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Abstract

The delivery of oxygen by blood through blood vessels is a critical process that 

enables cells and tissue to maintain functionality. This thesis focuses on this process at a 

small scale in the body. In particular, it examines the flow of blood through capillaries in 

the brain and how that blood diffuses oxygen into the surrounding tissue. These two 

models, blood flow and oxygen diffusion, are modeled and the two models are coupled. 

Two different implementations of this coupled model are used to solve the partial 

differential equation (PDE). First, an implementation in MATLAB based on the Finite 

Element Method (FEM) was written for this paper. Additionally, an implementation in  

C++ is used which is based on Green’s Function Methods. This implementation was 

written by Secomb and can be found at github [3]. These implementations are used to 

examine oxygen transport and the effects of heterogeneity on it (differences in oxygen 

content of blood vessels that are close to each other). Heterogeneity tends to occur 

alongside diseases. We aim to show that this heterogeneity decreases the total oxygen in 

surrounding tissue. Additionally, we aim to show what the consequences of heterogeneity 

and the decrease in oxygen in the tissue would be on nearby neurons. 
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Chapter 1. Introduction

Blood is used to transport oxygen throughout the human body and supply it to 

tissues and organs. As blood travels through vessels, it diffuses this oxygen into the 

surrounding tissue. Various factors come into play regarding the distance that oxygen can 

diffuse into tissue; however, due to low solubility of oxygen inside of tissue, this distance 

is often small [6]. Specific factors that impact diffusion of oxygen examined by this thesis 

will be noted in Chapter 2. Because of the relatively small diffusion distance, it is 

important for blood to be delivered reliably and efficiently. 

Blood vessels and tissue within the brain are the focus of this thesis. Since the 

brain is an organ that is vital to human life, it must be supplied with enough oxygen. 

Without proper amounts of oxygen, problems arise. Cells, tissue, and neurons, in 

particular, can all fail to reproduce or even die without enough oxygen. This lack of 

oxygen can occur for many reasons including diseases or conditions such as strokes or 

heart attacks or even simply old age. In the brain, enough deficiency in oxygen can lead 

to death. The main purpose of this thesis is to simulate oxygen levels in tissue 
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surrounding a capillary network based on the blood oxygen content coming into the 

vessel network. A mathematical model is used to simulate this. 

At a young age, vessels near each other tend to exhibit homogeneity. This means 

that capillaries near each other will have very similar qualities. As a human ages, 

however, heterogeneity tends to emerge due to plaque buildup among other factors. 

Differences in blood vessels close to each other tend to become more pronounced. 

Potentially, certain capillaries could become blocked off entirely. We will show that an 

increase in heterogeneity leads to a decrease in oxygen diffused into tissue surrounding 

the vessel network even if the total amount of oxygen in the vessel network is the same. 

Existing research has been done regarding oxygen diffusion [6][7][8]; however, there is a 

bit of a gap in the research regarding the effects of the aforementioned heterogeneity. As 

such, this will also be a focus of the results and conclusions in this paper. 

Finally, by examining the oxygen necessary for a neuron to fire or even live, one 

can determine the amount of oxygen in a given tissue area in or around the vessel 

network and determine if a neuron will survive in this area or not. If the neuron would 

survive, tests could then be run under various conditions to see which factors would 

cause this neuron to stop firing and which factors could cause the neuron to die [9].

A brief outline of the rest of this thesis is as follows. Chapter 2 of this thesis will 

discuss the mathematical model used for blood flow and diffusion. Within this section, 

we break down the governing equations as well as variables and the choices made for the 

implementations. Chapter 3 will review both of the implementations used. Since two 

different implementations are used, pros and cons of each will be discussed. In Chapter 4, 
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results and a discussion of them is presented. We will examine the effects of 

heterogeneity as mentioned above. We also examine the effects of varying different 

parameters provided in the model. Finally, Chapter 5 will include a brief conclusion to 

the thesis as well as a discussion about future work and how the results from this thesis 

can be used in other applications.
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Chapter 2.  The Mathematical Model for Blood Flow and Blood 

Diffusion

In order to capture the physiological process of oxygen delivery, one must model 

the path that oxygen takes from blood into tissue. As such, there are two major models 

used in this thesis. The first models how oxygen is transported inside of blood vessels and 

capillaries. This begins with oxygen enriched blood at the start of a capillary and models 

how the oxygen levels inside of the blood vessel changes. Since oxygen (O2) is diffusing 

into the surrounding tissue, vessels will see a drop in the partial pressure of oxygen down 

the length of the vessel. For reference, the partial pressure of oxygen is simply the 

measurement of oxygen in arterial blood. Once the values of the O2 partial pressure 

(partial pressure of oxygen) have been obtained for each vessel in the network, the 

second model comes into play. The oxygen diffusion model takes the output of the blood 

flow model and is used to calculate the O2 partial pressure in the surrounding tissue [9]. 

By combining these two models, we obtain the final physiological process of the delivery 

of oxygen from the beginning of a capillary network and into the surrounding tissue.
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2.1 Blood Flow Model

The main purpose of the blood flow model is to analyze the oxygen levels down a 

capillary. This model can be used multiple times when networks of capillaries are used as 

opposed to one single capillary. For generality, capillaries modeled are assumed to be 

cylinders. 

2.1.1 Oxygen Transport Rate Equation

The rate of convective oxygen transport along a vessel is given by:

Φ(Pb)=Q (αbPb+CDHD S(Pb))

In this equation, Q is the volumetric rate of flow of blood in the capillary. In our 

model, this can be calculated by using the radius of the blood vessel in question as well as 

the velocity (in micrometers/sec throughout this thesis) of the blood entering the vessel. 

In particular:

v×rc
2
×π

Where v is velocity and r is the radius.

α b is the effective solubility of oxygen within blood plasma.  O2 partial pressure 

in the blood leads to oxygen being dissolved in the blood. A higher pressure causes more 

oxygen to be dissolved in the blood. However, oxygen dissolved in blood represents only 

a relatively small amount of oxygen carried. Most oxygen ends up being bound to a 

protein known as hemoglobin [5]. This solubility can be represented by the following 

equation:
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Here, HD is the same as it is in the transport rate equation. α p is the solubility of 

blood in plasma and α rbc is the solubility of blood in red blood cells. As stated previously, 

dissolved oxygen delivered is generally very small compared to hemoglobin-bound 

oxygen, but could be more significant in cases of very low hematocrit. Since both α 

values in this equation are very similar, the dependence of α b on the hematocrit level is 

fairly low and this equation is treated as a constant in this thesis [6].

CD is the concentration of hemoglobin-bound oxygen in a fully saturated red 

blood cell (how much oxygen is in a fully saturated red blood cell). This helps to 

determine the amount of oxygen available due to hemoglobin, along with HD and S(P).

HD is the hematocrit level. Hematocrit is the ratio of the volume of red blood cells 

to the total volume of blood. If hematocrit is too low, a person is described as being 

anemic. Generally, the normal hematocrit levels for a person can very with gender and 

age. For men, a normal range is considered to be between 38 and 48 percent. For women, 

the range is shifted down slightly and is considered to be between 35 and 44 percent [4]. 

For our purposes, the model uses 40% or 0.4 for HD unless stated otherwise.

 Pb is the O2 partial pressure inside of the blood vessel and is the end result of this 

model. It is shown this Pb will vary along the length of the vessel. Due to this, we will 

generally start with an initial Pb and will use that to solve for Pb(x).

Finally, S(P) is the fractional oxyhemoglobin saturation curve. This function is 

represented by the Hill equation [6]:

S (P )= Ph

P50
h
+Ph
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Here, P50 represents the O2 partial pressure at 50% hemoglobin saturation and h 

represents the hemoglobin saturation Hill coefficient and is constant. P50 is generally 

taken to be around 38 mmHg and h is generally taken to be 2.7 and is dimensionless. 

A plot of this curve is pictured below:

2.1.2 Oxygen Level Differential Equation

Given the oxygen transport rate equation described above, it is possible to 

formulate a differential equation to find Pb. Due to conservation of oxygen, it is necessary 
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to balance the flow across the boundary of the capillary with the total flux along the 

capillary. This gives the equation:

dΦ(Pb)

dx
=−qv (x ) where qv (x )=−αT D∫

0

2 π ∂ PT
∂r

(rc)dθ .

Here, D is the oxygen diffusion constant in tissue. α T  is the solubility of oxygen 

in tissue and PT is the O2 partial pressure in the surrounding tissue. Additionally, rc is the 

radius of the capillary in question and r is the radial distance from the center line in the 

capillary. The integral simply integrates around the circumference of the capillary. This 

equation leads to the following differential equation which can be solved for Pb:

d Pb
dx

=
2D

Qrc (αb+CD HD S
'
(Pb))

d PT
dr (rc )

Note that the derivative of the oxyhemoglobin saturation is used. This equation is 

solved by introducing the initial condition of Pb(0), that is the partial pressure of oxygen 

at the beginning of the capillary. For multiple capillaries, this equation must me solved 

multiple times. Additionally, if capillaries are connected to each other, branch points must 

be considered and conservation of blood flow must be maintained. If one capillary 

branches into two, the flow of blood in the two branch capillaries must equal the flow in 

the original capillary. 
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2.2 Oxygen Diffusion Model

After solving for the oxygen levels in each capillary, it is possible to solve for the 

partial pressure of oxygen in the surrounding tissue by modeling the effects of diffusion 

of oxygen from capillaries and into the tissue. The O2 partial pressure in the tissue 

satisfies the partial differential equation:

∆ PT=
MOX

αTD
Γ (PT )≡δ Γ (PT )

In this equation, PT is the O2 partial pressure in the tissue and is the goal. MOX is 

the metabolic consumption rate of oxygen when oxygen is not limited. α T  is the 

solubility of oxygen in the tissue. D is the uniform oxygen diffusivity. Delta is used to 

combine the previous three variables into one for ease of use. This delta is used to vary 

the strength of the metabolism in both implementations as all three variables are related 

to consumption or diffusion of oxygen [6]. Finally:

Γ (PT )=
PT

KT+PT

Here, KT is a constant that represents partial pressure of oxygen in the tissue at a 

half maximum consumption rate. 

Although both implementations of the model handle the boundary conditions 

slightly differently, this chapter includes a brief discussion of the boundary conditions. In 

general, there are a couple of different ways to represent conditions along the boundary. 

At the edge of the tissue region, no-flux boundary conditions can be imposed. There are 

other choices for the edges of the tissue that will be discussed in the chapter on 

implementation. At the boundary between the tissue and the capillaries, the diffusive 
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oxygen flux across the boundary must be continuous [6]. Specifically, this relationship 

can be defined with the equation:

Pav (x)= Pb (x) − K qv (x)

As this equation is a function of x, it can be used to represent the boundary for the 

entire length of the capillary. Here, Pb is the partial pressure of oxygen within the 

capillary, as before. PAV represents the O2 partial pressure of the tissue averaged around 

the circumference of the capillary. K represents intravascular resistance to radial oxygen 

transport. This K is assumed to be a constant in this model.

As this partial differential equation (PDE) gives the value of Pb throughout the 

tissue domain, it can then be used as part of the equation that involves finding oxygen 

levels in the blood vessel. Since the solution to each of these equations gives a value that 

can be used in the other, it is possible to go back and forth between the two to see if the 

O2 partial pressure in the tissue will settle down to a specific distribution.
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Chapter 3. Implementation

Two implementations of the mathematical model were used in this thesis. For 

each implementation, there will be a brief overview of the numerical algorithm used. 

Additionally, there will be a discussion of the input to the program as well as the output 

generated by the program. Following that, there will be a section on the actual 

implementation, including language specific details. Finally, a discussion of the strengths 

and weaknesses of each algorithm is presented.

 First, an implementation was written in MATLAB. This utilizes MATLAB 

functions for solving ordinary differential equations [2] and also uses a MATLAB partial 

differential equation solver that uses the finite element method. Despite having some 

limitations, this implementation is a relatively good approximation to the solution. The 

second implementation is written by Secomb and is in C++ [3]. In addition, there is a 

MATLAB version of this Green’s Function implementation which was used to grasp the 

workings of the code as it was easier to read.  Specific benefits and drawbacks to each 

implementation are discussed in their respective sections.
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3.1 Finite Element Method Implementation

As previously stated, the first implementation used was based on the finite 

element method.

3.1.1 Methodology

There are two main sections for of this program, corresponding to the two 

sections of the model. The first section is finding the oxygen levels inside of the vessels 

in the capillary network. For this, a general ordinary differential equation (ODE) solver 

[2] built into MATLAB is used to solve the differential equation presented in Chapter 2.

d Pb
dx

=
2D

Qrc (αb+CD H D S
'
(Pb))

d PT
dr (rc )

The second main part of this program solves the second half of the model. As 

stated before, this is a partial differential equation and will require a PDE solver. The 

finite element method (FEM) is a numerical method for solving boundary value problems 

for partial differential equations such as the one found in the above model. As a brief 

aside, some introductory information on the FEM is given.

The finite element method involves taking the domain used and dividing it up into 

small subdomains, also known as elements. The name is derived from the fact that there 

are a finite amount of these elements. Approximate solutions are generated in each 

subdomain and then the entire solution is pieced together in the end. A simple, one 

dimensional example is given below:
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This figure is a plot of the solution to the following PDE.

Note that the solid line is the exact solution to the PDE and the dashed line is the 

approximation using the FEM with four equal sized, linear elements. The endpoints of 

each element are equal to the exact solution. With more elements and higher order 
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elements (cubic, quartic, etc.), the total approximate solution becomes closer to the exact 

solution. 

This method can be expanded to two and three dimensions. With two dimensions, 

elements used are generally triangles or squares. More dimensions obviously adds more 

complexity. For three dimensions, many types of shapes combining triangles and squares 

into 3D objects can be used for elements. Elements are then combined like in the above 

figure to fill out the mesh. In the case of our model, the tissue domain is the mesh and is 

broken up into elements by the algorithm. At the edges of the domain boundary 

conditions must be imposed.

3.1.2 Implementation Details

MATLAB is a tool that implements many mathematical features efficiently and is 

good for readability and convenience. For these reasons, MATLAB was chosen to 

implement the FEM version of the model. In this subsection, all implementation details 

will be discussed. This includes program input, output, and function calls. 

To begin, the input has two sections. First is simply input variables. These include 

most of the variables discussed in Chapter 2. In particular, the input variables that will be 

changed most are metabolism-based variables (M, D, and delta) as well as blood flow-

based variables (blood velocity in each capillary and initial O2 partial pressure for each 

capillary).

The other input is the mesh domain which is stored as a .stl file. This file must be 

generated elsewhere. This is an abbreviation of stereolithography and is used with 
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computer aided design (CAD) software to describe surface geometry of figures. It is often 

used in applications such as 3D printing. In our implementation, the .stl file is imported 

into MATLAB and used as the tissue domain. The software used for the .stl file 

generation is called SketchUp. SketchUp is a 3D modeling program by Google that 

allows drawing meshes [1]. Once a 3D model is generated it is exported as a .stl file and 

can be properly imported into the MATLAB as long as the model is valid. In MATLAB, 

nested geometries are not allowed. An example of a model made for this implementation 

is shown in figure 3.2 below.
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The .stl file pictured in figure 3.2 is of a relatively simple domain with one 

capillary down the center. Note that the entire domain is a large cylinder that represents 

the tissue domain. The inside of the capillary is not modeled. Instead the oxygen 

concentration is imposed as a boundary condition along the inside of the tissue domain 

where the capillary would be. 

The MATLAB code begins with setup of input and variables. Then, the ODE 

model is implemented. This is done with the use of the ode45 function. There are many 

functions that can be used to solve ODEs in MATLAB and a table of these can be found 

in MATLAB documentation [2]. ode45 is useful for most problems and was suited well 

for this problem. The initial value for the ODE is given as the partial pressure of oxygen 

at the beginning of the capillary and it is solved down the entire length of the capillary 

(usually around 100 micrometers [8]). This process is done for each capillary. 

The next section of the code solves the second model regarding diffusion of 

oxygen into tissue. First, the .stl file is imported using the importGeometry function. 

Then boundary conditions must be applied to the model by using 

applyBoundaryCondition of each face of the model. Each face can be given either 

neumann, dirichlet, or mixed boundary conditions. The outside of the model generally 

has no flux conditions. The faces of the model touching the capillaries are given 

Neumann conditions related to the oxygen concentration in the blood. Since this varies, a 

function must be passed into the applyBoundaryCondition function. Careful attention 

must be paid to make sure that the boundary conditions take into account the oxygen 

already in the tissue and the oxygen from other capillaries. In order to see how faces are 
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labeled, the pdegplot shows the numbered labels on the model to make boundary 

conditions easier to set. The next step of the process is to use the function 

specifyCoefficients. The MATLAB PDE solver is relatively limited in the forms of PDEs 

that are solvable. Currently, it solves PDEs of the form [10]:

In this equation, m, d, c, a, and f are coefficients that must be supplied. This is 

done through the specifyCoefficients function. For the model presented here, m, d, and a 

are all set to 0, c is set to 1, and f  is set using the value of delta from the original PDE. 

Finally, the mesh is generated using generateMesh and the PDE is actually solved using 

solvepde.

After the result is generated, it must be analyzed and output must be generated. 

The first piece of output in this implementation is the percentage of tissue with sufficient 

oxygen. The user can supply the value, in mmHg, that is sufficient and the program will 

output the percentage as well as the average and total partial pressure in the tissue and a 

3D plot of which areas of the tissue have sufficient oxygen. Additionally, a separate 3D 

plot is generated which shows the specific levels of O2 partial pressure throughout the 

tissue. Finally, plots are made for each capillary. These plots have the oxygen distribution 

down the inside of each capillary as calculated from the ODE solver. They also show the 

oxygen distribution just outside of the capillary by averaging the values of the O2 partial 

pressure around the circumference around each capillary at various points. As an 
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intermediary step, a plot of the values around a section of capillary was also made. This 

plot can be found below in figure 3.3.

Images of other specific output plots described here can be found in the results 

section.
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3.1.3 Limitations

Although this implementation of the model works fairly well, there are a few 

significant limitations to point out. The first and most important is that the PDE solver is 

limited to a certain subset of PDEs as noted in the previous subsection. In particular, the 

model requires that the right side of the PDE be variable with respect to PT:

Γ (PT )=
PT

KT+PT

Unfortunately, the right side of the solver requires an inputted ‘f’ value that can be 

variable, but cannot depend on PT. This means that the metabolism of this implementation 

stays constant. Thus the PDE is slightly simplified, but is still similar to the stated model. 

Another limitation is on the input to the code. Specifically, for a new network to be 

generated, an entirely new .stl file must be generated through SketchUp. This can be a 

difficult process depending on experience with the software and level of complexity of 

the desired network. As a result many networks used in this implementation are relatively 

simple with no branching vessels. Additionally, this implementation does not work if all 

boundary conditions are neumann boundary conditions. Because of this, a few different 

runs were done with various boundary conditions. The most reasonable seemed to be 

imposing boundary conditions as the model suggests, but using mixed boundary 

conditions on the outside of the tissue furthest from the capillary. Here the 

implementation uses no flux on the boundary as well as setting the O2 partial pressure to 

be equal to 0 on the boundary face farthest from the capillaries and assuming that the 

diffusion would not reach that far. A final limitation is the time taken to run the program 
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is fairly long. For example, running this code with four capillaries takes roughly 3 

minutes. For these reasons, a second implementation of the model was also used to allow 

for greater accuracy.

3.2 Green’s Function Implementation

A second implementation was found using Green’s function. This was 

implemented by Secomb and is used as it does not have nearly as many limitations as the 

FEM implementation. First, this implementation accurately implements the PDE, 

allowing for the right side of the equation to be variable in PT. This alone allows for a 

more accurate solution by using a variable metabolism. This implementation also 

alleviates the difficulty with inputting various networks that are more complicated. This 

is done simply through a network input file and will be discussed in subsection 3.2.2 with 

the implementation details. The problem with boundary conditions is also negated in this 

implementation. Secomb states a few different ways of handling conditions on the 

boundary, including the one used in our FEM implementation, but ends up using a 

different approach [6]. This will also be discussed later in this chapter. Finally, the 

program can run quite quickly. Depending on the resolution of results desired, the 

program can run tests for 10 or more capillaries in a few seconds.

3.2.1 Methodology

The implementation of Green’s function also has 2 parts, corresponding to the 2 

parts of the model. The blood flow model is implemented by using a series of studies that 
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developed a number of equations. These equations describe the viscosity of blood in 

vessels as a function of the diameter of the vessel and the hematocrit. Other equations 

used describe the partition of hematocrit in diverging bifurcations by using flow rates in 

each branch as well as vessel diameter and hematocrit. For an in depth proper analysis of 

this method as well as the equations used, see chapter one of Microcirculation [7]. This 

model results in the prediction of capillary flow rate, O2 partial pressure within the 

capillary, and specific hematocrit levels for each capillary.

The second part of the implementation uses Green’s function to implement the 

PDE from the model. The idea behind this implementation is that each blood vessel is 

represented by a finite number of oxygen sources, determined by the blood flow. The 

representation of O2 partial pressure in the tissue is generated by adding up the values of 

the fields from each oxygen source [3]. This Green’s function method was developed to 

avoid the use of the no flux boundary conditions and allows tissue domains of any shape. 

Particularly, this method embeds the capillary network and tissue region in an effectively 

infinite domain. Outside of the tissue region, the domain maintains the same diffusivity as 

the tissue region, but does not contain sources or sinks for any solutes (for this thesis, 

oxygen was the only solute used) [6].

According to Secomb, in order to solve our PDE model using the Green’s 

function method, we will reformulate the original PDE into the form:
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Here, G, the Green’s function, is defined as the O2 partial pressure at at a point x 

that results from a source point x*. Additionally, δ3 is defined as the delta function in 

three dimensions. The potential, partial pressure in this model, is given by the equation:

Note that the Green’s function appears here again. The function q in this equation 

represents the distribution of source strengths in the domain. When embedding the 

capillary network and tissue in an infinite domain, the solution for G is simply:

This makes sense as the farther away a tissue point is from a source, the larger 

|x-x*| will be. This in turn makes G smaller, effectively simulating diffusion. When 

placing the tissue in a finite domain, terms other than G1 may be required. Oxygen 

sources are considered to be uniformly distributed around the circumference of the 

capillary [6].

3.2.2 Implementation Details

This method is implemented by Secomb in C++ [6]. A version with fewer features 

was also found in MATLAB but was only used in understanding the algorithm. Since the 

C++ version is more complete, it will be explained in this subsection. Input, output, and a 

brief explanation of the code will be discussed. 

Input to this implementation is very different from input to the first 

implementation. All input is passed through .dat files that are placed in the folder where 
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the program is run. Seven input files are used, but only a few will be extensively covered 

in this thesis as some remain constant throughout testing. Samples of these input files can 

be found in Appendix A. 

The input file modified most often is network.dat. This file essentially provides 

the structure of the capillary network and tissue domain. The beginning of this file allows 

for the size of the tissue domain in microns. Generally, sizes of 100x100x100 or 

110x110x110 were used for the tests in this thesis. Additionally, the number of tissue 

points can be provided in a grid. When more tissue points are used, a more accurate result 

is given. The rest of the file specifies the location and dimensions of each capillary. For a 

given capillary, the only variables needed are the start and end points, the diameter, a 

relative flow, and hematocrit. Start and endpoints are defined through nodes. This makes 

creating new networks very simple. One simply needs to add a line for the new capillary 

for each capillary and a new node if necessary. The final few lines of this file give 

information about boundary nodes. Here, it is specified which nodes have blood coming 

into them, what the partial pressure is in these nodes, and what the incoming flow is.

Another input file of interest is the SoluteParams.dat file. In this file, parameters 

can be supplied that describe how blood, oxygen, and the tissue interact. Specifically, 

metabolism constants, solubility of oxygen, and Hill equation constants can be supplied, 

among others. This file is used to vary these parameters when performing tests. More 

solutes than oxygen can be provided, but oxygen alone was sufficient for this thesis.

VaryParams.dat is very helpful for testing as it allows for multiple runs. This 

allows a user to set a number of runs and to change a specific variable during each run. 
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Although the variables allowed for this are limited, it is still helpful. Allowed variables 

are noted in the file.

Other input files give intravascular resistance (IntravascRes.dat), formatting 

output plots (ContourParams.dat), rates of production in the tissue (tissrate.cpp.dat), and 

dependent variables from greens (postgreens.cpp.dat and PostGreensParams.dat). These 

files were rarely changed for the work in this thesis. Additionally, postgreens.cpp.dat and 

PostGreensParams.dat are not used at all and can be considered empty.

Many C++ files are used in combination to implement this method. They can be 

can be found on Secomb’s github page [3]. This implementation approximates the 

network as a set of uniform segments inside of a cuboidal tissue shape. Each vessel is 

divided into subsegments that represent the sources of oxygen. The tissue is also divided 

into subsegments. Each subsegment represents a tissue node point where oxygen is 

calculated. Tissue node points are determined by outboun.cpp and analyzenet.cpp based 

on two possible methods which is discussed by Secomb. The tissue is then embedded in 

an infinite domain. This is implemented through the use of various matrices that 

correspond to the strengths that sources have on each other. Each element gives the 

partial pressure of oxygen at the midpoint of a tissue subregion or vessel subsegment 

resulting from a source at a different tissue or vessel region. In the end, a system of 

equations using these matrices and source strengths is solved iteratively. Secomb goes in 

depth into the specifics of this implementation in his paper [6].

The output of this program is also generated in many files and is placed in a 

folder. As stated, there are quite a few files so only the ones relevant to this thesis will be 
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described. First is a contour file called CountourXXX.ps where XXX is the run number 

(for instance, run 20 would be 020). This shows the oxygen levels in the tissue in the 

domain and overlays the vessel network on top of it. 

Another file generated is summary.out. This file gives a summary of all runs 

generated from this test. It notes the parameters that were changed for each run as well as 

the average partial pressure of oxygen in the entire tissue domain. This is relatively 

useful, but is refined later on.

TissueLevelsXXX.out gives the partial pressure of oxygen at each tissue point. 

For most runs, 1000 tissue points are used.  This also gives the mean, standard deviation, 

min, and max of the oxygen levels. VesselLevelsXXX.out is also similar. This gives the 

oxygen levels in each vessel. All four other statistics are also used in the vessel levels 

documents. 

A MATLAB code was also written in order to help visualize the results of this 

implementation. This code finds the average O2 partial pressure in a specific area in the 

tissue domain. Particularly, this will calculate the oxygen level in between four capillaries 

and also in the lower third of the tissue domain in between the four capillaries. If multiple 

runs are used in a test, this prints the values for each run. This result is interesting if a 

neuron is placed in the middle of the capillary network. Then it is possible to determine if 

the neuron is receiving enough oxygen to fire.
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Chapter 4. Results

A number of results were made in order to examine the process of oxygen 

transport through blood vessels and into tissue. Initial runs were first completed in order 

to visualize the effects of oxygen diffusion and to verify correctness. Additionally, testing 

was performed on the effects of varying different parameters. These parameters include 

vessel radius, partial pressure of oxygen into capillaries, metabolism, flow rate, among 

others. Finally, tests were run to examine the effects of heterogeneity on the surrounding 

tissue. In particular, the O2 partial pressure in between four capillaries was examined 

when varying the amount of heterogeneity in the four capillaries. For instance, if one 

capillary had a large radius while the remaining three had small radii. A depiction of a 

network used for such tests is shown below.
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4.1 F.E.M. Results

Several tests were run with this implementation. Despite the relative inaccuracy of 

this implementation, it produces nice visuals and can be used to analyze the effects of 

heterogeneity in the broad sense. 

First we examine sample results with two capillaries with a five micron radius. 

They are 30 microns apart and are embedded in a tissue cylinder with a radius of 60 

microns. The tissue region has a height of 80 microns, giving the capillaries that same 

length. For the two runs presented here, the velocity is varied and the initial partial 

pressure for both capillaries is 60 mmHg. The first run, depicted in figure 4.2, gives a 
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velocity of 800 for both capillaries. The second run changes the velocity of the first 

capillary to 1200 and the second capillary to 400. A 3D plot of each is shown below. Note 

that the 3D plot shows the O2 partial pressure in mmHg at any given location in the tissue 

region by use of the color bar. It is possible to create contour plots of various levels to 

visualize oxygen levels at locations in the middle of the tissue (as done earlier to find 

oxygen levels around the circumference of each capillary).
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Figure 4.2: 3D homogeneity plot



Additionally, plots are created to visualize the oxygen levels inside of each 

capillary and along the circumference of each capillary. For the same tests as above, these 

plots are shown below, in figures 4.4 and 4.5. As labeled in the legend, the blue line 

represents oxygen level in the capillary and the orange line represents the oxygen level 

around the circumference of the capillary.
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Figure 4.3: 3D heterogeneity plot
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Figure 4.4: Homogeneous capillary O2 levels



By examining the above plots, it is clear that heterogeneity does have some effect, 

however, it is hard to tell exactly what those effects are and how significant they are. 

Because of this, the average O2 partial pressure in the entire tissue region is calculated. 

This helps to show the effects of heterogeneity numerically. In the homogeneous test run, 

the average O2 partial pressure was 1.6322 and in the heterogeneous test, it was 1.6134 

mmHg. Clearly the difference shows a decrease in overall oxygen when heterogeneity is 

introduced. Further, more in depth studies on heterogeneity based on a four capillary 
31

Figure 4.5: Heterogeneous capillary O2 levels



network follow. One final plot is generated for each run. This plot, depicted in figure 4.6, 

shows areas where oxygen is above a certain level in red and areas in the tissue where 

oxygen is below that level in blue. In this case, the level used was 2.5 mmHg, but is a 

parameter that can be changed. 
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Figure 4.6: Tissue where O2 is above 2.5 mmHg (from above)



More in depth tests were run with a network of four capillaries. A plot of a 

homogeneous solution to this network is shown below in figure 4.7.

In order to view the effects of heterogeneity, two tests were run with this network. 

First, the velocities of the flows coming into the network were changed. Initially, all 

velocities were 800. To introduce heterogeneity, three capillaries had their velocities 

reduced by 100 while the fourth capillary had its velocity increased by 300. This is done 
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Figure 4.7: Homogeneous capillary network



until the velocities of the other three capillaries is 100 (making the fourth capillary 2900). 

The results of these tests are plotted below in figure 4.8.

In this test, we note that the average O2 partial pressure does not actually vary too 

much but the model does exhibit some decrease in pressure as the heterogeneity 

increases. Interestingly, there is a small increase in the average oxygen level when there 

is a small amount of heterogeneity in this case. The second test performed was based on 
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Figure 4.8: Heterogeneity in velocity (FEM)



the initial partial pressures supplied to each capillary. Initially, all capillaries have a value 

of 60 mmHg. As with the velocities, three capillaries are reduced (by 10 each time for 

this test) and one is increased (by 30 each time). A plot is shown below. 

Note that we observe a much greater drop in average pressure due to 

heterogeneity in the initial pressures. Additionally, we do not observe the slight increase 

in average pressure when a small amount of heterogeneity is present. Since there are 
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Figure 4.9: Heterogeneity in initial pressure (FEM)



limitations to this implementation, as mentioned previously, these results are 

approximations to what we should expect from the Green’s function implementation.

4.2 Green’s Function Results

The more accurate Green’s function implementation was also used to collect 

results in order to analyze oxygen in tissue using averages more. The code gives users the 

ability to view contour plots. These plots are not extremely detailed and were generally 

not used in results calculations, but were helpful when designing networks as the overlaid 

network is visible in each plot. A sample contour plot generated from a pre-made network 

is shown below. This is a more complicated network than those used for tests in this 

thesis, but shows what the Green’s function implementation is capable of handling.
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The Green’s function implementation gives output showing the total average O2 

partial pressure in the tissue domain used. It also outputs oxygen levels throughout each 

capillary as well as oxygen levels in the tissue. This is useful, but for tests used in this 

thesis, with tests of four capillaries, a slightly different average was used. As the capillary 

networks used contained four parallel capillaries in a square shape, the average O2 partial 

pressure in the tissue in between all four capillaries is calculated. Additionally, the 

pressure in between all four capillaries and in the lower third of the tissue domain is 

found. These averages are used when observing the effects of heterogeneity.

First, similar tests to the FEM tests were run. For this network, three variables 

were changed. First, the input oxygen into each capillary was changed in a similar 

fashion to the FEM four capillary test. Additionally, tests are done by varying the delta 

constant, effectively varying the metabolism. The result of the first test is pictured below 

in figure 4.11. As with before, the initial pressure is 60 mmHg for all capillaries 

originally. Three capillaries are then decreased by 10 each time while the other is 

increased by 30. The effects of changing velocity or flow rate is described and tested in a 

network used later.
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For Green’s function tests, two plots will be supplied. Here it is easy to see that 

the pressure in the tissue decreases in the lower third. Additionally, the curves for the 

effect of introducing heterogeneity in the initial pressure looks very similar to that of the 

FEM plots (figure 4.9). A difference here is that the average pressures given by this test 

are higher in general. This is likely due to the fact that the Green’s model is more 

accurate. 
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Figure 4.11: Heterogeneity in initial pressure (Green’s)



The other test that was run for this network was to vary the metabolism of the 

surrounding tissue. Specifically, the delta value from the PDE is changed and is varied 

from 0 to 0.003. A plot is shown below with the initial partial pressure of 50 mmHg.

This results agrees with previous results that the bottom third of the tissue domain 

has a lower average than the whole domain. Additionally, it shows that a higher value of 

metabolism leads to a decreased average pressure. A more complicated network is used to 
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Figure 4.12: Changes in metabolism (Green’s)



analyze the effects of changing both delta and initial pressure in the homogeneous and 

heterogeneous case.  

Finally, a slightly different network was set up where one main capillary brings in 

all of the blood flow and then separates into four capillaries which can be used to test 

heterogeneity. Figure 4.1 is an approximate visualization of this network. A number of 

tests were done on this configuration. Namely, metabolism was varied and initial pressure 

was varied. In order to introduce heterogeneity, flow rates were changed. As velocity 

cannot be changed directly in this implementation, the following equation is used to 

ensure that the proper velocity is used.

q=π⋅r2⋅v⋅6×10−6

This equation relates the flow, q, from Green’s function (in nl/min) with the radius 

in micrometers and velocity in micrometers/sec. It also means that in order to maintain 

500 micrometers/sec, q and r must be changed using this equation. Thus, heterogeneity is 

introduced by changing both the flow rate and the radius. A heat map of the whole 

domain in between capillaries is shown below in figure 4.13.

40



Although the homogeneous and heterogeneous averages are similar, it is visible 

that the heterogeneous average decreases faster, particularly by observing the yellow 

band in the plots above. This is as predicted. Also, as expected,  a lower delta leads to a 

higher partial pressure in the tissue since the metabolism is not using as much oxygen in 

the tissue. Once the oxygen level decreases below about two, it becomes difficult for cells 
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Figure 4.13: Heat map of whole domain



to survive. These generally correspond to the red areas in these heat maps. A similar heat 

map of the lower third can be found below.

Note that these heat maps exhibit the same traits as those of the whole 

tissue area, particularly in the yellow band. Additionally, the lower third heat maps tend 

to have a lower average oxygen level, as expected. Tables of the values shown in these 

heat maps are also shown below for specificity.
42

Figure 4.14: Heat map of lower third of tissue
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5 10 15 20 25 30
0.003 0.04048 0.41367 1.6648 4.1912 6.7642 9.1989

0.00285 0.042961 0.43166 1.7366 4.3577 6.9965 9.5018
0.0027 0.045697 0.45136 1.8156 4.5375 7.2493 9.829
0.00255 0.048729 0.47304 1.9027 4.7338 7.5232 10.182
0.0024 0.052108 0.49695 1.9998 4.9483 7.8201 10.563
0.00225 0.055933 0.52363 2.1086 5.1838 8.1456 10.979
0.0021 0.06026 0.55353 2.2316 5.4432 8.5028 11.435
0.00195 0.065187 0.58729 2.3706 5.7322 8.8963 11.937
0.0018 0.07083 0.62578 2.5297 6.0556 9.3362 12.502
0.00165 0.077372 0.67041 2.7155 6.4199 9.8303 13.143
0.0015 0.085051 0.7228 2.9358 6.837 10.398 13.883
0.00135 0.094201 0.78519 3.2006 7.3199 11.06 14.757
0.0012 0.10531 0.86108 3.5281 7.8936 11.85 15.798
0.00105 0.11913 0.95597 3.9512 8.591 12.813 17.039
0.0009 0.13687 1.0788 4.5245 9.4689 13.994 18.484
0.00075 0.16065 1.247 5.3675 10.594 15.413 20.12
0.0006 0.19467 1.4976 6.5091 12.022 17.058 21.911
0.00045 0.24855 1.9278 8.1 13.75 18.885 23.823
0.0003 0.35137 2.9226 10.172 15.714 20.85 25.83
0.00015 0.65555 6.2828 12.497 17.777 22.863 27.86

Table 4.1: Results of whole domain, homogeneous test

5 10 15 20 25 30
0.003 0.039383 0.3848 1.2898 2.5833 4.2783 6.079

0.00285 0.041735 0.40065 1.3347 2.6745 4.4298 6.2897
0.0027 0.044328 0.41796 1.384 2.7744 4.5955 6.5194
0.00255 0.047198 0.43697 1.438 2.885 4.7772 6.7711
0.0024 0.050394 0.45804 1.4976 3.0073 4.9791 7.0484
0.00225 0.054012 0.48151 1.5637 3.1438 5.2044 7.3556
0.0021 0.058098 0.50786 1.6374 3.2976 5.4574 7.6989
0.00195 0.062763 0.5398 1.7588 3.5819 5.9798 8.4594
0.0018 0.068075 0.57419 1.8559 3.7889 6.32 8.9216
0.00165 0.074242 0.61386 1.9682 4.0307 6.7104 9.457
0.0015 0.081487 0.66039 2.0999 4.318 7.1643 10.089
0.00135 0.090125 0.71588 2.2569 4.6611 7.706 10.855
0.0012 0.10061 0.78328 2.448 5.0799 8.3711 11.821
0.00105 0.11367 0.8677 2.6897 5.6141 9.2213 13.081
0.0009 0.13046 0.97733 3.0085 6.3294 10.366 14.743
0.00075 0.15304 1.127 3.4566 7.3519 11.957 16.801
0.0006 0.18547 1.3491 4.1581 8.8666 14.087 19.156
0.00045 0.23716 1.7242 5.4463 11.096 16.611 21.711
0.0003 0.33658 2.5236 7.9282 13.93 19.334 24.4
0.00015 0.63339 5.0695 11.387 16.913 22.1 27.126

Table 4.2: Results of whole domain, heterogeneous test
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5 10 15 20 25 30
0.003 0.00043133 0.0023221 0.05403 2.0326 4.4237 6.4973

0.00285 0.00048922 0.0027577 0.067205 2.1822 4.6375 6.7891
0.0027 0.00056062 0.0033066 0.083729 2.3463 4.8737 7.1088
0.00255 0.00064954 0.0040079 0.10453 2.5271 5.1345 7.4593
0.0024 0.00076161 0.0049123 0.13075 2.7279 5.4232 7.8442
0.00225 0.00090461 0.0060919 0.16399 2.9524 5.7451 8.2706
0.0021 0.0010906 0.0076531 0.20646 3.2051 6.1051 8.7455
0.00195 0.0013367 0.0097481 0.2671 3.4919 6.5098 9.2778
0.0018 0.0016676 0.012609 0.34935 3.82 6.9702 9.884
0.00165 0.002122 0.016648 0.45911 4.1989 7.4978 10.583
0.0015 0.0027634 0.022443 0.60759 4.6421 8.1142 11.403
0.00135 0.0036928 0.030945 0.81274 5.168 8.8468 12.384
0.0012 0.0050836 0.043808 1.1045 5.806 9.7353 13.566
0.00105 0.0072459 0.064055 1.5324 6.5991 10.833 14.986
0.0009 0.010773 0.097628 2.1887 7.6146 12.194 16.652
0.00075 0.01689 0.15817 3.2646 8.9339 13.841 18.543
0.0006 0.028408 0.27681 4.7086 10.621 15.756 20.618
0.00045 0.052883 0.5524 6.6987 12.664 17.886 22.836
0.0003 0.1165 1.427 9.2401 14.978 20.174 25.163
0.00015 0.37181 5.5007 12.036 17.402 22.518 27.519

Table 4.3: Results of bottom third, homogeneous test

5 10 15 20 25 30
0.003 0.00052316 0.0083736 0.38833 0.92015 2.0884 3.4936

0.00285 0.00059825 0.0098302 0.40738 0.96862 2.2034 3.663
0.0027 0.00069027 0.011664 0.42832 1.024 2.3326 3.8508
0.00255 0.00080427 0.013981 0.45152 1.0878 2.4787 4.06
0.0024 0.00094702 0.016836 0.47746 1.1612 2.6458 4.2947
0.00225 0.0011281 0.020378 0.5069 1.2468 2.8389 4.5598
0.0021 0.0013615 0.024811 0.54063 1.3481 3.0643 4.8618
0.00195 0.0016683 0.030477 0.58146 1.4797 3.3569 5.275
0.0018 0.0020708 0.037987 0.62806 1.6317 3.6667 5.7018
0.00165 0.0026169 0.048029 0.68425 1.8219 4.0306 6.212
0.0015 0.00338 0.061385 0.75351 2.0648 4.465 6.8372
0.00135 0.0044606 0.079491 0.84172 2.3697 4.9969 7.6265
0.0012 0.0060622 0.10558 0.95825 2.7626 5.6691 8.6733
0.00105 0.0084983 0.14377 1.1185 3.2935 6.5588 10.107
0.0009 0.012397 0.20153 1.3528 4.0507 7.8065 12.071
0.00075 0.019011 0.29626 1.7265 5.1869 9.623 14.527
0.0006 0.031213 0.46086 2.3927 6.9075 12.148 17.318
0.00045 0.056599 0.78617 3.793 9.5005 15.154 20.323
0.0003 0.12125 1.5714 6.689 12.859 18.37 23.47
0.00015 0.37533 4.3275 10.764 16.386 21.616 26.653

Table 4.4: Results of bottom third, heterogeneous test



Chapter 5. Conclusions

Oxygen transport throughout the body is a critical process in order to maintain 

life. The model proposed by this thesis defines the process of delivering oxygen from the 

bloodstream into surrounding tissue. This model is then implemented in two ways. While 

the latter is more accurate, both are valuable and give interesting results. 

The results found based on tests done indicate a few key traits of oxygen transport 

into tissue based on metabolism, diffusion, and heterogeneity. From the results of the 

Green’s implementation, it is clear to see that an increase in the metabolism results in a 

decrease in oxygen levels in the tissue. As explained previously, this is due to more 

oxygen being absorbed by the metabolism, leaving less in the tissue. Both 

implementations exhibit the effect of adding heterogeneity. The FEM implementation 

shows that heterogeneity in the incoming velocity and the initial O2 partial pressure 

causes a general decrease in the total oxygen in the surrounding tissue. By analyzing the 

tables generated from the Green’s function method, this result is confirmed. Other 

interesting results arise from these tables however. It is important to note that for smaller 

initial pressures, heterogeneous networks actually give a higher average O2 partial 

pressure in the lower third of the tissue domain. This is slightly unexpected as 
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heterogeneity generally lowers oxygen diffusion. The reason for this is hypothesized to 

be the fact that a heterogeneous network with the same amount of oxygen entering the 

network will have at least one capillary that contains more oxygen at the lower third than 

then homogeneous network. Because of this, it is likely that this capillary will diffuse 

more oxygen, leading to an overall increase in oxygen levels in the lower third.

The results from this thesis can be used in many applications. Particularly, by 

noting that heterogeneity generally leads to a decrease in average partial pressure of 

oxygen, these results can be used to predict the effect of heterogeneity on specific cells in 

between capillaries. If this network is located within the brain, neurons will likely reside 

between the capillaries. Therefore, it is important to use the results from these tests in 

order to determine whether a given neuron would have enough oxygen supplied to 

produce adenosine triphosphate (ATP) and allow it to fire (ATP being essentially an 

energy source for cells) [9]. This is important future work that could help to determine 

the effects of certain blood disorders on neurons and the brain in general.
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Appendix A. Sample Data Files for Green’s Function
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