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ABSTRACT

Graphic Processing Units (GPUs) have become popular in the last decade due to their

high memory bandwidth and powerful computing capacity. Nevertheless, achieving high-

performance on GPUs is not trivial. It generally requires significant programming expertise

and understanding of details of low-level execution mechanisms in GPUs. This disserta-

tion introduces approaches for optimizing regular and irregular applications. To optimize

regular applications, it introduces a novel approach to GPU kernel optimization by iden-

tifying and alleviating bottleneck resources. This approach, however, is not effective in

irregular applications because of data-dependent branches and memory accesses. Hence,

tailored approaches are developed for two popular domains of irregular applications: graph

algorithms and sparse matrix primitives.

Performance modeling for GPUs is carried out by abstract kernel emulation along with

latency/gap modeling of resources. Sensitivity analysis with respect to resource latency/-

gap parameters is used to predict the bottleneck resource for a given kernel’s execution.

The utility of the bottleneck analysis is demonstrated in two contexts: i) Enhancing the

OpenTuner auto-tuner with the new bottleneck-driven optimization strategy. Effectiveness

is demonstrated by experimental results on all kernels from the Rodinia suite and GPU

tensor contraction kernels from the NWChem computational chemistry suite. ii) Manual

code optimization. Two case studies illustrate the use of a bottleneck analysis to iteratively

improve the performance of code from state-of-the-art DSL code generators.
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However, the above approach is ineffective for irregular applications such as graph

algorithms and sparse linear systems. Graph algorithms are used in various applications,

and high-level GPU graph processing frameworks are an attractive alternative for achieving

both high productivity and high-performance. This dissertation develops an approach to

graph processing on GPUs that seeks to overcome some of the performance limitations

of existing frameworks. It uses multiple data representations and execution strategies for

dense- versus sparse vertex frontiers, dependent on the fraction of active graph vertices.

Experimental results demonstrate performance improvement over current state-of-the-art

GPU graph processing frameworks for many benchmark programs and data sets.

Sparse matrix primitves such as sparse matrix vector multiplication (SpMV), sparse ma-

trix multi-vector multiplication (SpMM), and Sampled Dense-dense matrix multiplication

(SDDMM), are key kernels for scientific computing as well as data science and machine

learning. A large number of recent research studies have focused on various GPU imple-

mentations of the SpMV kernel. But SpMM and SDDMM kernels have received much less

attention. This dissertation presents in-depth analyses to contrast SpMV and SpMM, and

develops new sparse-matrix representations and computation approaches suited to achiev-

ing high data-movement efficiency and effective GPU parallelization of SpMM. It also

introduces a novel tiling approach for high-performance implementations for SpMM and

SDDMM with the standard sparse matrix representation – Compressed Sparse Row (CSR).

Experimental evaluation demonstrates performance improvement over existing implemen-

tations.

In short, this dissertation contributes to enhancing compiler technology to achieve high-

performance on GPUs by mainly considering data locality and concurrency.
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CHAPTER 1

Introduction

Graphics Processing Units (GPUs) have been spotlighted due to their higher peak per-

formance (GFLOPs) and peak bandwidth between DRAM memory and processor cores

than multi-core CPUs. Hence, GPUs have the potential for higher performance than multi-

core CPUs both for compute-intensive codes with high operational intensity (e.g., convolu-

tional neural networks for deep learning) and for memory-bandwidth limited applications

with low operational intensity (e.g., community detection in large social networks). How-

ever, actually achieving the high potential performance of GPUs is not trivial due to several

factors: uncoalesced memory access, insufficient concurrency to tolerate high memory ac-

cess latency, load imbalance, and thread divergence. There are two categories of GPU Ap-

plications: regular application and irregular applications. Regular applications present pre-

dictable and regular data access patterns, while irregular applications have input-dependent

patterns, unpredictable memory-access patterns, and data-dependent control flow. Hence,

for optimizing graph applications, SpMM, and SDDMM, which are popular irregular ap-

plications, this dissertation develops a tool that exploits regular access patterns and helps

application developers implement high-performance applications on GPUs. On the other

hand, to optimize popular kernels in irregular applications, it devises optimization tech-

niques based on the input pattern.
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Optimizing regular applications: Since achieving high-performance with GPUs is not

simple and generally requires significant programmer expertise, such development of high-

performance applications is very time consuming even for GPU experts and is not very

feasible for the large number of developers. Therefore, there is considerable interest in

developing tools that help application developers implement high-performance applications

on GPUs.

An important use of performance modeling is to guide code optimization for auto-

mated compiler optimization and for manual optimization. However, sufficiently accurate

modeling of performance is extremely challenging, so that optimizing compilers gener-

ally use extremely simple performance models. The complexity of developing analytical

performance models for GPUs is in large part due to the multitude of asynchronously op-

erating hardware components in a GPU. Although several efforts [56, 116, 10, 155] have

been made in developing analytical performance models for GPUs, none of them has been

demonstrated to provide good accuracy over a range of application codes. Further, none

of the previously presented analytical models has been shown to be useful in model-driven

code optimization.

This dissertation takes a radically different approach, Sensitivity Analysis via Abstract

Kernel Emulation (SAAKE), to develop a performance modeling tool that is accurate

enough to guide compile-time optimization in a large space of possible alternatives. In-

stead of an analytical modeling approach, we use an abstract emulation of the actual binary

code for the kernel (SASS code generated by NVIDIA’s NVCC compiler). The abstract

emuluation involves simulation of the start and completion of each instruction for a set of

warps on one Streaming Multiprocessor (SM), but without actual computation of the results

of the instructions. Key resources of the system, such as the global memory subsystem and
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shared-memory, are modeled in an abstract manner using two parameters: latency and gap

(inverse of throughput). The abstract emulation of a collection of warps on one SM sim-

ulates inter-dependences between different hardware resources during kernel execution, so

that the predicted kernel execution time is sufficiently accurate to guide in the choice of

alternate transformations. Since the abstract emulation only models the execution of in-

structions from a small set of warps on one SM, the time it takes is extremely low: usually

in the order of milliseconds for typical GPU kernels. The effectiveness of the proposed

approach is demonstrated via experimental results on two GPU platforms, using the entire

Rodinia benchmark suite of CUDA programs.

Optimizing graph applications: Graphs algorithms play a crutial role in many applica-

tions. However, implementing efficient graph algorithms on GPUs takes a lot of time for

developers of new methods for data/graph analytics. Thus, there is substantial interest in

developing domain-specific graph processing frameworks that offer application developers

a convenient high-level abstraction for developing their algorithms, and high-performance

on GPUs. Several such GPU graph processing frameworks have been developed, includ-

ing VWC [55], Cusha [64], WS [63], GreenMarl [54], Groute [15], and Gunrock [136].

While these frameworks achieve much higher performances than popular vertex-centric

graph processing frameworks like Pregel [87], Giraph [124], GraphLab [80], etc., current

GPU graph processing frameworks still have some performance limitations.

This dissertation begins by identifying sources of performance limitations for current

GPU graph processing frameworks, and then develops the MultiGraph which addresses

those limitations. The approaches we develop can be incorporated into existing GPU graph

processing frameworks like Gunrock, Groute, WS, etc. A key theme of this work is that
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graphs and graph traversals exhibit significant non-uniformity, and therefore a single data

representation or execution strategy is unlikely to be effective across the board. By iden-

tifying important use cases and execution scenarios, we develop a GPU graph processing

framework that uses multiple internal representations of the graph, as well as differentiated

execution strategies for different use cases of graph traversal.

Optimizing SpMM with a novel structure: Multi-vector (SpMM) multiplication (also

called Sparse Matrix Dense Matrix multiplication or SpMDM) is a key kernel used in a

range of applications. SpMV requires a vector to be multiplied by a sparse matrix. SpMM

is a generalization of SpMV, and requires multiple vectors to be multiplied by a sparse

matrix. While repeated applications of SpMV can be used to perform SpMM, better data

reuse can be achieved by devising sparse-matrix representations and access patterns that

are customized for SpMM. In examining the distribution of non-zeros in sparse matrices

drawn from a variety of application domains, it is found that they are not uniformly spread

over the row/column index space, but that non-uniform clustering of elements occurs.

This dissertation exploits this property to partition the elements into two groups: one

containing clustered segments, and the other, the remaining singleton elements. Different

processing strategies are used for the two partitions, with higher reuse and lower overheads

being achievable for the clustered partition.

Optimizing SpMM and SDDMM with CSR: The novel structure mentioned above is

incompatible with existing libraries which are used in many applications. To tackle this

issue, we use the standard CSR representation, within which intra-row reordering is per-

formed to enable adaptive tiling. Tiling is a key technique for data locality optimization
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and is widely used in high-performance implementations of dense matrix-matrix multipli-

cations. However, the irregular and matrix-dependent data access pattern of sparse matrix

multiplication makes it challenging to use tiling to enhance data reuse. This dissertation de-

vises and applies an adaptive tiling strategy to enhance the performance of two primitives:

SpMM and SDDMM.

Key Contributions: The contributions of the dissertation are presented in four chapters

as follows:

• Chapter 2 is related to some of my publications [49, 51, 111, 130, 65, 110]. It presents

an approach to GPU kernel optimization by focusing on identification of bottleneck

resources and determining optimization parameters that can alleviate the bottleneck.

Performance modeling for GPUs is done by abstract kernel emulation along with

latency/gap modeling of resources. Sensitivity analysis with respect to resource la-

tency/gap parameters is used to predict the bottleneck resource for a given kernel’s

execution.

• Chapter 3 is comprised of my publication [52]. It presents an approach to graph

processing on GPUs that seeks to overcome some of the performance limitations of

existing frameworks. It uses multiple data representation and execution strategies

for dense versus sparse vertex frontiers, dependent on the fraction of active graph

vertices. A two-phase edge processing approach trades off extra data movement for

improved load balancing across GPU threads, by using a 2D blocked representation

for edge data.

• Chapter 4 is composed of my publication [48]. It presents an efficient SpMM com-

puter architecture-aware algorithm for GPUs by exploiting the clustering in sparse
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matrices. Our approach tries to get good reuse of the elements from the input vector,

the output vector, and the sparse matrix simultaneously.

• Chapter 5 is related to my several publications [48, 70, 96, 53, 47]. It devised an

adaptive tiling strategy for two popular primitives, SpMM and SDDMM. We used

the standard Compressed Sparse Row (CSR) representation which is compatible with

other libraries, within which intra-row reordering is conducted for adaptive tiling.

This is in contrast to prior studies that have used non-standard sparse matrix repre-

sentation to improve performance. Tiling is a key technique for data locality opti-

mization, but effective tiling for sparse matrix computations is challenging because

of the matrix-dependent data access pattern.

Overall, this dissertation proposes approaches to optimize various kinds of kernels on

GPUs by identifying bottleneck resources or developing novel data structures & computer

architecture-aware algorithms.
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CHAPTER 2

GPU Code Optimization Using Abstract Kernel Emulation and
Sensitivity Analysis

2.1 Introduction

Code transformations for optimization are typically guided by performance models.

However, we face two significant when optimizing compilers for GPUs:

i) The complexity of modeling the multiple concurrent interacting hardware components in

a GPU makes it extremely challenging to develop sufficiently accurate performance models

that can reliably predict which of two alternative code structures will execute faster on a

given GPU; and

ii) Even if a sufficiently discriminating performance model is developed, the space of se-

mantically equivalent code structures for most compute-intensive algorithms is extremely

large when considering the number of possible ways for mapping the statement instances

to threads/thread blocks.

Production compilers therefore use simple and fairly imprecise cost models to guide op-

timizing transformations, in part because very precise performance models usable in com-

pilers are unavailable, and in part because production compilers cannot afford excessively

high compile times in performing an extensive search over a large configuration space. But
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application developers are willing to wait for minutes or even hours for the “final” com-

pilation of a production code, if the performance of the resulting compiled code can be

significantly improved by a slow but effective optimizing compiler. Production compilers

do not address this use case; this is the scenario we target in this chapter.

We present a new approach to GPU code optimization with the following features:

• Code optimization is driven by the identification of bottleneck hardware resources.

• Instead of using analytical performance models, performance modeling of GPU ker-

nel execution is done via fast abstract kernel emulation, along with simplified mod-

eling of two key hardware parameters for resources in the GPU: latency and gap

(inverse throughput).

• A novel sensitivity analysis with respect to hardware resource parameters is used to

identify resource bottlenecks.

• Experimental evaluation of performance modeling is done using all kernels of the

Rodinia benchmark suite.

• Utility in code optimization is demonstrated in two ways: i) automated GPU kernel

optimization by coupling a bottleneck-analysis-driven search with auto-tuning; ii)

two manual case studies of improving the performance of code generated by domain-

specific code generators for tensor contractions [82] and stencil computations [110].

2.2 Overview of Approach

In this section, we use examples to present an overview of the new approach to perfor-

mance modeling and bottleneck identification for GPU kernel execution. We first illustrate

some of the key factors that influence GPU kernel performance and the impact of bottleneck

resources.
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2.2.1 Bottleneck Resources on GPUs

The performance of a GPU kernel is typically constrained by one of its resources, such

as the global memory subsystem, shared memory, or the special function unit. We begin

with a simple illustration of the limiting bottleneck resource and how kernel performance

optimization can be guided by the knowledge of the limiting bottleneck.

Figure 2.1: Grid reshaping
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Figure 2.2: Thread coarsening
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Listing 2.1: Matrix Multiplication
1 . i n t t x = t h r e a d I d x . x , i = b l o c k I d x . x∗32 + tx ,

j = b l o c k I d x . y ;
2 . s h a r e d f l o a t cb [ 3 2 ] ;
3 . f l o a t sum = 0 . 0 ;
4 . f o r ( i n t ks = 0 ; ks < p ; ks += 32 ) {
5 . cb [ t x ] = c [ ks+ t x+ p i t c h c ∗ j ] ;
6 . f o r ( i n t k = ks ; k < ks +32; ++k )
7 . sum += b [ i + p i t c h b ∗k ] ∗ cb [ k−ks ] ;
8 . }

9 . a [ i + p i t c h a ∗ j ] = sum ;

Performance under limited concurrency: Fig. 2.1 shows the execution time of a CUDA

kernel code for dense matrix-matrix multiplication. The parallel i and j loops of the stan-

dard triple-nested loop matrix multiplication code are mapped to threads in the grid, and the

innermost loop over k performs a dot product. The CUDA kernel operates on 2048 × 2048
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matrices, using 1D thread blocks, on an NVIDIA K20c GPU. The figure shows occupancy,

defined as the ratio of active warps on a Streaming Multiprocessor (SM) to the maximum

number of active warps the SM can support. In addition, it reports DRAM accesses, in-

structions per cycle (IPC), and execution times with varying thread block sizes. We observe

that the performance improvements follow the occupancy closely. For a thread block size

of 128, an occupancy of one is achieved, delivering the best performance. Since the num-

ber of DRAM accesses remains constant for all cases, increasing occupancy helps tolerate

the latency of global memory accesses. In this regime (thread block size < 128), the global

memory is the resource bottleneck, and performance is limited by memory access latency.

As occupancy increases, the code is better able to tolerate global memory latency and per-

formance improves until maximum occupancy is achieved. Further increase in thread block

size does not result in any further increase in concurrency, and there is no improvement in

performance.

Latency-bound vs. throughput-bound resource: Beyond a thread block size of 128,

performance is limited by global memory bandwidth, not by global memory latency. Thus,

the same hardware resource can serve as the performance limiting bottleneck in different

ways: latency-bound or throughput-bound. When a resource is latency-bound, increasing

the number of concurrent requests to that resource can improve performance. When a

bottleneck resource is throughput-bound, the only way to improve performance is to reduce

the total demand on the resource, as shown below.

Enhancing data reuse by thread coarsening: Thread coarsening [126, 85] is an ap-

proach to achieving register tiling for GPU kernel code. Fig. 2.2 shows the performance

trends for a thread-coarsened version of the matrix-matrix multiplication code. The total
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number of global memory loads gets reduced because the number of thread blocks along y

are halved, and each thread performs the same number of global memory load operations.

For a thread-coarsening factor of 2, halving the volume of DRAM transactions leads to pro-

portional improvements in the execution time. Execution time and IPC continue to improve

until a thread coarsening factor of 4. While thread coarsening increases the per-thread reg-

ister use, this does not impact the occupancy for a coarsening factor less than four. Beyond

a coarsening factor of four is reached, the hardware limit on available registers per SM

causes the number of active loaded warps (and thus occupancy) to decrease. At this point,

the kernel’s performance is once again bound by memory latency. Due to this limitation,

further reductions in the volume of DRAM loads do not improve performance.

2.2.2 SAAKE

In this section, we present Sensitivity Analysis via Abstract Kernel Emulation (SAAKE),

an approach to identifying the bottleneck resource for a given program version and deter-

mining whether the resource is latency- or throughput bound. The objective is to identify

the bottleneck resources for a given kernel binary (SASS) code. To this end, we employ

sensitivity analysis; i.e., we evaluate the potential performance impact of changing the

modeled latency or throughput parameters of a resource. This approach requires perfor-

mance modeling, motivating our development of a lightweight kernel emulation approach.

Abstract Kernel Emulation: In contrast to analytical performance modeling, we per-

form an abstract emulation of the actual kernel binary (SASS) code in an emulator. Only a

(tiny) fraction of the thread blocks to be executed are emulated, typically taking only a few

milliseconds. During abstract kernel emulation, ready instructions from active warps are
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scheduled for execution using some warp scheduling strategy, such as Greedy Then Oldest

(GTO) [112].

Each primary hardware resource in the GPU is modeled using two parameters: latency

and gap. The latency of a resource is the total time for a request to be completed by

that resource from start to finish. For pipelined hardware resources, multiple concurrent

requests can be in flight, but a new request may not be processable every clock cycle. The

minimum number of cycles between the start (or the end) of execution of two successive

requests at a resource is its gap. Thus, the maximum throughput achievable by a resource

is one request per gap cycles; i.e., the gap is inversely related to the peak throughput of the

resource.

The completion time of an instruction is modeled by adding the latency of the needed

resources (e.g., shared-memory, global memory, special functional units, etc.). For each

resource, an “earliest admission” time is maintained, which is incremented by its gap when

a new request starts execution on it. Dependences between instructions are tracked, so

that the earliest schedulable time for an instruction is later than the completion times of all

previously scheduled instructions on which it depends.

Bottleneck identification: To detect resource bottlenecks, we use sensitivity analysis

with respect to resource model parameters. This is done by performing multiple kernel

emulations using modified resource parameters for latency and gap. First kernel execu-

tion time is modeled using resource model parameters that correspond to the target GPU,

determined via use of microbenchmarks. Next, kernel emulation is repeated with one re-

source parameter changed, say increase modeled latency of global memory by 10%. Kernel
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emulation is then performed by changing the global memory gap parameter by 10%. Simi-

larly, emulations with modified parameters for each of the hardware resources is performed,

with one resource parameter modified for each emulation. The hardware resource with the

largest relative change in predicted kernel execution time (over the base time) is identified

as the bottleneck resource. Further, whether the large change occurred with the change of

latency or gap parameter points to whether the resource is latency-bound or bandwidth-

bound.

Sometimes, no single resource parameter may stand out as the clear bottleneck, with

multiple resource parameters exhibiting comparable and moderately high sensitivity. In

this case, it is possible that different portions of a GPU kernel are constrained by different

bottlenecks. The sensitivity analysis can then be performed over different portions of the

kernel, as illustrated later through a case study on optimizing a tensor contraction kernel.

2.3 Bottleneck Identification via Sensitivity Analysis

In this section, we present the key idea behind the proposed approach to GPU kernel

optimization. To illustrate the technique, we restrict our study to a simple analytical perfor-

mance model for a single pipelined hardware resource such as an arithmetic functional unit

in one of the SMs of a GPU. More realistic scenarios of complex kernels using multiple

asynchronous pipelined units are discussed in the next section.

2.3.1 Resource parameters

A pipelined hardware resource is modeled by two fundamental performance parame-

ters: latency and gap. Latency (denoted L) is defined as the number of cycles an operation
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waits before execution, when it depends on the immediately preceding operation.1 When

two operations depend on one another, their starting time must be separated by the latency

of the first. The throughput is the number of operations a resource can issue (equivalently

complete) per cycle. The gap (denoted G) is the inverse of the throughput. Because the

resource is pipelined, its gap is lower than its latency.

2.3.2 Modeling performance impact of concurrency

The total overall concurrency (denoted C) in a warp’s execution is the product of warp-

level parallelism (WLP) and instruction-level parallelism (ILP) within each warp. Consider

a repetitive loop, where instructions of the current iteration only depend on results com-

puted by the corresponding instruction in the previous iteration. The number of iterations

in the loop is denoted by P, the number of phases.

For this simple scenario, the total execution time can be modeled as shown in Fig. 2.3.

There are two cases:

Latency-limited execution (L > C ×G): Fig. 2.3 (left) depicts the execution in this case.

In the first phase, successive instructions can only be issued once every G cycles since

they all need the same pipelined hardware resource. Since L > C ×G, the first instruc-

tion of each phase can be issued L cycles apart. The entire execution is completed after

T = L × P + (C − 1) ×G cycles.

Throughput-limited execution (L ≤ C × G): Fig. 2.3 (right) illustrates the scheduling

of operations in this case. Although the first instruction of the second phase has its in-

put operand ready after L clock cycles (satisfying the dependence on the corresponding

instruction from the first phase), the gap constraint means that it cannot be issued until

1Typically, latency is defined as the number of cycles for an operation to complete. We use a modified
definition to account for architectural features such as pipeline forwarding.
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C × G cycles after the first instruction of phase one. The total completion in this case is

T = L + (C × P − 1) ×G cycles.

Case 2: L ≤ C × G

L + (C × P – 1) × G

L

…

Case 1: L > C × G

P × L

L × P + (C – 1) × G

…

…

L + (C – 1) × G

…

L

G L

(C x P - 1) × G

(C – 1) × G

Figure 2.3: Illustration of latency-limited (left) and throughput-limited (right) execution

2.3.3 Sensitivity analysis for bottleneck identification

In this section, we perform sensitivity analysis by observing the fractional increase/de-

crease of execution time (∆T
T ) for a given fractional increase/decrease of a resource pa-

rameter (∆L
L for latency and ∆G

G for throughput) - equivalently, comparing ∆T
∆L ×

L
T (resp.

∆T
∆G ×

G
T ) with zero. We use ∆X notation here to reflect the discrete property of resources. A

continuous form of the analytical expressions for our example can be obtained as follows:

δT
δL ×

L
T

δT
δG ×

G
T

Latency-Limited 1/
(
1 +

(C−1)G
LP

)
1/
(
1 + LP

(C−1)G

)
Throughput-Limited 1/

(
1 +

(CP−1)G
L

)
1/
(
1 + L

(CP−1)G

)
Consider the latency-limited case. As the larger L is compared to C ×G, the sensitivity

expressions ( δT
δL ×

L
T ) (based on latency) and δT

δG ×
G
T (based on gap) become one and zero,
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respectively. We can derive symmetric conclusions for the gap-limited case, leading to the

following rules:
δT
δL ×

L
T

δT
δG ×

G
T

Latency-limited � 0 ≈ 0
Throughput-limited ≈ 0 � 0

We use the above observations to identify the mode of bottleneck (latency vs. through-

put). For more complex kernels and multiple GPU resources, accurate analytical modeling

to identify bottleneck resources is extremely challenging. However, sensitivity analysis

with respect to each resource is feasible by performing multiple abstract kernel emulations

with changed resource parameters, as described in the next section. When analyzing the

sensitivity of multiple resources, non-bottleneck resources will show little change in sensi-

tivity with respect to both latency and gap. The resource that exhibits the largest sensitivity

analysis metrics is identified as the bottleneck resource.

2.4 Abstract Kernel Emulation

This section details the approach to abstract kernel emulation. The algorithm uses the

latency and gap parameters for each resource in the target GPU architecture. Due to space

constraints, we do not discuss how these parameters are obtained; however, we provide

some details in a technical report [50]. Our approach is similar to the one described by

Papadopolou [103].

2.4.1 Overview

Fig. 2.4 illustrates the approach to kernel emulation. A maximal number of warps that

can concurrently occupy one SM of the GPU is modeled. Each warp is modeled by a

current-instruction pointer and an earliest-schedule-time for the current instruction. Each

modeled hardware resource is associated with a latency and gap parameter. Each resource
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Figure 2.4: Overview of abstract kernel emulation

is essentially treated as having an unbounded input queue for requests, with one waiting

request being allowed to enter the resource every gap units of time. The state of each

hardware resource is maintained by a pipe admit time, which represents the earliest time at

which a new request to that resource can enter that resource pipeline. The current instruc-

tion of a warp is eligible to be scheduled if all needed operands are ready. When an in-

struction is scheduled, the pipe admit of the needed hardware resource is the time at which

the processing of the operation will begin. Adding the latency of the resource determines

when that instruction will be completed, which is recorded in the fin t entry associated with

that instruction. Within each warp, intra-instruction dependences are tracked. When a new

instruction from some warp is scheduled, the availability status of its operands at that time

is known, since the finish-times of all preceding instructions have been recorded in the fin t

entries of the producer instructions.
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cur_t[s11]=0
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cur_t[s12]=cur_t[s11]+1==1

warp 1

S11 : R2 = G[R1]

S12 : R5 = R3 * R4

S13 : R7 = R5 * R6

S14 : R9 = R7 * R8

S15 : R10 = G[R2]

warp 2

S21 : R2 = G[R1]

S22 : R5 = R3 * R4

S23 : R7 = R5 * R6

S24 : R9 = R7 * R8

S25 : R10 = G[R2]

warp 3

S31 : R2 = G[R1]

S32 : R5 = R3 * R4

S33 : R7 = R5 * R6

S34 : R9 = R7 * R8

S35 : R10 = G[R2]

pipe_admit[GM]=100 fin_t[s11] = max(0,0)+500
 == 500

pipe_admit[FU]=21 fin_t[s12] = max(1,1)+100
== 101

Global Mem

Func Unit

curr_t[s21]= curr_t[s12]+1 == 2

Global Mem

Func Unit

cur_t[s22]=cur_t[s21]+1==3

warp 1

S11 : R2 = G[R1]

S12 : R5 = R3 * R4

S13 : R7 = R5 * R6

S14 : R9 = R7 * R8

S15 : R10 = G[R2]

warp 2

S21 : R2 = G[R1]

S22 : R5 = R3 * R4

S23 : R7 = R5 * R6

S24 : R9 = R7 * R8

S25 : R10 = G[R2]

warp 3

S31 : R2 = G[R1]

S32 : R5 = R3 * R4

S33 : R7 = R5 * R6

S34 : R9 = R7 * R8

S35 : R10 = G[R2]

pipe_admit[GM]=200 fin_t[s21] = max(2,100)
+500 == 600

pipe_admit[FU]=41 fin_t[s22] = max(21,3)+100
== 121

warp 1

S11 : R2 = G[R1]

S12 : R5 = R3 * R4

S13 : R7 = R5 * R6

S14 : R9 = R7 * R8

S15 : R10 = G[R2]

warp 2

S21 : R2 = G[R1]

S22 : R5 = R3 * R4

S23 : R7 = R5 * R6

S24 : R9 = R7 * R8

S25 : R10 = G[R2]

warp 3

S31 : R2 = G[R1]

S32 : R5 = R3 * R4

S33 : R7 = R5 * R6

S34 : R9 = R7 * R8

S35 : R10 = G[R2]

Global Mem

Func Unit

curr_t[s32]= curr_t[s31]+1 == 4

Global Mem

Func Unit

cur_t[s13]=max(cur_t[s32]+1,
fin_t[s12]) = 101

warp 1

S11 : R2 = G[R1]

S12 : R5 = R3 * R4

S13 : R7 = R5 * R6

S14 : R9 = R7 * R8

S15 : R10 = G[R2]

warp 2

S21 : R2 = G[R1]

S22 : R5 = R3 * R4

S23 : R7 = R5 * R6

S24 : R9 = R7 * R8

S25 : R10 = G[R2]

warp 3

S31 : R2 = G[R1]

S32 : R5 = R3 * R4

S33 : R7 = R5 * R6

S34 : R9 = R7 * R8

S35 : R10 = G[R2]

pipe_admit[fu]=61 fin_t[s32] = max(41,5)
+100 == 141

pipe_admit[FU]=121 fin_t[s31]=max(41,101)
+100 == 201

warp 1

S11 : R2 = G[R1]

S12 : R5 = R3 * R4

S13 : R7 = R5 * R6

S14 : R9 = R7 * R8

S15 : R10 = G[R2]

warp 2

S21 : R2 = G[R1]

S22 : R5 = R3 * R4

S23 : R7 = R5 * R6

S24 : R9 = R7 * R8

S25 : R10 = G[R2]

warp 3

S31 : R2 = G[R1]

S32 : R5 = R3 * R4

S33 : R7 = R5 * R6

S34 : R9 = R7 * R8

S35 : R10 = G[R2]

warp 1

S11 : R2 = G[R1]

S12 : R5 = R3 * R4

S13 : R7 = R5 * R6

S14 : R9 = R7 * R8

S15 : R10 = G[R2]

warp 2

S21 : R2 = G[R1]

S22 : R5 = R3 * R4

S23 : R7 = R5 * R6

S24 : R9 = R7 * R8

S25 : R10 = G[R2]

warp 3

S31 : R2 = G[R1]

S32 : R5 = R3 * R4

S33 : R7 = R5 * R6

S34 : R9 = R7 * R8

S35 : R10 = G[R2]

Figure 2.5: Illustration of abstract kernel emulation
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2.4.2 Illustrative Example

Consider an SM with the following resource parameters: global memory latency =

500; global memory gap = 100; functional unit latency = 100; functional unit gap = 20.

Figure 2.5 shows different stages of abstract kernel emulation with three warps. Initially,

statement S 11 in the first warp reads a value from global memory into a register. Since S 11

is not dependent on any other instruction and the global memory is ready to accept/admit

a request, the statement can be issued immediately. Once S 11 is issued, global memory

requests are blocked for 100 cycles (the gap parameter of the global memory resource).

S 11 will require 500 cycles (global memory latency) to finish its execution. The next

instruction, S 12, is an add instruction requiring the functional unit. Because S 12 does not

depend on any previous instruction and the functional unit is idle, it can be scheduled at

clock cycle 1. S 12 will require 100 cycles to complete execution. The next instruction of

warp 1, S 13, is dependent on S 12. Since S 12 will only be completed at clock cycle 101,

S 13 cannot be scheduled immediately and we move to warp 2. S 21, S 22, S 31, and S 32

follow the same pattern as S 11 and S 12. S 32 is scheduled in clock cycle 4 and completes

execution in clock cycle 141. At clock cycle 5, no warp has an instruction that can be

scheduled. The next instruction that can be scheduled is S 13 at clock cycle 101. The clock

is advanced to step 101 and S 13 is selected for scheduling.

The abstract kernel emulation is based on a Greedy-Then-Oldest (GTO) scheduling

policy [112]. We use GTO because the actual warp scheduling policy used in NVIDIA

GPUs is not publicly known. Alternative scheduling policies can easily be incorporated

into the emulator.
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2.4.3 Emulation Algorithm

Alg. 1 outlines the abstract emulation algorithm to predict the kernel execution times.

Several details, such as handling of conditional statements, L1/L2 cache misses, and unco-

alesced global memory access, are not included in this high-level pseudocode; these issues

are discussed at the end of this sub-section. Modern GPUs have multiple warp sched-

ulers [140, 139] and each warp scheduler can issue more than one independent instruction

from the same warp in a single clock cycle. For simplicity, Alg. 1 models a single warp

scheduler that schedules a single instruction per cycle. However, the implementation of the

abstract kernel emulator models the actual number of warp schedulers and the number of

instructions scheduled per cycle per warp scheduler.

Abstract kernel emulation begins by scheduling the first instruction from warp 0 and

proceeds until all instructions from all warps are scheduled. At each step, a warp with

a ready instruction is selected. For a warp’s current instruction (cur inst), the earliest

scheduling time (earl t) is determined as the maximum among the finish times of its prede-

cessors and the current clock (lines 5-7). If the current instruction cannot be scheduled at

the current clock, then the warp whose instruction has the smallest earliest schedule time

is sought (line 9) and the clock is advanced (line 10). If the current instruction can be

scheduled in the current clock cycle, it is scheduled for execution. A scheduled instruction

may not be executed immediately, but might be enqueued if the needed hardware resource

is not available. Thus, the actual time at which an instruction begins execution is the max-

imum of the current clock and the clock cycle at which the corresponding resource r is

ready to accept a request (pipe admit). An instruction’s finish time (fin t) is the sum of the

time at which its execution begins and the latency of the corresponding resource. Once a

resource accepts a request, it is unavailable to accept another request for gap cycles: The
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Algorithm 1: Abstract kernel emulation
input : Number of warps in one block, number of warps in one SM, latency and gap of each

resource
output: Estimate of execution time, utilization of resources

1 t: current time, w: current warp, r: current resource, i: current instruction
2 fin t[w][i]: finish time of instruction i in warp w
3 cur inst[w]: current instruction of warp w (initialized to 0)
4 pipe admit[r]: earliest time when the next instruction can be admitted to the pipeline of

resource r (initialized to −∞)
5 start[r]: time at which the last instruction that uses r was issued
6 utilization[r]: total time resource r was active (initialized to 0)
7 latency[r]: latency of resource r, gap[r]: gap of resource r
8 p→ q: instruction q is dependent on instruction p
9 earl t[w]: earliest schedule time of the current instruction of warp w (initialized to 0)

10 end: non executable last instruction of each warp

11 t← 0
12 w← warp 0
13 while ∃x s.t. cur inst[x] , end do
14 i← cur inst[w]
15 if i , end then
16 earl t[w]← max({fin t[w][p] | p→ i}, t)
17 end
18 else earl t[w]← ∞;
19 if earl t[w] > t then
20 find w s.t. earl t[w] = minx earl t[x]
21 t← earl t[w]
22 continue
23 end
24 r← resource(i)
25 fin t[w][i]← max(t, pipe admit[r]) + latency[r]
26 pipe admit[r]← max(pipe admit[r], t) + gap[r]
27 utilization[r]← utilization[r] + min(t − start[r], latency[r])
28 start[r]← t
29 cur inst[w]← cur inst[w] + 1
30 t← t + 1
31 end
32 return (maxw fin t[w][cur inst[w] − 1]), utilization[]

corresponding resource’s pipe admit time is updated by adding gap (line 14). On line 15,

start represents the time at which the previous instruction (the one before i) got issued on
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resource r. If latency is smaller than the elapsed time in (t − start), it means r was idle

during the remaining time (t − start − latency). The utilization of resource r is updated by

adding only the time during which it was active (line 15). Finally, the instruction pointer

of the current warp is updated (line 17) and the clock is updated (line 18). This process is

repeated until all instructions from all warps are scheduled. After all of the instructions are

scheduled, the clock is set to the latest finish time of the last completed instruction among

all warps (argument 1 of line 19).

The kernel emulation models the execution of a maximal set M (which is determined

based on the resource requirements of each thread block) of thread blocks that can concur-

rently be executed on an SM. The number of needed “phases” to execute all thread blocks

of a kernel is modeled by dividing the total number of thread blocks by the product of M

and the number of SMs in the GPU. Thus, the total emulation time is generally a small

fraction of the actual execution time of compute-intensive kernels.

2.4.4 Additional Details

We now present some additional details regarding performance modeling via abstract

kernel emulation that were omitted in Alg. 1.

Conditional Statements: For if-then-else conditions and loop bounds that are dependent

on known parameters, emulated instructions reflect actual executed instructions [137]; for

loops with unresolvable loop bounds, representative trip counts are provided to the emula-

tor; for if-then-else conditions dependent on dynamically computed values, all predicated

control paths are conservatively emulated in lexical order of the SASS code.
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Irregular/uncoalesced data access: This can be identified by static analysis, but was man-

ually identified since a static analysis for it has not been implemented. A full DRAM trans-

action request is conservatively assumed to occur for each load/store from every thread in a

warp for uncoalesced accesses. In contrast, for coalesced accesses only one DRAM trans-

action is scheduled for the entire warp.

L1/L2 cache: The cache is not explicitly emulated. However, modeling accuracy can be

enhanced by providing the emulator an optional cache miss-rate parameter for a region of

the code. Although no cache simulation is performed in the emulator, the availability of

actual or estimated cache miss ratio is used in the following manner in the emulation. An

additional L2 cache resource is added to the abstract emulation. For every emulated global

memory access instruction, its execution is modeled by randomly assigning it to either the

modeled L2 cache resource (with lower gap and latency parameters) or the global mem-

ory resource (with higher gap and latency parameters). The probability of assigning the

execution of the load to the modeled L2 resource is the provided cache miss rate. In the

next subsection, we present experimental results that demonstrate the improvement in the

accuracy of performance prediction from such modeling.

Barrier synchronization: Every warp in a block is stalled at barrier synchronization state-

ments until all instructions in the block finish execution.

Bank conflicts: For cases where indices of shared memory are dependent on known pa-

rameters, bank conflict can be emulated. Register bank conflicts can also be emulated as

described in the literature [71, 154]. Register bank conflicts are sensitive to register names

that can be extracted from the SASS codes. On the Kepler GPU, there are four register

banks for each thread [71, 154] and operands can read only one value from each register

bank per cycle.
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Atomic operations: Similar to the handling of “if” statements and bank conflict, if indices

of array atomic operations are dependent only on known parameters, atomic operations can

be emulated.

Instruction queue: Instruction queue lengths are obtained using the approach developed

by Nervana [95].

2.4.5 Experimental Evaluation of Prediction Accuracy

We next present results from experimental evaluation of the prediction accuracy of

the abstract kernel emulation on two GPU systems: an NVIDIA K20c with 13 Kepler

SMs, 5GB global memory, 706MHz, 1.25MB L2 cache, and 48KB shared memory, and an

NVIDIA Titan X with 28 Pascal SMs, 12GB global memory, 1417MHz, 4MB L2 cache,

and 96KB shared memory. We evaluate all of the 58 kernels in the Rodinia benchmark

suite. These kernels collectively include 369 if-then-else conditions and loop bounds de-

pendent on known parameters, 155 if-then-else conditions dependent on dynamically com-

puted values, and 11 loops with statically unresolvable loop bounds.

Each kernel’s binary was extracted and the SASS code [98] was subjected to abstract

emulation, using the respective parameters for both targeted GPUs. The benchmarks were

also executed to measure actual execution times. For each kernel in each benchmark, the

prediction error, pred−actual
actual , is shown in Fig. 2.6. SAAKE models the time required for

executing a maximally concurrently loadable set of thread blocks on one SM. This time is

then scaled based on the actual number of thread blocks and number of SMs on the GPU

to predict the entire kernel execution time.

The plots show two sets of data, with and without including L2 cache effect modeling

described in subsection 2.4.4. As explained earlier, the L2 cache miss rate parameter can
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Kepler Pascal
w/o cache w/ cache w/o cache w/ cache

(geo) mean 16.9% 11.8% 16.4% 13.7%
median 20.2% 13.8% 21.9% 13.2%

Table 2.1: Geometric mean and median of error(=
∣∣∣ predicted−actual

actual

∣∣∣) in Fig. 2.6

be obtained by incorporating a cache miss prediction model, or, as done here, by actual

measurement. For both machines, the execution time is predicted quite well for a majority

of the kernels, especially when cache modeling is included. We note that gathering cache

miss data from hardware counters to use in the emulator is well justified, since it is very

quick and the ultimate use of the kernel emulation is not just to predict kernel execution

time, but to identify hardware bottlenecks and use that information in code optimization, as

presented in the following sections. We are unaware of any automatable GPU performance

modeling approach that has demonstrated a comparable level of prediction accuracy across

such a wide range of kernels. Aggregated accuracy metrics over the full set of kernels is

presented in Table 2.1. The accuracy for many of the benchmarks can be further improved

with enhancements to the emulator. Below we elaborate on the reasons for a relatively high

error for some benchmarks and how some of those errors can be lowered.

SAAKE conservatively considers all branches of conditional expression to be executed.

However, in kernels like BFS, only a few data-dependent branches are executed. The effec-

tiveness of coalescing is another factor that affects performance. For codes with indirect-

memory access, the number of actual required DRAM transactions (effectiveness of coa-

lescing) cannot be statically analyzed in general. The serialization effect of atomic opera-

tions on data-dependent memory locations cannot be estimated statically. Hence, SAAKE
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assumes that the atomic operations are carried out on different memory locations. In huff-

man/histo kernel, the instruction “atomicAdd(&temp[buffer[i]], 1);” depends on the data,

and the values of buffer[i] are largely 116 or 129. This results in highly significant serial-

ization overhead, which explains the low prediction accuracy. When the kernel has very

few instructions, the achieved occupancy is lower than the computed occupancy (obtained

using [29]) which affects the prediction accuracy. Further, if the total execution time of

a kernel is less than five micro-seconds (e.g., huffman/uniformAdd), then kernel launch

overhead dominates the kernel execution time, and this affects prediction accuracy.
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Figure 2.6: Performance modeling accuracy with Rodinia benchmarks (top: Kepler, bot-
tom: Pascal)
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2.4.6 Limitations

The evaluation using Rodinia benchmark kernels shows good prediction accuracy for

a large number of kernels, but also very high errors for some kernels. Modeling error can

be high when data-dependent effects have a significant impact on execution time. This is

because the efficiency of the kernel emulation approach derives from the fact that actual

simulation of all operations is not performed, but abstracted kernel emulation is performed

for only a tiny fraction of all thread blocks of a GPU kernel. The following types of kernels

can incur high modeling errors:

• Kernels where a non-trivial fraction of global memory accesses are actually returned

from cached data in L2 cache: since the actual execution of instructions is not mod-

eled, the best we can do is to randomly model a global memory access as returning

from cache or global memory based on estimated/known cache miss rates. Further,

multi-level memory hierarchy is not modeled and can result in high error rates for

some kernels.

• Kernels with significant thread divergence: Since conditional expressions in kernel

code are not actually simulated, codes with significant data-dependent conditional

execution can result in high modeling errors.

Despite the above limitations to prediction accuracy, there are many practical scenarios

where the abstract emulation approach is sufficiently accurate. An important use case is

that of domain-specific code generators that use tiling and effective use of shared memory.

With such codes, data is explicitly copied from global memory to shared memory and

reused multiple times from shared memory. Frequently repeated accesses to data in global

memory does not occur with such kernels and the prediction accuracy from abstract kernel

emulation tends to be high. We demonstrate two such use cases later in this chapter.
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2.5 Model-Driven Search and Enhanced Auto-Tuning

In this section, we describe how a search directed by bottleneck-analysis with SAAKE

can be coupled with auto-tuning systems like OpenTuner [6] that use ensemble search

techniques and allow inclusion of custom search strategies.

2.5.1 Model-driven Search

The essential idea behind SAAKE’s model-driven search is to start from an initial con-

figuration and iteratively move along the canonical search-space directions by either re-

shaping, thread coarsening, block coarsening, or unrolling, until a termination condition is

reached. The decision on which direction to move is driven by the most significant bottle-

neck of the current configuration. Once the direction of a move is decided, the distance of

a move (multiplicative factor) is the amount that enables maximum expected alleviation of

the bottleneck (e.g., moving from GM latency-bound to SM throughput-bound). This dis-

tance is evaluated by extrapolating (linearly) the impact of the coalescing on the resource

usage (reuses, concurrency).

The utilization of a resourcei and the time prediction are computed using the abstract

kernel emulation (Algorithm 1). Both the abstract emulation and the computation of the

occupancy rely on NVCC to compile the current configuration.

Alg 2 and Alg 3 describe the search algorithm used to traverse the configuration space.

Alg 2 provides an overview of the algorithm. It uses Function next best to find the best

move (Algorithm 3). SASS code for the original baseline CUDA code is first passed to the

bottleneck analyzer to predict the execution time (line 6). Based on the resource usage, the

bottleneck analyzer also computes the achievable occupancy.
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Algorithm 2: Main Search Algorithm
1 prediction(c): predicted execution time for configuration c
2 occupancy(c): occupancy of configuration c
3 ustrides: set of all canonical vectors along which we want the configuration to evolve (multiplicative

factors. Set to (2)3d+1 with d the grid dimension)
input : Original code
output: Predicted best coarsening configuration

4 function entry()
5 curr = init config
6 exec← prediction(curr)
7 occu← occupancy(curr)
8 (best exec, best curr)← (exec, curr)
9 (prev exec, prev curr)← (∞,×)

10 while True do
11 curr′ ← next best(curr, ustrides)
12 exec′ ← prediction(curr’)
13 occu′ ← occupancy(curr′)
14 if occu′ < occu then
15 if best exec ≥ prev exec then
16 break
17 end
18 (prev exec, prev curr)← (best exec, best curr)
19 (best exec, best curr)← (∞,×)
20 end
21 if exec′ < best exec then
22 (best exec, best curr)← (exec′, curr′)
23 end
24 occu← occu′

25 end
26 return prev curr

For bottleneck-guided traversal of the configuration space, the profitability of moving

along each dimension is assessed. This is done by using unit stride analysis. Unit stride

analysis is performed by moving a “unit” distance along each dimension of the configura-

tion space, one at a time, starting from the initial configuration. For each such unit stride

configuration, the global memory and shared memory traffic are estimated from abstract

kernel emulation and saved in a table.
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Algorithm 3: Search Step Algorithm
1 0 ≤ UGM ≤ 1: Global memory utilization factor
2 0 ≤ US M ≤ 1: Shared memory utilization factor
3 conf: current configuration
4 #T(c): number of threads in a thread block for configuration c
5 #TB(c): number of thread blocks in an SM for c
6 maxT: hardware thread limit in an SM
7 occupancy(c): occupancy of c (#T(c) × #TB(c)/maxT)
8 olist: list of occupancies
9 utilizationr(c): Utilisation factor of configuration c for resource r

10 transactionsr(c): number of transactions to resource r in c
11 bottleneck(c, o): bottleneck of configuration c with occupancy o (from ∆-analysis)
12 bott: main bottleneck of the current configuration
13 ustrides: set of all canonical vectors along which configuration may evolve (multiplicative factors)
14 s: canonical vector of multiplicative factor
15 K: scalar multiplicative factor
16 #regs: total number of registers per SM
17 maxregs: maximal number of registers per thread for the chosen occupancy

input : conf : Current configuration
ustrides

output: Predicted next best configuration
18 function next best(conf, ustrides)
19 bott← bottleneck(conf, occupancy(conf))
20 if bott.type = Latency then
21 r ← bott.resource
22 find s ∈ ustrides that maximizes utilizationr(conf ⊗ s)
23 ∆Ur ← utilizationr(conf ⊗ s) − UGM

24 find min K s.t. UGM + ∆Ur(K − 1) ≥ 1
25 conf← conf ⊗ K.s
26 end
27 else // throughput-limited
28 olist← {k × #TB(c)/maxT | 1 ≤ k < #T(c)}
29 find biggest occu s.t. bottleneck(conf, occu) , bott
30 bott← bottleneck(conf, occu)
31 maxregs← b#regs/(occu ×maxT)c
32 configs← gen configs(maxregs, occu)
33 r ← bott.resource
34 find conf ∈ configs that minimizes transactionsr(conf)
35 end
36 return conf

To navigate the configuration space, the search algorithm uses the bottleneck analyzer

to predict the bottleneck and moves in a direction that will alleviate the bottleneck. Given

the current configuration, Alg 3 is used to predict the next configuration to be chosen.
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This step is explained in detail in the following paragraphs. For the chosen config-

uration, the occupancy and predicted execution time are estimated using the bottleneck

analyzer. If the best predicted execution time among configurations evaluated by Alg 2

at the currently tested occupancy is lower than that at the previous occupancy, the best

configuration at the current occupancy replaces any previous selection as the current best

configuration seen so far and the traversal in that direction is continued. On the other hand,

if the best configuration among all evaluated cases at the currently tested occupancy has

a higher predicted time than the best recorded one at the previously tested occupancy, the

search is terminated and the previously save best configuration is returned.

Given one configuration, Alg 3 describes the search algorithm to select the next con-

figuration. The first step is to determine the current configuration’s bottleneck using sen-

sitivity analysis (line 2). If the current configuration is limited by the latency of a re-

source, concurrency is increased to enhance latency tolerance. This is done by coarsening

along a direction that will increase ILP for that resource. If there is data sharing across

threads/blocks, coarsening helps reduce the total volume of traffic to the latency-bound

resource. However, coarsening may increase the resources required per thread (registers,

shared-memory), possibly resulting in a reduction in warp-level parallelism. However, by

coarsening, the increased ILP and reduced data traffic may help improve performance. The

traversal direction is chosen to be the one with maximum reduction in data traffic for that

particular resource. For this, results from unit stride analysis are used. The total stride

of the move is chosen as the minimum number that would result in full utilization of the

bottleneck resource (line 7).
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On the other hand, if the resource is throughput-limited, the total number of trans-

actions to that resource is reduced. This can be done by coarsening, if different thread-

s/blocks share data. Since coarsening may reduce WLP, the amount of occupancy that can

be sacrificed without dropping performance is determined. This is done by using abstract

kernel emulation for the current configuration, for various occupancies lower than the cur-

rent occupancy. The occupancy is lowered till the bottleneck changes. Then the amount

of additional resources gained by lowering the occupancy is determined. The higher the

coarsening factor, the better the reuse of shared data elements. The configuration that has

the highest reduction in data volume is selected that can still achieve the minimum required

occupancy.

2.5.2 Coupling with Auto-tuning

OpenTuner is a general framework for auto-tuning, which uses an ensemble of tech-

niques to navigate the search space. Initially, a random seed configuration is determined

and different search techniques are invoked. The resulting configurations are run by Open-

Tuner to identify the best one. Each technique is then allotted a time slot proportional to

the quality of the result it produces. Mechanisms are provided to communicate through a

common database to enable cooperation among different techniques. We coupled SAAKE

with OpenTuner. In coupled-mode, SAAKE is invoked just before OpenTuner begins its

initial search.

SAAKE starts with the base configuration (i.e., the initial code); the predicted config-

uration is compiled (not run) to generate an SASS code. The SASS code is then analyzed

to determine the bottleneck and this is used to predict the next configuration. This process

is repeated until SAAKE finds a configuration which is best according to its model-driven
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search. We note that no measured metrics like cache hit rates were provided to SAAKE

for these experiments. The final configuration from SAAKE is used as the initial seed

for OpenTuner. OpenTuner then proceeds with its ensemble of techniques to find the best

configuration. In our experiments, in most cases, the output of SAAKE is either the op-

timal one or very close to the optimal, which significantly reduces the time required for

OpenTuner to find the best configuration.

2.5.3 Experimental Evaluation

We evaluated the effectiveness of the bottleneck-guided optimization approach on the

entire set of Rodinia benchmark kernels. We compare three scenarios: i) SAAKE only, ii)

OpenTuner only, and iii) SAAKE coupled with Opentuner. Fig. 2.8 presents the results for

Kepler and Pascal GPUs. The vertical bars show the achieved speedup over the base Ro-

dinia kernel (scale is linear, shown on the left). Each benchmark has a pair of bars: striped

bar for SAAKE-only, and solid bar for SAAKE+OpenTuner. Roughly half of the kernels

achieve some speedup by changing the original kernel. In about half of those, SAAKE by

itself achieves the maximum possible performance improvement, and gets a good fraction

of achievable speedup for most of the others. The connected lines in the two charts show

the ratio of time taken by OpenTuner-Only versus the Coupled SAAKE+OpenTuner to find

the best configuration. The scale for this data is logarithmic (scale on the right). It may

be seen that SAAKE enables significant acceleration for OpenTuner by providing it a very

good starting configuration. The results are summarized in Table 2.3.

Figure 2.7 and Table 2.2 present data for the evaluation of SAAKE and OpenTuner

for optimizing tensor contraction kernels. Tensor contractions are at the core of many

computational chemistry models such as the coupled cluster methods [114]. Due to the
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significant fraction of compute time spent in performing tensor contractions, developers

of the NWChem [127] computational chemistry suite created a domain-specific code gen-

erator [82] to synthesize efficient GPU kernels for tensor contractions. The NWChem

suite includes a separate customized GPU kernel for each of 27 tensor contractions for the

CCSD(T) method. These customized GPU kernels represent the current state-of-the-art one

for this set of contractions [81, 82]. The CUDA source code for these tensor contraction

kernels is available in the open-source NWChem software distribution [99].

Three of the CCSD(T) tensor contractions are shown below.

s d t d 1 1 : T3 ( h3 , h2 , h1 , p6 , p5 , p4 ) −= t 2 ( h7 , p4 , p5 , h1 )∗ v2 ( h3 , h2 , p6 , h7 )
[ . . . ]
s d t d 1 5 : T3 ( h3 , h1 , h2 , p5 , p4 , p6 ) += t 2 ( h7 , p4 , p5 , h1 )∗ v2 ( h3 , h2 , p6 , h7 )
s d t d 1 6 : T3 ( h1 , h3 , h2 , p5 , p4 , p6 ) −= t 2 ( h7 , p4 , p5 , h1 )∗ v2 ( h3 , h2 , p6 , h7 )
[ . . . ]

Table 2.2 presents performance data for two of the CCSD(T) tensor contractions. For

each contraction, and each of the two machines, the best configuration found by SAAKE+

OpenTuner is shown, along with the achieved performance for the base version, SAAKE-

Only, and SAAKE+OpenTuner. It may be seen that SAAKE-Only achieves a high fraction

of the speedup achieved by SAAKE+OpenTuner. The time for performing auto-tuning

with/without SAAKE is shown in terms of min/max/average. It can be observed that in-

tegrating OpenTuner with SAAKE results in significant reduction in the average tuning

time, as well as the maximum time, which can be over an hour (4188 seconds). Fig. 2.7

shows the trajectory over time for OpenTuner versus SAAKE+OpenTuner for one of the

benchmarks. It may be seen that for both machines, about a 10x decrease in tuning time is

achieved.
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Kernel Mac
Best

Config

perf
(GFLOP)

Tuning time
min avg max

Base SAAKE Best w/o w/ w/o w/ w/o w/

sd t d1 5
k (16,16,2,3,1,1) 87 157 157 1091 47 1452 50 1702 56
p (32,8,2,4,1,1) 178 223 242 279 71 544 164 865 294

sd t d1 6
k (16,8,2,2,1,1) 79 106 129 612 58 981 218 1359 679
p (16,8,2,1,1,4) 178 208 226 419 61 2143 150 4188 333

Table 2.2: CCSD(T) tensor contraction: SAAKE and/or OpenTuner
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Figure 2.7: OpenTuner auto-tuning: tensor contractions
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Figure 2.8: OpenTuner auto-tuning: all Rodinia kernels

35



Kepler Pascal

Best
Speed-up

SAAKE
Speed-up

Ratio of time
w/o SAAKE

vs
w/ SAAKE

Best
Speed-up

SAAKE
Speed-up

Ratio of time
w/o SAAKE

vs
w/ SAAKE

(geo) mean 1.11 1.09 4.16 1.13 1.09 3.72
median 1.01 1.01 3.88 1.02 1.01 3.53

Table 2.3: Geometric mean and median in Fig. 2.8

2.6 Assisting Manual Optimization: Case Studies

As discussed in Sec. 2.5, SAAKE can be used to identify the resource bottleneck(s) for

a given GPU kernel. We demonstrate through two detailed case-studies that the bottleneck

insights from sensitivity analysis can provide extremely useful information to complement

information obtainable through performance tools such as NVPROF and NSIGHT. On the

one hand, performance tools like NVPROF and NSIGHT provide very accurate information

based on actually measured hardware counter data, while SAAKE bottleneck analysis is

based on a simple approximate model of the execution. But on the other hand, SAAKE’s

sensitivity analysis enables the kind of specific “what-if” exploration with respect to critical

resource parameters that is not feasible with the more accurate measurement-based tools.

We present the following illustrative case studies: i) further improving the performance

of the tensor contractions discussed in the previous section, and ii) improving the code for

stencil computations that was synthesized by a state-of-the-art stencil code generator for

GPUs [110].
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Sensitive analysis shows that the bottleneck of the kernel
is a combination of GM latency, SFU latency, GM through-
put, and SM throughput as shown in the table 1. ‘O’ and ‘N’
refers to sensitive analysis with and without synchronization.
Since the kernel is affected by both latency and throughput
we follow the 3rd item in guidelines. The entire kernel is
segmented into 4 parts: 1) index calculation part with modu-
lar/divide operations, 2) load input data from global memory
to shared memory, 3) compute values using shared memory,
4) accumulate output from registers to global memory (i.e.
global memory loads/stores). Note that part 2) and 3) are en-
closed in a loop ASR why is loop part important?. Note that
we set the percent 20% as sensitive factor since we empiri-
cally found this percent works well across various kinds of
kernels. But, it is parameterized to be changed by a user. If
sensitive factor is too small, it is not easy to recognize per-
formance change. If sensitive factor is too big, every change
looks bottleneck.

Results of partial sensitive analysis are shown in table 1.
Part 1 is bounded by Special Functional Unit(SFU) latency
since performance is only sensitive to SFU latency values.
Note that integer modulos / divisions are converted to float-
ing points and SFUs are used. Our micro benchmarks indi-
cates that the latency of those functions are very high on
Kepler machine, which is consistent with the paper [9].
Note that we change all gap/latency parameters by 0.8x /
1.2x (”TOTAL 0.8”/”TOTAL 1.2” in the table 1) to see how
much each part affects performance. For instance, ”TOTAL
0.8”/”TOTAL 1.2” of part 4) is the most sensitive to execu-
tion time, which means part 4) comprises a large portion of
execution time.

ASR: The explanation of each part is mixed here. It
should be fully separated

ASR Mix begin{
Part 2 and Part 3 does not affect performance much now

(Performance is a little sensitive to GM (Global Memory)
gap in part 2 and SM (Shared Memory) throughput in part
3) Part 4 is affected by GM gap. We figured out index ”h3”
is mapped to ”threadIdx.x” to achieve coalesced memory
access for part 2). The fastest varying index (FVI) of out-
put array is ”h1” since ”h1” is mapped to ”threadIdx.y”. So
global memory accesses for accumulating results are uncoa-
lesced. If we map ”h1” to ”threadIdx.x” and ”h3” to ”threa-
dIdx.y”, then we could achieve coalesced memory accesses
for part 4) while uncoalesced memory accesse for part 2).
As guideline (1), we have to reduce GM transactions in part
4) since performance of part 4) is very sensitive to GM gap.
Also, as guideline (4), if we add more GM transactions in
part 2), performance may not degraded much since perfor-
mance of part 2) is not very sensitive to GM gap. Therefore,
we can assign ”threadIdx.x” and ”threadIdx.y” to ”h1” and
”h3” respectively. Now, we achieved coalesced memory ac-
cesses for part 4) by sacrificing uncoalesced memory acceses
for part 2). As we expected, performance is improved from
5.24ms to 4.64ms as shown in the table 1.

Performance is also limited by SFU long latency in part
1). In part 1), performance is not sensitive to GM gap. So,
based on guideline (4), if we increase number of GM trans-
actions, performance may not changed a lot. That is, we can
remove divisions / modulos by allowing more GM transac-
tions. We can pre-compute indices and load it from global
memory in the kernel to avoid divisions / modulos. Note
that size of array for keeping pre-computed indices is 1/8

//TS: Tile Size
//h3d,h1d,h2d,p5d: Tensor extents
//t2_shm, v2_shm are in SM
//t2_d, v2_d, output_d are in GM
//All loops are unrolled
// except loops over h7T/h7l
for (i=0;i<4;i++){
rest_x=TS*4+bidx+tidx+TS*i;
rest_y=TS*4+bidy+tidy+TS*i;
h3[i] = rest_x%h3d;
rest_x = rest_x
h1[i] = rest_y%h1d;
rest_y = rest_y/h1d;
h2[i] = rest_x%h2d;
rest_x = rest_x/h2d;
p5[i] = rest_y%p5d;
rest_y = rest_y/p5d;
p4[i] = rest_y;
p6[i] = rest_x;

}
for (h7T=0;h7T<h7d;h7T+=TS){
for (i=0;i<4;i++){
t2_d_off = p4[i]*p4_tst +
p5[i]*p5_tst + h1[i]*h1_tst;

v2_d_off = h3[i]*h3_vst +
h2[i]*h2_vst + p6[i]*p6_vst;

t2_shm[tidy+TS*i][tidx]=t2_d
[t2_d_off+(tidx+h7T)*h7_tst];

v2_shm[tidy][tidx+TS*i]=v2_d
[v2_d_off+(tidy+h7T)*h7_vst];

}
__syncthreads();
for (h7l=0;h7l<TS;h7l++){
for (i=0; i<4; i++){
a[i]=t2_shm[tidy+TS*i][h7l];
b[i]=v2_shm[h7l][tidx+TS*i];

}

a[i]=t2_shm[tidy+TS*i][h7l];
b[i]=v2_shm[h7l][tidx+TS*i];

}
for (i=0; i<4; i++)

for (j=0; j<4; j++)
tlocal[i][j] += a[i] * b[j];

}
__syncthreads();
}
for (i=0;i<4;i++)

for (j=0;j<4;j++)
output_d[h3[i]*h3_ost + h1[j]*
h1_ost + h2[i]*h2_ost +
p5[j]*p5_ost + p4[j]*p4_ost +
p6[i]*p6_ost]+=tlocal[i][j];

-------------------------------
Region 1: Code Mod 1
rest_y=TS*4+bidx+tidx+TS*i;
rest_x=TS*4+bidy+tidy+TS*i;
Region 2: Code Mod 2
index=precomp_d[bidy,bidx,tidy,tidx];
h3[i] = index.h3;
h1[i] = index.h1;
h2[i] = index.h2;
p5[i] = index.p5;
p4[i] = index.p4;
p6[i] = index.p6;
Region 4: Code Mod 3
for(j=0;j<4;j++)
addr[j]=h3[i]*h3_ost+h1[j]*h1_ost
+h2[i]*h2_ost+p5[j]*p5_ost+p4[j]
*p4_ost + p6[i]*p6_ost;

for(j=0;j<4;j++)
tlocal[i][j] += output_d[addr[j]];

for(j=0;j<4;j++)
output_d[addr[j]] = tlocal[i][j];

Figure 9. Tensor contraction kernel

of the output array. Performance is improved from 4.64ms
to 3.67ms again as shown in the table 1.

We can also reduce a bottleneck from GM latency from
part 4). We figured out ILP is very low in part 4) which is
not enough to hide long GM latency with the kernel’s oc-
cupancy 0.25. So, we reordered GM instructions to achieve
higher ILP. Finally, performance is improved from 3.67ms
to 3.20ms again.

Now, the only main bottleneck is GM gap from part 4).
But, from guideline (R1), the only way to improve perfor-
mance is reducing number of GM transactions in part 4).
But, it is not possible since there should be fixed amounts
of K global memory loads/stores where K is the size of out-
put(words).

ASR Mix end}
sd t d1 5 can be optimized bu using the optimization

strategy adopted for sd t d1 6 except that step 1 is not re-
quired because global memory accesses for part 2) and
4) are already coalesced. Performance improvement tra-
jectory of sd t d1 5 and sd t d1 6 are shown in the Fig.
5.1. The optimization steps and performance of each step
of sd t d1 1,2,4,7,8 and sd t d1 3,9 is the same as that of
sd t d1 5 and sd t d1 6, respectively.

advantage, gap/lat decompose?
not throughput .. can be added (even for latency)
important : write pseudo code
latency : remove inst

Optimizing Tensor Kernels on Pascal machine We first
show how to optimize sd t d1 5 kernel, and then show how
to optimize other kernels. On Pascal machine, the first step
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Figure 2.9: SAAKE-based optimization of tensor contraction kernel
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Orig. Code (92 GFLOPs) Code Mod. 1 (123 GFLOPs)
total CR 1 CR 2 CR 3 CR 4 total CR 1 CR 2 CR 3 CR 4

GM LAT 3% 0% 1% 0% 2% GM LAT 38% 0% 1% 0% 35%
SFU LAT 16% 16% 0% 0% 0% SFU LAT 19% 19% 0% 0% 0%
GM THR 58% 0% 6% 0% 52% GM THR 22% 0% 11% 0% 7%
SM THR 7% 0% 0% 7% 0% SM THR 8% 0% 0% 8% 0%

(a) (b)
Code Mod. 2 (139 GFLOPs) Code Mod. 3 (161 GFLOPs)
total CR 1 CR 2 CR 3 CR 4 total CR 1 CR 2 CR 3 CR 4

GM LAT 41% 0% 2% 0% 40% GM LAT 11% 0% 2% 0% 10%
SFU LAT 0% 0% 0% 0% 0% SFU LAT 0% 0% 0% 0% 0%
GM THR 31% 0% 14% 0% 13% GM THR 59% 0% 16% 0% 39%
SM THR 9% 0% 0% 9% 0% SM THR 11% 0% 0% 11% 0%

(c) (d)

Table 2.4: SAAKE optimization steps for sd-t-d1-6 on Kepler

Orig. Code (166 GFLOPs) Code Mod. 1 (190 GFLOPs)
total CR 1 CR 2 CR 3 CR 4 total CR 1 CR 2 CR 3 CR 4

GM LAT 9% 0% 6% 0% 3% GM LAT 32% 0% 25% 0% 7%
GM THR 48% 0% 0% 0% 48% GM THR 13% 0% 0% 0% 13%
INT THR 6% 6% 0% 0% 0% INT THR 9% 9% 0% 0% 0%
DP THR 32% 0% 0% 32% 0% DP THR 38% 0% 0% 38% 0%

Code Mod. 2 (225 GFLOPs) Code Mod. 3 (250 GFLOPs)
total CR 1 CR 2 CR 3 CR 4 total CR 1 CR 2 CR 3 CR 4

GM LAT 21% 0% 13% 0% 8% GM LAT 3% 0% 3% 0 1%
GM THR 14% 0% 0% 0% 14% GM THR 23% 0% 0% 0 23%
INT THR 12% 10% 2% 0% 0% INT THR 14% 11% 3% 0 0%
DP THR 46% 0% 0% 46% 0% DP THR 53% 0% 53% 0 0%

Table 2.5: SAAKE optimization steps for sd-t-d1-6 on Pascal

2.6.1 Tensor Contraction Kernel

We present the use of SAAKE in optimizing the sd t d1 6 tensor contraction kernel,

one of the more complex cases to optimize. The same process can be applied to any of

the CCSD(T) kernels. Fig. 2.9 shows the structure of the current code in NWChem’s GPU

kernel as well as the sequence of changes made during the optimization process. The
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SAAKE analysis of the kernel code revealed sensitivity to multiple hardware resources. A

hierarchical strategy was used to partition code regions: first run a coarse analysis without

partitioning and then refine based on results of the analysis, drilling down into smaller

regions that are the focus of sensitivity analysis. The analysis of this kernel, resulted in

partitioning the kernel code into four code regions, CR1, CR2, CR3, and CR4, demarcated

in Fig. 2.9. The sequence of code modifications (explained later) is also shown in the latter

portion of the figure, with arrows connecting the modified code with the original code.

Each thread computes a data slice of the result tensor output d using needed elements

from input tensors, t2 d and v2 d. Arrays with a “d” suffix denote data in “device” global

memory, and those with suffix “shm” are in shared memory. CR1 computes base indices

(for h1, h2, h3, p4, p5, p6) of the hyper-rectangular data slices of the tensors upon which

each thread operates. CR3 is the compute loop for the contraction over the index h7. In

CR2, slices of the input tensors (t2 dandv2 d) are moved into shared-memory arrays. CR3

performs the floating-point operations to accumulate the results computed in a local array,

tlocal, which is placed in registers by the compiler. CR4 writes the final results to global

memory (output d). The i/ j loops in the pseudocode are fully unrolled in the actual CUDA

kernel code, but are shown as loops for compactness of the pseudocode.

Table 2.4 shows results from the sensitivity analysis of the original kernel code for a

subset of resources that exhibited sensitivity: global memory (GM) latency, special func-

tion unit (SFU) latency, GM throughput (gap), and shared memory (SM) throughput. The

left column of Table 2.4(a) shows the overall sensitivity for these resources, while the re-

maining four columns present the region-wise sensitivity for CR1, CR2, CR3, and CR4.

The highest sensitivity is with respect to GM throughput in CR4 is the primarily affected

code region. Index h3 is mapped to threadIdx.x to achieve coalesced memory access in
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CR2. The fastest varying index (FVI) of the output array is h1. Since it is mapped to

threadIdx.y, global memory accesses for accumulating results are uncoalesced. If h1 is

mapped to threadIdx.x and h3 to threadIdx.y, coalesced accesses can be achieved in CR4,

while uncoalesced memory accesses would now occur in CR2. This swap is shown under

Code Mod. 1 in the pseudocode.

The results of applying SAAKE to the modified code are shown in Table 2.4(b). The

performance increased from 92 GFLOPs for the original code to 123 GFLOPs and the sen-

sitivity to global memory throughput (GM-THR) in CR4 is dramatically reduced. There

is now sensitivity to GM-THR in CR3, because the transposed mapping now causes un-

coalesced reads in CR3. However, it is only 11%, compared to 52% for CR4. We note

that the percentage change in time reflected by the sensitivity data is for the total kernel

execution time and not just for the time attributable to each local region. We observe a 19%

sensitivity to SFU latency. This is due to the modulo and division operations transformed

into a sequence of operations including reciprocal ones that are executed by the SFU – this

leads to many chains of dependences and, therefore, insufficient concurrency to tolerate the

large SFU latency.

Since sensitivity to GM-THR for CR1 is zero (no GM loads/stores occur here), we

alleviated the SFU bottleneck by precomputing the indices, storing them in global memory,

and reading them from GM, instead of computing them. This is shown in Fig. 2.9 as Code

Mod. 2.

After this optimization, performance increased to 139 GFLOPs. Table 2.4(c) shows the

SAAKE results for this code version. Next, we sought to alleviate the GM-LAT bottleneck

in CR4 (40% sensitivity), a consequence of inadequate concurrency to tolerate the long la-

tency of the chained address-computation, read from GM and written to GM in CR4. Code
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Mod. 3 shows a split code for the same computation, where a set of independent address

computations are first performed, followed by a set of GM reads to accumulate results in

registers, followed by a set of GM writes. After this code change, performance is increased

to 161 GFLOPs and the GM-LAT sensitivity of CR4 is decreased significantly from 40%

to 10%. At this point, the kernel is limited by GM-THR on the output. Since each output

element is only written once and the GM stores are coalesced, no further optimization is

attempted.

Table 2.5 shows the data for applying SAAKE to the same kernel on the Pascal GPU.

The sensitivity metrics for the original code are quite different from those seen on Kepler. A

significant reason is that this Pascal P102 GPU has very low double-precision performance

(peak of 343 GFLOPs). Due to space limitations, we do not provide details on the sequence

of code modifications. However, the sensitivity analysis metrics in Table 2.5 demonstrate

significant differences.

Table 2.6 compares the performance of the original kernel with the two optimized ver-

sions on both GPUs. The Kepler-optimized version achieves the lower performance of 219

GFLOPs on the Pascal, compared to 250 GFLOPs for the Pascal-optimized kernel, but it

is better than the original kernel’s 166 GFLOPs. However, the Pascal-tuned kernel only

achieves 49 GFLOPs on the Kepler GPU, as compared to 92 GFLOPS for the original ker-

nel and 161 GFLOPs for the Kepler-optimized version. The reason is as follows: In the

optimized code for the Pascal system, shared memory operations were changed to global

memory instructions to utilize the Double Precision unit efficiently. Hence, this code causes

more global memory transactions. However, this strategy is very detrimental to the Kepler

machine which has a lower memory bandwidth and many more double precision units.
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Mode Kepler GFLOPs Pascal GFLOPs
Original 92 166

Kepler-Opt 161 (1.75x speedup) 219 (1.32x speedup)
Pascal-Opt 49 (0.53x speedup) 250 (1.51x speedup)

Table 2.6: Performance of optimized kernels on Kepler and Pascal GPUs

all-15
before

all-15
after

all-16
before

all-16
after

all-17
before

all-17
after

(geo) mean 84.3 134.2 103.9 162.6 82.9 124.3
median 86.3 134.6 106.3 162.2 83.6 123.3

Table 2.7: Geometric mean and median of GFLOPs in Fig. 2.10

Similar SAAKE analysis and optimization was carried out for some other tensor con-

traction kernels in the set. Based on the gained insights, the tensor contraction code gener-

ator that produced the codes in NWChem was modified so that the emitted code structure

was like the optimized versions that had been manually generated through SAAKE-based

optimization. Fig. 2.10 charts the performance on 18 tensor contraction kernels used in the

NWChem CCSD(T) method. Experiments were conducted for three tensor sizes: all ten-

sor extents of 16, all-15, and all-17. We observe that the modified code generator generates

kernels that are executed consistently faster than the ones currently used in the NWChem

distribution. Results are summarized in Table 2.7.

2.6.2 Optimizing the Hypterm Stencil Computation

We carried out the second exercise on optimizing the Hypterm function from the Exp

CNS benchmark.2 Due to space limitations, we only present a short summary here; full

details are presented in a technical report [50].

2https://ccse.lbl.gov/ExaCT/CNS Nospec.tgz
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Figure 2.10: Performance of original kernels versus new kernels from modified code gen-
erator

The Hypterm function involves a sequence of 15 stencils, S 1, .. S 15, presented as a de-

tailed case study by Rawat et al., who developed a domain-specific compiler for optimizing

stencil computations on GPUs [110]. Groups of three adjacent stencils make contributions

to the same output array and benefit from fusion to reduce data movement. By considering

both occupancy and data movements, Rawat et al. [110] presented the following grouping

as the final fused configuration: G1={S 1, S 2, S 13, S 14}, G2={S 3, S 10, S 11}, G3={S 4, S 5,

S 7, S 8}, G4={S 6}, G5={S 9}, and G6={S 12, S 15}.

Note that in [110], there are seven groups, but S 12 and S 15 are fused in the current

version. The optimized Hypterm GPU code generated by the code-generator of Rawat

et al. [110] was obtained and SAAKE analysis was performed. It revealed that the six

kernels were highly optimized in terms of GM and SM data movements. So, the only way

to improve performance is by fusing kernels to reduce data movement. A fused kernel
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can decrease occupancy but increase ILP and kernels are currently GM/SM throughput

limited. We made three fused kernels from the seven kernels, based on the usage of the

same inputs/outputs, reducing occupancy to 0.5 (by decreasing occupancy from 1 to 0.5,

each thread/thread block can use more resources): G1’=G1,G2, G2’=G3,G4,G5, G3’=G6.

Note that we reduce occupancy of the kernel G6 to eliminate register spills which may

cause global memory movements. The transformation improved performance from 141

GFLOPs to 161 GFLOPs. SAAKE analysis on the three fused kernels revealed them to

still be throughput limited, suggesting further fusion. So, we fused the three kernels to

make one fused kernel, decreasing occupancy to 0.25, but improving performance. We

also changed the thread block sizes and tile sizes. The final achieved performance was

260 GFLOPs on the Kepler GPU, a significant improvement over the 141 GFLOPs of the

version generated by Rawat et al. [110].

2.7 Related Works

GPU Performance Modeling: Several studies have developed analytical approaches for

modeling kernel performance on GPUs. The work of Hong et al. [56] represents one

of the earliest efforts at modeling GPU performance in terms of the impact of warp level

concurrency for computational operations and memory operations on performance. Sim

et al. [116] extended the modeling approach of Hong et al. [56] to address more hard-

ware features, and to provide feedback to application developers on four metrics that could

guide them in identifying execution bottlenecks and how they may be overcome to improve

performance. Baghsorkhi et al. [10] developed an analytical approach to predicting GPU

kernel performance by using a more detailed modeling of the assembly-level statements of

the kernel binary and inter-statement dependences. Zhang et al. [155] also developed a
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quantitative performance analysis model aimed at identifying the primary resource bottle-

neck for a GPU kernel. Lee et al. [73] proposed a DSL for performance modeling along

with an analytical modeling framework, using static analysis of the program to estimate

the number of floating point operations and memory accesses. Recently, Xu et al. [146]

developed a precise analytical performance model for a cache-less heterogeneous many-

core processor SW26010, the current top supercomputer [36]. The performance modeling

approach extends that of Hong et al. [56], and its use in static performance tuning of a

number of Rodinia benchmarks is demonstrated. Very high accuracy (average error of 5%)

and very significant speedup (43x) over auto-tuning were achieved with high tuning qual-

ity (6% loss). Zhou et al. recently developed a performance analysis framework for GPUs,

with a focus on deep neural networks (DNNs) [158]. Using assumptions on the behavior of

GEMM-like computations in DNNs, analytical models for potential resource bottlenecks

are presented. These models take the result of ASM code analysis as parameters to describe

the input application.

The popular Roofline model [143] is applied in the context of GPU kernel optimiza-

tion. The GPURoofline [58] system helps non-expert users tune GPU kernels for high-

performance. The roofline model is used to first identify the performance bottleneck, which

is then relieved through iterative improvement via specific optimization techniques such as

Reducing Dynamic Instructions (RDIS) and increasing Instruction-level Parallelism (ILP).

A notable difference between previously reported approaches to GPU performance

modeling and the approach developed in this chapter is that, to the best of our knowledge,

none of the previous approaches has demonstrated applicability for the automated perfor-

mance modeling of arbitrary GPU kernels. We have demonstrated the use of the developed

approach to modeling and code transformation on the entire set of Rodinia benchmarks,
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as well as non-trivial tensor-contraction benchmarks used in the NWChem computational

chemistry suite.

Compiler Optimization for GPUs: Several research efforts have focused on compiler

optimization for GPUs. Many of these efforts have been in the context of affine programs,

where precise dependence analysis is feasible. Baskaran et al. [13] developed a C-to-

CUDA transformation in the Pluto polyhedral optimizer [18]. The PPCG compiler [131] is

another powerful polyhedral compiler for GPU code generation from the C input program.

It implements a variety of optimizations such as shared memory promotion. However, its

cost models to determine transformation profitability remain very basic.

OpenACC [141] is a directive-based programming model for GPU computing, where a

C program annotated with OpenACC directives is automatically transformed by the Ope-

nACC compiler for execution on GPUs. OpenMP [31] also now offers an “Offload” mode

that allows user-annotated C programs to be executed on GPUs, in a similar manner to that

introduced by OpenACC several years ago. OpenARC [74] is a directive-based compiler

that is intended to accept either OpenACC or OpenMP-Offload programs, and generates

architecture-specific (including GPU targets) codes.

We did perform several tests with PPCG and OpenACC/OpenMP-Offload for tensor

contraction examples, and observed that the achieved performance was considerably lower

than that we were able to achieve in this chapter. We believe our tools can be used to

improve the performance of codes generated by these compilers, by enabling the selection

of better transformations if suitable interfaces are developed. However, that may require

significant implementation efforts.
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Several efforts have been made to develop domain-specific languages (DSLs) and com-

pilers for GPUs, e.g. [109, 40, 46, 41, 28, 82]. We demonstrated the use of the tool-

s/methodology we developed on two DSL examples in this chapter. We believe that other

DSLs for GPUs can benefit from these methods.

For thread coarsening in particular, Unkule et al. [126] developed an approach to ana-

lyze GPU codes and perform source-level transformations to obtain GPU kernels with vary-

ing thread granularity. Magni et al. [85, 83] developed a thread coarsening tool for OpenCL

GPU kernels, in conjunction with their research on developing a machine-learning model

for identifying the best thread coarsening factor. It would be interesting to compare the

effectiveness of their approach with ours, but we are unable to do so, since their software

is not publicly available.

2.8 Summary

Performance optimization requires a clear understanding of the impact of various pro-

gram transformations on its execution time. In this chapter, we have presented a new ap-

proach to capture the key architectural features and their impact on application perfor-

mance. The usefulness of the abstract kernel emulation approach was demonstrated, and

also coupled with the OpenTuner auto-tuning framework.

In addition to the case studies presented, our approach can provide feedback to applica-

tion developers in helping them identify potentially beneficial transformations. Because the

approach only needs latency and gap parameters for key GPU resources, and not the avail-

ability of the actual hardware, it can also help in codesigning algorithms and architectures

to maximize performance for a specific application workload on a future system.
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CHAPTER 3

MultiGraph: Efficient Graph Processing on GPUs

3.1 Introduction

GPUs offer the potential for higher performance and energy efficiency than multi-core

processors. However, actually achieving high-performance with GPUs is not trivial. It gen-

erally requires sufficient programmer expertise and understanding of details on low-level

execution mechanisms in GPUs, and attention to a number of considerations essential to

achieving high-performance. Developing such high-performance GPU algorithms is very

time consuming for GPU experts and is not very feasible for the vast number of developers

of new data/graph analytics methods.

Therefore, there is considerable interest in developing domain-specific graph process-

ing frameworks that offer application developers a convenient high-level abstraction for

developing their algorithms, and also deliver high-performance on GPUs. Several GPU

graph processing frameworks have been recently developed, including VWC [55], Map-

Graph [38], Medusa [157], CuSha [64], WS [63], Frog [115], GreenMarl [54], Falcon [27],

Groute [15], and Gunrock [136]. While these frameworks achieve much higher perfor-

mance than popular vertex-centric graph processing frameworks like Pregel [87], Giraph

[124], GraphLab [80] etc., as elaborated in the next section, current GPU graph processing

48



frameworks still have some performance limitations. In this chapter, we identify sources

of performance limitation for current GPU graph processing frameworks and present the

MultiGraph3 system for graph processing on GPUs.

The approaches we present can be incorporated into existing GPU graph processing

frameworks like Gunrock, Groute, WS, etc. A key hypothesis that drives this chapter is

that graphs and graph traversals exhibit significant non-uniformity; and therefore, a single

data representation or execution strategy is unlikely to be effective across the board. By

identifying important use cases and execution scenarios, we develop a GPU graph process-

ing framework that uses multiple internal representations of the graph, as well as different

execution strategies for different use cases of graph traversal. The key ideas behind the

proposed approach are as follows:

• Multiple data representation and execution strategies are used for dense versus sparse

vertex frontiers, dependent on the fraction of the graph vertices that are active in a

given iteration. Topology-driven algorithms [108] process every graph vertex and

edge during each iteration. A different graph representation and a different ver-

tex/edge processing strategy is used for this use case, in contrast to the scenario

where only a small fraction of vertices is active in a given iteration.

• A two-phase edge processing approach using a 2D blocked distribution facilitates

improved load balancing across GPU threads and improved global memory access

efficiency. While 2D partitioning strategies have been used earlier for coarse-grained

multi-GPU parallelization [17], we are unaware of its prior use for improving fine-

grained parallelization in a GPU.

3(https://github.com/hochawa/multigraph)
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• Different representations of edge data for high-degree vertices versus low-degree ver-

tices enables avoiding expensive global memory atomic operations typically used by

GPU graph frameworks.

• Efficient dynamic work distribution is achieved for sparse frontier processing by

grouping a vertex’s edges into bins of three granularities: thread block, warp, and

thread.

We present experimental data comparing performance with the proposed approach and

state-of-the-art GPU graph-processing frameworks, using graph datasets that have been

used in other recent studies. We show that the new approach can achieve high performance

for a range of benchmarks.

3.2 Background and Motivation

Several customized frameworks have been developed for implementation of graph algo-

rithms on GPUs [55, 64, 63, 136, 15]. The developments described in this chapter are moti-

vated by the performance limitations of existing frameworks for graph processing on GPUs.

These limitations stem from one or more of the challenges in achieving high-performance

on GPUs. In this section, we first provide general background on graph processing frame-

works, followed by a discussion of specific sources of overhead with current state-of-the-art

GPU graph processing frameworks.

Graph Processing Frameworks: Graph processing frameworks facilitate the convenient

development of portable high-performance algorithms that iteratively traverse “active” graph

vertices and/or edges, performing some operations to update vertex/edge attributes. For ex-

ample, let us consider Breadth-First Search (BFS). An attribute is associated with each

vertex to designate its level in the BFS. This attribute is initialized to infinity (a number
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larger than the number of vertices) for all but the root vertex, whose level is set to zero.

At each iteration, an active set of vertices is processed, with the active vertex at the first

step being the root vertex. The processing of an active vertex involves traversing each of

its outgoing edges to determine the current level of the destination vertices. If a neighbor

vertex has a current level of infinity, its level is set to one more than that of the active source

vertex. All such vertices that have their level set in the current iteration are placed in the

active front for the next iteration. This process is repeated until the levels of all vertices get

finalized and the active front for the next iteration is empty.

GPU Performance Challenges: There is parallelism at two levels for each iteration of

the BFS execution described above: i) each vertex in the current active front can be pro-

cessed in parallel, and ii) each outgoing edge of an active vertex can be processed in paral-

lel. When edges are processed, identification of the active vertices for the next front can be

done in parallel. However, achieving efficient parallelization on GPUs poses challenges.

• Load Balancing: One option for work distribution is to assign each active vertex

to a thread; however, different threads may require very different amounts of work,

since the degrees of the active vertices can differ significantly. Another option is to

assign each outgoing edge of an active vertex to a thread, but this is challenging to

do efficiently: each thread may spend more time identifying its edge attributes than

in processing it.

• Concurrent Edge Processing: Often, processing an edge entails some modification

of an attribute at the destination vertex. Since two concurrently processed edges may

point to a common destination vertex, atomic operations may need to be used, which

can be quite expensive, especially if performed at global memory locations.
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• Formation of Next Front: The insertion of vertices/edges to form the next active

front requires coordination among concurrently executing threads.

• Uncoalesced Global Memory Data Access: Access of attributes from the set of

destination vertices of a set of active edges will generally require inefficient uncoa-

lesced access, since they will generally be scattered and not contiguously located in

global memory.

Analysis of Existing Frameworks: We now contrast different GPU graph processing

frameworks in terms of their merits and challenges.

CuSha [64]: The CuSha framework was the first to address the limitation of uncoalesced

global memory data access for GPU graph processing by performing updates in shared

memory. Instead of the standard CSR data structure, CuSha uses an alternative G-Shard

representation. CuSha is a framework for topology-driven algorithms, making it ineffi-

cient for data-driven algorithms like BFS. Although results are updated in shared memory,

CuSha can suffer from serialization overhead from atomics when processing highly skewed

datasets.

WS [63]: Warp Segmentation (WS) provides an edge-distributing load-balancing strat-

egy using binary search to locate the vertex ID corresponding to an edge in CSR format.

This kind of load balancing idea, first proposed by Andrew et al. [34], is now widely used

in many GPU frameworks such as Gunrock. WS is also a framework for topology-driven

algorithms, and therefore is not well suited for data-driven algorithms. In addition, it incurs

uncoalesced global memory accesses for vertex values due to use of the CSR representa-

tion.
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Gunrock [136]: Gunrock uses a data-centric abstraction focused on operations on fron-

tiers (vertex or edge). These primitives help programmers develop new graph algorithms

without much effort. Gunrock is currently regarded as one of the state-of-the-art GPU

graph processing systems. However, Gunrock incurs overhead due to uncoalesced global

memory accesses and global memory atomic operations. When the frontier size is large,

Gunrock’s performance is limited by these factors.

IrGL [102]: Pai et al. [102] identify three factors that limited GPU performance for pro-

cessing graph algorithms. To resolve these limitations, they introduce three optimizations:

iteration outlining, hierarchical aggregation, and nested parallelism. The IRGL compiler

produces CUDA code from an intermediate-level program representation. They demon-

strate excellent performance when these limitations are resolved. However, as with Gun-

rock, uncoalesced global memory accesses and global memory atomic operations can limit

performance.

Groute [15]: Contrary to synchronous GPU frameworks, Groute implements a scalable

asynchronous model for graph processing. Performance on mesh-like networks is con-

siderably better than synchronous frameworks like Gunrock. However, the issues with

uncoalesced global memory accesses and global memory atomics can limit performance.

Addressing Performance Limiters: In this chapter, we develop an approach to GPU

graph processing that alleviates some of the performance limiters of current frameworks

through use of a dual data representation and different vertex/edge processing strategies

that depend on the context. We provide an overview of the approach in the next section.
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3.3 Overview

This section provides an overview of the system for iterative graph processing devel-

oped in this chapter. A guiding hypothesis behind this chapter is that no single standard

graph representation (such as CSR or CSC) offers sufficient flexibility to achieve high pro-

cessing efficiency for the variety of traversal patterns and graph characteristics encountered

in graph applications.

Fig. 3.1 provides a high-level view of the graph processing system. A primary distinc-

tion is made between two scenarios: i) all (or most) vertices are processed in each iteration

(dense input frontier), and ii) only a small subset of vertices is processed in an iteration

(sparse input frontier) and that active set of vertices is not known until the end of the pre-

vious iteration. Different data representations and execution strategies are used for these

two cases, as described in detail in Sec. 3.4 (dense-frontier) and Sec. 3.5 (sparse-frontier).

For dense-frontiers, the same processing happens at every iteration, and hence the data

structures can be set up to optimize execution. In contrast, with sparse-frontiers, the active

set can change significantly across iterations, making it more challenging to achieve high-

performance. The input graph is first read in and a pre-processing step generates the dual

representations of the graph, so that it can be processed in either dense or sparse frontier

mode, as appropriate.

The dense-frontier mode can also be used (via “masking”) for input frontiers, where

only a subset of vertices is active. Although the sparse-frontier mode only traverses edges

corresponding to the active vertices in the front (whereas the dense-frontier mode essen-

tially traverses all edges), the dense-frontier mode can achieve higher performance than the

sparse-frontier mode when the fraction of active vertices is sufficiently high. The cross-over

front-density threshold depends both on the graph and the graph algorithm. Therefore, a
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Figure 3.1: Overview of MultiGraph system

sampling-based approach is used to implement a hybrid algorithm (Sec. 3.6) that selects ei-

ther the dense-frontier or sparse-frontier mode of execution for each iteration of an iterative

graph algorithm. The choice is made by comparing estimated performance for sparse-front

processing (ESP) with estimated performance for dense-front processing (EDP). EDP is

independent of the fraction of active vertices and is determined by execution with a small
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fraction of vertices before the first iteration of execution of the full initial front. ESP is es-

timated for each iteration by sampling a small fraction of the active vertices and processing

them in sparse-front mode. Depending on whether EDP or ESP is larger, the dense-frontier

mode or sparse-frontier mode is chosen.

In describing the algorithmic details of the developed graph processing framework,

we use an edge-matrix abstraction to represent the graph. Each element in this matrix

represents an edge in the graph. During the pre-processing step, the vertices of the rows

of the edge-matrix are reordered by placing vertices into one of six groups, based on the

number of non-zeros in a row (which is the corresponding vertex’s ‘indegree’), as specified

in Table 3.1. Row (vertex) reordering is performed so that vertices in the same group are

numbered consecutively. Grouping together vertices of similar indegree facilitates load-

balanced work distribution across threads, and different edge processing strategies based

on the amount of work per vertex. In sparse-frontier mode, different strategies are used

for groups 1-4 versus 5-6. In dense-frontier mode, graph edges are grouped by 2D block-

partitioning of the index space, with different representations and processing strategies for

heavily populated versus lightly covered blocks. After processing the active vertices using

the selected mode, the output frontier is created, and the iterative process repeated, until

reaching the iteration termination condition.

3.4 MultiGraphD (Dense Frontier)

This section describes MultiGraphD, the two-phase streaming approach for dense-

frontier processing. It is aimed at achieving good load balance and low divergence across

threads, high warp occupancy, and efficient coalesced data access to/from global memory.

In addition, compared to frameworks like Gunrock, MultiGraphD’s two-phase scheme is
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Table 3.1: Grouping criteria
Group Criteria

1 indegree >= 2048
2 1024 <= indegree <2048
3 512 <= indegree <1024
4 256 <= indegree <512
5 128 <= indegree <256
6 indegree <128

designed to reduce the total number of atomic operations on global memory and global

memory transactions (as is quantitatively demonstrated using hardware counter measure-

ments when experimental data is presented in Sec. 3.7). Processing is performed in two

phases:

• In phase-1, graph edges are streamed in, structured in batches over limited contigu-

ous ranges in the column-index space of the edge matrix, i.e., over a limited range

of source vertex IDs for the processed edges. Prior to streaming in a batch of edges,

the vertex attributes over that index-range are loaded into shared memory. Multi-

ple contributions for any destination vertex are first locally combined and tuples of

(destination index,contribution) are written out into pre-determined locations in an

intermediate stream-buffer in GPU global memory.

• In phase-2, key-value pairs for contributions to destination vertices are streamed in,

pre-structured in batches that correspond to limited contiguous ranges in the row-

index space of the edge matrix. This enables multiple accumulations to a destination

vertex to be performed using cheaper shared-memory atomic operations instead of

global memory atomics, as typically used in other graph processing frameworks like
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Gunrock. Final accumulated result values are written out to destination vertex at-

tributes in global memory.

3.4.1 Phase-1

In phase-1, both edge- and vertex data are streamed in from global memory in a co-

alesced manner, and partial contributions are accumulated in registers or shared memory.

Different strategies are used for edge processing, depending on the amount of work per

edge block. This differential processing is motivated by the fact that different edge blocks

can differ greatly in the amount of work to be performed. If the number of edges in an

edge block is greater than 18k (an empirically determined threshold that was found to be

the best), then it is classified as heavy in work, otherwise as light.

Figure 3.2: MultiGraphD: edge matrix partitioning into heavy and light blocks/panels

As shown in Figure 4.3, the edge-matrix is split into two parts: a part containing heavy

edge blocks and another with only light blocks. This split is performed only once, in the

pre-processing phase. All of the light edge blocks in a single block column (column panel)
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are processed by a single thread block. In contrast, each of heavy edge blocks is processed

by a thread block. The destination vertex attributes are kept in global memory and are set

to the identity of the associative accumulation operator (zero for addition).

Heavy edge block: The representation used for heavy edge blocks is depicted in Figure

3.3. The conceptual view of a single heavy edge block is represented on the left. The data

representation is comprised of two matrices: i) a frontier matrix, holding source/destination

vertex IDs (middle); and ii) a matrix with edge weights. The dimensionality and total num-

ber of elements in both matrices are the same. The total number of elements is computed

as the sum of the number of threads in a thread block, number of edges and number of des-

tinations which have at least one contribution from the current edge block. The number of

columns is equal to the number of threads in a thread block. The number of rows is the ceil-

ing of the number of elements divided by the number of threads (ceil(#elements/#threads)).

The edge block frontier is filled in column-major order. The first element is the negated

value of the destination ID, which receives a contribution from the current edge block. This

is followed by placing all of the edges which are connected to the latter destination node.

Then the negated value of the next destination node follwed by the corresponding incoming

edges is placed and so on. While filling the table, if the row limit is reached, the destination

ID is placed at the beginning of the next column, which is followed by edges. For example,

destination node 106 in Figure 3.3 has four edges. After placing the first source vertex, the

row limit is reached. Hence, the destination ID is repeated again at the beginning of the

next column. In this matrix, the negated values represent the destination IDs; and positive

values represent source IDs. Corresponding to each source vertex in the edge block frontier

matrix, the edge block is populated with edge weights. All other entries in the edge block

frontier matrix are marked as invalid. This representation is created during pre-processing.
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Number of threads =4; x : denotes invalid values

Figure 3.3: MultiGraphD: processing of heavy edge block

The pseudocode for processing of heavy edge blocks is shown in Algorithm 4. All of

the threads in a thread block collectively bring a portion of the input frontier corresponding

to an edge block to shared memory. All vertices in the front may not be active. The

information regarding whether a frontier vertex is active or not is also brought to shared

memory.

The work is uniformly distributed across threads. Each thread processes a single col-

umn in the edge block frontier matrix using the corresponding element in the edge block

weight matrix. The partial contributions are accumulated to a thread local register as long

as the destination vertex does not change. If the destination vertex changes, as indicated

by a negative entry in the column, the accumulated partial contribution is written to shared

memory using an atomic operation. The use of shared-memory atomics is necessary, since

two threads could concurrently attempt to update the same destination value (e.g., with des-

tination 106 in Fig. 3.3). After a heavy edge block is processed, accumulated contributions

to all destination vertices of the edge block are written out.
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Algorithm 4: Algorithm for processing heavy edge blocks in dense frontiers
1 kernel MultiGraphD heavy edge block()
2 edge col = edge block list[tb id].col
3 edge blk id = tb id

// Bring input frontier to shared memory

4 for (i = edge col + t id to edge col + EDGE BLK S IZE − 1 step tb.size()) do
5 sm frontier val[i-edge col] = frontier val[i]
6 sm frontier active[i-edge col] = frontier active[i]
7 sm dest value[i -edge col] = init()
8 end
9 syncthreads

10 start = start edge position[edge blk id]
11 end = start edge position[edge blk id + 1]
12 num rows = floor((end-start + tb.size() -1 - t id)/tb.size())
13 dest id = abs(edge block[edge blk id][0][t id] + 1)
14 reg val = init()
15 for i = 1 to num rows − 1 do
16 cur val = edge block[edge blk id][i][t id]
17 if cur val ¡0 then
18 if reg val != init() then

// Update dest val & actv flag

atomic update(&sm dest value[dest id], reg value)
19 reg val = init()
20 end
21 dest id = abs(cur val + 1)
22 end
23 else if sm frontier active[cur value] == True then

// Update register value

24 reg val = comp contrib(sm frontier val[cur val] ,
edge block wt[edge blk id][i][t id], reg val)

25 end
26 end
27 if reg val != init() then
28 atomic update(&sm dest value[dest id], reg value)
29 end
30 stream buf base = loc dest buffer[tb id]
31 for (i = t id to EDGE BLK S IZE − 1 step tb.size()) do
32 stream buf base[i] = sm dest value[i]
33 end
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The data representation used for the heavy edge blocks combines both the coalesced

data access benefit from the transposed data representation, as used by Liu and Vinter with

CSR5 [76], and the load balancing across threads achieved with the merge-based CSR

scheme of Merrill and Garland [90].

Each thread has to efficiently find a location in global memory to write its partial contri-

bution. During pre-processing, the maximum space required to save the partial results (by

assuming that the output frontier is dense) is computed. The space is allocated in such a

way that all of the edge blocks in an edge-row-panel occupy contiguous memory locations.

The thread block size was chosen to be 1024, and edge block size was chosen as 6*1024

in order to fully utilize shared memory, as well as achieve maximum occupancy and mini-

mize the number of edge blocks.

Light edge blocks: The representation used for light edge blocks is shown in Figure

3.4. The top matrix shows the conceptual view of the edge-matrix. Unlike heavy edge

blocks, all light edge blocks in an edge column panel are processed by a single thread block.

The edges are streamed in from global memory. This is represented by the bottom matrix.

The last row contains the input frontier vertex ID and the corresponding edge-weights are

shown in the second row. The first row contains an index/pointer to a stream-buffer location

where the partial contribution is be written; the actual location is represented by the first

row of the middle matrix. The second row of the middle matrix contains the ID of the

destination node.

Algorithm 5 describes the processing of the light column panels. Each column panel is

processed by a single thread block. All of the threads collectively bring the input frontier

values to shared memory. The entire work is then divided cyclically across threads. Each

thread first loads a vertex, and if it is active, it directly writes the partial product to global
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Figure 3.4: MultiGraphD: processing light edge column panel

memory. Since the memory is pre-allocated, atomic operations are not required. How-

ever, unlike heavy edge blocks, contributions from the light edge blocks are not locally

compressed.
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Algorithm 5: Algorithm for processing light edge blocks in dense frontiers
1 kernel MultiGraphD light edge block()
2 edge col = tb id * edge block.size()

// Bring input frontier to shared memory

3 for (i = edge col + t id to edge col + EDGE BLK S IZE − 1 step tb.size()) do
4 sm frontier val[i-edge col] = frontier val[i]
5 sm frontier active[i-edge col] = frontier active[i]
6 end
7 syncthreads

8 start = start edge position[tb id]
9 end = start edge position[tb id+1]

// Stream out contributions to global memory

10 for i = start + t id to end − 1 step tb.size() do
11 if sm frontier active[input vertex id[i]] == True then
12 pos to write = stream buf index[i]
13 stream buf[pos to write] = compute contrib(sm frontier val[

input vertex id[i]], edge weight[i])
14 end
15 end

This work division strategy between heavy- and light edge blocks helps in achieving

good performance with a small number of atomic operations. Since the number of partial

contributions from a heavy edge block is high, assigning an entire thread block to it helps

in efficient processing. In contrast, since the number of partial contributions from a light

edge block is generally low, assigning a thread block to an entire edge column panel helps

in attaining better performance.

3.4.2 Phase-2

A single destination vertex can have contributions from multiple edge blocks, i.e., there

could be contributions to the same destination vertex from different heavy edge blocks and

different light edge blocks. Each such partial product should be combined to produce the
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final result. Phase-2 combines the partial results produced in phase-1, to form the final

output.

In phase-2, each edge row panel is processed by a thread block. Note that the global

memory allocated for storing the partial products from heavy edge blocks and light edge

blocks are contiguous in memory. Each thread block loads the corresponding output ver-

tices to shared memory, which helps in reducing the total number of global transactions.

Then it loads the corresponding global memory blocks containing the partial results, cycli-

cally distributing work among threads to achieve coalesced global memory access. Updates

to output vertices are performed using shared-memory atomic operations.

3.5 MultiGraphS (Sparse Frontier)

When the input vertex frontier represents only a small fraction of the graph’s vertices,

the data representation and processing approach of MultiGraphD is very inefficient, since

essentially every edge must be traversed. For such a scenario, we use a completely different

graph representation and edge processing approach. The subsystem for processing sparse

frontiers, MultiGraphS, is described in this section. A major challenge to be addressed

is that of balanced work distribution. Intra-warp, inter-warp and inter-thread block load

balance are key factors that affect performance.

MultiGraphS partitions the vertices of the input frontier into groups of 64 active ver-

tices. Each such group is processed by a single thread block of 256 threads. This work

distribution is shown in Figure 3.5.

The outdegrees of frontier vertices can differ significantly. If a warp is assigned to pro-

cess a frontier node, there could be severe load imbalance, as some warps may have very

little work, while others may have a lot of work. Further, for vertices with an outdegree a
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Figure 3.5: MultiGraphS: work distribution

lot less than 32, many threads within a warp will be inactive and cause idleness of hard-

ware resources in the GPU’s SIMD functional units. Below, we describe the MultiGraphS

approach to load balancing.

The processing of outgoing edges of active frontier vertices is performed in three stages:

• Stage-1: involves processing a small number of edges from each vertex, so that the

remaining unprocessed edge-count for each vertex is a perfect multiple of 32. If

vertexk has Ek outgoing edges, the last Ek % 32 edges are selected for processing.

For this stage, the thread block of 256 threads is partitioned into 64 virtual warps

of four threads each, and virtual warp k handles edges from vertex k in the current

group.

• Stage-2: involves processing more outgoing edges (if any remain) from each vertex,

so that the remaining unprocessed edge-count of each vertex is a perfect multiple of

256. For vertexk with Ek initial edges, of which Ek % 32 got processed in stage-1, (Ek

- Ek % 32) % 256 will be selected for processing in stage-2. For this stage, the thread

block of 256 threads is organized as eight warps, with each warp processing all stage-

2 edges from eight vertices. For this stage, no intra-warp load imbalance or thread

66



divergence can occur, with the only negative effect of inter-warp load imbalance

being the loss of effective warp occupancy, since some active warps may be idle.

• Stage-3: processes all remaining edges for all vertices. This is done sequentially

across frontier vertices that still have edges to be processed. Since that count is a mul-

tiple of 256, perfect load-balancing across all warps of the thread block is achieved.

Fig. 3.6 shows an example illustrating the three stages of processing. Frontier vertex-2

has four outgoing edges and all its edges are selected for processing in stage-1 (4 % 32

= 4). Frontier vertex-500 has 100 outgoing edges, from which four edges are selected for

processing in stage-1 (100 % 32 = 4). In stage-1, each vertex is processed by four threads.

The edges that were not processed in stage-1 are passed to stage-2. In Figure 3.6, for

frontier vertex-500, all 96 remaining edges are selected for processing in stage-2 (96 % 256

= 96). Similarly, for frontier vertex-80000, 160 edges (2976 % 256 = 160) are selected for

processing in stage-2. Each vertex (corresponding to the selected edges) is processed by

the threads of a warp using a cyclical work distribution. The remaining set of edges after

stage-2 are processed in stage-3, where an entire thread block is assigned to each vertex.

The active frontier is loaded to shared memory and its computation is efficiently cal-

culated using warp aggregation [37]. After processing edges in stage-1, vertices that have

fewer than 32 outgoing edges will be fully processed. Hence, they should be removed from

the frontier. This is done using warp aggregation. Similarly, after stage-2, all vertices that

have fewer than 256 outgoing edges should be removed.

Updates from each edge are accumulated in global memory using atomic operations.

An output node with ‘n’ incoming edges will require exactly ‘n’ atomic operations on

the same memory location. This implies that nodes with heavy in-edge degree will have

limited parallelism, since the atomic operations on the same memory locations will have a
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Figure 3.6: MultiGraphS: example illustrating 3-stage work distribution

serializing effect. This will have a lesser impact on performance if the atomic operations

were carried out in shared memory instead of global memory. One way to resolve this is

to bring a set of output edges in shared memory, process them (using atomics in shared

memory), and then stream out the results to global memory. However, using a lot of shared

memory may degrade performance, as warp occupancy will be affected. In addition, output

nodes with few incoming edges will have minimal benefits when using shared memory for
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atomics. Hence, we use shared memory only for output nodes with high indegree. The

grouping information computed during pre-processing (mentioned in Section 5.3) is used

for this classification. All of the output nodes belonging to group-1 through group-4 are

classified as ‘high indegree’ nodes and the rest are classified as ‘low indegree’ nodes. The

high indegree nodes are partitioned into segments.

Each of these segments is further sub-divided into sub-segments, such that each sub-

segment contains 1024 active input frontier vertices. This helps in achieving good inter-

block load balance. The segmentation strategy is depicted in Figure 3.7. Each heavy sub-

segment is processed by a single thread block. The thread block loads the output vertices

to shared memory, accumulates the partial contributions in shared memory using atomics,

and writes out the result to global memory.

The entire set of edges for low indegree nodes are treated as a single segment. Each of

these segments is then sub-divided into sub-segments with 64 active input frontier vertices.

Each sub-segment is processed by a thread block. For efficient access, each segment is

represented in CSC format. The CSC representation for each segment is created during

pre-processing.

For groups 1-4, the largest possible thread block size (1024) was selected and frontier

size was also set to 1024 to maximize available shared memory size per thread block and

minimize the number of segments. The key idea behind load balancing of MultiGraphS

comes from Merrill et al. [91]. The same thread block size of 256 was chosen as it was

empirically verified to outperform other thread block sizes. The frontier size per thread

block was chosen to be 64 because each vertex is processed by four threads in stage-1

(256/4 = 64).
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Figure 3.7: MultiGraphS: edge block segmentation

3.6 MultiGraph (Hybrid)

In previous sections, the data structures and algorithms for dense-frontier (MultiGraphD)

and sparse-frontier (MultiGraphS) processing were presented. When processing graphs,

the sizes of frontiers do not remain constant across iterations. The profile of variation in

the size of a frontier depends on the algorithm/benchmark and the dataset. Consider Table
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Table 3.2: BFS frontier size variation: soc-orkut
Iter Frontier size

# vertices
# edges Sparse

time
Dense
time

Best
possible

time

1 1 12 0.07 21.81 0.07
2 12 580 0.05 21.81 0.05
3 460 38590 0.13 21.85 0.13
4 25400 3294619 1.40 21.95 1.40
5 728870 73887541 33.93 22.48 22.48
6 2210215 135105894 66.53 22.22 22.22
7 32216 371130 0.26 21.84 0.26
8 32 52 0.07 21.82 0.07

total time 102.45 175.78 46.69

3.2, which shows how the frontier size varies over the iterations of BFS for dataset ‘soc-

orkut’, as well as the execution time taken by MultiGraphD and MultiGraphS. The frontier

size initially grows and then decreases. For small frontier sizes, MultiGraphS is much

faster, while MultiGraphD can be up to three times as fast for the densest front (at iteration

6). Most datasets exhibit a similar trend, with neither MultiGraphD nor MultiGraphS being

consistently better across all iterations of an algorithm like BFS. This motivates the need for

a hybrid algorithm that judiciously selects between the MultiGraphD and MultiGraphS at

the beginning of each iteration, based on the size of the frontier. If such a choice is achieved

with perfect precision and zero overhead, the achievable completion time is shown in the

last column of Table 3.2 to be 46.69 ms, compared to 102.45 ms for MultiGraphS and

175.78 ms for MultiGraphD.

The major challenges associated with designing a hybrid algorithm are: i) Performance

modeling – for a given benchmark-dataset pair and frontier size, estimating the relative

performance of MultiGraphS and MultiGraphD; and ii) Efficient mode-switching – if the
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predicted performance is better for a different mode than the current one, efficient switch-

ing to the other mode. One approach to estimate performance is to build a linear regression

model against the number of active vertices and edges in the current and next frontier. This

was attempted, and although it worked reasonably well for some cases, it was not consis-

tently effective across datasets and graph algorithms. Therefore, a dynamic sampling-based

approach was developed for a hybrid implementation, called MultiGraph.

Pseudocode for MultiGraph (the hybrid algorithm) is shown in Algorithm 6. At the be-

ginning of each iteration, a random fraction of the current frontier is sampled and the cor-

responding subgraph processed using MultiGraphS. The performance of MultiGraphD is

also estimated using a small sample of vertices. However, unlike MultiGraphS, for a given

dataset and algorithm, the performance of MultiGraphD does not vary much as a function

of the number of active vertices in the frontier. This can be observed in Table 3.2. Hence,

MultiGraphD execution on a sample is only done once, before the first iteration.

In each iteration, MultiGraphS is executed on a small sampled fraction of the fron-

tier. If the current mode is dense (i.e., MultiGraphD), then a small subset of the frontier

is generated with the flag “frontier active”. Warp aggregation is used to accumulate sam-

ple frontier. The overhead for generating sample frontier is low, since only a small fraction

of the whole frontier is used. If the current mode is sparse (i.e., MultiGraphS), then a sam-

ple can be directly obtained from the whole frontier.

When switching from MultiGraphD to MultiGraphS, the sparse frontier has to be com-

puted. This is done using warp aggregation [37]. Each warp scans the frontier active flag

and collects the list of active vertices. The warp leader then uses a single atomic operation

to allocate space for storing the sparse front. Each thread then writes the active vertex (if
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Algorithm 6: Algorithm for MultiGraph Hybrid
1 void MultiGraph Hybrid()
2 EDP = MultiGraphD sample()
3 mode = init processing mode()
4 if mode == sparse then
5 frontier = init f rontier()
6 end
7 else
8 frontier active = init f rontier active()
9 end

10 while not converged do
11 if mode == dense then

// sample frontier is just a small part of frontier

12 sample frontier = generate sample f rontier( f rontier active)
13 end
14 else
15 sample frontier = select part( f rontier)
16 end
17 ESP = MultiGraphS sample(sample f rontier)
18 if EDP ≥ ESP then
19 if mode == sparse then
20 frontier active = generate f rontier active( f rontier)
21 end
22 mode = dense
23 frontier active = MultiGraphD()
24 end
25 else
26 if mode == dense then
27 frontier = generate f rontier( f rontier active)
28 end
29 mode = sparse
30 frontier = MultiGraphS ()
31 end
32 end

any) to the allocated space. Switching from MultiGraphS to MultiGraphD is done by first

resetting the frontier active flag, and then marking the flags corresponding to the sparse

front as active.
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3.7 Experimental Evaluation

Table 3.3: Dataset description
Dataset

Type Name —V— —E— Max
Degree

Dia. Type

Scale-free rmat s24 e16 16.8M 520.0M 434813 6 s
rmat s23 e32 8.4M 506.4M 438471 6 s
rmat s22 e64 4.2M 484.0M 428234 6 s
indochina-04 7.4M 302.0M 256425 26 r

soc-orkut 3M 212.7M 27466 9 r
kron g500-logn21 2.1M 182.1M 213904 6 s

hollywood-09 1.1M 112.8M 11467 11 r
soc-Livejournal1 4.8M 85.7M 20333 16 r

Mesh-like rgg n 24 16.8M 265.1M 40 2622 r
road USA 23.9M 57.7M 40 6809 s

roadnet-CA 2M 5.5M 12 849 r
s: synthetic; r: real-world

Table 3.4: Machine configuration

Resource Details

Host CPU Intel core i7-2600 (4 cores, 3.40 GHz, 8MB
L3cache),
16GB DDR3-1333)

GPU Tesla K40c (15 Kepler SMs, 192 cores/MP, 12 GB
Global Memory, 745 MHz, 1.5MB L2 cache, ECC
off)

In this section, experimental results are presented, comparing MultiGraph with other

GPU graph processing frameworks: CuSha, Groute, Gunrock, and Warp-Segmentation

74



16,000

12,000

8,000

4,000

0

4,000

8,000

12,000

16,000

soc-Livejournal soc-orkut hollywood-09 indochina-04 rmat24 kron_g500 rgg_n_2_24_s0 road_usa roadnet-CA

gunrock sparse dense hybrid

1,000

750

500

250

0

250

500

750

1,000

MTEPS

Node Numbering: Original

Node Numbering: Random Re-numbering
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(WS). All experiments were performed on an NVIDIA Tesla K40c GPU with 12GB mem-

ory, hosted by an Intel Xeon system. Table 3.4 provides details about the system. ECC

was turned off for the tests.4 For all evaluations, NVIDIA’s NVCC compiler (version 7.5)

was used, with the -O3 flag. We report performance for MultiGraph and other frameworks

with all data already in GPU global memory. In reporting achieved performance (through-

put), we do not include time for the input of graphs from file, any pre-processing costs

for the graphs, or the time for data transfer from CPU to GPU. Later in this section, we

separately report pre-processing overhead for each test dataset. All tests were run 10 times

and the average was used for the reported results. The Gunrock team actively maintains a

website (http://gunrock.github.io) with performance data on a range of graph datasets for

4Experiments were also conducted with ECC turned on. There was very little difference in performance,
well under 5%.
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various graph processing frameworks. The dataset includes eight scale-free datasets and

three mesh-like datasets We used the same datasets, downloaded from their website (ex-

cept for the synthetic datasets RMAT22, RMAT23, and RMAT24, which were generated

using the RMAT generator [63]). Characteristics of the datasets are shown in Table 3.3.

3.7.1 Performance comparison with other graph frameworks

The performance achieved with MultiGraph was compared with several available GPU

graph processing frameworks, including both topology-driven frameworks (CuSha, WS

(Warp Segmentation)) and data-driven frameworks (Groute, and Gunrock version 0.4). The

following standard graph algorithms were evaluated:

Breadth-First Search (BFS): For each iteration, the BFS level of all vertices connected to

a vertex in the current frontier are updated. We note that Gunrock provides a “Direction-

Optimized (DO)-BFS” which is very powerful for scale-free graphs, but we only imple-

mented standard BFS. In order to enable comparison of the various frameworks on the

same algorithm, we present results for Gunrock with DOBFS disabled, as well as with

DOBFS enabled.

Single-Source Shortest Path (SSSP): For each iteration, relaxation is performed for all

vertices connected to any vertex in the active frontier. We did not use any other optimiza-

tion techniques like priority queues.

Connected Components (CC): We implemented Gunrock’s CC algorithm [1].

Pagerank (PR): We developed two variants: i) topology-driven PR – CuSha’s topology-

driven pagerank algorithm, and ii) data-driven PR – Gunrock’s data-driven pagerank algo-

rithm.

Betweenness Centrality (BC): We implemented Gunrock’s BC algorithm [1].
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In order to optimize performance using Groute for BFS and SSSP, we auto-tuned two

parameters: ”prio delta fused” and ”prio delta softprio”. For Gunrock, we used tuned pa-

rameters used by the authors and reported in their publications.

We report performance in pseudo Millions of Traversed Edges Per Second (MTEPS),

where the MTEPS metric is derived as follows: For BFS, SSSP, PR, and CC, MTEPS is

computed as |E|/t, where |E| is the number of edges in the graph and t the execution time

in µsecs. For BC, MTEPS is defined as 2 |E|/t, since each edge is visited in the forward

pass and again in the backward pass. Since the execution times vary significantly across

the graphs, this normalized measure is more convenient. Even if different frameworks

actually process a different number of edges (an edge may be relaxed multiple times, and

the number of times could differ from one implementation to another), the MTEPS measure

is inversely proportional to t, and allows a fair comparison of the ratios of completion times

of different frameworks. The data structure for CuSha requires more space than the other

frameworks. On the test GPU, there was insufficient global memory to hold RMAT22,

RMAT23, RMAT24, and roadnet USA. Hence, performance data is not available for these

datasets with CuSha.

For all benchmarks, the relative performance trends for RMAT22 and RMAT23 were

found to be very similar to that of RMAT24, with RMAT23 having slightly higher per-

formance, and RMAT22 a bit higher still. So we only display performance for RMAT24.

For all benchmarks, we also tested the different frameworks on performance sensitivity to

a random renumbering of graph vertices. We observed that many datasets use contiguous

numbering for many neighbor vertices. This is very favorable for a CSR representation,

where access to needed vertex values to process a set of edges achieves a high degree of

coalescing. In the bar charts, the performance with the given dataset order faces upward,
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while the corresponding data with randomly renumbered vertices faces downward. A gen-

eral conclusion is that except for CuSha and MultiGraphD, frameworks are quite sensitive

to vertex numbering, often suffering around 30% loss of performance.

Breadth-First Search (BFS): Fig. 3.9 presents performance data in MTEPS for BFS.

CuSha and WS use topology-driven execution. For each iteration, all edges and vertices are

traversed. Groute and Gunrock use data-driven BFS. For scale-free graphs, 6-26 iterations

are required to find all reachable vertices with a bulk synchronous model for the datasets.

In contrast, for mesh-like graphs, 555-6626 iterations are needed for BFS. CuSha and WS

achieve very low performance due to the data-driven execution. Performance of Multi-

Graph is generally on a par with or better than the other frameworks, except for Gunrock,

which is faster than MultiGraph on four of the nine datasets. With DOBFS enabled, Gun-

rock is up to an order of magnitude faster on several datasets. Also, for scale-free graphs,

Gunrock performs better than Groute. On the other hand, for mesh-like graphs, Groute

performs better than Gunrock.

For scale-free graphs, the hybrid algorithm is better than either MultiGraphD or Multi-

GraphS. For mesh-like graphs, the dense-frontier algorithm MultiGraphD is never acti-

vated. For each iteration, the sparse algorithm processes the dataset. When we use the

hybrid algorithm, a small mode selection overhead is incurred, so that MultiGraphS per-

forms a little better than the hybrid algorithm.

Single-Source Shortest Path (SSSP): Performance data are shown in Fig. 3.13. The dif-

ference between BFS and SSSP performance is due to the usually much larger size of the

frontier for SSSP. Several iterations have extremely large frontier size, and these iterations

dominate the execution time. For these iterations, MultiGraphD significantly outperforms

Gunrock, thereby resulting in high speedup relative to BFS. Groute is an asynchronous
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algorithm, but it may suffer from the limitations described earlier. For mesh-like graphs,

the dense algorithm is never activated. MultiGraph performance is better than Gunrock in

this case, but the performance of Groute is significantly better than MultiGraph and others.

Groute uses a soft priority scheduler and fused workers. These can significantly reduce the

amount of redundant (useless) work performed in other frameworks.

Connected Components (CC): For scale-free graphs, MultiGraph performance is consis-

tently better than other frameworks (Fig. 3.10). For road USA and roadnet-CA, Groute is

much better than other frameworks. The reason is that Groute uses a different connected

components algorithm, which is well matched with the asynchronous GPU framework.

Pagerank (topology-driven PR and data-driven PR): Performance data is shown in

Fig. 3.11. The topology-driven PR algorithm and data-driven PR algorithm are used in

Gunrock update values of all vertices until convergence. For MultiGraph, the dense al-

gorithm is always chosen, and MultiGraphD generally outperforms frameworks that are

mainly targeted toward data-driven algorithms. CuSha uses a novel structure to process

graphs. It is also geared toward topology-driven algorithms and performs better than Multi-

Graph in the case of rgg n 2 24 s0.

Betweenness Centrality (BC): Performance data is shown in Fig. 3.8. Only Gunrock had

an implementation of BC; so we compared MultiGraph only with Gunrock. BC has two

stages: forward processing and backward processing. BFS is used for forward processing.

The difference between BFS and BC is that in BC, every edge is visited twice (forward

processing and backward processing). Hence, Gunrock cannot take advantage of edge

skipping for BC as in BFS. For scale-free datasets, the performance mainly depends on a

few iterations with a very large frontier. Similar to SSSP, for these iterations, MultiGraph

chooses the dense algorithm, which outperforms Gunrock. We note that MultiGraphS also
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achieves consistently higher performance than Gunrock. The reasons are efficient work-list

management and use of a combination of shared and global memory atomics, instead of all

global memory atomics. For mesh-like graphs, as with previous algorithms, MultiGraph

always chooses the sparse algorithm, and achieves higher performance than Gunrock.

Tables 3.5 and 3.6 present geometric means of the speedup achieved by MultiGraph

over other frameworks for original node numbering and random renumbering, respectively.

Tables 3.7 and 3.8 present data for the pre-processing overheads for MultiGraph – all

previously presented performance data excludes any pre-processing time for MultiGraph

and any of the other frameworks that require transformation from a standard CSR represen-

tation. Table 3.7 presents measured pre-processing time for each benchmark algorithm and

each graph dataset, both for the original numbering and the randomized renumbering of

vertices for the datasets. The measured time accounts for the conversion of the graph data

from a standard COO format to the data-structures required for MultiGraphD and Multi-

GraphS. This data conversion is performed in the GPU, and the reported time does not

include the time for reading in data from files to the host CPU and transfering the data to

the GPU global memory. In Table 3.8, aggregated normalized data is presented as a rela-

tive fraction of the actual execution time for each of the tested algorithms (geometric mean

across the graph datasets). Optimization of pre-processing overheads has not been a focus

so far, and it is expected that significant reduction of this overhead is feasible.

3.7.2 Hardware performance metrics

In this section, we present some metrics from hardware counter measurements that val-

idate design decisions for MultiGraph. Due to space limitations, we only show data for one
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Table 3.5: Speedup: original node numbering
Benchmark CuSha WS Gunrock Groute

BFS 16.02 27.30 1.20 1.93
SSSP 7.77 7.04 1.86 1.28
CC 29.81 24.82 2.78 1.01

PR(top) 3.71 3.79 4.14 -
PR(dat) - - 4.07 3.95

BC - - 2.90 -

average 10.83 11.60 2.59 1.77

Table 3.6: Speedup: random re-numbering
Benchmark CuSha WS Gunrock Groute

BFS 10.96 33.51 1.27 2.05
SSSP 4.05 8.75 2.17 1.53
CC 18.95 22.07 2.81 0.95

PR(top) 2.33 6.13 8.01 -
PR(dat) - - 6.96 6.36

BC - - 2.97 -

average 6.65 14.11 3.30 2.09

of the evaluated graph algorithms: Pagerank. Trends for other algorithms are also broadly

similar. Figure 3.14(a) shows memory storage requirements for the various datasets, nor-

malized to the storage requirements for the standard CSR representation used by Gunrock,

Groute, and WS. The total memory requirement is computed as the sum of the memory

required for heavy edge block representation, light edge block representation in Multi-

GraphD, and sparse representation in MultiGraphS. The space overhead for MultiGraph

over CSR ranges from 1.5x to 2.5x.
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Table 3.7: Preprocessing time: original/renumbered (in ms)
Dataset BC BFS/PR CC SSSP

soc-Livejournal1 130(200) 128(198) 6.7(6.7) 189(280)
soc-orkut 311(425) 312(419) 13.5(12.7) 473(598)

hollywood-09 191(270) 242(369) 7(6.3) 332(469)
indochina-04 391(557) 453(595) 19.5(16.5) 681(827)

rmat24 1009(1049) 1092(1122) 33.7(26.8) 1655(1681)
kron g500 675(668) 1077(1065) 9.8(9.9) 1249(1235)

rgg n 2 24 s0 188(633) 133(588) 15.8(16) 149(828)
road USA 105(177) 87(144) 8.1(8.1) 111(166)

roadnet-CA 13.2(12.8) 11.8(11.3) 0.7(0.7) 12.5(15.3)

Table 3.8: Normalized pre-processing overhead
Algorithm Original Renumbered

BC 1.97 1.97
BFS 3.19 3.40
CC 0.13 0.07

PR(data-driven) 0.55 0.66
PR(topology-driven) 0.15 0.21

SSSP 0.57 0.57

Figure 3.14(b) presents the global memory efficiency for each framework, computed

as follows. For each GPU kernel, the number of global memory load/store transactions

and global load/store efficiency were collected using NVPROF. The sum of the product of

global memory load/store transactions and the corresponding global load/store efficacy was

divided by the total number of load/store transactions to obtain an average global memory

efficiency for the execution. It can be seen that MultiGraph and CuSha attain consistently

high global memory load/store efficiencies of around 80%. WS and Groute exhibit the
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lowest global memory efficiency, well under 50% for all datasets. Gunrock achieves effi-

ciencies between 60- and 70%. The main reason for the higher global memory efficiency

for CuSha and MultiGraph is the lower incidence of uncoalesced data accesses, due to the

alternate data-structures and edge processing strategies used.

Figure 3.14(c) displays statistics on measured global memory transactions for differ-

ent frameworks across different datasets. The metric is presented normalized to the total

number of graph edges traversed (graph edges multiplied by the number of iterations). It

was computed as the sum of DRAM loads/stores (obtained from NVPROF) multiplied by

32 (conversion to bytes) and divided by the product of the total number of edges and the

number of PR iterations. This metric varies across a range from around eight bytes/edge

to 72 bytes/edge across the frameworks and datasets. MultiGraph incurs data movement

ranging from 8- to 20 bytes/edge, while Gunrock incurs consistently higher data movement,

ranging around 10-55 bytes/edge. Groute also requires higher data movement than Multi-

Graph, ranging around 10-70 bytes/edge. CuSha requires slightly higher global memory

data movement than MultiGraph, and has relatively low variance across datasets, ranging

around 20-35 bytes/edge. In contrast, WS has the highest variance in data movement vol-

ume across datasets, with volumes in some cases being as low as five bytes/edge (lower

than MultiGraph) and as high as 55 bytes/edge.

Figure 3.14(d) presents data on the number of atomic operations, again normalized to

the number of processed graph edges. The number of global atomic operations was directly

obtained using NVPROF. A significant reason for the improved performance of MultiGraph

over other frameworks is the reduction in the number of global memory atomics by use

of atomics in shared-memory instead. Since hardware counters are not available on the

NVIDIA Kepler for shared-memory atomics, it was estimated as follows. MultiGraphS was
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computed as the sum of the number of edges in groups 1 to 4 for the active input vertices.

The number of shared memory atomic operations for the MultiGraphD was computed as

the sum of i) the number of active destination vertices in each heavy edge block, ii) 1024 *

number of heavy edge blocks, and iii) sum of the number of active edges in each light edge

block. The total number of global atomic operations for MultiGraph (red solid bars) can be

seen to be significantly lower than Gunrock and Groute (we note that the y-axis scale for

this chart is logarithmic). For MultiGraph, global atomics have been replaced by shared-

memory atomics (red bars with a criss-cross pattern), which incur much lower overheads

than global atomics.

3.8 Summary

This chapter has addressed the development of a high-performance approach to graph

processing on GPUs. It uses multiple data representation and execution strategies for

dense- versus sparse-vertex frontiers, dependent on the fraction of active graph vertices.

A two-phase edge processing approach trades off extra data movement for improved load

balancing across GPU threads, by using a 2D blocked representation for edge data. Exper-

imental results demonstrate performance improvement over current state-of-the-art GPU

graph processing frameworks for many benchmark programs and datasets.
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CHAPTER 4

Efficient Sparse-Matrix Multi-Vector Product on GPUs

4.1 Introduction

Sparse Matrix-Vector (SpMV) multiplication and Sparse Matrix Multi-vector (SpMM)

multiplication (also called SpMDM – Sparse Matrix Dense Matrix multiplication) are key

kernels used in a range of applications. SpMV computes the product of a sparse matrix and

a (dense) vector.

Although SpMM may be viewed as a set of independent SpMV operations on different

dense vectors, and therefore can be computed by using an SpMV kernel repeatedly, it is

very beneficial in terms of achievable performance to implement a separate SpMM kernel,

because of the significantly greater data locality that can be exploited by doing so. How-

ever, as shown in the next section using Roofline [143] performance bounds, the achieved

performance with the NVIDIA cuSPARSE library SpMM implementation achieves a sig-

nificantly lower fraction of roofline limits when compared to the cuSPARSE SpMV imple-

mentation.

In this chapter, we seek to answer the following question: Is it feasible to achieve a

significantly higher fraction of the roofline upper-bound for SpMM on GPUs, just as has

already been accomplished by various implementations of SpMV [90, 118, 76] on GPUs?
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We undertake a systematic analysis of the SpMM problem and develop a new imple-

mentation that is demonstrated to be significantly faster than other currently available GPU

implementations of SpMM – in cuSPARSE [2], MAGMA [7], and CUSP [32]. A key ob-

servation that drives the new implementation is the fact that non-zeros in sparse matrices

drawn from a variety of application domains are not uniformly spread over the row/column

index space, but exhibit non-uniform clustering of elements. We exploit this property to

partition sparse-matrix elements into two groups: one group containing clustered segments

and the other holding the remaining scattered elements. Different processing strategies

are used for the two partitions, with much higher data reuse and lower overheads being

achievable for the clustered partition.

4.2 Background

Graphics Processing Units (GPUs) are very attractive for sparse matrix computations

due to their high memory bandwidth and computing power. However, achieving high per-

formance is nontrivial due to the irregular data access pattern. A number of recent ef-

forts have addressed the development of efficient SpMV for GPUs [118, 90, 76, 149, 69,

144, 30, 16, 9]. SpMM is also a key kernel in sparse computations in computational sci-

ence and machine-learning/data-science, but very few studies have to date focused on it.

[147, 148, 24, 88, 93, 59, 12, 11, 104]. SpMM is a core kernel for the Locally Opti-

mal Block Preconditioned/conv Conjugate Gradient (LOBPCG) method [67, 4, 7], aero-

dynamic design optimization [107], PageRank algorithm [11], sparse convolutional neural

networks (CNNs) [43, 104], image segmentation in videos [122], atmospheric modeling

[11], etc.
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Roofline [143] performance upper-bounds based on global memory bandwidth on GPUs

can be developed for SpMV and SpMM, as follows. Consider single-precision floating-

point computation with a square N × N sparse matrix with nnz non-zero elements. Each

element of the sparse matrix in standard CSR representation requires 8 × nnz + 4 × (N + 1)

bytes of storage. Including the storage for the input and output dense vectors, the total data

footprint for SpMV is 8 × nnz + 12 × N + 4 bytes. The total floating-point operation count

is 2 × nnz, i.e., one multiply-add operation for each non-zero element in the sparse matrix.

The input vector and sparse matrix reside in GPU global memory before execution of the

SpMV kernel, and the resulting vector is stored in global memory after execution. Thus,

a minimum volume of 8 × nnz + 12 × N + 4 bytes of data must be moved between global

memory and GPU registers across the memory. Dividing this data volume by the peak

global memory bandwidth BWGM of the GPU (e.g., 750 Gbytes/sec. for an NVIDIA Pascal

P100 GPU) gives the minimum time for the global memory data transfers, and the roofline

upper bound performance of 2×nnz×BWGM
8×nnz+12×N+4 . Similarly, for SpMM, the total data footprint is

8×nnz+8×K×N +4×N +4 bytes and the total floating-point operation count is 2×K×nnz,

giving a roofline performance upper-bound of 2×K×nnz×BWGM
8×nnz+8×K×N+4×N+4 , where K is the number of

vectors (the width of dense matrices).

Fig. 4.1 displays achieved SpMV and SpMM performance in GFLOPs by NVIDIA’s

cuSPARSE library on a Pascal GP100 GPU, for the entire set of 2720 sparse matrices of the

SuiteSparse [3, 35] collection (formerly known as the University of Florida Sparse Matrix

collection). In these charts, data for the sparse matrices is plotted by sorting the matrices

along the X-axis in increasing order of the number of non-zeros (nnz), with one point in

the scatter-plot for each matrix. In Fig. 4.1(a), for each sparse matrix, a blue dot represents

the achieved performance in GFLOPs, and a corresponding red dot placed vertically above
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Figure 4.1: cuSPARSE SpMV/SpMM performance and upper-bound: NVIDIA Pascal
P100 GPU

it marks the roofline performance upper-bound for that matrix. The performance upper-

bound is around 170 GFLOPs (does not vary too much across matrices). cuSPARSE SpMV

performance approaches the roofline bound for around 670 matrices.
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Fig. 4.1(b) displays achieved performance and roofline upper-bounds for the same ma-

trices with cuSPARSE SpMM. The achieved absolute performance can be seen to be much

higher than SpMV, but the gap between actually achieved performance and the roofline

upper-bound is also much higher. Fig. 4.1(c/d) presents the same data as in Fig. 4.1(a/b),

respectively, but expresses achieved performance as a fraction of the roofline upper-bound

(efficiency). It is clear that cuSPARSE SpMM achieves a significantly lower fraction of the

roofline bound than SpMV.

Pseudocodes for sequential SpMV and SpMM are shown in Alg. 7 and Alg. 9, re-

spectively. The sparse matrix S is stored in the standard CSR (Compressed Sparse Row)

format. The non-zero elements are compacted and stored in S.values[:], with all non-zeros

in a row being placed contiguously. S.rowptr[i] points to the first non-zero element from

row i in S.values[:]. S.colidx[i] holds the column index of the corresponding non-zero lo-

cated in S.values[i]. Fig. 4.2(b) shows an example of a sparse matrix stored in the CSR

format. The Doubly Compressed Sparse Row (DCSR) format [19] further compresses

CSR by only storing non-empty rows. As seen in Fig. 4.2(c), indices of non-empty rows

are managed in S.rowidx[:] and S.rowptr[i] points to the first non-zero elements from row

S.rowidx[i].

SpMV (Alg. 7) iterates over the rows of S , forming the sparse dot-product of the ith row

of S with the input dense vector D to produce the ith element of the output dense vector O.

SpMM (Alg. 9) iterates over the rows of S , forming the sparse dot-product of the ith

row of S with the kth dense vector, D[][k], to produce the ith element of the kth output

dense vector, O[i][k].

Aktulga et al. [4] describe an SpMM scheme based on the compressed sparse blocks

(CSB) format, optimized for both transposed and non-transposed SpMM (O = S D and
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O = S T D). The elements of the sparse matrix are partitioned into blocks of size β × β.

Each block is represented in coordinate format (COO). For non-transposed SpMM (O =

S D), threads process row blocks of size ((num threads × β) × N). For transposed SpMM

(O = S T D), threads process column blocks of size (N × (num threads × β)).

Anzt et al. [7] develop an SpMM scheme optimized for GPUs, based on the SELL-P

format. The SELL-P format is built by partitioning rows of the sparse matrix into blocks,

and then each row block is converted into ELLPACK format, with the rows being padded

so that the row length of each block is a multiple of the number of threads. The threads are

organized into 3D blocks, where the x-dimension maps to a row within a SELL-P block,

the y-dimension maps to columns, and the z-dimension maps to multiple vectors. Since
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multiple threads are assigned to process the elements of the same row, reduction operations

are required and performed in shared memory.

FastSpMM [101, 133] uses ELLPACK-R [129] to enhance performance by storing the

sparse matrix in a regular data structure. However, this strategy may suffer when processing

very irregular sparse matrices. cuSPARSE [2] from NVIDIA also supports SpMM. It offers

two modes: i) T: Transposed and ii) NT: Non transposed. In BidMach [26], SpMM is

implemented as one of the many kernels and internally uses the cuSPARSE format.

Algorithm 7: SpMV: Sparse Matrix-Vector Multiplication.
input : CSR S[M][N], float D[N]
output: float O[M]

1 for i = 0 to S.rows-1 do
2 for j = S.rowptr[i] to S.rowptr[i+1]-1 do
3 O[i] += S.values[j] * D[S.colidx[j]]
4 end
5 end

Algorithm 8: SpMM: Sparse Matrix Multi-Vector Multiplication.
input : CSR S[M][N], float D[N][K]
output: float O[M][K]

1 for i = 0 to S.rows-1 do
2 for j = S.rowptr[i] to S.rowptr[i+1]-1 do
3 for k = 0 to K-1 do
4 O[i][k] += S.values[j] * D[S.colidx[j]][k]
5 end
6 end
7 end

93



4.3 RS-SPMM

In this section, we present the proposed GPU SpMM algorithm, labeled RS-SpMM for

Row-Segmented SpMM. The name derives from the fact that the sparse matrix is partitioned

into two parts, one holding clustered non-zero row-segments, enabling higher data reuse in

the GPU and thus lower data movement from global memory than previously developed

SpMM approaches.
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Figure 4.3: Splitting sparse matrix into heavily clustered row-segments and remainder

Fig. 4.3 illustrates the splitting of a sparse matrix into two matrices, one holding non-

zeros in heavily clustered row-segments, and the other holding the remaining non-zeros

that are randomly scattered over the column-index space in each row. The rationale for

this splitting is elaborated below, and is based on the observation that large sparse matrices

found in practice generally do not exhibit a fully random distribution of their non-zeros in

the row/column space. A sizable fraction of non-zeros tend to be grouped in clusters in the

row/column index space.

In SpMM (also known as SpMDM: Sparse Matrix Dense-Matrix product), a sparse

matrix is multiplied with a dense matrix to produce a dense matrix. SpMV can be seen as a
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special case of SpMM, where the width of the dense input matrix is one. In the remainder

of this section, we refer to the input sparse matrix as S (M × N), the input dense matrix as

D (N × K), and the output dense matrix as O (M × K).

When compared to SpMV, SpMM has the following properties: i) unlike SpMV, the

sparse matrix elements have a reuse factor of K; the reuse of input/output dense matrix

elements is similar to the SpMV; ii) unlike SpMV, it is possible to achieve coalesced access

of the dense input matrix (due to width K); iii) similarly, it is possible to achieve coalesced

access on the output.

Vertical Streaming(a) Horizontal Streaming(b)
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X X X

X     X X
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Input Dense
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Output Matrix(O)

Input Dense
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Figure 4.4: Vertical and horizontal streaming

Here, we discuss two options for SpMM: vertical streaming and horizontal streaming

(Fig. 4.4). As with dense matrix multiplication, tiling is also crucial to optimizing

performance of SpMM. In general, tiling of all of the three loops {i, j, k} is feasible in Alg. 9.
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However, the nature of reuse for the three arrays {D, S ,O} in SpMM is along distinct loops:

the i loop for D, the j loop for O, and the k loop for S . Since the data footprint of an

array is invariant with respect to iterations of the “reuse” loop index, it means that one of

the three arrays will have an invariant data footprint and therefore will achieve complete

reuse as the innermost tile is changed in a 3D tiled execution. This maximal reuse is

independent of the chosen tile size; therefore, it is best to minimize this tile size, thereby

enabling maximization of the other two tile sizes to achieve as much reuse as possible for

the other two arrays. This observation leads to what is referred to as streamed execution

along that innermost tile dimension, which is equivalent to performing only 2D tiling over

two out of the three loops in Alg. 9. Of the three arrays in SpMM, S has a reuse factor

of K, while D and O have reuse factors corresponding to the average number of non-zeros

in S along a column and row, respectively. Typically, K is much larger than the average

number of non-zeros in a row/column. Further, achieving reuse along k for each element in

S is much easier, since the dense matrix elements in D and O accessed for such reuse are

contiguously located in global memory. Therefore, it is best to use i or j as the streaming

direction for SpMM. Streaming along i is referred to as vertical streaming and streaming

along j is called horizontal streaming.

For vertical streaming (Fig. 4.4(a)), the input sparse matrix (S) is partitioned into col-

umn panels. Each column panel is processed by a thread block. A thread block collectively

brings the D elements corresponding to the column panel into shared-memory. Different

warps in a thread block process different rows within the column panel. The threads of a

warp are mapped across “K”, that is, each thread is responsible for computing the partial

result of a single output element for that column panel. All threads in a warp compute the
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product of the same non-zero element of the sparse matrix with a distinct input matrix ele-

ment, and then they move to the next sparse matrix element in the row. Threads accumulate

partial results in thread local registers, and at the end of processing of each row-segment

in a column panel, the partial contribution is moved from registers to global memory cor-

responding to the output dense matrix using atomic operations. Even though this scheme

achieves coalesced access on input and output (with sufficiently large K), the downside is

that it requires atomic operations for accumulating partial results to global memory. For

the remainder of this section, we refer to this scheme as the vertical scheme.

In horizontal streaming (Fig. 4.4(b)), the input sparse matrix (S) is partitioned into

row panels. Each row panel is processed by a thread block. Threads cyclically processes

elements along the horizontal dimension of S. Each row is processed by a warp; and dif-

ferent threads in the warp are distributed across “K”. Each thread accumulates the partial

results in thread’s local registers, and at the end of each row the threads move the partial

contribution from registers to global memory corresponding to the output dense matrix us-

ing atomic operations. For the remainder of this section, this scheme is referred to as the

horizontal scheme.

In both vertical and horizontal SPMM schemes, the threads in a warp are spread across

K. This helps in i) avoiding intra-warp communication which would otherwise be required

for reduction of partial products across the threads in the same warp, and ii) not requiring

shared memory for holding the intermediate results. If the threads in a warp are distributed

across a row of the sparse matrix, the amount of work for different threads can vary widely,

leading to intra-warp load imbalance. The downside of distributing the threads in a warp

across the columns of the input matrix is that, if the number of columns of the input matrix

(K) is not a multiple of 32, the last column slice will not be load balanced. However, in
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practice, the last scheme works better, as the load imbalance across the non-zero elements

in a row-segment of a column partition is much worse than the load imbalance across the

rows of the input dense matrix.

The vertical scheme is not beneficial if the average number of elements in a row of a

column panel is low. Note that in the vertical scheme, at the end of processing each row in

the column panel, there is an expensive atomic update to global memory. If the number of

elements per row-segment is small, the relative overhead of the atomic operations is more

prominent. However, if the average number of elements in a row-segment in a column

panel is high, then the vertical scheme is beneficial as it gets full reuse of elements in D.

The disadvantage of the horizontal scheme is that there is no reuse of elements in D (except

for possibly from cache).

This motivates a dual scheme where the rows with the number of non-zero elements

in a column panel larger than a threshold are processed using vertical streaming and the

rest of the rows are processed using horizontal streaming. In the remainder of the section,

rows whose non-zero count within a column panel is greater than a parametric threshold

are called heavy rows and the others are called light rows.

4.3.1 Data Structure

We use a CSR representation for the light rows and a DCSR representation for the

heavy rows. All of the heavy row-segments in each column panel are represented by a

DCSR structure. All of the light rows in the entire sparse matrix S are represented by a

CSR matrix. Fig. 4.5 illustrates the hybrid data representation. For the illustration, the

threshold for a row to be classified as heavy is two; column partition width is four. Blocks

with yellow background are the heavy rows in column partition zero. Similarly, blocks
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with green background are the heavy rows in column partition 1. The blocks with white

background represent the light rows. Details of the representation of the heavy and light

blocks are shown in Figs. 4.5 (b-3,b-4) and Fig. 4.5 (c-2), respectively.

The number of columns in S that are processed by a thread block (W) is chosen such that

W×k×sizeo f (data type)×no o f active tb per sm is equal to the shared-memory capacity.

In our experiments, “k” (k columns of input and output are processed by a thread block) is

chosen as 64 and no of active tb per sm is chosen as two. “k” should be a multiple of 32

for coalesced access (to avoid thread divergence). Choosing no of active tb per sm as two

helps in achieving maximum occupancy.

4.3.2 Algorithm

The pseudocode for the RS-SpMM scheme for heavy rows (vertical) is shown in Listing

4.1. Columns of D of size K are divided into slices of size k. Each column panel is

processed by K/k thread blocks. All threads in a thread block collectively bring a slice

of the input dense matrix corresponding to the column panel (D) to shared-memory (lines

5-7). The columns of D that are brought to shared-memory depend on the slice ID along

K.

Each warp then processes the rows in the column panel in a cyclical fashion (lines 9-

20). Each thread initializes the partial result (which will be held in a thread local register)

to zero (line 10). All threads in a warp process the same non-zero element in the sparse

matrix. Reading each sparse element one by one will result in uncoalesed access. In

order to avoid this, the threads read 32 non-zero elements (lines 15-18) and then use warp

shuffle to exchange elements (line 19). In the first iteration, all threads in a warp need

index matrix[start] and value matrix[start], and these values are stored in the first lane (tid
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% WARP SIZE == 0). Hence, value and index held by the first lane are broadcast to

other threads. At the second iteration, all threads in a warp need index matrix[start+1] and

value matrix[start+1], which are stored in the second lane. Hence, values of the second

lane are broadcast.

Each thread then computes the partial product in the thread local register (line 19). Fi-

nally, the accumulated partial results are updated to global memory using atomic operations

(lines 21-23). Atomic operations are required, as different thread blocks can write to the

same location.

The RS-SpMM algorithm for light rows (horizontal scheme) is shown in Listing 4.2.

Each row of the light matrix is processed by a warp. In order to minimize inter-warp

load imbalance, we chose the smallest thread block size (64 on Pascal) that maintains full

occupancy. For example, on an NVIDIA Pascal GPU, since one block has only two warps,

rows 0 and 1 are processed by the first block, row 2 and 3 are processed by the second

block, and so on. Each thread initially computes the row and slice along K that it should

process. Each thread initializes the partial result (held in a thread’s local register) to zero

(line 6). Similar to the SpMM heavy scheme, the column indices and values are collectively

read by all threads in the warp (lines 10, 11) and broadcast to all threads in a warp (line 13).

The partial products are then computed and accumulated in the thread local register (line

13). Finally, the partial result is accumulated to global memory using atomic operations

(line 15). Atomic operations are still needed since the thread blocks for the heavy scheme

and light scheme are launched concurrently.

Listing 4.1: SPMM pseudocode (heavy row segments)
1. row_offset = tb_idx * IN_TILE_ROW_SIZE;

2. slice_offset = tb_idy * IN_TILE_SLICE_SIZE;

3. warp_id = tid/WARP_SIZE;

4. lane_id = tid%WARP_SIZE;

5. for i=warp_id to IN_TILE_ROW_SIZE step tb.size()/WARP_SIZE do

6. sm_input_value[i][lane_id] =

input_value[row_offset+i][slice_offset+lane_id];
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7. end

8. __syncthreads;

9. for i=seg_start_num[tb_idx] to seg_start_num[tb_idx+1]-1 step

tb.size()/WARP_SIZE do

10. val = 0;

11. start = start_seg_position[i];

12. end = start_seg_position[i+1];

13. for j=start to end-1 do

14. mod = (j - start)%WARP_SIZE

15. if mod == 0 then

16. index_buf = seg_index[j + lane_id];

17. value_buf = seg_value[j + lane_id];

18. end

19. val += sm_input_value[__shfl(index_buf , mod)][lane_id]

* __shfl(value_buf , mod);

20. end

21. row_idx = seg_row_position[i];

22. //directly accumulate results in global memory

23. atomicAdd(&dest_value[row_idx][slice_offset+lane_id], val);

24. end

Listing 4.2: SPMM pseudocode (light rows)
1. row_offset = (tb_idx*tb.size() + tid) / WARP_SIZE;

2. slice_offset = tb_idy * IN_TILE_COL_SIZE;

3. lane_id = tid%WARP_SIZE;

4. start = csr_row_pointer[row_offset];

5. end = csr_row_pointer[row_offset+1];

6. val = 0;

7. for i=start to end-1 do

8. mod = (i - start)%WARP_SIZE

9. if mod == 0 then

10. index_buf = csr_column_idx[i + lane_id];

11. value_buf = csr_column_val[i + lane_id];

12. end

13. val += input_value[__shfl(index_buf , mod)][lane_id]

* __shfl(value_buf , mod);

14. end

//directly accumulate results in global memory

15. atomicAdd(&dest_value[row_offset][slice_offset+lane_id], val);

Thread coarsening is used for both the vertical and horizontal schemes to improve per-

formance. Thread coarsening helps to reduce the global memory latency effects and helps

in reducing the required number of warp-shuffle operations. Thread coarsening is done

along “K”. If the thread coarsening factor is one, each thread processes only one element

in a slice. If the thread coarsening factor is two, then each thread processes two elements

in a slice. In the remainder of this chapter, we refer to the thread coarsening factor for

the vertical and horizontal schemes as CFV and CFH, respectively. Listing 4.3 shows

pseudocode corresponding to thread coarsening factor CFV of 2. As seen in lines 6 and
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Figure 4.5: SpMM overview
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7 in Listing 4.3, since there is no dependence between two global memory load instruc-

tions, they can be loaded concurrently, which helps in tolerating memory access latency.

The number of warp-shuffle operations (lines 20, 21) processed by a thread block remains

the same and thread coarsening reduces the number of thread block launched. Hence, the

number of warp-shufle operations is reduced by half.

4.4 Modeling impact of slice-size choice

Listing 4.3: SpMM pseudocode (heavy rows), CFV = 2
1. row_offset = tb_idx * IN_TILE_ROW_SIZE;

2. slice_offset = tb_idy * IN_TILE_SLICE_SIZE * 2;

3. warp_id = tid/WARP_SIZE;

4. lane_id = tid%WARP_SIZE;

5. for i=warp_id to IN_TILE_ROW_SIZE step tb.size()/WARP_SIZE do

6. sm_input_value[i][lane_id] =

input_value[row_offset+i][slice_offset+lane_id];

7. sm_input_value[i][lane_id+WARP_SIZE] =

input_value[row_offset+i][slice_offset+lane_id+WARP_SIZE];

7. end

8. __syncthreads;

9. for i=seg_start_num[tb_idx] to seg_start_num[tb_idx+1]-1 step

tb.size()/WARP_SIZE do

10. val1 = 0;

11. val2 = 0;

12. start = start_seg_position[i];

13. end = start_seg_position[i+1];

14. for j=start to end-1 do

15. mod = (j - start)%WARP_SIZE

16. if mod == 0 then

17. index_buf = seg_index[j + lane_id];

18. value_buf = seg_value[j + lane_id];

19. end

20. shfl_index = __shfl(index_buf , mod);

21. shfl_value = __shfl(value_buf , mod);

22. val1 += sm_input_value[shfl_index][lane_id] * shfl_value;

23. val2 += sm_input_value[shfl_index][lane_id+WARP_SIZE] *

shfl_value;

24. end

25. row_idx = seg_row_position[i];

26. //directly accumulate results in global memory

27. atomicAdd(&dest_value[row_idx][slice_offset+lane_id], val);

28. atomicAdd(&dest_value[row_idx][slice_offset+lane_id+WARP_SIZE],

val2);

29. end

In this section, we describe how we determine the threshold for classifying a row as

light or heavy and choosing CFV and CFH. These factors were chosen based on a subset

of matrices (training set) from SparseSuite [3]. First, we eliminated all matrices having
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less than 100,000 non-zeros. Then we sorted all of the matrices in increasing order of the

number of non-zeros, including every 20th matrix in the training set. In total, 43 matrices

(5%) were selected.

Figure 4.6 presents an overview of the approach.
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Figure 4.6: Modeling overview

4.4.1 The coarsening factor of the horizontal scheme (CFH)

For the horizontal scheme, the coarsening factor along K is determined empirically

based on the training set. We ran each training matrix with various CFH and CFV and
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thresholds to identify the best performing configuration per matrix, from which we chose

the most frequent CFH as the final CFH (c l). We observed that using a coarsening factor of

one (no coarsening) achieves the best performance for most matrices for double precision.

For single precision, we observed that a coarsening factor of two achieves the best perfor-

mance in most cases. Based on NVPROF performance metrics, the difference between the

best coarsening factor for single vs. double precision results from the relative cost of the

warp shuffle function.

4.4.2 Threshold for classifying rows as light or heavy

The threshold used to classify rows as light or heavy is computed using a decision tree.

To train the decision tree, we chose clustering information and number of accumulations

as the input features and the best threshold as the target. In order to model clustering, for

each matrix, we calculated the distance between every two adjacent elements and assigned

each distance to the corresponding bin. The bins are organized as powers of 4 (1, 1-3, 4-15,

16-63, . . ., 262,144-1,048,576).

The best threshold is found in two phases. In the first phase, we fix the CFHand vary

CFV (1, 2, 4) and the threshold (1, 2, 3, . . ., 16). We evaluate the training set over these

configurations to determine the best parameters for each matrix. The most frequent vertical

coarsening factor among the best parameters is then identified. In the second phase, CFV

and CFH are fixed on the base of the previous experiments and the corresponding best

threshold per matrix is identified.

The decision tree (Weka 3.8 “J48 -C 0.25 -M 2” without any filtering) is then trained

with the bin counts (distance between adjacent elements and number of accumulations as
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input feature and the best threshold computed in phase 2 as the output feature. In order to

determine the threshold of the test set, we used this trained decision tree.

4.4.3 Coarsening factor of the vertical scheme (CFV)

Increasing the coarsening factor along K for the vertical scheme helps to hide memory

latency and reduce shuffle overhead. However, increasing the coarsening factor increases

the amount of shared memory required for storing the dense matrix elements, and this de-

creases the column panel size. When the size of the column panel is decreased, the number

of rows which are classified as heavy rows will decrease, and this will adversely affect the

performance. In order to determine the coarsening factor, for the vertical scheme, we es-

timate the execution time for each coarsening factor and then select the coarsening factor

which minimizes the execution time. The execution time is estimated as:

exec time = C1,v × accdense + nnzd × C2,v + exec time sparse,

where C,v is the cost when CFV is v, and accdense is the number of accumulations in the

dense part. Since all of the elements are processed by the heavy scheme, the execution time

of light scheme (exec time sparse) is zero. C1,v and C2,v are constants which depend on v.

In order to determine C1,v and C2,v, we use two synthetic matrices i) 4K X 4K fully

dense matrix and ii) 4K X 4K sparse matrix. Both matrices will be processed only by the

vertical scheme. The sparse matrix is designed such that for every row in a column panel

of size 256, there are threshold numbers of non-zero elements. The exact column ID is

chosen at random.
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Assuming that Num Col Panel = 4K / 256, the execution time for the two synthetic

matrices for a coarsening factor of one, can be represented as

T1,1 =C1,1 × 4K × Num Col Panel + C2,1 × 4K × 4K

T2,1 =C1,1 × 4K × Num Col Panel+

C2,1 × 4K × Num Col Panel × T HRES HOLD

The execution time of T1,1 and T2,1 is determined by actually running these synthetic

matrices using the vertical scheme (with the coarsening factor as one) and the above equa-

tions are solved to find C1,1 and C2,1. Similarly, the rest of the C∗,∗ values are computed.

In order to find CFV for a given matrix, the execution time is estimated by applying

the above equations using the C∗,∗ values. The coarsening factor is then selected as the one

which yields the lowest predicted execution time.

4.4.4 Effectiveness of Model

Fig. 4.7 presents the performance of RS-SpMM for all SparseSuite matrices for single

precision with K = 128. We present the performance of RS-SpMM without any modeling,

with the best parameters (separately selected for each individual case), and with our mod-

eling. As seen in the figure, our modeling matches or closely follows the performance of

the best parameter case.

4.5 Experimental Evaluation

This section details the experimental evaluation of the RS-SpMM scheme. The ex-

periments were performed on an NVIDIA Pascal P100 GPU. In all experiments, ECC was

turned off and we used the NVCC compiler optimization flag -O3 with NVCC 8.0 and GCC
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Figure 4.7: Modeling effect (WIDTH=128, single precision)

4.9.2. For all of the schemes, we only include the kernel execution time; preprocessing time

and data transfer time from CPU to GPU are not included (we document preprocessing time

separately). All tests were run five times and average numbers are reported.

4.5.1 Performance of RS-SPMM

Fig. 4.8 (a) shows the measured performance of RS-SpMM for single-precision com-

putation, with four values of K (the width of the dense matrices O and D): 8, 32, 128, 512.

Use-cases for SpMM vary depending on application. For applications in computational

science, such as LOBPCG, widths in the tens, and below 100 are typical. For machine

learning applications, the width K often corresponds to the number of latent features in

models, and values of K around 100 are common, with interest in going higher to several

hundreds or thousands. Hence, we evaluate RS-SpMM using four values in the range of

8-512. The performance of RS-SpMM improves as we increase dense matrix width from

8 to 32 and 128, tending to saturate at that point – the performance curves for K = 128

and K = 512 are nearly indistinguishable. For large matrices, performance is around 200
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GFLOPs for K = 8, approximately doubling to around 400 GFLOPs for K = 32, and further

increasing to almost 800 GFLOPs for several matrices for K = 128/512.

Figs. 4.8 (b-e) show relative performance improvement over NVIDIA’s cuSPARSE li-

brary implementation of SpMM. cuSPARSE provides two variants: O = S D (denoted

cuSPARSE(NT)) and O = S DT (denoted cusPARSE(T)). As can be seen below, the per-

formance of cuSPARSE for O = S DT (transposed product) is often much higher than the

performance for O = S D (non-transposed product). RS-SpMM also implements a trans-

posed product, discussed later in Sec. 4.6. Since users have a choice in data layout, even

if they only need the non-transposed product, because of the higher performance achieved

by cuSPARSE SpMM for the transposed product, users have the option of changing the

layout of their dense input matrix to the transposed form. Therefore, we present a compari-

son of non-transposed RS-SpMM with both the transposed and non-transposed cuSPARSE

variants.

The speedup of RS-SPMM(NT) vs. cuSPARSE(NT and T) is shown for different values

of K; since cuSPARSE(NT) tends to achieve much lower performance than cuSPARSE(T),

higher speedup is achieved over it. RS-SpMM speedup is generally in the range between

1 and 2 over cuSPARSE(T), and around 4x over cuSPARSE(NT). The speedup over cuS-

PARSE tends to be higher for larger K.

Figs. 4.9 (a-e) present the performance of RS-SpMM for double-precision. Overall per-

formance in GFLOPs for double-precision is slightly lower than that for single-precision,

but well over 0.5x, compared to single-precision. RS-SpMM (NT) is consistently faster

than cuSPARSE(T and NT). In contrast to single precision, the cuSPARSE(T) version is

not consistently faster – quite often, the speedup over cuSPARSE(T) is higher than the

speedup over cuSPARSE(NT). For sparse matrices exhibiting high variance in row lengths,
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Figure 4.8: Performance comparison: RS-SpMM (NT) vs CuSPARSE (NT and T); single
precision

the performance of cuSPARSE(NT) and cuSPARSE(T) degrades considerably because of

load imbalances. On the other hand, the performance of RS-SpMM is less degraded, since
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rows having a large nonzeros are normally classified as heavy rows and are processed by

multiple thread blocks. Hence, there is a fluctuation of achieved speedup with different

sparse matrices in Figs. 4.8 and 4.9. We note that in Figs. 4.8 and 4.9, only the kernel

execution time is reported; the pre-processing overhead to create the needed representation

for RS-SpMM is discussed later.

In Fig. 4.10, we present a performance profile comparing RS-SpMM with cuSPARSE

SpMM (both (T) and (NT) variants). In each row, different charts are given for varying

K (8, 32, 128, and 512). For each matrix, the best performing version among RS-SpMM

and cuSPARSE SpMM variants is used as a normalizer to compute performance loss of the

other instances. For each SpMM implementation, the cumulative curve shows the fraction

of cases for which the slowdown with respect to the best performer is less than the X-axis

value. Thus, a point (x,y) implies that a fraction y of all matrices achieved a slowdown

less than x relative to the fastest implementation. Better performing variants have curves

that rise rapidly to hit y = 1.0, while relatively poor performance results in a shallow curve

that may not get to y = 1.0 even for the largest slowdown value in the range of the plot.

The top (red) curve shows that RS-SpMM quite significantly outperforms the cuSPARSE

variants. We note that for K = 8 and K = 32, we also compared RS-SpMM with CUSP

[32] SpMM. The NVIDIA CUSP library is an open-source library for linear algebra and

graph computations on GPUs. CUSP implements SpMM, but we find its results are only

correct for dense matrix widths of 2,4,8,16, and 32 and incorrect for other widths; even for

the few correct cases, CUSP-SpMM performance is consistently lower than cuSPARSE(T)

performance, as seen in Figs. 4.10 (a,b,e,f).

The first two rows of charts document performance over all SuiteSparse matrices with

more than 100K non-zeros for single and double precisions. The third and fourth rows
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Figure 4.9: Performance comparison: RS-SpMM (NT) vs CuSPARSE (NT and T); double
precision

show performance for an iterative execution scenario that is common with applications like

block Krylov solvers. Here, the output dense matrix O from a previous iteration is modified
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by scaling or other simple point-wise operations and then becomes the input matrix D

for the following iteration. With the cuSPARSE(T) form, an explicit transpose will be

required. The time for cuBLAS [97] dense matrix transpose is added to cuSPARSE(T) for

this scenario. Experimental results are only presented for square matrices from SuiteSparse,

since this is only applicable to square matrices. Finally, the last row shows the profile for

the S T D computation and the case where both S D and S T D are required. In this case,

performance of RS-SpMM is considerably higher than that of cuSPARSE.

The MAGMA library [7] has high-performance implementations for dense and sparse

linear algebra functions for GPUs. We attempted a performance comparison of RS-SpMM

with MAGMA, in addition to cuSPARSE. However, we were unable to successfully process

all of the matrices from SuiteSparse with MAGMA; several matrices resulted in MAGMA

error messages. However, we were able to run a significant subset of matrices successfully

with MAGMA’s SpMM. In Fig. 4.11, we present a profile comparison on just the successful

subset with MAGMA, for single-precision and K = 128. We can observe in this profile that

cuSPARSE(T) is faster than MAGMA and RS-SpMM is faster than cuSPARSE(T).

bhSPARSE [78] and Merge-based CSR [90] provide very high-performance GPU im-

plementations of SpMV, but do not provide an SpMM implementation. SpMM can be

implemented as a “loop over SpMV”, with an outer loop over the width of the dense ma-

trix. Fig. 4.12 (a-d) show measured performance using such a loop-over-SpMV approach,

with bhSPARSE, Merge-based CSR and cuSPARSE-SpMV for single-precision compu-

tation, with four values of K: 8, 32, 128, and 512. For K values beyond 8, RS-SpMM is
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Figure 4.10: Performance Profiles. (a)-(h) all matrices (ALL) for single precision (SP) and
double precision (DP) with varying K, (i)-(p) symmetric (SYM) matrices for SP and DP
with varying K, (q)-(t) O = S T D & O = S D for SP and DP

114



1.0 1.5 2.0 2.5 3.0 3.5 4.0

Performance Relative to the Best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 P

ro
bl

em
s

RS-SpMM
cuSPARSE(NT)
cuSPARSE(T)
MAGMA

Figure 4.11: Performance of RS-SpMM compared with MAGMA and cuSPARSE; K=128,
single precision

significantly faster than loop-over-SpMV (bhSPARSE, Merge-based CSR and CuSPARSE-

SpMV) because of significantly higher data reuse achieved by SpMM primitives (the max-

imum value of X-axis in Fig. 4.12 is 16). Similar trends can be seen for double precision,

as shown in Figs. 4.12 (e-h).

4.5.2 Pre-processing overhead

Constructing the data structures required for the RS-SPMM scheme incurs an additional

overhead. Fig. 4.13 shows the preprocessing overhead normalized to one iteration of RS-

SpMM. Note that typical applications involving SpMM can execute a large number of

iterations such as [12, 104]. For example, with sparse convolutional neural networks in

inference mode, even though the input dense matrix changes (holding the new data to be
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(b) Single, K = 32
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(c) Single, K = 128
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(d) Single, K = 512
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(e) Double, K = 8
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(f) Double, K = 32
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(g) Double, K = 128
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Figure 4.12: Performance profiles: RS-SpMM and Loop-over-SpMV; single and double;
K=8,32,128,512

processed), the structure of the sparse coefficient matrix remains unchanged. Hence, the

preprocessing overhead is relatively insignificant.

Pre-processing is carried out on the GPU – converting from standard CSR structure

(column indices within each row assumed sorted) to the structure which splits out heavy

row-segments (in DCSR) and the remainder (standard CSR format). For threshold T,

heavy row-segments are extracted by scanning over rows and checking if col ptr[i] and

col ptr[i+T] belong to the same partition in the same row; if so, the elements between index

i to i+T get included in a heavy row. Fig. 4.13 shows our pre-processing cost normalized

to one SpMM iteration with K = 128.

116



0

2

4

6

n
o

rm
al

iz
ed

 p
re

-
p

ro
ce

ss
in

g 
o

ve
rh

ea
d

nnz

single precision double precision

Figure 4.13: Preprocessing overhead

4.6 SpMM for O = S T D

Some applications require both an original and a transposed sparse matrix to be multi-

plied by the dense matrix (O = S × D and O = S T × D) [4, 7]. Explicitly transposing the

sparse matrix just for SpMM can be expensive. The RS-SpMM scheme has been adapted

to perform O = S T × D without changing the data structure.

Pseudocodes for heavy row segments and light row segments are shown in Listings

4.4 and 4.5, respectively. The heavy rows are represented in DCSR format. In order

to perform O = S T × D, we use shared memory corresponding to the columns of the

column panel to store the output. The shared memory is initialized to zero (lines 5-7 in

Listing 4.4). Each row in a column panel is processed by a warp. The input dense matrix

and sparse matrix elements are read from the global memory, and the partial products are

computed (lines 17-22). Each such partial product is accumulated in shared memory using

atomic operations (line 23). At the end of each column panel, accumulated results in shared

memory are updated to global memory using atomic operations (line 28). The light rows
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are represented in CSR format. When O = S T ×D, we iterate over the CSR representation.

Each thread loads the corresponding element of the input matrix to a thread local register

(line 6 in Listing 4.5) and computes partial products (lines 9-14). Each partial product is

updated to global memory using atomic operations (line 15).

Listing 4.4: SpMMT pseudocode (heavy row segments)
1. row_offset = tb_idx * IN_TILE_ROW_SIZE;

2. slice_offset = tb_idy * IN_TILE_SLICE_SIZE;

3. warp_id = tid/WARP_SIZE;

4. lane_id = tid%WARP_SIZE;

5. for i=warp_id to IN_TILE_ROW_SIZE step tb.size()/WARP_SIZE do

6. sm_output_value[i][lane_id] = 0;

7. end

8. __syncthreads;

9. for i=seg_start_num[tb_idx] to seg_start_num[tb_idx+1]-1 step

tb.size()/WARP_SIZE do

10. val = 0;

11. start = start_seg_position[i];

12. end = start_seg_position[i+1];

13. column_idx = seg_row_position[i];

14. column_value = input_value[column_idx][lane_id];

15. for j=start to end-1 do

16. mod = (j - start)%WARP_SIZE

17. if mod == 0 then

18. index_buf = seg_index[j + lane_id];

19. value_buf = seg_value[j + lane_id];

20. end

21. row_offset = __shfl(index_buf , mod);

22. val = column_value * __shfl(value_buf , mod);

23. atomicAdd(&sm_output_value[row_offset][slice_offset+lane_id], val);

24. end

25. __syncthreads;

26. row_idx = seg_row_position[i];

27. for i=warp_id to IN_TILE_ROW_SIZE step tb.size()/WARP_SIZE do

28. atomicAdd(&output_value[row_offset+i][lane_id],

sm_out_value[i][lane_id]);

29. end

Listing 4.5: SpMMT pseudocode (light row segments)
1. column_offset = (tb_idx*tb.size() + tid) / WARP_SIZE;

2. slice_offset = tb_idy * IN_TILE_COL_SIZE;

3. lane_id = tid%WARP_SIZE;

4. start = csr_row_pointer[column_offset];

5. end = csr_row_pointer[column_offset+1];

6. column_value = input_value[column_offset][slice_offset+lane_id];

7. for i=start to end-1 do

8. mod = (i - start)%WARP_SIZE

9. if mod == 0 then

10. index_buf = csr_column_idx[i + lane_id];

11. value_buf = csr_column_val[i + lane_id];

12. end

13. row_offset = __shfl(index_buf , mod);

14. val = column_value * __shfl(value_buf , mod);

//directly accumulate results in global memory

15. atomicAdd(&dest_value[row_offset][slice_offset+lane_id], val);

16. end
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Figs. 4.14 and 4.15 compare RS-SpMM with CuSPARSE for O = S T D, for single

and double precision, respectively. Two scenarios are evaluated: i) O = S T D only, and ii)

both O1 = S T D and O2 = S D are required. The performance of RS-SPMM is significantly

higher than that of cuSPARSE for both scenarios, for both precisions.

When non-zeros are clustered, the performance of cuSPARSE can be higher than 200

GFLOPS. However, when non-zeros are scattered (which results in low cache utilization),

performance drops to 10 GFLOPS. On the other hand, the performance of RS-SpMM is

consistently higher than 80 GFLOPS when concurrency is not very low. Hence, the perfor-

mance of cuSPARSE is over 16x times slower than ours for more than 20% of matrices, as

shown in Figs. 4.10 (q) and (s).
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Figure 4.14: O = S T D performance (K = 128, single precision)
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Figure 4.15: O = S T D performance (K = 128, double precision)

4.7 Discussion

Our extensive evaluation of the Florida dataset shows that in most cases, we signifi-

cantly outperform cuSPARSE. However, the performance with RS-SpMM is still far below

the upper bound discussed in Sec. 4.1. In this section, we describe the SpMM bottle-

necks and possible improvements. NVIDIA’s documentation [140] states that the P100

GPU used in this chapter has 56 Streaming Multiprocessors (SMs) and uses a GPU Clock

of 1328 MHz. For each SM, there are 16 LD/ST units. That is, at most 16 LD/ST trans-

actions (64 bytes) can be processed for each clock on one SM. Therefore, bandwidth be-

tween LD/ST units for one SM cannot exceed 64 bytes × 1328 MHz = 84.99 Gbytes/sec.
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Since there are 56 SMs, the shared memory bandwidth is at most 84.99 × 56 = 4759.55

Gbytes/sec = 1189.89 Gwords/sec. For the vertical streaming scheme, one shared mem-

ory load must be associated with two floating point operations, as can be seen in line 19

in Listing 4.1. Therefore, the upper bound with RS-SpMM is 2 × 1189.89 = 2379.78

GFLOPs/sec. Across the full Florida dataset, we could achieve up to 1650 GFLOPs (for

TSOPF RS b2383 dataset), which is 69.3% of this upper bound. For the horizontal scheme,

to process the sparse non-clustered non-zeros, one LD/ST operation is associated with two

floating point operations, as seen in line 13 in Listing 4.2.

Consider a sparse matrix with M rows, N columns and assume that the width of the

input and output dense matrices are K. Assume that the horizontal scheme is used to

process SpMM. The minimum volume of data transfer passed through the LD/ST units can

be computed as follows. In this scheme, the output matrix O gets full reuse. Hence, the

minimum number of transactions (in words) for O is M × K. Each D element is multiplied

by all of the elements in the corresponding column of S. Assuming that each D element

gets an average reuse of R from registers, the minimum number of transactions (in words)

for D is nnz×K
R . Each S element has a K-way reuse. Assuming that the coarsening factor is

C, and each S access gets full reuse across a full warp (of 32 threads), the minimum number

of transactions for S is nnz×K
C×32 . Thus, the minimum number of LD/ST transactions for this

scheme is nnz×K
R + M × K + nnz×K

C×32 words. When M × R < nnz and R < C × 32, the dominant

term would be nnz×K
R .

This analysis suggests the following:

i) If a sparse matrix is also loaded from shared memory/cache/global memory, performance

can be at most 2379.776/2 = 1189.89 GFLOPs/sec since two load operations are involved

in two floating point operations. Thus, to achieve high-performance, warp shuffling (which
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does not go through LD/ST units) may be more beneficial for accessing the sparse matrix.

ii) When warp shuffling is used, thread coarsening along the K dimension is not very help-

ful, since it does not reduce the number of accesses of LD/ST units that much.

iii) Register reuse is a key to achieving better performance, and thread coarsening along the

M dimension can be beneficial, since it can reduce LD/ST transactions.
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Figure 4.16: RS-SpMM performance: impact of row-segment density

Fig. 4.16 presents the RS-SpMM performance data for the matrices ordered along the

X-axis by the fraction of the non-zeros in the heavy row-segments. Matrices on the left

side of the graph have higher non-zeros in the heavy row-segments and the matrices on

the right have lower non-zeros in heavy row-segments. A clear trend shows that matrices

with a larger fraction in the heavy part tend to perform better. This suggests that column

reordering schemes that increase row-segment density might be a promising direction to

take to further improve performance.
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4.8 Conclusion

In this chapter, we develop an efficient SpMM algorithm for GPUs by exploiting the

clustering in sparse matrices. Our approach tries to get good reuse of the elements from

the input vector, the output vector, and the sparse matrix, simultaneously. Our extensive

experimental evaluation section demonstrates the superior performance of our approach

when compared to other state-of-the-art SpMM frameworks.
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CHAPTER 5

Adaptive Sparse Tiling for Sparse Matrix Multiplication

5.1 Introduction

Tiling is a key technique for effective exploitation of data reuse and is used in all high-

performance implementations of dense linear algebra computations, convolutional neural

networks, stencil computations, etc. While tiling for such regular computations is well un-

derstood and is heavily utilized in high-performance implementations on multicore/many-

core CPUs and GPUs, the effective use of tiling for sparse matrix multiplication poses

challenges.

In order to motivate the need for data locality optimization via tiling for sparse-matrix

dense-matrix multiplication (SpMM),5 we present some experimental data on an Intel Xeon

Phi processor (KNL, Knights Landing) using the mkl scsrmm routine for SpMM in the

Intel MKL library. A number of banded matrices ({S | S [x][y] , 0 ⇐⇒ (0 ≤

x < #rows,max(0, y − b) ≤ y < min(#cols, y + b))}, where b is the half band-size) of

size 16K × 16K with different band-sizes were used as the sparse matrix argument for

the MKL SpMM routine. Fig. 5.1 presents the performance trend (GFLOPs) as the band-

size is varied. Performance improves up to a band-size of 1025 and drops beyond that.

5We use SpMM to denote the product of a sparse matrix with a dense matrix, to be distinguished from
sparse matrix-matrix multiplication (SpGEMM), where two sparse matrices are multiplied.
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Figure 5.1: OI and GFLOPs with respect to matrices having different bands

The figure also plots the measured operational intensity (OI), the ratio of floating-point

operations to the number of bytes of data moved to/from main memory. We can observe

that measured OI increases up to a band-size of 1025 and then drops for larger band sizes.

Thus, the performance drop is correlated with increased data movement per operation. As

we explain in greater detail in Sec. 5.3, this is in contrast to the potential maximum OI,

which increases with band-size.

With dense matrix-matrix multiplication, uniform tiling is the norm, where all tiles

(except boundary tiles) have the same number of operations and the same data footprint.

However, with SpMM, the number of non-zero elements will vary significantly across dif-

ferent uniform-sized tiles due to the very non-uniform distribution of non-zero elements

across the 2D index space of a sparse matrix. As we explain in detail later in the paper,

whether tiled execution can achieve higher performance than untiled execution for a 2D

region of a sparse matrix depends on the sparsity structure in that region. In this chapter,

we develop an Adaptive Sparse Tiling (ASpT) approach to tiling two variants of sparse

matrix multiplication: Sparse-dense Matrix Multiplication (SpMM) and Sampled Dense
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Dense Matrix Multiplication (SDDMM). A key idea is that the average number of non-

zeros per “active” row/column segment (i.e., at least one non-zero) within a 2D block plays

a significant role in determining whether tiled or untiled execution is preferable for a 2D

block. The sparse matrix is partitioned into panels of rows, with the active columns within

each row panel being either grouped into 2D tiles for tiled execution, or relegated to untiled

execution because its active column density is inadequate. In contrast to prior efforts that

have used customized data representations to improve the performance of sparse matrix

operations, we achieve the hybrid tiled/untiled execution by using the standard (unordered)

Compressed Sparse Row (CSR) representation of sparse matrices: the non-zero elements in

column segments that are to be processed in untiled mode are reordered to be contiguously

located at the end in the unordered CSR format.

We demonstrate the effectiveness of the proposed model-driven approach to hybrid-tiled

execution of sparse matrix computations by developing implementations for SpMM and

SDDMM kernels on GPUs and multicore/manycore processors (Intel Xeon, and Intel Xeon

Phi KNL). On all platforms, the significant performance improvement is achieved over

available state-of-the-art alternatives – Intel’s MKL and NVIDIA’s cuSPARSE libraries for

SpMM, and the MIT TACO compiler and BIDMach for SDDMM.

5.2 Background and Related Works

5.2.1 Standard Sparse Matrix Representation

The CSR representation is one of the most widely used data structures for representing

sparse matrices [119, 151]. As shown in Figs. 5.2 (b,c), the CSR structure is composed

of three arrays: row ptr, col idx, and values. The value of row ptr[i] contains the index

of the first element of row i. values[] holds the actual numerical values of the non-zero
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Figure 5.2: Various data representations for a sparse matrix

elements, and col idx[] holds the corresponding column indices. As shown in Figs. 5.2

(b,c), non-zeros within each row are placed contiguously in col idx[] and values[]. CSR

has two variants, ordered CSR and unordered CSR [62]. In ordered CSR, the column

indices within a row are sorted, whereas in unordered CSR the column indices may not be
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kept in sorted order. Fig. 5.2 (c) illustrates unordered CSR and Fig. 5.2 (b) represents the

corresponding ordered CSR version.

Double-Compressed Sparse Column (or Row) DCSC (DSCR) [20] is an alternate for-

mat, used for ultra-sparse matrices where many rows (columns) may be completely empty.

Fig. 5.2 (d) shows a DCSC representation, where a sparse matrix is partitioned into row

panels. Four arrays are maintained: col ptr[], col idx[], row idx[], and values[]. col idx[]

contains the column index and col ptr[] points to the first element of the corresponding col-

umn segment. row idx[] and values[] store the row indices and the actual non-zero values,

respectively. Fig. 5.2 (d) shows the DCSC representation.

Sparse matrices can also be represented using 2D tiles, as shown in Fig. 5.2 (e). Like

DCSC, the sparse matrix is partitioned into a set of row panels. Each row panel is further

divided into 2D tiles. tile row ptr[] is used to track the start point of each row within a

2D tile. The col idx[] and values[] hold the column indices and actual non-zero values,

respectively.
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Algorithm 9: Sequential SpMM (Sparse Matrix Matrix Multiplication)
input : CSR S[M][N], float D[N][K]
output: float O[M][K]

1 for i = 0 to S.num rows-1 do
2 for j = S.row ptr[i] to S.row ptr[i+1]-1 do
3 for k = 0 to K-1 do
4 O[i][k] += S.values[j] * D[S.col idx[j]][k];
5 end
6 end
7 end

Algorithm 10: Sequential SDDMM (Sampled Dense Dense Matrix Multiplication)
input : CSR S[M][N], float D1[N][K], float D2[M][K]
output: CSR O[M][N]

1 for i = 0 to S.num rows-1 do
2 for j = S.row ptr[i] to S.row ptr[i+1]-1 do
3 for k = 0 to K-1 do
4 O.values[j] += D2[i][K] * D1[S.col idx[j]][k];
5 end
6 O.values[j] *= S.values[j];
7 end
8 end

5.2.2 SpMM and SDDMM

In SpMM, a sparse matrix S is multiplied by a dense matrix D to form a dense output

matrix O. Fig. 5.3 (left) shows a conceptual view of SpMM. Alg. 9 shows sequential SpMM

using a CSR representation. SpMM is widely used in many applications such as Locally

Optimal Block Preconditioned Conjugate Gradient (LOBPCG) for finding the eigenvalues

of a matrix [8], Convolutional Neural Networks (CNNs) [44], and graph centrality calcula-

tions [113]. SpMM is also one of the core GraphBLAS primitives [21].
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In SDDMM two dense matrices, D1 and D2, are multiplied and the resulting matrix is

then scaled by an input sparse matrix S (Hadamard product). Fig. 5.3 (right) shows a con-

ceptual view of SDDMM. Alg. 10 shows sequential SDDMM using a CSR representation.

The SDDMM primitive can be used for efficient implementation of many applications such

as Gamma Poisson (GaP) [125], Sparse Factor Analysis (SFA) [25], and Alternating Least

Squares (ALS) [68].

Both SpMM and SDDMM traverse the rows of S (the outer loop). In SpMM, each

element in the i-th row (with column index k) of the input sparse matrix S is used to scale

the k-th row of D1[k][:] and the partial products are accumulated to form the i-th row of

the output matrix O[i][:]. In SDDMM, the dot product of the j-th row of D1 (i.e., D1[j][:])

and i-th row of D2 (i.e., D2[i][:]) is computed at non-zero position (i,j) of the sparse matrix

S and then scaled with S(i,j) to form O(i,j).

Several recent research efforts have been directed toward the development of efficient

Sparse Matrix-Vector Multiplication (SpMV) [39, 77, 90, 79, 119, 92, 106, 117, 121, 120,

123, 128, 152, 145]. However, very few efforts have focused on SpMM and SDDMM.

In typical applications where SpMM or SDDMM are used, these operations are re-

peated many times using the same sparse matrix (the values may change, but the sparsity

structure does not). For instance, SpMM is useful in the Generalized Minimum Residual

(GMRES) [12] method, where several hundred iterations are required. This usage pattern

allows a one-time light pre-processing of the sparse matrix to enhance performance, and

the cost of this pre-processing is amortized across the iterations. As explained later, our

approach requires a one-time reordering of sparse matrix elements to enhance data locality

and reuse.
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5.2.3 Related Works

Efforts to optimize SpMM and SDDMM may be grouped into two categories: using

standard representation (CSR) or non-standard customized sparse matrix representations.

Intel’s MKL [135] is a widely used library for multi/many-cores. MKL includes opti-

mized kernels for many sparse matrix computations, including SpMM, SpMV and sparse-

matrix sparse-matrix multiplication (SpGEMM).

TACO [66] is a recently developed library using compiler techniques to generate kernels

for sparse tensor algebra operations, including SpMM and SDDMM. Generated kernels are

already optimized, and OpenMP parallel pragma is used for parallelization.

cuSPARSE [2] provided by NVIDIA also supports SpMM. It offers two different modes

depending on access patterns of dense matrices (i.e., row- or column-major order).

BIDMach [26] is a library for large-scale machine learning, and includes several effi-

cient kernels for machine learning algorithms such as Non-negative Matrix Factorization

(NMF) and Support Vector Machines (SVM). It includes an implementation of SDDMM.

Recently, Yang et al. [151] applied row-splitting [14] and merge-based [90] algorithms

to SpMM to efficiently hide global memory latency. Based on the pattern of the sparse

matrix, one of two algorithms is applied.

Several efforts have sought to improve SpMM performance by defining new represen-

tations for sparse matrices. Variants of ELLPACK have been used to improve performance,

e.g., ELLPACK-R in FastSpMM [101], and SELL-P in MAGMA [8].

OSKI [132] uses register blocking to enhance data reuse in registers/L1-cache which

improves the SpMV performance. When the non-zero elements are highly clustered, reg-

ister blocking can reduce the data footprint of the sparse matrix.

131



Compressed Sparse Blocks (CSB) [5] is another sparse matrix storage format which

exploits register blocking. The sparse matrix is partitioned and stored as small rectan-

gular blocks. In CSB, register blocking also reduces the overhead of transposed SpMM

(O = AT B). SpMM implementation with CSB data representation has been demonstrated

to achieve high-performance when both SpMM and transposed SpMM (O = AT B) are

simultaneously required [5]. Register blocking also plays a pivotal role in many sparse

matrix formats for both CPUs [22, 23, 142] and GPUs [150].

We recently developed an SpMM implementation for GPUs based on a hybrid sparse

matrix format called RS-SpMM that enabled significant performance improvement over

alternative SpMM implementations [48]. However, a disadvantage of the approach is that

a customized non-standard data structure is used to represent the sparse matrix, making it

incompatible with existing code bases and libraries. Applications often use many library

functions, which are based on the CSR representation. Iterative applications that make

repeated use of SpMM interleaved with other sparse matrix operations may incur a high

overhead in a repeated conversion from standard CSR to the non-standard representation

[151, 119].

Reordering of sparse matrices has been widely explored in many other contexts. Yzel-

man et al. [153] show that reordering by recursive hypergraph-based sparse matrix partition

can enhance cache locality, and thus performance. Oliker et al. [100] demonstrate that the

performance of conjugate gradient (CG) and incomplete factorization (ILU) precondition-

ing can be improved by several reordering techniques such as METIS graph partitioning

[61] that enhance locality.

While the above reordering strategies improve performance, they suffer from significant

pre-processing overhead. GOrder [138] and ReCALL [72] try to reduce the preprocessing
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overhead using greedy strategy for graph algorithms. The key idea is to number/index the

vertices, such that vertices with many common neighbors are assigned indices that are close

to each other to improve data locality.

In this chapter, we seek to improve the SpMM/SDDMM performance without the use of

any non-standard sparse matrix representations. A significant benefit of using an unordered

CSR format rather than an arbitrary new data format is the compatibility with existing code

and libraries. Another benefit is the reduced storage space requirement. With non-standard

representations, it may be necessary to keep an additional copy of the sparse-matrix in a

standard format such as CSR for use with other library functions. This space overhead can

be avoided by using a standard representation.

There are two significant differences between the reordering technique used in ASpT

and existing works. First, the pre-processing overhead is significantly lower (milliseconds)

than reordering schemes like GOrder [138] and ReCALL [72], which take tens of sec-

onds for SuiteSparse datasets with large numbers of non-zeros [35]. Second, the original

indexing of vertices is preserved, which eliminates overheads for re-indexing.

5.3 Overview of ASpT

This subsection provides an overview of Adaptive Sparse-matrix Tiling (ASpT), a strat-

egy for tiled execution of sparse matrix multiplication using an unordered Compressed

Sparse Row (CSR) representation.

We first elaborate on the observed performance trend shown earlier in Fig. 5.1. Let us

consider the execution of the CSR SpMM algorithm (Alg. 9). The outer (i) loop traverses

the rows of the sparse matrix S; the middle (j) loop accesses the non-zero elements in rowi

of S, and the inner (k) loop updates rowi of the output array O by scaling appropriate rows
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of the input dense matrix D by the values of the non-zero elements of S in rowi. The total

number of non-zero elements for an N×N banded matrix with band-size B is approximately

NB, and so the total number of floating point operations for the SpMM product with a dense

matrix of size N × K is 2NBK. The total data footprint for the computation (sum of sizes

of all arrays) for single-precision (four bytes per word for the two dense matrices; eight

bytes per non-zero in the sparse matrix, for column index and value; four bytes per row

pointer in CSR) is 4NK + 4NK + 8NB + 4N, or approximately 8N(K+B). The maximum

possible operational intensity (OI), corresponding to complete reuse of data elements in

cache/registers, is thus 2NBK
8N(K+B) = 1

4
B + 4

K
. Therefore, as the band-size increases, max OI also

increases. The actually achieved (measured) OI first increases as B increases, but then

decreases due to limited L2 cache capacity. The Intel Xeon Phi KNL system has a 1Mbyte

L2 cache shared by two cores. The inner (k) loop in Alg. 9 traverses K distinct elements,

and the middle (j) loop traverses B iterations, resulting in accessing a total of BK elements

of D. With a banded matrix, the set of column indices for adjacent rows almost completely

overlaps (except for two elements at the ends of the band), resulting in almost complete

reuse of the data from D if sufficient cache capacity is available. For K = 128, setting

4*128*B = 512K gives B = 1024, consistent with the experimental data that shows a drop

in performance when B is raised from 1025 to 2049.

Thus we can observe that data reuse for the input dense matrix D may suffer signifi-

cantly if too many other rows are accessed before a row is again referenced (when the next

non-zero in the corresponding column of S is accessed). The extent of achieved reuse of

D is thus highly dependent on the sparsity structure of S. In the extreme case, for Alg. 9,

no reuse at all may be achieved for D, while full reuse is achieved for S and O. This is
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illustrated in Fig. 5.4 – the element O[i][ j] in Alg. 9 being placed in a register because of

its repeated access in the innermost loop.

In order to achieve better reuse for the elements of D, the order of accessing the ele-

ments of S must be changed. For a banded sparse matrix, full reuse of D can be achieved

by accessing S column-wise. But full column-wise access will result in loss of reuse for

O. By performing column-wise access within row panels of S , it becomes feasible to still
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achieve full reuse for O in cache, as well as some reuse for D. This corresponds to the use

of DCSC data representations, with the access pattern shown in Fig. 5.4. While this DCSC

scheme may be superior in terms of minimization of data movement to/from memory, its

access pattern may be detrimental to Instruction Level Parallelism (ILP) due to the very

small average number of non-zeros within the active columns in a row panel. Further, the

number of register loads/stores increases with this scheme, since each operation requires

a load-modify-store from/to registers. A third alternative is to use 2D tiling, as shown in

Fig. 5.4, where access is row-wise within a tile, allowing better register-level reuse for the

accumulated results.

The trade-offs between these three alternatives depend on the sparsity structure of the

matrix and are very difficult to model analytically due to the complex interplay between

the impact of reducing the volume of data access from memory and the increase in stall cy-

cles due to reduced ILP. Therefore, we used micro-benchmarks based on synthetic random

matrices to understand the performance trends for the three alternative schemes shown in

Fig. 5.4. Fig. 5.5 shows the performance (single precision) for different synthetic sparse

matrices on an Intel Xeon Phi KNL. The non-zeros in the synthetic matrices are randomly

distributed with different sparsities, and nnz colseg (the average number of elements in a

column segment in DCSC) is computed as TM×nnz
M×N , where TM is the recommended row seg-

ment size for DCSC, and nnz is the number of non-zeros in the sparse matrix with M =

128K, N = 4K, K = 128. To fully exploit the L2 cache on KNL, the row panel size is

chosen as 512 and 256, for DCSC and 2D tiles, respectively (the row panel size is halved

for 2D tiles since the cache is used for both dense input D and dense output O matrices).

With CSR, the non-zero elements of the sparse matrix in a row are accessed one by

one and multiplied by the corresponding elements in D. The partial results are accumulated
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in registers and written out to memory at the end of each row. The O elements get full

reuse in registers. However, the reuse of D elements is highly dependent on the sparsity

structure of S and for large sparse matrices the reuse for these elements can be very low.

In other words, with the CSR representation, it is difficult to exploit locality for D. This

performance impact is shown in Fig. 5.5

Performance can be improved by exploiting the reuse of D elements. When the number

of elements in a column segment (nnz colseg) is high, DCSC targets the improvement of

the reuse of D. In DCSC (Fig. 5.4), the sparse matrix is partitioned into a set of row panels,

each of which has TM contiguous rows. The size of a row panel (TM) is chosen such that the

corresponding O elements can fit in the L1/L2 cache (or shared memory in case of GPUs),

i.e., TM × TK ≤ cache size. Each non-empty column-segment of the row panel is processed

sequentially. The D elements corresponding to the column are brought into registers and

the partial results are accumulated in the cache. Thus, within a row panel, the D elements

get full reuse from registers and the O elements get full reuse from the cache. In DCSC,

the reuse for D is increased, but the reuse of O elements is from the cache as opposed

to registers in CSR (register accumulations are faster). Hence, as shown in Fig. 5.5, the

performance with a DCSC representation increases with nnz colseg. When nnz colseg is

low, the standard CSR representation outperforms DCSC.

2D tiling can be used to achieve good reuse of D and O elements. In 2D tiling (in

Fig. 5.4), the sparse matrix is partitioned into a set of row panels which are further subdi-

vided into a set of 2D tiles, such that each tile has TM rows and TN columns of the sparse

matrix. The elements within a 2D tile are represented in CSR format (other formats can

also be used). In this scheme, the D elements are loaded to cache and the partial accumula-

tions in each row of the 2D tile are done in registers (similar to CSR). However, as shown
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in Fig. 5.5, when nnz colseg is low, the performance of the 2D tiling scheme is lower than

CSR.
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Figure 5.6: SpMM with ASpT on many-cores

The ASpT scheme is based on the observation that when columns in a 2D tile have

sufficiently high nnz colseg, 2D tiling achieves the best performance. When nnz colseg is

low, row-wise access with the standard CSR algorithm is best. Our empirical evaluation

with synthetic benchmarks did not reveal scenarios where DCSC performance is the best.

Therefore, we use a combination of row-wise CSR access and 2D-tiled execution. Fig. 5.6

shows the high-level idea behind the Adaptive Sparse Tiling (ASpT) approach that we

describe in detail in the next section. The sparse matrix is first divided into row panels,

where the row panel size is determined by cache/scratchpad capacity constraints. Within

each row panel, column segments are classified as sufficiently dense or not (the threshold

is dependent on the target system and is determined from the cross-over point between

CSR and 2D tiles performance with the micro-benchmarking using synthetic matrices (e.g.,

Fig. 5.5). The columns within a row panel are then reordered so that columns over the
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threshold are placed in 2D tiles, while all columns below the threshold are placed at the

right end of the row panel in a large group targeted for untiled row-wise CSR execution.

The horizontal sizing of the 2D tiles is explained in the next section.

Dense
tile

Sparse
tile

Dense tile Sparse tile

Dense
tile

0 1 2 3 4 5 6 7

0 a b c

1 d e f g
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(a) Reordering each row panel of sparse matrix

3 l m

4 n

5 o p
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1 5 3 0 2 4 6 7
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col_val b c a d f g e h i j k l m n o p
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(b) Corresponding unordered CSR

Sparse
tile
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tile

(c) Meta-data

tile_row_ptr 0 1 2 3 5 6 7 9 11 11 12 13 14 14 16 16

panel_ptr 0 3 5

1st row panel = 3 tiles

2nd row panel = 2 tiles

Figure 5.7: Splitting sparse matrix into heavily clustered row-segments and remainder
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5.4 SpMM with ASpT

5.4.1 Data Representation

Our SpMM scheme uses the unordered CSR representation with additional metadata, as

depicted in Fig. 5.7. Figs. 5.7 (a) and (b) show the conceptual view of the sparse matrix and

the corresponding unordered CSR representation, respectively (the corresponding ordered

CSR representation is seen in Fig. 5.2 (b)). In Fig. 5.7 (a), the entire matrix is split into two

row panels, where each row panel contains a set of contiguous rows. A column segment

within a row panel is classified as heavy if it has at least two non-zeros. Each row panel of

the sparse matrix is reordered as seen in Fig. 5.7 (b). All the heavy columns in a row panel

are placed before the light columns. Each reordered row panel can thus be viewed as two

segments, where the first segment contains a set of heavy columns and the second segment

consists of light columns. The first segment (heavy) is further subdivided into 2D tiles,

while the entire second segment is viewed as a single 2D tile. The width of the 2D tiles

in the heavy segments of row panels is selected such that the corresponding elements of D

fit in the cache (or shared memory). We note that our approach only performs reordering

of non-zeros but not re-numbering (i.e., column indexes of the non-zero elements remain

unchanged).

Additional metadata in ‘tile row ptr’ keeps track of the start and end pointers of each

tile (Fig. 5.7 (c)) within each row. For example, consider the first row of the reordered

matrix. The first tile begins at position ‘0’. Hence, tile row ptr[0] is ‘0’. The first ele-

ment corresponding to the second tile begins at position ‘1’; hence, tile row ptr[1] is ‘1’,

and so on. The number of 2D tiles in each row panel is encoded in panel ptr[i]. For a

given row panel, the number of 2D tiles can be obtained by subtracting panel ptr[i] from

panel ptr[i+1].

140



5.4.2 SpMM on Multi/many-cores

Listing 5.1: SpMM with ASpT on multi-cores
1. #pragma omp parallel

2. for row_panel_id=0 to num_row/panel_size -1 do

3. num_tiles = panel_ptr[row_panel_id+1]-panel_ptr[row_panel_id];

4. // if tile_id == num_tile -1, sparse tile is processed. Otherwise dense.

5. for tile_id=0 to num_tile -1 do

6. for i=0 to panel_size -1 do

7. ptr = panel_ptr[row_panel_id]*panel_size + i*num_tile + tile_id;

8. out_idx = i+row_panel_id*panel_size;

9. low = tile_row_ptr[ptr]

10. high = tile_row_ptr[ptr+1];

11. for j = low to high-1 do

12. #pragma simd

13. for k = 0 to K-1 do

14. // inputs is expected to be in cache in dense tiles

15. // output is expected to be in register

16. O[out_idx][k] += col_val[j] * D[col_idx[j]][k];

17. done

18. done

19. done

20. done

21.done

Listing 5.1 shows the ApST SpMM algorithm specialized for multi/many-core proces-

sors. The row panels of the sparse matrix are distributed among threads (lines 2-21). As

mentioned in the previous sub-section, the entire row panel is split into a set of heavy tiles

(tile id < num tile − 1) and a single sparse tile (tile id == num tile − 1). Both the heavy

tiles and the sparse tile are processed by the same kernel; however, we expect most of the

D accesses in heavy tiles to be served by the L2 cache and from memory for the sparse

tiles. The tiles within a row panel are processed sequentially (line 5). The elements of each

row within a 2D tile are identified by using tile row ptr[0] and panel ptr[i+1] (lines 7-10).

The non-zero elements in each row of the 2D tile are processed sequentially (lines 11-18).

In order to increase Instruction Level Parallelism (ILP), vectorization is done along the K

dimension. This also helps to achieve good cache line utilization.
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5.4.3 SpMM on GPUs

Although we can use the same high-level tiling idea for GPUs, the GPU implementa-

tion should take advantage of the GPU architecture in order to achieve high-performance.

The main difference between GPUs and multi/many-core processors is that GPUs have

many more registers per thread. GPUs also have an explicitly managed scratchpad mem-

ory called shared memory. However, the cache capacity per thread in GPUs is quite small

( cache size
# o f threads on S M or S Ms ).

Utilization of Shared Memory and Registers

Contrary to multi/many-cores, where only a few threads access L1/L2 cache simulta-

neously, a large number of threads can access GPU caches at the same time. For instance,

on the NVIDIA Pascal P100, 2K and 112K threads can simultaneously access the same

24KB L1 and 4MB L2 caches. If each thread accesses unique memory locations, then each

thread can only use 24K
2K = 12B/threads L1 and 4MB

112K = 37B/threads L2 cache. However,

GPUs have a large number of registers and shared memory per Streaming Multiprocessor

(SM). For example, P100 has 256KB storage capacity in registers and 64KB shared mem-

ory per each SM. The shared memory bandwidth on the P100 is higher than that of L1

cache. Therefore, utilizing these resources to improve locality would be beneficial for per-

formance. In GPUs, only the memory locations with statically resolvable access patterns

can be placed in registers. Since we process each row sequentially, the access pattern of

O can be statically determined, and these elements can be placed in registers. However,

the accesses for D depend on the sparsity structure; hence the accesses are kept in shared

memory.
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Figure 5.8: Remove index mapping conflicts to shared memory

We next describe the approach to mapping columns of D to shared memory. Consider

Fig. 5.8 and assume that column ‘i’ of D is mapped to column i%4-th column in the shared

memory. This would result in mapping the first (col idx:2) and third columns (col idx:6) of

the yellow tile to the same location in shared memory (Fig. 5.8 (a)), resulting in a conflict.

Alternatively, the needed columns of D could be mapped contiguously in shared memory,

with an indirection array to indicate the mapping of column indices to shared memory.

However, this strategy incurs two major overheads: i) extra space required for the indirec-

tion array and ii) overhead due to access of the indirection array. For each non-zero access,

the indirection array needs to be accessed to find the element in shared memory, which is

inefficient. We addressed this issue by reordering column indices to remove mapping con-

flicts in each tile. That is, every column index in the tile is mapped to a different location in

the shared memory. By doing so, we can directly access the shared memory using a simple
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modulo operation. For example, in Fig. 5.8 (b), ‘modulo 4’ mapping can be used. This

strategy may result in partially filled tiles. If a heavy 2D tile does not have enough column

segments, they are moved to the sparse segment. The reordering can be easily done once

during the pre-processing stage.

Listing 5.2: SpMM with ASpT on GPUs (dense tile)
1. row_panel_id = tb_idx;

2. row_offset = tid/WARP_SIZE;

3. slice_base = tb_idy*WARP_SIZE;

4. slice_offset = tid%WARP_SIZE;

5. for tile_id=0 to panel_ptr[row_panel_id+1]-panel_ptr[row_panel_id]-1 do

6. for i=row_offset to TILE_WIDTH -1 step tb.size()/WARP_SIZE do

7. map_id = map_list[panel_ptr[row_panel_id]+tile_id][row_offset];

8. sm_D[map_id%TILE_WIDTH][slice_offset] = D[map_id][slice_base+slice_offset];

9. done

10. __syncthreads();

11. // processing dense blocks

12. for i=row_offset to panel_size -1 step tb.size()/WARP_SIZE do

13. ptr = panel_ptr[row_panel_id]*panel_size + i*(panel_ptr[row_panel_id+1]

-panel_ptr[row_panel_id]) + tile_id;

14. out_idx = i+row_panel_id*panel_size/WARP_SIZE;

15. low = tile_row_ptr[ptr]

16. high = tile_row_ptr[ptr+1];

17. buf_O = 0;

18. for j=low to high-1 do

19. buf_O += col_val[j] * sm_D[col_idx[j]%TILE_WIDTH][slice_offset];

20. done

21. O[i+row_panel_id*panel_size][slice_base+slice_offset] += buf_O;

22. __syncthreads();

23. done

24.done

Listing 5.3: SpMM with ASpT on GPUs (sparse tile)
1. row_panel_id = tb_idx;

2. row_offset = tid/WARP_SIZE;

3. slice_id = tb_idy*WARP_SIZE;

4. slice_offset = tid%WARP_SIZE;

5. // processing a sparse block

6. for i=row_offset to panel_size -1 step tb.size()/WARP_SIZE do

7. ptr = panel_ptr[row_panel_id]*panel_size + (i+1)*(panel_ptr[row_panel_id+1]

-panel_ptr[row_panel_id])-1;

8. out_idx = i+row_panel_id*panel_size;

9. low = tile_row_ptr[ptr];

10. high = tile_row_ptr[ptr+1];

11. buf_O = 0;

12. for j=low to high-1 do

13. buf_O += col_val[j] * D[col_idx[j]][slice_base+slice_offset];

14. end

15. O[i+row_panel_id*panel_size][slice_base+slice_offset] += buf_O;

16.end
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SpMM Algorithm: GPUs

Listings 5.2 and 5.3 show the SpMM-ASpT GPU algorithm for dense and sparse tiles,

respectively. The GPU algorithm is similar to that for multi/many-cores. The different

threads in a warp are mapped along K to avoid thread divergence and to achieve good

load balance. For heavy 2D tiles, the corresponding elements of D are brought to shared

memory, whereas for light 2D tiles shared memory is not used. Each 2D tile is processed

by a thread block.

For processing both dense and sparse tiles, row panel ID, row offset, and slice index are

first computed (lines 1-4 in Listings 5.2 and 5.3). Then, for dense tiles, all of the threads in

a thread block collectively bring the corresponding elements of D to shared memory (lines

6-9 in Listing 5.2). The map id (line 7 in Listing 5.2) keeps track of the original column

index, and is used to access elements of D.

The rest of the code (lines 12-23 in Listing 5.2 and lines 6-16 in Listing 5.3) is very

similar to the multi/many-core algorithm. Different warps process different rows within a

row panel, and the threads within a warp are distributed along K. The results are accu-

mulated in registers and written out to global memory at the end of each row (line 21 in

Listing 5.2 and line 15 in Listing 5.3).

5.4.4 Parameter Selection

The key parameters that affect performance for ASpT are i) the threshold for the number

of non-zeros in a column segment to be classified as heavy and ii) the tile sizes (TM, TN ,

and TK). These parameters were empirically determined using synthetic matrices described

in Sec. 5.3. Fig. 5.5 shows the performance of CSR, DCSC and 2D tiles as a function of

column density. The threshold for classifying a column segment as heavy is chosen as the
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minimum column density at which 2D tiles outperforms CSR. The rationale is that heavy

segments are processed by the 2D tile algorithm, whereas the light segment, even though

represented as a single 2D tile, is processed by the CSR algorithm. Thus, if the number

of non-zeros in a column segment is less than the crossover point in Fig. 5.5, it is better

to process those non-zeros using the CSR algorithm, otherwise the 2D tile algorithm. The

tile sizes were also chosen empirically, such that the data footprint of the tile fits in the L2

cache (512 KB per core) for the KNL (i.e., (TM + TN) × TK × sizeo f (word) × # o f threads
# o f cores

= 512K). For our experiments, the L1 cache was too small to exploit locality (and thus

did not produce great benefits). We explored different (TM, TN , TK) subjected to the L2

footprint constraint, and selected the best performing parameters. The best performance

was obtained when TM = TN , TK = K, and # o f threads
# o f cores = 2.

We followed similar steps for selecting GPU parameters. Since D elements are kept

in shared memory, the tile sizes TK and TN are constrained by the shared memory capac-

ity. The shared memory size per thread block was selected such that full occupancy was

maintained (for P100 we assigned 32KB of shared memory per thread block of size 1024).

Since the elements of O are kept in registers, TK and TM are constrained by the register

capacity. Thread coarsening [86, 84] was also employed to improve performance.

5.5 SDDMM with ASpT

In SDDMM, two dense matrices are multiplied and the resulting matrix is then scaled

using an element-wise multiplication (Hadamard product) with a sparse matrix. Since the

sparsity structure of the input and output sparse matrices is the same, we can optimize

SDDMM by forming dense matrix products only at locations corresponding to non-zero

elements in the input sparse matrix, as done by existing implementations [26, 66].
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Listing 5.4: Part of SDDMM on multi-cores
11. #pragma simd

12. for j = low to high-1 do

13. #pragma simd reduction

14. for k = 0 to K-1 do

15. // D2 is expected to be in cache in dense tiles

16. // output_col_val is expected to be in register

17. O[j] += D2[out_idx][k] * D[col_idx[j]][k];

18. done

19. O[j] *= col_val[j];

20. done

Listing 5.5: Part of SDDMM on GPUs (dense tile)
11. buf_D2 = D2[i+row_panel_id*panel_size][slice_base+slice_offset];

12. for j=low to high-1 do

13. buf_O = buf_D2 * sm_D[col_idx[j]%TILE_WIDTH][slice_offset];

14. for k=WARP_SIZE/2 downto 1 step k=k/2 do

15. buf_O += __shfl_down(buf_output , k);

16. done

17. if slice_offset == 0 then

18. O[j] += buf_O * col_val[j];

19. end

20. done

Listing 5.6: Part of SDDMM on GPUs (sparse tile)
11. buf_D2 = D2[i+row_panel_id*panel_size][slice_base+slice_offset];

12. for j=low to high-1 do

13. buf_O = buf_D2 * D[col_idx[j]][slice_base+slice_offset];

14. for k=WARP_SIZE/2 downto 1 step k=k/2 do

15. buf_O += __shfl_down(buf_O, k);

16. done

17. if slice_offset == 0 then

18. O[j] += buf_O * col_val[j];

19. end

20. done

SDDMM on multi/many-cores can be implemented by substituting the box (lines 11-

18) in Listing 5.1 with Listing 5.4. For SDDMM, the K dimension is not tiled, and the tile

sizes TM and TN are chosen such that both D1 and D2 fit in the L2 cache. The for loop in

line 11 computes the dot product of D1 and D2. The inner for loop (line 14) corresponding

to K is vectorized. Unlike SpMM, SDDMM requires reduction across the K dimension and

is implemented by specifying the ‘reduction clause’ in line 17. Line 19 scales the result by

multiplying it with the corresponding element in the input sparse matrix S.

SDDMM on GPUs for dense and sparse tiles can be implemented by replacing the box

in Listings 5.2 and 5.3 by Listings 5.5 and 5.6, respectively. The only difference between
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Listings 5.5 and 5.6 is in line 13, where elements of D1 are served by shared-memory in the

dense version and global memory in the sparse version. The elements of D2 corresponding

to the row are kept in registers for both dense and sparse tiles (line 11 in Listing 5.5). Since

the K dimension is mapped across threads and the corresponding O elements are kept in

registers that are private to a thread, we use warp shuffling for reduction (lines 14-16 in

Listing 5.5). The accumulated output value is scaled and written back to global memory

(lines 17-19 in Listing 5.5).

5.6 Experimental Evaluation

This section details the experimental evaluation of the ASpT-based SpMM and SD-

DMM on three different architectures:

• NVIDIA P100 GPU (56 Pascal SMs, 16GB global memory with a bandwidth of

732GB/sec, 4MB L2 cache, and 64KB shared memory per each SM)

• Intel Xeon Phi (68 cores at 1.40 GHz, 16GB MCDRAM with a bandwidth of 384GB/

sec, 34MB L2 cache)

• Intel Xeon CPU E5-2680 v4 (2 × 14 cores at 2.40 GHz, 16GB MCDRAM with a

bandwidth of 72GB/sec, 35MB L3 cache)

For GPU experiments, the code was compiled using NVCC 9.1 with the -O3 flag and

was run with ECC turned off.

For the Intel Xeon Phi, the code was compiled using Intel ICC 18.0.0 with -O3 and

-MIC-AVX512 flags. The clustering mode was set to ‘All-to-All’ and the memory mode

was set to ‘cache-mode’ (to fit big datasets).

For the Intel Xeon CPU, the code was also compiled with Intel ICC 18.0.0 using -O3

flag.
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We only include the kernel execution time for all experiments. Preprocessing time and

data transfer time from CPU to GPU or disk to RAM are not included. The impact of

pre-processing overhead is reported separately. All tests were run five times, and average

numbers are reported.

5.6.1 Datasets and Comparison Baseline

For experimental evaluation, we selected 975 matrices from the SuiteSparse collection

[35], using all matrices with at least 10K rows, 10K columns, and 100K non-zeros. The

matrices in SuiteSparse are from diverse application domains and represent a wide range

of sparsity patterns.

For SpMM on KNL, we compared ASpT with Intel MKL [135], CSB [5], and TACO

[66], which represent the current state-of-the-art SpMM implementations.

For SpMM on GPUs, we compared ASpT with NVIDIA cuSPARSE. cuSPARSE offers

two modes, and we compare against the better performing one. We did not compare ASpT

with MAGMA [8] and CUSP [33], as they are consistently outperformed by cuSPARSE

(more than 40% on average).

For SDDMM on manycores (KNL), we compared ASpT with TACO which has been

shown to significantly outperform Eigen [42] and uBLAS [134]. For SDDMM on GPUs,

we compared ASpT with BIDMach [26], which represents the state-of-the-art SDMMM

implementation.

We evaluated ASpT with single precision (SP) and double precision (DP), with the

number of vectors set to 32 and 128 (K = 32,128). However, only SP was used for SDDMM

comparison on GPUs, since BIDMach does not support DP for SDDMM.
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5.6.2 SpMM

Fig. 5.9 (a) shows SpMM performance with SP and DP for different K widths on the

KNL. Each point in Fig. 5.9 (a) represents the average GFLOPs value for a contiguous set

of 10 matrices – the matrices are sorted in ascending order by the number of non-zeros.

As shown in Fig. 5.9 (a), TACO is outperformed by CSB, which is outperformed by MKL.

For all configurations, ASpT outperforms other implementations. ASpT performance is

improved when K is increased from 32 to 128. For matrices with a small number of non-

zeros, performance is low. This is because concurrency is very low or there is not enough

data reuse (i.e., nnz
# o f cols is small). An overall summary of the relative performance across

the set of matrices is presented in Table 5.1. The speedup and slowdown are defined as

GFLOPs with AS pT
GFLOPs with best comparsion baseline − 1 and GFLOPs with best comparsion baseline

GFLOPs with AS pT − 1, respectively. ASpT

achieves significant speedup for most matrices and only suffers slowdown for a small frac-

tion of the matrices.

Fig. 5.9 (b) shows SpMM performance with SP and DP for different K widths on the

Intel Xeon multicore CPU. As shown in Fig. 5.9, the relative performance trends of Xeon

and KNL are quite similar.

Fig. 5.9 (c) shows SpMM performance on the NVIDIA Pascal P100 GPU. The perfor-

mance gap between ASpT and cuSPARSE is higher for higher K widths. The performance

of cuSPARSE does not improve much when K is increased. Fig. 5.9 (c) also compares

ASpT with Merge-SpMM [151]. The comparison was limited to single precision as Merge-

SpMM does not support double precision. For each dataset, Merge-SpMM reports GFLOPs

with different strategies, and we took the best among them. Merge-SpMM’s performance

is slightly inferior to that of cuSPARSE, which is outperformed by ASpT.
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5.6.3 SDDMM

Figs. 5.10 (a) and (b) show the SDDMM performance on the KNL and Xeon, respec-

tively. The performance trend is similar to SpMM in Figs. 5.9 (a) and (b), but the absolute

GFLOPs is lower. On KNL, ASpT outperforms TACO for the majority of the datasets as

shown in Table 5.2. Table 5.2 also shows a similar trend on Xeon CPU.

Fig. 5.10 (c) presents SDDMM performance on GPUs. The performance trend is sim-

ilar to that of SpMM in Fig. 5.9 (c), with lower absolute GFLOPs. Both BIDMach and

ASpT improve when K is increased, and ASpT significantly outperforms BIDMach across

all matrices. We only report BIDMach performance for single precision, since it does not

support double precision.

Table 5.3: Details of preprocessing overhead
ratio

(preprocessing time
/computing time)

KNL
(SP)

KNL
(DP)

CPU
(SP)

CPU
(DP)

GPU
(SP)

GPU
(DP)

0∼5 64.7% 89.7% 87.8% 98.8% 75.4% 83.7%
5∼10 31.1% 9.4% 11.3% 1.0% 14.5% 13.6%
10∼15 3.2% 0.6% 0.9% 0.1% 7.2% 2.2%
15∼20 0.8% 0.2% 0.0% 0.0% 2.0% 0.4%
20∼25 0.0% 0.0% 0.0% 0.0% 0.6% 0.1%
25∼30 0.1% 0.0% 0.0% 0.0% 0.2% 0.0%

5.6.4 Preprocessing Overhead

Constructing additional meta-data and reordering the column indices incurs overhead.

Fig. 5.11 shows the preprocessing time normalized to the execution time of one ASpT

SpMM with K=128, for single precision (red curve) and double precision (blue curve).
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Figure 5.11: Preprocessing time (SpMM)

Typical applications that involve SpMM and SDDMM execute a large number of iterations

(e.g., [105] for SpMM and [156] for SDDMM). Hence, our preprocessing overhead is

negligible. DP precision has less overhead, as the preprocessing time for SP and DP is

similar; but the SpMM time for DP is higher than that of SP. Table 5.3 shows that the

preprocessing times are generally between 0-5× compute time.

5.6.5 Benefit from Tiling / Reordering

While tiling helps to improve the data-reuse of the dense input matrix, it has two main

disadvantages: i) tiling overhead and ii) loss of concurrency for very sparse tiles. Tiling
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Table 5.4: Benefit of tiling or reordering
Tiling-Only Tiling+Reordering

SpMM(KNL)/speed-up over MKL 1.38 2.06
SpMM(GPU)/speed-up over cuSPARSE 0.8 1.34
SDDMM(KNL)/speed-up over TACO 1.02 2.01

SDDMM(GPU)/speed-up over BIDMach 2.41 4.04

only helps to improve the data-reuse for columns with sufficient density. Hence, tiling

overheads can be minimized by limiting the tiling to columns with sufficient column den-

sity. A simple 2D tiling strategy would include columns of both low and high density,

which may affect performance. The performance can be improved by grouping columns

with high density and limiting tiling to these high-density columns; This can be achieved

using reordering. Note that reordering without tiling may not improve performance, as the

data-reuse may not be improved. However, it is possible that the inherent matrix structure

may already be clustered, and thus tiling without any reordering could potentially improve

performance. Hence, we ran experiments with only tiling and no reordering. Results with

K = 128 for single precision are presented in Table 5.4; other configurations achieved sim-

ilar results. As shown in Table 5.4, the combined Tiling+Reordering strategy substantially

outperforms the Tiling-Only strategy.

5.7 Conclusion

SpMM and SDDMM are key kernels in many machine-learning applications. In con-

trast to other efforts that use customized sparse matrix representations to achieve high-

performance, our approach targets efficient implementation of these primitives using the
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standard (unordered) CSR sparse matrix representation, so that incorporation into appli-

cations can be facilitated. An adaptive 2D-tiled approach exposes higher memory reuse

potential, and an efficient reordering scheme enables efficient execution of 2D tiles. In

comparison to the current state-of-the-art, the ASpT-based SpMM algorithm achieves a

speedup of up to 13.18x, with a geometric mean of 1.65x on an Intel Xeon Phi KNL; a

speedup of up to 7.26x, with a geometric mean of 1.36x on an Intel Xeon multicore proces-

sor; and a speedup of up to 24.21x with a geometric mean of 1.35x on GPUs. The ASpT

based SDDMM algorithm achieves a speedup of up to 30.15x, with a geometric mean of

1.93x on the KNL; a speed of up to 22.75x, with a geometric mean of 1.52x on the Xeon;

and a speedup of up to 13.74x, with a geometric mean of 3.60x on GPUs.
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CHAPTER 6

Conclusion and Future Research

6.1 Conclusion

This dissertation has addressed the development of a high-performance approach for

regular- and irregular applications (graph algorithms, SpMM, and SDDMM) on GPUs.

For regular applications, the dissertation has taken a different approach from prior ef-

forts in modeling performance of GPU kernels: i) we restricted our abstract execution to a

small number of thread blocks for kernels; and ii) we used a simplified modeling of each

hardware resource using only the two parameters, latency and initiation interval. Sensitiv-

ity analysis with respect to resource parameters identifies the bottleneck resource(s) for a

given kernel’s execution on a particular GPU system. The bottleneck analysis enables an

efficient search approach in a space of transformed code variants.

For graph algorithms, the dissertation has used multiple data representation and exe-

cution strategies for dense versus sparse vertex frontiers, depending on the sparsity. The

sampling method based on the execution time prediction chooses one of two representa-

tions.

The dissertation has also developed a hybrid approach for SpMM for GPU’s by exploit-

ing the cluster parts in sparse matrices with a novel data structure. The approach tries to get
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good reuse of the elements simultaneously from input dense matrix, output dense matrix,

and sparse matrix.

Experimental results demonstrate the effectiveness of our approaches.

6.2 Future Research

Despite the contributions in this dissertation and the extensive efforts which have been

made to achieve high-performance on GPUs, there remain countless research opportunities

for enhancing performance on GPUs. Below, we discuss two avenues for future research.

Develop a dedicated performance model on GPUs In SAAKE, two key resources are

modeled without actual execution of kernels and with conservative assumptions (irregular

memory accesses are always uncoalesced and dynamic data branches are always taken).

This simplification would lead to inaccurate prediction especially for kernels which have

irregular memory accesses or dynamic data branches, as shown in Chapter 2.

The dissertation assumed that all shared resources such as global memory bandwidth

are equally distributed to SMs to focus on a single set of active blocks on one SM. This

approximation may be accurate for programs with good and dynamically smooth load bal-

ance, but may be inaccurate for load-imbalanced or dynamically irregular kernels.

GPU memory hierarchy is composed of several types of memory and cache, and is very

convoluted. We have not developed a model that reflects that hierarchy, and this can cause

significant inaccurate preciction for global memory latency-bound or throughput-bound

kernels. Hardware counters (cache hit rates) were obtained by NVPROF to resolve this

issue. However, modeling GPU memory hierarchy is still an important problem that must

be addressed.
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In sum, the inaccuracy of the performance model can stem from dynamic memory and

control irregularities, equal treatment of different SMs, and lack of cache modeling. Various

cache characteristics such as associativity and policy can be approximated as shown in [89].

We can execute a small portion (a few thread blocks) of actual kernels to extract addresses

in the memory layout. That is, one can devise a memory trace generator which collects

memory (load and store) operations for a small portion of thread blocks. These addresses

can be used to predict conditional branches, coalescing memory accesses, serialization of

atomic operations, and cache hit rate. Note that considering only a few thread blocks cannot

handle dynamic memory and control irregularities for some kernels. However, the cost for

considering full thread blocks can be tremendous. There is a tradeoff between efficiency

and accuracy, and our primary goal is to accurately model the impact of various changes in

a modest amount of time for the sake of providing beneficial optimizations. Abstract kernel

emulation with all SMs can also improve accuracy, since L2 cache and DRAM are shared

across SMs. In addition, considering the factors below can further improve accuracy.

• Considering kernel launch overhead: the kernel launch overhead cannot be amortized

if the kernel execution time for one thread block is very short. The kernel launch

overhead can be approximated by using a microbenchmark, and this overhead can be

added to the predicted execution time.

• Developing a dedicated memory model: we assumed memory latency and gap as

constants. However, memory latency is shown to be non-uniform [89, 57]. Row

buffer hit and miss can also affect memory latency and gap [57]. Developing equa-

tions for estimating memory latency and gap would help to improve accuracy.
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• Extracting properties for the actual warp scheduler: As shown in many works such as

[94, 75, 60], warp scheulding can significantly affect performance. We used Greedy-

then-oldest (GTO) warp scheduling, which was one of the simplest warp schedulers

and has since been superceded by several warp schedulers, as established by [94],

which has been outperformed by [75, 60]. We believe the warp scheduler used in

current GPUs is much more complicated than GTO. We plan to develop a set of

microbenchmarks to extract how warp schedulers work in current GPUs.

Develop a large-scale graph processing framework on just one GPU A large body of

recent research has focused on various implementations for processing large-scale graphs in

distributed systems. However, processing large-scale graphs on a single GPU has received

much less attention; only a few strategies have been developed [45]. Processing large-scale

graphs on a single GPU is costly and has poor energy efficiency. However, only a small

fraction of those graphs (including graph structure, and values of edges/vertices) can reside

in the device memory on a GPU, since the graphs usually do not fit in the device memory

on a GPU. Moreover, if a small fraction of graphs is brought into the device memory,

the previous data on the device memory may be evicted. Thus, processing large-scale

graphs on a GPU is challenging. When a portion of the graph is loaded into the device

memory, existing frameworks regard the graph algorithm as a topology-driven algorithm

(i.e., all vertices and edges are active for each iteration). This strategy is not suitable for

processing data-driven algorithms such as BFS, SSSP, and BC. Future research needs to

pursue developing data-driven graph processing frameworks on a single GPU.
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Parthasarathy, and P. Sadayappan. Efficient sparse-matrix multi-vector product on
gpus. In Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’18, pages 66–79, New York, NY, USA,
2018. ACM.

[49] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat,
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