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Abstract 

 The use of data-driven methods and machine learning has become increasingly 

pervasive in many industries, including drug discovery and design, as computing power 

and large amounts of data become increasingly available. In an effort to efficiently leverage 

this data, cheminformatics has emerged as a data-driven, interdisciplinary field that focuses 

on storing, accessing, and applying chemical information.  Cheminformatics methods and 

tools facilitate the management and analysis of large annotated chemical datasets that 

would be difficult or impossible to do manually. A famous application of leveraging large 

amounts of chemical data was performed by Christopher A. Lipinski in 1997. Lipinski 

analyzed a large set of bioavailable synthetic drug molecules and identified trends in their 

molecular properties, which has since been referred to as the “Lipinski’s Rule of 5”. While 

these rules are far from absolute, Lipinski’s analysis demonstrates the utility of leveraging 

large amounts of chemical data to gain important insights. This thesis describes the 

application of cheminformatics methods to tackle two very different research problems: 1) 

the analysis and binding of a class of protein degraders called proteolysis targeting 

chimeras (PROTACs) and 2) the development of a target fishing application for the 

prediction of mechanism of action of natural products. 

 PROTACs are a novel class of small molecule therapeutics that are garnering 

significant interest. Unlike traditional small molecule therapeutics, PROTACs 
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simultaneously bind to both their protein target and an E3 ligase to induce degradation. The 

requirement to simultaneously bind two proteins necessitates a high molecular weight as 

PROTACs must contain two unique binding moieties that are connected by a linker. As a 

result, PROTAC molecules are expected to lie outside of the traditional drug-like chemical 

space described by Lipinski. To gain a better understanding of the physicochemical 

properties of PROTACs currently in development, the patent literature was searched and 

PROTAC compounds targeting either the Von Hippel-Lindau (VHL) or cereblon (CRNB) 

ligases were retrieved. This analysis identified that the physicochemical properties of 

PROTACs were indeed different from those of drug-like small molecules. However, the 

importance of each property for activity and permeability cannot yet be addressed without 

additional annotated biological endpoints. While the physicochemical properties of a 

PROTAC compound are expected to be important for its pharmacokinetics, the formation 

of a ternary complex is crucial for its pharmacodynamics. Using the currently available 

crystallographic data of ternary complexes with resolved PROTACs, a method for 

prediction of the ternary complex structure was developed and benchmarked. The results 

of this method were promising with ternary structures predicted correctly for up to 60% of 

the final predicted complexes. However, the identification of the correct complexes from 

among the incorrect complexes a priori was shown to be a difficult task.  

 Another class of small molecule therapeutics which do not adhere to traditional 

drug-like properties is natural products. Natural products have been a tremendous source 

of new drugs over the past three decades with unaltered natural products and natural 

product derivatives making up over one-third of FDA approved small molecule drugs. 
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These natural products have made up a substantial portion of first-in-class drugs identified 

through phenotypic screening methods. A limitation of phenotypic screening methods is a 

lack of understanding of the target and molecular mechanism of action, which is desirable 

for the progression of a chemical entity to the clinic. Cheminformatics methods can be 

applied to aid in the identification of the molecular mechanism of action of small molecules 

in a process termed computational target fishing. The current methods for computational 

target fishing have been trained and tested on datasets containing exclusively synthetic 

compounds.  Based on their inherent structural differences, the relative ability and accuracy 

of a model trained on synthetic data to predict targets for natural products remains 

unknown. To address this, a natural product benchmark set containing 5,589 compound-

target pairs for 1,943 unique compounds and 1,023 unique targets was collected by cross-

referencing 20 publicly available natural product databases with the bioactivity database 

ChEMBL. A dataset of synthetic compounds from ChEMBL containing 107,190 

compound-target pairs for 88,728 unique compounds and 1,907 unique targets was used to 

train k-nearest neighbors (KNN), random forest (RF), and multi-layer perceptron (MLP) 

models. Additionally, a model stacking approach was also investigated, which uses logistic 

regression as a meta-classifier to combine the individual model predictions. A model 

stacking approach using KNN and RF as the base classifiers showed the best performance 

on the natural product benchmark set with an area under the receiver operating 

characteristic (AUROC) score of 0.94 and a Boltzmann-enhanced discrimination of 

receiver operating characteristic (BEDROC) score of 0.73. A similarly performing and 

more computationally efficient model stacking approach using KNN as the base classifier 
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was deployed as a web application, called STarFish, and has been made available for use 

to aid in the target identification of natural products. 
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 Introduction 

1.1 Dissertation Organization 

This dissertation focuses on the development or application of cheminformatics 

methods for drug discovery and design. Two drug discovery and design projects are 

described herein. 

Chapter 1 gives background information for the methods used in each project. First, 

a brief overview of cheminformatics methods, including how chemical structures are 

represented computationally, is provided. Next, an introduction to machine learning, 

including model training techniques and machine learning algorithms, is given. Finally, 

structure-based drug-design methods are described with a focus on molecular docking.  

 Chapter 2 describes the analysis of proteolysis targeting chimeras (PROTACs) and 

the rational design of cyclin dependent kinase 9 (CDK9) degraders. The first half of the 

chapter details the analysis of physicochemical properties of PROTAC molecules extracted 

from the patent literature. The physicochemical properties calculated for the patent 

PROTACs are analyzed and compared to traditional drug-like properties. In the second 

half of the chapter, the rational design of CDK9 targeting PROTAC compounds is 

described. The physicochemical properties of the designed and synthesized CDK9 

PROTACs are calculated and compared with the collected patent PROTAC compounds. 

Furthermore, a method to predict the PROTAC mediated ternary complex is described, 

benchmarked, and applied to a potent developed CDK9 PROTAC. 
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 Chapter 3 describes the development of a stacked ensemble target fishing method, 

STarFish, and its performance on a collected set of natural product compounds. This 

chapter describes how the synthetic compound dataset and the natural product benchmark 

set were collected and used for model training and validation.  Additionally, the machine 

learning algorithms and model stacking approach used are described. Performance results 

for each machine learning algorithm and model stacking combination employed during 

cross-validation and on the natural product benchmark are presented and discussed. The 

impact of training dataset size, protein target diversity, and training compound similarity 

is also presented and discussed. Finally, an example application of using the deployed 

STarFish web application for the target identification of a natural product is shown. 

 

1.2 Cheminformatics 

Cheminformatics is an interdisciplinary field in computational molecular science 

which combines knowledge from many fields including Physics, Chemistry, Biology, 

Biochemistry, Mathematics, Statistics, and Computer Science.1  The scope of 

cheminformatics is not well defined due to the interdisciplinary nature of the field and often 

has much overlap with the field of bioinformatics, especially for drug discovery and design 

problems.2 An important aspect of cheminformatics is the collection, annotation, and 

storage of chemical information into databases. The use of such databases is fundamental 

to modern day chemical research. For synthetic chemists, the accessibility to a large 

amount of chemical information allows for the rapid retrieval of chemical reactions and 

experimental procedures that can be used to plan synthetic routes. For computational 



 

3 

  

chemists, the information contained in these databases can be retrieved and analyzed to 

develop predictive tools, such as the prediction of physical properties, chemical reactivity, 

and biological activity.3 Due to the broad nature of the field, not all of the methods, 

applications, or aspects of cheminformatics will be discussed here. Instead, concepts 

relevant to the work discussed here will be described, such as how chemical structures are 

represented in a machine-readable way. 

 

1.2.1 Representation of Chemical Compounds 

A 2D drawing of chemical structures (e.g. a typical structure generated in 

ChemDraw, MarvinSketch, or ChemSketch) is the common way chemical compounds are 

represented when discussing concepts with colleagues or preparing figures for scientific 

manuscripts, posters, and grant applications. Despite the frequent use of 2D images to 

represent chemical information in day-to-day discussions, they are not the preferred way 

to represent and store chemical information computationally. Instead a line notion 

representing a linear string of characters is generally preferred. The Simplified Molecular 

Input Line Entry System (SMILES) is one of the most common line notations for 

representing chemical compounds and can be used for: accessing databases as a key, 

sharing chemical information, entering chemical data, and artificial intelligence or expert 

system languages. SMILES are a popular way to represent chemical information as they 

are compact, human readable, and can be easily converted into a 2D image of a compound.4 

An example of a 2D chemical structure and it’s corresponding SMILES string is shown in 

Figure 1.1. 
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Figure 1.1 Compound Representation. An example using Aspirin of a few different ways 

chemical compound information can be represented. The 2D chemical structure, SMILES 

string, and chemical fingerprint bitstring are shown. 
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Another way to represent chemical information is with chemical fingerprints. 

Chemical fingerprints are an abstract representation commonly used to perform database 

screening and similarity calculations. A chemical fingerprint is a Boolean array where each 

bit in the array represents chemical patterns. A fingerprint is generated by examining a 

molecule and exhaustively identifying every pattern in the molecule up to a given 

pathlength limit. For example, with a pathlength limit of 3 a pattern would be identified 

for: every atom, every atom with its nearest neighbor and joining bond, every atom with 

all atoms and bonds up to 2 bonds away, and every atom with all atoms and bonds up to 3 

bonds away. With a larger value for the pathlength limit, patterns covering an increasingly 

larger number of bonds are identified. The identified patterns are ultimately used to assign 

bits in the Boolean array. Each pattern is used as a seed for a pseudo-random number 

generated, a hashing function, which sets bits on the array. Due to the large number of 

possible patterns, different patterns can set bits in common resulting in a collision. The bits 

in a fingerprint can be thought of as being shared by many unknown patterns.5  The 

frequency of collisions can be reduced by increasing the number of bits in the fingerprint, 

but as the number of bits in a fingerprint increases so does the computational cost of 

working with it. An example of a chemical fingerprint and the patterns corresponding to 

each bit are shown in Figure 1.2. It should be noted that while it appears there are no 

collisions for this fingerprint this is not the case as only the first pattern for each bit is 

shown. For example, there are a total of 5 patterns which set the 6th bit. 
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Figure 1.2 Fingerprint Bits and Corresponding Chemical Patterns. Continuing with 

the Aspirin example, the chemical fingerprint shown earlier is further explained. A 32-bit 

fingerprint calculated with a pathlength limit of 2 is shown. Each bit in the fingerprint 

corresponds to a chemical pattern. If the pattern is present, the corresponding bit is turned 

on and a 1 is shown. If a bit contains 0, it lacks the pattern. For each pattern shown, the 

central atom for the pattern is highlighted with a blue circle, aromatic atoms are highlighted 

with a yellow sphere, bonds connecting pattern atoms to non-pattern atoms are shown in 

light grey, bonds between atoms in the pattern are given a corresponding color based on 

the atoms they connect (carbon=black, oxygen=red, nitrogen=blue, etc.), and a black arrow 

shows which bit is turned on by the pattern. Only the first pattern for each bit is shown. 
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1.2.2 Chemical Similarity 

The calculation of chemical similarity is a useful way to assess relationships 

between compounds. Broadly, a similarity calculation involves the measurement of 

distance or similarity between sets of molecular descriptors. As there are many choices for 

descriptors and ways to measure distance between them, it is necessary to select the most 

appropriate ones for a given application. Molecular descriptors generally fit into the broad 

categories of physicochemical properties, 2D properties, and 3D properties. The previously 

described fingerprints are an example of a 2D property. Examples of distance and similarity 

metrics include: Manhattan distance, Euclidean distance, Tanimoto coefficient, and Dice 

coefficient.6 The Tanimoto coefficient is generally preferred for calculating the similarity 

of molecules which are described using fingerprints.7 The formula for calculating 

Tanimoto similarity of chemical fingerprints is shown in eq. 1.1, where the similarity 

between molecules A and B, SA,B, is calculated from the number of bits in molecule A, a, 

the number of bits in molecule B, b, and the number of bits in common between molecules 

A and B, c. An example performing this calculation is shown in Figure 1.3. 

 

 

𝑆𝐴,𝐵 =  
𝑐

𝑎 + 𝑏 − 𝑐
 

 

1.1 

 

  



 

8 

  

  

Figure 1.3 Calculation of Tanimoto Similarity Coefficient. An example of Tanimoto 

similarity calculated for Aspirin and Acetominophen is shown. Each molecule is 

described using a 32-bit fingerprint. It should be noted that the similarity coefficient 

calculated here is unexpectedly high due the low number of bits used, which resulted in 

a greater number collisions than would be present in fingerprints using a higher number 

of bits.  
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1.2.3 Physicochemical Properties 

Another useful way to describe molecules is with physicochemical properties. 

While chemical fingerprints are commonly used in screening, calculation and examination 

of physicochemical properties can be a useful way to establish trends for a set of related 

molecules. In medicinal chemistry, the most famous example of using physicochemical 

properties to establish trends is Lipinski’s Rule of 5. Lipinski’s rules were generated by 

examining the physicochemical properties of a subset of compounds in World Drug Index, 

which had proceeded to Phase II clinical trials. From this analysis, Lipinski concluded that 

poor permeation and poor absorption are more likely when: the molecule weight is greater 

than 500, the LogP is greater than 5, the number of hydrogen bond donors is greater than 

5, or the number of hydrogen acceptors is greater than 10.8 Many of the properties in 

Lipinski’s Rule of 5 can be calculated fairly easily due to their simplicity. For example, 

molecular weight is an easy descriptor to calculate as it is just the sum of the individual 

atomic weights. Calculations of hydrogen bond acceptors and donors are similarly trivial 

as it just requires the identification and count of particular atom types. While the technical 

details of how molecular weight, the number of hydrogen bond donors, and the number of 

hydrogen bond acceptors are calculated may differ between software packages due to how 

each prefers to represent molecules, each package would ultimately be expected to return 

the same values.  

On the other hand, values like LogP, which is a measured physical property, are not 

calculated theoretically as simply. LogP is a measure of lipophilicity and specifically is the 

logarithm of the partition coefficient between octanol and water. The partition coefficient 
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is the ratio between the concentrations of a neutral compound in organic and aqueous 

solutions at equilibrium. Therefore, a method to theoretically estimate this value is 

required. These methods fit into two broad categories: substructure-based and property-

based. Substructure-based methods cut a molecule down into fragments or atoms and sum 

the individual contributions of each. Property-based methods rely on calculation of other 

molecular descriptors, such as molecular volume and atomic charges, which are then 

combined. In general, each method will have to be benchmarked against known 

experimental LogP values, and in some cases, weight each contribution differently to 

improve the predicted values.9 Therefore, unlike the calculation of molecular weight, the 

number of hydrogen bond donors, and the number of hydrogen bond acceptors, different 

software packages will give different values for LogP depending on the method used to 

calculate it.  

A physicochemical property closely related to LogP is LogD. LogD is nearly 

identical to LogP except it also considers charge. This further complicates the calculation 

as it requires the estimation of the pKa for each ionizable species in a molecule. LogP and 

LogD values are equivalent when there are no ionizable groups in a molecule. However, if 

a molecule carries a formal charge, the LogD will be significantly lower than the LogP 

value as it’s aqueous solubility will significantly increase. Therefore, when considering the 

absorption of a drug, a LogD value will be more informative than the LogP value if the 

molecule is expected to be charged at a physiologically relevant pH.10 
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1.3 Machine Learning 

Machine learning is a subfield of artificial intelligence that has been growing rapidly 

in recent years due to advances in computing power and the increased availability of large 

amounts of data. Techniques using machine learning are concerned with building a model 

to make predictions.11 These machine learning techniques broadly fit into two categories: 

supervised or unsupervised learning. Supervised learning requires target output values in 

the training data and trained models can be used to predict output values for new input data 

points. Therefore, the datasets for supervised learning require sets of input features along 

with their corresponding output values. Unsupervised learning uses unlabeled data and 

learns underlying patterns from the input features. Unlike supervised learning, the datasets 

for unsupervised learning do not require defined output values.12 As with many fields, the 

use of machine learning techniques and software has been adopted by pharmaceutical 

sciences. Despite a slower uptake compared to fields like the consumer service industry, 

all stages of drug discovery and development have begun to use machine learning to 

improve discovery and decision making.13 The work described here uses a variety of 

supervised machine learning techniques to make predictions about the bioactivity of small 

molecules. An overview of how machine learning models are trained, an introduction to 

the type of learning technique used, and a description of the specific machine learning 

algorithms used are provided in the subsequent sections.  
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1.3.1 Cross-Validation 

Despite the utility and predictive power of machine learning models, there is 

significant concern that prospective use of a trained model will perform much worse than 

indicated during training. Overfitting is the term used to describe the case when a model 

performs well on the training data but predicts poorly on new data. The ability of machine 

learning algorithms to learn rules that underlie the data can be detrimental if the learned 

rules are specific to only that dataset and not generalizable. To combat overfitting, the total 

amount of data available is split into a training set and a test set. Machine learning models 

are then built using only the training data split. The trained models are then used to predict 

the output values of the test data split. A comparison of these predicted values to the known 

output values for the test set gives a more realistic estimate of model performance as this 

data had not been seen during training. However, splitting the original data into training 

and test sets has drawbacks. First, it reduces the number of examples the model can learn 

from. Second, the performance on the test set may be highly variable depending on how 

examples are split between the training and test sets.14 

A related approach called k-fold cross-validation addresses some of these 

drawbacks. In k-fold cross-validation, the total amount of available data is split into k sets 

of approximately equal size. One of these subsets is used as the test set while the remaining 

k-1 subsets are used for training. This collection of subsets is referred to as cross-validation 

fold. A total of k cross-validation folds are generated, each using a different subset of the 

data as the test set. A diagram demonstrating how a dataset is split for k-fold cross-

validation is shown in Figure 1.4.  Since the performance for each fold is averaged, the 
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variance in the performance metric is reduced for k-fold cross-validation compared to the 

previously described train-test split validation procedure.14 However, this variance 

reduction comes at an increased computational expense as a total of k models need to be 

trained, one for each cross-validation fold. 

  

Figure 1.4 k-Fold Cross-Validation Diagram. A diagram which demonstrates how a data 

set is split in k-fold cross-validation for k=5. The original dataset (red) is split into 5 

different subsets (squares). For each fold, a different subset is used as the test set (orange) 

while the remaining subsets are used as the training set (blue).   
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1.3.2 Classification 

Different supervised learning techniques are used depending on the type of problem 

to be solved. Problems concerned with the prediction of continuous numerical output 

values are termed regression problems, while those concerned with the prediction of 

nominal output values are termed classification problems.15 Housing prices are a traditional 

example of a regression problem. An example of a regression problem relating to 

cheminformatics is the prediction of an IC50 value for a small molecule against a protein 

target. The identification of emails as either “spam” or “not spam” is a traditional example 

of a classification problem. An example of a cheminformatics related classification 

problem is the identification of a small molecule as “toxic” or “non-toxic”. In Chapter 3, a 

machine learning model is trained to predict the protein target of a small molecule and is 

formulated as a classification problem with protein targets as the classes.  

Classification problems may contain multiple classes which may or may not be 

mutually exclusive. Problems which contain only a single class are termed binary 

classification problems. Those which contain more than one mutually exclusive class are 

termed multi-class classification problems. Lastly, classification problems which contain 

multiple, non-exclusive classes are termed multi-label classification problems.16 While all 

machine learning classification algorithms are applicable to binary classification problems, 

not all machine learning algorithms are applicable to multi-class and multi-label problems.   

 If the use of a binary classification algorithm for a non-applicable multi-class or 

multi-label problem is desired, a problem transformation strategy can be used to make it 

applicable. An example of a problem transformation strategy is binary relevance, which 
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can also be referred to as one-vs-rest. However, binary relevance is commonly used to 

describe a one-vs-rest type strategy for multi-label problems, while one-vs-rest can also 

be applied to multi-class problems. The idea of a one-vs-rest type strategy is to 

decompose a multi-label or multi-class type problem into multiple binary classification 

problems.17 Instead of a single trained model that outputs predicted class labels of each 

example, a model is trained for each individual label and the predictions from each model 

are aggregated. Therefore, binary classification algorithms can be applied to multi-class 

or multi-label problems by using a problem transformation strategy. 

 

1.3.3 k-Nearest Neighbors 

The k-nearest neighbors (KNN) algorithm is a type of instanced-based learning and 

therefore stores instances of the training to be referenced during prediction. KNN can be 

used for either classification or regression problems. When a trained KNN model is passed 

a query data point, it computes the distance between the query point and the training 

instances to determine the closest k points. The distance computations can either be done 

in a brute force fashion or using tree-based approaches to limit the number of distance 

calculations required. For KNN classification, the classes for which the k closest points 

belong to are used to assign the class of the query point. Probability of class membership 

is the simple average of the class label count over the nearest k points. These probabilities 

can also be weighted by the distance of each training instance to the query point. A diagram 

illustrating the KNN algorithm is shown in Figure 1.5. 
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Figure 1.5 k-Nearest Neighbors Diagram. A simple example of the k-Nearest Neighbors 

classifier for classification of the query point in grey. A black circle encomposses the 

nearest k points. In this case, there is a probability of 60% of  class A membership, 40% 

of class B membership, and 0% of class C membership. Therefore, the point would be 

assigned to class A.   
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1.3.4 Multi-Layer Perceptron 

A multi-layer perceptron (MLP) is a feedforward artificial neural network that 

consists of at least three layers: an input layer, a hidden layer, and an output layer. A 

schematic of this architecture is shown in Figure 1.6. Each layer consists of a set of neurons. 

In the input layer, the number of neurons is set to the number of features for a record in the 

training data. When used for classification, the number of neurons in the output layer 

corresponds to the number of class labels. The number of hidden layers and the number of 

neurons in each is a tunable hyperparameter of the model. Each neuron in a hidden layer 

takes the values from each neuron in the previous layer and combines them by a weighted 

linear summation. This summed value is passed to a non-linear activation function that 

yields the output from the hidden neuron. Neurons in the output layer take values from the 

last hidden layer and transform them into the output probabilities for each label. During 

model training, the output probabilities are assessed by a loss function. In scikit-learn, the 

cross-entropy loss function is used. The formula for cross-entropy loss is shown in eq. 1.2. 

 

𝐿(𝜃) =  −
1

𝑛
∑[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖)log (1 −

𝑛

𝑖=1

𝑝𝑖)] 

 

1.2 

 

Where the loss, L(θ), is a measure of how much the predicted probability, pi, diverges from 

the true label, yi , on average for the n number of i labels for the model parameters θ. The 

MLP is trained iteratively and at the end of each iteration the aforementioned weights 

between layers are adjusted by calculating the gradient of the loss function in a process 

called backpropagation. Training continues until the loss doesn’t change by a specified 
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amount between several iterations or the maximum number of specified iterations is 

reached. 

 

  

Figure 1.6 Multi-Layer Perceptron Schematic. The architecture of a simple feedforward 

artificial neural network with two hidden layers is shown. Values are passed from one layer 

to the next from left to right as represented by the black lines, which connect the nuerons 

depicted as circles. Each neuron contains an activation function, which combines the values 

passed to it from each neuron in the previous layer. Each of these  can be weighted 

differently, and those weights are adjusted during model training.  
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1.3.5 Random Forest 

Random forests are an ensemble of decision trees that can be used for either 

classification or regression. A decision tree is built through a top-down approach where a 

feature in the training data is selected for its ability to best split the training data. In the 

case of classification, the best split is the one that yields the purest daughter nodes. Purity 

is the fraction of each class present in each daughter node. For example, the least pure split 

would be for a daughter node to contain equivalent portions of each class, while the purest 

split would be a daughter node with a single class label. Pure nodes are leaf nodes as no 

further splitting is required. A fully-grown tree contains all pure leaf nodes, but large and 

complex trees are prone to overfitting. To combat overfitting, the random forest algorithm 

generates many small trees, a “forest”, and uses a bootstrapped sample of the training data 

with a random subset of features to split a node; instead of exhaustively checking for the 

best possible split among all features. The ensemble of predictions made by the individual 

trees are averaged to give a final prediction. The most important hyperparameters for 

random forest are the number of trees in the forest and the number of features tried at each 

split. A simple example of a “trained” forest being used for the prediction of a given input 

feature vector’s class is shown in Figure 1.7. The logic shown in the simple example can 

be applied to chemical fingerprints, where specific bits corresponding to particular 

chemical features may strongly indicate class membership. 
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Figure 1.7 Random Forest Example. A simple example for the classification of an animal 

into one of  four classes (Cat, Monkey, Bird, or Elephant) given a vector of 5 features (Fur, 

Two Legs, Wings, Beak, Tusks). Two example decision trees in the “forest” are shown and 

each returns a class assignment based on the information in the input feature vector. 
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1.3.6 Logistic Regression 

Despite the name, logistic regression is used for classification and can be applied 

to binary, multinomial, and ordinal classification problems. Logistic regression is a linear 

method, however, the output of the linear combination of features, shown in eq.1.3, is 

bounded between 0 and 1 as shown in eq. 1.4.  

 𝑙 = 𝑐 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛  1.3 

   

 

 𝑝 =
1

1 + 𝑒−𝑙
 1.4 

 

The log odds, l, is the linear combination of features, x, with their weights, β, and intercept, 

c, is transformed to probability, p, by the logistic function as shown in eq 1.4. For the 

implementation used here from scikit-learn, the weights, β, are adjusted during training 

through the minimization of the cost function shown in eq. 1.5. 

 
min
𝑤,𝑐

𝑤𝑇𝑤 +  𝐶 ∑ 𝑙𝑜𝑔(1 +  𝑒−𝑦𝑖(𝑋𝑇𝑤 + 𝑐))

𝑛

𝑖=1

  1.5 

 

Where XTw corresponds to sum of all βx, and yi is a value in the set {-1, 1} for negative 

and positive observations of a label respectively. Model complexity is penalized by L2 

regularization, wTw, and tuned by C, which is the inverse of regularization strength. An 

example logistic regression plot for binary classification problem is shown in Figure 1.8.  
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Figure 1.8 Logistic Regression Plot. An example plot of logistic regression applied to a 

binary classification problem with a single input feature. Toy data was obtained from the 

UCI ML Breast Cancer Wisconsin (Diagnostic) dataset in scikit-learn. 
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1.4 Structure-Based Drug Design Methods 

Structure-based drug design leverages knowledge of a target protein structure for 

bioactive small molecule discovery and design. These methods are complementary to the 

cheminformatics methods discussed previously, which are commonly referred to as ligand-

based drug design when they are applied to drug discovery and design projects. Structure-

based methods are used when high quality structural data, protein crystal structures, are 

available for a target protein of interest. This structural data can be used to calculate 

interaction energies between a small-molecule and the target protein structure. In general, 

structure-based drug design methods have an emphasis on physical interactions with a 

protein structure whereas ligand-based methods focus on comparisons between chemical 

structures. Some examples of structure-based drug design methods include: comparative 

modeling, binding site prediction, pharmacophore modeling, molecular docking, molecular 

dynamics, and free energy calculations.18,19 Many of these methods are complementary and 

can be used sequentially. For example, in the absence of a co-crystal structure, molecular 

docking can be used to place a small molecule in a binding site as a starting point for 

molecular dynamics simulations. Additionally, the trajectories from a molecular dynamics 

simulation can be subsequently analyzed to compute the free energy of the small molecule 

ligand binding to the protein target. In the following sections, a brief introduction is given 

for the structure-based drug design methods relevant to this work. Specifically, molecular 

docking and a related method, protein-protein docking, are discussed.  
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1.4.1 Molecular Docking 

Molecular docking predicts the pose and free energy of a small-molecule binding 

to a protein target. It is one of the most frequently used structure-based drug design methods 

due to its speed and relative ease of use. The process of molecular docking occurs in two-

steps: conformational sampling and scoring. The algorithm used for conformational 

sampling and the function used for scoring are specific to the docking software used. In 

general, conformational sampling algorithms fall into the broad categories of systematic or 

stochastic search methods. Systematic methods specifically vary the structural parameters, 

which influence conformation, whereas stochastic methods vary these parameters 

randomly. Regardless of the conformational search algorithm utilized, a balance between 

exhaustive sampling and computational expense is necessary. The other step in molecular 

docking is the scoring function, which falls into three major categories: force-field-based, 

empirical, and knowledge-based. Force-field-based scoring functions sum atomic 

intermolecular and intramolecular interactions to estimate the binding energy. Empirical 

scoring functions sum weighted, pre-defined terms that describe physical events in the 

formation of the ligand-protein complex. Knowledge-based scoring functions sum pairwise 

energy potentials, which are constructed and weighted according to the frequency of 

specified atom-atom distance occurrences in a training dataset. The scoring functions are 

ultimately used to evaluate small molecule conformations produced by the conformational 

sampling algorithm. A cyclical process of sampling and scoring is performed until an 

energy minimum is reached. After convergence, the small molecule conformation and 

predicted binding energy are returned as the docking result.20,21 
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1.4.2 Protein-Protein Docking 

Protein-protein docking predicts the pose and free energy of a protein binding to 

another protein. Protein-protein interactions are very important for molecular recognition 

and signaling.22 Therefore, the ability to model and predict such interactions is desirable 

for bioinformatics related fields, including drug discovery and design. While molecular 

docking typically allows for small-molecule flexibility during docking, proteins are usually 

treated as a rigid body due to the computational expense of including additional flexibility. 

Therefore, protein-protein docking uses rigid-body proteins, which are typically further 

transformed into simplified, coarse-grained representations. Conformations of these rigid, 

simplified proteins are sampled and evaluated for steric complementarity.23  This process 

is commonly performed using a geometry-based algorithm, which matches 3D digitized 

representations of each protein’s molecular surface using a fast Fourier transform.24 After 

the coarse-grained matching of molecular surfaces, structural resolution is returned, and 

the predicted protein-protein conformation may be scored. Similar to the scoring functions 

described for molecular docking, a variety of protein-protein scoring functions exist that 

predict binding energy using either physical interactions or knowledge-based functions. 

However, correct conformations are difficult to predict for proteins, which undergo 

significant conformational changes upon complex formation25. Additionally, there is poor 

correlation between predicted and known protein-protein binding affinities.26 Nonetheless, 

protein-protein docking is an active area of research, and the re-ranking of predictions 

using machine learning-based scoring functions, the use of experimental information as 

restraints,  and the use of template-based docking can further improve predictive power.27
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 Analysis of Proteolysis Targeting Chimeras and Rational Design of 

Cyclin Dependent Kinase 9 Degraders 

 

2.1 Abstract 

Proteolysis targeting chimeras (PROTACs) are an exciting new class of small 

molecule therapeutics with a novel mechanism of action compared to traditional small 

molecule inhibitors. PROTACs induce the targeted degradation of a protein target by 

taking advantage of a cell’s protein recycling machinery. By necessity, current PROTACs 

are extremely large, non-drug-like molecules, which raises concerns regarding their ability 

to transition from a chemical probe to a clinical therapeutic. However, traditional 

knowledge of drug-like properties may not be applicable to PROTACs since they function 

as catalytic degraders instead of stoichiometric inhibitors. To investigate the 

physicochemical properties of PROTACs currently in development, PROTAC compounds 

targeting either the Von Hippel-Lindau (VHL) or cereblon (CRBN) ligase were collected 

from the patent literature and analyzed. Analysis of the collection of patent literature 

compounds shows that PROTAC compounds indeed lie beyond traditional drug-like 

chemical space. Therefore, a new paradigm of drug-like physicochemical properties for 

PROTACs will likely be needed if currently developed compounds are able to be 

administered orally. The novel mechanism of action for PROTACs, which necessitates 

their large size and thereby non-drug-like properties, relies on the formation of a ternary 
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complex containing an E3 ligase, a PROTAC, and the target protein. A method to 

computationally predict this complex was developed and benchmarked on currently 

available crystallographic data of ternary complexes containing a resolved PROTAC 

molecule. For the VHL-MZ1-BRD4, CRBN-dBET6-BRD4, and CRBN-dBET23-BRD4 

ternary complexes, 15%, 42%, and 60% of the predicted complexes were correct 

respectively. While the successful prediction rates are encouraging, definitive 

identification of correct predictions from the incorrect ones using ZRANK was 

unsuccessful.   

 

2.2 Introduction 

Proteolysis targeting chimeras (PROTACs) are an emerging class of small molecule 

therapeutics. While traditional small molecule inhibitors, such as competitive inhibitors, 

bind to a protein active site and block activity, PROTAC molecules promote degradation 

of a protein target. A comparison of a traditional competitive inhibitor’s activity compared 

to a PROTAC is illustrated in Figure 2.1. PROTACs are bi-functional molecules that 

contain both an E3 ligase and a target protein binding moiety that are connected by a linker.  

The bi-functional nature of these molecules allows the PROTAC to bind the E3 ligase and 

the target protein simultaneously. This simultaneous binding induces targeted degradation 

as it brings the E3 ligase into proximity with the target protein. When in close proximity, 

the E3 ligase can ubiquitinate the target protein thereby marking it for degradation.28  
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Figure 2.1 Comparison of Competitive Inhibition and PROTAC Mechanism of 

Action. Competitive inhibition requires a small molecule inhibitor to bind and reside in the 

binding site of a target protein to block activity. Comparatively, a PROTAC molecule can 

catalyze the degradation of many target protein copies.  
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By necessity, PROTACs are very large molecules compared to traditional small 

molecule drugs. PROTAC compounds are about twice as large as small molecule inhibitors 

since they contain two compounds linked together. Furthermore, the linkers popularly used 

to connect the E3 ligase binding moiety and the target protein binding moiety are very long 

and flexible chains.29 Orally bioavailable synthetic drug molecules typically have 

physicochemical properties, such as molecule weight and number of rotatable bonds, which 

obey the Lipinski’s Rule of 5 (Ro5)8 and Veber’s rule30 guidelines.31 Therefore, there are 

valid concerns regarding whether such large and flexible molecules can be effectively 

developed into an oral therapeutic drug. 

However, not all orally bioavailable drugs lie in Ro5 chemical space. For example, 

a miniperspective by DeGoey et al. from AbbVie in 2018 examined beyond rule of 5 

(bRo5) compounds in the AbbVie drug and compound collection and identified the 

physicochemical properties that were most import for the oral bioavailability of bRo5 

compounds.32 The authors identified that a LogD close to 3 along with a limited number 

of aromatic rings and rotatable bonds were correlated with increased probability of oral 

bioavailability even with Ro5 violations.  

Despite a seemingly bleak outlook for developing an orally bioavailable PROTAC 

compound, it is important to note that PROTACs work very differently than the small 

molecule drugs for which the traditional Ro5 guidelines were devised. For traditional small 

molecule inhibitors, a sufficiently high concentration of the small molecule is required to 

stoichiometrically occupy the binding site of a target protein, but such a requirement does 

not apply to PROTACs.28 Due to a PROTAC’s catalytic mechanism of action, the induced 
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degradation is sub-stoichiometric.33 Therefore, there is potential for an orally administered 

PROTAC molecule to have the desired efficacy despite the expected poor permeability for 

such large and non-drug-like molecule.  

Due to the novel mechanism of action of PROTACs, there is an absence of directly 

applicable knowledge about what physicochemical properties are important for their oral 

bioavailability. In order to begin investigation into what properties may be important for 

successful development, PROTAC compounds were extracted from the patent literature 

and their physicochemical properties were examined. PROTAC structures with E3 ligase 

binding moieties that targeted either the Von Hippel-Lindau (VHL) or cereblon (CRBN) 

ligases were collected from the patent literature database SureChEMBL34. For each patent 

PROTAC, the molecular weight, LogP, LogD at pH 7.4, number of rotatable bonds, 

number of hydrogen bond donors, number of hydrogen bond acceptors, topological polar 

surface area, number of aromatic rings, and the AbbVie multi-parametric score (AB-MPS) 

for bRo5 compounds were calculated. These collected properties permitted comparisons 

between VHL and CRBN targeting PROTACs and established a frame of reference of the 

physicochemical properties of PROTACs currently in development. A similar and 

complementary analysis was recently reported by Edmondson, Yang, and Fallan at 

AstraZeneca in 2019, which examined the physicochemical properties of 38 PROTAC 

compounds published in the academic literature.35 A major difference between that 

analysis and the one described here is that significantly more compounds are examined 

here due to the patent literature containing hundreds instead of tens of PROTAC molecules. 
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However, the PROTAC compounds in patent literature lack the bioactivity annotations 

reported for the compounds in the academic literature.  

The analysis of the patent literature PROTACs was subsequently used as a frame of 

reference during the initiation of a project for the development of PROTACs targeting 

cyclin-dependent kinase 9 (CDK9) in the Fuchs lab. While ideal properties of PROTAC 

molecules are unknown, comparison to the patent literature compounds facilitated the 

identification of properties which significantly deviated from the other PROTAC 

molecules currently in development. Properties of proposed and synthesized CDK9 

PROTACs, which were found to greatly deviate from the patent literature PROTACs, 

could be further examined and given consideration as to whether the deviation was of 

concern. Additionally, the tracking of physicochemical properties during CDK9 PROTAC 

development lays the foundation for a better understanding of which properties are 

ultimately important for success. 

The development of a small molecule targeting CDK9 as an anti-cancer therapeutic 

has been an active area of research. Despite the discovery of many potent small molecule 

CDK9 inhibitors, their clinical use has been stymied due to a lack of selectivity.36 A 

PROTAC approach offers a potential solution for this lack of selectivity. Early reports of 

CDK9 PROTACs indicate that selectivity can be gained by taking a small molecule CDK9 

inhibitor and adapting it into a PROTAC.37 This selectivity is thought to arise through 

favorable interactions that can occur at the PROTAC mediated protein-protein interface in 

the ternary complex. 
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The formation of the ternary complex is a fundamental aspect of the PROTAC 

mechanism of action. Formation of the ternary complex and cooperative binding 

contributions between the E3 ligase and target protein have been shown to influence 

degradation efficacy38, target selectivity39, and degradation rate40. Visual analysis of the 

first ternary complex crystal structure (PDB: 5T35) enabled optimization of the PROTAC 

linker, which resulted in improved binding affinity, ternary complex stability, and target 

selectivity.41 Due the utility offered by visualization of the ternary complex, the ability to 

computationally generate reliable ternary structure models would be of great assistance to 

PROTAC discovery and design. 

However, the development of reliable computational ternary structure models is a 

non-trivial task. First, the prediction of a protein-protein interface is an extremely difficult 

problem and generally relies on protein-protein docking. Success of protein-protein 

docking is highly variable with good results being more frequently obtained when 

experimental data can be leveraged as a pose filter or docking restraint.42 Furthermore, 

accurate scoring of small-molecule binding energy is still a difficult task43, and the protein-

protein interfaces considered here have many more interactions to consider compared to 

ligand-protein systems. Additionally, there are currently only six PROTAC ternary crystal 

structures published and only half have sufficient resolution to observe the PROTAC 

compound41,44, which makes the benchmarking and assessment of any predictive method 

difficult. 

As a first step toward addressing these challenges a method was developed for 

generating ternary complex predictions. This method was benchmarked on the PROTAC 
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ternary crystal structures with a resolved PROTAC compound and was subsequently 

applied to the prediction of the ternary complex for a novel CDK9 PROTAC. To aid future 

iterations and improvements on this method, the source code has been made freely 

available at: https://github.com/ntcockroft/gen_ternary and in Appendix B. Datasets and 

Code. 

 

2.3 Methods 

2.3.1 Dataset 

PROTAC molecules were obtained from the patent literature by querying the 

SureChEMBL database.34 SureChEMBL is a large publicly available database that 

contains 17 million compounds extracted from full text, images and attachments of 14 

million patent documents. To obtain PROTAC molecules targeting cereblon from this 

database, a substructure search was performed using the maximum common substructure 

of the immunomodulatory imide drugs (IMiDs), thalidomide and pomalidomide. This 

substructure search needs to be modified to return the desired PROTAC molecules and not 

derivatives and analogues of the IMiDs. This was done by adding the keyword “PROTAC” 

to the search query and filtering to only include the results with a molecular weight in the 

range of 650 to 3000. The lower bound was initially set at 500, however, approximately 

11% of results appeared to be intermediates. To restrict results to final molecules, the lower 

bound was increased to 650.  The upper bound was set to an arbitrarily high value to 

ultimately include all molecules with a molecular weight greater than 650. This query 

yielded 983 unique PROTAC molecules targeting the cereblon E3 ligase, which appeared 

https://github.com/ntcockroft/gen_ternary
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to be final molecules. To obtain VHL PROTACS, this query was repeated using the 

hydroxyproline moiety containing small molecule that targets the VHL E3 ligase. This 

query yielded 1,287 unique PROTAC molecules targeting the VHL E3 ligase.  

 

2.3.2 Calculation and Representation of Physicochemical Properties 

The SMILES obtained from the SureChEMBL queries were used to calculate the 

physicochemical properties of interest. The software package, ACD/Percepta45, was used 

to calculate the physicochemical properties: molecular weight, LogP, LogD, number of 

rotatable bonds, number of hydrogen bond donors, number of hydrogen bond acceptors, 

topological polar surface area, and number of aromatic rings. The AbbVie multi-parametric 

score (AB-MPS)32 was calculated from the calculated LogD, number of aromatic rings 

(NAR), and number of rotatable bonds (NROT) as shown in eq 2.1. 

 

 𝐴𝐵-𝑀𝑃𝑆 = 𝑎𝑏𝑠(𝐿𝑜𝑔𝐷 − 3) + 𝑁𝐴𝑅 + 𝑁𝑅𝑂𝑇 2.1 

 

The distributions of each property were visualized using the Python library 

Seaborn.46  The distributions of physicochemical properties containing integer values were 

visualized as histograms, while those containing values with decimals were visualized 

using kernel density estimation plots. Visualization of the distributions using histograms is 

sensitive to the number and width of the bins chosen. This is not a problem for 

physicochemical properties containing integer values, as a single bin can be used for each 

value. Additionally, those values span a relatively narrow range, which allows each value 

in the range to be easily represented. The physicochemical properties containing decimal 
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values can be better represented using kernel density estimation plots. For kernel density 

estimation, a smooth function is placed at the center of each data point instead of counting 

the number of points that fall into each bin.47 The contributions of each smooth function 

(kernel) are summed to yield the final curve as given by eq. 2.2. 

 

 
𝑓(𝑥) =  

1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 2.2 

 

 

The kernel density estimation function f(x) for a number, n, of points, xi, is obtained by 

summing the kernel, K, at each point. The extent to which each kernel contributes is scaled 

by its bandwidth, h. Scott’s normal reference rule48 was used to determine the optimal 

bandwidth and is shown in eq. 2.3, where σ is the sample standard deviation.  

 

 
ℎ =  

3.5𝜎

𝑛1/3
 2.3 

 

While the kernel can be any smooth, peaked, normalized function, the Gaussian kernel is 

a popular choice, and is the kernel used here as shown in eq. 2.4. 

 

 
𝐾(𝑥) =  

1

√2𝜋
𝑒−
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2.3.3 Property Comparisons with Z-Scores 

To put the calculated properties of designed and synthesized PROTAC molecules 

into the broader context of the patent compound property distributions the calculated values 

were converted to z-scores. A z-score is simply the number of standard deviations away 

from the mean that a data point is and is calculated as shown in eq 2.5. 

 

 
𝑧 =  

𝑥𝑖 −  𝑥̅ 

𝜎
 2.5 

 

The z-score, z, is the difference between a given value, xi, and the sample mean, 𝑥̅, divided 

by the sample standard deviation, σ. Z-scores can give information about the area under 

the standard normal curve, however, such an interpretation is not appropriate for the 

empirical sample distributions of physicochemical properties described here as they are not 

described by a standard normal curve. In this context, the z-scores give a quick assessment 

of how the properties of designed PROTACs compare to one another and to the collected 

patent literature compounds. 

 

2.3.4 Generation of CDK9 Ternary Complex Structure Predictions 

Crystal structures for cereblon (PDB: 4TZ4) and CDK9 (PDB: 4BCG) were 

downloaded from the Protein Data Bank.49 The relevant chains from each protein structure 

were extracted, which included “Chain C” from the cereblon structure and all chains 

present in the CDK9 structure. Missing loops and side-chains were filled using 

MODELLER50 using the UCSF Chimera51 GUI. 100 models were generated for each 

structure, and the top model was selected according to the DOPE-HR score. Final loop-
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filled models were inspected for any issues and residues which contained errors were 

manually fixed using Maestro Academic from Schrödinger Suite 2017-2.52 The 

lenalidomide ligand that was removed from the cereblon structure during loop filling was 

replaced and the AT7519 ligand from a CDK2 crystal structure (PDB: 2VU3) was inserted 

into the loop filled CDK9 structure. These structures were then prepared for protein-protein 

docking with ZDOCK 3.0.2.53 The cereblon structure was prepared as the “receptor” and 

the CD9 structure as the “ligand”. ZDOCK was run with default sampling and produced 

2000 structures. Prior to generation of these structures from the ZDOCK output file, the 

input structures had hydrogen atoms added to them using Maestro Academic. In the 

ZDOCK output file, the filenames of the original input structures were replaced with the 

filename of the newly hydrogenated structures. This was done so the protein-protein 

docking results produced could eventually be scored by ZRANK54, which requires the 

hydrogen atoms that are purposefully not used in ZDOCK. The hydrogenated ZDOCK 

output structures were filtered with a python script using the PyMOL 2.3.0b API.55 Only 

docked protein-protein complexes that had a center of mass distance between the ligands 

less than a specified distance and at least 100 Å2 of protein hydrophobic solvent-accessible 

surface area buried were kept. The ligand distance was selected on a case-by-case basis 

and was based on the approximate length in angstroms of the fully elongated PROTAC 

structure of interest. Hydrophobic solvent-accessible surface was approximated by 

calculating the solvent exposed surface area of hydrophobic residues for each protein 

structure. The difference between the total non-complexed protein surface area and 

complexed protein surface area was used to calculate hydrophobic surface burial. Ligands 
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were extracted from the protein-protein complexes that passed these filters and used as 

positional restraints when generating possible PROTAC conformers with a Python script 

using the RDKit56 2019.3.2 and Pybel57 for OpenBabel 2.4.1 APIs. Positional restraints 

were selected by the identification of common substructure atoms shared between the 

PROTAC molecules and binding site ligands. Complexes for which a conformer could be 

successfully generated were scored using ZRANK. 

 

2.3.5 Benchmarking of Ternary Complex Structure Predictions 

All currently available crystal structures of PROTAC ternary complexes for which 

the PROTAC compound was resolved were obtained. This includes the VHL-MZ1-BRD4 

complex (PDB: 5T35), the CRBN-dBET6- BRD4 complex (PDB: 6BOY), and the CRBN-

dBET23-BRD4 complex (PDB: 6BN7). The linker region in each PROTAC was removed 

so that the only the corresponding ligands were present in the ligase and target protein 

pockets. Ternary structures were predicted for each complex following the procedure 

detailed in Section 2.3.4 for the CDK9 ternary complex predictions. Predicted ternary 

complex structures which had a Cα RMSD < 10 Å to the known crystal structure were 

deemed successful predictions. The PDB module in Biopython was used for calculation of 

Cα RMSD.58 Final predicted complex structures were locally minimized using the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm implemented  in 

OpenMM 7.3.1.59 Prior to complex minimization, PROTAC molecules were locally 

optimized for 1000 steps using Pybel with the Merck Molecular Forcefield 94 (MMF94). 

The optimized molecules were parameterized using the general forcefield 
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SMIRNOFF99Frosst with the Open Force Field Tool Kit in Python.60  The Cα RMSD to 

the known crystal structure and ZRANK scores were calculated for both the minimized 

and non-minimized complexes for comparison. 

 

2.3.6 Acknowledgement of Experimental Contributors 

The PROTAC compounds described herein were synthesized by Andrew C. 

Huntsman and Robert J. Tokarski II from the James R. Fuchs group in the Division of 

Medicinal Chemistry and Pharmacognosy at The Ohio State University College of 

Pharmacy. Biological evaluation of the PROTAC compounds was performed by Bridget 
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2.4 Results and Discussion 

2.4.1 Comparison of CRBN and VHL PROTACs Physicochemical Properties 

Traditional medicinal chemistry small molecule drug design principles may not 

apply to PROTAC molecules due to their inherently high molecular weight and novel 

mechanism of action.  As the interest in PROTAC strategies increase, the knowledge of 

what properties are important for the development a successful PROTAC molecule 

becomes paramount. As a first step in pursuit of this knowledge, the physicochemical 

properties of cereblon and VHL patent PROTACs were examined to give context about the 

physicochemical properties associated with PROTAC molecules and also compared to 

explore any notable differences in properties.  
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The VHL targeting PROTACs are a great deal larger than the cereblon targeting 

PROTACs (Figure 2.2). The cereblon targeting PROTACS have an average molecular 

weight of 813.20 g/mol, while for VHL they have an average weight of 1007.81 g/mol for 

an absolute difference of 194.61 g/mol. This difference is most likely explained by the size 

difference of the E3 ligase targeting ligands. The IMiD maximum common substructure 

has a molecular weight of 258.23 g/mol compared to the VHL targeting ligand’s molecular 

weight of 430.56 g/mol. The VHL targeting ligand is larger by 172.33 g/mol, which closely 

matches the mean difference of the two datasets. For both sets the molecular weight of the 

patent PROTACs lie in a fairly narrow range. For example, the interquartile region spans 

from 770.90 to 839.89 g/mol and 1053.75 to 1162.77 g/mol for the cereblon and VHL sets 

respectively. Thus, the development of a PROTAC appears to increase the molecular 

weight by about 500 to 600 g/mol compared to the E3 ligase targeting ligand. This increase 

in molecular weight is consistent with what would be expected from the attachment of a 

linker and small molecule drug to the E3 ligase targeting ligand. 
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.  

Figure 2.2 Comparison of Patent PROTAC Molecular Weight. The kernel density 

estimated distribution of molecular weight for patent literature PROTAC compounds 

targeting either the cereblon (green) or von Hippel-Lindau (blue) E3 Ligase.  
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The VHL patent PROTACs also have a large topological polar surface area (TPSA) 

compared to the cereblon PROTACs (Figure 2.3). The cereblon targeting PROTACs have 

an average TPSA of 172.96 Å2
 compared to an average TPSA of 239.09 Å2 for the VHL 

targeting PROTACs. As observed for the molecular weight, this difference most likely 

arises from the differences in properties between the E3 ligase targeting ligands. The IMiD 

maximum common substructure has a TPSA of 83.55 Å2
 compared to the VHL targeting 

ligand’s TPSA of 136.79 Å2. The VHL targeting ligand is larger by 53.24 Å2, which closely 

matches the mean difference of the two datasets. The interquartile range of both 

distributions is also quite narrow and spans from 154.21 to 187.89 Å2 and 223.25 to 255.59 

Å2 for the cereblon and VHL sets respectively. Overall, the trends observed for TPSA were 

very similar to the trends observed for molecular weight.  
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Figure 2.3 Comparison of Patent PROTAC TPSA. The kernel density estimated 

distribution of topological polar surface area for patent literature PROTAC compounds 

targeting either the cereblon (green) or von Hippel-Lindau (blue) E3 Ligase.  
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Despite a larger TPSA, the VHL targeting PROTACs are still more lipophilic than 

the cereblon targeting PROTACs according to calculated LogP (Figure 2.4) and LogD 

(Figure 2.5) values. The cereblon targeting PROTACs have an average LogP of 4.38 and 

LogD of 3.54, while the VHL set has an average LogP of 5.52 and LogD 5.31. Consistent 

with the previous observations, the difference in LogP closely matches the difference in 

LogP between the two E3 ligase targeting ligands. The LogP of the VHL target ligand is 

greater by 0.8 compared to the common IMiD substructure. However, the difference in 

LogD cannot be explained with the same logic. Firstly, the common IMiD substructure has 

a greater calculated LogD value than the VHL targeting ligand. However, the calculated 

LogD value for the VHL targeting ligand is misleading as it contains an amino group that 

is commonly used as the synthetic handle to form an amide bond to the linker in the final 

PROTAC compound. Therefore, the contribution to the calculated LogD should be 

equivalent to the contribution of the calculated LogP value. In general, the LogD 

distribution closely matches the LogD distribution for the VHL set. The increased relative 

difference of LogD appears to be due to the shift in the distribution of the cereblon set 

towards lower LogD values. This suggests that the IMiDs have been linked to more 

inhibitors that are ionizable at pH 7.4 or have had more ionizable groups included in the 

linker compared to the VHL targeting ligand.   
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Figure 2.4 Comparison of Patent PROTAC LogP. The kernel density estimated 

distribution of LogP for patent literature PROTAC compounds targeting either the cereblon 

(green) or von Hippel-Lindau (blue) E3 Ligase.  
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Figure 2.5 Comparison of Patent PROTAC LogD. The kernel density estimated 

distribution of LogD at pH 7.4 for patent literature PROTAC compounds targeting either 

the cereblon (green) or von Hippel-Lindau (blue) E3 Ligase.  
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The VHL targeting PROTACs have a larger number of rotatable bonds compared 

to the cereblon targeting PROTACs (Figure 2.6). PROTACs in the cereblon set have on 

average 15 rotatable bonds compared to the 20 for the VHL set, which matches the 

difference of 5 rotatable bonds between the two E3 ligase targeting ligands. The 

interquartile region spans a moderately large range of 6 and 5 rotatable bonds for the 

cereblon and VHL sets respectively. A large range of rotatable bonds is not unexpected for 

PROTAC molecules as an important part of PROTAC design is determining the optimal 

linker length. Therefore, several similar PROTAC molecules are usually generated with 

varying linker lengths to identify what length affords optimal activity.  

Figure 2.6 Comparison of the Number of Rotatable Bonds for Patent PROTACs. A 

histogram of the number of rotatable bonds in patent literature PROTAC compounds 

targeting either the cereblon (green) or von Hippel-Lindau (blue) E3 Ligase.  
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The VHL targeting PROTACs also have a couple more hydrogen bond donors 

(Figure 2.7) and acceptors (Figure 2.8) than cereblon targeting PROTACs. The cereblon 

targeting PROTACs have 2 hydrogen bond donors and 14 hydrogen bond acceptors on 

average, while the VHL set has 4 hydrogen bond donors and 16 hydrogen bond acceptors. 

Again, these differences are most easily explained by the differences in the E3 ligase 

ligands, which have 1 hydrogen bond donor and 6 acceptors for the IMiD common 

substructure, and 4 donors and 7 acceptors for the VHL targeting ligand. Conversion of the 

E3 targeting ligand to a PROTAC does not appear to change the number of hydrogen bond 

donors much, but dramatically increases the number of hydrogen bond acceptors. A likely 

explanation for the increase in acceptors is the popularity of using polyethylene glycol in 

the linker region of the PROTAC molecules. 
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Figure 2.7 Comparison of the Number of Hydrogen Bond Donors for Patent 

PROTACs. A histogram of the number of hydrogen bond donors in patent literature 

PROTAC compounds targeting either the cereblon (green) or von Hippel-Lindau (blue) E3 

Ligase. 
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Figure 2.8 Comparison of the Number of Hydrogen Bond Acceptors for Patent 

PROTACs. A histogram of the number of hydrogen bond acceptors in patent literature 

PROTAC compounds targeting either the cereblon (green) or von Hippel-Lindau (blue) E3 

Ligase. 
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The VHL and cereblon targeting PROTACs have the same number of aromatic 

rings (Figure 2.9). Both the PROTACs in the cereblon set and the VHL set have on average 

5 aromatic rings. The VHL targeting ligand has only 1 more aromatic ring than IMiD 

common substructure. In general, the patent PROTACs appear to mainly contain 4 or 5 

aromatic rings.  

  

Figure 2.9 Comparison of the Number of Aromatic Rings in Patent PROTACs. A 

histogram of the number of aromatic rings in patent literature PROTAC compounds 

targeting either the cereblon (green) or von Hippel-Lindau (blue) E3 Ligase. 
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Analysis of the physicochemical properties of the patent PROTACs shows that they 

contain many rule of 5 violations and are generally beyond the traditional rule of 5 chemical 

space. The patent PROTACs are high molecular weight molecules with many rotatable 

bonds and many hydrogen bond acceptors. The AbbVie multi-parametric score (AB-MPS) 

was devised to predict the likelihood of a compound having acceptable oral absorption 

even with rule of 5 violations. AB-MPS is dependent on the calculated LogD, the number 

of aromatic rings, and the number of rotatable bonds.  This score was calculated for the 

patent PROTACs and is shown in Figure 2.10. A score less than or equal to 14 is associated 

with higher probability of acceptable oral absorption. Only 6% of the patent PROTAC 

compounds from the cereblon set, 62 compounds, and a single compound from the VHL 

set have an AB-MPS of 14 or less. Therefore, the cereblon targeting patent PROTACs 

appear to have a higher likelihood of being orally bioavailable according to the AB-MPS, 

however, the vast majority of PROTAC compounds in the patent literature seem unlikely 

to be orally bioavailable according to traditional drug design principles.  
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Figure 2.10 Comparison of the AbbVie Multi-Parametric Score for Patent 

PROTACs. The kernel density estimated distribution of the AbbVie multi-parametric 

score for patent literature PROTAC compounds targeting either the cereblon (green) or von 

Hippel-Lindau (blue) E3 Ligase. 
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However, traditional drug design principles and the AB-MPS assume classical 

mechanisms of action that are not applicable to PROTAC compounds. Due to the catalytic 

nature of a PROTAC’s mechanism of action, even a small amount of absorbed compound 

has the potential for efficacy. The first PROTAC, ARV-110, entered Phase I clinical trials 

in March 2019.61 The exact structure of the compound has not been disclosed by Arvinas, 

but is thought to be  the one depicted in Figure 2.11 or a closely related compound based 

on recent patent filings.62,63 This compound was included in the patent VHL dataset and 

has a molecular weight of 1020.19 g/mol, a TPSA of 246.99 Å2 a LogP and LogD of 6.2, 

24 rotatable bonds, 3 hydrogen bond donors and 15 acceptors, 4 aromatic rings, and an 

AB-MPS of 31.2. This compound would not be expected to have good bioavailability 

according to the rule of 5 guidelines and the AB-MPS. However, the clinical trial is 

administering the PROTAC as an oral tablet64, suggesting confidence in either the 

molecule’s oral bioavailability or efficacy even with poor oral absorption. As the clinical 

trial progresses, the measured bioavailability and efficacy of this new class of compounds 

will be of great interest.   

 

Figure 2.11 Potential Structure of ARV-110. The presumed structure of ARV-110 or a 

closely related structure to the compound in Phase I clinical trials from Arvinas. 
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2.4.2 Rational Design of CDK9 PROTACs 

A PROTAC molecule consists of three major pieces: the ligase binding ligand, the 

linker, and the target protein binding ligand. The attachment point of the linker to each of 

the ligands is very important as an improper point of attachment can interfere with ligand-

protein binding. The point of attachment for the ligase binding ligand is well studied, but 

this is not always the case for the protein binding ligand. In the absence of a crystal structure 

of the ligand-protein complex, known structure-activity relationships can be leveraged to 

identify potentially successful sites for linker attachment. Crystallographic data greatly 

aids the identification of linker attachment sites as binding site exit vectors can be visually 

identified. CDK9 is a promising target for a PROTAC approach due to significant amount 

of crystallographic data available for CDK proteins.  

The CDK9 protein binding ligand selected for PROTAC generation was AT7519 

(Figure 2.12). AT7519 is an extremely potent inhibitor of CDK9, IC50
 < 10 nM, and has a 

published crystal structure with CDK2.65 Due to the structural similarity of CDK9 and 

CDK2 (Figure 2.13), the crystal structure of AT7519 with CDK2 can still provide the 

desired insights into ideal sites of linker attachment.  The PROTAC approach has yet to be 

explored with AT7519 and its high potency and crystallographic data make it a prime 

candidate.  

 

 

 

 



 

56 

  

 

 

  

Figure 2.12 Structure of AT7519. The CDK9 inhibitor selected for PROTAC 

development. 

 

 

Figure 2.13 Comparison of CDK9 and CDK2. The secondary structures of (A) CDK9 

(PDB: 4BCG) and (B) CDK2 (PDB:2VU3) rainbow colored from N to C terminus for 

Chain A. The CDK2 structure has more unresolved loop regions compared to the CDK9 

structure. 
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The crystal structure of AT7519 bound to CDK2 (PDB: 2VU3) was inspected to 

identify sites for linker attachment. Examination of AT7519 bound to the ATP binding site 

of CDK2 reveals two potential sites for linker attachment (Figure 2.14).  Both the 

dichlorophenyl and piperidine moieties project toward solvent. Therefore, a linker could 

be potentially attached at either the para position on the dichlorophenyl ring or to the 

nitrogen atom in the piperidine without causing a steric clash in the binding pocket. While 

the dichlorophenyl projects towards the solvent, it sits more deeply in the pocket than the 

piperidine ring. A site of attachment that is deeper in the pocket would require a longer 

linker relative to a site of attachment that is more solvent exposed, which would increase 

the molecular weight and likely the number of rotatable bonds in the PROTAC molecule. 

While PROTAC molecules may tolerate larger molecular weights and a higher number of 

rotatable bonds compared to traditional inhibitors, reducing the amount of non-drug like 

properties is still desirable when possible. Therefore, the nitrogen on the piperidine ring 

was selected as the point for linker attachment.   

Figure 2.14 Crystal Structure of AT7519 Binding to CDK2. (A) The secondary 

structure of CDK2 (light blue, PDB:2VU3) and AT7519 (gold) in ATP binding site. (B) A 

closer view of AT7519 in the ATP binding site of CDK2 with the protein surface shown. 
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The design strategy described is further supported by literature precedence. 

Currently, two PROTAC molecules have been published that target CDK9 (Figure 2.15). 

These PROTAC molecules utilize either a previously unpublished 3-aminopyrazole 

scaffold or SNS-32 for the CDK9 targeting ligand.37,66 The activity of the 3-aminopyrazole 

compound against CDK9 has not yet been reported, while SNS-32 has been shown to 

inhibit CDK9 with an IC50
 value of 4 nM.67 Furthermore, crystal structures of a similar 3-

aminopyrazole compound and SNS-32 bound to CDK2 have been published. The overlay 

of these two compounds with AT7519 (Figure 2.16) show that the selected points of linker 

attachment for the 3-aminopyrazole PROTAC “Degrader 3” and THAL-SNS-32 are in 

close proximity with the selected attachment point for AT7519. Both “Degrader 3” and 

THAL-SNS-32 have been shown to successfully degrade CDK9. However, CDK9 is still 

present at concentrations as high as 20 µM for “Degrader 3”, while complete degradation 

is observed at concentrations as low as 250 nM for THAL-SNS-32. Therefore, a PROTAC 

approach using AT7519 with a linker attached to the nitrogen piperidine appears to be a 

promising strategy.  
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Figure 2.15 Literature CDK9 PROTACs Compared to AT7519 PROTAC Design. The 

published CDK9 PROTAC compounds, Degrader 3 and THAL-SNS-032 are shown in 

comparison with the proposed design of an AT7519-PROTAC. 
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Figure 2.16 Overlay of the PROTAC CDK9 Targeting Ligands Bound to CDK2. The 

CDK9 targeting ligands: 3-amino pyrazole (green), SNS-32 (pink), and AT7519(gold) are 

shown overlayed in the CDK2 (light blue) ATP binding site. 
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2.4.3 Properties of CDK9 PROTACs 

To test the PROTAC design strategy, several PROTAC compounds were 

synthesized. These compounds contained either relatively short (Figure 2.17) or long 

(Figure 2.18) linker chains. The physicochemical properties of each PROTAC were 

calculated and converted to z-scores using the patent literature physicochemical property 

distributions for cereblon targeting PROTACs. The z-scores enable quick comparisons 

between the properties of each compound and also put the properties in the context of the 

patent literature. Furthermore, it allows multiple properties to be plotted together even if 

the original values had greatly different scales. A given z-score represents how many 

standard deviations a given physicochemical property values is away from the mean of that 

property distribution of the patent literature compounds. For reference, the mean values 

(standard deviation) for each property in the cereblon patent data set are shown in Table 

2.1. Currently, the ideal physicochemical properties values for PROTAC molecules are 

unknown. Therefore, high or low z-scores are not necessarily better or worse. However, 

the lower the z-score, the closer the property is to obeying Lipinski’s Rule of 5 (Ro5) and 

traditional drug design principles. The goal is to gain a better understanding of which 

properties are important for the desired permeability and efficacy for this new compound 

class by closely tracking these physicochemical properties and observing any potential 

correlations with biological endpoints.  

In general, the PROCDK9 series has higher values for the number of hydrogen 

bond donors (HBD), the number of hydrogen bond acceptors (HBA), and topological polar 

surface area (TPSA) compared to the patent literature of cereblon targeting PROTACs. The 
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compound with the shortest linker, PROCDK9-27, has z-scores of 2.30, 0.30, and 0.88 for 

HBD, HBA, and TPSA respectively. For all the other PROCDK9 compounds, these z-

scores increase to 3.37, 1.29, and 1.84 for HBD, HBA, and TPSA respectively. 

Predominantly, the shorter linker PROCDK9 compounds have lower values for 

molecular weight (MW), number of rotatable bonds (NROT), and the AbbVie multi-

parametric score (AB-MPS) compared to the patent literature while the longer linker 

compounds have higher values. PROCDK9-27 has z-scores of -1.52, -1.42, and -1.59 and 

PROCDK9-21 has z-scores of -0.23, -0.33, and -0.55 for MW, NROT, and AB-MPS 

respectively. On the contrary, PROCDK-24 has z-scores of 0.32, 0.33, and -0.07 and 

PROCDK-25 has z-scores of 0.86, 0.98, and 0.44 for MW, NROT, and AB-MPS 

respectively.  

Furthermore, all the PROCDK9 compounds have lower values for LogD and the 

number of aromatic rings (NAR) compared to the patent literature. For LogD, PROCDK9-

27 has a z-score of -1.79, PROCDK9-21 a z-score of -1.64, PROCDK9-24 a z-score of -

1.04, and PROCDK9-25 a z-score of -0.20. Since all the PROCDK9 compounds have the 

same number of aromatics rings, they all have the same z-score of -1.36. 

The values for HBD, HBA, NAR, and TPSA essentially remain constant as the 

linker length increases while the values for MW, LogD, NROT, and AB-MPS increase 

with linker length. From the shortest linker PROTAC, PROCDK9-27, to the next shortest, 

PROCDK9-21, an additional amide functional group is present in the linker. This accounts 

for the additional hydrogen bond donor, additional hydrogen bond acceptor, and increase 

in polar surface area. All the other longer PROTACs also include this functional group and 
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the only difference between them is the length of the alkyl chain. Thus, the number of 

hydrogen bond donors, hydrogen bond acceptors, and topological polar surface areas are 

identical for all but the shortest PROTAC. Additionally, the number of aromatic rings 

remains constant as no aromatic rings are included in the linker. However, the increasing 

length of the alkyl chain directly increases MW, LogD, and NROT. The AB-MPS also 

increases as the score is dependent on LogD, NROT, and NAR. 

For the properties which are linker length independent, the high values of HBA and 

TPSA appear as potentially problematic while HBD and NAR are in an acceptable range. 

On first examination the HBD appears very high as these PROTACs have either 4 or 5 

hydrogen bonds, which is more than was observed on average for the cereblon patent 

compounds. However, this is not particularly concerning as this is still a traditionally drug-

like number of hydrogen bonds. Conversely, the number of hydrogen bond acceptors for 

the PROCDK9 series, which contain 15 or 17 HBA, is relatively close to the average for 

the cereblon patent PROTACs. Despite relatively closely matching the average in the 

patent literature, this is a property of potential concern due to these values greatly 

exceeding the traditional Lipinski guideline value of 10 and even extends past the 

maximum value considered in the AbbVie beyond rule of 5 (bRo5) dataset which was 15. 

Additionally, the topological polar surface area is a fair bit higher for the PROCDK9 series 

compared to the patent compounds. These compounds have a TPSA of 199.97 Å2 and 

229.07 Å2, which is on the border of the < 229 Å2 maximum acceptable TPSA threshold 

described by AbbVie for bRo5 oral bioavailability. The PROCDK9 compounds each have 

3 aromatic rings, which is lower than the average value for the patent compound and 
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appears to be in an acceptable range. AbbVie noted that a large number of aromatic rings 

was associated with poor oral bioavailability and the number of aromatic rings in the 

PROCDK9 compounds is lower than the average value in the AbbVie dataset for 

compounds with good oral bioavailability.32  

For the properties which are linker length dependent, the values of LogD, MW, and 

NROT for the PROCDK9 series appear to be in acceptable range according to the bRo5 

properties described by AbbVie with some compounds exceeding the recommended soft 

threshold for AB-MPS. PROCDK9-27, -21, -24, and -25 have LogD/LogP values of 1.10, 

1.30, 2.12, and 3.27 respectively, which conform to Lipinski’s rule of a LogP < 5. However, 

it is possible that the shorter PROTACs are too polar as AbbVie’s bRo5 data indicates that 

a LogP close to 3 is important. PROCDK9-27, -21, -24, and -25 have molecular weights 

of 696.49, 795.63, 837.70, and 879.78 g/mol respectively, which violate Lipinski’s rule of 

MW < 500 g/mol. These molecular weights are deemed acceptable despite this violation 

as the AbbVie bRo5 dataset indicates that compounds with molecular weights as high as 

1132 g/mol can be orally bioavailable. Furthermore, compared to the other 

physicochemical properties, MW will be most difficult to significantly reduce due to the 

necessity of linking two molecules together. Compounds PROCDK9-27, -21, -24, and -25 

have 8, 13, 16, and 19 rotatable bonds respectively. PROCDK9-27 has a traditionally 

acceptable number of rotatable bonds and the other compounds have an acceptable number 

of rotatable bonds according to the bRo5 dataset, which observed oral bioavailability at 

NROT values of up to 19. Compounds PROCDK9-27, -21, -24, and -25 have AB-MPS 

scores of 12.90, 17.70, 19.88, and 22.27 respectively. The AbbVie bRo5 dataset suggests 
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that AB-MPS value < 14 predict higher probability of success. The shortest PROTAC, 

PROCDK9-27, has an acceptable value and the other compounds extend beyond the ideal 

range.  

 

 

 

 

 

 

Table 2.1 Mean and Standard Deviation of Physicochemical Properties for Cereblon 

Patent PROTACs 
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 Figure 2.17 Structure and Properties of Short Linker CDK9 PROTACs. The structure and 

physicochemical properties of CD9 PROTACs with a short linker chain. To the right of each structure, a 

spider plot is shown which contains the z-scores of each physiochemical property: Molecular Weight 

(MW), Hydrogen Bond Donors (HBD), Hydrogen Bond Acceptors (HBA), Topological Polar Surface Area 

(TPSA), Number of Rotatable Bonds (NROT), Number of Aromatic Rings (NAR), LogD, and the AbbVie 

Multi-Parametric Score (AB-MPS). 
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Figure 2.18 Structure and Properties of Long Linker CDK9 PROTACs. The structure and physicochemical properties 

of CD9 PROTACs with longer linker chains. To the right of each structure, a spider plot is shown which contains the z-

scores of each physiochemical property: Molecular Weight (MW), Hydrogen Bond Donors (HBD), Hydrogen Bond 

Acceptors (HBA), Topological Polar Surface Area (TPSA), Number of Rotatable Bonds (NROT), Number of Aromatic 

Rings (NAR), LogD, and the AbbVie Multi-Parametric Score (AB-MPS). 
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2.4.4 Degradation Activity of CDK9 PROTACs 

The degradation of both the 55 kDa and 42 kDa isoforms of cyclin dependent kinase 

(CDK) CDK9 were assessed. The 42 kDa isoform is more abundant than the 55 kDa and 

the isoforms are identical except for an additional 117 terminal residues on the 55 kDa 

isoform. The isoforms have been shown to phosphorylate all of the same peptide substrates 

tested so far, but have differing expression patterns and localization.68 While the expression 

and localization differences suggest some functional differences, this has yet to be fully 

characterized. 36 

In addition to monitoring CDK9 degradation, expression levels of the induced 

myeloid leukemia cell differentiation protein (MCL-1) were also monitored. MCL-1 is an 

anti-apoptotic factor with a short half-life. CDK9 phosphorylation of RNA polymerase II 

facilitates transcription and expression of MCL-1. When CDK9 activity is inhibited, this 

transcription of the MCL-1 gene is prevented and MCL-1 protein levels are rapidly 

reduced.69 Therefore, monitoring MCL-1 levels allows the monitoring of the downstream 

effect of CDK9 degradation.  

The degradation activity of the PROCDK9 compounds were initially assessed at 

relatively high concentrations (Figure 2.19). PROCKD9-27 shows the expected loss of 

MCL-1 from CDK9 inhibition, but little to no CDK9 degradation. This indicates that 

PROTCDK9-27 is binding to CDK9 and inhibiting its activity, but not forming the ternary 

complex with the cereblon E3 ligase to cause degradation. PROCDK9-21 shows little to 

no effect on both the expression levels of MCL-1 and CDK9. Therefore, it is likely not 

binding and inhibiting CDK9 nor forming the ternary complex. PROCDK9-24 shows 
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complete absence of MCL-1 expression at all concentrations tested and some reduction in 

CDK9 expression. Thus, it is likely binding CDK9 and successfully forming the ternary 

complex resulting in degradation. However, it is also possible that the reduction in MCL-

1 is also from direct inhibition of CDK9 as expression of CDK9 is still observed. 

Interestingly, higher levels of CDK9 expression are observed as the dose increases from 5 

µM to 10 µM to 20 µM. This is most likely due to a phenomenon referred to as the “hook 

effect”. The hook effect occurs at high doses of PROTAC compounds as the compounds 

fully saturate the binding sites of the E3 ligase and the target protein. If the binding sites 

are saturated, a single PROTAC molecule will have difficulty forming the ternary complex 

as it will have to compete with another PROTAC molecule already bound to the other 

protein partner. Assessing PROCDK9-24 at lower concentrations will be important for 

determining if this is indeed occurring. PROCDK9-25 shows reduction in MCL-1 and the 

complete absence of CDK9 at all doses. Therefore, PROCDK9-25 appears to be 

successfully forming the ternary complex resulting in CDK9 degradation and in turn 

reduced expression of MCL-1.  

The degradation activity of the same PROCDK9 compounds were also assessed at 

lower concentrations (Figure 2.20). Again, both PROCDK9-27 and -21 show no 

degradation of CDK9 and now have no impact on MCL-1 expression levels at this lower 

concentration. PROCDK9-24 now demonstrates the expected dose-dependent reduction in 

CDK9 expression and a corresponding loss in MCL-1, which supports that the hook effect 

was indeed occurring at the higher doses. PROCDK9-25 appears to be a very potent 

PROTAC compound as minimal CDK9 expression is observed at concentrations as low as 
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250 nM. Overall, PROCDK9-24 and -25 appear to be functioning as degraders while 

PROCK9-27 and -21 do not. 

While great attention has been paid to the physicochemical properties of these 

compounds, the most important feature for activity at this point appears to be linker length. 

The number of atoms in the linker for PROCDK9-27, -21, -24, and -25 are 2, 8, 11, and 14 

atoms respectively. This count is including all the atoms between the 4-hydroxy oxygen on 

thalidomide and the nitrogen piperidine. A linker length of 8 atoms or less appears 

inadequate for ternary complex formation between cereblon and CDK9 for this series of 

PROTAC compounds. While 11 atoms appear to allow for ternary complex formation and 

degradation, it does not appear to be as effective as 14 atoms. Further exploration of linker 

length is of interest. Specifically, lengths of 12 and 13 atoms and the determination of the 

upper limit of tolerated linker length. 

Analysis of physicochemical properties is expected to be of greater value after 

degradation activity has been demonstrated and optimal linker length has been determined. 

Once an optimal length has been determined, a series of PROTAC molecules can be 

synthesized with that consistent length but containing various functionalities and thereby 

different physicochemical properties. As additional biological endpoints relating to 

permeability and bioavailability are collected for this series, any correlations between the 

calculated physicochemical properties and these endpoints will be examined. Any 

observations can be used to guide further design iterations and this knowledge ultimately 

transferred to PROTAC design efforts for other protein targets.  
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Figure 2.19 Activity of PROCDK9 Compounds at High Concentrations. A Western 

blot showing the degradation activity of PROTACs targeting CDK9 after 6 hours of 

exposure to compound in the MV4-11 cell line. MCL-1 is a rapidly turned over protein that 

is not replenished without CDK9 activity, thus CDK9 inhibition or degradation reduces 

MCL-1 expression levels. BCL-2 has a longer half-life than MCL-1 and BCL-2 expression  

levels are monitored to control for long-term aberrations in transcription. Expression level 

of actin is shown as a control for the background protein expression level. Degradation of 

CDK9(55) and CDK9(42) isoforms by PROCDK-21, -24, 25, and -27 at 5 µM, 10 µM, 

and 20 µM are shown. 
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Figure 2.20 Activity of PROCDK9 Compounds at Low Concentrations. A Western 

blot showing the degradation activity of PROTACs targeting CDK9 after 6 hours of 

exposure to compound in the MV4-11 cell line. MCL-1 is a rapidly turned over protein that 

is not replenished without CDK9 activity, thus CDK9 inhibition or degradation reduces 

MCL-1 expression levels. BCL-2 has a longer half-life than MCL-1 and BCL-2 expression  

levels are monitored to control for long-term aberrations in transcription. Expression level 

of actin is shown as a control for the background protein expression level. Degradation of 

CDK9(55) and CDK9(42) isoforms by PROCDK-21, -24, 25, and -27 at 0.25 µM, 0.5 µM, 

and 1 µM are shown. 
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2.4.5 Proof of Concept for Generation of Ternary Structure Predictions 

In 2019, Drummond and Williams published a series of methods for modeling 

PROTAC-mediated ternary complexes.70 These methods and corresponding filtering 

processes were benchmarked on the available crystal structure data using the proprietary 

software package Molecular Operating Environment (MOE)71. Their most successful 

method, “Method 4”, produced a set of ternary complex poses of which ~40% had a Cα 

RMSD <10 Å for the VHL-MZ1-BRD4 ternary complex. However, this method had more 

difficulty in predicting the ternary complexes which contained cereblon as the E3 ligase 

instead of VHL. 

Inspired by their approach, a similar protocol is described here using freely 

accessible software packages. A schematic of this method is shown in Figure 2.21 and was 

described in detail in Section 2.3.4. The method consists of three main steps: protein-

protein docking, filtering, and conformer generation. The first and last steps are the most 

crucial. The first step generates all the poses to be considered and the last step applies the 

strictest filter. The second step, which filters by ligand distance and hydrophobic surface 

burial, is a quick way to remove many irrelevant poses. The final conformer generation 

step should also remove those poses but would take significantly more computational 

resources to do so.  
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Figure 2.21 Schematic of Ternary Structure Prediction. A cartoon schematic showing the steps in the PROTAC 

ternary structure prediction procedure. First, prepared crystal structures with ligands in the binding site are docked 

using ZDOCK. These predicted protein-protein interfaces are filtered by both: the center of mass distance between 

the ligands that reflects the approximate legth of the fully extended PROTAC and if at least 100 Å2 of protein 

hydrophobic solvent-accessible surface is buried. For structures which pass the filtering process, PROTAC 

conformers are generated with restraints on the atomic positions of substructure atoms in common with the 

crystallographic ligands.  
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To determine if this method was capable of producing correct ternary complex 

structures, it was benchmarked using the VHL-MZ1-BRD4 complex (PDB: 5T35), the 

CRBN-dBET6-BRD4 complex (PDB: 6BOY), and the CRBN-dBET23-BRD4 complex 

(PDB: 6BN7).The results for VHL-MZ1-BRD4, CRBN-dBET6-BRD4, and CRBN-

dBET23-BRD4 complexes are shown in Figure 2.22, Figure 2.23, and Figure 2.24 

respectively. Of the filtered ternary complex structures for which a PROTAC conformer 

could be generated, 15%, 42%, and 60% of the predicted complexes were correct for VHL-

MZ1-BRD4, CRBN-dBET6-BRD4, and CRBN-dBET23-BRD4 respectively. For 

comparison, the best results obtained by Drummond and Williams for these same 

complexes were 40%, 0%, and 10% when only considering the top results regardless of 

any methodological differences. Interestingly, the methodology used by Drummond and 

Williams performs significantly better for the VHL ligase containing complex compared 

to the method described here, while the converse is true for the CRBN ligase containing 

complex. As the method here was inspired by the work done by Drummond and Williams 

the general workflow is very similar. Therefore, the performance difference is most likely 

due to the different protein-protein docking software used.  

While the correct structure was able to be predicted for each benchmark complex, 

delineating the correct complex predictions from the incorrect predictions a priori is 

difficult. Each predicted complex structure was scored using ZRANK and the scores were 

compared to the calculated Cα RMSD. Interestingly, the top ranked complex by ZRANK 

was a successful prediction for each benchmark complex. However, ZRANK scores did 

not generally separate correct predictions from   incorrect ones well.  
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Additionally, the final predicted structures were locally minimized with the 

PROTAC molecule present to investigate whether this might improve the ability of 

ZRANK scores to distinguish between correct and incorrect predictions. For example, 

approximately 19% of the correct predictions for the CRBN-dBET6-BRD4 complex have 

ZRANK scores greater than 0. These high scores are due to steric clashes at the protein-

protein interface that results after adding the hydrogen atoms that are neglected by ZDOCK 

but required by ZRANK. Therefore, resolving these clashes through local minimization 

could greatly improve the ZRANK score and permit correct structures to be better 

distinguished from incorrect by the ZRANK score. Local minimization did indeed resolve 

these clashes and improve ZRANK score, but it did so for the incorrect predictions as well. 

Therefore, the local minimization procedure did not improve the ability of ZRANK scores 

to differentiate between correct and incorrect predictions. 
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Figure 2.22 Ternary Structure Predictions Results for VHL-MZ1-BRD4. The Cα 

RMSD of the predicted ternary complex to the known crystal structure vs. the predicted 

complex’s ZRANK score is shown for the final complexes (A) output directly by ZDOCK 

and the (B) locally minimized structures. A dotted line is place at Cα RMSD 10 Å which 

shows the threshold for which given structure was deemed correct.   
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Figure 2.23 Ternary Structure Predictions Results for CRBN-dBET6-BRD4. The Cα 

RMSD of the predicted ternary complex to the known crystal structure vs. the predicted 

complex’s ZRANK score is shown for the final complexes (A) output directly by ZDOCK 

and the (B) locally minimized structures. A dotted line is place at Cα RMSD 10 Å which 

shows the threshold for which given structure was deemed correct.   
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Figure 2.24 Ternary Structure Predictions Results for CRBN-dBET23-BRD4. The Cα 

RMSD of the predicted ternary complex to the known crystal structure vs. the predicted 

complex’s ZRANK score is shown for the final complexes (A) output directly by ZDOCK 

and the (B) locally minimized structures. A dotted line is place at Cα RMSD 10 Å which 

shows the threshold for which given structure was deemed correct.   
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As the ternary structure prediction method was relatively successful in the prediction 

of ternary complexes containing the cereblon ligase, the method was applied for the 

prediction of the CRBN-PROCDK9_25-CDK9 complex. In addition to PROCDK9-25, 

predictions were also made for PROCDK9-21 and -24. Since the only difference between 

these compounds is the length of the linker, it is expected that the increased potency will 

be due to positive cooperativity from interactions at the protein-protein interface. As 

PROCDK9-25 is the longest and most potent, it may form a complex interface that is 

inaccessible by the shorter linker containing PROTACS. Therefore, complexes that were 

predicted to be formed by PROCDK9-25 that were also predicted to be formed by -21 or -

24 were removed. Of the 22 predicted ternary complexes for PROCDK9-25, 11 were not 

shared by either -21 or -24. The complex which had the best ZRANK score, -70.63, among 

all 22 predicted complexes was also unique to PROCDK9-25 and is shown in Figure 2.25. 

A closer look at PROCDK9-25 spanning the binding pockets of cereblon and CDK9 is 

shown in Figure 2.26.  In this prediction, PROCDK9-25 appears fully elongated, and it is 

apparent that the shorter linkers of -21 and -24 would be unable to span the same gap 

between the pockets. 



 

 

  

8
1 

 

Figure 2.25 Ternary Structure Prediction for CRBN-PROCDK9_25-CDK9. The PROTAC PROCDK9-25 (gold) 

connects the binding sites of cereblon (light pink) and CDK9 (light blue). The crystallographic ligands for each, lenalidomide 

(purple) and AT7519 (teal), which were used as restraints for generating the PROTAC conformer, are also shown.  
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Figure 2.26 Binding Pockets in the Ternary Structure Prediction for CRBN-PROCDK9_25-CDK9. A closer look at the 

binding site of PROTAC PROCDK9-25 (gold) that connects the binding sites of cereblon (light pink) and CDK9 (light blue). 

The crystallographic ligands for each, lenalidomide (purple) and AT7519 (teal), which were used as restraints for generating 

the PROTAC conformer, are also shown. Some protein ribbons and side-chains have been hidden for easier visualization of 

each binding site. 
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2.5 Conclusions 

PROTAC compounds were collected from the patent literature as a first step in 

understanding the chemical space of PROTACs. The molecular weight, LogP, LogD at pH 

7.4, number of rotatable bonds, number of hydrogen bond donors, number of hydrogen 

bond acceptors, topological polar surface area, number of aromatic rings, and the AbbVie 

multi-parametric score of each patent PROTAC were calculated. As expected, analysis of 

these physicochemical properties demonstrated that PROTAC molecules generally lie well 

beyond rule of 5 chemical space. A comparison of PROTACs binding to the Von Hippel-

Lindau (VHL) or cereblon (CRBN) ligases showed that PROTACs targeting CRBN are 

more drug-like than those that target VHL mainly due to smaller and more favorable 

properties of the CRBN binding moiety compared to the VHL binding moiety. The 

physicochemical properties calculated for patent CRBN PROTACs were used to give 

context to the development of CDK9 PROTACs. Comparisons between developed CDK9 

PROTACs and patent PROTACs allowed for the identification of properties of CDK9 

PROTACs which deviated significantly from the patent literature to highlight potentially 

problematic properties.  

Furthermore, a method was developed to predict the PROTAC mediated ternary 

complex due to its value for rational PROTAC design. This method successfully produced 

correct predictions for three benchmark crystal structures of ternary complexes with a 

resolved PROTAC molecule. Ternary structure prediction with this method appeared to 

work better for ternary structures containing CRBN over VHL. However, while this 

method produced correct predictions, many incorrect predictions were also made. Attempts 
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to definitively delineate between correct and incorrect predictions using the scoring 

function ZRANK were unsuccessful. For confident ternary structure predictions, further 

work is needed to improve the scoring of the ternary complexes and will also require a 

larger amount of crystallographic data for benchmarking.  

. 
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 STarFish: A Stacked Ensemble Target Fishing Approach and its 

Application to Natural Products 

 

In accordance with the American Chemical Society’s Policy on Theses and Dissertations, 

this chapter contains work reproduced with permission from: 

 

Nicholas T. Cockroft, Xiaolin Cheng, James R. Fuchs. STarFish: A Stacked Ensemble 

Target Fishing Approach and its Application to Natural Products, J. Chem. Inf. Model., 

2019 (manuscript submitted, Manuscript ID: ci-2019-00489s). 

 

Copyright 2019 American Chemical Society. 

 

 

3.1 Abstract 

Target fishing is the process of identifying the protein target of a bioactive small 

molecule. To do so experimentally requires a significant investment of time and 

resources, which can be expedited with a reliable computational target fishing model. The 

development of computational target fishing models using machine learning has become 

very popular over the last several years due to the increased availability of large amounts 

of public bioactivity data. Unfortunately, the applicability and performance of such 

models for natural products has not yet been reported. This is in part due to the relative 

lack of bioactivity data available for natural products compared to synthetic compounds. 

Moreover, the databases commonly used to train such models do not annotate which 

compounds are natural products, which makes the collection of a benchmarking set 
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difficult. To address this knowledge gap, a dataset comprised of natural product 

structures and their associated protein targets was generated by cross-referencing 20 

publicly available natural product databases with the bioactivity database ChEMBL. This 

dataset contains 5,589 compound-target pairs for 1,943 unique compounds and 1,023 

unique targets. A synthetic dataset comprised of 107,190 compound-target pairs for 

88,728 unique compounds and 1,907 unique targets was used to train k-nearest 

neighbors, random forest, and multi-layer perceptron models. The predictive performance 

of each model was assessed by stratified 10-fold cross-validation and benchmarking on 

the newly collected natural product dataset. Strong performance was observed for each 

model during cross-validation with area under the receiver operating characteristic 

(AUROC) scores ranging from 0.94 to 0.99 and Boltzmann-enhanced discrimination of 

receiver operating characteristic (BEDROC) scores from 0.89 to 0.94. When tested on the 

natural product dataset, performance dramatically decreased with AUROC scores ranging 

from 0.70 to 0.85 and BEDROC scores from 0.43 to 0.59. However, the implementation 

of a model stacking approach, which uses logistic regression as a meta-classifier to 

combine model predictions, dramatically improved the ability to correctly predict the 

protein targets of natural products and increased the AUROC score to 0.94 and BEDROC 

score to 0.73. This stacked model was deployed as a web application, called STarFish, 

and has been made available for use to aid in the target identification of natural products. 
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3.2 Introduction 

Experimental approaches for identifying small molecule hits in a drug discovery 

project typically include target-based screening or phenotypic screening. Target-based 

approaches involve selecting a protein target believed to be relevant to the disease state of 

interest and then measuring, directly or indirectly, a compound’s ability to bind the target. 

Phenotypic approaches are target agnostic and instead measure a compound’s effect on a 

biologically relevant system, such as cell cytotoxicity or tumor growth inhibition.72 Both 

approaches are widely used in drug discovery and development. While traditionally viewed 

as opposing alternatives, target-based and phenotypic assays can also be complementary 

approaches.73 An important limitation of the phenotypic approach is the inherent lack of 

understanding of the target and molecular mechanism of action. While a known target and 

molecular mechanism of action are not required to progress a new chemical entity to the 

clinic, it is considered a significant risk factor by most large pharmaceutical companies for 

the clinical development and regulatory approval process.73 Due to the importance of target 

identification, both experimental and computational target fishing methods have been 

developed.  

The process of experimental target fishing requires a significant investment of time 

and resources. One method commonly used to directly identify the target protein of a small 

molecule is biochemical affinity purification. This process involves immobilization of a 

compound on a column, exposure to cell extracts, stringent washing to remove non-specific 

binding, proteomic profiling to determine the identity of bound proteins, and ultimately a 

confirmatory binding assay.74 While this process has been very successful, it is not without 
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limitations.75 For example, it requires the bioactive small molecule to be modified in order 

to be immobilized on the column. Points of modification can be difficult to determine as 

they require a synthetic handle in a region where a bulky linker can be attached without 

interfering with target binding. Overall, experimental target fishing requires a great deal of 

biological and synthetic expertise and effort.  

In an effort to aid and accelerate the target identification process, a variety of 

computational target fishing methods have been developed. Computational target fishing 

methods generally fit into one of three broad categories: ligand-based, structure-based, or 

network-based. A recent review by Sydow et al. gives a good overview on the specifics 

and current methods applied for each category.76 Ligand-based methods rely on the 

assumption that proteins will bind similar small molecules. A simple ligand-based target 

fishing approach typically involves computing Tanimoto similarities between a compound 

of interest and compounds with known targets in a bioactivity database. The protein targets 

of compounds with high similarity to a query compound are then predicted as potential 

protein targets. An early and successful ligand-based target fishing method, similarity 

ensemble approach (SEA), builds upon this approach by comparing a query molecule’s 

similarity to a group of compounds of a potential target and assessing the statistical 

significance of the resulting similarity score.77 The growing amount of publicly available 

bioactivity data in databases such as ChEMBL and PubChem has made  the application of 

machine learning methods to computational target fishing popular.78,79 Methods such as 

Random Forest (RF), Support Vector Machines (SVM), and Naïve Bayes (NB) have long 

been used in this regard, but deep learning methods have recently garnered significant 
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attention due to their impressive performance.80–84 The majority of the data that these 

models were trained with is synthetic compound bioactivity data and despite the impressive 

performance observed for these machine learning target fishing models, little is known 

about how they might perform when applied to natural products 

Natural products have been a tremendous source of new drugs over the past three 

decades. Unaltered natural products and natural product derivatives comprise over one-

third of the FDA approved small molecule drugs.85 Taken even more broadly with the 

inclusion of “natural product mimics”, natural products account for or have inspired in 

some way up to 60% of all of these approved drugs. Historically, natural products have 

made up a substantial portion of first-in-class drugs identified through phenotypic 

methods.86 Therefore, the process of target identification is very important for natural 

products, but this area is currently underexplored. In 2017, Fang et al. used a network-

based target fishing approach for natural product target prediction. A balanced 

substructure-drug-target network-based inference (bSDTNBI) model was trained and 

tested on 2,388 unique natural products and 751 targets.87 However, most available binding 

data is for synthetic compounds and almost all target fishing models are trained using 

synthetic data. A study by Keum et al. in 2016 developed a target fishing model using the 

bipartite local model and support vector machines (SVM) trained on 3,612 compounds and 

831 targets.88 The trained model was used to predict the targets of 6,320 natural product 

compounds. Unfortunately, the protein targets for these natural products were unknown. 

Model predictions were examined based on whether a predicted target was implicated in 

the disease state for which a given herb, containing the natural product, was associated 
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with.  Ultimately, how well a model trained on synthetic data can predict targets for natural 

products remains unknown. 

To address this, a stacked ensemble target fishing (STarFish) approach has been 

developed and was benchmarked on a newly collected natural product set that considers 

the largest number of protein targets for a natural product dataset so far. Model stacking is 

a popular and successful approach in Kaggle competitions and has also been recently 

applied to other areas of cheminformatics.89–92 This model stacking approach expands upon 

the idea that the combination of model predictions can produce better predictions than 

individual models alone. In this study, different combinations of stacked classifiers are 

trained on a large synthetic data training set comprised of 107,190 compound-target pairs 

for 88,728 unique compounds and 1,907 unique targets. The trained stacked classifiers are 

subsequently evaluated through cross-validation on the synthetic compound dataset and 

through benchmarking on the newly collected natural product dataset comprised of 5,589 

compounds-target pairs for 1,943 unique compounds and 1,023 unique targets. 

Furthermore, a multi-label classification approach is taken. Historically, computational 

target-fishing models have been trained under the assumption that a single molecule binds 

a single protein, but in recent years more emphasis has been placed on the consideration of 

polypharmacology during training.93 Therefore, the individual models which comprise the 

stacked model are trained on a multi-label classification problem to account for this 

polypharmacology. Overall, a web application, STarFish, was developed, which makes 

predictions on natural targets based on small molecule binding to 1,907 targets.  The 
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datasets, source code, and API are freely available for download and use at: 

https://github.com/ntcockroft/STarFish and in Appendix B. Datasets and Code. 

 

3.3 Methods 

3.3.1 Dataset 

Natural product compound records were extracted from the following freely 

accessible datasets/databases: AfroCancer94, AfroDb95, AfroMalaria96, AnalytiCon97, 

Carotenoids98, ConMedNP99,  InterBioScreen(IBS) natural product collection100, 

Mitishamba101, NANPDB102,  Natural Product Atlas103, NPACT104, NPASS105, NuBBE106, 

p-ANAPL107, SANCDB108 Super Natural II109, TCM110, TIPdb111, UNPD112, and ZINC 

natural product subset113. The compounds from each database were retrieved in various 

chemical formats and were ultimately converted to simplified molecular-input line-entry 

system (SMILES) strings if not provided. All the provided or generated SMILES strings 

were cleaned and standardized using MolVS.114 The resulting combined set contained 

438,258 unique natural products in total. Since the majority of the natural product databases 

listed do not have bioactivity annotations, the compound set was cross-referenced with the 

ChEMBL database (version 23)78 to identify natural product compounds with known 

protein targets. 

The ChEMBL database was queried to retrieve compound activity records which 

had reported activities (IC50, Ki, Kd, EC50) of 1 µM or better in assays with a confidence 

score of 9 and had a known target with a corresponding UniProt ID. A confidence score of 

9 was selected so that only assay data that resulted in a single protein target being assigned 

https://github.com/ntcockroft/STarFish
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with a high degree of confidence were used.  This query yielded a dataset of 485,813 

compound-target activity pairs with many redundant activity pairs. The SMILES strings in 

this dataset were cleaned and the natural product dataset was standardized using MolVS.  

Following standardization, the ChEMBL dataset was used to determine protein targets for 

the natural product dataset by identifying InChIKeys or SMILES that were present in both 

datasets. After this comparison, any redundant compound-target pairs were removed, 

which yielded two datasets: a “synthetic” set consisting of 395,590 unique compound-

target pairs and a natural product set consisting of 6,339 unique compound-target pairs.  

The synthetic set was pruned further prior to model training. Only compound-target 

pairs containing targets with at least 10 compounds were kept. Furthermore, the number of 

compounds per target class was capped at 100 through random sampling to limit the 

imbalance between protein target classes. This pruning resulted in 107,190 compound-

target pairs for 88,728 unique compounds and 1,907 unique targets. A breakdown of the 

target protein classes present in these 1,907 unique targets is shown in Figure 3.1. For the 

natural product dataset, compound-target pairs that contained protein targets in common 

with the pruned synthetic set (Figure 3.2) were retained resulting in 5,589 compound-target 

pairs for 1,943 unique compounds and 1,023 unique targets. The synthetic set was used for 

model training and cross-validation while the natural product set was used to benchmark 

model performance on a more realistic but difficult test case. 

All compound-target activity pairs were converted to a multi-label format. For 

each compound record, a binary label vector was constructed that annotated the protein 

targets to which these compounds are known to bind. On average, compounds in the 
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synthetic compound dataset have 1.2 annotated protein targets per compound and 

compounds in the natural product dataset have 2.9 annotated protein targets per 

compound. Therefore, while 1,907 possible target associations are considered for each 

compound, these associations have not all been tested experimentally, and most are 

unknown. It was assumed that for these unknown cases that the compound did not bind to 

the protein and this unknown data was treated as negative data. According to a recent 

estimate of drug polypharmacology, drugs have on average 11.5 targets below 10 µM.115 

Applying this estimate to the unknown small molecule compound-target associations 

implies a negative label would be correct for 99% of the labels. However, it is likely that 

many compound records will be assigned a negative protein target label for a protein that 

they actually interact with. This will influence training as strong classifier predictions for 

such labels would be penalized. Additionally, during performance evaluation such labels 

are considered false positives and negatively impact performance when ranked highly. 

While the assumption of negative labels for unknown compound-protein target records is 

reasonable, there are indeed drawbacks.  

The use of a multi-label format does not fully capture the ways in which 

compounds can interact with protein targets. While a set of ligands may all be reported to 

bind to a common protein, the compounds may bind at different sites or have different 

effects on the protein. For example, one compound may bind to a catalytic site on the 

protein while another binds to an allosteric site. Additionally, two compounds may bind 

to the same site on the protein, but one may be an agonist while the other an antagonist. 

In the multi-label format described here, these pharmacological differences are ignored, 
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and all compound-protein interactions are treated as equivalent. Therefore, a classifier 

trained using ligands that bind to the catalytic site would be expected to perform poorly 

when used to predict the target of compounds which bind to the allosteric site of the same 

protein. 
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Figure 3.1 Protein Class Labels. Sankey diagram of the protein classes present in the ChEMBL23 activity data used in 

model training. The proportion of protein targets belonging to L1 and L2 protein classes as defined by ChEMBL is 

represented by line thickness. 
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Figure 3.2 Synthetic and Natural Product Dataset Protein Classes.  Comparison of the 

ChEMBL L2 protein classes between the synthetic compound dataset and the natural 

product dataset.   
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3.3.2 Compound Descriptors 

RDKit was used to generate molecular fingerprints for each compound.56 

Molecular fingerprints are bit vector representations of a compound. A kernel is applied to 

a molecule to extract chemical features, hash them, and set bits based on the hash. If two 

compounds contain the same functional group, they will both set a bit for that functional 

group. However, more than one functional group can set the same bit resulting in collisions. 

Increasing the number of bits used to represent molecules reduces collisions but increases 

the computational cost of working with the fingerprint.  The SMILES string for each 

compound was converted to a 2048-bit Morgan Functional-Class Fingerprint (FCFP) using 

a radius of 2. FCFP was selected over Extended-connectivity fingerprints (ECFP) to 

generate a more abstract and pharmacophoric representation of each compound.116 

 

3.3.3 Machine Learning Models 

All models were built using Scikit-Learn 0.19.1 in Python 3.6.5.117 Since 

compounds can bind to more than one target protein, compound-target identification was 

formulated as a multi-label classification problem. Different classification models handle 

multi-label classification problems differently and therefore how each handle multi-label 

problems are addressed specifically for each classifier. Additionally, each classifier was 

asked to predict label probabilities instead of assigning labels directly. 

 

3.3.4 k-Nearest Neighbors 

The k-nearest neighbors (KNN) algorithm is a type of instance-based learning and 

computes the distance between the query point and the training instances to determine the 
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closest k points. The KNN classification scheme is easily applied to a multi-label format. 

In a multi-label case, the query point is assigned the class labels of the closest k points with 

the probability of each label corresponding to the simple average of label counts over k 

points. These probabilities can also be weighted by the distance of each training instance 

to the query point. The KNN model used herein was trained using 10 neighbors, brute force 

distance calculations with the Jaccard metric, and uniform weights.  

 

3.3.5 Multi-layer Perceptron 

A multi-layer perceptron (MLP) is a class of feedforward artificial neural networks 

that consists of at least three layers: an input layer, a hidden layer, and an output layer. 

Each layer consists of a set of neurons. In the input layer, the number of neurons is set to 

the number of features for a record in the training data. In the case of the 2048 bit Morgan 

fingerprint, the number of neurons in the input layer is 2048; one neuron for each bit. When 

used for classification, the number of neurons in the output layer corresponds to the number 

of class labels, in this case one neuron per protein target, and is inherently applicable to 

multi-label problems. The MLP classifier used herein consists of a single hidden layer with 

1000 neurons and ReLU activation function. A stochastic gradient-based optimizer 

referred to as “Adam” was the solver used for weight optimization with an initial learning 

rate of 0.001, an exponential decay rate of 0.9 and 0.999 for the first and second moment 

vectors respectively, and the constant for numerical stability set to 1e-8. The maximum 

number of iterations was set to 200 with a convergence tolerance of 1e-4 after 2 consecutive 

iterations.  
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3.3.6 Random Forest 

Random forests are an ensemble of decision trees that can be used for either 

classification or regression. While inherently applicable to multi-label problems, there are 

technical limitations, such as memory consumption, when training with a large amount of 

high-dimensional data and trying to predict a large number of class labels. To circumvent 

this issue, the multi-label problem was re-cast as many individual binary classification 

problems. In the multi-label learning literature, this strategy is referred to as one-vs-the-

rest or binary relevance. Therefore, a random forest model was trained for each label and 

to predict whether that label should be assigned or not. A total of 1,907 random forest 

models were trained, one for each protein target, using 1,000 trees and 45 features were 

considered when looking for the best split. 

 

3.3.7 Logistic Regression 

Despite the name, logistic regression is used for classification and can be applied 

to binary, multinomial, and ordinal classification problems. Logistic regression is a linear 

method, however, the output of the linear combination of features is bounded between 0 

and 1 by using a logistic function. To apply logistic regression to a multi-label classification 

problem, the one-vs-the-rest strategy described above must also be applied here. Logistic 

regression models were trained using the “liblinear” solver and L2 regularization. A total 

of 1,907 logistic regression models were trained, one for each protein target, with C =1.0. 
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3.3.8 Model Stacking 

Model stacking, also referred to as stacked generalization or meta ensembling, is a 

method which combines information from base models to generate a new model. A 

stacking approach takes advantage of the fact that individual models may have different 

strengths in label prediction compared to others and attempts to improve prediction through 

their combination. During stacking, the input features, in this case the level 0 data, is passed 

to all individual base models, the level 0 classifiers, which yield predicted probabilities for 

each individual label. These predicted label probabilities, the level 1 data, are then used as 

the input features for the next model, the level 1 classifiers. Although this process can 

continually be repeated, only two levels were used for the stacked model described here as 

shown in Figure 3.3. 
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Figure 3.3 Model Stacking Schematic. Diagram of the model stacking approach used to 

predict protein target labels from chemical fingerprints. Chemical fingerprints are used as 

input features for the level 0 classifiers: k-nearest neighbors, random forest, and multi-

layer perceptron. The predicted probabilities of each protein label from each level 0 

classifier are concatenated and used as input features for the level 1 classifier: logistic 

regression. Final predicted label probabilities are output by the logistic regression. 
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3.3.9 Model Tuning, Training, and Validation 

The synthetic dataset was used for model tuning, training, and testing whereas the 

natural product set was used as an external test set. A stratified 10-fold cross-validation 

was performed on the synthetic dataset resulting in 10 folds of 90/10 split training/testing 

sets. The stratification process guaranteed that examples for each label were present in both 

the training and test cross-validation datasets. Parameters for k-nearest neighbors, random 

forest, and multi-layer perceptron models were tuned using the training sets for each fold. 

A stratified random split was used to further subdivide the training data portion of each 

cross-validation fold into 90/10 training/test sets for tuning. Parameters were chosen based 

on performance on the test tuning set (Table 3.1-Table 3.3) and were then used to train all 

subsequent models. Following evaluation by cross-validation, the entire synthetic set was 

used to train models which were evaluated on the natural product dataset. 

Models were trained and tested using High Performance Computing resources from 

the Ohio Supercomputer Center.118 Cross-validation and model combination calculations 

were run in parallel on the Owens cluster dense compute nodes (Dell PowerEdge C6320 

two-socket servers with Intel Xeon E5-2680 v4 Broadwell, 14 cores, 2.40GHz processors, 

128GB memory). 
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Table 3.1 Results of KNN base classifier tuning on a stratified random 90/10 train/test split of the training dataset for 

each cross-validation fold. 

 
 

 

 

Table 3.2 Results of MLP base classifier tuning on a stratified random 90/10 train/test split of the training dataset for   

each cross-validation fold. 

 
 

 

 



 

 

1
0
4 

 

 

 

 

Table 3.3 Results of RF base classifier tuning on a stratified random 90/10 train/test split of the training dataset for 

each cross-validation fold. 
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3.3.10 Area Under Receiver Operating Characteristic Curve (AUROC) 

A common metric used to assess the performance of a classifier is the receiver 

operating characteristic (ROC) curve. Classifier predicted class probabilities, confidence 

values, or binary decisions are compared to the known labels. The fraction of true positives 

correctly recovered, the true positive rate, is plotted against the fraction of true negatives 

that were incorrectly identified as positive, the false positive rate. The true positive and 

false positive rates vary with the threshold used to split records by their probability or 

confidence scores into the positive and negative classes. Therefore, the true positive and 

false positive rates are plotted at various thresholds. The ROC curve can be summarized 

by a single value by calculating the area under the ROC curve. An AUROC score is 

represented by a value between 0 and 1, where a score of 1 denotes perfect classification, 

a score of 0.5 denotes random classification, and a score of 0 denotes completely incorrect 

classification. In general, the AUROC value can be interpreted as the probability of an 

active being ranked before an inactive. The AUROC score is designed for binary 

classification problems but can be easily extended to multi-label classification problems 

by averaging over the labels. This averaging can be done through either micro- or macro-

averaging. In micro-averaging, each record-label pair contributes equally to the overall 

score and essentially treats all labels as a single combined binary classification problem. In 

macro-averaging, the binary AUROC is calculated for each label and then averaged. 

Therefore, each label contributes equally regardless of the number of records contained. 

 



 

106 

3.3.11 Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

(BEDROC) 

While the AUROC score is a widely used and intuitive metric, it is not sensitive to 

early recognition. Early recognition is particularly important for target fishing problems as 

it is only feasible to run confirmatory experimental tests for a relatively small number of 

protein targets. In 2007, Truchon and Bayly proposed a metric called the Boltzmann-

enhanced discrimination of receiver operating characteristic (BEDROC) to address this 

early recognition problem, and it has become a popular metric for assessing virtual 

screening performance.119 Similar to AUROC scores, a BEDROC score is between 0 and 

1 and it has a probabilistic interpretation. However, while AUROC relates to a uniform 

distribution, BEDROC relates to an exponential distribution. These distributions can be 

considered as reference ranked lists. When a trained classifier makes predictions for a 

protein target label, it ultimately produces a sorted list of compounds ranked by the 

classifier’s confidence in a compound binding to the protein target. The AUROC or 

BEDROC score that this classifier sorted list receives is the probability that a known active 

compound randomly selected from the classifier sorted list would be ranked higher than an 

“active” compound randomly selected from the reference list. For the AUROC score, this 

reference list is random and contains “active” and “inactive” compounds uniformly 

distributed throughout the list. For the BEDROC score, this reference list contains a large 

portion of “active” compounds at the beginning of the list. When calculating the BEDROC 

score a parameter α is required, which controls how highly “active” compounds are ranked 

in the reference list. For BEDROC scores to be comparable, they must use the same α 
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value. The commonly used value is α=20 and was also used here. This α value indicates 

that 80% of actives are present in the first 8% of the list. 

 

3.3.12 Fraction of Compounds with a True Target in the Top 10 Predictions 

Because target fishing is concerned with the identification of a protein target for a 

given compound record, the fraction of compounds for which at least a single true target 

was identified in the top 10 of the ranked list was calculated. As with the BEDROC score, 

this score is concerned with early retrieval, however, an arbitrary cutoff of 10 predictions 

is used and differences in classifier performance after this cutoff will be missed. For 

example, a correct prediction at rank 11 is no better than a correct prediction at rank 1000 

according to this metric since only correct predictions from ranks 1-10 are rewarded. 

Additionally, this differs from the other metrics described as both AUROC and BEDROC 

scores were calculated from the target protein label perspective while this is calculated 

from the compound perspective. A cutoff of 10 targets was selected as a being a feasible 

number of protein targets that could be screened. This score is relatively harsh as it requires 

a classifier to have placed a correct target for a compound in the top 0.5% of the list in 

order to be rewarded but gives an indication for the practical utility of a model for target 

fishing. 

 

3.3.13 Coverage Error 

The coverage error is a metric that is also calculated from the compound record 

perspective and determines on average how far down the classifier sorted list one would 
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need to look in order to recover all true labels. The best possible value for this metric is the 

average number of labels for each compound record. 

 

3.4 Results and Discussion 

3.4.1 Natural Product Databases 

There are many natural product databases or datasets that are published and 

available online. These databases range in size from a few hundred compounds to hundreds 

of thousands of compounds. A review from 2017 by Chen, Kops and Kirchmair gives a 

good overview of both virtual and physical natural product compound libraries.120 Many 

databases have a particular bioactivity focus, such as anticancer or antimalarial activities, 

and a focus on the geographical region from which the natural products were obtained. The 

smaller databases tend to have a narrow focus while the large databases attempt to 

aggregate and organize all known natural products, leading to significant overlap. The size 

and overlap of the natural product databases are shown in Figure 3.4. Prior to comparison, 

SMILES strings were standardized for each database and only unique compounds were 

retained, which accounts for any discrepancies between the number of compounds shown 

here and the published database sizes. No single database contains all of the 438,258 unique 

natural products that were collected. The Super Natural II database is the largest and 

contains 52.7% of the collected natural products. The top 5 largest databases, which include 

Super Natural II, Universal Natural Product Database (UNPD), ZINC Natural Products 

Subset, InterBioScreen (IBS) Natural Compounds, and Traditional Chinese Medicine 

(TCM) Database@Taiwan comprise 86.4% of the collected natural products.  
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Figure 3.4 Natural Product Databases. Size and overlap of collected natural product 

databases. The bar graph on the top shows the number of unique compounds in each 

database. The heat map shows the fraction of compounds from a database on the y-axis 

present in a database on the x-axis. 
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3.4.2 Synthetic Cross-Validation 

Prior to benchmarking on the collected natural product data, models were trained 

and evaluated with the synthetic dataset using stratified 10-fold cross-validation. Overall, 

all trained models performed extremely well (Figure 3.5). Without stacking micro-

averaged AUROC values ranged from 0.94 to 0.99, micro-averaged BEDROC values 

ranged from 0.89 to 0.94, and 89% to 92% of compounds had a true target identified in the 

top 10 predictions. In general, performance slightly improved when stacked. With stacking 

micro-averaged AUROC values ranged from 0.97 to 0.99, micro-averaged BEDROC 

values ranged from 0.89 to 0.97, and 85% to 95% of compounds had a true target identified 

in the top 10 predictions. Coverage error showed more distinct differences between 

different models and how stacking impacted performance. Without stacking coverage error 

ranged from 187 to 29 labels. Unlike the other described metrics, a lower value is better 

for coverage error as it represents the average number of labels that need to be considered 

to recover all the true labels. With stacking, this generally improved to 55 to 14 labels. The 

only machine learning model that did not benefit from stacking was the multilayer-

perceptron (MLP).  

For each metric, the unstacked MLP performs better than the stacked MLP. The 

performance degradation is likely due to overfitting. To assess this, the penultimate layer 

activations of the MLP were collected and normalized. The 1,000 activations were passed 

to the logistic regression as features in the place of the predicted target labels. Essentially, 

the output layer is being removed after training the MLP. As shown in Figure 3.6, this 

process mitigates the performance degradation observed when using MLP classifier in the 
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stacked model, supporting that the degradation was a result of overfitting to the training 

data.   

Figure 3.5 Synthetic Compound Cross-Validation Performance. Model performance 

for stratified 10-fold cross-validation on the synthetic compound dataset. For a single 

model, “Not Stacked” indicates that the probability predictions of the listed model were 

used directly. If more than one model is listed, the mean probabilities for each label were 

used. “Stacked” indicates that the probability predictions of the listed models were passed 

to the logistic regression to obtain the final predicted probabilities. Model performance as 

measured by (A) micro-averaged Area Under the Receiver Operating Characteristic 

(AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination of Receiver 

Operating Characteristic (BEDROC), (C) the fraction of compounds which have at least 

one true target among the top 10 predictions, and (D) coverage error are shown. 
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Figure 3.6 Synthetic Dataset Performance with MLP Hidden Layer Features. Model 

performance for stratified 10-fold cross-validation on the synthetic compound dataset. 

Classifier combinations using the MLP classifier are shown. “For a single model, “Not 

Stacked” indicates that the probability predictions of the listed model were used directly. 

If more than one model is listed, the mean probabilities for each label were used. “Stacked” 

indicates that the probability predictions of the listed models were passed to the logistic 

regression to obtain the final predicted probabilities. “Hidden Layer” indicates that the 

normalized penultimate layer activations were used as input features for the logistic 

regression instead of the predicted labels during model stacking. Model performance as 

measured by (A) micro-averaged Area Under the Receiver Operating Characteristic 

(AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination of Receiver 

Operating Characteristic (BEDROC), (C) the fraction of compounds which have at least 

one true target among the top 10 predictions, and (D) coverage error are shown. 
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While the performance measured for cross-validation is exemplary, it is 

undoubtedly an overly optimistic estimate of model performance for a prospective 

application. When using a random split cross-validation approach there is often 

redundancies between compounds present in the training and test folds. Therefore, 

predictions may be made on analogues of compounds that the model was trained on, which 

makes the prediction of the correct target for that compound a very easy problem. Methods 

such as temporal split validation or clustering techniques can be used to generate more 

dissimilar training and testing splits to offer more realistic performance estimates.76,121,122 

However, doing so requires removing activity data points and ultimately reducing the 

number of targets that can be considered. Consideration of a large number of targets is 

important to the utility of a computational target fishing method, because the method can 

only predict for targets it has been trained on. Despite the limitations of random splitting, 

other splitting techniques were not used in order to include as many target protein labels as 

possible. 

Assessment on the natural product benchmark is expected to give a less optimistic 

and more realistic performance estimate. To demonstrate the difference between synthetic 

and natural product compounds, similarities between cross-validation training and test sets, 

in addition to natural product compounds, were assessed. For each protein target label, 

pairwise Tanimoto similarities were calculated between the training compounds 

themselves, training compounds with test compounds, and training compounds with the 

natural product benchmark compounds. The cumulative density function (CDF) plotted for 

each pairwise similarity distribution is shown in Figure 3.7. The CDFs for the synthetic 

training and test sets are nearly identical. Overall, the test compounds are very similar to 
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the training compounds and thus the good model performance observed is expected. On 

the other hand, the natural products are less similar and performance on this benchmark is 

expected to be a better indicator of realistic performance.  

 

  

Figure 3.7 Cumulative Density Function (CDF) of Intra-Target Compound 

Similarities. All pairwise compound similarities were calculated between the training 

compounds and a given set for each protein target label. “Training” and “Test” sets are 

from a single cross-validation fold and “Natural Product” is the natural product benchmark 

set. 
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3.4.3 Natural Product Benchmark 

Following cross-validation, new models were trained using the entirety of the 

synthetic compound dataset and predictive performance was assessed for the natural 

product benchmark. As expected, predictive performance decreased for the natural product 

benchmark, especially for unstacked models (Figure 3.8). Without stacking micro-

averaged AUROC values ranged from 0.70 to 0.85, micro-averaged BEDROC values 

ranged from 0.43 to 0.59, 55% to 60% of compounds had a true target identified in the top 

10 predictions, and coverage error ranged from 1286 to 416. In general, model performance 

greatly improved when stacked. With stacking micro-averaged AUROC values ranged 

from 0.82 to 0.94, micro-averaged BEDROC values ranged from 0.45 to 0.73, 43% to 63% 

of compounds had a true target identified in the top 10 predictions, and coverage error 

ranged from 426 to 190. As observed in cross-validation, MLP stacked models appeared 

to suffer from overfitting resulting in performance degradation. While the micro-averaged 

AUROC value slightly increased for the MLP stacked model, all other metrics showed a 

performance decrease. Modifying the stacked MLP model to use the normalized 

penultimate layer activations as inputs to the logistic regression did not rescue performance 

to the same extent as with cross-validation (Figure 3.9). 
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Figure 3.8 Natural Product Benchmark Performance. Model performance for 

benchmarking on the natural product dataset. For a single model, “Not Stacked” 

indicates that the probability predictions of the listed model were used directly. If 

more than one model is listed, the mean probabilities for each label were used. 

“Stacked” indicates that the probability predictions of the listed models were passed 

to the logistic regression to obtain the final predicted probabilities. Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced 

Discrimination of Receiver Operating Characteristic (BEDROC), (C) the fraction of 

compounds which have at least one true target among the top 10 predictions, and (D) 

coverage error are shown. 
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Figure 3.9 Natural Product Benchmark Performance with MLP Hidden Layer 

Features. Model performance for benchmarking on the natural product dataset. For a 

single model, “Not Stacked” indicates that the probability predictions of the listed model 

were used directly. If more than one model is listed, the mean probabilities for each label 

were used. “Stacked” indicates that the probability predictions of the listed models were 

passed to the logistic regression to obtain the final predicted probabilities. “Hidden Layer” 

indicates that the normalized penultimate layer activations were used as input features for 

the logistic regression instead of the predicted labels during model stacking.  Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which 

have at least one true target among the top 10 predictions, and (D) coverage error are 

shown. 
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Interestingly, the use of a single level 0 classifier, with the exception of MLP, saw 

performance improvements with model stacking. This phenomenon is particularly apparent 

when comparing unstacked and stacked KNN models on the natural product benchmarking 

set. For example, the unstacked KNN model shows the worst micro-averaged AUROC 

score among the unstacked classifiers but stacking improves the score from 0.70 to 0.94. 

Such a dramatic increase in performance is unexpected, when the power of stacking is cited 

as being a result of combining level 0 classifiers. However, this assumes each model is 

passing singular values to be combined; either 1, 2, or 3 total values for each label 

depending on the number of base classifiers considered. In the models described here, all 

1,907 predicted probabilities are passed from each level 0 classifier to the level 1 logistic 

regression classifier. Since the logistic regression is trained in a one-vs-rest fashion for this 

multi-label classification problem, each protein target label is predicted using all predicted 

probabilities; either 1,907, 3,814, or 5,721 total values for each label depending on the 

number of base classifiers considered. In the example of KNN, many of these predicted 

probabilities are 0. However, information of the non-zero values can be used to influence 

the prediction of a given protein target label.  

The predicted target protein label information being used to give final predictions 

can be examined through the extraction of model coefficients from each trained logistic 

regression classifier. For example, the logistic regression model for predicting the protein 

target label “Q12884” (Prolyl endopeptidase FAP) has coefficients greater than 1 for the 

predicted probabilities of target labels “P48147”, “P97321”, “P27487”, “Q86TI2”, 

“Q9UHL4”, and “Q6V1X1'”. Inspecting the UniProt records for each reveal that these 

proteins share a common function, which is the cleavage of proline-containing peptide 
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bonds. Since these proteins share a similar function and substrate preference it would be 

unsurprising if a given compound was able to bind to more than one of these related 

proteins. However, direct binding data is difficult to obtain and will be unavailable for 

many compound-protein target combinations. Therefore, while level 0 model predictions 

may strongly and reasonably predict for one of these related proteins, this prediction would 

ultimately be treated as a false positive due to the unknown binding relationship. Through 

stacking, the level 1 classifier can learn from this information and ultimately make better 

predictions for the known protein target labels.  

To demonstrate that the logistic regression is using probabilities of functionally 

related proteins to improve predictions, semantic similarities were calculated. Gene 

ontology (GO) is a widely used basis for the measurement of functional similarity.123–126 

GO terms from the molecular function ontology were able to be obtained for 1,878 of the 

1,907 UniProt protein target labels through programmatic access to QuickGO via the 

provided API.127 Semantic similarities for each pairwise combination of protein target label 

GO terms were then computed according to the Lin expression of term similarity with the 

best-match product method using the OntologyX package suite in R.128–131 For each 

predicted label, the corresponding UniProt IDs for logistic regression coefficients with 

values greater than one were obtained, which resulted in 1,595 label groups of the possible 

1,907. The average semantic similarity of a query group of labels was calculated from the 

pairwise similarity matrix. Significance of group similarity for each query group of labels 

was assessed by a permutation test. Subsets containing the same number of labels as the 

query group of labels are sampled from the calculated pairwise similarity matrix. The 

proportion of these samples that have at least as high of an average similarity value as the 
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query group of labels yields an unbiased estimate of the p-value for the group.132 From 

these calculations it is observed that 80% of the label groups had scores with associated p-

values <0.05 (Figure 3.10). Therefore, 80% of the label groups had a similarity score higher 

than at least 95% of the permutated groups. Overall, the semantic similarity calculation 

indicates that most of protein target labels predicted by logistic regression were obtained 

by combination of the probabilities from functionally related proteins. This relationship 

was not given explicitly as an input feature during model training but was inferred from 

the similarity between the training ligands for which each of the proteins were known to 

bind. 
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Figure 3.10 Protein Semantic Similarity. Comparison of protein functional similarity measured by semantic 

similarity of molecular function gene ontology (GO) ID annotations for each protein UniProt ID. Sets of protein 

target labels, as UniProt IDs, were obtained from the coefficients of the logistic regression models that were trained 

to predict each protein target label in the KNN stacked model. (A) Distribution of the average semantic similarities 

of each protein target label set. (B) Distribution of p-values for the average similarity values of each group of protein 

target labels. The dashed red line is placed at the p-value 0.05.  80% of the protein target label sets had a p-value < 

0.05. Significance of group similarity for each query group of labels was assessed by a permutation test. 
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3.4.4 Cross-Validation on Subsets of the Synthetic Compound Dataset 

Additional stratified cross-validations were performed to understand how the size 

of the training data, the number of targets considered, and the use of a dissimilar set of 

compounds impacted model performance during cross-validation for the synthetic 

compound dataset. A total of six modified datasets were generated from the original 

synthetic compound set (Figure 3.11). First, all target labels with 100 compound records 

were used, which resulted in 635 protein targets and 63,500 compound-target activity pairs. 

This 100 compound record set (“100”) was one of the final datasets used for cross-

validation, but further sets were also generated from the set for comparison. To assess how 

the number of targets considered impacted performance, half of the protein target labels 

were randomly selected to yield another set (“100_ht”) with 100 compounds per target 

label, but now with 318 of the possible 635 protein target labels for a total of 31,800 activity 

pairs. Further subsets were made to examine the effect of reducing the number of 

compounds per target label. Therefore, both the 318 and the 635 protein target label sets 

were further subset by sampling 10 compounds from the 100 possible compound records 

for each protein target label. The 10 compounds were sampled through either random 

sampling (“10” and “10_ht) or through the selection of the most dissimilar 10 compounds 

(“10_ds” and “10_ht_ds”). This yielded two of the smaller 10 compound per label sets 

from each of the 100 compound per label sets, which were used to assess how intra-target 

class compound similarity influenced performance. Finally, stratified 10-fold cross-

validation was performed on each of the six subsets. 

  



 

 

1
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Figure 3.11 Synthetic Dataset Subset Schematic. Schematic that shows how the original synthetic compound dataset 

was split into different sets for subsequent cross-validations. The values “10” and “100” refer to the number of 

compounds per protein target label. The abbreviations “ht” and “ds” refer to the number of protein target labels being 

halved and that the most dissimilar compounds were selected respectively. 
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Performance was assessed for the six subsets using the same metrics as the original 

cross-validation and natural product benchmark, with the exception of coverage error. 

Coverage error was instead converted to fractional coverage error by dividing the measured 

coverage error by the number of labels considered. This was necessary for a fair 

comparison due to differences in the number of target labels among the datasets being 

compared. The results of the KNN_RF classifier for each subset are shown in Figure 3.12. 

Reducing the number of compounds had a negative effect on the classifier’s 

performance. When comparing the “100” and “10” datasets for the unstacked model, the 

micro-averaged AUROC score decreased by 0.06, micro-averaged BEDROC score 

decreased by 0.15, compounds with a true target identified in the top 10 predictions 

decreased by 18%, and 9% more labels were required in order to recover all true labels. 

Model stacking slightly mitigated the performance decrease that resulted from the reduced 

number of compounds. When comparing the “100” and “10” datasets for the stacked 

model, the micro-averaged AUROC score decreased by 0.04, micro-averaged BEDROC 

score decreased by 0.14, compounds with a true target identified in the top 10 predictions 

decreased by 18%, and 5% more labels were required in order to recover all true labels. 

The use of dissimilar compound sets dramatically reduced the classifier’s 

performance. When comparing the “10” and “10_ds” datasets for the unstacked model, the 

micro-averaged AUROC score decreased by 0.2, the micro-averaged BEDROC score 

decreased by 0.44, compounds with a true target identified in the top 10 predictions 

decreased by 47%, and 30% more labels were required in order to recover all true labels. 

Model stacking mitigated the performance decrease that resulted from the use of dissimilar 

compound sets. When comparing the “10” and “10_ds” datasets for the stacked model, the 
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micro-averaged AUROC score decreased by 0.09, the micro-averaged BEDROC score 

decreased by 0.33, compounds with a true target identified in the top 10 predictions 

decreased by 40%, and 9% more labels were required in order to recover all true labels. 

Halving the number of protein target labels showed little effect on classifier 

performance. When comparing the difference between “100” and “100_ht”, “10” and 

“10_ht”, and  “10_ds” and “10_ht_ds” for the unstacked model, on average the micro-

averaged AUROC score increased by 0.007 (0.003), the micro-averaged BEDROC score 

increased by 0.006 (0.005), compounds with a true target identified in the top 10 

predictions increased by 3.6% (0.79%),  and 3.3 % (2.4%) fewer labels were required in 

order to recover all true labels. While halving the number of targets slightly increased 

unstacked model performance, it slightly decreased stacked model performance. When 

comparing the difference between “100” and “100_ht”, “10” and “10_ht”, and “10_ds” and 

“10_ht_ds” for the stacked model, on average the micro-averaged AUROC score decreased 

by 0.007(0.009), the micro-averaged BEDROC score decreased by 0.025 (0.028),  

compounds with a true target identified in the top 10 predictions decreased by 2.0% 

(0.66%), and  0.84% (0.80%) more labels were required in order to recover all true labels. 

Overall, reducing the number of training compounds and using dissimilar 

compound sets had the greatest impact on performance, while halving the number of targets 

had a very minor impact on performance.  Furthermore, the trends observed here prompted 

further investigation on the impact of training dataset size, target diversity, and training-

test compound similarity. 
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Figure 3.12 KNN_RF Model Performance on Synthetic Dataset Subsets. “Original” 

refers to the original cross-validation performance on the unmodified synthetic compound 

dataset. The values “10” and “100” refer to the number of compounds per protein target label. 

The abbreviations “ht” and “ds” refer to the number of protein target labels being halved and 

that the most dissimilar compounds were selected respectively. “Not Stacked” refers to the 

mean probabilities of model predictions when more than a single model is listed. “Stacked” 

indicates that the probability predictions of the listed models were passed to the logistic 

regression to obtain the final predicted probabilities. Model performance as measured by (A) 

micro-averaged Area Under the Receiver Operating Characteristic (AUROC) curve, (B) 

micro-averaged Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

(BEDROC), (C) the fraction of compounds which have at least one true target among the top 

10 predictions, and (D) fractional coverage error are shown. 
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3.4.5 Impact of Training Dataset Size on Cross-Validation Performance 

It is expected that the number of training records for each protein target label 

influences classifier performance. To assess this in a systematic way, protein class labels 

with many compound records were collected and assessed through 10-fold cross-

validation. The top 5 largest sets were selected, which included the D2 dopamine receptor 

(UniProtID: P14416), beta-secretase 1 (UniProtID: P56817), melanin-concentrating 

hormone receptor 1 (UniProtID: Q99705), cannabinoid receptor 2 (UniProtID: P34972), 

and vascular endothelial growth factor receptor 2 (UniProtID: P35968). A total of 2,500 

compound records were randomly sampled for each protein target label and further 

randomly subsampled into sets of 2,000, 1,500, 1,000, 500, 100, and 10 compound records. 

The stratified 10-fold cross-validation procedure was then performed on each of these 

seven sets (Figure 3.13). Performance was assessed for the seven subsets using the same 

metrics as the original cross-validation and natural product benchmark, with the exception 

of true targets predicted in the top 10 results. This metric was modified to instead assess 

the fraction of compounds with a true target predicted as the top result. 

The number of training records for each protein target label indeed had an impact 

on classifier performance. As the number of training compound records increases, a 

corresponding increase is observed in performance. However, this effect begins to plateau 

at 500 compound records with a micro-averaged AUROC score of 0.999, a micro-averaged 

BEDROC score of 0.998, 97% of compounds had a true target identified as the top results, 

and coverage error of 1.04 for the KNN_RF classifier. Additionally, “Not Stacked” and 

“Stacked” classifier performance converged at this point due to both achieving essentially 
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perfect classification for the subset. The trends observed for the KNN_RF classifier were 

also observed for the other classifier combinations (Figure A.1-Figure A.6).  
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Figure 3.13 KNN_RF Model Performance with Different Training Set Sizes. Model 

performance for stratified 10-fold cross-validation on datasets containing various numbers 

of compound training records for each protein target label for the KNN_RF classifier. “Not 

Stacked” refers to the mean probabilities of model predictions when more than a single 

model is listed. “Stacked” indicates that the probability predictions of the listed models 

were passed to the logistic regression to obtain the final predicted probabilities. Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which 

yielded a true target as the top prediction, and (D) coverage error are shown. 
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3.4.6 Impact of Protein Target Diversity on Cross-Validation Performance 

Another factor that is expected to influence performance is the diversity of protein 

targets in the dataset. Related protein targets are more likely to bind to similar small 

molecule compounds than diverse protein targets. As previously mentioned, any 

compound-protein target associations that were unknown were treated as negative data. 

This assumption has a negative impact on performance when a compound is assigned a 

negative label for a protein target that it may likely bind to but has never been tested against. 

A classifier may reasonably predict this protein target strongly and be penalized for doing 

so in the performance evaluation as it is ultimately treated as a false positive prediction.  

To illustrate this effect, a diverse set of protein target labels were selected from the 

synthetic dataset used in full model training based on their L2 protein class as defined in 

ChEMBL 23.  A single UniProtID was selected for each L2 protein class with priority 

given to the protein target labels with the largest number of compound records. This 

resulted in a dataset containing 2,825 compound-target records for 31 diverse protein 

targets. Another set was obtained for comparison that contained only kinases. A total of 31 

UniProtIDs were selected that belonged to the kinase L2 protein class. During UniProtID 

selection, labels that contained a similar number of compounds records to those selected 

for the diverse protein target sets were selected. This resulted in a dataset containing 2,824 

compound-target records for 31 kinase protein targets.  

Classifier performance was assessed by stratified 10-fold cross-validation for the 

two datasets using the same metrics as described for the assessment of training compound 

set size. The expected performance degradation when considering related targets is 

observed (Figure 3.14). Without stacking, micro-averaged AUROC decreased by 0.10, 
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micro-averaged BEDROC decreased by 0.26, 32% less compounds had a true target 

identified as the top prediction, and coverage error increased by 3.1 for the kinase set 

compared to the diverse target set. Stacking slightly improved the relative performance for 

micro-averaged AUROC and coverage error and had almost no effect on micro-averaged 

BEDROC and the number of compounds with a true target predicted as the top result. With 

stacking, micro-averaged AUROC decreased by 0.07, micro-averaged BEDROC 

decreased by 0.27, 33% less compounds had a true target identified as the top prediction, 

and coverage error increased by 2.4 for the kinase set compared to the diverse target set. 

This trend observed for the KNN_RF stacked classifier was also observed for the other 

classifier combinations (Figure A.7). Overall, the consideration of similar targets reduces 

performance since the classifier more frequently predicts that a compound binds to a target 

for which no interaction had yet been reported.  
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Figure 3.14 KNN_RF Model Performance with Diverse Target Labels. Model 

performance for stratified 10-fold cross-validation on the diverse target and kinase datasets 

for the KNN_RF classifier. “Not Stacked” refers to the mean probabilities of model 

predictions when more than a single model is listed. “Stacked” indicates that the probability 

predictions of the listed models were passed to the logistic regression to obtain the final 

predicted probabilities. Model performance as measured by (A) micro-averaged Area 

Under the Receiver Operating Characteristic (AUROC) curve, (B) micro-averaged 

Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic (BEDROC), 

(C) the fraction of compounds which yielded a true target as the top prediction, and (D) 

coverage error are shown. 
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3.4.7 Impact of Intra-label Training-Test Compound Similarity on Predicted Probability 

Scores 

Despite the use of machine learning and model stacking, this classification model 

is inherently dependent on ligand similarity. The underlying assumption for all ligand-

based computational fishing methods is that proteins bind similar compounds. Therefore, 

if a query compound is dramatically dissimilar from compounds used in training the 

classification model for a protein target label, then low probability scores for that label are 

expected. Conversely, higher probability scores are expected as similarity between a query 

compound and the training compounds increases. However, a high degree of similarity to 

the training compounds is not always the case, as shown above for the natural product set, 

which has ramifications for the magnitude of the predicted probability scores.  

To demonstrate the impact of training compound set similarity to the query 

compound predicted label probabilities, pairwise similarities were calculated and then 

compared to predicted label probability values. For each compound in the natural product 

benchmark set, pairwise similarities were calculated between the natural product and the 

training compounds belonging to the natural product’s known target label classes. This 

yielded a similarity distribution for each known natural product-protein target activity pair. 

Additionally, the predicted probabilities output by the stacked classification model for each 

known natural product-protein target activity pair were collected. 

The similarity distributions for each activity pair were aggregated and binned 

according to the probability predicted for the known labels. The aggregated similarity 

distributions for each probability range are compared and shown in Figure 3.15 for the 

KNN_RF stacked classifier. For each predicted probability range bin, (0.0, 0.25], (0.25, 



 

134 

0.5], (0.5, 0.75], and (0.75, 1.0] the interquartile ranges span from 0.08 to 0.15, 0.10 to 

0.26, 0.09 to 0.27, and 0.09 to 0.34 respectively. The lower quartile values are all very 

close, and more distinct differences are observed between the upper quartiles especially for 

the lowest and highest probabilities ranges. In general, each probability range has a large 

proportion of low similarity values, and the letter-value plots133 for each range look very 

similar below the median value. The major differences between distributions are observed 

above the median value. Comparison of the same portions of each distribution above the 

median, the boxes with the same width, shows an increase in average Tanimoto similarity 

as probability scores increase. This trend is also observed for the synthetic compound 

cross-validation (Figure A.8) and is also more strongly observed for the non-stacked base 

classifiers (Figure A.9-Figure A.12).  

The number of predicted probabilities is not equally distributed among the four 

described ranges. There is a much larger number of probabilities predicted in the (0.0, 0.25] 

range, especially for the natural product set. Of the probabilities predicted by the KNN_RF 

stacked classifier for the natural product set, 93.8% of predicted probabilities are in the 

(0.0, 0.25] range, 2.8% in the (0.25, 0.5] range, 1.9% in the (0.5, 0.75] range, and 1.4 % in 

the (0.75, 1.0] range. For a synthetic compound cross-validation fold, 50.5% of the 

predicted probabilities are in the (0.0, 25] range, 9.0% are in the (0.25, 0.5] range, 9.1% 

are in the (0.5, 0.75] range, and 31.6% are in the (0.75, 1.0] range.  Consistent with the 

knowledge that the synthetic compound cross-validation sets have higher intra-target 

similarity between training and test sets than for the natural products, the proportion of 

compounds receiving high probability predictions is far greater for the synthetic 

compounds than for the natural product set.  
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The observation that query compounds dissimilar from the training data yield low 

predicted probability scores for correct predictions has implications for model usage and 

interpretation. As demonstrated, the stacked classifiers had good predictive power on the 

natural product benchmark. Therefore, correct targets are generally ranked before incorrect 

targets despite the low probability scores given to correct targets. While top ranking 

predictions should not be taken as an absolute truth, users are also encouraged to not 

immediately dismiss top ranked hits based purely on a low score. No matter the score 

received, top ranked hits should be critically evaluated in the context of the available 

experimental data regarding the compound’s bioactivity.  
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Figure 3.15 Letter-Value Plot of Aggregated Pairwise Similarity Distributions. Letter-

value plot showing the aggregated pairwise similarity distributions for benchmark natural 

product compounds and synthetic training compounds for known positive protein target 

labels. Similarity distributions were aggregated based on the predicted probability from the 

KNN_RF stacked classifier for the known protein targets of each natural product. The solid 

black line represents the median and the white dashed line the mean. Letter-value plots are 

similar to box plots but provide more information about the tails of a distribution. Each box 

represents a portion of a distribution according to its width shown. The widest box is 

identical to the interquartile range in a box plot and represents 50% of the data. The next 

widest boxes, as more than one box now has identical width, comprise 25% of the data. 

Those boxes are present directly above and below the interquartile range. For each 

successive box width reduction, the amount of data represented is halved. 
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3.4.8 Deployment of Stacked Model as a Web Application 

The trained model was deployed via an application programing interface (API) 

using Flask 0.12.2. The use of an API allows target predictions for molecules of interest to 

be made with an application run in a web browser. An example query for the natural 

product pukateine is shown in Figure 10. Pukateine is an aporphine alkaloid from the bark 

of the pukatea tree, Laurelia novae-zelandiae. Alkaloids extracted from the pukatea tree 

are thought to be the constituents responsible for the analgesic properties traditionally 

associated with the tree.134 Pukateine is reported to bind to dopamine D1 and D2 

receptors.135 When pukateine is input into the STarFish web application, dopamine D1 

(UniProtID: P18901) and D2 (UniProtID: P61169) receptors are the top two predicted 

targets. The next two predicted targets are the 5-hydroxytryptamine receptor 2A (5-HT2A) 

for rat (UniProtID: P14842) and human (UniProtID: P28223). No binding data for 

pukateine has been reported for this receptor, however, other aporphine alkaloids have been 

reported to have 5-HT2A activity.136,137 Therefore, in addition to predicting two correct 

protein targets, STarFish, has also predicted another likely target.  

While the KNN_RF stacked model demonstrated the best performance during cross-

validation and on the natural product benchmark, the KNN stacked model was selected for 

use in the STarFish web application. Predictions using the RF models are significantly 

more computationally expensive, and the use of the KNN stacked model is computationally 

efficient with only a slight loss in relative performance. The use of a computationally 

efficient model allows for end users to easily run the STarFish web application on their 

own computers with minimal hardware requirements. However, experienced users can 

modify the API to include other model combinations if desired. 



 

 
 

Figure 3.16 STarFish Web Application. Example query using the STarFish web application. (A) Query SMILES obtained by 

sketching a compound or directly pasting a SMILES string into the text box. (B) The query molecule and a list of predicted 

protein targets along with a probability score for each. 
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3.5 Conclusions 

To predict protein targets for natural products, a computational target fishing model, 

STarFish, was constructed using a model stacking approach and evaluated on a collected 

natural product benchmarking set. The collected natural product benchmark set consisted 

of 5,589 compound-target pairs for 1,943 unique compounds and 1,023 unique targets. All 

models were trained using potent synthetic compounds collected from ChEMBL and 

accounted for 1,907 protein targets. Model stacking combinations using k-nearest 

neighbors, random forest, and a multi-layer perceptron as level 0 classifiers and a logistic 

regression as a level 1 meta-classifier were examined. In general, model stacking 

approaches outperformed unstacked approaches, especially for the natural product 

benchmark. The stacked model comprised of KNN and RF as the level 0 classifiers showed 

the best performance with an AUROC score of 0.94 and a BEDROC score of 0.73. The 

stacked model comprised of KNN as the level 0 classifier had similar performance with an 

AUROC score of 0.94 and a BEDROC score of 0.71, but with significantly less 

computational expense. By default, STarFish uses the stacked KNN model to allow for use 

even with limited computing resources and has been deployed as an API, which can be 

downloaded and run in a web browser.
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Appendix A. Supplemental Tables and Figures. 
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  Table A. 1 Results of 10-fold cross-validation on the synthetic compound dataset. 
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  Table A. 2 Model performance results on the natural product benchmark. 
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Figure A.1 KNN Model Performance with Different Training Set Sizes. Model 

performance for stratified 10-fold cross-validation on datasets containing various numbers 

of compound training records for each protein target label for the KNN classifier. “Not 

Stacked” refers to the mean probabilities of model predictions when more than a single 

model is listed. “Stacked” indicates that the probability predictions of the listed models 

were passed to the logistic regression to obtain the final predicted probabilities. Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which 

yielded a true target as the top prediction, and (D) coverage error are shown. 
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Figure A.2 MLP Model Performance with Different Training Set Sizes. Model 

performance for stratified 10-fold cross-validation on datasets containing various numbers 

of compound training records for each protein target label for the MLP classifier. “Not 

Stacked” refers to the mean probabilities of model predictions when more than a single 

model is listed. “Stacked” indicates that the probability predictions of the listed models 

were passed to the logistic regression to obtain the final predicted probabilities. Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which 

yielded a true target as the top prediction, and (D) coverage error are shown. 
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Figure A.3 RF Model Performance with Different Training Set Sizes. Model 

performance for stratified 10-fold cross-validation on datasets containing various numbers 

of compound training records for each protein target label for the RF classifier. “Not 

Stacked” refers to the mean probabilities of model predictions when more than a single 

model is listed. “Stacked” indicates that the probability predictions of the listed models 

were passed to the logistic regression to obtain the final predicted probabilities. Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which 

yielded a true target as the top prediction, and (D) coverage error are shown. 
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Figure A.4 KNN_MLP Model Performance with Different Training Set Sizes. Model 

performance for stratified 10-fold cross-validation on datasets containing various numbers 

of compound training records for each protein target label for the KNN_MLP classifier. 

“Not Stacked” refers to the mean probabilities of model predictions when more than a 

single model is listed. “Stacked” indicates that the probability predictions of the listed 

models were passed to the logistic regression to obtain the final predicted probabilities. 

Model performance as measured by (A) micro-averaged Area Under the Receiver 

Operating Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced 

Discrimination of Receiver Operating Characteristic (BEDROC), (C) the fraction of 

compounds which yielded a true target as the top prediction, and (D) coverage error are 

shown. 
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Figure A.5 MLP_RF Model Performance with Different Training Set Sizes. Model 

performance for stratified 10-fold cross-validation on datasets containing various numbers 

of compound training records for each protein target label for the MLP_RF classifier. “Not 

Stacked” refers to the mean probabilities of model predictions when more than a single 

model is listed. “Stacked” indicates that the probability predictions of the listed models 

were passed to the logistic regression to obtain the final predicted probabilities. Model 

performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination 

of Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which 

yielded a true target as the top prediction, and (D) coverage error are shown. 
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Figure A.6 KNN_MLP_RF Model Performance with Different Training Set Sizes. 

Model performance for stratified 10-fold cross-validation on datasets containing various 

numbers of compound training records for each protein target label for the KNN_MLP_RF 

classifier. “Not Stacked” refers to the mean probabilities of model predictions when more 

than a single model is listed. “Stacked” indicates that the probability predictions of the 

listed models were passed to the logistic regression to obtain the final predicted 

probabilities. Model performance as measured by (A) micro-averaged Area Under the 

Receiver Operating Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-

Enhanced Discrimination of Receiver Operating Characteristic (BEDROC), (C) the 

fraction of compounds which yielded a true target as the top prediction, and (D) coverage 

error are shown. 
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Figure A.7 Stacked Classifier Model Performance with Diverse Target Labels. Model 

performance for stratified 10-fold cross-validation on the diverse target and kinase datasets 

for “Stacked” classifiers. “Stacked” indicates that the probability predictions of the listed 

models were passed to the logistic regression to obtain the final predicted probabilities. 

Model performance as measured by (A) micro-averaged Area Under the Receiver 

Operating Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced 

Discrimination of Receiver Operating Characteristic (BEDROC), (C) the fraction of 

compounds which yielded a true target as the top prediction, and (D) coverage error are 

shown. 
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Figure A.8 Letter-Value Plot of Aggregated Pairwise Similarity Distributions for the 

KNN_RF Stacked Classifier on the Synthetic Compound Test Set. Letter-value plot 

showing the aggregated pairwise similarity distributions for synthetic test compounds and 

synthetic training compounds for known positive protein target labels in a cross-validation 

fold. Similarity distributions were aggregated based on the predicted probability from the 

KNN_RF stacked classifier for the known protein targets of each synthetic test compound. 

The solid black line represents the median and the white dashed line the mean. Letter-value 

plots are similar to box plots but provide more information about the tails of a distribution. 

Each box represents a portion of a distribution according to its width shown. The widest 

box is identical to the interquartile range in a box plot and represents 50% of the data. The 

next widest boxes, as more than one box now has identical width, comprise 25% of the 

data. Those boxes are present directly above and below the interquartile range. For each 

successive box width reduction, the amount of data represented is halved. 
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Figure A.9 Letter-Value Plot of Aggregated Pairwise Similarity Distributions for the  

KNN Base Classifier on the Natural Product Benchmark Set. Letter-value plot showing 

the aggregated pairwise similarity distributions benchmark natural product compounds and 

synthetic training compounds for known positive protein target labels. Similarity 

distributions were aggregated based on the predicted probability from the KNN base 

classifier for the known protein targets of each natural product. The solid black line 

represents the median and the white dashed line the mean. Letter-value plots are similar to 

box plots but provide more information about the tails of a distribution. Each box represents 

a portion of a distribution according to its width shown. The widest box is identical to the 

interquartile range in a box plot and represents 50% of the data. The next widest boxes, as 

more than one box now has identical width, comprise 25% of the data. Those boxes are 

present directly above and below the interquartile range. For each successive box width 

reduction, the amount of data represented is halved. 
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Figure A.10 Letter-Value Plot of Aggregated Pairwise Similarity Distributions for the 

KNN Base Classifier on the Synthetic Compound Test Set. Letter-value plot showing 

the aggregated pairwise similarity distributions for synthetic test compounds and synthetic 

training compounds for known positive protein target labels in a cross-validation fold. 

Similarity distributions were aggregated based on the predicted probability from the KNN 

base classifier for the known protein targets of each synthetic test compound. The solid 

black line represents the median and the white dashed line the mean. Letter-value plots are 

similar to box plots but provide more information about the tails of a distribution. Each box 

represents a portion of a distribution according to its width shown. The widest box is 

identical to the interquartile range in a box plot and represents 50% of the data. The next 

widest boxes, as more than one box now has identical width, comprise 25% of the data. 

Those boxes are present directly above and below the interquartile range. For each 

successive box width reduction, the amount of data represented is halved. 
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Figure A.11 Letter-Value Plot of Aggregated Pairwise Similarity Distributions for the  

RF Base Classifier on the Natural Product Benchmark Set. Letter-value plot showing 

the aggregated pairwise similarity distributions benchmark natural product compounds and 

synthetic training compounds for known positive protein target labels. Similarity 

distributions were aggregated based on the predicted probability from the RF base 

classifier for the known protein targets of each natural product. The solid black line 

represents the median and the white dashed line the mean. Letter-value plots are similar to 

box plots but provide more information about the tails of a distribution. Each box 

represents a portion of a distribution according to its width shown. The widest box is 

identical to the interquartile range in a box plot and represents 50% of the data. The next 

widest boxes, as more than one box now has identical width, comprise 25% of the data. 

Those boxes are present directly above and below the interquartile range. For each 

successive box width reduction, the amount of data represented is halved. 
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Figure A.12 Letter-Value Plot of Aggregated Pairwise Similarity Distributions for the 

RF Base Classifier on the Synthetic Compound Test Set. Letter-value plot showing the 

aggregated pairwise similarity distributions for synthetic test compounds and synthetic 

training compounds for known positive protein target labels in a cross-validation fold. 

Similarity distributions were aggregated based on the predicted probability from the RF 

base classifier for the known protein targets of each synthetic test compound. The solid 

black line represents the median and the white dashed line the mean. Letter-value plots are 

similar to box plots but provide more information about the tails of a distribution. Each box 

represents a portion of a distribution according to its width shown. The widest box is 

identical to the interquartile range in a box plot and represents 50% of the data. The next 

widest boxes, as more than one box now has identical width, comprise 25% of the data. 

Those boxes are present directly above and below the interquartile range. For each 

successive box width reduction, the amount of data represented is halved. 
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Appendix B. Datasets and Code. 

 

Snapshots of the mentioned GitHub repositories are also available in the accompanying 

supplemental data file. 
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