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Abstract

Wireless sensing is the core technology that enables a countless number of appli-

cations in various areas, such as human-computer interaction, home-security monitor

and indoor navigation. Compared with various existing techniques, such as audio-

based, camera-based, and radar-based systems, wireless signal based techniques show

advantages in low-cost, preserving users’ privacy, free from limitations such as the

light condition, the line-of-sight link and so on. The ubiquity and drastically growth

of communication devices (e.g., WiFi) in the world today represents a huge opportu-

nity in delivering useful services to the society.

However, in designing wireless sensing system, there exist several technical chal-

lenges, such as significant noise in the wireless channel, random phase shift due to

lack of clock synchronization, continuously changing and dynamic wireless channel

and heterogeneous links’ qualities. These factors prevent the reliability and robust-

ness of existing wireless sensing systems, which utilizes commodity communication

signal. On the other side, given enough time on efforts in the research community

and the industry, these sensing systems will in due course be realized robustly and

commoditized for broad use. Thus, a great concern comes onto the table as a new

form of threat has emerged recently that leaks private information about the where-

abouts and activities of physical targets merely by observing the ongoing wireless

communications in the scene.
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Therefore, to exploit the potential of prevalent existing communication infras-

tructures for the well-being of human, we as researchers need to not only propose

innovative solutions on providing reliable and robust wireless sensing services but

also put a significant priority on endeavors to protect private information of the in-

nocent users from leaking. In this dissertation, we study the problems of sensing and

anti-sensing with wireless communication signal, e.g., WiFi.

First, we study user-friendly fine-grain finger-gesture recognition. We propose

Mudra, a novel wireless sensing technique that takes the first step to recognize finger-

gestures with commodity WiFi signal. Mudra provides consistent services against the

dynamics in the wireless environment. Second, we study whole-home human activities

recognition. To boost the performance over the existing activity recognition systems,

we design TifWiFi, which utilizes a two-profile integration approach to complement

the drawback on each individual profile. Lastly, we work on protecting users’ privacy

against general wireless sensing techniques. We propose PhyCloak, which is the first

work of its kind to disable eavesdropping on users’ private information against any

wireless sensing technique with one-antenna setting.

In the above, the two wireless sensing designs cover different application scenarios,

i.e., near-field fine-grain small-scale motion detection and far-field course-grain large-

scale activity recognition. Thus, they can represent distinct challenges and issues with

regards to each scenario. In the protection system, instead of naive jamming method,

we design a novel signal processing approach to obfuscate the eavesdropper without

its awareness while preserving the legitimate sensing capability. We have implemented

the above three systems and conducted extensive experiments in various real-world

conditions. Evaluation results show the effectiveness of our systems.
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Chapter 1: Introduction

Wireless sensing is the core technology that enables a countless number of appli-

cations in various areas, such as human-computer interaction, home-security monitor

and indoor navigation. Compared with various existing techniques, such as audio-

based ( [42,68]), camera-based ( [28,62,78]), and radar-based ( [2]) systems, wireless

signal based techniques show advantages in low-cost and preserving users’ privacy.

Besides, it is free from limitations such as interference of the background sound, the

requirement of the light condition, and the line-of-sight (LoS) path, encountered by

the others. The ubiquity and drastically growth of Wi-Fi devices in the world today

represents a huge opportunity in delivering useful services to the society. Up to now,

there are 23.1 billion connected IoT devices worldwide and it is predicted that by 2022

the number will be boosted to 42.6 billion ( [58]). However, to exploit the potential,

there exist several technical challenges which prevent the reliability and robustness

of wireless sensing applications based on commodity Wi-Fi signal.

First of all, due to the environmental variation and device imperfection, the wire-

less channel is noisy. As such, the collected channel state information (CSI) deviates

from the true channel coefficients. In some cases, the noise is so large that could cause

a significant error in the sensing applications. What’s more, without clock synchro-

nization between the transmitter and the receiver, random phase shift occurs in each

1



received packet. Therefore, the useful channel phase information is overwhelmed by

the random shift and thus loses its function in sensing. Secondly, the wireless en-

vironment is dynamic and unpredictable. There are three main factors that cause

dynamics in wireless channel - moving objects (human beings and vehicles), mov-

ing settings (furnitures), and moving streaming endpoints (transmitter and receiver).

The dynamics of the channel makes it hard for the sensing technology to be reliable.

Last but not least, link conditions in the wireless environment are quite heteroge-

neous. That is, different wireless links in the space would exhibit large discrepancy

in the channel quality and thus the performance as well. Thus, it remains an issue to

select proper locations for installation and combine the results from different wireless

links.

On the other side, given enough time on efforts in the research community and

the industry, these sensing systems will in due course be realized robustly and com-

moditized for broad use. Thus, a great concern comes onto the table as a new form

of threat has emerged recently that leaks private information about the whereabouts

and activities of physical targets merely by observing the ongoing wireless communi-

cations in the scene. Broadly speaking, as a wireless signal gets reflected off of people

and other objects in the scene, information about them is leaked to eavesdroppers by

computational analysis of the signal distortions. Increasingly, researchers have been

demonstrating proof of concepts where not only people presence but also fine-grain

information about their locations and even breathing, lip movement or keystrokes is

leaked [8, 39, 50, 65, 70]—all from observing communication signals that are widely

prevalent in our homes.
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In this dissertation, we present three pieces of work regarding the problem of

sensing and anti-sensing with wireless communication signal. In the following, we

briefly introduce each part.

1.1 User-friendly Fine-grain Finger-gesture Recognition with
WiFi signal

In modern society, wireless signals have been prevalent and ubiquitous in coverage

in our daily life. Although these signals are originally intended for communication

purpose to connect different computing endpoints wirelessly, researchers both in the

academia and in the industry have explored and demonstrated their potential in

sensing the context in the surrounding environment. Recently, with the advances in

wireless sensing, researchers have extended their studies from macro-gesture recogni-

tion to micro-gesture recognition. In this work, we take the first step to recognize

finger-gestures, which are fine-grain motion with centimeter-range, with wireless com-

munication signal. We envision such a technology could deliver a new set of service

to the public over their portable and mobile devices.

One potential application especially supported by this technique is the human-

machine interaction with wearables that have limited screen space. With nine ges-

tures, users can easily input instructions into the device as controlling command on

the application which is active on the screen, such as scrolling through one page,

clicking button, and switching among applications. Let’s imagine a reader is read-

ing an e-book on apple watch. He can move to next page with a ‘tap’ gesture and

return back with ‘double tap’ gesture, or circling his finger to get to the bottom. It

can also enable complex and in-the-air interactive games on portable devices. Users
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can control the action of figures with finger gestures in the air, such as going ahead,

returning back, jumping and punching.

Enabling a fine-grain finger gesture recognition system like this needs millimeter-

level sensitivity on the system over the motion of the object. In this paper, we develop

a novel finger-gesture recognition system, Mudra utilizing WiFi signals. Mudra just

needs regular WiFi data transmissions either from local or remote sources. In this

way, Mudra doesn’t need to generate special signals (like Soli), thus, saving power

for power-hungry devices [1,49] and not hurting communication opportunities. A key

feature of Mudra is its training-free nature. This makes our system more promising

in reality compared with other micro-motion technologies [17,30,64–66], all of which

require training for specific location and user.

However, it is non-trivial to meet the above design goals to make the system

user-friendly. Finger gestures are micro-motion which is hard to detect because they

result in subtle changes in the wireless channel. The mobile and dynamic application

scenario of the system poses challenges in delivering training-free services to the users.

To overcome these difficulties, we design three main components in our system. The

first one is Highly-sensitive Motion Indication, which makes our system robust against

the large noise in the wireless channel. The second one is Resource-friendly Signal

Processing which enables the system functionality with regular WiFi signals. The

last one is Environment-agnostic Gesture Pattern , which generates consistent and

environment-agnostic patterns, making our system free from specific training data

from users per surrounding environment.

We implement a prototype with software defined radio and COTS WiFi trans-

mission. The receive infrastructure of our system just includes two antennas without
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special structure requirements. With 802.11n protocol [75], MIMO devices with mul-

tiple antennas are very common. Thus, Mudra can be implemented on COTS receiver

if manufacturers open access to the samples. Mudra tracks finger-motion by deriv-

ing motion indication with cancellation between two received signals. Stretch Limited

DTW algorithm is proposed to classify gestures with variation in duration and shape.

1.2 Two-profile Integration Framework for Device-free Ac-
tivities Recognition with Communication Signal

Human activity recognition serves as the crucial part of numerous human-centered

computing services, such as smart home, elderly care, assisted living, and etc. WiFi

signal based passive activity recognition is to capture the on-going wireless commu-

nication signal in the air and infer the context information about the human activity

in the target area with proper signal processing approach. Similar to the gesture

recognition in the previous section, this topic also falls in the area of wireless sensing

based on communication signal. However, activity recognition targets at a totally dif-

ferent application scenario in the aspect of the scale of the motion and the size of the

object. Additionally, the nature of the available infrastructure and the environment

dynamics is also different. Thus, in the problem of activity recognition, we need to

address a distinct set of challenges for high-performance sensing.

In the human activity recognition system, the users perform normal activities

such as cooking, washing and eating. By inferring the type of activities that he/she

is performing, such a system could assist to deliver a context-aware home experience.

For example, light up different bulbs with different color to each distinct activity.

Apart from in-position activities, the users could also move around across multiple

rooms with their trajectory recorded. With regards to such a smart home system,
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it could be easily seen that the target moving object is the whole human body. In

the meantime, the range of the motion is now in the scale of hundreds of square

meters. Does it mean activity recognition could be much more easier than gesture

recognition? No exactly.

Without attached sensors on human body, device-free activity recognition pro-

vides a more favorable user experience by analyzing signal received from on-going

transmission. In this setting, the network infrastructures are the machines that could

be far from the human object. In the wireless channel, when the object is far from

the communication signal link in the air, then its motion has unnoticeable distortion

on the receive signal. Besides, in this work, we target at enabling the application

on COTS WiFi devices by utilizing the protocol-support channel information of CSI

reported by the network chipsets. However, the raw CSI traces are hard to be used

directly for pattern recognition due to the large noise. This can be seen from the

example in the Fig.1.1, where the variation related to a person’s walking is buried in

the noise.

In this work, we propose TifWiFi, a two-profile integration framework for device-

free human activity recognition. TifWiFi is built upon existing WiFi devices and thus

removes the cost and burden of deployment. It is also a passive detection system with

no privacy concern for users. The basic idea behind TifWiFi is to utilize status and

motion of human activity. Specifically, the status of the activity is captured by a

multipath profile, which represents the multipath propagation condition. The profile

for the motion part is represented by a frequency domain speed model. As far as we

know, TifWiFi is the first to utilize both profiles in the literature. It is worth noting
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Figure 1.1: Raw traces of CSI value on one subcarrier.

that TifWiFi doesn’t require any extra information source to construct two profiles.

The reason is that they are constructed with different processing on the CSI data.

We build our system on commodity WiFi devices and conduct experiments in

real home and office environment to validate our design and evaluate the system

performance. The results show that our system achieves a substantial improvement

over the conventional approaches.

1.3 Obfuscating Sensing from Communication Signal

Recognition of human activities and gestures using pre-existing WiFi signals has

been shown to be feasible in recent studies. Given the pervasiveness of WiFi signals,

this emerging sort of sensing poses a serious privacy threat. This new form of threat

has emerged recently that leaks private information about the whereabouts and ac-

tivities of physical targets merely by observing the ongoing wireless communications

in the scene. Broadly speaking, as a wireless signal gets reflected off of people and
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other objects in the scene, information about them is leaked to eavesdroppers by

computational analysis of the signal distortions. Increasingly, researchers have been

demonstrating proof of concepts where not only people presence but also fine-grain

information about their locations and even breathing, lip movement or keystrokes is

leaked [8, 39, 50, 65, 70]—all from observing communication signals that are widely

prevalent in our homes.

While the upside is that legitimate users can detect these physical “signatures”

simply using existing signals, a burglar can also detect that there are no people in a

house, a passerby can decipher key presses without leaving a trace [17], and a neighbor

can snoop on the activities in our homes [70]. There is little doubt that several of

these privacy exploits will in due course be realized robustly and commoditized for

broad use. And, given the pervasive nature of wireless communications, the privacy

implications of such attacks will undoubtedly be of major social importance.

It is thus timely and important to develop suitable counter-measures for this type

of privacy leakage. This paper is the first to counter the threat of unwanted or

even malicious communication based sensing. To avoid any modification of existing

receivers, we need to build an obfuscator (Ox) that works independently from a

receiver (Rx) and can yet deter privacy leakage. At the same time, Ox should not

hurt the ongoing reception at the intended receiver. In addition, given the diversity of

the design of RF based sensors and invisibility of eavesdroppers, it is not reasonable

to assume Ox that uses a specific obfuscation approach against a specific Eve. Thus,

our goal is to build a black-box solution which distorts only the privacy sensitive

information while not affecting the logical information.
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We propose PhyCloak to protect privacy information from unwanted or even ma-

licious sensing with no modification to existing wireless infrastructures. The effective-

ness of the design is validated via a prototype implementation on an SDR platform.
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Chapter 2: Related Work

2.1 Fine-grain Gesture Recognition with Wireless Signal

Human tracking and motion detection have been broadly studied in the literature.

We discuss existing techniques and their shortcomings in our setting.

Non-RF based micro-gesture recognition: Imaging-based systems (e.g. Xbox

Kinect [4], leap motion [3] and Maestro [21]) use monochromatic infrared cameras and

LEDs to build body-depth imaging. Both Radar and infrared systems require line-of-

sight (LOS) operation. Sonar-based system [47] requires specially modulated sound

wave and exclusive devices. Mudra, on the other hand, utilizes regular WiFi signals in

the ISM band, operating in parallel with WiFi communication. Furthermore, Mudra

supports both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios.

RF based micro-motion tracking: Another set of works exploit RF signals to

track human’s minor movements. Radar based systems (e.g. Google Soli [2]) show the

ability to track minor finger movement by constructing Doppler profile using 60GHz

radar signals. Such systems, however, require embedded chip to generate/capture

and process radar signals. Besides, it is limited to line-of-sight (LOS) scenario due to

the extra-directional feature of radar signals.
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[17,30,64,66] look into the keystroke detection problem. Mudra differs from them

fundamentally in that Mudra is targeted at identifying finger gestures, not keystroke

action. More importantly, Mudra is a user-friendly system without the need for

training. Whereas, the others require location-specific or user-specific training for

classification. One recent work detects minor keystroke motion by canceling two sig-

nals from two receiving antennas [17]. This system can not be applied to WiFi signals

since (i) it assumed continuous signal transmissions and (ii) assumed the frequency

response to be flat across the whole band. Therefore, they generate continuous wire-

less signal from SDR platform and only estimate the overall phase and amplitude of

the channel. WiFi transmissions are not continuous and do not have a flat frequency

response due to a small number of subcarriers spanning the whole band. The second

issue affects cancellation quality, which is what Mudra relies on to identify finger-

gestures. Mudra enables micro-gesture recognition with WiFi signals after solving

those problems by implementing smart packet capture and estimating full channel

state information (CSI). Mudra also resolves additional issues for WiFi signals such

as variable length of packets.

[64, 66] make use of sound and electromagnetic signals emanating from key-

boards, a feature unavailable with finger motion. [30] mainly use Principle Component

Analysis (PCA) to remove noise based on correlated variation of CSI with different

keystrokes. It is highly unlikely that such correlation still works with various finger

gestures since finger movements cause subtle changes to CSI: Fig. 2.1 shows the am-

plitude and phase variation over time when the user performed the same gesture 10

times. The plot shows no periodic variations. Another line of approaches (e.g. [65])

use MIMO beamforming, using multiple antennas and step motors to project signal to
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target. Target locating needs 6s and 85% of accuracy greatly affects overall accuracy.

Mudra, on the other hand, doesn’t require such a luxurious infrastructure.
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Figure 2.1: Phase/Amplitude variation in channel. When fingers repeat the
‘Come’ gesture ten times, the corresponding CSI amplitude/phase change is buried
within large noise, making it infeasible for finger-gesture recognition. This is the same
with other gestures while we just show ‘Come’ to save space, same with Fig. 2.2.

Coarse-grained gesture/motion detection: A large body of works track and

identify larger-scale gesture motion (e.g. human limbs), which typically spans over

range of several decimeters or target at the whole body, using characteristics of wire-

less signal. [50, 59] enables gesture recognition using Doppler profile generated from

multi-second FFT to get sub-Hertz granularity. However, typical finger gestures are

much shorter (e.g. tap just spans 0.5s), making this approach infeasible. To see this,

we implement Wisee [50] on PXIe-1082 platform and see no observable Doppler shift

with finger motion in Fig. 2.2. Frequency modulation was used with sound wave

in [46] and carrier wave in [9] to track human breath. Mudra differs in that we don’t

change the regular source to generate a delicately-designed signal, which can only

serve recognition purpose.

Channel CSI / RSSI-based systems [32,70] use coarse CSI feature to extract mo-

tion information, which is not feasible in detecting slight finger motion (Fig. 2.1). As

to antenna array based technologies (e.g. [7] and [29]), WiDeo [29] spans four-antenna
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Figure 2.2: Doppler profile in frequency domain. Large gestures such as Limb
Push produce noticeable Doppler shift (the above one) while figure gesture Come can
not induce discernible shift, which is the same as no motion.

infrastructure covering a length of 18cm, which is not available in portable devices.

Wi-Vi [7] assumes a constant motion speed (1m/s) simply to identify whether the

object is walking towards or away from a receiver. Another line of works get high

positioning accuracy by attaching object with specific devices( [37, 79, 81]). Tago-

ram [79] locates at a centimeter level using phase information of RFID backscatter

signal. [81] tracks smartphone as a mouse by active sound wave transmission. Mudra

is a user-friendly system which doesn’t require such intrusive body instrumentation.

2.2 Two-profile Integration Framework for Device-free Ac-
tivities Recognition with Communication Signal

Human activity recognition has been a hot research area in the past decades.

Existing approaches could be broadly separated into two categories. One category of

methods make utilization of ubiquitously deployed WiFi infrastructure and devices.
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While, the other set of approaches exploit non-WiFi signal by installing extra devices

in the target area.

Non-WiFi based approaches. Non-RF signal based approaches such as vision-

camera based [3, 4, 10], and radar-based [2], has been proposed in the literature.

Compared with WiFi signal based methods, they are all limited to the line-of-sight

(LoS) scenario. Apart from installing extra hardware in the environment, they also

suffer disturbance in the environment condition. For instance, vision-based systems

have implicit requirements of proper background light condition. Besides, user’s pri-

vacy is also a big concern with these techniques due to the abundant information

leaked by images. Similarly, radar-based methods suffer high directionality with 60

GHz signal and low-cost radar system has limited range (tens of centimeters).

By attaching devices on the user’s body, researchers can infer the activities he/she

engaged in by analyzing data from various sensors. Philips [5] and Pbn [31] attached

accelerometer on human body to infer the activity. Body-Scope [80] deploy acoustic

sensors to recognize daily activities like eating or coughing. However, attaching these

sensors either cause a burden on the users or extra deployment cost and thus are not

preferred and available in most applications.

WiFi-based approaches. Due to the ubiquity of WiFi infrastructures and devices,

WiFi signal has attracted lots of interests in the research community.

One group of approaches utilize the statistics of CSI values collected during the

activity for recognition. E-eyes [70] explored the channel state information from com-

modity devices to build a database of location-activity profiles. As different activities

cause different CSI distributions, this system identified the activity by comparing

its amplitude histograms with the pre-stored profile database. In contrast, another
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group of methods look into the variation pattern in CSI training data for pattern

recognition. For instance, WiSee [50] infers the human gestures by looking into the

Doppler shift caused by moving human body parts. This system relied on a special

hardware design with USRP to obtain the fine-grain frequency resolution in OFDM

signal. CARM [67] built a CSI-activity model by constructing a mapping from CSI

to human speed. WiFinger [60] extracted and identified the CSI variation patterns

caused by human finger gestures.

The fundamental limitation of the above approaches is that they just utilize a

single facet of the human activity, i.e., either the status or the motion, which is ex-

plained in Sec.4.1. In this work, we design a two-profile integration framework which

can utilize both facets of the activity to improve the activity recognition system. Un-

like current work [70] which builds the multipath profile with just single-subcarrier

amplitude distribution, we exploit the statics in the whole CSI information to make

use of the diversity embedded among multiple subcarriers. Part of the idea is inspired

by CSI-fingerprinting based works [55, 69, 74, 82]. Moreover, we design a statistical

analysis scheme on the motion profile for loosely-defined human activities. To op-

timally integrate both analysis, we design the PBD algorithm to make use of the

inherent priority.

Another line of related works [38,41,57,77] use signal processing based approaches

which derives the angle-of-arrival (AoA) and time-of-flight (ToF) information. Those

approaches rely on at least three antennas on the receivers which may not be sat-

isfied by a large portion of commodity WiFi devices. Besides, they need dedicate

calibration and deployment to have accurate location reference from the static WiFi

infrastructures and more than one receivers to enable intersection for pointing to the
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Existing Work Feature Basis Device Sensing Task

WiSEE: Pu et al. [50] Doppler Shift USRP-N210 Gesture recognition

Wi-Vi: Adib and Katabi [8] Phase USRP-N210 Gesture based communication,tracking

E-eyes: Wang et al. [70] RSSI, CSI COTS 802.11n devices Activity classification

Gonzalez-Ruiz et al. [25] RSSI IEEE 802.11g wireless card Obstacle mapping

Wang et al. [67] Phase, CSI COTS 802.11ac devices Activity classification

WiKey: Ali et al. [11] CSI COTS 802.11n devices Key recognition

RSA: Zhu et al. [85] RSS HXI Gigalink 6451 60GHz radios Object imaging

Table 2.1: Summary of recent SISO sensing systems

target. Moreover, the AoA information is only useful in the direct link which im-

plies those approaches fail in non-LoS scenario and area with strong obstructions. In

contrast, TifWiFi are not limited to LoS. Besides, TifWiFi has a minimum hardware

requirement and doesn’t require special deployment and location calibration.

2.3 Obfuscating Sensing from Communication Signal

RF sensing from communications has been of great interest in the last few years,

as it allows data signals to be exploited to infer remarkable details about the phys-

ical world. Although the primary purpose of the communication signals is to carry

logical information, concepts of radar analysis [14,20,26,27,33,34,36,40,48,52,56,61]

are adapted to extract these details. There are however several challenges in the

adaptation since communication signal is defined particularly for carrying data. For

example, radar systems control their resolution by specially encoding their trans-

mitting signals, say in the form of Frequency-Modulated Carrier Waves (FMCW) for

spectrum sweeping, but when sensing from RF communication a similar sort of trans-

mitter cooperation typically cannot be leveraged. As another example, sophisticated

radar signal processing techniques, say creating a synthetic aperture using a large
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number of antennas, cannot be implemented directly in communication systems due

to resource limitations.

Many techniques have been developed and demonstrated to address the above

mentioned challenges for diverse sensing tasks including motion tracking [8], activi-

ty/gesture recognition [50,67,70], and obstacle/object mapping/imaging [25,85], and

even minor motions like keystrokes recognition [11,17] and lip reading [65]. One idea is

to use one antenna to emulate an antenna array in the presence of human movement.

By tracking the angle of the reflected signal from the target (human) [8], the system

is able to track the motion of the target as a form of inverse synthetic aperture radar

(ISAR). Ubicarse [39] exploits the idea of circular synthetic aperture radar (SAR), in

which the system rotates a single antenna so as to emulate a circular antenna array.

As SAR does not require the target to be in motion, unlike the case of ISAR, Ubi-

carse proposes a method of using a handheld device to create circular antenna array

to perform localization. To overcome any imprecision in the circle created by the

rotation, it refines the formulation of SAR by using the relative trajectory between

two receive antennas. Some other techniques characterize signatures corresponding

to the channel variation caused by human activities. E-eyes [70] shows that temporal

RSS and CSI features, which are available in COTS devices, can be used in activ-

ity classification, albeit this requires relatively heavy training. WiSee [50] proposes

a method to extract Doppler shifts from OFDM symbols by applying a large FFT

over repeated symbols, and gesture recognition is then shown to be possible from

the extracted Doppler shifts. Another interesting technique used by communication

based sensors maps obstacles/objects [25, 44]. The Tx-Rx pairs detect the presence
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of obstacles via wireless measurements and thereby co-operatively draw the indoor

obstacle map.

As our protection system is single-input-single-output (SISO), we focus on break-

ing any SISO illegitimate sensing system in this work. Although SISO sensing systems

use diverse techniques exemplified in Table 2.1, they all leverage a subset of the 3

DoFs discussed in Section 5.1. Since PhyCloak provides a generic tool to obfuscate

in all these three dimensions, it can protect against any SISO sensor.

In contrast, for a multi-antenna sensing system, there is an additional DoF—the

relative placement of antennas—that yields other types of information like angle of

arrival (AoA) and time difference of arrival (TDoA). Nevertheless, by rotating Phy-

Cloak’s transmit antenna or extending our framework to a multi-antenna protection

system, we would have the freedom to also obfuscate the fourth dimension provided

by a multi-antenna sensing system.
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Chapter 3: Mudra: User-friendly Fine-grain Finger-gesture

Recognition with WiFi signal

In this chapter, we study the challenge of detecting micro-gestures of human and

propose the design of a reliable and robust fine-grain finger-gesture recognition system,

Mudra with the commodity communication signal, e.g., WiFi signal. In Mudra,

we propose a highly-sensitive motion indication which enables the system to track

fine-grain finger motions precisely. Apart from the high sensitivity, we make Mudra

user-friendly and propose a delicate gesture pattern design which is consistent in

the dynamic wireless environment. What’s more, Mudra is also resource-friendly

with parallel operating with the commodity communication signal using novel signal

processing techniques.

3.1 Overview

We propose Mudra, a system that is able to precisely track and recognize human

finger gestures using only the commodity communication signal. Mudra falls in the

area of wireless sensing, which generally utilizes wireless signal, e.g., radio-frequency

signal, to detect and/or recognize object’s motion in the target area. Currently,

wireless sensing technologies have tried to localize human body or detect human

motion in the range of a large building or whole-home environment. As illustrated
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below, we believe that sensing and recognizing fine-grain gestures could enable a set

of new applications to reveal a whole-new prospect of human-machine interaction.

As like other wireless sensing technologies, Mudra utilizes the changes in the

received wireless signal to derive the motion of the objects in the space. However,

Mudra takes the first step to look into finger-gesture recognition using conventional

ISM-band signals. Specifically, when the user performs micro finger-gestures in the

vicinity of a mobile device, the received communication signal is influenced due to

the changes in the multipath propagation channel. The principle of our system is to

derive the finger motion based on such changes in the received signal. In this way,

Mudra provides a service to recognize different gestures performed by the target user.

The impetus behind designing Mudra system is the ubiquity and drastic growth

of Wi-Fi devices in the world today. Up to now, there are 23.1 billion connected IoT

devices worldwide and it is predicted that by 2022 the number will be boosted to 42.6

billion. Therefore, a gesture recognition system based on conventional communication

signal represents a potential in delivering broadly-available service to the society.

What’s more, the communication radios are no longer standalone communication

processing circuits. On the one hand, the extra processing capability from software

defined radio or customized firmware enables delicate signal processing on received

signals. On the other hand, with the support from hardware protocol to report

meta-data from driver to the user space, the powerful processing platform of the

smartphone or PC where the wireless cards are attached with can be utilized to do

computation-heavy analysis and thus enable innovative applications.

There are recent advances in pushing gesture recognition techniques. Google Soli

[2] makes a huge breakthrough pushing motion sensing to millimeter-level accuracy,
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Figure 3.1: The system scenario of Mudra.

(a) shoot (b) pick (c) come

(d) tap (e) doublepick (f) doubletap

(g) circle (h) twist (i) go

Figure 3.2: Gestures considered in Mudra.

enabling micro-gesture recognition. This technology enables finger control application

in portable and wearable devices. Soli requires a dedicated RADAR-like chipset that

needs to be integrated with the existing hardware. This motivated us to explore the

following question: Can we detect fine gestures with conventional wireless signals, e.g.
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WiFi? If this is possible then we won’t need separate hardware for gesture recognition

from communication. Shown in Fig. 3.1, we expect users to control their portable

device with finger motion nearby.

Since Mudra utilizing WiFi signals, it just needs regular WiFi data transmissions

either from local or remote sources. In this way, Mudra doesn’t need to generate

special signals (like Soli), thus, saving power for power-hungry devices [1, 49] and

not hurting communication opportunities. Service of Mudra is always available as

long as there are active transmissions in vicinity: Mudra can use a nearby WiFi-

enabled desktop or laptop’s transmissions to its access point (AP) to detect gestures.

Furthermore, Mudra can use transmissions from multiple sources over time.

A key feature of Mudra is its training-free nature. This makes our system more

promising in reality compared with other micro-motion technologies [17, 30, 64–66],

all of which require training for specific location and user. One advantage is Mudra

is not constrained by stationary scenario. That means, even if the user moves to

another place, Mudra is still able to provide gesture recognition service using a WiFi

transmitter at a new location without reconfiguration.

However, to meet these design goals, there are the following challenges in building

Mudra:

• Compared with human body motion, finger gestures are micro-motion that

involves much smaller objects (fingers), slow speed and short distance. Thus,

finger gestures are hard to detect because they result in subtle changes in the

wireless channel.

• To utilize regular WiFi signals, we confront with lots of critical issues. Firstly,

WiFi packets are typically not continuous. We need to implement smart packet
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detect/capture module in Mudra. Second, short subcarrier length and variable

packet lengths in WiFi limit the tracking precision.

• User’s movement changes the channel between the source and receiver. This

makes finger-gesture recognition hard to be reliable and training for every loca-

tion is not favorable for a user-friendly system.

To solve the above-mentioned challenges, we propose three main design compo-

nents in Mudra system:

—Highly-sensitive Motion Indication. To make our system robust against the

small signal-to-noise-ratio (SNR), we propose a highly-sensitive motion indication.

—Resource-friendly Signal Processing. To enable the system functionality with

regular WiFi signals, we design novel signal processing approach to solve the chal-

lenges. In this way, our system doesn’t generate any dedicated wireless signal or take

up extra spectrum resources.

—Environment-agnostic Gesture Pattern. To support the user-friendly feature,

our system needs to require no specific training data from users per surrounding

environment. To this goal, we design and validate a set of gestures which generate

consistent and environment-agnostic patterns.

We build a prototype on NI based SDR platform. Our evaluation uses signals from

COTS WiFi sources. We evaluate our system in various environmental conditions

and system settings across multiple users. It shows that our system can achieve an

average accuracy of 98% with a local source (2 cm from Mudra) and 96% with remote

source(s) (0.5 - 7 m from Mudra). In the following sections, we will introduce the

design of each component in detail.
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3.2 Mudra Design

3.2.1 Preliminary: System Scenario and Setup

Before we go to the detail of each design component, in this section let us first

understand the application scenario considered in this work. With Mudra, we are

designing a system that enables micro-gesture recognition in vicinity. As Fig. 3.1

shows, the hand moves roughly 7cm to the receiving antennas over 2-4cm with gestures

in Fig. 3.2. This distance is measured as the minimum distance between the hand

and the two-antenna segment. On the target device, there are two antennas capturing

incoming WiFi signals. As to the distance between them, it is a critical design choice

and will be studied in Sec. 3.3.2, which gives 10cm as a default setting for the best

sensitivity while noting that Mudra can also work with shorter distance (Sec. 3.3).

Figure 3.3: Direction Demon-
stration

Mudra can work with a remote source such as

desktop, tablet and AP, and also a local source,

i.e. an extra transmit antenna on the target de-

vice itself. Thus, distance between signal source

and Mudra receiver could be ranging from several

centimeters to a dozen meters. The motivation be-

hind utilizing existing signals is two folds. On the

one hand, it eliminates the need for special trans-

missions for gesture recognition. On the other hand, including distant sources allows

Mudra to utilize different sources over time and provide gesture recognition service

throughout.

Two directions relate to finger motion in this work. One is the hand direction

which is measured as the angle relative to the line formed by two antennas, increasing
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clockwise (Fig. 3.3 ). The other is the finger moving direction. User experiences show

that finger moving along forearm with gestures in Fig. 3.2 is comfortable and adopted

naturally. Note that “moving along forearm” is a 2-D description as the ‘shoot’ rotates

the wrist while making the fingers move along forearm in horizontal plane. Thus, we

measure the forearm direction relative to the two-antenna-line as moving direction

while telling the users to move along forearm. In Fig. 3.3, moving direction is 0

degree with forearm being parallel with the two-antenna-line.

3.2.2 Highly-sensitive Motion Indication

In order to track minor finger motion, what indicator does Mudra use that is

extra-sensitive to finger position?

Channel Estimation and Signal Equalization

Mudra is equipped with two receiving antennas as shown in Fig. 3.1. Each of the

antennas captures incoming signal samples, denoted as s1(t) and s2(t) respectively.

The first thing is to equalize s1(t) and s2(t) for cancellation purpose. The solution

here is to estimate the relative channel response between them.

To explain this, let two channel frequency responses be H1(w) (‘w’ is angular

frequency) and H2(w) respectively, transmitted signal be T (w) and two received sig-

nals be S1(w) and S2(w). Then, S1(w) = T (w) ∗ H1(w) = T (w) ∗ H2(w) ∗ H1(w)
H2(w)

=

S2(w) ∗ H1(w)
H2(w)

. As it shows, signal S2 is equalized to S1 by compensating for the

relative channel response H1(w)
H2(w)

. We denote the time domain signal as s2(t) after this

equalization. In Mudra, H1(w)
H2(w)

is transformed to time domain impulse response then

put into FIR filter as coefficients to equalize S2.
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In Mudra, since WiFi signals exhibit non-flat relative channel response for two

receivers, we need to estimate H2(w)
H1(w)

across the whole band. This is totally differ-

ent from [17] which estimates just amplitude/phase difference with the flat-response

assumption. In Fig. 3.4, the result validates the effectiveness and necessity of full

channel estimation.

5 10 20 40
Cancellation Performance (dB)

0
0.

5
1

C
D

F
Full CSI
Partial CSI

Figure 3.4: Cancellation Performance Comparison. We test in various scenar-
ios. ‘Full CSI’ estimates on the whole band while ‘Partial CSI’ just calculates overall
amplitude/phase difference.

Motion Indication with Signal Cancellation

After we obtain s2(t) from equalization, s1(t) can be canceled from s2(t). However,

we want an indication which changes with finger moving. To this end, inspired by

previous work [17], manual delay ∆t and manual phase φ are introduced to s2(t).

Now, when finger moves, an extra delay δτ is introduced (Eq. 3.1a). Then, their

frequency domain components (S1(w) and S2(w)) are related as shown in Eq. 3.1b.

s1(t) = s2(t−∆t− δτ)e−jφ (3.1a)

S1(w) = S2(w)e−jw(∆t+δτ)e−jφ (3.1b)
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Thus, as s1 is subtracted from s2, the cancellation is perfect (i.e. zero value) only at

specific frequency points where the phase shift is an integer multiple of 2π.

w∗ =
2πk − φ
∆t+ δτ

, k ∈ Z (3.2)

w∗ is a set of frequencies where the cancellation will be perfect.

Since at frequencies farther away from w∗ cancellation becomes worse (due to

larger phase mismatch), we would get a trough at w∗ shown in Fig. 3.6(a). Now,

as the finger moves, δτ varies accordingly causing trough location to change. Taking

‘Come’ (Fig. 3.2(c)) for instance, when fingers move from Rx1 to Rx2 and then back

from Rx2 to Rx1, δτ decreases first then increases to origin, which translates to

increasing and decreasing of w∗. Then, we get waveform as shown in Fig. 3.8(c).

One could expect that a sharp trough gives us precise tracking, enabling gesture

recognition with good performance. This relies both on: perfect cancellation per-

formance (trough depth), which is guaranteed by our full CSI estimation, and high

sensitivity of cancellation performance on phase mismatch (trough slope). We refer

readers to [17] which has a study on sensitivity of cancellation degradation with phase

mismatch.

How to select manual delay ∆t and manual phase φ? - based on WiFi

frequency structure.

In the OFDM physical layer of 802.11 protocol, there are 52 subcarriers over

20MHz band and no data at the center and edges (Fig. 3.5). Thus, if trough moves

through these non-signal frequencies, we lose the track of finger motion. Mudra deals

with this problem in two steps.

First, from Eq. 3.2, we can see the trough varying rate with motion drops with

larger ∆t. Thus, by setting a large enough ∆t, we limit the varying range of trough.
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Figure 3.5: WiFi spectrum

Second, we naturally want to make use of the maximum continuous left or right half

band. Thus, manual phase φ is chosen as to tune the initial trough location to the

center of left or right half band.

3.2.3 Resource-friendly Signal Processing.

In order to utilize the prevalent commodity communication signal, e.g., WiFi,

Mudra needs to answer various questions and address several issues regarding to the

realistic WiFi signals.

Fewer subcarriers in WiFi and cyclic prefix (CP)

In 802.11 a/g/n protocol, an OFDM symbol has just 64 subcarriers in 20/40MHz

band. This is a critical issue which is not discussed in [17] as they send special OFDM

symbols with 8192 subcarriers continuously. If we just use 64 subcarriers, then the

frequency resolution is too coarse to perform gesture recognition. Here, we note that

WiFi signals have power over all frequency points in its band because OFDM symbols

are different from each other (shown in Fig. 3.5). So we are safe to do a large size
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FFT by simply connecting multiple OFDM symbols. However, do we need to avoid

CP when combining multiple symbols together? The answer is no. In Mudra, signal

copies on the receive antennas are for cancellation, not decoding. Thus, CP would

not affect cancellation result as it also complies to channel response. Compared with

WiSee [50], which equalized and combined OFDM symbols to enable fine frequency

granularity, Mudra eliminates equalization because it relies on heterogeneity among

those symbols.

Various packet lengths in WiFi signals

Packet length decides how large the FFT could be: Larger this window better the

frequency granularity. WiFi transmissions could have variable packet lengths causing

the granularity to change from packet to packet. In Mudra, we utilize two signal

processing properties for this issue, Zero-fill Invariance and Connect Invariance.

• Zero-filling Invariance

When packet length is a little less than the expected FFT length, we want to

maintain the same granularity. The approach here is to use zero-filling at the end. In

Eq. 3.3, we show the zero-filling invariance property, which means zero-filling doesn’t

change the value on the same frequency. DTFT:

S(w) =
N−1∑
n=0

s[n]e−jwn (3.3)

This is Discrete Time Fourier Transform (DTFT). s[n] can be seen as the original

signal samples with any length of zero-filling at the end. S(w) doesn’t change with

those filled zeros.

• Connect Invariance
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Zero-filling just increases samples in frequency domain while not really contribut-

ing to signal spectrum. That means, although we get more values in frequency domain

with zero-filling, the precision doesn’t change because the trough is smoothed at the

bottom. Thus, we have to drop those packets which may frequently appear in trans-

mission, greatly sacrificing trough tracking opportunities.

However, we note the connect invariance property, which means trough location

doesn’t change if we combine residual signals of two neighboring packets. In Eq. 3.4,

r1, r2 are cancellation residuals from adjacent packets, which are connected to get

r[n]. DTFT:

R(w) =
N+M−1∑
n=0

r[n]e−jwn

=
M−1∑
n=0

r1[n]e−jwn +
N−1∑
n=0

r2[n]e−jw(n+M)

= R1(w) + e−jwMR2(w)

(3.4)

If R1(w) and R2(w) have trough at the same frequency, then R(w) will also have

trough at that frequency. Thus, by connecting neighboring packets after cancellation,

we get the desired precision. Since motion is continuous in space, troughs within

adjacent packets would share adjacent positions.

Noncontinuous transmissions of WiFi signals

Transmissions in WiFi are not continuous. For this, we implement a smart packet

capture module with power threshold. Inter-packet interval would affect timing res-

olution of motion indications. When packet’s interval is smaller, we get finer motion

indications and thus, the recognition performance would be better. Fig. 3.15 shows

experimental results on the effect of inter-packet interval on recognition performance.
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Frequency/timing Offset, Multi-path Effect and Irritable Neighbor as well
as Local Source

1. How does Mudra deal with frequency/timing offset with remote source?

With remote source, frequency and timing offsets between transmitter and receiver

( [15, 24, 51]) would impose a varying phase shift in the received signals, which can

disable our system. In Mudra, however, two receiving antennas are synchronized with

the same RF/sampling clock and timing offset as they are on the same device. Since

our scheme obtains motion indication from cancellation of these two, we then get out

of the phase shift problem.

2. Multi-path effect in received signals

In experiment, we find that multi-path effect would incur signal destruction at

some frequency, causing a trough similar to the one from cancellation (shown in Fig.

3.6(a)). This trough will remain in the cancellation result, thus, confounding with

the desired one. In Mudra, adaptive strategy is proposed to move desired trough

out of confounding range. Specifically, we can detect multi-path trough from original

received signals, the one without manual delay/phase. If it is in the left half band,

we let the desired trough from cancellation be in the right half band by adjusting the

manual phase (described earlier).

3. Irritable neighbor around trough

Fig. 3.6(a) shows that the spectrum after cancellation has irritable neighboring

value around trough location, which are spikes in the magnified figure, seriously de-

teriorating the accuracy of trough location. We use neighboring average to remedy

the problem and get a smoothed curve, shown in Fig. 3.6(b). The effectiveness and

length choice of smoothing is discussed in the evaluation part, shown in Fig. 3.11(a).
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Figure 3.6: Canceled signal spectrum before and after smoothing over 200 neighbors.
The left plot is the power spectrum across 20MHz generated by original samples and
the right one is a smoothed version by averaging over adjacent 200 values. The trough
in each of them is magnified in a subplot on the top.

Mudra with a local source With a signal source on the same device, transmitting

and receiving antennas are very close. Thus, the signal power over direct LOS path

is much larger than reflection from hands, which means finger motion has a minor

effect on received signals. Besides, due to near-field effect [71], the received signals

see much noisier variation in trough recording.

Solution of Mudra: In Mudra, we deal with this problem by adding a metal plate

as an electromagnetic partition between sender and receiver antennas so as to cut off

the direct-path signals. Similar approach is adopted in [22] to implement absorptive

shielding.

We test the effectiveness of this approach by comparing signal-to-noise ratio (SNR)

in different directions with and without metal partition. We define SNR as the ratio

between gesture-waveform and noisy variation amplitude. Fig. 3.7 validates that our
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Figure 3.7: System SNR with and without iron plate. When signal source is very
close (2cm), we test waveform-to-noise-amplitude ratio using ‘Come’ gesture in a
circle in eight equi-angular directions.

method can increase SNR by 6 times on average. For fair comparison, finger moving

direction is 0 for all positions.

3.2.4 Environment-agnostic Gesture Pattern.

One of the goals of Mudra is to perform gesture recognition without any training

and even when the user has moved to another environment. In this way, our system is

user-friendly in the aspect that it doesn’t require per-user-per-environment training.

There are two aspects in Mudra that enables it to support this feature:

• Environment-agnostic. The system is environment-agnostic means that the

derived motion indication is not affected by the surrounding environments. That

is, when the user moves from one room to another room, the trough location

remains the same with the same position of the finger. This characteristic

is realized with the relative-channel design of the motion indication, i.e., the

motion indication is only affected by the relative channel between the hand the

two receive antennas.
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• Reliable consistency. However, maintaining the consistent motion indication

doesn’t ensure the consistency of gesture pattern from motion indication time

series. The essential reason comes from the practical issues of the operating

subject. On the one hand, different people perform the same gesture differently

in the duration, speed and physical trajectory. One the other hand, human

hand is not a point object but can be viewed as a collection of multiple point

objects which reflect the signal altogether to the receiver. Thus, to ensure a

consistent pattern, we need to make sure the moving trajectory of all point

objects on the hand appears the same with regards to the two receive antennas.

In this subsection, we study how the trough variation over time can be used to

identify different gestures and study how reliable and consistent the pattern is to the

various settings.

Fig. 3.8 shows the trough location (in MHz) when plotted over time for different

gestures (The axes are not shown due to space issues). Do these patterns remain the

same across different environments? Do they change with different users?

When user moves, the environment around him would change. We care about

different directions and distances of signal source in both LOS and nLOS scenarios.

Thus, we choose eight equi-angular LOS positions with 2m distance and nLOS posi-

tions 5m away. For hand positions, we put hand at 0, 45 and 90 degree respectively.

Note that we can ask the users to keep their hands at an angle that gives the best

accuracy for all the finger-gestures. We use this best angle in our evaluations in Sec.

3.3.2.

Five users were asked to perform nine gestures at every source and hand position in

a quiet office with no other people. We combine the results of all users in Table 3.1.
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(a) shoot (b) pick (c) come

(d) tap (e) doublepick (f) doubletap

(g) circle (h) twist (i) go

Figure 3.8: Waveform of gestures considered in Mudra.

Position P1 P2 P3 P4 P5 P6 P7 P8
0degree + ?,- +,?,- +,?,- ?,- +,?,- +,? +,?,-

45degree + +,?,- +,? +,?,- +,? +,?,- ?,- ?,-
90degree + + + + + + + +
Position P9 P10 P11 P12 P13 P14 P15 P16
0degree +,? +,- +,?,- +,? +,? ?,- +,- +,?,-

45degree +,?,- ?,- +,- +,?,- +,?,- +,? + ?,-
90degree + + + + + + + +

Table 3.1: Consistency study of gesture waveforms with various signal source loca-
tions.

P1-P16 denotes sixteen distinct source positions with direction increasing starting

from 0 degree: P1-P8 are LOS while P9-P16 are nLOS. ‘+’ means the waveform

shape is same or similar with the same gesture in first position P1 while ‘-’ represents

direction flip of waveform shape. ‘?’ is to say the corresponding waveform shape has

no similarity with P1. In other words, ‘+’ or ‘-’ is good since the shape of the pattern
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is retained. However, ‘?’ indicates that the pattern has changed and denotes a case

against Mudra.

The results in Table 3.1 show that hand position in 90 degree could ensure consis-

tency in gesture waveforms (Fig. 3.8) across all scenarios. While this is not surprising,

as we know, there exists a linear relationship between signal phase and delay, and the

reflection from fingers is a combination from all point objects. In later experiments,

we will adopt this setting as default. In addition, clustering approach in data min-

ing [?] might also be useful to automatically group gesture segments without explicit

waveform design, potentially increasing gesture classes.

3.2.5 System Model

Mudra has five main components (Fig. 3.9):

A. Packet detect/connect: This component captures packets from WiFi on two an-

tennas. Since power level is not equal over samples, envelop of power trace is used

for finding the beginning and end of continuous packet with a threshold. Mudra will

discard packets shorter than 1000 samples to ensure a reasonable trough locating con-

fidence. After that, neighboring packets will be connected together if packet length

is less than 8192.

B. Channel estimator/signal equilization: As shown in Fig. 3.9 block B, channel

estimator gets relative channel response between the two receiving antennas. Then,

this coefficient is sent to an FIR filter, which equalizes the samples on the second

antenna.

C. Manual delay/phase injector: As mentioned in Sec. 3.2.3 and 3.2.3, manual

phase/delay is used to address WiFi frequency structure and multi-path issues. An
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Figure 3.9: System model

FIR filter is used to inject manual delay to the captured packets followed by a manual

phase addition.

D. Trough location finder: After cancellation, residual signal will be searched in the

selected band and the minimum-value (frequency) position is the trough location.

Then, timing series of trough location would be sent to gesture detection/recognition

module.

E. Gesture recognition algorithm: Gesture recognition module comprises of prepro-

cessing, segmentation and classification. We implements online recognition with four

gestures using simplified classification logic. To classify all nine gestures, we conduct

gesture recognition off-line.

Design detail

Here, we talk about how to choose design parameters.

1. Length of FFT

Length of FFT decides the granularity we can look into in frequency domain. In

802.11 a/g/n protocol, the maximum size of PLCP Protocol Data Unit (PPDU) in

physical layer is larger than 4000 bytes. Considering that one byte has 8 bits and
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64-QAM modulation has 6 bits in one sample, we choose 8192 as the number of

frequency points we look into, which is the length of FFT operation.

2. Manual delay ∆τ and manual phase φ

As mentioned in Sec. 3.2.3, we tune the manual delay ∆τ to avoid trough running

out of the selected range. After testing all target gestures by five testers, we choose 1,

which means skipping one sample, as ∆τ to achieve largest sensitivity while satisfying

this restriction, ensuring that it is feasible in almost all situations. After that, we

move the trough location to the center of the range by choosing a value for φ. Note

that φ is fixed after ∆τ is decided.

Authorization Key for System Access

To avoid target device being miscontrolled by surrounding moving objects, we

designed an authorization key containing multiple ‘Tap’ gestures as preample for

users to access this system. We have test in Sec. 3.3.3 to evaluate the effectiveness of

different gesture repetitions.

3.3 Evaluation

3.3.1 Implementation

We implement Mudra receiver system on the NI-based SDR platform. NI PXIe-

1082 chassis is equipped with PXIe-8133 Express Controller and two NI-5791 FlexRIO

adapters. Each adapter is connected with a VERT2450 3dBi gain antenna. In Virtex-

5 based FPGA, DSP decimation after ADC with resolution of 14 bits generates 20MHz

baseband samples. Direct Memory Access is built to transfer baseband samples from

Rx1 to Rx2. Central controller is built on RTOS based PXIe-8133. We implement

packet detect/connect and channel estimation on central controller.
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In the FPGA of Rx2, we implement manual delay/phase injector on stream from

Rx1, shown in system model Fig. 3.9. To equalize signal, samples from Rx2 are thrown

into FIR filter with relative channel timing response as coefficients. On the central

controller, two signal streams and cancellation stream are fetched from host FIFOs.

Then, we use the captured packets to calculate relative channel response, sent to FIR

filter in second stream pipeline with FPGA Module register map. Motion indication

trace is generated online and stored to file along with timestamp indicating packet

arrival time.

We design parallel architecture on central controller to solve computation chal-

lenge. First of all, we use multiple single-time while loops to distribute computation

on different CPU cores. To avoid overflow of data transmission from FPGA to cen-

tral controller, Mudra has a special loop assigned with highest priority dedicated for

fetching data from host FIFO. Further, to maintain packet order, queue structure is

used to pass data from one loop to next, forming producer-consumer structure.

We use TP-LINK TL-WN722N adapter as signal source, with output power peak

at 17.8 dBm [6], and NETGEAR WNDA3100 adapter as WiFi receiver. We build an

7m

5
m passageway

Figure 3.10: Floor plan
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Figure 3.11: Noise Variation: ‘wom’ is short for “without body movement” and
‘wm’ is short for “with body movement” between the source and receiver.

adhoc connection between these two and enable UDP stream on Windows7 system.

Fig. 3.12 shows our testbed.

 Signal 

Source  Receive 

Antenna

Smoothed 

Spectrum

NI Platform

Figure 3.12: Testbed

3.3.2 Micro-Benchmarks

We set out to look into various performance-affecting factors. First, what is the

noise variation level and how it varies with changing environment. Apart from this,
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we also care about system sensitivity, distance between the source and the receiver

and orientation. After that, impact of packet length/interval will be studied.

Noise variation

The irritable neighbor problem introduces severe noise in trough tracking, as men-

tioned in Sec. 3.2.3. To study this effect, we vary the distance between two antennas

in Mudra. In a quiet office with door closed (floor plan shown in Fig. 3.10), we put

source 2m away in LOS then 7m away in nLOS at 90 degree to receiver. For fair

comparison, we just let one user to be around receiver statically. We measure indi-

cation varying range shown in Fig. 3.11(a). We observe that the average length (for

smoothing) larger than 400 samples doesn’t reduce noise further. Thus, we select 400

as the default setting. We also find that noise gets even worse with more than 500.

This is expected since averaging also makes the trough smoother.

Noise and environmental variation (e.g. human breath) would also induce noise

variation. For this test, we choose different distances between signal source and

receiver. To study the effect of moving body, another tester will move 3m away from

receiver, blocking direct-path signals at some points. As indicated in Fig. 3.11(b),

the noise increases with distance with no moving body. While, with moving body,

noise gets extremely serious, disabling our system: We show how such scenarios can

be detected and the corresponding samples can be avoided while performing gesture

recognition in Mudra later. Another observation is that, with direct-path signal,

moving body keeping 1m away from LOS generates a tolerable noise, while nLOS

scenario doesn’t share this feature.
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Figure 3.13: Sensitivity Study. Takeaway: Sensitivity of Mudra changes with
antenna distance while keeping stable with source distance.

45    (degree)

225

135

315

3   (MHz)
2

1

(a) 90 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(b) 0 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(c) -90 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(d) 180 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(e) 90 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(f) 0 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(g) -90 Degree

45    (degree)

225

135

315

3   (MHz)
2

1

(h) 180 Degree

Figure 3.14: Orientation Effect. Upper four plots study moving direction; bottom
ones study hand position.

Sensitivity

We evaluate sensitivity of our system using WiFi signal in different scenarios.

First, we study the factor of distance, including antenna distance and source distance.
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Then, we explore the impact of orientation i.e. hand/source direction and finger

moving direction. We ask the users to perform ‘Come’ with 6 rounds. For each round,

we obtain sensitivity as the average amplitude of (trough location) waveforms.
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(a) Versus distance

To study antenna distance, we put the source 2m away at 90 degree and -90

degree in LOS. The user is asked to perform ‘Come’ moving in 0 degree i.e. along two

antennas with left hand position of 90 degree. Then, we gradually change distance

between two antennas for each test. Fig. 3.13(a) indicates that sensitivity increases

with antenna distance and stops at about 10cm. Considering that 10cm is a favorable

scale for most portable devices, we select 10cm as the default setting throughout this

work.

After that, we continue to look into source distance. This time, we let the source

be at 90 degree. We adjust the distance between source and receiver both in LOS

and nLOS. To fairly compare sensitivity, we let user vary hand position and moving

direction in eight equi-angular orientations, choosing the largest one. Fig. 3.13(b)

shows that sensitivity with LOS is greater than nLOS. To our surprise, sensitivity

almost doesn’t change with distance in both scenarios. We believe the reason is that

sensitivity is mainly affected by distance between hand and receiver. Those results,

combined with study on noise variation (Sec. 3.3.2), also validates the feasibility of

finger-gesture recognition using WiFi signals.

(b) Versus orientation

We first study the effect of finger moving direction. To this end, the user moves his

fingers in eight equi-angular directions. We test with four equi-angular source posi-

tions with a distance of 2m away from receiver. For example, Fig. 3.14(a) represents a

source at 90 degree. Hand is at 90 degree. As stated before, all directions are relative

to two antennas in clockwise mode. In Fig. 3.14(a)-(d), we observe that moving in 0

degree guarantees at least 1MHz sensitivity for all source positions. Besides, moving
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in 180 degree provides comparable overall sensitivity as in 0 degree. This is expected

since both directions are along two antennas. Then, we seek to evaluate the effect

of hand position. We put hand in eight equi-angular positions. This time, however,

the user tries to move in all directions and selects the largest one as sensitivity mea-

surement. For example, in Fig. 3.14(e), with hand position at 90 degree, moving in

0 degree generates largest waveform amplitude. Fig. 3.14(e)-(h) show that putting

hand vertical to antenna, in all eight positions, has the best overall sensitivity. We

have roughly the same observations across other gestures, thus, pushing us to select

90 degree for hand position and 0 degree for moving direction, which means, fingers

move along two antennas with hand at vertical position. With such a default setting,

combing with waveform consistency study in Sec. 3.2.4, we desire to make our system

feasible with best recognition performance.

Packet length/interval

We run experiments to understand the effects of these parameters on recogni-

tion performance. Specifically, we setup an ad hoc connection between two wireless

adapters and enable UDP streaming on sender side. With socket programming, we
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Figure 3.15: Impact of packet interval.
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can adjust the length of character string which is sent as a bunch. On both the SDR

platform and Wireshark packet capturer, we validate the packet size. Inspired by this,

we adjusted packet rate by tuning the while loop interval. Unfortunately, the maxi-

mum frequency we get is around 100 packets/second. If we set a lower delay, packet

rate increased drastically in a burst mode, which means large portion of duration

has no transmission. While, a good thing is that our system already has favorable

classification accuracy with 50 packets/second. Thus, such a limitation doesn’t affect

our evaluation. Signal source is put 2m away at 90 degree position. We have five

users perform four gestures - ‘Come, Go, Tap, Pick,’ each with 50 repetitions. We

implement a simplified algorithm on SDR platform to recognize these gestures in real

time. Specifically, a threshold is applied to derivation of the indication trace after re-

ducing noise, where boundaries of gesture is detected. Then, we get gesture duration

using the attached timestamp. Since ‘Come, Go’ last much longer than ‘Tap’ and

‘Pick’ (2s vs 0.5s), we can distinguish between them. Further, by utilizing the wave-

form direction, we come to the final decision by judging whether the first derivation

is positive or negative.
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Figure 3.16: Impact of packet length.
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To evaluate interval effect, we transmit packets at different rates. Fig. 3.15 shows

how classification accuracy changes with packet rate. Let’s first look at the resulting

line with just one signal source. Here, accuracy is as high as 0.95 with just 10

packets/second - typical WiFi beacon rate, occupying 0.4% of the whole duration.

This result means that our system just needs very conservative WiFi signals. We

note that no gesture can be detected with rate less than 3 packets/second. This is

because such low rate would miss gesture waveform. Then, we apply multiple signal

sources and combine results. There are four sources located in four directions. The

results indicate that with more signal sources we can get better performance. One

reason is that with more sources we reduce the rate of missing detection. Another

reason is that with majority voting, large errors with specific source could be avoided.

Typically, with four sources, accuracy could be 0.95 same as one source while with

just 5 packets/second per source.

As to the packet length, we evaluate recognition performance with four different

choices. Packet rate is set to 100 packets/second and 50 packets/second. In Fig.

3.16, the results indicate that by connecting short packets, Mudra could be effective

in gesture recognition. We note, compared with Fig. 3.15, that the performance is a

little worse. This is because connecting packets not only reduces indication frequency

but also degrades indication precision due to averaging over multiple packets. The

drastic drop with 1024 at 50 p/s indicates the minimum indication length needed for

good performance.
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3.3.3 System Evaluation

False Positive

To avoid mis-detection with surrounding moving object, Mudra use multiple ‘Tap’

as authorization key. We evaluate its effectiveness in this section.

In our experiment, we put two antennas on one desk so that it can be affected by

human regular activities. All members are free to do anything, walking, speaking or

eating, in the office. We have four position settings which put source 5m away from

receiver. Recording last 24 hours over a whole weekday from 8am to 8am, we get the

result of false detection number per hour in Fig. 3.17.

The results show that when one ‘Tap’ is used as access key, the false detection rate

over 24-hour period is 6.92 per hour. We note that this is very low. This is because

‘Tap’ lasts just about 0.5s, while typical human movements such as walking, eating

and typing, last much longer. Besides, those large-scale motion usually push trough

out of legal range. Lastly, ‘Tap’ waveform is special which is not easy for random

motion and environmental variation to generate. We also find that with multiple

repetitive gestures as the key, the false rate decreases greatly. It is reasonable since

we expect gestures in one key would be in a certain range. In this way, for two

repetitive ‘Tap’ false rate is 1.37 per hour and using three ‘Tap’ makes it as low as

0.08.
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Figure 3.17: False detection rate during a whole day.

Mudra Recognition Performance

(a) Evaluation with Local Source: Mudra can utilize signals from the target

device with solution in Sec. 3.2.3. We put source (WiFi adapter) 2cm away from

the first antenna along the line with iron plate to block the direct path. Receiver

is put on desks with surrounding strong reflective objects and empty space near the

door shown in Fig. 3.10. Five users, who don’t know how Mudra works, are shown

how to perform each gesture. Each gesture in Fig. 3.2 is performed for 40 times by

each user, following regulation of position and direction. During test, users sit in a

chair. As to WiFi signals, we adjust packet rate to 50 per second with length of 4096,

which means, indication after packet-connect would be 25 per second. We measure

recognition accuracy combining detection and classification across all positions and

users. Fig. 3.18 shows the average recognition accuracy is 98%. In this matrix, we

observe that recognition has the largest error with ‘shoot.’ Checking the intermediate

result, we find that waveform of ‘shoot’ is the most variable one across users.
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Figure 3.18: Confusion Matrix with Local Source.
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Figure 3.19: Confusion Matrix with Remote Source.

(b) Evaluation with Remote Source: To evaluate system performance with sig-

nals from remote device, we put transmitting WiFi adapter across positions in the

office (dots in Fig. 3.10). With receiver on the walkway and on desk, we include sce-

narios with distances ranging from 0.5m to 7m both in LOS and nLOS. Each gesture

is performed a total of 40 times. As Fig. 3.19 shows, the average accuracy is 96%.

Takeaway: Mudra can deliver high accuracy with sources less than 7m away under
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quiet environment. The performance is worse than local source since larger distance

can introduce more noisy variation. After that, we combine results of local and re-

mote sources to look into performance with individual user (shown in Fig. ??): The

accuracy is consistent across users showing that Mudra is generic and doesn’t need

training.

• Hand-held Device and Multi-source Combining:

For portable devices, e.g. smartphone and tablet, people usually hold devices

in hand when using them. It is a good utility if our system can support gesture

recognition in this scenario. For this exercise, we bundle two antennas with a stick at

a distance of 10cm. Users were asked to hold the stick with right hand statically and

perform gestures with left hand. To test in the worst case, we put source at distances

of 6m and 7m in four nLOS locations. Observation from this test is larger noisy

variations due to hand-holding. However, the result shows that average recognition

accuracy reaches 90% since noise is still tolerable with users sitting in a chair.

Further, to explore how multiple sources could help in such scenario, we com-

bine recognition with traces from those sources. As a result, the overall accuracy is

improved to 96%. It validates the effectiveness of utilizing multiple sources.

• Operating with Other Users:

To test whether multiple users can perform gestures at the same time, we let one

user operate on our system with other people nearby, also performing finger gestures.

The interfering users are asked to be 2m away while facing to receiver. Also, we put

the source across various locations. With three users nearby performing gestures,

recognition accuracy is 94%. Thus, we are glad to show multiple users can operate

simultaneously in the same room.
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Figure 3.20: Variation range of gesture duration across users. The box represents
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while the red plus is the median.

• Experiment with a larger diversity of users:

To examine the performance with a larger group of users, we conduct extended

experiments with six more users, including male and female. We use local source for

the experiments. Each users are asked to conduct each gestures for about 10 rounds.

Totally, we have 500 more test samples of gesture segments. As expected, we observe

a larger diversity in the gesture waveform. In Fig.3.20, the plots show the variation

range of the duration of each gesture across these users. In addition, with the larger

diversity, we obtain a decrease in the recognition performance which is 91.3%.

However, we observe that the variation of the gesture waveform of one specific

user is smaller than the variation across all users. It inspires us to learn the waveform

pattern for each user individually to improve the performance. Specifically, we take

the average duration as the metric to learn for each user and adapt our waveform

template to the specific duration for each user. As such, the overall performance is

enhanced to 94.9%.
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• Compare with computer-vision technique:

Computer-vision technologies have been popular in information discovery in the

scene. However, to obtain a good performance, such approaches highly depend on

high quality video capture. Thus, they are limited to light condition, background

scene and target appearance. We conduct experiment to test the computer-vision

approaches on our finger gesture recognition under various conditions. Specifically, we

compare the results of pure-color and natural backgrounds, bright and dark lighting

conditions, and glove and non-glove settings. Glove setting means the hand wears a

pure-color glove and thus is easier for the video processing to distinguish and segment

from the background.

We adopt a existing workflow [43] with open-source libraries to build the video

processing model. The program uses tflearn of tensorflow to build two layers of

recognition system. In the first layer, an inception model is trained as CNN network

to extract spatial features from each frame of the video. In the second layer, an RNN

model is trained to extract temporal features and learn dependencies between current

and previous features. The video is captured at 30 FPS and typically last for 2 to 4

seconds for each gesture. We separate the training and testing dataset with a rate

of 4:1 and obtain the performance with cross validation. The results are shown in

Fig.3.21. From the figure, we can see that those factors affect the performance of the

gesture recognition greatly. Compared with pure background, a nature background

setting decreases the overall recognition accuracy by 27%. Besides, with bad lighting

condition, the dark environment essentially disables the recognition as the accuracy is

almost equal to random guess (1/9 = 11.1%). Lastly, without a pure appearance of the

object, the non-glove setting degrades the performance by 53 percent. Fortunately,
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the WiFi signal based approach is free from those limitations as it doesn’t rely on

visible light.
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Figure 3.21: Performance of gesture recognition with CNN-RNN model in various
environment settings.

Apart from recognition performance, we also compare the two approaches on the

computation cost. For fair comparison, we run two programs in the same laptop, i.e.,

HP EliteBook with 7.7 GB memory and 2.9 GHz i7 cores, and record metrics such as

disk storage, running time and memory cost.

Metric Mudra CNN-RNN model

Storage (KB/per gesture) 0.48 140 – 300
Time (s/per gesture) 0.085 train 82.4 test 44.9

Memory (MB) 0.4 394.2

Table 3.2: Various computation costs w.r.t two approaches.

In Fig.3.2, we show the metric values when running these two algorithms. For each

gesture segment, the longest segment has around 60 double-value points which take

storage of 0.48 KB with 8 Bytes per number. While, with gesture duration ranges
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from 2s to 4s, the video size is about 140 KB – 300 KB. To evaluate the time cost, we

average over all gestures with the total running time for pattern recognition process-

ing. As to video-processing model, we calculate the training time as the summation

over training CNN model, extracting spatial feature and training RNN model. The

testing time is the summation over extracting spatial feature with inception model

and testing RNN model. Lastly, the memory cost is the peak memory used during

the program running.

As we can see from the results (Table 3.2), the computer vision based approach

takes up much larger storage due to the large size of video (we actually use the lowest

video capture resolution 320x240). Besides, due to the large size of the model in video

processing, each stage of running the model also takes up much more memory and

time for each gesture both in off-line training and on-line testing.

3.4 Discussion

(a) Human interference

Surrounding human motion will incur great variation as shown in noise study Sec.

3.3.2. However, we also find that when moving object is far from direct path between

source and receiver, noise level could be tolerant for gesture recognition. In personal

spaces, such as office and living room, such requirements can be satisfied, i.e. people

are separated by individual rooms with laptop/desktop nearby.

In the open space with nearby moving objects, the system cannot work well since

body motion causes much stronger variation than finger motion in the received signal.

In this case, a directional-antenna design or beam-forming could possibly control the

path of the signal thus limiting the impact of surrounding interference source.
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(b) Limited diversity of users

We also note that participants in the experiment have limited diversity. The

ages of users in the experiments range from 16 to 25. Generally, the young children

and elderly exhibits a larger difficulty to follow instructions to perform the gestures.

Therefore, our system may see a degradation of performance across people out of the

above age range. We expect to extend our experiments in the future and improve

the system across a larger diversity of users by understanding the challenges with the

young children and elderly.

(c) Constraints on external traffic

The resource-friendly processing in Mudra is not perfect. Although it solves the

issues of various packet lengths, in practice we drops packets with too short lengths

to preserve the system’s accuracy. That is because too short packets need to be

connected with a large number to infer the correct frequency resolution. Therefore,

the resulting trough location is the average across much longer duration with very-low

precision. In practice, we drops packets with length less than 1024 samples.

(d) Limited number of gestures

In this work, we design nine gestures while more gestures are possible. However,

since we utilize the waveform shape pattern which is derived from the relative delay,

more gestures would require a design of a larger number of delay variation patterns.

In this case, it is expected that the distance between gesture waveforms is reduced

and larger error will be in the recognition system.

(e) User’s privacy

There may be a concern on user’s privacy with a fine-grained gesture recogni-

tion system. However, our system operates in near-human-to-machine scenario which
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requires the finger motion to be close to the receivers. Therefore, the sensing technol-

ogy developed in the work is not usable by a remote malicious eavesdropper with just

passively receive antennas.To hack the information of the gesture recognition results,

the hacker first needs to install malware on the users’ phone to sniff the packet’s

information. As our gesture system performs like in-air interaction with the machine,

we could adopt a similar security mechanism as the keyboard to protect the input

from sniffing.

3.5 Summary

In this work, we take the first step towards designing a finger-gesture recognition

system with WiFi signals and validate our design with COTS WiFi sources. Our

system is user-friendly with no requirement of training. We believe such a technol-

ogy would stimulate new applications, such as in-air interaction, untouchable-device

control and disabled-friendly design. With both on-target local source and remote

source, Mudra could support high recognition accuracy. While, our system could not

support scenario with moving body nearby, we showed how such scenarios can be

detected and avoided during gesture recognition.
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Chapter 4: TifWiFi: Two-profile Integration Framework for

Device-free Activities Recognition with Communication

Signal

4.1 Overview

In the past decades, researchers have explored various techniques to achieve hu-

man activity recognition, such as camera-based [10], radar-based [2] and electronic

wearable devices [5, 31, 80]. Camera-based approaches are restricted to line-of-sight

(LoS) areas and require a good light condition. Also, the abundant image information

will potentially threat users’ privacy. Low-cost radar system also suffers the high di-

rectionality and a limited coverage (tens of centimeters). By attaching devices on the

user’s body, researchers can infer the activity he/she engages in by analyzing data

from sensors like accelerator or gyroscope. However, attached sensors are neither

desirable nor available in most applications. In contrast, WiFi devices provide the

opportunity to achieve a low-cost system as well as get rid of the above limitations

and security concerns. Without a doubt, WiFi signal has attracted researchers for

designing the activity recognition system.
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Limitations of prior works. The principle of activity recognition using WiFi

signal is that different human activities would introduce different multipath distor-

tions on wireless propagation. WiSee [50] infers the human gestures by looking into

the Doppler shift and extracts the direction of body motion. This system relies on

a special hardware design with USRP [73] to obtain the fine-grained resolution in

the frequency domain. Like data-drive prediction [83, 84], E-eye [70] uses the chan-

nel state information (CSI) to build location-activity profiles. As different activities

cause different CSI distributions, this system identifies the activity by comparing the

amplitude histogram on each subcarrier. In contrast, another line of approaches look

into the variation in CSI values caused by human motion. CARM [67] extracts the

speed information from CSI-speed model. WiFinger [60] identifies the CSI variation

patterns caused by close gestures.

Although the above techniques have demonstrated the feasibility, we note that

all those approaches fall into the limitation of utilizing only one facet of the human

activity, i.e., either the status or the motion. To be specific, the status here means

the condition of the target such as position, orientation, and posture which introduce

a certain CSI. Then, the collection of the status during the activities makes up the

statistics of CSI values. While the motion means how that person moves his/her

body, including body part, speed, and direction. With two observations, we find that

both facets are critical in identifying the activity. On the one hand, two activities

performed with the same location and orientation may introduce similar statistics of

CSI values. In this case, the motion facet of the activity is the key to distinguish

between them. On the other hand, two activities performed at different places may

also have similar motions. Then, the status turns to be important. We will show later
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how these two cases make the current approaches fail. Thus, by analyzing both the

status and the motion facets, the recognition system can achieve better performance.

Proposed approach. In this work, we propose TifWiFi , a two-profile integration

framework for device-free human activity recognition. TifWiFi is built upon existing

WiFi devices and thus removes the cost and burden of deployment. It is also a

passive detection system with no privacy concern for users. The basic idea behind

TifWiFi is to utilize status and motion of human activity. Specifically, the status

of the activity is captured by a multipath profile, which represents the multipath

propagation condition. The profile for the motion part is represented by a frequency

domain speed model. As far as we know, TifWiFi is the first to utilize both profiles in

the literature. It is worth noting that TifWiFi doesn’t require any extra information

source to utilize construct two profiles. The reason is that they are constructed with

different processing on the CSI data.

Technical challenges. In designing TifWiFi, we first solve two challenges in the

multipath-profile analysis and motion-profile analysis. In multipath-profile analysis,

the conventional subcarrier-level distribution approach (E-eye [70]) causes a large er-

ror between different activities with close human status, i.e., position and orientation,

which is validated in preliminary study Sec.4.2.1 and evaluation Sec.4.3.5. To com-

bat this error, our solution is to explore the distribution of the CSI as a whole vector

during the activity. The insight here is that one subcarrier contains much less useful

channel information compared with the whole CSI vector and the diversity across CSI

subcarriers also embeds important information about the multipath channel. How-

ever, it is also challenging to analyze high-dimensional CSI statistics. We will present

our dual-statistics analysis model in Sec.4.2.2.
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In the motion-profile analysis, current works only focus on well-defined human

gestures such as punch, falling and push. The intrinsic pattern matching over time

in these systems implicitly requires the motion to be in a specific sequence of speeds.

Therefore, it is necessary to design new analyzing approach on motion profile for

loosely-defined human activities. Lastly, to integrate both profiles, a simple strategy

could only achieve the average performance. In this work, we make use of the insight

on individual strength of each profile to design the integration strategy to enhance

the overall performance.

There are three main components in the design of our system:

—For the multipath-profile analysis, we propose a dual-statistics scheme to en-

hance the recognition performance. To achieve the dual-statistics analysis on high-

dimensional CSI data, we use a bi-directional RNN model to handle the challenge.

—As for the motion-profile analysis, we propose a statistical analysis on motion

profile. After comparing with alternative approaches, we utilize the motion intensity

as the metric to differentiate different activities.

—We propose the whole TifWiFi system design with the integration on two profile

analysis.

To evaluate our system, we implement TifWiFi on commodity WiFi cards and

personal computers. With extensive experiments in two typical environments, we

shows both various benchmarks and holistic performance of TifWiFi and compare

with alternative approaches.
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Figure 4.1: Experiment scenario for preliminary study.

4.2 TifWiFi Design

4.2.1 Insufficiency of Single Profile

In last section, the hypothesis is that both status and motion facets of the activity

are critical for identifying the activity. To validate this, we conduct the experiment

in two points of view. First, different activities performed with the same position

and orientation have similar distributions of CSI values. Next, different activities

performed at different places may also have similar motions, i.e., moving speed, of

body parts.

In a typical office, we put two laptops equipped with WiFi NICs, with one on

the desk and another on the ground, separated by 3 meters. While one laptop is

the transmitter, the other runs as the receiver and records the CSI values during

the experiment. The participant is guided to sit on one chair and conducts multiple

times of two activities; one is drinking water and the other is spine-stretch (i.e., an

exercise to relieve the muscle tension). Then, he switched to another chair and did
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Figure 4.2: Drink.
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Figure 4.3: Spine Stretch.
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Figure 4.4: Draw.
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Figure 4.5: Bend-over.

two different activities; one is drawing and the other is bend-over (i.e., also an exercise

with body leaning forward). The two chairs are 1-2 m away from the laptops. Figure

4.1 shows the scenario.

The WiFi transmission speed is 1250 packets per second (the choice of speed is

explained in Sec.4.2.3). Each activity is repeated for 15 - 20 times with an interval

of about four seconds. Then, we segment the CSI time series for each movement and

compare their multipath profiles and motion profiles. Fig.4.2 - 4.5 shows the earth

mover’s distance (EMD) among the motion profiles (we will introduce the construction

of motion profile in Sec. 4.2.3). We use short name ‘L1A1’ to represent first activity

at location one, i.e., drinking water, and name the other activities with the same

logic. As we can see, it is difficult to distinguish ‘L1A2’ from ‘L2A2’. Also, ‘L2A1’

is hard to be differentiated from ‘L1A1’. This validates that when activities have
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Figure 4.7: Spine Stretch.
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Figure 4.9: Bend-over.

similar motions then have similar motion profiles. On the other hand, Fig.4.6 -

4.9 shows the histograms of CSI amplitude on subcarrier 15 where each dashed line

represents one instance. The observation is that despite the different motions, ‘drink’

and ‘spine stretch’ have similar amplitude histogram and the same applies to ‘draw’

and ‘bend-over’. It also applies to other subcarriers (not shown due to limited space).

Thus, the multipath profile which is based on the CSI statistical distribution is also

not sufficient. This preliminary study gives us the motivation to combine those two

profiles for a higher capability in recognizing activities.

4.2.2 Multipath-Profile Analysis

CSI to Robust Multipath Profile. In the wireless environment, each status

of the human activity, i.e., the person’s position and orientation, will cause a unique

multipath propagation condition. As a result, the distribution of channel properties
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Figure 4.10: Normalized CSI amplitude in 4 links of 2x2 MIMO.

during one activity can be utilized to match this activity. In the channel state in-

formation (CSI), the value on each subcarrier represents the channel property on the

corresponding frequency. In this work, we collect all CSI data during one activity to

construct the multipath profile.

Traditional approach [70] just utilizes the distribution of amplitudes on each sub-

carrier, which substantially under-utilizes the full CSI information across the whole

band. As explored by existing works [55, 69, 74, 82] in the literature, the full CSI

vector can offer more useful information about the channel condition due to the di-

versity (Fig.4.10) across different frequencies in the 20 MHz WiFi band as mentioned

in Sec.4.2.1.

Different from the localization works [55, 69, 74, 82], the object is moving at each

location doing some activity in our case. Thus, the CSI information during the

activity varies. Although one CSI vector for one feature may be feasible as different

gestures differ in CSI with the same location, we believe that the statistics of CSI

values during the activity could better distinguish the activity. In the localization

works, each CSI vector is the feature for each location. Thus, they just need to train

the model to learn the statistics of CSI values across different instances. However, in
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our case, we need to get the statistics of CSI values during each instance as the feature

and learn the other statistics which represents the variation across different instances,

i.e., dual-statistics problem. Interestingly, this idea also relates to the approach of

applying distribution histogram of CSI amplitude on each subcarrier (E-eye [70]). The

difference is that here we exploit the statistics of the whole CSI vector as the feature

which is more challenging due to the high-dimensional vector, i.e., a 56-dimensional

vector with Atheros chipset.

Multipath Profile Matrix. Although each CSI value has amplitude and phase,

the phase information from commodity WiFi is unreliable due to the unsynchronized

clock between the sender and the receiver [67]. To construct the multipath profile, we

collect the amplitudes of CSI values during the activity. Specifically, the multipath

profile is as the following matrix:

F = [f1, f2, ..., ft, ..., fT ] (4.1)

where, T is the total number of CSI values during the activity and ft = [|h1|, |h2|, ..., |h56|]T

is the amplitude vector of CSI collected at timestamp t. With Atheros WiFi card,

one CSI vector would be reported to the user space from the kernel with one re-

ceived packet. Due to the uneven transmission of the WiFi packets, we use linear

interpolation to achieve a consistent interval.

Dual-Statistics Analysis Approach. In this part, we introduce our model

to deal with the challenging dual-statistics problem. First, let’s review the current

approach in E-eye [70]. This work calculates the distribution histogram on each sub-

carrier. Then, it obtains the distance between two distribution with earth mover’s
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Figure 4.11: Bi-directional Recurrent Neural Network Architecture.

distance (EMD) algorithm. Although the scheme - get statistics and compare statis-

tics, is simple. It doesn’t apply to our problem. The essential reason is that high-

dimensional distribution is hard to construct and compare. In the following, we

introduce an end-to-end model to deal with the dual statistics.

First of all, we consider the neural network to learn the statistics of the high-

dimensional CSI vectors. This approach has been validated in CSI-fingerprint based

localization [55, 69, 74, 82]. However, our problem is different in that the feature is

now a collection of CSI values during the activity instance. Thus, apart from the

variation across different activity instances (i.e., each time the participant does the

activity slightly differently), the model needs to extract the statistics of CSI values in

the collection of one instance. Therefore, our second consideration is recurrent neural

network (RNN) model which learns the feature across a collection of time series data.

Nevertheless, the RNN model only associates the information in one direction,

i.e., pass the information from the past to the future timestamp. According to the

nature of our problem, the loosely-defined activity doesn’t have a strict order of body

movement. Thus, a model that can associate the information in both directions would

be more suitable. Based on this understanding, our solution is to use the bidirectional
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recurrent neural network (BiRNN) as the dual-statistics analysis model. BiRNN [54]

model is capable to also associate with the future state and thus is more suitable for

the activity with loosely-defined motions. In Sec.4.3.5, we validate the effectiveness

of our model in dealing with dual statistics and also prove that other models are 36%

worse in accuracy.

Fig.4.11 shows the bidirectional RNN model architecture. It includes two hidden

layers connected to the output layer with the input sequence fed in normal time

order for one layer, and in reverse time order for another. With this architecture, the

output layer can get information from past and future states simultaneously. With

the gradient descent method, every parameter in the neural network is updated in

the direction of the deepest descent. For brevity, we refer interesting readers to the

literature [54] for more details on bidirectional RNN. Specifically, our model uses

gated recurrent unit cell (GRU) [18], which has a similar ability with LSTM cell [53]

but fewer parameters. The input dimension is equal to the length of CSI vectors,

which is 56*4 with 2x2 MIMO. The dimension of the internal state is set to 120. The

batch size is set to 10. To enhance generality, we use a dropout wrapper with dropout

rate as 0.5. Adam optimizer [35] is used to adaptively change the learning rate to

precisely achieve the minimum cost.

Issue of Noisy CSI Values. As of the imperfection of WiFi chipset, the

obtained CSI amplitude values is noisy. To reduce the noise, we average over 5

consecutive CSI values. As the transmission rate is 1250 p/s, 5 consecutive CSI

values span the period of 4 ms, which is the time resolution of our CSI data.

Issue of Various Activity Durations. The detected and extracted activity

segments would have various lengths. Therefore, it is not proper to directly put the
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Figure 4.12: Diagram of training sample extraction.

original data into the model. We note that since statistics is the useful information,

it is feasible to evenly sample the original data. First, we assume that each activity

segment is typically larger than 2 s. Then, the total number of CSI values after

averaging is at least 500. By real tests, we select 50 as the reference length which

gives us sufficient time resolution, i.e., 0.04 s. Besides, this configuration keeps the

model run efficiently with Intel i5 processor and 7.7 GB memory.

Trick of Increasing Training Samples. In the machine learning model,

more number of samples can increase the generality of the model and increase the

accuracy. However, it is against user experience to obtain more training samples.

Here, we utilize the high packet transmission rate to obtain multiple training samples

for one activity instance. Recall that in the above, we have more than 500 CSI values

for one activity instance. While we only use 50 for the model with even sampling

to preserve the statistics. Therefore, by shifting the sampling start point, we can

actually obtain 10 more training samples from just one activity instance. Fig.4.12

shows the diagram to demonstrate the idea.
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4.2.3 Motion-Profile Analysis

CSI to Motion Profile In the literature, several existing works extract the

motion profile from channel state information in different aspects. WiSee [50] looks

into the frequency shift to infer the motion direction according to Doppler effect

theorem [72]. WiFinger [60] extracts the variation pattern in CSI traces caused by

finger motion. These approaches target at well-defined gestures and thus are not

suitable for the loosely-defined human activity. To construct the motion profile, we

take the idea in recent works [63,67] that builds the relation between CSI values and

object’s speed.

Apart from the static signal paths, suppose there are K dynamic signal paths

between the transmitter and the receiver, whose length is changing due to the human

motion. For each path k(k ∈ 1...K) and frequency f , the path length is lk(t) and the

complex attenuation is ak(f, t). Then, with the signal phase shifting in the traveling

and transmitter-receiver frequency offset ∆f , the channel property h(f, t) can be

represented as:

h(f, t) = e−j2π∆ft(hs(f, t) +
K∑
k=1

ak(f, t)e
−j2πlk(t)/λ)

where hs(f) is the contribution of all static signal paths. As the dynamic path

changes in length, the power of channel property |h(f, t)|2 changes. Within a small

period time t, the object moves a short distance with speed vk on dynamic path k.

Then, we have the instantaneous path length lk(t) = lk(0) + vk ∗ t. In this way, we

can derive the power |h(f, t)|2 in Eq.4.2.

The above result reveals that the object’s moving speeds are directly related to

the frequencies in sinusoid components of |h(f, t)|2. Therefore, by transforming the
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CSI amplitude time series to the frequency domain, we can get the speed condition

of the target.

[t!]

|h(f, t)|2 =
K∑
k=1

2|hs(f)ak(f, t)|cos(
2πvkt

λ
+

2πlk(0)

λ
+ φsk)

+
K∑

k,l=1
k 6=l

2|ak(f, t)al(f, t)|cos(
2π(vk − vl)t

λ
+

2π(lk(0)− ll(0))

λ

+ φkl) +
K∑
k=1

|ak(f, t)|2 + |hs(f)|2

(4.2)

Transmission Rate and PCA-based Denoising. The packet transmission

rate decides the time resolution of CSI values because the WiFi card reports one

CSI value for each packet. As per the Nyquist theorem, the CSI sampling frequency

should be at least two times of the variation frequency of CSI amplitude over time.

As for 2.4 GHz WiFi signal, the variation frequency of CSI amplitudes is equal to

the number of wavelengths in the distance that the target moves in one second, i.e.,

according to Eq.4.2. Therefore, 150 Hz is the upper bound of variation frequency

caused by human speed less than 8 m/s. To have a good de-noising effect, we choose

1250 as the packet rate as suggested in CARM [67].

To combat the noisy CSI data from commodity WiFi cards, we use the PCA-

based de-noising technique. It successfully extracts the correlation of variation across

CSI subcarriers. Also, according to CARM [67], the major noise source is due to

the internal WiFi card state transition. This transition causes a similar effect on

all subcarrier and hence PCA-analysis can remove the correlated noise. However,

different from CARM [67], the noise typically exists in component four and above in

our data, which may be due to the different WiFi cards. Thus, our strategy is to keep
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the first three principal components. Fig.4.13 shows the original CSI value and the

first principle component.

Motion Profile Construction.We convert the time-domain power |h(f, t)|2 to

the frequency domain so as to extract the motion profile. Compared with short time

frequency transform (STFT), discrete wavelet transform (DWT) has advantages in

obtaining high-frequency value with high time resolution and low-frequency value

with high frequency resolution. We conduct DWT analysis on each CSI segment of

300 ms and extract 10 levels in the frequency domain. Our system applies DWT to

decompose the principal components into 10 levels and average them to obtain the

mean power value in each level. 10 is the maximum level we can get from the data and

higher level would be zero-value due to the boundary effect. Each level represents

one the frequency range which is exponentially decreased. For example, if level 1

represents a frequency range of 150 ∼ 300 Hz, then level 2 represents a frequency

range of 75 ∼ 150 Hz. For brevity, we refer interesting readers to CARM [67] for

detail of DWT processing.

We store the vector of power value in DWT levels for each CSI segment. To

achieve smooth value over time, we move the segment window with a step of 100 ms.

Thus, as to an activity instance about 2 s, the overall motion profile is a collection of

25 vectors with 10 dimensions. Fig.4.13 (right) shows the DWT power distribution

over time.

Motion-Profile Analysis. Previous works [63, 67] match the DWT power vec-

tors over time sequentially during the activity. This approach implicitly requires the

motion to be a well-defined gesture with a certain order. As to general human activity,

the motion is not well ordered over time. For instance, eating includes fetching food
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Figure 4.13: Effect of PCA-based de-noising.

to your plate, sending food to the mouth and chewing, which are not always in the

same sequence. Thus, a new scheme of analysis is needed. Inspired by the previous

work E-eyes [70], which use the distribution of CSI to identify the activity, our idea

is to use statistical features of the motion profile to match the loosely-defined human

activity.

The first approach we tried is to build the distribution on each DWT level and com-

pare distributions of two activities to get the distance. Fig.4.2-4.5 show the distances

between those instances. We use earth mover’s distance (EMD) to calculate the dis-

tance between two distributions. As we can see, this approach roughly differentiates

different activities with the distance metric but with poor performance. In Fig.4.3,

the distances of ‘L1A2’, i.e., Spine-stretch, with other activities are not clearly sep-

arated with the distances among its own instances. This means that distance-based

clustering could not robustly identify this activity. Besides, we note that ‘L1A2’ and

‘L1A1’ are quite different in motion, i.e., Spine-stretch versus Drink. Note that even

this approach is sub-optimal it doesn’t affect the conclusion in Sec.4.2.1 that with

similar motion different activities have similar statistics in motion profile.
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Motion Intensity. The second approach we tried is to calculate the total power

across the activity to indicate the motion intensity. Other than directly adding co-

efficients in DWT levels, we use DWT level as a weight to the values. Specifically,

assuming the coefficient in DWT level K is P , then we add K ∗ P to the sum as the

overall motion intensity. The essential reason is that high DWT level corresponds

to high frequency, which indicates a high speed of human motion (refer to Eq.4.2).

As such, we calculate the motion intensity I for each activity instance. To show the

performance in challenging case, we show the I with activities ‘h’ - ‘j’ which can

be effectively detected in the first link in the experiment Sec.4.3 (the activity codes

are defined in Table.4.1). This case is more challenging since these three activities

(i.e., ‘h’, ‘i’ and ‘j’) are in the same place. Fig.4.14 shows the values of I. From the

results, we can see that by setting proper thresholds the accuracy of distinguishing

these three same-location activities could be 93%. With the training samples, we

set the thresholds to achieve the largest soft margins across activities with the same

location. The reason that we focus on distinguishing activities with the same loca-

tion using motion profile is that multipath profile analysis achieves high accuracy in

differentiating activities in different locations, which is shown in Fig.4.17.

4.2.4 Profile Integration Mechanism

In this section, we discuss the integration strategy on the analysis results from the

above two profiles.

Problem description. With the multipath-profile analysis, the output of the

bi-RNN model is a probability vector P = [pmul(1), pmul(2), ..., pmul(n), ..., pmul(N)]

where pmul(n) is the probability of activity n. Each activity n in this model is
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Figure 4.14: Motion intensities of three activities.

associated with a location m = Loc(n),m ∈ 1...M . Accordingly, for the motion-

profile based approach, the output is the identified activity vector on each location

A = [amot(1), amot(2), ..., amot(m), ..., amot(M)] based on the motion intensity and the

location-based threshold. The problem here is to achieve best recognition accuracy

based on P and A.

Integration based on the priority. We first introduce a baseline approach.

This approach is maximum probability based decision (MPD). MPD selects the de-

cision between multipath-profile analysis and motion-profile analysis with the larger

probability. The probability of the decision motion-profile analysis is based on the

number of candidate activities. Note that vector A would have none value in some

location if the motion intensity is out of range of all possible activities at that location.

The second approach is called priority based decision (PBD). We design PBD

based on the observation from the experiment. That is, multipath-profile based

analysis demonstrates high accuracy (∼ 1) in distinguishing activities with differ-

ent locations, shown in Fig.4.17. Thus, we put higher priority on the results from

multipath-profile based analysis to decide the location of the activity. Specifically, we
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bundle the probability of same-location activities in vector P to obtain the probability

of each location. Then, we only consider locations with probability larger than 30%

(no more than two). What’s more, if one location has a much higher probability (10%

more) than the other, then we only look at one location. And, the activity with that

location in vector A is the final decision. If the other location has close probability

(within 10%), we then look into the motion intensity value and select the activity

whose I value is farther from the threshold, i.e., less error with a larger margin.

With MPD, the accuracy of integration can only reach the best between multipath-

profile analysis and motion-profile analysis. In contrast, due to the utilization of the

priority, PBD approach can combine the advantages of these two profiles and boost

the recognition accuracy, which will be demonstrated in evaluation Sec.4.3.7.

4.2.5 Activity Detection and Segmentation

In this section, we introduce the activity detection of TifWiFi system. In TifWiFi

, we consider both static and motion activities. Static activity is the activity with

no or little human movement, such as sleeping, reading, etc. Motion activity is thus

the activity with human body movements, such as drinking, eating, etc. A successful

activity detection is not only detecting the activity but also needs to correctly segment

the activity in CSI data for recognition purpose. To achieve this with both static and

motion activities, the activity detection of TifWiFi system utilizes both multipath

profile and motion profile.

The strategy of activity detections in TifWiFi goes in two steps. First, we utilize

multipath profile to detect the activity. After that, we use motion profile to distinguish

motion activity from static activity and extract the segment of motion activity from
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CSI data. Specifically, in the first step, we first obtain the reference profile with

‘Empty’ activity (code ‘a’ in Table.4.1), which means no human in the test area.

Then, with the multipath profile at the current time, the activity is detected with

a large deviation from the reference profile by calculating the Euclidean distance.

To avoid random error, the activity is detected only when the large deviation lasts

longer than 1 second. The threshold is set to three times of the maximum Euclidean

distance among the instances of reference profiles.

As to the second step, we detect the motion activity if the motion intensity I

(Sec.4.2.3) reaches 2 times of the maximum value during static period. Similarly,

the minimum duration is 1 second to avoid random abrupt error. The start of the

activity is when the motion intensity I goes up while the end is the time point when

I starts 1 second duration of being a low value, i.e., less than 1.5 times of that in

the static period. In Fig.4.16 of the evaluation section, we show the performance of

activity detection of TifWiFi .

4.2.6 Integration of multiple links

As demonstrated in Sec.4.3.4, different links have different performances in recog-

nizing activities in a certain area. This is because different links have different signal

powers that go through that area, which causes different impacts on the received

signal. Thus, to effectively recognize activity in the whole area, we need to integrate

the results from multiple WiFi links.

The first part is the integration of activity detection. From our evaluation of the

false alarm rate (FAR), we find that the FAR is quite low across a long duration (12
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hours). Thus, the integration on activity detection is that as long as there is detection

on one link then the activity is positive.

The second part is the integration of activity recognition. Since each activity

has different impacts on different links, we should allocate different priorities to the

recognition results. In this work, we use the motion intensity I to decide the priority.

Specifically, if two WiFi links report different results of recognition, the one with the

larger motion intensity I during the activity is the final decision. In Fig.4.23 of the

evaluation section, we show the performance with individual links and the integration

of two links.

4.3 Implementation and Evaluation

Text Text
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Figure 4.15: Testbed. The left is an office room and the right is a two-bedroom
apartment.

4.3.1 Testbed

We conduct extensive experiments in two environments, shown in Figure 4.15.

One is a typical office environment with multiple desks and chairs. The other is a
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two-bedroom home environment. Both of these occasions have abundant multipath

propagation. The apartment setup provides NLoS scenario for our testing purpose.

4.3.2 Infrastructure Setup

We install Qualcomm Atheros chipsets (i.e., Atheros AR9382 and Atheros AR9462)

on HP laptops as the transmitter and receiver, with one of them serving as access

point. Each Wi-Fi PCIe card can support two antennas. Thus, with 802.11n Wi-Fi

protocol, the signal transmission can support 2x2 MIMO stream. As such, for each

correctly received packet, the Wi-Fi card will report 4 spatial CSI sets. To enable the

CSI calculation and reporting functionality of the Wi-Fi card, 802.11 Wi-Fi standard

Table 4.1: Codes and Locations for Tested Activities

Codes Activities Location
a Empty
b Sleep (bed) Bedroom 2
c Read (bed) Bedroom 2
d Phone call (bed) Bedroom 2
e Read (chair) Bedroom 2
f Bend-over (chair) Bedroom 2
g Type (chair) Bedroom 2
h Watch TV (sofa) Living Room
i Video Game (sofa) Living Room
j Drink (sofa) Living Room
k Wash Dishes (sink) Kitchen
l Eat (table) Kitchen

m Cook (stove) Kitchen
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specifies the requirement of setting the sounding flag. For this purpose, the linux ker-

nal is modified with Atheros CSI tool [76] in Ubuntu 14.04 LTS environment, which

supports up to 9 spatial CSI sets while only 4 of them are valid in our setting. In the

20 MHz Wi-Fi band, there are 56 subcarriers. Thus, each CSI set is a vector of 56

complex values, each of which has a resolution of 10 bits in both real and imaginary

parts. Apart from CSI values, the timestamp is also recorded for later processing to

account for the uneven arrival of the packets.

4.3.3 Data Collection

The carrier frequency is 2.462 GHz (WLAN channel 11) and the transmission

bandwidth is 20 MHz. With each received packet, the WiFi chipset calculates CSI

and reports it from the kernel space to the user space. However, due to the burst

transmission, packet error and congestion, the actual packet transmissions may not

be evenly distributed over time. Therefore, we utilize the timestamp information to

interpolate between CSI values.

We have five participants in the experiments. They are college students, including

male and female. In the two environments in Fig.4.15, we conduct different sets of

activities. In the office, a simple set of four activities are tested, including drinking,

drawing, bend-over and spine-stretch. While, in the apartment, there are 13 activities

tested, shown in Table 4.1. During the experiment, each participant is guided to

repeat each activity for 15-30 times with an interval of 4 seconds. The authenticate

time for each motion is recorded for evaluation purpose.

In this section, we first present the benchmark performances. Then, we show the

holistic performance of the system in two environments.
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Figure 4.16: Detection range of TifWiFi .

4.3.4 Activity Detection

Here, we show the accuracy of TifWiFi in detecting the presence of an activity.

True positive rate (TPR) and false alarm rate (FAR) are used as two metrics. In

this test, we consider both motion activity (i.e., bend-over) and static activity (i.e.,

read). We compare the detection performance of our approach with multipath-profile

based and motion-profile based approach. Fig.4.16 shows the TPR of TifWiFi for

two different activities in the apartment, shown in Fig.4.15. We put the sender in

the living room and the receiver in the kitchen with the non-line-of-sight (nLoS) link

and a distance of 7 meters between them. For calculating each TPR, the participant

repeated the activity for 20 times at one location with some distance to the receiver

and another location with the same distance to the transmitter. From the results,

we can see that TifWiFi detects both static and motion activities with a TPR larger

than 95% at a distance of up to 5 meters. In comparison, multipath-profile based

approach can only achieve TPR of 45% at the same distance while motion-profile

based approach also only achieves TPR of 50%. The reason is that multipath profile

cannot detect the motion and thus it fails in extracting motion activity segment in
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Figure 4.17: Confusion matrix of TifWiFi with the multipath profile.

CSI data. On the other hand, the motion profile is insensitive to the static activity.

We also note the limitation that it is hard to detect the activity with nLoS locations,

especially when the human is two-room away, e.g., the second bedroom in the Fig.4.15

which is blocked by two walls in the middle (cases of 6 m and 7 m in this test).

To measure the false alarm rate, we keep the above setting and collect the data

during normal daytime from 8:00am to 8:00pm. To achieve real-time processing,

we construct a producer-consumer virtual pipe with data collection script and data

processing script. The virtual pipe is storing each 10 s data as a file in a folder with a

number ranging from 1 - 1000. Then, the data processing script sequentially process

and delete these files after finish. During 12 hours with no one in the apartment, the

total number of false alarms is 16. Those infrequent false alarms are mostly caused

by passengers outside of the apartment.

4.3.5 Multipath-Profile Analysis

We now present the performance of our dual-statistics based approach (denoted

as ‘dual-stat’) in multipath-profile analysis. For comparison, we also implement two
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Figure 4.18: Confusion matrix of ‘amp-dist’ with the multipath profile.

Figure 4.19: Accuracy of three approaches with the multipath profile.

other alternative approaches. One is the amplitude distribution per subcarrier used in

E-eyes [70] (denoted as ‘amp-dist’) and the other is single-statistics based approach

(denoted as ‘sing-stat’). The ‘sing-stat’ approach takes each CSI vector collected

during the activity as the feature and trains the model with fully-connected neural

network. TifWiFi can achieve an average cross-validation accuracy of 96% in recog-

nizing the activities. Fig.4.17 shows the confusion matrix. For ease of analysis, we

just show the results from the Tx1-Rx1 link. As such, six activities (i.e., ‘h’-‘m’) can
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be effectively detected with TPR larger than 96.3%. Then, the accuracy is evaluated

with the detected and extracted activity segments in CSI data. Later, we will combine

results from all links in the holistic system evaluation. In comparison, the ‘amp-dist’

approach only gets an accuracy of 60.3% while ‘sing-stat’ gets an accuracy of 36.7%

(Fig.4.19). Within the confusion matrix of ‘amp-dist’ approach (Fig.4.18), we can see

that activities with the same and close locations are prone to be confounded. That is

because ‘amp-dist’ approach doesn’t utilize the diversity information across different

frequencies across the WiFi band.

Therefore, the results validate the hypothesis that the statistics of CSI vectors is

more reliable than amplitude distribution per subcarrier in activity recognition. Also,

it demonstrates that our bi-directional RNN model successfully handles the dual-

statistics analysis task. Besides, the low accuracy of ‘sing-stat’ also demonstrates

that statical distribution of CSI vectors during the activity is more reliable than

individual CSI snapshots. We also note that TifWiFi loses accuracy in recognizing

activity ‘h’ with wrong detection of activity ‘j’. However, ‘h’ and ‘j’ share the same

location, i.e., sofa. The results in link 1 show that TifWiFi has an accuracy of 100%

in recognizing activities in different locations. We also verify the high accuracy in

location differentiation with link 2, i.e., Tx1-Rx2 link.

Different numbers of histogram bins. In E-eyes [70], it is reported that with

more bins in the distribution histogram, the classification could achieve higher accu-

racy. Thus, we tested the ‘amp-dist’ approach with various numbers of histogram bins

ranging from 10 to 60. In comparison with TifWiFi , we use the best performance of

the ‘amp-dist’ among those cases.
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Figure 4.20: Confusion matrix of TifWiFi with motion profile.

4.3.6 Motion-profile Analysis

In the motion-profile analysis, we show the performance of recognizing different

activities. Similarly, we just look into the data collected from link Tx1-Rx1 to facili-

tate the analysis.

Fig.4.20 shows the confusion matrix with the six effectively detected activities, i.e.,

‘h’-‘m’. As we can see, the overall average cross-validation accuracy of motion-profile

analysis is about 44.7%, which is worse than multipath-profile analysis. The reason is

that several sets of activities share a similar motion pattern, i.e., body parts and speed.

For example, both ‘wash’ and ‘cook’ includes the shaking of the whole upper body.

Thus, with the motion intensity as the metric, the activities with the similar motion

pattern are prone to be confounded. As shown in Fig.4.20, the even distribution of

the error across activities ‘j’ - ‘m’ is because they share a similar motion intensity

threshold. Despite the poor overall performance, we note that motion-profile analysis

performs well in distinguishing activities in the same location with different motion

intensity, i.e., larger than 93% across ‘h’, ‘i’ and ‘j’. With no error in recognizing ‘h’,
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the motion-profile analysis can enhance the accuracy of multipath-profile analysis in

Fig.4.19 to 100%. In the following section, we will show that multipath profile and

motion profile could also improve the holistic accuracy with the integration strategy

proposed in Sec.4.2.4.

4.3.7 Holistic System Performance

In this section, we present the holistic evaluation on TifWiFi in two typical in-

door environments. In calculating the recognition accuracy, we take into account the

missing detection. The missing detection would be regarded as ‘Empty’ activity (i.e.,

‘a’ in Table.4.1).

Office Environment

L1
A1

L1
A2

L2
A1

L2
A2

Predicted Activities

L1A1

L1A2

L2A1

L2A2Tr
ue

 A
ct

iv
it

ie
s 1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00

Figure 4.21: Confusion ma-
trix

The office area is an open space and provides a

line-of-sight (LoS) scenario. The space is 5m x 7m

as shown in Fig.4.15. As mentioned in Sec.4.3.3, we

tested four activities, which are drinking, drawing,

bend-over and spine-stretch. As the WiFi infrastruc-

ture, the sender is put on the desk and the receiver is

put on the ground with a distance of 3 m. Two chairs

are put in a range of 1-2 m from the sender and the

receiver respectively. The participants are guided to conduct two activities on one

chair and the other two on the other chair, as explained in Sec.4.2.1. Each activity

was repeated 15 times with an interval of ∼4s.
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Figure 4.22: Detection rate of all activities with two links and integration.

Fig.4.21 shows the confusion matrix. We use cross-validation to obtain the recog-

nition accuracy. The results show that TifWiFi can reliably detect and recognize all

four activities in an open area with LoS links.

Apartment Environment

As shown in Fig.4.15, the apartment area is 7m x 9m with two bedrooms. To cover

the whole area, we set up two WiFi links with one transmitter and two receivers. The

transmitter Tx1 is put in the living room. One receiver is put in kitchen room and

another is put in the second bedroom. The participants are guided to perform the

activities in Table.4.1. Each activity is repeated for 20 times. ‘Empty’ activity means

there is no human in the apartment. In the experiment, we trigger the transmission

with wireless mouse and ubuntu Onboard when the person is outside. As mentioned

in Sec.4.2.5, both activities have some blind areas in the apartment which is far from

the sender and the transmitter. In Fig.4.22, we show the detection rate (TPR) across

all activities in three cases, i.e., Tx1-Rx1 link, Tx1-Rx2 link and two-link integration.

As we can see, the overall average detection accuracy is improved from 65.4% with

one link to 98.4% with two-link integration. With link 1 (Tx1-Rx1), the missing
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Figure 4.23: Recognition accuracy of all activities with two links and integration.

detection comes from activities ‘k’ and ‘m’ in the kitchen. As to link 2 (Tx1-Rx2),

the missing detection comes from activities ‘b’ to ‘g’ which are in Bedroom 2.

The next is the evaluation on the activity recognition. TifWiFi achieves an av-

erage cross-validation accuracy of 98% across all activities. We show the accuracies

of individual links and two-link integration in Fig.4.23. The low accuracy of indi-

vidual links is due to the large missing detection rate, i.e., missing detection case is

misclassified as ‘Empty’.

Two-profile integration. To analyze the effect of two-profile integration in the

holistic evaluation, we take the recognition results from multipath profile and motion

profile independently in the integration of two links. In this way, we can compare the

performance of individual profile with the two-profile integration. Fig.4.24 shows the

accuracy across all activities. Here, we keep using two profiles in activity detection

and only separate them in activity recognition.

As we can see, the two-profile integration strategy improves the accuracy over

both multipath profile and motion profile. The multipath-profile analysis with dual-

statistics scheme achieves overall average accuracy of 92.8% while motion-profile anal-

ysis achieves accuracy of 23.08%. In comparison, the two-profile integration achieves

88



Figure 4.24: Recognition accuracy of all activities with three approaches.

a higher accuracy of 98%. In Fig.4.24, the multipath-profile analysis loses accuracy

with confounding between ‘c’ and ‘d’, whose accuracies are 62.5% and 87.5% respec-

tively. Although motion-profile also performs poorly on ‘c’ and ‘d’ (i.e., 17% and

30.6%), it obtains a high recognition ability when it knows that ‘c’ and ‘d’ are in

the same location from multipath-profile analysis. As such, the accuracies of both ‘c’

and ‘d’ are enhanced to 100% with two-profile integration. Thus, it’s validated that

two-profile integration strategy is better than individual profile analysis. Besides, it

also proves that our dual-statistics scheme achieves high accuracy even in recognizing

activities with the same location.

4.4 Summary

In this work, we propose the design of a two-profile integration framework TifWiFi

. With dedicate design on both multipath-profile analysis and motion-profile analysis,

TifWiFi provides a better performance over existing approaches. In the whole home

environment, TifWiFi have an accuracy of 98% across 13 activities. With TifWiFi ,

we expect to provide a better activity recognition service to the public.
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Chapter 5: PhyCloak: Obfuscating Sensing from

Communication Signal

5.1 Overview

At first glance, it might appear that an obvious way to prevent or deter the privacy

leakage is to simply jam the signals [23,45]. However, jamming is an overkill for this

problem, as the protection we wish lies in physical and not in the logical (data)

layer. Jamming distorts the information of both layers, therefore it hurts the channel

capacity of the network. In contrast to jamming, our approach is to distort the

physical information that is environmentally superimposed on the signal as opposed

to the data itself. To make clear the distinction between these two forms of signal

distortion, we refer to the latter as signal obfuscation.

To avoid any modification of existing receivers, we need to build an obfuscator

(Ox) that works independently from a receiver (Rx) and can yet deter privacy leakage.

At the same time, Ox should not hurt the ongoing reception at the intended receiver.

In addition, given the diversity of the design of RF based sensors and invisibility

of eavesdroppers, it is not reasonable to assume Ox that uses a specific obfuscation

approach against a specific Eve. Thus, our goal is to build a black-box solution
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which distorts only the privacy sensitive information while not affecting the logical

information. We design Ox by answering the two questions below:

1. How to distort physical information regardless of the RF-sensing mechanism?

To answer this question, let us first examine what kind of physical information is

contained in RF signals. Assume the received signal at a reflector is s(t), then the

received signal r(t) reflected by the reflector can be expressed as follow: r(t) =

a× s(t)× ej2π(fc+∆f)(t+∆t), where a is the amplitude gain, fc is the carrier frequency,

∆f is the Doppler shift caused by a reflector that moves at a constant speed relative

to the receiver, and ∆t is the delay due to transmission over the path. Here, we

can see that the reflector modifies the reflected copies by controlling three orthogonal

components: amplitude gain a, delay ∆t and Doppler shift ∆f . All the features

exploited by single-antenna RF based sensors are created by these three degrees of

freedom (DoFs). Hence, if an Ox distorts the three orthogonal bases respectively, any

features that reveal physical information are distorted too.

2. How to preserve logical information (data communication)? As the previous

observation suggests, Ox needs to change the 3 degrees of freedom (DoFs) of a sig-

nal in order to deter eavesdropping of physically sensed features. Note that in a

wireless environment, signals traverse through many paths and experience Doppler

shifts: These effects are similar to dynamic multipath reflections. Thus, Ox can be a

relay node that introduces dynamically changing multipath components of the com-

munication signal. In other words, Ox receives the incoming communication signal,

manipulates the signals and forwards them back to the environment. To a legitimate

receiver, this forwarded signal will simply look like a multipath component of the

signal from the legitimate transmitter (Tx). Commercial off-the-shelf (COTS) Rx
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are capable of tolerating and even exploiting multipath reflections to decode data.

Thus, a carefully designed Ox can distort sensing and still preserve communication.

Challenges: PhyCloak works as a full-duplex amplify-and-forward (A&F) relay

at logic layer, and an Ox at physical layer by distorting the 3 DoFs. While the solution

may appear at first blush to be a simple instance of full-duplex A&F forwarder [12,15],

there are key challenges that arise from this design that need to be resolved.

1. Online self-channel estimation with an ongoing external transmission: Traditional

self-interference cancellation of full duplex assumes that the self-channel –the channel

between the relay’s transmit and receive antennas– is stable for a relatively long time

and so, estimates self-channel infrequently. An Ox, however, works in an environment

where the channel is varying as a result of target movement, gestures and activities.

Self-channel estimation in the presence of this variation is particularly relevant when

we combine the Ox module with a legitimate sensor, so as to preserve legitimate

sensing while simultaneously obfuscating illegitimate sensing. Therefore, Ox needs to

transmit training signals frequently to perform self-channel estimation so as to achieve

sufficient and stable cancellation. To make matters worse, Ox needs to do channel

estimation during an ongoing transmission. Therefore, it has to tolerate external

transmission during training. A straightforward way to overcome this problem is to

adopt medium access control (MAC), however, that would introduce contention and

hurt throughput of legitimate data transmission.

2. Effectiveness of obfuscating physical information: No work has been done in val-

idating a full-duplex A&F forwarder’s capability of controlling physical information

contained in the forwarded copy. In addition, the effectiveness of superposing an Ox’s
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distorted signal and a target’s reflected signal in obfuscating an eavesdropping sensor

has yet to be shown.

Contributions: We propose PhyCloak to protect privacy information from

unwanted or even malicious sensing with no modification to existing wireless infras-

tructures. In this work, we make the following contributions:

1. To our knowledge, we are the first to address the potential threats due to the

recent development of communication-based sensing.

2. We propose PhyCloak, the first full-duplex forwarder-based solution that hides

physical information superimposed by the channel via adding interference in a 3-

dimensional orthogonal bases so that illegitimate sensing is disabled and meanwhile

data transmission is not affected (and even improved). We go further and add the

capability to spoof human gestures to further confuse illegitimate sensors.

3. We propose an alternative online self-channel estimation scheme that is contention-

free and operates in the presence of an ongoing transmission. By doing so we also

allow for legitimate sensing by integrating the sensor with our obfuscator.

4. We build a prototype PhyCloak on PXIe-1082, an SDR platform. Experimen-

tal results (Section 5.4.3) on a state-of-the-art sensor show that PhyCloak success-

fully obfuscates illegitimate sensing, enables legitimate sensing and improves overall

throughput of data transmission. Gesture spoofing to the same type of sensor is also

proved to be feasible.
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5.2 System Model and Preliminary

5.2.1 Threat Model

Assume there is an adversary who is interested in inferring physical information

from a SISO wireless communication channel. The adversary may be active or passive,

i.e., it can transmit itself or just exploit ongoing wireless transmissions. In both cases,

we assume that the adversary uses a single-antenna receiver to sniff the wireless

transmission. In general, the design and implementation of adversarial sensing is

unknown to the protection system designer.

Note that some types of sensing require a training phase to tune recognition

patterns with respect to the environment of interest. To protect against stronger

adversaries, we assume that the adversary is well trained for the environment at

hand. The details of this training, whether it occurs concurrently with the training

of a legitimate sensor or is based on some historical knowledge, are outside the scope

of our interest here.

5.2.2 System and Goals

Our protection system comprises 4 SISO nodes as shown in Figure 5.1: Alice (data

transmitter), Bob (data receiver), Carol (legitimate sensor) and Eve (illegitimate

sensor). Both Alice and Bob can be controlled by Eve, thus Carol does not assume

that Alice and Bob are honest.

Goals: 3 tasks co-exist in the network: data transmission between Alice and Bob,

illegitimate sensing at Eve and legitimate sensing at Carol. By adding Ox to Carol

with no cooperation from any of the other nodes, the protection system must satisfy

the following three goals:
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Figure 5.1: 4 single-input-single-output (SISO) nodes exist in the system: Alice, Bob,
Carol and Eve: Alice and Bob perform data transmission and reception; Eve performs
illegitimate sensing by exploiting Alice’s transmission; Carol also performs sensing,
but her obfuscator module forwards the received signal in a way that distorts physical
information but preserves logical information

1. Obfuscate Eve’s sensing.

2. Preserve Carol’s sensing.

3. Not degrade the throughput of the link between Alice and Bob, nor introduce extra

computation at Alice and Bob; i.e., Alice’s and Bob’s behaviors stay unaltered

when Ox operates.

5.2.3 Three Degrees of Freedom

Usually a forwarder relays the signal directly, but in the context of an Ox a

forwarder can do far more. In fact, a forwarder can be viewed as a special type of

reflector; in theory, whatever change a natural reflector can induce on a signal, a

forwarder can induce likewise. We begin by examining how a reflector changes the

signal.
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Letting the received signal at a reflector be s(t), the received signal r(t) that it

reflects can be expressed as

r(t) = a× s(t)× ej2π(fc+∆f)(t+∆t) (5.1)

where a is the amplitude gain due to reflection and propagation, fc is the carrier

frequency, ∆f is the Doppler shift caused by a reflector that moves at a constant

speed relative to the receiver, and ∆t is the delay due to propagation over the path.

We see that a reflector modifies signals by changing three components: a, ∆f and

∆t. Namely reflectors enjoy three DoFs when modifying signals.

We examine what kind of signal processing is needed at the Ox to effect similar

changes in the signal being forwarded. Rewrite Equation 5.1 into the following form:

r(t) = a× s(t)× ej2π∆ft × ej2π(fc+∆f)∆t × ej2πfct (5.2)

Amplitude gain a: It is clear that if a forwarder receives s(t) from the source,

then by amplifying the samples with different levels, a can be easily changed.

Doppler shift ∆f : To emulate a Doppler shift of ∆f , a forwarder can rotate the

nth received sample by 2πn∆f∆t, where ∆t = sampling interval.

Delay ∆t: A delay of ∆t can be introduced by simply delaying the to-be-forwarded

signals in either the digital domain or the analog domain at the forwarder. A problem

with delaying signals in the digital domain is that digital delays are discrete and do

not match the speed of human movement. For example, if an ADC works with a

sampling rate 100MHz, then the minimum delay that can be introduced in digital

domain is 10ns, which corresponds to a distance of 3m. Controlling analog delay while

feasible, however requires effort in modifying existing SDR platforms. Our solution

then is to rotate the to-be-forwarded samples by a fixed phase 2π(fc + ∆f)∆t in the
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digital domain, which matches the expected delay of ∆t. In our NI PXIe platform,

this calculation can be made in two clock cycles ( 1
ADC sampling rate

).
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(b) By rotating the to-be-forwarded signals
with a certain phase which changes by 36◦

every 30ms at the forwarder, the phase of the
signal changes ∼ 36◦ every 30ms

Figure 5.2: Expected Doppler shift and phases are generated at a forwarder

Figure 5.2(a) depicts the Doppler shift profile of the received signals that are

sent by a forwarder who keeps changing the to-be-forwarded samples’ Doppler shift

from 20Hz to -20Hz according to the above algorithm. Similarly, from Figure 5.2(b)

we can see that by multiplying the to-be-forwarded sample with a phase ϕ which

increases 0.2π every 30ms at the forwarder, the phase of the received samples changes

by ∼ 0.2π every 30ms. These results show that a forwarder can predictably control

Doppler shift and phase.
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Figure 5.3: High-level block diagram of PhyCloak

5.3 PhyCloak Design

Figure 5.3 shows a simplified block diagram of our system PhyCloak. The physical

distortion is introduced after self-interference cancellation, the distorted signal is then

forwarded to the transmit antenna.

5.3.1 Online Maintenance of Self-Channel Estimates

As mentioned earlier, PhyCloak is a full-duplex system that needs to cancel self-

interference to operate. However, human movements change the self-channel and af-

fect cancellation. To maintain reliable self-interference cancellation, PhyCloak needs

to re-train itself online to update its self-channel estimate periodically and frequently.

More precisely, updates need to be performed every coherence interval, which is typ-

ically in the range of tens to hundreds of milliseconds.
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A complication arises when an update is attempted during an ongoing external

transmission: the external transmission may distort self-channel estimation while the

transmission that helps with self-channel estimation may interfere with external data

reception. There are two straightforward solutions to this problem: 1) using MAC; 2)

exploiting the silent period defined by wireless protocols, like short inter-frame space

(SIFS) in WiFi. The former hurts the throughput of data transmission and moreover

interrupted external transmission degrades coupling legitimate sensors with the Ox.

And in addition, both of the solutions require a big effort to design careful adaptation

to various wireless communication protocols.

We therefore propose a self-channel estimation algorithm for PhyCloak that ad-

dresses this complication. It uses two main elements: 1) oversampling and differential

to get rid of any ongoing external transmission, and 2) a special training sequence

that yields minimum interference to external transmissions.

Self-channel estimation with and without external interference

Before we describe our self-channel estimation algorithm, let us first see the im-

pact of training with and without external interference. Assume A = {a−m, a−m+1,

. . . , am} is the transmitted training sequence, B = {b0, b1, . . . , bm} is the received

sample sequence, and H = {h0, h1, . . . , hm} is the channel coefficient vector in time

domain with m+ 1 taps. Therefore, we have
b0

b1

. . .
bm

 =


a0 . . . a−m
a1 . . . a−m+1

. . . . . . . . .
am . . . a0

×

h0

h1

. . .
hm

 (5.3)

In the presence of external transmission, B becomes:
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
b0

b1

. . .
bm

 =


a0 . . . a−m
a1 . . . a−m+1

. . . . . . . . .
am . . . a0

×

h0

h1

. . .
hm

+


s0 . . . s−m
s1 . . . s−m+1

. . . . . . . . .
sm . . . s0

×

h

′
0

h
′
1

. . .
h

′
m

 (5.4)

where S = {s−m, s−m+1, . . . , si, . . . , sm} is the external transmitted sample se-

quence, and H
′
= {h′

0, h
′
1, . . . , h

′
m} is the channel coefficient vector which corresponds

to the channel between the transmit antenna of the external device and the receive

antenna of the Ox.

Oversampling and differential to get rid of external interference

To overcome the external interference in Equation 5.4, which is unknown to Phy-

Cloak, we exploit oversampling. Say PhyCloak samples at a rate 2m times higher

than the sampling rate of the external transmitter, it follows that approximately

s−m = . . . = sm. So


s0 . . . s−m
s1 . . . s−m+1

. . . . . . . . .
sm . . . s0

×

h

′
0

h
′
1

. . .
h

′
m

 =


s0 × (h

′
0 + . . .+ h

′
m)

s0 × (h
′
0 + . . .+ h

′
m)

. . .
s0 × (h

′
0 + . . .+ h

′
m)

 (5.5)

Therefore, by differential we have


b1 − b0

b2 − b1

. . .
bm − bm−1

 =


a1 − a0 . . . a−m+1 − a−m
a2 − a1 . . . a−m+2 − a−m+1

. . . . . . . . .
am − am . . . a1 − a0

×

h0

h1

. . .
hm

 (5.6)
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It may appear that we have already been able to get rid of external interference,

however, A is an m × (m + 1) matrix, so the rank of A is less than m + 1. This

means that we can get only a unique solution for at most m of the m+ 1 unknowns

contained in H, where H = {h0, h1, . . . , hm}T and

A =


a1 − a0 . . . a−m+1 − a−m
a2 − a1 . . . a−m+2 − a−m+1

. . . . . . . . .
am − am−1 . . . a1 − a0

 (5.7)

A special training sequence

To ensure that Equation 5.6 has a unique solution for {h0, h1, . . . , hm−1}T , we

leverage a special training sequence, namely a square wave, which is shown in Fig-

ure 5.4(a). As shown in Figure 5.4(b), the fundamental frequency of the square wave

is the square wave frequency, and its odd harmonics are decreasing in size. To be

more specific, for a square wave over a period consisting of N samples with B MHz

sample rate, the frequency components are at 1f , 3f ,. . ., (2i+1)f , . . . with decreasing

amplitude, where f = B
N

MHz.

The rationale for using this training sequence is two-fold: First, the square wave

has a unique solution to {h0, h1, . . . , hm−1}T as long as a−m = a−m+1 = . . . = a0 =

a1 + c = . . . = am + c, where c is a non-zero constant. And second, the spikes it

produces in the frequency domain are sparse. For example, with B = 100MHz and

N = 16, the space between neighboring spikes is 12.5MHz. Such sparse spikes are

tolerable in wireless systems. For example, in a 20MHz WiFi band using OFDM,

as claimed by Flashback [19], existing WiFi systems have a relatively large SNR

margin. And because the interference of any such spike is constrained to at most one
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Figure 5.4: Training sequence

subcarrier, the loss of a few bits does not significantly affect decoding, as successful

packet transmissions always respect SNR margins.
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Figure 5.5: Channel coefficients measured at different sampling rates
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Figure 5.6: The granularity of the spectral decreases as the Doppler shifts change
from 1s to 0.05s

The training procedure

Training is performed as follows: PhyCloak samples at a rate n times higher than

that of external transmission. A training sequence which is the concatenation of

consecutive 1s and -1s is sent during training. The received samples corresponding

to the transition points (1 to -1 or vice versa) are used to calculate the channel

coefficients. More specifically, the received sample b0 which corresponds to the point

right before the transition occurs is equal to h0 + · · · + hm, and the next received

sample b1 is equal to −h0 + · · · + hm. Thus, we can compute h0 = (b0 − b1)/2. The

rest of the channel coefficients are calculated in a similar way. One concern is whether

the desired oversampling rate can be supported. Take 802.11g as an instance, which

has the smallest bandwidth (20MHz) among WiFi standards. If training needs a 20X

oversampling rate, we would need a platform that supports 400MHz sampling rate.

We figure out that, however, a 4X oversampling rate is sufficient to eliminate the

effect of an external transmission of 802.11g.

Figure 5.5 plots for different sampling rates the measured channel taps of the

self-channel in the same environment. We see that under different sampling rates,
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the delay spread alway expands across 3 taps. This phenomena follows from the fact:

delay spread of non-ultra-wideband is dominated by sampling offset not multipath

propagation. The reason is that a multi-path component affects self channel non-

negligibly if and only if its propagation path is not too long compared to the direct

path between the self transmit and receive antennas. Thus the delay caused by multi-

path propagation is small. The reason that the delay spread caused by sampling offset

is always 3 is that sampling offset leads to inter-symbol-interference (ISI). Due to ISI,

each received sample is affected by not only the intended sample, but also its two

neighbors. Therefore the delay spread expands across 3 taps. So as long as we can

accurately estimate the three dominant taps in non-ultra-wideband, we can achieve

good cancellation performance. That implies we need the external interference to be

stable during the reception of at least four consecutive samples at the transition point

of the training sequence so as to get the three main taps by differential. Namely 4X

oversampling is required.

Note that 4X oversampling does not guarantee the reception of the desired 4

samples happen in the duration of one external interference sample. But we can

leverage the interference reduction provided by averaging over multiple transition

points, and partially accurate estimation of the channel taps, and still achieve good

performance. Even lower oversampling rate (2X/3X) also performs well according to

the experiment (see Section 5.4.2).
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5.3.2 Obfuscation of Patterns in 3 DoFs

To motivate how we obfuscate patterns in the three DoFs, let us first examine the

result of superposing a signal via one path with an obfuscated version via another

path.

Assume we have two paths: one with {a1,∆f1,∆t1}, and the other via the Ox

with {a2,∆f2,∆t2}. The superposition of the signals through these two paths is given

by the following formula:

r̂(t) =a1 × s(t)× ej2π(fc+∆f1)(t+∆t1)

+ a2 × s(t)× ej2π(fc+∆f2)(t+∆t2)
(5.8)

Now, is superposing an obfuscated signal sufficient for hiding the original triplet

{a1,∆f1,∆t1}? The answer is partially yes: The amplitudes and delays are not

separable in the superposed signals, but the respective Doppler shifts remain distin-

guishable after superposition. So, a and ∆t can be hidden instantly by randomly

changing amplitude and delay of the signal by the Ox.1 To see why Doppler shifts

are distinct even after superposition, consider the frequency response of the received

signals:

1In theory for a high sampling rate receiver, delays might be separable in the brief prefix that
arrives before the obsfuscated signal arrives, but how much information a sensor can accurately
extract from the brief clean prefix is questionable.
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R(f) =

∫
r̂(t)e−2πjftdt

=

∫
(a1 × s(t)× ej2π(fc+∆f1)(t+∆t1))e−j2πftdt

+

∫
(a2 × s(t)× ej2π(fc+∆f2)(t+∆t2))e−j2πftdt

=a1e
j2π(fc+∆f1)∆t1S(f − fc−∆f1)

+ a2e
j2π(fc+∆f2)∆t2S(f − fc−∆f2)

(5.9)

where S(f) is the frequency response of s(t). In an OFDM system, we can see

two frequency components that are shifted by ∆f1 and ∆f2 around the subcarrier f .

Doppler shift obfuscation

As amplitude and delay can be instantly changed by superposition with an obfus-

cated signal, patterns that rely only on amplitude and delay can be hidden by Ox, by

randomly changing them on a per packet basis. At first glance, it may appear that

this scheme cannot be made to work for patterns that rely on Doppler shift, but it

turns out the scheme can be made to work for Doppler shift, assuming the moments

of change are carefully chosen.

The rationale for choosing the moments of change is based on the fact that a

t-second observation in the time domain leads to 1/t Hz granularity in the frequency

domain. To choose the appropriate ∆f at 1/t Hz granularity, there is an implicit re-

quirement that the ∆f needs to last for at least t seconds. Therefore, if the forwarder

changes its ∆f every t seconds while the other copy’s ∆f does not change, an observer

would still only see 1/t Hz granularity. Since human movements typically result in

-20Hz to 20Hz Doppler shifts in the 2.4GHz band, a Doppler shift of the forwarded

copy that changes every 0.1s creates sufficient confusion at an observer. Figure 5.6
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Figure 5.7: The pattern that a WiSee sensor sees in Figures 5.2(a) is hidden by an
obfuscated signal where Doppler shift changes every 0.1 second
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Figure 5.8: The constant angle of human motion (starting from 9th second) that a
Wi-Vi style sensor sees in (a) is hidden by an obfuscated signal where phase changes
randomly every 0.1 second

shows that when the Doppler shifts of the transmitted signals are varied from ev-

ery 1s to every 0.05s, the spectral seen by an observer with 1s observation interval

have progressively finer granularity, to the point where a time-frequency pattern gets

hidden.

Effect of superposing with randomly changing obfuscated signals

The basic idea of PhyCloak then is to superpose signals from the target with

naturally changing {a,∆f,∆φ} with the obfuscated signals with randomly changing
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{a,∆f,∆φ}. More specifically, as analyzed above, PhyCloak changes the value of

the triple every 0.1s. We illustrate the blackbox effect of obfuscation experimentally

using two state-of-the-art sensors, WiSee [50] and Wi-Vi [8], which we implemented.

WiSee performs gesture recognition by extracting Doppler shifts from OFDM sym-

bols, whereas Wi-Vi uses ISAR to track the angle of human motion w.r.p.t. the

receive antenna of the sensor.

For the case of obfuscating Doppler shift patterns, Figure 5.7 shows the superpo-

sition of a signal with the synthetically generated Doppler shift pattern described in

Figure 5.2(a) and an obfuscated copy of the pattern where Doppler shift changes ran-

domly every 0.1s. We see that pattern of Figure 5.2(a) is covered by the “noise map”

created by the randomly changing copy. As the strength ratio of the former relative

to the latter, which we define as signal to obfuscation ratio (SOR), decreases from

0dB to -9dB, the visibility of the artificial pattern at the WiSee sensor decreases. As

Doppler shifts generated by human reflections are small compared to that generated

by an Ox that has its own power supply, -9dB higher Doppler shifts would be easily

achieved in practice.

For the case of obfuscating phase-based patterns, we synthetically emulated a

human moving towards the receive antenna of our Wi-Vi style sensor at a constant

angle, as shown in Figure 5.8(a), and then superposed the signal with a randomly

obfuscated copy where phase changes every 0.1s. Figure 5.8 shows that as SOR

decreases from 0dB to -6dB, the pattern shown in Figure 5.8(a) becomes progressively

invisible at the Wi-Vi style sensor.
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Figure 5.9: Spoofing

5.3.3 Spoofing

According to the above discussion, our design succeeds in obfuscating any RF-

based single-antenna sensors by creating false negative results. But an Ox can

achieve more than that: it can create false positives also by spoofing changes in

the 3 DoFs that are similar to the changes created by a target. By splitting the to-

be-forwarded samples into multiple streams, applying different instantiations of the

triple {a,∆f,∆t} to them, and forwarding the combination of the processed streams

as one stream, an Ox can emulate multiple reflectors corresponding to different parts

of the target (say a human body). But unlike the case of false negatives, the effec-

tiveness of creating false positives at a sensor grows as the Ox knows more about

the features and algorithms used by the sensor. For example, if an Ox knows a sen-

sor uses the WiSee algorithm [50], it can create a Doppler shift profile accordingly

without making an effort to model accurate human movement. Figure 5.9 depicts
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the extracted Doppler profile of a human gesture (pull) and that spoofed by an Ox.

WiSee segments a Doppler profile into positive and negative parts according to its

power distribution and encodes them into 1s and -1s respectively. Since both of the

profiles contain positive Doppler shifts of negligible power, they will be encoded as

-1s and mapped to the same target by a WiSee sensor.

5.3.4 PhyCloak

By obfuscating using random physical distortion, an Ox is able to confuse Eve, and

by online maintenance of self-channel estimates, Ox is able to output interference-free

signals to Carol for legitimate sensing. However, one critical requirement is still not

met: preserving the communication throughput in the presence of Ox.

Although PhyCloak works as a relay at logical layer which improves the through-

put, it is not clear that obfuscation would not hurt the decoding process. We find

that, however, as long as the change of the triplet {a,∆f,∆φ} does not happen in

the middle of packet transmission, obfuscation is safe with respect to data commu-

nication. The reason for this is that from the perspective of a data receiver, the Ox

effectively just adds variability to the channel. Since data receivers usually perform

channel estimation at the beginning of the received packet, as long as the channel is

stable during the reception of the packet, decoding can be successful. We, therefore,

refine the design of PhyCloak as follows: PhyCloak switches between two transmit-

ting modes: training and forwarding. In the training phase, the PhyCloak sends the

above mentioned training sequence and computes its self-channel estimate according

to Section 5.3.1; in the forwarding phase, PhyCloak then performs self-interference

cancellation, applies the physical distortion {a,∆f,∆φ} to the interference-free signal
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and forwards the distorted signal via the transmit antenna. The PhyCloak randomly

chooses an instance of {a,∆f,∆φ} in the predefined pool and updates the current

value when the channel is free and the last update happened more than 0.1s ago. In

this way, PhyCloak avoids interfering with the transmission. And in theory, there

is still a chance that due to the delay caused by free-channel detection, PhyCloak

changes the channel after several samples of a packet has been transmitted, but that

chance is quite low. Even if it happens, because PhyCloak only affects a few samples

at the beginning, the packet might be still decodable.

5.4 Implementation and Evaluation

We now describe a prototype of PhyCloak that we have built, and our experiments

to validate its performance.

5.4.1 Experimental Setup

Our prototype is based on PXIe 1082 SDR platform. We built the transmitter,

receiver, eavesdropping sensor and legitimate sensor on the same platform, which all

follow the 802.11g standard, i.e., working at 2.4GHz with a 20MHz band. PhyCloak

works at the same center frequency but with a 50MHz sampling rate, about 3 times the

rate of an external data transmission, which gives it a reasonable margin to perform

self-channel estimation with an ongoing external transmission (see Section 5.4.2).

PhyCloak contains two RF chains, one for transmitting and one for receiving.

Each of the RF chains contains an NI-5791 (FlexRIO RF transceiver equipped with

one antenna) for transmitting or receiving and an NI PXIe-7965R (a Xilinx Virtex-5

FPGA) for digital processing. Analog cancellation is implemented according to our

earlier design [13, 16]. The self-channel estimation, digital cancellation and physical
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layer distortion are implemented on the FPGA. The distortion processing introduces

a latency of about 100ns. Our experiments were conducted in a 5m×7m lab.

5.4.2 Self-Interference Cancellation
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Figure 5.10: Self-interference cancellation performance

We begin with the performance of the digital cancellation of our self-channel es-

timation algorithm. As discussed in Section 5.3.1, Ox tolerates external interference

during self-channel estimation using oversampling. So, we first examine the over-

sampling rate needed to achieve reasonably accurate self-channel estimates in the

presence of external transmission. We let a full-duplex transceiver operate at 50MHz

with a 10-tap filter for self-interference (digital) cancellation. Self-channel estimation

is obtained by averaging over 128 training rounds, which altogether takes about 20µs.

Figure 5.10(a) plots the self-interference cancellation performance of our square

wave-based training. In the figure, as we fixed the sampling rate of the full-duplex

radio (50MHz), different oversampling rates correspond to different external trans-

mission rates with the received power of the external transmissions being the same as
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that of self-interference signal at Ox’s receive antenna2. 1X oversampling rate corre-

sponds to the case when the training and data communication use the same sampling

rate, in which case square wave-based training and traditional pilot based training

would achieve similar performance. We see that the performance of self-interference

cancellation of square wave based training increases as the oversampling rate increases

from 1 to 4, but it stops increasing after 4, and achieves similar performance as that

in the case when there is no external transmission going on (indicated by the red

bar). It shows that Ox can reliably estimate and cancel self-interference even in the

presence of strong external transmission when the oversampling parameter is 4X as

supported by our observation in Section 5.3.1. In addition, 2X and 3X oversampling

rates also produce high cancellation as they benefit from two factors: 1) accurate

estimation of part of the channel taps, and 2) averaging over multiple transition

points. Takeaway: Our oversampling technique makes self-interference cancellation

reliable at modest oversampling rates even in the presence of strong ongoing external

transmission.

The analysis above considers external interference sent at a fixed power. To en-

able legitimate sensing, self-interference cancellation performance needs to be stable

even when the received power from external transmission is varying. For example,

an unstable self-interference canceler can render an amplitude-based sensor useless

since the (varying) residual self-interference will affect the received signal amplitude.

Figure 5.10(b) plots the full-duplex radio’s cancellation performance with 3X over-

sampling rate over time during which the received power from the external transmitter

2Note that this is a very strong external interference and we choose this setting to show over-
sampling strategy’s performance even under strong external interference.
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fluctuates. We see that the self-interference cancellation performance of square wave-

based training is insensitive to the variation of external interference. Takeaway: Our

oversampling technique results in a stable cancellation performance at modest over-

sampling rates even when the received signal from external transmitter is varying.

5.4.3 Obfuscation Performance

Obfuscation vs. SOR in 3 DoFs

We first measure the different levels of obfuscation created by PhyCloak by com-

paring the correlation of the amplitude, phase and Doppler shift with and without the

presence of PhyCloak. The transmitter is programmed to send continuous OFDM

symbols with QPSK modulation; the amplitude and phase thus stay fixed during

reception when PhyCloak is absent. An artificial Doppler shift of 10Hz is also added

at the transmitter. PhyCloak performs obfuscation by randomly changing the ampli-

tude, phase and Doppler shifts every 0.1s.

Figure 5.11 depicts the correlation between the pairs of amplitude, phase, and

Doppler shifts at different SORs: Again, SOR is the signal strength ratio of original

signal over obfuscation signal (see Section 5.3.2). We see that as SOR increases, the

correlation of each pair of the three features increases, i.e., the obfuscation degree

decreases. Amplitude sequence pair and phase sequence pair see lower correlation

than Doppler shift pair when SOR is high. This is because amplitude and phase

are instantaneous quantities, while Doppler is a statistical quantity that is derived

from multiple instantaneous samples. But, even for Doppler shift, a 10dB SOR is

low enough to hide the patterns contained in signals reflected by targets. It’s worth

noting that in practice, as PhyCloak is independently powered while the target only

114



0

0.2

0.4

0.6

0.8

1

-15 -5 5 15 25

C
o

rr
el

at
io

n
 

SOR (dB) 

Doppler Shift Amplitude Phase
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signal over obfuscation signal) increases

passively reflects signals, the desired SOR to successfully obfuscate is readily achieved.

Takeaway: PhyCloak effectively obfuscates sensing even at a relatively high SOR.

As different sensors differ in their robustness to noise, PhyCloak ’s effectiveness

is sensor dependent. While we are unaware of any research on the robustness of the

communication-based sensors, we may infer from Figures 5.7, 5.8 and 5.11 that less

obfuscation power is needed to confuse a phase or amplitude based sensor as compared

to a Doppler shift based sensor. Therefore, we choose to validate the PhyCloak ’s

capability of confusing illegitimate sensing and preserving legitimate sensing in the

context of WiSee, which is the state-of-the-art Doppler shift-based sensor.
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Degradation of illegitimate sensing

We built a Doppler-based sensor in our platform per the method proposed by

WiSee [50]. The method consists of two parts: 1) extraction of Doppler shifts from

repeated OFDM symbols by applying a large size FFT; and 2) using sequence match-

ing to classify gestures. We note since we could not get to the original WiSee code

and some of the details are missing, we implemented WiSee with a few adaptations.

For example, we randomly map the sequence to the predefined classes with uniform

distribution in case the sequence does not match any of the predefined sequence. Our

implementation shows a classification accuracy of 93% across 5 gestures in none-line-

of-sight (NLoS) setting with the human target 5 feet away from the WiSee sensor,

while WiSee reports 94% across 9 gestures. While there is this small discrepancy in

replication, the core algorithm is the same and our main goal is to study obfuscation

performance.

We examine the performance of an illegitimate WiSee sensor with obfuscation from

a PhyCloak. We conduct two sets of experiments to validate PhyCloak ’s coverage

range and its overall effectiveness under different channel conditions respectively.

Obfuscation coverage: First, we randomly choose 10 pairs of locations to place

Tx and Eve, and then place Ox in locations such that the distance dTE between Tx

and Eve is equal to the distance dTO between Tx and Ox as shown in Figure 5.12(a),

but the distance dEO between Eve and Ox varies from 0.5dTE to 2dTE. The channels

between any two of the three parties are line-of-sight (LoS).3 A human target performs

3WiSEE sensors have a slightly worse performance in LoS (≈ 90%) than NLoS (≈ 93%) as strong
direct power from the transmitter hides the information provided by target’s reflection. For the next
two experiments, we choose LoS instead of NLoS because it makes the placement easier to make
sure dEO is the only variable which would change the power ratio of the obfuscation and human
reflection.
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five gestures drag, push, pull, circle and dodge close to Eve. With no obfuscation,

Eve’s classification accuracy in this placement is about 90% across the five gestures.
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(b) Classification accuracy of Eve in the presence of
PhyCloak increases as dEO increases

Figure 5.12: Eve’s classification accuracy vs dEO

For simplicity, we normalize dEO by dTO (dTE), and plot the classification accuracy

against the normalized dEO in Figure 5.12(b). As we know, the received obfuscation

power at Eve from Ox is a function of dTO and dOE, therefore as dEO increases

the power ratio of obfuscation over human reflection decreases. From the figure we

see that classification accuracy of Eve increases as dEO increases as expected. Note

that since we have 5 classes, a classification accuracy of 0.2 means a random guess.

PhyCloak can obfuscate Eve near perfectly when dEO is smaller than 0.8, and it

totally fails when it is larger than 1.7. Takeaway: The closer Ox is to Eve, the

better the achieved obfuscation.
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(b) Classification accuracy of Eve in the presence of Phy-
Cloak increases as dTO increases

Figure 5.13: Eve’s classification accuracy vs dTO

In the second experiment, we make dTE = dOE, and vary dTO as shown in Fig-

ure 5.13(a). And again in Figure 5.13(b), we see that as dTO increases, Eve’s classifi-

cation accuracy increases. Takeaway: the closer Ox is to Tx, the better teh achieved

obfuscation.

In other experiments we vary either the human-Eve or human-Ox distance while

keeping the power recevied by Ox and human from Tx stay constant. As these

distances respectively reduced, the effectiveness of the sensing and obfuscation re-

spectively increased.

Obfuscation effectiveness under different channel conditions: In addition

to the coverage range in LoS setting, we also measure Eve’s classification accuracy

when channels between the transmitter and obfuscator and the channel between the

obfuscator and Eve are under different LoS and NLoS combinations. Intuitively, when

both channels are NLoS, Eve receives the least power forwarded by the obfuscator, and

therefore, she achieves the best performance. We care about these channel conditions
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Figure 5.14: Eve’s classification accuracy under different Tx-Ox and Ox-Eve channel
conditions

because in some scenarios the transmitter is under control of the adversary, and

therefore the adversary may enjoy the freedom to create “good” channels to mitigate

PhyCloak ’s obfuscation.

In the experiment, we make the channel between Tx and Eve NLoS, and the

channel between Tx and the human and that between human and Eve LOS, so as

to make sure Eve sees high classification accuracy when no obfuscation is going on.

The channel between Tx and Ox and the channel between Ox and Eve have four

possible channel condition combinations. A human target performs 500 times of the

5 predefined gestures near Eve in each of the four combinations. Figure 5.14(a) is an

example of how we create a channel combination of Los/Los in the lab, where the

first LoS refers to the channel condition of the channel between Tx and Ox, while the

second refers to that of the channel between Ox and Eve. NLoS channels are created

by placing obstacles in the direct propagation paths.

Figure 5.14(b) depicts Eve’s classification accuracy without obfuscator and with

obfuscator in four channel combinations. We can see that as expected, Eve sees the
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highest classification accuracy (65%) in NLoS/NLoS setting among the four channel

conditions, but it is still smaller than the case when no obfuscation is happening

(93%). Eve sees similar performance in Los/NLoS and NLoS/LoS scenarios as power

forwarded by obfuscator in both the settings is similar. Takeaway: although NLoS

channel degrades the received power at Eve from Ox, the degradation is not dramatic

since there is rich multipath propagation in indoor environment.

drag push pull circle dodge

drag spoof 0.907 0.030 0.01 0.03 0.02

push spoof 0.01 0.9375 0 0.02 0.03

pull spoof 0 0 0.957 0.03 0.01

circle spoof 0.03 0.052 0.03 0.833 0.05

dodge spoof 0.03 0.05 0.04 0.08 0.80

Figure 5.15: False positives with a spoofing Ox

Feasibility of spoofing

We built a spoofing obfuscator by reverse engineering the five predefined sequences

corresponding to the five gesture types that our WiSee sensor recognizes. The basic

difference between this spoofing obfuscator and PhyCloak is that the former changes

Doppler shift according to the five well-defined gestures, while the latter changes

Doppler shift randomly. The result is shown in Figure 5.15. Takeaway: the spoofing

obfuscator fools a WiSee sensor with a high success rate, averaging 88.69% across the

5 gestures, in the absence of human gesturing.
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Figure 5.16: Square wave based training preserves legitimate sensing

Preservation of legitimate sensing

Next, we examine PhyCloak ’s capability of supporting coupled legitimate sensing.

That is, we evaluate whether our self-channel estimation method produces consistent

and sufficient self-interference cancellation in a changing environment to preserve le-

gitimate sensing. Figure 5.16 depicts the legitimate sensor’s classification accuracy

for three different sensing modes: 1) obfuscation free sensing; 2) legitimate WiSee

sensing coupled with a PhyCloak module that uses the proposed square waved based

self-channel estimation; 3) legitimate WiSee sensing coupled with a PhyCloak module

that uses traditional pilot based self-channel estimation. We also vary the channel

between Tx and the legitimate sensor by placing and removing obstacles. From

the figure we see that the WiSee sensor equipped with PhyCloak module that uses

square wave based training achieves comparable performance as obfuscation-free sens-

ing in both LoS and NLoS, while the WiSee sensor equipped with PhyCloak module

that uses traditional training fails dramatically. This is because not enough self-

interference cancellation is achieved in the presence of external transmissions using
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extant self-channel estimation techniques. Takeaway: Square wave based training

provides sufficient self-interference cancellation to preserve legitimate sensing with

external transmission going on.

5.4.4 Throughput Performance
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Figure 5.17: Throughput

As discussed in Section 5.3.4, PhyCloak would not hurt the average throughput

by virtue of being a relay as long as it avoids parameter changes in the middle of

packet transmissions. And, its online training would introduce some interference

albeit of small measure. To validate that the net throughput benefit that a data

receiver obtains from PhyCloak is not affected but even improved, we measured the

throughput performance of a data link with and without PhyCloak in our testbed.

20 location triples were randomly picked for a data transmitter, a data receiver, and

PhyCloak. The data transmitter transmits back-to-back packets continuously, and we

can thus see the throughput performance in the worst case where PhyCloak performs

parameter updates in the middle of some packets. Figure 5.17 plots the CDF of the
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throughput with and without the PhyCloak. Takeaway: The average throughput

increases with the help of PhyCloak.

5.5 Discussion

(a) Limitations of PhyCloak

While the design of PhyCloak is effective across the whole three dimensions of

physical information in the signal, we note several limitations. First, PhyCloak de-

sign doesn’t taken into account the exploitation of angle-of-arrival (AoA) information

which can be inferred by multi-antenna eavesdropper. Second, the current design is

for a single node which has limited power supply both due to the device and the

cancellation performance. Thus, to extend the coverage to the large target area, it is

necessary to consider the collaborative network of multiple PhyCloak nodes. Besides,

although the support for legal sensing service is attractive, the service is restricted

to the same obfuscation node. The co-located constraint limits the availability and

flexibility of the service.

5.6 Summary

We have shown that the threat created by recent developments in communication

based sensing can be countered in a black-box fashion. PhyCloak obfuscates multi-

dimensional physical signatures of human targets. We have empirically validated

this for certain state-of-the-art sensors. We have also shown that when white box

details of particular sensors can be obtained, PhyCloak can be refined to spoof those

sensors. Notably, the methodology not only preserves but in fact improves the link
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throughput of the ongoing data transmissions, and supports co-existence of legitimate

sensors while obfuscating illegitimate sensors.

Looking beyond the scope of the present work, we find that the methodology is

readily generalized to protect against sensing of other types of physical targets and

their properties, and allows for a network of PhyCloak devices to collaboratively cover

a large region, the details of which are topics for future studies. In addition, when

we extend our current single-antenna PhyCloak to a multiple-antenna system, how to

fully exploit the space diversity provided by the multiple antennas is worth studying.
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Chapter 6: Final Remarks

In this dissertation, we study the problem of sensing and anti-sensing with wireless

communication signal. In particular, we consider two different application scenarios in

wireless sensing and a generally-effective privacy protection strategy for one-antenna

eavesdropper.

First, we propose Mudra to enable fine-grain finger-gesture recognition with WiFi

signal. To detect the fine-grain motion of human fingers, we design a highly-sensitive

motion indication utilizing the sensitivity of cancellation performance. Second, we

enable a human activity recognition system, TifWiFi with an integration framework

on two profiles. TifWiFi enhances the recognition performance over conventional

approach by overcoming the drawback of each individual profile and utilizing the

complementation of them. Lastly, we propose PhyCloak to combat against any kind

of one-antenna eavesdropper over the information in three degrees of freedom. Phy-

Cloak goes beyond the simple jamming strategy by only obfuscating the physical-layer

information while preserving the logical-layer information.

For each of the above systems, we implement a prototype and conduct extensive

experiment to evaluate the performance over various conditions. The results validate

the effectiveness of our proposed designs. We also note that for each system there exist

limitations. For example, the gesture recognition receiver can be confused if there
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is surrounding moving body, which is much intenser than finger-motion. As for the

PhyCloak system, a multi-antenna eavesdropper can work with the angle-of-arrival

information, which is out of the three degrees of freedom. These more challenging

topics would be interesting for us to study in the future.
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