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Abstract 

The aim of the present study was to examine neural correlates and mechanisms 

underlying the psychological mechanisms formalized in a computational model of 

quantum cognition, the belief-action-entanglement (BAE) model. An analysis of 

frequency band activity in the brain was carried out to test these mechanisms.  The BAE 

model proposes that communication acts as a measurement that interferes with the 

evaluative processes prior to a decision (Busemeyer, Wang, & Lambert-Mogiliansky, 

2009; Pothos & Busemeyer, 2009; Z. Wang & Busemeyer, 2016).  Two key mechanisms 

were conceptualized and formalized in the BAE model: (1) the superposition state which 

arises from uncertainty and dissonance when deciding between two or more actions, and 

(2) the transition from a superposition state to a determinate one during the action 

evaluation process.  These mechanisms correspond with the psychological function and 

timing of two frequency bands. The frontal-midline (FM) theta (3-8 Hz) indexes conflict 

processing, a state analogous to cognitive dissonance.  Parietal alpha power indexes 

search and integration processes in memory which captures evolution from the 

superposition state to a determinate one. To test the extent communication influenced 

these underlying mechanisms, we employed a category-decision paradigm used in 

behavioral studies of the BAE model.  The study manipulated communication in three 

ways: receiving information, self-expressing, and no communication.  EEG data was 
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collected from 32 participants.  The subsequent analysis of FM theta and parietal alpha-

beta frequency band activity provided modest support for the effect of communication on 

the proposed BAE model mechanisms.  Specifically, FM theta activity offered initial 

evidence that communication resolves dissonance or uncertainty in the superposition 

state. Further, parietal alpha-beta suppression provided support for the proposition that 

communication modulates the evolution of the cognitive system until a decision is made. 

Unexpectedly, we found that self-expressing information resolved no more dissonance in 

comparison to the absence of communication, providing new insights into effects on the 

sender during communication.  
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Chapter 1. Introduction 

Communication is a hallmark of cooperative species and plays a prominent role in 

human decision-making.  In the present work, communication is defined as the 

transmission of relevant information to a receiver or from the sender to the self (Z. Wang 

& Busemeyer, 2016).  The relationship between communication and decision-making has 

been successfully modelled by computational models of quantum cognition (QC), which 

draw upon the principles and mathematical formalism of quantum mechanics (Bruza, 

Wang, & Busemeyer, 2015; Busemeyer & Bruza, 2012).  Critically, QC theory and 

quantum mechanics view systems as fundamentally indeterminate, until measured (Bruza 

et al., 2015; Busemeyer & Bruza, 2012).  According to QC theory, how communication 

disturbs a cognitive system can be modeled in a way that is similar to how a measurement 

interferes with entangled particles in a quantum system – a phenomenon known as an 

interference effect.  More relevant to cognitive processing, introducing or communicating 

information – e.g., the measurement – into an evaluation changes the interpretation of 

decision variables, in part, by reducing uncertainty (Busemeyer & Wang, 2018b; Z. 

Wang & Busemeyer, 2016).   

QC theory predictions about communication-related interference effects have 

been supported across a range of experimental paradigms including “irrational” decisions 

like those in Prisoner’s’ Dilemma (Pothos & Busemeyer, 2009), motion discrimination 
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and confidence (Kvam, Pleskac, Yu, & Busemeyer, 2015), measurement effects in 

advertisements (White, Pothos, & Busemeyer, 2014); sequential effects in belief and 

attitude updating (Trueblood & Busemeyer, 2011; Z. Wang, Solloway, Shiffrin, & 

Busemeyer, 2014), interference effects of categorization on decision making (Busemeyer 

et al., 2009; Z. Wang & Busemeyer, 2016), and data fusion (Busemeyer & Wang, 2018b, 

2018a).  These studies rely on well-designed behavioral experiments and often 

sophisticated computational cognitive modeling to test the application of quantum 

principles to model psychological processes.  However, the underlying neural 

mechanisms assumed by QC models have not been empirically investigated.  

Investigating neural mechanisms helps test the psychological mechanisms 

conceptualized and formalized by computational models of cognition, including QC 

models.  Thus, the main goal of the present study was to provide neural evidence that is 

consistent with the psychological mechanisms  formalized in the QC theory.  

Neural data provide real time information about cognitive states that has yielded 

evidence for underlying mechanisms assumed by numerous psychological theories such 

as persuasion  (Falk & Scholz, 2018) and threat perception (Correll, Urland, & Ito, 2006), 

and by computational models like the exemplar model of category representation (Mack, 

Preston, & Love, 2013).  Further, neural data affords a rich store of information for 

evaluating cognitive processes that cannot be detected by behavioral measures alone 

(Carretié, 2014; De Hollander, Forstmann, & Brown, 2016; Love, 2016; Palmeri, Love, 

& Turner, 2017; Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017).  Because of 
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its temporal precision, we expected frequency band activity in the brain collected by 

electroencephalography (EEG) to provide insights about the time-sensitive mechanisms 

assumed by QC theory.  Our hypotheses for frequency band activity were specifically 

guided by predictions and empirical evidence for the belief-action-entanglement model, a 

QC model of communication-related effects on decision-making under uncertainty 

(Busemeyer et al., 2009; Pothos & Busemeyer, 2009; Z. Wang & Busemeyer, 2016).  

Mechanisms of the Belief-Action Entanglement (BAE) Model 

Wang & Busemeyer (2016) recently developed a category-decision paradigm to 

test BAE model predictions about communication-as-a-measurement based on an earlier 

study (Townsend, Silva, Spencer-Smith, & Wenger, 2000).  Knowing a category is 

important for the decision (Smith et al., 2014; Townsend et al., 2000).  For example, 

doctors need to categorize a medical condition before selecting a treatment.  Soldiers 

must categorize an unfamiliar situation as a threat or not prior to deciding upon a course 

of action.  Notably, a category, e.g., a medical condition, and an action, e.g., the 

treatment, represent an entangled state in quantum cognition (Aerts, Gabora, & Sozzo, 

2013).  For example, treatment selection depends upon the medical condition, and vice 

versa; when entangled, they create a composite meaning that does not exist when 

considered separately (Busemeyer & Bruza, 2012).  Wang & Busemeyer’s (2016) study 

linked both categorization and decision processes together in a formal computational 

model where the critical manipulation varied communication about a category prior to a 

decision task.   
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Two key underlying processes during the categorization-decision process have 

been formalized in the BAE model.  First, without knowing the category, people are often 

in a superposition state with respect to deciding between two or more actions.  At each 

point in time, the cognitive system remains undecided across both categories and actions 

(Busemeyer et al., 2009; Z. Wang & Busemeyer, 2016).  In other words, all possible 

category and action combinations have the potential to be selected, hence, creating an 

entangled system. Metaphorically, they exist together in synchrony (Busemeyer & Bruza, 

2012).  Psychologically, such uncertainty results in a superposed state characterized by 

ambiguous or conflicted feelings (Bruza et al., 2015; Busemeyer & Bruza, 2012; Z. 

Wang & Busemeyer, 2016).  This internal conflict is similar to experiencing cognitive 

dissonance, an aversive state where behaviors (decisions about actions) and beliefs (about 

a category) are not aligned (Festinger, 1957).  We address cognitive dissonance theory 

more thoroughly in later sections.  For now, it is important to understand the relationship 

between communication and dissonance.  Specifically, communication about the 

category resolves a superposition state and reduces cognitive dissonance prior to the 

decision (Bruza et al., 2015; Busemeyer et al., 2009; Z. Wang & Busemeyer, 2016).  That 

is, being informed of a category reduces uncertainty about which action to take; 

dissonance resolves accordingly.  From the BAE model perspective, communication’s 

role in decreasing uncertainty during cognitive processing reflects the “wave function 

collapse,” the crucial effect of a measurement on the quantum system (Z. Wang & 
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Busemeyer, 2016).  In the absence of communication, the cognitive system remains 

superposed about both the category and the action since neither is known or certain.   

The second underlying mechanism manifests during the evaluation process after a 

categorization and flows through the decision about an action.  During this time, the 

cognitive system transitions from an uncertain superposition state over the entangled 

system to a determinate one (Z. Wang & Busemeyer, 2016).  Beliefs about categories and 

actions exist in parallel to evolve and influence one another; however, decision-makers 

cannot say precisely what state they are in (Busemeyer et al., 2009).  This fuzzy, 

superposed state exists until the decision point.  Once an action is selected, beliefs about 

the category and decision are updated psychologically to become certain and fully known 

to the decision-maker.  When earlier communication exposes the category, only possible 

actions are evaluated during the transition.  On the other hand, without prior 

communication, both the category and the action remain under evaluation as the 

cognitive state evolves.  

Across a series of experiments testing the BAE model, Wang & Busemeyer 

(2016) varied communication in three ways.  In two conditions, communication made the 

category explicit.  In the first condition, participants were informed about the stimuli’s 

category prior to taking an action.  In the second condition, participants self-expressed 

their beliefs about the stimuli category.  The BAE model assumes explicit 

communication reduces dissonance in the superposition state; however, self-expressing 

conveys less certainty than receiving category information because the decision-maker 
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cannot be sure about the veracity of a self-reported categorization.  Hence, an earlier self-

expressed belief may change during the evaluation of an action prior to the decision.  In a 

third condition, no information was provided about stimuli category, and participants 

were assumed to categorize the stimuli implicitly.  Implicit categorization conveys even 

less certainty about the true state of the category than self-expressing (Townsend et al., 

2000).  Moreover, the entangling of beliefs and actions may occur after self-expressing 

and in the absence of communication because of uncertainty about the category; by 

contrast, entanglement was not expected to occur after receiving information because the 

category was known (Wang & Busemeyer, 2016).  The metaphorical symphony for all 

potential responses collapses.  Accordingly, the BAE model predicted a tiered effect of 

communication where, in comparison to no communication which resolved the least 

uncertainty, receiving information decreased uncertainty more than self-expressing. 

Wang and Busemeyer (2016) measured the effect of communication on decision-

making using response probabilities, e.g., the proportion of possible actions participants 

selected.  Extreme response probabilities suggested an increase in certainty and a 

corresponding reduction in dissonance during the evaluation process.  Though 

probabilities for experimental variables were systematically varied, findings across the 

three experiments consistently supported the BAE model’s assumption that 

communication acts as a measurement to resolve uncertainty about a decision.  

The BAE model further used utilities to formalize the influence of communication 

of categorization information on a decision to act (Wang & Busemeyer, 2016).  Utilities 
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represent a set of stable preferences and beliefs that guide decision making (Hastie & 

Dawes, 2010).  Positive utilities were assigned to actions congruent with the category and 

negative utilities were assigned to actions incongruent with the category, e.g., 

categorizing a stimuli as “good” then deciding to take a “bad” action against it (Wang & 

Busemeyer, 2016).  Taken from the cognitive dissonance perspective, the assignment of 

negative utilities to incongruent actions suggest these decisions will elicit more 

dissonance than decisions assigned positive utilities. 

Moreover, utilities for actions interacted with the stimuli as well as the category 

but only when self-expressing, and this interaction varied by the valence – positive or 

negative – of the stimuli.   In the empirical studies, the stimuli represented either positive 

or negative social associations which remained entangled with actions across the 

categorization and decision process.  The BAE model predicted that self-expressing a 

category will not produce an interference effect (or reduce dissonance) for a decision to 

act incongruent with positive social stimuli (Busemeyer et al., 2009; Z. Wang & 

Busemeyer, 2016). By contrast, an interference effect was predicted and observed for the 

same condition after receiving information about a category.  The empirical evidence was 

consistent with model predictions. This suggests that self-expressing resolves less 

dissonance when social values about positive beliefs may be violated.   

Neural Correlates of the BAE Model 

The underlying mechanisms of the BAE model correspond with the psychological 

function and timing of two frequency bands: the frontal-midline (FM) theta (3-8 Hz) and 
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parietal alpha (9-15 Hz; Cohen, 2014b; Klimesch, 1999, 2012).  FM theta power indexes 

conflict processing (Cavanagh & Frank, 2014; Cohen, 2014b; Cohen & Van Gaal, 2013).  

Defined as a disturbed state when deciding between two or more competing alternatives 

(Cohen, 2014b), conflict processing is conceptually similar to the cognitive dissonance 

experienced in a superposition state (Inzlicht, Bartholow, & Hirsh, 2015; Kitayama & 

Tompson, 2015).  Parietal alpha power indexes search and integration processes in 

memory (Klimesch, 1999, 2012; Lam, Schoffelen, Uddén, Hultén, & Hagoort, 2016; 

Vassileiou, Meyer, Beese, & Friederici, 2018) which capture the evaluative processes 

engaged when transitioning from a superposition state to a determinate one.  Decreases in 

parietal alpha power relative to baseline (non-event) neural activity are referred to as 

“alpha suppression” (Klimesch, 2012).  Frequency band activity is believed to represent 

neural oscillations which facilitate communication between structures in the brain.  

Though structural involvement cannot be inferred directly from electrode location, 

evidence from source estimation, EEG-informed fMRI, and invasive recordings link 

neural activity in frontal cortical structures, especially the medial prefrontal cortex 

(mPFC) and anterior cingulate cortex (ACC), with increases in FM theta power and in 

parietal cortical systems with suppressed alpha power (Cavanagh & Frank, 2014; Cohen, 

2014b; Foxe & Snyder, 2011; Gratton, 2018; Gratton, Cooper, Fabiani, Carter, & 

Karayanidis, 2018; Mazaheri, Slagter, Thut, & Foxe, 2018).   

FM theta band.  A large body of work implicates FM theta power in top-down, 

controlled operations which monitor, identify, and recruit resources to resolve conflict 
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(Cavanagh & Frank, 2014; Cohen, 2014b; Cohen & Cavanagh, 2011; Cohen & Donner, 

2013; Jiang, Bailey, & Xiao, 2018; Mölle, Marshall, Fehm, & Born, 2002; van Driel, 

Swart, Egner, Ridderinkhof, & Cohen, 2015).  Conflict-oriented FM theta activates 

approximately 200-400 ms after stimulus onset in the frontal-midline electrodes on the 

scalp.  The magnitude of power indicates the degree of control implemented e.g., lower 

FM theta power values indicate less resource allocation to conflict processing.   

In conflict processing experiments, participants are often exposed to pre-target 

cues assigned different probabilities or assigned as neutral; the cues provide information 

for subsequent decisions trials (Cooper, Darriba, Karayanidis, & Barceló, 2016; Gratton 

et al., 2018). While cue operationalization varies widely – from explicit symbols to varied 

fixation positions to temporally distinct audio tones – the uncertainty they represent serve 

as a key modulation of conflict processing.   For example, van Driel et al. (2015) 

assigned temporal cues to be probabilistic (80% valid) or deterministic (100% valid) in 

an adaptation of the Simon Task, a common conflict resolution paradigm.  In comparison 

to deterministic cues, responses preceded by probabilistic cues resulted in greater FM 

theta activation, indicating that exposure to certain information reduced conflict 

processing.  Similar to communication, cues behave like a measurement which interferes 

with and reduces conflict during cognitive processing; hence, we expected a similar 

sensitivity to communication’s role in conveying varying levels of certainty. Thus for our 

first hypothesis, we expected explicit communication about a stimuli category to reduce 

FM theta activity – reflecting cognitive dissonance – during evaluative processing prior 
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to a decision in comparison to the absence of communication.  In addition, since lower 

probability cues convey less certainty about a category, we expected self-expressing to 

result in more FM theta activity in comparison to received communication about a 

category.  

Utilities feature prominently in the evaluation of actions, according to the BAE 

model (Wang & Busemeyer, 2016).  Few studies have investigated the effect of utilities 

on FM theta activation directly so we draw upon empirical research into incongruent 

cognitions in the brain.  Negative utilities, as defined by the BAE model, engage 

processes conceptually comparable to incongruent trials or decisions in the cognitive 

control literature; similarly, positive utilities engage processes consistent with congruent 

trials (Cavanagh & Frank, 2014; Gratton et al., 2018).  Further, incongruent trials evoke 

more FM theta activation than congruent trials, in part, because prepotent responses must 

be suppressed.  For example, in a study evaluating the effect of implicit primes on 

conflict processing, FM theta power increased on incongruent trials where participants 

were exposed to happy faces primed earlier by sad faces; by comparison,  congruent trials 

– where participants were primed by happy faces before exposure to happy faces – 

resulted in less FM theta power (Jiang et al., 2018).  However, FM theta may be present 

in congruent trials simply because the co-activation of congruent and congruent 

alternatives creates conflict (Cavanagh & Frank, 2014; Inzlicht et al., 2015).  Findings for 

incongruent/congruent trials guided our second hypothesis: while we expected conflict on 

all trials, we expected choosing an action with negative utilities to result in more FM 
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theta activity than deciding upon an action with positive utilities, irrespective of 

communication condition.  Since the available evidence does not suggest that 

communication (or cues) and utilities interact, we expected communication to result in 

the same pattern of effects as described in our first hypothesis; an interaction effect was 

not predicted.    

The effect of negative utilities/incongruence on conflict processing may be 

enhanced for positively valenced social stimuli.  Previous work revealed that the brain’s 

value system favors maintaining social connections such that exposure to positive social 

stimuli increased activity in the relevant neural structures (Falk & Scholz, 2018; Mason, 

Dyer, & Norton, 2009; Nook & Zaki, 2015).  In studies evaluating reward processing, 

neural activity increased after participants violated norms for fair treatment (Gabay, 

Radua, Kempton, & Mehta, 2014; G. Wang, Li, Li, Wei, & Li, 2016).  These findings 

suggest that choosing an incongruent action for categories with positive social 

associations may elicit more dissonance than choosing an incongruent action for 

categories with negative associations. With respect to communication, this may only 

occur during self-expressing, which conveys less certainty about the true category 

allowing for more indecision.  Specifically, we expected self-expressing to result more 

FM theta activity for decisions with negative utilities for categories with a positive social 

value in comparison to categories with a negative social value.  Our hypothesis is 

consistent with a key prediction from the BAE model for making an incongruent decision 
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for positive stimuli after self-expressing (Busemeyer et al., 2009; Z. Wang & Busemeyer, 

2016). 

Parietal alpha band.  Parietal alpha power suppression, which emerges between 

300-700 ms after stimulus onset in posterior electrodes, represents the “release” of 

attention and increased allocation of resources to memory operations (Clarke, Roberts, & 

Ranganath, 2018; Klimesch, 1999, 2012; Lam et al., 2016; Vassileiou et al., 2018).  

Attentional release can be interpreted as access to and searches through representations 

stored in memory as necessary to resolve a conflict (Klimesch, 2012).  Selected 

representations are integrated in working memory to produce an updated representation 

(Clarke et al., 2018; Klimesch, 1999, 2012; Mölle et al., 2002; Vassileiou et al., 2018). 

These search, integration and update operations indexed by parietal alpha activity reflect 

a process consistent with the transition from a superposition state to a more determinate 

one assumed by the BAE model (Z. Wang & Busemeyer, 2016).  Entanglement also 

emerges as an attribute of alpha suppression since activation occurs during the evaluation 

of meaningfully-related stimuli (Klimesch, 1999; Lam et al., 2016; Meltzer, Fonzo, & 

Constable, 2009).  For example, in a rock-paper-scissors type experiment, evaluating 

conceptually related pairs, e.g., paper-beats-rock, led to more alpha suppression in 

comparison to pairs without a predefined relationship, e.g., simply paper and a rock 

(Meltzer et al., 2009).  Using these insights as our guide, we expected the absence of 

communication to result in more alpha suppression than being exposed to communication 

as such increases represent search and integration operations over both categories and 
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actions, which remain entangled until the decision.  For the same reason, since it conveys 

less certainty about a category, we expected self-expressing to exhibit increased alpha 

suppression in comparison to receiving information. We expected receiving information 

to result in the least alpha suppression because they cognitive system was no longer 

entangled, and only potential actions were evaluated (Wang & Busemeyer, 2016).   

While the present study used frequency band activity to investigate the underlying 

mechanisms of a communication-related model of quantum cognition, QC research does 

not argue that the brain operates on the principles of quantum mechanics. However, some 

work is being conducted in this area by a different group of scholars (Khrennikov, 

Basieva, Pothos, & Yamato, 2018).  Rather, QC theory applies the formalism of quantum 

probability to cognitive processes.  To increase accessibility for non-technical readers, 

our discussion remained at the conceptual level.  For those wishing for more in-depth 

discussion of QC theory and the BAE model, details can be found in Busemeyer & Bruza 

(2012), Wang & Busemeyer (2016), and Busemeyer & Wang (2018a). 
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Chapter 2.  Materials and Method 

Participants 

Undergraduate students were recruited from a large Midwestern university for 

course credit and a monetary incentive (N = 32, 60.5% female; age, M=19.78, SD =1.43).  

Participants completed the experiment individually in a psychophysiological research lab. 

Experimental Design and Procedures 

 To test our hypotheses, we employed the same category-decision paradigm used 

in behavioral studies of the BAE model (Busemeyer et al., 2009; Pothos & Busemeyer, 

2009; Z. Wang & Busemeyer, 2016).  The study design consisted of a 3 (communication: 

receiving, expressing, none) x 2 (face association: friendly, aggressive) within-subjects 

factorial design.  During each trial, participants were exposed to a face.  Based on the 

cover story, they then categorized the face as belonging to a friendly “good” type guy or 

aggressive “bad” type guy. Afterwards, they decided to “attack” or “be friendly” based 

upon the face category.  Participants completed two blocks of 34 trials for the three 

communication conditions, for a total of 204 trials each.  Participants were fitted with the 

EEG electrodes prior to beginning the experiment which lasted about one hour.   

 In the cover story, two novel humanoid-like species were discovered in a fictitious 

NASA mission. They tended to have different faces types (wide, narrow) with friendly 

(good) or aggressive (bad) associations.  “Good” face types represented positively-
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valenced social associations while “bad” face types reflected a negative-social valence.  

Participants were expected to use face-type associations in the cover story to categorize 

each face, and then decide to act in accordance with the categorization: to defend 

themselves (from “bad” guys) or act friendly (to “good” guys).  However, as in real life, 

not all faces were consistent with the associations presented in the cover story.  Wide 

faces were randomly assigned to the “good” guy category in 60% of the trials and narrow 

faces were assigned to the “bad” guy category in 60% of the trials.  Participants were 

informed about the probabilistic nature of the face-type associations using natural 

language, such as “tend to have” and “but this is not absolute.” 

 Given a preceding face categorization, rewards or punishments for the selected 

action also varied probabilistically.  For faces categorized as a “bad” guy, 70% of the 

trials resulted in a reward for “defending,” and were punished otherwise.  Likewise, for 

faces categorized as a “bad” guy, 70% of the trials resulted in a reward for “defending,” 

and were punished otherwise.  The probabilistic assignment for both face-type and action, 

introduced considerable uncertainty into both the categorization and decision processes. 

Because of this uncertainty, utilities were presumed to guide action selection (Wang & 

Busemeyer, 2016).  Positive utilities applied to actions congruent with the preceding 

categorization whereas negative utilities applied to incongruent actions.  

 The key manipulation varied communication about the face’s category (see Figure 

1). In the no-communication condition, no categorization information was provided 

before participants were asked to decide to take an action (attack, be friendly); instead, 
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the categorization process was presumed to occur implicitly (Townsend et al, 2001).  In 

the self-expressing condition, participants categorized the face themselves. That is, they 

reported their beliefs about the face’s category membership. However, beliefs could 

change during prior to deciding to act, thus representing a degree of uncertainty for action 

selection (Wang & Busemeyer, 2016).   In the received condition, the computer explicitly 

told the participants about the face’s category.  Participants were instructed that the 

computer’s information was correct and were assumed to believe the categorization.  

 

Figure 1. Experimental design.   The key experimental manipulation varied 

communication about the face category. In comparison to no-communication, explicit 

communication (received, self-expressed) about the face category earlier in a trial was 

expected to modulate the superposition state and subsequent state revisions during the 

evaluation process immediately after being asked the decision question.  Implicit 

categorization, presumed for the no-communication condition, was not expected to 

modulate information processing during the evaluation and served as the baseline of 

comparison for explicit communication (Townsend et al., 2000; Z. Wang & Busemeyer, 

2016).  The window of analysis, annotated by red brackets, begins after exposure to the 

decision question and concludes before receiving feedback.  Though participants were 
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allowed five seconds to select an action, in 97% of the trials the task was completed 

within two seconds of being asked “Act friendly or defend?”  Hence, the window of 

analysis after the decision question covers only the first two seconds. 

EEG Data Acquisition and Preprocessing 

EEG data was recorded continuously using a 64-channel BioSemi ActiveII system 

at a sampling rate of 512 Hz. The 64-electrode scalp placement used an elastic electrode 

cap (Electro-cap International, Inc.) corresponding to the 10–20 International System.  

Offline preprocessing was conducted using EEGLAB Toolbox (Delorme & Makeig, 

2004) within the MATLAB  environment.  Data was epoched from -4500 ms to 2000 ms 

for each trial and time-locked to the decision question. This window preceded exposure 

to the face stimuli and concluded prior to the feedback events. Data was then down-

sample to 256 Hz.   Non-cerebral activity due to hand, body or eye movements, 

sinusoidal artifacts, and line and other environmental noise were removed through a 

multi-step process outlined by Cohen (2014b) and the EEGLAB Tutorial (Delorme & 

Makeig, 2004).  For all participants, each trial was visually inspected and those 

containing large anomalous blocks of noise were manually rejected.  A 1.0 Hz high pass 

filter was applied to the raw data to remove low frequency oscillations associated with 

biological functions such as sweat.  Channels with data exceeding 3 standard deviations 

from average channel activity were removed using the EEGLAB “channel” function. The 

data was re-referenced to a common average. The CleanLine plugin was applied to 

remove fast oscillating line noise above 60Hz. An independence components analysis 

was conducted on the data using the runica algorithm (Delorme & Makeig, 2004).  

Independent components representing eye blinks, muscle artifacts, or other types of noise 
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were removed from the signal. After preprocessing, an average 58 trials per 

communication condition for each participant remained for hypothesis testing.  

Time-Frequency Decomposition 

To extract frequency band activity, the preprocessed EEG data were decomposed 

into their representations over both time and frequency, resulting in time-frequency 

representation (TFRs).  Scripts for decomposition were coded manually in MATLAB and 

adapted from original scripts by Cohen (2014b) and Cohen (2015).  The TFRs were 

obtained by computing the frequency band range (power spectrum) of the data through 

the fast Fourier transform function fft then multiplying the results by the power spectrum 

of complex Morlet wavelets (ei2πtf e−t2/(2σ2)), where t is time, i is a complex number, f is 

frequency, and σ defines the width of each frequency band (Cohen, 2014b).  Specifically, 

f was set to range from 3-25 Hz in 20 logarithmically scaled steps.  In order to achieve a 

satisfactory trade-off between temporal and frequency resolution, σ was set to range 

logarithmically from 3-10 cycles.  The inverse of fast Fourier transform function ifft was 

then applied to the produce TFRs in the time domain.  To remove non-event related 

oscillatory activity from the data, power was normalized using a decibel (dB) transform 

(dB power = 10 × log 10[power/baseline]) relative to baseline neural activity.  The 

baseline was computed from –800 ms to –400 ms before the onset of the decision event.  

We selected this range to avoid confounding the baseline neural activity with an observed 

increase in frontal alpha band power (8-12 Hz) from -400 to 150 ms which typically 
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reflects preparation for task performance (Bauer, Stenner, Friston, & Dolan, 2014; Min & 

Herrmann, 2007).  

Outcome Measures 

Our first dependent variable measured cognitive dissonance.  Dissonance is 

defined as the conflicted and ambiguous feeling experienced during a superposition state 

when evaluating potential actions (Busemeyer & Bruza, 2012; Z. Wang & Busemeyer, 

2016).  We operationalized dissonance in two ways.  First, dissonance was represented by 

conflict processing indexed by FM theta power.  In previous work, FM theta has been 

modulated by exposure to a cue prior to a response (Gratton et al., 2018).  Other research 

on neural activity suggests FM theta should also be modulated by utilities and social 

association valence (Falk & Scholz, 2018; Gabay et al., 2014; G. Wang et al., 2016).  

Based upon an all-conditions signal, FM theta power was computed for frequencies at 3-8 

Hz from 150-450 ms after the decision event for each participant across all trials for each 

communication condition.  Data for FM theta was provided from three midfrontal 

electrodes: Fz, FCz, and Cz (Cavanagh & Frank, 2014; Cohen & Cavanagh, 2011; Cohen 

& Van Gaal, 2013).   

Second, dissonance was measured by the response time (RTs) for selecting an 

action.  Conflict-oriented FM theta activity has been positively correlated with RTs, e.g., 

longer response times are associated with larger FM theta value (Cohen, 2014b).  To 

increase the normality of the distribution, RTs were reciprocally transformed, 1/RT and 
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multiplied by 1,000 (Ratcliff, 1993), prior to analysis.  To be consistent with epoch size 

for each trial, RTs over 2,000 ms were excluded from the analysis.  

Our second dependent variable was a measure of state transition.  According to 

the BAE model, the transition from a superposition state to a determinate state occurs 

during the evaluation process prior to a decision to act (Wang & Busemeyer, 2016). This 

process will be operationalized as parietal alpha band suppression indexing memory 

search and integration operations (Klimesch, 1999, 2012; Lam et al., 2016; Vassileiou et 

al., 2018).  Increases in parietal alpha suppression index the amount of cognitive 

resources allocated to memory operations (Klimesch, 2012).  The mean power in alpha 

suppression was computed for frequencies 9-25 Hz at 300-900 ms after decision event 

onset for each participant across all trials for each communication condition.  Data was 

provided by electrodes Pz, POz, P1, P2, Pz, PO3, and PO4 (Cooper et al., 2016; Jiang et 

al., 2018; Lam et al., 2016; Vassileiou et al., 2018).  A visual inspection of the time-

frequency plots revealed considerable co-suppression of the beta band, 15-25 Hz so we 

expanded our frequency band range to include it in our analysis. This is not surprising 

since parietal beta band suppression frequently activates along with parietal alpha 

suppression during memory operations for semantic, rather than perceptual, stimuli 

(Clarke et al., 2018; Ohki & Takei, 2018; van Pelt et al., 2016; Vassileiou et al., 2018).
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Chapter 3. Results  

Frequency band power and response time data were imported into the R statistical 

environment (Team, 2014) and analyzed with the lme4 package (Bates, Maechler, & 

Bolker, 2012).  The lme4 package was used to implement repeated-measures analysis of 

variances (ANOVAs) and conduct tests of normality.  The multcomp package 

(Hothorn, Bretz & Westfall, 2008) was used for pairwise comparisons corrected with the 

Holm method.  In all analyses and plots, data are time-locked to the onset of the decision 

question.  Time-frequency plots were produced in MATLAB.  Density function plots, 

scatterplots, and bar charts were produced in R using the ggplot2 package (Wickham, 

2016).  

Electrodes for FM theta and parietal alpha regions, respectively, were clustered 

for an initial analysis.  However, consistent with existing frequency band research 

(Billeke, Zamorano, Cosmelli, & Aboitiz, 2013; Cohen, 2014a; Cohen & Cavanagh, 

2011), we present findings only for electrode FCz for FM theta power and POz for 

parietal alpha suppression as power was maximal over the two electrodes. The results 

from FCz and POz were consistent with the findings for the electrode clusters for FM 

theta power and the clusters for parietal alpha-beta suppression.   
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 Prior to conducting our main analysis, we examined the effect of gender, age, 

and ethnicity on FM theta and parietal alpha activity.  However, the effect of these 

covariates was not significant for both frequency bands and were not considered further.  

Further, the Shapiro-Wilk normality tests were non-significant for all analyses indicating 

the residuals were normally distributed and meeting an important assumption of 

ANOVAs.  

Main Analysis 

Our first hypothesis predicted that the absence of communication will result in 

more FM theta activity than either receiving information about the category or self-

expressing it, and self-expressing will result in more FM theta activity than receiving 

information.  A one-way ANOVA revealed a main effect of communication on FM theta 

power, F(2, 62) = 17.93, p < 0.001 (see Figure 2).  Pairwise comparisons showed that 

average FM theta activity for the absence of communication (M=0.89; SD=0.80) was 

greater than receiving (M=-0.04; SD =  0.81), p < 0.001, and self-expressing (M=0.83; SD 

=0.82) p < 0.001, and that FM theta activity was significantly greater for self-expressing 

than for receiving information, p < 0.001.  Though the mean value for FM theta power 

after receiving communication was negative, it did not differ significantly from the 

baseline value of zero, t(31) = -0.30, p = 0.76.  The results partially supported our first 

hypothesis.  Receiving information and no communication exerted the expected effects 

on conflict processing as assumed by the BAE model.  However, self-expressing a 
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category failed reduce more conflict processing than no-communication in contrast to our 

expectations.   

 

 

Figure 2. FM theta power for the three communication conditions – self-expressing, 

no communication, and receiving information. Mean FM theta power was computed at 

electrode FCz for frequencies at 3-8 Hz from 150-450 ms after the decision question for 

each participant across all trials for each communication condition relative to the 

baseline. (a) The white box denotes time and frequency band range for mean value 

computations. (b) FM theta power did not differ between self-expressing and no 

communication; but both differed significantly from receiving information; FM theta 

power for receiving information did not significant differ from zero (the baseline value).  



24 

 

Error bars denote standard errors. (c) Density function of the three communications 

reveals the sharp distinction in FM theta power for receiving information in comparison 

to the other communication conditions.  

Based on the results for FM theta, we further explored our hypothesis about RTs 

and conflict processing.  We predicted that no communication would result in longer RTs 

than self-expressing, and self-expressing would result in longer RTs than receiving 

information. The reciprocally transformed RTs were used in the analysis; however, raw 

RT values are reported in the statistical analysis and used in plots for ease of 

interpretation. We conducted a one-way ANOVA and found a main effect of 

communication on response times, F(2, 62) = 44.89, p < 0.001, such that in the absence 

of communication, (M=788.02; SD =  262.14), responses were slower than for self-

expressing (M=623.46; SD= 249.71), p < 0.001, and for receiving information 

(M=522.88; SD=143.90 ), p < 0.001.  RTs did not significantly differ between the two 

explicit communication conditions, though there was a trend is the predicted direction. 

See Figure 3 for details.  The results provide partial support for our hypothesis and were 

consistent with the effect of communication on FM theta power for two communication 

conditions: received and none.  
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Figure 3.  Response times for the three communication conditions – self-expressing, 

no communication, and receiving information. While reciprocally transformed RTs were 

used in the analysis, raw RT values are presented in the above plots for ease of 

interpretation.  (a) RTs did not differ between self-expressing and receiving information; 

but both differed significantly from the absence of communication. Error bars denote 

standard errors. (b) Density function of the three communications reveals a unique 

distribution for each communication condition; in particular, receiving information 

exhibits the classic exponential shape of correct responses whereas no communication 

exhibits properties common to errors responses (Ratcliffe, 1993).  

 

Since RTs tend to positively associate with FM theta power (Cohen, 2014b), we 

conducted a correlation analysis.  There was a significant positive Spearman correlation 

between RTs when pooling FM theta power across the three communication conditions, r 

= 0.30, n = 96, p =0.03 (see Figure 4). Interestingly, when examined at the condition 

level, only FM theta for received communication was significantly correlated with RTs, r 

= 0.38, n = 32, p =0.03.  FM theta power for no communication and self-expressing was 

not significantly correlated with RTs. 
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Figure 4. Response time-FM theta power scatterplot.  Colored dots represent the three 

communication conditions – self-expressing, no communication, and receiving 

information.  RTs and FM theta power were only significantly correlated for receiving 

information.   

 

Our second hypothesis predicted that decisions with negative utilities would 

activate more FM theta power in comparison to decisions with positive utilities, 

reflecting increased dissonance for incongruent actions.  Further, these results would vary 

by communication condition as predicted for H1.  We first constructed a separate one-

way ANOVA for a main effect of utilities on communication, and separate one-way 

ANOVAs for each negative and positive utilities.  While there was not a significant main 

effect of utilities on FM theta power, the trend was in the predicted direction: decisions 

with negative utilities, (M=0.50; SD= 1.43), generated slightly more theta power than 

decision with positive utilities, (M=0.47; SD= 1.11), pooled across communication 
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conditions. When evaluating the effect of communication on actions with negative 

utilities, there was a main effect F(2, 92) = 6.67, p < 0.001.  Pairwise comparisons 

revealed that FM theta power for no communication, (M=0.84; SD= 1.51), and self-

expressing did not differ, (M=0.86; SD= 1.51), p = n.s., but both self-expressing and no 

communication resulted in more FM theta power than receiving information, (M=-0.22; 

SD= 1.42), p < 0.001, respectively.  There was also a main effect of communication for 

decisions with positive utilities, F(2, 92) = 11.11, p < 0.001.  FM theta power did not 

differ between no communication (M=0.69; SD= 1.08), and self-expressing, (M=-0.91; 

SD= 1.08), did not differ, p = n.s., but self-expressing and no communication resulted in 

more FM theta power than receiving information, (M=-0.21; SD= 0.95), p < 0.001, 

respectively.  Figure 5 displays the time-frequency plots and dB power for FM theta.  

Notably, for both positive and negative utilities, the mean value of theta for receiving 

communication did not differ significantly from the baseline, or zero.  While the results 

did not support H2 predictions for an effect of utilities, the pattern of FM theta activation 
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due to communication was consistent with the results for H1 as expected. 

 

Figure 5. FM theta power for positive/negative utilities.  Mean FM theta power was 

computed at electrode FCz for frequencies at 3-8 Hz from 150-450 ms after the decision 

question for each participant across all trials for each communication condition (self-

expressing, no communication, and receiving information) relative to the baseline. The 

white box denotes time and frequency band range for mean value computations. FM theta 

power did not vary by positive or negative utilities but did vary by communication 

condition. (a) For positive utilities, FM theta power did not differ between self-expressing 

and no communication; but both differed significantly from receiving information; FM 

theta power for receiving information did not significantly differ from zero (the baseline 

value).  Error bars denote standard errors. (b) For negative utilities, communication 

exerted the same effect on FM theta as for positive utilities.    
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Our third hypothesis predicted that self-expressing prior to selecting actions with 

negative utilities for positively valenced stimuli (good type faces) will activate more FM 

theta power than when selecting an action with negative utilities for negatively valenced 

stimuli (bad type faces).  A one-way ANOVA did not reveal a significant difference in 

FM theta activity by stimuli valence, p = n.s.; however, the magnitude of FM theta power 

for stimuli valence was in the predicted direction: mean values for good type face 

(M=0.90; SD=1.39) where higher than mean values for the bad type face (M=0.65; 

SD=1.24; see Figure 6).  The lack of significance could be due to the limited number of 

trials available for the analysis per participant per condition (good type face, M =10.59, 

min=3, max=19; bad type face, M =11.97, min=4, max=18).  With limited trials, the 

noise inherent to EEG data and individual differences in frequency band peak and timing 

can obscure an existing cognitive effect, in part, due to oversensitivity to outliers (Cohen, 

2014b).  Though we cannot claim our hypothesis was supported, the direction of the 

findings provide modest and tentative support.  
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Figure 6. FM theta power for social stimuli with valenced associations.  Images 

present FM theta power in self-expressing trials for actions with negative utilities for 

facial stimuli with a positive “good” or a negative “bad” valence. Mean FM theta power 

was computed at electrode FCz for frequencies at 3-8 Hz from 150-450 ms after the 

decision question for each participant across all trials relative to the baseline. (a) The 

white box denotes time and frequency band range for mean value computations. (b) FM 

theta power was greater for faces with a positive social valence in comparison to faces 

with a negative social valence; however, the difference was not significant. Error bars 

denote standard errors. (c) The density function reveals more variation in the higher FM 

mean values for positive “good” faces in comparison to “bad” faces suggesting a possible 

effect of outliers.   
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Our fourth hypothesis predicted that parietal alpha suppression, representing 

memory search and integration operations, would be modulated according to the 

following pattern: no communication will result in more alpha suppression (increased 

activation) than explicit communication about the category, and self-expressing will 

result in more alpha suppression than receiving information.  The actual frequencies 

analyzed ranged from 8-25 Hz to include beta band suppression (see Figure 7).  A one-

way ANOVA revealed a main effect of communication on parietal alpha-beta 

suppression, F(2, 62) = 15.34, p < 0.001.  Pairwise comparisons showed that alpha-beta 

suppression for the absence of communication, (M=-1.60; SD =0.95), was greater than 

for receiving information (M= -0.42; SD =1.00), p < 0.001, and self-expressing (M=-1.01; 

SD =0.78), p < 0.005; and suppression for self-expressing was significantly larger than 

for receiving information, p < 0.005.  Hence, the results provide evidence for H4 about 

memory operations and state transitions as indicated by the BAE model.    
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Figure 7. Parietal alpha-beta suppression for all three communication conditions. 

Mean alpha-beta suppression was computed at electrode POz for frequencies at 8-25 Hz 

from 300-900 ms after the decision question for each participant across all trials relative 

to the baseline. More suppression represents more resources allocated to memory 

processes. (a) The white box denotes time and frequency band range for mean value 

computations. (b) Alpha-beta suppression did not differ between self-expressing and no 

communication; but both differed significantly from receiving information. Error bars 

denote standard errors. (c) Density function of the three communications reveals a 

consistent distinction between the three communication conditions, as predicted.   
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Chapter 4. Discussion 

The aim of the present study was to provide evidence for the mechanisms 

underlying the BAE model.  Following the principles of QC theory, the BAE model 

proposes that communication acts as a measurement to interfere with evaluative 

processes prior to a decision (Busemeyer et al., 2009; Pothos & Busemeyer, 2009; Z. 

Wang & Busemeyer, 2016).  Two key mechanisms were formalized in such QC models: 

(1) the superposition state which arises from dissonance or uncertainty when deciding 

between two or more actions, and (2) the transition from a superposition state to a 

determinate one during the action evaluation process.  The evaluation of computational 

model mechanisms typically are through rigorous comparisons with competing 

computational models (Busemeyer & Bruza, 2012).  The current study, however, directly 

examines frequency band activity in the brain with functions consistent with the two 

mechanisms in the BAE model. Overall, the neural evidence found in the current study 

are consistent with the BAE model while revealing some interesting complexity of the 

neural mechanisms. 

The analysis of FM theta and parietal alpha frequency band activity provided 

limited support for effect of communication on these mechanisms.  Our analysis of 

conflict processing, as indexed by FM theta activity, offered initial evidence that 
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communication resolves the superposition state conceptually similar to a wave function 

collapse in quantum mechanics (Bruza et al., 2015; Busemeyer & Bruza, 2012; Z. Wang 

& Busemeyer, 2016).  Further, parietal alpha-beta suppression provided support for the 

proposition that communication modulates the evolution of an entangled cognitive 

system through the time of decision. 

The influence of communication on the superposition state, as conceived by QC 

theory, was most evident after receiving explicit information. The BAE model predicts 

that receiving information, in comparison to the absence of communication, resolves 

more dissonance about the decision (Z. Wang & Busemeyer, 2016).  With the category 

known, dissonance was expected only for the decision about potential actions.  However, 

our results suggest that very little conflict processing took place. That is, being informed 

of the category appeared to resolve conflict about the action – a stronger effect than 

assumed by the BAE model. Even so, this result is consistent with the idea that 

communication acts as a measurement to “break” an entangled system.  On the other 

hand, without knowing the category, considerably more conflict processes occurred, 

suggesting the presence of a cognitive state conceptually analogous to a superposition 

state.  While we cannot say definitively that conflict emerged from uncertainty across 

potential categories and actions, it is plausible and consistent with BAE model 

assumptions about a superposition state.  

Communication similarly dominated conflict processing when including utilities 

in the analysis.  In contrast to our second hypothesis, utilities failed to moderate the 
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superposition state; however, communication exerted the same pattern of effects on FM 

theta, in general, for both positive and negative utilities.  This is surprising since 

incongruent trials, associated with negative utilities in the BAE model, consistently 

enhance neural activations in the conflict processing research (Cohen & Donner, 2013; 

Cohen & Van Gaal, 2013; Cooper et al., 2016; Gratton et al., 2018; Jiang et al., 2018).   

Nonetheless, a handful of studies either revealed diminished or no difference in conflict 

processing for incongruent trials, depending upon the cue and the task (Aarts, Roelofs, & 

van Turennout, 2008; Alpay, Goerke, & Stürmer, 2009; Strack, Kaufmann, Kehrer, 

Brandt, & Stürmer, 2013; van Driel et al., 2015).  For example, an informative cue 

eliminated conflict-related activation in the ACC during subsequent evaluative 

processing, irrespective of target congruency in comparison to a non-informative cue 

(Aarts, et al., 2008).  Similar to the concept of communication-as-measurement, the 

informative cue resolved conflict processing prior to the evaluation stage.  The reduction 

in conflict processing reflects the responsiveness of top-down, controlled processes to 

certain information (Aarts et al., 2008; van Driel et al., 2015). 

Taking the inverse of this logic, sensitivity to utilities should be heightened in 

absence of communication when certainty about the category and action was low.  

However, our results revealed no significant difference between negative and positive 

utilities for either self-expressing or no communication.  The absence of an effect may be 

due to the probabilistic nature of the category and action.  In our study, probability of the 

stimuli category as described in the cover story was set to 60% and the probability of the 
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action, given the category, was set to 70% across the three communication conditions.  

Under such uncertainty, both positive and negative utilities may be co-activated during 

the evaluation process with neither producing an advantage for enhanced sensitivity to 

conflict.  Indeed, a recent study using a mixed-gambling task, utilities similarly failed to 

moderate conflict processing when the alternatives were not clearly differentiated 

(Pornpattananangkul, Grogans, Yu, & Nusslock, 2019).  From the QC theory perspective, 

more definitive information about beliefs and actions may be required for utilities to 

influence an entangled system.  

Self-expressing also failed to modulate conflict processing as unexpected.  Since 

the category was uncertain but made explicit, we predicted self-expressing would resolve 

more conflict than the absence of communication but less receiving information. We 

interpreted the observed lack of resolution as continued indecision over potential 

categories and potential actions during the evaluation.  Unlike being informed of 

category, self-expressing appeared to convey no more certainty about the category than 

the implicit categorization assumed in the absence of communication.   

Our results provide new insights for self-expressing research, also known as self-

effects.  In behavioral studies, the act of expressing a belief typically increases certainty 

about it and induces related behavioral outcomes.  The strengthening of beliefs has been 

observed in health communication (Geusens & Beullens, 2019; Han et al., 2008; Shaw, 

Hawkins, McTavish, Pingree, & Gustafson, 2006), on and offline political deliberation 

(Cho, Ahmed, Keum, Choi, & Lee, 2018; Eveland, 2004), perceived mathematical 
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efficacy (Canning & Harackiewicz, 2015), mediated communication and self-concept 

(Walther et al., 2011), and environmental behaviors (Aronson, 1999).  The influence of 

self-effects have been attributed to constructive message production and elaboration 

(Eveland, 2004; Pingree, 2007).  During spontaneous expressing and message 

composition, thoughts are constructed from existing representations stored in memory 

and from new ways of thinking about the topic –regardless of the expectations about the 

receiver.  Because constructive processes reveal thoughts beyond pre-existing beliefs, 

Pingree (2007) argues that self-expressing leads to inferences about one’s own attitudes 

and beliefs in accordance with Bem's (1967) self-perception theory.  That is, “if I say or 

write it, then I must be revealing something important about myself.”  Though self-

perception theory explains increases in belief strength, it does not predict the cognitive 

dissonance (and conflict processing) observed after self-expressing in our data and 

formalized by the BAE model for stimuli with positive social associations (Busemeyer et 

al., 2009; Pothos & Busemeyer, 2009; Z. Wang & Busemeyer, 2016) 

On the other hand, self-persuasion theory views cognitive dissonance as central to 

self-expressing (Aronson, 1999; Valkenburg, 2017; but see Brinol et al., 2012 for an 

alternate perspective).  Specifically, overt behavior inconsistent with existing beliefs 

leads to subsequent expressions shifted to be aligned with the behavior.  The internal 

discomfort caused by a misalignment between behavior and beliefs motivates a post hoc 

shift in beliefs (Festinger, 1957), and this shifts are evident in self-expressions.  For 

example, participants instructed to engage in unfriendly behavior during an online 
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conversation subsequently expressed unattractive perceptions of their partner (Walther, 

Van Der Heide, Tong, Carr, & Atkin, 2010).  In a video game study, filling the role of a 

Palestinian or Israeli leader subsequently resulted in negative reports of the opposing 

group (Alhabash & Wise, 2015).   

Self-persuasion theory is consistent with Festinger’s (1957) temporal view of 

cognitive dissonance: people align their beliefs to be consistent with their actions.  From 

the communication perspective, the action precedes the shift in self-expression.  

However, the BAE model predicts an inverse temporal relationship: cognitive dissonance 

occurs after self-expressing and before the decision.  The FM theta activity in our study 

provides support for this prediction.  Predecisional conflict is also consistent with the 

biosocial model of affective decision making (Kitayama & Tompson, 2015).  Like the 

BAE model, the biosocial model assumes dissonance emerges during deliberation about 

two alternatives.  However, self-expression – or an effect due to measurements in any 

form -- was not considered in the model.  Ultimately, neither self-persuasion theory nor 

the biosocial model sufficiently explain the pattern of FM theta activation observed in our 

study.  While self-persuasion theory accounts for a relationship between dissonance and 

self-expressing, it occurs in the opposite causal direction.  Conversely, while biosocial 

model builds upon evidence for predecisional dissonance reduction, it does not assert a 

role for self-expressing in the process.  Notably, we do not claim that cognitive 

dissonance does not emerge post-decisionally; indeed, neural evidence exists to support 

this claim (Colosio, Shestakova, Nikulin, Blagovechtchenski, & Klucharev, 2017; Fischer 
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et al., 2013).  Rather, our interest lies in investigating how self-expressing influences 

cognitive dissonance as assumed by the BAE model and as revealed by our analysis.  

Indeed, our third hypothesis articulated a nuanced but important effect of self-

expression on the cognitive system.  Pingree (2007) argues that without a receiver in 

mind, the sender is mentally absolved of “social sanctions.”   However, the BAE model 

assumes that irrespective of the self-reported category, making a decision with a positive 

association leads to more dissonance than an incongruent decision for a negative 

association.  The implication is that normative expectations for social associations, e.g., 

stereotypes and biases, exert influence across the decision process; self-expressing does 

not necessarily resolve it.  Our analysis provided modest tentative support for this 

prediction (Townsend et al., 2000; Z. Wang & Busemeyer, 2016).  Though self-expressed 

communication was one-way – there was no recipient for the category information – 

social implications appeared to influence the evaluation process.  Numerous studies using 

neural data have validated the importance of positive social associations.  Falk & Scholz 

(2018) found a robust effect for the maintenance of social connections during an 

extensive review of neural structures and the value system.  For example, activity in the 

relevant structures increased for stimuli positively rated by peers in comparison to 

negatively rated stimuli (Falk & Scholz, 2018; Mason et al., 2009).  Separately, a study 

using the Ultimate Game paradigm, event-related-potentials (ERPs) associated with 

conflict process increased after the proposer made an offer advantageous to the self but 

unfair to the opponent (G. Wang et al., 2016). 
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Further, the mere possibility of deciding to behave inconsistently with existing 

beliefs, especially for positive social associations, may explain the lack of difference in 

dissonance reduction between self-expressing and the absence of communication, in 

general.  Because of the low power for self-expressing for faces with negative utilities, 

we were not able to make a definitive claim for this proposition.  Nonetheless, the neural 

evidence supporting BAE model predictions and our unexpected findings increase our 

knowledge of self-expressing and related information processing.  Specifically, we 

potentially make a novel contribution to the self-effects literature about how and when 

self-expressing influences cognitive dissonance beyond explanations by self-persuasion 

theory (Aronson, 1999; Valkenburg, 2017), the biosocial model (Kitayama & Tompson, 

2015), and other models of sender influences on the self (Eveland, 2004; Eveland, 

Morey, & Hutchens, 2011; Pingree, 2007), 

Evidence for our fourth hypothesis further strengthens the case for the 

mechanisms specified by the BAE model.  Specifically, being informed of a category 

resulted in fewer resources allocated to memory operations, as indexed by parietal alpha-

beta band suppression, than self-expressing or the absence of communication, and self-

expressing resulted in less resource allocation than no-communication.  The inclusion of 

parietal beta band suppression in our analysis was not surprising since it often co-

activates with alpha band during semantic memory operations.  For example, alpha-beta 

suppression was observed during the encoding of relationships between words presented 

in strings (Vassileiou et al., 2018), the integration of new words into a sentence (Lam et 
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al., 2016), and better memory for face pairs with designated a priori relationships (Mölle 

et al., 2002).   Increases in suppression occurred as single elements (words, faces, 

symbols, etc.) were encoded into or retrieved from memory then integrated into a 

coherent meaningful representation.  By contrast, exposure to scrambled or random 

elements produced minimal, if any, suppression.  These findings are consistent with our 

results and BAE model assumptions about the evolution of an entangled cognitive system 

during the evaluation process (Wang & Busemeyer, 2016).  When neither the category 

nor the action were known, more resources were required to form the representation used 

in the decision from the many potential possibilities.  

Alternate Explanations 

FM theta activation. While communication in general exerted the hypothesized 

effect on FM theta power and parietal alpha-beta suppression based upon the underlying 

processes of the BAE model, other functions of these frequency bands may have 

accounted for the observed activity.  Cavanaugh & Frank (2014) view FM theta as the 

lingua franca for implementing adaptive control across diverse circumstances to include 

response to surprise, error detection, and working memory operations.  Given our 

experimental design, it is not likely that surprise modulated FM theta activity.  While 

error-processing was plausible, our data suggest increases in FM theta activity resulted 

from conflict about the response (Cohen, 2014b; Cohen & Van Gaal, 2013).  In 

particular, error-related theta peaks after the decision whereas conflict-related theta peaks 

prior to the decision – which is what we observed in our data.  Further, error-related theta 
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is negatively correlated with response time whereas on conflict-related theta exhibits a 

positive correlation. While results for the correlation analysis was mixed, response time 

predicted FM theta power in our analysis of variance.  On the other hand, it is more 

difficult to rule out the contribution of working memory operations to FM theta activity.  

However, memory-related theta in the frontal medial region tends to activate 500 ms after 

stimuli onset (Kawasaki & Yamaguchi, 2013; Solomon et al., 2017) whereas FM theta in 

our study decayed at 450 ms on average.  Notably, we distinguish memory related FM 

theta from working memory-related theta in the occipital-parietal region (Li et al., 2017) 

which exhibited a robust signal irrespective of communication condition.  Though we 

cannot not definitively eliminate working memory activity as a partial or full explanation 

of FM theta activation, the behavior of the frequency band was nonetheless consistent 

with the contexts producing conflict processing (Cohen & Donner, 2013; Cohen & 

Ridderinkhof, 2013; Cohen & Van Gaal, 2013; Gratton et al., 2018; Jiang et al., 2018; 

van Driel et al., 2015).  

Parietal alpha-beta suppression.  Beyond the release of attention and integration 

of representations in memory, the cognitive function of alpha-beta suppression remains 

under debate (Mazaheri et al., 2018; Singer, 2018). One perspective views suppression as 

an index of working memory only (Lenartowicz, Escobedo-Quiroz, & Cohen, 2010; 

Vassileiou et al., 2018) while another perspective assumes the integration of 

representations across both working and long-term memory (Clarke et al., 2018; 

Hanslmayr, Gross, Klimesch, & Shapiro, 2011; Klimesch, Sauseng, & Hanslmayr, 2007).  
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Our study does not resolve this issue.  Further, alpha-beta suppression in parietal region 

electrodes may reflect additional cognitive functions such as a general attention 

mechanism (Cohen & Ridderinkhof, 2013), motor control and response selection (Cohen 

& Van Gaal, 2013; Jiang, Zhang, & Van Gaal, 2015), or preparation for an upcoming 

trial (Cooper et al., 2016; van Driel et al., 2015).  While our experimental design allows 

us to rule out motor control and response selection as a possible explanation for alpha-

beta suppression, we do not have the tools to evaluate the contribution of other potential 

functions to the observed data.   Since these alternate explanations cannot be ruled out, 

we additionally cannot be fully confident that the observed parietal alpha-beta activity 

provided evidence for the relationship between communication and our assumptions 

about uncertainty reduction during the evolution of the cognitive state.  

Is conflict processing the same as cognitive dissonance? So far, we have assumed 

that conflict processing, indexed by FM theta, conceptually corresponds to cognitive 

dissonance as assumed by the BAE model. But can we be certain conflict processing and 

cognitive processing share properties sufficiently enough to be viewed as the same 

construct or highly overlapping constructs?  Research using FM theta activity to represent 

does not explicitly relate conflict processing to cognitive dissonance.  Instead, we viewed 

conflict emerging from competition between prepotent or congruent versus incongruent 

responses as the primary link.  However, empirical investigations typically use perceptual 

or low-level cognitive stimuli to investigate conflict processing; by contrast, cognitive 

dissonance assumes conflict involving high-level constructs, such as beliefs or attitudes. 
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Given this distinction, can we rely on modulations of FM theta to provide evidence for 

the BAE model mechanisms?  

The biosocial model addresses this issue directly (Kitayama & Tompson, 2015).  

Based findings from fMRI and ERP studies, the authors concluded that dissonance 

emerges from events not necessarily associated with the sophisticated representations 

inherent to beliefs or attitudes. For example, both nonhuman animals without higher 

order cognition and humans with impaired episodic memory lack the cognitive 

machinery to form complex beliefs, yet they nonetheless exhibit dissonance during 

difficult decisions.  

Inzlicht, Batholow, and Hirsh (2015) make an even stronger argument for the 

similarity between cognitive dissonance and conflict processing.  Indeed, in their view, 

the primarily function of cognitive control is to manage conflict.  An extensive review of 

the cognitive control literature revealed that the co-activation of competing mental 

representations leads to conflict during decision processing. Further, this conflict reflects 

an aversive state matching the properties of cognitive dissonance.  Similar to Kitayama & 

Thompson (2015), they found that the aversive state arose when tasks “threatened 

cherished goals” and when decisions involved low-level cognitive tasks requiring simple 

responses.  Taken together, these two perspectives lend support for the use of conflict 

processing, and related FM theta activity, as evidence of the superposition state and its 

sensitivity to measurement via communication.  
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However, both the biosocial model (Kitayama & Tompson, 2015) and Inzlicht et 

al (2015) view emotion, not cognition, as the genesis of conflict processing and cognitive 

dissonance, though each conceives it in different ways. The biosocial model asserts that 

the desire for appetitive outcomes drives dissonance reduction.  On the other hand, 

Inzlicht et al (2015) argue that negative emotions dominate the emergence of conflict 

processes, though these emotions tend to be transient and easily resolved with the 

decision.  While valenced utilities and face associations can be construed as consistent 

with the influence of emotions on the superposition state and state transitions, BAE 

model does not explicitly acknowledge a core role of emotionality on dissonance 

emergence or reduction.  

Limitations and Recommendations for Future Research 

Our study had several limitations. We evaluated a single time-window within a 

larger temporal landscape.  The evaluated window – comprising the period immediately 

preceding the decision question and extending through the decision arc – was selected for 

three main reasons: (1) the event was equivalent across all three communication 

conditions; (2) hence, reflected the cognitive processes influenced by exposure (or not) to 

earlier category information; and (3) presumably contained two central mechanisms 

modulated by communication as assumed by the BAE model – the superposition state 

and the transition to a determinate state at the time of decision (Busemeyer et al., 2009; 

Pothos & Busemeyer, 2009; Z. Wang & Busemeyer, 2016).   By constraining ourselves 

to this window, we were not able to evaluate the effect of communication about the 
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category – from either the receiver’s or sender’s perspective – on the cognitive state.  

Such an analysis would increase our understanding of dynamic interactions between 

communication type, category congruency, and subsequent evaluations of potential 

actions – an approach especially important to understanding the nature of entanglement in 

cognitive systems (Busemeyer & Bruza, 2012).  We also did not evaluate the cognitive 

state after participants were provided feedback.  The impact of feedback on subsequent 

decisions has been a major focus area for research on value systems, expected utilities, 

and the effect of rewards and punishment as they manifest in the brain.  While some 

studies focused solely on the window surrounding feedback, many other studies took a 

dynamic approach and evaluated the impact of feedback on subsequent trials (Balconi & 

Vanutelli, 2018; Billeke et al., 2013; Cohen & Donner, 2013; Colosio et al., 2017; 

Glazer, Kelley, Pornpattananangkul, Mittal, & Nusslock, 2018; Jiang et al., 2018; van 

Driel et al., 2015).  Indeed, the behavioral studies testing the BAE model included 

estimates for the entire categorization-decision process – from exposure to stimuli 

through feedback. However, hundreds of participants participated in each of these 

studies. By comparison, only 32 participants completed our study; given the complexity 

of our study design, we lacked the power to conduct an extensive, dynamic analysis of all 

the plausible combinations influencing the proposed underlying mechanisms.  Since EEG 

studies are time-consuming to implement, future studies may benefit from implementing 

pared down versions of the BAE model as a way to gain enough power for a dynamic 

analysis across the entire affected temporal window.   
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Our study design did not allow us to distinguish the effect of communication on 

the superposition state and state transitions from other possible contributing functions.  

For example, random word lists and scrambled faces routinely fail to induce conflict 

processing, as indexed by FM theta activity, and integrations in memory, as indexed by 

parietal alpha-beta suppression (Lam et al., 2016; Mölle et al., 2002).  The inclusion of 

“meaningless” stimuli in futures tests of BAE model mechanisms could help isolate the 

effect of utility valence or entanglement of categories-and-actions on neural oscillations.   

Further, BAE model predictions informally guided our hypothesis formation.  Our 

hypotheses were quite general and used only a single data for each participant for each 

communication condition.  The advantage of computational models of cognition, 

particularly a model introducing a powerful mathematical formalism based on quantum 

probability, is that they make predictions otherwise unobservable in non-computational 

theories or models by the inclusion of model parameters for the underlying functions.  

Further, neural activity occurs at multiple temporal and spatial scales, and are not 

necessarily linear.  Constructing a computational model of the brain that uses the 

parameters of cognitive computational models to predict neural activity may yield a more 

nuanced yet unambiguous understanding of underlying psychological processes not fully 

observed in the present study (De Hollander et al., 2016; Love, 2016; Palmeri et al., 

2017).   

Finally, as analyzed in our study, frequency band activity provided tangible yet 

limited information about cognitive states; hence, the findings may also extend to other 
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explanations of uncertainty reduction beyond the BAE model.  For example, the Markov 

model compared with the BAE model in Wang & Busemeyer (2016) assumed that 

individuals are in one state at a time with respect to a belief and follow a determinate 

trajectory towards a decision. By comparison, the BAE model assumes people are 

superimposed, not determinate, across the potential beliefs.  The observed FM theta 

activation cannot be interpreted to differentiate between a psychological state following a 

single trajectory amidst co-activated alternatives versus a state evolving across them over 

time.  To be fair, however, existing behavioral evidence suggests differences in 

dissonance may exist between the two models.  For example, when Busemeyer et al 

(2009) included a dissonance parameter in the Markov model, it did not improve model 

predictions relative to the data and to the BAE model.  Clarifying Markov model 

assumptions about competing potential beliefs may help quantify expected dissonance in 

the future.  For the present, we assume that making a difficult decision among competing 

responses – whether a single trajectory is followed or not – would result in the 

recruitment of resources for conflict processing. Under such an assumption, our findings 

are supportive but not necessarily unique to quantum cognition.  

Conclusion 

Our analysis of frequency band power provided initial and limited support for the 

effect of communication on the proposed underlying mechanisms of the BAE model, a 

computational model based on quantum cognition and the mathematical formalism of 

quantum mechanics (Busemeyer et al., 2009; Z. Wang & Busemeyer, 2016).  In 
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particular, receiving certain information resolved the conflicted internal state 

conceptualized as a superposition state by the quantum cognition theory.  We 

unexpectedly found that self-expressing generally did not resolve conflict more than the 

absence of communication, and hence provided novel insights about the effects of sender 

effects and cognitive dissonance.  Communication, in general, exhibited a similar effect 

on the evolution of the cognitive state as represented by resources allocated to memory 

search and integration operations.  While these findings are not unique to the BAE model, 

per se, they are the first to offer evidence for underlying psychological mechanisms 

previously only explored in computational models. 
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Appendix 1. MATLAB Script for Time-Frequency Decomposition 

 

% Script for time-frequency decomposition and mean cross-trail power 

% for channels FCz and POz 

% Adapted from scripts provided by Cohen (2015) and Cohen (2014b) 

  

%% load file with data for all 32 subjects 

load allSub.mat;  

  

%% declare parameters that will be the same for all conditions 

  

% assign number of subjects for loops 

subcount = length(allSub); 

  

% find indices of start and end times -100 to 1000ms 

% since all subjects have same time window, variable can be declared 

% using any subject 

useTimes = dsearchn(allSub(1).EEG.times',[-1000 1000]'); 

  

%create a new vector of the time window 

newTime = allSub(1).EEG.times(useTimes(1):useTimes(2)); 

  

% create time points variable for easier matrix creation later 

pnts = length(newTime); 

  

% define frequency and s parameters 

srate = allSub(1).EEG.srate; 

time  = -1:1/srate:1; % time in seconds 

  

%define frequency range  

minF = 3;   

maxF = 25;  

% number of frequencies 

numF = 20;  

  

% create frequency range 

frex = logspace(log10(minF),log10(maxF),numF); 

  

%create cycle variable 

s = logspace(log10(3),log10(10), numF) ./ (2*pi.*frex); 

  

%get indices of baseline period  

baseline = dsearchn(newTime',[-800 -400]'); 
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% declare communication condition types 

types = [25 26; 36 37; 50 52]; %self-expressing, no communication, 

receiving information 

  

% create 2 zeros matrices to store all the averaged data from each 

channel.  

FczAll = zeros(numF,pnts, length(types)); 

PzAll = zeros(numF,pnts,length(types)); 

  

% declare matrix for mean values to export  

% for FCz 

  fczsubset = zeros(subcount,length(types)); 

  cuttime = dsearchn(newTime',[150 450]'); 

% for POz 

  pzsubset = zeros(subcount,length(types)); 

  cuttimep = dsearchn(newTime',[300 900]'); 

  

  

%% Fcz time-frequency decomposition over three communication conditions 

  

% declare which channel to pull from 

chan2use = 'FCz'; 

  

% Loop over conditions, then subjects, then frequencies 

for t=1:length(types) 

     

    %select the condition to use 

    type = types(t,:); % comma, colon instructs to capture both first 

and second column 

    %original code type = types(t) captured first col only 

     

    %declare zeros matrix to store all subjects before averaging 

    eegpower = zeros(numF,pnts,subcount); 

     

    %loop over subjects 

    for su=1:subcount 

         

        % assign subject 

        subject = allSub(su).EEG; 

         

        % create matched matrix of events and epochs 

        type_epoch = [subject.event(:).type;subject.event(:).epoch]; 

         

        % get the list of epochs 

        epochs2use = 

type_epoch(2,find(ismember(type_epoch(1,:),type)));  

         

        fczcond(t,su) = length(epochs2use); %trial counts for each 

subject per cond 
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        % pull data 

        data = 

squeeze(subject.data(strcmpi(chan2use,{subject.chanlocs.labels}),useTim

es(1):useTimes(2),epochs2use)); 

         

        %reshape into one concatenated file for convolution 

        dataCat = reshape(data,1,[]); 

         

        % count number of trials 

        trialcnt = length(epochs2use); 

        trialscount_FCz(t,su) = trialcnt;  

 

        % prepare data for convolution 

        nData = length(dataCat); 

        nKern = length(time); 

        nConv = nData + nKern -1; 

        halfWave = (nKern-1)/2; 

         

        n_conv_pow2 = pow2(nextpow2(nConv)); 

         

        fftdata = fft(dataCat, n_conv_pow2); 

         

        %loop over frequencies 

        for fi=1:length(frex) 

             

            % make wavelets 

            wavelet = exp(2*pi*1i*frex(fi).*time) .* exp(-

time.^2./(2*s(fi)^2)); 

            wavelet = fft(wavelet, n_conv_pow2); 

            wavelet = wavelet./max(wavelet); 

         

            %perform convolution via ifft 

            eegconv = ifft(wavelet.*fftdata); 

            eegconv = eegconv(1:nConv); 

            eegconv = eegconv(halfWave+1:end-halfWave); 

             

            % extract power 

            power_data_raw = abs(eegconv).^2; 

            power_data_raw = reshape(power_data_raw,pnts,trialcnt)'; 

             

            eegpower(fi,:,su) = mean(power_data_raw); 

             

        end 

         

        %baseline computation then dB convert 

        baseline_power = 

squeeze(mean(eegpower(:,baseline(1):baseline(2),su),2)); 

        eegpower(:,:,su) = 10*log10( 

squeeze(bsxfun(@rdivide,eegpower(:,:,su),baseline_power) )); 

       

   end 
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    %average subjects together and store in Fcz matrix 

    FczAll(:,:,t) = mean(eegpower,3); 

     

    %pull mean data for export 

    for i=1:subcount 

      fczsubset(i,t)= mean(mean(eegpower(1:9,cuttime(1):cuttime(2),i))) 

     end  

  

end 

  

% total number of trials per participant 

fczcond_ct(4,:) = sum(fczcond); %declare 4th row to sum across col 

  

  

%% POz time-frequency decomposition over three communication conditions 

  

% declare which channel to pull from 

chan2use = 'POz'; 

  

% Loop over conditions, then subjects, then frequencies 

for t=1:length(types) 

     

    %select the condition to use 

    type = types(t,:); 

     

    %declare zeros matrix to store all subjects before averaging 

    eegpower = zeros(numF,pnts,subcount); 

     

    %loop over subjects 

    for su=1:subcount 

         

        % assign subject 

        subject = allSub(su).EEG; 

         

        % create matched matrix of events and epochs 

        type_epoch = [subject.event(:).type;subject.event(:).epoch]; 

         

        % get the list of epochs 

        epochs2use = 

type_epoch(2,find(ismember(type_epoch(1,:),type))); 

         

        % pull data 

        data = 

squeeze(subject.data(strcmpi(chan2use,{subject.chanlocs.labels}),useTim

es(1):useTimes(2),epochs2use)); 

         

        %reshape into one concatenated file 

        dataCat = reshape(data,1,[]); 

         

        % count number of trials 

        trialcnt = length(epochs2use); 
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        trialscount_Pz(t,su) = trialcnt;  

        % prepare data for convolution 

        nData = length(dataCat); 

        nKern = length(time); 

        nConv = nData + nKern -1; 

        halfWave = (nKern-1)/2; 

         

        n_conv_pow2 = pow2(nextpow2(nConv)); 

         

        fftdata = fft(dataCat, n_conv_pow2); 

         

        for fi=1:length(frex) 

             

            % make wavelets 

            wavelet = exp(2*pi*1i*frex(fi).*time) .* exp(-

time.^2./(2*s(fi)^2)); 

            wavelet = fft(wavelet, n_conv_pow2); 

            wavelet = wavelet./max(wavelet); 

             

            %perform convolution via ifft 

            eegconv = ifft(wavelet.*fftdata); 

            eegconv = eegconv(1:nConv); 

            eegconv = eegconv(halfWave+1:end-halfWave); 

             

            % extract power 

            power_data_raw = abs(eegconv).^2; 

            power_data_raw = reshape(power_data_raw,pnts,trialcnt)'; 

             

            eegpower(fi,:,su) = mean(power_data_raw); 

             

        end 

         

        %dbconvert power 

        baseline_power = 

squeeze(mean(eegpower(:,baseline(1):baseline(2),su),2)); 

        eegpower(:,:,su) = 10*log10( 

squeeze(bsxfun(@rdivide,eegpower(:,:,su),baseline_power) )); 

         

    end 

    %average all subjects together and store result in Pz matrix 

    PzAll(:,:,t) = mean(eegpower,3); 

     

    %pull mean data for export 

     for i=1:subcount 

      pzsubset(i,t)= 

mean(mean(eegpower(10:20,cuttimep(1):cuttimep(2),i))) 

     end  

end 

 

%% Plot results 

%shorten time window in plot for clarity 



70 

 

ptimes = dsearchn(newTime',[-500 800]'); 

plotTime = newTime(ptimes(1):ptimes(2)); 

 

% Fcz 

figure(1) 

subplot(311) 

contourf(plotTime,frex,FczAll(:,ptimes(1):ptimes(2),1),40,'linecolor','

none') 

set(gca,'clim',[-2 2],'xlim',[-500 

800],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

title('Self-Expressing (FCz)') 

subplot(312) 

contourf(plotTime,frex,FczAll(:,ptimes(1):ptimes(2),2),40,'linecolor','

none') 

set(gca,'clim',[-2 2],'xlim',[-500 

800],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

title('No Communication (FCz)') 

subplot(313) 

contourf(plotTime,frex,FczAll(:,ptimes(1):ptimes(2),3),40,'linecolor','

none') 

set(gca,'clim',[-2 2],'xlim',[-500 

800],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

title('Receiving Information (FCz)') 

  

figure(2)% all communication conditions spectrogram for FCz 

contourf(plotTime,frex,FczAll(:,ptimes(1):ptimes(2)),40,'linecolor','no

ne') 

set(gca,'clim',[-2 2],'xlim',[-500 

800],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

 

% POz 

figure(3) 

subplot(311) 

contourf(plotTime,frex,PzAll(:,ptimes(1):ptimes(2),1),40,'linecolor','n

one') 

set(gca,'clim',[-2 2],'xlim',[-200 

900],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

title('Self-Expressing (POz)') 

subplot(312) 

contourf(plotTime,frex,PzAll(:,ptimes(1):ptimes(2),2),40,'linecolor','n

one') 
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set(gca,'clim',[-2 2],'xlim',[-200 

900],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

title('No Communication (POz)') 

subplot(313) 

contourf(plotTime,frex,PzAll(:,ptimes(1):ptimes(2),3),40,'linecolor','n

one') 
set(gca,'clim',[-2 2],'xlim',[-200 

900],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

 

figure(4) % all communication conditions spectrogram for POz 

contourf(plotTime,frex,PzAll(:,ptimes(1):ptimes(2)),40,'linecolor','non

e') 

set(gca,'clim',[-2 2],'xlim',[-200 

900],'yscale','log','ytick',logspace(log10(minF),log10(maxF),6),'ytickl

abel',round(logspace(log10(minF),log10(maxF),6)*10)/10) 

colorbar 

title('All Communication Conditions (POz)') 

 

 

 

 


