
Parallel Algorithms for Machine Learning

Dissertation

Presented in Partial Fulfillment of the Requirements
for the Degree Doctor of Philosophy

in the Graduate School of The Ohio State University

By

Gordon Euhyun Moon, B.S., M.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2019

Dissertation Committee:

Prof. P. (Saday) Sadayappan, Advisor

Prof. Srinivasan Parthasarathy

Prof. Eric Fosler-Lussier

c© Copyright by

Gordon Euhyun Moon

2019

Abstract

Machine learning is becoming an integral part of everyday life. Therefore, development

of a high performance genre of machine learning algorithms is becoming increasingly

significant from the perspectives of performance, efficiency, and optimization. The current

solution is to use machine learning frameworks such as TensorFlow, PyTorch and CNTK,

which enable us to utilize specialized architectures such as multi-core CPUs, GPUs, TPUs

and FPGAs. However, many machine learning frameworks facilitate high productivity,

but are not designed for high performance. There is a significant gap in the performance

achievable by these frameworks and the peak compute capability of the current architectures.

In order for machine learning algorithms to be accelerated for large-scale data, it is essential

to develop architecture-aware machine learning algorithms. Since many machine learning

algorithms are very computationally demanding, parallelization has garnered considerable

interest. In order to achieve high performance, data locality optimization is extremely

critical, since the cost of data movement from memory is significantly higher than the cost

of performing arithmetic/logic operations on current processors. However, the design and

implementation of new algorithms in machine learning has been largely driven by a focus

on computational complexity.

In this dissertation, the parallelization of three extensively used machine learning algo-

rithms, Latent Dirichlet Allocation (LDA), Non-negative Matrix Factorization (NMF), and

Word2Vec, is addressed by a focus on minimizing the data movement overhead through the

ii

memory hierarchy, using techniques such as 2D-tiling and rearrangement of data computa-

tion. While developing each parallel algorithm, a systematic analysis of data access patterns

and data movements of the algorithm is performed and suitable algorithmic adaptations

and parallelization strategies are developed for both multi-core CPU and GPU platforms.

Experimental results of the large-scale datasets demonstrate that our new parallel algorithms

achieved a significant reduction of data movement from/to main memory and improved

performance over existing state-of-the-art algorithms.

iii

Dedicated to my family for their love and support.

iv

Acknowledgments

I would like to thank my advisor, Dr. P. Sadayappan, for his steady support and advice

throughout my doctoral studies. I am very fortune to have had the opportunity to work with

him. The completion of this dissertation would not have been possible without his constant

guidance and encouragement.

I would also like to thank my dissertation committee members, Dr. Srinivasan Parthasarathy

and Dr. Eric Fosler-Lussier for their contributions to this dissertation. Dr. Parthasarathy

provided constructive feedback on the LDA, NMF and Word2Vec algorithms to further

deepen my understanding on latent representation learning methods. I am grateful for Dr.

Fosler-Lussier for his advice on the word embedding algorithms and inspiring discussions

on the latest emerging trends in Natural Language Processing field.

Additionally, I deeply appreciate Dr. Aravind Sukumaran-Rajam for his contributions

throughout my doctoral program. He spent endless hours working with me despite his busy

schedule and was always willing to give effective feedback and directions to move forward

with the projects. Many thanks to all of my lab mates at OSU. The productive and collegial

environment motivated me to work hard.

Lastly, I am blessed to be surrounded by the people I love. Thanks to my parents for

their boundless support and encouragement. Words cannot express my deepest gratitude

and appreciation to my wife Yoonna for her devoted love and support.

v

Vita

August 1, 1982 .Born, USA.

2011 . B.S.,
Computer Science and Industrial System
Engineering,
Yonsei University, South Korea.

2013 . M.S.,
Computer Science,
Indiana University, USA.

Publications

Gordon Euhyun Moon, Denis Newman-Griffis, Jinsung Kim, Aravind Sukumaran-Rajam,
Eric Fosler-Lussier, and P. Sadayappan, “Parallel Data-Local Training for Optimizing
Word2Vec Embeddings for Word and Graph Embeddings,” Status: Under review at a
conference.

Gordon Euhyun Moon, Aravind Sukumaran-Rajam, Srinivasan Parthasarathy, and P. Sa-
dayappan, “PL-NMF: Parallel Locality-Optimized Non-negative Matrix Factorization,”
arXiv preprint arXiv:1904.07935, 2019. Status: Under review at a journal

Gordon Euhyun Moon, Israt Nisa, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay,
Srinivasan Parthasarathy, and P. Sadayappan, “Parallel Latent Dirichlet Allocation on GPUs,”
Proceedings of the 2018 International Conference on Computational Science (ICCS), pp.
259-272, 2018.

Gordon Euhyun Moon, Aravind Sukumaran-Rajam, and P. Sadayappan, “Parallel LDA
with Over-Decomposition,” Proceedings of the 2017 IEEE 24th International Conference
on High Performance Computing Workshops (HiPCW), pp. 25-31, 2017.

vi

Gordon Euhyun Moon and Jihun Hamm, “A Large-Scale Study in Predictability of Daily
Activities and Places,” Proceedings of the 8th EAI International Conference on Mobile
Computing, Applications and Services (MobiCASE), pp. 86-97, 2016.

Fields of Study

Major Field: Computer Science and Engineering

Studies in High-Performance Machine Learning: Prof. P. (Saday) Sadayappan

vii

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . xi

List of Figures . xiii

1. Introduction . 1

1.1 Motivation . 1
1.2 Overview . 3
1.3 Key Contributions . 5

2. Parallel Latent Dirichlet Allocation on
Multi-Core CPUs and GPUs . 7

2.1 Introduction . 7
2.2 Background . 9

2.2.1 Latent Dirichlet Allocation . 9
2.2.2 Collapsed Gibbs Sampling . 11
2.2.3 Uncollapsed Gibbs Sampling 13

2.3 Related Work . 15
2.3.1 Multi-Core CPU Platform . 15
2.3.2 Many-Core GPU Platform . 16

2.4 Parallel Latent Dirichlet Allocation on Multi-Core CPUs 17
2.4.1 Parallel LDA with Over-Decomposition 17

viii

2.4.2 Parallel LDA with Mini-Batch Processing 28
2.5 Parallel Latent Dirichlet Allocation on GPUs 35

2.5.1 Graphical Processing Units (GPUs) 35
2.5.2 Overview of GPU Algorithm 35
2.5.3 Details of Parallel GPU Algorithm 37
2.5.4 Experimental Evaluation . 43

2.6 Conclusion . 46

3. Parallel Locality-Optimized
Non-negative Matrix Factorization . 47

3.1 Introduction . 47
3.2 Background . 49

3.2.1 Non-negative Matrix Factorization Algorithms 49
3.3 Related Work on Parallelization of NMF 51

3.3.1 Shared-Memory Multiprocessor 51
3.3.2 Distributed-Memory Systems 52
3.3.3 GPU Platform . 53

3.4 Overview of Approach . 54
3.4.1 Overview of FAST-HALS Algorithm 54
3.4.2 Data Movement Analysis for FAST-HALS Algorithm 56
3.4.3 Overview of PL-NMF . 57

3.5 Details of PL-NMF on Multi-Core CPUs and GPUs 60
3.5.1 Parallel CPU Implementation 60
3.5.2 Parallel GPU Implementation 63

3.6 Modeling: Determination of the tile size 67
3.7 Experimental Evaluation . 70

3.7.1 Benchmarking Machines . 70
3.7.2 Datasets . 70
3.7.3 Performance Evaluation . 73

3.8 Conclusion . 79

4. Parallel Data-Local Training for
Optimizing Word2Vec Embeddings for Word and Graph Embeddings 80

4.1 Introduction . 80
4.2 Background . 82

4.2.1 Word2Vec . 82
4.2.2 Node2Vec . 84

4.3 Related Work . 86
4.3.1 Parallelization of Word2Vec Embeddings 86
4.3.2 Word2Vec based Graph Embeddings 88

ix

4.4 SG-NS based Word2Vec Algorithm . 89
4.4.1 Overview of SG-NS Based Word2Vec 89
4.4.2 Data Movement Analysis for SG-NS Based Word2Vec 92

4.5 Parallel Decoupled Attraction-Repulsion based Word2Vec Algorithm . . 94
4.5.1 Overview of PAR-Word2Vec 94
4.5.2 Details of Parallel CPU implementation 98
4.5.3 Details of Parallel GPU implementation 102
4.5.4 Data Movement Analysis for PAR-Word2Vec 107
4.5.5 Data Movement Analysis Comparison 108

4.6 Experimental Evaluation . 109
4.6.1 Benchmarking Machines . 109
4.6.2 Datasets . 109
4.6.3 Evaluation Metrics . 111
4.6.4 Word2Vec Implementations Compared 114
4.6.5 Performance Evaluation . 115

4.7 Discussion . 124
4.8 Conclusion . 124

5. Conclusion and Future Work . 126

5.1 Conclusion . 126
5.2 Future Research . 127

Bibliography . 133

x

List of Tables

Table Page

2.1 Common notations for LDA algorithms 10

2.2 Statistics of datasets used in the experiments. D is the number of documents,
W is the total number of word tokens and V is the size of the active vocabulary. 24

2.3 Machine details . 25

2.4 Comparison of the elapsed time in second per iteration on NIPS and NY-
times datasets, K=128 and P=300 on NIPS and NYTimes dataset. 28

2.5 Machine configuration . 43

2.6 Dataset characteristics. D is the number of documents, W is the total number
of word tokens and V is the size of the active vocabulary. 44

3.1 Common notations for NMF algorithms 49

3.2 Previous studies on parallelization of NMF 52

3.3 Machine configuration . 70

3.4 Statistics of datasets used in the experiments. V is the number of rows and
D is the number of columns in non-negative matrix A. For the text datasets,
V is the vocabulary size and D is the number of documents. 71

3.5 Breakdown of elapsed time in seconds for updating W on the 20 Newsgroups
dataset. DMV: Iterative Dense Matrix-Vector Multiplications; DMM: Dense
Matrix-Dense Matrix Multiplication; SpMM: Sparse Matrix-Dense Matrix
Multiplication. 74

xi

4.1 Previous studies on parallelization of Word2Vec. Context types – Skip-gram
(SG) and Continuous Bag-of-Words (CBOW). Objective types – Negative
Sampling (NS) and Hierarchical Softmax (HS) 87

4.2 Machine configuration . 109

4.3 Statistics of text datasets, and graph datasets pre-generated by Node2Vec. V
is the number of unique words/the number of unique nodes, S is the total
number of sentences over the corpus/the total number of random walks over
the graph, and N is the total number of word tokens over the corpus/the sum
of the length of the walks in S. 112

4.4 Details of graph datasets. E is the total number of edges and A is the number
of different labels for nodes in the graph. 112

4.5 Details of hyper-parameters used in the experiments. I is the total number of
training epochs, T is the number of negative samples, C is the window size,
K is the embedding vector size as well as p and q are (return and in-out)
parameters for pre-generating graph datasets. 116

4.6 Mean and standard deviation of converged word similarity scores over 5
different executions on text datasets. 118

4.7 Mean and standard deviation of Macro F1 scores for relation extraction (Rel.
Ext.) task and Accuracy for sentiment analysis (Sent. Analysis) task over
5 different runs each for 5 different embedding executions, by Word2Vec
variants. 120

4.8 Mean and standard deviation of Micro F1 and Macro F1 scores for multi-
label classification, and Micro F1 score for link prediction task over 5
different runs each for 5 different embedding executions, by Word2Vec
variants. 121

4.9 Comparison of the training time in seconds per epoch on text and graph
datasets. 123

xii

List of Figures

Figure Page

2.1 Data partitioning scheme, if P = 4 . 19

2.2 Distribution of threads in a step via over-decomposition, for 12 partitions
and 4 threads. The number in each data block indicates the number of word
tokens. 22

2.3 Reduction in alternate atomics-free scheme 23

2.4 Comparison of convergence over iterations on NIPS and NYTimes datasets,
K=128. For parallel OD-LDA, the number of partitions and threads are set
to 100 and 4, respectively. X-axis is the number of iterations and y-axis is
per word log-likelihood. 26

2.5 Convergence over time across different number of partitions on NIPS dataset,
K=128, 4 threads. 26

2.6 Convergence over time across 1, 2, 4 and 8 threads, on NIPS and NYTimes
datasets, K=128. The number of partitions is set to 300 for both NIPS
and NYTimes datasets. X-axis: elapsed time in seconds; Y-axis: per-word
log-likelihood. 27

2.7 Comparison between alternate atomics-free scheme and the original scheme 27

2.8 Convergence over number of iterations on KOS, NIPS, Enron and NYTimes
datasets. The mini-batch sizes are set to 330, 140, 3750 and 28125 for KOS,
NIPS, Enron and NYTimes, respectively. X-axis: number of iterations;
Y-axis: per-word log-likelihood on test set. 30

xiii

2.9 Left: Convergence over time across different mini-batch sizes on NYTimes
dataset, K=128. X-axis: elapsed time in seconds; Y-axis: per-word log-
likelihood. Right: Time taken to 100 iterations over different mini-batch
sizes on NYTimes dataset, K=128. X-axis: mini-batch sizes; Y-axis: elapsed
time in second. 34

2.10 Overview of our GPU implementation. V : vocabulary size, B: number of
documents in the current mini-batch, K: number of topics 38

2.11 Example of converting original data representation to segmented CSR rep-
resentation. 40

2.12 Convergence over time on KOS, NIPS, Enron and NYTimes datasets. The
mini-batch sizes are set to 330, 140, 3750 and 28125 for KOS, NIPS, Enron
and NYTimes, respectively. 45

2.13 Speedup of AGA-LDA over BIDMach-LDA and Lu-LDA. 46

3.1 FAST-HALS: Update of W . 57

3.2 FAST-HALS: Updating a single element of W . The dash represents updated
value. 58

3.3 The contributions from W0,t to other elements. 59

3.4 Overview of our approach for updating W 60

3.5 Computations of three phases for updating W 62

3.6 The time taken to reach 100 iterations when the tile size T is varied for
different K on five datasets. Low-rank K is set to 80, 160 and 240, and T
is varied for each K. X-axis: tile size; Y-axis: elapsed time to reach 100
iterations. 68

3.7 Relative objective value over time on five datasets. According to current
model, the T values for K = 80, 160 and 240 are set to 10, 15 and 15,
respectively. X-axis: elapsed time in seconds; Y-axis: relative error. 76

3.8 Comparison of convergence over iterations on five datasets, K = 240 and
T = 15. X-axis: number of iterations; Y-axis: relative error. 77

xiv

3.9 Speedup of PL-NMF-gpu over all CPU implementations on five datasets,
K = 240 and T = 15. 77

3.10 Speedup of PL-NMF-cpu over planc-HALS-cpu with the large size of K on
TDT2 dataset. According to current model, the T values for K = 200, 400,
800, 1600 and 3200 are set to 10, 20, 25, 40 and 50, respectively. 78

4.1 An example of updates in the original Word2Vec for the sentence “blue is
my favorite color,” where “my” is the current center word, and window size
and the number of negative samples are both 2. The update types of “1” and
“0” indicate Attraction and Repulsion updates, respectively. 91

4.2 Full sequential updates required for the sentence "blue is my favorite color"
in the original Word2Vec. In each vector-vector multiplication, the target
word vectors on the left horizontal vectors (i.e., green and gray colored
vectors) are pulled from Wout matrix, and the right vertical vectors (i.e.,
yellow colored vectors), input word vectors, are pulled from Win matrix. . . 92

4.3 An example of full Attraction and Repulsion updates in the PAR-Word2Vec.
In the sentence "blue is my favorite color," where the mini-batch size is
set to 2, the input words in each mini-batch share the same negative target
words. As marked by same colored arrows (red, gray and black), the words
repelled by each mini-batch are shared negative target words (e.g., "word
1", "word 6", "word 10" and "word 12" are the shared negative targets for
batch 0). 95

4.4 Comparison of averaged convergence and training time in second for 5
executions with different mini-batch sizes on PAR-Word2Vec-cpu on the
One Billion Word Benchmark dataset, where K=128. 96

4.5 Decoupled full Attraction and Repulsion updates required in the PAR-
Word2Vec with the sentence "blue is my favorite color". In the decoupled
Repulsion phase, the number of shared negative samples for the mini-batch
(i.e., the number of rows in gray colored matrix) is determined by the first
word’s position in the mini-batch over the sentence. The mini-batches lo-
cated at the start or end of the sentence (e.g., batch 0 or batch 2) have a
less amount of shared negative samples, since the context window size of
the input words contained in these mini-batches is smaller than that of the
middle mini-batch (e.g., batch 1). 97

xv

4.6 Comparison of word similarity scores over training epoch on text datasets,
K = 128. Each point is averaged over five executions. X-axis: number of
training epochs; Y-axis: word similarity scores. 117

4.7 Word similarity scores over training epoch and time across different number
of thread blocks used in PAR-Word2Vec-gpu on text8 dataset, K = 128.
Each point is averaged over five executions. NB: the total number of thread
blocks; X-axis: number of training epochs and training time in seconds;
Y-axis: word similarity scores. 119

4.8 Comparison of word similarity scores over training time on text datasets,
K = 128. Each point is averaged over five executions. X-axis: training time
in seconds; Y-axis: word similarity scores. 122

xvi

Chapter 1: Introduction

1.1 Motivation

Machine learning is becoming an integral part of everyday life, and these days the scale

of data is ever-increasing at a considerable rate. The critical constraint facing the arena of

machine learning today is that there have been limited attempts to deal with large-scale data

volumes in the past. In order for machine learning algorithms to be adopted for large-scale

data, development of a high-performance genre of machine learning algorithms is becoming

increasingly significant from the perspectives of performance, efficiency, and optimization.

In addition, many machine learning algorithms are very computationally demanding in

time and therefore parallelization of the algorithms has garnered considerable interest. It is

essential to promulgate a specific method of consilience for machine learning algorithms

with high-performance computing so that they can be adjusted to play at their best across

specialized architectures such as multi-core CPUs, GPUs, TPUs and FPGAs.

In order to accelerate training time of machine learning algorithms on current architec-

tures, designing a data-aware algorithm is crucial. In practice, data-aware modifications of

current state-of-the-art machine learning algorithms enhance the performance much more

than directly parallelizing the original algorithms. In this dissertation, we address differ-

ent strategies for data-aware machine learning algorithms to achieve high performance on

1

multi-core CPUs and GPUs platforms. Furthermore, technology trends have made the cost

of data movement increasingly dominant, both in terms of energy and time, over the cost of

performing arithmetic operations across nodes in a multi-node distributed-memory system

and within the memory hierarchy within a node. However, the design and implementation

of new algorithms in machine learning has been largely driven by a focus on computational

complexity. The core computation of many machine learning algorithms involves a large

number of dot-product operations. The dot-product computation is inherently memory-

bandwidth limited because only two floating point operations are performed per pair of

data elements read from memory. Since the peak floating-point processing rates of all

current/emerging processors have increased much more rapidly than peak data movement

throughputs (between nodes or within the memory hierarchy of a node), minimization of

data movement overheads is increasingly critical. In order to achieve high performance,

the achieved operational intensity (ratio of arithmetic/logic operations executed to the total

volume of data moved) must be greater than the machine balance parameter (ratio of peak

floating-point rate to peak data movement bandwidth) of the computer system. While

machine learning algorithms in general can differ greatly in their amenability to achieving a

high operational intensity through an effective implementation, certain machine learning

algorithms have an inherently unfavorable data access pattern that makes it impossible to

achieve a sufficiently high operational intensity for even an optimal implementation on a

given target platform. However, previous studies in the machine learning area have not yet

sufficiently addressed the minimization of data movement overhead through the memory

hierarchy, using techniques such as matrix tiling and rearrangement of data computation.

2

1.2 Overview

In this dissertation, we explore the parallelization of three state-of-the-art machine

learning algorithms, i.e., Latent Dirichlet Allocation, Non-negative Matrix Factorization,

and Word2Vec, on various parallel platforms. The goal is to enable acceleration of various

machine learning algorithms in applications in which they might be constrained by their

excessive training time. As we aim to improve parallel machine learning algorithms in com-

parison to currently available state-of-the-art algorithms, each parallelization is examined by

performing an in-depth theoretical analysis of data access patterns and data movements of

the algorithms pertaining to achievable operational intensity. Efficient realizations of the

parallel algorithms on multi-core CPUs and GPU platforms are developed, demonstrating

significant reduction of data movement from/to main memory and improved performance

over current state-of-the-art parallel implementations. To elaborate in detail, the contri-

butions of this dissertation lie in mainly three folds: Parallel Topic Modeling, Parallel

Locality-Optimized Non-negative Matrix Factorization, Parallel Data-Locality Training for

Optimizing Word2Vec Embedding Model.

Parallel Topic Modeling: Latent Dirichlet Allocation (LDA) proposed by Blei et al. [7]

is a statistical technique for topic modeling. Prior efforts to parallelize LDA have either

used expensive atomic operations or weakened the sampling model to enable parallelization

without heavy use of atomics [64, 98, 102]. In this work, we present a parallel LDA

implementation on multi-core CPUs that uses an over-decomposed 2D tiling strategy to

overcome the limitations of previous parallelization schemes. An alternate implementation

that uses some approximation is also presented that fully avoids use of atomic operations.

Furthermore, we systematically analyze the data access patterns for LDA and devise suitable

algorithmic adaptations and parallelization strategies for GPUs. Experiments on large-scale

3

datasets show the effectiveness of the new parallel implementation on multi-core CPUs and

GPUs.

Parallel Locality-Optimized Non-negative Matrix Factorization: Non-negative Matrix

Factorization (NMF) proposed by Lee and Seung [44] is a key kernel for unsupervised

dimension reduction used in a wide range of applications, including topic modeling [85],

recommender systems [33] and bioinformatics [58, 97, 104]. Due to the compute intensive

nature of applications that must perform repeated NMF, several parallel implementations

have been developed in the past. However, existing parallel NMF algorithms have not

addressed data locality optimizations, which are critical for high performance since data

movement costs greatly exceed the cost of arithmetic/logic operations on current computer

systems. In this work, we devise a parallel NMF algorithm based on the Hierarchical

Alternating Least Squares (HALS) scheme that incorporates algorithmic transformations

to enhance data locality. Efficient realizations of the algorithm on multi-core CPUs and

GPUs are developed, demonstrating significant performance improvement over existing

state-of-the-art parallel NMF algorithms.

Parallel Data-Locality Training for Optimizing Word2Vec Embedding Model: The

Word2Vec model proposed by Mikolov et al. [59,60] is a neural network-based unsupervised

word embedding technique widely used in applications such as natural language processing

[63, 67, 106], bioinformatics [61] and graph mining [26, 69]. As Word2Vec repeatedly

performs Stochastic Gradient Descent (SGD) to minimize the objective function, it is very

compute-intensive. However, existing methods for parallelizing Word2Vec are not optimized

enough for data locality to achieve high performance. In this work, we develop a parallel

data-locality-enhanced Word2Vec algorithm based on Skip-gram with a novel negative

sampling method that decouples loss calculation with positive and negative samples; this

4

allows us to efficiently reformulate matrix-matrix operations for the negative samples over

the sentence. Experimental results demonstrate our parallel implementations on multi-core

CPUs and GPUs achieve significant performance improvement over the existing state-of-the-

art parallel Word2Vec implementations while maintaining evaluation quality. We also show

the utility of our Word2Vec implementation within the Node2Vec algorithm [26] which

accelerates embedding learning for large graphs.

1.3 Key Contributions

The main contributions are presented in three chapters and organized as follows:

• Chapter 2 presents new parallel LDA algorithms on multi-core CPUs and GPUs.

As for multi-core CPUs, we present a parallel LDA that adopts 2D-tiling and over-

decomposition techniques, as well as the alternative fully atomics-free scheme. Fur-

thermore, we propose an approximated LDA algorithm with mini-batch processing

on GPUs. We compare our parallel approaches with existing state-of-the-art GPU

implementations.

• Chapter 3 presents new parallel NMF algorithms on multi-core CPUs and GPUs

based on the HALS scheme. The associativity of addition is utilized to judiciously

reorder additive contributions in updating elements of factorized matrices, to enable

matrix tiling of a computationally intensive component of the algorithm. We develop

a function of tile size which leads to a model for selection of effective tile size. An

experimental evaluation with datasets used in previous studies demonstrates significant

performance improvement over state-of-the-art alternatives available for parallel NMF.

5

• Chapter 4 presents new parallel data-locality-enhanced Word2Vec algorithms on

multi-core CPUs and GPUs based on Skip-gram with a novel negative sampling

method. The main bottleneck of the original Word2Vec algorithm is identified by

conducting data movement analysis. In order to increase data reuse involving negative

sampling method, the operations required for negative samples are reformulated with

efficient matrix-matrix multiplications. An extensive comparative evaluation of the

new algorithms with a number of state-of-the-art implementations of Word2Vec are

performed on multi-core CPUs and GPUs platforms. The utility of our Word2Vec

implementation is also presented within the Node2Vec node embedding algorithm.

6

Chapter 2: Parallel Latent Dirichlet Allocation on

Multi-Core CPUs and GPUs

2.1 Introduction

Topic modeling is a technique for finding the latent topics that occur in a collection

of documents. Each document may have multiple topics and the words included in the

document may have different topics. The latent topics generated by topic modeling technique

can be interpreted as clusters of similar words and documents. Latent Dirichlet Allocation

(LDA) is a powerful technique for topic modeling originally developed by Blei et al. [7].

Given a collection of documents, each represented as a collection of words from an active

vocabulary, LDA seeks to characterize each document in the corpus as a mixture of latent

topics, where each topic is in turn modeled as a mixture of words in the vocabulary.

The fully sequential LDA algorithm of Griffiths et al. [24] uses Collapsed Gibbs Sam-

pling (CGS) and was extremely compute-intensive. Therefore, a number of parallel al-

gorithms have been devised for LDA, for a variety of targets, including shared-memory

multiprocessors [101], distributed-memory systems [64, 98], and GPUs (Graphical Process-

ing Units) [55,95, 102,103, 111]. Many previous efforts at parallelizing LDA have sought to

relax CGS and use approximations because strict CGS imposes constraints on efficient par-

allelization. One approach that has been explored [64] is to divide up the documents among

7

parallel threads/processes, so that the document-to-topic array is disjointly partitioned and

exclusively read/written by only the owning thread/process. However, since common words

are present in documents processed by different threads/processes, it is impossible to also

disjointly partition and access the word-to-topic distribution matrix across threads/processes.

In a shared-memory parallel environment, a solution is to use atomic update operations

on word-to-topic distribution matrix, but the overheads can be high. A second alternative

that has been considered is to perform uncollapsed Gibbs sampling [94, 95], by using an

independent copy of three key data structures for each thread/process and only updating the

local copy, thereby avoiding the need to use atomic operations. At the end of an iteration, the

local copies of three key data structures are merged to sample new parameters of document-

to-topic and word-to-topic distributions, and then redistributed to the threads/processes

before the start of the next iteration. However, the use of uncollapsed sampling leads to

slower convergence [64].

In this chapter, we develop a 2D tiled approach to perform efficient parallel LDA with

CGS for multi-core CPUs. We first develop a parallel algorithm that avoids the need for any

atomic operations on document-to-topic/word-to-topic matrices, but still requires atomic

operations for the topic-count array. Load-balancing is a significant issue since different

documents can have widely varying word counts. We use over-decomposition as a means

of addressing the problem of load imbalance. We also devise an alternate atomics-free

approach that introduces an approximation by maintaining local copies for topic-count array.

The performance and quality of solution for the two approaches are compared.

In developing a parallel approach to LDA for GPUs, algorithmic degrees of freedom

can be judiciously matched with inherent architectural characteristics of the target platform.

In this chapter, we conduct an exercise in architecture-conscious algorithm design and

8

implementation for LDA on GPUs. In contrast to multi-core CPUs, GPUs offer much

higher data-transfer bandwidths from/to DRAM memory but require much higher degrees

of exploitable parallelism. Further, the amount of available fast on-chip cache memory is

orders of magnitude smaller in GPUs than CPUs. We perform a systematic exploration

of the space of partially collapsed Gibbs sampling strategies by carrying out two tasks.

First, we empirically characterize the impact on convergence and perplexity of different

sampling variants. Second, we analyze the implications of different sampling variants on

the computational overheads for inter-thread synchronization, fast storage requirements, and

implications on the expensive data movement to/from GPU global memory. Experiments

on large-scale datasets show the effectiveness of the new parallel implementation on both

multi-core CPUs and GPUs platforms.

Chapter 2 is organized as follows. Section 2.2 and 2.3 provide some background infor-

mation on LDA and related prior works. Section 2.4 presents the parallel LDA algorithms

that uses 2D-tiling and over-decomposition, as well as the alternative fully atomics-free

scheme. Then we present the high-level overview of our new mini-batched LDA algorithm

for multi-core CPUs and GPUs. Section 2.5 details our new algorithm for GPUs.

2.2 Background

2.2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an effective approach to topic modeling. It is used

for identifying latent topics distributions for collections of text documents [7]. Given D

documents represented as a collection of words, LDA determines a latent topic distribution

for each document. Each document j of D documents is modeled as a random mixture over

K latent topics, denoted by θ j. Each topic k is associated with a multinomial distribution

9

over a vocabulary of V unique words denoted by φk. It is assumed that θ and φ are drawn

from Dirichlet priors α and β . LDA iteratively improves θ j and φk until convergence. For

the ith word token in document j, a topic-assignment variable zi j is sampled according to the

topic distribution of the document θ j|k, and the word xi j is drawn from the topic-specific

distribution of the word φw|zi j . The commonly used notations for LDA algorithms in this

chapter are described in Table 2.1.

Table 2.1: Common notations for LDA algorithms

Notation Description
DATA Document-term matrix
DT Document-topic count matrix
WT Word-topic count matrix
NT Topic-count vector
Z Topic assignment matrix
θ Document-topic probability distribution matrix
φ Word-topic probability distribution matrix
D Number of documents in the corpus
W Number of words in the corpus
V Number of distinct words in the corpus
K Number of topics
P Number of partitions
B Number of documents in each mini-batch
α , β Dirichlet priors

Asuncion et al. [3] succinctly describe various inference techniques, and their similarities

and differences for state-of-the-art LDA algorithms. In context of our work, we first discuss

two main variants, viz., Collapsed Gibbs Sampling (CGS) and Uncollapsed Gibbs Sampling

(UCGS). In Section 2.3, we then proceed to discuss about various efficient implementations

of these schemes developed over the years in modern computation platforms.

10

2.2.2 Collapsed Gibbs Sampling

To infer the posterior distribution over latent variable z, a number of studies primarily

used Collapsed Gibbs Sampling (CGS) since it reduces the variance considerably through

marginalizing out all prior distributions of θ j|k and φw|k during the sampling procedure [24,

64, 103, 108]. Three key data structures are updated as each word is processed: a 2D array

DT maintaining the document-to-topic distribution, a 2D array WT representing word-to-

topic distribution, and a 1D array NT holding the topic-count distribution. Given the three

data structures and all words except for the topic-assignment variable zi j, the conditional

distribution of zi j can be calculated as:

P(zi j = k|z¬i j,x,α,β) ∝

WT¬i j
xi j|k +β

NT¬i j
k +V β

(DT¬i j
j|k +α) (2.1)

where DTj|k = ∑w Sw| j|k denotes the number of word tokens in document j assigned to topic

k; WTw|k = ∑ j Sw| j|k denotes the number of occurrences of word w assigned to topic k;

NTk = ∑w Nw|k is the topic-count vector. The superscript ¬i j means that the previously

assigned topic of the corresponding word token xi j is excluded from the counts. The hyper-

parameters, α and β control the sparsity of DT and WT matrices, respectively. Algorithm 1

shows the sequential CGS based LDA algorithm. The CGS based LDA algorithm performs

a number of passes through the collection of documents. In each pass, each word of each

document is processed. Three key data structures, WT , DT and NT , are read and written as

each word is processed. Each word in each document is initially assigned randomly to one

of the K latent topics, and as the iterations proceed, the word-to-topic and document-to-topic

distributions in arrays WT and DT and the topic distribution array NT converge. When a

word in a document is processed, some elements of all three arrays are read and one element

of each array is modified. Thus, as a later word is processed, the modified distribution

11

Algorithm 1 Sequential CGS based LDA

Input: DATA: D documents and x word tokens in each document, V: vocabulary size, K:
number of topics, α , β : hyper-parameters
Output: DT : document-topic count matrix, WT : word-topic count matrix, NT :
topic-count vector, Z: topic assignment matrix

1: repeat
2: for document = 0 to D − 1 do
3: L← document_length
4: for word = 0 to L − 1 do
5: current_word← DATA[document][word]
6: old_topic← Z[document][word]
7: decrement WT[current_word][old_topic]
8: decrement NT[old_topic]
9: decrement DT[document][old_topic]

10: sum← 0
11: for k = 0 to K − 1 do
12: sum← sum + WT [current_word][k]+β

NT [k]+V β
(DT [document][k]+α)

13: p[k]← sum
14: end for
15: U← random_uniform() × sum
16: for new_topic = 0 to K − 1 do
17: if U < p[new_topic] then
18: break
19: end if
20: end for
21: increment WT[current_word][new_topic]
22: increment NT[new_topic]
23: increment DT[document][new_topic]
24: Z[document][word]← new_topic
25: end for
26: end for
27: until convergence

12

reflecting the processing of all previous words is used. This process of using the updated

distributions is called Collapsed Gibbs sampling (CGS).

2.2.3 Uncollapsed Gibbs Sampling

The use of Uncollapsed Gibbs Sampling (UCGS) as an alternate inference algorithm

for LDA is also common [94, 95]. Unlike CGS, UCGS requires the use of two additional

parameters θ and φ to draw latent variable z as follows:

P(zi j = k|x) ∝ φxi j|kθ j|k (2.2)

Rather than immediately using DT , WT and NT to compute the conditional distribution,

at the end of each iteration, newly updated local copies of DT , WT and NT are used to

sample new values on θ and φ that will be levered in the next iteration. Compared to CGS,

this approach leads to slower convergence since the dependencies between the parameters

(corresponding word tokens) is not fully being utilized [64, 95]. However, the use of UCGS

facilitates a more straightforward parallelization of LDA. Algorithm 2 shows the sequential

UCGS based LDA algorithm.

13

Algorithm 2 Sequential UCGS based LDA

Input: DATA: D documents and x word tokens in each document, V: vocabulary size, K:
number of topics, α , β : hyper-parameters
Output: θ : document-topic distribution, φ : word-topic distribution, DT : document-topic
count matrix, WT : word-topic count matrix, NT : topic-count vector

1: repeat
2: Initialize DT , WT and NT to zero
3: for document = 0 to D − 1 do
4: L← document_length
5: for word = 0 to L − 1 do
6: current_word← DATA[document][word]
7: sum← 0
8: for k = 0 to K − 1 do
9: sum← sum + φ [current_word][k] θ [document][k]

10: p[k]← sum
11: end for
12: U← random_uniform() × sum
13: for new_topic = 0 to K − 1 do
14: if U < p[new_topic] then
15: break
16: end if
17: end for
18: increment DT[document][new_topic]
19: increment WT[current_word][new_topic]
20: increment NT[new_topic]
21: end for
22: end for
23: Sample new θ and φ based on current DT , WT and NT
24: until convergence

14

2.3 Related Work

The LDA algorithm is computationally expensive as it has to iterate over all words in all

documents multiple times until convergence is reached. Hence many works have focused on

efficient parallel implementations of the LDA algorithm both in multi-core CPUs as well as

many-core GPUs platforms.

2.3.1 Multi-Core CPU Platform

Newman et al. [64] justifies the importance of distributed algorithms for LDA for large

scale datasets and proposed an Approximate Distributed LDA (AD-LDA) algorithm. In AD-

LDA, documents are partitioned into several smaller chunks and each chunk is distributed

to one of the many processors in the system, which performs the LDA algorithm on this

pre-assigned chunk. However, global data structures like word-topic count matrix and

topic-count matrix have to be replicated to the memory of each processor, which are updated

locally. At the end of each iteration, a reduction operation is used to update all the local

counts thereby synchronizing the state of the different matrices across all processors. While

the quality and performance of the LDA algorithm is very competitive, this method incurs a

lot memory overhead and has performance bottleneck due to the synchronization step at

the end of each iteration. Wang et al. [98] tries to address the storage and communication

overhead by an efficient MPI and MapReduce based implementation. The efficiency of

CGS for LDA is further improved by Porteous et al. [72] which leveraging the sparsity

structure of the respective probability vectors, without any approximation scheme. This

allows for accurate yet highly scalable algorithm. On the other hand, Asuncion et al. [88]

proposes approximation schemes for CGS based LDA in the distributed computing paradigm

for efficient sampling with competitive accuracy. Xiao et al. [101] proposes a dynamic

15

adaptive sampling technique for CGS with strong theoretical guarantees and efficient parallel

implementation. Most of these works suffer from memory overhead and synchronization

bottleneck due to multiple local copies of global data-structures which are later used for

synchronization across processors. In practice, a global synchronization has the problem of

load imbalance since each document in different processors contains different number of

word tokens. Therefore, the processor which has a document with small number of word

tokens has to be wait for the other processors which have relatively large number of word

tokens.

Further, all prior parallel implementation of LDA have either used expensive atomic

operations to ensure algorithmic accuracy of CGS or have deviated from CGS by creating

local copies of WT and/or DT matrices to avoid using atomic for updates [64, 98, 102].

Unlike these prior efforts, the parallel LDA algorithm we describe in the next chapter

maintains CGS without atomic operations to update the WT or DT matrices. This is

achieved by partitioning the set of documents as well as the vocabulary into disjoint subsets,

as explained in the next chapter. We show how CGS can be parallelized efficiently on

multi-cores, thus maintaining a higher convergence rate of CGS.

2.3.2 Many-Core GPU Platform

One of the first GPU based implementations using CGS is developed by Yan et al. [103].

They partition both the documents and the words to create a set of disjoint chunks, such that

it optimizes memory requirement, avoids memory conflict while simultaneously tackling

a load imbalance problem during computation. However, their implementation requires

maintaining local copies of global topic-count data structure. Lu et al. [55] tries to avoid

too much data replication by generating document-topic counts on the fly and also use

16

succinct sparse matrix representation to reduce memory cost. However, their implementation

requires atomic operations during the global update phase which increases processing

overhead. Tristan et al. [95] introduces a variant of UCGS technique which is embarrassingly

parallel with competitive performance. Zhao et al. [111] proposes a state-of-the-art GPU

implementation which combines the SAME (State Augmentation for Marginal Estimation)

technique with mini-batch processing.

2.4 Parallel Latent Dirichlet Allocation on Multi-Core CPUs

2.4.1 Parallel LDA with Over-Decomposition

Our parallel CPU implementation of LDA is based on the CGS approach. A naive

parallelization approach will lead to very high perplexity (very low log-likelihood) as the

sequential constraints will not be respected. As with prior approaches, the set of documents

is disjointly partitioned for processing by different processors. The main difference is

in the approach to handling conflicts in processing the word-to-topic count matrix. For

example, consider a parallelization approach where the set of documents are distributed

across different threads. Since multiple documents can have the same words, two threads

could simultaneously try to read/update the WT matrix, leading to a race condition. While

atomic operations can be used to overcome the race condition, they can be expensive.

Moreover, the number of atomic reads required are high as it is performed in the inner

most loop of the kernel. Alternatively, if the parallelization was across the words, then the

read/update to the DT matrix would lead to a race condition. In either case, there is an

additional atomic update required on the NT vector.

Our parallel implementation is based on 2D tiling of the DT matrix and is designed to

considerably reduce the required number of atomic operations. The main idea is to partition

17

both the collection of documents as well as the active vocabulary in the corpus into P disjoint

sets, and reorganize the sampling over words in documents along diagonals in a 2D tiling

of the document-word space, so as to avoid any conflicts between processors in modifying

either the WT or DT matrices.

2.4.1.1 Data Partitioning

One of the goal of our parallel LDA is to improve load-balance on multiple processors by

distributing the data based on the even (same) range of the indices of words and documents.

Figure 2.1 illustrates the data/work partitioning scheme. Given the dataset, we first mapped

each word token into their unique word index and sorted the work tokens in each document

ordered by word index. Then the entire vocabulary (set of all words across all documents) is

divided into P disjoint partitions. Similarly, the documents are also divided into P partitions.

Thus, the entire document-word matrix is divided into P × P partitions. For example, words

0 to 9 in documents 0 to 3 form partition 0. Similarly, words 10 to 19 in documents 0 to

3 form partition 1. Assume that document 0 contains words {1, 2, 30, 44}, document 1

contains words {4, 9, 99}, document 2 contains words {50, 60} and document 3 contains

words {5, 24, 30}. Partition 0 will consist of words {1, 2} in document 0, words {4, 9}

in document 1, and word {5} in document 3. In other words, every block has the same

number of grouped documents and the words within the same range of word indices. This

partition scheme guarantees that the same words in different documents do not have memory

read/write conflicts simultaneously on both WT and DT .

2.4.1.2 Algorithm

In Figure 2.1, partitions which have mutually exclusive words and documents are marked

with the same color and shading pattern. For example, consider partitions 0, 5, 10 and 15

18

step 0
tid=0, part_id = 0

step 1
tid=0, part_id = 1

step 2
tid=0, part_id = 2

step 3
tid=0, part_id = 3

step 3
tid=1, part_id = 4

step 0
tid=1, part_id = 5

step 1
tid=1, part_id = 6

step 2
tid=1, part_id = 7

step 2
tid=2, part_id = 8

step 3
tid=2, part_id = 9

step 0
tid=2, part_id = 10

step 1
tid=2, part_id = 11

step 1
tid=3, part_id = 12

step 2
tid=3, part_id = 13

step 3
tid=3, part_id = 14

step 0
tid=3, part_id = 15

0

1

2

3

...

D-2

D-1

 0 1 2 3 4 5 6 7 8 9 V-2 V-1 … …

document

document

...

word word
10 11 12 13 14 15 16 17 18 19

4

5

6

7

Figure 2.1: Data partitioning scheme, if P = 4

which are along the diagonal of the partitioned document-word matrix. The set of words

in each of these partitions is mutually exclusive. The documents in these partitions are

also mutually exclusive. Hence, these partitions can be processed in parallel in a race-free

manner without the need for any expensive atomic operations on the WT and DT arrays.

Our parallelization approach is based on this scheme. All the partitions processed in parallel

in the same step are distinct. If there are P × P partitions, then there will be P steps, each

processing partitions along a wrap-around diagonal in the set of 2D data-tiles. Algorithm 3

shows the parallel LDA algorithm. In Line 1, the number of documents in each partition is

computed, and in Line 2, the number of words in each partition is computed. Line 4 iterates

over the number of steps. Each step corresponds to processing mutually exclusive partitions

in parallel (Line 5). In Lines 6 to 9, each thread determines the set of documents and words

that it will process in the current step. In Lines 10 to 33, we compute and update the WT ,

DT , and NT . The only atomic operations needed are in processing the NT vector.

19

Algorithm 3 Parallel LDA with Over-Decomposition
Input: DATA: D documents and x word tokens in each document, V: vocabulary size, K:
number of topics, α , β : hyper-parameters, P: number of partitions
Output: DT : document-topic count matrix, WT : word-topic count matrix, NT : topic-count
vector, Z: topic assignment matrix

1: doc_part_size← ceil(D / P)
2: voc_part_size← ceil(V / P)
3: repeat
4: for step = 0 to P−1 do
5: for part_id = 0 to P−1 in parallel do
6: r_start← part_id × doc_part_size
7: r_end← min(r_start + doc_part_size, |D|)
8: c_start← (part_id + step) % (P × voc_part_size)
9: c_end← min(c_start + voc_part_size, |V |)

10: for doc = r_start to r_end−1 do
11: for word = c_start to c_end−1 do
12: cur_word← DATA_PREP[doc][word]
13: old_topic← Z[doc][word]
14: decrement DT[doc][old_topic]
15: decrement WT[cur_word][old_topic]
16: atomic decrement NT[old_topic]
17: sum← 0
18: for k = 0 to K−1 do
19: sum← sum + N[cur_word][k]+β

NT [k]+V β
(M[doc][k]+α)

20: p[k]← sum
21: end for
22: U← rand_uniform() × sum
23: for k = 0 to K−1 do
24: if U < p[k] then
25: break
26: end if
27: end for
28: increment DT[doc][k]
29: increment WT[cur_word][k]
30: atomic increment NT[k]
31: Z[doc][word]← k
32: end for
33: end for
34: end for
35: end for
36: until convergence

20

2.4.1.3 Load Balancing

An important issue to be addressed is load imbalance. Each document only uses a subset

of words in the vocabulary. Hence, in each 2D partition of the document-word matrix, the

number of words can be quite non-uniform. It is even possible that some partitions are

empty. Note that the amount of work in each partition is proportional to the number of

words.

Consider Figure 2.1, where the document-word matrix is divided into 4 × 4 partitions

and the number of threads is 4. Consider step 0, in which partitions 0, 5, 10, and 15 are

processed by threads 0, 1, 2, and 3, respectively. Assume that the number of words in

partition 0, 5, 10, and 15 are 100, 0, 10, 15, respectively. Thread 0 has much more work

when compared to other threads. Hence, threads 1, 2, and 3 will be idle as they wait for

thread 0 to complete. Note that there is an implicit barrier synchronization at the end of

each step.

In order to achieve load balancing, we use over-decomposition. Instead of dividing

the document-word matrix into P × P partitions, where P is the number of threads, we

divide the document-word matrix into (O × P) × (O × P) partitions, where O is the over-

decomposition factor. Since there is no synchronization within each step, the threads can

dynamically acquire a partition. For example, in Figure 2.2, threads 0, 1, 2, and 3 initially

process partitions 5, 18, 31, and 44, respectively. Thread 1 and thread 2 only have 10 units

of work, compared to 100 units for thread 0 and 35 for thread 3. Therefore thread 1 and 2

will complete partitions 18 and 31 and then process partition 57 and 70, respectively.

21

0

1

2

3

4

...

D-2

D-1

0 1 2 3 4 5 6 V-2 V-1 … … …

...
...

100

10

10

35

90

90

50

40

20

30

30

10

thread

0

thread

1

thread

2

thread

3

part_id = 18

part_id = 5

part_id = 31

part_id = 44

part_id = 57

part_id = 70

part_id = 83

part_id = 84

part_id = 97

part_id = 110

part_id = 123

part_id = 136

Figure 2.2: Distribution of threads in a step via over-decomposition, for 12 partitions and 4
threads. The number in each data block indicates the number of word tokens.

2.4.1.4 Alternate Atomics-free Scheme

The previously presented approach requires atomic operations to update the NT vector.

In this Section 2.4.1.4, we provide an alternate scheme that does not require any atomic

operations. The core idea behind the new scheme is to use a thread-local delta vector to keep

track of the local changes to the NT vector. The global state of topic-count is maintained

by the global NT vector. When a thread requires a particular topic’s count, it first reads

the corresponding global NT vector value and adds the corresponding value in its local

delta vector. When a thread increments/decrements the NT vector, the increment/decrement

operation is simply performed on the local delta vector. Since the updates are made locally,

22

atomic operations are not required. The entire set of delta vectors can be viewed as matrix

1 0 -1 2 -1 0 -2 1

0 2 1 -2 -2 -1 -1 -2

-1 1 1 0 0 1 1 1

1 -3 2 -1 1 1 1 -1

46 20 15 64 38 20 24 29

45 20 12 65 40 19 25 30

topic

thread

0 1 2 3 4 5 6 7

0

1

2

3

𝑵𝑻𝑰−𝟏

𝑵𝑻𝑰

NT_delta

+

Figure 2.3: Reduction in alternate atomics-free scheme

(NT _delta matrix). Figure 2.3 shows the NT _delta matrix. The number of rows is equal to

the number of threads and the number of columns is equal to the number of topics.

At the beginning of each outer iteration, the NT _delta matrix is initialized to zero. In

Algorithm 3, atomic operations are used to increment (in Line 30) and decrement (in Line 16)

the NT vector. Instead, in the new approach, the increment is done as: NT _delta[tid][topic]

+= 1, and decrement operation is done similarly. In the new scheme, a thread reads the NT

vector (equivalent of Line 19) as follows: NT _delta[tid][topic] + NT [topic]. Thus, there

are no atomic operations for reads or writes.

At the end of each iteration, the sum of each column of NT _delta is added to the

corresponding column of the NT vector. In order to perform this operation, the columns of

23

the NT _delta matrix are partitioned into column panels and each column panel is processed

by a single thread. Thus, the latter reduction step can also be performed in parallel and

without atomic operations.

2.4.1.5 Experimental Evaluation

We evaluate the new parallel LDA variants using two common datasets: the NIPS and

NYTimes datsets from the UCI Machine Learning Repository [50]. Documents that do not

contain any word token are discarded. Table 2.2 describes the characteristics of the datasets.

We use 90% of the documents as a training set, and the remaining 10% as the test set and

Table 2.2: Statistics of datasets used in the experiments. D is the number of documents, W
is the total number of word tokens and V is the size of the active vocabulary.

Dataset D W V
NIPS 1,500 1,932,365 12,375

NYTimes 299,752 99,542,125 101,636

used cross-validation evaluation [40]. As suggested in [24], the α and β are set to 50.0/K

and 0.1, respectively. We use GibbsLDA++ [71], which is a standard C++ implementation

of sequential LDA with CGS, to compare the performance and accuracy of the parallel

OD-LDA implementation. We first present an evaluation of the base algorithm and then

discuss the fully atomics-free alternate scheme. The LDA models we use in our experiments

are:

• Sequential collapsed: sequential GibbsLDA++ with CGS

• Parallel OD-LDA: parallel LDA with Over-Decomposition

24

We evaluate performance on an 8-core Intel Xeon CPU. Table 2.3 shows the details of the

benchmarking machine.

Table 2.3: Machine details

Hardware Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
(8 cores) 16 GB RAM (1866 MHz)

Software Red Hat Enterprise Linux Server release 6.7
GCC version 4.9.2

To evaluate the accuracy of LDA models, we use the per-word log-likelihood on the test

set. The higher the log-likelihood, the better the generalization of the model on unseen data.

log(p(xtest)) = ∏
i j

log∑
k

WTw|k +β

∑wWTw|k +V β

DTj|k +α

∑k DTj|k +Kα
(2.3)

per-word log-likelihood =
1

W test log(p(xtest)) (2.4)

where W test is the total number of word tokens in the test set.

In Figure 2.4, the convergence rates of sequential and parallel CGS are approximately

the same at the same number of iterations, implying that the quality of our parallel implemen-

tation maintains closer to the sequential implementation. Figure 2.5 shows the performance

variation when the number of partitions is varied for the NIPS dataset. The parallel LDA

with 100 partitions converges 2.8× faster than 8 partitions because of better load balance.

Intuitively, it is clear that smaller partitions used in parallel model definitely required each

data block to process relatively bigger number of documents and word tokens to complete

CGS procedure. Table 2.4 compares our approach with the sequential approach. We measure

the elapsed time per iteration to evaluate speedup of the parallel algorithm. The execution

time of the baseline sequential collapsed model is similar to the parallel OD-LDA model

25

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-7.8

-7.6

-7.4

-7.2

-7

-6.8

lo
g

-l
ik

el
ih

o
o

d

NIPS

Sequential collapsed

Parallel OD-LDA

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g

-l
ik

el
ih

o
o

d

NYTimes

Sequential collapsed

Parallel OD-LDA

Figure 2.4: Comparison of convergence over iterations on NIPS and NYTimes datasets,
K=128. For parallel OD-LDA, the number of partitions and threads are set to 100 and 4,
respectively. X-axis is the number of iterations and y-axis is per word log-likelihood.

10 20

time (s)

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

-7

-6.9

lo
g

-l
ik

el
ih

o
o

d

Parallel OD-LDA, 8 partitions

Parallel OD-LDA, 20 partitions

Parallel OD-LDA, 40 partitions

Parallel OD-LDA, 60 partitions

Parallel OD-LDA, 80 partitions

Parallel OD-LDA, 100 partitions

Figure 2.5: Convergence over time across different number of partitions on NIPS dataset,
K=128, 4 threads.

with 1 thread. As expected, the execution time decreases as the number of threads increases.

With 8 threads, the parallel LDA scheme achieved 4.1× speedup on the NIPS dataset and

4.9× speedup on the NYTimes dataset. Figure 2.6 compares the log-likelihood versus time

26

0 10 20

time (s)

-7.8

-7.6

-7.4

-7.2

-7

-6.8

lo
g

-l
ik

el
ih

o
o

d

NIPS

Sequential collapsed

Parallel OD-LDA, 1 thread

Parallel OD-LDA, 2 threads

Parallel OD-LDA, 4 threads

Parallel OD-LDA, 8 threads

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

time (s)

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g

-l
ik

el
ih

o
o

d

NYTimes

Sequential collapsed

Parallel OD-LDA, 1 thread

Parallel OD-LDA, 2 threads

Parallel OD-LDA, 4 threads

Parallel OD-LDA, 8 threads

Figure 2.6: Convergence over time across 1, 2, 4 and 8 threads, on NIPS and NYTimes
datasets, K=128. The number of partitions is set to 300 for both NIPS and NYTimes datasets.
X-axis: elapsed time in seconds; Y-axis: per-word log-likelihood.

0 10

time (s)

-7.5

-7.4

-7.3

-7.2

-7.1

-7

lo
g

-l
ik

el
ih

o
o

d

NIPS

1 thread, original

1 thread, alternative

2 threads, original

2 threads, alternative

4 threads, original

4 threads, alternative

8 threads, original

8 threads, alternative

0 100 200 300 400 500 600 700 800 900

time (s)

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g

-l
ik

el
ih

o
o

d

NYTimes

1 thread, original

1 thread, alternative

2 threads, original

2 threads, alternative

4 threads, original

4 threads, alternative

8 threads, original

8 threads, alternative

Figure 2.7: Comparison between alternate atomics-free scheme and the original scheme

for various approaches. The parallel approach converges much faster than the sequential

version while maintaining similar log-likelihood. Finally, Figure 2.7 shows performance

comparison of the alternate atomics-free scheme and original scheme. It can be seen that

the alternative scheme takes less time for convergence.

27

Table 2.4: Comparison of the elapsed time in second per iteration on NIPS and NYtimes
datasets, K=128 and P=300 on NIPS and NYTimes dataset.

Number of
threads

NIPS NYTimes
Elapsed time

per iteration (s)
Elapsed time

per iteration (s)
Sequential collapsed None 1.1929 62.6343
Parallel OD-LDA 1 1.2406 66.2232
Parallel OD-LDA 2 0.7132 36.5454
Parallel OD-LDA 4 0.4421 21.0296
Parallel OD-LDA 8 0.2857 12.6711

2.4.2 Parallel LDA with Mini-Batch Processing
2.4.2.1 Overview of Mini-Batch Processing

As seen in Algorithm 1, the standard CGS algorithm requires updates to the DT , WT

and NT arrays after each sampling step to assign a new topic to a word in a document. This

is inherently sequential. In order to achieve high performance on multi-core CPUs and

GPUs, a very high degree of parallelism (typically thousands or tens/hundreds of thousands

of independent operations) is essential. We therefore divide the corpus of documents into

mini-batches which are processed sequentially, with the words in the mini-batch being

processed in parallel. Different strategies can be employed for updating the three key data

arrays DT , WT and NT . At one extreme, the updates to all three arrays can be delayed

until the end of processing of a mini-batch, while at the opposite end, immediate concurrent

updates can be performed by threads after each sampling step. Intermediate choices between

these two extremes for processing updates also exist, where some of the data arrays are

immediately updated, while others are updated at the end of a mini-batch. There are several

factors to consider in devising a parallel LDA with mini-batch processing:

28

• Immediate updates to all three data arrays DT , WT and NT would likely result in

faster convergence since this corresponds most closely to fully CGS. At the other

extreme, delayed updates for all three arrays may be expected to result in the slowest

convergence, with immediate updates to a subset of arrays resulting in an intermediate

rate of convergence.

• Immediate updating of the arrays requires the use of atomic operations, which are very

expensive on multi-core CPUs, taking orders of magnitude more time than arithmetic

operations.

• Delayed updates requires additional temporary storage to hold information about the

updates to be performed at the end of a mini-batch.

• The basic formulation of CGS requires an expensive division operation (Equation 2.1)

in the innermost loop of the computation for performing sampling. If we choose to

perform delayed updates to DT , an efficient strategy can be devised whereby the old

DT entries corresponding to a mini-batch can be scaled by the division operation by

means of the denominator term in Equation 2.1 once before processing of a mini-batch

commences. This will enable the innermost loop for sampling to no longer requires

an expensive division operation.

In order to understand the impact on convergence rates for different update choices for DT ,

WT and NT , we conducted an experiment using four datasets and all possible combinations

of immediate versus delayed updates for the three key data arrays. As shown in Figure

2.8, standard CGS (blue line) has a better convergence rate per-iteration than fully delayed

updates (red line). However, standard CGS is sequential and is not suitable for paralleliza-

tion. On the other hand, delayed update scheme is fully parallel but suffers from a lower

29

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

-7

-6.9

lo
g

-l
ik

el
ih

o
o
d

KOS

WT-delayed NT-delayed DT-delayed

WT-delayed NT-delayed DT-immediate

WT-delayed NT-immediate DT-delayed

WT-delayed NT-immediate DT-immediate

WT-immediate NT-delayed DT-delayed

WT-immediate NT-delayed DT-immediate

WT-immediate NT-immediate DT-delayed

WT-immediate NT-immediate DT-immediate

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-8.5

-8

-7.5

-7

lo
g

-l
ik

el
ih

o
o
d

NIPS

WT-delayed NT-delayed DT-delayed

WT-delayed NT-delayed DT-immediate

WT-delayed NT-immediate DT-delayed

WT-delayed NT-immediate DT-immediate

WT-immediate NT-delayed DT-delayed

WT-immediate NT-delayed DT-immediate

WT-immediate NT-immediate DT-delayed

WT-immediate NT-immediate DT-immediate

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-8.4

-8.2

-8

-7.8

-7.6

-7.4

lo
g

-l
ik

el
ih

o
o

d

Enron

WT-delayed NT-delayed DT-delayed

WT-delayed NT-delayed DT-immediate

WT-delayed NT-immediate DT-delayed

WT-delayed NT-immediate DT-immediate

WT-immediate NT-delayed DT-delayed

WT-immediate NT-delayed DT-immediate

WT-immediate NT-immediate DT-delayed

WT-immediate NT-immediate DT-immediate

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g

-l
ik

el
ih

o
o

d

NYTimes

WT-delayed NT-delayed DT-delayed

WT-delayed NT-delayed DT-immediate

WT-delayed NT-immediate DT-delayed

WT-delayed NT-immediate DT-immediate

WT-immediate NT-delayed DT-delayed

WT-immediate NT-delayed DT-immediate

WT-immediate NT-immediate DT-delayed

WT-immediate NT-immediate DT-immediate

Figure 2.8: Convergence over number of iterations on KOS, NIPS, Enron and NYTimes
datasets. The mini-batch sizes are set to 330, 140, 3750 and 28125 for KOS, NIPS, Enron
and NYTimes, respectively. X-axis: number of iterations; Y-axis: per-word log-likelihood
on test set.

convergence rate per-iteration. In our scheme, we divide the documents into mini-batches.

Each document within a mini-batch is processed using delayed updates. At the end of

each mini-batch processing, DT , WT and NT are updated and the next mini-batch uses the

updated DT , WT and NT values. Note that the mini-batches are processed sequentially.

Each data structure can be updated using either delayed updates or atomic operations. In

delayed updates, the update operations are performed at the end of each mini-batch and is

faster than using atomic operations. The use of atomic operations to update DT , WT and

30

NT makes the updates closer to standard sequential CGS, as each update is immediately

visible to all the threads.

2.4.2.2 Details of Mini-Batched Lock-Free Algorithm

As shown in Figure 2.8, fully UCGS (red line) converges slower than fully CGS (blue

line), but the convergence gap between UCGS and CGS is not huge. Since fully UCGS

algorithm can be trained with completely in parallel, we adapted lock-free inference algo-

rithm that updates DT , WT and NT at the end of each mini-batch processing. Algorithm 4

shows our parallel LDA algorithm with mini-batch processing. In Line 1, the total number

of mini-batches M is computed given the total number of documents D and each mini-batch

size B. The parallelism is in each mini-batch across the documents.

Within each mini-batch, we use TOPICS_delta array to keep track of the old topic

assigned to current word token before sampling new topic, and new topic assigned to current

word token after sampling. Additional permuted order array, PERM is necessary to point

the indices where the topic assignments of current word token have to be stored in the

TOPICS_delta array. In PERM array, the word indices in TOPICS_delta array can be

directly sorted in ascending order to easily group the same word indices in each mini-batch.

Algorithm 6 shows the pre-processing procedure of PERM array. Therefore, the use of

TOPICS_delta array enables us to achieve fully lock-free algorithm for updating key data

structures. Based on the values in TOPICS_delta array, new DT , WT and NT are generated

to use it in the next mini-batch. Another advantage of this scheme is that the complexity

of computation on conditional distribution can be reduced through removing a division

operation in Line 12 in Algorithm 1. Since DT is document-specific matrix, we can pre-

compute normalized DNT at the end of each mini-batch processing as shown in Line 20

31

Algorithm 4 Parallel Mini-batched Gibbs Sampling for Multi-Core CPUs

Input: DATA: D documents and x word tokens in each document, V: vocabulary size, K:
number of topics, α , β : hyper-parameters, B: size in mini-batch
Output: DT : document-topic count matrix, WT : word-topic count matrix, NT :
topic-count vector, Z: topic assignment matrix

1: M← ceil(D / B)
2: repeat
3: for minibatch_id = 0 to M − 1 do
4: for document = 0 to B − 1 in parallel do
5: current_document← document + (B × minibatch_id)
6: L← current_document_length
7: for word = 0 to L − 1 do
8: current_word← DATA[current_document][word]
9: old_topic← Z[current_document][word]

10: TOPICS_delta[PERM[minibatch_id][document][word]][0]← old_topic
11: new_topic← sampling_without_update()
12: TOPICS_delta[PERM[minibatch_id][document][word]][1]← new_topic
13: Z[current_document][word]← new_topic
14: end for
15: end for
16: update WT based on TOPICS_deta
17: update NT based on TOPICS_deta
18: memclear DT
19: update DT based on Z
20: update DNT
21: end for
22: until convergence

Algorithm 5 Sampling without updating parameters
1: sum← 0
2: for k = 0 to K − 1 do
3: sum += (WT [curr_word][k]+β)×DNT [curr_doc][k]
4: p[k]← sum
5: end for
6: U← random_uniform() × sum
7: for new_topic = 0 to K − 1 do
8: if U < p[new_topic] then
9: break

10: end if
11: end for

32

Algorithm 6 Pre-processing the PERM for each mini-batch

Input: zero-initialized COUNT [M][V], PT R[V +1]
Output: permuted order matrix PERM

1: for minibatch_id = 0 to M − 1 do
2: for document = 0 to B − 1 do
3: current_document← document + (B × minibatch_id)
4: L← current_document_length
5: for word = 0 to L − 1 do
6: current_word← DATA[current_document][word]
7: COUNT [minibatch_id][current_word] += 1
8: end for
9: end for

10: sum = 0
11: PT R[0] = sum
12: for v = 1 to V + 1 do
13: sum += COUNT[minibatch_id][v − 1]
14: PT R[v] = sum
15: end for
16: for document = 0 to B − 1 do
17: current_document← document + (B × minibatch_id)
18: L← current_document_lengths
19: for word = 0 to L − 1 do
20: current_word← DATA[current_document][word]
21: PERM[minibatch_id][document][word]← PT R[current_word]
22: PT R[current_word]++
23: end for
24: end for
25: end for

Algorithm 7 Pre-computing the DNT

Output: pre-computed matrix DNT

1: for document = 0 to B − 1 in parallel do
2: current_document← document + (B × minibatch_id)
3: for k = 0 to K − 1 do
4: DNT[current_document][k]← DT [current_document][k]+α

NT [k]+V β

5: end for
6: end for

33

in Algorithm 4. Instead of computing the standard conditional distribution, pre-computed

DNT will be used in the sampling procedure.

2.4.2.3 Experimental Evaluation

We use Intel(R) Xeon(R) CPU E5-2680 (28-core) machine to measure the performance of

parallel LDA with mini-batch processing. The left of the Figure 2.9 depicts the performance

0 50 100 150

time (s)

-9.2

-9

-8.8

-8.6

-8.4

-8.2

lo
g

-l
ik

el
ih

o
o

d

NYTimes

Sequential CGS

Parallel OD-LDA

Mini-batch size = 1054

Mini-batch size = 2108

Mini-batch size = 4215

Mini-batch size = 8430

Mini-batch size = 16860

Mini-batch size = 30000

1024 2108 4215 8430 16860 30000

mini-batch sizes

160

180

200

220

240

260

280

300

320

ti
m

e
ta

k
en

 u
p

 t
o

 1
0

0
 i

te
ra

ti
o

n
s

(s
ec

)

NYTimes

Figure 2.9: Left: Convergence over time across different mini-batch sizes on NYTimes
dataset, K=128. X-axis: elapsed time in seconds; Y-axis: per-word log-likelihood. Right:
Time taken to 100 iterations over different mini-batch sizes on NYTimes dataset, K=128.
X-axis: mini-batch sizes; Y-axis: elapsed time in second.

variation when the size of mini-batches is varied on NYTimes dataset. It may be seen that

larger size of mini-batches converge faster than smaller ones while achieving the same

log-likelihood. As shown in the right graph in Figure 2.9, it is clear that the elapsed time

reduces as the size of mini-batches increases, since the documents in the mini-batch are

processed in parallel. The smaller size of mini-batches used in our parallel model definitely

requires more iterations to finish. Experiments on an 28-core multi-processor show that

34

the parallel mini-batched implementation converges 1.5× faster than parallel atomics-free

OD-LDA, while maintaining the same quality.

2.5 Parallel Latent Dirichlet Allocation on GPUs

2.5.1 Graphical Processing Units (GPUs)

Graphical Processing Units (GPUs) are consists of a set of Streaming Multiprocessor

(SM). The lowest of level of parallelism on GPUs is on thread level. The group of threads

makes WARP which is executed in a lock-step manner in an SM. A set of WARPs forms

thread block that maps directly to SM. In GPUs, L2 cache is accessible by all thread blocks.

On-chip shared memory is private to each thread block and registers are private to each

thread. The main challenges to developing an efficient GPU algorithm is to ensure load

balancing, low thread divergence, and high occupancy.

2.5.2 Overview of GPU Algorithm

As described in Section 2.4.2.1, the mini-batched LDA algorithm using delayed updates

avoids the need to use atomic operations. However, in this case, an additional temporary

storage is required to store information about the updated topic assignment. At the end of

each mini-batch processing, these information will be used to update key structures. Since

storage is scarce on GPUs, especially registers and shared-memory, keeping an additional

space for delayed updates has a limitation on GPU implementation.

Moreover, the mini-batched LDA algorithm using immediate updates requires the use of

atomic operations. which are very expensive on GPUs, taking orders of magnitude more time

than arithmetic operations. Further, the cost of atomic operations depends on the storage

used for the operands, with atomics on global memory operands being much more expensive

than atomics on data in shared memory. As seen in Figure 2.8, using atomic-operations

35

Algorithm 8 Parallel Mini-batched Gibbs sampling for GPUs

Input: DATA: D documents and x word tokens in each document, V: vocabulary size, K:
number of topics, α , β : hyper-parameters, V: size in each mini-batch
Output: DT : document-topic count matrix, WT : word-topic count matrix, NT :
topic-count vector, Z: topic assignment matrix

1: M← ceil(D / B)
2: repeat
3: for minibatch_id = 0 to M − 1 do
4: sampling_kernel() // generate new topic for each word in a mini-batch by sampling

from DNT and WT and updating WT and NT
5: memclear DT
6: update_DT() // update DT from current Z
7: update_DNT() // update DNT from current DT and NT
8: end for
9: until convergence

enables a better convergence rate per-iteration. However, global memory atomic operations

are expensive compared to shared memory atomic operations. GPUs have a limited amount

of shared memory per SM. Therefore, in order to take advantage of the shared memory, we

map WT to shared memory. In addition to reducing the overhead of atomics, this also helps

to achieve good data reuse for WT from shared memory.

In order to achieve the required parallelism on GPUs, we parallelize across documents

and words in a mini-batch. Each mini-batch is partitioned into columns such that the WT

corresponding to each column panel fits in the shared memory. Shared memory also offers

lower atomic operation costs. DT is streamed from global memory. However, due to the

mini-batch processing, most of these accesses will be served by the L2 cache (shared across

all SMs). Since multiple threads work on the same document and DT is kept in global

memory, expensive global memory atomic updates are required to update DT . Hence,

36

we use delayed updates for DT . Figure 2.10 depicts the overall scheme for our GPU

implementation.

Algorithm 9 sampling_kernel(): sampling with atomic updates on the WT and NT
1: for document = 0 to B − 1 in parallel do
2: current_document← document + (B × minibatch_id)
3: L← current_document_length
4: for word = 0 to L − 1 do
5: current_word← DATA[current_document][word]
6: old_topic← Z[current_document][word]
7: atomic decrement WT [current_word][old_topic]
8: atomic decrement NT [old_topic]
9: sum← 0

10: for k = 0 to K − 1 do
11: sum += (WT [curr_word][k]+β)×DNT [curr_doc][k]
12: p[k]← sum
13: end for
14: U← random_uniform() × sum
15: for new_topic = 0 to K − 1 do
16: if U < p[new_topic] then
17: break
18: end if
19: end for
20: atomic increment WT [current_word][new_topic]
21: atomic increment NT [new_topic]
22: Z[current_document][word]← new_topic
23: end for
24: end for

2.5.3 Details of Parallel GPU Algorithm

As mentioned in the previous Section 2.5.2, we divide the documents into mini-batches.

All the documents/words within a mini-batch are processed in parallel, and the processing

across mini-batches is sequential. All the words within a mini-batch are partitioned to form

37

DNT

0 K – 1

 0

K – 1

Thread

Block 0

Thread

Block 1

Thread

Block 2

Thread

Block 3

x x x

x x

x

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

L2

Cache

Coalesced memory access

with Shared Memory per SM

Sparse Matrix

W T

x x x

x

x

x x

x x x

x x

 0

B – 1

0 V – 1

x

x x x x

x

Figure 2.10: Overview of our GPU implementation. V : vocabulary size, B: number of
documents in the current mini-batch, K: number of topics

column panels. Each column panel is mapped to a thread block. In order to devise the

parallel LDA on GPUs, we consider several factors as follows:

• Shared memory: Judicious use of shared-memory is critical for good performance on

GPUs. Hence, we keep WT in shared-memory which helps to achieve higher memory

access efficiency and lower cost for atomic operations. Within a mini-batch, WT gets

full reuse from shared-memory.

• Reducing global memory traffic for the cumulative topic count: In the original sequen-

tial algorithm (Algorithm 1), the cumulative topic is computed by multiplying WT

with DT and then dividing the resulting value with NT . The cumulative count with

respect to each topic is saved in an array p as shown in Line 13 in Algorithm 1. Then

a random number is computed and is scaled by the topic-count-sum across all topics.

38

Based on the scaled random number the cumulative topic count array is scanned again

to compute the new topic. Keeping the cumulative count array in global memory will

increase the global memory traffic especially as these accesses are uncoalesed. As data

movement is much more expensive than computations, we do redundant computations

to reduce data movement. In order to compute the topic-count-sum across all topics,

we perform a dot product of DT and WT in Line 23 in Algorithm 10. Then a random

number which is scaled by the topic sum is computed. The product of DT and WT

is recomputed, and based on the value of scaled random number, the new topic is

selected. This strategy helps to save global memory transactions corresponding to

2× number o f words × number o f topics (read and write) words.

• Reducing expensive division operations: In Line 12 in Algorithm 1, division opera-

tions are used during sampling. Division operations are expensive in GPUs. The total

number of division operations during sampling is equal to total number o f words

across all documents × number o f f eatures. We can pre-compute DNT = DT/NT

(Algorithm 12) and then use this variable to compute the cumulative topic count as

shown in Line 23 in Algorithm 10. Thus a division is performed per document as

opposed to per word which helps to reduce the total number of division operations to

total number o f documents × number o f f eatures.

• Reducing global memory traffic for DNT matrix: In our algorithm, DNT is streamed

from global memory. The total amount of DRAM (device memory) transactions can

be reduced if we can substitute DRAM access with L2 cache accesses. Choosing

an appropriate size for a mini-batch can help to increase L2 hit rates. For example,

39

choosing a low mini-batch size will increase the probability of L2 hit rates. However,

if the mini-batch size is very low, there will not be enough work in each mini-batch.

• Segmented Compressed Sparse Row (CSR) representation: As describe in Figure 2.11,

the elements of the sparse matrics are kept in segmented CSR representation. Thus,

the threads with a column panel process all the words in a document before moving

on to the next document. Since DNT is accessed from cache, exposing temporal reuse

will increase the probability of a cache hit. This ensures that, within a column panel,

the temporal reuse of DNT is maximized. As shown in Figure 2.10, the segmented

CSR provides coalesced access on the row and column indices of the sparse matrix.

DOC_IDX

WORD_IDX

Tile size = 2

Number of tiles (thread blocks) = 4

0 1 1 1 1 2 0 0 0 1 2 0 0 1 1 1 2 2 0 0 0 1 1 2

1 0 0 1 1 1 2 2 2 2 3 5 5 4 4 5 4 4 6 7 7 6 6 6

Thread Block 0 Thread Block 1 Thread Block 2 Thread Block 3

1 2 2 2 5 5 6 7 7

0 0 1 1 2 4 4 5 6 6

1 3 4 4 6

document 0

document 1

document 2

word ids in documents

Original DATA representation

Segmented CSR representation

Figure 2.11: Example of converting original data representation to segmented CSR repre-
sentation.

Algorithm 10 shows our GPU algorithm. Based on the column panel, all the threads in

a thread block collectively bring in the corresponding WT elements from global memory

to shared memory. WT is kept in column major order. All the threads in a warp bring

40

Algorithm 10 GPU implementation of sampling kernel

Input: DOC_IDX , WORD_IDX ,Z_IDX : document index, word index and topic index for each nnz in CSB
format corresponding to the current mini-batch,
lastIdx: a vector which stores the start index of each tile, V: vocabulary size,
K: number of topics, β : hyper-parameter

1: tile_id = block_id
2: tile_start = lastIdx[tile_id]
3: tile_end = lastIdx[tile_id + 1]
4: shared_WT [column_panel_width][K]
5: warp_id = thread_id / WARP_SIZE
6: lane_id = thread_id % WARP_SIZE
7: n_warp_k = thread_block_size / WARP_SIZE

// Coalesced data load from global memory to shared memory
8: for i=warp_id to column_panel step n_warp_k do
9: for w = 0 to K step WARP_SIZE do

10: shared_WT [i][w+lane_id] = WT [(tile_id×col_panel_width+i)][w+lane_id]
11: end for
12: end for
13: __syncthreads()
14: for nnz = thread_id+tile_start to tile_end step thread_block_size do
15: curr_doc_id = DOC_IDX[nnz]
16: curr_word_id = WORD_IDX[nnz]
17: curr_word_shared_id = curr_word_id − tile_id × column_panel_width
18: old_topic = Z_IDX[nnz]
19: atomicSub (shared_WT [curr_word_shared_id][old_topic], 1)
20: atomicSub (NT [old_topic], 1)
21: sum = 0
22: for k = 0 to K − 1 do
23: sum += (shared_WT [curr_word_shared_id][k]+β)×DNT [curr_doc_id][k]
24: end for
25: U = curand_uniform() × sum
26: sum = 0
27: for new_topic = 0 to K − 1 do
28: sum += (shared_WT [curr_word_shared_id][k]+β)×DNT [curr_doc_id][k]
29: if U < sum then
30: break
31: end if
32: end for
33: atomicAdd (shared_WT [curr_word_shared_id][new_topic], 1)
34: atomicAdd (NT [new_topic], 1)
35: Z_IDX[nnz] = new_topic
36: end for

// Update WT in global memory
37: for i=warp_id to column_panel step n_warp_k do
38: for w = 0 to K step WARP_SIZE do
39: WT [(tile_id×col_panel+i)][w+lane_id] = shared_WT [i][w+lane_id]
40: end for
41: end for
42: __syncthreads()

41

one column of WT and different wraps bring different columns of WT (Line 10). Based

on the old topic, the copy of WT in shared memory and NT is decremented using atomic

operations (Line 19 and 20).

The non-zero elements within a column panel are cyclically distributed across threads.

Corresponding to the non-zero, each thread computes the topic-count-sum by computing

the dot product of WT and DNT (Line 23). A random number is then computed and scaled

by this sum (Line 25). The product of WT and DNT is then recomputed to find the new

topic with the help of the scaled random number (Line 28). Then the copy of WT in shared

memory and NT is incremented using atomic operations (Line 33 and 34).

At the end of each column panel, each thread block collectively updates the global WT

using the copy of WT kept in shared memory (Line 39).

Algorithm 11 GPU implementation of updating the DT

Input: DOC_IDX , Z_IDX : document index and topic index for each nnz in CSB format
corresponding to the current mini-batch

1: curr_doc_id = DOC_IDX[thread_id]
2: new_topic = Z_IDX[thread_id]
3: atomicAdd (DT [curr_doc_id][new_topic], 1)

Algorithm 12 GPU implementation of updating the DNT

Input: V: vocabulary size, α , β : hyper-parameters

1: curr_doc_id = blockIdx.x
2: DNT [curr_doc_id][thread_id] = DT [curr_doc_id][thread_id]+α

NT [thread_id]+V β

42

At the end of each mini-batch, we need to update DT and pre-compute DNT for the

next mini-batch. Algorithm 11 shows our algorithm to compute DT . All the DT elements

are initially set to zero using cudaMemset. We iterate over all the words across all the

documents. Corresponding to the topic of each word, we increment the document topic

count using atomic operations (Line 3). The pre-computation of DNT is shown in Algorithm

12. In Algorithm 12, each document is processed by a thread block and the threads within a

thread block are distributed across different topics. Based on the document and thread id,

each thread computes the DNT as shown in Line 2.

2.5.4 Experimental Evaluation

Two publicly available GPU-LDA implementations, Lu-LDA by Lu et al. [55] and

BIDMach-LDA by Zhao et al. [111], are used in the experiments to compare the perfor-

mance and accuracy of the approach developed in this section. We label our new implemen-

tation as Approximate GPU-Adapted LDA (AGA-LDA). We also use GibbsLDA++ [71]

(Sequential CGS), a standard C++ implementation of sequential LDA with CGS, as a

baseline. We use four datasets: the KOS, NIPS, Enron and NYTimes from the UCI Machine

Learning Repository [50]. While Table 2.6 shows the characteristics of the datasets, Table

2.5 shows the configuration of the machines used for experiments.

Table 2.5: Machine configuration

Machine Details

GPU
GTX TITAN (14 SMs, 192 cores/MP, 6 GB Global Memory, 876 MHz,
1.5MB L2 cache)

CPU Intel(R) Xeon(R) CPU E5-2680 (28 core)

43

Table 2.6: Dataset characteristics. D is the number of documents, W is the total number of
word tokens and V is the size of the active vocabulary.

Dataset D W V
KOS 3,430 467,714 6,906
NIPS 1,500 1,932,365 12,375
Enron 39,861 6,412,172 28,099

NYTimes 299,752 99,542,125 101,636

In BIDMach-LDA, the train/test split is dependent on the size of the mini-batch. To

ensure a fair comparison, we use the same train/test split across different LDA algorithms.

The train set consists of 90% of documents and the remaining 10% is used as the test

set. Using Equation 2.3 and 2.4, we evaluate the accuracy of LDA models on the test

set. For each LDA model, training and testing algorithms are paired up. BIDMach-LDA

allows changing the hyper-parameters such as α . We tuned the mini-batch size for both

BIDMach-LDA and AGA-LDA and we report the best performance. In AGA-LDA, the

hyper-parameters, α and β are set to 0.1. The number of topics (K) in all experiments is set

to 128.

2.5.4.1 Speedup

Figure 2.12 shows the log-likelihood versus elapsed time of the different models. Com-

pared to BIDMach-LDA, AGA-LDA achieved 2.5×, 15.8×, 2.8× and 4.4× on the KOS,

NIPS, Enron and NYTimes datasets, respectively. AGA-LDA consistently performs better

than other GPU-based LDA algorithms on all datasets. Figure 2.13 shows the speedup of our

approach over BIDMach-LDA and Lu-LDA. The y-axis in Figure 2.13 is the ratio of time

for BIDMach-LDA and Lu-LDA to achieve a log-likelihood to how long AGA-LDA took.

44

0 0.5 1 1.5 2 2.5 3

time (s)

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

-7

-6.9

lo
g

-l
ik

el
ih

o
o
d

KOS

AGA-LDA

BIDMach-LDA

Lu-LDA

Sequential CGS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

lo
g

-l
ik

el
ih

o
o
d

NIPS

AGA-LDA

BIDMach-LDA

Lu-LDA

Sequential CGS

0 2.5 5 7.5 10 12.5 15

time (s)

-8.4

-8.2

-8

-7.8

-7.6

-7.4

lo
g

-l
ik

el
ih

o
o

d

Enron

AGA-LDA

BIDMach-LDA

Lu-LDA

Sequential CGS

0 25 50 75 100 125 150 175 200

time (s)

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g

-l
ik

el
ih

o
o

d

NYTimes

AGA-LDA

BIDMach-LDA

Lu-LDA

Sequential CGS

Figure 2.12: Convergence over time on KOS, NIPS, Enron and NYTimes datasets. The
mini-batch sizes are set to 330, 140, 3750 and 28125 for KOS, NIPS, Enron and NYTimes,
respectively.

The result shows that y-values of all points are greater than one for all cases, indicating that

AGA-LDA is faster than the existing state-of-the-art GPU-based LDA algorithms.

45

-7.65 -7.41 -7.29 -7.23 -7.19 -7.16 -7.15 -7.14 -7.13

log-likelihood

0

10

20

30

40

ra
tio

 o
f

tim
e

KOS

BIDMach-LDA
Lu-LDA

-7.73 -7.53 -7.42 -7.37 -7.34 -7.32

log-likelihood

0

5

10

15

20

25

30

ra
tio

 o
f

tim
e

NIPS

BIDMach-LDA
Lu-LDA

-8.31 -7.94 -7.75 -7.67 -7.62 -7.59 -7.57 -7.56

log-likelihood

0

5

10

15

ra
tio

 o
f

tim
e

Enron

BIDMach-LDA
Lu-LDA

-9.11 -8.75 -8.47 -8.34 -8.28 -8.25

log-likelihood

0

5

10

15

ra
tio

 o
f

tim
e

NYTimes

BIDMach-LDA
Lu-LDA

Figure 2.13: Speedup of AGA-LDA over BIDMach-LDA and Lu-LDA.

2.6 Conclusion

In this chapter, we have presented a parallel CGS for LDA on multi-core CPUs. The

new parallel implementation is able to effectively parallelize the CGS approach while

maintaining the same log-likelihood. We use over-decomposition techniques for load

balancing. The experimental section demonstrates that we achieve 4.1× speedup for NIPS

and 4.9× speedup for NYTimes. We also describe a high-performance LDA algorithm for

GPUs based on approximated Collapsed Gibbs Sampling. The AGA-LDA is designed to

achieve high performace by matching characteristics of GPU architecture. The algorithm is

focused on reducing the required data movement and overheads due to atomic operations.

In the experimental section, we show that our approach achieves significant speedup when

compared to the existing state-of-the-art GPU LDA implementations.

46

Chapter 3: Parallel Locality-Optimized

Non-negative Matrix Factorization

3.1 Introduction

Non-negative Matrix Factorization (NMF) proposed by Lee and Seung [44] is a key prim-

itive for unsupervised dimension reduction used in a wide range of applications, including

topic modeling [42,85,89], recommender systems [1,33,110] and bioinformatics [58,97,104].

For example, when NMF is used for topic modeling, given a document-word matrix in

which a document is represented as a collection of bag-of-words from an active vocabulary,

NMF decomposes a document-word matrix into two non-negative matrices where each of

the factorized matrices can be interpreted as latent topic distributions for documents and

words.

Given a non-negative matrix A ∈ RV×D
+ and K � min(V,D), NMF finds two non-

negative rank-K matrices W ∈ RV×K
+ and H ∈ RK×D

+ , such that the product of W and H

approximates A [44]:

A≈WH (3.1)

Several algorithms have been proposed for NMF. They all involve repeated alternating up-

date of some elements of W interleaved with update of some elements of H, with imposition

on non-negativity constraints on the elements, until a suitable error norm (either Frobenius

47

norm or Kullback-Leibler divergence) is lower than a desired threshold. Various previously

developed algorithms for NMF differ in the granularity of the number of elements of W

that are updated before switching to updating some elements of H. The focus of prior work

has been to compare the rates of convergence of alternate algorithms and the parallelization

of the algorithms. However, to the best of our knowledge, the minimization of data move-

ment through the memory hierarchy, using techniques like tiling, has not been previously

addressed. With costs of data movement from memory being significantly higher than the

cost of performing arithmetic operations on current processors, data locality optimization is

extremely important.

In this chapter, we address the issue of data locality optimization for NMF. An analysis of

the computational components of the FAST-HALS (Hierarchical Alternating Least Squares)

algorithm for NMF [14], is first performed to identify data movement overheads. The

associativity of addition is utilized to judiciously reorder additive contributions in updating

elements of W and H, to enable 3D tiling of a computationally intensive component of

the algorithm. An analysis of the data movement overheads as a function of tile size is

developed, leading to a model for selection of effective tile sizes. Parallel implementations

of the new Parallel Locality-optimized NMF algorithm (called PL-NMF) are presented for

both GPUs and multi-core CPUs. An experimental evaluation with datasets used in prior

studies demonstrates significant performance improvement over state-of-the-art alternatives

available for parallel NMF.

Chapter 3 is organized as follows. In the next section, we present the background on

NMF and related prior work. In Section 3.3, we present the high-level overview of PL-NMF

algorithm. Sections 3.4 demonstrates details of our PL-NMF for multi-core CPUs and

GPUs. In Section 3.5, we compare the data movement cost for PL-NMF and original

48

FAST-HALS algorithms. Thereafter, we present determination of the tile sizes based on data

movement analysis. Section 3.6 compares PL-NMF with existing state-of-the-art parallel

implementations.

3.2 Background

3.2.1 Non-negative Matrix Factorization Algorithms

NMF seeks to solve the optimization problem of minimizing reconstruction error be-

tween A and the approximation WH. In order to measure the reconstruction error for NMF,

Lee et al. [44] adopted various objective functions, such as the Frobenius norm given two

matrices and Kullback-Leibler divergence given two probability distributions. The objective

functions D(A||WH) based on the Frobenius norm is defined in Equation 3.2.

DF(A||WH) =
1
2
||A−WH||2F =

1
2 ∑

vd
(Avd− (WH)vd)

2 (3.2)

To efficiently minimize the objective functions (above), several variants of NMF algorithms

have been developed: Multiplicative Update (MU), Additive Update (AU), Alternating

Non-negative Least Squares (ANLS) and Hierarchical Alternating Least Squares (HALS).

Table 3.1 describes the notations used in this chapter.

Table 3.1: Common notations for NMF algorithms

Notation Description
A Non-negative matrix
W Non-negative rank-K matrix factor
H Non-negative rank-K matrix factor
V Number of rows in A and W
D Number of columns in A and H
K Low rank

49

Multiplicative update (MU) and additive update (AU) proposed by Lee et al. [44] are the

simplest NMF algorithms. The MU algorithm updates two rank-K non-negative matrices

W and H based on multiplicative rules and ensures convergence. MU strictly conforms to

non-negativity constraints on W and H because the elements of W and H that have zero

value will not be updated. Unlike MU algorithm, the AU algorithm updates W and H

based on the gradient descent method and avoids negative update values using learning

rate. However, some studies have reported that the use of MU and AU algorithms leads to

weaknesses such as slower convergence and lower convergence rate [23, 37, 51].

Alternating Non-negative Least Squares (ANLS) is a special type of Alternating Least

Squares (ALS) approach. At each iteration, the gradients of two objective functions with

respect to W and H are used to update each of W and H one after the other. Kim et

al. [38] proposed Alternating Non-negative Least Squares based Block Principle Pivoting

(ANLS-BPP) algorithm. Under the Karush-Kuhn-Tucker (KTT) conditions, the ANLS-

BPP algorithm iteratively finds the indices of non-zero elements (passive set) and zero

elements (active set) in the optimal matrices until KTT conditions are satisfied. The values

of indices that correspond to the active set will become zero, and the values of passive set

are approximated by solving min||A−WH||2F which is a standard Least Squares problem.

As an alternative to the basic ANLS approach, Cichocki et al. [15] proposed Hierarchical

Alternating Least Squares (HALS), which hierarchically updates only one k-th row vector

of H ∈ RK×D
+ at a time and then uses it to update a corresponding k-th column vector of

W ∈ RV×K
+ . In other words, HALS minimizes the K set of two local objective functions

with respect to K row vectors of H and K column vectors of W at each iteration. A standard

HALS algorithm iteratively updates each row of H and each column of W in order within

the innermost loop.

50

Based on the standard HALS algorithm, Cichocki et al. [14] further proposed the

extended version of a new algorithm called FAST-HALS algorithm as described in Algorithm

13. Note that Hk and Wk indicate k-th row of H and k-th column of W , respectively. FAST-

HALS updates all rows of H before starting the update to all columns of W , instead of

alternately updating each row of H and each column of W at a time. Compared to MU

algorithm, the FAST-HALS algorithm converges much faster and produces a better solution,

while maintaining a similar computational cost as reported in [22, 38]. Interestingly, Kim

et al. [38] have shown that FAST-HALS has also been found to converge faster than their

ANLS-BPP implementation on real-world text datasets: TDT2 and 20 Newsgroups, while

maintaining the same convergence rate (see Figure 5.3 in Kim et al. [38]).

3.3 Related Work on Parallelization of NMF

Since most of the variations of NMF algorithm are highly compute-intensive, many

previous efforts have been made to parallelize NMF algorithms. As shown in Table 3.2,

previous studies on parallelizing NMF can be broadly categorized into two groups based

on implementation for multi-core CPUs [6, 18, 19, 36, 49, 53] versus GPUs [41, 54, 58].

Furthermore, each study used various NMF algorithms for parallel implementations.

3.3.1 Shared-Memory Multiprocessor

Battenberg et al. [6] introduced parallel NMF using MU algorithm for audio source separa-

tion task. Fairbanks et al. [19] adopted ANLS-BPP based NMF in order to find the structure

of temporal behavior in a dynamic graph given vertex features. Both [6] and [19] developed

the parallel NMF implementations on multi-core CPUs using Intel Math Kernel Library

(MKL) along with shared-memory multiprocessor.

51

Table 3.2: Previous studies on parallelization of NMF

Author Machine Platform Algorithm
Battenberg et al. [6] CPU Shared-memory MU
Fairbanks et al. [19] CPU Shared-memory ANLS-BPP

Dong et al. [18] CPU Distributed-memory MU
Liu et al. [53] CPU Distributed-memory MU
Liao et al. [49] CPU Distributed-memory MU

Kannan et al. [36] CPU Distributed-memory ANLS-BPP
Lopes et al. [54] GPU Shared-memory MU, AU
Koitka et al. [41] GPU Shared-memory MU, ALS

Mejía-Roa et al. [58] GPU Distributed-memory MU

3.3.2 Distributed-Memory Systems

Dong et al. [18] demonstrated that MU algorithm and shared-memory based parallel im-

plementation have a limitation of slow convergence. To overcome these problems, they

devised a parallel MPI implementation of MU based NMF that improves Parallel NMF

(PNMF) proposed by Robila et al. [77]. Different NMF algorithms have previously used

tiling/blocking to minimize data movement. Dong et al. [18] partitioned the two factor

matrices, W and H, into smaller blocks and each block is distributed to different threads.

Each block simultaneously updates corresponding sub-matrices of the two matrices, and a

reduction operation is performed by collective communication operations using Message

Passing Interface (MPI). Similarly, Liu et al. [53] proposed matrix partition scheme that

partitions the two factor matrices along the shorter dimension (K dimension) instead of

the longer dimensions (V or D dimensions). Therefore, each matrix is divided up to more

partitions compared to partitioning along the longer dimension, so that the data locality is

increased and the communication cost is decreased when performing the product of two

52

matrices. Kannan et al. [36] minimized the communication cost by communicating only

with the two factor matrices and other partitioned matrices among parallel threads. Based

on the ANLS-BPP algorithm, their implementation also reduced the bandwidth and data

latency using MPI collective communication operations. Given an input matrix A and two

factorized matrices W and H, they partitioned W and H into P multiple blocks (tiles) across

V and D dimensions which are the number of rows in W and columns in H. Hence, the sizes

of each block in W and H are (V /P)× K and K ×(D/P), respectively. Doing so allows the

matrix A to be partitioned into P tiles × P tiles. Then P different processors perform matrix

multiplication with the different P tiles of W and H simultaneously. This data partition

scheme is appropriate for block-wise updates of W and H based on ANLS-BPP algorithm.

Unlike ANLS-BPP algorithm, FAST-HALS requires column-wise/row-wise sequential up-

dates because there is a data dependency between two consecutive columns/rows. Hence,

FAST-HALS algorithm is not allowed to divide W and H across V and D dimensions. In

our tiling approach, W and H are partitioned across K dimension, and the sizes of each

block in W and H are V ×(K/P) and (K/P)× D, respectively. Our key contribution is not

tiling/blocking itself, but converting matrix-vector operations to matrix-matrix operations.

Tiling enables us to do the latter.

3.3.3 GPU Platform

Lopes et al. [54] proposes several GPU-based parallel NMF implementations that use both

MU and AU algorithms for both Euclidean and KL divergence objective functions. Mejía-

Roa et al. [58] presents NMF-mGPU that performs MU based NMF algorithm on either

a single GPU device or multiple GPU devices through MPI for a large-scale biological

53

dataset. Koitka et al. [41] presents MU and ALS based GPU implementations binding to

the R environment. To our knowledge, our work is the first to develop FAST-HALS based

parallel NMF implementation for GPUs.

3.4 Overview of Approach

In this section, we present a high-level overview of our approach to optimize NMF for

data locality. We begin by describing the FAST-HALS algorithm [14], one of the fastest

algorithms for NMF as demonstrated by previous comparison studies [38]. We analyze the

data movement overheads from main memory, for different components of that algorithm,

and identify the main bottlenecks. We then show how the algorithm can be adapted by

exploiting the associativity of addition to make the computation effectively tileable to reduce

data movement from memory, whereas the original form is not tileable.

3.4.1 Overview of FAST-HALS Algorithm

Algorithm 13 shows pseudo-code for the FAST-HALS algorithm [14] for NMF. It is an

iterative algorithm that iteratively updates H and W , fully updating all entries in H (lines

4-8) and then updating all entries in W (lines 10-15) during each iteration until convergence.

While the updates to H and W are slightly different (due to normalization of W after each

iteration), each of the updates involves a pair of matrix-matrix products (lines 4/5 and 10/11

for H and W , respectively) and a sequential loop that steps through features (k loop) to

update one row (column) of H(W) at a time. The computation within these k loops involves

vector-vector operations and matrix-vector operations. From a computational complexity

standpoint, the various matrix-matrix products and the sequential (K times) matrix-vector

products all have cubic complexity (O(N3) if all matrices are square and of side N). But as

we show by analysis of data movement requirements in the next sub-section, the collection

54

Algorithm 13 FAST-HALS algorithm

Input: A ∈ RV×D
+ : non-negative matrix, ε: small non-negative quantity

1: Initialize W ∈ RV×K
+ and H ∈ RK×D

+ with random non-negative numbers
2: repeat
3: // Updating H
4: R← ATW
5: S←W TW
6: for k = 0 to K − 1 do
7: Hk ← max

(
ε,Hk +Rk−HT Sk

)
8: end for
9: // Updating W

10: P← AHT

11: Q← HHT

12: for k = 0 to K − 1 do
13: Wk ← max(ε,WkQkk +Pk−WQk)
14: // Normalize Wk column vector with L2−norm

15: Wk←
Wk

||Wk||2
16: end for
17: until convergence

55

of matrix-vector products in lines 7 and 13 dominate. In the following sub-section, we

present our approach to alleviating this bottleneck by exploiting the flexibility of instruction

reordering via use of the associativity property of addition1.

3.4.2 Data Movement Analysis for FAST-HALS Algorithm

The code regions with high data movement can be identified by individually analyzing

each line in Algorithm 13. Lines 4 and 5 perform matrix multiplication. It is well known

that 2MNK√
C

is the highest order term in the number of data elements moved (between main

memory and a cache of size C words) for efficient tiled matrix multiplication of two matrices

A, (M×K) and B, (K×N)2. Thus, the data movement costs associated with lines 4 and 5

are 2DKV√
C

and 2KKV√
C

, respectively. The loop in line 6 performs matrix-vector multiplication

and has an associated data movement cost of K(3D+DK +K). Similar to lines 4 and 5, the

data movement costs for lines 10 and 11 are 2V KD√
C

and 2KKD√
C

, respectively. The loop in line

12 has an associated data movement cost of K(V K +K +6V +1). The total data movement

for Algorithm 13 is shown in Equation 3.3.

K(K(V +D)(1+
2√
C
)+

4V D√
C

+6V +3D+2K +1) (3.3)

The main data movement overhead is associated with loops in lines 6 and 12. For

example, the combined fractional data movement overhead of lines 7 (within loop in line 6)

and 13 (within loop in line 12) is 91% for the 20 Newsgroups dataset. If the operational

intensity (defined as the number of operations per data element moved) is very low, the

performance will be bounded by memory bandwidth and thus will not be able to achieve the

1Floating-point addition is of course not strictly associative, but as shown later by the experimental results,
the changed order does not adversely affect algorithm convergence.

2An extensive discussion of both lower bounds and data movement volume for several tiling schemes may
be found in the recent work of Smith [87].

56

original value

current value

updated value

Replace column 0 of W

with output

W

Q

Replace column 1 of W

with output

Replace column 2 of W

with output

…

t = 0 t = 1 t = 2

Q Q

W W

Figure 3.1: FAST-HALS: Update of W .

peak compute capacity. Due to its low operational intensity, the performance of Algorithm

13 is limited by the memory bandwidth. Thus, the major motivation for our algorithm

adaptation is to achieve better performance by reducing the required data movement.

3.4.3 Overview of PL-NMF

In this sub-section, we describe how the FAST-HALS algorithm is adapted by exploiting

the flexibility of changing the order in which additive contributions to a data element

are made. Before describing the adaptation, we first highlight the interaction between

different columns of W in the original algorithm. Figure 3.1 depicts the update of W which

corresponds to the lines 12 to 16 in Algorithm 13.

In Algorithm 13, tth column of W is updated as the product of W with tth column of

Q which is a matrix-vector multiplication operation. Since the update to (t +1)th column

depends on tth column, different columns (t: features) are updated sequentially. Let W_old

57

W

Q

𝑊_𝑛𝑒𝑤0,0𝑄0,𝑡 +𝑊_𝑛𝑒𝑤0,1𝑄1,𝑡 +
𝑊_𝑜𝑙𝑑0,2𝑄2,𝑡 +
𝑊_𝑜𝑙𝑑0,3𝑄3,𝑡 +𝑊_𝑜𝑙𝑑0,4𝑄4,𝑡 +𝑊_𝑜𝑙𝑑0,5𝑄5,𝑡

t

updated values

original values

original value

current value

updated value

Figure 3.2: FAST-HALS: Updating a single element of W . The dash represents updated
value.

represent the values at the beginning of the current outer iteration, and let W_new represent

the values at the end of current outer iteration (updated values). Interaction between W_old

and W_new is shown in Figure 3.2 which depicts the contributions from W_old and W_new

to W_newi,t . W_newi,t can be obtained by
t−1
∑
j=0

W_newi, j×Q j,t +
K−1
∑
j=t

W_oldi, j×Q j,t . Figure

3.3 shows the contributions of W_oldi,t and W_newi,t to W_newi,∗. W_oldi,t contributes to

W_newi, j ∀ j| j ≤ t, and W_newi,t contributes to W_newi, j where ∀ j| j > t. In other words,

the old value of column t is used to update the columns to the left of t (and self), and the

new/updated value of column t is used to update the columns to the right of column t.

If we partition W into a set of column panels (tiles) of size T , the interactions between

columns can be expressed in terms of tiles as depicted in Figure 3.4. Similar to individual

columns, the old value of tile τ is used to update the columns to the left of τ (phase 1), and

58

t

W

0 K – 1
t

0 K – 1

W

original value

current value

updated value

Figure 3.3: The contributions from W0,t to other elements.

the new/updated value of tile τ is used to update the tiles to the right of tile τ (phase 3). The

updates to different columns with a tile (phase 2) is done sequentially.

The contributions to tiles to the left of current tile τ can be done as W_newi, j− =

W_oldi,τ×T :((τ+1)×T)−1×Qτ×T :((τ+1)×T)−1, j where ∀ j| j < τ×T −1. Similarly, contribu-

tions to tiles to the right of current tile τ can be done as W_newi, j−=W_newi,τ×T :((τ+1)×T)−1×

Qτ×T :((τ+1)×T)−1, j where ∀ j| j > (τ +1)×T . Both phases 1 and 3 can be performed using

matrix-matrix operations which are known to have much better performance and lower data

movement than matrix-vector operations. Note that the total number of operations in both

the original formulation and our formulation are exactly the same.

59

Phase 1

tile !

Phase 3

tile !

Phase 2

tile !

original value
current value
updated value

Figure 3.4: Overview of our approach for updating W .

3.5 Details of PL-NMF on Multi-Core CPUs and GPUs

3.5.1 Parallel CPU Implementation

Algorithm 14 shows our CPU pseudo-code for updating W . We begin by computing

AHT (line 1). If A is sparse, then the actual implementation uses mkl_dcsrmm() and

cblas_dgemm() is used otherwise. Line 2 computes the HHT (using cblas_dgemm()). The

W values from the previous iteration are kept in W_old. We maintain another data structure

called W_new which represents the updated W values. W_new is initialized by the loop in

line 4. By using Equation 3.4, phase 1 is done by the loop in line 11. Figure 3.5 illustrates the

actual computations of tiled matrix-matrix multiplications for three sequential phases, where

τ denotes the index of the current tile and T is the size of each tile. For example, at current

tile τ , phase 1 performs multiplication of the same colored/patterned two sub-matrices (tiles)

in W_old and Q to update the result matrix W_new.

60

Algorithm 14 Parallel CPU implementation for updating W

Input: A ∈ RV×D
+ : input matrix, W_old and W_new: V ×K non-negative matrix factor, H: D×K

non-negative matrix factor, T : Tile size, ε: small non-negative quantity, γ: total number of tiles

1: P← AHT

2: Q← HHT

3: // Initialize W_new using W_old and Q
4: for v = 0 to V − 1 do
5: for k = 0 to K − 1 do
6: W_new[v][k]←W_old[v][k] × Q[k][k]
7: end for
8: end for
9: // Phase 1

10: γ ← K / T
11: for tile_id = 0 to γ − 1 do
12: W_new[0:V -1][0:(tile_id× T)-1] −=

dgemm(W_old[0:V -1][tile_id× T :((tile_id +1)× T)-1], Q[tile_id× T :((tile_id +1)× T)-1][0:(tile_id×
T)-1])

13: end for
14: // Phase 2 & Phase 3
15: for tile_id = 0 to γ − 1 do
16: // Phase 2
17: for t = tile_id × T to (tile_id + 1) × T − 1 do
18: sum_square← 0
19: #pragma omp parallel for reduction(+:sum_square)
20: for v = 0 to V − 1 do
21: sum← 0
22: k← tile_id × T
23: #pragma omp simd reduction(+:sum)
24: for ; to t − 1 do
25: sum← sum + W_new[v][k] × Q[t][k]
26: end for
27: #pragma omp simd reduction(+:sum)
28: for k = t; to (tile_id + 1) × T − 1 do
29: sum← sum + W_old[v][k] × Q[t][k]
30: end for
31: W_new[v][t]← max(ε , W_new[v][t] + P[v][t] − sum)
32: sum_square← sum_square + W_new[v][t] ×W_new[v][t]
33: end for
34: #pragma omp parallel for
35: for v = 0 to V − 1 do
36: W_new[v][t]←W_new[v][t] / sqrt(sum_square)
37: end for
38: end for
39: // Phase 3
40: W_new[0:V -1][(tile_id +1)× T :K-1] −=

dgemm(W_new[0:V -1][tile_id× T :((tile_id +1)× T)-1], Q[tile_id× T :((tile_id +1)× T)-1][(tile_id
+1)× T :K-1])

41: end for

61

Phase 1

Q
0 K–1

0 K–1
W_newW_old

0

V–1

0

K–1

tile_id 0
tile_id 1

tile_id 2
tile_id 3

tile_id 4

0

K–1

Phase 2

0 K–1

Q
0 K–1

W_newW_old/W_new

0

V–1

tile_id 0
tile_id 1

tile_id 2
tile_id 3

tile_id 4

Phase 3

0 K–1
W_new

Q
0 K–1

W_new

0

K–1

0

V–1

tile_id 0
tile_id 1

tile_id 2
tile_id 3

tile_id 4T

T

! ! !

Figure 3.5: Computations of three phases for updating W .

W_new[: , 0 : (τ×T)−1]−=

W_old[: , (τ×T) : ((τ +1)×T)−1]·

Q[(τ×T) : ((τ +1)×T)−1, 0 : (τ×T)−1]

(3.4)

The loop in line 17 performs phase 2 computations as formulated in Equation 3.5. In order to

take advantage of the vector units, the loops in lines 24 and 28 are vectorized. Additionally,

a column-wise normalization for W_new is performed within phase 2 (line 36).

W_new[: , (τ×T) : ((τ +1)×T)−1]−=

W [: , (τ×T) : ((τ +1)×T)−1]·

Q[(τ×T) : ((τ +1)×T)−1, (τ×T) : ((τ +1)×T)−1]

+P[: , (τ×T) : ((τ +1)×T)−1]

(3.5)

The matrix-matrix multiplication in line 40 corresponds to the phase 3 computations using

Equation 3.6. As depicted in Figure 3.5, the tiles involving phase 3 and phase 1 computations

62

are different from each other.

W_new[: , ((τ +1)×T) : K−1]−=

W_new[: , (τ×T) : ((τ +1)×T)−1]·

Q[(τ×T) : ((τ +1)×T)−1, ((τ +1)×T) : K−1]

(3.6)

Finally, our parallel CPU implementation completely substitutes lines 10 to 16 in Algorithm

13 for all lines in Algorithm 14. Similarly, H will be updated in the same fashion as updating

W except for the normalization part.

3.5.2 Parallel GPU Implementation

Similar to our CPU algorithm, our GPU algorithm also tries to minimize the data

movement. Algorithm 15, 16 and 17 show the pseudo-code of our GPU algorithm. Since

the overall structure of the GPU algorithm is similar to the CPU algorithm, this section

only highlights the differences. Algorithm 15 runs on the host which is responsible for

launching GPU kernels. The sparse matrix-dense matrix multiplication is implemented

using cusparseDcsrmm(), and dense matrix-dense matrix multiplication is implemented

using cublasDgemm().

Algorithm 16 shows the pseudo-code for phase 2. In GPUs, the reduction across V

(for normalization of W) can be performed using global memory atomic operations which

are very expensive. Hence, our implementation uses efficient hierarchical reduction. The

reduction within a thread block is done in 4 steps: i) in line 18, the reduction across the

threads within a warp is done using efficient warp shuffling primitives, ii) all the threads

with lane id 0 write the reduced value to shared memory (line 20), iii) in line 24, the first

warp of the thread block loads the previously written values from shared memory and iv) all

the threads in the first warp again performs warp reduction (line 26). In order to perform

63

Algorithm 15 GPU implementation of updating W on host

Input: A ∈ RV×D
+ : input matrix, W_old and W_new: V ×K non-negative matrix factor, H:

D×K non-negative matrix factor, T : Tile size, ε: small non-negative quantity, γ: total
number of tiles

1: P← AHT

2: Q← HHT

3: // Initialize W_new using W_old and Q
4: init_W_new()
5: // Phase 1
6: γ ← K / T
7: for tile_id = 0 to γ − 1 do
8: W_new[0:V -1][0:(tile_id× T)-1] −=

cublasDgemm(W_old[0:V -1][tile_id× T :((tile_id +1)× T)-1], Q[tile_id×
T :((tile_id +1)× T)-1][0:(tile_id× T)-1])

9: end for
10: // Phase 2 & Phase 3
11: for tile_id = 0 to γ − 1 do
12: // Phase 2
13: for t = tile_id × T to (tile_id + 1) × T − 1 do
14: cudaMemset(sum_square,0)
15: update_W_phase_2()
16: __cudaDeviceSynchronize()
17: update_W_norm()
18: __cudaDeviceSynchronize()
19: end for
20: // Phase 3
21: W_new[0:V -1][(tile_id +1)× T :K-1] −=

cublasDgemm(W_new[0:V -1][tile_id× T :((tile_id +1)× T)-1], Q[tile_id×
T :((tile_id +1)× T)-1][(tile_id +1)× T :K-1])

22: end for

64

Algorithm 16 GPU implementation of update_W_phase_2 kernel

Input: W_old, W_new, P, Q, sum_square, t, tile_id, T , V , K, ε

1: vId← blockIdx.x × blockDim.x + threadIdx.x // threadID
2: __shared__ shared_sum[1024/32]
3: sum_reduce = 0.0f
4: if vId < V then
5: sum = 0
6: for k = tile_id × T to (tile_id + 1) × T − 1 do
7: if k < t then
8: sum← sum + W_new[vId + k × V][k] × Q[k × K + t]
9: else

10: sum← sum + W_old[vId + k × V] × Q[k × K + t]
11: end if
12: end for
13: W_new[vId + t × V]← max(ε , W_new[vId + t × V] + P[vId + t × V] − sum)
14: sum_reduce←W_new[vId + t × V]
15: end if
16: sum_reduce← sum_reduce × sum_reduce
17: // Warp-level reduction
18: sum_reduce← warp_reduce(sum_reduce)
19: // Block-level reduction
20: if threadIdx.x % 32 == 0 then
21: shared_sum[threadIdx.x / 32]← sum_reduce
22: end if
23: __syncthreads()
24: if threadIdx.x / 32 == 0 then
25: sum_reduce← shared_sum[threadIdx.x]
26: sum_reduce← warp_reduce(sum_reduce)
27: end if
28: if threadIdx.x == 0 then
29: atomicAdd (sum_square, sum_reduce)
30: end if

65

Algorithm 17 GPU implementation of update_W_norm kernel

Input: W_new, sum_square, t, V

1: vId← blockIdx.x × blockDim.x + threadIdx.x // threadID
2: if vId < V then
3: return
4: end if
5: W_new[vId + t × V]←W_new[vId + t × V] / sqrt(sum_square)

reduction across multiple thread blocks, we use atomic operations which is shown in line 29.

Algorithm 17 shows the pseudo-code for normalization.

66

3.6 Modeling: Determination of the tile size

In this section, we first compare the data movement cost of our approach with original

FAST-HALS algorithm. Then the data movement of our algorithm as a function of T is

developed to select effective tile sizes.

K
T −1

∑
i=0

iV T 2(
1
T
+

2√
C
) =V T 2(

1
T
+

2√
C
)(

K2−KT
2T 2) (3.7)

K
T −1

∑
i=0

T (V T +T +V) =
K
T

T (V T +T +V) (3.8)

In our approach, W is updated in three phases. Phases 1 and 3 can be implemented

using matrix-multiplication, and the corresponding cost is shown in Equation 3.7, where T

represents the tile size and C is the cache size. Phase 2 can be implemented using matrix-

vector multiplication and the associated cost is shown in Equation 3.8. Since loading matrix

W dominates the data movement cost in phase 2, the cost of loading vectors can be ignored.

Equation 3.9 shows the total data movement required for updating W .

vol(T) =V (
1
T
+

2√
C
)(K2−KT)+

K
T

T (V T) (3.9)

The cost of updating H is similar to updating W . Compared to updating W , updating H does

not require accessing Q. In addition, since H is not normalized, the cost associated with

normalization is also not present.

The data movement cost of the original loop in line 12 in Algorithm 13 is K(V K +K +

6V + 1). Hence, for the 20 Newsgroups dataset (V =26,214) with low rank K=240 on a

machine with 35 MB cache, the data movement cost of original scheme is 1,547,732,400

bytes. However, in our scheme based on Equation 3.9, the cost is only 189,208,129 bytes

which is 8.2× lower than the original scheme.

67

5 10 15 20 40 80

tile sizes (T)

0

1

2

3

4

5

6

7

ti
m

e
 t

a
k
e
n

 t
o

 1
0

0
 i

te
ra

ti
o
n

s
(s

)

20 Newsgroups

K = 80 K = 160 K = 240

5 10 15 20 40 80

tile sizes (T)

0

1

2

3

4

5

6

7

ti
m

e
 t

a
k
e
n

 t
o

 1
0

0
 i

te
ra

ti
o
n

s
(s

)

TDT2

K = 80 K = 160 K = 240

5 10 15 20 40 80

tile sizes (T)

0

1

2

3

4

5

6

ti
m

e
 t

a
k

e
n

 t
o

 1
0

0
 i

te
ra

ti
o
n

s
(s

)

Reuters

K = 80 K = 160 K = 240

5 10 15 20 40 80

tile sizes (T)

0

0.5

1

1.5

2

2.5

3

3.5

ti
m

e
 t

a
k

e
n

 t
o

 1
0

0
 i

te
ra

ti
o
n

s
(s

)

AT&T

K = 80 K = 160 K = 240

5 10 15 20 40 80

tile sizes (T)

0

1

2

3

4

5

6

ti
m

e
 t

a
k

e
n

 t
o

 1
0

0
 i

te
ra

ti
o

n
s

(s
)

PIE

K = 80 K = 160 K = 240

Figure 3.6: The time taken to reach 100 iterations when the tile size T is varied for different
K on five datasets. Low-rank K is set to 80, 160 and 240, and T is varied for each K. X-axis:
tile size; Y-axis: elapsed time to reach 100 iterations.

68

The tile size T affects the data movement volume and hence the performance. Equation

3.9 shows the data movement of our algorithm as a function of T . Consider the case

when there is only one tile (T = K). In this case, there is no work associated with phase 1

(contributions to left) and phase 3 (contributions to the right) as the first term of Equation

3.9 will become zero. The total data movement of phase 2 is V K2 which is very high. Now

consider the other extreme where the tile size is 1 (T = 1). In this case, phases 1 and 2 have

very high data movement (>V K2). Thus, when T is high, the total data movements required

for phases 1 and 3 are low, but phase 2 has high data movement. On the other extreme, when

T is low, the total data movements for phases 1 and 3 are high, but phase 2 has low data

movement. Hence, we expect the combined data movement for all the phases to decrease

as T increases from 1 to some point and then the data movement will increase again as T

approaches K. Figure 3.6 shows the performance results across different tile sizes for K =

80, 160 and 240 on five datasets. Since performance is correlated with data movement, the

performance as a function of tile size T should show a similar trend with the performance

shown in Figure 3.6.

d(vol(T))
dT

= T 2(
2√
C
−1)+K = 0 (3.10)

T =

√
K− 2√

C
(3.11)

In order to build a model to determine the tile size for a given K, the derivative of

Equation 3.9 with respect to T is set it to zero as shown in Equation 3.10. The solution to

Equation 3.10 is shown in Equation 3.11. As a result, for a machine with cache size of 35

MB, the tile sizes computed by our model are 8.94, 12.64 and 15.48 for K = 80, 160 and

240, respectively. As shown in Figure 3.6, tile sizes selected by our model (Equation 3.11)

69

are optimal/near optimal. For example, when K = 240, exhaustive evaluation shows that the

best performance is achieved for T =15, which is very close to our model predicted tile size

of T = 15.48.

3.7 Experimental Evaluation

This section compares the time to convergence and convergence rate of PL-NMF with

various state-of-the-art techniques.

3.7.1 Benchmarking Machines

Table 3.3 shows the configuration of the benchmarking machines used for experiments.

All the CPU experiments were run on an Intel Xeon CPU E5-2680 v4 running at 2.4 GHz

with 128GB RAM. The GPU experiments were run on an NVIDIA Tesla P100 PCIE GPU

with 16GB global memory.

Table 3.3: Machine configuration

Machine Details

CPU
Intel(R) Xeon(R) CPU E5-2680 v4 (28 cores), 128GB

ICC version 18.0.3

GPU
Tesla P100 PCIE

(56 SMs, 64 cores/MP, 16GB Global Memory, 4 MB L2 cache)
CUDA version 9.2.88

3.7.2 Datasets

For experimental evaluations we used three publicly available real-world text datasets

– 20 Newsgroups3, TDT23, Reuters3. In addition, in order to represent the audio-visual

3http://dengcai.zjulearning.org:8081/Data/TextData.html

70

context analysis in social media platforms, we used two image datasets – AT&T4 and PIE5.

20 Newsgroups, TDT2 and Reuters are sparse matrices, and AT&T and PIE are dense

matrices. The 20 Newsgroups dataset contains a document-term matrix in bag-of-words

representation associated with 20 topics. TDT2 (Topic Detection and Tracking 2) dataset

is a collection of text documents from CNN, ABC, NYT, APW, VOA and PRI. Reuters

dataset is a collection of documents from the Reuters newswire in 1987. Both AT&T and

PIE datasets contain images of faces in dense matrix format. The size of each image in

AT&T and PIE datasets is 92×112 and 64×64 pixels, respectively. Table 3.4 shows the

characteristics of each dataset.

Table 3.4: Statistics of datasets used in the experiments. V is the number of rows and D is
the number of columns in non-negative matrix A. For the text datasets, V is the vocabulary
size and D is the number of documents.

Dataset V D Total NNZ Sparsity (%)
20 Newsgroups 26,214 11,314 1,018,191 99.6567

TDT2 36,771 10,212 1,323,869 99.6474
Reuters 18,933 8,293 389,455 99.7519
AT&T 400 10,304 4,121,478 0.0030

PIE 11,554 4,096 47,321,408 0.0080

4https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

5http://dengcai.zjulearning.org:8081/Data/FaceDataPIE.html

71

3.7.2.1 NMF Implementations Compared

We evaluated PL-NMF on CPUs and GPUs with the state-of-the art parallel NMF

implementations such as planc6 by Kannan et al. [19, 36] and bionmf-gpu7 by Mejía-Roa et

al. [58]. The four implementations used in our comparisons are as follows:

• planc-MU-cpu: planc’s OpenMP-based MU

• planc-HALS-cpu: planc’s OpenMP-based HALS

• planc-BPP-cpu: planc’s OpenMP-based ANLS-BPP

• bionmf-MU-gpu: bionmf-gpu’s GPU-based MU

All of the competing CPU implementations, including planc-MU-cpu, planc-HALS-cpu

and planc-BPP-cpu, and our PL-NMF-cpu, used Intel’s Math Kernel Library (MKL) for all

BLAS (Basic Linear Algebra Subprograms) operations. Similarly, all GPU implementations,

including bionmf-MU-gpu and our PL-NMF-gpu, used NVIDIA’s cuBLAS library for all

types of BLAS operations.

3.7.2.2 Evaluation Metric

In order to evaluate the accuracy of different NMF models, we used the relative objective

function
√

∑vd(Avd−(WH)vd)2

∑vd(Avd)2 suggested by Kim et al. [38], where Avd and (WH)vd denote

the values of each element in an input matrix A ∈ RV×D
+ and an approximated matrix

(WH) ∈ RV×D
+ . The capability of each NMF model in minimizing the objective function

can be obtained by measuring relative changes of objective value over iterations.

6https://github.com/ramkikannan/planc

7https://github.com/bioinfo-cnb/bionmf-gpu

72

3.7.3 Performance Evaluation
3.7.3.1 Convergence

Figure 3.7 shows the relative error as a function of elapsed time of various NMF

implementations for different K values. To ensure fairness, the number of threads in all CPU

implementations were tuned per dataset and the best performing configuration was selected.

For each dataset, the same randomly initialized non-negative matrices were used for all CPU

and GPU implementations. Since the bionmf-MU-gpu implementation does not allow the

input matrix to be sparse, we only compared our GPU implementation with bionmf-MU-gpu

on AT&T and PIE dense image datasets. PL-NMF-cpu and PL-NMF-gpu consistently

outperformed existing state-of-the-art CPU and GPU implementations on all datasets. As

reported in previous studies, FAST-HALS produced a better convergence rate than other

NMF variants. MU and ANLS-BPP algorithms suffered from a lower convergence rate on

both sparse and dense matrices. As shown in Figure 3.8, planc-HALS-cpu was the only

implementation which was able to maintain the same solution quality as ours. However, our

implementation converged faster.

3.7.3.2 Speedup

Compared to the planc-HALS-cpu, our PL-NMF-cpu achieved 3.07×, 3.06×, 5.81×,

3.02× and 3.07× speedup per iteration on the 20 Newsgroups, TDT2, Reuters, AT&T and

PIE datasets with K = 240, respectively. As the relative error reduction per iteration is vastly

different between MU and FAST-HALS algorithms, measuring the speedup per iteration

between bionmf-MU-gpu and PL-NMF-gpu is not a fair comparison.

Figure 3.9 depicts the speedup of our PL-NMF-gpu over all CPU implementations. The

x-axis in Figure 3.9 is relative error, and the y-axis is the ratio of elapsed time for all CPU

73

implementations to reach a relative error to elapsed time for PL-NMF-gpu to approach the

same relative error. All of the points in Figure 3.9 are greater than one. This indicates that

PL-NMF-gpu is faster than all of the competing implementations. For example, when the

compared models, i.e., PL-NMF-cpu, planc-HALS-cpu, bionmf-MU-gpu and planc-MU-

cpu, converged to 0.12 relative error, the parallel PL-NMF-gpu achieved 3.49×, 9.74×,

26.41× and 287.1× speedup on PIE dataset, respectively.

Table 3.5: Breakdown of elapsed time in seconds for updating W on the 20 Newsgroups
dataset. DMV: Iterative Dense Matrix-Vector Multiplications; DMM: Dense Matrix-Dense
Matrix Multiplication; SpMM: Sparse Matrix-Dense Matrix Multiplication.

Sequential
FAST-HALS NMF elapsed time (s) PL-NMF-cpu elapsed time (s)

SpMM 0.048 SpMM 0.048
DMM 0.002 DMM 0.002

DMV 2.039
Phase 1 0.005

Phase 2 & 3 0.026

Table 3.5 shows the breakdown of elapsed time for each step in updating W . Both se-

quential FAST-HALS NMF and PL-NMF-cpu implementations use the same mkl_dcsrmm()

and cblas_dgemm() routines for SpMM and DMM operations. In Table 3.5, SpMM corre-

sponds to line 10 in Algorithm 13 and line 1 in Algorithm 14, which computes the same

AHT . Similarly, DMM corresponds to line 11 in Algorithm 13 and line 2 in Algorithm 14,

which performs the same HHT . The difference of updating W is that PL-NMF-cpu performs

phases 1, 2 and 3 instead of iteratively performing DMV computations. As expected, the

updating time of W is considerably decreased in our PL-NMF-cpu algorithm, indicating

that the reformulation of the core-computations to matrix-matrix multiplication shows the

benefit of our approach.

74

3.7.3.3 Scalability with the large size of K

Figure 3.10a compares the training time of our PL-NMF-cpu and planc-HALS-cpu

on the large TDT2 dataset for different sizes of K. The T values are chosen based on

Equation 3.11. Figure 3.10b shows that as K increases our speedup also increases. Our

PL-NMF-cpu achieved approximately 2.70×, 6.94×, 7.91×, 11.07× and 12.93× speedup

over planc-HALS-cpu when K = 200, 400, 800, 1600 and 3200, respectively.

75

0 0.5 1 1.5 2 2.5 3
time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

re
la

ti
ve

er
ro

r

AT&T, K = 80

PL-NMF-gpu PL-NMF-cpu bionmf-MU-gpu planc-HALS-cpu planc-MU-cpu planc-BPP-cpu

0 2 4 6 8 10

time (s)

0.5

0.6

0.7

0.8

0.9

1

re
la

ti
v

e
 e

rr
o

r

20 Newsgroups, K = 80

0 5 10 15 20 25

time (s)

0.5

0.6

0.7

0.8

0.9

1

re
la

ti
v

e
 e

rr
o

r

20 Newsgroups, K = 160

0 10 20 30 40

time (s)

0.5

0.6

0.7

0.8

0.9

1

re
la

ti
v

e
 e

rr
o

r

20 Newsgroups, K = 240

0 5 10 15

time (s)

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o

r

TDT2, K = 80

0 5 10 15 20 25 30

time (s)

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o

r

TDT2, K = 160

0 10 20 30 40 50

time (s)

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o

r

TDT2, K = 240

0 2 4 6 8 10

time (s)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o
r

Reuters, K = 80

0 5 10 15 20

time (s)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o
r

Reuters, K = 160

0 5 10 15 20 25 30 35

time (s)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o
r

Reuters, K = 240

0 0.5 1 1.5 2 2.5 3

time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

re
la

ti
v

e
 e

rr
o
r

AT&T, K = 80

0 1 2 3 4 5

time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

re
la

ti
v

e
 e

rr
o
r

AT&T, K = 160

0 1 2 3 4 5 6

time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

re
la

ti
v

e
 e

rr
o
r

AT&T, K = 240

0 0.5 1 1.5 2 2.5 3

time (s)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
la

ti
v
e
 e

rr
o

r

PIE, K = 80

0 1 2 3 4 5 6

time (s)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
la

ti
v
e
 e

rr
o

r

PIE, K = 160

0 1 2 3 4 5 6

time (s)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
la

ti
v
e
 e

rr
o

r

PIE, K = 240

Figure 3.7: Relative objective value over time on five datasets. According to current model,
the T values for K = 80, 160 and 240 are set to 10, 15 and 15, respectively. X-axis: elapsed
time in seconds; Y-axis: relative error.

76

0 0.5 1 1.5 2 2.5 3
time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

re
la

ti
ve

er
ro

r

AT&T, K = 80

PL-NMF-gpu PL-NMF-cpu bionmf-MU-gpu planc-HALS-cpu planc-MU-cpu planc-BPP-cpu

1 10 20 30 40 50 60 70 80 90 100

number of iterations

0.5

0.6

0.7

0.8

0.9

1

re
la

ti
v

e
 e

rr
o

r

20 Newsgroups, K = 240

1 10 20 30 40 50 60 70 80 90 100

number of iterations

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v

e
 e

rr
o

r

TDT2, K = 240

1 10 20 30 40 50 60 70 80 90 100

number of iterations

0.6

0.7

0.8

0.9

1

re
la

ti
v

e
 e

rr
o

r

Reuters, K = 240

1 10 20 30 40 50 60 70 80 90 100

number of iterations

0.1

0.15

0.2

0.25

re
la

ti
v

e
 e

rr
o

r

AT&T, K = 240

1 10 20 30 40 50 60 70 80 90 100

number of iterations

0.6

0.7

0.8

0.9

1

re
la

ti
v

e
 e

rr
o

r

Reuters, K = 240

Figure 3.8: Comparison of convergence over iterations on five datasets, K = 240 and T =
15. X-axis: number of iterations; Y-axis: relative error.

0 0.5 1 1.5 2 2.5 3
time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

re
la

ti
ve

er
ro

r

AT&T, K = 80

PL-NMF-gpu PL-NMF-cpu bionmf-MU-gpu planc-HALS-cpu planc-MU-cpu planc-BPP-cpu

0.98 0.91 0.75 0.62 0.54 0.50 0.48 0.47

relative error

10
0

10
1

10
2

10
3

sp
ee

d
u

p
 o

f
P

L
-N

M
F

-g
p

u

20 Newsgroups, K = 240

0.98 0.95 0.92 0.83 0.78 0.74 0.72 0.7

relative error

10
0

10
1

10
2

10
3

sp
ee

d
u

p
 o

f
P

L
-N

M
F

-g
p

u

TDT2, K = 240

0.98 0.89 0.86 0.74 0.67 0.64 0.62 0.61

relative error

10
0

10
1

10
2

10
3

sp
ee

d
u

p
 o

f
P

L
-N

M
F

-g
p

u

Reuters, K = 240

0.23 0.17 0.15 0.14 0.13 0.12 0.11 0.10

relative error

10
0

10
1

10
2

10
3

sp
ee

d
u
p

 o
f

P
L

-N
M

F
-g

p
u

AT&T, K = 240

0.36 0.23 0.18 0.16 0.15 0.14 0.12

relative error

10
0

10
1

10
2

10
3

sp
ee

d
u
p

 o
f

P
L

-N
M

F
-g

p
u

PIE, K = 240

Figure 3.9: Speedup of PL-NMF-gpu over all CPU implementations on five datasets, K =
240 and T = 15.

77

TDT2

200 400 800 1600 3200

size of K

0

20

40

60

80

100

120

el
ap

se
d

 t
im

e
(s

)
p

er
 i

te
ra

ti
o

n planc-HALS-cpu

PL-NMF-cpu

(a) Time vs. Size of K (lower the better)

200 400 800 1600 3200

size of K

2X

4X

6X

8X

10X

12X

14X

sp
ee

d
u

p
 o

f
P

L
-N

M
F

-c
p

u

TDT2

(b) Speedup vs. Size of K (higher the better)

Figure 3.10: Speedup of PL-NMF-cpu over planc-HALS-cpu with the large size of K on
TDT2 dataset. According to current model, the T values for K = 200, 400, 800, 1600 and
3200 are set to 10, 20, 25, 40 and 50, respectively.

78

3.8 Conclusion

In this chapter, we developed a HALS-based parallel NMF algorithm for multi-core

CPUs and GPUs. The data movement overhead is a critical factor that affects performance.

This chapter does a systematic analysis of data movement overheads associated with NMF

algorithm to determine the bottlenecks. Our proposed approach alleviates the data movement

overheads by enhancing data locality. Our experimental section shows that our parallel NMF

achieves significant performance improvement over the existing state-of-the-art parallel

implementations.

79

Chapter 4: Parallel Data-Local Training for

Optimizing Word2Vec Embeddings for Word and Graph Embeddings

4.1 Introduction

The Word2Vec model proposed by Mikolov et al. [59, 60] belongs to the family of

neural network-based static word embedding techniques that generate a dense vector in a

low-dimensional embedding space for each word in a fixed vocabulary. The embeddings

generated by Word2Vec include most of the important information about word similarity

and word relatedness between other words in similar context. It can be utilized as a key

feature in a wide range of applications such as natural language processing [63, 67, 106],

bioinformatics [28, 61], and graph mining [26, 69].

The main focus of this chapter is the adaptation of the Word2Vec algorithm with a

view towards reducing the amount of data movement from/to memory. Technology trends

have made the cost of data movement increasingly dominant, both in terms of energy and

time, over the cost of performing arithmetic operations in computer systems. However,

the design and implementation of new algorithms in machine learning has been largely

driven by a focus on the computational complexity. The inner core computation of the

Word2Vec algorithm (explained in great detail later) involves a large number of dot-product

operations between the embedding vectors representing different words in the corpus. The

80

dot-product computation is inherently memory-bandwidth limited because only two floating

point operations are performed per pair of data elements read from memory. Since the

computational peak performance of all current/emerging processors (multi-core CPUs,

GPUs, FPGAs, etc.) greatly exceeds the peak memory bandwidth in words/second (often

by a factor between ten and hundred), any algorithm that performs a large number of dot-

products is inherently performance-handicapped, unless significant re-use of the processed

vectors in caches can be achieved.

The Skip-gram based Word2Vec algorithm (described in detail later) processes words

within small contiguous windows in the text, using dot-products of the center “focus” word

with other words in the window in the process of trying to move the vector embedding of

the word closer to that of the neighboring ones in the window (Attraction). Dot-products

with a large number of randomly selected words in the sentence are also performed with

the words in the window, seeking to move their vector embeddings further from them since

they are not found co-located in the corpus (Repulsion). The random access to words in the

latter negative-sampling process leads to very high data movement without any prospect of

reuse of those randomly fetched vectors. We develop an adaptation to the way the negative

sampling is performed that enables much higher data reuse for the fetched vectors. This is

done by separating out the computations that seek to align a word closer to its neighbors

in the windows from the negative-sampling computations, which are performed on mini-

batches of words at a time, using a common set of randomly chosen words to move away

from.

We develop efficient multi-core and GPU implementations of the adapted Word2Vec

algorithm and perform extensive comparative evaluation of the new algorithms with a

number of state-of-the-art implementations of Word2Vec on both platforms. We also show

81

the utility of the new Word2Vec implementation within the Node2Vec algorithm, which

accelerates embedding learning for large graphs. We demonstrate significant reduction of

data volume from/to main memory and improved performance over the current state-of-

the-art. We also conduct extensive evaluation on the quality of the produced embeddings,

for a number of application contexts. Overall, we find that we are able to achieve high

performance with quality of results that are comparable or better than baselines.

Chapter 4 is organized as follows. In Section 4.2 we present the background on

Word2Vec and Node2Vec. In Section 4.3, we present related prior works on parallelization

of Word2Vec and graph embedding techniques. In Section 4.4, we present the high-level

overview of skip-gram based Word2Vec algorithm with negative sampling method and con-

duct data movement analysis to identify the bottleneck. Sections 4.5 demonstrates details of

our CPU and GPU implementations of PAR-Word2Vec. Also, we compare data movement

costs of our PAR-Word2Vec with the original SG-NS based Word2Vec. In Section 4.6, we

compare PAR-Word2Vec with existing state-of-the-art parallel Word2Vec implementations.

4.2 Background

4.2.1 Word2Vec

The basic intuition behind the Word2Vec model is that similar words tend to occur in

similar contexts. Word2Vec is trained as a language model, in which the probability of a

word in a text corpus depends on its surrounding context words. The Word2Vec model

has two primary variants: (1) Continuous Bag-of-Words (CBOW), which predicts a center

word using the average of the words in a fixed context window on either side, and (2)

Skip-Gram (SG), which models pairwise probabilities of the center word with each of its

context words individually. These two algorithms therefore result in different numbers of

82

parameter updates: CBOW only updates the center word once for a given context window,

while SG updates the center word once for each context word. In practice the algorithms

yield roughly equivalent performance ([81] find better results with CBOW; [48, 60] with

SG); we follow prior work in focusing on the SG algorithm, which can (unlike CBOW)

be interpreted as implicit factorization of the word co-occurrence matrix [47]. As defined

by [59], the SG model seeks to maximize the average log probability J(θ) given a sequence

of N word tokens in the text corpus.

J(θ) =
1
N

N

∑
n=1

∑
−C≤ j≤C, j 6=0

log p(wn+ j|wn) (4.1)

where C is the window size at the current center word wi. Given by the softmax activation

function, the probability of p(wn+ j|wn) is defined as:

p(wn+ j|wn) =
exp(<⇀wout

n+ j,
⇀win

n >)

∑
V
v=1 exp(<⇀wout

v ,⇀win
n >)

(4.2)

where V is the size of the fixed vocabulary, ⇀win
n and ⇀wout

v denote a word vector of a word wn

pulled from Win matrix and a word vector of a word wv pulled from Wout matrix, respectively.

Furthermore, <⇀wout
v ,⇀win

n > computes the inner product of word vectors ⇀wout
v and ⇀win

n .

SG and CBOW can be trained using one of two different objectives. Given a center word

wn and a true target word wn+ j, calculating the full softmax equation given in Equation

4.2 for every word update becomes rapidly intractable as the vocabulary size V increases.

Instead of training probabilistically with the full softmax, the negative sampling (NS) method

randomly chooses a small number of words in the vocabulary as negative targets, and trains

using a log-bilinear objective derived from noise-contrastive estimation. The word vectors

are therefore updated based on only the selected negative target words and a positive target

word wn+ j, considerably reducing the number of computations while maintaining a good

quality of solution [60]. Alternatively, the hierarchical softmax (HS) objective originally

83

proposed by Morin and Bengio [62], which can be viewed as an approximation of the full

softmax function, can also be used to reduce the computational complexity of probabilistic

training. Mikolov et al. [60] use the binary Huffman tree structure for hierarchical softmax

so as to compute the probability distribution of a given word (root node) along with the

path from root to vocabulary size of leaf nodes. Each path in the tree structure represents

the relative probability to its child node. According to the nature of the binary Huffman

tree, the root node can be rapidly reached to the leaf nodes when the words of root and leaf

nodes are frequently used together in the corpus. This characteristic of hierarchical softmax

makes neural network based models more efficient in terms of both elapsed time for training

and accuracy. Typically, SG and CBOW are paired with each of the negative sampling

(SG-NS) and hierarchical softmax (CBOW-HS), respectively. Hereafter, we concentrate on

the skip-gram based Word2Vec with negative sampling (SG-NS) algorithm.

4.2.2 Node2Vec

The Node2Vec algorithm developed by Grover and Leskovec [26] is intended to learn

vector-based representations of nodes in a graph, such that similar nodes (either nodes in

similar subgraph structures or nearby nodes) have similar vectors. Algorithm 18 shows a

pseudo-code for the Node2Vec algorithm. The Node2Vec consists of sampling R random

walks of length L starting at each node in the graph; each of these walks ends up being a

sentence for Word2Vec training. So for V unique nodes, Node2Vec generates a corpus of

V ×R sentences of L tokens (node IDs) each. Then Node2Vec runs off-the-shelf SG-NS

based Word2Vec on a pre-processed corpus. In the pre-processed corpus, a single node and

its neighbor node correspond to a word token wn and wn+ j in Equation 4.1, respectively. In

the Word2Vec algorithm, a node in the pre-generated graph dataset can be thought of as

84

Algorithm 18 Node2Vec algorithm

Input: Graph G: (V nodes, E edges and W : weights), p: return, q: in-out, R: number of
random walks for each node, V : number of unique nodes, L: length of each walk, K:
number of hidden units, C: window size
Output: Win: V ×K input node embedding matrix, Wout : K×V output node embedding
matrix

1: π ← Preprocess(G, p, q)
2: Generate new G′: (V , E, π)
3: Initialize random_walks
4: for r = 0 to R − 1 do
5: for v = 0 to V − 1 do
6: Initialize walk
7: for walk_iter = 0 to L − 1 do
8: sample_node← Sampling(G′, π)
9: walk← [walk; sample_node]

10: end for
11: random_walks← [random_walks; walk]
12: end for
13: end for
14: // random_walks: pre-generated dataset to use it as an input for Word2Vec
15: repeat
16: Win,Wout ← SG-NS based Word2Vec(random_walks, K, C)
17: until convergence

85

a word in the corpus. The effectiveness of the node embedding outputs, Win and Wout , are

then directly evaluated using the applications such as node classification and link prediction

[26, 69, 91, 92]. Our contribution is to achieve a significant speedup on the embedding

learning part in the Node2Vec algorithm by transforming the original Word2Vec into our new

parallel Word2Vec algorithm. In fact, the Word2Vec embedding training portion of running

Node2Vec on the BlogCatalog dataset accounts for training time of Word2Vec within the Node2Vec
total training time of Node2Vec =

72.635360(s)
81.505412(s) ≈ 89.12% of the total run time.

4.3 Related Work

4.3.1 Parallelization of Word2Vec Embeddings

Several efficient data-locality-enhanced schemes have recently been proposed for Word2Vec

algorithms because the original Word2Vec algorithm imposes massive computations. As

shown in Table 4.1, previous studies at parallelizing Word2Vec can be grouped by the types

of machine, platform, and algorithm used in their implementations.

The original Word2Vec implementation released by Mikolov et al. [60] adopts HOG-

WILD! [75], a parallelization scheme where different word pairs are simultaneously pro-

cessed across multiple threads. HOGWILD! partially overcomes the limitation of Stochastic

Gradient Descent (SGD) optimization, which is inherently challenging to parallelize. How-

ever, adopting HOGWILD! in the Word2Vec algorithm has the inevitable limitation that

it may lead to a race condition between different threads when updating the same word

vector in the input and output matrices at the same time. In a shared-memory environment,

Ji et al. [35] proposed a parallel Word2Vec (pWord2Vec) model that maximizes reuse of

data structures by sharing negative samples within the same context window. The proposed

scheme changes the original Level 1 BLAS operations into Level 3 BLAS operations;

86

Table 4.1: Previous studies on parallelization of Word2Vec. Context types – Skip-gram (SG)
and Continuous Bag-of-Words (CBOW). Objective types – Negative Sampling (NS) and
Hierarchical Softmax (HS)

Author Machine Platform Algorithm

Mikolov et al. [60] CPUs Shared-memory
CBOW-NS, CBOW-HS,

SG-NS, SG-HS
Ji et al. [35] CPUs Shared-memory SG-NS

Vuurens et al. [96] CPUs Shared-memory SG-HS
Simonton and Alaghband [86] CPUs Shared-memory SG-NS, SG-HS

Rengasamy et al. [76] CPUs Shared-memory SG-NS
Ji et al. [35] CPUs Distributed-memory SG-NS

Ordentlich et al. [68] CPUs Distributed-memory SG-NS
Simonton and Alaghband [86] GPUs Shared-memory SG-NS, SG-HS

Bae and Yi [4] GPUs Shared-memory
CBOW-NS, CBOW-HS,

SG-NS, SG-HS
Canny et al. [9] GPUs Shared-memory SG-NS, SG-HS

thereby, the number of updates and communication cost between threads are considerably

reduced. The main difference between pWord2Vec and our scheme is the maximum number

of input words (columns in yellow colored matrix Min in Figure 4.5) sharing the same nega-

tive samples. In pWord2Vec, the maximum number is restricted to the total number of input

words in each context window, which is 2×window size+1. However, in our approach, the

number of columns in matrix Min is maximized using mini-batch size of all words within

each sentence, regardless of context window, to share the same negative samples. Vuurens

et al. [96] introduced an efficient caching strategy for updating vectors based on the SG-HS

algorithm. They maintained local copies of the most frequently used inner nodes in the

Huffman tree structure to maximize data reuse in cache and reduce the number of memory

conflicts. Recently, Rengasamy et al. [76] introduced a context combining approach (pS-

GNScc) to further optimize the data reuse in pWord2Vec. In pSGNScc, multiple correlated

context windows share not only negative samples but also positive samples. Given the

87

words in the current context window, pSGNScc utilizes a pre-generated inverse index table

to find related windows according to the word occurrences in the entire corpus. In their

experiments, pSGNScc achieved 1.28X speedup compared to pWord2Vec. In Ordentlich et

al. [68], a distributed SG-NS based Word2Vec algorithm was proposed in order to reduce the

high training latency and network bandwidth with large-scale datasets. On top of a Hadoop

system, multiple servers learn the distributed word vectors to achieve the higher throughput

in parallel. In the GPU platform, Simonton and Alaghband [86] developed both SG-HS

and SG-NS based Word2Vec algorithms using shared memory registers and in-warp shuffle

operations on GPUs. Within a thread block, the use of shared memory registers significantly

reduces the data accessing time compared to the global memory access. Based on roofline

design, Canny et al. [9] developed a system called BIDMach to improve the performance

of different machine learning algorithms. As it was reported that their SG-NS based GPU

implementation suffers from the quality of word embeddings (see Table 2 in [86]), their GPU

implementation was not included as a competing model. Bae and Yi [4] implemented four

variants of Word2Vec model using GPUs. Since the computations of nested loops which

iterate over the number of hidden units are dominant in the original Word2Vec algorithm,

the number of threads used in their GPU implementation is same as the number hidden units.

One of their variants, SG-NS based GPU implementation, was used as a baseline for our

new GPU implementation.

4.3.2 Word2Vec based Graph Embeddings

Recently, several graph embedding algorithms based on random walk sampling have

been developed by utilizing Skip-gram based Word2Vec model to find a low-dimensional

latent representation for each node on the graph [26, 69]. It is assumed that there exist

88

similarities between the nodes connected to each other on the random walks. DeepWalk8

proposed by Perozzi et al. [69] samples random walks over the graph and maps them into

the Skip-gram based Word2Vec model for training. To generate node embeddings, they used

SG-HS algorithm instead of SG-NS algorithm used in the Node2Vec [26].

4.4 SG-NS based Word2Vec Algorithm

In this section, we describe the original SG-NS based Word2Vec algorithm [60] and

main factors that limits the performance.

4.4.1 Overview of SG-NS Based Word2Vec

log σ(<⇀wout
n+ j,

⇀win
n >)+

T

∑
t=1

log σ(−<⇀wout
t ,⇀win

n >) (4.3)

In the SG-NS based Word2Vec model proposed by Mikolov et al. [60], given an input word

wn, a positive target word wn+ j, and randomly sampled negative target words w1:T , the log

probability p(wn+ j|wn) is replaced by the loss calculation in Equation 4.3, where T is the

number of negative samples (targets) and σ(x) denotes the sigmoid logistic function defined

as σ(x) = 1
1+exp(−x) . This term is maximized over every (wn,wn+ j) pair in the corpus.

Instead of using vocabulary size of V words as negative targets, randomly selecting only

T words (usually 5≤ T ≤ 20) as negative targets considerably reduces the computational

complexity while maintaining good quality. Algorithm 19 shows pseudo-code for the

original SG-NS based word2vec implementation [60]. It uses context words as inputs (line

11) and uses the word at the center of the context window as target (line 15), along with

8https://github.com/phanein/deepwalk

89

Algorithm 19 SG-NS based Word2Vec algorithm

Input: corpus: S sentences and a sequence of L word tokens in each sentence, V : the number of unique
words, K: the number of hidden units, C: window size, T : the number of negative samples, α: learning rate,
Win: (V ×K) input embedding matrix, Wout : (V ×K) output embedding matrix
Output: Win: (V ×K) input embedding matrix

1: Initialize Win and Wout with random numbers
2: repeat
3: for sid = 0 to S − 1 do
4: L← number of word tokens in sentence sid
5: // Update Wout and Win with both positive and negative samples
6: for i = 0 to L − 1 do
7: center_word← corpus[sid][i]
8: Crand ← random_uni f orm() % C
9: for j = Crand to (2 ×C −Crand) do

10: if j ! = C then
11: input← corpus[sid][i−C+j]
12: Initialize temp[0:K−1] to 0
13: for t = 0 to T do
14: if t == 0 then
15: target← center_word, label← 1
16: else
17: target← random_uni f orm() % V , label← 0
18: end if
19: sum← 0
20: for k = 0 to K − 1 do
21: sum← sum + Win[input][k] ×Wout [target][k]
22: end for
23: grad← (label − sigmoid(sum)) × α

24: for k = 0 to K − 1 do
25: temp[k]← temp[k] + grad ×Wout [target][k]
26: Wout [target][k]←
27: Wout [target][k] + grad ×Win[input][k]
28: end for
29: end for
30: for k = 0 to K − 1 do
31: Win[input][k]←Win[input][k] + temp[k]
32: end for
33: end if
34: end for
35: end for
36: end for
37: until convergence

90

Blue is my favorite color.

Input

Target

Update
type 1 0 0 1 0 0 1 0 0 1 0 0

center word

…word 1…word 2…word 3…word 4 word 5…word 6…word 7…word 8…

Partial update of original Word2Vec where center word is “my”

< >

favoriteblue

my

blue blue
negative
word 2

negative
word 6 my

is is is
negative
word 1

negative
word 7

favorite favorite

my negative
word 4

negative
word 5

color color color

my negative
word 3

negative
word 8

Figure 4.1: An example of updates in the original Word2Vec for the sentence “blue is my
favorite color,” where “my” is the current center word, and window size and the number
of negative samples are both 2. The update types of “1” and “0” indicate Attraction and
Repulsion updates, respectively.

the negative samples (line 17)9. The input word vectors are pulled from the Win embedding

matrix that is kept after training, and the target word vectors are pulled from Wout embedding

matrix, which is discarded after training. An input vector and a target vector are multiplied

in lines 20 to 22, in order to compute the gradient in line 23. While training each epoch,

based on this gradient, Wout and Win matrices are updated (lines 24-28 and lines 30-32 for

Wout and Win, respectively).

Figure 4.1 depicts an example of sequential updates for SG-NS based Word2Vec with

the sentence “blue is my favorite color,” where “my” is the center word of the context

window. When the center word “my” is used as a positive target word, its surrounding

words “blue”, “is”, “favorite”, and “color” are its input words. Then, for each pair of the

center word “my” and one of its input words, two negative target words are randomly

9 [59] defined skip-gram using context words as targets and center words as input; however, the reference
Word2Vec implementation operates as we have described. This difference only changes the order of updates
over the full sequence; in our experiments, Word2Vec had equivalent performance using both definitions of
skip-gram.

91

blue

is

my

my

is favorite

color

blue

my

favorite

blue

is

favorite

color

is

my

color

my

favorite

n18 n19

n20 n21

n22 n23

n24 n25

n26 n27blue

is

is

my

my

my

favorite

favorite color

is is

my my

my my

favorite favorite

blue blue

is is

favorite favorite

color color

is is

my my

color color

my my

favorite favorite

blue blue

n0

n2

n1

n3

n4 n5

n6 n7

n8 n9

n10 n11

n12 n13

n14 n15

n16 n17

Figure 4.2: Full sequential updates required for the sentence "blue is my favorite color" in
the original Word2Vec. In each vector-vector multiplication, the target word vectors on the
left horizontal vectors (i.e., green and gray colored vectors) are pulled from Wout matrix, and
the right vertical vectors (i.e., yellow colored vectors), input word vectors, are pulled from
Win matrix.

chosen to be negative samples (e.g., “word 2” and “word 6” are selected as negative targets

where “blue” is the input word). Hereafter, an update with the center word (positive target

word) and an input word is called an Attraction update (blue arrow in Figures 4.1 and

4.3), and an update with the negative target word and an input word is called Repulsion

update (red arrow in Figures 4.1 and and 4.3). Figure 4.2 demonstrates the full sequential

processes of the vector-vector multiplications for computing gradients, at each center word

in a context window, required for both Attraction and Repulsion updates, where n0...n27

indicate randomly selected negative words.

4.4.2 Data Movement Analysis for SG-NS Based Word2Vec

S(L(1+2(C−Crand)(1+4K +8K(T +1)))) (4.4)

S(L(2(C−Crand)(1+4K +8KT))) (4.5)

92

To identify the data movement cost of the original SG-NS based Word2Vec algorithm, we

individually analyzed each line in Algorithm 19. The outer loop in line 3 iterates over all the

S sentences in the corpus, and the loop in line 6 iterates over all the L word tokens in each

sentence. Each loop in line 6 reads a center word (positive target word) from corpus (1 read).

According to the randomly selected context window size, the loop in line 9 iterates over

2C−2Crand surrounding words. Each surrounding input word is read from corpus (1 read),

and K size of temp array is initialized by zero (K writes). Then the loop in line 13 calculates

vector updates by iterating over one positive and T negative samples (T +1 iterations). After

selecting a negative sample, the loop in line 20 multiplies the current input word vector and

target word vector (2K reads). The gradient is then computed in line 23. The loop in 24

updates Wout by accessing temp, Wout and Win arrays (4K reads and 2K writes). After the

completion of the update calculation loop, the loop in line 30 applies the updates to Win

(2K reads and K writes). Overall, the total data movement required for the original SG-NS

based algorithm is shown in Equation 4.4. As shown in Equation 4.5, the data movement

cost for only Repulsion updates can be simply obtained by excluding the data movement

of line 7 and subtracting one iteration of the loop in line 13 from the total data movement.

It is evident that the main bottleneck of SG-NS based Word2Vec algorithm is Repulsion

updates. More specifically, the data movement overhead is closely associated with the

several vector-vector multiplications within the loop in line 9. In the next section, we present

a high-level overview and details of our new parallel Word2Vec algorithm called Parallel

decoupled Attraction-Repulsion based Word2Vec (PAR-Word2Vec) based on Skip-gram

with a novel negative sampling method. In light of our main goal which is to enhance the

algorithm in regard of data locality, our approach significantly alleviates data movement

93

overhead involving Repulsion updates. We also compare the data movements required for

our PAR-Word2Vec with original SG-NS based Word2Vec algorithms.

4.5 Parallel Decoupled Attraction-Repulsion based Word2Vec Algo-
rithm

4.5.1 Overview of PAR-Word2Vec

In the original Word2Vec algorithm, majority of training time is spent on the process

associated with negative sampling. Our main contribution is to improve the performance

of negative sampling method by increasing data reuse. In order to use much larger size

of matrix with negative sampling, we first decouple the full loss calculation in Equation

4.3 with positive samples, log σ(<⇀wout
n+ j,

⇀win
n >), and negative samples, ∑

T
t=1 log σ(−<

⇀wout
t ,⇀win

n >), within each sentence. Thereafter, all of the Attraction updates required for

each sentence are batched, and then followed by a batch of Repulsion updates. After the

completion of Attraction updates, all words included in each sentence are divided into

multiple mini-batches, and the words in the same mini-batch share the randomly chosen

words for Repulsion updates. For example, in Figure 4.3, two input words in the same

mini-batch (e.g., "blue" and "is" in batch 0) share the negative target words (e.g., "word 1",

"word 6", "word 10" and "word 12"), when the mini-batch size is set to 2. If the mini-batch

size is larger than or equals to the number of words in the sentence, there is only one

mini-batch and all the words within the sentence share the same negative samples.

It is important to determine an appropriate mini-batch size to reduce training time

without overly affecting the convergence rate. To analyze the impact of different mini-batch

sizes on both convergence rate and training time, we conducted an empirical evaluation with

the large text dataset. As depicted in Figures 4.4a and 4.4b, increasing the mini-batch size

94

Blue is my favorite color.

Input is my blue my favorite blue is favorite color is my color my favorite

Target blue blue is is is my my my my favorite favorite favorite color color

Update type 1 1 1 1 1 1 1 1 1 1 1 1 1 1

…word 1 …word 2 …word 3 …word 4 …word 5 …word 6 …word 7 …word 8 word 9…word 10…word 11…word 12…word 13…word 14…word 15…word 16…

Full attraction and repulsion updates of dpWord2Vec where center
word is “my”

batch 0 batch 1 batch 2

Batch index batch 0 batch 1 batch 2

Input blue is my favorite color

Target 4 shared negative words (word 1, 6, 10 and 12) 8 shared negative words (word 3, 4, 7, 8, 11, 13, 15 and 16) 4 shared negative words
(word 2, 5, 9 and 14)

Update type 0

(a) Update of Attraction phase

(b) Update of Repulsion phase

< >

(a) Update of Attraction phase

Blue is my favorite color.

Input is my blue my favorite blue is favorite color is my color my favorite

Target blue blue is is is my my my my favorite favorite favorite color color

Update type 1 1 1 1 1 1 1 1 1 1 1 1 1 1

…word 1 …word 2 …word 3 …word 4 …word 5 …word 6 …word 7 …word 8 word 9…word 10…word 11…word 12…word 13…word 14…word 15…word 16…

Full attraction and repulsion updates of dpWord2Vec where center
word is “my”

batch 0 batch 1 batch 2

Batch index batch 0 batch 1 batch 2

Input blue is my favorite color

Target 4 shared negative words (word 1, 6, 10 and 12) 8 shared negative words (word 3, 4, 7, 8, 11, 13, 15 and 16) 4 shared negative words
(word 2, 5, 9 and 14)

Update type 0

(a) Update of Attraction phase

(b) Update of Repulsion phase

< >

(b) Update of Repulsion phase

Figure 4.3: An example of full Attraction and Repulsion updates in the PAR-Word2Vec.
In the sentence "blue is my favorite color," where the mini-batch size is set to 2, the input
words in each mini-batch share the same negative target words. As marked by same colored
arrows (red, gray and black), the words repelled by each mini-batch are shared negative
target words (e.g., "word 1", "word 6", "word 10" and "word 12" are the shared negative
targets for batch 0).

95

1 8 16 24 32 40 48 56 64 72 80

Batch Size

0

500

1000

T
ra

in
in

g
 T

im
e

(s
)

fo
r

5
 e

p
o

ch
s One Billion Word Benchmark

(a) Time vs. Batch size

1 8 16 24 32 40 48 56 64 72 80

Batch Size

0

0.2

0.4

0.6

0.8

1

S
im

il
ar

it
y

 S
co

re

One Billion Word Benchmark

WordSim-353 SimLex-999

(b) Quality vs. Batch size

Figure 4.4: Comparison of averaged convergence and training time in second for 5 executions
with different mini-batch sizes on PAR-Word2Vec-cpu on the One Billion Word Benchmark
dataset, where K=128.

significantly reduces training time because of lower computational complexity without any

loss of model quality. Furthermore, in order to perform the Repulsion phase as similar to the

original SG-NS based algorithm, a different number of shared negative samples is drawn for

each mini-batch according to the first word’s sentence position in the mini-batch.

Figure 4.5 illustrates the full set of operations required for decoupled Attraction and

Repulsion phases in PAR-Word2Vec. In Figure 4.5a, the vector-vector multiplications are

performed for the Attraction phase; this is exactly the same computation as the original SG-

NS algorithm. We maintain the Attraction phase as the original SG-NS algorithm, since the

Attraction phase demands an extremely small computation compared to the Repulsion phase.

Based on the mini-batch processing, however, the Repulsion phase is reformulated with

matrix multiplications, as shown in Figure 4.5b. For each mini-batch, its shared negative

target vectors pulled from the Wout matrix can be combined to form a temporary target matrix

Mout . Likewise, input vectors pulled from Win matrix are combined to generate a temporary

96

blue

is

my

my

is favorite

color

blue

my

favorite

blue

is

favorite

color

is

my

color

my

favorite

blue

is

is

my

my

my

favorite

favorite color

bl
ue

word 1
word 6
word 10
word 12

word 3
word 4
word 7
word 8
word 11
word 13
word 15
word 16

m
y

word 2
word 5
word 9
word 14

co
lor

!"#$

!"#$

!"#$

!%&

!%&

!%&

batch 0 batch 1 batch 2

is

fa
vo

rit
e

(a) Decoupled Attraction phase

blue

is

my

my

is favorite

color

blue

my

favorite

blue

is

favorite

color

is

my

color

my

favorite

blue

is

is

my

my

my

favorite

favorite color

bl
ue

word 1
word 6
word 10
word 12

word 3
word 4
word 7
word 8
word 11
word 13
word 15
word 16

m
y

word 2
word 5
word 9
word 14

co
lor

!"#$

!"#$

!"#$

!%&

!%&

!%&

batch 0 batch 1 batch 2

is

fa
vo

rit
e

(b) Decoupled Repulsion phase

Figure 4.5: Decoupled full Attraction and Repulsion updates required in the PAR-Word2Vec
with the sentence "blue is my favorite color". In the decoupled Repulsion phase, the number
of shared negative samples for the mini-batch (i.e., the number of rows in gray colored
matrix) is determined by the first word’s position in the mini-batch over the sentence. The
mini-batches located at the start or end of the sentence (e.g., batch 0 or batch 2) have a
less amount of shared negative samples, since the context window size of the input words
contained in these mini-batches is smaller than that of the middle mini-batch (e.g., batch 1).

97

input matrix Min for the current mini-batch. Then an efficient matrix multiplication of

two matrices Mout and Min is performed for computing the gradients. Given the result

matrix of gradients, two additional matrix multiplications compute the update values for

corresponding input and target vectors which will be accumulated to Wout and Win matrices.

4.5.2 Details of Parallel CPU implementation

Algorithm 20 Parallel CPU implementation (PAR-Word2Vec-cpu)

Input: corpus: S sentences and a sequence of L word tokens in each sentence, V : the
number of unique words, K: the number of hidden units, C: window size, T : the number of
negative samples, B: mini-batch size, O: 2×C×T , α: learning rate, Win: (V ×K) input
embedding matrix, Wout : (V ×K) output embedding matrix, Min: (B×K) input matrix for
current batch, Mout : (O×K) output matrix for current batch, Mgrad: (O×B) result matrix
of Mout ·MT

in for current batch, Min_update: (B×K) updated input matrix for current batch,
Mout_update: (O×K) updated output matrix for current batch, shared_ns: O size of shared
negative samples array for current batch
Output: updated Win: (V ×K) input embedding matrix

1: Initialize Win and Wout with random numbers
2: numT ← number of threads
3: #pragma omp parallel num_threads(numT)
4: Distribute S sentences of corpus into numT threads
5: tId← thread id
6: Spt ← S

numT
7: repeat
8: for sid = tId × Spt to (tId + 1) × Spt − 1 do
9: L← number of word tokens in sentence sid

10: Win, Wout ← Attraction(corpus, Win, Wout , L, K, C)
11: Win, Wout ← Repulsion(corpus, Win, Wout , Min, Mout , Mgrad , Min_update,

Mout_update, shared_ns, L, K, C, T , B)
12: end for
13: until convergence

The pseudo-codes for our parallel CPU implementation are shown in Algorithm 20,

21 and 22. The sets of sentences in the corpus are disjointly distributed for processing

98

Algorithm 21 Attraction() phase on PAR-Word2Vec-cpu
1: // Update Wout and Win with only positive samples
2: label← 1
3: for i = 0 to L − 1 do
4: center_word← corpus[sid][i]
5: Crand ← random_uni f orm() % C
6: for j = Crand to (2 ×C −Crand) do
7: if j ! = C then
8: input← corpus[sid][i−C+j]
9: target← center_word

10: sum← 0
11: for k = 0 to K − 1 do
12: sum← sum + Win[input][k] ×Wout[target][k]
13: end for
14: grad← (label − sigmoid(sum)) × α

15: #pragma simd
16: for k = 0 to K − 1 do
17: temp← grad ×Wout[target][k]
18: Wout[target][k]←Wout[target][k] + grad ×Win[input][k]
19: Win[input][k]←Win[input][k] + temp
20: end for
21: end if
22: end for
23: end for

99

Algorithm 22 Repulsion() phase on PAR-Word2Vec-cpu
1: // Update Wout and Win with only shared negative samples
2: label← 0, num_batch← (L+B−1) / B
3: for batch_id = 0 to num_batch − 1 do
4: min_pos← batch_id × B, max_pos← min(min_pos + B−1, L−1)
5: current_batch_size← max_pos − min_pos + 1
6: if (min_pos <= C−1) || (L−1− min_pos <= C−1) then
7: Crep ← random_uni f orm() % C
8: else
9: Crep ← random_uni f orm() % (2×C)

10: end if
11: num_shared_negatives←Crep × T
12: for n = 0 to num_shared_negatives − 1 do
13: shared_ns[n]← random_uni f orm() % V
14: end for
15: memcpy(Min[0:current_batch_size-1][0:K-1],

Win[corpus[sid][min_pos:min_pos+current_batch_size-1]][0:K-1])
16: memcpy(Mout [0:num_shared_negatives-1][0:K-1],

Wout [shared_ns[0:num_shared_negatives-1]][0:K-1])
17: // Efficient matrix-matrix multiplication of Mout and MT

in
18: Mgrad[0:num_shared_negatives−1][0:current_batch_size−1]←

sgemm(Mout [0:num_shared_negatives−1][0:K−1], MT
in[0:current_batch_size−1][0:K−1])

19: for n = 0 to num_shared_negatives − 1 do
20: #pragma simd
21: for b = 0 to current_batch_size − 1 do
22: output← Mgrad[n][b]
23: grad← (label − sigmoid(output)) × α

24: Mgrad[n][b]← grad
25: end for
26: end for
27: // Efficient matrix-matrix multiplication of Mgrad and Min
28: Mout_update[0:num_shared_negatives−1][0:K−1]←

sgemm(Mgrad[0:num_shared_negatives−1][0:current_batch_size−1],
Min[0:current_batch_size−1][0:K−1])

29: // Efficient matrix-matrix multiplication of MT
grad and Mout

30: Min_update[0:current_batch_size−1][0:K−1]←
sgemm(MT

grad[0:num_shared_negatives−1][0:current_batch_size−1],
Mout [0:num_shared_negatives−1][0:K−1])

31: for b = 0 to current_batch_size − 1 do
32: #pragma simd
33: for k = 0 to K − 1 do
34: Win[corpus[sid][min_pos+b]][k] += Min_update[b][k]
35: end for
36: end for
37: for n = 0 to num_shared_negatives − 1 do
38: #pragma simd
39: for k = 0 to K − 1 do
40: Wout [shared_ns[n]][k] += Mout_update[n][k]
41: end for
42: end for
43: end for

100

by different threads (line 4 in Algorithm 20). For each sentence, a Repulsion phase starts

to process after the completion of all Attraction updates. As shown in Algorithm 21,

a decoupled Attraction phase is performed in the same way as the original Word2Vec

algorithm. Algorithm 22 shows the pseudo-code for the decoupled Repulsion phase. In

the Repulsion phase, the number of shared negative samples for the current mini-batch is

determined by the first word’s position in the mini-batch (lines 4-11). If the first word of

the mini-batch is located at the start or end of the sentence, the corresponding mini-batch

requires fewer shared negative samples, since the context window sizes of given words

are small compared to the other words in the middle of the sentence. The shared negative

targets are the randomly selected in lines 12-14. Next, the temporary matrices Min and Mout

for keeping input word vectors and shared negative target vectors are formed by pulling

corresponding weight vectors from Win and Wout , respectively (lines 15 and 16). Then all

three matrix-matrix multiplications required for current mini-batch are efficiently performed

using the cblas_sgemm() BLAS-3 routine provided in Intel’s Math Kernel Library (MKL).

In line 18 in Algorithm 22, the first matrix-matrix multiplication of two matrices, Mout and

MT
in, is performed to compute the gradients for the current mini-batch (lines 18-26). The

outputs of Mout ·MT
in are stored in an additional matrix Mgrad . The update values for Wout are

then computed by performing the second matrix-matrix multiplications of matrices Mgrad

and Min (line 28) and storing the results in Mout_update. Similarly, the update values for Win

can be obtained by performing the third matrix-matrix multiplication, with matrices MT
grad

and Mout (line 30). After completing all computations from the current mini-batch, the

corresponding update values contained in Mout_update and Min_update are accumulated to the

main data structures, Wout and Win (lines 31-42).

101

4.5.3 Details of Parallel GPU implementation

Algorithm 23 Parallel GPU implementation on host (PAR-Word2Vec-gpu)

Input: corpus: a sequence of N word tokens for all sentences, N: the total number of word
tokens in corpus, S: the total number of sentences, V : the number of unique words, K: the
number of hidden units, C: window size, T : the number of negative samples, B: batch size,
O: 2×C×T , α: learning rate, γ: hyper-parameter for setting the number of thread blocks,
sen_ptr: S+1 size of vector for holding the starting word index of each sentence over the
corpus, Win: (V ×K) input embedding matrix, Wout : (V ×K) output embedding matrix, Min:
(B×K × num_blocks) input matrix for current batch, Mout : (O×K × num_blocks) output
matrix for current batch, Mgrad: (O×B × num_blocks) result matrix of Mout ·MT

in for
current batch, Min_update: (B×K × num_blocks) updated input matrix for current batch,
Mout_update: (O×K × num_blocks) updated output matrix for current batch, shared_Crand:
(num_blocks) size of array for holding shared random window size for current batch,
shared_ns: (O × num_blocks) size of vector for holding shared negative samples for
current batch
Output: Win: (V ×K) input embedding matrix

1: Allocate device memory for corpus, sen_ptr, Win, Wout , Min, Min_update, Mout ,
Mout_update, Mgrad , shared_Crand and shared_ns using cudaMalloc

2: Copy host memory to device memory for corpus, sen_ptr, Win and Wout using cud-
aMemcpy

3: num_blocks← γ × 56
4: num_threads← K
5: num_sen_per_block← (S+num_blocks-1) / num_blocks
6: λ ← α/total number of epochs
7: repeat
8: SG_Shared_NS<<<num_blocks, num_threads>>>

(num_sen_per_block, corpus, sen_ptr, Win, Wout , Min, Min_update, Mout , Mout_update,
Mgrad , shared_Crand , shared_ns, K, C, T , B, O)

9: α ← α−λ

10: until convergence
11: Copy device memory to host memory for Win using cudaMemcpy

Algorithm 23, 24, 25 and 26 show the pseudo-code for GPU implementation. In order

to achieve massive parallelism on GPUs, we divide the corpus of sentences into different

thread blocks (line 5 in Algorithm 23). Hence, the thread blocks are processed in parallel,

102

Algorithm 24 SG_Shared_NS() kernel on PAR-Word2Vec-gpu
1: __shared__ shared_vector[1024]
2: start_sen_id_per_block← blockIdx.x × num_sen_per_block
3: end_sen_id_per_block ← min(start_sen_id_per_block + num_sen_per_block, to-

tal_num_sen)
4: for sid = start_sen_id_per_block to end_sen_id_per_block do
5: start_idx← sen_ptr[sid]
6: end_idx← sen_ptr[sid+1]
7: L← end_idx - start_idx // L: length of sentence
8: Attraction()
9: __syncthreads()

10: Repulsion()
11: end for

whereas multiple sentences are processed sequentially within each thread block (lines 4-11

in Algorithm 24). In line 3 in Algorithm 23, we launch γ×56 thread blocks as there are 56

Streaming Multiprocessors (SMs) on an NVIDIA Pascal P100 GPU. γ is the overbooking

factor used to maintain good load balance. Note that the parameter γ is varied according

to the total number of sentences over the corpus. In order to simultaneously update K

dimensions of each word vector involved in the Attraction and Repulsion phases, K threads

are selected within a thread block (line 4 in Algorithm 23). In Attraction phase, to obtain

the gradient of vector-vector multiplications of Win and Wout , a warp-level reduction is

performed by warp shuffling primitives (lines 10-21 in Algorithm 25). All the threads in

the warp read 32/K of the word vectors (K dimensions) from Win and Wout and perform

multiplications. Then the computed gradients are stored in a single space of shared-memory

(shared_vector[0]) since all the threads in each thread block must use the same gradient

(lines 22-24) before computing the update values. The update values for each word vector

are then accumulated to Win and Wout in global memory using atomic operations, because

multiple thread blocks can update the same word vector at the same time (lines 27 and

103

Algorithm 25 Attraction() device function on PAR-Word2Vec-gpu
1: label← 1, f← 0
2: for sen_pos = start_idx to end_idx do
3: center_word← corpus[sen_pos]
4: Crand ← curand_uni f orm() ×C
5: for j = Crand to (2 ×C −Crand) do
6: if j ! = C then
7: input_word← corpus[sen_pos−C+j], in← input_word × K
8: target_word← center_word, out← target_word × K
9: temp← 0

10: if threadIdx.x / 32 == 0 then
11: f←Win[threadIdx.x+in] ×Wout[threadIdx.x+out]
12: f2←Win[threadIdx.x+in+32] ×Wout[threadIdx.x+out+32]
13: f3←Win[threadIdx.x+in+64] ×Wout[threadIdx.x+out+64]
14: f4←Win[threadIdx.x+in+96] ×Wout[threadIdx.x+out+96]
15: f← f + f2 + f3 + f4
16: f← f + __shfl_down(f, 16)
17: f← f + __shfl_down(f, 8)
18: f← f + __shfl_down(f, 4)
19: f← f + __shfl_down(f, 2)
20: f← f + __shfl_down(f, 1)
21: end if
22: if threadIdx.x == 0 then
23: shared_vector[0]← (label − sigmoid(f)) × α

24: end if
25: __syncthreads()
26: temp← temp + shared_vector[0] ×Wout[threadIdx.x+out]
27: atomicAdd(Wout[threadIdx.x+out],

shared_vector[0] ×Win[threadIdx.x+in])
28: atomicAdd(Win[threadIdx.x+in], temp)
29: end if
30: end for
31: end for

104

Algorithm 26 Repulsion() device function on PAR-Word2Vec-gpu

1: label← 0, num_batch← (L + B − 1) / B
2: for batch_id = 0 to num_batch − 1 do
3: min_pos ← start_idx + (batch_id × B), max_pos ←

min(min_pos + B, end_idx)
4: in_size← max_pos - min_pos
5: if threadIdx.x == 0 then
6: if (min_pos− start_idx <=C− 1) || (L− 1 + start_idx

− min_pos <= C − 1) then
7: Crep ← curand_uni f orm() ×C
8: else
9: Crep ← curand_uni f orm() × (2×C)
10: end if
11: shared_Crand [blockIdx.x]←Crep
12: end if
13: __syncthreads()
14: out_size← shared_Crand [blockIdx.x] × T
15: for i = threadIdx.x to out_size − 1 step blockDim.x do
16: shared_ns[blockIdx.x×O+i] ← curand_uni f orm()

× V
17: end for
18: __syncthreads()
19: for sen_pos = min_pos to max_pos − 1 do
20: Min [blockIdx.x×B×K+((sen_pos−min_pos)×K)+threadIdx.x] ←

Win[corpus[sen_pos]×K+threadIdx.x]
21: end for
22: for ns = 0 to out_size − 1 do
23: Mout [blockIdx.x×O×K+ns×K+threadIdx.x]←

Wout [shared_ns[blockIdx.x×O+ns] ×K+threadIdx.x]
24: end for
25: __syncthreads()
26: // 2D tiled matrix multiplication of Mout and MT

in
27: num_RBA← (out_size + 16 − 1) / 16, num_CBA← K /

32
28: num_CBB← (in_size + 16 −1) / 16
29: thread_row← threadIdx.x / 16, thread_col← threadIdx.x

% 16
30: reg_tiles[8]
31: for rb = 0 to num_RBA − 1 do
32: for cb = 0 to num_CBB − 1 do
33: memset(reg_tiles, 0)
34: for m = 0 to num_CBA − 1 do
35: memcpy(shared_vector[0:16×32-1], corre-

sponding each block of Mout)
36: memcpy(shared_vector[16×32:1023], corre-

sponding each block of Min)
37: __syncthreads()
38: if thread_col < 16 then
39: for j = 0 to 32 − 1 do
40: element_2nd←

shared_vector[16×32+thread_col×32+j]

41: reg_tiles[0] ← reg_tiles[0] +
shared_vector[thread_row×32+j] × el-
ement_2nd

42: reg_tiles[1] ← reg_tiles[1] +
shared_vector[(thread_row+8)×32+j]
× element_2nd

43: end for
44: end if
45: __syncthreads()
46: end for
47: if thread_col < 16 then
48: if thread_row < 16 then
49: Mgrad [blockIdx.x×O×B+(rb×16+thread_row)×B+(cb×16)

+thread_col]← reg_tiles[0]
50: end if
51: if thread_row + 8 < 16 then
52: Mgrad [blockIdx.x×O×B+(rb×16+thread_row+8)×B+(cb×16)

+thread_col]← reg_tiles[1]
53: end if
54: end if
55: end for
56: end for
57: __syncthreads()
58: for z = threadIdx.x to out_size × B − 1 step blockDim.x

do
59: f← Mgrad [blockIdx.x×O×B+z]
60: grad← (label - sigmoid(f)) × α

61: Mgrad [blockIdx.x×O×B+z]← grad
62: end for
63: __syncthreads()
64: // 2D tiled matrix multiplication of Mgrad and Min
65: Mout_update ← MatrixMultiplication(Mgrad , Min) like

lines 27-56
66: __syncthreads()
67: // 2D tiled matrix multiplication of MT

grad and Mout

68: Min_update ← MatrixMultiplication(MT
grad , Mout) like

lines 27-56
69: __syncthreads()
70: for sen_pos = min_pos to max_pos − 1 do
71: atomicAdd(Win[corpus[sen_pos]×K+threadIdx.x],

Min_update[blockIdx.x×B×K+((sen_pos−min_pos)×K)+threadIdx.x])
72: end for
73: __syncthreads()
74: for ns = 0 to out_size − 1 do
75: atomicAdd(Wout [shared_ns[blockIdx.x×O+ns]

×K+threadIdx.x],
Mout_update[blockIdx.x×O×K+ns×K+threadIdx.x])

76: end for
77: __syncthreads()
78: end for

105

28). At the end of the Attraction phase, all threads are synchronized before the start of the

Repulsion phase (line 9 in Algorithm 24). Similar to the Repulsion phase in our parallel CPU

implementation, the number of shared negative samples O are chosen by the first word’s

position in the mini-batch (lines 3-14 in Algorithm 26). After randomly selecting shared

negative samples (lines 15-17) and forming the input and output matrices by copying the

corresponding word vectors from Win and Wout for the current batch (lines 19-24), three

matrix-matrix multiplications are performed using a 2D register tiling strategy along with the

use of shared-memory. To achieve good performance on GPUs, the prudent use of shared-

memory is crucial. Due to the limited amount of shared-memory per SM, we use 1024 size

of shared-memory, which provides the best performing occupancy in the current NVIDIA

Pascal GPU (line 1 in Algorithm 24). In order take advantage of warp execution, the two

sub-matrices involved in each 2D-tiled multiplication are carefully partitioned into allocated

shared memory space (e.g., Mout and Min matrices involved in the first matrix multiplication

are divided into (O × K) / (16 × 32) and (B × K) / (16 × 32) tiles, respectively; this

allows the first half of the shared-memory space to hold each tile from Mout (line 35); the

remaining space is used to maintain each tile from Min (line 36). Similarly, Mgrad and Min

are partitioned into (O × B) / (32 × 16) and (B × K) / (16 × 32) for performing the second

matrix-matrix multiplication, and Mgrad and Mout are divided into (O× B) / (20× 8) and (O

× K) / (20 × 32) to compute the third matrix-matrix multiplication.). The shared-memory

and register tile sizes have an impact on both data reuse and concurrency. The higher the tile

sizes the higher the data reuse. However, higher tile sizes demand more resources and thus

limit the number of concurrently active threads (occupancy). The tile sizes were chosen

such that the data movement was minimized while maintaining good concurrency.

106

4.5.4 Data Movement Analysis for PAR-Word2Vec

S(L(Attractions)+
L
B
(Repulsions)) =

S(L(1+2(C−Crand)(1+8K))+
L
B
(
6OKB√

τ
+O+4KB+4KO+2OB))

(4.6)

S(
L
B
(
6OKB√

τ
+O+4KB+4KO+2OB)) (4.7)

We analyzed the data movement of our PAR-Word2Vec algorithm based on Algorithms 20, 21

and 22. Our algorithm iterates over all S sentences, and Attraction and Repulsion phases are

separately performed within each sentence (line 8-12 in Algorithm 20). The data movement

cost of the decoupled Attraction phase is similar to the original SG-NS algorithm without a

negative sampling loop. The loop in line 3 of Algorithm 21 iterates over all L word tokens in

each sentence and has an associated data movement of 1+(2C−2Crand)(1+2K+4K+2K)

for the Attraction phase. In the Repulsion phase, the loop in line 3 in Algorithm 22 iterates

over L
B mini-batches for the current sentence. First the O shared negative samples are

randomly chosen (line 11 in Algorithm 22) and kept in the shared_ns array through the

loop in line 12 (O writes). Then the shared negative word vectors and input word vectors

pulled from Wout and Win matrices are copied to Mout and Min temporary matrices in lines

15 and 16 (KB+KO reads and KB+KO writes). Given Mout and Min matrices, three matrix

multiplications are required to perform Repulsion updates. It is well known that the highest

order term in the number of data elements moved (between main memory and a cache of

size τ words) for efficient tiled matrix multiplication of two matrices A, (M×K) and B

(K×N) is 2MNK√
τ

(An extensive discussion of both lower bounds and data movement volume

for several tiling schemes may be found in the recent work of Smith [87]). Hence, the data

movement costs associated with the three matrix multiplications in lines 18, 28 and 30 are

2OKB√
τ

, 2OBK√
τ

and 2BOK√
τ

, respectively. The loop in lines 19-26 computes the gradients and

107

has an associated data movement cost of OB reads and OB writes. At the end of Repulsion

phase (lines 31-42), the update vectors in Mout and Min matrices are copied back to Wout and

Win (KB+KO reads and KB+KO writes). In total, Equation 4.6 shows the data movement

cost for our PAR-Word2Vec algorithm, where τ is the cache size. Also, the data movement

required for only Repulsion phase of PAR-Word2Vec is also shown in Equation 4.7.

4.5.5 Data Movement Analysis Comparison

For the One Billion Word Benchmark dataset (S=30,607,741 and L=N
S =804,269,958

30,607,741) with

K=128, C=8, T =5, Crand=0, Crep=16, O=TCrep=80, and B=24 on a machine with 35 MB

cache10, based on Equation 4.4, the total data movement cost of original SG-NS based

Word2Vec algorithm is 85665204×106 bytes. Whereas, based on Equation 4.6, the total

data movement cost for our PAR-Word2Vec algorithm is only 15109321×106 bytes which

is approximately 5.67× lower than the original SG-NS algorithm. Moreover, based on the

Equation 4.5 and 4.7, the data movement associated with only Repulsion updates is greatly

reduced by (1− 19239278×105

72487241×106)≈ 97.3%. On the other hand, both algorithms must have the

same amount of data movements for Attraction updates. The data movement improvement

of our approach can be clearly proven by the fact that the difference between Equation

4.4 and 4.5 (Attraction updates for original SG-NS based Word2Vec), and the difference

between Equation 4.6 and 4.7 (Attraction updates for PAR-Word2Vec) are exactly matched.

10Crand=0 makes the maximum size of context window at current center word according to the lines 8-9 in
Algorithm 19. Crep=16 corresponds to the maximum number of Crep, when C=8 according to the lines 6-10 in
Algorithm 22. B=24 is chosen to be used for all the experiments in Section 6.

108

4.6 Experimental Evaluation

This section provides both performance and quality assessments for the Word2Vec and

Node2Vec algorithms. Our PAR-Word2Vec implementations on multi-core CPUs and GPUs

are compared with various state-of-the-art implementations.

4.6.1 Benchmarking Machines

The detailed configuration of the benchmarking machines used for experiments is shown

in Table 4.2. All the CPU experiments were run on an Intel Xeon CPU E5-2680 v4 running

at 2.4 GHz with 128GB RAM. The GPU experiments were run on an NVIDIA Tesla P100

PCIE GPU with 16GB global memory.

Table 4.2: Machine configuration

Machine Details
CPU Intel(R) Xeon(R) CPU E5-2680 v4 (28 cores), 128GB; ICC 18.0.3

GPU
Tesla P100 PCIE; CUDA 9.2.88

(56 SMs, 64 cores/MP, 16GB Global Memory, 4 MB L2 cache)

4.6.2 Datasets
4.6.2.1 Text Datasets for Word2Vec Evaluations

For the direct Word2Vec evaluations, we used two publicly available real-world text

datasets – text811 and One Billion Word Benchmark (1B-Word)12.

• text8: The dataset contains approximately 17 million word tokens collected from

Wikipedia.

11http://mattmahoney.net/dc/text8.zip
12http://www.statmt.org/lm-benchmark/

109

• One Billion Word Benchmark (1B-Word): This corpus released by Chelba et al. [12]

contains approximately 0.8 billion word tokens produced from the WMT 2011 News

Crawl data.

4.6.2.2 Graph Datasets for Node2Vec Evaluations

In order to evaluate the Node2Vec algorithm, we also used five publicly available graph

datasets: three labeled datasets – BlogCatalog13, PPI14 and Wikipedia-200615 – and two

unlabeled datasets – Facebook16 and arXiv ASTRO-PH (ASTRO-PH)17.

• BlogCatalog: The dataset released by Zafarani and Liu [105] includes the friendship

network and group membership information crawled from the BlogCatalog website18.

Each node represents a blogger, and the nodes connected to each edge denote that the

bloggers are friends with each other.

• Protein-Protein Interactions (PPI): This dataset is a subgraph of the PPI network for

Homo Sapiens [8]. The preprocessed subgraph and labeled nodes are available from

the Node2Vec repository19.

• Wikipedia-2006: The dataset contains the first 109 bytes of the English Wikipedia

dump on March 3, 2006 [57]. Each node represents a word, and the co-occurred words

are connected through edge. This preprocessed dataset with the nodes labeled with

13http://socialcomputing.asu.edu/datasets/BlogCatalog3
14https://downloads.thebiogrid.org/BioGRID
15http://www.mattmahoney.net/dc/textdata
16http://snap.stanford.edu/data/egonets-Facebook.html
17http://snap.stanford.edu/data/ca-AstroPh.html
18http://www.blogcatalog.com
19https://snap.stanford.edu/node2vec/#datasets

110

the Stanford Log-linear Part-Of-Speech Tagger [93] are available from the Node2Vec

repository19.

• Facebook: This network includes the friendship relation between Facebook users [46].

Each node denotes a user, and two users are connected with an edge if they are friends

with each other.

• arXiv ASTRO-PH (ASTRO-PH): This dataset is a collaboration network of Astro

Physics related papers in the e-print arXiv between January 1993 to April 2003 [46].

Each node represents an author, and any co-authors of the same paper are linked by

an edge.

Table 4.3 and 4.4 show the characteristics of each text and graph dataset and the details

of graph datasets, respectively. Given the directed/undirected graph which represents the

connections between nodes with/without weights, random walks are pre-generated with

the original Node2Vec implementation released by SNAP (Stanford Network Analysis

Platform)20. Thereafter, the pre-generated random walks are used as inputs for all the

Word2Vec variants. Each random walk is comprised of a sequence of N/S = 81 nodes.

4.6.3 Evaluation Metrics
4.6.3.1 Word2Vec Evaluation Metrics

We used standard word similarity and relatedness evaluations [5, 82] to compare word

embeddings learned from PAR-Word2Vec and other methods. This task involves inventories

of word pairs that have been assigned a similarity or relatedness score by human annotators

(e.g., (tiger, cat, 7.35), (stock, life, 0.92) [80]). For each word pair, the cosine similarity of

the corresponding embeddings is calculated. These cosine similarities are then rank-ordered,

20https://github.com/snap-stanford/snap/tree/master/examples/node2vec

111

Table 4.3: Statistics of text datasets, and graph datasets pre-generated by Node2Vec. V is
the number of unique words/the number of unique nodes, S is the total number of sentences
over the corpus/the total number of random walks over the graph, and N is the total number
of word tokens over the corpus/the sum of the length of the walks in S.

Dataset V S N
Text

Dataset
text8 71,291 9,385 16,718,843

1B-Word 555,514 30,607,741 804,269,958

Graph
Dataset

BlogCatalog 10,313 103,120 8,352,720
PPI 3,891 38,900 3,150,900

Wikipedia-2006 4,778 47,770 3,869,370
Facebook 4,040 40,390 3,271,590

ASTRO-PH 18,773 187,720 15,205,320

Table 4.4: Details of graph datasets. E is the total number of edges and A is the number of
different labels for nodes in the graph.

Dataset Graph type E A
BlogCatalog undirected/unweighted 333,983 39

PPI undirected/unweighted 76,584 50
Wikipedia-2006 undirected/weighted 184,812 40

Facebook undirected/unweighted 88,234 N/A
ASTRO-PH directed/unweighted 198,110 N/A

and the rankings compared to rank-ordering of the human judgments using Pearson’s ρ (-1

to 1, higher is better). We evaluated on the following datasets:

− WordSim-353: 353 pairs rated for similarity of meaning [34].

− SimLex-999: 999 pairs rated specifically for similarity, and not relatedness [34].

These evaluations are referred to as “intrinsic”, since they do not use any learned parameters

beyond the word embeddings. Analogy completion tasks [59] have often been used as

another “intrinsic” evaluation, together with similarity/relatedness. However, these tasks

112

have well-documented issues that limit their value as an evaluation metric [52, 65, 78].

We therefore follow prior work [13, 79, 100] by augmenting our intrinsic evaluation with

“extrinsic” evaluations that measure the quality of word embeddings by plugging them into

another machine learning model that learns to use them as features. We evaluated on the

following tasks:

− Relation extraction: SemEval-2010 shared task 8 [32], using a CNN model with

word and distance embeddings [107] for nine-way relation classification.

− Sentiment analysis: positive/negative binary classification of IMDB movie reviews

[56], using a single 100-dimensional LSTM.

4.6.3.2 Node2Vec Evaluation Metrics

The quality of the trained node embeddings out of Word2Vec can be evaluated through

such applications as multi-label classification (e.g., classifying bloggers into categories in

BlogCatalog dataset) and link prediction tasks. [26,69,91,92]. The node embeddings coming

out of the various Word2Vec implementations can just be fed into the same classification

models to evaluate them.

− Multi-label classification: For the evaluations with labeled graph datasets, the logis-

tic regression model takes the node embeddings as input and predicts the probability

of each label based on a logistic function. We used the same train/test split across all

datasets. The train set consists of 90% of labeled node embeddings and the remaining

10% is used as the test set. Additionally, the hyperparameters of logistic regression

model were tuned using GridSearchCV21, which seeks for the best parameters of

logistic regression through Grid-Search [27].

21https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

113

− Link prediction: We conducted link prediction task with unlabeled graph datasets

based on the edge information. Link prediction can be considered as a binary clas-

sification by predicting the connection between two nodes. Where two nodes are

connected in the graph, they were labeled as a positive example. Negative examples

were generated by randomly sampling pairs of nodes not connected to each other.

For a fair evaluation, the numbers of positive and negative examples used in our

experiments were balanced and we used the same negative samples across all vari-

ants of Word2Vec. Features were generated for each sample by concatenating the

learned embeddings for each pair of nodes; these features were then plugged into

Support-Vector Machine (SVM) model [16] for training and testing.

4.6.4 Word2Vec Implementations Compared

We evaluated PAR-Word2Vec on multi-core CPUs and GPUs with state-of-the art

parallel Word2Vec implementations. The seven implementations used in our comparisons

are as follows:

• Word2Vec-cpu22: The original SG-NS based parallel CPU implementation by Mikolov

et al. [60]

• pWord2Vec-cpu23: SG-NS based parallel CPU implementation by Ji et al. [35]

• wombatSGNS-cpu24: SG-NS based parallel CPU implementation by Simonton and

Alaghband [86]

22https://code.google.com/archive/p/word2vec/
23https://github.com/IntelLabs/pWord2Vec
24https://github.com/tmsimont/wombat

114

• pSGNScc-cpu25: SG-NS based parallel CPU implementation by Rengasamy et al.

[76]

• PAR-Word2Vec-cpu: Our SG-NS based parallel CPU implementation

• accSGNS-gpu26: SG-NS based parallel GPU implementation by Bae and Yi [4]

• PAR-Word2Vec-gpu: Our SG-NS based parallel GPU implementation

Note that, all compared models are based on SG-NS algorithm. While Word2Vec-cpu uses

Pthreads API, all other CPU implementations, including pWord2Vec-cpu, wombatSGNS-

cpu, pSGNScc-cpu, and our PAR-Word2Vec-cpu, use OpenMP API and the same Intel’s

Math Kernel Library (MKL) for all BLAS (Basic Linear Algebra Subprograms) operations.

It is obvious that annealing the learning rate is a critical part of having good quality of

embeddings. For all CPU implementations, during training the model for each epoch, the

corpus is read sentence-by-sentence and the learning rate is reduced based on this reading

progress through the corpus. Whereas, our PAR-Word2Vec-gpu completes the reading of the

entire corpus and copies it into GPU memory once prior to the start of training and gradually

decreases the learning rate at the end of each epoch. As shown in line 9 in Algorithm 23,

the learning rate is decreased by α = α− initial α

total number of epochs
at the end of each epoch.

4.6.5 Performance Evaluation

The hyper-parameters used in all experiments are provided in Table 4.5. For all datasets,

including text and graph, we used the same number of negative samples T = 5 and same

size of embedding vector K = 128. For text and graph datasets, respectively, we set the

window size C to 8 and 10. We then trained all variants of Word2Vec over 10 epochs with

all datasets. To ensure fairness, 28 threads were used in all CPU experiments. In addition,

25https://github.com/vasupsu/pWord2Vec
26https://github.com/kinchi22/word2vec-acc-cuda

115

Table 4.5: Details of hyper-parameters used in the experiments. I is the total number
of training epochs, T is the number of negative samples, C is the window size, K is the
embedding vector size as well as p and q are (return and in-out) parameters for pre-generating
graph datasets.

Dataset I T C K p q
Text

Datasets
text8 10 5 8 128 N/A N/A

1B-Word 10 5 8 128 N/A N/A

Graph
Dataset

BlogCatalog 10 5 10 128 0.25 0.25
PPI 10 5 10 128 4 1

Wikipedia-2006 10 5 10 128 4 0.5
Facebook 10 5 10 128 1 1

ASTRO-PH 10 5 10 128 1 1

all the parameters in all CPU and GPU implementations were tuned for each dataset and

the best performing configurations were selected. For both PAR-Word2Vec-cpu and PAR-

Word2Vec-gpu, we used B = 24 for all the experiments. However, the number of thread

blocks were varied according to the total number of sentences in each dataset; γ = 64 for

text8, BlogCatalog, PPI, Wikipedia-2006, Facebook and ASTRO-PH, and γ = 1024 for 1B-

Word datasets. As suggested in the running scripts of pWord2Vec-cpu and pSGNScc-cpu, the

batch size of both pWord2Vec-cpu and pSGNScc-cpu were set to 2×C+1. In the process

of pre-generating graph datasets, we used the same p and q values for BlogCatalog, PPI and

Wikipedia datasets as suggested in [26]. Note that the window size C is randomly selected

for each inner loop in Word2Vec algorithm (e.g., Line 8 in Algorithm 19). Furthermore, all

negative target words are randomly chosen from the vocabulary (e.g., Line 17 in Algorithm

19). Therefore, all the experiment results presented in this section are averaged over 5

different executions.

116

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.5

0.6

0.7

0.8
W

o
rd

S
im

-3
5
3

text8

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9

9

text8

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.58

0.6

0.62

0.64

0.66

0.68

0.7

W
o

rd
S

im
-3

5
3

1B-Word

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.28

0.3

0.32

0.34

0.36

0.38

S
im

L
ex

-9
9

9

1B-Word

Figure 4.6: Comparison of word similarity scores over training epoch on text datasets, K =
128. Each point is averaged over five executions. X-axis: number of training epochs; Y-axis:
word similarity scores.

4.6.5.1 Model Quality

Intrinsic Evaluations of Word Embeddings. Figure 4.6 shows word similarity scores over

training epochs, comparing all variants of Word2Vec implementations on text datasets. As

shown in Table 4.6, the difference between our PAR-Word2Vec models and the baselines is

not statistically significant in terms of the converged word similarity scores after training for

10 epochs.

117

Table 4.6: Mean and standard deviation of converged word similarity scores over 5 different
executions on text datasets.

Model
text8 1B-Word

WordSim-353 SimLex-999 WordSim-353 SimLex-999
Word2Vec-cpu 0.701 (±0.010) 0.308 (±0.014) 0.653 (±0.004) 0.344 (±0.007)

pWord2Vec-cpu 0.701 (±0.008) 0.296 (±0.008) 0.656 (±0.003) 0.348 (±0.002)
wombatSGNS-cpu 0.694 (±0.013) 0.278 (±0.009) 0.653 (±0.001) 0.350 (±0.002)

pSGNScc-cpu 0.716 (±0.008) 0.301 (±0.009) 0.657 (±0.003) 0.350 (±0.001)
PAR-Word2Vec-cpu 0.705 (±0.008) 0.302 (±0.003) 0.663 (±0.002) 0.341 (±0.003)

accSGNS-gpu 0.704 (±0.004) 0.303 (±0.002) 0.659 (±0.003) 0.337 (±0.002)
PAR-Word2Vec-gpu 0.698 (±0.008) 0.323 (±0.005) 0.680 (±0.004) 0.368 (±0.004)

For the large 1B-Word dataset, our PAR-Word2Vec-cpu and PAR-Word2Vec-gpu consis-

tently produced high word similarity scores on WordSim-353 and SimLex-999 tasks. This

result demonstrate that our sentence-wise decoupled Attraction-Repulsion based approach is

highly beneficial to performance improvement in terms of both model quality and speedup.

In the large 1B-Word dataset, 27,994,959
30,607,741 ≈ 91.46 % of sentences over the corpus include less

than 25 words. The mini-batch size B = 24 that we used for the experiment with 1B-Word

dataset indicates that sharing the same negative samples for all words within a sentence

would not affect the quality of model at all.

On the small text8 dataset, however, it is interesting point to see that PAR-Word2Vec-gpu

has some variability; it produces high averaged score for the SimLex-999 similarity task,

but low averaged score for the WordSim-353 task as shown in Table 4.6. However, PAR-

Word2Vec-gpu has standard deviations that overlap in the ranges (e.g., 0.698+ 0.008 =

0.706 on WordSim-353 task), implying that PAR-Word2Vec-gpu yields comparable results

on all intrinsic evaluations. We suspect that issue is with the number of thread blocks. As

seen in Algorithm 23, each thread block is processing multiple sentences and the global

Win and Wout matrices are updated after each sentence is processed (local updates within

118

NB = 1 NB = 1*56 NB = 2*56 NB = 4*56 NB = 8*56 NB = 16*56 NB = 32*56 NB = 64*56 NB = 128*56 NB = 256*56
NB = 1 NB = 1*56 NB = 2*56 NB = 4*56 NB = 8*56 NB = 16*56 NB = 32*56 NB = 64*56 NB = 128*56 NB = 256*56

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.4

0.45

0.5

0.55

0.6

0.65

0.7

W
o
rd

S
im

-3
5
3

text8

0 2 4 6 8 10

Training Time (s)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

W
o
rd

S
im

-3
5
3

text8

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9
9

text8

0 2 4 6 8 10

Training Time (s)

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9
9

text8

Figure 4.7: Word similarity scores over training epoch and time across different number of
thread blocks used in PAR-Word2Vec-gpu on text8 dataset, K = 128. Each point is averaged
over five executions. NB: the total number of thread blocks; X-axis: number of training
epochs and training time in seconds; Y-axis: word similarity scores.

a sentence; global updates across sentences). Because of that, different thread blocks are

not able to see each others update until the entire sentences are processed as shown in

Algorithm 26. Assume that both sentence 1 and sentence 100 have a common word, word

1. If we processed the sentences sequentially, it is guaranteed that the updates to common

word 1 performed while processing sentence 1 is visible before sentence 100 reads the

corresponding embedding vector of word 1. Whereas, when we consider sentence 1 was

119

processed by thread block 1 and sentence 100 by thread block 5 in parallel, then both of the

thread blocks will read the same initial embedding vector of word 1. Hence, the updates

would not be the same as sequential. The more the number of thread blocks the higher the

chance of this incoherence. Especially for the small text8 dataset, this is an issue as average

sentence length is around 1000 words (higher the sentence length higher the chance of this

incoherence). For the large 1B-Word dataset, the average sentence length is less than 25

(hence this effect may not be visible for 1B-Word dataset). In order to verify this issue, we

conducted an experiment with varying the number of thread blocks in text8 dataset. As

shown in Figure 4.7, the results were mostly matched as we expected: the smaller number

of thread blocks tends to provide a better quality, but slower training time. Another possible

reason is that the method of annealing learning rate in PAR-Word2Vec-gpu is different from

all other variants (see Section 4.6.4). Accordingly, to achieve high performance in terms of

both quality and training time, we had chosen to use 64×56 thread blocks and 1024×56

thread blocks for text8 and 1B-Word datasets, respectively.

Table 4.7: Mean and standard deviation of Macro F1 scores for relation extraction (Rel. Ext.)
task and Accuracy for sentiment analysis (Sent. Analysis) task over 5 different runs each for
5 different embedding executions, by Word2Vec variants.

Model
text8 1B-Word

Rel. Ext. Sent. Analysis Rel. Ext. Sent. Analysis
Word2Vec-cpu 0.671 (±0.010) 0.795 (±0.006) 0.689 (±0.009) 0.782 (±0.008)
pWord2Vec-cpu 0.669 (±0.006) 0.791 (±0.004) 0.686 (±0.008) 0.779 (±0.007)

wombatSGNS-cpu 0.666 (±0.007) 0.776 (±0.005) 0.691 (±0.010) 0.783 (±0.005)
pSGNScc-cpu 0.666 (±0.009) 0.790 (±0.005) 0.685 (±0.010) 0.784 (±0.006)

PAR-Word2Vec-cpu 0.665 (±0.010) 0.783 (±0.008) 0.691 (±0.008) 0.780 (±0.004)
accSGNS-gpu 0.680 (±0.010) 0.796 (±0.007) 0.689 (±0.006) 0.787 (±0.006)

PAR-Word2Vec-gpu 0.663 (±0.010) 0.807 (±0.004) 0.623 (±0.009) 0.780 (±0.004)

120

Extrinsic Evaluations of Word Embedding. Table 4.7 shows performance on the extrinsic

relation extraction and sentiment classification tasks after training for 10 epochs; perfor-

mance numbers were averaged over five replicates each of five embedding runs, to control for

random initialization effects in both embedding learning and the models used for extrinsic

evaluations. PAR-Word2Vec-cpu matches the evaluation quality of other CPU implementa-

tions, using both text8 and 1B-word datasets. PAR-Word2Vec-gpu yields comparable or

superior performance on sentiment classification, but surprisingly low evaluation quality on

the relation extraction task with the larger 1B-word dataset; quality with text8 is on par with

other implementations. Taken together with the intrinsic evaluation results, this suggests

that the massive parallelization of our PAR-Word2Vec-gpu algorithm may be exploring the

limits of HOGWILD!-style data parallelization in word embedding training.

Table 4.8: Mean and standard deviation of Micro F1 and Macro F1 scores for multi-label
classification, and Micro F1 score for link prediction task over 5 different runs each for 5
different embedding executions, by Word2Vec variants.

Model
BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH

Micro Macro Micro Macro Micro Macro Micro Micro
Word2Vec-cpu 0.429 0.306 0.213 0.188 0.461 0.081 0.699 0.723

pWord2Vec-cpu 0.422 0.304 0.211 0.187 0.478 0.088 0.691 0.721
wombatSGNS-cpu 0.429 0.310 0.211 0.184 0.464 0.079 0.692 0.718

pSGNScc-cpu 0.422 0.301 0.211 0.184 0.442 0.070 0.686 0.692
PAR-Word2Vec-cpu 0.425 0.304 0.223 0.194 0.480 0.101 0.687 0.723

accSGNS-gpu 0.423 0.297 0.215 0.190 0.460 0.082 0.698 0.721
PAR-Word2Vec-gpu 0.420 0.291 0.217 0.184 0.456 0.071 0.672 0.720
Avg. standard dev. ±0.006 ±0.011 ±0.006 ±0.006 ±0.006 ±0.008 ±0.001 ±0.002

Extrinsic Evaluations of Graph Embedding. To evaluate the multi-label classification

task with labeled graph datasets, we measured the average of Micro F1 and Macro F1

scores through 5-fold cross-validation across multiple shuffles of the datasets. For the

link prediction task with unlabeled graph datasets, we only measured Micro F1 score

121

since the numbers of distinct positive edges and distinct negative edges used for the SVM

training were the identical. As shown in Table 4.8, all variants including our CPU and GPU

implementations maintain mostly the same quality of node embeddings.

4.6.5.2 Speedup

0 2 4 6 8

Training Time (s)

0.5

0.6

0.7

0.8

W
o

rd
S

im
-3

5
3

text8

0 2 4 6 8

Training Time (s)

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9

9

text8

0 100 200 300

Training Time (s)

0.58

0.6

0.62

0.64

0.66

0.68

0.7

W
o

rd
S

im
-3

5
3

1B-Word

0 100 200 300

Training Time (s)

0.28

0.3

0.32

0.34

0.36

0.38

S
im

L
ex

-9
9
9

1B-Word

Figure 4.8: Comparison of word similarity scores over training time on text datasets, K =
128. Each point is averaged over five executions. X-axis: training time in seconds; Y-axis:
word similarity scores.

122

Figure 4.8 shows the word similarity scores over elapsed training time in text datasets.

Our PAR-Word2Vec-cpu and PAR-Word2Vec-gpu achieved significant improvement in

performance over existing state-of-the-art parallel Word2Vec implementations while main-

taining the same evaluation quality. As the results in Table 4.9 show, PAR-Word2Vec-cpu

Table 4.9: Comparison of the training time in seconds per epoch on text and graph datasets.

Model
Text Dataset Labeled Graph Dataset Unlabeled Graph Dataset

text8
1B Blog

PPI
Wikipedia

Facebook
ASTRO

-Word Catalog -2006 -PH
Word2Vec-cpu 7.32 315.46 6.43 3.13 2.95 2.55 12.54

pWord2Vec-cpu 2.20 86.63 1.56 0.45 0.55 0.53 2.66
wombatSGNS-cpu 2.09 90.04 1.43 0.47 0.58 0.71 2.88

pSGNScc-cpu 1.72 58.20 1.46 0.70 0.75 0.84 2.77
PAR-Word2Vec-cpu 1.02 37.43 0.83 0.33 0.28 0.31 1.43

accSGNS-gpu 4.79 185.31 2.23 0.66 0.62 1.37 6.44
PAR-Word2Vec-gpu 0.98 32.60 0.72 0.20 0.21 0.27 1.08

achieved approximately 9.01×, 2.41×, 2.51×, and 1.62× speedup on the large 1B-Word

dataset compared to Word2Vec-cpu, pWord2Vec-cpu, wombatSGNS-cpu, and pSGNScc-

cpu, respectively. For GPU implementations, our parallel PAR-Word2Vec-gpu launches

a kernel with only γ × 56 thread blocks with K threads and accSGNS-gpu launches a

large amount of S thread blocks along with K threads. Although it uses a relatively fewer

thread blocks compared to accSGNS-gpu, PAR-Word2Vec-gpu achieved 5.96× speedup

over accSGNS-gpu while maintaining same or better quality. With the graph datasets, the

range of performance improvements of our CPU and GPU implementations is almost the

same as the performance improvement with text datasets. On the large ASTRO-PH graph

dataset, PAR-Word2Vec-cpu achieved 8.77×, 1.86×, 2.01×, and 1.93× speedup compared

123

to Word2Vec-cpu, pWord2Vec-cpu, wombatSGNS-cpu, and pSGNScc-cpu, respectively.

Our PAR-Word2Vec-gpu also consistently outperformed accSGNS-gpu.

4.7 Discussion

One of the major factors that limits our single GPU implementation compared to our

single CPU implementation is synchronization overheads. Our GPU implementation uses

shared-memory to keep a slice of Win, Wout and temporary results. This requires multiple

synchronizations (one synchronization per load, store and update of each data structure). In

contrast, our CPU implementation does not require any synchronization as we are using the

implicit cache to buffer data. Another factor that affects the GPU performance is atomic

operations. Since the amount of parallelism in GPUs is much higher than CPUs, we had

to use atomic updates to maintain consistency of our data structures and this negatively

impacted performance. We also found that intra thread-block load imbalance also limited

the GPU performance. Techniques like binning can be employed to reduce load imbalance.

4.8 Conclusion

In this chapter, we built a parallel word embedding algorithm to enhance data locality,

focusing on reduction of data movement. To achieve high performance, minimizing data

movement is a critical factor, since data movement is much more expensive than arithmetic

operations. We found the main bottleneck of the original Word2Vec algorithm by conducting

a systematic analysis of data movement. The rearrangement of data computation enables

our proposed algorithm to greatly reduce the data movement overheads. Experiments on the

124

large datasets show that our algorithm achieves superior performance over the existing state-

of-the-art implementations. We also presented insights into parallelism versus data-locality

trade-offs as well as performance versus quality trends.

125

Chapter 5: Conclusion and Future Work

5.1 Conclusion

In order for current machine learning algorithms to achieve high performance on multi-

core CPUs and GPUs platforms, minimizing the amount of data movement is increasingly

critical. However, the design and implementation of new algorithms in machine learning

have been largely driven by a focus on computational complexity. In this dissertation, we

explored an exercise in different ways of implementing data-aware and architecture-aware

algorithms for state-of-the-art machine learning algorithms.

For an efficient parallel LDA algorithm on multi-core CPUs, 2D-tiling strategy and

over-decomposition technique are used to avoid use of atomic operations and ensure good

load balancing. A high-performance LDA algorithm for GPUs is further proposed based on

approximated Collapsed Gibbs Sampling. The proposed LDA algorithms are designed to

achieve high performance by systematically analyzing the data access patterns for LDA and

devising suitable algorithmic adaptations and parallelization strategies for multi-core CPUs

and GPUs.

For an efficient parallel Non-negative Matrix Factorization algorithm on multi-core CPUs

and GPUs, a HALS-based parallel NMF algorithm is developed by incorporating algorithmic

transformations to enhance data locality. A systematic analysis of data movement overheads

126

associated with NMF algorithm is conducted to determine the bottlenecks. The new parallel

NMF algorithm alleviates the data movement overheads by enhancing data locality.

For an efficient parallel Word2Vec algorithm on mutli-core CPUs and GPUs, a data-

locality-enhanced Word2Vec algorithm based on Skip-gram with a novel negative sampling

method is developed. The main bottleneck of the original Word2Vec algorithm is identi-

fied by conducting a systematic analysis of data movement. The rearrangement of data

computation is performed to greatly reduce the data movement overheads incurred from a

large number of dot-product operations. The utility of the new Word2Vec implementation

within the Node2Vec algorithm is also shown for accelerating embedding learning for large

graphs. We also presented insights into parallelism versus data-locality trade-offs as well as

performance versus quality trends.

Experimental results with large datasets demonstrate the effectiveness of our new ap-

proaches.

5.2 Future Research

NMF versus SG-NS based Word2Vec: Levy and Goldberg [47] presented the neural

network-based SG-NS word embedding algorithm that can be viewed as implicit factor-

ization of the word co-occurrence matrix. More specifically, they showed the objective of

SG-NS is to implicitly factorize a shift Pointwise Mutual Information (PMI) matrix. The

problem of PMI matrix is that the zero values represent unobserved word-context pairs,

whereas the negative values indicate uncorrelated word-context pairs. In order to avoid this

inconsistency problem, an approximation of PMI matrix called the Positive PMI (PPMI)

matrix can be adopted with a non-negativity constraint (replacing all negative values to zero).

As an alternative to the original Word2Vec algorithm and the basic PMI-based approaches,

127

they also showed Shift PPMI (SPPMI) and Singular Value Decomposition (SVD) methods

to decompose the word co-occurrence matrix. They compared the original SG-NS algorithm

with the matrix-based algorithms, SPPMI and SVD in terms of the quality of solutions

using word similarity and word analogy tasks. Experimental results showed that SPPMI and

SVD yield better results on word similarity task compared to SG-NS algorithm. However,

SG-NS produced comparable or better results on word analogy task over SPPMI and SVD

algorithms. They suspected that issue is related to the nature of SG-NS’s training method

in which weighted matrix factorization provides more influence to frequently appearing

word-context pairs. By bridging my in-depth knowledge of NMF and SG-NS algorithms, I

would like to investigate the quality of word embeddings generated by NMF, and present

insights into NMF versus SG-NS trade-offs.

Recently, several graph embedding algorithms based on matrix factorization [10, 73, 74]

and neural word embedding techniques [26, 69] have been proposed to learn vector-based

network representations of nodes in a graph. Gurukar et al. [27] described various graph

embedding algorithms in detail, and extensively evaluated the quality of their embeddings

on link prediction and node classification tasks. I would like to utilize our optimized NMF

algorithm (described in Chapter 3) to enable acceleration of network representation learning

for large graphs.

Parallel Dynamic Word Embeddings: While embeddings are often trained once on a

large corpus and re-used for a variety of applications, several results have demonstrated

that for tasks in specific domains, such as biomedicine, embeddings trained de novo on

domain-specific corpora outperform general-purpose embeddings [45, 66]. Additionally,

recent work has shown that training many sets of embeddings on specific sub-corpora can

be used to model language change over time [29], even for specific tasks like tracking

128

armed conflicts [43]. The time cost to train a large number of embedding models limits the

expanded use of embeddings for detailed analysis of multiple datasets.

Hence, in order to reduce the time required to train high-quality word embeddings, I

would like to apply our new Word2Vec training approach (data-first orientation) to neural

network-based dynamic word embedding techniques such as ELMo (Embeddings from

Language Models) [70] and BERT (Bidirectional Encoder Representations from Transform-

ers) [17] models that the NLP community has moved to. Different from the Word2Vec

model, the ELMo/BERT models inherently encode a sequence of words and therefore an

entire sentence needs to be captured in sequence. The goal is to enable acceleration of

ELMo/BERT models which might be constrained by their excessive training time.

Parallel Non-negative Tensor Factorization: Based on my previous experience with the

parallelization of NMF, I would like to further develop an efficient parallel algorithm for

Non-negative Tensor Factorization (NTF). NTF is an unsupervised dimension reduction

technique widely used in the fields of bioinformatics and image processing [14,83,90]. Given

a non-negative 3D tensor T ∈ RX1×X2×X3
+ , a CANDECOMP/PARAFAC (CP) decomposition

[11, 30] of T can be formulated as follows:

T ≈
K

∑
k=1

wk⊗ sk⊗hk (5.1)

where wk ∈ RX1
+ , sk ∈ RX2

+ and hk ∈ RX3
+ represent the rank-K approximation of the input

tensor T , and ⊗ denotes an outer product of vectors. Further, Equation 5.2 can be also

written in matrix format as follows:

T ≈W,S,H (5.2)

Hence, NTF estimates W , S and H matrices, such that ∑
K
k=1 wk⊗ sk⊗ hk approximates

T . NTF minimizes the reconstruction error between T and the reconstructed tensor from

129

W,S,H. The NTF problem known as non-negative CP (NNCP) can be defined as follows:

min
W,S,H

||T −W,S,H||2F subject to W,S,H ≥ 0 (5.3)

In order to minimize the cost functions, such as Frobenius norm and Kullback-Leibler diver-

gence, several variants of NTF algorithms have been proposed. Since NTF can be viewed as

an extension of NMF, the existing three NMF algorithms including Multiplicative Update

(MU) by Lee et al. [44], Alternating Least Squares (ALS) and Hierarchical Alternating Least

Squares (HALS) by Cichocki et al. [14] can be directly employed to the NTF algorithm.

Prior Efforts on Sequential and Parallel NTF Algorithms

Several studies solve the NNCP problem in Equation 5.3 using MU-based NTF algorithm

for many different applications, such as image decomposition and sound source separation

[20, 83, 84, 90, 99]. However, some studies have reported that the use of MU algorithm

suffers from slower convergence and lower convergence rate [23, 37, 51].

Alternating Least Squares (ALS) approach is a special type of block coordinate Gauss-

Seidel method [25] to solve non-linear optimization problems. For the ALS-based NMF

algorithm, ALS alternately updates a factor matrix where the other matrix is fixed. Thus,

ALS-based NMF algorithm converts the non-convex problem into a set of convex least

squares subproblems. The original ALS algorithm could be extended to the NTF problem

through updating a subset of matrices where the rest of the matrices are fixed. Therefore,

the original ALS-based NTF problem solves a sequence of ALS-based NMF subproblems

[21, 109]. In other words, the ALS-based NTF algorithm divides the original problem in

130

Equation 5.3 into three sequential subproblems as follows:

min
H
||Th− (W �S)H||2F where W and S are fixed

min
S
||Ts− (W �H)S||2F where W and H are fixed

min
W
||Tw− (H�S)W ||2F where H and S are fixed

where � is the Khatri-Rao product of the two matrices. In each subproblem, Th, Ts and Tw

represent the unfolded tensors T along the h, s and w dimensions. Recently, Kim et al. [39]

propose an efficient Alternating Non-negative Least Squares (ANLS) based NTF algorithm

that solves non-negativity constrained least squares (NNLS) problems using Block Principle

Pivoting algorithm. Under the Karush-Kuhn-Tucker (KTT) conditions, their algorithm

iteratively finds the indices of non-zero elements (passive set) and zero elements (active

set) in the optimal matrices until KTT conditions are satisfied. The values of indices that

correspond to the active set will become zero, and the values of passive set are approximated

by solving a standard least squares problem.

As an alternative to the ALS approach, Cichocki et al. [14] extend their FAST HALS

based NMF algorithm to FAST HALS based NTF algorithm using squared euclidean

distance. The FAST HALS based NTF algorithm hierarchically updates each column vector

of factor matrices at a time and then uses it to update a corresponding row vector of other

matrices. The algorithm minimizes a set of local cost functions. As described in Algorithm

3 in [14], if the number of factor matrices equals to 2, then the FAST HALS based NTF

corresponds to the FAST HALS based NMF.

131

Compared to the NMF, a limited amount of effort has been conducted on parallelization

of NTF. Zhang et al. [109] propose an efficient data partition scheme for parallel ALS-

based NTF algorithm. They considered the subproblem-specific data partitions to minimize

memory use, maintaining a large scale global climate dataset. For each ALS subproblem,

3D tensor and three factor matrices are distributed to independent processors and divided

into row blocks. Antikainen et al. [2] presents a parallel GPU implementation of the NTF

algorithm based on the Block Gauss-Seidel (BGS) method [25] and Jacobi iterative method

proposed by Hazan et al. [31].

132

Bibliography

[1] Mehdi Hosseinzadeh Aghdam, Morteza Analoui, and Peyman Kabiri. A novel non-
negative matrix factorization method for recommender systems. Applied Mathematics
& Information Sciences, 9(5):2721, 2015.

[2] Jukka Antikainen, Jiri Havel, Radovan Josth, Adam Herout, Pavel Zemcik, and
Markku Hauta-Kasari. Nonnegative tensor factorization accelerated using gpgpu.
IEEE Transactions on Parallel and Distributed Systems, 22(7):1135–1141, 2011.

[3] Arthur Asuncion, Max Welling, Padhraic Smyth, and Yee Whye Teh. On smoothing
and inference for topic models. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 27–34. AUAI Press, 2009.

[4] Seulki Bae and Youngmin Yi. Acceleration of word2vec using gpus. In International
Conference on Neural Information Processing, pages 269–279. Springer, 2016.

[5] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a
systematic comparison of context-counting vs. context-predicting semantic vectors.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 238–247. Association for Computational
Linguistics, 2014.

[6] Eric Battenberg and David Wessel. Accelerating non-negative matrix factorization
for audio source separation on multi-core and many-core architectures. In ISMIR,
pages 501–506, 2009.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
JMLR, 2003.

[8] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher, Ashton Bre-
itkreutz, Michael Livstone, Rose Oughtred, Daniel H Lackner, Jürg Bähler, Valerie
Wood, et al. The biogrid interaction database: 2008 update. Nucleic acids research,
36(suppl_1):D637–D640, 2007.

[9] John Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and Jiangchang Mao. Machine
learning at the limit. In Big Data (Big Data), 2015 IEEE International Conference
on, pages 233–242. IEEE, 2015.

133

[10] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations
with global structural information. In Proceedings of the 24th ACM international on
conference on information and knowledge management, pages 891–900. ACM, 2015.

[11] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[12] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. One billion word benchmark for measuring progress in
statistical language modeling. arXiv preprint arXiv:1312.3005, 2013.

[13] Billy Chiu, Anna Korhonen, and Sampo Pyysalo. Intrinsic Evaluation of Word
Vectors Fails to Predict Extrinsic Performance. Proceedings of the 1st Workshop on
Evaluating Vector Space Representations for NLP, pages 1–6, 2016.

[14] Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale non-
negative matrix and tensor factorizations. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 92(3):708–721, 2009.

[15] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. Hierarchical als algorithms
for nonnegative matrix and 3d tensor factorization. In International Conference on
Independent Component Analysis and Signal Separation, pages 169–176. Springer,
2007.

[16] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[18] Chao Dong, Huijie Zhao, and Wei Wang. Parallel nonnegative matrix factorization
algorithm on the distributed memory platform. International journal of parallel
programming, 38(2):117–137, 2010.

[19] James P Fairbanks, Ramakrishnan Kannan, Haesun Park, and David A Bader. Behav-
ioral clusters in dynamic graphs. Parallel Computing, 47:38–50, 2015.

[20] Cédric Févotte and Alexey Ozerov. Notes on nonnegative tensor factorization of
the spectrogram for audio source separation: statistical insights and towards self-
clustering of the spatial cues. In International Symposium on Computer Music
Modeling and Retrieval, pages 102–115. Springer, 2010.

[21] Michael P Friedlander and Kathrin Hatz. Computing non-negative tensor factoriza-
tions. Optimisation Methods and Software, 23(4):631–647, 2008.

134

[22] Nicolas Gillis. The why and how of nonnegative matrix factorization. Regularization,
Optimization, Kernels, and Support Vector Machines, 12(257), 2014.

[23] Edward F Gonzalez and Yin Zhang. Accelerating the lee-seung algorithm for non-
negative matrix factorization. Dept. Comput. & Appl. Math., Rice Univ., Houston,
TX, Tech. Rep. TR-05-02, pages 1–13, 2005.

[24] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences, 101(suppl 1):5228–5235, 2004.

[25] Luigi Grippo and Marco Sciandrone. On the convergence of the block nonlinear gauss–
seidel method under convex constraints. Operations research letters, 26(3):127–136,
2000.

[26] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864. ACM, 2016.

[27] Saket Gurukar, Priyesh Vijayan, Aakash Srinivasan, Goonmeet Bajaj, Chen Cai,
Moniba Keymanesh, Saravana Kumar, Pranav Maneriker, Anasua Mitra, Vedang
Patel, et al. Network representation learning: Consolidation and renewed bearing.
arXiv preprint arXiv:1905.00987, 2019.

[28] Maryam Habibi, Leon Weber, Mariana Neves, David Luis Wiegandt, and Ulf Leser.
Deep learning with word embeddings improves biomedical named entity recognition.
Bioinformatics, 33(14):i37–i48, 2017.

[29] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic Word Embed-
dings Reveal Statistical Laws of Semantic Change. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1489–1501, Berlin, Germany, aug 2016. Association for Computational Lin-
guistics.

[30] Richard A Harshman. Foundations of the parafac procedure: Models and conditions
for an" explanatory" multimodal factor analysis. 1970.

[31] Tamir Hazan, Simon Polak, and Amnon Shashua. Sparse image coding using a 3d
non-negative tensor factorization. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 1, pages 50–57. IEEE, 2005.

[32] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó
Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Sz-
pakowicz. SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations
between Pairs of Nominals. In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 33–38. Association for Computational Linguistics, 2010.

135

[33] Antonio Hernando, Jesús Bobadilla, and Fernando Ortega. A non negative matrix
factorization for collaborative filtering recommender systems based on a bayesian
probabilistic model. Knowledge-Based Systems, 97:188–202, 2016.

[34] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. Computational Linguistics, 41(4):665–
695, 2015.

[35] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. Parallelizing word2vec in
shared and distributed memory. arXiv preprint arXiv:1604.04661, 2016.

[36] Ramakrishnan Kannan, Grey Ballard, and Haesun Park. A high-performance parallel
algorithm for nonnegative matrix factorization. In ACM SIGPLAN Notices, volume 51,
page 9. ACM, 2016.

[37] Hyunsoo Kim and Haesun Park. Nonnegative matrix factorization based on alternating
nonnegativity constrained least squares and active set method. SIAM journal on matrix
analysis and applications, 30(2):713–730, 2008.

[38] Jingu Kim and Haesun Park. Fast nonnegative matrix factorization: An active-set-like
method and comparisons. SIAM Journal on Scientific Computing, 33(6):3261–3281,
2011.

[39] Jingu Kim and Haesun Park. Fast nonnegative tensor factorization with an active-set-
like method. In High-Performance Scientific Computing, pages 311–326. Springer,
2012.

[40] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Stanford, CA, 1995.

[41] Sven Koitka and Christoph M Friedrich. nmfgpu4r: Gpu-accelerated computation
of the non-negative matrix factorization (nmf) using cuda capable hardware. R
JOURNAL, 8(2):382–392, 2016.

[42] Da Kuang, Jaegul Choo, and Haesun Park. Nonnegative matrix factorization for inter-
active topic modeling and document clustering. In Partitional Clustering Algorithms,
pages 215–243. Springer, 2015.

[43] Andrey Kutuzov, Erik Velldal, and Lilja Øvrelid. Tracing armed conflicts with
diachronic word embedding models. In Proceedings of the Events and Stories in
the News Workshop, pages 31–36, Vancouver, Canada, aug 2017. Association for
Computational Linguistics.

[44] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factor-
ization. In Advances in neural information processing systems, pages 556–562,
2001.

136

[45] K Lee, S A Hasan, O Farri, A Choudhary, and A Agrawal. Medical Concept Normal-
ization for Online User-Generated Texts. In 2017 IEEE International Conference on
Healthcare Informatics (ICHI), pages 462–469, aug 2017.

[46] Jure Leskovec and Andrej Krevl. {SNAP Datasets}:{Stanford} large network dataset
collection. 2015.

[47] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix fac-
torization. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
2177–2185. Curran Associates, Inc., 2014.

[48] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225, 2015.

[49] Ruiqi Liao, Yifan Zhang, Jihong Guan, and Shuigeng Zhou. Cloudnmf: a mapreduce
implementation of nonnegative matrix factorization for large-scale biological datasets.
Genomics, proteomics & bioinformatics, 12(1):48–51, 2014.

[50] M. Lichman. UCI machine learning repository, 2013.

[51] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.
Neural computation, 19(10):2756–2779, 2007.

[52] Tal Linzen. Issues in evaluating semantic spaces using word analogies. In Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for NLP, pages
13–18, 2016.

[53] Chao Liu, Hung-chih Yang, Jinliang Fan, Li-Wei He, and Yi-Min Wang. Distributed
nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. In
Proceedings of the 19th international conference on World wide web, pages 681–690.
ACM, 2010.

[54] Noel Lopes and Bernardete Ribeiro. Non-negative matrix factorization implementa-
tion using graphic processing units. In International Conference on Intelligent Data
Engineering and Automated Learning, pages 275–283. Springer, 2010.

[55] Mian Lu, Ge Bai, Qiong Luo, Jie Tang, and Jiuxin Zhao. Accelerating topic model
training on a single machine. In APWeb. Springer, 2013.

[56] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. Learning Word Vectors for Sentiment Analysis. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 142–150. Association for Computational Linguistics,
2011.

137

[57] Matt Mahoney. Large text compression benchmark. URL: http://www. mattmahoney.
net/text/text. html, 2011.

[58] Edgardo Mejía-Roa, Daniel Tabas-Madrid, Javier Setoain, Carlos García, Francisco
Tirado, and Alberto Pascual-Montano. Nmf-mgpu: non-negative matrix factorization
on multi-gpu systems. BMC bioinformatics, 16(1):43, 2015.

[59] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[60] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[61] SPFGH Moen and Tapio Salakoski2 Sophia Ananiadou. Distributional semantics
resources for biomedical text processing. Proceedings of LBM, pages 39–44, 2013.

[62] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network lan-
guage model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

[63] Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoyanov.
Semeval-2016 task 4: Sentiment analysis in twitter. In Proceedings of the 10th
international workshop on semantic evaluation (semeval-2016), pages 1–18, 2016.

[64] David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. Distributed
algorithms for topic models. JMLR, 2009.

[65] Denis Newman-Griffis, Albert M Lai, and Eric Fosler-Lussier. Insights into Analogy
Completion from the Biomedical Domain. In BioNLP 2017, pages 19–28, Vancouver,
Canada, aug 2017. Association for Computational Linguistics.

[66] Denis Newman-Griffis and Ayah Zirikly. Embedding Transfer for Low-Resource
Medical Named Entity Recognition: A Case Study on Patient Mobility. In Proceed-
ings of the BioNLP 2018 workshop, pages 1–11, Melbourne, Australia, jul 2018.
Association for Computational Linguistics.

[67] Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from
convolutional neural networks. In Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, pages 39–48, 2015.

[68] Erik Ordentlich, Lee Yang, Andy Feng, Peter Cnudde, Mihajlo Grbovic, Nemanja
Djuric, Vladan Radosavljevic, and Gavin Owens. Network-efficient distributed
word2vec training system for large vocabularies. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management, pages
1139–1148. ACM, 2016.

138

[69] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[70] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv
preprint arXiv:1802.05365, 2018.

[71] Xuan-Hieu Phan and Cam-Tu Nguyen. Gibbslda++: A c/c++ implementation of
latent dirichlet allocation (lda), 2007.

[72] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,
and Max Welling. Fast collapsed gibbs sampling for latent dirichlet allocation. In
SIGKDD. ACM, 2008.

[73] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie
Tang. Netsmf: Large-scale network embedding as sparse matrix factorization. In The
World Wide Web Conference, pages 1509–1520. ACM, 2019.

[74] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network
embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In
Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, pages 459–467. ACM, 2018.

[75] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent. In Advances in neural
information processing systems, pages 693–701, 2011.

[76] Vasudevan Rengasamy, Tao-Yang Fu, Wang-Chien Lee, and Kamesh Madduri. Opti-
mizing word2vec performance on multicore systems. In Proceedings of the Seventh
Workshop on Irregular Applications: Architectures and Algorithms, page 3. ACM,
2017.

[77] Stefan A Robila and Lukasz G Maciak. A parallel unmixing algorithm for hyperspec-
tral images. In Intelligent Robots and Computer Vision XXIV: Algorithms, Techniques,
and Active Vision, volume 6384, page 63840F. International Society for Optics and
Photonics, 2006.

[78] Anna Rogers, Aleksandr Drozd, and Bofang Li. The (too Many) Problems of
Analogical Reasoning with Word Vectors. Proceedings of the 6th Joint Conference
on Lexical and Computational Semantics (*SEM 2017), pages 135–148, 2017.

[79] Anna Rogers, Shashwath Hosur Ananthakrishna, and Anna Rumshisky. What’s in
Your Embedding, And How It Predicts Task Performance. In Proceedings of the 27th
International Conference on Computational Linguistics, pages 2690–2703, Santa Fe,
NM, USA, 2018. Association for Computational Linguistics.

139

[80] Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633, 1965.

[81] Magnus Sahlgren and Alessandro Lenci. The effects of data size and frequency
range on distributional semantic models. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 975–980. Association for
Computational Linguistics, 2016.

[82] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evaluation
methods for unsupervised word embeddings. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 298–307. Association
for Computational Linguistics, 2015.

[83] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with appli-
cations to statistics and computer vision. In Proceedings of the 22nd international
conference on Machine learning, pages 792–799. ACM, 2005.

[84] Amnon Shashua, Ron Zass, and Tamir Hazan. Multi-way clustering using super-
symmetric non-negative tensor factorization. In European conference on computer
vision, pages 595–608. Springer, 2006.

[85] Tian Shi, Kyeongpil Kang, Jaegul Choo, and Chandan K Reddy. Short-text topic
modeling via non-negative matrix factorization enriched with local word-context
correlations. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web, pages 1105–1114. International World Wide Web Conferences Steering
Committee, 2018.

[86] Trevor M Simonton and Gita Alaghband. Efficient and accurate word2vec imple-
mentations in gpu and shared-memory multicore architectures. In High Performance
Extreme Computing Conference (HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

[87] Tyler Michael Smith et al. Theory and practice of classical matrix-matrix multiplica-
tion for hierarchical memory architectures. PhD thesis, 2018.

[88] Padhraic Smyth, Max Welling, and Arthur U Asuncion. Asynchronous distributed
learning of topic models. In NIPS, 2009.

[89] Sangho Suh, Jaegul Choo, Joonseok Lee, and Chandan K Reddy. Local topic
discovery via boosted ensemble of nonnegative matrix factorization. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence, pages 4944–4948.
AAAI Press, 2017.

[90] Koh Takeuchi, Ryota Tomioka, Katsuhiko Ishiguro, Akisato Kimura, and Hiroshi
Sawada. Non-negative multiple tensor factorization. In Data Mining (ICDM), 2013
IEEE 13th International Conference on, pages 1199–1204. IEEE, 2013.

140

[91] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In Proceedings of the 24th International
Conference on World Wide Web, pages 1067–1077. International World Wide Web
Conferences Steering Committee, 2015.

[92] Lei Tang and Huan Liu. Leveraging social media networks for classification. Data
Mining and Knowledge Discovery, 23(3):447–478, 2011.

[93] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the
2003 conference of the North American chapter of the association for computational
linguistics on human language technology-volume 1, pages 173–180. Association for
Computational Linguistics, 2003.

[94] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C Pocock, Stephen
Green, and Guy L Steele. Augur: Data-parallel probabilistic modeling. In NIPS,
2014.

[95] Jean-Baptiste Tristan, Joseph Tassarotti, and Guy Steele. Efficient training of lda on
a gpu by mean-for-mode estimation. In ICML, 2015.

[96] Jeroen BP Vuurens, Carsten Eickhoff, and Arjen P de Vries. Efficient parallel learning
of word2vec. arXiv preprint arXiv:1606.07822, 2016.

[97] Jim Jing-Yan Wang, Xiaolei Wang, and Xin Gao. Non-negative matrix factorization
by maximizing correntropy for cancer clustering. BMC bioinformatics, 14(1):107,
2013.

[98] Yi Wang, Hongjie Bai, Matt Stanton, Wen-Yen Chen, and Edward Y Chang. Plda:
Parallel latent dirichlet allocation for large-scale applications. AAIM, 2009.

[99] Max Welling and Markus Weber. Positive tensor factorization. Pattern Recognition
Letters, 22(12):1255–1261, 2001.

[100] Brendan Whitaker, Denis Newman-Griffis, Aparajita Haldar, Hakan Ferhatosman-
oglu, and Eric Fosler-Lussier. Characterizing the impact of geometric properties
of word embeddings on task performance. In Proceedings of the Third Workshop
on Evaluating Vector Space Representations for NLP (RepEval), Minneapolis, MN,
2019. Association for Computational Linguistics.

[101] Han Xiao and Thomas Stibor. Efficient collapsed gibbs sampling for latent dirichlet
allocation. In ACML, 2010.

[102] Pei Xue, Tao Li, Kezhao Zhao, Qiankun Dong, and Wenjing Ma. Glda: Parallel gibbs
sampling for latent dirichlet allocation on gpu. In ACA. Springer, 2016.

141

[103] Feng Yan, Ningyi Xu, and Yuan Qi. Parallel inference for latent dirichlet allocation
on graphics processing units. In NIPS, 2009.

[104] Zi Yang and George Michailidis. A non-negative matrix factorization method for
detecting modules in heterogeneous omics multi-modal data. Bioinformatics, 32(1):1–
8, 2015.

[105] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

[106] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision for relation
extraction via piecewise convolutional neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 1753–
1762, 2015.

[107] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation
Classification via Convolutional Deep Neural Network. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: Technical
Papers, pages 2335–2344. Dublin City University and Association for Computational
Linguistics, 2014.

[108] Bingjing Zhang, Bo Peng, and Judy Qiu. High performance lda through collective
model communication optimization. Procedia Computer Science, 2016.

[109] Qiang Zhang, Michael W Berry, Brian T Lamb, and Tabitha Samuel. A paral-
lel nonnegative tensor factorization algorithm for mining global climate data. In
International Conference on Computational Science, pages 405–415. Springer, 2009.

[110] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from
incomplete ratings using non-negative matrix factorization. In Proceedings of the
2006 SIAM international conference on data mining, pages 549–553. SIAM, 2006.

[111] Huasha Zhao, Biye Jiang, John F Canny, and Bobby Jaros. Same but different: Fast
and high quality gibbs parameter estimation. In SIGKDD. ACM, 2015.

142

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Key Contributions

	2. Parallel Latent Dirichlet Allocation onMulti-Core CPUs and GPUs
	2.1 Introduction
	2.2 Background
	2.2.1 Latent Dirichlet Allocation
	2.2.2 Collapsed Gibbs Sampling
	2.2.3 Uncollapsed Gibbs Sampling

	2.3 Related Work
	2.3.1 Multi-Core CPU Platform
	2.3.2 Many-Core GPU Platform

	2.4 Parallel Latent Dirichlet Allocation on Multi-Core CPUs
	2.4.1 Parallel LDA with Over-Decomposition
	2.4.2 Parallel LDA with Mini-Batch Processing

	2.5 Parallel Latent Dirichlet Allocation on GPUs
	2.5.1 Graphical Processing Units (GPUs)
	2.5.2 Overview of GPU Algorithm
	2.5.3 Details of Parallel GPU Algorithm
	2.5.4 Experimental Evaluation

	2.6 Conclusion

	3. Parallel Locality-OptimizedNon-negative Matrix Factorization
	3.1 Introduction
	3.2 Background
	3.2.1 Non-negative Matrix Factorization Algorithms

	3.3 Related Work on Parallelization of NMF
	3.3.1 Shared-Memory Multiprocessor
	3.3.2 Distributed-Memory Systems
	3.3.3 GPU Platform

	3.4 Overview of Approach
	3.4.1 Overview of FAST-HALS Algorithm
	3.4.2 Data Movement Analysis for FAST-HALS Algorithm
	3.4.3 Overview of PL-NMF

	3.5 Details of PL-NMF on Multi-Core CPUs and GPUs
	3.5.1 Parallel CPU Implementation
	3.5.2 Parallel GPU Implementation

	3.6 Modeling: Determination of the tile size
	3.7 Experimental Evaluation
	3.7.1 Benchmarking Machines
	3.7.2 Datasets
	3.7.3 Performance Evaluation

	3.8 Conclusion

	4. Parallel Data-Local Training forOptimizing Word2Vec Embeddings for Word and Graph Embeddings
	4.1 Introduction
	4.2 Background
	4.2.1 Word2Vec
	4.2.2 Node2Vec

	4.3 Related Work
	4.3.1 Parallelization of Word2Vec Embeddings
	4.3.2 Word2Vec based Graph Embeddings

	4.4 SG-NS based Word2Vec Algorithm
	4.4.1 Overview of SG-NS Based Word2Vec
	4.4.2 Data Movement Analysis for SG-NS Based Word2Vec

	4.5 Parallel Decoupled Attraction-Repulsion based Word2Vec Algorithm
	4.5.1 Overview of PAR-Word2Vec
	4.5.2 Details of Parallel CPU implementation
	4.5.3 Details of Parallel GPU implementation
	4.5.4 Data Movement Analysis for PAR-Word2Vec
	4.5.5 Data Movement Analysis Comparison

	4.6 Experimental Evaluation
	4.6.1 Benchmarking Machines
	4.6.2 Datasets
	4.6.3 Evaluation Metrics
	4.6.4 Word2Vec Implementations Compared
	4.6.5 Performance Evaluation

	4.7 Discussion
	4.8 Conclusion

	5. Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Research

	Bibliography

