryo

grows as the applied shear strain increases. This nucleation mechanism implies that (101̄2)

twinning can be enhanced as a result of 〈c〉 and 〈c + a〉 slip, complementing previous
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studies suggesting the possibility of (101̄2) twin nucleation from 〈c〉 and 〈c + a〉 lattice

dislocations [62]. The framework proposed in this study can be applied to investigate any

type of dislocation/symmetrical tilt grain boundaries interaction in Ti within a systematic

approach.
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Chapter 3: Slip-induced twinning from general (random) grain

boundaries in titanium

Slip transfer through grain boundaries plays an important role on heterogeneous de-

formation of polycrystalline materials. It is experimentally observed that dislocation slip

in soft-oriented grain (off c-axis loading) can stimulate twin nucleation in the adjacent

hard-oriented grain (c-axis loading) when the slip and twinning systems are well-aligned.

Alignment can be described by Luster-Morris parameter m′, which depends on the angle

between loading and the slip direction as well as the angle between Burgers vectors of the

slip and twinning systems. Although high m′ values frequently correlate with twin nucle-

ation in soft/hard grain pairs, there are some outlier cases in which a high m′ does not lead

to twin nucleation. In this study, we simulate such grain pairs using molecular dynamics

simulations at 0 K and analyze the slip transfer through the grain boundary. Generated de-

fects as a result of dislocation/random grain boundary interactions are then analyzed. The

methods used to simulate and analyze the general grain pairs, random grain boundaries and

the generated defects are discussed. Good agreement between computational results and

experimental observations leads to new insights on the nucleation of various defects from

a random grain boundary in Ti.
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3.1 Introduction

Titanium and its alloys have been widely used in structural applications. However,

knowledge of the microstructure evolution during plastic deformation is still unclear. The

primary slip mode in hexagonal Ti is {101̄0}〈12̄10〉 prismatic slip. While the critical re-

solved shear stress for prismatic slip is lower than other slip modes, ductile deformation

requires at least five active independent slip systems based on the von Mises criterion

[16]. As a result, nonprismatic slip modes such as {101̄1}〈112̄3̄〉 first-order pyramidal

〈c + a〉, {21̄1̄2}〈21̄1̄3̄〉 second-order pyramidal 〈c + a〉 and deformation twinning such

as {101̄2}〈1̄011〉 are necessary to accommodate ductile plastic deformation. The plastic

anisotropy in hcp Ti results in heterogeneous deformation among the grains of a polycrys-

tal. The plastic activity of each grain within a polycrystalline material can in fact affect the

deformation of surrounding grains. As a results, different orientations may develop within

a given grain.

A comprehensive understanding of the plastic deformation of grains is strongly depen-

dent on the structure and properties of grain boundaries (GB) between the grain pairs. GBs

are the microstructural features of polycrystalline materials which impact the bulk proper-

ties [63]. GBs can act as sinks and/or sources of defects such as vacancies, interstitials and

dislocations [64]. Interaction of dislocations and grain boundaries can lower the energy of

boundary by decomposing the initial dislocation to the partials with smaller Burgers vec-

tors at the boundary or in adjacent grain. This may lead to the structure change in a given

boundary and needs to be taken into account in plastic deformation analysis. The character

of GBs also influence plasticity in the two adjacent grains. As a result, quantitative analy-

sis of GB structures and slip transfer across the boundaries is crucial in understanding the

mechanisms behind the plastic deformation of materials.
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The aim of this chapter is to quantify the role of strain transfer in the activation of

non-prismatic slip and deformation twinning in α-Ti. It is experimentally observed that

dislocation slip in soft-oriented grain (off c-axis loading) can stimulate twin nucleation in

the neighboring hard grain (c-axis loading) when the slip and twinning systems are well

aligned. While the good alignment and high Schmid factor have been found to be the

necessary conditions for twinning to be activated in the nearing grain, some outlier cases

identified where the slip-stimulated twin has not been observed. Here, we investigate the

role of these factors and the stress/strain states on the slip-stimulated twinning by modeling

the random grain boundaries and analyzing the slip transfer through the interfaces. To this

end, the criterion for slip-stimulated twinning based on previous experimental observations

are discussed in Section 3.2. Then, the characterization results performed by our exper-

imental collaborators in the Michael Mills’lab at OSU are presented. In Section 3.3, the

details of atomistic simulations of the dislocation interaction with the random grain bound-

aries are presented. Simulation results are discussed in Section 3.4. A summary of our

findings is given in section Section 3.5.

3.2 Slip transfer and experimental analysis

The quantitative study of slip transfer through the grain boundaries has been extensively

explored in the literature [65, 66, 67, 68]. Luster and Morris [8] showed that slip transfer

could be predicted when the product m′ = cos κ cosψ, named as Luster-Morris parameter,

is maximized. κ and ψ are the angles between slip vectors and the angle between slip plane

normals of two adjacent grains, respectively. In the case of slip-induced twinning, the m′

parameter is governed by the alignment between dislocation and twinning Burgers vectors

in soft/hard grain and the angle between the active slip and the operating twinning planes in
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the soft/hard grains. This factor is able to predict the experimentally observed slip transfer

using transmission electron microscope (TEM) and also is applicable to the cases where

variable slip plane (cross-slip) near the boundary is possible [67, 68, 69]. The other integral

part in slip transfer is the importance of resolved shear stress (RSS) on the outgoing system.

The combination of these two factors have been proposed to be the predictive criterion for

slip transfer through interfaces.

Previously, researchers at Michigan State University (MSU) showed that m′ can be

used as a potential predictive parameter for slip-stimulated twin nucleation [8]. Figure 3.1

shows the distribution of m′ and mt (the Schmid factor for twinning) in the characterized

experimental samples. The S+T label corresponds to the cases where slip in one grain

nucleated twinning in the adjacent grain and S+0 shows the cases where slip in the soft

grain did not trigger twinning in the neighboring hard grain. In most of the cases, grain

pairs with a combination of high m′ and mt were more likely to exhibit slip-stimulated

twin nucleation, with m′ being the more important parameter. However, some interesting

outlier cases were observed with apparently favorable m′ and mt values which did not ex-

hibit twinning. The observations reported in the work of Wang et al. highlights the fact

that atomic-scale mechanisms, due to the geometry and crystallographic orientation of the

specific grains and interface between them, most likely play an important role in the twin

nucleation mechanisms.

In collaboration with MSU, our colleagues in the Mills group characterized these sam-

ples of high purity Ti [9]. Figure 3.2 shows the scanning electron microscope (SEM) level

analysis corresponding to one of the outlier cases. Slip trace analysis revealed that pris-

matic slip bands are observed in the soft oriented grain 1 (G1). [112̄0](11̄01) pyramidal

slip was observed as the active deformation mode in the grain 2 (G2). No twin activity
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Figure 3.1: Correlation of a large number of slip transmission (S), twinning (T) and no event (0) as a function
of Schmid factor for twinning (mt) and Morris and Luster slip transmission parameter (m′). Outlier cases are
indicated with red circles. (Adapted from [8])

has been identified in the G2. Next, pole figure analysis is implemented to characterize the

crystallographic orientation of the grains and the GB. Grain normal, interface and GB plane

normal directions have been measured experimentally as illustrated in Figure 3.3. These

values provide direct information about the five macroscopic degrees of freedom required

to define a random grain boundary.

In the next section, we model the presented outlier grain pair and the interconnecting

random grain boundary using atomistic simulations. Modeling dislocation/random grain

boundary interactions would pave the way to understanding the underlying mechanism

responsible for the deformation modes observed in the experiments.
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Grain 1Grain 2

Figure 3.2: SEM-level analysis by Mills group at OSU [9] of an outlier case where slip in grain 1 initiated
pyramidal slip in grain 2 with no twin activity observed.

3.3 Computational method

We use LAMMPS [52] software to perform 0 K energy minimization. A modified em-

bedded atom method potential (MEAM) developed by Hennig et al. [53] is used throughout

the simulations. This potential has been shown to reproduce well a set of experimentally

measured properties in Ti. The bicrystal used in this simulation setup is comprised of two

grains oriented in different crystal orientations measured experimentally and stacked to-

gether according to the GB normal direction. Figure 3.3 schematically shows the bicrystal

which is used to model the outlier case. Fixed boundary condition is incorporated along

all directions. Atoms within the range of 20 Å from edges of the cell have been fixed in

displacement in all directions according to the implemented MEAM potential cut-off. We

set our reference to the Miller-Bravais [59] hexagonal crystal reference frame of the up-

per hard grain (G2) to present the crystallographic directions and plane normals. The GB
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normal direction for the outlier case is set along Z: [1̄4̄52] measured from experimental

analysis. GB lies on XY, where [7̄341] crystallographic direction is along Y.

G2

GB plane

G1

Fixed

[7#341]

x
z

y

["1"452]
["3"4720]
["7341]

[5"1"41]
["1108]
[2"75"1]

[1#4#52]

[3#4#720]
[7#341]

[27$51$]

[1#108]

[51$4$1]x
z

y

Figure 3.3: Bicrystal setup in MD simulations sliced along Y. The grain orientations and grain boundary
plane indicated in this figure are chosen based on the experimental measurements. Blue and red color shows
the inner cube with free atoms and outer layer with 20 Å thickness of fixed atoms in all directions, respectively.

First, we perform size test analyses to find the sufficiently large cell dimensions for

the simulations. We start with a cubic grain shape of 50 Å side length for both grains and

increase it up to 800 Å. We measure EGB, the excess grain boundary energy, by subtracting

the potential energy of each atom in the bicrystal from the bulk supercell with the same

number of atoms divided by the grain boundary area. Figure 3.4(a) shows the excess grain

boundary energy of the bicrystal with different sizes. As it is shown, grain boundary en-

ergy of the cell with 400 Å side length size lies within the 0.3% of converged value of

729.8 mJ/m2 and therefore we proceed with this cell dimension in the next steps.
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Next, we need to investigate the effect of microscopic degrees of freedom (DOF) on

the grain boundary energy. This leads to finding the metastable configurations where the

local grain boundary energy minima occur. Microscopic DOF can be examined through

the rigid-body displacement of two adjoining crystals with respect to each other. This

type of displacements have three components, t1 and t2 and t3 (known as t-space [64])

where t1 and t2 lie within the GB plane and t3 perpendicular to the GB plane. As the

t3 component is defined uniquely from the GB macroscopic DOF energy minimization,

microscopic DOF would be reduced to t = (t1, t2). Figure 3.4(b) schematically shows

the t-space displacements. To find the minimum energy configuration associated with the

microscopic DOF in our model, two grains are displaced within the range of 0 − 10 Å with

respect to each other in both X and Y directions and excess grain boundary energy for each

configuration is calculated. Figure 3.5 shows the contour plot of energy map as a function

of 2D displacement of grains. These calculations show the local minimum GB energy

corresponds to the grain displacement of (3.5, 9) Å on XY GB plane.
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Figure 3.4: Grain boundary structure optimization. (a) Shows the excess grain boundary energy of bicrystal
with different cell dimensions. (b) Shows the microscopic degrees of freedom associated with the grain
boundary structure known as t-space.
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Minimum Energy

(a) (b)

Figure 3.5: The effect of microscopic degrees of freedom on GB excess energy. (a) and (b) Show the 3D and
the cross section of energy map constructed by sliding top grain with respect to the lower grain, respectively.

After finding the minimum energy GB structure, we introduce the prismatic 〈a〉 type

loop in grain 1 by displacing all the atoms according to the anisotropic displacement field

of the dislocation loop [55, 56]. We study the interaction of this prismatic 〈a〉 type loop

with the grain boundary and analyze the defects generated in the adjacent grain due to this

interaction.

3.4 Results

Figure 3.6 shows the interaction of 〈a〉-type loop on the prismatic plane in grain 1

and the grain boundary. To study the interaction behavior, we apply incremental values

of resolved shear strain on the dislocation loop plane, i.e., prismatic plane, and find the

minimum required strain component at which the loop starts to move. At the critical re-

solved shear strain of γRSS = 0.0355 on the prismatic plane, dislocation loop starts to move.
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Figure 3.6 (b)-(d) show the snapshots of the simulation cell after 400, 1600, and 2400 re-

laxation steps. As the loop expands and reaches the boundary, it begins to interact with the

boundary and generates additional defects in the adjacent grain.
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Figure 3.6: Interaction of imposed prismatic loop in the lower grain and the random grain boundary. Snap-
shots of simulations depicted after (a) 0, (b) 400, (c) 1600 and (d) 2400 relaxation steps under the applied
strain with the resolved shear strain component of γRSS = 0.0355 on the prismatic loop plane. Non-hcp
atoms are only shown to avoid confusion. Green ribbon shows the thickness of 20 Å where atoms are fixed
in positions.
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Common neighbor analysis (CNA)[70] of the generated defects is depicted in Fig-

ure 3.7. To find the crystallographic morphology of defects, we reorient the cell such

that the pyramidal-II plane normal is aligned along Z. Figure 3.7 (b),(c) show the config-

uration of slipped and the hcp bulk atoms, respectively. Our measurements indicates that

the misorientation between slipped and non-slipped hcp atoms matches the angle between

two pyramidal slip plane normals (34.26◦) suggesting that the atoms tend to slip on the

pyramidal-I planes.

Z: Pyramidal II normal plane 

Misorientation
Match! 

1
3 [2

%1%13]

(%2112)

Other CNA neighboring
HCP CNA neighboring

(a)(b)

(c)

GB

Figure 3.7: Analysis of the generated defect in grain 2 as a result of 〈a〉-type prismatic loop and GB inter-
action. (a) shows the generated defect reoriented such that X and Z are along 1

3 [21̄1̄3] and (2̄112) directions,
respectively. (b) shows the slip of atoms on the {101̄1} pyramidal-I plane within the parent hcp lattice orien-
tation where {2̄112} pyramidal-II planes lie on XY plane presented in (c).
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After 2400 relaxation steps, incoming 〈a〉-type dislocation dissociates into the partial

dislocations. The trailing partial is located at the boundary, making it difficult to identify

the character of residual component on the boundary. However, the leading component is of

1
3〈11̄00〉 Shockley partial character, which is glissile on the basal plane and leaves behind

behind a locally fcc stacking fault. CNA analysis on the G2, as shown in Figure 3.8,

elucidates that the lattice reorientation occurs in the middle of the grain separated from

matrix by the interface colored in purple. Inspection of atomic structure in G2 shows

that prismatic and basal planes meet at this 3D interface face-to-face. This type facet is

known as basal-to-prismatic (BP) interface and has been observed in both experiments and

simulations before [61, 71, 72, 73, 74, 75, 76, 77] and observed during the formation and

growth of {101̄2} twins in hcp materials. We also find that the dissociated partials on the

basal planes tend to cross-slip on the next basal planes. This leads to the further dissociation

and cross-slip process.

Next, we perform dislocation analysis on the generated defects to characterize the dislo-

cations responsible for the observed slip. Figure 3.10(a)-(b) show the character of nucleated

dislocations from the grain boundary using dislocation extraction algorithm (DXA) within

OVITO [78, 79]. Proportional lengths of the full and partial dislocations in the bicrystal are

shown in Figure 3.9. The nucleated partials are mainly of 1
3〈11̄00〉, 1

9〈11̄03〉 and 1
9〈22̄03̄〉

characters. It is also important to note that these partials mainly have the edge and mixed

character while some screw components are also observed. Previous studies on other hcp

systems showed that it is energetically favorable for 〈c + a〉-type dislocations to dissociate

into the partials with the same Burgers vector characters as of those identified and reported

in the present work [80, 81, 82, 83]. More in depth analysis such as generalized stacking
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fault energy calculations not only along the exact 〈c + a〉 but also along slightly off path us-

ing DFT is required to identify the energetically favorable dissociation paths in α-Ti. This

part of the project is currently an ongoing work.

(a) (b)

(c) (d)

Other CNA neighboring

HCP CNA neighboring

GB

GB

G1

G1

FCC CNA neighboring

Figure 3.8: Local crystallographic orientation analysis of the generated defect in grain 1 using common
neighbor analysis. (a) depicts the generated defect within hcp atoms colored in purple and the hcp atoms
colored in red which are removed in (c) to only show the defect. (b) and (c) enlarges the enclosed region
which shows multiple partial dislocations cross-slip, leaving behind basal stacking fault regions colored in
green. Misorientation analysis shows that hcp atoms are reoriented within the grain and the defect colored in
purple acts as a basal-to-prismatic interface.
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Figure 3.9: Analyzing the dislocation characters within the bicrystal. Generated dislocations in the grain
2 are mainly characterized as 1

9 〈22̄03̄〉, 1
3 〈11̄00〉 basal Shockley partial and 1

9 〈11̄03〉. Other type of partial
dislocations are identified which embrace less than 9% of total dislocations length and categorized as other.

Figure 3.10 (c)-(d) enlarges the side view of dislocation analyses within the nucleated

embryo. Several occurrences of dislocation cross-slips on the basal planes are observed.

These cross-slips happen at the points where dislocations dissociate and become immo-

bile on their glide plane. Similar observation is previously identified in experiments as

discussed below.

Farenc et al. studied the mechanism of prismatic glide in α-Ti at low temperatures using

in situ experiments [84]. They found that the deformation in the prismatic plane of high

purity Ti is controlled by the jerky movement of rectilinear dislocations. This observation

is in agreement with the previous in situ observations where the glide is controlled by

frictional forces resulting from the dissociation or spreading of the screw dislocations out

of their glide plane [85, 86]. Farenc et al. also observed extensive cross-slips on the

basal and first order pyramidal planes in high purity Ti samples. They explained that the

locking-unlocking mechanism governs the deformation where the dislocation motion can

take alternatively two states of different energies. The locking state where the dislocation
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Figure 3.10: Dislocation analysis of the generated defect around the stacking fault. (a,d) and (b,c) represent
the dislocation Burgers vector character and type (screw,edge), respectively. Nucleated dislocations dissociate
into partials leaving behind stacking faults (colored in green) on the basal planes.

is immobile in the dynamic sequence and unlocking process which is done through the

cross-slip. The glissile configuration corresponds to the planar dislocation dissociation on

the prismatic and pyramidal planes when the stress orientation is favorable.

Our findings show the similar mechanism as observed in the experimental work by

Farenc et al. Similar to [84], we also identify the jerky motion of partial dislocations

dissociated on basal, prism and pyramidal-I planes. Our simulations show that there are

multiple occurrences of dislocation dissociation which can act as the sessile locking point.

Consistent with the experimental results, we also observe that the unlocking process is a

done through a cross-slip as illustrated in the Figure 3.10.
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3.5 Concluding Remarks

In this chapter, we studied the role of strain transfer on the activation of deformation

twinning at grain boundaries in α-Ti. While slip-stimulated twinning was more likely dis-

played in hard/soft grain pairs with a large Schmid factor for twinning and a high m′, some

outlier cases were observed where slip in a soft oriented grain did not nucleate twin in

the adjacent hard grain. We model one of these outlier grain pairs using atomistic sim-

ulations. We find that 〈a〉-type prismatic slip in soft grain did not nucleate twinning in

the adjacent grain, in consistent with experimental observations. Moreover, further strain

transfer led to the nucleation of additional defects; this interaction created a 3D basal-to-

prism facet in the middle of the hard grain and multiple cross-slips within the reoriented

region inside the embryo. Dislocation analysis of these generated defects show that the

cross-slip occurs at the locking points where partial dislocations intersect; a mechanism

that has been observed in previous experimental works [84, 87]. Presence of the BP facets

has been extensively observed during the nucleation and growth of (101̄2) twins in hcp sys-

tems [61, 71, 72, 73, 74, 75, 76, 77]. This can potentially be a precursor for the nucleation

of 3D twins. Nucleation of favorably oriented twins can be triggered by the change in the

local stress state close to the grain boundary due to the localized prismatic slip. Therefore,

we can expect that higher local stress is necessary in addition to a high Schmid factor and

m′ parameter for slip-stimulated nucleation of the twin.
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Chapter 4: First-principles prediction of oxygen diffusivity near the

(101̄2) twin boundary in titanium

The work described in this chapter is a modified version of the following reference
that has been published by M.S. Hooshmand et al. M.H. performed all the DFT and
diffusion calculations. C.N. assisted in DFT cell size check and site energy calcula-
tions. Project is designed by M.G. and supervised by M.G. and D.T. Manuscript was
written by M.H. and revised by M.G.

• M.S. Hooshmand, C. Niu, D.R. Trinkle, M. Ghazisaeidi, “First-principles
prediction of oxygen diffusivity near the (101̄2) twin boundary in Titanium”,
Acta Materialia (2018) (link)

In this chapter, diffusivity of oxygen interstitials around a (101̄2) twin boundary in ti-

tanium is studied. First, all possible stable interstitial sites around the twin boundary are

identified. Using density functional theory, the corresponding site energies and transition

energy barriers for jumps between these sites are computed. Site energies and the barriers

are consistently lower than in bulk, suggesting the higher tendency of oxygen to segregate

to the twin boundary region. Using the site and transition energies and an exact solution to

the master equation, diffusivity of oxygen in presence of the twin boundary is computed.

Results show that the diffusivity around the boundary is enhanced in all directions. En-

hanced diffusivity towards the boundary determines the feasibility of oxygen segregation
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to favorable sites at the boundary, while increased diffusivity in the boundary plane pro-

vides a path for fast diffusion of oxygen. This result reveals the underlying mechanism

governing the slow growth of (101̄2) twin by pinning at the segregated oxygen interstitials.

4.1 Introduction

One of the methods to improve or control the mechanical properties of materials is

by alloying and chemistry change. Oxygen, as a common alloying element, is found to

increase the tensile and fatigue strength of Ti by hindering the dislocation motion at the

cost of decreasing the ductility and fracture toughness [5, 17]. Although twinning is fre-

quently observed in commercially pure α-Ti, it has not been reported previously in Ti alloys

with significant amounts of α-stabilizing solutes such as substitutional Al and interstitial

oxygen. Twinning in Ti is believed to be suppressed by such elements [88], however, the

underlying mechanism is unidentified. Atomistic simulations would help to obtain a better

understanding of thermodynamics and kinetics of oxygen near Ti twin boundaries.

The first density functional theory (DFT) study, by Ghazisaeidi and Trinkle, has shown

that oxygen prefers octahedral interstitial sites at (101̄2) TB [89]. In another DFT study,

Liang and Hardouin Duprac showed that oxygen enhances the stiffness of α-Ti as well as

the stability of {101̄2} and {112̄2} TBs while decreasing the stability of {101̄1} and {112̄1}

boundaries [90]. Moreover, Wu and Trinkle proposed a multi-state diffusion (MSD) based

model to quantify the oxygen diffusion in the bulk Ti [1]. They concluded that the diffusion

of oxygen is nearly isotropic along ~c and basal planes. Scotti and Mottura also investigated

the migration mechanisms of oxygen in bulk α-Ti using DFT and kinetic Monte Carlo

(KMC) simulations to find the diffusion coefficients [91].
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Finally, Joost et al. combined DFT and classical potential calculations using a modified

embedded atom method (MEAM) potential, with some reported discrepancy between DFT

and MEAM predictions [92]. They then proceeded to calculate the transition energy barri-

ers with MEAM only and overall, found lower energy barriers for oxygen jumps between

various interstitial sites near the boundary. However, their study ends with reporting indi-

vidual site and barrier energies and does not provide the collective diffusivity of oxygen

within the interface.

Here, we compute all site and transition energy barriers with DFT. We then use an exact

solution to the diffusion master equation [93] to obtain the oxygen diffusivity near (101̄2)

TB and conclude that diffusivity is enhanced near the boundary. In addition to predicting

the diffusivity, our analysis improves upon site and transition energy calculations presented

in [92] as follows. First, previous work by Ghazisaeidi and Trinkle [89] shows the impor-

tance of sufficient simulation sizes to avoid spurious interaction of oxygen with its periodic

images. Therefore, all of our calculations are performed with supercells with a thickness

of 3a along [12̄10] direction where a is the Ti lattice constant. We find this increased sim-

ulation size to be essential, since supercells of smaller size, such as the 2a thick cell used

in [92] cannot capture all stable interstitial sites near the twin boundary; oxygen, placed

immediately above the boundary, pushes the boundary one layer further away after full

relaxation. This does not happen with a larger supercell, where errors caused by periodic

boundary conditions are minimized. Second, in spite of occasionally significant– up to

300 meV for the sites near the twin boundary– site energy differences between DFT and

MEAM, all energy barriers in [92] are computed with MEAM.

Despite great interest on impurity diffusion around the boundaries, a quantitative and

conclusive study of oxygen segregation to the twin boundary does not yet exist [19, 20,
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21, 92]. In addition, due to the difficulties involved in measuring the accurate basic dif-

fusion data experimentally, predicting the transport rates using first-principle data and the

exact diffusion model is of high interest. Accurate determination of the diffusion mecha-

nisms around interfaces requires more detailed atomic-scale analysis to identify the diffu-

sion paths and quantify the anisotropic diffusivity around the boundary.

The aim of this chapter is to show the mechanism and kinetic feasibility of oxygen to

migrate and then segregate to the twin boundary using first-principles. Section 4.2 contains

the computational details. Calculations of the stable structure of (101̄2) TB and the relative

formation energy of oxygen interstitials in and around the TB are presented in Section 4.3.

Section 4.4 presents the computation of the transition energy barriers for various possible

networks of jumps between interstitial sites. Finally, we use these values in Section 4.5 to

calculate the diffusivity of oxygen in the vicinity of the TB and conclude in Section 4.6.

4.2 Computational Method

First-principles calculations are performed with VASP [94, 95], a plane wave based

density functional theory code, using projector augmented wave (PAW) method within

the generalized gradient approximation (GGA)[32]. We use Methfessel-Paxton smearing

of 0.15 eV and a plane wave cut-off of 500 eV. A double twin boundary geometry, with

10 atomic layers between the twin boundaries, is considered to maintain the periodicity

along all three directions. With the above setting, a k-points mesh of 3 × 4 × 1 leads to

≈ 0.1 meV/atom error in the accuracy of site energies. A specific site energy is defined

as the difference between the energy of the supercell with oxygen at the corresponding

interstitial site and that of a “bulk-like” octahedral site at maximum distance from both

twin boundaries. Site energy calculations are converged until the the forces are smaller
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than 10 meV/ Å. Figure 4.1 shows the (101̄2) twin geometry supercell used for the site

energy and transition barrier calculations. Note that in order to approximate the dilute

limit, the supercell has a thickness of 3a; a = 2.9235 Å in [12̄10] direction, to minimize the

interaction between oxygen and its periodic images [89]. This larger thickness is crucial,

particularly since some of the twin boundary interstitial sites are not stable with a supercell

thickness 2a; during relaxation of the atomic positions, the relative position of oxygen and

TB changes, altering the interstitial site type.

We use transition state theory to calculate the energy barrier between various intersti-

tial sites. Climbing-Image Nudged Elastic Band (CI-NEB) method [96, 97] is used with

constant cell size, one intermediate image and a force criterion of 20 meV/Å. Attempt

frequency for each transition ν, is derived using the Vineyard’s equation [98] as:

ν =

3N∏
i=1
νi

3N−1∏
i=1

ν′i

(4.1)

in which νi and ν′i are the stable normal mode frequencies at the local energy minimum and

saddle point configurations, respectively. Only considering the oxygen attempt frequencies

and neglecting the softening of the nearest Ti atoms is shown to underestimate the prefac-

tors by less than 25% [1]. To obtain these quantities using VASP, finite difference small

displacement method is implemented, in which each ion is displaced in the direction of

each Cartesian coordinate. Then, the Hessian matrix is computed from the resulting forces.

Individual phonon frequencies are the square root of the eigenvalues of the Hessian matrix

[99, 100].
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Figure 4.1: Twin geometry supercell. (a) X([1̄011]) and Y([12̄10]) directions are twice and three times
the single periodicity of the twin geometry unit cell, respectively. This supercell is used for all of the site
energy and transition barrier calculations. The stable octahedral, crowdion, hexahedral and tetrahedral sites
for oxygen are indicated by O (red), C (green), H (light brown) and T(grey), respectively. Dotted red line
encloses the cell used for the diffusion coefficient calculation in the Section 4.5. (b) The inset shows a
magnified view of the positions of all the nonequivalent stable sites within the supercell. All other sites can
be obtained from these positions by symmetry and are considered in constructing the transition network and
diffusion calculations. The crowdion sites, indicated in the parentheses, are located at different depths along
the Y direction compared to the nearby octahedral sites. L1-L4 label the atomic layers from the closest layer
to the TB to the bulk-like region away from the boundary. The star shows the bulk-like reference octahedral
site used for the site energy calculations. Oxygen at H2 hexahedral site relaxes to the nearby tetrahedral. The
black triangle shows the unstable crowdion site near the twin boundary. The distortion of host atoms due to
the relaxations is not shown here to avoid confusion.

4.3 Site Energies

Figure 4.1 shows the position of all stable oxygen interstitial sites in the twin geometry.

Octahedral, crowdion, hexahedral and tetrahedral sites are indicated by O, C, H and T, re-

spectively. The stable sites enclosed in the box are repeated through the entire supercell and
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considered in the transition network. L1-L4 label the layers of atoms with varying distance

from the TB, with L1 being the closest layer and L4 the bulk-like region, farthest from the

boundary. We find that the presence of (101̄2) TB affects the stability and site energy of

different interstitial sites. For instance unlike in bulk Ti, tetrahedral sites are stable in the

vicinity of the twin boundary. Figure 4.2 shows the relative site energies ∆Ei, defined as

the difference between the energy of the supercell with oxygen at the corresponding site

and that of a supercell with oxygen at the reference octahedral site. These site energies are

listed in the Table 4.1.
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Figure 4.2: Relative site energy of the stable interstitial sites in the twin geometry, where zero energy corre-
sponds the bulk octahedral site. Energies for octahedral, crowdion, hexahedral and tetrahedral sites are shown
with respect to the distance from (101̄2) twin boundary. Dashed lines show the division of the cell to different
layers from L1 closest layer to and L4 the farthest layer from the TB.

To investigate all possible stable interstitial sites on the twin boundary, we calculate the

potential energy surface (PES) of oxygen on the boundary. An example of the application
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of this method is presented in [101]. The PES is determined by sampling 77 points within

the smallest periodic unit of twin boundary plane. For each sample point, a separate DFT

calculation is performed, allowing for the local relaxation of neighboring Ti atoms on the

boundary and fixing the oxygen and other Ti atoms until the force criterion described in

Section 4.2 is achieved. Interpolating between the energies gives the PES shown in Fig-

ure 4.3. This analysis indicates that, even for the distorted twin interface, all possible stable

interstitial sites are among the high symmetry interstitial positions. In case of hcp lattice,

the high symmetry interstitial sites are the locally deep minimum octahedral and the shal-

low minimum at tetrahedral and crowdion sites on the boundary. As the site distance from

TB increases, the bulk structure is restored and the site energies approach those in bulk Ti.

The most significant change in site energies occurs in L1 where the twin octahedral sites

have lower energies than the reference site and the stable tetrahedral sites have comparable

energies to hexahedral sites in bulk.

Joost et al. have previously shown that the crowdion site indicated by black triangle

in Figure 4.1 as well as the hexahedral H2 are stable sites for oxygen [92]. However, we

find that oxygen at this crowdion site and H2 relax to the nearby tetrahedral sites. Our

calculations show that the crowdion sites located behind O3, O4, O5, O6, O7 and O8

are unstable whereas C0, C0′, C1, C2, C3 and C4 sites in L1 and L2 layers are stable.

Finite-difference small displacement phonon analysis through DFT [102, 103] on these

high energy crowdion sites shows no imaginary frequency mode for the oxygen atom in

any of the three reciprocal lattice directions confirming that these sites are stable for oxygen

at 0 K. These new stable sites near the TB linked with the other stable sites generate a

connected network of paths for oxygen diffusion in the twin geometry.
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Table 4.1: Site energies for oxygen at different stable interstitial sites. The relative formation energy (eV)
and the distance from the boundary d(Å) for each site is listed (cf. Figure 4.1).

Site d(Å) Energy (eV) Site d(Å) Energy (eV) Site d(Å) Energy (eV)
Octahedral Crowdion Hexahedral
O1 0 -0.082 C0 0 1.234 H1 2.02 0.920
O2 0 -0.096 C0′ 0 1.159 H3 4.28 1.232
O3 2.52 0.145 C1 1.26 1.939 H4 4.03 1.133
O4 2.52 0.054 C2 3.02 1.790 H5 6.05 1.113
O5 4.03 -0.050 C3 5.04 1.566 H6 5.80 1.008
O6 4.03 -0.071 C4 5.04 1.386 H7 7.56 1.143
O7 5.54 -0.014 C5 6.55 1.700 H8 7.81 1.163
O8 5.54 -0.009 C6 6.55 1.580 H9 9.32 1.101
O9 7.56 -0.047 C7 8.06 1.631 H10 9.83 1.098
O10 7.56 -0.017 C8 8.06 1.551 Tetrahedral
O11 9.32 -0.029 C9 7.56 1.533 T1 0 1.095
O12 9.32 0 C10 7.56 1.676 T2 0 1.327

C11 9.32 1.638 H2 2.52 1.025
C12 9.32 1.686
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Figure 4.3: Potential energy surface (PES) of oxygen along {101̄2} twin boundary. Incorporating the sym-
metry of the cell, PES calculations are performed on the smallest periodic unit of the twin boundary plane,
depicted in the left figure. Relative formation energies for oxygen are given in eV.

4.4 Energy Barriers for Diffusion

Next we calculate Ei j, the energy barrier for the transition between interstitial sites i and

j, using the climbing-image nudged elastic band CI-NEB method with one intermediate

image for most cases [96, 97]. Due to the distortion near the TB, for some of the paths

such as octahedral to tetrahedral jumps, three intermediate images are necessary to meet

the NEB convergence criterion. Figure 4.4 shows the energy barriers for the octahedral to

octahedral (o-o), octahedral to tetrahedral (o-t), octahedral to hexahedral (o-h), octahedral

to crowdion (o-c), tetrahedral to crowdion (t-c) and hexahedral to crowdion (h-c) jumps at

different distances from the TB. Dashed lines show the bulk value of each type. Energy

barriers in L4, the farthest layer from (101̄2) TBs, converge to bulk values, which also

match well with the previously reported values [1]. However, the energy barriers decrease

significantly around the TB in L1. The twin boundary reduces the o-o jump barriers from
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3.2 eV in bulk to 2.3 eV. This highlights a major difference between the diffusion jump

network in bulk versus the boundary region; unlike the high-barrier o-o jumps in bulk,

in the twin boundary region, direct o-o transition barriers are comparable to those of o-h

jumps. A similar trend is observed for the o-h jumps where the energy barrier decreases

from 2.2 eV in bulk to 1.5 eV near the boundary.

Additional features emerge for the crowdion sites as follows. Near the twin bound-

ary, our calculations show that the energy barrier associated with jumps out of C1-C4 are

in order of ∼ 0.03 − 0.08 eV, much smaller than barriers for jumps to these sites, which

are around 2 eV. Therefore, given the sufficient thermal energy, oxygen atoms at these

metastable crowdion sites overcome this shallow barrier and jump back to the nearby oc-

tahedral or hexahedral sites. This suggests that these crowdion sites will not be able to

achieve thermal equilibrium, even at moderate to low temperatures. On the other hand,

we find that for the o-o and o-h jumps involving these crowdion sites in their minimum

energy path, the saddle point energies are close within ∼ 10% of the nearby high energy

metastable crowdion, suggesting that these sites can possibly act as the transition states

at higher temperatures. Thus, while we remove C1-C4 sites as possible metastable sites

from the diffusion network, the nearby saddle points will still contribute to the diffusion

network as transition states. All other crowdion sites are considered as metastable sites in

the diffusion path.

Attempt frequencies for various jumps around the TB compared with the same type of

jumps in the bulk-like environment are listed in Table 4.2. We find about 13%-20% increase

in the prefactors of o-o and o-h jumps near twin boundary compared to the bulk-like region.

This is accompanied by the hardening of the rotational frequency modes for oxygen at the

octahedral and hexahedral sites near the boundary. Besides the more significant impact of
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reduction in migration barriers for the jumps near the twin boundary, the increase in attempt

frequencies can also contribute to the higher diffusion.

In addition, new tetrahedral sites in the boundary region create more pathways for dif-

fusion of oxygen. It is expected that a larger network of jumps, along with the reduction in

the transition energy barriers around the twin, increase the mobility of oxygen interstitials

in the vicinity of the TB compared to bulk. Next, we quantify the diffusivity of oxygen near

the twin boundary with input from the DFT-calculated site energies and transition barriers.

Table 4.2: Attempt frequencies for different transition networks. The bulk values of the attempt frequencies
correspond to the jumps in L4 layer, which represents the bulk-like environment compared with the same
type of jumps in the vicinity of (101̄2) TB (cf. Figure 4.1). The jump vector of each transition is indicated in
the second column. z is the Wyckoff coordinate of the tetrahedral sites along the ~c axis in a typical hcp lattice.

ν[T Hz]
Site Direction Bulk

(L4)
Twin(L1)

o→ o 〈0001
2〉 13.59 16.29

o→ h 〈 1
3

1̄
301

4〉 12.51 14.14
h→ o 〈 1

3
1̄
301

4〉 10.52 12.08
o→ t 〈 1̄

3
1̄
30z〉 - 11.82

t → o 〈 1̄
3

1̄
30z〉 - 8.77

c→ t 〈 1
6

1
6

1
3 z̄〉 - 6.89

t → c 〈 1
6

1
6

1
3 z̄〉 - 14.72

h→ c 〈 1
60 1̄

6
1
4〉 5.80 9.06

c→ h 〈 1
60 1̄

6
1
4〉 13.65 1.45

o→ c 〈 1
6

1
6

1̄
30〉 21.17 24.70

c→ o 〈 1
6

1
6

1̄
30〉 16.62 5.21

4.5 Diffusion coefficient

In this section, we calculate the oxygen transport coefficient in a Ti crystal containing

a twin boundary by finding steady-state solutions to the master equation [93]. For a simple
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Figure 4.4: Transition energy barriers for (a) octahedral to octahedral and octahedral to tetrahedral, (b) octa-
hedral to hexahedral, (c) octahedral to crowdion and tetrahedral to crowdion, and (d) hexahedral to crowdion
jumps. The energy barriers are calculated between interstitial sites at various distances from the twin bound-
ary from L1, closest layer to the boundary to L4 where bulk structure is retrieved. Dashed lines in each figure
show the corresponding transition barrier in bulk. Note that tetrahedral sites are only stable in L1 and L2. Due
to the shallow barrier of jumps from crowdion sites in L1 and L2 layers, C1-C4 are excluded as metastable
sites from network. The L1 barriers indicated in (c)− (d) correspond to the jumps with crowdion sites located
on the twin boundary as one of the metastable sites.

transition from site i to j, the absolute rate of a transition is defined as ρiλi j, where ρi and

λi j are the probability of site occupancy and the transition rate from site i to j, respectively.

ρi is proportional to exp(−∆Ei/kBT ) and λi j = νi j exp(−Ei j/kBT ), where ∆Ei is the relative

formation energy of each interstitial site calculated in 4.3, Ei j is the transition energy barrier

reported in 4.4 and νi j is attempt frequency prefactor listed in Table 4.2 for each jump.
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The general expression for the anisotropic diffusivity tensor from site and transition state

energies is derived in [93] and is given by:

D =
1
2

∑
i j

δxi j ⊗ δxi jλi jρi +
∑

i

bi ⊗ γi (4.2)

where δxi j is the displacement of the diffusing atom from site i to site j, bi is the scaled ve-

locity vector corresponding to the bias jumps from site i, and γi is the bias-correction vector.

The first and second terms in Equation 4.2 represent the contributions from uncorrelated

and correlated jumps, respectively. The bias term is nonzero when there are unbalanced

hops from site i. Taking advantage of the crystal symmetry simplifies the above expres-

sions. We use an open-source implementation of the general solution [104]. In order to

take into account the broken symmetry that the twin boundary introduces to the Ti crys-

tal, we modify the crystallographic symmetry operations in the code and adjust it to the

cell containing the TB. In addition, we generate the additional interpenetrated jump net-

work between the stable sites on both sides of the boundary that are connected via a mirror

symmetry operation.

To study the diffusion anisotropy in bulk α−Ti using the master equation based model,

we perform DFT calculation on the 4×4×3 (96 atoms) hcp supercell with 5×5×3 k-point

mesh and the same numerical settings as explained in Section 4.2. Our bulk site energies

and transition barriers match well with the previously reported values by Wu and Trinkle

[1]. We obtain the relative formation energy of 1.64 eV for hexahedral sites with reference

to the octahedral and the transition barrier energy of 3.30 eV and 2.03 eV for o-o and o-

h jumps compared to the reported hexahedral relative site energy of 1.19 eV and the o-o

and o-h transition barriers of 3.25 eV and 2.04 eV, respectively. Figure 4.5 shows the bulk

diffusivity evaluated using the analytical master equation based diffusion model compared
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to the MSD model and other experimental values reported in the literature [1, 10, 11]. We

conclude that similar to the MSD formalism, master equation based diffusion model also

predicts the isotropic diffusion of oxygen in bulk α−Ti.

Appendix:	 isotropy	of	
“bulk”
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Figure 4.5: Isotropic diffusion in bulk hcp α-Ti. We compare the diffusivity evaluated using the master
equation based diffusion model implemented in the current study with the previously reported multi-state
diffusion model in hcp bulk α−Ti [1]. Very close values of the diffusivity in both basal plane and along the ~c
axis of hcp cell suggests the nearly isotropic diffusion in bulk hcp α-Ti. Y axis in the figure is in logarithmic
scale. The experimental data from the literature is also depicted for the sake comparison[10, 11].

Then, we test our predictions by comparing the diffusivity in the bulk-like L4 region

with previously published literature. Figure 4.6 shows that the bulk diffusivity predicted

here agrees well with that calculated by Wu and Trinkle using first principles calculations

and a MSD formalism [1] and experimental values[10, 11].
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Figure 4.6: Diffusivity in bulk hcp α-Ti compared to a previous DFT calculation [1] and experimental
predictions[10, 11]. Our diffusivity values are in good agreement with the reported Multi-state-Diffusion-
based diffusivity by Wu and Trinkle [1].

Next, we calculate the diffusivity of oxygen near the TB. Correlated random walk is

the source of complexity in diffusion calculations and depends on the crystal symmetry

of the structure [105]. It is previously shown that among different interstitial sites, only

tetrahedral sites can contribute to the correlated diffusion in bulk α− Ti [93]. However,

oxygen is unstable at the tetrahedral interstitial site in the bulk α− Ti and this results in

uncorrelated diffusion. Newly found stable tetrahedral sites and the formation of new dif-

fusion paths near the TB adds more complexity to the diffusion calculation near the twin

boundary. In addition, the broken symmetry of the hcp lattice near the twin boundary leads
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to a nonzero bias term in Equation 4.2. The nonzero bias term requires careful considera-

tion and is included in our diffusivity calculations. Figure 4.7 shows the diffusivity along

directions in and perpendicular to the boundary. The diffusion coefficients are evaluated in

the double twin boundary geometry “unit cell” with a single periodicity along X (6.86 Å)

and Y(2.92 Å) directions, enclosed by red dotted line in the Figure 4.1. All symmetrically

unique jumps have been taken into the account in the diffusion calculations by employ-

ing the periodic boundary conditions. The isotropic bulk diffusivity is also included for

comparison. As shown in the figure, diffusivity is higher near the boundary, in all three

directions, compared to bulk.

Furthermore, it is important to note that the small energy barrier of octahedral to tetra-

hedral jumps near the TB significantly contributes to the enhanced diffusivity in the vicinity

of the TB. Figure 4.8 shows the contribution of tetrahedral sites to the diffusion coefficients.

The results show that inclusion of tetrahedral sites in the diffusion network gives higher dif-

fusivity, particularly in the direction perpendicular to the boundary. However, even without

the tetrahedral sites, the twin boundary diffusivities are generally higher compared to bulk.

This is expected, given the lower transition barriers for o-o and o-h jumps near the bound-

ary.

In addition, the calculated diffusion coefficients are fitted to an Arrhenius model, D =

D0 exp(−Eact/kBT ), where D, D0, Eact and kB are diffusivity, diffusion prefactor, activation

energy barrier and Boltzmann constant, respectively. Table 4.3 compares the bulk and twin

boundary D0 and Eact with published literature. The activation energy barrier is lower in

the twin boundary region than in bulk in all directions. The lower energy barrier reported

here is indicative of the feasibility and higher tendency of oxygen atoms to transport toward

the boundary rather than remaining in the bulk-like region. Indeed, both energy and kinetic
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analysis are crucial to investigate any segregation process. Enhanced diffusivity towards

the boundary suggests the possibility of oxygen segregation to favorable sites at the bound-

ary, while increased diffusivity in the boundary plane provides a path for fast diffusion of

oxygen.
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Figure 4.7: Diffusion coefficient in the presence of TB. Diffusivity along three lattice directions in the twin
geometry is compared with the bulk diffusivity in a logarithmic scale. It is shown that the diffusivity increases
near the TB. The green and black dashed lines show the Arrhenius fit to the diffusion coefficient data along
the direction in and perpendicular to the TB, respectively.

4.6 Conclusion

We study the effect of (101̄2) TB on the diffusion of oxygen interstitials in α-Ti, using

DFT, and show that the formation energy of oxygen at octahedral and hexahedral sites are
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Figure 4.8: Contribution of tetrahedral interstitial sites in the oxygen diffusion near the TB. (a) filled symbols
show the diffusion coefficients evaluated by considering the tetrahedral sites in the network (the same data as
depicted in Figure 4.7) compared to the diffusivity without considering the tetrahedral sites in the network.
Bulk diffusion is also included for comparison. (b) the ratio of computed diffusivity using the network with
tetrahedral sites to the network without tetrahedral sites. This shows including the tetrahedral sites in the
diffusion network has a more highlighted impact on the diffusivity toward the TB compared to other two
directions.

Table 4.3: Arrhenius fit to the diffusivity data derived from the diffusion model based on the solution to the
master equation. Diffusivities are fit to the D = D0 exp(−Eact/KBT ) equation over the temperature range
of 600 − 1100 K, where D, D0 and Eact are diffusivity, diffusion prefactor and activation energy barrier,
respectively. These values are compared to our bulk-like region calculation as well as previous analytical
model [1]. These results show the decrease in the overall activation energy of jumps near the TB, therefore,
higher rate of diffusion.

Geometry D0(m2/s) Eact(eV)
Wu et al. [1] 2.18 × 10−6 −2.08
Bulk 7.35 × 10−7 −1.97
Twin(x) 2.58 × 10−7 −1.51
Twin(y) 1.70 × 10−7 −1.33
Twin(z) 1.35 × 10−7 −1.31
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lower near the TB than in bulk. In addition, we find three new stable tetrahedral sites, one

at the distance of ∼ 2.3 Å from the boundary and two on the TB. The energy barriers for

transition between the twin boundary interstitial sites are also consistently lower than that

in bulk. Using the site and transition energies and an exact solution to the master equation,

we then compute the diffusivity of oxygen in the presence of the TB. The diffusivity in

the “bulk-like” region agrees well with previous reports of the bulk diffusivity. Moreover,

we conclude that the oxygen diffusion rate increases in the presence of (101̄2) TB in all

directions, toward and parallel to the boundary plane. This suggests that (101̄2) TB can

act as a two-dimensional sink for oxygen atoms, but the higher diffusivity along [12̄10]

direction provides a fast migration channel along the TB. The increase in diffusivity of

oxygen near the TB also shows that oxygen segregation to the twin boundary is kinetically

feasible. This segregation could potentially result in pinning and therefore slower growth

of (101̄2) TB, similar to what has been observed by substitutional solutes in [106]. Our

analysis is applicable to other interstitials and boundaries and provides a tool for deriving

more rigorous diffusivities to compare with experiments.

73



Chapter 5: Quantitative analysis of uncertainty in self and solute

diffusion calculations from first-principles

The work described in this chapter is a modified version of the following preprint.
M.H. performed the modeling and W.Z. did the experiments. Project is designed and
supervised by M.G. and JC.Z. and W.W. The following preprint is written by M.H.

• W. Zhong, M.S. Hooshmand, M. Ghazisaeidi, W. Windl, JC. Zhao, “A com-
prehensive experimental and computational study of the diffusion and mobility
of the Al-Mg binary system”, (under review)

This chapter focuses on quantifying the uncertainty that arises from first-principles

calculations in predicting diffusion coefficients. First, we identify different uncertainty

sources. These sources include the diffusion model, energetic, entropic and attempt fre-

quency calculations. Then, we quantify the variation in diffusion coefficients using differ-

ent density functional theory settings and compare the results with experiments. This study

demonstrates a framework to reliably predict the transport coefficients for any system of

interest within the periodic table from atomistic simulations.

5.1 Introduction

Diffusion in materials plays an important role in understanding many fundamental prop-

erties such as corrosion, surface oxidation, recrystallization and precipitation. Developing

new alloys requires extensive knowledge about the kinetics and mobility of different ele-

ments within a crystal. Magnesium (Mg) metal, one of the lightest structural materials, has
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a wide range of applications in the transportation sector. However, it suffers from a low

ductility, which makes it difficult to form at room temperatures. Alloying is an effective

method to further improve the damage tolerance of Mg. In particular, Aluminum (Al),

Zinc (Zn) and rare earth (RE) solutes solutes can improve both strength and ductility of

Mg. In-depth knowledge about the transport coefficients of solutes in the metals is required

to understand the underlying mechanisms and to study the microstructure evolution.

Mg is commonly used in Al alloys while Al is the most widely used alloying element

in Mg. Mg has hexagonal close packed (hcp) crystal structure while Al is stable in face

centered cube (fcc) phase. Accurately determining the atomic mobility of Mg in Al and

vice versa is essential for establishing reliable Al and Mg mobility databases. This requires

having information about the transport coefficients of Mg/Al solutes in Al/Mg and vice

versa at the metastable (hypothetical) phases, i.e. the hcp Al and fcc Mg phases. Due to the

limitations in experimental measurements, computational models from first principles can

be used to predict the diffusion coefficients in the metastable phases.

First principles calculations are invaluable tools to quantify diffusion coefficients, espe-

cially when there is not enough experimental data. However, there are some uncertainties

involved in predicting accurate diffusion coefficients which need to be considered. Un-

certainty in the results can stem from various sources. These sources include the diffu-

sion model, energetic evaluation, vacancy concentration evaluation (in case of vacancy-

mediated diffusion) and attempt frequency (prefactor) calculation. In this work, we study

these uncertainty sources in Mg/Al self diffusion and inter diffusion calculations in stable

hcp/fcc phases. The impact of each uncertainty source on the predicted diffusion coeffi-

cients is quantified from first principles calculations. Using the best settings for the stable

cases, we then evaluate the diffusion coefficients in the metastable phases. Section 5.2
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gives a brief overview about the various uncertainty sources. The computational method is

explained in Section 5.3. Finally, the results and conclusions are discussed in Section 5.4

and Section 5.5.

5.2 Uncertainty sources

One source of uncertainty in transport coefficient calculations is the diffusion model.

One of the complexities involved in vacancy-mediated diffusion is the correlated random

walk which is dependent on the crystal structure. This has been done by proposing specific

solutions for different crystal structures, such as the five-frequency model for fcc [2, 107],

and the eight- [108] and thirteen- [109] frequency models for hcp. One simplified con-

straint in all these methods is on the rates which do not arise from crystal symmetry. Also,

the interactions are assumed to end beyond the first nearest-neighbor. Kinetic Monte Carlo

[110, 111, 112, 113] is an alternative crystal-independent method, however it is not a prac-

tical method in cases where there are large differences in the vacancy-solute exchange

rates. Recently, Dallas Trinkle developed an exact Green function approach to calculate

the diffusion coefficients from first principles data avoiding uncontrolled approximations

[105]. This method enables capturing the correlation factors based on the crystal structure

of interest without making any simplified assumptions. Later, Agarwal and Trinkle found

that the transitions in eight-frequency and thirteen-frequency models are incorrectly treated

for hcp crystals [3]. The authors proposed a sixteen-frequency model that incorporates all

uniquely independent transition paths for solute/vacancy transitions in hcp structures. We

use this sixteen-frequency model for hcp and five-frequency model for fcc within the Green

function based approach to evaluate the self and impurity diffusion in Mg/Al alloys and to

quantify the uncertainty originating from the choice of diffusion model.
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Uncertainty can also arise from the energetic evaluations in density functional theory

(DFT) calculations. Site energies, energy barriers for solute/vacancy jumps, and vacancy

formation energies (VFE) are the energetic components evaluated from first principles used

as inputs to the diffusion models. The choice of pseudopotential and exchange-correlation

(XC) results in different energetics and impacts the final diffusion coefficients by mainly

contributing to the diffusion activation energy barrier. Here we quantify the difference in

self and impurity diffusivities in Mg/Al pair using various functionals and show how this

affects different components in diffusivity calculations.

Attempt frequency calculation also play an important role in evaluating the diffusion

prefactor. Two well-known methods to evaluate attempt frequencies are finite difference

small displacement method (FDM) [99, 100] and density-functional perturbation theory

(DFPT) [114, 115]. In the current work, we also compare the attempt frequencies com-

puted from each of these methods and quantify the difference it makes on the diffusion

coefficients. It is also worth noting that the vacancy formation entropy is another important

contributing factor in diffusion prefactor. Similar to VFE, the effect of different functionals

on vacancy formation entropy and diffusivities are also investigated.

5.3 Computational method

DFT calculations are performed using VASP package [95, 116, 117], a plane-waved

based density functional code. We compare ultra-soft pseudopotential (USPP) [118] with

projector augmented wave (PAW) [119, 120] formalism based potentials within the gen-

eralized gradient approximation (GGA) exchange correlation functionals. In particular,

we implement Perdew-Burke-Ernzerhof [33] (labeled as PBE) and a modified version by

incorporating surface energy error correction [121] (labeled as PBE-sol) functionals. A
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plane-wave cutoff of 260 eV is used throughout the calculations. A 4×4×3 (96 atoms) and

a 3 × 3 × 3 (108 atoms) supercell is employed for hcp and fcc structures, respectively. For

electronic smearing, the first-order Methfessel-Paxton method [122, 123] with a smearing

width of 0.2 eV is used. A 6×6×6 Monkhorst-Pack k-point mesh is used for Brillouin zone

integration with a Monkhorst-Pack grid for all supercells. Γ-point is included in the k-mesh

for hcp systems. Conjugate gradient method is used for minimizing the energy of all atoms

until the forces are less than 0.1 meV/Å. The calculated lattice parameters using the set-

tings above are a = 4.04 Å for fcc-Al, a = 4.51 Å for fcc-Mg, a = 3.69 Å; c
a = 1.41 for hcp

Mg and a = 3.29 Å; c
a = 1.44 for hcp Al. Vacancy hop rate follows ω = ν0 exp (−Ea/kBT ),

where ν0 is the attempt frequency and Ea the energy difference between saddle point and

initial configuration, assuming transition state theory. kB and T are Boltzmann constant and

temperature, respectively.

To calculate the transition state configuration and energy, we use climbing-image nudged

elastic band (CI-NEB) method with one intermediate image [97]. These CI-NEB calcula-

tions are continued until the forces are converged to within 5 meV/Å. Attempt frequency

associated with each transition, ν, in a supercell with N number of atoms is computed from

Vineyard’s equation:

ν =

3N∏
k=1
νk

3N−1∏
k=1

ν′k

(5.1)

where νk and ν′k are the real normal mode frequencies at the local energy minimum and

saddle point configuration, respectively. We implement and compare FDM [99, 100] and

DFPT [114, 115] approaches to calculate the restoring forces and derive the Hessian ma-

trix. Individual phonon frequencies are the square root of the eigenvalues of the Hessian
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matrix. To evaluate the vacancy formation energy and entropy, we calculate the vibrational

contribution to the free energy of both perfect and vacancy cells using the Phonopy package

[124].

5.4 Diffusion calculation

5.4.1 Model

We calculate solute diffusion coefficients from the DFT inputs by following the Green

function solution to the master equation approach [105]. Binding energy Eb between so-

lutes (S) and vacancies (V) in a given crystal structure (with host atom A) can be calculated

from:

Eb = E(AN−2S 1V1) + E(AN) − E(AN−1S 1) − E(AN−1V1) (5.2)

where E(AN), E(AN−1S 1), E(AN−1V1) and E(AN−2S 1V1) are the energy of pure system with

N atoms, a system containing a solute atom, a system containing a vacancy and a system

containing a vacancy-solute pair, respectively.

For impurity diffusion calculation in fcc systems, we use five-frequency model [2,

107]. Figure 5.1 shows the five identical jumps representing the symmetrically unique

vacancy/solute (solvent) jumps. These rates are defined as vacancy hops in the solvent

(ω0), vacancy rotation around the solute (ω1), vacancy-solute exchange (ω2), dissociation

from (ω3) and association towards (ω4) the solute. Table 5.1 lists the attempt frequencies

and migration barriers for the five frequencies for diffusion of Mg(Al) in fcc Al(Mg) along

with the corresponding solute-vacancy binding energies.

To calculate the diffusion coefficients in hcp systems, we use sixteen-frequency model

recently proposed by Agarwal and Trinkle [3]. Authors argue the previous standard eight-

79



[108] and thirteen- [109] frequency models treat the symmetrically inequivalent transitions

as the same jump incorrectly and therefore proposed a corrected sixteen-frequency model.

Figure 5.2 shows these symmetrically unique jumps in an hcp lattice following the notation

in reference [3]. The symmetry-unique frequencies and solute/vacancy migration barriers

are tabulated in Table 5.2 and Table 5.3.

For self-diffusion coefficients, the five-frequency model is reduced to one, vacancy

jump to the nearest neighbor host atom. Similarly, sixteen-frequency jumps in hcp are

reduced to two, vacancy jump to the nearest neighbor host atom on the basal and pyramidal

planes. Table 5.4 lists the energy barriers and attempt frequencies for vacancy jumps in the

elemental hcp and fcc systems.

Transition energies and attempt frequencies computed from DFT can be used to com-

pute the Onsager matrix and the diffusion coefficient of solute impurities in the dilute limit

[105]. Using this model, the solute-related diagonal term of the Onsager matrix, LS S , is

calculated. In the dilute limit, the solute diffusivity tensor, DS , can be computed from the

solute transport coefficient using the following equation:

DS = kBTΩ(cs)−1LS S (5.3)

where Ω and cs are volume per atom and vacancy concentration, respectively. In the global

thermal equilibrium, vacancy concentration is:

cs = exp (−
EV

form − TS V
form

kBT
) (5.4)

where EV
form and S V

form are the vacancy formation energy and entropy, respectively. Note that

EV
form includes the zero-point energy. Vacancy formation energy and entropy are evaluated

by calculating the Gibbs free energy of both the perfect supercell and the supercell with
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a vacancy at elevated temperature within the quasi-harmonic approximation (QHA) from

phonon calculations [125]. Calculated vacancy formation energies and entropies are shown

in Table 5.5. Finally, diffusion coefficients D are calculated and fitted into the conventional

Arrhenius form:

D = D0 exp (−
Q

kBT
) (5.5)
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Figure 5.1: Five-frequency jumps in fcc crystal structure. Solute and vacancies are indicated by yellow
sphere and white square, respectively. Blue spheres represent host atom.

5.4.2 Effects of exchange-correlation on diffusivities

First, we investigate the effect of different XCs on both transition barrier energies and

vacancy formation energies and entropies. Figure 5.3 shows the calculated self-diffusion

in fcc Al and hcp Mg using different XCs functionals of USPP and PBEsol compared with

the experimental assessment done by Zhong et al. [12]. The choice of PBEsol for hcp

Mg shows the best agreement with the experiments. We find that the PBEsol improves
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Table 5.4: Migration energies (eV) and attempt frequencies (THz) for vacancy mediated diffusion in elemen-
tal fcc/hcp Al and Mg. For hcp systems, the values for basal and (pyramidal) jumps are shown without and
(with) parentheses. For DFT settings tags interpretation, refer to the caption in the text and Table 5.1.

Quantity
DFT

Settings hcp Mg fcc Al fcc Mg hcp Al

Emig(eV) USPP 0.383 (0.402) 0.565 0.398 0.423 (0.448)
PAW-PBEsol 0.407 (0.423) 0.633 0.363 0.502 (0.523)

ν(THz) DFPT 5.018 (6.497) 4.854 7.715 7.844 (7.553)
FDM 3.873 (2.759) 6.958 8.742 9.712 (4.883)

Table 5.5: Vacancy formation energies and vacancy formation entropies in fcc/hcp Al/Mg systems using
different DFT settings. For Al cells, results from regular PAW-PBE functional are also reported.

System
DFT

Settings HF
V (eV) SF

V(kB )

hcp Mg USPP 0.755 1.591
PAW-PBEsol 0.883 1.968

fcc Al USPP 0.582 1.277
PAW-PBE 0.690 1.393
PAW-PBEsol 0.813 2.324

fcc Mg USPP 0.580 0.313
PAW-PBEsol 0.893 1.716

hcp Al USPP 0.509 0.371
PAW-PBE 0.690 1.393
PAW-PBEsol 0.710 1.031
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Figure 5.2: Atomic hops considered in the diffusion model in hcp (based on the notations in [3] ). Top and
bottom rows show the basal and pyramidal jumps, respectively. Schematics in the left and right columns
represent the solute and vacancy on the same plane (1b) and solute and vacancy on the different plane (1p),
respectively. Note that the two reorientation jumps from 1b, that have been treated as a unique jump in
previous models, are distinguished by 1b-1b in blue and 1b-1b in yellow in the top left figure. Solute and
vacancies are indicated by yellow sphere and white square, respectively. Blue spheres represent host atom
(modified after [3] ).

the accuracy of both transition energies and vacancy formation energies for both systems

compared to the USPP. According to the Arrhenius equation in Equation 5.5, the slope of

the calculated diffusivity lines corresponds to the activation energy Eact and the intercept

with vertical axis corresponds to the diffusion pre-factor D0. While the migration energies

and vacancy formation energies mainly contribute to the Eact, vacancy formation entropy

and migration frequencies mainly influence D0. Table 5.6 lists the Arrhenius fit to the self-

diffusivities using different DFT settings and compares those with the values reported in

the literature.
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Figure 5.3: Self diffusion coefficients for fcc Al and hcp Mg. DFT results derived from different exchange-
correlation pseudopotentials and attempt frequency calculation methods are compared with the experimental
assessment in reference [12]. For Al systems, diffusivity results with the vacancy formation energy and
entropy evaluated from regular PAW-PBE is also shown.

For Al systems, the use of uncorrected PAW-PBE in calculating vacancy formation

energy and entropy yield a closer activation energy for diffusion (slope of the diffusivity

versus 1/T plot) compared to the experiments. Similar to the reference [129], we find that

vacancy formation energy is the dominant contributing factor for the close agreement of

DFT-predicted slopes with experiments. Our results show that surface energy correction

under-predicts the vacancy formation energies in fcc Al, consistent with previous works

[129, 130]. However, migration barriers evaluated from PBEsol are very close to those

predicted with PBE. It is important to note that both vacancy formation energy and en-

tropy determine the vacancy concentration term, according to Equation 5.4, and directly

contribute to the final diffusion coefficient. Therefore, the choice of XC in free energy

calculations at elevated temperatures also has an important impact on the pre-factor term.

As shown in Figure 5.3, diffusivities with vacancy formation energies evaluated from PBE
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yield D0 intercepts closer to experiments compared to PBEsol. Other factors that can influ-

ence the pre-factor term are discussed in detail in Section 5.4.3. A similar effect is found

in Mg impurity diffusion in fcc Al as shown in Figure 5.4. The choice of uncorrected

PBE XC for vacancy concentration calculations yields the closer diffusivities to the exper-

iments. Table 5.7 lists the Arrhenius fit to the calculated diffusivities for impurity diffusion

coefficients and compares these values with the findings from previous works.
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Figure 5.4: Impurity diffusion coefficients: (a) Mg in fcc Al and (b) Al in hcp Mg. DFT results derived from
different exchange-correlation pseudopotentials and attempt frequency calculation methods are compared
with the experimental assessment in reference [12]. For Al systems, diffusivity results with the vacancy
formation energy and entropy evaluated from regular PAW-PBE is also shown.

Similar to the diffusion in fcc Al systems, PBEsol improves the migration energies

compared to USPP for diffusion in hcp Mg systems, leading to the better diffusivity predic-

tions. While PBEsol also improves the vacancy formation energy and entropy compared

to USPP, both PBE and corrected PBEsol predicted similar values for vacancy formation

energies and entropies. Similar to previous publications [129, 130], we find that vacancy
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Table 5.6: Arrhenius fit to the calculated self-diffusion coefficients. Diffusivities are fit to the D =

D0 exp (−Eact/kBT ) equation, where D, D0, and Eact are diffusivity, diffusion prefactor and activation en-
ergy barrier, respectively. These values are compared to the experimental values reported in the literature,
For Al systems, fit to the diffusivity data derived from regular PAW-PBE functional for vacancy formation en-
ergies and entropies are also included. For hcp systems, diffusivity values for basal and (~c) are shown without
and (with) parentheses. For DFT settings tags interpretation, refer to the caption in the text and Table 5.1.

System
DFT

Settings D0(m2/s) Eact (eV)

hcp Mg USPP 5.76E-06 (4.62E-06) 1.14 (1.15)
PAW-PBEsol, DFPT 6.15E-06 (7.17E-06) 1.29 (1.30)
PAW-PBEsol, FDM 3.99E-06 (3.21E-06) 1.29 (1.30)

Assessment [12] 2.88E-05 1.30
Ref. [131] (Experimental) 2.00E-04 (2.03E-03) 1.44 (1.46)

fcc Al USPP 5.98E-06 1.15
USPP(vac:PAW-PBE) 6.71E-06 1.25
PAW-PBEsol, DFPT 1.38E-05 1.45

PAW-PBEsol, DFPT (vac:PAW-PBE) 5.42E-06 1.32
PAW-PBEsol, FDM 2.42E-05 1.45

PAW-PBEsol, FDM (vac:PAW-PBE) 9.55E-06 1.32
Assessment [12] 1.79E-05 1.32

Ref. [132] (Experimental) 9.77E-06 1.27
fcc Mg PAW-PBEsol, FDM 1.49E-05 1.26
hcp Al PAW-PBEsol, FDM 2.87E-06 (1.92E-06) 1.22 (1.23)

PAW-PBEsol, FDM (vac:PAW-PBE) 4.11E-06 (2.76E-06) 1.20 (1.21)

concentration is less sensitive to the surface energy correction for both self and impurity

diffusion in hcp Mg systems. Based on these findings, we use PAW-PBEsol XC functional

to calculate the energy barrier in hypothetical phases. For vacancy concentration calcula-

tions, we use regular PAW-PBE in systems with Al host atoms and corrected PAW-PBEsol

in systems with Mg host atoms.
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Table 5.7: Arrhenius fit to the calculated impurity diffusion coefficients. Diffusivities are fit to the D =

D0 exp (−Eact/kBT ) equation, where D, D0, and Eact are diffusivity, diffusion prefactor and activation energy
barrier, respectively. These values are compared to the experimental values reported in the literature. For
Al systems, fit to the diffusivity data where the regular PAW-PBE functional is used to calculate vacancy
formation energies and entropies are also included. For hcp systems, diffusivity values for basal and (~c) are
shown without and (with) parentheses. For DFT settings tags interpretation, refer to the caption in the text
and Table 5.1.

System
DFT

Settings D0(m2/s) Eact (eV)

Al in hcp Mg USPP 1.17E-05 (1.78E-05) 1.27 (1.31)
PAW-PBEsol, DFPT 5.12E-05 (7.09E-05) 1.39 (1.43)
PAW-PBEsol, FDM 9.52E-06 (1.00E-05) 1.39 (1.43)

Assessment [12] 1.16E-04 1.47
Ref.[3](DFT) 1.87E-06 (2.02E-06) 1.46

Ref. [133](DFT) 3.44E-05 (3.11E-5) 1.41
Ref. [128] (DFT) 4.24E-06 (7.17E-06) 1.29

Mg in fcc Al USPP 2.06E-05 1.06
USPP(vac:PAW-PBE) 2.30E-05 1.16
PAW-PBEsol, DFPT 3.72E-05 1.41

PAW-PBEsol, DFPT (vac:PAW-PBE) 1.47E-05 1.29
PAW-PBEsol, FDM 1.45E-05 1.38

PAW-PBEsol, FDM (vac:PAW-PBE) 5.70E-06 1.25
Assessment [12] 5.17E-05 1.31
Ref. [134] (DFT) - 1.21

Al in fcc Mg PAW-PBEsol, DFPT 1.03E-05 1.46
Mg in hcp Al PAW-PBEsol, DFPT 8.58E-06 (1.08E-05) 1.19 (1.20)

PAW-PBEsol, DFPT (vac:PAW-PBE) 5.04E-06 (6.31E-05) 1.08 (1.10)
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5.4.3 Effects of attempt frequencies on diffusivities

Next, we study the effect of different attempt frequency calculation methods within

quasi-harmonic phonon models. FDM and DFPT methods yield different entropies of va-

cancy formation and migration, which contributes mainly to the intercept difference (D0)

in both self-diffusion and impurity diffusion coefficients. In phonon based QHA, exces-

sive fitting or benchmarking can be avoided as opposed to other methods such as Debye

model, where Debye temperature is approximated from experimental data or QHA phonon

calculations [129].

Diffusion coefficients derived from both FDM and DFPT approaches are presented in

Figures 5.3 and 5.4 and listed in Tables 5.6 and 5.7. DFPT has a better speed-convergence

relation due to the direct calculaton of second-order derivatives of the energy compared

to the FDM, where the Hessian matrix is obtained via a first order finite-difference small

displacement of atoms to compute the forces. Here, we compare the diffusivities derived

from DFPT with FDM method. As shown in Figure 5.3 and Table 5.6, FDM calculated

phonons yield to a considerably better D0 values for self-diffusivities in fcc Al compared

to the experiments. In case of hcp Mg self-diffusivity, prefactors derived from both FDM

and DFPT methods are very close. Therefore, we use the FDM to calculate the attempt

frequencies for self-diffusion atomic hops in the hypothetical phases.

Similar analysis is performed for impurity diffusion of Mg in fcc Al and Al in hcp

Mg. As illustrated in Figure 5.4 and Table 5.7, prefactors from DFPT and FDM results

are similar with slightly better predictions using DFPT in both cases. To be consistent

in settings, we implement DFPT method to evaluate the frequency modes for impurity

diffusion in the hypothetical phases as it is explained in the next section.
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5.4.4 Diffusivity in meta-stable phases

Uncertainty analysis is performed on the self and impurity diffusion calculation of the

stable phases of Mg/Al. We find that PAW-PBEsol improves the accuracy of solute/vacancy

migration energies. For vacancy formation energy and entropies, regular PAW-PBE per-

forms better than other XC functionals in predicting the diffusion coefficients in Al-based

systems. This results in closer activation energy barrier values for diffusion (slope of Fig-

ures shown in 5.3 and 5.4) as compared to the values reported in experiments. In terms of

prefactor, FDM method is found to perform better in predicting the D0 intercept for self-

diffusivities and DFPT predicts more accurate prefactor values in impurity diffusion cases.

Based on these findings, we predict the diffusion coefficients in metastable (hypothetical)

cases. Elemental self-diffusivities in hcp Al and fcc Mg, and Al/Mg impurity diffusion in

fcc Mg/hcp Al are shown in Figure 5.5 and the Arrhenius fit is listed in Tables 5.6 and 5.7.
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Figure 5.5: Diffusion coefficients in metastable phases: (a) self-diffusivities in elemental hcp Al and fcc Mg,
(b) impurity diffusion of Al in fcc Mg and Mg in hcp Al using the optimized DFT settings identified for stable
phases as explained in the text.
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5.5 Concluding remarks

As an effort to quantify the uncertainty of diffusion coefficients derived from DFT cal-

culations, we present a study of self and dilute solute diffusion in fcc/hcp-Al/Mg stable

and meta-stable phases. We investigate the effect of diffusion model, exchange-correlation

functional, and attempt frequency calculation methods on the diffusion coefficients in a

quantitative framework. The sixteen-frequency model using the Green’s function method

is found to predict more accurate diffusivities compared to the previous eight- and thirteen-

frequency models. In comparison to the USPP, PAW-PBEsol functional is able to well

describe migration energies, vacancy formation energies and entropies, resulting in a more

accurate diffusion predictions. In particular, we find that thermalized free energy calcula-

tions are more sensitive to the choice of XC and have an important effect on the calculated

diffusivities. PBEsol improves the vacancy formation energy and entropy values in Mg-

based systems leading to the more accurate activation energy barrier for diffusion, however,

it under-predicts the formation energies in Al-based systems. We then study the contribu-

tion of different attempt frequency calculation methods through QHA analysis. While the

difference between using FDM and DFPT is not as significant as the XC effect, FDM and

DFPT are found to better predict the self-diffusivities and solute diffusivities, respectively,

by improving the D0 accuracy compared to the experiments. Finally, we use the optimized

settings to evaluate the diffusion coefficients in meta-stable phases. Present work explains

the factors that play a role in diffusivity calculations from first-principles. Calculated dif-

fusion data in stable and meta-stable phases can be used to improve CALPHAD diffusion

mobility databases for Mg/Al alloys [135]. The method explained in this work can be

readily applied to the self and impurity diffusion prediction in other fcc/hcp systems.
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Chapter 6: Solute/Twin boundary interaction as a new atomic-scale

mechanism for Dynamic Strain Aging: Interstitial diffusion

Strength and formability are critical properties for the hexagonal close packed materials

and can consequently be improved by controlling twin nucleation and growth. In this

chapter, we study the effect of alloying elements on strain rate and temperature dependence

of twin growth. Without using any fitting parameters, we derive an analytical model which

takes atomic scale calculated parameters as input and predicts the equilibrium concentration

of segregated solutes and strengthening due to solute-twin interactions. This model predicts

the strain-rate/temperature conditions of negative strain rate sensitivity in titanium, under

loading conditions that favor twinning, with oxygen interstitial. The predictions are in

quantitative agreement with available experiments. Our findings present a new mechanism

for dynamic strain aging as a result of solute segregation to the twin boundaries.

6.1 Introduction

Dynamic strain aging (DSA) is usually associated with an increase in the strength of an

alloy due to the diffusion of solutes around dislocations that temporarily hinder dislocation

motion. At the macroscopic scale, DSA is often manifested by serrations in the stress-strain

curves and Portvein-LeChatelier (PLC) deformation bands, indicative of local instabilities,

which arise when DSA renders the strain rate sensitivity of the material negative [136,

94



137, 138, 139]. Strain rate sensitivity is defined as the change in the strength of material

τ versus the change in strain rate ε̇, m = ∆τ
∆ log ε̇ . Negative strain rate sensitivity (nSRS) has

detrimental effects on processing and formability of metallic alloys. As such, understanding

the mechanisms underlying the nSRS is crucial for improving the mechanical properties

and predictive alloy design.

The DSA model by Curtin et al. introduced the “cross-core” diffusion of solutes in the

dislocation core as the atomic scale mechanism of DSA in Al-Mg alloys [140]. During this

process, the solutes in the vicinity of the dislocation core migrate from the tensile to the

compressive sides (or vice versa depending on the solute misfit volume), during periods

where dislocations are stopped by other obstacles. The driving force for this mechanism is

the large disparity in the solute/dislocation interaction energy in tension and compression

sides within the core of a dislocation. Also, the lower energy barrier for solute transport

within the core compared to bulk, accelerates the kinetics of cross-core diffusion, leading

to the DSA.

Most of the research on DSA has been done on cubic systems [141, 142, 143, 144, 145,

146, 147, 148], however, DSA has been observed in hexagonal close packed (hcp) metals

such as Magnesium (Mg) and Titanium (Ti) alloys as well [26, 149, 150, 151, 152, 153, 154,

155]. Unlike in cubic structures, the slip systems in hcp crystals involve Burgers vectors of

different lengths– 〈a〉 and 〈c+a〉– with a large critical stress differential to activate on basal,

prismatic and pyramidal planes. In addition, twinning is a major mode of deformation in

these systems. While the “cross-core” diffusion can occur in hcp metals as well, an analysis

of the experimental work in Mg and Ti alloys suggest that other mechanisms for DSA

may exist in hcp crystals. For instance, DSA has been observed in Mg-rare earth (RE)

alloys with very low solute concentrations. This level of concentration cannot achieve
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the strength levels needed to predict the experimentally observed stress drops (5-10 MPa

depending on the alloying element) [23, 24, 25]. In addition, DSA has been observed in

single crystals oriented in favor of twinning in Ti. Akhtar et al. performed tensile tests

on single crystal Ti samples with oxygen as the main interstitial content and observed the

appearance of serrated stress-strain curves at a temperature of about 423 K and a strain

rate of 1.66 × 10−4 s−1 in the test with twin-favored orientation [6]. Their microstructure

observations revealed that the {101̄2} twins were indeed the main deformation mode with

only a small amount of slip lines in the vicinity of twins. This observation suggests that

the interaction of solutes with the twin boundary (TB) can offer an alternative mechanism

for DSA. Other experimental studies have also observed DSA in different metallic alloys,

in the presence of interstitial solutes, and with active twinning deformation modes [26,

144, 149, 150, 151, 152, 153, 154, 155, 156]. These studies found nSRS with increasing

number of twins, which highlights the important link between DSA and the microstructure

and connect solute/boundary– in addition to solute/dislocation interactions– to DSA.

Here we propose an “in-twin ”, analogous to the “cross-core”, mechanism for DSA. We

focus on the (101̄2) twin boundary, which is observed in all hcp metals and was particularly

operative in the work of Akhtar et al. [6]. First principles calculations have shown a strong

interaction between solutes and this twin boundary [54, 58, 89, 90, 92, 157]. In addition,

solute segregation to the attractive sites and the subsequent inhibition of twinning have

been experimentally observed in the work of Nie et al. [106].

First, we note that there are important similarities between the solute/dislocation and

solute/twin boundary interactions as follows. For both substitutional and interstitial so-

lutes, there are repulsive and attractive interaction sites, with a large difference in interac-

tion energies, similar to the energy difference between tension/compression sides within
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a dislocation core. The difference in interaction energy, creates a driving force for solute

transport near the twin boundary. This underlying feature is common between both sub-

stitutional and interstitial solutes, however, here we focus on the interstitial mechanism for

direct comparison with the available experimental results of Akhtar et al. on oxygen in Ti.

Furthermore, we have shown previously that the migration barrier of oxygen interstitials

in the vicinity of the twin boundary is significantly reduced [157]. The reduced barrier

for transport within the “core” of the defect is the second common feature between the

“cross-core” and the “in-twin ” diffusion mechanisms. At low plastic shear strain rates,

twin boundaries grow via individual nucleation and growth events. During the waiting

time between individual nucleation/growth events, solutes can diffuse from the repulsive

sites to the attractive sites within the twin boundary region at a faster rate than bulk. This

local segregation pins the twin boundary and larger stress levels are needed for subsequent

growth. After an increase in the applied shear stress, the twin boundary can grow at a faster

rate until further hardening. This can manifest macroscopically as DSA or serrated flow.

We quantify the competition between twin growth rate and oxygen diffusion in Ti, using

first principles calculations and show that the “in-twin” diffusion is a viable mechanism that

explains experimental serrated stress-strain curves on Ti single crystals where twinning is

the dominant deformation mode.

The rest of this chapter is organized as follows. Section 6.2 contains the computational

details. Theoretical framework of strengthening model and the solute effects on different

twin growth modes are explained in Section 6.3. Finally, model predictions and the follow-

ing discussion are presented in Section 6.3.3.
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6.2 Computational method

Density functional theory (DFT) calculations are performed with VASP [95] using the

projector augmented wave (PAW) method [120] within the generalized gradient approxi-

mation (GGA) exchange-correlation functional as determined by Perdew and Wang [32].

A cut-off energy of 500 eV, and the Methfessel-Paxton smearing method (ISMEAR =1) is

applied with SIGMA=0.15 in all DFT calculations. We use double twin geometry with

10 atomic layers between twin boundaries and total number of 240 Ti atoms to maintain

the periodicity along all three directions (cf. Figure 6.2). The dimension of the supercell

employed for DFT calculations is chosen to be 13.72 × 8.76 × 33.85 Å along X : [1̄011],

Y : [12̄10] and Z : (101̄2) directions, respectively. To maintain the dilute limit of so-

lutes, thickness of at least 3a; a = 2.92 Å along Y : [12̄10] is required as it is implemented

in these calculations. Single periodic unit of twin boundary plane with a dimension of

6.86×2.92 Å along X and Y directions is used to evaluate the diffusion coefficients follow-

ing the recently developed methodology [157] . These settings combined with the choice of

3×4×1 k-mesh guarantees ∼ 0.1 eV/atom error in the accuracy of site energies. Site energy

for each interstitial site is defined as the difference between the energy of the supercell with

oxygen at an interstitial site and that of the reference, the cell with “bulk-like” octahedral

sites located furthest from both twin boundaries. All atomic positions within the relaxed

box dimensions of the reference cell are allowed to relax until the forces are smaller than

10 meVÅ−1.

Transition barrier energies are calculated using climbing-image nudged elastic band

(CI-NEB) method [96, 97] with constant cell size and one intermediate image. The force

criterion for NEB convergence is set to be 20 meVÅ−1. Attempt frequency for the intersti-

tial solute transitions ν, is derived using the Vineyard’s equation [98] within the transition
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state theory as, ν =

3N∏
i=1
νi

3N−1∏
i=1

ν′i

, where νi and ν′j are stable normal mode frequencies at the local

energy minimum and saddle point states, respectively. Finite difference small displacement

method is used to compute the Hessian matrix from which the normal mode frequencies

are derived [99, 100].

The interaction between oxygen solutes and twinning dislocation, or disconnection, is

studied using DFT with the corresponding simulation cell shown schematically in Figure

6.5(a). Twinning disconnection consisting of a dislocation and a step character is con-

structed following the procedure explained in [58]. Dislocation is imposed by applying

the anisotropic displacement field of the dislocation character with a Burgers vector of

0.62 Å[55, 158]. This cell has the dimension of 99.36 × 8.76 × 60 Å along X : [1̄011] and

Y : [12̄10] and (101̄2) normal direction, respectively and contains 2550 atoms. Simulation

cell is slightly rotated along Y dislocation line direction to maintain the periodicity of twin

boundary at each side of the disconnection along X. A vacuum layer with thickness of 15 Å

is imposed at top of the cell to avoid interaction images between the planes. The system is

then relaxed using 1 × 4 × 1 k-mesh while fixing the atoms within 10 Å of the cell along Z

direction fixed. The rest of DFT settings are the same as ones explained above for coherent

twin boundary calculations.

6.3 Theory of solute effects on Twin Growth

Twin growth in hcp Ti occurs by nucleation and glide of twinning dislocations or dis-

connections [159, 160, 161]; line defects with both a step and a dislocation character. An

entirely new twin can be created from a free surface [162, 163], from a defect with a large

local stress concentration, dislocation-twin interactions[164, 165, 166, 167, 168], twin-twin
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interactions [169, 170] and precipitation/void induced interactions [171]. Several mecha-

nisms for twin nucleation and growth have been proposed in the literature from both com-

putational and experimental prospects. Recently, Capolungo and Taupin [172] employed

molecular dynamics simulations to study the thickening mechanism of twin by the nucle-

ation of disconnection loops from existing ledges on the twin interface. This type of twin

nucleation mechanisms are commonly observed experimentally as discussed by Hirth et al.

[173]. Another study by Fan and El-Awady [174] revealed nucleation of twin and basal-to-

prism (BP) facets as a result of (near) c-axis tension using molecular dynamics simulation.

Heterogenous nucleation and growth of the twins from the presence of defects, such as

dislocations, has been also extensively investigated [74, 76, 175, 176]. In a recent in-situ

tension experiment study, dislocation slip induced twin growth is characterized [177]. The

authors identified the formation of twin inclinations comprising of BP facets and observed

the growth of twin through extension of BP interface length with no evidence of longitu-

dinal growth/glide. While each set of above studies address how twin nucleates or grows

from an already nucleated twin, any aspect of thermal activation or the role of solutes on

the twin nucleation and thickening requires more in-depth analysis.

Here, we use the recent model of Luque et al. for growth of hcp twin boundaries,

where twin growth occurs by the thermally activated nucleation and expansion of a twin-

ning dislocation loop– or island formation– on existing twin boundaries [178]. Figure 6.1

(a)-(b) shows schematically the formation of a twin loop according to the model proposed

by Luque et al. Assuming an existing twin boundary, applied stress provides the driving

force for the nucleation of a new twin dislocation loop. As the nucleated loop expands, the

twin boundary advances by a unit step height.
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Figure 6.1: Twin growth by formation of a square twinning dislocation loop: (a)-(b) show the lateral growth
of twin by island formation. (a) is the cross-section of twin loop and (b) is the view normal to the twin
boundary. (c)-(e) show the twin growth where the solutes can segregate to and pin the boundary (c). Upon
applying a large enough stress, the twin boundary can escape the solute environment and grow by forming a
new loop (d). If the solutes can diffuse fast enough to reach the new twin boundary, this process can repeat
(e). Red atoms indicate the interstitial solutes and the dashed lines are twin boundaries.

On the other hand, presence of solutes affects the energetics of twin growth, as dis-

cussed in [178]. Particularly, segregation of solutes to the boundary significantly increases

the energy barrier for subsequent nucleation of the loop. Therefore, growth of twin bound-

aries at a constant rate, requires a higher level of applied stress. Upon applying a large

enough stress, the twin boundary can escape the solute environment and grow by forming a

new loop. As the boundary moves further, solutes may catch up by diffusing to the shifted

twin boundary. If the solutes can diffuse fast enough to reach the new twin boundary,

this process can repeat, similar to the dislocation-based DSA. Therefore, the competition
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between twin growth rate and diffusion of solutes around the boundary determines the dy-

namic nature of this mechanism. Figure 6.1(c)-(e) demonstrates this process schematically.

Following [178], the total energy to nucleate a twin loop of size L × L where solutes

segregate to the TB is:

∆E = 4γL − τbtwL2 + ∆Eseg (6.1)

where γ is the energy cost per unit length of the twin loop with the twinning Burgers vector

of btw. τ is the applied stress and ∆Eseg is the additional energy change due to the solute

segregation from the repulsive to the attractive sites.

Figure 6.2 shows the geometry of the (101̄2) twin boundary, with layers L0, containing

two attractive octahedral sites O1 and O2, and L1, containing two repulsive octahedral

sites O3 and O4. Previous DFT calculations found the interaction energy of an oxygen

interstitial in sites O1, O2, O3, O4, O5 and O6 to be −0.082 eV, −0.096 eV, 0.145 eV,

0.054 eV, −0.050 eV and −0.071 eV, respectively. These interaction energies are defined as

the difference between the energy of an oxygen atom at each site and that of an oxygen

atom in a bulk octahedral site. Beyond L1, bulk geometry is retrieved and the twin/solute

interaction energy becomes negligibly small.

Oxygen atoms at each of the octahedral sites can jump into two octahedral sites at the

adjacent layer, through intermediate metastable sites thereby creating four distinct octahe-

dral to octahedral (O-O) jumps between L0 and L1 layers. Figure 6.2 shows the minimum

energy path within each O-O jump. In a previous work, we identified new tetrahedral inter-

stitial sites close to the twin boundary which provide the lowest-barrier-path for an oxygen

atom during O3 →O1, O3 →O2 and O4 →O1 jumps. The minimum energy path for the

remaining O4 →O2 jump involves a hexahedral site as shown in Figure 6.2. The energy
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Figure 6.2: Twin boundary geometry and minimum energy paths for oxygen segregation. Oxygen atoms
at the octahedral, crowdion, tetrahedral and hexahedral sites are shown by the symbols O, C, T and H,
respectively. The arrows show the minimum energy path for oxygen atom jumps from octahedral sites in
L1 layer to the lowest energy octahedral sites at the TB, L0 resulting in the segregation. Labels for the sites
located behind octahedral sites are indicated in the parenthesis.
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barriers corresponding to these jumps are calculated using NEB method and are presented

in Figure 6.3.

(b)

(d)

(c)

(e)

(a)

Figure 6.3: (a) Position of all stable oxygen interstitial sites around (101̄2) twin boundary. Octahedral,
crowdion, tetrahedral and hexahedral sites are shown by the symbols O, C, T and H, respectively. (b)-(e)
relative energy barriers corresponding to the different possible paths between octahedral sites from L1 to L0.
Transport occurs via meta-stable interstitial sites. Each of the meta-stable sites is indicated with a scatter
symbol and the peak between each two symbol corresponds to the transition state energy derived from the
nudged elastic band calculations.

Next, we derive an analytical expression for the additional stress exerted on a twin

boundary by segregation of solutes via “in-twin” diffusion. The magnitude of this addi-

tional stress depends on the degree of segregation and therefore the kinetics of the “in-twin”

diffusion. To obtain a closed form solution for this additive, time-dependent strength, we

make some simplifying assumptions following Curtin et al. ’s treatment of the “cross-

core” diffusion. First, we define the driving force for the jumps as the average binding

energy difference between the repulsive and attractive sites, ∆W. Next, we define the en-

ergy barrier for an “average” O-O jump as follows. Let us name the forward transition

energy barrier and attempt frequency in the direction of the driving force, from L1 to L0,
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∆Hfw and νfw and the backward energy barrier and attempt frequency as ∆Hbw and νbw,

where ∆Hfw + ∆W = ∆Hbw. The forward jump rate is proportional to νfwe−β∆Hfw
and the

backward jump rate is proportional to νbwe−β∆Hbw
with β equals 1/kBT where kB is the

Boltzmann constant and T is the temperature. First, given the small difference between

the forward and backward attempt frequencies, we consider νfw=νbw=ν0. We then define

the forward and backward rates for an “average” O-O jump as Γfw = ν0e−β(∆Have−∆W/2) and

Γbw = ν0e−β(∆Have+∆W/2) where ∆Have is a reference transition barrier obtained by averaging

the forward and backward energy barriers. Note that detailed balance requires the ratio of

forward to backward jumps to be proportional to eβ∆W , and these jump rates satisfy this

condition.

Having two distinct octahedral sites in each layer and considering two L1 layers on each

side of the boundary, the transition rate from L0 to L1 becomes ΓL0→L1 = 8Γ0eβ∆W/2 where

the reference transition rate Γ0 = ν0e−β∆Have
. Similarly, the transition rate from L1 to L0

ΓL1→L0 = 8Γ0e−β∆W/2. Taking the average between forward and backward energy barriers,

as shown in Figure 6.3, we use a ∆Have value of 1.496 eV and a ν0 of 13.7 THz.

Solute concentration in layers L0 and L1 should satisfy the master equation:

ċL0(t) = ΓL1→L0cL1(t) − ΓL0→L1cL0

ċL1(t) = ΓL0→L1cL0(t) − ΓL1→L0cL1

(6.2)

where the dot symbol represents time derivative. The solution to the above system of dif-

ferential equations with initial values of cL0 = cL1= c0 yields the closed form concentration

change in L0 as follows:

∆cL0 = cL0(t) − c0 = c0 tanh (
β∆W

2
)
[
1 − e−16 cosh ( β∆W

2 )Γ0t

]
(6.3)
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The additional energy change due to solute transport from layer L1 to L0 is then given

by:

∆Eseg = ∆cL0NL0∆W (6.4)

where NL0 is the number of possible sites in layer L0. For a twin loop of area L2, NL0 = L2/Σ

with Σ being the twin boundary area per atom. Following the formalism of [178] for the

energy required for loop nucleation in the presence of segregated solutes, we have:

∆E = 4γL − τbtwL2 + ∆τsbtwL2 (6.5)

where ∆τs is the pinning stress exerted on the twin boundary by the segregated solutes.

Substituting Equation 6.4 into Equation 6.1 and comparing with Equation 6.5 leads to the

following expression for the time dependent ∆τs:

∆τs(t) =
1

btwΣ
∆cL0(t)∆W (6.6)

Substituting ∆cL0(t) from Equation 6.3 into the above equation yields final additive

strengthening caused by solute segregation to the TB as a function of time:

∆τs(t) =
1

btwΣ

[
c0∆W tanh (

β∆W
2

)
[
1 − e−16 cosh ( β∆W

2 )Γ0t
]]

(6.7)

6.3.1 Role of solutes on disconnection glide

The model explained above, assumes that once a twin loop is formed, it can easily

expand by glide of the bounding twinning disconnections, leaving a new twin boundary

to which the solutes can then migrate. The underlying assumption is that, for a segregated

existing twin boundary, the lateral twin growth mode – nucleation of a new twin loop– dom-

inates the longitudinal growth mode by glide of disconnections. These two growth modes
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Figure 6.4: Twin growth modes: (a) lateral growth of twin from state (1), fully segregated coherent twin
boundary (green dashed line), to state (2), twin loop nucleation (green solid line) and (b) Longitudinal growth
of twin disconnection from the fully segregated state: (a) migration of disconnection from state (1), fully
segregated solutes to the boundary (green dashed line), to state (2), disconnection glide represented for a
single periodic unit (green solid line). Color coding shows the common neighbor analysis (CNA) [13]. White
atoms have hcp coordinate while black atoms show the defective region. Solutes are colored as red atoms.

are shown in Figure 6.4. To identify the dominant mechanism, we compare two critical

stress values needed to accommodate each growth mode from fully segregated boundary.

The larger of two values will dictate the dominating mechanism.

In the lateral growth case, presented in the previous section, the critical stress for twin

loop nucleation is:

τlat =
∆Elat NL0

btwΣL2 =
∆Elat

btwΣ
(6.8)

where ∆Elat is the critical energy barrier for twin loop nucleation. This energy barrier is the

difference between the state (1), where solutes are fully segregated to the favorable sites at

the coherent twin boundary and the state (2), where solutes colored with bright red are no

longer at the boundary upon twin loop nucleation. These sites are in fact located at a layer

below the nucleated boundary as shown in Figure 6.4(a). The energy cost for this transition
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is computed by associating the segregated state (1) to the O1 and O2 and the state (2) to

O5 and O6 site energies in the coherent twin boundary cell, respectively (cf. Figure 6.2).

According to the values reported earlier, ∆E between state (1) and (2) would be the sum

between the energy difference of O1→ O6 and O2→ O5 which is equal to 0.0574 eV.

To obtain the critical stress for the longitudinal growth, first we need to determine if

oxygen interstitials prefer to segregate to the step (core of the defect) rather than the twin

boundary sites. To this end, we study the interaction between solutes and twin disconnec-

tion using direct DFT calculations. Note that these are expensive calculations, involving

2550 atoms. Figure 6.5 shows the simulation set up and the possible octahedral positions

for oxygen interstitials near the disconnection. We find that oxygen atoms are attracted to

the boundary at S1, S3 and S6 with the calculated site energies of −0.092 eV, −0.068 eV

and −0.042 eV, respectively. However, it is energetically unfavorable for oxygen to be at

S2, S4 and S5; oxygen, placed at each of these sites relaxes to nearby attractive site by

pushing the boundary. This proves the lack of oxygen to segregate to the step part of the

disconnection.

Given the effect of time and temperature, solutes can diffuse and segregate to the twin

boundary where there is a strong attractive binding. Segregation to these attractive sites

pins the twin boundary and inhibits the further growth until a critical value of extra stress is

applied. Twin growth mode is accompanied by either (a) lateral growth by forming a new

twin loop on the boundary, or (b) longitudinal growth by glide of twin disconnection along

the boundary.

For the longitudinal growth, stress as a function of energy change is given by:

τlong =
∆Elong NL0

btwξltr
=

∆Elong

btwΣ
(6.9)
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Figure 6.5: Solute interaction with twinning disconnection: (a) shows the DFT simulation cell set up com-
prising of coherent twin boundary connected by twin disinclination and (b) shows the twinning disconnection
with a step and dislocation character and possible octahedral interstitial sites for oxygen near the disconnec-
tion. Color coding shows the common neighbor analysis (CNA) [13] . White atoms have hcp coordinate
while black atoms show the defective region.

where ∆Elong, ξ, and ltr are the critical energy barrier for longitudinal twin growth mode,

dislocation line length and the distance twin disconnection front traverses, respectively.

With the glide of twinning dislocation from fully segregated state, solutes indicated with

red color would be located at a layer below the extended boundary (cf. Figure 6.4(b)). This

transition costs the same amount of energy as in the case of lateral growth mode, leading

to the same critical stress for both growth modes. With Σ = 10.07 Å2

atom , ltr = 6.86 Å,

ξ = 2.92 Å, and btw = 0.62 Å for Ti, critical stress needed for activating each twin growth

mode would be τlong = τlat = 1.47 GPa. This indicates that disinclination glide is not

inhibited by the solutes segregation to the boundary, therefore twin growth is controlled by

the nucleation of twin loops.
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6.3.2 Assessing the waiting time

The degree of segregation, and consequently the amount of additional strength due to

segregation, is a function of the waiting time tw between individual nucleation and growth

events. If the solute diffusion is fast enough, the solutes can catch up with the moving twin

boundary and trap the boundary again. Therefore, the dynamic nature of this process is

determined by the competition between twin growth rate and the diffusion rate of solutes.

The twin growth rate R is defined as the time derivative of the total thickness of twin H.

Assuming, twinning as the only deformation mode, the total plastic strain ε is given by:

ε = Ntwγtw (6.10)

where the number of twin dislocations is Ntw = H/h with h and γtw = btw/h denoting the

characteristic step height and the plastic shear strain associated with a single twin disloca-

tion respectively. Taking the derivative of Equation 6.10, with respect to time, leads to the

relation between twin growth rate and strain rate as follows:

R =
ε̇h
γtw

(6.11)

For a solute diffusivity of D towards the boundary, the waiting time tw should then satisfy

√
Dtw = Rtw (6.12)

Substituting Equation 6.11 in Equation 6.12 relates the waiting time and the strain rate as

tw =
Dγtw

2

h2ε̇2
(6.13)

Finally, evaluating equation Equation 6.7 at t = tw gives the change in strengthening as

a function of strain rate and temperature.
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6.3.3 Model Predictions

We use the equations developed in the previous section to predict the additive strength-

ening generated from interstitial oxygen segregation to the TB in Ti. Using the site and

transition energies calculated in [157], we get an average binding energy ∆W = 0.18 eV

and average energy barrier of ∆Have = 1.496 eV. In addition, we use the diffusivity ten-

sor, derived for oxygen diffusion near the TB from first-principle calculations in [157],

and take the component corresponding to diffusion towards the boundary in the eval-

uation of tw according to Equation 6.13. This value is D = D0 exp (−Eact/kBT ) with

D0 = 1.348 × 10−7 m2/s and Eact = 1.313 eV and is higher than bulk diffusion as dis-

cussed in [157]. With Σ = 10.07 Å2

atom , ν0 = 13.7 × 1012 s−1, btw = 0.62 Å, h = 3.11 Å, and

γtw = 0.2 for Ti, and the above driving force and transition barrier energies, the additive

strengthening due to the “in-twin” diffusion is evaluated.

Figure 6.6 shows the additive strength, predicted by Equation 6.7, as a function of strain

rate. At low strain rates, where twin growth is slow, the boundary experiences an additional

pinning stress exerted by the segregated solutes. If the applied stress is lower than this

value, the boundary remains trapped and twin growth is suppressed. The value of this

strength depends on the total oxygen content, as shown in Figure 6.6(a) for several grades

of commercially pure Ti. If the temperature is held constant, but strain rate is increased, at a

critical strain rate, the strength will drop to zero, indicating that the twin growth rate is now

faster than solute diffusion and the boundary can escape the segregated solutes and grow

without additional stress. This critical strain rate, depends on the temperature as well. With

increasing temperature, the diffusion rate becomes comparable to a given twin growth rate.

Figure 6.6(b) shows the effect of temperature on the strain-rate-dependence of strength.
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In addition, we compare the model predictions with experimental observations of Akhtar

et al. [6]. The initial concentration of 0.05at% is chosen for direct comparison with that

work. Single crystals of Marz grade Ti (with 0.05at% oxygen), favorably oriented for

{101̄2} twinning, were deformed at temperatures between 78 K and 773 K. The serrations in

stress-strain curves appeared at the temperature of 423 K and a strain rate of 1.66×10−4 s−1.

Their microstructure observations confirmed the {101̄2} twinning as the main deformation

mode with only a small amount of slip lines in the vicinity of twins. As shown in Figure 6.6

(a) our predictions for the onset of DSA is consistent with the experimental conditions.
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Figure 6.6: Variation of strength with strain rate at various temperatures and initial oxygen content in Ti.
(a) shows prediction of present model at T=423 K for various oxygen contents and (b) shows the strength
predictions at various temperatures. Dashed vertical lines show the experimental strain rate reported in [6].

In summary, we have presented a new mechanism for dynamic strain aging as a result

of solute interactions with twin boundaries. Specifically, the solute strengthening, result-

ing from the twin growth impediment by solute segregation, can cause DSA and nSRS.

Previous theories attributed the DSA only to the solute/dislocation interactions while the
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connection between solute segregation to twin boundaries and DSA has never been con-

sidered. This mechanism provides a physical justification of experimentally observed PLC

bands when high amount of twin activity is observed [6, 24, 25, 153, 179, 180, 181, 182].

We show that the atomic-scale mechanism for DSA from solute/twin interaction depends

only on a few fundamental material properties which can be calculated via first principles

calculations. Without any fitting parameters, the present model makes accurate predictions

of the physical conditions necessary for DSA, compared to relevant experiments. In ad-

dition, it is important to set the context for applicability of this model as it does not deal

with the impurity drag effect on the grain boundary motion as discussed in Cahn and Luck

and Stuwe et al. model [183, 184]. Solute drag on grain boundaries or dislocations occurs

when the exerted force by impurity atmosphere around the boundary/dislocation changes

the boundary/dislocation’s mobility at constant stress. This phenomenon is important dur-

ing recrystallization and creep [185, 186]. However, in the present case, we study the

strengthening effect of solutes by calculating the additional stress required to keep the same

boundary mobility -or twin growth rate- as the solutes segregate to the boundary. While at

extreme conditions– very low or very high strain rates or temperature– twins remain either

“loaded” with the solutes or “breakaway” from the solutes, under certain mechanical con-

ditions within a continuous transition region between the extreme cases, solutes can catch

up, lock and diffuse to the boundary. We postulate that this is the underlying mechanism

responsible for serrated flow observed with twinning as the dominant deformation mode.

Our model provides a framework for Ti and other hcp alloys where twin activity is observed

and solute segregation to the twins are favored. Theory presented in this work and the cor-

responding findings lead to a more comprehensive understanding of DSA, particularly in

hcp systems.
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Chapter 7: Solute/Twin boundary interaction as a new atomic-scale

mechanism for Dynamic Strain Aging: Vacancy-mediated diffusion

This chapter focuses on extending the dynamic strain aging model developed for in-

terstitial solutes to the substitutional solute interactions with the twin boundaries. Using a

numerical solution approach, we solve the master equation of vacancy-mediated solute dif-

fusion to predict the equilibrium concentration of segregated solutes and strengthening due

to solute/twin interactions. This model predicts the strain-rate and temperature dependence

of negative strain-rate sensitivity and that dynamic strain aging in Mg under the conditions

where twinning is an active deformation mode. Our findings present a new mechanism of

dynamic strain aging as a result of substitutional solute segregation to the twin boundaries.

7.1 Introduction

In the previous chapter, we introduced the interstitial solutes effect on the twin nucle-

ation and growth mechanisms in hexagonal close packed (hcp) materials. Without using

any fitting parameters, we developed an analytical model to predict the equilibrium con-

centration of segregated solutes and strengthening due to interstitial solute/twin interactions

from atomic scale calculated parameters. Here, we extend our model to studying the ef-

fect of substitutional solutes on the twin growth. In the vacancy-assisted solute diffusion,

the solute atom moves into a vacancy located next to it. If vacancies are not available, a
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vacancy needs to be created next to the solute. Therefore, the activation energy for this dif-

fusion mechanism is the sum of the vacancy formation energy and the migration barrier for

solute/vacancy jump. This diffusion mechanism is also a thermally activated process. Ad-

ditionally, accurate capturing of the correlated random walk in vacancy-mediated diffusion

has been recognized as a complex task in the literature [105].

The goal here is to study the occurrence of dynamic strain aging (DSA) as a result of

substitutional solutes segregation to the twin boundary in hcp alloys. We use first-principles

density functional theory (DFT) calculations to study the interaction of technologically

important Al and Gd solutes with (101̄2) twin boundary (TB) in Mg. Section 7.2 contains

the computational details. In Section 7.3, DSA theory of twin boundary strengthening is

extended for substitutional solutes and compared with the solute/dislocation strengthening.

Section 7.4 focuses on explaining the formulations and theory of thermodynamics and

kinetics of solute/twin boundary interaction energy, solute/dislocation interaction energy,

solute/vacancy binding and activation energy barriers. Finally, we use these formulations

and evaluated values in Section 7.4.3 to calculate the additional strengthening due to the

solute/twin boundary interaction for Al and Gd solutes in Mg and compare these results

with the solute/dislocation interaction models. The proposed model is also applicable to

other hcp materials, such as Ti alloys.

7.2 Computational Methods

First-principles calculations are performed with VASP [95] using projector augmented

wave (PAW) method within the generalized gradient approximation (GGA) [120]. We use

Methfessel-Paxton smearing of 0.15 eV and a plane wave cut-off of 350 eV. A double twin

boundary geometry, with 10 atomic layers between the twin boundaries and 240 Mg atoms,
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is considered to maintain the periodicity along all three directions. To maintain the dilute

limit of solutes, thickness of at least 3a; a = 3.19 Å along Y : [12̄10] is required as im-

plemented in these calculations. The twin boundary supercell used in DFT calculations is

presented in Figure 7.1 which has a dimension of 15.16× 9.57× 37.80 Å along X : [1̄011],

Y : [12̄10] and Z : (101̄2) directions. These settings combined with the choice of 3 × 4 × 1

k-mesh guarantees ∼ 0.1 eV/atom error in the accuracy of site energies. For each substi-

tutional site, site energy is defined as the difference between the energy of the supercell

with two solutes positioned at the symmetrically equivalent sites near the boundary and

that of the reference; the cell with two solutes located at the “bulk-like” sites at the furthest

distance from both twin boundaries. Solute/vacancy pairs binding energies are calculated

within the first nearest neighbor shell of the vacancies. All atomic positions within the re-

laxed box dimensions of the reference cell are allowed to relax until the forces are smaller

than 10 meVÅ−1. Spin-polarization is enabled to consider magnetism calculations in the

Gd contained simulations.

Solute/vacancy transition barrier energies are calculated using climbing-image nudged

elastic band (CI-NEB) method [96, 97] with constant cell size and one intermediate image.

Three and five intermediate images are considered for some of the paths in Gd contain-

ing alloys for faster convergence. The force criterion for NEB calculations is set to be

20 meVÅ−1. Attempt frequency for the solute transitions ν, is derived using the Vineyard’s

equation [98] within the transition state theory as, ν =

3N∏
i=1
νi

3N−1∏
i=1

ν′i

, where νi and ν′j are sta-

ble normal mode frequencies at the local energy minimum and saddle point states for the

considered N number of atoms, respectively. Finite difference small displacement method

calculation up to the third nearest neighbor of solute/vacancy pairs is used to compute the

Hessian matrix from which the normal mode frequencies are derived [99, 100].
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To compare the change in solute/vacancy transition energy barrier near to the disloca-

tion core with that of bulk, energy minimization at 0 K is employed. Empirical potential

based calculations are performed using LAMMPS package [52] and an embedded atom

method (EAM) potential for Mg/Al [15]. Since there is no available interatomic potential

for Mg/Gd, we only consider Mg/Al alloy dislocation core calculation. A cylinder with

the dimensions of X = 800 Å,Y = 800 Å,Z = ξ = 16.5 Å and the dislocation line direc-

tion aligned along Z and Burgers vector b along X is incorporated. 〈a〉-type basal edge

dislocation in Mg is introduced by displacing all the atoms according to the anisotropic

displacement field of the dislocation [55, 56]. Fixed boundary conditions along X and Y

and periodic along line direction Z is used, respectively. According to the potential cut-off,

atoms within the outer 50 Å thickness of the cylinder are fixed. The possible sites for sub-

stitutional Al near one of the cores and the relaxed core structure of dissociated partials are

depicted in Figure 7.2 and Figure 7.3, respectively.

Cross-core transition barrier energies are calculated using NEB method with multiple

replicas of a system within LAMMPS. Parallel NEB calculation based on the interpolated

ideal positions with Kspring of 1 eV/Å and the force criterion of 10 meV/Å is employed

to find the saddle point for each solute/vacancy jump within the dislocation core. These

values are also compared with the transition barrier energies of solutes within the bulk.

7.3 Theoretical model of DSA

7.3.1 Solute/twin boundary interaction model

Here, we derive an analytical expression for the additive stress exerted on a twin bound-

ary due to the segregation of substitutional solutes via vacancy-mediated “in-twin” diffu-

sion. This additional strength is dependent on the degree of segregation as well as the
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kinetics of vacancy-mediated diffusion of solutes to the boundary. In the previous chapter,

we derived a closed form solution for the time dependent concentration change due to the

interstitial solute segregation to the boundary. Due to the close values of the site energies

for the interstitial positions within each layer and the small variations in the solute atomic

jump energy barriers, the general master equation system was reduced to a simple ordi-

nary differential equation which has a closed form solution. This simplified assumption,

however, is no longer valid in a general case where both repulsive and attractive sites exist

within each layer. As it will be illustrated later, due to the vacancy formation energy contri-

bution in the energy barrier of solute transitions toward/from the boundary in substitutional

solute segregation cases, the variation between the solute atomic jump energy barriers can-

not be ignored. To incorporate the explicit contribution of each transition individually in

the master equation solution, we follow a numerical approach as explained below.

Having n distinct possible sites for the solutes, transition jump from site i to j is defined

as Γi→ j = ν0e−β[∆Hi→ j+∆W i→ j] where ν0, ∆Hi→ j, and ∆W i→ j are attempt frequency, transition

energy barrier and site energy difference (driving force), respectively. β is 1
kBT where kB and

T are Boltzmann constant and temperature, respectively. Solute concentration at each site

as a function of time ci(t) should satisfy the general master equation as follows:

ċi(t) =

n∑
j=1, j,i

Γ j→ic j(t) − ci(t)
n∑

j=1, j,i

Γi→ j (7.1)

where the dot symbol represents time derivative. Each of the contributing sites in the

vacancy-mediated solute segregation is treated individually which leads to a system of n

first order differential equation. The forward and backward driving forces, transition energy

barriers and attempt frequencies are each explicitly distinguished in the above formulation.
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Starting from initial solute concentration of c0 at each site, we assess the governing sys-

tem of differential equations numerically as there is no analytical closed form solution for

such a system. Referring to the derivations in Section 6.3, the time dependent additional

strengthening due to the solute segregation is:

∆τs(t) =
1

2btwΣ
∆c(t) ∆W (7.2)

where ∆c(t) and ∆W are the numerically evaluated concentration change in the attractive

site on the twin after time t and the driving force (binding energy) for the segregation to

this attractive site, respectively. Factor of one-half is due to the fact that half of the sites

at the boundary are attractive for the solutes, as it will be shown in Section 7.4.3. btw and

Σ are the Burgers vector for twinning dislocation and the twin boundary area per atom,

respectively.

Similar to the interstitial solute segregation to the twin boundary, the degree of segre-

gation is a function of waiting time tw, between individual nucleation and growth events.

The competition between solute diffusion and the growth rate of twin, which is strain-rate

dependent, governs the dynamic nature of this process. The trap event can occur when the

solutes diffuse fast enough to catch the moving twin boundary preventing it from further

growth. Further increase in the strain-rate can breakaway the boundary from solutes. This

process can repeatedly occur leading to the dynamic strain aging. Similar to the interstitial

diffusion explained in Section 6.3.2, tw can be derived as follows:

tw =
Dγtw

2

h2ε̇2
(7.3)
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where D, ε̇, and γtw = btw/h, are the diffusion coefficient, strain-rate and the plastic shear

strain associated with a single twin dislocation with btw and h as the twinning dislocation

Burgers vector and step height of twinning dislocation, respectively. Finally, evaluating

Equation 7.2 at t = tw gives the change in strengthening as a function of strain-rate and

temperature.

7.3.2 Solute/dislocation interaction model

To compare the additional strengthening due to solute/twin boundary interaction with

solute/dislocation, we employ the cross-core DSA model developed by Curtin et al. [140].

The proposed formulations have been incorporated for face centered cubic based metals.

After adjusting this method for hcp based metals and modifying the geometrical param-

eters, the additional strengthening as a result of solute/dislocation interaction in hcp is

derived, which has a similar form to that of fcc and follows this equation:

∆τs(t) = α(2c0∆W/
√

3b3) tanh (
β∆W

2
)
[
1 − e−6 cosh ( β∆W

2 )Γct
]

(7.4)

where α =
〈∆W(x−w/2)−∆W(x+w/2)〉x

∆W
within the dislocation core width of w. b, ∆W and 〈〉x

denote the dislocation Burgers vector, average binding energy for cross-core diffusion in

the dislocation core width and the average over the range of dislocation positions where

the initial strength dE0(x)/dx is maximized. Here, we consider the upper-bound of additive

strengthening term using α = 1. Γc is the reference transition rate and defined as Γc =

ν0e−β∆Hc with ν0 and ∆Hc defined as the average attempt frequency and transition energy

barrier for cross-core solute diffusion. The waiting time of solute/dislocation trap events is

defined as tw = Ω/ε̇ following the notations in [140], where Ω correlates with the mobile
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ρm and forest ρ f dislocation densities by Ω = ρmb/√ρ f . The term Ω is both strain and

temperature dependent and can be measured experimentally.

7.4 Effect of Al and Gd solutes on DSA in Mg

In this section, we investigate the thermodynamics and kinetics of solute segregation

to the (101̄2) twin boundary and 〈a〉-type basal dislocation in Mg. Al, Mn, Zn, and some

of the rare earth elements such as Gd have been found to increase the ductility of Mg, and

therefore are widely used as alloying elements in Mg. The commonly used AZ31 Mg al-

loy shows a strong strain-rate dependence on the room temperature ductility [187]. It has

been also shown that addition of Al and Gd elements to Mg changes the strain-rate sensi-

tivity (SRS) in this metal [23, 24, 25, 153, 154, 188, 189, 190]. Previously, Stanford et al.

performed tensile tests on Mg-0.90at% Al and Mg-0.24at% Gd at strain-rates between

10−4 − 10−1 1/s and up to the deformation temperature of 300 ◦C. While no occurrence of

DSA had been observed in Mg-Al, Mg-Gd exhibited negative strain-rate sensitivity (nSRS)

at 200 ◦C and 250 ◦C. The authors attributed this different behavior between Al and Gd con-

taining Mg alloys to the solute/dislocation interactions. However, this mechanism could not

explain the reason why DSA has occurred in Gd-containing, but not Al-containing alloy as

there is a considerable attractive binding between solutes and dislocation in both of these

alloys. Microstructure analyses in this work showed that Gd-containing alloy exhibited

extensive deformation twinning at 200 − 250 ◦C where DSA was also observed while no

mechanical twin had been identified in Al-containing alloy. This observation suggests that

the interaction of solutes with the twin boundary can offer an alternative mechanism for
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DSA. Other experimental works also evidenced nSRS in Mg alloys with various concen-

trations of Al at room temperature within the strain-rate range of 10−5−10−1 1/s where twin

activity was also observed [153, 154, 188, 189].

Here, we propose the solute/twin boundary segregation, analogous to the “cross-core”

solute diffusion around the dislocation core, as a responsible mechanism for DSA in sub-

stitutional alloys [140, 191] . We compare the effects of dislocation and twin boundary

interaction with solutes at different concentrations. DFT is employed to compute site ener-

gies, vacancy/solute bindings and energy barriers at different sites near/at the TB. Since it

is computationally challenging to directly calculate solute/dislocation interaction energies

with DFT, we use the analytical model developed by Yasi et al. in [192] to evaluate inter-

action energies and validate the values using empirical potential calculations. Finally, we

use the equations developed in the previous section with the DFT driven inputs to predict

the additive strengthening due to the solute segregation to the TB and compare the results

quantitatively with the strengthening due to the “cross-core” DSA mechanism.

7.4.1 Solute/vacancy binding near the twin boundary

Figure 7.1 shows the twin boundary geometry within a double twin boundary supercell,

possible substitutional sites near the boundary and the paths for vacancy/solute transitions.

The thermodynamic driving force for a solute jump from site i to j is governed by the dif-

ference between the site energies , ∆W i→ j = E j−Ei . Since the simulation cell contains two

twin boundaries in order to maintain the periodicity, site energy is defined as the difference

between energy of supercell with two solutes located at the particular site and the supercell

with two solutes positioned at the bulk-like sites with a maximum distance from both twin

boundaries divided by two.

122



Al1

P1
P3

P4

P5

P6

P7

Attractive DF
Repulsive DF

Al2

Al1’

Al3

Al4

(a)

ZY

X

(0001)

<latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit><latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit><latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit><latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit>

P2

Gd1

Gd2

Gd1’

Gd3

Gd4
P2

P3

P4

P5

P6

P7

(0001)

<latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit><latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit><latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit><latexit sha1_base64="Ird3ZwCTQFtiEvlTvzO0li0owao=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXkpWBD0WvXisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukVhVj7J/3yxVcw3OgVeLnpAI5Gv3yV2+gaBozaakgxnR9nNggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgR/+eVV0rqo+bjm319W6jd5HEU4gVOogg9XUIc7aEATKDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AYrwjcg=</latexit>

P1

(b)

Figure 7.1: (101̄2) twin boundary geometry in Mg, possible substitutional sites and the paths between so-
lute/vacancy jumps for (a) Al and (b) Gd. Green arrows show the jumps in the direction of attractive so-
lute/twin boundary binding driving force and red arrows show the repulsive binding energy. Solutes tend to
move in the direction of attractive thermodynamic binding. Attractive sites for the solutes are underlined in
the figure.

Substitutional solutes transport through the vacancy-mediated diffusion. To calculate

activation energy barrier for diffusion, we need to evaluate vacancy formation energies for

each site around the twin boundary, binding energy between solute and vacancy and the

migration energy barrier for each jump. In order the assess the first two, we followed

the vacancy formation energy and binding energy formulations for bulk as explained in

[193] and developed the corresponding expressions to evaluate vacancy formation and so-

lute/vacancy binding energies around the twin boundary. The migration energy barrier is

calculated using NEB. Two sets of symmetrically equivalent solute/vacancy pairs at each
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boundary are considered to calculate the energies due to having two twin boundaries within

a supercell. Vacancy formation energy for a site at/near the TB can be computed as follows:

Ev f =
1
2

[
E(MgN−2V2) − (N − 2)E bulk

atom
− 2ETBATB

]
(7.5)

where E(MgN−2V2), E bulk
atom

, ETB and ATB are the energies corresponding to the supercell with

two vacancies located at the symmetrically equivalent sites within each boundary, atomic

energy of bulk Mg, twin boundary energy per area and the area of the twin boundary plane,

respectively. N denotes the number of atoms in the cell. Knowing that the twin boundary

energy is ETB =
E(double twin cell)−N E bulk

atom
2ATB

, vacancy formation energy can be simplified to the

following form:

Ev f =
1
2

[
E(MgN−2V2) + 2E bulk

atom
− E(double twin cell)

]
(7.6)

The binding energy between the solute and vacancy Esol/vac
bind , can be calculated using the

following expression:

Esol/vac
bind =

1
2

[
E(MgN−4V2X2) + E(double twin cell) − E(MgN−2X2) − E(MgN−2V2)

]
(7.7)

where E(MgN−4V2X2), E(double twin cell), E(MgN−2X2) and E(MgN−2V2) are the energy

of supercell with two symmetrically equivalent vacancies and solutes near/at each bound-

ary, energy of pure double twin boundary cell without any vacancy and solute, energy of

supercell with two solutes and energy of supercell with two vacancies, respectively. Using

the information above, the activation energy for diffusion would be:

Q = Ev f + Esol/vac
bind + Emig =

1
2

[
E(MgN−4V2X2) + 2E bulk

atom
− E(MgN−2X2)

]
+ Emig (7.8)
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where Emig is the migration barrier for the solute/vacancy jump evaluated using NEB cal-

culations.

7.4.2 Solute/vacancy binding near the dislocation

Solute/vacancy binding and activation energy barrier around the dislocations follows

the similar formalism as explained for twin case. All dislocation calculations are per-

formed with the classical potentials. Since the simulation cells contain only one disloca-

tion as compared to the double boundary simulation cells, equations in Section 7.4.1 are

modified for one solute (cf. Section 7.2). For the case of solute/dislocation interactions,

vacancy formation energy, solute/vacancy binding energy and activation barrier follows

below expressions:

Ev f = E(MgN−1V1) −
(N − 1)

N
Eundisl

MgN
− Edislocation (7.9)

Edislocation = Edisl
MgN
− Eundisl

MgN
(7.10)

E sol/vac
bind = E(MgN−2V1X1) + Edisl

MgN
− E(MgN−1X1) − E(MgN−1V1) (7.11)

Q = Ev f + E sol/vac
bind + Emig = E(MgN−1V1) +

1
N

Eundisl
MgN
− Edislocation

+ E(MgN−2V1X1) − E(MgN−1X1) + Emig

(7.12)

where Eundisl
MgN

, Edisl
MgN

, Edislocation, E(MgN−2V1X1), E(MgN−1V1), E(MgN−1X1) and Emig are the

energy of the pure supercell with N number of Mg atoms, energy of the pure supercell

with an edge dislocation, excess energy of the cell due to the dislocation core, energy of a

supercell with one solute and one vacancy in the core, with one vacancy in the core, with
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one solute in the core, and solute/vacancy migration barrier, respectively. Edislocation can be

computed by directly subtracting the energy per atom of N atom Mg supercell with edge

dislocation from the un-dislocated cell. Note that the binding energy (driving force) here is

calculated by subtracting the energy of a supercell with a solute at each of the sites near the

dislocation core (shown in Figure 7.4) from a cell with solute far from the core (bulk-like)

region. The bulk values are derived by considering the sites and the corresponding jumps

far from the dislocation core, for the sake of comparison.

7.4.3 Model predictions

Using DFT calculations and employing the formulations derived in previous section,

we calculate the thermodynamic driving force due to the solute/twin boundary binding

and the kinetic activation energy barrier for vacancy-mediated diffusion of Gd/Al solutes

jumps near the TB. Table 7.1 and Table 7.2 list all these values along with the attempt

frequencies corresponding to each jump for Al and Gd solutes in Mg, respectively. The

binding energies and activation energy barriers for diffusion within the basal and along the

pyramidal directions are also included for comparison. These energy calculations show

that there is a large driving force for solute segregation to the twin boundary for both Al

and Gd solutes. NEB calculations also indicate that jumps toward the twin boundary have

lower energy barriers compared to the jumps in the bulk suggesting the kinetic feasibility

of solutes segregation to the TB. DFT calculations show that Al solutes are attracted to

site 1 while repelled from site 2. Gd solutes, however, are attracted to site 2, with a larger

binding energy compared to the Al case, and repelled from site 1. We also find that for

the P4 solute/vacancy pair jump, Gd solutes are not stable at site 1 and therefore this jump

always occurs in the opposite direction. Similarly for P6 solute/vacancy settings, while Gd

126



solutes are stable at site 1, no energy barrier exists for the solutes to jump to the site 2.

Thus, this transition always occurs in the direction of P6 with no energy barrier leading to

the site 2 segregation.

It is important to note that the key parameter in the strengthening effect due to twin

segregation mechanism is the binding energy term ∆W while the activation barrier controls

the strain-rate dependency. To avoid simplifying assumptions, contributions from both

forward and backward jumps are considered explicitly in the DSA formalism as explained

in Section 7.3.1. To evaluate the waiting time term, we use bulk diffusion of Gd and Al in

Mg as reported in [126]. Tensorial average of anisotropic diffusion along the basal Dbasal

and prism Dprism planes has been calculated and used in Equation 7.3. All the necessary

inputs for the twinning strengthening calculations are listed in Table 7.3.

DSA has been observed in Mg-RE alloys with very low solute concentrations, how-

ever previous dislocation based DSA models were not able to predict the experimentally

measured stress drops for such low concentrations (10− 30 MPa depending on the alloying

element) [23, 24, 25, 188, 194]. Here, we compare the strengthening contribution and DSA

from solute/twin boundary segregation with the solute/dislocation segregation. The term Ω

which correlates the waiting time to the strain-rate is both strain and temperature dependent

and can be measured experimentally. We use the Ω value measured from the work by Dini

et al. where the dislocation densities at 190 ◦C for a AZ91D cast alloy are reported [195].

It is computationally challenging to calculate the solute/dislocation binding energies

and activation energy barriers for cross-core diffusion, which are necessary inputs for DSA

model, using DFT. As such, we evaluate interaction energies using the interaction model

introduced by Yasi et al. [192]. Based on this theory, the solute/dislocation interaction en-

ergy has contributions from the interaction of solute misfit strain with the dislocation stress
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Table 7.1: Al solute/twin boundary binding (driving force), vacancy formation energy added to the so-
lute/vacancy binding, migration energy barriers, activation enthalpies and the attempt frequencies for the
jumps into/within the twin boundary in Mg evaluated from DFT, respectively. Energy values are reported in
eV and the attempt frequencies are in THz. Forward-fw (backward-bw) values correspond to the jumps in
the direction (opposite direction) of the arrowheads in Figure 7.1. Basal and pyramidal jumps within the bulk
values are also included for comparison. Negative values show the attractive binding.

Path Binding energy (eV)
Evf + Ebind (eV)

(fw)
(bw)

Emig (eV)
(fw)
(bw)

Q (eV)
(fw)
(bw)

ν(×1012THz)
(fw)
(bw)

P1 0.010
0.637
0.637

0.998
1.012

1.635
1.649

21.584
18.524

P2 0.123
0.870
0.652

0.412
0.432

1.282
1.084

6.998
4.318

P3 0.133
0.847
0.691

0.405
0.429

1.251
1.120

4.817
1.346

P4 -0.117
0.586
0.737

0.467
0.432

1.054
1.169

7.462
4.619

P5 -0.127
0.560
0.765

0.484
0.398

1.044
1.163

5.933
7.143

P6 -0.250
0.532
0.876

0.666
0.562

1.198
1.438

1.993
1.908

P7 -0.250
0.574
0.875

1.955
1.898

2.529
2.774

41.404
186.535

Pbasal 0
0.786
0.771

0.500
0.514

1.286
1.286

7.158
6.463

Ppyr 0
0.782
0.781

0.650
0.651

1.431
1.432

17.636
21.375
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Table 7.2: Gd solute/twin boundary binding (driving force), vacancy formation energy added to the so-
lute/vacancy binding, migration energy barriers, activation enthalpies and the attempt frequencies for the
jumps into/within the twin boundary in Mg evaluated from DFT, respectively. Energy values are reported in
eV and the attempt frequencies are in THz. Forward-fw (backward-bw) values correspond to the jumps in
the direction (opposite direction) of the arrowheads in Figure 7.1. Basal and pyramidal jumps within the bulk
values are also included for comparison. Negative values show the attractive binding.

Path Binding energy (eV)
Evf + Ebind (eV)

(fw)
(bw)

Emig (eV)
(fw)
(bw)

Q (eV)
(fw)
(bw)

ν(×1012THz)
(fw)
(bw)

P1 -0.017
0.842
0.812

0.821
0.860

1.662
1.672

3.303
9.090

P2 -0.274
0.772
0.884

0.109
0.541

0.881
1.425

4.148
6.176

P3 -0.291
0.924
0.816

0.277
0.669

1.201
1.484

2.873
2.398

P4 0.252
0.487
0.235

∞

0
∞

0.235
N/A
N/A

P5 0.269
0.611
0.409

0.171
0.103

0.782
0.513

0.829
0.978

P6 -0.543
0.872
0.659

0
0.743

0.872
1.401

1.680
9.681

P7 -0.543
0.851
0.564

1.949
2.775

2.800
3.340

N/A
N/A

Pbasal 0
1.091
1.092

0.247
0.223

1.091
1.092

5.294
6.690

Ppyr 0
1.137
1.139

0.297
0.297

1.137
1.139

3.059
1.135
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Table 7.3: Numerical values used for evaluating DSA from twin segregation model formulated in Equa-
tion 7.2 for Al and Gd solutes in Mg.

Quantity Description Al Gd Unit
a Lattice constant (pure Mg) 3.19 3.19 Å
c ~c (pure Mg) 5.19 5.19 Å

btw Burgers vector (pure Mg) 0.480 0.480 Å
h Step height (pure Mg) 3.78 3.78 Å
c0 Initial concentration 0.90 0.24 at%
Σ Twin boundary area per atom 12.1 × 10−20 12.1 × 10−20 m2

atom
Dbulk

basal Diffusivity (basal) 0.50 exp (−1.47/kBT ) 0.44 exp (−1.31/kBT ) cm2/s
Dbulk

prism Diffusivity (prism) 0.60 exp (−1.50/kBT ) 0.42 exp (−1.33/kBT ) cm2/s

Table 7.4: Numerical values used for evaluating DSA from solute/dislocation interaction model formulated
in Equation 7.4 for Al and Gd solutes in Mg.

Quantity Description Al Gd Unit
b Burgers vector (basal edge) 3.19 3.19 Å
c0 Initial concentration 0.90 0.24 at%

∆W Average binding energy 0.163 0.287 eV
Ω[195]1 Strain/Temp dependent quantity 0.0022 N/A −
∆V
V [14] Volumetric strain misfit −0.355 0.622 −

EI2[14] Solute/ I2 SFE −0.034 −0.095 eV
1 at 190◦ C

field as well as the solute/I2 basal edge dislocation stacking fault energy (SFE). These terms

are evaluated and reported in [14] for a range of solutes in Mg. Following the notations and

values in [14], Gd/Al solute interaction energies with basal edge dislocation in Mg are

calculated as shown in Figure 7.2. The maximum binding energy within the cores is the

maximum difference between the interaction energy in the compression side and the ten-

sion side of the dislocation stress field. These values are also plotted in Figure 7.2 and

listed in Table 7.4.
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Figure 7.2: Solute/dislocation interaction energies and the difference between the interaction energies at the
compression and the tension sides of basal edge dislocation core for (a,c) Al and (b,d) Gd in Mg calculated
using the analytical model explained in [14]. Al (smaller than Mg) and Gd (larger than Mg) solutes tend to
reside in the compression and tension sides of dislocation core, respectively.

Similar to the binding energy calculations, transition barrier energies for the cross-core

diffusion around the dislocation core are challenging to be assessed using DFT. Here, we

simply use the DFT evaluated transition energy barriers and attempt frequencies in bulk as

presented in Table 7.1 and Table 7.2 for Al and Gd solutes, respectively.

To compare how the energy barrier of solute/vacancy jumps near the core is compared

to the bulk, we use 0 K energy minimization combined with NEB to model the basal edge

dislocation in Mg and to calculate the cross-core energy barriers within the core. We only
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present the results for Mg/Al case as there is no empirical potential currently available in

the literature for Mg/Gd. Figure 7.3 shows the Nye tensor analysis on the basal edge dislo-

cation core of Mg using the Liu EAM potential [15]. The possible sites for solutes within

the core and paths for solute/vacancy jumps are illustrated in Figure 7.4. Solute/dislocation

binding energies, vacancy formation energies, solute/vacancy binding energies and mi-

gration energies for each path are also calculated following the expressions explained in

Section 7.4.2 and the results are reported in Table 7.5. As the results show, the barrier for

cross-core jumps is about ∼ 0.3 eV lower than solute/vacancy jump at bulk suggesting that

the cross-core diffusion is kinetically favorable around the core. Also, the larger driving

force for cross-core jumps compared to the jumps within the compression (and tension)

sides of the dislocation highlights the importance of cross-core jumps in solute trap and

eventually DSA.

Finally, the additional strengthening due to the solute/twin boundary and solute/dislocation

interactions are evaluated. According to the Table 7.1 and Table 7.2, segregation to the

attractive sites at the TB is controlled by “in-twin” jumps labeled as P6. We use the ener-

getics and attempt frequencies of this jump and other DFT evaluated inputs in Equation 7.2

to predict solute/twin boundary additional strengthening. Figure 7.5 shows the additional

strengthening as a function of strain-rate for solute segregation to the twin boundary and

dislocation at different temperatures for Mg-0.90at% Al and Mg-0.24at% Gd alloys. As

it is shown, stress drop values in the twinning segregation is comparatively larger than the

dislocation core segregation. This finding suggests that the previously reported discrepan-

cies between the experimentally measured stress drops and the dislocation DSA theories is

due to dismissing the contribution of twin segregation effect on DSA at low solute concen-

trations.
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Figure 7.3: Nye tensor analysis on the basal edge dislocation core of Mg using Liu [15] empirical poten-
tial at 0 K. (a) shows the edge component and (b) shows the screw component of the dissociated partials,
respectively.

The implications of DSA as a result of substitutional solute segregation to the twin

boundary are as follows. At very low strain-rates, solutes diffuse toward the TB and exert

pinning stress to the boundary. Hence, at the applied stresses lower than this value, solutes

remain segregated to the boundary. As the strain-rate increases up to a critical point at

a given temperature, twin growth rate exceeds the diffusion rate of solutes, thereby the

boundary “breakaways” from the solutes cloud and the strength drops to zero. Temperature

also effects this process; with increasing temperature, solutes diffuse at higher rates. The
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Figure 7.4: Cross-core diffusion of Al in Mg basal edge dislocation evaluated using empirical potential
molecular statics. Possible substitutional sites around the dislocation core and the paths between them are
illustrated. Paths (1) and (2) denote cross-core jumps and the (3) and (4) denote within the compression and
tension sides of core, respectively.

higher diffusivity values, comparable to the twin growth rate, leads to the solute/TB trap

events to occur at higher strain-rates.

It is important to note that some of the input parameters in the proposed model need

to be rectified before interpreting the results and comparing with experiments. The diffu-

sion coefficients used in the above predictions correspond to bulk diffusion, however the

considerable decease in migration barrier and stronger driving force near the boundary

suggests higher diffusivity in presence of boundary. Increase (decrease) in diffusion coef-

ficients shifts the strengthening plots to the right (left) along the strain-rate axis. Accurate

prediction of onset of DSA requires calculating the diffusivities in presence of the twin

boundary. Moreover, in the dislocation model [140], Ω term is one of the key parameters

in assessing the waiting time and this value has not been measured for Gd solutes in Mg.
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Table 7.5: Al solute/dislocation binding (driving force), vacancy formation energy added to solute/vacancy
binding, migration energy barrier and activation barrier enthalpy for the solute jumps evaluated with empirical
potential calculations. All energy values are reported in eV. Forward-fw (backward-bw) values correspond to
the jumps in the direction (opposite direction) of the arrowheads in Figure 7.4. Basal and pyramidal jumps
within the bulk values are also included for comparison. Negative values show the attractive binding.

Path Binding energy
Evf + Ebind

(fw)
(bw)

Emig

(fw)
(bw)

Q
(fw)
(bw)

P1 -0.140
2.199
2.386

0.15
0.11

2.349
2.496

P2 -0.143
2.184
2.380

0.19
0.14

2.374
2.520

P3 -0.001
2.064
2.075

0.55
0.54

2.614
2.615

P4 0.003
2.357
2.379

0.19
0.16

2.547
2.539

Pbasal 0
2.386
2.380

0.22
0.23

2.606
2.610

Ppyr 0
2.380
2.376

0.28
0.28

2.660
2.656

This parameter should also be evaluated accurately to be able to interpret the DSA due to

the solute/dislocation interaction. Additional experimental analysis particularly on single

crystals, where the deformation mode is restricted to the twinning, is also envisioned to

directly compare the model predictions with experiments.

In summary, we present a new mechanism for the dynamic strain aging as a result of

substitutional solute interactions with the twin boundaries. Without the use of any fitting

parameters, the present model can be used to predict the equilibrium solute concentration

at the segregated sites and the physical conditions necessary for DSA due to the substi-

tutional solutes/twin boundary interactions. All of the key materials and inputs for the
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Figure 7.5: Additional strengthening due to the solute/twin boundary interaction (solid lines) compared to
the solute/dislocation interaction (dotted lines) for (a) Mg-0.90at% Al and (b) Mg-0.24at% Gd. Change in
the additional strengthening at the given strain-rate and temperature demonstrates the dynamic strain aging
mechanism.

proposed model can be evaluated from atomistic simulations and in particular from first-

principles calculations. This framework can be also used to predict nSRS and DSA as well

as strengthening in other hcp alloys.
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Chapter 8: Conclusion and Future Directions

8.1 Summary of Results

The overarching goal of this dissertation is to understand fundamental reasons under-

lying different twinning behavior of various hexagonal close packed (hcp) metals by com-

paring twin nucleation and growth mechanisms in these systems. Of particular interest is

the effect of alloying on twin nucleation and growth in Ti and Mg alloys.

A systematic framework is developed to study the interaction of dislocations with sym-

metrical tilt grain boundaries in Ti using MEAM calculations. 〈a〉-type dislocation inter-

action with (1̄011) and (1̄013) generated the corresponding twinning dislocations on each

boundary. 〈c〉 and 〈c + a〉 dislocations interaction with (1̄011) created 〈a〉-type slip on the

basal planes in the neighboring grain. In addition to these defects, (101̄2) twin embryo has

been nucleated from 〈c〉 and 〈c + a〉 dislocation interaction with (1̄013). Additional applied

shear stress causes further growth of the nucleated (101̄2) embryo. These findings reveal

new mechanisms of heterogenous twin nucleation and growth as a result of dislocation /

grain boundary interactions.

We extended the above framework to model the role of strain transfer in activation

of deformation twinning from general grain boundaries. Experimental observations have

shown that, despite the good alignment of grain pairs in favor of twinning, twin has not
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been nucleated as a result of slip in the adjacent grain. To further study the perquisite

conditions for slip-induced twin activation, we modeled a random grain boundary charac-

terized by our experimental collaborators. EBSD and TEM observations confirmed that

despite the high CRSS necessary for twin activation in the hard oriented grain, 〈a〉 slip on

prismatic plane in the soft grains led to the pyramidal slip rather than twinning. We incor-

porated MEAM calculations to study the interaction of 〈a〉-type prismatic loop interaction

with the characterized random grain boundary. Consistent with experimental observations,

our simulations also revealed the pyramidal-I slip activity in the neighboring grain. Upon

applying shear strain, additional defects are nucleated; a 3D BP facet and basal cross slip

within the hard grain. Nucleation of BP facets, which has been found to play an important

role in nucleation and growth of (101̄2) twins, under the applied stress primarily suggests

the possibility of twinning at sufficiently large local stress levels. This also suggests that the

distribution of local grain-level stress may be quite different from the macroscopic applied

stress, thus causing the grain to suppress twinning.

Next, we used DFT to study the effect of oxygen (O) alloying on (101̄2) twinning in

Ti. First, we identified and calculated all possible interstitial sites for O at and around twin

boundary. We then calculated the migration energies for solute jumps between different

sites. Finally, using an exact solution to the master equation for diffusion, we quantified

the diffusivity of O near the twin boundary. Our results predicted enhanced mobility of O

near the twin boundary, presenting the kinetic feasibility of oxygen segregation to the twin

boundary and further pinning effect leading to the suppression of twinning. The proposed

framework enables the prediction of large-scale diffusivity quantity near twin boundaries,

or any symmetrical grain boundary in general, from accurately evaluated first-principles

inputs at the atomic scale. Systematic uncertainty analyses have been also performed to
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quantify the variations in diffusivity predictions from first-principles calculations. The con-

tributing factors are identified and studied in detail to predict self diffusion in elemental and

impurity diffusion in binary fcc/hcp-Al/Mg alloys at stable and meta-stable phases.

Finally, we investigated the role of solute segregation to the twin boundary on dy-

namic strain aging (DSA). Enhanced diffusivity of oxygen and subsequent segregation to

the (101̄2) twin boundary in Ti poses an obstacle to further motion of the twin front; higher

stresses are required to move the twin boundary, causing reduced growth under constant

loading condition or “strengthening” of twinning mode. Similar to the “cross-core” dif-

fusion process , proposed by Curtin et al. [140] in solute/dislocation interactions, strong

binding energy and lower migration energy for solute segregation to the twin boundary rel-

ative to the bulk can cause DSA. DSA is a responsible microscopic mechanism for serrated

yield- stress drop- in tensile loading stress-strain curves. We developed an analytical model

to calculate the pinning stress that segregated O interstitials exert on twin growth. With-

out any fitting parameter and with the purely DFT-driven inputs, our model could predict

the additional strengthening as well as strain-rate and temperature conditions for DSA as a

result of solute segregation to the twin boundary. We also extended the model for substi-

tutional solute segregation diffusing via vacancy-mediated mechanism. Using this model

and DFT calculations, additional strengthening versus strain-rate at different temperatures

is predicted for Mg-Al and Mg-Gd alloys. Our findings present a new mechanism for dy-

namic strain aging as a result of interstitial and substitutional solutes segregation to the twin

boundaries.

In summary, the results presented in this work shed light on the importance of twin-

ning in plastic deformation of hcp alloys and studies how the addition of solutes affect the

nucleation and growth mechanisms. Specifically, alloying offers an effective, practical and
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affordable approach to tailor the mechanical properties. Proposed computational frame-

work can be used to predict the effect of different alloying elements in various symmetrical

grain (and twin) boundaries in hcp materials from the finest scale atomistic simulations.

8.2 Limitations and Future Directions

Though the approach illustrated in this dissertation can be applicable to study any given

symmetrical boundary or solute without losing the generality, there remain some concerns

and needed to be addressed. It is important to note that solute diffusivities reported in this

study are evaluated in “dilute” limit. Dilute assumption is necessary for the predictions

from two important sides: (1) the Green function method developed for calculating the

diffusivities from first-principles inputs evaluates the Onsager transport coefficients in a

dilute alloy where the interactions between several defects i.e. vacancies or solutes are

neglected, and (2) assessing the dilute limit in DFT calculations requires comparatively

larger cell sizes were solute atoms would not interact with their periodic images.

The models developed in Chapter 6 and Chapter 7 provide physical justification about

the conditions necessary for occurrence of DSA resulting from the solute/twin boundary in-

teractions. However, DSA phenomenologically can occur due to other segregation events

including dislocation impediment by solutes or even solute binding to the stacking faults.

To be able to rigorously predict the DSA in polycrystalline materials where various defor-

mation modes and defects are present simultaneously, a physical model requires to take

the collective effects of various solute/defects segregations into the account. Therefore, the

application of proposed model would be limited to the cases where the only active defor-

mation mode is twinning. However, an advantage would be the ability to predict strain-rate
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dependent strengthening purely from DFT inputs and without the use of any fitting param-

eter. In addition, one simplified assumption in DSA prediction of substitutional solutes is

using the DFT evaluated diffusivities in bulk rather than near the boundary diffusivity to

assess waiting time, while it is expected that solute diffusivities to be different near the twin

boundary. This in fact affects the strain-rate regime that DSA is expected to occur at a given

temperature. Therefore, accurate prediction of vacancy-mediated diffusivity, similar to the

diffusion model developed in Chapter 4 for interstitial case, can rectify the prediction of

DSA onset in substitutional solute and twin boundary interaction model.

In dislocation/grain boundary interaction simulations, it is useful to consider the tem-

perature effects on the generated defects using MD simulations. Also, NEB calculations

can be performed to quantify the mobility of nucleated defects at the elevated temperatures.

Additionally, performing similar interaction studies in the alloys with presence of other so-

lutes would be interesting where solutes can interact and generate additional defects. While

there is lack of accurate empirical potentials for different solutes in Ti and direct DFT cal-

culations may not be practically feasible to study the dislocation / random grain boundaries,

alternative techniques can be employed. With recent progress in developing new machine

learning (ML) algorithms, one efficient direction would be incorporating ML-based in-

teratomic potentials extracted from DFT calculated material properties. High-throughput

DFT calculations can also be performed on symmetrical and near coincident lattice (CSL)

boundaries in presence of solutes to generate generic datasets. Using advanced ML algo-

rithms, models can be developed and trained on accurate DFT datasets and then be used to

perform dislocation / grain boundary simulations. Artificial neural network is a powerful

algorithm that generalizes well and is less prone to overfitting, however it requires large

datasets for training. Depending on the desired properties and due to the limited number
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of available elements, it might not be feasible to gather large enough dataset through DFT.

Therefore, implementing more advanced algorithms such as ensemble learning or recently

developed Bayesian probabilistic models can be a great asset in potential development and

materials discovery. The advantage of proposed method is to achieve close to DFT accu-

racy in prediction of desired properties but in the MD level length/time scale.
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