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Abstract

My dissertation research introduces new econometric model specifications for
a spatial panel data set describing intertemporal strategic interactions of forward-
looking economic agents. We assume that each agent in our economy has its fixed
geographic location. Estimation methods with their statistical properties for my new
econometric models are studied. For each econometric model, I also conduct an em-
pirical application to show how to implement the model. Our models are appropriate
to analyze local governments’ behaviors such as their expenditures and tax rates.

The first chapter, Spatial dynamic models with intertemporal optimization I: spec-
ification and estimation, firstly introduces a dynamic spatial interaction econometric
model. There are n forward-looking agents of them each has a parametric linear-
quadratic payoff, and interacting with neighbors through a spatial network. Consid-
ering a Markov perfect equilibrium (MPE), we derive a unique equilibrium equation
and construct a new spatial dynamic panel data (SDPD) model. For estimation, we
suggest mainly the quasi-maximum likelihood (QML) method. Asymptotic proper-
ties of the QML estimator are investigated. In a Monte Carlo study, we estimate the
models parameters and compare the results with those from traditional SDPD mod-
els. The model is applied to an empirical study on counties public safety spending in
North Carolina. We conduct impulse response and welfare analyses corresponding to
changing exogenous characteristics in a region.
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The second chapter, Spatial dynamic models with intertemporal optimization II:
coevolution of economic activities and networks, introduces a panel data model de-
scribing agents’ intertemporal optimization decisions with spatial interactions and
spatial network evolution. The main purpose is to establish an estimation equation
that explains spatial/time dependencies among observed agents’ actions and endoge-
nously changing spatial networks. To provide a theoretical foundation of our model,
we establish a network interaction model for forward-looking agents. An agent’s cur-
rent action can affect his/her own and neighbors’ future marginal payoffs via future
spatial network links. Since parameters characterize an agent’s payoff, a correspond-
ing parametric econometric model is established. To estimate the model’s parame-
ters, we consider a GMM estimation method based on first-order conditions of agents’
lifetime problems. Asymptotic properties of the GMM estimator are studied for sta-
tistical inferences. For practical uses, we introduce an estimation method for spatial
network links using flow variables. Using our model, we study policy interdependence
of U.S. states” health expenditures.

The third chapter, Spatial dynamic models with intertemporal optimization III:
a dynamic Stackelberg game with spatial interactions, introduces a spatial dynamic
panel data (SDPD) model explaining relationships between two types of forward-
looking agents: a leader and multiple followers. They empirically represent the cen-
tral and local governments. Hence, the main purpose of our model is to account for
the intertemporal spatial interactions of them: (i) interactions between a leader and
followers and (ii) interactions among followers. As an economic foundation of our

estimation equation, we establish a dynamic Stackelberg game played on a spatial
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network. Derived optimal actions for both types of agents lead to a spatial econo-
metric model. Next, we introduce how to implement the quasi-maximum likelihood
(QML) method for recovering parametric payoff functions of the two types of agents.
Asymptotic and finite sample properties of the QML estimator are investigated. Last,
we employ our model to examine (i) policy interdependence among U.S states’ gen-
eral expenditures and (ii) interrelations between their expenditures and grants from

the federal government.
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Chapter 1: Introduction

Recently, an economic researcher is facing a data-rich environment. In a large
panel data set, we have been observed cross-sectional or time series dependencies
in a lot of economic variables. If information in space is available and it involves
individuals’ characteristics, a spatial econometric model can be a tool that explains
the role of space in those dependencies. For example, Case et al. (1993) find that
a state government’s expenditure is positively correlated with its neighbors’ expen-
ditures by using a spatial econometric model. In a cross-sectional setting, a linear
spatial autoregressive (SAR) model is popular. Examples are Cliff and Ord (1973),
Ord (1975), Anselin (1988), and Lee (2004, 2007). The linecar SAR model can be
considered as an equilibrium equation if we take a parametric linear-quadratic pay-
off function (Ballester et al. (2006), Calvo-Armengol, Patacchini and Zenou (2009),
Chapter 4 in Jackson and Zenou (2014), and Ushchev and Zenou (2018)). Then, the
dependent variables in a SAR model can represent agents continuous type optimal
actions (or ourcomes), and their actions can be interrelated with spatial network ma-
trices. Geographic locations of agents usually form spatial networks. If an agent is a

local government, its action can be some specific expenditure or tax rates (i.e., local



government’s action). As an example, Figure shows public safety spending of county

governments in North Carolina in 2015. !

Figure 1.1: Public safety spending of county governments in North Carolina in 2015
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In my dissertation chapters, we extend a SAR model for a large panel data set
by considering appropriate economic reasonings. Note that a large panel data set
includes a lot of cross-section and time series units. With spatial interactions, hence,
dynamic interactions (which mean the interactions of spatial units across different
time periods) can be captured. Currently, there are various researches in panel data
extensions of SAR models, which are called spatial dynamic panel data (SDPD) mod-
els. Examples are Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee
and Yu (2010, 2012, 2014), Shi and Lee (2017), Qu et al. (2018), Han et al. (2019),
and LeSage et al. (2019). Those SDPD models can be justified by an extended
linear-quadratic payoff function with myopic behaviors. By basic features of a panel
data set, a practitioner can capture dynamics of individuals actions (or outcomes). If

Hf a local government is regarded as an economic agent and its action is a regional policy (e.g.,
tax rate, expenditure, and so on), the linear-quadratic payoff function represents a representative
resident’s utility. In this setting, hence, we can interpret that a local government tries to maximize a
common person’s utility in its region. For more details, refer to Brett and Pinkse (2000), Brueckner
(2003) and Revelli (2005).



we consider rational economic agents, observed actions from a panel data set might
come from forward-looking behaviors. Hence, we try to construct panel data spatial
econometric models based on forward-looking agents’ behaviors with the extended
parametric linear-quadratic payoff specification. That is, our three model specifica-
tions belong to structural econometric models which are products of Lucas critique
(1976).

First, we introduce a basic dynamic spatial interaction econometric model. There
are n forward-looking agents of them each has a parametric linear-quadratic payoff,
and interacting with neighbors through a spatial network. In the first model specifica-
tion, each economic agent is assumed to have its fixed and innate geographic location.
That is, a spatial network is constructed by only geographical arrangements implying
that a spatial network is time-invariant and exogenous. Hence, a local government
can be a good example of an agent. For each period, for example, a local govern-
ment makes its fiscal decision by considering neighbors’ current and expected future
decisions with their demographic characteristics. Considering a Markov perfect equi-
librium (MPE), we derive a unique equilibrium equation and construct a new SDPD
model. As a refined version of subgame perfect Nash equilibrium, an MPE is pop-
ular in structural econometric modeling because an optimal action under the MPE
concept is only a (time-invariant) function of state variables. Deriving the MPE equa-
tion relies on solving algebraic matrix Riccati equations. For details in MPE, refer to
Maskin and Tirole (1988a, 1988b, 2001) and Chapter 7.6 in Ljungqvist and Sargent
(2012). Since the derived optimal actions (dependent variables) are linear in state

variables, we can fully characterize the correlation structure of dependent variables.



Hence, we can derive the likelihood function for estimation. For estimation, we sug-
gest mainly the quasi-maximum likelihood (QML) method. Asymptotic properties of
the QML estimator are investigated. Since the resulted models dependent variables
are still linear in disturbances, we can apply the same asymptotic technique in Yu et
al. (2008), which is a panel data extension of the martingale difference central limit
theorem (MD-CLT) for a linear-quadratic form (Kelejian and Prucha (2001)). Since
the model equation includes incidental parameters showing unobserved individual and
time characteristics, we need to adjust the asymptotic biases from them. A famous
research about the asymptotic bias in dynamic panel models (without interactions)
is Hahn and Kuersteiner (2002). As Lee and Yu (2010, 2014), our bias correction is
based on evaluating the expected values of scores at the true parameter values. In
a Monte Carlo study, we estimate the model’s parameters and compare the results
with those from traditional SDPD models. The model is applied to an empirical study
on counties’ public safety spending in North Carolina. We compare our estimation
results with those of Yang and Lee (2017).

Second, we introduce a spatial panel data model describing forward-looking agents’
decisions with spatial interactions and spatial network evolution. The main purpose
is to establish an estimation equation that explains spatial /time dependencies among
observed agents’ actions and endogenously changing spatial networks. There are var-
ious researches in SAR models (or SDPD models) with endogenous spatial networks.
Examples are Kelejian and Piras (2014), Qu and Lee (2015), Han and Lee (2016),
Hsieh and Lee (2017), Qu et al. (2017), Johnsson and Moon (2017), Kuersteiner and
Prucha (2018), and Han, Hsieh, and Ko (2019). However, our second model speci-

fication firstly considers a SDPD model specification with time-varying endogenous



spatial networks by the forward-looking agent assumption. We establish a network
interaction model for forward-looking agents. The forward-looking agent assumption
can yield reasonable economic interpretations of having time-varying endogenous spa-
tial networks. An agent’s current action can affect his/her own and neighbors’ future
marginal payoffs via future spatial network links. This feature is similar to habit
formation models in macroeconomics (e.g., Fuhrer (2000)). Since parameters charac-
terize an agent’s payoff, a corresponding parametric econometric model is established.
In contrast to the first model specification, deriving the agents’ optimal actions is chal-
lenging due to highly nonlinearity. To estimate the model’s parameters, hence, we
consider a GMM estimation method based on first-order conditions of agents’ lifetime
problems. This method is motivated by Hansen and Singleton (1982). Consistency
and the asymptotic distribution of the GMM estimator are studied. To establish the
law of large numbers (LLN) for consistency, we employ the notion of spatial-time
near epoch dependence (NED) in Jenish and Prucha (2012) and Qu et al. (2017)
since dependent variables of our model (optimal actions) might not be a linear func-
tion of disturbances. To study the asymptotic distribution of the GMM estimator,
we consider asymptotic properties of the main statistics conditional on unspecified
exogenous components stemming from spatial network formation. That is, we utilize
a central limit theorem (CLT) for a linear quadratic form of martingale difference
arrays with the C-stable convergence concept established in Kuersteiner and Prucha
(2013, 2018). This CLT belongs to a CLT with random norming. A basic idea can
be seen in Chapter 25.2 in Davidson (1994). To test whether spatial networks evolve

exogenously or not, the Wald test can be applied. By Theorem 4 in Kuersteiner and



Prucha (2018), the Wald test statistic asymptotically follows the unconditional chi-
square distribution. For practical uses, by considering formulations of gravity models
in international trade literature (e.g., Anderson and Wincoop (2003)) and Qu and
Lee (2018), we introduce an estimation equation for spatial network links using flow
variables. Using our model, we study policy interdependence of U.S. states’ health
expenditures.

Motivated by Chapter 19 in Ljungqvist and Sargent (2012), third, we introduce
a spatial dynamic panel data (SDPD) model explaining the relationships between
two types of forward-looking agents: a leader and multiple followers. In a practical
application, a leader can represent the central U.S. government while followers can be
state governments. The main purpose of the third model is to explain intertemporal
spatial interactions of them: (i) interactions between a leader and followers and (ii)
interactions among followers. As an economic foundation of our estimation equation,
we establish a dynamic Stackelberg game played on a spatial network. As a review of
dynamic Stackelberg game models, refer to Li and Sethi (2017). Under the rational
expectation equilibrium, derived optimal actions for both types of agents lead to a
spatial econometric model. Based on the induced correlation structure of the depen-
dent variables, we derive the log likelihood function and introduce how to apply the
quasi-maximum likelihood (QML) method for recovering parametric payoff functions
of the two types of agents. Asymptotic and finite sample properties of the QML
estimator are investigated.

This thesis proceeds as follows. Chapter 2 introduces estimation and specification
methods if a spatial network is time-invariant. Chapter 3 considers the case of time-

varying endogenous spatial networks. Chapter 4 deals with intertemporal spatial



interactions among two types of economic agents: a leader and multiple followers. For

each model specification, a corresponding empirical application will be introduced.



Chapter 2: Spatial dynamic models with intertemporal

optimization I: Specification and estimation

2.1 Introduction

Interactions among rational economic agents are characterized by a network (a
spatial weights or socio-economic matrix). Since rational agents might be forward-
looking instead of myopic, we focus on their behaviors by considering intertemporal
optimization. Specification on forward-looking agents’ decision-making with network
interactions will be introduced. We formulate an econometric model for recovering
economic agents’ payoff. The econometric model is a new spatial dynamic panel
data (SDPD) model, which can be estimated by panel data and it can be regarded
as a product of Lucas critique (1976).? For the econometric model, identification,
estimation, and asymptotic properties of estimators are investigated. Using the new
SDPD model, empirical economists can conduct (i) forecasting on future economic
activities, (ii) impulse response analyses, and (iii) welfare and counterfactual analyses.
As an application of our econometric model, we study counties’ public safety spending
competition. We recover key parameters describing counties’ decision-making and

2Tt means our econometric model is a structural model and its interpretations do not rely on just
statistical relationships among economic variables.



compare estimation results with those from traditional models. We give various and
fruitful policy implications from this research.

Three contributions will be established in this paper. The first is a theoretical
one. We introduce a forward-looking agent’s decision-making model with network
interactions. There are n economic agents in the economy and their interactions are
characterized by an n x n socio-matrix, which is assumed to be time-invariant and
known to agents as well as econometricians. An outcome of an agent’s economic
activity is assumed to be a continuous one. For example, players select how much
time or effort on some economic activity. In order to specify agent’s payoff, we
take a parametric linear-quadratic payoff function (Ballester et al. (2006) and Calvo-
Armengol, Patacchini and Zenou (2009)). The most notable advantages in taking this
payoff structure are (i) easily characterizing an equilibrium and (ii) specifying agent’s
payoff by some key parameters, in addition that a linear-quadratic payoff function
might provide a good approximation to an underlying nonlinear function. Chapter 4
in Jackson and Zenou (2014) provides a review for that structure. Based on the payoff
function, an agent’s choice problem is to maximize his/her discounted lifetime payoff
by intertemporally choosing his/her effort. An agent will face future uncertainty
and form expectation for it. In addition to future economic shocks, another source
of uncertainty is due to unknown future changing exogenous environments of an
economy. From that, we describe how an agent forms expectations for series of future
decisions and possibly changing exogenous environments.

To derive a complete model, our next step is characterizing an equilibrium under a
game setting. An ”equilibrium” is a result of rationality of economic agents. Forward-

looking decisions on an equilibrium realize the "rationality” of economic agents. For



this, we employ a Markov perfect equilibrium (MPE). In the MPE, agents’ current
decisions depend only on their payoff relevant previous actions, and backward induc-
tion can be applied to specify the equilibrium. Under some stability conditions, we
have agents’ optimizing values, which are results from solving dynamic (differential)
games problems, and they are linear-quadratic. In consequence, the vector of agents’
equilibrium decisions becomes a unique Nash equilibrium (NE) solution of a linear
system. The derived equilibrium equations describe the dynamics of individuals’
forward-looking decisions by reflecting series of (discounted) expected future actions
and exogenous characteristics in a dynamic NE game setting. As the implied model
equations are linear in outcomes, we have a unique NE equilibrium so to obtain a
bijective mapping from the model to a likelihood function for estimation.?

Second, we deliver an econometric contribution. The popular spatial autoregres-
sive (SAR) model from Cliff and Ord (1973), Ord (1975), Anselin (1988) and Lee
(2004, 2007) can be considered as an equilibrium equation of a static quadratic util-
ity model with network interactions. In the literature, panel data can capture the
dynamics of individuals’ decisions (but mostly without interactions). For spatial in-
teraction issues, there are fruitful studies with spatial dynamic panel data (SDPD)
models. Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee and Yu
(2010, 2014) are papers in this area. For the various SDPD models, Lee and Yu (2015)
provide a review. Those SDPD models can only be justified by myopic behaviors.
In this paper, the designed framework analyzes agents’ forward-looking behaviors.
With proper panel data, revealed economic activities might be results of dynamic
optimization instead of considering only current payoffs. Our derived equilibrium

3For this, see Section 8 in Amemiya (1985).
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equation provides a new estimable SDPD model. Our SDPD nests traditional SDPD
models as special cases if economic agents are myopic.

For estimation, we suggest the quasi-maximum likelihood (QML) method. Iden-
tification of the model and asymptotic properties (consistency and asymptotic nor-
mality) of the QML estimator are investigated. Because our specification includes
individual and time fixed effects, which are infinite incidental parameters and, in con-
sequence, may lead to asymptotic biases in estimates, a bias correction for the QML
estimator is studied. Estimating the individual and time dummies relies on residu-
als, so their asymptotic distributions are affected by convergence rates of the QML
estimator of the main parameters. We observe using residuals based on the bias-
corrected QML estimator has a mild condition for ratios of n and T relative to using
those from the QML estimator without bias-correction. As an alternatively simpler
but inefficient estimation, the nonlinear two-stage least squares (NL2S) method is
also briefly introduced. Monte Carlo simulations are conducted to evaluate (i) finite
sample performance of the QML estimator and its bias correction and (ii) misspec-
ification, when a traditional SDPD specification is taken for estimation as if agents
were not forward-looking, i.e., myopic. We find that the QML estimator and its bias
correction show reliable performance in small samples. We observe that significant
misspecification errors on estimators would appear even for large samples, as the tra-
ditional SDPD specification is mistakenly used. When selecting a time-discounting
factor, we suggest considering likelihood measures (e.g., sample log-likelihood) if a
signal is high with sufficiently many observations. The NL2S estimator shows rela-
tively small biases but does not provide efficient estimates compared to those of the

QML estimator.
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Finally, we give an empirical study with policy implications on counties’ public
safety spending. In this application, an economic agent is a local government, and
its decision variable is the public safety spending for a county. Yang and Lee (2017)
provide a theoretical model for this issue and apply it to cities in North Carolina.
They find strong free-riding effects: there are strategic interactions among local gov-
ernments and, which induce a negative relationship between a city’s public safety
spending and its neighbors’. In this paper, we revisit this issue with an extended
panel data set. We estimate structural parameters using our dynamic interaction
model and compare the estimation results with those from the traditional SDPD
model. In explaining the spillover effects of local governments’ public safety spend-
ing, our intertemporal SAR specification turns out to be more statistically favorable
than the traditional SDPD model. We find some evidence of persistency of public
safety spending, positive diffusion effects from previous neighbors’ decisions, positive
effects of own total revenue, and negative externalities from neighboring total rev-
enues, but no significant contemporaneous spilled over effects. From the recovered
counties’ payoff function, we also investigate cumulative effects in the MPE and con-
duct impulse response analyses corresponding to changing exogenous characteristics
in a region. An overshooting impact in the sense of a negative neighboring revenue
effect is observed.* In the welfare analysis, we observe giving subsidy to the county
which has a small number of neighbors turns out to be the most effective policy in
the sense of public safety spending.

4Tt means that the contemporaneous negative revenue effect converts to the positive effect after
some periods and finally decays.
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2.2 A spatial dynamic game with intertemporal optimization

In this section, we give a theoretical economic foundation and suggest a corre-
sponding econometric model. First, we review some motivating literature on the
spatial autoregressive model in a cross-sectional setting and then its extension to dy-
namic panel data model in the econometric literature. From these, we motivate our
formulation of a dynamic spatial autoregressive model with agents’ decision processes
which take into account intertemporal consequences.

2.2.1 Literature review: spatial dynamic panel models and
myopic choices

We assume there are n economic agents in an economy and they choose a contin-
uous type economic activity. A tax rate or public spending can be a good example
of a continuous economic activity when an agent is a local government. There are
interactions among agents’ activities through a certain network relationship. Since
there are n economic agents, a network is characterized by an n x n matrix W,, with
prespecified non-negative entries (links), which can be formed by social, geographi-
cal and/or economic distances. All the diagonal elements of W,, are assumed to be
zero to exclude self-influence. From economic reasoning, a way of modeling agents’
interactions is to formulate agents’ decisions in a game setting. Given existing net-
work connections in W,,, one may specify a linear-quadratic payoff function for each
individual (e.g., Ballester et al. (2006) and Calvo-Armengol et al. (2009)) with

1
Wi (Yo, i) = iy + Xoyaw;. Y, — 5%2 (2.1)

! .« . o ey
where Y,, = (y1,- -+, yn) denotes the vector of agents’ decisions (activities, outcomes),
n; is i’s exogenous heterogeneity containing his/her exogenous characteristics, w;.

13



denotes the i row of W,,, and \g determines the strength of strategic interaction
among agents while elements of IV, represent relative strength if there are interactions.
The first part, n;y;, describes a choice-specific benefit from ¢’s characteristics in his
index 7;. Increasing 7; by one unit leads to rising i’s marginal payoff %&’W).

From ¢’s perspective, decisions by others linked to ¢ will be strategic complements

if \p > 0, strategic substitutes if Ay < 0, and no interactions when A\g = 0. The last

quadratic term represents a cost for y; being taken. Let 1, = (n1,---,m,.), Xn =
(z1,--+,2,) where 2; = (z;1, -+, 7% ) denotes agent i’s observed characteristics, and
£, = (€1, -, €,) bean nx 1 vector of unobservable (for econometrician) components.

By specifying n,, as a regression function, n, = X,,80+&,, agents’ optimized decisions

in a perfect information game give rise to the spatial autoregressive (SAR) model

Y, = A W.Y, + X,.00 + En (2.2)

where Y, is the vector of Nash equilibrium (NE). The system (2.2) can have a unique
NE and can be stable under the assumption that [|[A\gWV,|| < 1 for some matrix norm
I1]-

The SAR model provides a static model for strategic interactions with a given
network. On the other hand, with various panel data sets, one can go beyond the
static setting and may track the dynamics of individual’s decisions. With panel
data, observed decisions of individuals might come from dynamic optimization. Let
{Yy, X} be a set of panel data where Y,; = (y1, -+, ynt) stands for a vector of
individuals’ decisions at time t and X,,; = (z14,- - - ,l’m)/ denotes an n x K matrix
of t"h-period observable (for econometricians) exogenous variables. Existing spatial

panel data (SDPD) models in the literature (e.g., Kapoor et al. (2007), Baltagi et
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al. (2007), Yu et al. (2008), Lee and Yu (2010, 2014)) actually take a similar form
as the SAR model (2.2) but with additional time lags Y,,;1, diffusion WY, ;1 and

individual and time fixed effects:

Ynt = )\OWnYnt + ’YOYn,tfl + pOWnYn,tfl + XntﬁO + Cno + at(]ln + gnt (23)

where ¢, is an n-dimensional column vector of individual fixed effects, ayo captures
the t""-period time specific effect with ,, being an n-dimensional vector of ones. This

equation can be justified by a game framework with agent ¢’s payoff

Wi (Yot, Yoto1, Mit) = NYit + NoYirWi Yor + poyirwi Yo -1 — ¢ (Yit, Yir—1) (2.4)

and ¢ (Yit, Yit—1) = %0 (yit — y,;,t,l)Q + 1_270%'275 where 0 < 79 < 1.5 The 7, denotes

the t""—period index of heterogeneity of agent i containing those exogenous charac-
teristics, which might evolve over time.® The third component, PoYitW; Yo 1—1, de-
scribes agent’s learning process. Learning or adopting new technology is a time-
consuming process as an agent has to spend some time to understand his/her friends’

5In this paper, we use the normalized payoff due to identification easiness. We can consider
the following alternative cost specification ¢ (v, ys¢—1) = 71270 (yit — yi,t—1)2 + %Oyft where 0 <
71,0, 72,0 < 1. Then, the first order conditions of maximizing the per period payoff can yield
(’71,0 + 72,0) Ynt = )\OWnYnt + ’VI,OYn,tfl + pOWnYn,tfl + Xntﬁo +cno+ CVtOln + gnt~ It’s impOSSible
to identify all the parameters at the same time.

Note that an affine transformation preserves cardinal preferences realized by Von Neumann-
Morgenstern utilities. If we consider the payoff normalized by we have structural pa-

1
Y1,0+72,0 "

1
Y1,0+72,0"

rameters are normalized by

6In this framework, 7;; represents i’s t* —period ”overall” characteristic by including (i) agent i’s
own exogenous characteristics (time-invariant and/or time-variant), (ii) his/her rivals’ characteristics
combined with elements in W,, showing externalities and (iii) common economic shocks globally
affecting all individuals’ decision-making.
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past decisions and accommodate to the new environment innovated by new technolo-
gies.” In this setting, individual’s learning comes from his/her recent past neigh-
boring decisions.® The parameter p, determines how past neighboring actions affect
agent i’s current decision. If py > 0 and agent j (who is an i’s friend) increased

his/her effort yesterday, agent ¢ may choose a higher level of effort today (because

0%u; (Ynt,Yn,t—1,Mit) _
0yi,t—10Yit

pow;; > 0). With py < 0 if agent j increased his/her effort yester-

0%u; (Ynt,Yn,t—1,Mit) _

day, agent i tends to select a low level of effort (since Y

pow;; < 0).
The fourth part, ¢ (Y, yis—1), represents a cost of i’s decision.” In our framework,

¢ (Yit, Yit—1) consists of two parts: (i) dynamic adjustment cost, % (y;; — yi,t,1)2, and

(ii) agent’s cost 1;70y§5 of selecting activity level y;;. If there is a large gap be-
tween ¢’s current decision y;; and his/her recent previous decision y;;_;, the term
L (Y — y,~7,5_1)2 may give a high penalty on i’s payoff, therefore, it may cause persis-
tency on i’s behavior. The parameter 7, captures the persistent tendency of agents’

"In the case of policy effect analyses, this part also shows policy lags. i.e., affecting neighboring
policies on my city’s one is time-consuming.

81t means that agent’s learning follows a Markov process. However, the entire history of past
decisions could be relevant to the agents’ current choices. In this case, agents’ learning process
is a Polya process. For the details, refer to Liu et al. (2010). They study peer group effects in
laboratory experiments based on Milgrom and Roberts’ (1982) entry limit pricing game and use two
specifications for agents learning: (i) A Markov model and (ii) a Polya model.

In this paper, we adopt the specification of the quadratic adjustment cost (the famous study
about that is Kennan (1979)). Alternatively, Engsted and Haldrup (1994) employ the following
quadratic adjustment cost for analyzing the demand for labor,

Yolle = 1) + (I — lh—1)” (2.5)

where [, is the t—period labor demand, I; denotes the steady-state level of the variable l; and
parameter 7 is the relative cost parameter.

However, if we consider 1;70 (yit — y*)? where y* denotes a time-invariant social norm showing
agents’ stereotype, identification of y* is difficult (in the sense of econometrics). In case of an
econometric model based on a static framework, y* will be absorbed in the intercept. In the case of

dynamic one, it will be a part of individual fixed effects.
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choices. The term %yi is a kind of social cost, which prevents an agent from
choosing an extremely high effort.

At time ¢, agent ¢ maximizes his/her payoff w; (yit, Y_i s, Ynt—1,7:it) where Y_;; =
(Y1es, Yi14)Yis1ts > Ynt) - It means that agent 7 knows the optimum choices Y_; ;
of others. The first order conditions of such optimization problems give equation
(2.3) which characterizes a NE at time ¢. Since each agent only maximizes his/her
per period payoff, this model assumes agents are myopic in their decisions. In this
project, we attempt to go beyond myopic behaviors of agents. We consider an agent’s
intertemporal choice problem and characterize the NE in an infinite horizon in order
to derive an estimating equation.!® Under the linear-quadratic payoff (2.4), this will

result in a new spatial dynamic panel data (SDPD) model.
2.2.2 Intertemporal choices

The main feature of our model is that agents are not myopic but rational to
expect what would happen in the future based on their available information. An
agent considers a series of his/her (expected) future payoffs when he/she makes a
current decision based on currently available information, and he/she expects that

tth

future realized decisions of all agents will result in an NE. Let B;; be the t"*—period

information set of agent ¢’s perceivable events and it is defined by

By = o ({yjs}?:1 fs:})w {773'8}?:1 i—oo) )

10The derivation can also be done for a finite horizon case if one knows the terminal period.
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where o () denotes the o—field! generated by the argument inside. This specification
is assumed to be a complete information game from the past to the current period ¢
with uncertainty only for future periods. The 7;; contains both time-invariant n! and
time-varying 7?, individual characteristics (some of them might not be observable by
econometricians).

To understand the implication of intertemporal choices on spatial interactions,
it will be simpler to consider an intertemporal choice problem with two periods.
Denote 7,; = (N1, ,nne) for each t. Given (Ypg,7n1), agent i (i = 1,---,n) is
assumed to maximize the expected discounted intertemporal payoff for t = 1 and 2:
at t =1, w; (Y1, Yoo, mi1) + 0 E (w; (Yoo, Ya1,mi2)|Bin); and at ¢ = 2 1 w; (Yoo, Ya1, mi2), by
sequentially selecting y;; for ¢ = 1,2. By considering the subgame perfect NE (SPNE)

economic activities, the agent i’s equilibrium decision at the period 1 is

Y5 (Yoo, Mn1) = YolYio + powi Yoo + Aow;. Y, 1 (Yao, 1n)
+8 (i€ ALY (Yo tr) — Yo (Yo, 7))

"‘772‘1 + 5A26;S;1E(T]2n‘811)

_ 9e St (o In+poWa) Y
where Al"ed = S—1(yoI, + poW,) and A; = == (Woay_jpo Mo _ e;Alrade;  The

quantity A; means a marginal change of the future expected equilibrium decisions of
i corresponding to changing y;;1.'? Let A, = Diag(A®). Then, the NE vector at

1Tn a measure theoretical interpretation, the sequence of Bj;’s is a filteration on (Q,B;). Q
contains all possible outcomes and B; can be defined by

Bi=o ({56} 1 e (s} 220

Then, for t; <to, By, C Bit, C B;, which means agents’ knowledge increases over time.

12Gince there is no additional future period, the expected NE decisions at ¢ = 2 are
FE (YJQ(Ynla 7]n2)|811) = A%radynl + S;lE (T]n2|811) for all 7.
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t = 1 can be characterized by a modified SAR equation:

;1 (Yn()a nnl) = /\OWnYrjl (Yn07 nnl) +0 {AnAffad - ’YOIn} Ynikl (Yn()’ 77n1>

+ (/VOIn + pOWn) YnO + "1 + 5Ansn_1El (n2n)

where E; (-) denotes the mathematical conditional expectation on (Y, ;—1,7,:) at t =1
and 2. Let R,; = (1+ 6v0) I, — MW, — 64, A", By assuming invertibility for R,

the unique NE can be characterized as
Yrjl (Yn07 nnl) = Ry_ﬂl (’70[11 + pOWn) YnO + Ry_nl (nnl + 5AnS;1E1 (772n)) . (26)

From equation (2.6), we see that taking into account the expected outcomes in the sec-
ond period, as § > 0, it brings in the additional spatial influence §A,, A Y * (Y,,0, 7n1)
and the time influence 071, due to their effects on possible future outcomes.

Based on recursion, we extend this two-period model to an infinite horizon model.
At each time ¢, given Y, ;1 = (y17t_1,,"',yn7t_l)/ and 7, = (Mg, M), each

agent, say 7, is assumed to maximize the expected discounted intertemporal payoff

Us (yz-t, Y—i,ta Yn,t—la nit) + Z ) (Uz (Yn,t+s; Yn,t+s—1a 7h‘,t+s) |Bit) (2-7)
s=1

by selecting y;;. The time-discounting factor ¢ € [0,1) is introduced to give weights
on agent’s future choices. The main reason considering an infinite horizon problem

is to allow that possibility, and in that case one can get a same functional form (over

time periods) of an estimable equation with given information.3

BFrom a panel data set, in practice, a researcher might not know initial and terminal periods
of agents’ decision-making. When we consider a time-invariant equation as an estimating model,
utilizing that model is available without concerning specific time period t relative to a finite terminal
period.

In perspective of economics, employing an infinite horizon model is prevalent in a lot of theoretical
and/or empirical studies. Even though agents actually have a terminal decision-making period, they
might keep the same pattern of decision-making at the terminal period because of (i) leaving a
bequest, (ii) keeping a nice reputation and so on.
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2.2.3 Nash equilibrium characterization

In this subsection, we characterize the NE. In the infinite horizon model, the
Markov perfect equilibrium (hereafter, MPE) characterizes the equilibrium strategies
of all agents as best responses to one another and helps to yield a unique equilibrium
equation. "Markov” means that agent i’s t'"-period optimal strategy only depends on
the state variables (Y;, -1, 7.¢) and does not rely on other earlier parts of its histories
(Maskin and Tirole (1988a)). ”Perfect” means that the NE constructs an optimizing
behavior of each individual for all possible uncertain future states. Hence, an MPE is
a refined version of subgame perfect NE. As its old definition is ”closed-loop equilib-
rium”, the definition of the MPE involves a dynamic programming equation (the Bell-
man equation).!® Since the #"—period optimal decisions only depend on (Y, -1, 7ut)
and, under the Markov assumption other past histories and exogenous characteris-
tics are irrelevant to the current decision-making, F (-|B;) = E (-|Ys.t—1,Mn) for all
i=1,---,n. Hence, we can simply define the conditional expectation operator Fj (+)
by E; () = E (-|Ya,t—1, ne). Also, time itself is not payoff-relevant, so we can drop the
subscript ”t” from agents’ optimal policy functions vy (Y,;—1,7nt) (for i = 1,--- n)

in the definition of MPE.

Definition 2.2.1 (Markov perfect equilibrium) A MPE will be a set of value
functions Vi (+) (i = 1,---,n) and a set of policy functions f; () (i = 1,---,n) such
that

(Z) (Markov stmtegy) y;t(yn,t—h TInt) =fi (Yn,t—h??nt);

“For more information in MPE, refer to Maskin and Tirole (1988a, 1988b, 2001) and Chapter
7.6. in Ljungqvist and Sargent (2012).
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(ii) given fi,--+, fi_1, fix1,* fn, Vi satisfies the Bellman equation

{ U (yitaY_*Z"t(Yn,t—lynnt)aYn,t—la77it> }

Vi(Yot—1,Mnt) = max
(e, o) +0E; (%(yitaYj@t(Yn,t—lannt)vnn,t+1))

Yit

(2.8)

where
* * * k * !
Yfi,t(" ) = (ylt(‘7 ')7 T 7yi71,t('7 ')7 yz’+1,t('7 ‘)7 T 7ynt('7 )) ’ and
(iii) (principle of optimality) the policy function f; (-) = yi; (-) attains the right

side of the Bellman equation (2.8).

The principle of optimality characterizes the equivalent relationship between the
two solutions to the intertemporal choice problem (2.7) and the functional equation

(2.8). In other words, given (Y}, ;—1,mnt),

‘/i(Yn,tfb 77nt) = Y (Y;t (Yn,tfla TInt) ,Yn,tq’ 772'1‘,) +0E, (V;(Yﬁkt (Yn,tflv ?7m) 777n,t+1))
= U (Yn*t (Yn,t—la nnt) ,Yn,t—h 7h‘t)
+ Z 55Et (uz (erk,t—f—s (Yn,t+s—17 77n,t+s) ) Y;,t—i-s—l (Yn,t+s—2; 77n,t+s—1) ) ni,t—i-s))
s=1

where Y (Yoi1,Mnt) = (ft Yoee1sm0t) 5+ 5 fro Yot M) -

Since payoff (2.4) is linear-quadratic and there is a time-discounting factor §, the
agent i’s intertemporal choice problem in an infinite horizon setting belongs to a
discounted linear regulator problem. The agent i’s value function V;(-) takes the
form

V; (Yn,tflv 77nt> = Yrﬁ,t—lQiYn,tfl + Y727t_1Li77nt + n;thnnt + Ci (29)

for some n x n matrices @Q);, L;, G;, and a scalar ¢; for each i« = 1,---,n. Note that
Qi, L;, G; and ¢; are the unique solutions of the algebraic matrix Riccati equations

stemming from a recursive relationship.!® To have a well-defined Bellman equation

15Formation of the algebraic matrix Riccati equations can be found in Appendix A. When we
are only interested in agents’ optimal policies rather than values, computational advantages are en-
joyable since obtaining @Q; and L; is sufficient for that. This fact is consistent with that Howard’s
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(a recursive relationship), V; () should be a continuous and bounded function. When
we consider a conventional intertemporal choice problem in economics, a choice set
is usually limited by a budget or a resource constraint. Due to the existence of a
constraint, agent’s value will not be explosive, so it becomes continuous and bounded.
In our problem, however, while there is no explicit constraint on agents’ choices, there
are costs which limit choices. The Bellman equation (2.8) can be characterized by

using the maximum operator 7T

‘/i(Yn,t—b nnt) = T (‘/z) (Yn,t—la nnt)
U; (yita Y—*@t(Yn,t—la nnt)a Yn,t—la Uit)
= max i ,
Yit +0E; (V;(yit; Y_i,t(Yn,t—h Nnt), 77t+1))

where the functional solution V;(:) will be a fixed point of the operator 7 in an
infinite horizon setting. The existence and uniqueness of the value functions V; (+)’s
for all agents can be guaranteed by imposing regularity conditions on u; (+), W, and

strength of interactions so that 7 is a contraction mapping.'® For this, define
QZ = [(Ql + Qll) €1, (Qn + Q;’L) en]lﬂmdLZ = [Lllela T >L;16n]/' (2'10)

Assumption 2.2.1 We assume

(i) (Process of my,) For each t, n, . = Hpny +&n i1 where ||[IL,|| < 1, ||-|| denotes
a proper matric norm, 1% = (W -+, 15)' s By (Gars1) = 0 and By (Sni1€hpi) = O
which is positive definite.

(ii) For each i =1,--- n, all entries of Q;, L;, G; and ¢; are bounded.

improvement algorithm (policy function iteration) often converges faster than value function iter-
ation. For more details in the Riccati equation and relevant issues, refer to Chapters 3 and 5 in
Ljungqvist and Sargent (2012).

16The detailed arguments can be found in Appendix A.
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Under Assumption 2.2.1 (i), we have a linear expectation E; (nfmﬂ) =F (nfmﬂ |77;Jn) =
IT,,n;; and other parts of histories (e.g., n;, , 1, 75, o, - - -) are not relevant.!” Since we
assume ||IL,,|| < 1 and E; <§n7t+1§;?t+1) = Q¢ > 0, it implies max;_; ... , sup, £, (|77i,t+1|2) <
oo. If some elements of 7, ;41 are invariant over time, it would be reasonable to assume
them to be known for all agents, then corresponding coefficients in II,, would be one
and &, ;11 would be zero. By controlling ();, L;, G; and ¢;, the restrictions of Assump-
tion 2.2.1 (iii) help to avoid agents’ extreme decisions so that lifetime values would
not be explosive. The restriction on (); makes manageable dependence between Y,, ;1
and Y,,;. The restriction on L; comes from forward-looking features of our model, but
would not appear in a myopic model. By imposing this restriction, expected remote
future exogenous effects on the current decisions become negligible.!8

As T is a contraction mapping, with an initial guess function V(® (-), it can
iteratively generate a sequence of functions V) (-) such that V@ () = T (V(j’1)> (+),
and the value function V' will be the limiting value, i.e., V; (-) = lim;_,oo T (V;(j_l)> (+)
for each agent 7.' The Bellman equation thus characterizes the value function. With

an available limiting value V; (+), the agent i’s optimum activity y;; can be solved from

the maximization problem with

U; (yita Y—*z‘,t(Yn,t—b Mt ) Y1, nit) } )

yh (Yoi—1,Mn) = argmax . "
t Yit { +5Et (nyzt, Y—i,t(Yn,t—ly T]?’Lt)a ’[]t+1))

17"The linear conditional expectation would likely be used for practical estimation. Theoretically,
it can be generalized to nonlinear functions if needed and desirable. It is convenient in notation
here.

8Note that G; and ¢; are not relevant to agents’ equilibrium decisions. However, controlling them
is needed to have bounded V}’s.

9This process is called ”the method of successive approximations” (Stoket et al. (1989)).
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For our model, because the payoff function w; () is a linear-quadratic form in Y,
and (Y1, 7nt), we would expect that the value function V;(-) would be a linear-
quadratic form. The Bellman equation with a fixed point for V;(:) would provide
the characterization of coefficients of the linear-quadratic form, which in turn, may
provide us a system of estimation equations for 3}, (-) fori = 1,- -+ n at each t. For the
system of estimation equations, we shall consider its estimation with methods such
as the quasi-maximum likelihood (QML) and a possibly simpler nonlinear two-stage
least squares (NL2S).

Whether the value function is indeed in a linear-quadratic form can be revealed by
fixed point iterations of the contraction mapping 7 and be confirmed by mathematical
induction. Indeed, iterations of 7 would provide value functions, and then optimized
activities of agents can also be derived in a finite horizon setting. For either a finite
horizon or infinite horizon setting, one should start with the initial V;(O) =0 (ie., a

zero initial function) and then have the iterations,

*(7)
i U; iayfi YnfanaYnfai
Vi(])(Yn,t—hﬁnt) _ nzllax{ (?Jt 7 Yot—1,Mnt)s Y1 77t) }7
it

+0FE, (Vi(j_l) (ym Y—*z(]t) (Yot—1, e, 77”1))

for j = 1,2,---. We see that with V;(O) =0, V;(l) (+) is the value function of agent i
at ¢ being the terminal period; V;® (+) would be the value function at ¢ while ¢ 4 1
were the terminal period, and in general, VZ»(JH) (+) would be the value function at ¢
while ¢ + J were the terminal period. So for a model with a finite horizon of future

J periods at time ¢, the corresponding optimum activity could be derived as

Uy

+0E,

y:t(JJrl) (Yn,t*b 77nt> = arg maxyn {

Yit, Y_*%H) (Yn,t—lv nnt)a Yn,t—la nit)
V;(J) (yit7 Y_*Z(iﬂ) (Yn,t—lv Nnt) 77n,t+1))

and the value function for agent i would be V™V (.).
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For the situation with infinite horizon, the iterations continue to infinity and the

stable system of NE is

Yo, Vag—1,mne) = (MoWn +6Q7) Yoy (Yai—1, 1) (Yo Ln + poWa) Yo —1+ (L + 0L 115) e,
(2.11)
which captures the contemporaneous spatial spillover effect through AgW,, Y. (Yo 1-1, nt)
dynamic effect 7Y, 1, spatial- past time effect or diffusion pyW, Y, —1, and addi-
tional expected spatial- future time effect 0Q; Y (Y, 1—1,mn¢). The additional term
0L 11,y is due to expected future unknown explanatory factors and disturbances, as
Nne May contain time-varying and invariant explanatory variables and disturbances.

The spatial-time filter of our model is defined by
R, =S, —6Q; , whereS, = I, — \W,,. (2.12)
So the NE activity vector at time ¢ is
Yoy Yai—1,Mnt) = AnYni—1 + Bl (2.13)

where A, = R, (vol, + poW,) and B, = R ' (I, + §L:11,). Note that the trans-
formation R, characterizes the interrelation among agents’ decisions. Due to the
forward-looking feature of our model, direct influences (i.e., first-order spatial effects)
can come from all spatial units even for a sparse W,,.2° In the view of SAR models, R,,
would reduce to the conventional S,, = I, — A\¢W,, when § = 0, i.e., with completely
discount of future values, or equivalently with myopic behavior. The transformation

20For illustrative purposes, suppose there is no isolated spatial unit. Then, all elements in Q7
are nonzero. In our system equation (2.11), note that the direct influences can be composed by two
parts: (i) A\oW,Y,); and (ii) 6Q} Y. If w;; = 0, there is no direct contemporaneous spill over effect
(i.e., Aowsyje = 0 if w;; = 0). Even for w;; = 0, (5[@2]17 yjt # 0 since agent ¢ has in mind j’s
expected future indirect influences (i.e., future NE) in his/her current decision-making.
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L can be represented by

o0
L= 6"'D, I (2.14)

m=1
where D,,,, (m = 1,2, ) denote some n x n matrices, which only rely on Ao, vo, po,
and § with W,.2! In estimating parameters, both the structural and nuisance param-
eters (related to II,) are included in the linear term L, but the parts of structural
parameters and nuisance one can be distinguished. Using D, ;, moreover, we find the

relationship between @)} and L} :

QZ - Dn,l (70]71 + pOWn) - 'YOIna (215)
which implies

Y;t (Yn,t—h nnt) = ()‘OWn + 5l)n,l (’YOIn + pOWn) - &YOIn) Y:t (Yn,t—la nnt)(2-16)

+ (70[71 + pOWn) Ymt—l + (In + Z 5mDn7mHnm> Tt

m=1
and

Equation (2.16) describes a role of future relevant components combined with .
The additional components dvoI,, and —6D,, 1 (Yol + poWy) in R, are due to agents’
forward-looking decision-making and they are respectively counterparts of the time
influence 67,7,, and the additional spatial influence 6A,, A in the two-period model.
Note that e/QF = €; (Q; + Q) and e,L} = e;L; for all i = 1,--- n. To explain equa-

tion (2.16), consider the first-order condition of agent i’s arbitrary ¢ period problem:

Ui (Yoi—1,Mnt) = Nt + YoYit—1 + powi Yni—1 + Xow; Y, (Yo i—1, nt)
21Detailed forms and their derivations can be found in our Appendix A.
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+5 <6iQ;Y:t(Yn,t—17 nt) + Z 5m_16;Dn,mH:ﬁT/nt>

m=1

= Nt +Y0Yir—1 + pOwi.Ymt—l + /\Owi.Yr;kt(Yn,t—la nnt) - 570y;kt(Yn,t—1> 77ms)

+562Dn,1 ((VOITL + pOWn) Y;t<yn,t717 nnt) + Hnﬂnt) + Z 6me;Dn,mHan7mt

m=2
Hence, we can observe 0D, 1 ((Y0ln + poWa) Y., (Yo i1, Mnt) + ILunye) plays a similar
role to the additional terms in the two-period model except the additional exoge-
nous influences > o7, 0™e,D,, 1171, The reason why only D, ; appears in R, and

Y*

nt

(Y5, ¢—1,Mnt) just relies on the payoff relevant history Y, ;_; are due to the Markov

property of agents’ decision-making.
2.3 The econometric model

In this section, we construct an econometric model and suggest estimation meth-
ods for this model with a panel data set. Assume a researcher has observed ({Ynt, Xnt}lfT:())
and W,, from a panel data set, where Y,,; is an n x 1 vector of dependent variables
and Xy = (X1, Xoox) With Xpep = (T1p, -, ) for k= 1,--+ K is an
n x K matrix of (exogenous) explanatory variables.??> Each Y,; is supposed to be
realized as an equilibrium, (i.e., Y, = Y5, (Yai—1,7ne)). For estimation, we assume
some structures on 7,,. First, n,; contains time-varying explanatory variables (X,;)
with coefficients By = (B10," - -, Bk,0) and disturbances. In addition, fixed individual
and time effects can be introduced as components of n,,. It is of interest to note for
the infinite horizon case, the modified dynamic SAR equation can allow the specifi-
cation of additive individual effect ¢} and time effect a; . With all individual effects

!/
in a vector ¢y, = (c’{ 05 Co 0) which is invariant over time, the corresponding II,,

22 After the subsection, we add the subscript n (or T) to point out that it is constructed by n (or
T') sample points.
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would be an identity matrix, thus individual effects would be reparameterized into
cno = (I, + 0L7) cty. For a time effect agl,, if oy o’s are random shocks which might
influence every agent, then its corresponding II,, is zero, so the time effect o ol,, can
be additive.

Hence, we have the model specification

Yor = AoWi 4+ 0Q0) Yoi+ (Yol + poWh) Yo i—1+ (L + 0L 11,) X So+Crotaoln+Ent
(2.18)
for t = 1,---,T, where £, = (€1, ,€n) is an n-dimensional vector of i.i.d. dis-
turbances with mean zero and variance 62, > 0. The main parameters are Ao, Yo,
po, Po and ‘752,0- The time-discounting factor § is considered as a primitive parame-
ter and the incidental parameters in 1I,, are assumed to be covered by the process
of X,;’s already. We shall explore the estimation approach in the situation of both
n and 71" being large. In this situation, it is appropriate to consider the estimation
of the structural parameter vector 6y = ()\0,70, P0s B0, UZO)I together with the fixed
individual and time effects c,o and arg, where arg = (a1, - ,aT,O)’ is the vector of
time effects.
As special cases of model specification (2.18), we consider two cases because they
have distinct features. First, consider Ay = py = 0, which means no spatial interac-

tions but not myopic due to individual own time lag effect. In this case, R, = zI,

such that z = 1 4 dy + 4737 5> Using the formula of infinite continued
14670+ 0
’ 1+670+ Rl

3

fractions??, we have

1
Ry=3 <1+570+\/1+25’Yo—573 (4—5)) L. (2.19)

23This is, Va2 +y =z + ﬁ

2w+%
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To obtain validity of (2.19), 1+ 2§vo — d7Z (4 — §) > 0 is required. The second case is
Ao = 0, which means no direct contemporaneous spatial interaction. In conventional
SDPD models, there is no contemporaneous spatial interaction if Ay = 0. In our case,
however, the forward-looking spatial filter R, becomes I,, — 6Q* where the i"*-row
of Q is e;A], [—ese; + 0 (Q; + Q)] Ay + o€, [Aleiel + (An, — I,)]. It implies that (i)
Q7 # 0,4y, even for \g = 0 since agents’ consider the expected future diffusion effects,
and (ii) @ would be simpler than that of Ay = 0 case.

The reduced form of equation (2.18) is
Ynt = AnYmt—l + R,Zl [(In + 5L:;Hn) XntﬁO + Cno + at,Oln + gnt] (220)

where A, = R.' (vol, + poW,) with R, = I, — (AW, + Q7). Stability of sys-
tem (2.18) means the spatial-time dependence should be manageable. Note that
Q= D1 (VoL + poWy) —Yoln, L =32°_, 6™ ' D, ,, JI" and D, ,, (m =2,3,--)
are generated by D, ;. Then, assuming uniform boundedness of D, ; yields well-
definedness and uniformly boundedness of L’. Hence, the current and expected fu-
ture exogenous effects I,, + 3 L*II,, become manageable.? When absolute summability
for 3222, AJ and its uniform boundedness in row and column sums hold, we have the

infinite summation representation
Yo=Y AR ([(L, + 0L:1L,) X80 + Cno + ijoln + Eni—yl - (2.21)
§=0

As n increases, ||A,|| < 1 and uniform boundedness of R, ' guarantees the variance
of each y;; is not explosive and remains to be bounded.

241f ¢ is a vector of uniformly bounded constants, ¢, = (I, + L) ¢k, is also uniformly bounded
if |Dp1ll < cp.
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2.4 Estimation

2.4.1 Quasi-maximum likelihood estimation

To estimate equation (2.18), we firstly suggest the quasi-maximum likelihood es-
timation (QML) method, which gives a fundamental background in parameter es-
timation. Asymptotic results for the QML estimator are based on the increasing-
domain asymptotic.?’ Let 6§ = (\,v,p, 3, 02)" be the set of structural parameters
for estimation, where 6, is the true value of §. The dimension of the parameters is
4+ K. To distinguish the individual- or time-specific effects for estimation, we denote
c, = (c1,--+,¢,) and ar = (ay,--+,ar). Let 6,4 be the true §; = (A, 7, p)’, which
consists of parameters involved in L} and Q. For each 6, we define @} (6;) and
L: (0)) with R, (6,) = I, — A\W,, — Q% (6,) and A,, (0,) = R, (01) (71, + pW,,). The

log-likelihood function with a panel with nT" observations will be

T
In Lor (0, ¢y ap) = —%anw——lna L TIn|R, (6))| (2.22)

Z 9 ,Cn, OéT gmg (8, Cp, aT)

E t=1
where &, (0, cn,ar) = Ry, (61) Yot — (7L + pW) Yoio1 — (Lo + 0L (61) 11,,) X8 —
Cp — Oyl,.

The computation of this model will be more complicated than that of the conven-
tional SDPD model. Note that the conventional SDPD model is linear in parameters
except 06270. But for the equation from the intertemporal dynamic spatial model, the
implied matrices (), and L; are both functions of the parameters Ay, 7o, po and the
time-discounting factor 6. Hence, we need to numerically evaluate Q7 (6;) and L’ (6,)

25Tt means that sample observations are from a growing observation region (spatial domain). In
case of the fixed-domain asymptotic, a spatial domain (a region) is fixed and bounded and the
number of observations in that spatial domain increases.
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for each 60 (i.e., inner loop). As the total number of individual and time fixed ef-
fects in c,¢ and arq is n + T, it is desirable to focus on the use of the concentrated
log-likelihood function with the fixed effects ¢, and arg concentrated out. In con-
sequence, the optimization of the concentrated log-likelihood function is on a fixed
number of structural parameters. As the fixed effects are linear in the generalized
SAR equation, they can be estimated as regression coefficients when other structural
parameters in the equation are given.

Let Y, = %Zstl Y., ?nT,,l = %Zz:_ol Y,s and X,p = %Zstl X,s. With fixed
individual and time effects concentrated out, the concentrated log-likelihood with
parameter subvector 6 is

T nT &
lnLnT70(9)2—£1n2W—71HU +T1In|R, ( Z T ( Jg’;t (2.23)

2 202 5
where &y, (0) = Ry, (61) Yoy — (I + pWo) VL1 — (I, + 6L (61) T1,) X8 with ¥y =
Yo —Yor, f/n(ﬁl =Y+ 1—Yur_1, and X0 = X — X, in deviation from time mean,
and J, = I, — 11,1}, being the deviation from group mean operator.?s From (2.23), we
obtain the maximum likelihood estimators, éml,nT = arg maxgee In L7 (0), where ©
denotes the parameter space of . For computation, in particular, with a large size
sample, we shall put more attention on the evaluation of the determinant |R,, (6;)]
and its inverse R ! (0;). In the spatial literature, the suggestion by Lesage and Pace
(2009) on a Taylor series analytic expansion of the determinant |7, — AW, | in A may
be useful. For the inverse of R, (), one might also consider the Neumann series

expansion. That Neumann series expansion can be justified by the stability of our

spatial dynamic process.
26Note that we cannot eliminate the time fixed effects by introducing a traditional orthonormal

transformation like Lee and Yu (2010) and derive a partial likelihood for estimation because the
spatial filter matrix R,, does not have a row-normalization property.
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Define R, (01) = 8R5)(\91), Ry (0h) = aRgiiel), Ry, (601) = aRgi,ﬁel), aal(b1) = 8%,(\01)7

Ly, (0y) = 2554 "and L; (61) = %5 Note that Rax, Rus, Rup, Liy, Ly, and L,

denote those quantities at 6 = . Here are assumptions for asymptotic properties of

Ominr. Subsequent asymptotic analysis of the QMLE extends properly that in Yu et

al. (2008).

Assumption 2.4.1 (i) The diagonal elements of W,, are zero.
(i) W,, is strictly exogenous and uniformly bounded in row and column sums in

absolute value.

Assumption 2.4.2 For all i and t, €; i.1.d. (0,06270), and E \eit|4+" < o0 for some

n > 0.

Assumption 2.4.3 The parameter space © of 6 is compact. The true parameter 0,

is in int(O).

Assumption 2.4.4 {Xnt}thl, {ato}le and c,g are conditional upon nonstochastic
values with

1 T 2+ 1 T 2+
SUD, 7 7 2oie1 Soim1 |Tit k] " < oo for all k, supp 7 >_y lowo| ™ < 0o and

sup,, + 37, lei0*t" < o0 for some n > 0.

Assumption 2.4.5 Let ©1 be the compact parameter space for 0.

(i) Ry, (01) is invertible for 6, € ©,. Q7 (61) and L} (61) uniformly bounded in
both row and column norms, uniformly in 6, € ©.

(i) At any 0 € int(O), the first, second and third derivatives of R, (01) and
L} (01) with respect to 6y ezist and are uniformly bounded in both row and column
sum norms, uniformly in 6; € ©.
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(iii) >-5°, abs (AZ) is uniformly bounded in both row and column sum norms,

where [abs(Ay)],. = ‘[An]

i ij |

() |0 Dya11,]| < 1 where ||| is a proper matriz norm.

Assumption 2.4.6 We assume that T' goes to infinity and n is an increasing func-

tion of T'.

Assumption 2.4.1 is a standard assumption in spatial econometrics. By assuming
uniform boundedness of W,,, spatial dependence becomes not too large and man-
ageable (spatial stability condition). Assumption 2.4.2 (i) assumes i.i.d. disturbances
across ¢ and ¢ for simplicity. Assuming a compact parameter space (Assumption 2.4.3)
is for theoretical analyses (for details, refer to Chapter 4 in Amemiya (1985)). As-
sumption 2.4.4 means the conditioning argument and is for simplicity of asymptotic
analyses for the QMLE. In our economic environment, X,; and ay are stochastic, so
agents can make predictions about their future values. For estimation of the implied
structural equation (2.18), X,;, c,0 and «yg are conditional upon as constants and
we introduce the higher than the second empirical moment restrictions for X,,;, oo
and c,0.2” Assumption 2.4.5 is for well-definedness of our model. Invertibility of
R,.(0;) for ; € ©1 guarantees for existence and uniqueness of the equilibrium system
(2.18) for any #; € ©; (Assumption 2.4.5 (i)). Uniform boundedness assumption
for R, (0,) for #; € ©; means spatial dependence of dependent varaibles from our
model is manageable (stable spatial process). Assumption 2.4.5 (ii) is a trivial re-
quirement. Existence and uniformly boundedness of the first and second derivatives

of R, (61) and L} () should be required so that %&’cw) and W for 0 € ©

2"By Kelejian and Prucha (2001), these higher than the second moment restrictions (with the
higher than the fourth-moment restriction for €;;) are required to apply a central limit theorem for
a linear quadratic form.
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are well-defined. The reason for having the third derivatives of R,, (61) and L} (6,) is
for the uniform convergence of the second order derivatives of the log-likelihood func-
tion. Assumption 2.4.5 (iii) plays a crucial role to study the asymptotic properties
of éml,nT by restricting dependence between time series and between cross sectional
units so that the process is stable in both the space and time dimensions. Under
Assumption 2.4.5 (iii) and large T, the initial value Y, does not affect asymptotic
properties of éml,nT. A sufficient condition for absolute summability is ||A,||,, < 1, so
the infinite sum Y52, A? exists and is (I, — A,)~!. If we have Assumption 2.4.5 (iv),
Y52, " IDh MMt = D,y (1 —6D,,I1,) "% It means expected future exogenous
effects become manageable, so the remote (expected) future exogenous effects on Y,
are small to be asymptotically ignorable. Assumption 2.4.6 is needed to consistently
estimate the individual and time dummies. Large T is for consistent estimation of
c,o and large n is required for consistent estimation of ayg.

For asymptotic analysis of éml’nT, note that \/%ML%’*Z’C(GO) takes the following

linear-quadratic form?

! XTZ[ V00 + Dt a8l + ;ng[?B' o8 — 0%gtr (Byw)|  (2:24)

t:l

where B, ,, and B, ,, are some nxn uniformly bounded (in n) matrices and D, denotes
some time-varying nonstochastic component. By (2.24), éml,nT can be asymptotically
biased because YnT,—l and énT are correlated even for large n and T due to many
incidential paramaters of individual and time effects. To derive the asymptotic dis-

tribution of éml,nT and adjust its asymptotic bias, we can decompose \/7%81“ ng,c(éo)

into an uncorrelated part and a correlated part. For this, consider the decomposition

%Since Dy, p’s (b = 2,3,---) are generated by D, 1, L} = Yoy 5h_1Dn,hHZ_1 is uniformly
bounded in n.

29The formulas of %Lgig'c(eo) can be found in Appendix A.
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LY = 1Y% — 1,0, where
Jnﬁf,ﬁ(f) = Jy [Z ARt |:([n + 0L 11,) Xn,t—j—lﬁo + @t—h—l,olnﬂ
+=]n [Z AZRnlgn,thl‘|

and UnT,—l TZ Zh 0 1gnt h-

u)
: L 1 Oln LnT,c(HO) _ 1 Oln LnT c )
Using the decomposition, we have TT 96 = VnT 96 A1 —Ng ot

Note that

1 Oln LnTc (6o) -
vnT 00

T
> [By,n}}rf;z(f) + Dnt]/ InEnt (2.25)

t=1

QH
=N

T
+ Z €0y n — 02 otr (JuByy))|
t

|

which determines the asymptotic distribution of éml,nT. The terms Ay, and Ay ,p
characterize asymptotic biases. Note that Ay ,p and Ay, are respectively

\/g {(By7nUnT7_1), Jnén;p + éZTB;,anénT} and \/g [‘752,0 (tr (Byn) —tr (Janm))} where
the detailed forms of Ay, and Ay 7 can be found in Appendix B. A; ;7 comes from
estimating ¢, while Ay 7 is generated from estimating {Oéto}thl- The main stochastic
components of A, ,r are U,’@T’_anénT, and ?nTBnénT where B,, denotes some uni-
formly bounded (in n) matrix in row and column sum norms. However, Ay 7 is deter-
mined by non-stochastic components, tr (— R\ R, ') —tr (J,(—=RuR, 1)), tr (=R, R, ') —
b (o= R 1)), 11 (= RpB) = b1 (Ju (= R B)),
2.2 in our supplementary file, A, = \/éan,l(eo) + O (\/%) + 0, (ﬁ)’ where

an1(0o) = O(1), and, Ag,r = \/gan,g(ﬁo), where a,2(0y) are O(1). The formulas of

an1(0o) and a,2(6p) can be found in Appendix A.
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Consistency and asymptotic normality

First, consider consistency of éml’nT. For each 6 € ©, define

1 1 1 1
Qur () = —TElnLnTC (0) = —5 27— 511103 +—In IR, (6)]
‘T.%TTE (Z%‘* (0) & <9>>

To show consistency, the first step is verifying uniform convergence of sample aver-
age of the log-likelihood function, supy.g ’ InLyr.(0) — Qur (0)’ —p0asn, T — oo.
After this, we show Q,r () is well-behaved at any point  in © by verifying uniform
equicontinuity of @, (f) Obtaining the identification uniqueness completes the proof
of consistency. The assumption below describes the identification uniqueness condi-

tions.

Assumption 2.4.7 (Identification) To identify 0y, we assume

02 (OO R;Y (02) R (61)]] # 0 for b1 #

2 p-lp-1| _ 1
oo, VR, ‘— ~In|o

(1) lim, 700 {% In

01,0 where

0= L3 B ( Zot (0) = R (01) [0 K (00) 1K (00)] )
T X Zstl X;w (‘91) JnZns (91)
T “1r

XJn (Znt (91) - Xnt (91) [Z X;s (91) Jnins (91)] Z X 91 J, Zns (91))

2

+ Ue’oltr (R VR, (61) JuR (61) By') + of1),

Tt (01) = [R (01) Byt (oI + poWa) = (vIn + pWa)] Vi 4 R (61) Ry [Xmﬁﬁo + dt,oln};
and X (01) = (I, + 6 L% (61) I,) Xy with Xy = Xt (010).

(i) imyp_ oo n% Zthl X! Jn Xt exists and is nonsingular.
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Let Qure (01) = Qur (01, Bur (01) , 02,7 (01, Bur (61)) ) where
02 pr (01, B) = argmaxyz Qur (01, 8,07) and Bur (61) = argmaxg Qur (01, B,07). As-
sumption 2.4.7 (i) comes from the information inequality for the concentrated ex-
pected log-likelihood function @, (1). Note that
02 p(01) = 5E ( - git (01, Bur (01)) Jngn (01, Bur (91))) and this expectation does
not depend on a normal distribution, but it comes from the correctly specified first

two moments. Also, we observe o7,,1(61) = 02,71 (61) + 02 ,,75(61) + 0 (1) where

02y (00) = = 37 B (Zut (61) = Kot (61) Bur (6)) T (Zat (61) = Kot (61) Bur (61))
(2.26)

:52_’0 tr (R;VR! (61) JoR, (61) R;Y). Note that J,Zy (6;) is an ap-

1

and gez,nT,Q(el) =
proximation function for Jnf(mﬁo since Jan (010) = Jnf(ntﬁo. Hence, the first term,
02,r.1(01), is a quadratic function of the difference between the two approximation
functions for J, X3, while 02, ro(0h) =E (gitR;Ll'R;l (01) Jo Ry, (61) R;lglt>, which
is strictly positve. When 6; approaches to 6y, 0Z,5,(61) is close to zero. Hence,
ainT’Q(@l) will play a main role in identifying 6, ¢ if 6, is around 6, . Identifying f; is
done by Assumption 2.4.7 (ii), which is analogous to identification of 3y in a standard
linear regression once 6, is identified. When replacing Xnt by Xnt, we can observe
this feature and Assumption 2.4.7 (ii) becomes equivalent to the identification con-
dition of 5y in conventional SDPD models. These conditions (i) and (ii) validate the
strict information inequality (in the limit at least) so that 6y is globally identifiable.

Here is the theorem showing consistency of éml,nT'

Theorem 2.4.1 Suppose Assumptions 2.4.1 - 2.4.7 hold. Then, éml,nT —p 0o as

T — oo.
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Next, we will derive the asymptotic distribution of éml’nT. Denote g, 7 =

1 o L™ (60) an L)

nT.c T, (60) .
— 5o 5o . For that, we in-

82InL,7..(0
—L (ﬁ aeaq(;"( 0)> and Qg nr = E(

troduce the following assumption.

Assumption 2.4.8 liminf, 700 Gmin (Qognr) > 0 and liminf, 700 dmin (Legnr) >

0 where ¢min (+) denotes the smallest eigenvalue.

Due to Assumption 2.4.5 (ii), we have continuity of ¥g,r = —F (iw)

nT 9600

in 0 € N (6y) where N (6y) denotes some neighborhood of 6. Hence, assuming
inf,, 7 Gmin (Xo,.nr) > 0 implies that Xy ,r is also nonsingular for any 6 € N (). The
derivation of the asymptotic normality of éml,nT will be based on the mean value theo-
rem, and the central limit theorem for martingale difference arrays to ﬁ%

The theorem below gives the asymptotic distribution of éml,nT.

Theorem 2.4.2 Suppose Assumptions 2.4.1 - 2.4.8 hold. Then,

R n T
\Y nT (eml,nT — 90) + \/;Ee_ol’n']“an,l(‘gw + \/;ZG_’OI,W,T@TL,?(QO)

o o)

—a N (0, 2970199029701> s
where ng = limT_mo QOO,nT and 290 = limT_mo ZGO,nT-

By Theorem 2.4.2, we have the results: (i) if % — 0, n (éml’nT — 00)—%29_017”Tan,2 (Bo) —p
0, (ii) if 2 — ¢ € (0,00), VAT (Gnsnr — 00) +v/e55, wrn1 (00)+ /255 wran 2 (60) —a
N (0,55, 29,%,"), and (iii) if % = 00, T (Bminr — 00) + Zg a1 (00) —p 0. Ot
has an asymptotic bias of order O (max {%, %}) due to — 7355 " ran1 (60) =235 " ran2 (6p).

Hence, the confidence interval for éml,nT is not properly centered at 6y even if n and
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T have the same order (that is, % — ¢ € (0,00)). If n and T" do not have the same

order, éml’nT will be degenerated. Hence, a bias corrected estimator constructed by

1

n

. 1

it = Ot = o [~ Sarnn O] log, o = — [~Zawr@n2®)]log,, o (227)

can be valuable. The assumption below is introduced for éfnl’nT.

Assumption 2.4.9 37° A" (0,) and 37°, hAM1(60,) are uniformly bounded in ei-

ther row or column sums uniformly in a neighborhood of 6.

Under Assumption 2.4.9, we have

([S00ran10)] lps . = Sarurni(60)) = 0, and

([Zonran2(0)] Iz, = Zoonrana(o)) =, 0

NEEE

when =5 — 0 and % — 0. Hence, we can apply the asymptotic equivalence.?°

Corollary 2.4.3 Under the additional Assumption 2.4.9, 75 — 0 and % — 0, then

VT (B — 00) —a N (0,55, 00,55, ) - (2.28)
For the bias-adjusted estimator éfnl’nT, if n and T" are not too much large relative

to each other, it can have a nondegenerate distribution and its confidence interval
can properly be centered. For finite samples performance, results from Monte Carlo

simulations are in Section 2.5.

30That is, if (i)

. A 1 _ 1 _
vnTl (G;MT — 90) —vnT <9ml,nT — T |:—2901’nTan)1(90):| — 5 |:—Z€01’nTG,n,2(90):| — 00) —p 0
and (ii) v nT (éml,nT — % [— (Zgo’n:ﬂ_l an)l(eo)} — % [— ;(]{nTan72(90)} — 90) —d N(O, *) where
* denotes the asymptotic variance derived in Corollary 2.4.3, we also have vnT (éfnlnT - 9()) —d
N (0, ).
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~ A~

Next, consider asymptotic properties of €, mi(@minr) and & pi(Ominr) for t =
1,---,T. Recovering c,o and ay’s is meaningful because they are employed to obtain
welfare measures. To identify c,o and «u’s, we impose the normalization restric-
tion =1, a0 = 0 because cig + ay = (cio + @) + (o — o) for any z. Since T
goes to infinity and n is an increasing function of T, consistently estimating c,q
and ay’s is feasible. For each 6, define 7, (0) = Ry, (61) Yot — (VI + pWo) Yoio1 —
(I, + L7 (61) 11,,) X, 8. Because we impose /-y oo = 0, &umu(8) = 7 302 7e(6)
and Gy u(0) = %l; [Fnt(0) — €nmi(0)]. Two estimates for c,o + auol, + Ene can be
considered: (i) 7 (éml,nT)a and (ii) 7 (é'rcnl,nT)' The theorem below shows their

asymptotic properties.

Theorem 2.4.4 Suppose Assumptions 2.4.1 - 2.4.8 hold. Additionally, assume

Zthl ay = 0. Then,

(i) for each i, if g — 0, VT (i — ¢io) —a N(0, 06270) where ¢ mi = Cimi(Omint)

and they are asymptotically independent with each other.

(i) For each t, zf% — 0, /1 (Gt — o) —a N(O, 052,0) where G = &t7ml<éml,nT>
and they are asymptotically independent with each other.

(iii) Assume Assumption 2.4.9, 2 — 0 and % — 0. For eachi, VT (éfml - CZ"O) —d
N(0,0?2,) where &, = é@ml(éfnl’nT). For eacht, \/n (@f,ml — Oéto) —aq N(0,02,) where
af oy = @t,ml<ércnl,nT)' Asymptotic independence holds like (i) and (ii).

Parts (i) and (ii) show that the conditions are symmetric for the other effects. By

Theorem 2.4.2, we have the convergence rate of éml,nT

~

(1.6, Ominr — Oy = Oy (max (A=, £, 1)), Then, G — cio = +51; €i + Oy (1) -

HHml,nT — HOH and Qv — oy = % Y er+0,(1)- HemlvnT — QOH. Hence, the conditions
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=[S

= o(1) for ¢; ,,; and g = 0 (1) for &, come respectively from?! VT (Cimi — Cip) =

L+ 0y (o (G 3. ).

and /1 (G mi — o) = ﬁ Y€+ O, (max (\F \/1:77 g)) Note that the residu-
als 7,4 <‘§ml,nT) contain the individual- and time-dummy as an additive way. If T is
large with small n, there exists a O (%) bias for the regression coefficients since there
are only n observations for each time dummy. For the estimate of individual effects,
Cimi, SO ? — 0 would appear in its asymptotic distribution normalized by ﬁ The
symmetric argument can be applied to & ;.

Part (iii) means the ratio conditions of n and 7" can be relaxed when we employ
the residuals based on ¢, nr- Corollary 2.4.3 implies 0c, ar—00=0y ( ) it 75 =0
and & — 0. Then, VT (éff,ml — Ci,O) f S ent0, ( ) and \/n (Oét ol ato) =
ﬁ Y€t +0p ( L ) Since 75 — 0 and s — 0 are milder conditions than \F —0
and Y2 — 0, estimating both c¢,o and ar via (ii) 7 (le,nT) would be beneficial

A

compared to employing 7, (le,nT)-
2.4.2 Nonlinear two-stage least squares (NL2S) estimation

In practical applications, we may like to have a robust estimator to unknown het-
eroskedasticity and/or unknown serial/cross-sectional correlations. Under a limited
information setting, the NL2S method can be a reasonable estimation approach. In
addition to possible robustness, it might have computational advantage relative to
the ML or QML methods by avoiding evaluating In |R,, (0;)|. In this subsection, we
briefly discuss the implementation of this method.

3In conventional SDPD literature (e.g., Yu et al. (2008), and Lee and Yu (2012)), the convergence

rate of the QMLE is O, (max (\/%, %)) In this case, the condition TT = 0(1) for &, is not

required. Since we adopt the direct estimation approach of estimating c,o and ar o, we have the
different convergence rate of the QMLE.
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For each t, let Z,,; be the nxq IV matrix where ¢ > 4+ K means the order condition
of identifiability. By observing the form of additional endogenous component @Y.,
we can consider [V, ; 1, X,;] and its transformations by [I,, W, W, W/W,, W2 ..]
as IVs. Define the sample moment function g5 (6, c,, ar) = == 31 Z1,E0 (0, €, )
and observe F (ng (Qo,cno,OKT’())) = 0,x1. Then, the NL2S estimator (NL2SE) can
be obtained by minimizing the objective function:
gt (0, ¢, ar) (% T ZT’Ltht)il gt (0, ¢, ar).3? For regularity conditions about
IV Z,;, we need to assume existence of plimn,Tﬁmﬁ Zthl Z! Zny and nonsingularity
of it. Remaining conditions for consistency and asymptotic normality can be achieved
by our suggested assumptions for the QML method.?® In next section, we compare
estimation results by the QML and NL2S methods to investigate whether the NL2S

estimation method could work well.

2.5 Simulations

In this section, we report Monte Carlo simulation results on small sample perfor-

mance of the QMLE. For t =1,---,T, the DGP for our simulation is

K
RnYnt = ’YOYn,t—l—i_pOWnYn,t—l—i_Z (]n + 5L;Hn> (ﬁl,k,ojn + ﬁZ,k,OWn) Xnt,k+cn0+at0ln+gnt

k=1
(2.29)
and the expectation function II,, is specified based on
Xnt,k = Ak,an,tfl,k + Cn,k,0 + at,k,Oln + Vnt,k (23())

32Gince the incidental parameters c,o and aro are linear in &, (6, cp,ay), the concentrated
—1
statistical objected function will be g}l"ﬂc (0) <n% ZZ;I Z,’ItZ"t> g}l‘T’c (0) where g}l‘T’c 0) =
T
i S0 Zi it (6).
33For basic discussions on the NL2SE, refer to Theorems 8.1.1 and 8.1.2 in Amemiya (1985).
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for k = 1,---, K where Ay, = veoln + proW,. We consider the joint estimation

K
. . 2
for the main parameter vector 6y and the nuisance parameters {’Yk,o; Pk,05 OV, k,(]}

k=1
where o, o1, is the variance of Vi ;%"

For sample sizes, we consider the combinations of n = 49, 81 and T = 10, 30.
We generate our data with 30 + T periods where the starting value is drawn from
N (0,,x1,I,), but employ the last T" periods as our sample. This design makes the
initial value Y, close to be in steady state. We experiment two cases with the
primitive 4, (i) § = 0.5 (large discounted for the future) and (ii) 6 = 0.95 (small
discounted for the future). The cpno, Cpi0s Q10, Mk, Ent, and Vig's (K =1,---, K)
are independently drawn from the standard normal distribution. For W, a row-
normalized rook matrix as for a chess board is utilized. We consider K = 1, and
fix vo = 0.4, fr10 = 04, Bo1o = 0.4, 02y =1, 110 =04, p1o =01 and 07,5, = 1
throughout the experiment. For (Ao, po), we consider four scenarios: (i) (A, po) =
(0.2,0.2), (i1) (Ao, po) = (0.2,—0.2), (iii) (Ao, p0) = (—0.2,0.2) and (iv) (Mg, po) =
(—0.2,—0.2). The tolerance level of the inner loop is 0.0001 (evaluated by ||-|| . ).** We
compare performance of four estimators, (i) the QMLE 6,,;,r (i) the bias corrected
QMLE éfnl’nT, (iii) QMLE as if 6 = 0 (denoted by éfﬂmT) and (iv) the bias corrected

QMLE as if § = 0 (denoted by 62¢ ). That is, éril,nT and éiZnT are the QMLESs based

ml,nT

on Lee and Yu’s (2010). In order to evaluate performance of estimators, we consider
four criteria: (i) empirical bias, (ii) standard deviation (SD), (iii) empirical root

34As a simpler alternative, we can consider a two-step estimation instead of the joint estimation.
In the first step, the nuisance parameters are estimated and generated regressors from the first step
are used in the second step to estimate the structural parameters 6. However, it sometimes might
yield a bad statistical inference without taking into account the asymptotic influence of the first step
estimate through the generated regressors. See, e.g., Pagan (1984) and Murphy and Topel (1985).
For the empirical analyses, we also take the joint estimation.

35This level is also applied to our empirical analysis.

43



mean square error (RMSE) and (iv) 95% coverage probability (CP).? The number
of sample repetitions I is 400. The obtained MC results reported in Table 2.1 with

0 = 0.95 are summarized in Subsections 5.1 and 5.2.

Table 2.1: Performance of the QML estimators when § = 0.95
(n,T) = (49,10) and (X, p) = (0.2,0.2)

A Y P b1 B2 062 71 P1 0\2/71
0.2 0.4 0.2 04 04 1 0.4 0.1 1
Ominr Bias ~ —0.02 —0.15 005 004 006 -021 —0.15 —0.01 —0.14
SD 007 006 008 004 008 007 004 009 0.06
RMSE 007 016 010 006 010 023 016 009 015
CP 093 022 08 084 088 014 006 094 031
0¢,.r Bias 000  —0.03 000 002 003 —0.05 -003 —0.00 —0.04
~ SD 007 007 009 004 008 009 005 009  0.07
RMSE 0.07 007 009 005 009 010 006 009 0.8
CP 093 084 090 092 093 079 087 091 081
)8 oy Bias 002 —019 0.02 000 003 -043
SD 006 004 007 004 007 0.04
RMSE 0.06 019 007 004 008 0.44
CP 092 000 095 094 092 0.00
05¢ . Bias 005 —0.10 —0.04 —0.01 001 —0.37
~ SD 006 005 007 004 007 0.04
RMSE 0.08 011 008 004 007 037
cp 081 032 089 094 093 0.00

2.5.1 The overall results

(i) The empirical biases of éml’nT and éfnl’nT tend to decrease when n and T'
are large. In particular, we have biases for Y nr (Yinr); &;Z,HT (&;’ZnT), A minT
36The 95% coverage probability is defined by
1 A 1.96 — 3 (A 1.96 — 3
S 4,410 M Bl [2—19 2—1} : M il [2—19 2—1]
I#I{[ 0]l€|: ! \/ﬁ 0o 2400 ~0, I l+ \/ﬁ 0o 2000, 1
for I =1,---,44 5K, I is the total number of sample repetitions,, #; {-} denotes the number of

counts of coverage, where, 6 is an estimate of 6y and E;(}QQOZ;OI denotes a consistent estimate of

29_01 Qop, 2‘9_01. We employ [29_19929_1] for 29_01990 20_01.

0=0.m1.nt
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Continued Table 2.1: (n,T) = (49,10) and (A, p) = (0.2, —0.2)
A Y p b1 B2 o? 7 p1 oV,
0.2 0.4 —-0.2 04 0.4 1 0.4 0.1 1
OminT Bias —-0.08 —-0.16 0.10 0.03 0.04 -0.24 -0.15 -0.02 -0.14
SD 0.07 0.06 0.09 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.11 0.17 0.13 0.05 0.09 0.26 0.16 0.09 0.15
CcP 0.78 0.16 0.77  0.89 0.91 0.07 0.06 0.94 0.31
fc, . Bias  —002 —004 002 002 002 —006 -0.03 —0.01 —0.04
l SD 0.08 0.07 0.10 0.04 0.08 0.09 0.05 0.09 0.07
RMSE 0.08 0.08 0.10 0.05 0.08 0.11 0.06 0.10 0.08
CP 0.89 0.82 0.88 0.92 0.93 0.71 0.86 0.91 0.81
)5, ¢ Bias  —011 —020 012 —0.02 000  —0.46
SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.13 0.20 0.14 0.04 0.07 0.46
CP 0.51 0.00 0.61 0.93 0.94 0.00
0S¢ . Bias  —008 —011 006 —0.03 —0.02 —0.39
l SD 0.06 0.05 0.08 0.04 0.07 0.04
RMSE 0.10 0.12 0.10 0.05 0.07 0.40
CcP 0.69 0.24 0.85 0.88 0.94 0.00
Continued Table 2.1: (n,T) = (49,10) and (A, p) = (—0.2,0.2)
A g p B B2 P g6 p1 oV,
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
Ominr DBias -0.02 -0.15 0.01 0.03 0.03 -0.23 -0.15 —-0.02 -0.14
SD 0.07 0.06 0.08 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.07 0.16 0.08 0.05 0.08 0.25 0.16 0.09 0.15
CcP 0.94 0.19 0.97 0.90 0.92 0.10 0.06 0.94 0.31
Conr Bias =000 —003 —0.00 002 001  —0.06 —003 —0.01 —0.04
SD 0.08 0.06 0.10 0.04 0.08 0.09 0.05 0.10 0.07
RMSE 0.08 0.07 0.10 0.04 0.08 0.10 0.06 0.10 0.08
CcP 0.92 0.83 0.91 0.92 0.93 0.74 0.86 0.91 0.81
S, . Bias 005 —019 —0.02 -0.02 -002 —0.46
’ SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.08 0.20 0.07 0.04 0.07 0.46
CcP 0.87 0.00 0.94 0.90 0.93 0.00
j5¢ o Bias 007  —010 —0.04 —0.03 —0.03 —0.39
SD 0.06 0.04 0.08 0.04 0.07 0.04
RMSE 0.10 0.11 0.09 0.05 0.08 0.40
CP 0.72 0.23 0.87 0.86 0.93 0.00

~ ~ A~ ~D ~ 27(; . .
(Y mmtnt)s PrminT (D] ) @and OV 1 mlnT (UV,l,ml,nT)’ which are reduced substantially

as sample sizes become larger. While the empirical biases diminish when n and T’
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Continued Table 2.1: (n,T) = (49,10) and (A, p) = (—0.2,-0.2)
A Y p b1 B2 o? 7 p1 oV,
—-0.2 0.4 —-0.2 04 0.4 1 0.4 0.1 1
OminT Bias —-0.0r —-0.16 0.07 0.03 0.03 -0.23 -0.15 -0.02 -0.14
SD 0.07 0.06 0.08 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.10 0.17 0.11  0.05 0.08 0.24 0.16 0.09 0.15
CcP 0.78 0.14 0.86 0.88 0.92 0.10 0.06 0.94 0.31
fc, . Bias  —002 —004 003 002 00l —006 -0.03 —0.01 —0.04
l SD 0.07 0.06 0.09 0.04 0.08 0.09 0.05 0.09 0.07
RMSE 0.08 0.07 0.10 0.05 0.08 0.10 0.06 0.10 0.08
CcP 0.90 0.79 0.89 091 0.93 0.74 0.86 0.91 0.81
95, .r Bias  —0.07 —0.19 0.09 —001 -0.01 —0.44
SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.09 0.20 0.11 0.04 0.07 0.44
CcP 0.69 0.00 0.74 0.94 0.94 0.00
0S¢ . Bias  —005 —010 006 —0.02 —0.02 —0.37
l SD 0.06 0.05 0.08 0.04 0.07 0.04
RMSE 0.08 0.11 0.10 0.04 0.08 0.38
CcP 0.81 0.25 0.84 0.90 0.92 0.00
Continued Table 2.1: (n,T) = (49,30) and (A, p) = (0.2,0.2)
A v P B4 Ba  o? T P Oy
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
Ominr DBias —-0.04 —-0.04 0.04 0.02 0.04 -0.08 —0.05 0.00 —0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.06 0.06 0.06 0.03 0.06 0.09 0.06 0.05 0.07
CcP 0.84 0.70 0.84 0.82 0.84 0.53 0.49 0.93 0.60
Conr  Bias =000 —000 —0.00 000 001 —001 —0.00 000 —0.01
SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CcP 0.96 0.93 0.96 0.96 0.96 0.90 0.91 0.93 0.91
S, . Bias 002 —011 —0.00 -0.01 003 -0.38
’ SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.04 0.11 0.04 0.02 0.05 0.38
CcP 0.87 0.00 0.96 0.94 0.87 0.00
j5¢ o Bias 006  —008 —0.04 —0.02 001 -035
SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.07 0.09 0.05 0.03 0.04 0.36
CcP 0.55 0.06 0.83 0.85 0.95 0.00

increase, contribution of large 1" for reducing biases is relatively larger compared to

that of large n.
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Continued Table 2.1: (n,T) = (49,30) and (A, p) = (0.2, —0.2)
A Y p b1 B2 o? T p1 oV,
0.2 0.4 —-0.2 0.4 0.4 1 0.4 0.1 1
OminT Bias —-0.06 —-0.05 0.04 0.02 0.03 -0.09 -0.05 -0.00 —0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.07 0.06 0.06 0.03 0.05 0.10 0.06 0.05 0.07
CcP 0.75 0.59 0.90 0.87 0.89 0.36 0.49 0.93 0.60
fc. . Bias  —0.00 —0.01 -0.00 000 000 —001 —0.00 000 —0.01
l SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CP 0.96 0.93 0.95 0.95 0.95 0.88 0.91 0.93 0.91
)5, .0 Bias  —011 —012 007 —0.02 -0.00 -041
SD 0.03 0.02 0.04 0.02 0.04 0.02
RMSE 0.12 0.12 0.08 0.03 0.04 0.41
CcP 0.08 0.00 0.62 0.78 0.95 0.00
0S¢ . Bias  —0.08 —0.09 004 —0.03 —002 —0.38
l SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.09 0.09 0.06 0.04 0.04 0.38
CcP 0.31 0.04 0.81 0.65 0.95 0.00
Continued Table 2.1: (n,T) = (49,30) and (A, p) = (—0.2,0.2)
A v p B Ba o2 N p1 T4
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
Ominr DBias —-0.03 —-0.05 0.01 0.02 0.02 —-0.09 -0.05 -0.00 -0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.05 0.06 0.05 0.03 0.05 0.10 0.06 0.05 0.07
CcP 0.88 0.65 0.95 0.88 0.90 0.39 0.49 0.93 0.60
Conr Bias =000 —001 —0.01 000 000 —0.01 —000 0.00 —0.01
SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CP 0.95 0.92 0.94 0.95 0.96 0.88 0.91 0.93 0.91
65, . Bias 005 —012 —0.03 —0.03 —0.02 —0.41
’ SD 0.03 0.02 0.04 0.02 0.04 0.02
RMSE 0.06 0.12 0.05 0.04 0.04 0.41
CcP 0.72 0.00 0.89 0.67 0.95 0.00
j5¢ o Bias 008  —009 —0.05 —0.04 —0.03 —0.38
SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.08 0.09 0.06 0.04 0.05 0.38
CcP 0.35 0.03 0.79 0.55 0.87 0.00

A

(ii) 6¢,,r performs better with smaller empirical biases and RMSE compared to
A . . ~ N ~ D A~ A~
those of 0,,;,,7. The biases observed in Y nr, PminT, OminTs ViminTs PlminT and

/\2 . .
0V1minr Can be corrected by the bias correction procedure.
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Continued Table 2.1: (n,T") = (49, 30) and (A, p) = (—0.2,—0.2)
2

A Y p b1 B2 op 7 p1 oV,
—02 04 —02 04 04 1 04 0.1 1
Ominr Bias  —0.05 —0.05 0.03 002 002 —009 —0.05 -0.00 —0.06
SD 004 003 005 002 004 004 003 005 0.04
RMSE 006 006 005 003 005 010 006 005 007
CP 078 052 093 088 092 036 049 093  0.60
0¢,.r Bias  —0.00 —0.01 0.00 0.00 000 —001 -0.00 000 —0.01
- SD 004 003 005 002 004 005 003 005 0.04
RMSE 0.04 003 005 002 004 005 003 005 0.04
CP 0.96 093 095 095 095 089 091 093 091
)% oy Bias =008 —0.12 005 —0.02 -0.01 —0.39
SD 003 002 004 002 004 0.03
RMSE 0.09 012 007 003 004 039
CP 025 000 072 082 095 0.0
05¢ . Bias  —0.06 —0.08 004 —0.03 -0.02 —0.35
-~ SD 003 002 004 002 004 0.03
RMSE 0.06 009 005 003 004 0.36
CP 058 005 0.85 074 093 0.0

Continued Table 2.1: (n,T) = (81,10) and (A, p) = (0.2,0.2)

Ay p B By o? " p1 T4
02 04 02 04 04 1 04 0.1 1
Ominr Bias  0.00 —0.15 0.05 003 005 -021 —015 —0.01 —0.13
SD 005 0.04 006 004 007 006 003 007 004
RMSE 0.05 016 008 005 008 022 015 007 014
CP 093 0.06 082 083 088 003 001 094 016
0,y Bias 001 —0.03 000 002 002 -004 =002 —0.00 —0.04
SD 006 0.05 007 004 007 007 004 008 005
RMSE 0.06 0.06 007 004 007 008 005 008 006
CP 091 0.80 090 090 093 078 086 090  0.80
05, . Bias 004 —0.19 0.02 —0.01 0.02 —0.43
- SD 005 0.03 006 003 006 0.03
RMSE 0.06 019 006 003 006 0.43
CP 080 0.00 092 091 090 0.00
07 p Bias 006 —010 -0.04 -0.01 001 -037
SD 0.05 0.04 006 003 006 003
RMSE 0.08 010 007 003 006 037
CP 069 0.14 086 089 093 0.00

(iii) In the case of éml,nT, the coverage probabilities increase for all cases and

approach to 0.95. The coverage probabilities of éml’nT also increase and are close to
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Continued Table 2.1: (n,T") = (81, 10) and (A, p) = (0.2, —0.2)
2

A Y p b1 B2 op 7 p1 oV,
0.2 0.4 —-0.2 04 0.4 1 0.4 0.1 1
OminT Bias —0.06 —-0.16 0.09 0.02 0.03 —-0.24 -0.15 -0.01 -0.13
SD 0.06 0.04 0.07  0.04 0.07 0.06 0.03 0.07 0.04
RMSE 0.08 0.17 0.12 0.04 0.07 0.24 0.15 0.07 0.14
cpr 0.79 0.04 0.67 0.86 0.89 0.01 0.01 0.93 0.16
fe. - Bias 001 —004 002 002 00l —006 -0.02 —0.00 —0.04
l SD 0.06 0.05 0.08 0.04 0.07 0.07 0.04 0.08 0.05
RMSE 0.06 0.06 0.08 0.04 0.07 0.09 0.05 0.08 0.06
CcP 0.90 0.78 0.88  0.90 0.92 0.74 0.86 0.91 0.80
98, .p Bias  —010 —020 011 —0.02 —0.01 —045
SD 0.05 0.03 0.06  0.03 0.06 0.03
RMSE 0.11 0.20 0.12 0.04 0.06 0.45
cpP 0.43 0.00 0.51 0.85 0.93 0.00
0S¢ . Bias  —0.08 —010 006 —0.03 -0.02 -—0.39
l SD 0.05 0.04 0.06  0.03 0.06 0.03
RMSE 0.09 0.11 0.08 0.04 0.06 0.39
CcP 0.59 0.09 0.79 0.78 0.92 0.00

Continued Table 2.1: (n,T) = (81,10) and (A, p) = (—0.2,0.2)
2

A v p B Bo o? " p1 T4
02 04 02 04 04 1 04 01 1
Oint Bias 000 —0.15 001 002 002 —023 —-015 —001 -0.13
SD 0.06 004 007 004 007 005 003 007 0.04
RMSE 006 016 007 004 007 023 015 007 014
cP 095 005 094 088 090 00l 001 094 0.16
6,0 Bias 000 —003 —000 0.0l 0.0l —005 —0.02 —0.00 —0.04
SD 0.06 0.05 008 003 007 006 004 008 0.5
RMSE 006 006 008 004 007 008 005 008 006
cP 093 080 092 091 092 075 0.8 091  0.80
65, . Bias 006 —019 -0.03 -0.03 -0.02 -045
5D 0.05 003 006 003 006 0.3
RMSE 008 019 006 004 006 045
cP 0.72 000 091 082 092  0.00
05¢ ., Bias 008 —0.10 -0.05 -0.03 —0.04 —0.39
SD 0.05 003 006 003 006 0.3
RMSE 009 011 008 005 007  0.39
cP 0.61 009 085 073 089  0.00

0.95 when we increase n and 7. Overall, the results (i), (ii) and (iii) also hold for

0 =0.5.
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Continued Table 2.1: (n,T) = (81,10) and (A, p) = (—0.2,—0.2)
A Y p b1 B2 o? 7 p1 oV,
—-0.2 0.4 —-0.2 04 0.4 1 0.4 0.1 1
OminT Bias —-0.06 —-0.16 0.06 0.03 0.02 -0.22 -0.15 -0.01 -0.13
SD 0.05 0.04 0.07 0.03 0.07 0.05 0.03 0.07 0.04
RMSE 0.08 0.16 0.09 0.04 0.07 0.23 0.15 0.07 0.14
CcP 0.78 0.03 0.82 0.86 0.91 0.01 0.01 0.94 0.16
fc, . Bias  —002 —004 002 002 00l —005 —0.02 —0.00 -—0.04
l SD 0.06 0.05 0.08 0.03 0.07 0.06 0.04 0.08 0.05
RMSE 0.06 0.06 0.08 0.04 0.07 0.08 0.05 0.08 0.06
CP 0.90 0.78 0.88 0.90 0.92 0.78 0.86 0.91 0.80
)5, ¢ Bias  —0.06 —0.19 008 —0.02 -0.01 —0.44
SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.08 0.20 0.10 0.04 0.06 0.44
CP 0.66 0.00 0.67 0.87 0.92 0.00
65¢ . Bias  —0.05 —010 005 —0.03 —0.03 —0.37
l SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.07 0.11 0.08 0.04 0.06 0.37
CP 0.76 0.09 0.79 0.83 0.91 0.00
Continued Table 2.1: (n,T) = (81,30) and (A, p) = (0.2,0.2)
A g p B B  o? ge! p1 o7
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
Ominr DBias —-0.02 —-0.05 0.03 0.02 0.04 -0.07 —-0.05 —-0.00 —-0.05
SD 0.03 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.05 0.05 0.03 0.05 0.08 0.05 0.04 0.06
CP 0.86 0.57 0.85 0.81 0.80 041 0.31 0.94 0.54
Conr  Bias =000 —000 0.00 000 001 —0.01 —000 000 —0.01
SD 0.03 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.03 0.03 0.04 0.02 0.04 0.04 0.02 0.04 0.03
CcP 0.92 0.93 0.93 0.93 0.94 0.92 0.94 0.94 0.93
S, . Bias 004 011 —0.00 -0.01 0.03 -0.38
’ SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.05 0.11 0.03 0.02 0.04 0.38
CcP 0.62 0.00 0.95 0.88 0.84 0.00
j5¢ o Bias 006  —008 —0.03 —0.02 001 -035
SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.07 0.08 0.05 0.02 0.04 0.35
CP 0.31 0.01 0.80 0.80 0.92 0.00

(iv) For éanT and 0

S,c
mlnT»

they do not have a good pattern of performance. The

RMSEs and the coverage probabilities of égzl,nT and égjnT even tend to increase after

the bias correction. Also, this tendency does not disappear for large n and T. For
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Continued Table 2.1: (n,T") = (81,30) and (A, p) = (0.2, —0.2)
2

A Y p b1 B2 op 7 p1 oV,
0.2 0.4 —02 04 04 1 04 0.1 1
Ominr Bias  —0.04 —0.05 0.04 001 003 —008 —0.05 -0.00 —0.05
SD 004 002 004 002 004 003 002 004 0.03
RMSE 005 006 005 002 005 009 005 004 006
CP 076 044 085 087 08 026 030 094  0.54
0¢,.r Bias  —0.00 —0.00 0.00 0.00 000 —001 -0.00 000 —0.01
- SD 004 003 004 002 004 003 002 004 0.03
RMSE 0.04 003 004 002 004 004 002 004 003
CP 094 094 092 093 094 092 094 094 093
)% oy Bias =010 =012 0.07 —0.03 -0.00 —0.40
SD 003 002 003 002 003 0.02
RMSE 0.0 012 008 003 003 040
CP 0.04 000 038 064 093 0.0
05c . Bias  —0.08 —0.09 004 —0.03 -0.02 -0.37
. SD 003 002 003 002 003 0.02
RMSE 008 0.09 005 004 004 037
CP 016 001 073 050 090  0.00

Continued Table 2.1: (n,T) = (81,30) and (A, p) = (—0.2,0.2)

A g p B B2 P g6 p1 oV,
—0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
Ominr DBias —0.02 —0.05 0.01 0.01 0.02 —0.08 —-0.05 —-0.00 —-0.05
SD 0.04 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.05 0.04 0.02 0.04 0.08 0.05 0.04 0.06
CcP 0.88 0.51 0.94 0.87 0.87 0.31 0.30 0.94 0.54
6c.r Bias  —000 —0.00 —-0.00 000 000 001 —0.00 000 —001
SD 0.04 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
CcpP 0.93 0.94 0.93 0.93 0.94 0.91 0.94 0.94 0.93
6S, . Bias 006 —012 —0.03 —0.03 —0.02 —0.40
’ SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.07 0.12 0.04 0.03 0.04 0.40
CcP 0.38 0.00 0.87 0.52 0.88 0.00
6S¢., Bias 008  —0.09 —0.04 —004 —0.03 —0.37
SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.08 0.09 0.05 0.04 0.05 0.37
CcP 0.19 0.01 0.75 0.37 0.79 0.00

S,c

. do not seem to work well due to crucial misspecification

all cases, 65, —~ and 0

errors.
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Continued Table 2.1: (n,T") = (81, 30) and (A, p) = (—0.2,—0.2)
2

A Y p b1 B2 op 7 p1 oV,
—0.2 04 —0.2 0.4 0.4 1 0.4 0.1 1
Ominr Bias ~ —0.04 —0.05 0.03 001 002 —0.08 —0.05 —0.00 —0.05
SD 003 002 004 002 004 003 002 004 003
RMSE 0.05 006 004 002 004 008 005 004 0.06
CP 078 039 088 086 08 032 030 094 0.54
¢, .» Bias  —0.00 —0.01 0.0 0.00 000 =001 —0.00 000 —0.01
-~ SD 0.03 0.02 004 002 004 003 002 004 003
RMSE 0.03 003 004 002 004 003 002 004 003
CP 094 093 095 093 093 092 094 094 093
0% vy Bias —-0.07 —0.11 0.05 —0.02 —0.01 —0.38
SD 003 002 003 002 003 0.02
RMSE 0.07 012 006 003 004 038
CP 022 000 056 073 090  0.00
05¢ . Bias  —0.05 —0.08 0.04 —0.03 -0.02 —0.35
-~ SD 003 002 003 002 003 0.02
RMSE 0.06 008 005 003 004 035
cP 042 001 073 060 088  0.00

2.5.2 The results for specific parameters

(Ao) In terms of empirical biases and coverage probabilities, S\fnl,nT works
relatively better than j\ml,nT- For most cases, downward biases are observed. When
po < 0, it seems that Xml,nT and j\fnz,nT have relatively low coverage probabilities.

Based on A\>¢ _ when (n,T) = (49,10), the signs of misspecification biases are

ml,n

positive if py > 0, but are negative if py < 0. From these results, the sign of pg

S,c

minr While the sign of A\g would

determines the sign of the misspecification bias of A
not be so.

(70) Under small T', 4,1 »r has significant downward biases for all cases. When
T increases, the absolute values of biases decrease. This result is consistent with

those of Hahn and Kuersteiner (2002) for dynamic panels (with neither spatial nor

intertemporal effects). The bias corrected 4;,, ,» reduces the bias.
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Focusing on %Snlch when (n,T) = (49, 10), we observe misspecification biases in
estimating v, are negative and their degree of bias might be affected by values of \g
and pg.

(po) For pg, the magnitude of biases is smaller than that of vy. For all cases, we
observe upward biases in Py 7. If Ag > 0 and py < 0, substantial upward biases in
Pminr are observed. On the other hand, we detect relatively small upward biases in
Pminr if Ao < 0 and py > 0. By introducing the bias correction to py, ,r or increasing
n or T', the amount of bias decreases and coverage probabilities become better.

Consider the misspecification bias by focusing on pﬂinT. Based on ﬁf;;inT when
(n,T) = (49, 10), misspecification biases turn to be upward if py < 0, but are down-
ward if pg > 0. It seems that the sign of misspecification bias takes the opposite sign
of pg but can be irrelevant to signs of Ag.

(B11,0) Performances of Bl,l,ml,nT and Bil,ml,nT are reasonable in biases and cov-
erage probabilities. For all cases, upward biases in BLl,ml,nT are detected but they
diminish after correcting biases or increasing n or 7.

To analyze the misspecification bias, consider Bf L minr When (n,T) = (49,10).
We observe downward biases and those biases increase when § increases in absolute
values.

(B210) Like the case of 311, we detect upward biases in BQ,I,ml,nT but they de-
crease and coverage probabilities become better after correcting the biases or increas-
ing nor 7.

To study misspecification errors, focus on 55 Loty With (n,T) = (49,10). When
both g and py > 0, there are upward misspecification biases in B;’ iy For other

. . . . . 28
cases, however, downward misspecification biases in (3,7, 7 are observed.
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(0620) When n and T are small, biases of 62, ,,, are downward and the bias

correction is needed.

2,8
e,mln

~2.Sc
T and O-e,ml,nT7

For all cases of & there are downward biases.

(710) Properties of 44 ;i of X processes are very similar to 9, ,r. That is,
large downward biases in 4 ;.7 are observed but the bias can be reduced and the
coverage probability can become more adequate from the bias correction.

(p10) In case of pro, Prminr and p,, . perform well with small biases and
adequate coverage probabilities even for small samples.

(0‘2/7170) Lastly, consider 6%,y and 635 p- Similar to o2, we detect a sub-
stantial downward bias for small 7" = 10 cases. By introducing the bias correction or
increasing sample size T', biases are reduced and coverage probabilities are improved.
2.5.3 Identification of § and effects of misspecified ¢ on esti-

mation

In nonlinear structural econometric analyses, identifying the true time-discounting
factor (dg) is a challenging issue since the statistical objective function is very flat
around 6y.>” Hence, we conduct an additional experiment on identifying &, the true
time-discounting factor. To identify the true &y, we suggest using the log-likelihood
measures such as the sample log-likelihood function, Akaike information criterion
(AIC), and Bayesian information criterion (BIC). Employing those likelihood mea-~
sures can be justified by the information inequality in likelihood theory. Via Figures
2.1 and 2.2, we report the sample likelihood functions across various ¢’s and the
misspecification errors of estimating g, 79, and py in terms of the RMSE for the

two representative cases: (i) do = 0 and (ii) dp = 0.95 with a large finite sample

3TKomarova et al. (2017) discuss this issue in a framework of dynamic discrete choice models.
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Figure 2.1: Selection of § via likelihood measures
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Note: We show two representative cases: (i) Myopic: 6 =0, (n,T) = (81, 30), and
K =2 (ii) Forward-looking: § = 0.95, (n,T) = (81,30), and K =2 We set A = 0.2,
v = 0.4, and p = 0.2, and other circumstances are the same as the main simulation.

The x-axis shows ds while the y-axis reports the sample log-likelihood.

and rich exogenous variables. Additional results and discussions can be found in the
supplementary file of Jeong and Lee (2018).

Throughout all cases, three observations can be summarized. First, having suffi-
ciently large observations is needed to identify the true dq. If we do not have sufficient
observations, we may not distinguish the true model via the likelihood measures. Sec-
ond, the number of significant exogenous variables also affects identifying dy. Under
same circumstance, including additional exogenous variables means a (relatively) high
signal-to-noise ratio. If a portion of the explainable part is large, we can distinguish
the myopic and forward-looking models by the likelihood measures and estimation
results are less affected by misspecified d’s. Third, it is easier to identify Jy if the true
model is a myopic one. It seems that the myopic model’s complexity is much simpler,

so less information might be required to identify g, which is zero.
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Figure 2.2: RMSESs in estimating A , 7, and p for misspecified )
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Forward-looking, figures for (), 7, p), respectively
Note: We show two representative cases: (i) Myopic: 6 =0, (n,T) = (81, 30), and
K =2 (ii) Forward-looking: § = 0.95, (n,T) = (81,30), and K =2 We set A = 0.2,
v = 0.4, and p = 0.2, and other circumstances are the same as the main simulation.
The x-axis shows ds while the y-axis reports the sample log-likelihood.

2.5.4 Performance comparison: QML and NL2S methods

In this subsection, we compare estimation performance of the QML and NL2S es-
timators. For this experiment, we set (n,T) = (81,30), 6 = 0.95, \g = 0.2, o = 0.4,
po =0, Bi1o = Bi2o = 0.4, Ba1o = P220 = 0, and other circumstances are the
same as in the main simulation. This design means no spatial time lag as well as no
Durbin regressor for simplicity. As IVs, we employ [Y;,;—1, X,x] and its transforma-
tions by [L,, W,, W, , W!W,,,W?|. Under this circumstance, W,, [Y,,;,—1, X] can play

an important role in identifying 6.
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Figure 2.3: Performance comparison: QMLE and NL2SE
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Note: We set (n,T) = (81,30), 6 = 0.95, \g = 0.2, 7o = 0.4, po = 0,
Bi1,0 = B120 = 0.4, no Durbin regressor, and other circumstances are the same as
the main simulation. As IVs for the NL2SE, we consider [Y,;—1, X,.), and its
transformations by [I,,, W,,, W/, W, W/ W?2].

For each estimation method and parameter value, we report empirical bias, stan-
dard deviation, and RMSE as bar graphs (Figure 2.3).3® Except for py, two methods
show the same signs of empirical biases (negative for Ay and -y, and positive for
B11,0). The NL2SE tends to yield smaller magnitude of empirical biases than that
of the QMLE (except for 7). In terms of standard deviation and RMSE, however,
the NL2SE is worse than the QMLE. This implies the NL2SE is not efficient, so we
may need to include more IVs or consider quadratic moment conditions to improve
efficiency. If we include many moment conditions, however, it leads to additional

38We do not report results for 1 2,9, which are similar to those of 81 1,0.
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biases (Lee and Yu (2014)). Compared to the main structural parameters Ao, 7o, and
po, there is the relatively small gap in efficiency in estimating 3 1.

In the aspect of computation costs, it seems using the NL2S method does not
reduce computation time. In the inner loop, solutions of algebraic matrix Riccati
equation Q7 (0) and L} () are obtained for given 6, so g, (0)’s are calculated. Note
that this procedure is required for both estimation methods. In the outer loop,
however, parameter searching on © is conducted by optimizing different statistical
objective functions. We expect reduced computation time in the outer loop by avoid-
ing calculating In |R,, (0)] if we use the NL2S method. Hence, the main computation
costs might be originated from the inner loop. If we have very large n, calculating
In|R, (0)| can be also demanding. For this situation, using approximation methods

for In|R, (6)| will be helpful.

2.6 Application

In this section, we consider an application of our model. Since our model is
based on strategic interactions stemming from fixed locations, we consider analyzing
spillover effects of local governments’ welfare spending. Two sources of strategic in-
teractions can be considered in making local policies. First, welfare recipients can
move in from or out to nearby cities to enjoy more beneficial policies. Second, the
"yardstick competition” is considered. It means that a decision-maker of a local gov-
ernment has an incentive to make an efficient fiscal decision by comparing its decision
with those of neighboring local governments. Since there exists ”vote” to evaluate the
performance of a local government by residents, this type of competitions arises. To

econometrically investigate these strategic interactions, SAR and/or SDPD models
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describe optimal reaction functions of local governments when they play a simultane-
ous move game at each period. With payoff specification (2.4), conventional SDPD
models present the vector of myopic best response functions while the intertemporal
spatial dynamic model shows the forward-looking best responses.

In this paper, we consider public safety spending competitions among counties in
North Carolina. Both myopic and forward-looking policy reaction functions are con-
sidered.® In the case of the public safety spending competition, a decision maker shall
consider specific policy externalities. Those policy externalities arise since criminals
can commit crimes with moving to neighboring cities and they are punished in every
city. On one hand, a local government has an incentive to decrease its safety spending
to enjoy ”free-riding” effects when its neighbor spends more on public safety (substi-
tution effect). On the other hand, a local government can increase its effort (public
safety spending) to reduce overall criminal activities corresponding to a substantial
safety spending in a neighboring city (similar to income effect in consumer theory).
Yang and Lee (2017) consider a criminal’s payoff function describing an incentive to
commit a crime. Under certain conditions of payoff, they show the substitution effect
will dominate. In both complete and incomplete information settings, they establish
a SAR equation as a policy reaction function and find significant estimated substitu-
tion effects in cities’ public safety spending. However, their framework is based on a
static game, so a cross-sectional data set is employed.

We revisit this issue with a panel data set and two kinds of econometric specifi-
cations: (i) conventional SDPD model, and (ii) our intertemporal SAR model. From

39Reasons for considering our forward-looking model are that (i) a policymaker can be assumed
to be benevolent (for the regional economic growth) and (ii) he/she has an incentive to make a
forward-looking decision to keep his/her political reputation.
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Table 2.2: Descriptive statistics: counties in North Carolina

Variables Mean  Standard dev. Min Max
Public safety spending (10°) 20.55 26.34 0.00  237.37
Total revenue (109) 126.23 216.43 0.00 1786.45
Proportion on total expenditure 0.19 0.06 0.00 0.45
Population (10%) 94.43 140.55 4.14  1035.61
Land area (km?) 1259.18 497.48 446.70  2457.92
Population density (/km?) 74.76 99.90 3.40  763.93
Median ages 40.08 4.58 23.90  51.30
Median household income (10%)  4.14 0.77 2.51 7.06
Distance (km) 248.15 147.84 12.26  751.90
No. of observations 1200 - - -

Note: Sample is 100 counties in North Carolina from 2005 to 2016. Dollar amounts
are real values adjusted by the GDP deflator with base year 2009.

the North Carolina Department of State Treasurer’s website, we obtain the govern-
ment finance data. The data on counties’ demographic and economic characteristics
are from the United States Census Bureau. We have samples of 100 counties in
North Carolina from 2005 to 2016 (total 1,200 observations). We construct a panel
data set, so it might capture the dynamics of local governments’ decision-making
and their demographic/economic characteristics.’® Table 2.2 summarizes the sample
statistics. All dollar amounts are real values adjusted by the GDP deflator with the
base year 2009. We observe that counties have distinct characteristics in financial
status as well as economic/demographic characteristics. There are substantial differ-
ences among county governments’ revenues, amounts of public safety spending, and
proportion of expenditures on public safety. The maximal public safety spending is

40For some demographic and economic variables (Median ages and Median household income),
there are some missing observations from 2005 to 2008 (164 observations among 1,200 observations).
To get a balanced panel data set, we conduct the extrapolation scheme.

60



237.365 million dollars, and the minimal one is zero. The number of observations
taking zero is 31 among a total of 1,200 observations (2.58%).4! In the proportion
of expenditures on public safety, the average is 19.3%, and the standard deviation is
0.06%. The largest portion is 44.8% while the smallest one is 0%. County govern-
ments in North Carolina also differ in demographic/economic status. The smallest
population is 4,127 in 2016 (Tyrrell county) while two big counties are: Mecklenburg
county (1,035,605 in 2016) and Wake county (1,007,631 in 2016). The population

density is calculated by + Population - \where the minimum and maximum areas are

respectively 446.701 km? and 2457.924 km?2. The average median age of counties is
40.08, and the median household income is 41,410 dollars.

For construction of a network W,,, we employ a concept of "neighbors” such that
w;j = % where w;; = 1 if ¢ and j are "neighbors”; w;; = 0 otherwise. To define
"neighbors”, geographic distances among counties are considered. The kilometer-base

geographic distance between two counties ¢ and j (denoted by d;;) is evaluated by the

Haversine formula:

d;; = 2rp arcsin (Sin2 (W) + cos () cos (p;) sin® (T)) (2.31)

where rg = 6356.752 km denotes the Earth radius, ¢; and ¢; are latitudes, and 7
and 7; are longitudes in radians.*? If d;; < d. where d. is a specified cutoft value,
i and j are "neighbors”. We consider four sets of model pairs (myopic model v.s
forward-looking model) by choosing four different cutoff values, d. = 50, 65, 80, and
95. On average, a county has 4.34 neighbors if d. = 50; 7.34 neighbors if d. = 65;
10.54 neighbors if d. = 80; and 14.76 neighbors if d. = 95.

4 Because the zero proportion is small, so we do not build a Tobit model for this application.

42That is, county i’s location is characterized by a pair (¢;, 7;).
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This application studies the main structural parameters. Ay, 7y, and py, under
two different assumptions for agents. i.e., myopic v.s forward-looking agents. Instead
of directly estimating the time-discounting factor §, we consider and compare two
values of §: (i) 6 = 0 (myopic agents) and (i) 6 = 0.9704 (forward-looking agents).

The value § = 0.9704 is set by where 7, = 0.0305 is the average annual 10-year

Treasury Constant Maturity Rate from 2005 to 2016.%® To achieve a stable process
of a decision variable, we consider counties’ public safety spending per capita as a
dependent variable. Since a local government’s public safety spending is based on its
budget, the annual revenue (per capita) of a county is considered as an explanatory
variable. Since the population size and residents’ wealth level might affect the scale of
criminal activities, a decision of a local government reflects those features. To control
them, the population density and the median household income are included in a set
of explanatory variables. We also include the median age of residents of a county.
Lastly, Durbin regressors (W, X,;) of all explanatory variables are also considered so
that they describe the externalities of explanatory variables affecting decisions. For
estimation of the structural and nuisance parameters, we consider the joint estimation
of the equations (2.29) and (2.30).%

The estimation results are summarized in four tables of Table 2.3: They are respec-
tively for various neighboring systems with d. = 50, 65, 80, and 95. For both § = 0

and 0.9704, and all cutoff values, county government’s public safety spending (per

43Tn macroeconomic literature, § is calibrated with targeting to the first moment of capital to
output ratio (about 3) or is set to be a reciprocal of the gross long-run (risk-free) interest rate.
They usually take a value from 0.95 to 0.99 if an annual data set is considered. We select the
latter approach, which implies § (1 +7%,.) = 1. In a conventional intertemporal consumption-saving
model, 0 (1 +7,) = 1 means completely smoothed consumption. For the detailed discussion, refer to
Chapter 1.3 in Ljungqvist and Sargent (2012).

4“4 Derivation and statistical properties (including asymptotic properties) of the joint QML method
can be found in the supplement file.
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Table 2.3: Model estimation

Myopic Forward-looking
Total revenue per capita 0.1008*** (0.0054)  0.1226*** (0.0066)
Population density 0.0002 (0.0003) 0.0002 (0.0003)
Median ages 0.0035 (0.0022) 0.003 (0.0022)
Median Household income 0.0011 (0.0011) 0.001 (0.0011)
Neighboring total revenue per capita  -0.0295*** (0.0096) -0.0379*** (0.0117)
Neighboring population density -0.0001 (0.0006) 0 (0.0005)
Neighboring median ages 0.0011 (0.0041) 0.0008 (0.004)
Neighboring median household income  -0.0018 (0.0021) -0.0017 (0.0022)
A\ -0.0309 (0.043) -0.0623 (0.0561)
~ 0.384%%* (0.0252)  0.5099%** (0.069)
p 0.0582 (0.0515) 0.1154* (0.0662)
o? 0.003*** (0.0001)  0.0051%** (0.0003)
Conditional log likelihood -2713.5 -2713.3
AIC 4935 4934.6
BIC 5610.4 5610
No. of Obs 1200 1200
No. of neighbors 4.3400 (1.4229) 4.3400 (1.4229)
Cutoft distance 50 50

Note: The conditional log likelihood is the sample log likelihood for Y,,; given X,;.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1

percent levels are respectively marked by *, ** and ***.
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Myopic Forward-looking

Total revenue per capita 0.1012*** (0.0053)  0.1226*** (0.0066)
Population density 0.0002 (0.0003) 0.0002 (0.0002)
Median ages 0.0032 (0.0022) 0.0027 (0.0021)
Median Household income 0.0011 (0.0011) 0.001 (0.0011)
Neighboring total revenue per capita  -0.0394*** (0.0129) -0.053*** (0.0157)
Neighboring population density -0.0001 (0.0006) 0 (0.0005)
Neighboring median ages -0.001 (0.0054) -0.001 (0.0053)
Neighboring median household income  -0.0027 (0.0027) -0.0026 (0.0028)
A -0.0308 (0.0559) -0.0321 (0.072)
N 0.3796%** (0.0251)  0.5228%** (0.0656)
0 0.0747 (0.0657)  0.1486* (0.0833)
o? 0.003%** (0.0001)  0.0051*** (0.0003)
Conditional log likelihood -2712.9 -2712.5

AIC 4932.2 4931.3

BIC 5607.6 5606.7

No. of Obs 1,200 1,200

No. of neighbors 7.3400 (2.1937)  7.3400 (2.1937)
Cutoft distance 65 65

Note: The conditional log likelihood is the sample log likelihood for Y,,; given X,;.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1

percent levels are respectively marked by *, ** and ***,
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Myopic Forward-looking

Total revenue per capita 0.1023*** (0.0054)  0.1239*** (0.0066)
Population density 0.0002 (0.0003) 0.0002 (0.0002)
Median ages 0.0032 (0.0022) 0.0028 (0.0021)
Median Household income 0.0011 (0.0011) 0.001 (0.0011)
Neighboring total revenue per capita  -0.052*** (0.0158) -0.0667*** (0.0191)
Neighboring population density -0.0003 (0.0007) -0.0002 (0.0006)
Neighboring median ages -0.0028 (0.0074) -0.0031 (0.0072)
Neighboring median household income  -0.0041 (0.0034) -0.0036 (0.0036)
A 0.0142 (0.0657) 0.0058 (0.0845)
N 0.3730%%* (0.0251)  0.5081%* (0.065)
p 0.0705 (0.0784)  0.1726* (0.0984)
o2 0.003%** (0.0001)  0.0051*** (0.0003)
Conditional log likelihood -2712.9 -2712.5

AIC 4927.8 4927.1

BIC 5603.3 5602.5

No. of Obs 1,200 1,200

No. of neighbors 10.5400 (3.0465)  10.5400 (3.0465)
Cutoft distance 80 30

Note: The conditional log likelihood is the sample log likelihood for Y,,; given X,;.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1
percent levels are respectively marked by *, ** and ***,

Y
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Myopic Forward-looking

Total revenue per capita 0.1031*** (0.0054)  0.1237*** (0.0066)
Population density 0.0003 (0.0003) 0.0002 (0.0002)
Median ages 0.0033 (0.0022) 0.0028 (0.0021)
Median Household income 0.0012 (0.0011) 0.0011 (0.0011)
Neighboring total revenue per capita  -0.0673*** (0.0187) -0.082*** (0.0226)
Neighboring population density -0.0006 (0.0008) -0.0004 (0.0008)
Neighboring median ages -0.0044 (0.0088) -0.0041 (0.0086)
Neighboring median household income  -0.0028 (0.0042) -0.0024 (0.0044)
A 0.0434 (0.0805) 0.027 (0.1049)

N 0.3616%* (0.0252)  0.506%** (0.0661)
p 0.1607 (0.1002)  0.1696 (0.1255)
o? 0.003%** (0.0001)  0.0051*** (0.0003)
Conditional log likelihood -2713.1 -2713.2

AIC 4927.1 4927.4

BIC 5602.5 5602.8

No. of Obs 1,200 1,200

No. of neighbors 14.7600 (4.1709) 14.7600 (4.1709)
Cutoft distance 95 95

Note: The conditional log likelihood is the sample log likelihood for Y,,; given X,;.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1
percent levels are respectively marked by *, ** and ***,

Y
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capita) is persistent itself, the total revenue is significantly positive, but the neigh-
boring total revenue is significantly negative. The current competition parameter \g
is negative for d. = 50 and 65 while it is positive for d. = 80 and 95. However, those
are not significant. For the learning and/or diffusion parameter py, the sign is posi-
tive for all cases, but it is significant only for the forward-looking agent model (except
d. = 95) at the 10% significance level. Thus, for the forward-looking agent model,
this result indicates that the learning and diffusion effects diminish when d. char-
acterizing "neighbors” becomes 95 kilometers. The population density, median age,
median household income and their Durbin regressors do not have significant effects.
To evaluate the model’s performance, we consider three likelihood measures: sample
conditional log-likelihood values®, values of Akaike information criterion (AIC) and
Bayesian information criterion (BIC). In choosing a spatial weight matrix, Chapter
2 in Lee (2008) suggests using the goodness-of-fit measures (e.g., adjusted R? or log-
likelihood). Via Section 2.5, we provide evidence for using likelihood measures in
selecting 0. Based on those likelihood measures, hence, the forward-looking agent
model with cutoff value d. = 80 is the best one among the 8 model specifications.
For each cutoff value d., the forward-looking agent model is more favorable than the
myopic model except d. = 95. For both myopic and forward-looking models, d. = 80
is selected in general as preferred.t

Here we provide economic interpretations based on the forward-looking agent
model with d. = 80. We can recover the cost function: ¢ (v, yir—1) = 0.2541 (y;r — yi’t,l)Q—i—

45Tt means the log-likelihood function conditional on exogenous variables.

4SHowever, AIC selects d, = 95 in case of the myopic model.
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0.2459y%. The marginal direct effect of increasing previous own public safety spend-
ing (per capita) by one thousand dollars on the current one is 0.508 thousand dollars.
The marginal direct effect of increasing previous neighbors’ public safety spending
(per capita) by one thousand dollars is pg 37—, wi; = po = 0.1726 thousand dollars.*”
Consider the direct marginal effects of own and neighbor’s revenues on the public
safety spending. When the current revenue (per capita) of a county increases by one
thousand dollars, it induces an increment of 0.124 thousand dollars directly on its
public safety spending (per capita). On the other hand, the direct effect of neigh-
bors’ revenues (per capita) by increasing one thousand dollars will decrease the public
safety spending (per capita) by 0.067 thousand dollars. It provides evidence of the
negative externalities of revenues on the public safety spending.

Since our intertemporal SAR equation describes an equilibrium system, the cu-
mulative marginal effects of an increase in the total revenue can be evaluated. The
formula of the cumulative marginal effects from j’s k'"-exogenous characteristic on
1’s decision is

Iyit
Ox jt,k

_ [Rgl (I, + 6Dk Axn) (Brioln + ﬁz,k,own)} (2.32)

ij
where D, = >272, 51*1Dn,lA§;T} for each k = 1,---, K. Correspondingly, the cumu-
lative own marginal effects are [R,! (I, + 0Dy, . Akn) (B1k00ln + BokoWa)l,;- On the
other hand, the direct neighboring marginal effect is 35 ow;; while the direct own
marginal effect is 5 0. Equation (2.32) says the cumulative marginal effects differ
across spatial units and heterogeneity of these comes from the network W,,. To in-
vestigate the cumulative effect, we select two specific counties based on the number

of neighbors. Based on d. = 80, Iredell county has the largest number of neighbors

47 . X .y . . . . A po
For specific j’s effect on i’s decision, it will be pow;; = Numberof i sneightors”
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Table 2.4: The direct and cumulative effect of increasing the total revenue (per capita)
by one thousand dollars

Iredell county Dare county

Direct Own effect 0.1239 0.1239
Neighboring effect -0.0039 -0.0222

Cumulative Own effect 0.1046 0.1045
Neighboring effect -0.003 -0.0167

No. of neighbors 17 3

(17 neighbors) while Dare county has the smallest number of neighbors (3 neighbors).

Figure 2.4 describes neighbors of the two counties.

Figure 2.4: Neighbors of the two counties (based on d. = 80)
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Table 2.4 shows direct own/neighboring effects and cumulative own/neighboring
effects for the two counties. First, magnitudes of neighboring effects (both direct and

cumulative) are bigger for the isolated county. Second, the negative direct neighboring
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effects are smaller than the negative neighboring cumulative effects. For Dare county,
that negative effect is weakened by 29.28% while 23.07% of the effect is alleviated for
Iredell county in the equilibrium. Third, the positive direct effects are also weakened
in the equilibrium. For Dare county, the positive own effect is alleviated by 15.66%
and 15.58% of the positive effect is weakened for Iredell county. These results might
be affected by a structure of W,, and structural parameters 6.4

A notable advantage of using dynamic models is doing impulse response analyses.

t™"-period k'"-exogenous characteristic zj;x on i’s (t + h)"-

The effect of changing j’s
period economic activity y; ++n (h = 1,2, ---) is characterized by the impulse response

function:

0|k, (Y, ) h
OB et _ |~ 4r9R1 (1, 4 6D, An) (Briol + BanoWa) AL,

a.Tjt,k 9—0 i
(2.33)
. . . 5[Et (Yn,t+h)] .
Using formula (2.33), we plot the impulse response functions of own effects B e

OB (Yaein)],

and neighboring effects L (j is a neighbor of 7) for the two counties.

051k

First, observe the impulse response functions of own effects. Note that Iredell
county’s own cumulative effect (impulse response function at h = 0) is slightly larger
than that of Dare county (see Table 2.4). However, there is a crossover at h = 4.
Since two impulse responses are so close in this case, we only plot the impulse response
functions of the two counties between h = 4 and 5 to show the intersecting point.
It means Dare county’s own effects will be larger than that of Iredell county after
h = 4. Second, we capture the overshooting effects for both counties. The negative
neighboring effects are alleviated by h = 2. After h = 3, the neighboring effects
become positive and they are diminishing when A increases. In case of Dare county,

48 Additional comments for this issues can be found in the supplement file of Jeong and Lee (2018).
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Figure 2.5: Impulse response functions: own effects (left) and neighboring effects
(right)
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that overshooting effect is more distinct relative to that of Iredell county. It seems
that the negative neighboring effects diminish over time combined with other positive
effects: self-reinforcing effects, positive diffusion effects, and positive own revenue
effects. Since we consider a row-normalized W,,, nonzero elements in the row of W,
for Dare county are much larger than those of Iredell county. This fact may be a
primary reason for distinct overshooting effects in case of Dare county.

Last, we want to deliver policy implications by conducting welfare analyses. We
consider a situation that the North Carolina state government gives some amount of
subsidy (per capita) to a county in 2016. So, the initial period is set to be 2016 in
this analysis. Let A, denote the amount of subsidy and & = 1 for the index of a

county’s total revenue. Then, we generate a new regressor X, r; (denoted by XnT’l)

XnT,l = [951,T,1, Tyt Ag,--- 7xn,T,1]/ (2-34)
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Table 2.5: Changes of social welfare if a countys total revenue (per capita) increases
by one thousand dollars

Casel Case2 Case3 Case4
Welfare change Ay, -0.0013  0.0097 0.0121 0.0918

Note: We select four specific counties: (Case 1) Mecklenburg county (richest and the
most populated county), (Case 2) Tyrrell county (poorest and the least populated
county), (Case 3) Iredell county (the largest number of neighbors (17 neighbors)),
and (Case 4) Dare county (the most isolated one (3 neighbors)).

describing a changed economic environment, where j denotes a subsidy recipient.
Note that the realized pair {Y,r, X,,r1} and the generated one {YnT;XnT,l} yield

distinct dynamics, so they have different expected lifetime values as well as social

welfare. Using the bias corrected QMLE (é%l7nT), we can compute a change of welfare

AW - WF ({YTLT7 XnT,l} ) é’fnl,nT) — ]%F ({YnT, XnT,l} ) éfnl,nT) (235)

where YWF ({Yor, Xnr1};0) stands for the welfare measure defined by the summation
of counties’ (expected) lifetime payoffs with the initial value {Y,r, X,71} and pa-
rameter 6. W/F ({YnT, )N(nTJ} ;é;l7nT> captures social welfare when a county receives
some subsidy while W ({YnT, Xora} ;é;l7nT> evaluates social welfare in a given re-
alized economic environment. The difference between I%F ({YnT, X’nT,l} ; éfm,w) and
WF ({YnT, Xora}; éfm,w) will capture a welfare change corresponding to the change
of policy.®

For convenience of analysis, we only select four specific counties: (Case 1) Meck-

lenburg county (richest and the most populated county), (Case 2) Tyrrell county

49The detailed derivation and specification can be found in the supplement file of Jeong and Lee
(2018).
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(poorest and the least populated county), (Case 3) Iredell county (has the largest
number of neighbors (17 neighbors)), and (Case 4) Dare county (has the smallest
number of neighbors (3 neighbors)). The amount of subsidy (per capita) from the
state government is set to be one thousand dollars (i.e., A, = $1,000). Table 2.5
reports Ayy’s for Cases 1 - 4. First, we observe that the number of neighbors affects
social welfare more than population and/or level of revenues in our framework. When
the state government increases Mecklenburg county’s revenue (per capita) by $1,000,
social welfare decreases by 0.0013 welfare measure. This negative welfare effect might
come from the negative externalities of revenues on the public safety spending. Wel-
fare increases for each of the other three cases. By comparing Cases 3 and 4, giving
subsidy to the county whose number of neighbors is small increases social welfare

more in the sense of public safety spending.

2.7 Conclusion

In this paper, we consider the specification and estimation of a spatial intertem-
poral competition model in a dynamic (differential) game setting. Agents are linked
in a given spatial network. To characterize agent’s payoff function, a linear-quadratic
one is considered. By the MPE with a unique NE equation, we build an econometric
model and consider model identification and estimation. In particular, we investigate
the QML estimator. We obtain consistency and asymptotic normality of the QML
estimator under some regularity conditions. Due to the presence of many nuisance
parameters, bias correction of the QML estimator is needed. To fortify those results
and investigate finite sample performance of the estimator, we conduct Monte Carlo

simulations. From the simulations, the QML estimator and its bias-correction reveal
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reliable performance. In particular, for small 7', the bias corrected QML estima-
tor is recommended. For a misspecified conventional SDPD model, which ignores
the intertemporal decision, significant empirical biases of estimates and low cover-
age probabilities are detected. Using the established model, we analyze strategic
spillover effects of counties’ public safety spending in North Carolina. We estimate
structural parameters and compare the estimation results with those from the conven-
tional SDPD model. First, our intertemporal SAR specification turns out to be more
statistically favorable than the corresponding traditional SDPD model. Second, we
find some evidence of persistency of public safety spending, positive learning and/or
diffusion effects from previous neighbors’ decisions, positive effects of own total rev-
enue, and negative externalities from neighboring total revenues. An overshooting
effect is captured for the case of negative neighboring revenue effect. In the welfare
analysis, we observe giving subsidy to counties whose number of neighbors is small

can be effective in the sense of public safety spending.
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Chapter 3: Spatial dynamic models with intertemporal
optimization II: Coevolution of economic activities and

networks

3.1 Introduction

For many economic variables, cross-sectional or time series dependencies have been
observed. For example, Case et al. (1993) find that a state government’s expenditure
is positively correlated with its neighbors’ expenditures. In this paper, by focusing
on interactions among rational agents (characterized by spatial units), we establish
a new spatial dynamic panel data (SDPD) model. The purpose of our model is to
explain both dependencies with time-evolving endogenous spatial networks by eco-
nomic reasonings. That is, it accounts for the co-dynamics of (i) interrelated actions
of rational agents and (ii) their network relationships. To construct a model with
a rigorous economic foundation, two aspects of rationality are considered. Because
agents may live multi-periods when we focus on a panel data set, their economic
decisions do not arise once but for every period. Hence, we assume that agents are
forward-looking instead of myopic. We formulate their interactions via a spatial net-

work, which leads to a game played on a spatial network. The network game can
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characterize optimal actions by the Nash equilibrium (NE) concept and our estima-
tion equation will specify their optimal actions. Since our target is a long panel data
set showing multiple agents (n denotes the number of agents) with long decision-
making periods, (i) strength of connections of a spatial network represented by an
n X n matrix W,; might be changing over time t°°, and (ii) it can be affected by
economic actions. Corresponding research questions are verifying sources of endoge-
nous spatial network evolution and relating this issue to network interactions. We
formulate an estimation equation by considering both problems at the same time,
namely, (i) network interactions, and (ii) a network formation. In consequence, our
econometric model gives a tool to explain spatial/time dependencies among agents’
actions as well as time-varying spatial networks affected by agents’ actions.

As an economic foundation for our econometric model, first, we introduce a the-
oretical model that establishes a connection between agents’ optimal actions and
evolution of spatial networks by the forward-looking agent assumption.’* A motivat-
ing example is studying interdependencies of local governments’ expenditures. For
example, an agent is a state government, and it selects an amount of health ex-
penditure for each period by considering neighboring states’ current and expected
future health expenditures with their demographic characteristics. We formulate a
network interaction model by internalizing agents’ decisions on network links. In

50Empirical evidence for time-varying relationships among agents can be found in Tables 1 and 2
in Goldsmith-Pinkham and Imbens (2013). Using the Add Health survey, they report 534 students’
friendship links at two points in time (Wave I and Wave II). In their Table 2, we observe that 1.17%
of friendship links are changed.

51 A recent study in the coevolution of agents’ actions and networks is Han, Hsieh, and Ko (2019).
There are two different features of our model. First, our key mechanism generating coevolution is
the forward-looking agent assumption. The mechanism of Han, Hsieh, and Ko (2019) is the dynamic
feature of latent variables affecting both network interactions and formation. Second, we focus on
the case of spatial networks rather than friendship networks.

76



detail, agents’ current actions (automatically) construct their future network links.
For this, we assume that a spatial network W,,; is composed of nonnegative val-
ues exhibiting (relative) intensities of interactions and differentiable with respect to
agents’ actions. Fixed geographic locations of agents basically form a spatial net-
work W,,;. However, the policy interdependence dynamically arises via W,,; driven by
agents’ economic similarities®® in addition to geographic similarities. If spatial net-
works evolve with time-varying economic indicators, which are affected by optimal
actions of forward-looking agents, this gives a recursive structure and we might face
an issue on time-varying endogenous spatial networks.

To describe endogenously changing spatial networks, we establish a differential
network game model. For identification of parameters about agents’ preferences, we
consider a parametric payoff function, which is a dynamic extension of Ballester et al.
(2006). The designed payoff function contains a time-varying spatial network W,
and rivals’ actions can affect an agent’s payoff via W,;. The theoretical model for
our econometric specification is based on the payoff function with the forward-looking
agent assumption. For each period, state variables consist of recent past actions and
currently realized exogenous characteristics. We assume complete information up to
the current period for agents’ information to form expectations of future exogenous
characteristics. Based on the payoff specification and the information set, a lifetime
payoff is defined by a weighted sum of expected per period payoffs with a time-
discounting factor. Each agent’s current action can affect his/her future economic

52Economic indicators showing the economic status of agents construct economic similarities. In
the case of regional expenditure decisions, a regional income level can be an economic indicator.
As an example of economic similarities, hence, a reciprocal value of an absolute difference of two
different regional income levels can be considered.
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indicators forming future spatial network links. Compared to Jeong and Lee (2018)°3,
even though the payoff function is still linear-quadratic (LQ), our specification has
an additional nonlinear channel with that agents’ current actions can affect their
future payoffs via future spatial network links by evolution of economic similarities
(indicators). In consequence, feedback effects can arise from that (i) agents’ current
actions help to form future spatial network links, and (ii) (expected) future spatial
network links also influence their current actions due to the forward-looking agent
assumption. Therefore, our model provides a connection between optimal actions of
forward-looking agents and their time-evolving spatial networks.

Second, we provide a new econometric model for a spatial panel data set describing
the theoretical specification. Since, in this paper, networks (W,,) are allowed to
evolve with actions, our model does not belong to a LQ dynamic programming. As a
result, it is difficult to derive optimal actions in an explicit functional form and our
econometric model belongs to a nonlinear SDPD model with endogenous networks.
Instead of deriving the optimal action vector, we characterize optimal actions via
Euler equations for an estimation purpose (Hansen and Singleton (1982)). Since
Euler equations can show the relationship among past, current and expected future
optimal actions, we can study the marginal effect of changing a current action on
future payoffs through changing future spatial network links. By estimating some
structural parameters in Euler equations, we can detect the existence of co-dynamics
between agents’ current actions and their future spatial network links. The derived
Euler equations involve infinite expected future actions since an agent’s current action

53Under an intertemporal optimization specification based on a linear-quadratic (LQ) pyoff func-
tion, but with an exogenous spatial network, they derive a linear optimal decision vector in state
variables via a LQ programming setting.
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nonlinearly affects his/her own and rivals’ future period payoffs. For a practical use,
we approximate some (expected) future components in an Euler equation by the LQ
perturbation method® and obtain a tractable measure for estimation. With linear
moment orthogonality conditions, the nonlinear two-stage least squares estimation
(NL2S) method can be considered. To improve estimation efficiency, in addition to
instrumental variables (IV) moments for orthogonality conditions, we also consider
quadratic moment conditions, which capture spatial correlation. By those moment
conditions, we study the GMM estimation method for our model.

With both large numbers of spatial units and time series periods, under the in-
creasing domain asymptotic framework, consistency and the asymptotic distribution
of the GMM estimator (GMME) are studied. As dependent variables of our model
(agents’ optimal actions) can be serially and spatially correlated, but might not be
a linear function of disturbances, we employ the notion of spatial-time near epoch
dependence (NED) in Jenish and Prucha (2012) to establish the law of large numbers
(LLN) for the GMME. In order to derive the asymptotic distribution of the GMME,
we utilize a central limit theorem (CLT) for a LQ form of martingale difference ar-
rays based on the C-stable convergence concept. In Kuersteiner and Prucha (2013,
2018), this notion is a joint convergence concept of main statistics and a C-measurable
random variable. Then, the asymptotic distribution of the GMME would be normal
conditional on C. An advantage of taking this concept is to analyze asymptotic prop-
erties of main statistics conditional on unspecified exogenous components stemming
from spatial network formation. From the derived asymptotic distribution, we observe
the existence of asymptotic biases due to incidental parameters due to individual and

54Gince the large number of agents (n) is targeted, we need to consider a computation method
which is free to a curse of dimensionality.
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time effects and, so we suggest a bias correction method. For testing whether spatial
networks evolve exogenously or not, the Wald test can be applied. The Wald test
statistic follows the asymptotic unconditional chi-square distribution.

Lastly, we apply our econometric model to empirically investigate policy interde-
pendence of U.S. states’ health expenditures. The state’s health expenditure yields
its human capital accumulation potentially improving regional future economic sta-
tus. To implement our model, we should know (or prespecify) a formation function of
spatial networks to evaluate the marginal effect of changing a current action on future
spatial network links. For practical reasons, hence, we suggest an estimation method
to specify formation of spatial networks by using flow variables (e.g., state-to-state
migration flows).?> Coefficients of the spatial (for geographic and economic distances)
network formation model mean elasticities of intensities of interactions. Under this
specification, 1% change in states’ economic distances yields -0.1313% change in in-
tensities of interactions. A positive spatial spillover effect is captured in states’ health
expenditures, but its estimated coefficient is not significant. The Wald statistic shows
that the coevolution of states’ health expenditures and their spatial networks is not
significant. We observe that health expenditures of U.S. states are persistent. A

positive effect of federal grants on the state government’s marginal payoff is detected.

3.2 Model specification

There are two main components in our analysis. The first is a spatial econometric
model specification.?® In this section, we have two issues to rigorously formulate a

5Such formulations are many as pointed out in Qu and Lee (2018), which considers flows with
multiple fixed effects for estimation.

56 Another aspect is statistical theories for spatial econometric models (e.g., large sample theory)
due to the dependencies generated by spatial networks. This issue will be discussed in Section 3.4.
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spatial econometric model. The first issue is to reveal how spatial networks shape
forward-looking agents’ actions. The second issue is how agents’ actions affects spatial
network links in the aspect of network interaction models.

At first, we introduce a spatial dynamic panel data (SDPD) model and a cor-
responding payoff function specification justifying it. Second, the agent’s lifetime
problem will be designed based on the payoff function. That is, we build a theo-
retical foundation of an estimation equation based on the payoff function. Third,
we will characterize optimum actions by Euler equations to construct the estimation

equation.
3.2.1 Related literature and payoff specification

Suppose we have a set of panel data {Y,;, X,;} where Y, = (yu,- -+, Yn:) de-
notes an n X 1 vector of (continuous type) dependent variables at time ¢ and X,,; =
(T16, -+ Tng) With 2 = (21, -+, T k) stands for an n x K matrix of explana-
tory variables. Using a panel data set, we may capture dynamics of individual units’
actions (or outcomes). As there are interactions among individual units and these in-
teractions can be specified by spatial networks, SDPD models formulate dependence
in individuals’ actions (or outcomes) across individuals and over time periods.’” Un-
der this framework, each unit ¢ is a spatial unit having its innate and fixed geographic
location, e.g., a local government. In the conventional regional science literature, spa-
tial network links are formed by spatial units’ physical distances, which indicate that a

STExamples are Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee and Yu (2010,
2012, 2014), and Qu et al. (2017).
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spatial weights matrix is fixed over time. However, if intensity of network interactions
is affected by economic consequences, spatial networks might vary over time.*®

t*"_period socio-

If there are n spatial units, an n x n matrix W,,; captures the
economic relationships among units. Each non-diagonal component of W,,; shows a
(socio-economic) relationship between two spatial units at time ¢. In the conventional
spatial econometrics literature, one assumes all entries in W,,; are nonnegative. Ele-
ments of W,,; only show relative magnitudes of interactions. By assuming all diagonal

entries in W,,; (for any t) to be zero, we exclude the self-influence. A specification of

SDPD models is*
Ynt - )\OWntYnt + ’Y()Yn,t—l + Xnt/BO + entat = 17 T >T (3].)

where (Ao, 70, 5(’))' denotes a set of parameters, and e,; is an n-dimensional vector
of unobservables.° The time-varying W,; can potentially come from time-evolving
economic indicators, which might be affected by individual units’ actions (or out-
comes). Let Zps = (Znsa, -+ Zup.p) (Where Zynip = (216, 5 Zntp) for p=1,--- P
and z;t = (zi1, -+, ziep) for i =1,---,n) be an n x P matrix of economic indicators
at time t. We allow that some strictly exogenous indicators in Z,; can be components
of forming W,,;. All indicators in Z,,, are assumed to be continuous type variables for

58Examples of employing economic variables in the empirical regional network formation are
plenty, e.g., Case et al. (1993), and Figlio et al. (1999).

59For SDPD models and their statistical properties, refer to Yu et al. (2008), and Lee and Yu
(2010, 2012, 2014). Lee and Yu (2015) provide a review of this model structure. The diffusion effect
PoWn.1—1Y5 1—1 might be included in equation (3.1). In this paper, we consider the case of pg = 0
for model’s simplicity.

80e,; can contain individual/time fixed /random effects and idiosyncratic disturbances.
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technical simplification.%? For the formation of Z,,;, we consider the linear specifica-

tion based on Han and Lee (2016):%2
Znt = Yn,t—le + Vnt (32)

where 1y = (Y10, --,%¥po) is an 1 x P vector of parameters showing dependencies
upon the past actions Y, ;_1, and V,,; denotes an n x P matrix of exogenous compo-
nents, which may consist of observed as well as unobserved variables.®® Specification
(3.2) means that W, is generated by Z,;, which is driven by Y, , 1.5 If 4,0 = 0
for some p, Z,;, would be a strictly exogenous indicator forming W,,. To illustrate
ramifications from Y, ;_1, we represent Wy, [Y,,,—1] as the t'"-period spatial network

and Wy ; [Yit—1,Yji—1), Wei [Yni—1] and wy ; [Yn:—1] denote, respectively, the (i, 5)th-

th th 65
element, i""-row, and ¢""-column of W [V, ;—1].

A properly modified equation (3.1) can be justified by a myopic dynamic game

tth

with n agents who have the LQ payoff: the agent i’s t""-period payoff (denoted by wu;

later on) is

Uz’(yiu Y—i,ty Yn,tfla Th‘t) = (mt + )\owt,i. [Yn,tq] Ynt) Yit — C(yz‘t, yi,t—l) (3-3)

61Tn our framework, the network link Wig1,i5 [yit7yjt] obtains differentiability by considering a
continuous type economic indicators z; ;41 and z; 1. However, some indicators (potentially con-
structing agents’ social distances) might be dichotomous. For example, we can consider the discrete
political metric: d,, (¢,7) = 0 if ¢ and j support the same political party; d, (¢, j) = 1 otherwise. We
leave this issue for future research.

62Nowadays, we see some empirical applications which consider flow variables z;;; affecting for-
mation of W,,; (Qu and Lee (2018)). For example, z;;, can be a linear function of y;;, y;¢, and other
variables. We leave this issue for future works.

63We focus on the relationship between Z,; and Yy +—1 and do not have a detailed specification
on V,,;. The V,;; can contain agents’ observable/unobservable exogenous characteristics (both time-
invariant and variant ones) as well as common economic shocks (time factors). In the estimation
part, we introduce how to relate {V,,:} to the GMM estimator’s asymptotic properties.

64Note that z; ;11 is only affected by own tth-period action y;; (no spatial interaction effects from
neighbors’ activities y;;’s).

65The argument Y,, ;—; in those functions emphasizes its important role in the network formation.

83



where Y_;;, = (Yre, - - yYi—1ty Yit1ty -0 aynt), and c(Yir, Yiy—1) = 72*0 (Yir — yi,t_l)z +

1_270 y2 with 0 < vy < 1. At time ¢, agent 7 selects his/her action y; to maximize

ui. This is a myopic dynamic extension of the L(Q payoff discussed by Ballester et al.
(2006), and Calvo-Armengol et al. (2009), which concern about static models.%® In
the LQ network game, equation (3.1) shows linear best replies. The n; presents i’s
t*"-period exogenous heterogeneity and, for all n agents, its vector version is denoted

t.57 The n;; contains time invariant (1) and time vari-

by Tt = (7717&7 o 7nnt), at time
ant (n}) individual characteristics affecting decision-making. They are public to all
agents (if they belong to the information set) but some of them might not be observ-
able by econometricians. The parameter )y describes strategic interactions among
agents’ current economic activities. ¢ (+,-) denotes a cost function in agents’ actions
and consists of two components: (i) a dynamic adjustment cost and (ii) an agent’s
cost of selecting activity level y;;. The coefficient vy captures a relative weight for
the adjustment cost, so high 7, yields persistency of agent’s action. In consequence,
equation (3.1) would characterize NE activities if agents were assumed to completely
discount future payoffs, i.e., myopic behavior Focusing on studying regional policies
(see Section 3.5), payoff (3.3) describes a local government’s objective function (refer
to Brueckner (2003) and Revelli (2005)).

66Payoff (3.3) shows the local-aggregate model (i.e., y; Z?Zl We 5 [Yit—1,Yj,t—1] Yj¢) Recently,
Ushchev and Zenou (2018) introduce a local average model and its interpretations as a theoreti-
cal foundation of the SAR model. The local average means a ”social norm”, and this specification
imposes a penalty when an agent takes a large deviation from the social norm. In a static game
setting, the two theoretical specifications yield the same econometric model specification. In our
forward-looking agent framework, however, those might generate different econometric models. In

this paper, we take a notion of the local aggregate model since there is a limitation in interpreting
the parameter \g (Ao > 0) under the notion of the local average model.

57In particular, equation (3.1) comes from supposing 7,; = Xnt0 + €, for each t.
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3.2.2 Agent’s intertemporal choice problem

In this subsection, we set up the forward-looking agent’s lifetime problem based
on periodic payoff (3.3). We introduce a time-discounting factor 6 € [0,1) to make
different weights on future economic choices to distinguish them from the current one.
An agent’s lifetime payoff (3.6) below is defined by the discounted summation (by 0)
of per period payoffs (3.3). There are four different features compared to a conven-
tional macroeconomic dynamic model: (i) the existence of network interactions, (ii)
network heterogeneities stemming from spatial location’s heterogeneities, (iii) linear
(via adjustment costs) and nonlinear (via future network links) effects of the current
action on (expected) future marginal payoffs®®, and (iv) a large number of spatial
units (large n).

With going beyond a forward-looking spatial interaction model, an agent knows
his/her current action (y;;) will influence the next future network links via (2;,11) by
equation (3.2). As there are uncertainty in future exogenous characteristics
(Mnt+15 Mnt42, - - -), each agent would form expectations on future events based on
their currently available information. To specify expectation for uncertainty, let By
be the t""-period information set of agent i’s perceivable events. Below are definitions
of an agent’s intertemporal choice problem (ICP) and relevant concepts taking into
account on interactions with other agents. o (-) denotes the sigma-field generated by

arguments inside. The superscript ”*” denotes agents’ optimal actions.

68 This payoff belongs non-separable preferences. Among them, our model specification is similar to
habit formation models (e.g., Fuhrer (2000)). In macroeconomic dynamic models, a payoff function
is usually specified by a time-separable one (e.g., Hansen and Singleton (1982)).
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Definition 3.2.1 (Intertemporal choice problem (ICP)) (i) (Information set)

For each i at time t, B 1s specified by

n

j=1

Bi=o0 ({yjs}?_l A {nﬁ”}; An b izoo> : (3.4)

(i3) (Process of n¥,) 0%y = (0%, ---,n%,) follows a linear Markov process:

Nt = Pn,OnZ,t—l + & (3.5)

where |ppo| <1, and & ~ 1.5.d.-N (0,51, Q¢) with Qe > 0.9
(111) Given (Yni—1,Mnt), agent i (i =1,---,n) mazximizes his/her expected lifetime

payoff by selecting y;; for each t: that is,

% )00 ui(yihy—itaynt—lanit)
; ., =ar max o s ? ’ . 3.6
Wi ® e, { + 32001 OB (Wi Yirss Yeisrss Yotrs—1, Mie+s) | Bit) (3.6)

Definition 3.2.1 means that B;; contains all previous actions and exogenous hetero-
geneities up to t. This setting means complete information up to the current period
t. In Definition 3.2.1 (ii), the linearity assumption with parameter p, in 1}, is for
simplicity.” For agents’ innate (time-invariant) characteristics 7 = (i, ---, ni*)’,
they are known to all agents. Key parts of Definition 3.2.1 (ii) are that (a) 1y, only
depends on 7, , ; and &,; (not other part of history) and (b) &,; and 7, , ; are inde-
pendent. Since (a) uncertainty only arises by future exogenous heterogeneities 7,
and (b) nY, evolves by equation (3.5), E (Uﬂ,ﬁﬂ&t) =F (nﬁ,t+1|nﬁt) = ppony, for all
i and t. Given (Y, :—1,mn), all agents expect that future actions will be realized as

69Gince the agent’s lifetime value would not be linear-quadratic in state variables, we assume
normality of &,; to have a linear conditional expectation E (nlﬁ,t +1|B¢t). This assumption will be
relaxed in the estimation part. For example, the likelihood function can be formed for estimation
but would be quasi-likelihood if &, were not really normally distributed.

00r, we can generalize specification (3.5) to a case of finite numbers of parameters governing the
process of n},.
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NEs, in that all agents form same expectations on future actions. Hence, we have
E(-|Bit) = E(-|Ynt-1,nn) for all ¢ and ¢, where (Y, ;—1,7,) represents the initial
condition at time t. As agents’ rational expectations can be characterized by the
mathematical expectation, we define the conditional expectation operator at time ¢
by E: (-) = E (-|Ynt—1,nnt) for simplicity.

By Definition 3.2.1 (iii), we can specify the agent i’s lifetime value V;* (-): given

(Yn,tfl ) nnt)

V;* (Yn,tfla nnt) = ui(Y;ta Yn,tfla nzt) + Z 55Et (ui(Y:,t+5> Yn*,t+5—1> 77i,t+s)) (37)

s=1
where Y5, = (yi,,---y*,) at time t. By observing equation (3.7), agent i at time
t chooses y;; with considering (a) the adjustment cost % (y; 41 — yi)? and (b) the
future network links w1 ;; [it, yj¢), which are included in the (¢ + 1)"-period payoff.
Hence, there exist "feedback effects” due to the forward-looking assumption in de-
cision makers: the optimal actions Y, of all agents influence the future network by
equation (3.2) and in turn are affected by the (expected) future network W, ;41 [Y5].
If an agent completely discounts future payoffs, feedback effects would not arise and
the resulted model would be the myopic one. That is, the relationship between Y,

and W, 141 [V

*] will be simultaneous if agents are forward-looking while evolution of

W41 Y] becomes adaptive if agents are myopic. Another distinguished feature of
Definition 3.2.1 (iii) is that the agent’s decision-making problem will not be a LQ
programming (his/her payoff function is not LQ) in state variables (Y;,;—1,7,:)) unless
1o = 0 in equation (3.2), because his/her action would nonlinearly influence his/her

71

own and rivals’ future marginal payoffs via future network links.”* It implies that

""'When actions take limited dependent variables, we might have other examples of a nonlinear

equation of exogenous variables under the linear-quadratic payoff specification. Examples are Xu
and Lee (2015, 2016).
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agents’ optimal actions which will be a function of (Y}, 1, 1,:) might not be a linear
one. Therefore, for the current model, it is difficult to directly derive an optimal de-
cision rule like that in Jeong and Lee (2018).7 This difficulty motivates us to specify
agents’ optimal actions based on a set of first-order conditions of (3.7), i.e., Euler
equations.

To specify Y., using the Euler equations, we introduce a set of technical assump-
tions for the payoff function and network links in addition to Z,;, taking into account
that Y,,; influence the future network links. First of all, the Euler equations should
be sufficient to characterize the optimum of the ICP (3.7). For this, consider the
potential nonlinear part w1 [Vit, Yje] (7 7# ) of wi1. First, weir 5 [yi, yje] (J # 1)
are required to be differentiable with respect to y;;. There are additional components
affecting W, 141 [Ye]. We assume that each agent’s physical location is given and does
not change over time. For relevant components of fixed physical locations, let d;; be
a distance between ¢ and j and let d. denote a finite threshold distance. We assume
that when d;; < d., agents ¢ and j make a network link, but on the other hand, if
agents ¢ and j are sufficiently far (i.e., d;; > d.), they would not make a link. Then,
d. determines the maximum number of neighbors of agent 7, which will be denoted as

"2To see this feature, consider a simple two-period model. Given (Y;, ¢—1,7nt), agent i (i = 1,---,n)
maximizes his/her discounted lifetime payoffs: at ¢ = 1, u;; + 0F7 (us2); and at ¢ = 2, u;9, by
sequentially selecting y;; for t = 1,2. Since there were no additional future periods after ¢ = 2, the

NE activity vector at time ¢ = 2 is given by the conventional SAR equation Y5, = AWy [Yn1] Y5 +

YoYn1 + Mno. Since agents’ choice problem at ¢ = 2 is considered as a subgame, agent i’'s SPNE
activity at ¢ = 1 is derived by maximizing u; + 0E; (u},) where uf, = 3 (y2)* — 242 denotes the

i’s second-period payoff evaluated at Y. The first-order conditions are

dy;, :
0 = ni1 + Yoio + Aowii. [Yno] Y1 — (1 +070) y71 + 0F, ( &2 y2‘2> ve, fori=1,---,n.  (3.8)

Oyin”"
The SPNE vector at t = 1 (denoted by Y} ) satisfies equations (3.8). Even though we consider the

linear-quadratic payoff function, deriving the explicit form of Y} is a challenging issue since it is a
highly nonlinear function of (Y0, 7n1)-
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d. (7). If d. is large, the number of i’s neighbors d.. (i) might be large but that number
remains as n tends to infinity.While there might be some different specifications on
W, this specification seems the most popular one for sparse spatial networks.

Contrast to conventional friendship network formation models with observable
dichotomous links, our spatial network links w;;;’s can have (relative) intensities of
interactions. It implies that they take nonnegative real numbers. As agents know that
their current actions (y;;) can affect strength of future network links (w15 [Yit, yji]
and w1 ji [Yje, yar) for 7 =1,---,m; but j # 7), they optimize their actions by taking
into account future strength of network links. That is, we formulate the network
interaction model by internalizing individual decisions on network links.

Here is a formal assumption in order to have a tractable network formation model.

Assumption 3.2.1 At each timet, we assume we;; [Yit, Yjt] = b (Zigt1, 2j+1)-ha (dij, de).

For each pair (i,7), h(2is11,2j041) 18 infinitely differentiable a.e™. The first-order

. . Oh(z; 2 Oh(z; 25
derivatives of h (-), (Z’ét’fl 241) g (zg”_l ziet1) - gre bounded.™
25, t+1 25,641

First, we need to have a smoothness condition for the agent’s payoff function since

deriving the Euler equations relies on the envelope theorem. By Assumption 3.2.1, the

agent’ payoff u; (Y, Yni—1,7i) is infinitely differentiable a.e.™ Then, we can represent

In our model setting, a functional form of h(:) is time-invariant since we seek to a stable
economic environment. For h (% +1,2;41), €.8., we might take the distance-based specification
h(zit41,2j041) = |Zig+1 — 2zje41] ¢ where a, > 0, which is infinitely differentiable a.e.

" Assumption 3.2.1 implies that the network link wy;; is only affected by y;; and y;;. How-

ever, this assumption can be generalized to a row-normalized W,,. For example, wy;; [Yni] =
h(zi,t+1,25,t41) ha(dij,de)

Zd‘kgdc h(zi,t41,20,041) ha(di,de)

as Yk such that k #£ i, k # j with d;, < d..

Then, the network link wy ;; [Y,,] can be affected by yi:, y;: as well

"5In detail, this requirement is a key for obtaining differentiable agents’ lifetime values and optimal
decision functions (with respect to (Y5, ¢1—1,7nt)). Also, we can check the second-order condition to
obtain the sufficiency of considering the Euler equations for optimality. For this issue, refer to the
supplement file. Related results can be found in Theorem 4.11 in Stokey et al. (1989) and Santos
(1991).
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*

the agent’s optimal action (y};) as the solution to the first order condition. Also, the
agents’ optimal lifetime values and actions are continuously differentiable functions
in (Y, :—1,mnt). Second, differentiability of wiy1 5 [y, yji) gives a formulation of the
marginal effects of y;; and y;; on wiy 145 [Yir, yje) in the (¢ + 1)"-period payoffs, e.g.,

Owiy1,ijyit,yje] P Oh(2i,441,%5,64+1) .
 oyn p=1 Qﬂp’ow . hd (dlj7dc) where a bounded function hd ()

plays a role in controlling the intensity of interactions stemming from d;; (or d.).”
For each p = 1,---, P, (i) % = b, is the effect of changing y;; on its pt

Oh(zi,141,%5,041

future economic indicator (z;+4+1,) and (i) T ) - hg (d;j,d.) represents the
2} P

changed network link via z;¢y1,. To implement our model, a functional form of

: : : Oh(Zit+1,%j,t41) : :
h (2it4+1, 2j¢+1) 1s required to be known for evaluation of B Fevrp— Third, in order

to obtain a tractable measure for estimation, we will employ a perturbation method
to approximate V; (-) using u;(Yyt, Vi1, i) around the population averages.

The following is an illustrative example.

Example 3.2.2 Consider Han and Lee’s (2016) Medicaid related spending competi-

ton model. Then, vy is the state i’s t"-period Medicaid related spending. In their

tth

specification, zy 1s the state i’s t""*-period income per capita, and it is significantly pos-

itively affected by y;1—1 (Yo > 0). Simply, assume w1 i; [Yit, Yii) imply-

Tzt 241
ing Oh(zit+1,2j041) _ —sgn(Zitt1 =241
O0zit+1,p |zi 001 —2j,641]°

) Then, the effect of changing yi on Wit1,ij [Yit, Y]
is governed by —sgn (2141 — Zjt+1) Since |41 — zj,t+1|2 > 0 a.e. First, consider
the case that 2441 > zj41. When yy marginally increases, z41 increases and
Wit1,ij [Yit, Yje] decreases. It means weakened intensity of interactions at time t + 1
since the economic distance between i and j becomes far by increasing vy;. Second,

"e.g., hq(dij,d.) can be specified by f_l_l {dij <d.}+ Cidl {0 < d;j < ¢q} for some small ¢g such

that 0 < ¢g < d..
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consider the case that z;41 < zj41. By marginally increasing yi, 2i+y1 increases,
which it yields that w1, [Yit, yje] increases. Increasing yi; makes that i and j be

economically close, so intensity of interactions becomes strengthened.
3.2.3 Characterizing the NE actions by the Euler equations

The purpose of this subsection is characterizing agents’ NE actions to formulate
an equation for estimation. We consider a stable economic environment based on
the infinite horizon problem. Then, the agent’s decision problem will be the same
at each period conditional on its immediate information generated by (Y, i1, 7nt)-
As a result, the ICP (3.6) can be represented by a functional equation (FE). A
corresponding equilibrium concept is a Markov perfect equilibrium (MPE).”” Here is

the definition of MPE.

Definition 3.2.3 (Markov perfect equilibrium) A MPE is a set of value func-
tions Vi (+) (i=1,---,n) and a set of policy functions f; (-) (i=1,---,n) such that
(1) (Markov strategy) yj, = fi (You—1,1he) (let Yoy = f(Yni1,7mt)),

(i) given fi,---, fi1, fiz1, -, fa, Vi satisfies the Bellman equation
Vi(Yo—1,Mnt) = max {ui(yit> Y Yaeo1,mi) + 0B (W(?Jiu Y20 77n,t+1))} (3.9)

/
where Y—*i,t = (yikt’ T 7yz>‘k—1,tv y;—&-l,t’ T 7yr*zt) , and
(iii) the policy function f; (-) attains the right side of the Bellman equation (3.9).

""The MPE is a refined version of a subgame perfect Nash equilibrium (SPNE). It characterizes
the equilibrium strategies of all agents as best responses to one another. Further, each agent’s
optimal strategy only depends on the state variables (Y, ;—1,7,:) and does not rely on other parts
of histories.
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By Definition 3.2.3 (i), the optimal action v}, is a function of the previous actions
of all agents (Y1) and the currently realized exogenous characteristics (1,,;). Def-
inition 3.2.3 (iii) is the principle of optimality, which says the equivalence between
the solutions of ICP (3.6) and FE (3.9). That is, V; (-) = V;*(-) for all i = 1,- -+, n.
In consequence, the optimal activities y},’s and the state variables (Y, ;—1,7,:) have a
time-invariant relationship f (-).”® Since each network link wy;; [y; -1, ;1] is not a
LQ function of y;;—1 and y;;—1, we do not generally have a closed form of V; (-)™ and
it is infeasible to directly construct an estimating equation by f; (+)’s.

To build an econometric model based on agents’ optimal actions, we utilize the
first-order conditions of agents’ lifetime problems. The first-order condition of the

agent 7’s t""-period optimal decision is®

* * a
0 = it +Y0Yit—1+ oW [Ynt—1] Ynt_yit+6%Et (Vi (Yot, Dne41))
it

yrfori=1,--- n.
(3.10)
The main issue is to represent the expectation function %Et (Vi (Yats Mne41)) in the

current and future state variables. For this, we need the smoothness condition for

u; (+) by Assumption 3.2.1 and exchangeability of the differential operator % to the

conditional expectation F; (-) by Definition 3.2.1 (ii).*!

"8For details in the principle of optimality, refer to the supplement file.

If a network does not evolve, the agent i’s lifetime value would be linear-quadratic in state
variables and we can derive a closed form expression for V; (-) and f (-). For that case, refer to Jeong

and Lee (2018).
8062—5;8”95* denotes the derivative of F () with respect to x evaluated at x = z*.

81Then, by the Lebesgue dominant convergence theorem,

0 / / Vi (Yts ni41)
Vvi Yn s Tin, d nt = —d n,t atY;
ayit enoes ( ty 7] t+1) K i1 e ont 8yit i1 t

where pie,, ,,, is the measure for &, ;1.

92



By the law of iterated expectations and substitutions, we have the Euler equation

for agent ¢

0 = M+ YoUit—1 + Aowe [Yoe—1] Yoy — vl (3.11)

—0Y0Y;; + O E, [(% + Ao Haly - Yn,t+1> yi,t-H]
it

" Oy x1 . *
+0F, Z L—HAOUJH—I ij Y] Yit+1

A1 Yit
00 AT Oyjye+r O itk awt+k+1,z‘.[YJ,t+k] " ”
+ Z 5k:+1E| 0 Zajy, o jr#i Oyt 8yjk71,t+k,1 ayjk,t+k nt+k+1J4t+k+1
=1 ¢ +X " Oyjy i1 8yjk+1’t+k+1w o Y+ *
= 0 Zuji,wjpyr#i ~ Oyy Byj 1tk t+k+10 0041 | Lotk | Yit+k+1
] i 8U(Y Jt41,Y5 tvn',t+1) 8wt+1 [Y t}
since (i) == ayit” : = (v + A #Yn,tﬂ Yit+1 — YoYit,
31 8ui(Yn,t+17Ynt:7h’,t+1) _ awt#»l,i.[ynt} - . 8ui(Yn,t+1,Ym,m,t+1) .
(11) Oyjt - )‘0 Ayt Yn,t—l—lyz,t—i-l for J 7A D and (111) Y i1 -

>\0wt+1,ij [Ym] Yit+1 for j # .

Equation (3.10) equates the negative marginal change in u; with the expected
future marginal payoffs when there is a small change in y;;. By the Euler equations,
we can capture the marginal effect of changing y;; on future network links (contained
in the future marginal payoffs), i.e., the existence of coevolution of agents’ actions
and spatial network links. However, a difficulty arises on utilizing the Euler equation
approach since the agents’ current actions can (nonlinearly) affect future marginal
payoffs through future network links. Utilizing equation (3.9) and the envelope the-

orem, substitution yields

oV, (Ynta nn,t-i-l)

it
Oui (Yo, t+1,Ynt,Nit41)
o 3%( nt+1s Yot 7h‘,t+1)| i Zn: 8yj,t+1 0yj.t41 ‘
— ay Y - ay +5F (8‘/1( n,t+1,Mn, t+2)> Yo
it A it i+l 0Yj t+1
o aul( n,t+1 Ynt> ni,tJrl Z 8% t+1 8“1 n,t+1, Ynta ni,tJrl) |

Y
Oyt Yaest oy OYit 0Yj 141 it
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n itttk Oui (Yotikt 1, Yotk it k1)

—|—Z(SkE Zjl,---,]k?fz 0yt OYjp 1 t+k—1 OYjp. t+k | )
t+1 no . Oyjyt+1 Yy 1ot kt1 Ouy (Yot ket 1, Yoo otk bt ot 1) Y vkt
k=1 JLr k17t Oy OYjp t+k OYjpy oy k41

since the first-order condition (3.10) leads to the envelope theorem

oy; Ou; (Y, Yot Vi (Y,
it+1 ( wi (Yo, e41,Ynt M t41) + 5Et ( i( n,t+1177n,t+2))) |Y;t+l =0. Hence7 we do not need to

0yt OYi 41 OYi i1
oy . . .
compute —= for all i = 1,--- ,n.52 Due to the agents’ non-cooperative behaviors,
1

a 7 Y, 7Yn —1,7)it 8‘/1 Y, s In :
however, we observe that i "tayv: ! ’“)|y*t + 0 F; (7( g;z *”1)) |Y*t might not be
7 n 7 n

zero for j # ¢. From this, we see that a change of i’s current action y;; generates
changes of his/her entire expected future payoffs through changing his/her rivals’

next period actions (indirect effect). In our dynamic network game framework, hence,

.. oy ; . . .
the envelope theorem cannot eliminate % for j # i due to the non-cooperative
3

. . oy ;
feature and hence future terms involving %
3

for 7 # ¢ in the above equation, i.e.,
the Benveniste-Scheinkman formula cannot be applied.

We observe that the coevolution of agents’ actions and spatial network links can be

. Owiy1,:. Y, Owg g ot1,5. Y,
summarized by the terms i [¥i] and [V ]
Oyt 0Yj,t+k

, and the two parameters (Ag
and 1)) control these effects. It implies that the coevolution comes from two channels:
(i) evolution of economic indicators driven by agents’ actions (g, see equation (3.2))
and (ii) spatial interaction effects (\g). If 19 = 0, the variables forming the economic
similarities (e.g., 1/ |zix — 2zj¢|) are not affected by their previous actions, and network
links might only come from geographic arrangements. Also, even though vy # 0, if
Ao = 0, spatial networks do not play a role in agents’ actions because every agent
solves his/her optimization problem without considering other agents’ actions. In this

82Basically, the envelope theorem means that a marginal change of the optimizer does not con-
tribute to the change in the optimal value. Then, the marginal effects of state variables on the control
variable need not be computed in order to evaluate the marginal change of the objective function
(Judd (1998), p453). For example, the Benveniste-Scheinkman formula (well utilized in macroeco-
nomics) says that the marginal change of the value can be characterized by only the marginal change
of the per period payoff at the optimum. In our model, however, the envelope theorem gives that
no player can improve his/her lifetime payoff by unilaterally marginally changing his/her strategy.
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case, the agent ¢’s Euler equation becomes

0 = it + YoUit—1 — Yiz + 0% (Et (th+1> - y;}) ) (3.12)

which implies that the economic system is autarky.
Since equation (B.5) involves a lot of future terms, it is infeasible for estima-

tion. Hence, our next step is to obtain a feasible estimating equation based on (B.5).

1%} i |Yr . . . .
Note that %j,n] mainly describes an impact of agent’s action on future net-

work links. With highlighting out the marginal effect of y;; on his/her (t + 1)%-

OVi(Yn,t41,n,t+2)

period payoff, we represent the other future terms as Byeit
7

Vi for 7 #£ 1
and try to approximate them using a numerical approximation method. For each

_ _ Oh(zit+1,24,t41) _
p =1, P, let miy1p [yi‘t,yjt} = s ha (dij, de), and myiq,; [V, =

(a1t Wi Ui+ s st pin U Uin])- The muiy 5 [y, 5] describes the marginal

impact of the p” economic indicator z;;11, on the (¢t + 1)"-period network link

8wt Ji. Y; *
Wit1,ij [?mey;t}- Then, )\OETH = 2521 Aotp oMt pi. [Yo]- By (B.5), the sys-

temized stochastic Euler equation is

0nx1 = Nt + Y0 Yn—1 + AW [Yau1] Yy — (14 670) Yo (3.13)
Yoln + diagi, (EI];D=1 AoWp,0mies1pi. (Vo] Y:,t+1) v
TOL, +Aodiag ((e;u‘A:L,tJrl © é;n') Wit [Y;t]> i
+OV V140

* . . . Ayjtr1 . .
where A7, is an n x n matrix having =54+ as the (i, j)-element, VV,, 115 is
an n-dimensional column vector defined with its i"-element being

IOAK 5 = OVi(Yn t41,Mn,t42)
(em‘Anvt 410 em) (em- o W!y@“ , o denotes the Hadamard product, and

€ni = lp — €n; with [, an n X 1 vector of ones. The system equation (3.13) can be
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simply represented for Yy; at Y, by®

O0px1=J (Yn,t—lu Mnt, Ynt) |Y;t- (314>

*

That is, values of J (Yy1—1, e, Ynt) take zero at the optimum Y%, given (Y, i1, Mne)-
The particular complication in evaluating this J (-) value is that V; (Y, t41, Mntt2)
captures all the future optimized values after t+2 via VV,, ;15. To implement equation
(3.14) using a spatial panel data set, one may consider a (direct) numerical method
(e.g., value/policy function iteration method). However, numerically evaluating those
terms will lead to a curse of dimensionality since we consider the large spatial units
(n) yielding the corresponding large state space.

Hence, we are motivated to use an alternative approximation method. That is, we
try to reduce model’s complexity by a behavioral assumption (bounded rationality).
By an approximation technique, this concept is useful when we have a difficulty in
deriving a solution under full rationality. For the related issues, refer to Chapter 7.4 in
Rubinstein (1998). Under the concept of bounded rationality, agents have limitations

in their forecasting abilities (limited foresight).

83Note that Y, 141 in the conditional expectation E; (+) is the function of Y%, and 7, 41, while

Yy, is a function of Y;, ;1 and 7,¢, 1 +41 is a function of 7.
84Due to the existence of Wy, y;; might be affected by all previous actions Yi,6—1," " Yn,t—1 and
all realized characteristics n1¢, - - -, n¢- It yields a large dimensional state space. If an agent is a state

government and we consider the 48 contiguous states in the U.S, the dimension of state variables is
96. Moreover, the state variables in this case belong to a continuous type. Then, the computation
of evaluating V; (-) by the grid method is extremely challenging.
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3.3 Construction of the econometric model

In this section, we build an econometric model by approximating the system Eu-
ler equation (3.13) under bounded rationality.®® Our issue is to estimate structural
parameters using a panel data set: {Y,;, Xy, Zni ) defined on a common probability
space (€2, F, P). From this section, the superscript ”*” denoting optimality and paren-

thesis [V] in witq,45 Y] are dropped. First, we need to achieve uniqueness of the

d OVi(Yn,t+1,Mn,t+2)

optimal policy function since the unique representations of Ay, | an By
’ 7>

(for j # i) are required. For this, we introduce the following assumptions.

Assumption 3.3.1 For each i, y; and 7; denote respectively the population means
of {yi}, and {nu},. Let Yo = (35,---, ;)" and 7, = (75, 7). We assume

Sup,, ¢ ¢max (aj(Yn’g)%/;:}m’YM)) < 0 at (Yn,t*h Tnt Ynt) = (}77“?7 77;7 er) where (bmax ()

denotes the largest eigenvalue.

The main purpose of Assumption 3.3.1 is to have a unique relationship between
(Yo t—1,mnt) (state variables) and Y, (decision variables) nearby (Y; ,77,2). Note that
the realized {Y,;} comes from one of the possible f () satisfying equation (3.14).5

85To have an analytic form of the first order conditions in estimation, Li et al. (2007) approximate
the first order condition of the concentrated log-likelihood function based on the Taylor approxi-
mation. Even though the objective functions of ours and their cases are different, the purpose
of the approximation is the same (approximating the first order condition to a tractable form for
estimation).

86The system of Euler equations is sufficient to represent the optimum by Assumption 3.3.1.
However, there are potentially many data generating processes satisfying the system of Euler equa-
tions (3.14) (i.e., multiple equilibria) due to highly nonlinearity of equation (3.14). Then, there are
multiple mapplings from the state variables to the decision variables. i.e., We cannot guarantee
for a unique form of Aj ;,,. Around the population averages, however, we can have their unique
representations by the implicit function theorem.

If the original NEs were multiple, economic agents select the NE near (Y,f ,17;’1,177;’), which are
known to all agents. It means the equilibrium selection mechanism into the structure. For this, we
need to assume that all agents know (7,;’, n, ) For the econometric analysis of multiple equilibria
issues, refer to de Paula (2013).
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The population mean Y,° in Assumption 3.3.1 comes from the data generating pro-
cess of the actually realized decision variables and is the baseline of applying the
implicit function theorem.®” The existence of Y° and 7° is implied by the stable

economic environment.?® Assumption 3.3.1 is a key condition of the implicit function

0T (Yn,t—1,Mnt,Ynt)
ay;,

theorem. sup,, ; max ( ) ’(Y,g,ﬁg,?,g) < 0 means that the n x n Hessian

aj(Yn,tf 1,7nt ,Ynt)
ay,,

matrix is negative definite. This is the second-order condition justfy-
ing the optimum at the population average values. Also, the maximum eigenvalue of
the Hessian should be still negative even for large n. By applying the implicit func-
tion theorem, there exists a unique function f(-) such that (Y, 1, 7n, Ynt) around
the population averages (}77;’ N7 37;’) and f (-) is infinitely differentiable because our
J (+) is infinitely differentiable.®® Note that this uniqueness is due to the implicit
function theorem at the local neighborhood of (1_/7;’, n, }77;’).

Then, the optimal policy function Y,; = f (Y, +—1,7n) can be represented by the

first-order Taylor polynomial (a mean value theorem) around <_7f, ﬁ;),

) i of (Yn,tflannt>

Yoo ynt) = Yo7_o
f( t—1 n t) f( n 7771 aan{’t_l

vt t) (Yosr = 77) (3.15)

n,t—1'"nt

0 _
+ f (Yn,t/ 1 nnt)
a’r/nt

n

‘(YJQAWL) (Mt — 715

where (Ynftfl,n,ir,f) lies between (Y;,;—1,7n:) and (Y;,ﬁg). That is, we pursue the
local unique solution near the population averages. Using equation (3.15), the linear

87Note that evolution of 7,; consisting 40f n?, and 1’ is not affected by that of Y;,; and 7,,;. Since
lpnol < 1 and Ei (&n41) = Onxa, 75 = 1" for all i.

88For each i, a way of generating the data (f; (-)) has a time-invariant functional form.

89The theorem is stated in Section 3.4 in Judd (1996). Indeed, if 7 (-) is a C*-function, then f (*)
is a C*~-function. This is reason why Santos (1992) introduces a condition of C? on the per period
payoff function for differentiability of the optimal policy function.
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approximation of f () (denoted by f€(-)) is

e {70 =0 8f (Ynﬂf—l? T]mf) 0
f (Yn,t—la nnt) - f (Yn ) Un) + aYn/,t—l |(Yﬁ>7,—]g> (Yn,t—l - Yn) (316>

Of (Yot—1,mn
+f( 4—1,Tnt)

o) (e = T).

Since Z,,; and Y}, 1+ are observable and the formation function & (-) (or hg (-)) is (pre-)
specified by an econometrician, they give specifications on {w;;;} and {m¢;1,;} in
equation (3.13).%°

Now we approximate the Euler equation system (3.13) to a tractable form. To get

OVi(Yo,t41,Mn
d (Yo, t41,Mn,t42)

o (for j # i), the main task is calculating

approximations of A7 ;. ; an
/¢ (+) and the corresponding approximated value functions V;¢ (-)’s. A source of diffi-
culty is that wu; (Yo, Yn—1,mi) is not a LQ function of Y, ;1 (in particular, network
links wy;j [Yit—1,Yj1—1]’s). To avoid the curse of dimensionality, we employ a regular
LQ perturbation method®! for approximating wu; (-) around the steady state”? (Yn", 77;)

approximated w; (-) is denoted by u¢ (+)) and get V¢ (-) using the u¢ (-).”3 Note that
(app y U get V; g i

we only need to approximate the smooth functions {wy; [yit—1,¥j—1] YVt } 2 In

9Tn contrast to conventional spatial econometric literature, a researcher needs to know the for-
mation functions hg (-) and h(-) to evaluate W One way to get hg () and h(:) is to
prespecify them. Another way is to use an estimation method by assuming a parametric functional

form of h(-). For this, we suggest an estimation method to specify h (-) and hq () in Appendix C.

91The regular perturbation means that a small change in the problem induces a small change in
the solution.

92From systems theory, a process Y;; is in a steady state if Y,,p = Y, +—1 for all t. Steady state
values what we select here are the population averages, (Y,;’7 ﬁ;)

93The LQ approximation method is a local approximation method and explains how the dynamic
system evolves around the steady state. Famous examples are Magill (1977) and Kydland and
Prescott (1982). Benigno and Woodford (2012) provide theoretical discussions in this method. For
a review, refer to Chapters 3 and 4 of Judd (1996) and Chapters 13 and 14 of Judd (1998).
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u; (+). For the details about the approximation procedure, refer to Appendix A.%* In

practice, for each ¢ 7 and 77 can be computed by the time averages 7; 7 = % ST g

and y; 7 = %Z;‘le yir where ngf’s denotes the observable part of n;;. After computing

Ve (+)’s by solving the algebraic matrix Riccati equations based on the LQ functions

uf (+)’s, the marginal effect matrix A% ., can be obtained. Because A}, is time invari-

oV;(Yn M
d (Yot 41,00 042)

in ion
T (in equatio

ant, it will be denoted by A%.% By replacing A}, an

(3.14)) with A* and avie(%;i?”’t”) using V£ (+), we have the system of Euler equa-

tions under bounded rationality,
On><1 - \76 (Yn,t—la Tint, Yn ) . (317)

For each t, the observable part of n?, (n% = (nfi""’, e ,7770128)/) is specified by
Xnutfo where By = (Bio, - ,51(,0)/ stands for a K-dimensional vector of coefficients.
By studying Agt1,- -, Ao¥po, we can capture (i) whether the agents’ actions and
spatial networks coevolve, and (ii) which economic indicators work to the coevolution.
Then, the parameters of our interests are the true values \g, vo, 1o, and [y, which are
summarized as 6y = (Ao, 70, Yo, 85)’. The time-discounting factor ¢ is considered as a
primitive parameter” and the incidental parameters in p, o are supposed to be already

940ne can analyze the approximated linear optimal policy induced by V¢ (-)’s. To investigate
coevolution of economic activities and networks, however, we need to consider the simultaneous
relation between the (approximated) outcome equation and the entry equation (3.2). Since the
simultaneous effects of network links and optimal actions are highly nonlinear, it is difficult to
capture the simultaneous relationship. Since the system Euler equation can represent (i) evolution

of Y,,; and (ii) effects of evolving spatial networks from Y;,; by diag?_, (25:1 A0Up,0Mus1,p.i. Yo i4+1 ) 5
we take the Euler equation approach.

95Since the approximated u; (Yot, Y i—1,mi) becomes a LQ function of its arguments, the
Vi€ (Yn,t—1,Mnt) is linear-quadratic in (Y}, ;—1,7n¢). Then, the resulted A% from V(Y 1—1,7n1)’s

(3
is a time-invariant matrix.

96Tn structural econometrics, we usually avoid estimating § due to difficulties in identification. In
practice, ¢ is selected by economic reasonings. For example, § = ﬁ where 7 is a long-term interest
rate.
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revealed based on estimating process of X,,;.%” One of the advantages of using panel
data is robustly controlling unobserved cross-section and time heterogeneities if n and
T are large. To simply control them, we consider the additive individual and time
dummies as incidental parameters®: c,o = (c10," -, o) and azg = (10, -, arg).
Let &y = (€y, -+, en) denote the idiosyncratic disturbances in implementing the
approximated Euler equation system, (3.17).% For each pair (i,t), hence, the error
term is specified by a linear function, ¢;o + a0 + €. To achieve robust estimation
results, we try to directly estimate ¢, and ay instead of considering them as random
components.

From equation (3.17), we set up the moment conditions for estimation. For each

t, for example, let

gt =0 <{Yns}zzo 5 {XnS}Z:O 9 {ZZS}Z:() » Cno, aT,O) (318)

where Z*, denotes the strictly exogenous part of Z,;. As Z%,, agents’ geographic
and their time varying exogenous characteristics can be considered. The t*-period
disturbances, €y, - - -, €y, are orthogonal to ¢;_;. Then, equation (3.17) at time ¢ can

be econometrically specified by

[Sn (Wnt> Ynt - ’}/OYn,tfl - Xntﬁﬂ] + 570 (Ynt - Ynit-t,-l)
-9 { [25:1 )\O@Z)p,OMn,t-l—l,p + )\ONn,t-l—l} Yne,t—&—l} =Cpot+ a/t,()ln ‘I’gnt (319)
—52VV6¢+2

n

97We can reveal the process of X,,; without considering the outcome process Y,,; since X,; comes
from n,,, and it is supposed to follow an exogenous linear Markov process.

98 As a statistical extension, we can also consider multiplicative (interactive) fixed effects (i.e., fac-
tor structure). In practice, however, we should set aside relatively large T for using the specification
of interactive fixed effects. In a regional data set (our model’s main target), T" is not quite large.

99The error term €;; can be interpreted as the agent i’s t!"-period expectational error by using the
(t — 1)*"-period information set (to predict the t*"-period forward-looking structural system).
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or

[Sn (Wat) Yot = 0Ynt-1 = XutBo] + 0% (Yor — Y1)
E —0{[ S MotpoMagi1p + MoNu| Vigr} llma] =0 (3.20)
—52VV7§H2 — Cpo — Qi ply

fort = 1,---,T, where S, (Wy) = I, — A\oW,,; denotes the spatial filter at time ¢,
Yii = (yit+17 e ,y,itﬂ)/ is the expected Y, ;41 from the LQ method, M, 11, =
diagi, (mt+1,p,i.Yne,t+1) forp=1,---,P, Ny = diagi, ((ein'A: © &) w£+1,i.), and
VVy 1o denotes the approximated VV, 412. Then, Y7, | = ASY + ppoBr X o+ Cr
and A¥ = AY for some n x n matrices AS and B and some n x 1 vector C¢. The
explicit forms of A7, By, C7 and components in VV7, ., can be found in Appendix A.
We observe that equation (3.19) represents a conventional SDPD model if § = 0; Y,,; is
a nonlinear function of &,;; M,, 141, for p =1,---, P show coevolution of actions and
spatial networks; IV, ;.1 represents the indirect changes of the agent ¢’s next period
payoff via changes of rivals’ next period actions by changing i’s current period action;
V'V, 1o describes the indirect changes of the i’s remaining future payoffs via changes
of rivals’ next period actions by changing ¢’s current period action. Since M, ;11
and VV, o are functions of Y,;, and N, ;41 and ViV o rely on the time average
Yor = (Y11, -+, o) s they are potentially endogenous.'® For asymptotic analysis,
we will impose some restrictions on those weights matrices in the next section.

Our theoretical model is considered by given n, but our estimation framework is

for samples with both large n and T. Hence, here is the model assumption about

100Tf spatial networks and their relevant components are endogenous, estimates of main parameters
in a network interaction model can yield incorrect statistical inferences. For this issue, there are
recent studies concerning time-evolving socio-economic networks and/or endogeneity of them. Ex-
amples are Lee and Yu (2012), Goldsmith-Pinkham and Imbens (2013), Kelejian and Piras (2014),
Qu and Lee (2015), Han and Lee (2016), Hsieh and Lee (2017), Qu et al. (2017), Johnsson and
Moon (2017), Kuersteiner and Prucha (2018), and Han, Hsieh and Ko (2019).
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the population moment conditions and stability of Y,,; under large n. For detailed

regularity conditions for &,;, we state those in Section 3.4.

Assumption 3.3.2 (i) At 0y, cn, and oz, equation (B.6) holds.

(i) Sup,, ; Pmax (W) <7 <1 for some0 <71 <1 and

n,t—1

SUD,, ; Pmax (%ﬁ;’m) < ¢, for some ¢, < 00 a.e where pmax (An) stands for the

spectral radius of A,,.

Hence, Assumption B.13 (i) yields the moment conditions for the GMM estima-
tion, which is based on the approximated Euler equation system (3.17). For stability

of the system under large n, we impose Assumption B.13 (ii) as sufficient conditions.

Of¢(Yn,t—1,Mnt)

In particular, sup,,, pmax( S M) <

onl, Cn

n,t—1

) < 1 and sup,, pmax(

give sufficient conditions to avoid an explosive Euler equation even for large n.
This guarantees for bounded lifetime values given initial conditions.!* Also, they

are key devices of showing asymptotic properties of suggested estimators.'®? First,

8fe(yn, —lvnnt)
SUPy,, ¢ Pmax ( 3y/t

n,t—1

) < 1 means that f°(-) is a contraction mapping of Y, ;1.
This property gives a background of using a sample mean Y,z = (411, Ynr) as

an estimate of Y,°. Second, sup,, ; fmax (W) < ¢, implies that f¢(-) is a
’ nt

Lipschitz continuous function of exogenous characteristics given Y,, ;1. This device
helps to restrict the degree of dependencies in the spatial dimension.

101Hence, this assumption implies the principle of optimality: given initial conditions, lifetime
values and policy functions are bounded. For this issue, see the supplement file.

102Tp case of myopic spatial-dynamic models, we can characterize the stability conditions using
parameter values and properties of a spatial network matrix (see Lee and Yu (2015)). For the
forward-looking spatial-dynamic models, it is difficult to capture the relationship between potential
causes via (i) the parameter values (\g,70), (ii) time-discounting factor §, and (iii) magnitude and
denseness of W,,; and stability conditions. Hence, we introduce a high level assumption, Assumption
B.13 (ii). Intuitively, we might need to have that (i) Ag, 70 and J are small, (ii) elements in W,,; are
small, and (iii) W,,+’s are sparse.
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3.4 Parameter estimation

This section implements the GMM estimation method based on the derived mo-
ment conditions (B.6). Second, we will study statistical properties of the GMM
estimator. For this, we characterize a topological space where spatial-time units are
located. On the defined space, the set of realized data (e.g., {Yn:, X} and {E.4})
are (weakly dependent) random fields. Distances among spatial-time units on the
topological space will specify intensities of spatial-time dependencies. Based on this
specification, we formulate sample moment functions (for notational convenience) and

investigate asymptotic properties of the GMM estimator.
3.4.1 Topological specification

Each data generating process (DGP) can be indexed by a spatial-time unit on
a specific topological space. The purpose of this setting is to characterize (weak)
dependencies among spatial-time units based on their distances and network links. It
is essential that, if two spatial-time units are sufficiently far, those two spatial-time
processes would be nearly uncorrelated. Hence, the issue here is to specify ”farness”
of spatial-time units. Relevant concepts are borrowed from Chapter 17 in Davidson
(1994), Jenish and Prucha (2012) and Qu et al. (2017).

Note that we have n spatial units over T' periods as a data set. We assume that
a spatial unit 7 has its fixed location in a subset of R (d > 1) for all £. When
a state government is considered as an individual (or spatial) unit, it is located on
Earth, so its latitude and longitude can specify its physical location. Since a pair
of latitude and longitude can be one-to-one transformed to R2, a state government

can be placed on an unevenly spaced lattice in R?. By the same logic, in addition to
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physical distance, there might be economic characteristics which can be regarded as
other dimension of locations. So, in general, i’s t!"-period location is characterized in
a subset of R4 (i.e., nT spatial-time processes on R4™!). Based on this idea, define

a location function
I:{1,---,n}x{1,---, T} = D, Cc R*™* (3.21)

by [(i,t) = (I1(7),---,la(i),t). Since we have L = nT observations, it means there
are L observed locations, and they are specified by the unevenly spaced lattice D .03
For i = 1,---,n, I(i,0) = (I5(7),---,15(z),0) denotes i’s physical location. At time
t=1,10,1) = (I5(9),---,15(i),1). It means that all spatial units i = 1,---,n move
vertically and parallelly upward from ¢t = 0 to ¢t = 1. By the same logic, [(i,—1) =

(Ix(d),---,15(i), —1) at t = —1. Here is the formal setting.

Assumption 3.4.1 A possible set of locations is described by a lattice D, which is
an infinitely countable subset of R*™ (d > 1). There exists a mapping 1 (-) from
{1,---,L} to Dy, C D. The minimum distance between two different elements in D

18 1.

Assumption 3.4.1 characterizes weak dependence of the spatial-time processes for
our asymptotic inference. The set D; stands for the collection of locations in R*+!
corresponding to an (available) spatial panel data set. Since there are n cross-section
units with 7" time periods, the number of spatial-time units’ locations in Dy, is L. The
set D is a set of potential locations which can accomodate all n spatial units, where
n can tend to infinity, so it contains infinitely countable locations (i.e., |D| = |N|
where N denotes the set of natural numbers). When a bounded region in D is taken,

103Then, |Dr| = L where |A| denotes the cardinality of a set A.
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Assumption 3.4.1 implies that there exist at most a finite spatial-time units which
can be located there. It implies that our asymptotic inference will be based on the
increasing domain asymptotics.!%4

From Jenish and Prucha’s (2012) and Qu et al. (2017), we consider the maximum

metric to evaluate the distance between two spatial-time units [ (¢,t) and [ (j,t):

110, t) = 1(5, 1))l = max {[t = ¢'[,[[1(,0) = 1(5,0)[| .} - (3.22)
Then, [ (i,t) and [ (j,t") are neighbors if ¢ and j are physical neighbors and time ¢’ is
a near epoch to t. Then, two spatial-time processes indexed by [ (i,t) and [ (j,t') are

nearly uncorrelated if either |t —¢'| or ||l (z,0) —1(4,0)], is large. This maximum

o0

metric (3.22) is employed to define a base o-field,

Fiini(s) =0 (siga 1 1GH) € Dy, L) = LG ) [ < 5)  (3.23)
where s denotes a threshold distance, and the random field {gl(m} denotes a set of
baseline processes. Based on the base o-field Fy(;4),1.(s), a spatial-time process located
at [ (i,t) will be approximated by ¢;)’s such that ||l (i,t) =1 (j, )|, < s. Some
regularity conditions will be introduced to obtain a controllable dependencies. We
will rely on this setting for proving consistency of GMM estimators.

3.4.2 Estimation: nonlinear two-stage least squares (INL2S)
and generalized method of moments (GMM) estima-
tion methods

To estimate 6y, we consider the generalized method of moments (GMM) estima-

tion method based on the approximated Euler equations. We have only a partial

104An opposite concept is the infill asymptotic (fixed domain asymptotic) where the number of
sampling spatial-time units increases even though a bounded region is selected. In the limit, then,
the intensity of interactions could not be controlled (strong dependence). Since our model’s primary
applications are studying local government’s behavior, considering the increasing domain asymptotic
would be appropriate.
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specification!® of the model by the system of stochastic Euler equations. Under
this limited information setting, considering GMM estimation is a frequently chosen
option (e.g., Hansen and Singleton (1982)). By Assumption B.13, we select instru-
mental variables (IVs) from ¢, ;. Let qu; = (¢}, -+, q.;)" be an n x ¢ matrix of IVs
and ¢it = (Git1, -, Gitq) for i = 1,--- n. The order condition for identification says
that ¢ > 2+ K + P is required. Let © denote a (2 4+ K + P)-dimensional parameter
space. Let 0 = (\,7,¢", "), ¢, = (c1,- -, ¢,), and oy denote parameter values. For
each 0 € ©, define S, (Wy, ), A (0), BS(0), and C% (6), Mpi41,(0), Nyt (0),

n

and VV¢, ., (0) to being S, (W) = Sp (Wae, M), A5, = A5 (60), B, = B, (6o), Cr, =
C (90)> Mpit1p = Myti1p (90)> Nptr1 = Nugp (90)> and va,t+2 = vv?"it+2 (90)-
For each 6 € ©, hence, Yy, ., (0) = A5 (0) Yae + pyoBy, (0) Xpu 8 + Cy, (6). Then, we

have

Ent (0,n,00) =[Sy (Wi, \) Yor = Wyt = XuiB) + 07 (Yo = Vit (0))

P
—0 Z )‘¢pMn,t+Lp (9> + /\Nn,t+1 (9) Yne,tJrl (9)

p=1

—6VVE o (0) = — il

n

by equation (3.19). The i**-element of &,; (0, c,, a;) is denoted by € (6, c;, o).
For each [ (i,t) € Dr, and (0, ¢y, o), we have s, = g and €,z (0, ¢, ) =

€ (0, ¢;, o), and define the linear IV moment function to practically implement (B.6)

glI-(‘i,t),L (0, civ o) = Q) L€, (0, Ciy o) (3.24)

so (g{(mt)’L (9,@,%)) = 0,51 at (6,¢;, o) = (6o, Ci, u0) by Assumption B.13. To
help identification of g, we can add the linear moment conditions originated from

105Note that we do not fully recover the whole economic structure (including network interactions
and formation). We focus on estimating only the network interaction part.
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specification (3.2).1% If we only use the IV moments, our estimation methodology
will be the nonlinear two-stage least squares (NL2S) estimation method. Note that

the linear IV moment conditions are originated from the population orthogonality

condition (B.6), so they become the main source of identification.'?

We can also consider a quadratic moment introduced in conventional spatial econo-
metrics literature.'% For each time ¢, let Ry;1, -+, Rurm be n X n matrices whose all
components are strictly exogenous and all diagonal elements are zero.'® Under the

i.i.d disturbance assumption, for each time ¢t and [ = 1,---,m,
E(&y Rt Ent) = 03757“ (Rnt1) = 0. (3.25)

The quadratic moment function for each [ (i,t) € Dy, can be defined by

Yy (Rl @i, (0, ¢is0n) g, (0, ¢4, an)
9.1 (0o 0) = : . (3.26)
ZZ(j,t) [Rnt,m]ij €1(i,t),L (‘9, Ci, Oét) €1(4,t),L (97 Gy, Oét)

In employing the quadratic moment condition, the i.i.d. disturbances assumption,
strictly exogenous components and zero diagonal entries of R,y (I = 1,---,m) are
essential.

Hence, we have the (m + ¢)-dimensional moment vector

gz%',t),L (0, cny )

9i(it),L (‘9, Cnp, at) =
0 g (0, ci0n)

] and E (gl(i,t),L (QO,CHO,QtO)) = O(g+myx1 for

106 . _ _
For a simple example, q;vit,p (¥po,¢i, o) for p = 1,---, P where vy, (¥p0,Ci,0n) = Zitp —
Vp,0Yi,t—1 — C; — Q.

107We only rely on E;_; (€;:) = 0 for the linear IV moment conditions. It implies that the NL2S
estimation method can be robust to unknown heteroskedasticity and unknown serial/spatial corre-
lations since this method does not rely on additional stochastic properties (e.g., heteroskedasticity
and correlations) of €;;.

108Refer to Lee (2007) and Lee and Yu (2014).

109A broader class of quadratic moment matrices can be also considered: e.g., Ry, satisfying
tr (Rpnt,;) = 0. However, this class of quadratic moment matrices would not be valid under unknown
heteroskedasticity. Since we do not want to highlight the i.i.d. property of {el(“),L}, we take a
narrower class of quadratic moment matrices for robust estimation.
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each [ (i,t) € Dr.''% To give different weights for the (¢ + m)-moment conditions, let
ar, be a K, x (m + ¢) random matrix with a full row rank greater than or equal to
the number of unknown parameters 2 + P + K. Assume a¢ =plim;_,..ay, is of full

row rank. Then, the GMM estimator is defined by

(QL,CHL,QTL) = arg egun gr (0,cn,ar)arargr (0, ¢c,, ar) (3.27)
Cn,T

where g, (0, c,, ar) = %Zz(i,t)eDL 9iGie),z (0, €ny ur).

Let & (0, ¢, ar) = (€, (0,¢ny) -+, ELp (0, €y ) with

Ent (0,ci,00) = (e (0,¢i,0) -+, €nt (0, ¢i,00)) for each t and § € O, and q; =
(d\, -, d.r). Then, we have king vector representations of gy, (#, c,, o), which are
useful in computation:

1 1
g% (97 Cn, OéT) = 7 Z gl (3,t), 9 » Cis at) qngL (9, Cn, aT) (328)
L Zt EDL L

& (0, ¢, ar) Rur & (0, ¢, 1)

and g? (97 Cn; aT) = % Zl(i,t)EDL gl?i,t),L (67 Cn; at) = % :
gi (07 Cn; OéT) RnT,mgL (67 C?’L? aT)
where R, 7y = diag (Ru1, -+, Rary) is @ L x L block diagonal matrix for [ =

1,---,m. Let Sp (6, cn,aT) = g, (0,cn,ar)arargr (0,c,, ar) for each (0,c,,ar)
where g1, (0, c,, ar) = [ Jr ((g ;-fmz;)) ]

Our next issue is to deal with the incidental parameters ¢, and aro. We consider
the direct estimation approach using the concentrated statistical objective function.
Observe that €)1, (0, ¢, o) is nonlinear in 6 while it is linear in ¢; and a;. To
concentrate out c,o and arg from S (0,c,,ar), let J, = I, — %lnl; and Jp =

H0Tn conventional spatial econometrics models (e.g., linear SAR models), we can observe model’s
reduced form and derive its (best) moment conditions (functions of exogenous variables and unknown
parameters). Since we do not exactly derive a reduced form of our model, it is hard to obtain the

best moment conditions. The ideal instruments might be a highly nonlinear function of exogenous
variables in /; 1 and unknown structural parameters.
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Iy — %ZTZIT be the demeaning (orthogonal) operators. Note that J, eliminates the
time fixed effects ap while J7 involves in deleting the individual specific effects c,.
As a result, the optimization of the GMM objective function is on the fixed number

of parameters.

For each [ (i,t) € Dy, and 6 € ©, hence, we define

€i(i,t),L (0) = [(ein' — AMg;.) Yor — Vi1 — TafS] + 0 (yit — thH (9))
P

—0 {(Z )‘% [Mn,t-i-l,p (Q)LZ + A [Nmt-i-l (9)]22) yit-{—l (9)]
p=1

—0% [VVie115 (0)]

and £ (0) = (£1,(0),---,E 1 (0)) with &, (0) = (€1, (0),-- -, €n (0)) for each t =
1,---,T. The direct estimation approach is to use the demeaned data by the de-
meaning operators Jr and J,. That is, we rely on that (Jr ® J,) &L (6, cpn, ar) =
(Jr ® J,) Er (0) for each 6 € ©.

Then, the concentrated GMM objective function is obtained using J,, and Jr:

Si (0) = g1, (0) ayargy, (6) wheregy, (6) =

() ] | (3.20)

EL (0) (Jr @ Ju) R (Jr @ J,) Er, (0)

g2 (0) = I : , and
1 (0) (Jr @ J) Rty (J7 @ ) Ex ()

9r° (0) = 1d, (Jr ® J,) € (0). Hence,

0, = arg rgréiél ST (0). (3.30)

In practice, we conduct the iterative estimation procedure (nested fixed-point algo-
rithm). As individual and time dummies are linear parameters, they can be identified
like regression coefficients after the main structural parameters 6, are recovered. If
the model is over-identified, we can check whether the moment conditions match the
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data set by using the J test statistic. The J test statistic can capture (i) whether
the Euler equation system fits the data well and (ii) whether the conditions of the

quadratic moments are valid or not.

. - . ags (6.)71 A
Note that the GMM estimator 6}, satisfies { gLag,L)] ayargs (QL) = 0(24K+P)x1, SO

we observe 8%29(,9) and g5 () are the key statistics for asymptotic analyses. To specify
components of 8%29(,9), define A, () = a/xg)\(e)’ A, (0) = 8’%"7(9), Ay, (0) = 8’3:;29)

for p =1,---,P, Aup, (0) = aggl(f)) for k = 1,---, K where A, (0) is a vector or

matrix relying on 6. And, note that Ay, An,, Any, and A, represent respectively

0AL (0 0AL (0 0A, (0
An)\ = 3/\( )‘9:907 An'y = 37( )‘9:907 Am/Jp = awi )|9:90 for b= 17 T 7P and Anﬁk =

0AL (6
66,5 )|0:90 fork=1,---, K.

3.4.3 Asymtotic analysis

In this subsection, we establish consistency and derive the asymptotic distribution
of the GMM estimator. Note that the dependent variables of our model are serially
and spatially correlated, but those variables may not be a linear function of distur-
bances. Following Jenish and Prucha (2012), consistency of 0, will be established
based on the near-epoch dependence (NED) of spatial-time processes by controlling

dependencies among them. Here is the definition of the spatial-time NED based on

Figi.L(8)-

Definition 3.4.1 (L, near-epoch dependence) Consider two random fields, Y =
{yl(@t)’L :1(i,t) € Dy, L > 1} with Hyl(i’t)’LHL <00, p>1and

P
¢ = {QW),L (i, t) e D, L > 1}, and an array of finite positive constants, d =

{dl(i,t),L :1(i,t) € D, L > 1}. Assume |Dr| — oo as L — oo where |Dy| denotes
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a cardinality of Dy. Then, Y is L,-NED on ¢ if

Hyl(i,t),L - K (yl(i,t),L|E(i,t),L(3>)H < digip),.¥(5) (3.31)

Ly

for a sequence 1(s) > 0 such that ¢(s) — 0 as s = oo. If supy ,; pnep, digi.L < o0,

Y is uniformly L,-NED on <.

Note that the NED is a property of a mapping from ¢ to Y instead of a stochastic
feature of Y itself. Choose {(i,t) for some ¢ € {1,---,n} and t € {1,---,T} for inter-
pretations. First, F (yl(i,tx Ll Fig, L(s)) means the approximated y(; 4,1, using "some
near random elements” ¢, ’s such that ||l (i,t) — 1 (j,t)|, < s. The random field
¢ contains ”input processes”, and it consists of all g4, 1’s indexed by D. Note that
the NED concept relates two random fields, as an example, Y is approximately mixing
if the input process ¢ is mixing. Second, this approximation error is bounded by some
constant dy(; 4, and a decreasing function Y (s) in s. The first term dy(i,),, depends
on a specific unit [ (¢,t), which it means that this term controls heterogeneity of unit

[ (i,t). By the Minkowski and the (conditional) Jensen’s inequalities,

Hyl(i,t),L - F (yl(i,t),L fz(i,t),L(S)>HLp < Hyl(i,t),LHLP‘i’HE (yz(i,t),Llﬂ(i,t),L(S)) H

L

(3.32)
Then, we can choose dy; s, < 2 Hyl(i’t)7LHLp’ which it leads to 0 < ¥(s) < 1. By
introducing some regularity conditions restricting Hylm% LHLP’ hence, we focus on the
uniform L, — NED concept. The second term (s) controls weak dependencies
on adjacent units, [ (j,t')’s. This device describes the intensity of dependence, so it
should be negligible if two units [ (¢, ¢) and [ (j,t') are sufficiently far. By the Lyapunov
inequality, if Y is L,—NED on g, then it is also L, — NED on ¢ with the same scaling
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factor dy; ), and coefficient 1(s) for ¢ < p. Xu and Lee (2018) provide a review of
related asymptotic techniques.

To derive the asymptotic properties of the GMM estimator, we establish some
laws of large numbers (LLN) and central limit theorem (CLT). For this, we produce

some regularity assumptions.

Assumption 3.4.2 For all i and t, € ~ i.i.d.(0,03), and sup, , E lex|" T < 00 for

some 1. > 0.
Assumption 3.4.3 The parameter space © of 6 is compact. 0y € int (O).

. T T . .
Assumption 3.4.4 {X,;},_,, {0}, and c,o are conditional upon nonstochastic
values.

1 «n T 247 1 T 247
SUD,, 7 75 Die 2ot—1 | Tit k| < 00 for all k, supy 72— |l < 00 and

sup, L 37 |eio| " < oo for some n > 0.

Assumption 3.4.5 For each t and i # j, w;j = h(zi, zjt) - ha (dij) - 1{d;; < d.}
where h () and hq (-) are uniformly bounded nonnegative functions and 0 < d. < oo.

max {supnyt [Whtllo » sUD,, 4 ||WmH1} < ¢y for some ¢, > 0.

Assumption 3.4.6 (i) For 0 € O, A:(0), B:(0) and M, 41 (0) are uniformly
bounded in both row and column sum norms a.e., uniformly in 6 € ©. All elements
of CE(0) are uniformly bounded a.e., uniformly in 8 € ©. A matriz norm of AS (6)
is bounded by T € [0,1) a.e.

(ii) For 6 € int (©), the first, and second derivatives of At (0) and BE (0) with
respect to 0 are uniformly bounded in both row and column sum norms a.e., uniformly
in 0 € ©. All elements of the first, and second derivatives of C¢ (0) for 6 € int (O)
are uniformly bounded a.e., uniformly in 6 € ©.
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(iii) Let ©1 be the parameter space for A. For any t, S, (Wy, \) is nonsingular

and uniformly bounded in both row and column sum norms, uniformly in X € int (©1).
Assumption 3.4.7 (i) For any t and i # 7,
|7 (zits 2¢) = I (Zie, 230)| < en (lzie = Ziel + |20 — 250l (3.33)

for two pairs (zy, zj1) and (2, 2j:) where c; > 0.
(ii) For each i # j and p, note that my,;; = %’1?) ha (dij) - 1{d;; < d.}.

Let 1y, (2it; 2jt) = Mipij- Assume M = maxXp—i . pSup; ;,; |y, (2, 2j)| < 0o and

for any t, p and i # j,

1y (2it, 2jt) — W (Zits 2e)| < em (|20 — Zie| + 250 — Z3t]) (3.34)
for two pairs (zit, zj1) and (2, 2j1) where ¢, > 0.
Assumption 3.4.8 T goes to infinity and n is an increasing function of T.

Assumption 3.4.2 states regularity assumptions for €;. We consider i.i.d. distur-
bances across ¢ and t for simplicity. Based on Assumption 3.4.2 with assuming that
the IV qy is uniformly L,-bounded, the moment functions gj, , ; (f) would be p-
dominated on © for p = 2. This helps to establish the uniform law of large numbers
(ULLN)."! Also, the higher than the fourth moment assumption for €; is needed to
apply a central limit theorem for a LQ form.'!? Compact parameter space in Assump-
tion 3.4.3 is for a well-defined nonlinear extremum estimator (Chapter 4 in Amemiya

"1 This result yields that €; 4,1, (6) becomes Ly, -bounded uniformly in 4, ¢, L and uniformly 6 €
©. It means that the residual evaluated at 0 € © (¢;(;4),1, (¢)) has the same stochastic boundedness
condition as that of € ¢) 1.

H2Related articles are Kelejian and Prucha (2001), Yu et al. (2008), Qu et al. (2017), and
Kuersteiner and Prucha (2018). The detailed discussion about the LLN and CLT can be found in
Appendix B.
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(1985)). To achieve simplicity of asymptotic analyses, we employ the conditioning ar-
gument (Assumption 3.4.4) and the boundedness assumption for empirical moments
of explanatory and dummy variables. Assumption 3.4.5 is a standard assumption
on W, in the spatial econometric literature.''3 By Assumption 3.4.6 (i), we impose

manageable dependence between Y, ;1 and Y, for each § € © since A¢ (f) formu-

aynt

Y, 1

A (0), B:(0), C: () and M, 141 (0) transforming Y, make manageable changes at

n

lates

at # € ©. For asymptotic analyses, Assumption 3.4.6 (i) supposes that

9 € ©.1* This device makes the same orders of moments of €4 1, and € ) 1, (6) for

each 6 € © (i.e., €, and €)1 (0) are both Ly, -bounded). Assumption 3.4.6 (ii)

937,(9)
0’

is for having an identification condition and applying the LLN to . Assumption
3.4.6 (iii) characterizes the magnitude of contemporaneous spatial influences. This
assumption helps to establish that ;)1 is a spatial-NED process given Y, ;_;.
Assumption 3.4.7 (i) is the Lipschitz condition on the formation function A (-) so
that the NED property for w; ;; can be obtained from z; and z;;. Assumption 3.4.7 (ii)
also imposes the boundedness and Lipschitz conditions on the marginal effect of y; +—1
on wjjs via 2y, By Assumption 3.4.7, that is, values of h (2, zj:) and my, (zit, 2jt)
have manageable changes when their arguments, (z;, z;:), are changed. Assumption
3.4.8 means that large n and T' cases would be considered for our asymptotic analysis

to deal with the incidental parameter problem. Large n is for estimating the time

13In detail, we require that the formation functions & (-) and kg (+) are uniformly bounded. Uniform
boundedness of h(-) can be achieved by limiting a maximum intensity of influences: for example,
h (zit, zjt) if ||zie — 2|l > ¢, and h (2, zj1) = Ci otherwise for some c, > 0.

_ 1
lzit —zjell

"4For example, note that [My 141, (0)];; = Mmeg1,p:. Y41 (). Note that V¢, (6) can be an
unbounded stochastic component. Hence, Assumption 3.4.6 (i) implies the following specification:

— ) sgn (mt+1vp7i-y’rf,t+1 (0)) earif ‘mt+17p7i,y1f)t+1 (9)’ > ey
(M 41,0 (0)];; = { Mes 1Y 111 (6) otherwise (3.35)

for some constant cp; > 0, which can be selected by a researcher.
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dummies arp while estimating the individual specific parameters ¢, is required to
have large T'. Also, the effect of initial values on estimation becomes ignorable under
large T

Under the provided regularity conditions, we establish the large sample properties
of the GMM estimator ;. For consistency of 0., we require (i) the ULLN, (ii)
stochastic equicontinuity, and (iii) identification uniqueness as sufficient conditions.

For consistency of éL, the first issue is to establish the LLN for {yl(in L}l(‘ HeDy’ which
1, L

is the main stochastic component of gj; , 1 (6). Let g ),z be a measurable function of

— / / _ / I
€(i)L, 21 XL, Cno, and agg where Z7 = (Z3,---, Z%), and X = (X),1,--+, X;p),

ie, QupnL =S (El(i’t)7L,ZE,XL,CnO,OéTﬂ) for each [ (i,t) € D. Then, we define the

baseline o-field for approximation:
-E(i,t),L(S) =0 (gl(j7t') o1 (]7 t,) € D’ ||l (Z7t) —1 (j7 t/>||oo S S) . (336)

Hence, the sequence {yl(m, L} forms a random field with respect to another

l(i,t)eDy,

random field {Q(i,t),L} So, we discuss the NED properties of {yl(i,t),L}

I(it)eD’ I(i,t)eDy,

based on Fy(;),.(s). Proposition B.2.5 says that {yl(m’ L} is uniformly Ly, -

I(i,t)eDy,

bounded and is uniformly L,—NED on {Q(i,t),L} Then, we can apply the

I(it)eD’

LLN to {yl(iytm} in the sense of Li-norm (Proposition B.2.6). The idea of

l(i,t)eDy,

showing this is to verify two steps: (i) the approximated {yl(i,t% L}l (which is

(i,t)eDy,
a function of Fi; s 1(s)) satisfies the LLN, and then, (ii) the distance between the
actual sequence and the approximated one can be closed to zero if distance s grows.

A main part of (ii) is to have a nonlinear moving average representation of Yi(i0),L

using {gl(i% L}l . This LLN helps to establish convergence of the sample moment

(i,t)eD
function g (0) = T Yiusren, it (0) to its expected value for each 6§ € ©. To
hold 1 [g§ (0) — E (g5 (8))] =0 for each § € ©, Lemmas B.2.12 and B.2.13 verify
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respectively supy ,.p, £ |97 (0)]* < oo and g (#) is uniformly L;-NED on ¢ for each
6 € ©. This is a pointwise LLN, so for arbitrary finite points §’s in © g¢ (0) converges
its expected value by the same reason of Proposition B.2.6. Since © is compact,
it can be covered by finite subcovers. To extend the pointwise LLN to the ULLN,
g5 (0) satisfies the Lipschitz continuity condition in parameter, which gives enough
smoothness of g (0) (in #). In Appendix B, Lemma B.2.14 verifies this feature and
gives (i) the uniform convergence supycg [95 (0) — £ (g (0))] —,0, and (ii) uniformly
equicontinuity of E (g§ (0)).

To obtain consistency of éL, the last requirement is the identification uniqueness
of 6y. We only consider the linear IV moments as the source of identification since
(i) they come from the underlying model assumption (i.e., population orthogonal-
ity condition) and (ii) the derivation of identification conditions is relatively simple.
To have the identified system, we need to have a unique solution so that for all
l(i,t) e Dy E {gll(‘i,t),L (H,Ci,at)} = 0,x; if and only if (0, ¢;, o) = (6o, ci0, ). Since
we are interested in the structural parameter 6, the equation plimy_, g%’c (0) = 04x1
is required to have a unique solution 6. For each [(i,t) € Dy and § € O, de-
fine the following generated regressors: Ly (0) = M, L,q(0) = M,

22 2l
Ly, it (0) = 26020 for p = 1.+ P, and Lg, ;s (0) = 25020 for k=1, K.
For each 0 € ©, let Ly (0) = [Ly,it (0),, Lyput (0)] (P x 1 vector), Lg; (0) =
[Lovit (0) -+ Liyen (0))' (K x1vector), Lig (0) = [Laut (0) Lie (0) , Ly iy (0) Ly (0))]
for & € © ((2 + P + K)-dimensional row vector), L, (9) = (L}, (8),---, L, (9)), and
Ly (0) = (L, (0),---, L, (0)). Since plim/ o714}, (Jr ® Jn) EL = 0451 by Lemma

B.2.16, the unique solution of plirnLHOOgIL“’C (0) = 04%1 at By needs that y is a unique
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solution of

. 1 .
plim ey (Jr @ J,) L (6) (6o —0) =0 (3.37)

where 6 lies between 6y and 6. Then, if plim; ,.1q} (Jr ® J,) Ly (9) has the full
column rank 2+ P+ K around 6y, we have a sufficient condition for identification. The

two assumptions below state regularity conditions for linear and quadratic moments.

Assumption 3.4.9 (i) q,; is predetermined at time t (i.e., E (Qnt|li—1) = Qut)-

And, its column dimension of qu is fized (= q> 2+ P+ K) for all n and t.

4+nq
< 00 and

(ii) For some ng >0, sup;, ; E IQZ(i,t),L‘
T
SUP; 0,1 221 D=1 ’ql(iv”qul/(j:t’)vL‘ <00

(iii) { qui 1.}
(w) plimp oot dy, (Jr @ Jo) Ly (0) is of full column rank 2+ P+ K for 0 € N (6y)

inep, uniformly Lo-NED on s.

where N (0y) denotes some neighborhood of 6.

Assumption 3.4.10 (i) For each t and [, all diagonal elements of R,.; are zero
so that E(%E’LRLJEL) = 0 and all entries in R, are measurable functions of
{§z7i,t),L}l(i7t)€D where G ., = S (Zl*(i,t),L? XL, Cno, O‘T,O)'

(i) The matrices Ry.;’s are uniformly bounded in both row and column sums in
absolute values.

(i) For any i, t and l, [Rugl;; = 0 of [|1(2,0) = (4, 0)|| > ad. for some a € N.

Assumption 3.4.9 (i) implies that for each t E(q,Ent) = E(QuE (Entlli-1)) =
0,x1 by the law of iterated expectations. Assuming the existence of the (higher than)
fourth moment for ¢;(; 4,1, is for the dominance condition of glIEftL 1 (0) for each 0 € ©.
Via Assumption 3.4.9 (ii), we impose the spatial-time stability condition for IVs. By
Assumption 3.4.9 (iii), we achieve that the sequence of sample moment functions
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{glc(i,t),L (9)}l(i7t)€DL is uniformly L;-NED on ¢, so the pointwise LLN can be applied
to T Yiinen, it (0). Assumption 3.4.9 (iv) is a sufficient condition that f, is a
unique solution to equation (3.37).

Assumption 3.4.10 (i) means that R, 1, - - -, Ryt are not relevant to {el(i’t)’L}l(i,t)eDL’
but can be affected by the exogenous part of Z,;, Xy, cno, and oy ¢. This implies that
for each I = 1,---,m E (&} (Jr @ J,) Ry (Jr ® J,) EL) = odtr (E(Ry,) (Jr @ J,)).
As a quadratic moment matrix, we can use the spatial network matrix W, (if avail-
able), and approximated functions for W, ;_; based on the part of strictly exogenous

components {gl*(i’t)’ L} . For example, if Wnyt,l is a projected (approximated)

l(z,t)eDy,

W, :—1 on the space generated by {gl*(i,t),L} , we can use W, 1, erz,t—p and

I(i,t)eDy,

Wﬁ,thn,t—l — tr (W,’Lt_lwn’t_l) as a quadratic moment matrix. For the relevant
issue, refer to Kelejian and Piras (2014). We do not consider that a quadratic mo-
ment matrix depends on unknown parameters.'® Assumption 3.4.10 (ii) restricts the
magnitude of the quadratic moment matrices. By imposing Assumption 3.4.10 (iii),
the number of nonzero elements in R, is finite even for large n (i.e, sparse R, ;’s).

Now we obtain consistency of éL, which is implied by (i) uniform convergence
of [S§(0) — E (S5 (0))] in # € O, (ii) uniform equicontinuity of {F (S§ ())} on O,
and (iii) identification uniqueness. Note that the NL2SE can also achieve consistency

since that approach shares those conditions.
Theorem 3.4.2 Assume Assumptions 3.4.1 - 3.4.10 hold. Then, éL—>p90 as L — oo.

For statistical inferences, the next step is to derive the asymptotic distribution of
éL. Since plimy_,,.a;, = ag, the random function V'L - ag g5 (0p) mainly characterizes

1158ince we do not derive the feasible reduced form, it is difficult to analyze the asymptotic impacts
of the estimator obtained by the first step on the quadratic moment matrices.
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8916(i,t),L(é)

0
the asymptotic distribution of 8, with 89(, ) = %Zl(i,t)e p, — 55— By Theorem
3.4.2 and the continuous mapping theorem, we have 6§§9€9> - 85{%(5‘,90) = 0, (1), which
implies that 8’7%65?0) can be considered instead of 60(,9) in the asymptotic analysis.

First, by Propositions B.2.9, B.2.10 and B.2.11 in Appendix B, the random field

8gc. .\ (0
{W} is uniformly L;-NED on ¢. Then, we can apply the LLN to
l(’L t)EDL

8g§9/90 We denote G, = (8@%/@@) and Gy as its limit.

Second, consider v/L-agg$ (), which is a linear combination of linear and quadratic
moment conditions. The linear moment part ﬁq’L (Jr ® Jy,) &L can be composed by
the mean zero part ﬁq’L (I7 ® J,) & and the asymptotic bias part —%ﬁqi (Irly @ Jy) EL.
By Lemma B.2.16, we have — =1~ F (q;, (Irly ® J,) €1) = O (\/%) and

i (ol (Il ® J,) € — B (df, (Irly @ J,) €1)) = O, (). Then, define

b (60,08) = S E(@yrJnnt) = O (1). Hence,

L _ L "L 2 1
Nihe (Jr® J,) & = Nihs (It ® J,) & — \/;bL (90, ao) +0, (ﬁ) . (3.38)

Observe the quadratic moment part: for [ =1,---.m

1 !/

\/ZEL (JT ® Jn) RL,Z (JT ® Jn) gL
1 /

- Vi [SL (Jr @ Jp) Ry (Jr @ Jo) €L — optr (R (Jr ® Jn))]

2

99
+—tr (R, (Jr® J,)).
\/Z ’I“( LJ( T ))

By Lemma B.2.17, we have tr (R, (Jr ® J,) \fb (02)+ O, (—) where
b (03 = F TS T 1[ Rty for 1= 1,--,m and bz, (oF) = Op(1) by
(1 (m) _(q)

Assumption 3.4.10 (ii). Let ap = (aL ,eLagp,ap ) and ag =plimy_,,a; where

ag = (a(()l), e ,a(()m), a(()q)). By applying the asymptotic equivalence, we can consider
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the k" —element of /L - agg5 (fy) (for kg =1, -+, K,):

&L (Jr® J,) (Z aél,)kaRL,z) (Jr @ Jo) €L (3.39)

=1

-

+
5-

a(()?l)caq/L (Jr @ Jn) €L

& (Jr © J,) (z;”1 afy Rea) (Jr ® J) Ex
U%t?“ (Zl 1a0k RLI (JT ® J, ))

i)l (I ® 1) €5 — [ bl B (60, %)

A ) o () o (7)
()

where agy, is the kf"-element of al, and a((f,la is the kt'-row of a{”. Then, the mean

_Sl-

_l_
:\H ﬁ‘

zero term ﬁd’hka&; + ﬁ [S’LRL,;CGSL — odtr (RL,ka)} where

Rip, = (Jr®J,) (Zﬁl a(()l’)kaRL,l) (Jr ® J,) and §f;, = aé‘f,laq’L (It ® J,) character-

izes the asymptotic distribution of the GMME. Hence, we can represent v/L-az g (6o)
L-a.g; (00) = VL-arg;™ (00) = \/Fai" b (09, 03) — /2 Sy af b2, (02) + 0, (1)

where 55 (6y) denotes the mean zero part of g (6,).

For the asymptotic distribution of v/L- aogg(“) (00), we need to find an appropriate
limit theorem. We take ideas from Kuersteiner and Prucha (2013, 2018) and Qu et al.
(2017). Note that {Z,, d;;,d.} can affect network formation. Except for a channel of
affecting Y,,;—1 on Z,;, remaining components of Z,; are unspecified. For each [ (i,)
the (unspecified) exogenous network formation component Si(i,p), can be represented
by sub-o-field C;(C F). Elements in V,; in equation (3.2) can be ¢}, ;. Hence, we
specify {gl*(m,L}l(i’t)eDL as C = \/lL:1Cl and F (el(i,t)7L|C> =0 for all [ (i,t) € Dy, where
V is the notation for the sigma field generated by the union of two sigma fields. Then,

the C-stable convergence concept can be established, which it is joint convergence

of main statistics and a C-measurable random variable. An advantage of taking the
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notion is that strictly exogenous components from network formation {ql(m’ L}l(i,t)eDL

can be represented by C. If we treat {§l*(i’t)7L}l(i,t)eDL as constants, a conditional
limiting distribution will follow a normal distribution meaning a conventional CLT
framework. Observe that the main statistics VL - aggs™ (6o) takes a LQ form of
disturbances conditional on C if a¢ is C-measurable. Lemma B.2.19 shows that the
LQ form converges C-stably. With considering randomness of a C-measurable random
variable, VL - agg>™ (65) may follow mixed normal due to random norming by the
continuous mapping theorem.!'6

The assumption below states conditions for having the well-defined asymptotic

variance of 6.

Assumption 3.4.11 Gq and ag are C-measurable.
liminfy o Gmin (GrararGr) > 0 and liminfy o G (1) > 0 where ¢ (+)

denotes the smallest eigenvalue and ¥, = 1Var (ZI(M)GDL Giio.L (90)).

In Hansen’s (1982) GMM setting, the optimal GMM (OGMM) estimation can be

considered by the approximated . Let

Wrm = [U@CD ((JT & Jn) RLJ (JT (024 Jn» ,*,VeCp ((JT (24 Jn) RL,m (JT & Jn))]
(3.40)

and

kLm = [vec ((JT ® Jo) R, (Jr® Jn)> RN e ((JT ® Jo) Ry, (Jr @ Jn)>]’
x[vee ((Jr® Jo) RS, (Jr @ .J,)) -+ vee ((Jr ® Jo) RS, (Jr @ Jn))].

160y, we can argue that v/L - ag §2’(u) (6p) follows asymptotically normal conditional on C. A basic

idea of the CLT with random norming, refer to Chapter 25.2 in Davidson (1994).
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Then, the Y can be approximated by

EL _ 1 (N4 - 30—64)) wlL7me,m + UéﬁL,m /L3W/L7m ([T ® Jn) qr
L | pady, (It @ Jn) Wim opdy, (Ir ® Jy) ar

(3.41)
where pu3 = F (€3,) and juy = E (€%), and X1, and ¥, can achieve the same probability
limit, i.e., g :plimL%mEL(:plimLﬁmf}L). Since 3, depends on nuisance parame-

ters o2, 3 and juy, consistent estimates for them are required for practical uses. The

Theorem below shows the asymptotic distribution of 0r.
Theorem 3.4.3 If Assumptions 3.4.1 - 3.4.11 hold,

. Z2GLa] al bL 90 od)
( ) +\/7GLaL 20t a b/?,z (o3) !

N

L&,

—raplimp oo, (a7 ar)

where Qp, (dyar) = [GLayarGr) ' GLayarYra,a Gy [GrayarGrl™", and &, ~
N (0(2+p+K)X1,[Q+P+K) is independent of plimp_oQr (ayar) (because they are C-
measurable).
Let &, = VL (01— 00) + [GaparGy]™
{\/>GLaLaL bE (0o, 02) + [GLaL pyiid laL bQ (o 2)} and Qo (apao) =plimp 002, (afar)

for further explanations.

First, Theorem 3.4.3 says the existence of asymptotic biases (they are of O (maX {%, %}))
. . . . . A 1 1 1
due to direct estimation of incidental parameters. And, 0,—60, = O, (max {ﬁ’ o T})
If 2 —0or % — 0, the GMME’s asymptotic distribution will be degenerated: (i) if
7 — 0,
n(0n — 00) + [GrabarGr) ™ Gl ity b3, (03) =,0, and (ii) if £ — 0,
T (éL — 9()) + [GLa,arGL) ™ LaLaL bL (6o, 03) —,0. To avoid degenerate distribu-
tions, hence, an appropriate ratio of n and 7' is required. If % — ¢ € (0, 00),
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\/_ (QL — (90) + \/_[ CLL(ZLGL] LaLaL bL ((90,0'[))

+ \[ LanarGr] T Gral S, aL)bLl (03) —aS2 (agao)

N|=

&,

Second, consider the case of %2 — ¢ € (0,00) for illustrative purposes. Then,
Theorem 3.4.3 means that convergence of the characteristic function conditional on
C, E (exp (iw'&.1) |C) — exp (—@'Qp (ahao) @w/2) where i = /=1, and w@ is a linear
combination. It implies that E (exp (iw’é, 1)) — E (exp (—w'Qy (agap) @w/2)), which
means that the unconditional asymptotic distribution of @', 1, is a mixed normal.
Third, observe that the asymptotic distribution of v/L (é,; — 00) is not centered at
02+ P+ K)x1 conditional on C if 7 has a moderate ratio. Hence, a bias correction for 0 I
is needed. Fourth, the optimal GMM weight matrix (conditional on C) can be specified
by aa;, = X' by the Hansen’s (1982) GMM setting, i.e., (ZZI) = {G’LEZIGL}_
Then, its probability limit is [nga 1G0} 71, which is C-measurable. Since ¥;! involves
unknown nuisance parameters including the second, third and fourth moments of ¢,
the optimal GMM estimator (OGMME) (denoted by 6,,) is infeasible. After getting
consistent estimates of o2, us3, and py, we can employ an estimated one (denoted by
$.) and get the feasible OGMME (FOGMME), f; ;. So long as 51 — 1 = o, (1),
the FOGMME and OGMME are asymptotically equivalent.*!”

H7Due to the model’s complexity, many IVs might be needed to approximate endogenous variables
in the model or to increase GMME'’s efficiency. However, we do not recommend using many moment
conditions since it can yield an additional asymptotic bias (see Lee and Yu (2014)). That asymptotic
bias is of an order proportional to the ratio of the number of moments and the total observation
numbers. By observing (3.42), we can also expect that using many quadratic moments leads to large
asymptotic biases (since it involves the sum ", a(Ll)bgl (08) and it may increase corresponding
to m). In practice, therefore, we suggest selecting the number of IVs as well as quadratic moments

carefully with considering feasible sample observations.
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Bias correction

By observing (3.42), the two kinds of asymptotic biases exist. The first source of
bias is due to estimating the incidental parameters aro and employing the quadratic

2
moments, b?,l (08) = X X Y, [Rnei];;- Since we select Rng)’s, b?,z (02) can

be evaluated after getting a consistent estimate of o2. The second source of bias

comes from the incidental parameters ¢, and using the linear moments, b¥ (69, 03) =

LS E(q,;JuEn). Hence, a key part of bias correction is to evaluate E (§,pJnEnt).

Since qu is predetermined, b} (6o,08) = + 3/ Ypss B (A JnEne). Note that pos-
sible choices for q,; are lagged dependent variable Y, ; 1, (lagged) exogenous vari-

ables X,,;—1, Xy, and their affine transformations. Our difficulty is to formulate

8

E (d)yJnEnt) for t' >t if q, consists of Y,,;—1 and its linear transformations'® since

we do not derive the reduced form of V,,; ;. One way to reduce the bias is to use

similar Y, ;1 (e.g., Y,?, ;) which has a feasible reduced form.'"”

Then, we have a bias corrected estimator

(Cr.Cn) ey aPbR (03)  (3.43)

. - _
0L =0 — T [C,C) ™ CLal?bk (69, 03) —
=1

1
n
where C; = a;Gp, and ~ denotes an estimate of -. In case of éL,O and éL,f, we

can have the Cholesky factorization of X7! (or ¥71), ie., X7! = ay, pax,,. where

as, = (a(zlz,L, e a(EnZ{L,agsz) is an (m + ¢) X (m + ¢) square matrix and ay, 1, is

positive definite for sufficiently large L by Assumption 3.4.11. Then, éio and éi  can

18When considering a linear combination with Y, -1 as Qnt (e, BpYy—1 where B, is some
n X n matrix), a linear combination matrix should be strictly exogenous. If we use W,,,_1 as a
linear combination matrix, we need to additionally adjust nonlinearity of W,, ;—; since W, ;1 might
be a nonlinear function of Yy, ¢_».

"19For example, we can choose Y,¢, ; which comes from the LQ perturbation method and formulate
E (Y5, JpnEny) for ¢’ > t. If a spatial network matrix W, is available, we can also use a linear optimal
decision vector based on the LQ value functions (Jeong and Lee (2018)).
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be also defined. Indeed, the second source of bias b¥ (6y, o3) might not be perfectly
measured even for the large samples since the functional form of actual Y,,; is difficult
to be achieved. Hence, we firstly consider the ideal situation (i.e., we can successfully
evaluate E (), JnEnt) for t' > t). For example, (i) all IVs are strictly exogenous; (ii)
limy, o b (6o, 03) is obtainable. After that, we investigate the asymptotic impact

originated from a misspecification of b} (6y, 02). Here is the ideal regularity condition

for 65 .

Assumption 3.4.12 Assume
VE[[CLCr ™ CLafbE (6o, 03) — [CL.Cr] ™ CralPbE (80, 03)] =,0, and

VE[ChCa™ G s, alb (o) — (0107 O S b, (03)] 4,0,

Assumption 3.4.12 gives the asymptotic equivalence.'®® Since G —,Gg and ar—pao,

we need to have bt (90,00) — b (0o, 02) —,0,%1 and bLl( 2) — bLl (08) —,0 for | =
1,---,m to satisfy Assumption 3.4.12. As long as getting a consistent estimate of o7,

—

we can achieve b?,l (o) — bLl (03) —,0. Now we have the following corollary.

Corollary 3.4.4 Under the same assumptions of Theorem 3.4.3 with Assumption

3.4.12, we have

N

VL (05 = 0o) =4 (ahao)? - &.. (3.44)

That is, we have

A 0 —i[C’C]‘l a\PbE (6y, 02)
ACRIENA G A VG v S B
( g ) _% [C/LCL] O X 1aL ?l (0(2)) — o .

120Tf we take Y5, for the bias correction and Y5 is correctly specified, we can assume that (i)

oo lAC (6 )" and $°5° neq RAS ()] are uniformly bounded in either row or column sums uniformly
in a neighborhood of 6y, and (ii) 7 — 0 and % — 0 for the asymptotic equivalence. They come
from Corollary 4.3 in Jeong and Lee (2018).
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implying

)+t

Hence, if we have a moderate ratio of n and T and good approximations of b¥ (6, o3)
and bgl (02)’s, the asymptotic distribution of v/L (éi — 90) will be properly centered
conditional on C.

However, we might not have b (50\, 03) — b (6y,02) —,0,x1 since we approximate
E (@, JnEnt) if Qe includes Y, ;. Let b =plimy,_,,.b¥ (5(;03) (=probability limit of
the approximated one) and by = limy_,o, bY (09, 03) (=probability limit of the actual
bias term). Suppose bt # bf. Then, the first part of Assumption 3.4.12 fails. Observe

that

[[C1,C0) ™ CaB (B0, 03) — [CL.CL) ™" CrLaf?bk (60, 02)]

SIESE

F1CLCu)T Cral [(0F (Bo,08) — b) = (0F (60, 03) — 0F) + (% — )] -

If 2 — c € (0,00), we have

[N

VL (05 = 00) =4 (ahao)? - & + Veplimp oo [C1.CL) ™ Craf® (b2 —bF)  (3.45)

Hence, if we expect large errors in using this bias-correction method, having large T
(relative to n) can alleviate the problem.

By using éz, the statistical inferences might yield more accurate results. If we
consider the linear constraints!?! R, the Wald statistic

121We can also consider a non-linear constraint by applying the delta method.
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T, = H(RQL (aar) R/)% VL (Réi — T)H2 can be used to test Hy : ROy = r (against
Hi : ROy # r) where r is a dim (r)-dimensional vector and R is a dim (r)x (2 + K + P)
full row rank matrix. By applying Lemma B.2.20, T}, will follow the asymptotically
chi-square distribution: under Hy : Ry = r, TL—>dX(211m(r) implying

P (TL > Xﬁim(rm_a) — a where X3,(1_o denotes the (1 — ) quantile of the chi-
square distribution with dim (r) degrees of freedom. Even for the existence of C-
measurable random components plimy,_, €2y, (a’LaL)% in the asymptotic distribution
of éi, the Wald statistic asymptotically follows the unconditional chi-square distribu-

tion. This result has the same implication as Theorem 4 in Kuersteiner and Prucha

(2018).
3.4.4 Finite sample properties

In this subsection, we conduct Monte Carlo experiment with data generated from
equation (3.19). There are two purposes of the simulations: (i) performance eval-
uation of the NL2S and GMM estimators, and (ii) the analysis of misspecification
errors when we estimate the model with ignoring the forward-looking feature. The
simulation design aligns with the empirical application in Section 3.5 in terms of the
sample size (n,T) = (48,24), the spatial networks (W,,;), and the averages of depen-
dent variables (Y°).122 We set K = 1, P = 1, and § = 0.95. We draw X,;, Cno,
arp, and &, mutually independently from the standard normal distributions. We
generate the data with 20 + T periods, where the starting vector values are Y,°, but

122That is, we employ the same spatial networks and relevant terms as the application part to have
a unique reduced form of equation (3.19). We generate Y;7,,, and VV;7,, by the LQ perturbation
method around Y,7. In the supplementary file, we conduct additional simulations for the case of a
time-invariant spatial network matrix. Since this case can have a well-defined correlation structure of

Y.+, we can do the quasi maximum likelihood (QML) approach. We compare estimation performance
of the NL2S and GMM estimators with that of the QML estimator.
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Table 3.1: Simulation results
Case 1: (Ao, Y0, Y0, Bo) = (0.1,0.2,0.5,1)

NL2S GMM
Ao Yo Yo Bo Ao Yo (2 Bo
Bias 0 -0.0309 -0.0013 -0.0202 -0.0117 -0.0309 -0.0014 -0.0181
SD 0.0208 0.0268 0.0237 0.0346 0.0116  0.0269 0.0239 0.0345

T-SD 0.0201  0.0263 0.0242 0.0346 0.0108 0.0261 0.0242 0.0344
RMSE 0.0208 0.0409 0.0237 0.0401 0.0165  0.041 0.024  0.0389

GMMC
Ao Y0 Yo Bo
Bias -0.0011 -0.0037 0.0238 -0.0026
SD 0.0115  0.0279 0.024 0.0345

T-SD 0.0108  0.0261 0.0242  0.0344
RMSE 0.0116 0.0282 0.0338  0.0346

utilize the last T periods as our sample. For the true parameter values, we consider
two sets of #y, (0.1,0.2,0.5,1)" and (—0.1,0.2, —0.5, —=1)’. We select small amounts
of 0y to obtain fast convergence in solving algebraic matrix Riccati equations. Linear
IVs are qut = [Yaio1, WaYnio1, W2V 1, Xot, WoXoi, W2 X,y where W, is the row
normalized adjacency matrix of the U.S. states. The quadratic moment matrix is
formed with Ry ; = Ip @ W,.

First, we compare the three estimation methods: (i) NL2S, (ii) GMM, and (iii)
GMM with bias correction (denoted by GMMC). By comparing performance of (i)
NL2SE and (ii) GMME, we can investigate whether using the quadratic moment
condition plays a role in efficiency. To evaluate performance of estimators, we report

four criteria: (i) bias, (ii) standard deviation (SD), (iii) theoretical standard deviation
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Misspecification errors

NL2S GMM
Ao Yo Yo Bo Ao Yo Yo Bo
Bias -0.0122 -0.0525 0.0006 -0.1346 -0.0214 -0.0514 0.0006 -0.1331
GMMC
Ao Yo Yo Bo
Bias -0.0123 -0.0525 0.0302 -0.1344
Case 2: (Ao, Y0, %o, 5o) = (—0.1,0.2, 0.5, —1)
NL2S GMM
Ao "o (o Bo Ao Yo o Bo
Bias 0.0029 -0.0309 -0.0021 0.0186 -0.0099 -0.034 -0.0021 0.0241
SD 0.0229 0.0261 0.0228 0.0369 0.0134 0.0259 0.0231 0.0366
T-SD 0.025 0.0263 0.0239 0.0354 0.0135 0.0261 0.0239 0.0345
RMSE 0.0231 0.0404 0.0229 0.0414 0.0166 0.0427 0.0232 0.0438
GMMC
Ao Yo Yo Bo
Bias 0.0005 -0.0049 0.0227 0.0025
SD 0.0136  0.0272 0.0231 0.0367
T-SD 0.0135 0.0261 0.0239 0.0345
RMSE 0.0136 0.0277 0.0323 0.0368
Misspecification errors
NL2S GMM
Ao Yo Yo Bo Ao Yo Yo Bo
Bias 0.0156 -0.0534 -0.0004 0.1368 0.0028 -0.0547 -0.0004 0.1401
GMMC
Ao Yo Yo Bo

Bias 0.0139 -0.0545 0.0292 0.1372
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(T-SD), and (iv) root mean square error (RMSE). To obtain those measures, we
conduct 400 repetitions. In Table 3.1, we obtain several findings:

(1) First, consider estimation of A\g. NL2SE has smaller bias relative to that of
GMME in absolute values. There exists downward biases in GMME. After the bias
correction, the magnitudes of bias become smaller. In terms of efficiency, GMME is
significantly better than NL2SE.

(2) Second, consider estimating vo. In NL2SE and GMME, there are downward
biases. After correcting the bias, the magnitude of bias decreases. In estimating 7o,
additionally considering Ry, ; does not improve efficiency.

(3) Third, consider estimation of 9y. In NL2SE and GMME;, there are downward
biases for both cases, A\g > 0 and Ay < 0. In estimating 1y, our bias correction
increases magnitudes of biases (in absolute values). It seems that our bias correction
method overevaluates the bias for estimating .

(4) Fourth, we report estimation results of §y. For the NL2S and GMM methods,
the signs of biases are opposite to those of the true fy. After applying the bias
correction method, we can reduce the magnitude of bias. It seems that additionally
using Ry ; does not affect efficiency.

In sum, (i) using the quadratic moment condition is only beneficial in estimating
Ao; (ii) our bias correction works well in estimating Ao, 7o and 5. For accurate
estimation for Ay, using quadratic moment conditions can be additionally considered
(to support NL2SE).

Second, we study misspecification errors when we estimate equation (3.19) with

0 < 6 < 1 using the conventional SDPD model (equation (3.1)). If 6y = (0.1,0.2,0.5,1)’,
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we detect significant downward biases except for the estimates of 1)y when we disre-
gard the forward-looking feature. If 6, = (—0.1,0.2,—0.5, —1), we observe upward
misspecification biases in estimating Ay and vy. That is, estimated coefficients Ag,
7o and [y will be underestimated (in absolute values) without the forward-looking

behaviors.

3.5 Application

In this section, we introduce an empirical application to show how to implement
our model. Note that our model assumptions are appropriate for fixed physical lo-
cations of agents with their time-varying intensities of interactions by the economic
indicators. Hence, we consider policy interdependencies among the U.S. state’s health
expenditures.'?® Each state government becomes an economic agent 4, and its action
at each period is state health expenditure per capita. A government officer makes its
health expenditure decision by considering two potential factors (Brueckner (2003)):
(i) welfare recipients can move to neighboring states to enjoy favorable welfare en-
vironment (i.e., welfare motivated move), and (ii) they can expel the officer when
the state government makes an inefficient expenditure decision by comparing that of
similar states (i.e., yardstick competition).!?* In consequence, a state decision maker

123Gince the state’s health expenditure is used for health-related research, immunization programs,
regulation of air and water quality, etc., it can yield the policy spillover effects to neighboring states.

124Brueckner (2003) reviews the justifications of payoff function (3.3) in the framework of local gov-
ernment strategic interactions. The yardstick competition can be explained by the policy spillover
model. Then, the payoff specification (3.3) for a local government describes the utility of a repre-
sentative resident of region i.

The welfare motivated move is justified by the resource-flow model. In consequence, a jurisdiction’s
payoff would be the same as (3.3) and show a representative resident’s utility. In this case, however,
jurisdiction ¢ is indirectly affected by other jurisdictions Y_;; via resources such as population. A
resident in region i can be a labor force and can move to other regions to enjoy a favorable economic
policy. Hence, jurisdiction ¢ has a motivation of considering neighboring policies.
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Table 3.2: Descriptive statistics: 48 contiguous states in U.S.

Variables Mean  Standard dev. Min Max

Health expenditure 0.1425 0.0805 0.0271 0.5855
Proportion on total expenditure 0.0247 0.0124 0.0047 0.0707
Total expenditure 5.7992 1.2951 3.4631 11.6327
Total revenue 5.8646 1.2749 1.5816  14.8746
Grants from the Federal government 1.4947 0.4185 0.5757  4.1586
Population (millions) 6.0305 6.5155 0.4663 39.25

Population density 73.7276 100.0283 469.5999  1.8541
Personal income 35.7279 5.6464 25.7151  59.1866
Unemployment rate 0.0559 0.0187 0.023 0.1361
Proportion of the population aged 0-17 0.2475 0.0216 0.1898 0.3532
Proportion of the population aged 18-65 0.6198 0.0151 0.559 0.6511

Note: Sample is 48 contiguous states from 1992 to 2016. Dollar amounts are in
thousands and real per capita values adjusted by the GDP deflator with base year
2012.

considers neighboring actions. Note that the state’s health expenditure can posi-
tively affect its future economic status by human capital accumulations (Bloom et
al. (2004)). In consequence, we take the time-varying W, since evolution of W, is
driven by the states’ economic status. As Han and Lee (2016), economic proximities
of states are captured by their personal income per capita (i.e., variable Z,;).

We estimate the underlying incentive structure of U.S. states’ actions on health
expenditure by assuming forward-looking agents and network evolution. For data,
we choose 48 contiguous states in the U.S. (excluding Alaska, Hawaii, and Wash-
ington D.C.) and time periods are from 1992 to 2016 (total 1,200 observations for
each variable). From the United States Census Bureau, we obtain the states’ demo-
graphic/economic and finance data.'?> For the additional macroeconomic variables

125For the government finance data, two periods of observations (years 2001 and 2003) are not
available. Hence, we generate the government finance data for the two periods by the interpolation.
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(e.g., GDP deflator, interest rates, states’ unemployment rates), we use the website
of the Federal reserve bank of S.t. Louis. All dollar amounts are in thousands and
real per capita values adjusted by the GDP deflator with the base year 2012. Table
3.2 shows the descriptive statistics for collected variables.

The main issue is verifying whether a local government decision affects their net-
work links by the economic proximities. 12¢ In our model, the coevolution of economic
activities and networks arises if 1)y # 0. By using Z,,, and {d;;}, we need to specify

socio-economic networks W,,;.'2” We consider W,,; based on the following specification

wei; = h (i, 2jt) - ha (dij) - 1{(7, ) nbd} (3.47)

for © # j to represent the intensity of interaction between ¢ and j at time ¢. To
measure the economic distance, we consider F;,;; = |z — z;4|.'*® By introducing
1{(¢,7) nbd}, we can have sparse W,,;.
To give reasonable backgrounds of selecting spatial networks, we consider the
Cobb-Douglas function specification of w; ;;:
wyi; = By fed; ™ @J:) L 1{(i, ) nbd} (3.48)

126 A famous discussion related to this issue is Barro (1990).

127Fach state government’s physical location can be characterized by the pair of latitude and
longitude for its capital (denoted by (g;,v;) in radians). By the Haversine formula, we compute
the physical distance between two states denoted by d;;: Let (p;,v;) and (@;,v;) be respectively
geographic locations of ¢ and j. Then,

d;j = 2rg arcsin (sin2 (W) + cos (i) cos (¢p;) sin? (UJ;Uz)) (3.46)

where rg = 6356.752km denotes the Earth radius.

128For a case of |z — zj:| < $200, we set E; ;; to be $200 to exclude extremely strong intensity of
economic interactions. Selection of the minimum FE;;; does not significantly affect our estimation
results.
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Table 3.3: Estimated coefficients (elasticities) of spatial-economic network formation
models

Coefficients ~ Specification (1)  Specification (2)

Qe 0.3017*** [0.0266] 0.1313*** [0.0242]
oy 1.4575%%% [0.0272]  2.0421*** [0.0213]
QU 0.0388* [0.0231] 0.0808* [0.0459]
Fixed effects No Yes

Note: Estimates that are significant at the 1 percent, 5 percent, and 1 percent levels
are respectively marked by *, ** and ***,

for i # j where ay, a., and «,, are coefficients. The estimation procedure is introduced
in Appendix B. Table 3.3 shows the estimated coefficients in specification (3.48). The
estimated «, and oy are significant under the 1% significance level, and estimate of
(v, 18 significant under the 10% significance level.

We estimate model’s main parameters based on Assumption B.13 via the NL2SE
and GMME. For the GMME, we consider the FOGMME. For the time-discounting
factor, we employ the average of 10-year Treasury constant maturity rates during the
sample periods: i.e., § = 0.956 ~ ﬁ where 7,, = 0.0457 denotes the average interest
rates. As explanatory variables, we utilize (i) total revenue, (ii) federal grants, (iii)
time differenced population density'?®, (iv) unemployment rate, (v) proportion of
the population aged 0717, and (vi) proportion of the population aged 18-65. This

specification is guided by Case et al. (1993). For the linear IV moment conditions, we

129We find that the U.S. population densities are quite persistent. In our model framework, all
exogenous (time-varying) characteristics (17, in the theoretical model) should be stationary. To
avoid nonstationary variable issues, we use the time differenced population densities.
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Table 3.4: Model estimation

Case 1: 6 =0
Estimation method NL2S GMM GMMC
Variables
Grants from the Fed. 0.0173** [0.0071]  0.0179*** [0.0062] 0.0176*** [0.0062]
Ao 0.0052 [0.0161] 0.0046 [0.0110] 0.0100 [0.0110]
Y 0.8963*** [0.0228]  0.8932*** [0.0224]  0.8940*** [0.0224]
o 0.3627** [0.1859] 0.3613* [0.1859] 0.4050** [0.1859]
No. of Obs. 1152 1152 1152
Sample objective function 3.59E-06 0.0175 0.0192

Note: Estimates that are significant at the 10 percent, 5 percent, and 1 percent levels
are respectively marked by *, ** and ***,

consider [Y},;—1, X,,] and its transformation by W, and W?2.'3° We set Ry 1 = I7@W,,.
Bias correction of the GMME is conducted based on the optimal policies from the
LQ perturbation method.

Table 3.4 shows the main estimation results for two models: (i) 6 = 0 (myopic),
and (ii) § = 0.956. The reported standard errors are based on the conditional asymp-
totic normality on the C-measurable random variables. We also report the Wald
test statistics T, for Hy : A\g¥9g = 0 based on the bias corrected GMME. Here is
the summary of estimation results. First, significantly positive 7 is captured under
the 1% significance level. It implies that a state government is hard to extremely
change its health expenditure over time due to the high level of adjustment costs.
The spatial interaction coefficients ()\g) are positive, which it means that a state

139The spatial network W, is specified by a row-normalized one w;; = —=-— where
_, Wij
k=1

wij = 1{(i,) nbd} (3.49)

if j # 4. Then, W, is strict exogenous.
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Case 2: 6 = 0.956

Estimation method NL2S GMM GMMC
Variables

Grants from the Fed. 0.0200** [0.0083]  0.0207*** [0.0074]  0.0191** [0.0073]
Ao 0.0032 [0.0096] 0.0029 [0.0069] 0.0028 [0.0069]
Y0 0.9839*** [0.0060] 0.9840*** [0.0059] 0.9954*** [0.0059]
o 0.3627** [0.1859] 0.3612* [0.1859] 0.4095 [0.1859]
TL for HO : )\0¢0 =0 0.1566

No. of Obs. 1152 1152 1152
Sample objective function 4.31E-06 0.0176 0.0236

Note: Estimates that are significant at the 10 percent, 5 percent, and 1 percent levels
are respectively marked by *, ** and ***,

government decision on health expenditure is reinforced by rival states’ decisions.
However, the estimated coefficients are not significant. For 1y, we detect the positive
effect of state’s health expenditure on its economic status. The Wald test statistic
Ty, = 0.1566 does not reject Hy : Agthy = 0 since x3 95 = 3.82. It seems that the
U.S. health expenditure decisions and the spatial networks do not coevolved. We
observe the significantly positive effect of the federal grants on the state’s marginal
payoff under the 5% significance level. For other exogenous characteristics, there is no
significant effect. In comparing the two models, the estimated coefficients for v, and

Bo from the conventional model are lower than those of the forward-looking model.

3.6 Conclusion

In this paper, we introduce a new spatial econometric model describing optimal
actions of forward-looking agents and spatial network evolution. Due to the forward-
looking agent assumption, the feedback effect arises: agents are not only affected by

spatial networks, but their actions can also affect the spatial networks. Since the
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agent’s payoff function is characterized by parameters, a corresponding parametric
econometric model is established. To estimate structural parameters, we consider a
GMM estimation method based on a set of Euler equations. Asymptotic properties
of the GMM estimator are studied for statistical inferences. Using the Wald test,
we can test whether spatial networks are exogenous evolve or not. As an applica-
tion, we explore policy interdependencies among the U.S. states’ decisions on health

expenditure.
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Chapter 4: Spatial dynamic models with intertemporal
optimization III: A dynamic Stackelberg game with spatial

interactions

4.1 Introduction

This paper suggests a new spatial econometric model for a panel data set de-
scribing spatial interactions among two types of forward-looking agents: a leader and
multiple followers. In an application of public economics, a leader represents the
federal government while followers are for the state governments. Using our estima-
tion equation, we want to empirically investigate two types of policy interdependence
at the same time: (i) interactions between the U.S. federal and state governments,
and (ii) interactions among the state governments. In traditional literature, regional
policy interdependence can be explained by a spatial econometric model (Case et al.
(1993)), which can describe strategic interactions among spatial units. For example,
a linear spatial autoregressive (SAR) model describes a vector of best responses of
a game played on a spatial network with a parametric linear-quadratic (LQ) utility
function. However, conventional spatial econometric models are designed for study-

ing policy interrelations among the same level of local governments (e.g., interactions
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among state governments). To formulate the two types of spatial interactions, we es-
tablish a dynamic Stackelberg game with spatial interactions motivated by Chapter
19 in Ljungqvist and Sargent (2012). LQ parametric payoff functions characterize
preferences of the two types of agents. Focusing on the linear rational expectations
equilibrium, we derive the parametric econometric model. The resulted model is a
new spatial dynamic panel data (SDPD) model showing the different levels of inter-
actions.

As the first contribution, we establish a spatial econometric model based on a dy-
namic Stackelberg game played by the leader and the multiple followers. As a review
of dynamic Stackelberg game models, refer to Li and Sethi (2017). Our model speci-
fication is useful to study spatial interactions of the central (one leader) and the local
governments (multiple followers). Two points are considered in our model specifica-
tion. The first point is basic features of a spatial panel data set. Since a policy decision
of a (central/local) government arises at each fiscal year, observed policies by them
are reported in a panel data set. In formulating our theoretical model, we consider
strategic interactions among rational economic agents. Hence, we assume that the
revealed actions come from agents’ intertemporal optimization (i.e., forward-looking
agent assumption). At each period, both types of agents rationally expect uncertain
future actions and exogenous characteristics given their available information. As
the second point of view, we assume that there is a hierarchy in decision-making of
the two types of agents. For each period, two stages of decision-making exist. For
each period, the leader firstly chooses its continuous type actions (grants) to sup-
port n followers (i.e., n decision variables). After observing the leader’s actions, the

n followers simultaneously choose their own (continuous type) actions (e.g., state’s
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expenditure) by considering (i) neighboring followers’ current and expected future ac-
tions with their exogenous characteristics and (ii) expected future leader’s actions. At
each period, the influences from the leader and the followers are unilateral and they
are formulated as some parameters. Like a conventional spatial econometric model,
interrelations among the followers are characterized by a spatial network (formulated
by an n x n matrix W,,).

We derive the rational expectation equilibrium equations with assuming a stable
economic environment. We seek to estimate parameters characterizing agents’ payoff
functions. Each follower has a LQ payoff function in his/her action.'! This LQ payoff
specification justifies a conventional SDPD model (e.g., Lee and Yu (2010)). Based
on the proposed LQ payoff specification, we build the agents’ lifetime optimization
problems. A follower’s payoff can be influenced by rival followers’ actions through a
spatial network W,,. Leader’s payoff is defined by the summation of followers’ payoff
functions, which shows social welfare. Hence, a follower’s payoff can be also affected
by the leader’s actions because there is a hierarchy in decision-making. Since both
agents’ payoff functions are LQ in actions as well as state variables, the vector of
optimal actions for both types of agents will be linear in state variables. Due to
the Stackelberg game structure, for each time period the followers’ optimal actions
depend on the optimal actions made by the leader. It means that we also need to
verify the vector of leader’s optimal actions to implement the econometric model.

By giving a specific structure on the followers” exogenous characteristics, we finish
specifying the estimation equation. In the econometrician’s perspective, they con-
tain (i) observable exogenous variables with sensitivity parameters, (ii) unobserved

131This LQ payoff function is a dynamic extension of static network interaction models discussed
by Ballester et al. (2006), Calvo-Armengol et al. (2009), and Bramoullé et al. (2014).
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individuals’ (followers’) innate characteristics, (iii) an unobserved time specific shock,
and (iv) i.i.d. disturbances for estimation. The individual and time effects are treated
as parameters, so we can allow arbitrary correlations between those unobserved ef-
fects and the exogenous variables. By the reduced form, we derive the log-likelihood
function. For the incidental parameters showing individual- and time dummies, we
employ the direct estimation approach by the concentrated log-likelihood function.
Hence, estimation of structural parameters can come from optimization under a finite
parameter space and the quasi maximum likelihood (QML) estimator is obtained by
maximizing the concentrated log-likelihood function.

Large sample properties, consistency and asymptotic normality, are studied based
on (i) the conventional arguments for nonlinear extremum estimators and (ii) the sta-
tistical theories for a LQ form of martingale differences (Yu et al. (2008)). Asymptotic
analyses in this paper are conducted based on (i) large n and T and (ii) increasing do-
main asymptotic frameworks. From the derived asymptotic distribution of the QML
estimator, we observe the existence of asymptotic biases due to the incidental parame-
ters. Achieving a moderate ratio between n and T is crucial to have the nondegenerate
distribution of the QML estimator. To have the asymptotically centered confidence
intervals, we suggest a bias correction method. We conduct Monte Carlo simulations
for finite sample properties of the QML estimator and its bias corrected version. As
conventional SDPD model’s estimation, the bias correction method is based on the
scores’ expected values at the true parameters. In many cases, we observe that the
QML estimator underestimate the true parameter values in absolute values. After

the bias correction, we find that the magnitude of biases tends to diminish.
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Last, we employ our model to examine (i) policy interdependence among U.S
states’ general expenditures and (ii) interrelations between their expenditures and
grants from the federal government. Among the U.S. state governments, we find
that there is a positive spatial spillover effect in their expenditure. In our estimation
results, it seems that there is no effect of the federal grants on the states’ expenditures.
Also, we observe that the state expenditures are dynamically persistent. We observe
that there exists a significant positive effect of the state’s total revenue. Also, a

significant negative effect of the state’s unemployment rate is detected.

4.2 Model specification

In this section, we introduce a dynamic Stackelberg game consisting of one leader
and multiple followers. A basic payoff specification will follow a (dynamic version) LQ
payoff function (Jeong and Lee (2018)). This payoff function can justify a conventional
time space dynamic model for a spatial panel data set. Reversely, we attempt to
make a theoretical model using this LQ payoff function with (i) the forward-looking
agent assumption and (ii) the existence of the two types of agents with hierarchical
decision-making. The derived rational expectation equilibrium equation will lead to
an estimation equation.

4.2.1 Spatial network interaction model with a dynamic Stack-
elberg game

We assume that two types of agents exist: (i) a leader, and (ii) followers. There is
only one leader while multiple followers exist (the number of followers is denoted by

n). For an empirical example, the U.S. federal government is a leader and followers
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are state governments. We assume that (i) decision-making periods are infinite'®? for
a stable economic environment, and (ii) agents are forward-looking instead of myopic
(i.e., they maximize their lifetime payoffs rather than their per period payoffs). Each
agent’s lifetime payoff (for both types of agents) is defined by a weighted summation
of his/her per period payoff. For this, we introduce a time-discounting factor § € [0,1)
to distinguish the future payoffs from the current one.'®® We assume that ¢ is common
to the leader and the followers.

To characterize relations among agents, we specify geographic locations of them.
This is because we assume that interactions among agents arise due to geographic
arrangements. The leader is indexed by 0 and indexes ¢ = 1,---,n represent the
followers. We assume that each agent has its fixed location on the (subset of) Eu-
clidean space R? (d > 1). Hence, each endowed index contains information in the
agent’s geographic location. Based on those specified locations, interactions among
followers are characterized by an n x n spatial network matrix W,,. Each element
in W, takes a nonnegative real number and represents a (relative) intensity of inter-
action. To exclude the self-influence, we assume that all diagonal entries in W,, are
zero. For notational convenience, w; and w;; denote respectively the it"-row of W,
and the (i, j)-element of W,,. Interactions between the leader and the followers will
be characterized later.

Three types of variables exist in an economy. First, let Y,,; = (y1s,- - - ,ym)' be an
n x 1 vector of followers’ continuous type actions. Second, let b,; = (by, -, bm)’

132We can also consider a finite horizon problem if an econometrician knows initial and terminal
periods of decision-making.

133Even for § = 0 (myopic agents), we will also have a new spatial econometric model specification
describing hierarchical decision-making of the two types of agents. After introducing a general case,
we will introduce this special case.
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be n-dimensional vector of leader’s actions for followers at time t. For example, y;;
is a local government ¢’s action (e.g., expenditure or tax rates) while b; is a level
of grants for a local government:. For the followers’ behaviors, we will derive the

optimal actions Y %:

n

Y*t (Yn,tfla bnt7 nnt> = AnYn,tfl + Bnbnt + Cnnnt (41)

34 That is, the followers’ cur-

where A,,, B,, and C, are some n X n matrices.!
rent optimal actions (Y},) rely on their previous ones (Y, :—1), and realized exoge-

nous characteristics (7,¢). Since the followers choose their actions after observing

the leader’s actions (by;), Y, rely on by, (i.e., hierarchical decision-making). Last,

let npe = (Mg, - - ,nnt)' be an n x 1 vector of exogenous characteristics of followers
controlled by nature. It can compose of time-invariant (7 = (9%, -- -, 7*)") and time-
varying (n2, = (n%,---,n%,)’) characteristics. Considering the U.S. state governments

as an example for followers, the following components in 7,; can be included.

Example 4.2.1 Let’s pick an arbitrary state government i. First, i might include
state i’s geographic characteristics such as (1) the number of bordering states, (ii)
land/water areas, etc. For time varying characteristics, second, state i’s time-varying
demographic and economic characteristics can be included: by Case et al. (1993),
(i) total revenue, (ii) grants from the federal government, (iii) population density,
(iv) unemployment rate, and (v) compositions of state’s population. In our model
specification, (ii) the federal grants are the leader’s choice variables.

134For example, equation (4.1) can take a reduced form of a SDPD model specification. We
will rigorously characterize A,,, B,, and C,, in the next step. Since we pursue a stable economic
environment, the solutions A,,, By, and C,, would be time-invariant.
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We assume that there is uncertainty in future exogenous characteristics 1, 141, Pn.42, - *
so both types of agents rationally expect them in their decision-making. For this, sup-
pose that n,, follows a first-order linear Markov process: 17,; = TNy -1 + {ne Where
Ent ~ 1.0.d. (Opx1, Q). For the part of nY,, we assume that |my| < 1 for stationary and
Q¢ is positive definite. For the part of ¥, 79 = 1 and Q¢ = 0.

A justification for equation (4.1) comes from the following linear-quadratic (LQ)

payofft3®: for i = 1,---,n and for each t,
U; (?Jm Y_ ity Yai—1,bit, 77it) (4-2)
= (Mt + Giobit + pow; Yni—1 + Xow; Yor) Yir — ¢ (Yit, Yir—1)

where ¢ (Yir, Yii—1) = L (yir — Yir1) + wy2 with 0 < v < 1, and

Yoirv = Wty Yie1t Yit1ty - - . Ynt) . Parameter ¢io shows a direct effect of the
grants on the follower ¢’s marginal payoff. If a follower is myopic, the first order

condition of the follower i’s maximization problem yields his/her best response,

Uiy (Yoi—1, bits Mir) = Mows Yot + YoUit—1 + pows Yo -1 + @iobit + iz (4.3)

Without ¢;bi:, equation (4.3) can represent a conventional spatial dynamic panel
data (SDPD) model (e.g., Yu et al. (2008) and Lee and Yu (2010)). A new term
in this paper is ¢; by, and the parameter ¢, can represent follower ¢’s (financial)
dependency upon the leader. We assume that ¢; g = ¢o\g; where Ag; is a function
of geographic distance between ¢ and 0. We will introduce more specification on
¢i0 later. Through w; , other followers’ previous and current actions can affect the

2fth

follower i’s t**-period marginal payoff. Directions of influences are governed by two

135We consider a (dynamic extension of) parametric linear-quadratic payoff function introduced by
Ballester et al. (2006), and Calvo-Armengol et al. (2009).
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parameters, Ao and py. If A\g > 0, a follower’s action is reinforced by neighboring
followers’ current actions. On the other hand, neighboring followers’ current actions
offset each other if Ay < 0. Similar interpretations can be done for pg. To avoid having
an extreme option, a cost function specification (¢ (i, yi1+—1)) exists. It consists of
two parts and is governed by parameter 7. The first part is a dynamic adjustment
cost showing persistency of actions, and the second part shows a cost of selecting
a level of activity. The parameter v, captures a (relative) weight for the dynamic
adjustment cost. If vy is large, the followers’ actions are persistent.

Based on payoffs (4.2), we consider the leader’s payoff function. The leader’s per
period payoff is defined by the summation of followers’ payoffs and costs of selecting

big, -+, by for each t,

WO t (bnt; Ynt7 Yn,t—h Mnts 7-nt) (44)

n

Z Yoty s Y1, Oke, ke) — Zb +ZTktbkt
k=1

where 7,y = (714, - -, Tnt)/, Tre is the autonomous payment for the follower k£ at period
t. We assume that 738 are not relevant to actions of both types of agents. The first
part of Wy, (+) represents social benefits defined by the summation of the followers’
payoffs. The second part describes the cost of selecting b4, - - -, b,;. The third part,
> r—1 Trebit, represents an incentive of giving the autonomous payments. When ¢y = 0
without the third component, the optimal grant level for every follower will be zero
since taking by, > 0 in this case only raises the quadratic cost —%bzt. The amount of
autonomous payment 7;; might depend on aggregate economic shocks and £’s innate
characteristics. Hence, 73, is a function of i and n?,. In Section 4.3, we will introduce

a specification of 7.
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Note that the leader’s choice variables at time ¢ are b,,; given the initial conditions
(Yoi-1,mnt). For each ¢, the leader knows that the followers take the strategy (4.1).
By observing the leader’s payoff (4.4), we can see that there are two channels of b;
affecting Wy, (+). First, selecting by, directly affects (i) w; (+) via ¢ obuysr, (ii) —3b2,
and (iii) 7;:b;r. Second, b;; can affect Wy (+) through changing followers’ actions. Note
that g%z: = B, j; where B, j; denotes the (j,)-element of B,. Hence, the diagonal
element of B,,, B, ;;, shows the direct influence of b;; on y;; in the rational expectation

equilibrium. Since the leader’s payoff is also LQ in its actions as well as state variables,

the leader also adopts the linear optimal policy function of (Y}, 1,7,):'* for each ¢
b:t(Yn,t—la TNnt, Tnt) = DnYn,t—l + Ennnt + FnTnt
where D,,, E, and F,, are n X n matrices specified in the upcoming subsection.

4.2.2 Intertemporal decision-making

In this subsection, we define the intertemporal choice problems of the two-type
agents. The matrices A,,, B,, C,, D,, E, and F,, will be verified as the solutions to

the leader’s and followers’” intertemporal optimization problems.

s=t—1
S§=—00

At time ¢, we assume that all agents know all past actions {bys, Y5} and

t
—0o0

all realized exogenous characteristics {n,s};_ _ (perfect recall and complete infor-
mation up to the current period). Based on this information setting, the conditional
expectation operator E; (-) is defined. In the economy, uncertainty arises due to
the future exogenous characteristics 7,41, Mnt+2, -+ -. Expectations for the future

exogenous characteristics are rationally (i.e., mathematically) formed through E; ()

136Note that 7,; is a function of 1,;. In order to highlight a role of 7,;, we include 7,; as an
argument for b}, (-).
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(e.g., Et (Mntt1) = Tonnt). We suppose that E; (7,,411) = ToTn with || < 1 and
Vary (tpi41) = 0 > 0 where 7, = (74, - - - ,7n) . That is, for each ¢ Tntrl = ToTnt + &5,
with E; (§7,) = 0,x1. Under this rational expectation framework, the timeline of

intertemporal decision-making can be described by the following figure:

Figure 4.1: The timeline of intertemporal decision-making

{b”A,_I,Y”H}:determined, n,, :realized {bm,Ym} :determined, 77, ,,, : realized
Period t Period t+1
) o

S ® >
H v v

Stage 1 attimet: Stage 2 attime t: ‘Stage lattimet+1 ...

The leader selects After observing the grant levels, each

the level of grants. follower simultaneously selects

his/her economic activity.

For each t, {b, -1, Yn:—1} and n,; are determined or realized, and there are two
stages of decision-making. In the first stage, the leader chooses the optimal level of
grants (b},) for the followers. In the second stage, after observing b,, the followers
simultaneously choose their optimal actions Y%. And then, {by;, Y, nn 141} are de-
termined /realized (b,; = b, and Y,,; = V%), and the first stage of the (¢4 1)"-period

will be open.
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Now we formally define the lifetime optimization problems of the two-type agents.

Given (Y, 41, M), for each t the leader chooses {b,s}.-, by maximizing

WO,t (bntu Ynt; Yn,tfla Tint, Tnt) (45)

(o)
S .
+E; Z o Wo,t+s (bn,t+sa Yn,t+s; Yn,t+s—1a Nn,t+s) Tn,t+s)

s=1
with knowing Y, = A, Y, ;1 + Bnbus + Crnne.1*” Since we consider a stable economic
environment, the maximization problem (4.5) can be represented by the recursive

relationship (Bellman equation): given (Y, ¢—1,7nt)

% (Yn,tfla Tint, Tnt) = Héax{ (4-6)

nt

Wo,t (bnt; Y:t, Yn,t—l: Tint, Tnt)
FOEV " (Y, Nty Tog1)

subject to Y5, = A, Y, -1+ Bubui + Cynpe. Suppose that A, B, and C,, are given'®,
and they are going to be revealed by solving the followers’ problems. Since (i) Wy, ()
is linear-quadratic in b,,; and (ii) b}, is an affine function of (Y}, ;_1, 9u, Tne), the value

VE(Yi—1, oty Tar) would take a LQ form of (Y11, Tt Tt ):

vt (Yot Tty Tt) - = Yri,tleﬁyn,tfl + Yr/L,tflLrlL/nnt + Yri,tﬂLrLL’TTnt

! L ! L, /! 7 LTnm L
+77nth Tint + Tnth Tnt + Tnth Tint + Cn

where n x n matrices QL, LE LL7 QLn QL7 and LL™ and a scalar ¢ are the
solutions to the algebraic Riccati equations. Verifying and computing the forms of
them can be found in Appendix C.

137That is, the leader knows (rationally expects) the followers’ optimal actions at the same decision-
making period. Then, Y, = A,Y}, -1 + B,bnt + Cinpe plays a role as a linear constraint.

1381n practice, by applying backward induction, A,, B, and C,, are firstly verified.
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Now we can reveal D,,, E, and F,, from equation (4.6). The first order condition'

1s
Opx1 = Du0Y,, — b, + 7 (4.7)
+B, [77nt + @, 0by, + (Yoln + poWn) Yoi1 — Sﬁyﬁkt}
+0B,, | QR Y, + T Lk + Fo L Tt
where @, o = diag (¢10, ", Pno), St = I, — Xo (W, + W), and QL* = QF + QY.

By (4.7) and the form of Y}

., we have

(In — B, ®n0) by,
= (@0 — B, (SE—=0QE")) Y+ Bl (ol + poW) Yo
+B), (I + 6m0LE) 1t + (I + 070 BLLET) T
implying
1, = By @0 — (Pno — B, (¥ = 6QL")) Ba| b}, (4.8)
= [(Pno - B, ( Sy = 0Qr")) An + Bj, (YoIn + poWa)| Y1
(B (Bt omoL) + (@u0 = B, (87 =007 ) ]
+ (L + 670 B, LET) Tt

Hence, we obtain

D, = (RrLl)_l [(‘I’n,o - B, (Sﬁ - 5@?)) An+ B, (yoln + PoWn)] )

B, = (RY)[BL (L +dmoLl) + (o — B, (82— 5Q57)) ]

139This comes from

OWo.t (brt; Yo, Yo t—1, Mty Tt " Y, OWo.t (brt; Yo, Yo t—1,Mnt, Tnt)
8bnt abnt aY'rf

aY*l 8VL ( nt» NIn,t+1, Tn, t+1)

3bm aY ’

9 /! T7L _ L, _ 7L,
and mEtYnth7TTn,t+l = Eth TTn’t+1 = L T

n

Onxl -

+0E;

Tn-

151



and
Fy = (RE) ™ (1, + B, LL7)

where RE = I, — By @0 — (®no — B, (SE = 6QE*)) By.
At time ¢, after observing the leader’s optimal decisions on grants (b%,), each

follower 7 selects y;; by maximizing his/her lifetime payoff: given (Y, -1, 7ne)

U; (yita Y—i,b ) Yn,t—l, bit, Th‘t) + E; Z 0°u; (yi,t+s> Y—i,t+37 ) Yn,t+s—17 bi,t+87 ni,t—l—s) . (4-9)

s=1
Note that the followers choose their current economic actions by rationally expecting
(i) the leader’s and followers’ future optimal actions {b;yt v Yo +S}:;, and (ii) the
future exogenous characteristics {nmtﬂ,}jil. For example, at time ¢, a follower expects

the (t 4+ 1)"-period leader’s optimal grant decisions by
Eib;, 11 = DnYor + moEnnne + ToF T, (4.10)

which is a function of Y,,;. In the rational expectation equilibrium, there are two no-
table findings: (i) current followers’ actions (Y;,;) are affected by the leader’s expected
future actions (E;b};,, )", and (ii) the leader confirms the forecasts E/by, ., =
D, Y, + moEnnne + ToF,m: and determines b;‘mJrl = D\)Yor + Epnpeyr + FouTni
at time t 4+ 1. To the leader, that is, using the same D,, F, and F, plays a role
as a constraint (commitment). Then, at period ¢, the expectation error would be
br o —Ebl = B+ 8], which is a linear function of the (t+1)"-period
unexpected exogenous shocks. Since we will specify 7, (and its affine transforma-
tion) as interactive unobserved effects in estimation, the nuisance parameter 7y has
no meaning. Hence, we assume 7y = 0.

140That is, each follower knows that he/she can affect E;b}, ,, in his/her current decision-making.
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Under the stable economic environment, the follower i’s lifetime problem can be

also shown as the Bellman equation:'*!

(4.11)

Ui i7Yf*i7;Yn—,b;<, '
V;F (Yoi—1,brymne) = Ir;ax{ (?/t it t—1504,1 t) }
it

+5EtViF (?/ita Y_*i,ta b:;,t+1a 77n,t+1)
such that b} ., = D,Y}, + Eninir + FuTogsr. Since u; (1) is LQ in actions of
both types of agents, their optimal actions are linear in state variables. For each

i=1,---,n, hence V:¥' (-) takes a LQ function of its argument:

v (Yn,t—b b, 77nt) = Yr;,t—lQiFYTht—l + Yni,t—lL?bb;t + er,t—leEnUnt

2

+b2QI b, A+ b LIy A 1l Qe+ F

. Fb ;Fn AFb 1Fb F
where n x n matrices QF, L;"°, L;"", Q;”°, L;"”", and Q;"" and a scalar ¢I" are the

solutions to the algebraic matrix Riccati equations. The formulas of them can be

found in Appendix C. The first order condition of follower ¢’s lifetime problem is

0 = ni+ diobly + € (Yoln + poWh) Yoi—1 — €S, Y., (4.12)

+0¢; (QF + Q) Yy, + 6¢, L™ Exb}, 1y + ¢, L B 11

where e; denotes the i** unit vector, and S,, = I, — \gW,,. Note that the followers are
not able to change the leader’s same period actions b},.

Based on (4.12), we characterize A,,, B,,, and C,,. For each i = 1,--- n, define the
n x n matrices QI*, LE%* and LE"* such that e/QL* = ¢! (Qf + Q?), eLLEb =

e/ LF? and e[ LEn* = ¢/ L. Using (4.10), equation (4.12) yields
(S = 0QE" = OLEM D, | Vi = (ol + poWa) Yo (4.13)
+@p b3y + [+ 070 (LE" By + LE™) | .

141When 7y = 0, the arguments of V;F () are only Y, ;—1, b%,, and 7.
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Hence, we obtain

1

A = (Rf)il (’YOIn + pOWn> 7Bn = (erj)i (I)n,(]a

-1
and C, = (RL)  [L, + 6w (LEY*E, + LE™*)| where RE = S, — 6QI* — LI D,
Note that b}, is endogenous since Cy,n,; and E,n,; might be correlated. Then, the

model’s representation as exogenous variables is

REY™ = (vl + poWy + @ oDy) Yoia (4.14)

n - nt

+ (In + @n,OEn + 6770 (Lg’b’*En + Lf’m*)) Tint + (I)n,OFnTnt-
4.3 Econometric model

In this section, we establish an econometric model based on rational expectation
equilibrium equations (4.8) and (4.13).1? From this section, we drop the superscript
77 since the observed actions (b, Yy:) are assumed to be optimally realized. We
want to estimate the structural parameters Ao, Yo, po, and {¢;0};_, based on a panel
data set {Y, Xm}tT:O, and {bnt}thl with observed (or prespecified) W,,.1*3

First, we consider stability of equations (4.8) and (4.13) to have a well-defined log
likelihood function (variance structure). Second, we will characterize the parameters
¢io (showing dependencies upon the leader) as a function of geographic distances
between the leader and the followers. Next, we will derive the log-likelihood function
by giving a structure to n,; and 7,,. After that, we discuss implementing the (quasi)

maximum likelihood (QML) estimation method. We assume that there are n spatial

M20ur estimation is based on equation (4.14). To implement this, note that we also need to recover
equation (4.8).

143We do not attempt to estimate the time-discounting factor § for easy identification.
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units and 7' periods in a sample. Our estimation is based on the large n and large T’

framework. 144

4.3.1 Stability

A motivation of considering stability of the system is to characterize manageable
dependence across space and time. Our economic model is based on the time stable

environment with given n. To obtain both space and time stability'*® of equations

(4.8) and (4.13), we need to additionally impose the following sufficient conditions4:

1AL, < 1, |An + BoDy|l, < 1, and ||B,E, + C,||, < ¢y where |||, denotes the
spectral matrix norm, and ¢; > 0 is an uniformly bounded (in n) constant. Under

|4y + BuDyll, < 1, and max {| BoEn + Coll. , | BaFull.} < 7,
Ynt = Z (An + BnDn)s {(BnEn + Cn) nn’t_s —+ BnFnTn,t—s} , (4]_5)

s=0

which is useful to capture the variance structure of Y,;. To recover the variance
structure of Y,,;, observe that verifying the optimal actions of both types of agents
is required ({An, B,,Cn} as well as {D,, E,, F,,}). Consider the leader’s decision

variables. If ||A,]|, < 1, by infinite substitution,
bnt = Z DnAi_anbn,tfs + Ennnt + FnTnt + Z DnAfL_lCnnn,tfs- (416)
s=1 s=1

By observing (4.16), note that b, relies on the entire histories {bns}s:t—u_z,..., and all
realized exogenous characteristics {nns}s:t’t_l?_” (and 7,,;), which they do not appear

the leader’s optimization problem.

144Note that our theoretical model is based on given n. From this section (estimation part), we
consider both large time series observations as well as spatial units.

45Tt means that the equilibrium system is stable regardless of the number of agents n.

146When § = 0, stability conditions can be represented by a function of parameters and eigenvalues
of W,,. If 0 < é < 1, however, it is difficult to find simple stability conditions due to highly
nonlinearity in parameters.
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Now we can evaluate Var (Y,,:) and Var (b,:) using equation (4.15) and assuming
Nt ~ 1.1.d. (0,031,)."" The importance of verifying the variance structures is to find

additional sources of identification. Note that

Var (Yo) = 03 3 (Au + BaDy) (BuE, + Co) (BuE, + Co) (A}, + D, B)’
7=0
and

Var (by)
E.E],
= oy | +X32 Dy (An + BuDy)’ ' (BLE, + Cy)
(BuEn + Cy)' (A, + DB, ' D,

As a special case, consider 6 = 0 (myopic agents). For each period ¢, the two types
of agents play the two-stage game, which can be solved by backward induction. By

firstly solving the followers” problems, we have
Ynt - 87:1 (70171 + pOWn) Yn,t—l + qulq)n,obnt + Syjlnnt (417)

for time ¢ as the subgame perfect Nash equilibrium (SPNE) equation. Then, A, =
S (voln + poWy), B, = S, 1®,4, and C, = S, !. Equation (4.17) follows a reduced
form of spatial dynamic panel data (SDPD) models with considering that b, is

endogenous. The vector of leader’s optimal actions is

]n - q)n,O (Snsql—b)_l (Dn,O] bnt

= (I)n,O (SnS;J_l (’YOIn + pOWn) Yn,tfl + (I)n,O (SnS;l)_l Mnt + Tot
since

I, — B\ ®, o — ®,0B, + B,SEB, = I, — 0,0 (5,5.) " @0,

1TWe will give statistical disturbances as a part of Nnt. For 7,4, we will consider a structure of
interactive fixed effects.
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((®no = BLSE) S, + B.,) (oI + poWV)
= o0 (SuS1) " (Yodn + poWa)

and B} + (®n0 — B,SY) Cp = @ (831 + S, = S;VSES, 1) = B0 (S,S,) 7" in

this case.'*® That is,
_ -1 _
Dn = [In - CI)n,O (Snsqlq) ! (I)n,O} cI)n,O (Snsqlq) ! (70]71 + pOWn> ;

By =1 = @0 (5:8,) " B @00 (5,50) " and F = [1, = @0 (5,5,) 7 @]
If ©,0 = ¢oln, |[Wall, = 1, and [|[W,]|; < ¢ < o0, we can find a sufficient

condition for stability. Observe that
1\l
Aw+BuDy = 87 (ol + poWa) + 628, (I — 62 (S,50) ")
' (SNS;L)il (’YOIn + pOWn)
1\l -
— 57 (4 08 (1= 63 (508 7) " (SuS) ™) Gl + poWi)

_1\—1
= S (I =03 (SuS) ™) (voln + poWa)

-1
by using a Neumann series expansion, (In — o8 (SnS;)_l) = % 2k (Grmtg L)k 1

2
As a sufficient condition, note that we need to have — |¢>0|_ < 1 to have the
(1=1Aol)(A=[Aolcw)

HM8Note that
Sy s vV _g-lglg-l — gl gV g-l(S, — A\W/) S
= Syt SV =8V (L, = WS
= (I, = XS, "W)) St
= 518 =(8.5,)
since I,, — Ao S, YW/ = S V.

149Then,

> k
>_Igol™ [151715:M
o k=0
o0

k
> (Ieol 15311, 11521

k=0
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Neumann series expansion. To have a stable system, that is, |¢g| is also needed to be

manageable. In consequence,

[[An + B Dnl|

_1\—1
= [sit (1= B Sus ™) Gl + o)

Yo+ lpol (1 —1Ao]) (1 —[Aol cw)
TPl (1=l (1= Aol ew) — |90l

o0

Since Vlojkﬂ < 1 is a sufficient stability condition of the conventional SDPD model
and —(=relld=Aolew) > > 1, a stability condition of our model with § = 0 will be

(1=[Xo])(1=[Xolcw)—|do]

stricter than the conventional one.
4.3.2 'Topological specification for ¢,

In this subsection, we specify the unilateral influences from the leader and the
followers by the parameters ¢; o’s. We will characterize ¢; as a known function of
geographic arrangements.!®® Recall that there are n + 1 spatial units: 0 denotes the
leader while © = 1,---,n denote the followers. We assume that they have innate
locations and (possibly) unevenly placed in R? (d > 1). Let G be a lattice in R,
which is a set of potential locations of spatial units.'® A subset G,, C G denotes
a set of locations relevant to observed (sample) spatial units. The location function
is a one-to-one and onto mapping from {0,1,---,n} to G,: ie, l:{0,1,---,n} —

G, and 1(0), I(1), ---, [ (n) € G,. As a metric, we can consider the Euclidean

1
L—1eol* / (1 = [Ao]) (1 = [Xo] cu)

. | 0
i e ona e < L

150 As a general setting, a nonparametric specification for ¢; ¢ can be also considered. We leave this
issue for future study.

151Then, G is countably infinite.
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distance: d (i,j) = ||l (i) — [ (j)||z for i # j. We set the minimum distance between
two different spatial units to be a positive constant for asymptotic inferences (i.e.,
increasing domain asymptotics).

Based on this setting, we evaluate the distances between the leader and the fol-

. i (Yit,Y_i t3Yn,t—1,bit i
lowers, {d(0,4)}_,. Note that == (it T Lbitit) ®i0, so the parameter ¢; g

describes the direct effect of the leader’s action b;; on the ¢’s marginal payoff. In the
rational expectation equilibrium, the total effect of b;; on the ¢’s marginal payoff will
be ¢;0+Ao 37_1 wi; By ji since by can also affect other followers’ current actions in the
equilibrium. We can consider the following two specifications!®?: (i) (homogeneous
effects) ¢io = ¢ for all i = 1,---,n, and (ii) (heterogeneous effects by geographic
locations) ¢; o (d;) = ¢ (dmax — d;) for each i = 1,---,n. Under the second specifi-
cation, ®,, o = ¢oAg where Ay = diag (dmax — d1, -, dmax — d,) (Which is known or

prespecified by an econometrician).
4.3.3 Derivation of log-likelihood function

For each ¢, we can consider n,; = X,,;50 + 77;” + vy oly, + & where X, is an n x K

. . ! . . .
matrix of explanatory variables, Sy = (B10, -, Bko0) is a K—dimensional vector
of parameters, n/V = (ni¥,---,n%) denotes an n x 1 vector of individuals’ invariant

t"-period time specific effect, and £,; = (€1, - -+, €)'

characteristics, ay o denotes the
is an n x 1 vector of disturbances. Assume that (i) oy and &,; are orthogonal to the
(t —1)"-period information set'®*  and (ii) nuisance parameters involving the process

Xt (mo) are prespecified (or already revealed) before estimation. We can define

152In our simulation study, it is difficult to identify multiple parameters in ®,( from the log-
likelihood function. Hence, we suggest specifying ®,, o by one parameter.

1531t means that my’s corresponding to ayl, and &, are zeros.
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individual fixed effects c,0 = (¢10,- -, Cn,O),~154 Next, consider the specification of
®,, 0F,Tht. As the simplest case, @, oF,7,,; will be absorbed in ¢, if 7,4 = 7,, for all ¢.

Then, the estimation equation generated by equation (4.14) is

Rr,}:Ynt = (’YO[n + pOWn + (I)n,ODn) Yn,t—l (418)

+Xnt60 + RZ (CnO + at,Uln + Snt)
fort=1,---,T, where

Rz - ]n + (I)n,OEna

Ri =Sy — 5@5’* - 6L57b7*Dn7
and
Xt = (In + P By + 7m0 (LEP By + LE™)) X,

For all 7 and ¢, assume €; ~ i.i.d. (0,02) where 02 > 0. W, and A4 are functions of
geographic arrangements, and they are assumed to be prespecified. In implementing
equation (4.18) via the (quasi) maximum likelihood method, we do not need {b,;}
since (i) we know how to generate {b,;} for each parameter value given state variables
and (ii) the components of algebraic matrix Riccati equations do not depend on levels
of state variables (due to the LQ payoff assumption).
For parameter values, let = (X, 7, p, ¢, 3',62), cn = (c1, -+, n) s ap = (ayg, -+, ap),

and 6y, ¢, aro denote the true values. Observe dim (f) = 5+ K. Note that the

154The ¢, is linearly transformed 7. In detail,

Cno = (R2)71 (In + q)n,OEn + 671—0 (L57b’*En + L’r};m,*)) WZLU
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asymptotic matrices RY, RS, D,,, E,, LE** and LE7* (which are needed to numer-
ically evaluate) are functions of ), 7, p, ¢, and W,,. For this, let 6, = (),7, p,¢)" and
01, denote the true parameters. For each 6, define ®,, (¢), RZ (6), RS (61), D, (61),
E, (01), L¥%* (6,), and LE"* (0,) representing those asymptotic matrices evaluated
at ;. That is, ®,0 = ¥, (¢g), RY = RE (6,4), R¢ = R¢(61), D, = D, (0,), E, =
E, (010), LEY* = LEb*(0,,), and LEm* = LEm (0, 4). To deal with the incidental
parameters ¢,y and ar, we employ the direct estimation approach. To eliminate ¢,
in the log-likelihood function, we define ffnt =Y, — Y., }771(21 = Yoi1 — YnT,,l,
Xt = Xp—Xor and X,y = Xy —Xyp where Yyp = 2 57 Voo, Yor o1 = % 000 Yo,
X1 = %Zzzl X,s and X, = %23:1 X,s- The orthogonal projector J, = I,, — %lnl;
is introduced to delete o in the log-likelihood function.

Now we derive the log-likelihood function based on equation (4.18). To derive the
proper density function for Y, suppose invertibility of R;,. Conditional on Y, ; 1,

~1
Xty Cn, and «y, the stochastic component of Y,,; is (Rf: > R¢ £, The concentrated

log-likelihood function for 6 with ¢, and a7 concentrated out is

In Lyp. () — —n2T1n27r—n2Tln<72+Tln‘R5(91)‘—Tln|RfL(6’1)| (4.19)
1 T
—5 5 28 (0) 18 (0)
20°

where

E.(0) = (RS(01)" RE (01) Vi (4.20)
— (R (00) ™" (YL + pWy + @y, (¢90) Dy (61)) Y1)

—(R;, (60:) " Xt (61) 8
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where

I+ @ (@) B (01)
X (61) = ( o, (Lﬁ’b’* (01) E,, (6,) + LEn* (91)) > X

and X, (01) = X, (61) — X, (61). Then, the maximization for parameter searching
will be done on the fixed dimensional parameter space ©: i.e., 0, = arg maxgpeo In L1 (6).
This is the outer loop maximization procedure. For each 6y, the inner loop (itera-
tion) procedure is to get the numerical solutions to R% (6,), RS (0,), D, (61), E, (61),
LEb*(9y), and LE™* (). For the detailed evaluation method for the inner loop, refer

to Appendix C.

4.4 Estimation and statistical properties: the quasi-maximum
likelihood (QML) estimation method

Now we study large sample properties of the quasi-maximum likelihood (QML)
estimator. By introducing some regularity conditions, we can derive consistency
and the asymptotic normality of the QMLE. The framework studying large sample
properties is the increasing domain asymptotics. i.e., increasing the sample size is
ensured by growing a spatial domain. To support the large sample properties, we will

conduct the Monte Carlo simulations in next section.

4.4.1 Regularity assumptions

F
8R57)(\91) where ©; be a subparameter

For asymptotic analysis, define Rﬁ y(01) =
space for 0;. Other (first, second, and third orders) derivatives of R (6,), RS (6,),
D, (01), E, (61), L¥>*(,), and LEm* (,) with respect to an element of §; are simi-
larly defined by adding a relevant subscript. At 6; = 6y, we denote R}y = R}, (61,0)

and so on. For the (unconditional) expectation operator in the estimation part, we

162



use the notation E (-). Here are regularity conditions for consistency and asymptotic

normality.

Assumption 4.4.1 W, has zero diagonal elements. W,, is nonstochastic and bounded

in row and column sums in absolute value. All components in Ag are uniformly

bounded

Assumption 4.4.2 For all i and t, we assume e; i.i.d. (0,02), and E|ex]"™ < 0o

for some n > 0.
Assumption 4.4.3 Compact parameter space © is assumed. 0y € int (O).

o T T e
Assumption 4.4.4 We assume that {X,:}, o, Cno, and {ouo},_, are conditional
‘ 2
on nonstochastic values. For some n > 0, max,sup, p >, Sr, Tt k| < oo,

1 T 24 1 9t
SUPy 7 Dpq |0l < 00, and sup,, =3 leiol T < .

Assumption 4.4.5 (i) For 0, € ©y, RI(0)) and RS (0,) are nonsingular. The
matrices RE (0y), RS (61), D, (01), E,(01), LE>*(0,), and LE™ (0,) are uniformly
bounded in both row and column sum norms, uniformly in 6, € Oy.

(ii) For 0 € int(0©y), the existence of the first, second, and third derivatives
of RE (6y), R¢ (6,), D, (01), E,(61), LE>*(6y), and LE"* (6,) with respect to 0, is
assumed. And, they are uniformly bounded in both row and column sum morms,
uniformly in 0 € O1.

(iii) Recall that A, + B,Dy = (RE) ™ (oL + poWWo + ®,.0D,).
>oneq abs ((An + BnDn)h) is uniformly bounded in both row and column sum norms,

where [abs (A, + BnDn)]ij = “An + BnDn]ij

, for example.

Assumption 4.4.6 n is an increasing function of T with T — oc.
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In spatial econometrics, Assumption 4.4.1 is conventional. Uniform boundedness
of W, gives the spatial stability condition. For simplicity, we assume i.i.d. distur-
bances €;’s across i and ¢t by Assumption 4.4.2. In Assumption 4.4.2, assuming the
higher than the fourth moment for €;; is for a central limit theorem for a LQ form
(Kelejian and Prucha (2001)). Assumption 4.4.3 gives compactness of ©, which is
for asymptotic analysis of a nonlinear extremum estimator (Chapter 4 in Amemiya
(1985)). Note that X,; and oy are stochastic in the theoretical model’s environ-
ment.' Since the expected their future values can be represented as currently re-
alized ones with my, by Assumption 4.4.4, we assume that X,;, c,o, and ary are
conditional upon as constants with the empirical moment restrictions. This assump-
tion is for simplicity of asymptotic analysis, so Assumption 4.4.4 can be relaxed.

To have well-definedness of the model for each 6 € ©, we introduce Assumption
4.4.5. By Assumption 4.4.5 (i), invertibility of RY (6;) and R (6,) implies existence
and uniqueness of the system 4.18 (and its correlation structure) for each 6; € ©;.
The second part of Assumption 4.4.5 (i) characterizes weak dependencies generated by
the model’s structure and W, for each 6; € ©;. Assumption 4.4.5 (ii) is introduced for

) A
technical issues to guarantee that —— Plalorc(for) _ E( L M) =0, (1)

nT 5606’ T nT 5006’

uniformly in the set ©. For simple asymptotic analysis, we introduce Assumption
4.4.5 (iii), which is a sufficient condition of time and space stability. Since we take
the direct estimation approach for c,g, and oz, Assumption 4.4.6 is introduced.
Since we focus on the large n and T framework, it is convenient to have a king vec-
tor representation. Let L = nT', and the subscript ”L” in a vector/matrix denotes a

stacked vector/matrix. For example, Yz = (Y/,,---,Y/) and X} = (X!

nl» nls’

" X;zT)/

155Since (i) X+ and o are parts of ¢, (ii) 7, follows a linear Markov process, and (iii) economic
agents know them, they rationally expect future values of them based on E; (+).
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become respectively an L x 1 vector and an L x K matrix. Using this representation,

equation (4.18) can be rewritten by

(Ir@ (R RE)YL = (Ir® (Yoln + poWa + ®poDn)) Y2, 1 (4.21)
+ (IT ® (RZ)%) XrBo+cro+apo+Er

!
/ / /
where Y7, = (Yno, e ,Yn,T_1) ,Cro = lr ® cpo, and app = (a1, -, ar0) @ L.

And, the king vector representation of the concentrated log-likelihood function is

InLp.(0) = —gln o0r — §1n02 +T'In ‘Rf (91)’ —Tn|R; (61)] (4.22)
I
where £, () = (£}, (0) .-+, &, (0))', and

gnt (9) = (sz (91))71 R’r}: (91) Ynt
— (R, (91))_1 (Y1 + pWy + @, () Dy (61)) Yo i1
— (R, (61)™" Xt (61) 5.

Then,

EL(0) = (Ir® (R (61) " RY (61)) Yy
— (Ir & (B (61)) ™" (VI + pWo + @4 () Dy (61))) Yz, 1

— ([T ® (R, (91))_1) X1, (61) B.
4.4.2 Consistency

The main purpose of this subsection is to show plim; o0, = 6p. Let Qr 0) =
E (% InLg, (9)) The first step is verifying supyeg ‘%ln Lp.(0)— QL (9)‘ —, 0 as
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L — oo. Second, uniformly equicontinuity of @ (f) will be verified. To obtain
consistency, lastly, the identification uniqueness conditions are required. By the in-
formation inequality in likelihood theory, the assumption below characterizes the

identification uniqueness.

Assumption 4.4.7 (Identification) Assume

of (L) miR: (RE)
-1 —_

0% (61) (RE (61))  Rs (01) R, (6:)' (RE)

Lin
n

(i) lim o v 7

(R (00) "

1
n

0 fOT’ 91 7é 9170.
(i) im o0 X7, (IT ® (be)*l/) (Jr @ Jp) (IT ® (RZ)A) X, exists and is positive

definite.

Note that Assumption 4.4.7 states the identification conditions focusing on large
sample statistical theories. Derivation of the conditions in Assumption 4.4.7 is rele-
gated to Appendix C. Assumption 4.4.7 (i) is a sufficient condition for unique identifi-
cation of 6; . This condition is derived from the expected concentrated log-likelihood
function Q. (61) = Qr (61,81 (01),0% (61)) where Br (6;) = argmaxs Qr, (6) and
02 (0) = argmax,2 Qr (01, Bz (01),0%). That is, Assumption 4.4.7 (i) is a sufficient
condition of the unique identification condition under large samples,

Le., imsupy_,,, maxg, care(d, o) [@Qr.c (61) — Qr.e (010)] < 0 where N°(6,,¢) denotes
the complement of an open neighborhood of O of radius € > 0. Assumption 4.4.7 (ii)
is for identifying fy. Given identified 6, o, 5y is identified if there are sufficient varia-
tions in the generated regressors X . Observe that the two conditions in Assumption
4.4.7 do not depend on normality on &,;. Hence, we can apply the identification

conditions in Assumption 4.4.7 to the quasi log-likelihood function.
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Here is the theorem stating consistency of 6;. Proof of Theorem 4.4.1 can be

found in Appendix C.
Theorem 4.4.1 Under Assumptions 4.4.1-4.4.7, plimpﬁooéL = 0p.

Note that the limiting argument in Theorem 4.4.1 is T due to Assumption 4.4.6,

i.e., T'— oo implies L — oo.
4.4.3 Asymptotic normality

In the previous subsection, we show that the QML estimator 01, can be accurate
under large L. The next step is to obtain the asymptotic variance of 0, for statistical

inferences. Since deriving the asymptotic distribution relies on the Taylor approxi-

mation argument, the main part at this point is studying am%%écw‘)). In Appendix
C, we report the formulas of %49’0(9‘)). In general, each component of ﬁam%ﬂ%)
takes the LQ form of &

- 1

5. = —=(Ur®Byn) Yo 1+ (1 @ Coe)) (Jr ® Jn) &L (4.23)

VI
= (81 (1 © BL) (Ur @ 0,) & = ofir (17 & ,.)

where Cj ,,+ represents an n x 1 vector of time-evolving nonstochastic components
(a linear transformation of X,; or ayol,), and B,, and B,, are n x n (uniformly
bounded) linear transformation matrices. The LQ form (4.23) says that our asymp-
totic analysis will be based on the martingale difference arrays for LQ forms. How-
ever, E (§1) and its asymptotic value are not zero. Since it implies the existence of
asymptotic biases in ﬁmn%ﬁeo) (so is 01), we need to adjust them for the asymp-
totically centered confidence intervals. Hence, our bias correction method will rely

on calculating the scores’ expected values at 6.
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To specify the asymptotic bias of 6, we need to consider E (5.): let §, = é(L”) -

Aj, — A3 where E (é(Lu)) = 0 (mean zero part),

. [T o

A1,L = g l:(ByynUnT,l> Jnént +‘§7I1t37/17q¢]n§nt s
s T 2

A27L = 50-0 [tT (Bq,n) —tr (Jan,n)] )

and Up,_1 = & 310" 3520 (An + BuDy)" (ByEy + C) Eny—p. Note that
(1) 52 (An + BnDn)h (BB, + C,,) Ent—p is the stochastic component of Y,,; for each
t; (ii) A7, and A3 ; denote the sources of asymptotic biases. Using Lemmas 2.1 and

2.2 in the supplementary file of Jeong and Lee (2018), we have

s n o n 1
AL = /70 (6o) + O (\/ T3> +0p (ﬁ) ;
T
A3, =\ asa ()

where a5, (00) = 2tr (JuByn (S50 (A + BaDy)") (BuEn + Cn)) + Ltr (JuByn) =

and

O (1) and a5, 5 (69) = 1], Bynln = O (1). Note that a3 | (6p) and a5 , (6p) are uniformly
bounded constants by Assumption 4.4.5 (i). Using those formulations, we obtain

1 OlnLp (0 1 8lnL<‘fl(90) ' 2\’

VL : aLe o) — VL aLe —Ay Qg where Ay = (Ai\,b AY,L? A/f,La A(f,La Af,L? AT,L)
d Aop = (83,07, A5, AY, AY, AS,) . Th ipts in A, and A

an 27L — 2,L7 2,L7 2,L7 2,L7 2,L7 2,L . € SuperSCrlptS mn 17L an 27L

denote the components corresponding to a specific parameter. We can also define the

vectors ay , (6p) and as,, (6p) based on Ay, and A, .

Next, consider deriving the asymptotic distribution of ;. For each 6 € O, define

. 10%InLy () . 10%2InLy .(60) _ 10InLy(0) dlnLy (0)
Yo = —E (Z 0600 » Xogo.r = —E L~ 8600 Qo = E T 06’

dn Ly, .(00) dln Ly (6 : .
and g, = E (% n aLé (69) O1n aLe’/ ( 0)). Here is the assumption for 34, ;, and Qg, 1, to

168



have the well-defined asymptotic variance of f;. For this assumption, let ¢, (M)

denote the smallest eigenvalue of a matrix M,,.
Assumption 4.4.8 liminf; o ¢min (X¢,.) > 0 and iminf; o Gmin (Qg,.) > 0.

Due to the parts (i) and (ii) of Assumption 4.4.5, ¥y 1, and §2 1, are continuously
differentiable functions in 6 € int (©). Around 6y, therefore, ¥y, and Qy ; are non-
singular for sufficiently large L. Let ¥g, = limy_,o Yg, 1 and Qp, = limy_,o, g, 2. In

consequence, the limiting distribution of 0, is obtained.

Theorem 4.4.2 Under Assumptions 4.4.1-4.4.8,

. n T
\/Z (QL - 90) + \/;Z;()I’Lan’l (00) + \/;ZO_UI,LGTL,Q (00) + Op (1)

— dN (O, 25(3199025()1>
as L — oo.

Here are interpretations of Theorem 4.4.2. First, 0 — 6 = O, (max {\%L, %, %}),

which implies the convergence rate of 6;. Even though we can achieve 6, — 6, —p 0 as
L — oo, a ratio of n and T plays an important role in characterizing the asymptotic

distribution of 6. Namely, a moderate ratio between n and T is required to have

the nondegenerate asymptotic distribution of 6;. Suppose % — c € (0,00). Since

a1 (60) and a,,5 (o) are of O (1), VI (0 — 0) + V/eSg 1an1 (60) + \/2an2 (60) —a

N (O, 29’019902;01). i.e., we can have the nondegenerate asymptotic distribution of

6 if 7 — ¢, but the asymptotic biases exist. If 7z — 0 or 7z — oo, the asymptotic
distribution of 8, will be degenerated. Focusing on the case of Z — ¢, the next step

is to have a bias corrected estimator.
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4.4.4 Bias correction

By Theorem 4.4.2, we define

=0 g [ ()] - £ [ an ()], a2)
which is the bias corrected MLE. Note that the ideal bias correction terms are re-
spectively —X,- %Laml (o) and —3, 1 Lan.2 (B9). To have a successful bias correction, we
need to achieve some conditions for the asymptotic equivalence. To have a success-
ful bias correction, we need to achieve some conditions for the asymptotic equivalence:
ie., \/? (Zg;Laml (éL) - Z%{Laml (90)) —p 0 and \/% (Zng’Lan72 (éL> - 26_01711@”72 (60)) —p
0 as L — oco. The assumption below describes the conditions to have the asymptotic

equivalence.

Assumption 4.4.9 (i) 75 — 0 and 55 — 0.
(it) In a neighborhood of 010, Y5 (A (01) + By, (61) Dy, (61))"
and 322, h (A, (1) + By, (61) Dy, (0)"™" are uniformly bounded in row and column

sums.
Under the additional assumption (Assumption 4.4.9), we have
VL (05 = 60) —a N (0,55, 2,55,) (4.25)

as L — oo. For the details on Assumption 4.4.9, refer to Corollary 4.3 of Jeong and

Lee (2018).

4.5 Simulations
This section reports some simulation results to study small sample properties of
the QMLE. For t =1,---,T, the DGP for our simulation is specified by

RT};Ynt = (’VOIn + pOWn + (I)n,ODn) Yn,tfl + Xntﬁ(] + RZ (CnO + O415,Oln + gnt) (426>
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where
RZ - In + (I)n,OETw

RI =8, —6QF — §LEY D, and X,y = (I, + ®poE,) Xy ie., we set K = 1 and
mo = 0. For this, X, is drawn from i.i.d.N (0,,x1, I,,).

Our simulation design aligns with the empirical application in Section 4.6 in terms
of the sample size and the spatial network W,,. As sample sizes, we consider (n,7T) =
(48,25). That is, economic agents in this simulation represent the 48 contiguous U.S.

states. For each pair (i, 7), let w;; = % where
k=1 "1
iy = 1{(i, ) nb) (4.27)

if j # 1. We choose 6 = 0.9. From the standard normal distributions, we draw c,,,
arp, and &,;. To have a stable functional form of the DGP, we firstly generate the data
with 304+ T periods and take the last T" periods as our sample. We consider four sets
of the true parameter values: 6, = (0.1,0.2,0.1,0.4,1,1)", (0.1,0.2,-0.1,0.4,1,1)’,
(—0.1,0.2,0.1,0.4,1,1)", and (—0.1,0.2,—-0.1,0.4,1,1)". Four criteria are reported
for performance evaluation: (i) bias, (ii) standard deviation (SD), (iii) theoretical
standard deviation (T-SD), and (iv) root mean square error (RMSE). We conduct
400 repetitions for each case.

Table 4.1 shows the detailed simulation results. Overall, the estimated theoretical
standard deviations are similar to empirically evaluated ones. For all cases of 8y’s, the
QMLE and its bias corrected version show similar performance in terms of RMSEs.
We detect downward biases in the QMLESs for Ao, 70, ¢o and 2. In estimating py,
the magnitude of biases in 6, is small. Our bias correction method can reduce the
magnitude of biases except for estimation of py and ¢y. Since biases in the QMLEs
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Table 4.1: Performance of the QML estimator
Case 1: 6y = (0.1,0.2,0.1,0.4, 1, 1)

0
A gl P ¢ s o

Bias -0.0332 -0.0249 0.0052 -0.0125 -0.0028 -0.0634
SD 0.0334 0.0202 0.0407 0.1115 0.0307  0.061
T-SD  0.0313 0.0201 0.0386 0.1046 0.0304 0.0578
RMSE 0.047 0.0321 0.041 0.1122 0.0308  0.088

01

A gl P ¢ B o
Bias  -0.0123 -0.0016 0  -0.0411 -0.0014 0.0062
SD 0.0317 0.0206 0.0411 0.1071 0.0306  0.0619

T-SD  0.0313 0.0201 0.0386 0.1046 0.0304 0.0578
RMSE 0.034 0.0207 0.0411 0.1147 0.0306  0.0623

Case 2: 0y = (0.1,0.2,—0.1,0.4,1,1)’

0r,
A Y p ¢ 5 o

Bias -0.0328 -0.0261 0.0081 -0.0136 -0.0027 -0.0631
SD 0.0334 0.0204 0.0406 0.1137 0.0307  0.0615
T-SD  0.0313 0.0201 0.0388 0.1143 0.0304 0.0584
RMSE 0.0468 0.0332 0.0414 0.1145 0.0308 0.0881

07
A gl P ¢ s o

Bias -0.0121 -0.0018 0.0009 -0.0426 -0.0014 0.0066
SD 0.0318 0.0208 0.0412 0.1099 0.0306  0.0625
T-SD  0.0313 0.0201 0.0388 0.1143 0.0304 0.0584
RMSE 0.034 0.0209 0.0412 0.1179 0.0307 0.0628
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Case 3: 0y = (—0.1,0.2,0.1,0.4,1,1)’

oL

A gl P ¢ p o
Bias  -0.0303 -0.0255 -0.0002 -0.0115 -0.0038 -0.0685
SD 0.034  0.0204 0.0425 0.1209 0.0308 0.0648

T-SD 0.033  0.0202 0.0408 0.1223 0.0304  0.062
RMSE 0.0456 0.0327 0.0425 0.1214  0.031  0.0943

07
A Y p O 5 o

Bias 0.0029 -0.0028 -0.0035 -0.0238 -0.0012 -0.0029
SD 0.0318 0.0207 0.0429 0.1114 0.0308 0.0651
T-SD 0.033  0.0202 0.0408 0.1223 0.0304  0.062

RMSE 0.0319 0.0209 0.043 0.1139 0.0308 0.0651

Case 4: 6y = (—0.1,0.2,—0.1,0.4,1,1)

0r

A gl P ¢ B o
Bias -0.03  -0.0266 0.004 -0.0112 -0.0037 -0.0634
SD 0.034 0.0206 0.0421 0.1197 0.0308  0.065

T-SD  0.0329 0.0202 0.0409 0.1222 0.0304 0.0621
RMSE 0.0453 0.0337 0.0423 0.1202 0.0311 0.0944

0;
A gl P ¢ B o

Bias 0.003 -0.0024 -0.0009 -0.0233 -0.0012 -0.003
SD 0.0318 0.0209 0.0426 0.1105 0.0308 0.0653
T-SD  0.0329 0.0202 0.0409 0.1222 0.0304 0.0621
RMSE 0.0319 0.0211 0.0426 0.1129 0.0308 0.0654
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Table 4.2: Descriptive statistics: 48 contiguous states in U.S.

Variables Mean  Standard dev. Min Max

Total expenditure 5.7992 1.2951 3.4631  11.6327
Total revenue 5.8646 1.2749 1.5816  14.8746
Grants from the Federal government  1.4947 0.4185 0.5757  4.1586
Population (millions) 6.0305 6.5155 0.4663 39.25

Population density 73.7276 100.0283 469.5999  1.8541
Personal income 35.7279 5.6464 25.7151  59.1866
Unemployment rate 0.0559 0.0187 0.023 0.1361

Note: Sample is 48 contiguous states from 1992 to 2016. Dollar amounts are in
thousands and real per capita values adjusted by the GDP deflator with base year
2012.

for py and ¢ are not large, we can say that the proposed bias correction method is

effective.

4.6 Application

In this section, we apply our econometric model. The federal government is a
leader, and the 48 contiguous state governments (excluding Alaska, and Hawaii) are
followers (i.e., n = 48). Time periods of our data set are 1992 to 2016 (i.e., T' = 25,
so L = 1,200). From the United States Census Bureau, we obtain the states’ finance
and demographic/economic variables. Levels of grants from the federal governments
can be also found in this source. For the additional macroeconomic variables (e.g.,
GDP deflator, interest rates, states’ unemployment rates), we utilize the website of
the Federal reserve bank of S.t. Louis. All dollar amounts are in thousands and real
per capita values adjusted by the GDP deflator (with the base year 2012). Table 4.2

shows the descriptive statistics for the collected variables. Note that the vector of
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dependent variables (Y,;) represents the states’ general expenditures at time ¢. As
explanatory variables (X,,;), we employ (i) total revenue, (ii) time differenced popu-
lation density!®®, and (iii) state’s unemployment rate. We observe large variations in
the variables across states and time periods.

We will estimate payoff functions for general expenditures of state governments by
estimating 6. After recovering 6y, we can also recover the leader’s payoff by summing
followers” payoffs. At each t, the federal government allocates the national resources
to the states by deciding levels of grants. Each state government selects an amount
of expenditure after observing the level of grants. Among state governments, there
might exist spatial interactions. For this, we use the same W, in Section 4.5. We
choose § = 0.956 by considering the average of long-run interest rates for the sampling
periods. For @, o, we consider two specifications: for i = 1,---,n (i) (Specification
(1)) ¢io = ¢od;, and (ii) (Specification (2)) ¢;0 = ¢o. For each i, we compute d; by
the Haversine formula.'” The mean and standard deviation of {d;} are respectively
1.4583 and 1.0691.

Table 4.3 summarizes the estimation results. In Table 4.3, we report the bias
corrected QML estimates with their corresponding standard deviations. For both
specifications, we obtain the similar estimation results. When we consider the sample
log likelihood as a goodness-of-fit measure, Specification (1) is better. We find that
there is a positive spatial spillover effect in the states’ expenditures. The estimates
for 7o are large, so the dynamic adjustment cost is high. The estimated coefficients

156We find that the U.S. population densities are quite persistent. In our model framework, all
exogenous (time-varying) characteristics (72, in the theoretical model) should be stationary. To
avoid nonstationary variable issues, we use the time differenced population densities.

157For example, dopi, denotes the (thousand) kilometer based distance between Columbus and
Washington D.C.
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Table 4.3: Model estimation
Specification (1): Specification (2)
Total revenue per capita 0.1028*** [0.0098]  0.1026*** [0.0098|

A Population density -0.0041 [0.0139]  -0.0050 [0.0138)]
Unemployment rate -1.8004*%* [0.6768]  -1.7490*** [0.6720]
A 0.0748% [0.0410]  0.0770% [0.0418]
y 0.8520%%* [0.0162]  0.8626%** [0.0608)]
p 20.0540 [0.0462]  -0.0512 [0.0460]
& 0.0261 [0.0228] 0.2015 [1.8148)]
o? 0.0283*** [0.0012]  0.0290*** [0.0040]
Sample log likelihood 445.0063 430.4086

No. of Obs. 1152 1152

Note: Theoretical standard deviations are in parenthesis. Estimates that are signifi-

cant at the 10 percent, 5 percent, and 1 percent levels are respectively marked by *,
#k and FFE,

for pg are negative, but they are not significant even for the 10% significance level.
The estimates of ¢q in both specifications are positive. In Specification (1), the
central government positively affects the state governments’ expenditures and those
effects diminish corresponding the geographic distances between the central and state
governments. However, estimated coefficients for ¢, are not statistically significant. It
seems that there is no effect of the federal grants on the states’ expenditures. For the
exogenous characteristics, there exists a significant positive effect of the state’s total

revenue; a significant negative effect of the state’s unemployment rate is detected.

4.7 Conclusion and future works

This paper introduces a spatial dynamic panel data (SDPD) model explaining
the relationships between two types of forward-looking agents: a leader and multiple

followers. In practical applications, they represent the central and local governments.
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Motivated by Chapter 19 of Ljungqvist and Sargent (2012), we establish a dynamic
Stackelberg game played on a spatial network. Derived optimal actions lead to a spa-
tial econometric model. Next, we introduce how to apply the quasi-maximum likeli-
hood (QML) method for recovering structural parameters. Large and finite sample

properties of the QML estimator are investigated.
4.7.1 Future works

Since our model specification also describes the central government behaviors, we
can consider aggregate economic shocks directly affecting the central government.
Hence, there might exist aggregate economic shocks heterogeneously affecting the
state governments’ decisions. Instead of having the additive specification for individ-
ual and time fixed effects, the interactive fixed effect specification (factor structure)
can be considered. In order to specify (@n,o + 57?0L5’b’*) F,,7n:, also, we consider a

general specification (factor structure) for individual and time effects: T',,f; where

/
fi = (fi1,-+, firy) be an ro-dimensional common factors and I',, = (F;M, e ,F;L’n)
(with Ty = (Tpits -+, Dniig )’ for each i) denotes an n x ro matrix of factor loadings.
Note that the dimension of commen factors (r) can be multiple. Let f7 = (f{,---, f7)’

be a T X ry matrix of common factors. We can allow flexible correlations between
X, and I'), f;, so they are considered as parameters.
Also, we have another reason for having the factor structure. Recall that the first

order condition of follower i’s lifetime problem:

0 = ni+ diobly + € (Yol + poWh) Yoi—1 — €S, Y, (4.28)

+0¢; (QF + Q) Vi + e/ LI B}y + 0¢, L Bytpy 1.
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The error specification involves mt+5e;Lf ""E¢1p, ++1 and n;; might include the time spe-
cific shock ay 9. Note that the additive specification comes from assuming E; (a41,) =
0. If {auo} follows an AR(1) process and the followers rationally expect the future
aggregate shock, the unobserved individual and time effects will follow the factor
structure. A famous study for this issue in a regression model is Bai (2009) and the
application to SDPD models can be found in Shi and Lee (2017). Shi and Lee (2017)

treat the interactive individual and time effects as incidental parameters.
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Appendix A: Appendix for Chapter 2

A.1: Derivation of the MPE equation

In this appendix, we derive the NE equation by solving equation (2.8). By the
principle of optimality, a solution from the intertemporal choice problem (2.7) is
equivalent to that of the functional equation (2.8) if the latter exists. For this, we
need to verify the existence and uniqueness of V; (+) satisfying both (2.7) and (2.8).
The unknown V; () will be implied by known w; (-). All mathematical arguments in
this part are based on Stokey et al. (1989) and Fuente (2000). Here we present some
basic discussions and essential mathematical results.

Step 1 (Formation of V;(j ) (:)’s): We choose an arbitrary agent i for our analysis.
Consider the period t. For any given (Y, 1,M.) and Y (Y —1,7n), define the
operator 7 which maps the j approximation to the (j + 1) approximation of V; ()

by

‘/;(j+1)(yn,tfla77nt) = T(‘/i(j)) (Yoot 1)

{ Uj (yita Y—*gi+1) (Yn,tfla Unt), Yoi1, 77it> }

S 0B (VO (s Y Yot ) M)

Yit
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for j = 0,1,2,---. From Vi(j) (1)’s, we can also generate Y;t(j)(Ym,l,nnt)’s (7 =
1,2,--+). Using T, we generate VY )(-)’s (from v = 0) and corresponding (approx-
imated) MPE equations.

Step 2 (Continuity of 7): Note that the domain of 7 contains a set of V; (-)’s
(i.e., V;-(j) (+)’s). Consider a set of continuous and bounded functions C ((xy)" % (x»)")
where all possible Y, ;1 € (x,)" € R™ and n,: € (x,)" € R™. Note that C ((x,)" % (x)")
is a well-known Banach space. Under Assumption 2.2.1, {V;(j) ()}] CC((xy)" x (xn)"™)
for any continuous and bounded function V;(O) (+). Then, we can apply the theorem

of maximum, which yields (i) existence of optimal decisions and (ii) continuity of

TVi(j ) (Yot—1,Mnt) at (Y1, mne). Since w; (+) is strictly concave with strictly decreas-

158 9

ing marginals'®® with respect to large y;;, we can guarantee for unique NE decisions.'®

Step 3 (Contraction mapping theorem): Since 7 is the maximum oper-
ator, its arguments Vi(j ) (+)’s are continuous and bounded functions in (Y, :—1,7n¢)
and 6 € (0,1), T satisfies the Blackwell’s (1965) sufficient conditions to be a con-
traction mapping. By the contraction mapping theorem, there exists a unique fixed
point V; (+) in C ((xy)" X (xy)") for each i = 1,---,n and subsequently a unique NE
Yo (Yn,tfb Nnt)-

Step 4 (Recovering V; (-) for each ¢ and Y}, (Y, :—1,7mn)): From the initial
iteration with V,” = 0, we have V;") (Yoi—1,1ne) = Vi 1 Q8 Voot + Vi L0 +
1, G+ Y where AV = S-1 (4o, + poW,), B = S,

QY = L (AVTAD — 7)), LY = AVTBY, GV = IBV'TLBY and Y = 0

with Z; being a diagonal matrix with only a unit for its " diagonal element and

158Note that u; (-) will eventually decrease in y;;. This property is important because our maxi-
mization problem is not constrained.

159Refer to Theorems 3.8 and 4.9 in Stokey et al. (1989).
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zero elsewhere. By mathematical induction, we generate the following matrix Riccati

equations:
. . 1
Q§j+1) _ Aglj+1)/ Iz (2I > + 5@(3 :| ]+1) + A (J+1) /I (fYO[ + pOW ) féOIz’

(A.1)

QU = [(QF + QY er, - (QUH) + QU 6]

1 (9)
LU Gy L (51” - S") +0Q; 4] BU+1) (A.2)
+AUTY (I, + 6LYIL,) + (oL + poWa) TBY*Y,

L;kl(]+1) = [ng—’_l)/eh T ngj—’—l)/en]a (A3)

GUTD = BU+D [z @1 e ) + 5Q§f>] BY*Y 4 BUTY (T, + 62911, ) + 611,GVIL,
(A.4)
and ¢/ =5 (c,gj) +tr (GE”QQ), where AUTD = [R,(ljﬂ)} o (voIn + poW,) and
BY+Y = [RG*V] ™ (I, + 6L;0)TL,) with RY*) = 5, — 6Q10).
By taking j — oo, we obtain the asymptotic version of algebraic matrix Riccati

equations for @, L,, G;’s and ¢, i.e., for each i,

Vi (Yn,tfla 77nt) = Yé,t—1QiYn,t—1 + Yri7t_1Linnt + n;tGiT]nt + ¢
where @Q; = lim;_, QZ , L; = hm]_m , Gy = lim; G(j and ¢; = lim;_, cgj).

Then, the activity outcomes NE equation will be

Yﬂikt (Yn,t—h T]nt) (/\OW + 6Q ) nt ( n,t—1, 77nt> (fYOIn + pOWn) Yn,t—l + (Iz + 6[/;11—-[71) Mnt,
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which implies that
Y:t (Yn,t—h nnt> = AnYn,t—l + Bnnnt’

where A,, = R~

n

Y(vol, + poW,) and B, = R;* (I, + §L*11,) with R, = S,, — 6Q*.
From the above expressions, we can also have an alternative representation of
(27 in the subsequent Proposition A.1.1, which has some similarity on the additional
term due to future influence as in the two-period case. First of all, we can have an
alternative representation of BY), j = 1,2,---. Note that B{) = S~'. Consider
B® = [Rﬂ_l (1o +0L;VIL,). Using L) = e;L§1> with LY = ADV'T, 61w
can define D} = Diag (A") B such that B [R@} (I, + DL, ). This

has

* _1 *
Ynt(Q) (Yn,t—h nm) = Ag)Ynﬂf—l + {R,(f)} (n"t t 5L"(1)Et (nn,t-i—l))

=AY, + [RO] (L, + 6DBIL,) .

n n

. -t .
Consider iteratively BU+Y = {Rf{“)} (In +5L;“L(J)Hn) for j = 2,3,---. We can
show that

L:9) = DU 4 DYV, + -+ 4 57 DY I (A5)

G Ut puth by the method of undetermined coefficients.

for some D,y ", Dyy /s <o+, Dy

Hence,

B+ = [RG] ™ (I, + 6DYTVI, + DS VIE + - + &/ DY)

n

so that

Y;t(jﬂ) (Yot—15nt)
. . —1 .
= AT,y + ROV (I + 0L O, )

n
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AUy 4 [R(Hl)} ( Nnt + 5D(]+1 By (Nnt41) j_ 0°D Hl)Et (Nn,t+2) )
o " o+ S DIVE, (1)

— AUy, + [ng‘*”}’l (I + 5D(J+1 I, + 0*DYS VM2 + -+ 6 DY TV ) .

n

The second equality holds due to the law of iterative expectations. For notational

convenience, let

COty Ay { Z (5t - 5) 1000 + [5 (51 - 5) + 5@,@}/}

+ (70[n + pOWn),Iz
= ATIAT =1+ 2 (W + W) + 0 (QV + Q) }

+ (YoIn + poWy)' T,

for j = 1,2,---. And, C’Z-(l) = AT 1, + Xo W, + W] + (yoln + poWa)' i, so

observe

¢! (Cfl) RV + A,S”’L-)
= AV <L+ Ao (W + WIS, + € (oL + poWa) TS, + AT,
= ADT, (— L, + XW;,S, ) + elADT + € (ol + poWVa) TS,
= AV TN S + e (Yol + poWa) TS,
= ¢ (AT, + (oI + poWa)' S, S, T;) S,
— SAVTS = /D).
By equation (A.2),
LY = CYBY + AY'T, + AV LY VL,
= CY'BY 4 §A0CUVRU-DIT, 4+ AU, 4 §AUY AU-V'T L,
82 AU AG-D L2
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— CYBW 4+ 6A9CcIVBU-DIL,, + -
+5j—2A£g)/A1gj—1)/ . Aq(q?))loi@)Bq(f)HzL_Q
+ AT, 4 AV AUV, 4 4 597240V AUV AQY T T2

4571 A J)’A J=1)r A(Z)'Lgl)ﬂjfl.
Then, we have

. . N1—1
¥ = ¢» {Rﬂ (In+5Dn’)1H + 62 DY 4 - 9L DY) 11 1)
o1L, +52 I 1)H2 53Dn{;1>ng L
+5J 1Dn{;jgng‘;1
FAUYAGD L ABY o) [Rf?] o (5]‘—211;;2 + o DY)

+AY'CI [RY-V]

n

+ AT, 4+ SAV ATV T, + - 4 52 AG AGTY L AR T T2
I TAGY AG=D L AR D
- (C}” (RO 4+ A ’L)
+6 (O [RP] ™ DY)+ APCYY RG] 4+ AQ AT T,
c? [RY] ™ DY} + AGrCPV [RY- 1J1 DY

+(52 +A(]IA] 1/C'J2{R] 2)} Hi‘i‘

n n K3 n

+ AWV AG=1) AG=2)' T,

C(]) {Rn])] -1 Dn]— +A(g lcrj 1) |:R(j 1) }
+67 FAWAG-D L AGYC®) {Rn } 'p® It
FAPIAG . AW S

As e/ L:V) = ¢ ' by applying the method of undetermined coefficients based on

177t )

(A.5) and by taking e}, we have

(D = e (e [RY) T + AT ).

n

€§D7(zj (O(J [R(j } - Dﬁf)l + Ag)lci(j_l) [Rvgj—l)}_l + Aglj)/Aglj—l)’Ii) 7
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. 1—1 . . - . -1 i
| C [RY] D+ APeyY [Rﬁf—”j DY
e;fogl) = e, +A(j /A(jq ' (j-2) [R(jd ]_ s
+AGY G AGDT,

and
o9 [R9]” DY+ APy (o) D+
G+1) -1
@iy = FAQrAGr . AQre® [RP) D

FAGYAGD L AV
We observe {Dnl,%, D 21, o } (where Dﬁ = 0,,x») characterize evolution of {fo ;1) }kj
Proposition A.1.1 A relationship between QY and L*9) from D,(f D
QY = DY (oL + poWa) =701,
forj=1,2,---
Proof of Proposition A.1.1. Note that €/Q*\7) = ¢/ (ng) + QZ(-j)/> and
et (@7 + )
= AV T (=L + Mo (W + W] +6 (QF ) + QYY) 1 AY)
+e! AY'T, (ol 4 poWa) + € (ol + poWy) T,AY) — 44!
= AT [~ L+ Ao Wa + W) 40 (QV Y + QYY) } AD)
+e AP esel (VoI + poWa) + yoes AY) — el
= AV T (L, + Mo (W + WL +6 Q9+ QU )L [RD] ™ (oL + poW)

N1—1
+e; (YoIn + poWn) i [Rgzj)} (YoIn + poW,) + €;A ])/61 t (oL + poWy) — Yoe;

AT W 8 (QF Y+ QP ) [RY]
- + (YT + poWa)' T; |[RY| T aur

X (YoIn + poWh)
_efifyOIn
= ¢ (DY (vl + poWa) = 01,
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for j = 2,3, since €} (Yol + poWh) €; = 70 by eiW,e; = w;; =0foralli =1,--- n.
Q.E.D.

To have a stable system, a sufficient condition is HA%J +1)HOO < 1 for each j. By the
following mathematical result, we can check invertibility of RY™Y) and the possibility

of representing its inverse as a Neumann series.

Proposition A.1.2 (Stewart (1998)) Consider a linear operator I, — C,, satisfies
lim; o [|CY]| = O where ||-|| denotes a well-defined operator norm. Then, I, — C,, is

wnvertible and its inverse has a Neumann series expansion:

oo
(I, - C) ' =Y ¢v,
j=0
Hence, for our model, the implied spatial time series process for Y,,; to be stable

in both space and time dimensions, it suffices to assume that

I

<1
1‘|‘5’70 1+6’70

(e o]

-1
Then, [Rgg“)} has the Neumann series expansion,

J=1

- 1y (G+1) G+
In+z<1 - 570) (AW + 630D73 Y + 8p0 DTV W)
A.2: Statistical results

In this section, we list components of asymptotic biases of the QMLE, and provide
briefly proofs of Theorems 2.4.1, 2.4.2, 2.4.4 and Corollary 2.4.3. The detailed proofs

can be found in our supplementary file.
First order derivatives of the log-likelihood function
Note that
~ ~ K ~
Voo = AV 4 S RO (L + 6L Koo + Ry (Gnol + E0r) -
k=1
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f Jln LnT (,(90)

The components o g are

Oln L7 (00)
o\

Oln L7 (00)
Oy

Oln L7 (00)

op
+?10 Y [gi ( R,VR, )J g;t
m%fgkw _ éoZtTﬁ [(In + §LA11,) Xntk} J.8 fork=1,---.

Oln LnT,c(QO) .

o S (B (<R VR T —

o ST B (~RVR,) B

1 T
UE 0 thl

2

R )\R_1< (voIn ‘|‘P0W)Ynt 1
nA Ll +<

+5LMH Xnt kﬁo

(voIn +/)0W )Ynt 1

Y, OL 11, X 1o

(70[ +P0W )Ynt 1

+WYR1+6L* T, X e 150

2
00?2

20130 T {9 T8y — 1o 0]

Components of asymptotic biases of QMLEs

n+ 0L5IL,) Xk Bo + Goln,
1)}

éo Yo ~ < + (L, + 0L21L,) X i Bo + cuoly,
o2 otr (_Rmezl)}
éo Y ~ e fl ( + (In + 0L 11,) Xpe i Bo + Groln

OtT RWJRJI)}
K,

Here are the components of Ay 7, Aoy, an1(60p), and ay, 2(6p):

A _ 1
Al,nT — 52

Yy 1
A1,nT— 2

P 1
A1,nT = 52

S

(—RnARZI (YoIn + poWh) UnT,—1>/ Jn&r ]
+énT(_RﬁllR/n,\)Jn§nT 7
((—Rngl ('YOIn + POWn> + In) UnT7,1>/ Jn‘/énT
+E (=R VR, T

= — /
((=Rup Byt (oI + poWa) + W) Unr 1) Juir

+ & (~RVR, ) &

|
|

AfTLT - 0K><17 Al nT — F[%TJ gnT,

A r =/ Eftr (—RuaR;Y) = tr (Jo(—Rua Ry,
A} p =/ Eltr (= Ruy Ry = tr (Jo(— Ry R,

NS = I [tr (—RupRy) — tr (Ju(—Rup By,

B _ o2 T 1
AQ,nT = Ogx1, and AanT = Vn2eZ,
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Lr (J(—RurAn) (S50 AL) ByY) + Ltr (Ju(—Rua R, 1))
Lr (o (= RunAn + 1) (3520 AL) BY) + Ltr (Jo(— Ry RYY))
an1 () = | Ltr (Jo (= RopAn + Wo) (2520 AL) ByY) + Ltr (Ju(=RupRyY) |-

Oxx1
n—1 1

2
n 20

p

,0 J

and

1 1 1 _ 1
an,2(90) = [El;(_Rn/\R;l)lm gl%(_Rn’YRgl)lm ﬁl;<_RnpRnl)lna 01><K7 FQO]

Sketches of Proofs (Consistency and asymptotic normality)

Sketch of proof of Theorem 2.4.1. Consistency can be shown in three steps.

In the first step, we shall show the uniform convergence of sample average of the
log-likelihood function, supycq ‘ InLyr.(0) — Qunr (6)‘ —, 0 as T'— oco. The main
component of - In L7 (6)—Qur (0) is == Y4 [git (0) T 0)—E (git (0) T (6))}
Since (i) 6 is bounded in the compact parameter space © and R, (6;), R;*, and L* (;)
are uniformly bounded in both row and column sum norms, uniformly in 6, € O, it
follows that R, (6,) R,;' —I,, and L — L* (6,) are also uniformly bounded in row and
column sum norms uniformly in #; € ©;. By Lemmas 8 and 15 in Yu et al. (2008),
Ly [&5 (9) Jng;t 0)—F (g’lt (0) Jn?m (9))} —, 0 uniformly in # € ©. Since o2

is assumed to be bounded away from zero,

1 Ly (6) = Qur (6) }i[? ) Jn&ut (6) = B (8, (6) Ju&ui (6))] = 0

nT

uniformly in 6 € ©.
Secondly, we will show that Q.7 (0) is uniformly equicontinuous in § € ©. Note

that

188



— XT: E (g?zt (6) Jngzt (9)) = qur (01, 8) + qur2 (61) + 0(1)

ni 4

where

1 & [ Ru(@) B (ol + poWa) = (Lt pW,)) V2
qnr1 (01, 8) = ﬁZE +ay 0R, (61) R, l

t=1 +Rn (01) 1Xnt60 - nt (01) 6
(B (61) Ry (ol + poWa) = (1o + pWa)) Y11y
X Jy, +ao Ry, (01) R, l ,
(QI)R XntBO nt(el)ﬁ

+R,
and gqur2 (61) = TZoZotr (R,VR, (61) JoR, (61) R,'). For the equicontinuity of
Qnr (0), we verify (i) Ino? is uniformly continuous, (i) +1In|R, (6;)| is uniformly
equicontinuous, and (iii) g¢,r1 (¢) and g,r2 (61) are uniformly equicontinuous. The
basic idea of showing those properties is to verify that each component can be repre-
sented by (0 — 63) - hyr (5) , where 01, 0, € ©, 0 lies between 6, and 6y, and A,z ()
are uniformly bounded. Uniform boundedness of h,r (-) comes from Assumptions

2.4.3 - 2.4.5. By applying Assumption 2.4.7, we achieve the desired result. Q.E.D.

Sketch of proof of Theorem 2.4.2. This proof relies on the Taylor expansion:

-1
~ 1 a In LnTc HnT LBIHLS%CLQO)
VT (Ot = 00) = ( T aeae'( ) A
_Al,nT - AQ,nT

where 6,7 lies between 6, and émz,nT- By Assumptions 2.4.2 (ii), 2.4.3 and 2.4.5,

() s - 0,000, (7).

nT 0000 vnT
Theorem 2.4.1 implies HénT — 00H = 0, (1). Under large T', ¥g, ,r is nonsingular in
¢ around 6, by Assumption 2.4.8. These imply —%M#w is of O, (1) and

invertible. Hence,
-1

\/n_T<éml,nT_90> = (_ Lo Lo (HnT))

nT 0000’
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vnT 00

which means éml,nT —60y=0, (max (\/I—T, ,}, 7)) Note that

( 1 0L (6o) AL A, T)

vVl (éml,nT - 90) + E;(){nT ' (AL“T + A27HT>

1 11
O (m (m T n)) (Buor+ Baar)

(u)
B . 11 -1 0Ly, (6o)
= (200,nT + O, (max (\/_ T n))) T 90 :

Since (i) X, = limp_ oo Xgynr exists and is nonsingular by Assumption 2.4.8, (ii)

Ay = \/gan,l(%) +0 <\/>) +0, ( ) by Lemmas 2.1 and 2.2 in our supplement

file, and (iii) Ag 7 = ﬁan,Q(QO).
1 OmLY) (00)

The last task is to investigate T %0 The stochastic components of

dln LnT) (6o) . . 1 T n
e 5 take a linear-quadratic form, NCTE i1 oy Entis where E (&g i Frtio1) =

0

fn,t,i =0 (6117 oy €ply €11,y Ent—1, €1ty ", Git) ) (A~6)
and Fno0 = {¢,Q}, where 2 is the sample space. Let F,;o = Fni_1,. Since
Foti-1 © Fneiand Fpi—10 € Fpi0, we construct the martingale difference arrays,
{(&ntis Fnri) it =1,--- n,andt =1,---,T}. Then, we can apply the martingale cen-
tral limit theorem to —- S S & as Yu et al. (2008).1%° In consequence, we

o
obtain \/7%81 ng’c(GO)%dN (0,9,) as T'— oo and have the desired results. Q.E.D.

Sketch of proof of Corollary 2.4.3. By Theorem 2.4.2,
vn (6ml nT — 90 [290 nT%n, 1 (0o) + \/7290 nT@n,2 (6o)
m- [T 1
+Op (maX ( ﬁ, 57 ﬁ))
—alV (0,55, 2,%5,) -
160 Also, refer to Kelejian and Prucha (2001).
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Since ¢, T = = Oyt — T { g mrn,1 (0 )} P 1 [_EG_,}LT%Q(G)] P
VT (07 = 00) —aN (0,55, 55,
if
o ([Zkr00sO)] oty — St ) =50 (A

and

.S

([Zomran20)] lgs,,. . = Saguran2(00)) —0. (A.8)
Assumption 2.4.9, 7 — 0 and L -3 — 0 (with Assumptions 2.4.3 and 2.4.5) imply

(A.7) and (A.8). The detailed arguments can be found in our supplementary file.
Q.E.D.

Sketch of proof of Theorem 2.4.4. (i) First, note that ¢;,,; = ¢ (éml,nT)'
By Theorem 2.4.1 with Zthl ayp = 0, we observe ¢; (éml,nT) —Cipg = %Z;‘le €t +
Héml,nT — HOH -0, (1) = %Zthl e + 0, (max (\/LT’ T 7>) by Theorem 2.4.2. Under
the rate % = 0(1), £/, € will be the dominant term. Therefore, for each 1,
VT (éhml(éml’nT) — ci,g) —aN (0, 062’0) if g — 0; and 5i,mz(émz,nT)’S are asymptotically
independent from each other.

(ii) Using the same logic, the dominant term of \/n (dt,ml(éml,nT) — at()) flné'n
if ¥ = 0(1). This yields v/7 (G m — o) —aN (0, o?y) if Y2 5 0; and the estimates
Gpp's for t =1, -+ T are asymptotically independent with each other.

(iii) Under Assumption 2.4.9, 75 — 0 and lg, — 0, Cimi (éfnl nT) —Cip = % ST et
0, (\/%) and dt,ml(éﬁll,nT)—atg = l Wt +0, (F) since Heml T 90H =0, (ﬁ)

We can apply the same strategies as Parts (i) and (ii). Q.E.D.
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Appendix B: Appendix for Chapter 3

B.1. Linear-quadratic (LQ) approximation
Using the LQ perturbation method around the population averages'®!, we want
to find an approximate solution V. Observe that

J0
2

1 n
yz‘%t—l - gyft + o Z W, ij [%pt—l, yj,t—1] YitYje-
j=1

Wi (Yot, Yot—1,Mit) = NitYit + YoYit—1Yit —

Then, the non LQ components are only wy; [yit—1,Yji—1] Yiryje for j # i such that
d;; < d.. Hence, we need to approximate the interaction term with the network link,
Wyij [Yie—1, Yje—1] YaeVse- Let Feig = Wau1 — U5 Yie—1 — U5, Yie — U5, Yje — 5] Around
(gf,g;), the second-order Taylor approximation of wy; [yii—1,Yji—1] Yiyje (denoted

L .
by wt,ff- [yi,tflayj,tfla yitayjt]) 1S

W 5 [yz‘,t—la yj,t—l] YitYjt

LQ -
= Wy [yi,tfh Yjt—1, Yit, ?/jt] =Ci + [lij,b lij,27 lij,Sa lij,4]Yt,ij
qij11  Qij12  4ij13  Gij,14
1_, Qija12  Qij22  4ij23 (ij24 | ~
tT5Yt; 0 Yi,ij-
2 qij13  Qij,23 Qij 34
Qijaa  Gijoa  Gij3a 0

161 A brief explanation can be found in Judd (1996), Judd’s (1998) book Chapter 14.5 and
Ljungqvist and Sargent (2002), pp. 143-145.
Jungq g pp
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o o] on dwe,ij [92.95] —o - dweii [95.95] o -
— |9 o %0 )., — _ZbWlFidjlgoz0 g ZTT0WTiY ] gom0 7
where Cz] — wt,z] [yiayj} Y; yj7 lz],l — Oy 11 Y; yja lzj,Q - dyji—1 Y; yj7 lz],3 —
02wy i;[52 .55 0%wiij 9595
e ol .., — a7 | a0 .. — L TBWTiT ] 5050 o — __BMITiY5] 5050
wt,z] |:y7, 9 yj} yj7 lz],4 - wt,zg [yz ) yj} Yi, sz,ll — 3%2#1 Y; yj7 QZ],12 — ayi,t713yj,t71yi yj7

o wyBm] o dw|ws] o Pw[ B8] oo Owni|885] o
sz,IS - Byt 1 yja %],14 - ayj’til yi 3 %],22 - 3%2”71 yi yja %],23 - Byi i1 yj;
awt,ij [gf:g;]

dYji—1 gfa q¢j,34 == wt,ij [g?, gj} . Note that qij’gg = Qij,44 =0 and all compo-

qij,24
ts i LQ T
nents in w; % [Yie—1, Yji—1, Yie, Yje) are zero if i = j.

Then, u$ () can be written as

Uf (Ynta Yn,t—h 77it)

%yit—l - ;yft
Cij0 + Cij1Yit—1 + Cig2Yje—1 + Cig3Yin + CijaYju
+Xo Zn: +39501Y0e1 + 3225501+ dig2Yie-1Yge
=1 TGij3Yii—1Yie + Qij23Yje—1Yie + Gij,3aYjt Yt
FijaaYii—1Yje + Qij24Y5-1Yjt

= (Wit + YoYit—1) Yit —

where

Cijo = Cij — (liga +1ij3) U7 — (Lij2 + lija) U5 + (;Qij,ll + Qij,13> @f)2
1 2
+ (2%‘]',22 + Qij,24> (f‘jj)
+ (Gijiz + Gijaa + Gij2s + Qij34) Ui Uy
Cija = lija — @i + @iasl U — [qija2 + Gijaal U5,
Cijo = lija — [@ijaz + Gij2s) U7 — [qijo2 + Gij24] U5,
Cijza = lij3 — Qijas¥; — [Gij23 + Gij3a) U5,
and Cjj4 = lij4 — Qij,24g; - [Qij,14 + Qij,23] Ys -
We observe that u () is a LQ function of its argument, so V¢ (Y, -1, 7.t) will be a

LQ function of (Y, 1—1,7nt):

Ve (Yn,t—la Nnt) = Yé,tﬂQfYn,tfl + Yé,tfle?Wnt + Yri,tlef + 777lztEi€77nt + 77:1tFie + 95
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where @5, LS, and EY are n X n matrices, D and Ff are n-dimensional row vectors,

and ¢¢ is a scalar. A corresponding vector of linear optimal actions is
net = AZYn,tfl + Breﬂlm + CTeL

where A¢ and B{ denote n x n matrices, and Cf is an n x 1 vector. The solutions A,

Be, C¢, and {QS, LS, DS, Ef, Ff, ¢}, can be obtained by the following equation:

K3 K3

Ve Y1) = Iax {wf (Yir, Yoit, Yorm1,mit) + OEVE (Yirs Yeity Mnts1) b

= uf (Ynew Yn,tfla 77115> + 6Etv;'e (Yneu Tn,t+1

The components A¢, BS, and C¢ can be characterized by the first order conditions.
For notations, let a; = (a;1, - -, a;,) be a row vector consisting of a;1, - - -, a;,. By the

first order conditions, we have

(I, — MoQszan — 0QT) Y,

= (Yol + Aodiagi, (¢i.13ln) + XoQ23n) Yai—1 + (In + 0pn0Ly™) Mt + >\06~'3,n + XDy

-/ _ / ex __ ,/ e el / _ . / ex __
where for each i €),;Qs1n = @i 34, €,;,Q5" =€), (Q5 + QF), €,,Qazn = Gi 23, €; LS =

/ IO ~ / * : *
e L, e.Csn =G sly, and e, Do*. By defining Rf, = I, — \gQ34., — 0Q5, we have

AZ = (Ri)_l (’Vofn + )\odmg?ﬂ <Qi.,13ln) + )‘OQ23,n> )

B, = (R;)" (In+dpyoLy),

and C¢ = (R%)™ (/\Oég,n + 5Df;*). Note that computing Y5 just requires evaluating
¢, L¢, and Df.
Next, we will provide formulas for the components {Q$, L¢, D¢} . Define I; =

eni€l,; for notational convenience. For each 1,
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Ao
2
+X0€nidi.12 + NolnGi 13T AT, + Noeni (Gi.23 + Gi1a) A,

1 A
QF = AT — %I,- -3 AYLAS + 6ASQSAL + - Ugh 1 I + ?Odmg;;lqim
+Xo A €niti 31 AL + Aodiagyzl%j,mAZ,
L = AL+ ~IlB;, — AY LB + 0AY (Q5 + QF) By + 0pnoAs Li
+Xo¢i 13001 By, + Ao€nigi. 23 By,

+ Ao A5 (eniQi.,34 + qg.,34€;n> By, + Ao€niqi 14B;, + Aodiag;_ qijoa By,
and

Df = LGl — AULCE +6A (QF +QF) O+ SALDS + Mfaalucus + Mo

+)‘0Agem’l:¢52.,3 + )\OAZIEQ,A + oG 130 ;O + Aoenigi 230,
+/\0AZ/ (eniQi.,34 + q;.’34€;n-) OZ + /\oeniqi.714C’5 + )\Odiagyzlqij,MC’fL.
Hence, A¥ = AY and

g ()

aYvn,tJrl

= B ((Q5 + Q) Yty + Linngea + D)

= (@ + Q) ALY+ (Q5 + Q) (0B + p2oLE) the + (QF + QF) CE + DS

for each t and i. Hence, the i""-element of VV/¢, , is
av;e (YnetJrla Tin t+2)
E / A* ~/ ) ~ni ’ ’
t ((em n © em) (6 © 8Yn,t+1

— (6/ A* o é/ ) { (Qze + Qf/) A(:LYnt + (Qf + Q;‘i/) (pn,OByel + p?],OLf) nnt } .
ni—mn ni + (Qf + Qf/> CS + Df
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Principle of optimality

A main purpose of this section is to obtain the stationary property of the values
(Vi (+)) and optimal policy function (f (-)). Note that our model does not belong to
a linear-quadratic programming since the agent’s current decision-making can non-
linearly affect his/her own and opponents’ future marginal payoffs. To achieve the
principle of optimality, a key part is to have a bounded lifetime value given an ini-
tial condition (Y, -1, 7u): the infinite sum of current and (expected) future payoffs
should be bounded given (Y;, -1, 7,). When boundedness of the infinite sum of pay-
offs is achieved, we can represent the agent’s lifetime value and his/her optimal policy
function as recursive forms of the state variables, i.e., V; (Y, 11, Mnt) and fi (Yai—1, Mne)
where V; (+) and f; (-) do not rely on a specific time ¢.

As contrary to a myopic (conventional) SDPD model specification, in case of
forward-looking models, it is difficult to find a combination of parameters to being a
stable space-time process. Hence, we introduce the specification of the agent’s choice
set using the vector of myopic choices. Note that the agents’ values and optimal policy
functions are the limit functions of some sequences of functions. The assumption
below states that the NE vector from the myopic agent assumption can be an initial

guess to calculate those limit functions when (Y, ;—1,7,¢) is given.

Assumption B.11 Let VP = St (YoYni—1 + nnt) where Sy = I, — AWt Given

(Yot—1,Mnt), there exists M, > 0 such that each yj, is an interior solution in
L (Yog1, ) = | min gl — My, max y;/ + M, (B.1)

where y5 denotes the i'"-element of Y,5.
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Assumption B.11 means that we restrict the outcome space for the agents’ lifetime
problem. However, it does not mean that the forward-looking agents’ optimal choices
(Y,5,) are similar to the myopic ones (we can take a large but bounded M, > 0).
Note that the optimal policy function f (Y, ;:—1,7.:) is a unique limit of sequence of
functions {f(l) (Yoi-1, nnt)}, e, limy oo £ (Yaso1,Mnt) = f (Y1, Mat). Assumption
B.11 means that we can achieve the limit f (Y, ; 1,7.) when we start with YV,§ =

f (Ypi—1,mnt). Invertibility of S, is for well-definedness of Y,Z, which is a vector

nt

162 Conditional on

of unique maximizers of per period payoffs for all © = 1,---,n
(Yi—1,7nt), hence, all elements of Y, become bounded. The existence of M, > 0
is supposed so that I' (Y, ;—1,mn¢) # ¢. Also, restricting each agent’s choice to the
interior of I' (Y, ;—1,7n) leads to avoiding explosive his/her lifetime values, so the
solution to ICP V;* (Y}, 1, nn) will be bounded.

Now we establish a time-invariant functional form of agents’ optimal decisions by
showing equivalence of the two solutions to the ICP and FE. On one hand, we claim
that the solution to ICP V;* (-) implies that of FE V; (-). Note that I' (Y}, ;—1, 7nt) # ¢.
Then, the agent’s objective function (lifetime payoff) is well-defined for every point
in the feasible choice set. Thus, the agent’s lifetime value will not be explosive given
(Yoi-1,mnt). Hence, V;* (+) satisfies the FE by Theorem 4.2 in Stokey et al. (1989).

On the other hand, we want to know that the solution V; (-) to the FE satisfies that

to the ICP V* (-). The maximum operator 7, the Bellman equation is characterized

by

. . ) (ym Y—*z, ) Yn,t 1, Tht)
Vi Wity oe) = T (V2) Yo ) = Hiax{ +0E, (V; (yitfy*i,ta Mis1)) |

162Dye to existence of the cost function c(-,-), we have 8;;2“ = —1 (strict concavity of u;), the
it

agent i’s t"-period payoff u;; eventually decreases in ;. It leads to the existence and uniqueness
of Y& without explicit constraints.
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where the functional solution V; (-) is the fixed point of 7. The solution V; (-) should
be a continuous and bounded function of (Y, -1, 7.¢) to have a recursive relationship.
First, given (Y,,;—1,7n:) the vector Y,5 is the unique optimizer of {u;};_,: for any

strategy profile Y,,;

U; (Ynta Yn,tfla 77it)

< (Yntt?, Yo -1, nit)
= 'ng?;,t_lS;tl’eme;wS;fYnjt_l - %yth
290 115 €ni€hi St Mt + MypSt €€y St Tt
forall i =1,---,n, which is bounded in every t. By the monotonicity of integrals, for

any Y, iy (Uz (Yntayn,t—lanit)) < L, (Uz (Ynlgayn,t—lanit)) < oo for all t. Hence,

for all choices {Y,,s} ., satisfying (B.1)

U; (Ynty Yn,t—la nzt) + Z 58Et (uz (Yn,t+57 Yn,t—l—s—h ni,t+s)) S ‘A/z

s=1

where V, = 5 sup, By qu; (YB

nt

Ym,l,mt) < 00, which is an upper bound of the
agent ¢’s lifetime value. This implies that the solution to i’s ICP V;* (Y, ;—1, M) i

bounded by V;. Then, by Theorem 4.14 in Stocky et al. (1989), V; (-) = Vi* ().
Discussions on the second-order condition

In this subsection, we provide discussions on the second-order condition for op-
timality. By introducing a static (linear-quadratic) network game, we explain the
motivations and implications. Assume that (i) there are n agents, (ii) they are in-
terrelated via a spatial network W,,, and (iii) each agent i has his/her exogenous

characteristic n; and chooses y; by maximizing the linear-quadratic payoff,

1
Wi (Y, Yoin, i) = (i + Aowi Yy) yi — 5%2
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where Y, = (y1,-++,4n)’, Yoim = (Y1, Yi-1,Yi+1, > Yn) , and w;, denotes the -

row of W,,. The first-order condition is

n; + Aow;. Y, — Yi = 0. (B2)

92u;
Oy?

7

Since the second-order condition is = —1 < 0 (strictly concavity), the first-order

condition is sufficient to characterize the optimum y;. For this, hence, we do not need
a restriction on \g and/or W,,.163
Now we need to check the second-order condition to employ the first-order con-

dition as a sufficient condition for optimality. Here is the high level assumption for

strict concavity of the ICP.

Assumption B.12 (i) y}, takes a (first-order) Markov strategy, i.e., y, = yiy (Ynt—1,nt)-

(ii) Assumption B.11 holds

(711) SUp; Pmax (8‘7(}/”’3’;,’%’1/’“) |y*t) < 0 where J (-) is an n x 1 vector of first-order
nt n

conditions, and ¢max (+) denotes the mazimum eigenvalue.

Assumption B.12 (i) restricts the state dependency of the optimal choices. Since
the ICP is not a linear-quadratic dynamic programming, we introduce a restriction
on the agent’s choice set by Assumption B.12 (ii). That assumption is a device of

having a bounded lifetime value. Assumption B.12 (iii) is strict concavity of the

(Yn,tf 1,7nt 1Y7Lt)
Y,

agent ¢’s lifetime problem. Mathematically, it is equivalent that 97 v 18

62114 _

163Even though we achieve the optimality of equation (B.2) by 5,2 —1 < 0, obtaining a unique

NE is a different story. Consider the characterization of a unique NE. By the first-order conditions,
we have the following system:
Y = AW, Y: 4 1, (B.3)

where Y, = (y5,---,y) and 1, = (n1,--,m.)". To achieve uniqueness of Y;*, we need to impose
(AW, || <1 to being Y,* as a unique fixed point of the system (B.3). In summary, we firstly need
to check the second-order conditions. And then, try to find conditions specifying a unique NE from

the first-order conditions.
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negative definite. Under Assumption B.12 (iii), the first-order condition is sufficient

to characterize the optimum.
Discussions on the qualities of the L(Q approximation

Note that the difference between two solutions, (i) under full rationality and (ii)
under bounded rationality, can be captured by studying qualities of the LQ approxi-
mation. Here are some conditions that the two solutions are similar. In this analysis,

we suppose dim(z;) = 1.

Condition B.11 (i) For each t, |n;| is not large for every i.
(ii) d. > 0 is not large and uniformly bounded in n.
(i) ||, ae and o are small.

(iv) |\| is small.

Consider Condition B.11 (i). Note that 7, drives the dynamics of Y;,;. Note that
the optimal policy function f (Y, :—1,7.) is continuously differentiable to its argu-
ments since the agent’s payoff function w; (Y., Yo t—1,7:¢) is supposed to be infinitely
differentiable (Santos (1991)). It implies that Y,,; = f (Y.1—1, ) is a Lipschitz con-
tinuous function of 7,,. In consequences, the outcome process {Y,;} stably evolves
around the optimal steady state Y,° = (¢°,---,¢°) such that Y° = f (?rf , 77;). This
condition is consistent with the conventional qualification condition of the LQ ap-
proximation (e.g., Benigno and Woodford (2012)). In a data set, we can directly
precheck the deviations, y;; — 5.

Condition B.11 (ii), (iii), and (iv) are specific ones in our model. To inves-

tigate them, we firstly consider the L(Q approximation of the per period payoff
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Wi (Yor, Yoi—1,mi). Observe that

1
~y2

Y
U; (Ynt7 Yn,t—h 771't) = NalYit + VYit-1Yit — *?Jth - 5

2
n
+A Z W5 [Yit—1, Yj—1] YitYse-
j=1
i.e., the non LQ components are only )\2?21 Wy (Yii—1, Yji—1) Yiryje. Hence, our ap-
proximation target is to approximate a network link combined with activity interac-
tions, Wy [Yit—1, Yje—1) Yitlje-
Note that d. > 0 characterizes the number of approximation terms
(i.e., wiij [Yii—1,Yji—1] Yuyj = 0 if d;; > d.). If d. is large, so is
#{J : weij [Yir—1,Yj1—1] > 0}. Hence, considering a sparse W, can reduce poten-
tial numerical approximation errors. If #{j : wi;; [Yit—1,y;:—1] > 0} is uniformly
bounded in n, the approximation errors do not explode in increasing n since the
number of approximated functions is uniformly bounded.'®* Choose such j (d;; < d..)
and consider the LQ approximation of wy;; [y -1, Yji—1] Yaryjt. Around (gj , gj}’), the
second-order Taylor approximation of wy ;; [Yit—1, Yji—1] Yityj: (denoted by
thg [Yit—1, Yj i1, Yit> Yje]) 18

L
We 5 [yi,t—la yj,t—l] YitYjt = wt,g [yi,t—lv Yjt—15 Yits ?th] + Uy

where W, ;; denotes the approximation error.

Recall that wy;; [yit—1, Yj1—1] yiryjs is a real analytic function around (gjf, gj;) For

. . /
notational convenience, w = (w1, ws, ws,ws) , W1 = Yit—1, Wo = Yj1—1, W3 = Yi, and
wy = Yjt. We set W = yir—1 — ¥i, and Wy, w3, Wy and @ are defined similarly. The

approximation error W, ,; can be characterized by the third order Taylor expansion:

_ LQ
Wiij = Weij [Yie—1, Yje—1] YieVje — Wi 45 Wii—15 Yje—1, Yit Yje]

164Tn spatial econometric literature, the number of j satisfying di; < d. for each 7 is assumed to
independent with the number of units n.
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i i i wtzg w17w2] W3w4| e OO O
1=1 ko—1 kg—1 8wk1 8wk28wk3 “ P

!/
where w° = (gf,g;,gf,gj;?) and w* lies between w and w°. First, observe that W, ;;

is a function of y;;—1 — U7, Yje—1 — Y5, Yu — U;, and y;; — ;. The components of

83wy i [wi walwsws

Durg, Ouopy Doy L
(i) 83wt,¢j[yz8z— Wi t—11YitYjt |w* _ we i [yz i ] 7*y*
yz t—1 8yi,t— L
if) 83wt,%[y2i,t LYj.—1 }yny]t|w 33121%,1']'[17?@] ok
;1 —10Y5,0-1 Oy;,_10yj,e—171 997

2 5 —
Bweij[Yi,t—1,Y5,0—11Yityje |_* _ O wy i [yf:y*] ik
0y? 10yt @ Oyi, .y 7I7

03w ij[Yit—1,Y5,6—1)YitYst |_* &we,ij [yi ,y;-‘] —
ay?,tflayjt “ 891'2,1&71 v’

3 Sk Tk
V) agwt ,17 [yz t—1,Yj,t— l]yztyjt | 0 Wt,ij [yz ’yj] —*g*
8yz t— 13% t—1 w* 8yi,t—18y]2'yt71 LRV

1) 03wy ;5 [Yit—1,Yj,t—1]Yityje |_* -0
8yi,t—18y¢2t w

N 03wy iy e—1,Y50— 1YYt
i ig (Yit—1,Yj, it | — ()
) i, t—10y3, |w*

0yi,t—10Y;,t—10Yit ’w* T Oyi4—10yjt—173
 QPwiglur ]

iX) agwt,ij[yi,tfl7yj,t—l]yityjt|7* _
0Yi,t—10Y;,t—10y;jt w 0Yi,t—10Yj,t—1
X) DBwe i i t—1,Y5,t—11Yiryje ’7* _ w45 [17:»?;]
Yi,t—10Yit Yt w Wit-1
Xi) DBwe iz, t—hyj t—ﬂyztygtl ‘9 Wt,ij [?/ngﬂ g
oy3 ay3 { y]’
7,t—1 J,t—1
N g
Xii) 83’wt,ij[yi,t—lvyj,t—l]yityjt| = 07wy ij [yf,y’f] ik
8yj2"t_18yit w=w 6y] t—1 J?

(
(
(
(
(
(
(viti) Pl P[0 5] 2,
(
(
(
(
(

DBweij [Yi,e—1,Y5,0—11Yityje | L= wy,ij [yz ,y*] —
w=w

— Byj 1 79

2
8yj’t_18yjt

DBweij[ys,e—1,yj,0—1]yitYse |7* =0
wr T Y

(XiV) Oyj,t—10y2,

3wy i5yse—1,Y5,0—1]yatyse
XV LI : o =0
(xv) 9yj,t—10y3, & ’

_ Owy 5557

DBweij[yse—1,yj,0—1yitYse | N
0Yj,t—10Yit0Yjt w 0yjt—1

3wy i [Yie—1,Yj,0—1]YitYjt |_* -0
w® T 9

(
(revif) el
(
(

83wt,z‘j[yi,tflvyj,tfl}yityjt|_* —0
Oy, 0yt w )

BPwyijlyi—1,95,0-1]Yityje |_* —0
Ayirdy?, w ’
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(XX) 0wy i; [yz,téllléyj,tfl]yztyjt |a)* = 0.
it

We observe that U, ;; can be affected by Pwiglyietviaaa] here ki, ke =0,1,2,3, and

k1 ko
ayi,tflayj,t—l

k =1,2,3 such that k = k; 4+ ko. It means that the functional forms of A () and hy (+)
with parameter vz (Condition B.11 (iii)) affect the quality of the LQ approximation.
To see the details, consider h (zit, zjt) = |zt — 25| "¢ and h (d;j, d.) = di;* 1 {dy; < d.}
where a, and o4 are positive sensitivity parameters. The first order derivative of

Weij [Yit—1,Yj1—1] With respect to y;¢—1 is

0wy ij [Yit—1, Yju—1]
ayi,tfl

= —’QDOCME ’Zit — th|7(1+a€) sgn (Zit — th) di_jad]_ {dl] S dc} .

In this casse, there exist three factors influencing the LQ approximation: (i) two
sensitivity parameters o, and ag, (ii) the levels of distances, |z;; — 2;:| and d;;, and
(ili) the magnitude of effect of Y;,;_1 on Z,; (captured by vz0).

Here is an example.

Example B.12 Consider a simple linear formation function wy;j[Yit—1,Yji—1] =

Dyir—1 + Pjy;—1 + Geoj; where ©; and ®; denote respectively coefficients of y;+—1

and yj—1, and Geo;; is a part of wy; [Yir—1,Y;i—1] purely constructed by geographical

relationships between v and j. In this case, we observe that the all components above
. . . ow ,i3 g;ﬂ’g"‘ ow ,i3 g;’g"‘

third-order derivatives except for % = ®; and % = ®; (parts (x) and

(zvi)) are zero.

— 3 8kwm i
Then, we represent W, ;; = Wy ;; <O ((maxk,t lyke — U5]) ) , {M’“’} >
j k=1,2,3

-1 51

and the LQ approximation error would be shown by

U; (Ynta Yn,tfla 77it) - uf (Ynt7 Yn,tfla Uit) (B-4)

5 3 8kwt,ij
=X D) U0 (Irllfzx|ykt—yk|> ; Wb :
Jdij<dec ' Yit—10Yj1-1 k=1,2,3
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The magnitude of parameter A, i.e., ||, linearly controls the approximation error.
When )| is closed to zero, one can expect a small approximation error (Condition

B.11 (iv)). In case of Example B.12, the approximation error takes a simpler form,

3
)\ E \Ijt,ij (O ((max |ykt — gl:|> ) 7@1‘, CI)]> .
. k.t
Jrdij<dc

Last, consider evaluating an upper bound of V; (Y, +-1,mnt) — Vi€ (Yat—1, Mne). For

)

this, we remind the following features.

Remark B.13 Let (Y, +—1,1nt) be the common initial condition of the two dynamic
programming. Note that the process n,: exogenously evolves. Let Y, = f™ (Yii—1, nt)
and Y, = ¢ (Yni—1,mnt) denote the vector of two Markov strategies. Consider two

choice-specific lifetime payoffs by taking Y and Y, 1%

V ({Ym 5= tvyn,t—lannt) = U (Ym,Yt 1,77#)

+ Z 6°E, (Ui,t+s (Ynﬁﬂ, Ynﬁﬂfl, 77@',t+s))

s=1

and

Ve ({ }s =t Yn,t717 ?77115) = (Ynt7 Y t—1s 777,t)

+ 25 Ey ( Ui tts ( nttsr Vs —1o n"'vt“)) '

We consider the difference of the two functions denoted by Ay ;:

AV,’L' - V ({Ym s=t Yn,t—ly nnt) - Vze ({Yis}it ; Yn,t—l; nnt)

= [ (Yntayt 1a77it> (Yntayt 1a77it)]

s Ui (Yn,t+s> Y1 772'7t+s) )
+ Z:jl 8°E, ( .

e e e
—U; Yn,t+sa Yn,t+s—1a ni,t—l—s)

165For the uncertain future exogenous characteristics Mn,t+1, Tn,t+2, * - -, the conditional expectation
E; (+) is formed based on 7,,;. Hence, the two lifetime payoffs share the same conditional expectation.
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Hence, the issue of characterizing Ay ; is the difference of the per period payoft func-
tions, u; (-) and ug (-) under the difference choices (Y}, and Y7, ) as well as initial
conditions (Y}, ; and Y,¢,, . ;) at time ¢+ s. Note that the difference at the initial
period, w; (Y7, Yo -1, mit) —u$ (Y., Yn—1,Mmit), is a special case (same initial conditions

with different choices). Then, by using (B.4),
wi (Yo Yoy mie) — s (Y5, Yl i)
= uf (Vi V) — uf (Y Yy )
3 kat .
3 5t (0 (el —a2l) ) {52}
j,didec kit ayﬁzlf—layff‘,—l k=1,2,3
m e m m e e 1 m\2 e\2
= Mt (%t - yit) +y (yi,t—lyit - yi,t—l%’t) P ((.%t) - (yz't> )

5 ()" = ())

LQ [ m m m om LQ | e e e e
+A Z [wt,z’j [yi,tflayj,tflayit7yjt} — W45 [yi,tqayj,tqay@'tayjt”
Jydij<dc

t,ij : X kt — Yk 9 w* .
jidij<de bt Gyﬁ,l@yﬁi,l k=1,2,3

Hence, u; (Yn’?, Yo, nit) —u (Y,ft, Yo, 77,-,5> consists of (i) the LQ function of y7 —

yr, for I =i4,j and s =t — 1,¢, and (ii) the approximation error of the per period

payoff. An upper bound of y;? — yj, can be characterized by

915 = visl = 1w = 90) = (Wi =9 < 2 max max max {|y;; — y/] [y — 9]} -

Observe that the first component of the difference, n; (i} — y5,), involves the i’s
exogenous characteristic. Either |y/” — yf.| or |n.| is large, the LQ approximation
would be worse. This is the re-justification of importance of Condition B.11 (i).

Hence, Ay ; can be characterized by

k
8 wt,ij

Av,i = Av,i (Dmaxa (wmaX)Q ) ((DmaX)S ’ {|@*} ) |7]Zt| ) |)\| 7dc
( 895%—18?4%—1 k=123
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where 0™ = maxy ¢ |yir — U5
Approximated Euler equation system J°¢ (Y1, M, Yot)

Now we study errors of using J¢ (Y, +—1, nt, Ynt) at the true parameter values. We
reproduce the Euler equation system and relevant assumptions for completeness. For

agent ¢ at time ¢,

0 = it +Y0Yit—1 + MW [Yai-1] Yo — (14 670) v (B.5)

+0FE, l(’m + )\OtJr(r;:’i/[):]Yn,t—i-l) yz’,t—}—l]
it

dy; o1
+OE Y =2 Nwpr i (Y] Yiti1

j#i Yit
< AT e O Ovekini Vil ye s
4 Z sHHiE 0 Zajy,gu#i~ Oyg iy tth—1 By s it nt+k+1Y5 t+k+1
k=1 t +Ao 2 Oyjy a1 8yjk+1’t+’““w - Y* *
- 0 Zaji,jry17#i ~ Oy OYjp bk t+k+1,0,55+1 | Lnttk | Yitrk+1

And, the approximated Euler equations are

[Sn (W) Yar = 0Yns-1 = XntBo) + 0% (Yor = Y541
E -0 { [211;1 )\01/’p,0Mn,t+Lp + )\ONn,t+1] Y;,tJrl} |€t—1 = Onx1 (B-G)

2
—0°VV o — Cao — poln

fort=1,---.T

Assumption B.13 (i) At 0y, cno, and arp, equation (B.6) holds.

(i) Sup,, ; Pmax <W> <7<1forsome0<7<1 and

SUP,, ¢ Pmax (%’,ﬂ‘tlw) < ¢, for some ¢, < 00 a.e where pymax (Ayn) stands for the

spectral radius of A,,.

First of all, the Euler equation (B.5) involves the infinite sum, so summability

helps to obtain a non explosive Euler equation system. For this, it suffices to consider

Oyjrerr | iy ttk

since this summation increases n — 1 ad-
Oyt OYjp 1 t+k—1

: n
controlling 7% . ;
ditional components when a time horizon increases by one unit. Under Assumption
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B.13 (ii),

Z OYjy t+1 Ytk
OYit ayjk,l,tJrkfl

Jiy ki
< Y% Ojrpr1  OYj vk
I —~ | Oya OYj_ 1 th—1

J1#£t Il Jk—1,t+
B P et S IV
B J17#i Jr—171 8%‘1& 8yjk72,t+k—2 Geti ayjk,l,t-&-k—l
< 750

Oy, t+k
OYjy 4 t+k—1

by

as k — 0o. A key is to control the n — 1 additional components >,
the uniformly bounded constant, 0 < 7 < 1. Hence, Assumption B.13 (ii) is a device
of limiting the marginal change of y;; on the remote future marginal payoffs.

Now we consider

je (Yn,tfh nnt: Yn ) - j (Yn,tfh nnt: Ynt)

since J (Yot—1,Mnts Ynt) = Onxi. Then, the i"-component of Euler equation error

(denoted by ;) is

0i = Mo {yi,t—‘rl Z ([AZ]U - [A:L,t+1:|ij> wt+1,ij} (B-7)

i

* * OV (Yo, t41,1n,t+2)
<[An]z] - {An,t—i—l}i-

2 0y; t+1
+82E ,
t Z + |:A* :| (6‘/;'6(Yn,t+1’77n,t+2) _ 8%(Yn’t+1,nn’t+2))
J#i ntt+1 ], Y 141 O0Yi,t+1

First, if |[Ao| or ¢ is large, so is the magnitude of p;. Second, the level y;;;; has an
impact on g;. Third, if W,, ;41 contains many nonzero elements or some signals from ¢
to j at time t+1 are strong (large magnitude of w4 ;;), the magnitude of p; might be
amplified. Fourth, if the approximating error of the value function (Ay ;) is large, o
would be also large. Last, consider the components [A;‘L,t “Lj and [A7], — [A;,t “Lj

for j # i. By Assumption B.13 (ii),

‘A;,tHH <7 < 1. If the column sum norm is take
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for ||-||, it implies that >7_, ’% < 7. To deliver an intuition, suppose that (i) |Ao|

is close to zero, (ii) W,,;’s are sparse (most of elements are zero), and (iii) elements of

W,i's lie between 0 and 1. Then, due to the adjustment cost parameter 0 < vy < 1,

OYi,t+1

the own dynamic influence .
K2

might dominate other components %, Jj#i(ie.,

it 41 -

166
) 0yt 138

A}, 111 can be a diagonally dominant matrix*®). By the envelope theorem,

0Yj,t+1

o is much smaller than

eliminated from the Euler equation. It implies that =7,

: : 8f(yn t—1 »nnt) 8f(yn t—1 »nnt)
7. Note that the difference A* — A* IS =g | o — e )
n n,t+1 8Y72,t71 ’(Yn 77771) 8Y72,t71 ’(Yitfl’n:{t)

Since (th_l,mft) lies between (Y,,;_1,7n¢) and (?,f,ﬁ,i) and f () is a C*°-function,

n

the difference A; — A7, will be small. Moreover, by the envelope theorem, the

(4,7)-components of A — Ay, is not considered in the Euler equation.

B.2. Statistical appendix

Recall that g4, =< (el(m,L, 77, X1, Cno, aT70> for each [ (i,t) € D,
Snt = <§1(1,t),L, e ,gl(m)’L)/ for each ¢t and ¢z = (', -+, 7). Observe that the base-
line random field ¢ for approximation contains (i) the strictly exogenous variables and

(ii) i.i.d. errors. Similarly, we define ¢, and ¢} from gl*(i 0L = ' (zl*(l .1 X1, Cno, aT70>.
Some lemmas and propositions

In this part, we introduce some basic properties of spatial-time NED on ¢. Some
properties verified by Davidson (1994), Jenish and Prucha (2012), Qu and Lee (2015),
and Qu et al. (2017) will be reproduced for completeness of the paper. Our purpose is
to get approximability of ;4 . based on neighboring input processes ;) 1’s such
that ||l (i,t) —1(j,t)],, < s for some s > 0. By Assumption 3.4.6 (i), we firstly

guarantee for time series stability of Y,;. Hence, Y,; can be approximated by ¢,

0yj,t+1

166By the definition, it says that AL

9y t+1
9Yit

=D
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Snit—1, ** 5 Snit—s for some s € Z,. For this, define Fi(s) = o ({gn,t’}i/:tié) for each
t. The following Proposition is a useful result describing that the conditional mean
(denoted by E (y|Fp)) is the optimal predictor of a random variable y given partial

information Fj.

Proposition B.2.1 (i) [y — E (y|Fo)ll,, < lly — 9ll,, where § is any Fo—measurable
approximation to y.
(it) For p > 1, [ly — E(y|F2)l, < 2|y — E(y|F1)ll,, where y is Fo—measurable

and fl Q fQ Q ./—"0.

Proof of Proposition B.2.1. See Theorems 10. 12 and 10. 28 in Davidson (1994).
Q.E.D.

Note that for each n Y,; is a multivariate time series. Thus, we have the rep-
resentation, Y, = f€(Sut, Yni—1) where f€(-) is a contraction mapping of Y, ;-1 by

Assumption B.13 (ii). The next Proposition is for the time NED property of Y.
Proposition B.2.2 For each n, {Y,;} is time Ly-NED on {s,.}. That is,

Yo = E (Yol Fe()l 1, < duttd (5)

Of¢(snt,Ynt—1

where ) (s) = S e T and dyy is set to be sup, ‘ oo )g”tHL < ¢y supy [|Sntll 1, -
n 2

Proof of Proposition B.2.2. This property is directly implied by the model’s as-
sumption (time stability). Q.E.D.

Note that a key is that f€(-) is a contraction mapping of Y,,; 1 (by Assump-

oy’

n,t—1

tion B.13 (ii)), i.e., sup,, ; Pmax (‘antl)) < 7 < 1. Hence, Y,; can be approx-

imated by G, Sni—1, 5 Sni—s for some s € N and the effects of remote past ones

-1

(Snt—s—1>Snt—s—2, - - -) diminish when s increases since 1 (s) = ST = 0 as
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s — 00. This result has the same implication of Wold decomposition theorem: any
zero-mean weakly stationary process can have an (infinite) invertible moving average
representation. For each i = 1,---,n, hence, we can apply the LLN by Theorem 19.13
in Davidson (1994), i.e., gir — 5 —, 0 as T — 00.1%7

Note that ||l (i,t) —1(j,t)||,, < s for some s > 0 is equivalent that |t —t'| < s
and [|1 (,0) —1(7,0)||,, < s for some s > 0. In the spatial dimension, there might
also exist some spatial units j = jy, - -, ja satisfying [|I (¢,0) —1(5,0)||, < s, which
approximate ;4. well. That is, at most (A + 1) (s + 1)-spatial-time processes
Si(i,t), Ly SI(j1,t),Ly * " " SI(Garst), Lo~ "5 Sl(ist—s),Ly SI(j1,t—s),Ly * " "5 Sl(jag,t—s),L NAY approximate
Yy, and (M + 1)(s + 1) is much smaller than L. Thus, we need to verify whether
Yi(i,),L 18 a spatial-NED process given Y, ;1.

Hence, we consider only the spatial dimension (a countable subset of R?). First,

consider the basic topological structure for the space for spatial units, which is intro-

duced by Claim B.1 in Qu and Lee (2015).

Proposition B.2.3 For any spatial unit i and distance s > 1, let
Bi(s) =17 : Il (i,0) = 1(5,0)||, < s}. Then, there exist at most css® spatial units in

B; (s) where c5 > 0.

Proof of Proposition B.2.3. See Lemma A.1 (ii) in Jenish and Prucha (2009).
Q.E.D.
Proposition B.2.3 says that the maximum number of spatial units around 7 is

specified by the distance s.'%® By Assumption 3.2.1, there is a finite threshold d,

167Then, we can justify the LQ perturbation method using the feasible time averages (Yn,T, r_]mT)
instead of (177;’, 772)

168 e., the number of spatial units of D within radius s > 1 centered at i € R is of O (sd). Note
that this order O (sd) does not depend on specific 1.
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characterizing a physical neighbor. Then, 1 < inf;, d. (i) < sup,,, d. (i) < ¢5d? < o0,
which means that every spatial unit has at least one neighbor and at most uniformly

(in n) bounded number of neighbors. Then, we derive the following proposition.
Proposition B.2.4 For any 0 < d. < co and a > 0,

lim  sup > 1{j: |l (¢,0) = 1(4,0)||, <ad.}=0. (B.S8)
T LUGOED 1(5,0€D, 1(,0)-1.0) o >
Proof of Proposition B.2.4. If s < ad., the number of spatial units satisfying
11(,0) = 1(4,0)]|, > s and ||l (4,0) — 1 (j,0)||. < ad. is at most ¢ (ad.)" units by
Proposition B.2.3. However, if s > ad., there is no spatial unit satisfying both
11(2,0) —1(4,0)]|, > s and || (z,0) —(4,0)||, < ad.. Hence, the quantity

sup > 1{j: [1(i,0) = 1(j,0)||c <ade} =0

LAGDED 1(4,)€ D, 1(6:0)~1(5.0)l| o >
if s > ad, implying (B.8). Q.E.D.
The sum 3 pep 1{7: [|1(4,0) = 1(4,0)|| . < ad.} means the number of neigh-
boring spatial units relevant to the a*-order (a € Z.) spatial effects when the unit i

169

is centered.'®® When s becomes large, the a'-order spatial effect will disappear. For

s > ad, where sufficiently large a, and for each [ (i,t) € D

{1G,1) e D1, 8) =10, 1)l > s} (B.9)
= {00 L6 0) =15, 0l > 5,7 4, [t = 1] < s}

U{L(G, ) 1(,0) =10, 0)llg > 5,5 # i [t — '] > s}

U{LG ) 10(0) = 1(,0)llo < 5] = ] > s}

169Note that d. > 0 controls the direct (first-order) spatial effects. If 2d, is considered, the sum
2ig.yep 17 111(5,0) = 1(5,0)[l, < 2dc} means the number of spatial units affected by 4’s neigh-
bors’ neighbors.
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By Assumption B.13 (ii), Y, = f©(Gu, Yni—1) is a contraction mapping of Y, ;
and a Lipschitz continuous function of ¢,;. For the last two cases (a time horizon
of two units is far) in (B.9), the dependence between two units is controlled by the
weak time dependence (7). Hence, we focus on the first part of (B.9): a set of
spatial units which are far from unit ¢ but near epoch to t. Now the spatial-time

NED property of {yl(ivt), L} will be satisfied by random fields generated from

I(i,t)eDp,

nonlinear Lipschitz type functionals of spatial processes {gl(i,t)ﬁL}n (at time t).170
i=1

By considering the Lipschitz condition, we want to obtain that small changes in
{Cl(ht),L}T»:l lead to small changes in {yl(i,t)vL}l( - given Y, ;1. Pick [(i,t) € Dy,
= i,t)eDy,

and consider Y. = f¢ (St Ynu—1) and ygw)’L = f°(s)y, Yni—1) given the same

Y, +—1. Then,

/
’gl(j,t),L - gl(j,t),L’ .

[afe (gnt7 Yn,t—l)]

ISl

’yl(i,t),L - yl,(i,t),L‘ < Zn:
j=1

v

Note that an amount of PO
(ii).

The next step is to characterize

I:af(Qnt:YVn,tfl) i|
It ij

is bounded by ¢, by Assumption B.13

[W(%ggizw—l)]ij as a function of ||1 (¢,0) — 1 (4,0)|| .,

d. and the parameter A. The purpose of this is to employ Proposition 1 in Jenish and
Prucha (2012), which is a tool to justify a weakly dependent random field. For this,
define W,, = (W, ;5] where W, ;; = sup, w;;, and note that the column and row sums
of W,, are uniformly bounded in n by Assumption 3.4.5 (ii). Due to the existence of
d. > 0, we also have w,_;; = 0 if ||l (¢,0) — {(4,0)|,, > d.. By Assumption 3.4.6 (iii),
H/_\W”H < 1 where A\ = supyce, |A| > 0. Then, I, — AW, is invertible. For [(i,t),
[(j,t") € D, we specify the maximum cumulative spatial-time effects between units

1T0That is, we require that Yi(i ), 18 a spatial-NED on {gl(j-,tLL}?ﬂ given Y, ;1.
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[(i,t) and [ (j,):

{(In—AWn)_l]i‘if,t:t’

Wi ey =4 TCif 0= jand t £V : (B.10)
e {(1,1 - /\Wn)_l} ifi# jandt £V
ij
If ¢ # j, the intensity of spatial interactions between y;(; ).z, and yy(j4),r given Y, ,_q is
controlled by a Neumann series expansion based on W,,, W2, --.. If i # j, the spatial
effects are bounded by the potentially maximum spatial influences of the linear SAR
model given Y, ;1. If i # j with ¢ # ¢/, the spatial-time interaction between [ (7, )
and [ (7,t") would be weaker than the case of i # j with ¢ = ¢’ since the spatial-time

process {yl(m, L}l(i HeDy is a stable autoregressive time-series process. If i = j with

t # t', the interaction between two units [ (i,t) and [ (i,t") (i’s own dynamic effect) is
controlled by the maximum time influence 7/*~*! from Assumption 3.4.6 (i).

Then, wygi ey > 0 is well specified for any 1 (¢,t) and I (j,¢') in D. Note that
for sufficiently large a > 2 with a € Z; and @ # j [In + 5=t XkWﬂ . Ny, 35 +
S A e Y Wiy Wigmy_y,;- Note that
[([n — )\Wn>_1} = limg o [fn + 35 E\kWﬂU since HS‘W"H < 1. By Qu and Lee

ij

(2015), [Wg] = 0if [|1(5,0) = 1 (j,0)

y > ad,. If ||l (¢,0) —1(4,0)|,, > s for some

oo
large s > 0,
2

] w n
= 5\@”71']‘ + Z j\k Z te Z wn,i,ml te wn,mk—hj (Bl]')
k=2

Z] m1:1 mk,1:1
oo n n
N _ _
+ Z )\ Z e Z wnzi)ml T wnymkflvj
—[s m1=1 mp_1=1
h=[3]+1

— 0 as s — 0o where [dic} is the biggest integer that is less or equal than dic. Then,

for large s > 0
sup > Wi )15, (B.12)
LAGOED 1(j,41e D, 1(5,t)—1(Gt") | o >s
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< sup > Wi, 0),1(3,t")
LIGHDED 1(5.41eD,[|1(5,0)—1(5,0) || o >, [t—t/| <5

+ sup Wiit),1(5,t")
LIEDED 1(5,4eD,||1(5,0)=1(5,0) || o >, [t—t/|>s

+ sup Wi )1(5¢")
LAED (541D, |11(5,0)~1(5,0) | o <s,[t—#/|>5
o0 n n

— - ~ ~
S Z A Z ce Z W i;my Wnymy,me *° ° Wnomy_q,j

_[s mi=1 mp_1=1

h=[3]+1 ! o

+2 sup Z T*

LAGHED 1(j )eD,|t—t/|>s,j=i
— 0 as s — oo since 0 < 7 < 1. The first inequality is due to set relation (B.9). For
the second inequality, we use (B.11) and 711 < 7% if [t — /| > s.

Using wy(i )¢y, we have the nonlinear infinite moving average representation!”!

Yiit),L = .fl(i,t),L ({Q(j,t'),L 1(j,1) € D}) :

i.e., Y, is a nonlinear functional of the random field ¢ = {Q(z’,t),L (i, t) € D}.
That is, fl(z‘,t),L : EP — R and E CR. Proposition B.2.5 below shows the random
field Y = {yl(m’L :1(i,t) € D, L > 1} is Lo-NED on ¢. The proof of Proposition

B.2.5 is a spatial-time extension of Proposition 1 in Jenish and Prucha (2012).

Proposition B.2.5 Assume Assumptions 3.4.2 and 3.4.4 hold. If

Fiiw. (€) = fuin.r (€)

< D WGy QG L —eéu,t/),L\ (B.13)
l(4,t")eD

where e, ¢ € EP, Y is Ly-NED on s with digig), . = SUPL 1(3,t)eD Hg(i,t),LHLQ and

¥ (s)= sup > Wii,0) 4. 1")-

LAGOED 15 4)e D, 166 ~1G:4") | o >
Note that supy y; nep, diir,L < oo under the regqularity conditions (Assumptions 3.4.2

and 3.4.4). Hence, Y is uniformly Lo-NED on s.

171 As contrary to a spatial process, the domain of input processes should be D (instead of Dr,) due
to the existence of infinite time lags.
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Proof of Proposition B.2.5. As the first step, we need to show () 1 1S Lagr,-

bounded. Similar to Proposition B.2.2, we consider the sequence

yl(ii),t),L = ng(ivt),L ({gl((sj),t’),L (5,1 € D})

where 6y ;= g i 1 8) = 1G] < 80 | (5,) = 1(,#)]|, > 5. Let
¢®) = {gl(é{t,% L l(gt) e D} be the random field for approximation. By condition

(B.13), for any s,7 € N

’fl(i,t),L (§(S+T)) - fl(z’,t),L (§(S))‘ (B.14)

(s+7) (s)
‘yl(z t), yl(z t),L

(s)
< > Wiy 16y |y 1| -
l(jzt/)eDvs<Hl(ivt)fl(jvt/)”oo §S+T

Hence, by the Minkowski’s inequality, for p =4 4 1.

H s+r

ﬁ(i,t),L (@‘(SM)) - fl(z‘,t),L <§(S))

L L4+7] L4+7’Is
< sup ch i), > Wi )03,
L,i(it)eD ELI7T - .
1(g,t")ED,s<[|1(3,t)=1(4,t" || oo S5+
< sup qu L Z Wi 1) — 0
L.,l(i,t)eD +re 1(G ") ED,|1(5,t) —1(5,t)]] o >5

< o0 by Assumptions 3.4.2 and 3.4.4, and

4+ne

as § — 00 since supy ; nep Hgl(@t)yL
DG )ED )~ >s Wity — 0as s — 0o by relation (B.10). Hence, {yl((si)’t)jL}s
is a Cauchy sequence in the Ly, —space. Since Ly, —space is complete, lim,_, yl((‘?t) L=

Yi(i,), exists and that limit point belongs to the L4, —space.

Second, we show the NED property. By Proposition B.2.1 (i),

Hyl(i,t),L —F (yl it), |~7:l it), (s ))H

2 () = s ()],

Lo

IN

< sup H%)LH - > Wi )
L,i(i,t)eD LG ED, 10 =1 || o >5
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If we set ¥ (s) = Xiyen it -iG.2))l>s WiGeiG) for each s, the NED property is
shown by relation (B.10). Q.E.D.

Once we show that Y is NED on ¢, we can have the LLN,
ie., %ZZW)GDL (yl(i,t)i - F (yl(ivtm)) = 0, (1). To achieve the LLN, it suffices to
have L1-NED of Y on ¢. Since Y is Ly-NED on ¢, Y is also L;-NED on ¢, so the

condition for LLN is achieved. The Proposition below says the LLN.

Proposition B.2.6 Under the same assumptions in Proposition B.2.5,

= 0.
Ly

2 Z (yl(i,t),L —FE (yl(ivt)»L»

I(i,t)eDy,

lim
L—oo

Since Ly convergence implies convergence in probability, we have

% Zl(mt)eDL (yl(i,t),L —F (yZ(i,t),L)) —p 0 as L — oo.

Proof of Proposition B.2.6. First, note that ;). is uniformly L4y, -bounded
since (i), belongs to the Ly, -space. This implies SUPL, i(it)eDy E ‘yl(ivt),L’él < Q.
For each given s > 0, define yl(é{t)’L =F (yl(i,t),ﬂﬂ(@t),L(s)). Second, consider L,4-
boundedness of yl((?& ;- By the (conditional) Lyapunov and Jensen’s inequalities, we

have

4
' < oo

E ‘yl((si),t)’Lr <E [E <‘yz(¢,t),L‘4 |«E(i,t),L(3))] < sup E ‘yl(i,t),L
Ll(it)eDy,
for all s > 0, and [ (i,t) € Dy with L > 1. Hence, yl(é)’tm is uniformly Ls-bounded,
which implies it is uniformly integrable. Note that for each s > 0, yl((si)’t)’ ; is a mea-
surable function of
{gl(j,t’),L L(5,t) e D, |L(,t) —1(4,t)] . < s}. Then, we can apply the L;-norm LLN

for the spatial-time process yl((si)t) 1> which is an extension of Theorem 1 in Jenish and
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Prucha (2012) (or Theorem 3 in Jenish and Prucha (2009)'"2). Note that showing the

LLN relies on the Chebyshev’s inequality, so a key of verifying this LLN is to control

Cov (yl(at)7L,yl(8’t,)7L). Then, Cov (yl((si)’t),L, yl(fj)ﬁt,)’J =0if |1 (i,t) = 1(j,t)]|, > 2s for

any s > (0. Hence, we obtain for any s > 0

1 (5)
T > (yl(i,t),L — B (yl(i,t),L)) — 0 (B.15)
l(i,t)EDL L
as L — oo.
By Proposition B.2.5, we have

1

= 2 (e — B (wenclFienc())| =0 (B.16)

L.

l(Z,t)EDL Ll

as s — 0o. The results (B.15) and (B.16) with the triangle inequality yield

Jlim. iz@ge:m (v — E (e .
= Jim Jim | I(MZEDL (.0 = B (.2)) .
< lim lim sup il(i’ﬂZEDL (e = B (i 2| Fiiin n(9)) ) .

+ lim lim iz(ge:m (B (.l () = E (i) .
— 0.

This completes the proof. Q.E.D.
A key intuition of the LLN is using the approximated y;; 4),r based on ¢ ;4 1 such
that ||l (¢,t) — (5,1l < s for some s > 0 (denoted by yl(é{t),L). Since G 1,1, is based

172 Theorem 3 in Jenish and Prucha (2009) is designed for a spatial mixing process. Note that the
main input process in our research belongs to a-mixing since it is based on an i.i.d. continuous
innovation. By Theorem 14.1 in Davidson (1994), any measurable transformation of finite a-mixing
processes is also a-mixing and the size is preserved.
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on the i.i.d. disturbance €4 1, Cov (yl((sgt)’L, yl((sj),t’),L) =0if |1 (i,t) =1 (4,t)|| > 2s
for any s > 0. And then, we require that yl((‘?t) 1, approaches to ¥4, when s — oo.
For this, the condition lims . % (s) = 0 is enough. Based on this LLN, we establish
pointwise convergence of the sample moment function 9iti0).L (0) for each 6 € ©. Note
that the main component of gj;, () is €,z (6) consisting of ) r’s and their
transformations. Hence, we consider the NED property and kinds of transformations

preserving that property. Proposition B.2.7 (i), (ii) and (iii) are respectively spatial-

time extensions of Theorems 17.8, 9 and 10 in Davidson (1994).

< df(i,t),L¢w (s)

Proposition B.2.7 (i) Assume Hxl(i,t),L - F (xl(i’t)’ﬂ]:l(i’t)’L(s))HLP <

and

HWML‘E((

)’L(S)>HLP < d?(z’,t),ﬁﬁy (s) forp>1. Then,

Hﬂfz(i,t),L + 6L — E (l‘z(i,t),L + yZ(i,t),L\fZ(i,t),L(S)) H < diiin), .t (s)

Ly

where dy(; 4,1, = max {d d } and ¢ (s) = 1V, (s) + 1y (s).
(ii) Assume Hxl(l 0L — ( 16i.0), L1 Fui), 1 ( ))HL2P < dif 1y,L ¥z (5)

and Hyl(i,t),L -FE (yl(i,t),L|~E(i,t),L<3))HLQP < djj 1.1 ¥y (s) for p > 1. Then,

H%(i,t),LyZ(u),L - F (xl(Z 0. LY 1),

)L(s ))HLP < dii),¥) ()

Li(i,t),L

where dy(; ), = max {SUPL,zeDL yl(z‘,t),LH L2p} (df(i,t),L + d:lg(i,t),L) and ¢ (s) =

max {1, (s), 1y, (s)}.

’sz !

Proposition B.2.7 says that the summation, and multiplication can preserve the
NED property. The remark below describes it and comes from Theorem 17.16 and

Example 17.17 in Davidson (1994).
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yl(i,t),LH <

Remark B.2.8 Assume SUPL, i(i.t)eD, xl(i7t)7LH .
) ) 2r

Lo, < 00, SUPLi,t)eDy,

oo forr > 2, and {xl(i’t)’L}l(i,t)eDL and {yl(i’t)’L}l(i,t)eDL are both Lo-NED on . Then,

{xl(i’t)’Lyl(i’t)’L}l(i,t)eDL becomes also Lo-NED on q.

By Proposition B.2.5, we observe that ;). belongs to the Ly, -space if

SUPy, 1(i.1)eDy, < 0o. Note that ¢4, consists of €)1, exogenous part

Si(i,t),L Latn,
of economic variables, nonstochastic regressors and individual and time dummies. By
the conditioning argument, we only consider the moment condition for €; ) since
the remaining components are assumed to be bounded. By Assumption 3.4.2, we
have sup, , &/ ]qt\4+7’6 < oo for some 7. > 0 implying that y;) 1 is Lay, bounded.
Assume that x4 1, is a (uniformly bounded) linear transformation of ;4. Then,
{xl(i’t)’Lyl(i’t)’L}l(i,t)eDL will be L2+%e—b0unded (by the Minkowski’s inequality) and
Lo-NED on g.

Now we establish basic ingredients for consistency of GMM estimator 0y So,
uniform convergence of gf (0) is required: i.e., supyeg |75 (6) — E (g5 (0))] —, 0 as
L — oo. As the first step, all components of €,; )1, (0) should converge to their ex-
pected values for each 6 € ©. It relies on the following three propositions. Note that
{yl(i’t)’L}l(i,t)eDL is uniformly L4y, -bounded and is uniformly L,-NED on ¢. Note

n

that all elements in € 1, (#) are uniformly bounded transformation of {ylw), L}'—l’

{yl(i,t—l),L}:;l and {gl(i7t)7L}j:1. By Proposition B.2.7 and Remark B.2.8 with As-

sumptions 3.4.5, 3.4.6, and 3.4.7, the following propositions can be shown.

Proposition B.2.9 {2?21 wmjyl(j,t),,;} is also uniformly Ly, -bounded and

l(i,t)eDL

1s uniformly Lo-NED on .
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Proposition B.2.10 For anyp=1,---, P, {[Mn,tJer ()]s Vitisn).r (9)}1@ Vb, is

uniformly Ly, -Bounded and is uniformly Ly-NED on <.

Proposition B.2.11 {yf(wﬂ),L (0) - [Npt+1 (0)]”} and {[V Ve (0)], }

l(i,t)eDy, I(i,t)eDy,

are uniformly Ly, —bounded and uniformly Lo-NED on s.

By Proposition B.2.7 (i), the addition preserves the NED properties. Therefore,

for each 0 € © {el (i,t),L (0)} is uniformly L4y, -bounded and uniformly L,-NED

l(it)eDy,

on ¢ since O is closed and bounded (Assumption 2.4.3). Also, {%@L(OO)}K heD is
2y L

uniformly L4, -bounded and uniformly L,-NED on <.

Demeaning operator Jr ® J,

Consider the sample moment function g¢ (). Without loss of generality, suppose

m = 1 since all quadratic moments have the same form. We have

g (0) = —dp (Jr®J)E(0)

ACIEA0

1 qar <IT ® nl l > Er(0) + 2(1211;51;1251; (0)
9rc (0) = 1&1 (0) (Jr ® Jo) Rpay (Jr @ J,) €. (6)
EL(O)Rp1EL (0) — €1, (0) Ry ($lrly @ 1) €1 (0)
Rz (IT ® lnl;) Ep(0) + €L (O)Rp ol € ()

($lrly @ 1) Ris €1 (0) + £E1, (0) ($lrly @ 1) Ruy ($lrly @ 1) €1 (6)
(%irly @ L) Ry (It @ 21,00,) €1 (0)—£E] (0) (Slrly @ I,) Ry Ll Er (6)
(JT ® L0 R1EL (0) + ££7 (0) (I ® Lill,) Riy (#lelhy @ 1) €1 (6)

( oli) Ry (Ir @ 21,0) €1 (0) = £€1,(0) (Ir @ L11},) Ry 1+l €L (6)
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+1E1(0) Ll RL1EL (0) = 11 (0) 11l Ry (Flrly @ 1) Ex.(6)

—16(0) HILly Ry (Ir ® Laly) €1 (0) + ££1, (0) Holy Ry HiliEx (6).

For each 6 € ©, all components of g1 (f) and ¥ (6) should converge to their
own expected values. To show them, we can have the alternative representations as

summations of lplf, ® I,, and Ir ® [,,l/, using properties of the Kronecker product: (a)

llp® 1, = Y0, (Ir @ ens) (lp @ €),,), and (b) Ir @1k, = 1 (ers ® 1) (e, @1,)

Lemmas and theorems

Uniform laws of large numbers

For the ULLN (of S¢ (f)) and uniform equicontinuity of (£ (5S¢ (0))), we need to
check the three conditions suggested by Assumption 6 in Jenish and Prucha (2012).
Proofs can be found in the supplement file. First, the moment functions Giin)L (0)

are required to be p-dominated on © for p = 2.

Lemma B.2.12 Under the suggested regularity conditions in the main text,

2
sup  FEsup ‘glc(m?L (9)’ < 00. (B.17)
Lil(it)eD;,  6€0

Proof of B.2.12. Choose arbitrary spatial-time unit [ (i,¢) € Dy, and fix it. First,
consider the linear moment function glIZ;,Ct%L (0) = df, (Jr ® Jn) eri€ip,e (0). Then,
L,c 2
Esup ‘gl(i,t),L (‘9)‘
0cO

(n—1

% ‘Ql(i,t),L i ’2

2 =Y it 4G, L
- Sup ‘el(i,t)vL (8)‘ nT l( )t )GDLvt#t ( it )7 ‘2

2
T—1 1
TN LAGHED j#i ‘ql(j,tm\ T T 21 )eDy it

06 Q)L
2 2
< 4sup ‘El(i,t),L (9)’ sup ‘QI(i,t),L ;
0cO L,l(it)eDy,

so by the Minkowski’s inequality,

2 2

sup HQZ(i,t),L H

2
Esup gkt (0)] < 4sup |l 0
9eg‘gl(ut),L( >‘ = pH it (0) Ls LiGteDy b

0cOe
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The right hand side of inequality above is uniformly bounded by Assumption 2.4.7

2

< 00 due to the results in Propositions B.2.9, B.2.10,

Lyyn,

(ii) and supgeq Hq(i,t),L (0)

and B.2.11.

Second, consider the quadratic moment function

gl((giﬁ),L (6) = Zl(j,t’)eDL {(JT ® Jn) RL,l (JT ® Jn)]u/ El(z’,t),L (9) El(j,t’),L (9) Where l =

[(i,t) and I" =1 (j,t'). By the Minkowski’s inequality, we have

(& 2 4
Esup ‘gl(i:t),L (‘9)‘ <| > [(Jr®@Jn)Rei(Jr@ )], |- sup  sup Hﬁl(z‘,t),L ), -
b6 I(5,t')EDL Ll(it)eDy, 6€O 4
2
The right hand side of the above inequality is bounded since supycq Hel(ivt), 1 (0) B <
4+ne
oo and
n T
Z [<JT ® Jn) RL71 (JT ® Jn>]l,l’ = ll’llaX Z efn,i Z JtsRnt,ll]st’emj
1(j,t")eDy, R | s=1

< o0

n
< s max 3[Rl

by Assumption 3.4.10 (ii). This completes the proof. Q.E.D.
Next, we would like to show the LLN for the components of gj, ,,  (f) for each

g € o.

Lemma B.2.13 For 6 € ©, the following results hold.

(i) qf(i7t)7Lel(i,t),L (0) and >y [RLJ]U, i (0) €y, (8) are uniformly Li-NED on
. This implies %Zz ql,(i,t),Lel(i,t),L 0)—FE (% > q;(i,t),Lﬁl(i,t),L (0)) =0, (1)
and + 52 50 Rl €.z (0) s (0)—E (3 X0 S0 Ry e (0) @, (6)) =
op(1).

(ii) 1o, (lrly © 1) €1 (0) — E (1o, (lrly © 1) €4 (0)) = 0, (1),

and L€ () Ry (lrly @ 1,) €4 (0) — E (£€1 (0) Ry (3lrly ® 1) £1.(0)) = 0, (1).
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(iii) Lo, (Ir © L.1.,) €5.(0) — (% o, (Ir ® LL,) €4 (0)) = 0, (1),

and L&}, (0)Rey (Ir © L1,01) €0 (0) — B (56, (0) Ry (Ir @ L1,1L) €4.(8)) = 0, (1).
(iv) T+ 1L1LEL (6) (% 'L% LlrEL (0)) = 0, (1)

and 1€ () Ry 11LlpEL (0) — E (1€, (0) ReaHluliEs (0)) =0, (1).

Proof of Lemma B.2.13. (i) By Parts (ii) and (iii) in Assumption 3.4.9, {QI(i,t),L}l(A Db
1, L

is uniformly L,y -bounded and uniformly L,-NED on ¢. Since {el(i’t), L (9)}l(i7t)eDL
is uniformly L4, -bounded and uniformly L,-NED on , {q2(i,t),L€l(i,t),L (9)} G)eDs
is uniformly Lo-bounded (by the Minkowski’s inequality) and uniformly L;-NED by
Proposition B.2.7 (ii) (or uniformly Lo-NED by Remark B.2.8). Then,
H% X G, G (0) — E (% 320 Q1 i.0), L€ L (9)> HL — 0.

Consider 3y [Rr1l,y €1i),2 (0) €1g,0), (0) = €1y, (0)- 20 [Realyy €,z (0). Since
{el(Lt),L (9)}1(1 yeD, is uniformly Ly, -bounded and uniformly L,-NED on ¢, focus on
{le Rl €ga.r (9)} Note that =y [Ri1l, s €,z (0) = X7y [Ruealy; €10, (0) =

YjeBi(de) [Bnt1l;; €je,2 (0) by Assumption 3.4.10 (iii). Note that 377, ‘[Rm’l]ij and

"1 1{j:j € Bi(dc)} are uniformly bounded in i, ¢ and n and {el(i7t),L (0)}10 Db,
is uniformly L4, -bounded, so {Zl/ 1298 L G, L (6’)} is uniformly L4, -bounded.
Since [Ryl;; are Ly-NED on < if j € B (do), { Xy [Real,p @i,z (0)} is Li-NED on
¢ by Proposition B.2.7 (ii). Then,
|3 =020 Realyy i (0) @gane (0) = B (3 S0 S0 [Realyy acoe 0) agens 0) |, =

0.

(ii) First, note that

o, ($lrly © 1,) E(0) = 220, (ha, (I @ ) (% (1 @ €) €0 (0)) = £ 0, @& (0)
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where G, = £ 37, i and &, (6) = £ X7, €1, (6). Observe

1 n 1 n n
var (13 da <e>) = LSS con (e 0), 46 6)
s iz =1
- 12 Z Z Cov (qZ &.(0) ,(j}léj, (0)) forsomea € N
V" i=1 jeB;(ade)
1 , o
G (ad,)* max Cov ((jl-.ei, (9),q;€; (0))

jEB;(ade)
1 p X 1
—c5 (ad, E (q}, E (e 0H*) =0 () :
~cs (ade) \/fltlIL) (qz(z,t),L)\/ i (o, (0)') -

This result implies = >, 7/ &. (0) — ( > q € (0 )) =0, (ﬁ) by the Cheby-

IN

IN

shev’s inequality.
Observe £ (0) Ry (5lrly ® 1,) € (0) = L X0, 7 (0) & (0) where
7 (0) =+, Y1 [Ratal; €.z (0). Assumption 3.4.10 (iii) says
75 (0) = 7 Xic1 XjeBi(ade) (Bt €10,z (0). Then, Var (% Y 7i (0) & (0)

Hence, we also have £ 3" 7 (0)&. () — E (l r T (0)é. (9)) =0, (i> by the

n

~—
I
Q
—
3=
~—

Chebyshev’s inequality, which it is the desired result.
(iii) Consider the time-series average forms of

1oy (Ir ® Hall,) €1 (0) and £€7, (0) Ry (Ir @ 2101, ) €1 (0):

1 ! 1 ! 1 4 1 ! ! 1 ! /
g (et ) 0 = 23 (5 (Ao t)ar) (G (rot) &0)
1 T
= =SNG 0
T;q.tet( )
and

Ler L 1 Z
7€ () Rey (IT ® nlnln> () = =3 (
1
T

where ¢, = = 3" qi,, €4 (0) = = 30 €, (), and
Fe(0) =130 S0 (R, 15 €60y, (0)-
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First, consider showing +>/_, 7,é, () — E (% ST q.e; (0)) = 0,(1). Recall

that {ql (i,t),LEU(t), L <9)}l(it

JeD is uniformly spatial-time Lo-NED on ¢, so this implies
) L

{7,€:(0)} is uniformly time Lo-NED on {c,:}.
That s, sup, |1 (6) — B (@, (0) 17 (5))l, < Cper™* implying

) LY B (@ 0) |7 (9)

t=l

< Cet™ (B.18)

Lo

1 T
P

for some 0 < Cp < oo uniformly in ¢ and 7', and for some 0 < 7* < 1. For
notational convenience, let .+ = E (7,€+(6) |F: (s)). Note that g.. is a function of

Snt—ss " s Snittsy SO Get, and ey, Will not be correlated if |ty — ¢ > 2s. Then,

2

T
Z Cov (Cje,h ) qe,tz)

to=1

Z Cov (de,tp ge,tg)

1|t —to|<2s

s 2 s
< T sup E/ <’(H(i,t),L€l(i,t),L (9)’ ) < fcqal

Il
™=

> B 0)|F (s)) — E (7. (0))]

t=1

%\H

~
&
Il

—_

I
W 'ﬂ\ — N3
M%

2
for some Cyey > 4supy;, B (‘QZ(i,t),LEZ(z’,t),L (6)‘ ) By the Chebyshev’s inequality, we

have

1

72 B(@e(0)1F:(s) - E(q—;atw))}:op( T) (B.19)

By combining results (B.18) and (B.19),

N
]~
Il
H‘r‘h\

/\

ﬂ\

\_/
IN

N~
]~
=
H.('M
—~
e
S~—

|

S|
]~
&
—~
il
H.(‘m
’55
S~—
!
—~
w
S~—

_

as T — oo if we set s = /T.
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Second, observe that 7, (0) = Y0 > (ad.) [Rntaly; €1, (0), [Raea],; are
* n t
measurable functions of {gl i), L} lL_, and o <{§l(j7t,)7L}j:1 ]t,zl) C Fiip.r (s) for
any s > 0. It implies 7, (6) is a cross-section average of a linear combination of
€L (0)'s (with finite components). By using similar arguments verifing the linear
moment part, we have the desired result.

(iv) First, consider the linear moment part, $+q71,11;&; (6). Note that

1,1 1
Cov (Lq’LlL, €L (9)) = XY 0o (6261602 9))

L 1
S z Ll(SU.p Z OO/U <ql(i,t),L€l(J’,tl)7L (0)) — O <L> ,

s i,t)EDL G
o tqplrlLEL () — E (%q’LlL%l’LEL (9)) =0, (ﬁ) by the Chebyshev’s inequality.
By using the similar arguments, we have
1EL (O) Rl E1EL (0) — B (£€7 (0) Rl 1160 (0) = 0, (). QED.
For each 6 € ©, by Lemma B.2.13, hence, we have

1 1 .
7 > Gip () — B (L > i e, L (9))| —p 0

l(Zt EDL l(i,t)GDL

as L — o00.This implies |S§ (0) — E (5S¢ (0))] —, 0 as L — oo for each 6 € ©.
To obtain consistency of éL, the pointwise LLN should be extended to the ULLN.
To achieve smoothness of gj; (f) on the parameter space O, hence, a sufficient
condition is that g, ,) 1 (0) should satisfy the Lipschitz condition in 6§ € ©: for [ (i,t) €

Dy, L>1and 6,6 €©

< Lig - |0 — 0]

glc(i,t), (0) — 91(1 t),L ()

a.s., and lim supLﬁoo%Zl(meDL EL?(i,t),L < oo for some n > 0. The lemma below

verifies this.

Lemma B.2.14 For any [ (i,t) € Dr, gjj; ) 1, (0) is Lipschitz in 0 € ©.
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Proof of B.2.14. Choose 6, #' € © arbitrary with § # ¢’ and fix them. For each

[(i,t) € Dr, the Taylor approximation of gj, , ; (f) around 6’ consists of

91L<%,Ct),L 0) = glrfé,ct),L (0) +[(Jr @ Jn) QL];. [L/\,it (é) y Lot (@) 7L211,it (é) ’Llﬁ,it (é)}

’ (9 - 9/) )
and

Q,c Q,c
9i(i),L 0) = (i t),L ()

+ Z [(JT ® Jn) RL,Z (JT ® Jn)]”, €i(5,t),L (9)

7
Lt (0) Lot (0) Ly (0) Ly (0)] - (0 —0)
where 0 lies between 6 and ¢. Observe that Ly ;; (0), Ly (0), Ly (0), and Lg; (6)
are uniformly L,-bounded for any § € © (due to the compact parameter space as-
sumption). Hence, the Lipschitz condition in € is satisfied for both glIZ;’Ct% ; (0) and
9,55, (0). QED.
This condition yields Lo stochastic equicontinuity of 9l L (0) with respect to

6 € © by Proposition 1 in Jenish and Prucha (2009). Formally, for any € > 0

: 1 c c
s ;5 P( s (s (0= g0 @] > ) 0
L—oo Ly nep, l6—67]1<n
as ) — 0. By Theorem 2 in Jenish and Prucha (2009), therefore, we obtain (i) uniform

convergence

sup |gy (0) — E (g7, (0))] =, 0,

00
and (ii) uniform equicontinuous of {F (g5 ())} on ©,
i.e., limsupy,_, . Supyce SUP|g_g <, | £ (7 (0)) — E (g5 (¢))] — 0 as n — 0. For uni-
form convergence of S§ (6), we produce the following lemma, which is a modified

version of Lemma 3.3 in Potscher and Prucha (1997).
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Lemma B.2.15 Let {¥; (-,-)} be uniformly equicontinuous on R? x ©.

(a) If supgee |95 (0) — E (g5 (0))] =, 0 as L — oo, then

sup [V (9, (6),0) = V2 (E (g3, (9)), 0)] = 0

as L — oo.
(b) If {E (g5 (0))} is uniformly equicontinuous on ©, then so {Jr (E (g5 (0)),0)}

18.

Proof of Lemma B.2.15. See Lemma 3.3 in Pétscher and Prucha (1997). Q.E.D.
The lemma below is not only for the identification assumption (Assumption 3.4.9),

but it also differentiate the linear moment part (at ),

(JT X J, )EL, to (1) the

3\

mean zero part and (ii) the asymptotic bias part.

Lemma B.2.16 For IV matriz q;, plimL_m%q’L (Jr ® Jn) EL = O0gx1-
In ﬁq’L (Jr ® J,) EL, the mean zero part is
ﬁ Yo Zthl Qit€it — ﬁ Yo Z?:l Zle gjt€ir while the asymptotic bias part is

1 T T 1 T T
VL 2?21 D i1 D=1 Qi €it + VL Z?:l 2?21 Dbt D=1 qjt' €it -

Proof of Lemma B.2.16. Note that

1
L

n 1 n T
Z Z Qit€it — TL Z Z Z qit' €t

% =1 =1t=1t'=1

e
I
-

.
~+

1
T

1=

T 1 non T T
Zthézt ﬁzzzsz‘t/%-

t=1 i=1j=1t=1t'=1

H
HM:
I

J
Assumption 3.4.9 (i) implies E (q;,,En) = E () E (Ent|li—1)) = Ogx1 by the law of
iterated expectation. Consider the first term. Note that

17 T
< ZZ%%) = zZZE it B (€t li-1)) = Ogxa-

i=1t=1 i=1t=1
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o2 n
Since E (4 P Y S Qe ) = P X0 S B (qag)) = O (1) by As-
sumption 3.4.9 (ii), the first term is O, (%) by the Chebyshev’s inequality.
The expected value of the second term is
gl L
TL
1

:HZ

i=1t

NgE

T T
Z Z di Elt>

1t=1t¢=1

1 n
E (g E (eit|li-1)) + ﬁZZZE (qiv€it) = Ogx1 + O (T)

<t i=1t=1#>t

7

M=

Il
—

since Yyo; B (qwei) = O(1). We observe == Y7 >0 Yye, E (givey) yields the
asymptotic bias stemming from using Jr. Note that ﬁZ?:l ST S qwer =
\# T T ST qivey. Consider a stochastic order of the variance part of
\/% > Etzl EtT/zl it €it

1] n T

( XYY Y Yy q) - Y Y Y B (Gand) = O )

i=1t=1t=1ty=1
since Zgzl E (Q‘th@'thz{b) is uniformly bounded in 4, ¢, to and 7.
Thus, 77 S5y Yy Spey Given = O, (ﬁ) by the Chebyshev’s inequality.
Consider the third term. Note that
1 non T n n T
E TZZZ qjt€it LZZZE C]gtE Eztwt 1)) = 04x1,
nL2 3= o i=1 j—=1t=1
which means that using J, incorporated with the IVs q,; does not generate the
asymptotic bias. Note that
1 T n n 0_(2) n T n n ,
E\-22.2 ). Z it | = 7DD >0 D B (ged)y) = O (1)
LGS =1 =1 =1 =1 =1 =1 jo=1
since E]l s i) (letqz'gt) is uniformly bounded in j,, ¢ and n.

Then, = > 1Zt 1 gjt€ir = Op (\/%)
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Last, consider the fourth term. The expected value of that term is

(Biizzqﬂeu) = LYY Bla (eali)

i=1j=1t=1t¢'=1 i=1j=1t=1t'<t
1

I Zn;tT i > E(gjvew) =0 (2)

=1j5=1¢>t

+

since 3201 Dysy F (gjr€i) is uniformly bounded in i, t and n.
And, £ 37,30, S Sl 1 E(geeir) = O (1), which implies
L2 > Z 1 Zthl ZtT/:1 gjr€ir = Op (%) This completes the proof. Q.E.D.
The mean zero part characterizes the asymptotic distribution of éL, which it can
be written as ﬁ ST d;JnEni. The asymptotic bias part is ﬁ ST qpJnEn where

Qnr = %2521 g, and its stochastic order is of O, (%) Hence, we obtain
. T
\/Zgch (90) = Z qntJ gnt Z anJ gnt
}
= Z n nt \/> ZE anJ gnt)
=1

T
Z anJngnt -k (El;LTJngnt)]‘| )

3\

where \/%% i1 B (@)pJnnt) = /20 (1) by Lemma B.2.16 and

T S Banen] - I F[ZZ o~ E 60

ol

by the Chebyshev’s inequality. Hence, we have

1
\/Eg 0 ant'] 5nt \/;nT 90700 +O (ﬁ)

where b (0y, 02) = %ZtT:l E (@, rJn€nt) = O (1).

Consider the order of asymptotic bias from using the quadratic moments.
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n

0.2
Lemma B.2.17 Forl=1,---,m, &tr (Rp; (Jr ® J,)) = O, ( Z)'

Proof of Lemma B.2.17. Observe

2 2 2
op on o

ﬁt’/’ (RL,Z (JT ® Jn)) = ﬁf?“ (RLJ) - Ti\;ftr (RL,Z (lTl/T & Jn))

2 2

0'0 ’ 0'0 ’
tr (R (Ir @ L)) + —20tr (Ry 1))
n\/— ( L,l( T )) L\/E ( L,ZLL)

tr (RL l) = O7 and tr (RLJ (lTl% X Jn)) (RLZ (IT X l I ))

Ry, =0 L) since R, ’s column and row sums are uni-
t 1 1 j 1 1] p n k]

formly bounded in n and ¢. By the same argument,

2
X f r(Reloly) = 3% S0, S0 S0 [Ruly; = Oy (J7). QED.

The implication of this result is that the asymptotic bias part originated from

using quadratic moments is

n\;_mRLz(IT@”’)) P(jf)

So, define b, (03) = % S i Xy [Ruly; for 1 =1,---,m and is of O, (1).

Central limit theorem for a linear quadratic form of martingale difference
arrays

Consider the asymptotic distribution of Uy, = \%LA’LSLjLﬁ (€1 Br&r, — oitr (Byr))
where Ay, is an L x 1 vector of predetermined variables and By, is an L x L matrix whose
components are measurable functions of ¢;. The Ay and By represent respectively
drk, and RLJca for k, = 1,---, K,. We can assume By is symmetric since it can
be replaced by 1 (B + B}) and £, Br&, = &3 (B + By) &L Let | = 1(4,t) and
I"=1(j,t") for notational convenience. Note that

1

L L
L Z ( AL € + € Z BL Ly €y — E <El Z [BL]U/ El/|§z>> (BZO)
=1

I'=1 I'=1
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1

L -1 L
L Z (AL € + 261 Z [BL]UI € + [BL]Z,Z (612 — US)) = ZuL,l
=1

=1 '=1

where uy,; = L [ [AL], & + 26 30 [Br], ver +[Brl, (6 - 08)} foreachl =1, ---, L.

Note that
E(JpALELli) = 0, B (Jg [ELBLEL = aitr (Bu)] Isi) = 0.
Var (ﬁA'Lngf) = 103 E (ALALLE),

Cov (ﬁA’LSL, % €} BLEL — odtr (BL)) |§z) = TusE (A} |s}) veep (Br) where pg =

E(e}), and
l / / * l 4 /
LCOU (€1 Brir, €L BL2ELIsT) 7 (u4 — 300> vecp (Br1) vecp (Br2)
1
+ZO'61757“ (BLJ (BL,Q + B}472))

where iy = E (). Let og;, = Var (Ug|s}). Hence,

1 1
oy, = ZO’%E (AL ALlsr) + 7 (,u4 - 3061) vecy, (Br,) vecp (Br) (B.21)
2 2 )
—l—LUOtr (Bz) L/.LgE (A |s7)veep (Br) .

The exogenous component () from the network formation process can be cap-
tured by a sigma field C; C F. i.e., ¢/ is measurable with respect to C;. Then, {gl*}lel
is specified by C = C1V---VCy where V is the notation for the sigma field generated by
the union of two sigma fields.'™ Now we want to establish C-stable convergence of Uy,
which says the joint limiting distribution for (Up,<¢*) where ¢* is any C-measurable
random variable (or vector or matrix). Since C-stable convergence belongs to a joint
convergence concept, C-stable convergence implies convergence in distribution. Here
is the formal definition of convergence in distribution C-stably stated by Definition 2

in Kuersteiner and Prucha (2013).

173 Kuersteiner and Prucha (2013, 2018) consider C as a representation of common economic shocks,
i.e, C =VI_,C; and each C; represents t*h-period common economic shocks. So, we extend this notion.
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Definition B.2.18 Let U be a random wvariable on (Q,F,P) and C C F. We say
U, —q U C-stably if for all ¢* € C and all U € B(R) with P(U € oU) = 0,
P{ULeU}lns*) - P{UeU}Ng*) as L — oo where B(R) denotes the Borel

o-field on R and OU is the boundary of U.

Proposition A.1 in Kuersteiner and Prucha (2013) introduces the alternative def-
initions of C-stable convergence. One of the alternative definitions verifying the
CLT is related to the characteristic function: for any ¢ € R and C-measurable
p-essentially bounded random variable ¢*, E[¢*exp (itUr)] — E[¢"exp (itU)] as
L — oo. The key of showing this is using the law of iterated expectations, i.e.,
Els*exp (itUy)] = E[¢"E [exp (itUL|C)]] and E [¢* exp (itU)] = E [¢*E [exp (itU|C)]].
In consequence, we will have U|C—4N (0,0¢) a.s. where oy =plim;_,..0¢;, and it
is equivalent that lim; . E (exp (itUy)|C) = exp (—t*0¢;/2) a.s. However, the un-
conditional distribution will be lim;,_,, F (exp (itUp)) = E (exp (—t?0%/2)) as. (ie.,
a mixed Gaussian distribution).

Now we establish the CLT for (B.20). Note that

2 .
Oy = pllmL—)oo

o? -
I A e P C B.22)
o — 2
+TO Zlel Z§'=11 [BL]ll’ + 2% ZZL:I [AL]Z [BL]ll

by using (B.21) and tr (B3,) = Sl Sfy [Buliy = S, [Buly + 250, 202k [Buli.

Observe that of;, and of; are C-measurable.

Lemma B.2.19 Assume U%L > 0 for sufficiently large L, and o2, pus and py are
constant.'™ Then, Up—40ovu - € C-stably as L — oo where &€ N (0,1) is independent
of oy (which is C-measurable).

1740r, we can assume o3, pz and py are C-measurable.
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Proof of Lemma B.2.19. The first step is to construct increasing sub-o-fields of F

starting with C. For [ = 1,---, L define

QLJ = 0'(61’1)\/6,...
Gini1 = o1, -, €n1,€12) VC, ...

Gry = o1,  €n1, €12, €n2, €10, €1) VC

for I =1 (i,t) with G, o = C. Then, we observe (i) Gr0 C Gr1 C -+ CGry1 C Gy C

-, (ii) u, is Gr-measurable and (iii) £ (ur;|Gr;—1) = 0 (i.e., ur;’s are martingale
differences). These establish the martingale difference array, {(u;,Gr;) : 1 <1< L,L > 1}.
As the second step, we shall show the Liapounov type condition: i.e., Y%, E |up, |2+77U —

0 as L — oo for some 1y > 0. Pick any p, ¢ > 0 such that % + % = 1. By the triangle

inequality, we have

VL

which takes a form of E'|X - Y|. By the Hélder inequality,

1 1 1 1 1
lug,| < L |[AL]z|plp : |€l1|qq + |[BL]U|” : |1[BL]zz|q : |€112 - U(?qu
, +2%4 |€l|qa ) Zé/_:ll |[BL]ll’|E ) |[BL]11'|E |€l’|q5

1 . .
| < ﬁ[HALm +ZHBL]W|]

I'=1

1
-1 q
q
a4 B[ = o+ el (1Bl el

=1
implying

1 ! z
Blud' < g B |4 + 3118l (= part)

I'=1
[ Blal' +Belyl- Bl —ad 7 _
+21E |¢]? - (257:11 [BLlw| E |€l’|q)

Take ¢ = 2+ ny for some small ny > 0. Consider the part II in the above inequality.
Since sup, |e|""" < oo, |[By],] and X, |[By),| are uniformly bounded in [ and
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L, the part II is uniformly bounded in [ and L. Consider the part I. Since we set

q=2+ny, % = 1+ ny. By applying the ¢,-inequality, we have

1+nu
] < 2w (B |[AL],[*™ + cp)

l
partl — E [HALW 3 Byl
I'=1

for some cp > 0. Since [Az], is a part of qz, E'|[Az],|* = O (1) implying E [[Az],|**"

O (1), so part Iis of O (1). In consequence, SF | F [u, [*t" = L1+1"TU YL 0(1) =
O(LJTU> —0as L — oo.

In the third step, we need to verify that the conditional variance converges to o
Zle E {u%ﬂQLJ_J —4 0. Note that

2
([Acl & + 26 X0, [Buly ) + [Bulj (6 — 03)?
+2 (B, (¢ — 03) ([Arl &+ 2a S0y [Bilyer) |

2

L,ZZE

-1 2
E ([ALL e +26 ) [Brly 61’) |gL,11]
=1
) -1 -1 1-1
= [AL]I 0'3 —|— 4 [AL]I 0'8 Z [BL]”/ €y —|— 40’8 Z Z [BL]”/ [BL]”// (14
=1 r=11"=1
-1 2
= 0(2) ([AL]Z +2 Z [BL]”/ 61’) )
=1
2
E {[BL]Z (¢ = o) !QL,H] = [Brlp (1 — 03)
and
-1
E [2 [Bily (¢ = o) <[AL]z e +2e ) [Bily 61’) !QL,H]
r=1
-1
= opalBl, (L) +2 3 Bl o)
=1
Hence,

L o2 L 2 1L
ZE {u%ﬂghl*l} - I? Z (AL +2 Z [BL 61’) + - I Z [BL], (” ‘73)
=1 =1

1 L -1
+— Zng BL <AL]1+2Z[BL]”/ 6[/) ,
l:l

I'=1
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which converges to of; stated in (B.22).

The multivariate case can be considered by applying the Cramér-Wold device,
i.e., if Uy is a multivariate random variable, we can consider an arbitrary linear
combination ¢'Uy, with ¢’c = 1 which becomes a univariate random variable. Q.E.D.

The first step is to build increasing sub-o-fields of F starting with C. For | =

1,---, L define
Gra = o(e1)VC,---,Grnr1 =0 (€11, -, €n1,€12) VC, ...
Gry = o(e11, 1 €n1, €12, €n2, €14, €1) VC

for I =1 (i,t) with G, o = C. Then, we observe (i) Gr0 C Gr1 C -+ CGry1 C Gy C

-, (ii) ug, is Gr ;-measurable, and (iii) £ (ur;|Gr;—1) = 0 (i.e., uy,’s are martingale
differences). These establish the martingale difference array, {(ur;,Gr;) : 1 <! < L,L > 1}.
By showing (i) F, E ]uL,l\%"U — 0 as L — oo for some ny > 0, and
(i) >F, E [uiﬂgm_l} —4 0%y, we finish the proof.

We observe that the limiting distribution of Uy, is the mixed normal oy - N (0,1)

and two components oy and N (0, 1) are independent. As a special case, the limiting
distribution of Uy will be N (0,0¢;) if o is nonstochastic. Even though og;, and o
can be stochastic (C-measurable), we have (UL/U%JL)2 —4 X3 as L — oo by using

05, —p 0 and asymptotic independence between Uy and oy, .

Lemma B.2.20 Suppose the same assumptions of Lemma B.2.19. Then, (UL/UUL)2 — 4

X3 as L — oo.

Proof of Lemma B.2.20. Note that 1/0¢;, —, 1/0¢; C-measurable by continuous

mapping theorem and 0 < 1/0¢; < oo since oy, > 0 is assumed for sufficiently large
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L. Then, Uy/oy, = Up/ou + 0, (1) implying Uy /oy, —4 N (0,1) as L — oc.

Hence, by the continuous mapping theorem, we have the desired result. Q.E.D.

Note that conventional test statistics (e.g., Wald statistic) may involve (U /oy, )*.

Proof of Theorem 3.4.2. As a first step, consider uniform convergence of S§ (6).

ie.,,

SUpgeo |55 (0) = S5 (0)] —, 0 as L — oo where 5% (0) = [Egs, ()] ajao [Egs (9)] for

each 0 € O, which is the nonstochastic analogue of S§ (). By the triangle inequality,

sup
0co

IN

sup
0co

IN

sup
0cO

S5 (0) - 55 (0)|

g7 (0) agaegs (9) — [Egs

g7 (0) agaogs (9) — [Egs

(0] ajao [EGL, (O)]] +sup155 (9) (ahar — apao) g5 (6)]

(O a0 (B33 (0)]] + llarar, = dhaoll. - sup I35, (O)]*-

Consider the first term of the right hand side of the second inequality. Observe that

=C =C ]'
sup E|g; (0)| < E'sup|g; (0)] < —
0€0 0€0

L

(it)eD, %€

Z E Sug ‘glc(z',t),L (9)

Y

which is uniformly bounded by Lemma B.2.12. Hence, by applying Lemma B.2.15

(i), we have the first term converges uniformly in 0 € ©:

SUDPgco

g7 (0) ahargs (0) — [Egs (0)) ajar, [Egs (0)]] =, 0.

Consider the second term of the left hand side of the second inequality. Note that

Esup |g;, (6)[°

0cO

1

< —

D

2
l(izt)vl(jztl)eDL

>

1(i,t),l(3,')€DL

1
L2

E

E

glelg ‘glc(i,t),L (9)’ : 31618 ‘glc(/j,t’),L (9)”

B 2
_(223 ]gf@,t),L (Q)D

1
2

B

273
sup |gi7: g (0 ,
<9€g‘gl(j,t),L( )D ]

which is uniformly bounded by Lemma B.2.12. The second inequality above holds

due to the Holder’s inequality. Hence, the second term converges uniformly in 6 € ©

since supgeg |75 ()|° = O, (1) and we have ||a/,a;, — ahaol|, —p O by the assumption

on ar,.

237



Now consider uniform equicontinuity of {Sﬁ (9)} on ©. By Lemma B.2.14, we
can achieve uniform equicontinuity of {E (g5 (¢))} on ©. By applying Lemma B.2.15
(ii), we have the desired result. Last, with identification uniqueness obtained by
Assumption 3.4.9 (iv), we have 0, —p bp as L — oco. Q.E.D.

Proof of Theorem 3.4.3. In order to show asymptotic normality, we have the

Taylor expansion:

A [9a¢ ) oac (0 171 9a¢ )
Vi (-0 — [0 2] 0 O
AR o o (8:)] " 997 (62) "
00 o0’ a0
| VEarg™ 60) = \[2al 0k (60, 0F) ]
VRS b (09) + 0, (1)

where 6 lies between éL and 6y. First, note that

05 (0.) _ [agz (6.) _og5 (90)] . l@gz (60)

a6/ a6/ o6 o0 GL] +Cr.

The first term is o, (1) by Theorem 4.1 and the continuous mapping theorem while

the second term is o, (1) by applying the LLN to Bg(%é,a()). Hence, 8§%2?L) = Gp +

0, (1). By Assumption 3.4.11, G}a}ar Gy, is nonsingluar for sufficiently large L, so

%aia L 8giag?L) is invertible for large L and it is of O, (1).

Hence, VI (01, = 0p) = 0, (1) (0, (1) + O (/) + O, (JT) + 0, (1)), which im-

plies 0 — by = O, (max{%, %, %}) and

VL(0,—0,) = [GraparGr +o, (1))
VEZargi™ (60) = \/Fai bk (6, o)

xGraly ;
—VE X apb (03) + 0, (1)

It leads that

N L o - r
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T _ m
- [GhaparGe] ™ Ghay Y- a3y (a8) + 0, (1)
=1

- —c,(u . 1
= [GLararGy ' /LGIL\/EaLgi( )(90) —ra plimp 08 (aar)? - &

where Q (d}ar) = [GLd,arGL) " GLaarSra,a Gy [GlalarGL) ™", and

&N (0(2+p+K)X1,]2+p+K> which is independent with Qj, (a}ar) since a;, —, ag

[N

and vVLaogs™ (6y) —a (aoSoa)) % - & by Lemma B.2.19. Observe € (a)ag) =
[Gga{)aoGo]_l GpapapXoagaeGo [G{)agaoGo]_l is C-measurable. This completes the proof.

Q.E.D.

B.3. Spatial network formation

In contrast to conventional network formation models, an econometrician might
not observe the realized spatial network links. Hence, entries of W, are usually
prespecified by a researcher. Motivated by the gravity model in international trade
literature, we employ the following Cobb-Douglas specification for the spatial network
link at ¢ + 1, wypq 5 for i # j

I A o
Wig1,45 = dij dEt+1,z'j (;) - 1{(4, j) nbd}

it

where a4, o and «,, are coefficients. Note that w;,1,; can be interpreted as the
intensity (or amount) of the signal from i to j at time t+ 1. The expected signs of oy,
ae, and «,, are positive. ag > 0 (or a, > 0) means that the geographic (or economic
distance) between ¢ and j has a negative impact on w41 ;. If agent j chooses a large
amount of health expenditure relative to i at time ¢ (i.e., large %), the intensity of

the signal from i to j (wy11,;) becomes large at time ¢ + 1.
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Since we attempt to estimate ag, ae, and a,, with unobserved wyy;,;, we con-
sider a proxy of the true spatial network link. By regional policy examples, demo-
graphic/economic flows can describe intensities of spatial network interactions. Figlio
et al. (1999) consider the state-to-state migration flows to identify which states are
neighbors. By the United States Census Bureau, we collect the data on the state-to-
state annual migration flows (from 2005 to 2016). To estimate a4, ae, and «,, we

consider the following specification by taking logarithm:

In w:j—iiq;?tion = constant — Qq In dij — O In Et—i—l,ij + Qi In <yﬁ> + gt—&-l,ij (B23)

Yit

where wﬁi{’;‘;tio” is the number of residents who live in state 7 at time ¢ + 1 but lived

in state j 1 year ago, and (;;1,; denotes a statistical error. For the statistical error
Ct+1,ij, we consider two specifications: (i) {(;;;} follows i.i.d. disturbances, and (ii)

t"-period

Gij = Ci+cj+ oy + C; ij where ¢; is the ¢’s individual fixed effect, a; is the
time effect, and (;;; denotes the i.i.d. disturbance.

Table 3.3 shows the estimation results. For both specifications, all the coefficients
are significant under the 10% significance level. For interpretations, focus on specifi-

cation (2). First, the intensity of interaction decreses by 2.0421% when d;; increases

by 1%. Second, increasing E;;; by 1% leads to decreasing wy;; by 0.1313%. Those

two observations can show the yardstick competition because w%-gm”on will be large
if 7 and j are (geographically or economically) similar. Note that the third observa-
tion can show the welfare motivated move. If state j spends more money on health
relative to that of ¢ at time t (i.e., high (%)), the migration flow from ¢ to j at

time ¢t + 1 (wﬁfzytzon) will be large. Then, we can investigate the marginal effect of
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changing y;; (or yj;) on weyq ;. Observe that

— - (—ae) = o sgn (Zig41 — Zjag1) + (—ow) iy
it Et—l—l,ij Yit

8E .. .
where 1osgn (241 — 2ju+1) = 52, The first part comes from changing E; 4 ;;

it

via changing z;+y1. The second part is originated from changing the relative health

expenditure %
1

241



Appendix C: Appendix for Chapter 4

C.1. Solutions to the algebraic matrix Riccati equations

Theoretical foundations of the infinite horizon problem with spatial interactions
can be found in Jeong and Lee (2018). At first, we apply the backward induction
method. Assume that the initial condition (Y, ;—1,7,¢) is given and fixed. For the
followers, an arbitrary follower ¢ is chosen and fixed. Throughout this section, the

superscript (j) denotes the iteration numbers.
First iterated components

We set ViF’(O) = 0 and VL = 0 as the initial iteration. Let Z; = e;e/. For the

(2

derivations, the following representation for w; (Yo, Y,1—1, mi) is useful:

U; (Ynta Yo -1, by, 77it)
1 /
- (nnt + cI)n,Ob:Lt + ('YOIn + pOWn> Yn,t—l + (AOWn - 2]n> Ynt) IzYnt
Yo

Vi TV

Consider the first iterated value for the follower :

VO (Voser, b ) (C.1)

- Yé,tﬂ@f’(l)y”vt*l + Yr;,tflLf’b’(l)bZ}(l) + Yé,tﬂLf’n’(l)’ﬂnt

242



+b7*{t be( )b )+ bnt Lf’bm’(l)ﬂnt + nntQ 77nt + CF(I)

where Q" = 1 (AD'Z AL —%L), LW = AV LBO, LY = AV,

Qfﬁb,(l) _ %B( )’IB() Lan(l) _ ’IC’ QFn() _ CT(LI)'LC',(}), Cfi(l) -0,
RED = S, AD = (RED) ™ (3oL, + poW,), BY = (RED) ' ®,, and O =
(Rff’(l)>_1. For the above, S; ' = I, + AW,S,! is employed. b5 denotes the
maximizer of the leader’s optimization problem at the first iteration. Note that
Y,ft’(l) =AVY, , , + B{Vb;; Wy CMn,; is the vector of maximizers satisfying (C.1).

By the backward induction method, the next step is to verify the first iterated

value function of the leader, V(1)
yLm (Yn,t—h Mnt, Tnt)
= Yri,t—lQ7LL7(1)Yn7t—1 + Yé,t—lL#(l)nnt + Y/t 1LL mMr,
Q4 1, QT O 1 LT Oy - )

where c&(M) =0, QLMW = yr_ 1QL (1) e

n,k n

L,(1) LLT Ek 1 (1)’

nk7

n L7 s T n LvTv T L T
Qﬁ’n’(l) = Dh=1 Qn,Z (1)a Qr D = 2k=1 Qn,k , Ly i =2k L o )7

n n

!
Qe = (0ln + poWa + €, 0DV ) T (AL + BUDY)

1 /
+(AD + BV DY (AOWn - In) 7, (AY + BVDY) - L1,
2 2
1
—§D§}>’I,€D§}>,

Lo = (AY + BODY) Ty (I, + 9,0 EY)
+ (YoIn + poWa + @ o D) T (C0 + B ED)

n

(A(l + B(l)D(l)) 7,,S¢ (C (4 gl )E(1)> — DW'T, B

LotV = DV, o LBV FY + (AD + BYDY) T, 0 FY
— (AP + BODY ) 7,SEBO W — pWrg, O 4 prg,
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Qi = (I + @00 ED) T (CO + BOED) + (ol + poWVs) T B Y
/
+(c® + BOEDY ()\OWn - ;In) T, (C + BOED)
_EE(l)/IkE(l)
2 n n
QL’;(U — F(l)’q) OIkB(l)F(l) + (B(l)F(l))/ (AOW _ 1_] )/IkB(I)F(l)
n, n, n n n n n 2 n n n

;Fy)’z EW 4+ 7, F.

L0 = (BOFED) T (1, + @0 EV) + FV'®, 0T (CF)

n

— (BOEV) T,8E (CV + BVEY) — FVLEY + T, BV

REW = 1, — B D0 — P, oBO 4+ B gL )

pw — (3541))’1 [(@n0— BY'SE) AD + BY (oI + poWa)]

B = (RED) ™ [(@n0 - BY'SE) O + B

-1
and Frgl) = (RL’(U) . Note that bfl’t(l) = D,(ll)Yn,t—1 +E7(L1)77nt+F,§1)7'm for the relations

n

above.
Limiting algebraic matrix Riccati equations

Starting with the first iterated results, we generate the following matrix Riccati
equations by mathematical induction. First of all, we consider the following Bellman

equation (recursive relation):

‘/z’F (Yn,t—l’ bjm nnt)

1 /
- (nm +®,0b%, + (ol + poWa) Yasor + (AoWn - 21n) Y:t) Y
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— Y LY

w1 MYy % «1 T Fiby x w7 F\m
Ynt Qz Ynt + Ynt Lz bn,t+1 + Ynt Lz Tnt+1

+0E;, Fb Fb F
*/ 01 */ ,0,M / )1 F
+bn,t+1Qi bn,t+1 + by Ly 1 + 77n,t+1Qi Mnt+1 + G

where by, 1 = DaYy + Eninggr + FuTogsr, Y = ApYoio1 + BoYoio1 + Colie,
A, = lim; o, AV, B, = lim; ,,, BY), C,, = lim;_,,,CY), D, = lim; .., DY), E, =
im0 BV, F, = limjee FY), QF = lim;_ee Q7Y LF = lim;_ o, LF*V) LF7 —
lim, e Lf’m,(j)’ Qf’b = lim;_, Qf’b’(j), Lf’b’n = lim; a0 Lf’b’n’(j), Qf’n = lim;_ye0 QZFJL(J')7
and ¢f = lim;_, o0 cf’(j ). Since both types of agents have the LQ payoff functions, all
components of the algebraic Riccati equations (practical as well as limit versions) do

not rely on the state variables, (Y, ;_1,7.¢)."> Then, we have the recursive formula-

tions

1 /

QA AP DA.

LF’b = A;L(I)n,o + (70[71 + pOWn)/IiBn o AZTS#IZB"
2,01 Q) B, + 4, (15D, + DL B,

0 +A4,D, (@7 + Q") DuB,

?

Lf’n = AL+ (yoln + poWa) LC, — A, SELC,
AL (QF + QM) ¢y
A (Lf”b (DnC + o Ey) + DL LT ”"Cn)
+mo A, L + AL D (QF + QF) (DG + moEn)
+mo A, D L

+6

1 !
Q" = B T,9,,+ B, ()\OWn - 21n> T.B,

+6 | B,QF By + ByL{ " Dy By + BLD, QI Dy B,

175That is, each component of the algebraic matrix Riccati equations is a function of the parameters
and W,,.
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Li™ = BT+ ®,,LCy — B,SIT,C,,

B, (QF + Q) C,
+B), (L (DCy + moEy) + D, LTV C,)

+6 ,
+m B L + B, D, (Q + Q™) (DuCiu + w0 En)
+moBL D L
and
1 !
Q" — 0T+ (AOWn _ QIn) .0,
C'QFC, + C! L (D, Cy + moEy) + moCl Ly
+6 | +CD,Q DuCh+ 1L D, (QF + Q) E,
470 (DnCl + moE,) LI 4 72
Define
Q= (@ + Q) e, (QF + Q) e,
Lfvb’* = [Lfyb/ela U 7L5’blen]7
and
Lfﬂla* = [Lfmleh U 7L57n/6n]'
Then,
Rl = S,—06QF* — 0L Dy,
1 —1
An = (RS) (’YOIn + pOWn) ) Bn = (qu) (I)n,Ou
and

Co = (RE) ™[I+ 6mo (LEY* B, + LEW)].

To obtain A, B,, and C,,, we need to evaluate only { i Lf’b, Lf"}n . i.e., other

=1

components in VI (Y, ;1,b%,, n,:) are not needed.
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VLv(l) (Yn,t717 nnt’ Tnt)
- Yéﬂt—lQ#(I)ant—l + Yé,t—lL#(l)nnt + Yq{,t—lL#T’(l)Tnt

‘H?ntQL o 77nt + 7, tQL n Tnt + TrlLthz’T’n’(l)nnt + Cﬁj(l)

To obtain QE*, LEb* and LE"* however, we should verify D, and E,, which
characterize the leader’s optimal actions. In calculating D, and E,, the following

recursive relation is employed: given (Y, :—1, Mt Tnt)

WOt(bnt,Yt,Ynt lanntaTnt>
Y*/QLY* Y* LL’I7n t+1 + Y;t/Lﬁ’TTn’t_;_l

L t
V (Yn t—15 Tnt Tnt) = max P
t—1 ) bnt +0E; +77n,t+1Q nn t+1 + Tn t+1Q Tn,t-i—l

/ 9 b
i1 L T Mg+l

subject to Yy, = ApYni 1 + Bubn + Conne, where QF = lim;_,o an , Lk, =
lim; 0 Lm,(c ), LLk = hmjﬁoo LT’ ) Qﬁz = lim; o0 Q 7.(7) an = lim; 00 QL 7 ),
Lﬁ:;n - hmj%oo L'rn ) QL Zk 1 Qn k> n = 22:1 Lﬁ,k? LfoT = ZZ:l Lﬁ:;, Qﬁﬂ? =
St Quis Q17 = X Qui, L™ = iy Ly and ¢ = limyo cp¥). Then, we

have the recursive relations:

ﬁ,k = (’yo-ln + pOWn + q)n,ODn)/Ik (An + BnDn)
1 /
1
—5 DTy + 6 (A + B.D,) QL (An + BuDy)]

Lr, = (A, + B.D,) I,R;
+ (’yOIn + pOWn + (I)n,ODn)/Ik (Cn + BnEn)

— (A, + B,D,)' 1,,S* (C,, + B,E,) — D\ T;,E,
(

+6
l 470 (An + BuDy)' LE,
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LET = D@, LB, F, + (AD + BODY) T, F,
— (A, + B,D,) T,,S- B, F,, — D, T,F, + D, T,

+0 (An + BnDn)/ (Qik; + QrLz,/k) BnFny

Qui = (B Ti(Cu+ BuEy) + (volu + poWa) T Bo Fy

Ly 1
+(Cn + BLE,) ()\OWn — 2]n> 7 (C, + B, E,) — iEéIkEn

(BoEn + Cy) Qi (BoE, + C) ]

)
* l +o (Bn By + Cn)/ L{;,k + 78@5:2

1 /
QYT = F.,0TiBuFy + (B,F,) ()\OWn _ 2In> T.B,F,

1
~5EV T Fu + TiF,

+5 (BnFn)/ erl/,anFna
and

Ly = (BuF,) TRy, + F,®,,T (Cy + By Ey)
— (B.F,)' T;,S: (C, + B,E,) — F.T4E, + T,.E,

+6 [(BuFo) QL + Q) (Cu+ BuEy) + 70 (BuFy) L]
Note that Rf = I, + @, oE,. The resulting D,, and E,, are

Dy = (RE)" [(®uo — B, (S~ 6Q57)) Ay + B, (oL + poWV3)]

B, = (RY) " [BL (I + mLE) + (B0 — B, (SF — 5QL*)) G,

and F, = (RE) " where RE = I, — By®,0 — ®,0B, + B, (5% — 6QL*) B,
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Practical computation

Based on the above limit versions, we introduce a computing method for the
algebraic Riccati equations. In this part, hence, we only report the components
relevant to estimation. Note that the first iterated components were already revealed.
Suppose that the j iterated components (j = 1,2,---) are revealed. Then, our
first interest is to verify the (j + 1)"-iterated components for the followers’ lifetime

problems:

J0
2

+ AU ()\ W, — 71 ) T,AUTD

QF’(j—H) = (yoln + poWn)/L‘A(jH) —

7

1,

+5 [A(J+1 QF Fy(j )A(]+1 + A G+ (i )QF’b’(j)Dr(Lj)Angl) ’

n n 3

LMD = AUYDT, o + (o1, +p0W)ZBJ+1 AU GLT, B+
AG+LY (Q + QM )B (G+1)
+0 | +AGHY (LD DY + DY LMY BGH |

FAGTY DG (QFPD) 4 QFOY) Dl gl

n n

LFvnv(j+1)

AUV + (ol + poW,) TCYTY — AU SLT,CUH

r Agﬂ)/ (in(j) + Qf’(j)') 01(1]‘+1)

+A$5“)’ (LZEIL(J') (D7(Lj)ct7(zj+1) + WOE;IJ‘)> + D@’Lf’bv‘”’Cﬁj*”)

+6 +7T0A$Lj+1)’Lf’"’(j) ,

+ AU DL (vabv(j) + vabv(j)’) (D(J)C( 4 7TOE(J))
+7TOA$LJ‘+1)/D7(ZJ‘)/LZF17 ,(7)

Qf‘,b,(j-i-l) _ B( )/I(I) 0 + B(]—i—l ()\0 . - ) IZB'r(LJ+1)
BUtQFU G+ 4 B(JH)/L ) p@) g+
+0 B7QLJ+1 'DW) /QFb () D(J)B(J+1) ’
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and

Fbn,(j+1
L n,(j+1)

B7(Ij+1)/zi + (I)n,OIiC(j+1) B,(LHWSLI C ]+1)
i B(]+1 ( + QF(] ) (J+1)

+B7gj+1)/ (Lf’b (9) (Dy(g)cy(lgﬂ) + 7TOE7(LJ)> + Dy(Lj)/Lf‘vbv(j)’Cflj—i-l))
+6 +7TOBT(Lj+1)/Lf,m(J') ’
FBYHIDYY (QFD) 4 QF) (DPOY 4 moY))

where RFEGH) = G — §QF*0) — §LEbG0) D) AGHD) = (Rfj’(j“))_l (Yol + poWi),
BU+D = (Rg,(jﬂ)) @, 0, and CYTD = (RF J+1)> [[n 1 67 (Lgvbﬁ*,(j)Egj) + Lg,n,*,(j))]
Note that we omit reporting some components which are not relevant to the followers’
optimal actions.

Second, we calculate the (j + 1)th—iterated components relevant to the leader’s

optimal actions:

QL
— (%1” + poW,, + <I>noD§3“)) 7, (A(J'H) 1 B(j+1>D(j+1))
+(Ag+D 1 B+ puY (AOW L ) T, (AG+) + B+ DY)
n n n n 2 n
_@Ik — ngH)/IkDELjH)
2 2

+5 [(A;j—i-l) + B7(1j+1)D£Lj+1)>/Q£,’(€j) (A%j+1) + BSH)DSZH))} ’
and

L,(j+1

i

= (AU 4 Bff“)DgH))/Ik (fn + (I>n70E7(lj+1))
ol )3 )
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_ <A7(1j+1) + B£j+1)D£Lj+1)) 75" (C’ J+1) 4 B(J+1)E(J+1)) — DUtV pU+Y

(A1(1j+1) + quj“)Dg“)) (Q + Qb J)') ( BUTD EG+D 4 Ca+1))

+0 ,
+mo (AYHD + Bﬁg“>D§g+1>) Loy

where Qﬁ,(j+1 S 1@ ;(j+1) LL (3+1) =y L L(J+1 RyLL,(jJrl) an—B,(ZjH)/‘I’n,o—

<I>noB§3“)+B,§j“) ( 5QL* ) g+1)7

, -] (@ — BYUTD —6QL=D) ) AGHY
-y [ e

and

BV (I, + 6mo L)
(q> o — BU+L < —sQL J))) OG-+

-1

BU) = (RTLZ,(J'H))

C.2. Large sample properties

Consistency

In this subsection, we discuss proving Theorem 4.4.1. The first step is to verify the
uniform convergence of sample average of the (concentrated) log-likelihood function.

2

i.e., Supgeeo ‘%ln Lp.(0)— QL (6)‘ —, 0 as L — oo. Note that ¢° is bounded away

from zero. Then, the main part of +In L. (0) — Qy (0) is

; {£1(0) (Jr ® J) EL.(0) — B[E} (0) (Jr @ J,) &L (0)]}

Observe
(Jr @ Jn) &L (6)
-1
Ir ® (Re (61))"" RE (6,) (RE I, + poW,, + @, Dn>
— (Jr® ) T 1) n ( 13( n) (70 Po oDx) iy

(6)
(
(
+(Jr ® J) (IT ® (B, (61)) " RY (61) (Rfj)_l) X 1.6
) (

—1
+(Jr®J,) (Ir ® (RS (61) " RE (6) (RY) R;) (ano +&1).



Note that cy is eliminated by the projector Jp. By Assumptions 4.4.1-4.4.5, all
components in (Jr ® J,) &L (0) are bounded nonstochastic components or stochastic
components with their bounded variances and their uniformly bounded linear trans-

formations in n uniformly in § € ©. As L — oo, it implies that
1 !/ /
T 1EL(0) (Jr @ Ju) €1.(0) = E €7, (0) (Jr © Ju) EL ()]} — 0

uniformly in 6 € ©.

The second step is showing uniform equicontinuity of {Q. (6)} in 6 € ©. A
starting point of showing uniform equicontinuity of {Q, (6)} is to utilize the Taylor
approximation argument by continuous differentiability of @y, (f) obtained from As-
sumption 4.4.5 (i) and (ii). For 0,, 6, € ©, we can represent each component of ()1, (9)
by (0, — 0p) - hr (é) where 0 lies between 6, and 6, and hy, (+) is uniformly bounded in

L and in ©. Then, we can guarantee for the smooth function class {Qr, (#)} in 6 € ©.

Model identification

To finish the proof of consistency, we need to achieve identification uniqueness.
The key identification conditions will be derived based on the information inequality

(Rothenberg (1971)). For this, two definitions in Rothenberg (1971) are reproduced.

Definition C.2.1 Forf € 0O, L (9| {Ynt}tho) denotes the density function when we
have data {Yi},_,-

(i) 0 and 0" in © are observationally equivalent if
Ly (01 {Ybizo) = L (0" {¥uikio) ace

(ii) Oy € O is identifiable iff there is no observationally equivalent 6§ € ©.

We apply Definition C.2.1 to our case, the concentrated log likelihood function
InLp.(0) since the information inequality argument is valid for the concentrated
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log-likelihood function. Even though our log-likelihood function is derived from nor-
mality on &,;, we will show that identification is also valid for the quasi log-likelihood
estimation method (i.e., free to the normal distribution assumption). Then, unique
identification of 6 is based on two relations: (i) E(InL..(6)) <E(InLg.(6y)), and
(ii) L. (0) = Lp.(6) a.e. in {Ym}tT:O if E(InLz.(0)) =E(InLg.(6)).

Recall that

QL(€1,5,02) = —;ln2ﬂ—;ln02+iln‘R5(91)‘
11

_rlz In|R; (61)] — WZE €1 (8) (Jr @ Jn) €L ()]

where

E0(0) = (Ir® (R;(01)" RE (01)) Y2
— (Ir @ (R5, (02) ™" (YIn + pWo + @y, (6) Dy (61))) Yz, 1

—(Ir @ (B;,(0:)") X1 (601) 5.

Note that X = Xy, (010). Let 8z (61) = argmaxs Qr, (61, 3,0%). Then,

-1

Br(0) = [Xe(0) (Ir® (R, (00)7") (Jr® J) (Ir ® (R, (0)7") Xo (0)]

xXp (00) (Ir @ (B;, (00) ") (Jr @ Ju) E[Ze (6)

where

(e (; <>> <0>(RF) ol + polWi + @00 Dy) )
— (Ir ® (R, (61) " (Y + pWo + @4 (6) D (61)))

+ (1@ (Re (00)™ RE (60 (RE) ™) Xufo.

7 (91) = YL,—l

If 91 = 91’0, ZL (91,()) = (IT ® (Ri)_l) XLBO and BL (9170) = 60. Then,
(Jr @ J,) E [ZL (01) — (IT ® (Ri)_l) XLﬁO} for 0, € ©,\ {010} is the main part of
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the misspecification error for (Jr ® J,,) (IT ® (Rfl)_l) X1fBp. If identification for 6;
is done, we need to have the existence and positive definiteness of

limy oo 7 X7, (IT ® (Rfl)_ll) (Jr ® Jy,) (]T ® (be)_1> X . Observe that identification
of By does not rely on normality of &,;. It comes from (i) plimL%wéLnT =01, (large
sample) and (ii) sufficient variations in (Jr ® J,,) (IT ® (Rfl)_1> Xp. Using 5g (61),
we define &, (61) = & (01, B, (01)) for each 0, € O5.

Consider unique identification of ¢ o. For this, note that
1
o7 (01) = arg max Qr (el,ﬁL (61) 702) = EE € (01) (Jr @ Jn) Ex (61)] -

Then, the concentrated expected log-likelihood function for 6, is

Que(0r) = Qu (01,81 (1), 0% (0))

1 1 1 1 .
= —5 (2w 1)~ S lnof (0r) + —In|R7 (600)] — —In|R; (6)].

At 0y = 010, Qre(br0) = =5 (n 27 +1) — Inod + L1n|RE| = LIn|Rg|. The iden-
tification uniqueness condition is derived by the sequence of nonstochastic functions

{Qr.(01)}: for arbitrary € > 0,

lim sup  max : Qe (1) — Qre(b10)] <O,

L—oo01EN<(01,0,¢
where N¢ (61 0,¢) denotes the complement of an open neighborhood of ©; of radius

e > 0. Consider

Qr.e(01) — Qre(010)
= —(Ino} (1) —Inoy)

+:L (in R (61)] — | RE]) - i (In|R° (6,)] — In |R2))
oo (RE) " R, o (00) (RE (00) " R (61)

n

1
= —1In
n

1
— —In
n
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-1

| Lin|o3 (RE) ™ RoRg (RE)
2| “tmlod 60 (RE6)) R0 Re ) (RE) T (RE (0)

Under large L, the unique identification condition for 6, ¢ is achieved if

-1

1 Iinlo? (RE) " ReRY (RY) ,
im -1 —1 -1’ 0
Fooo | —Lin|o? (61) (RE (61)) R (61) Re (60)' (RE)  (RE (61))

(C.2)

for 6, # 6, ¢ is satisfied. Observe that unique identification condition for ; o by (C.2)

does not rely on the normal distribution assumption on &,;.
Asymptotic normality

As the intermediate procedures of deriving the asymptotic distribution of 6, we

£ 1 OlnLy, <(6o)

report the components o 7T 59

and asymptotic bias parts.

First-order derivatives of the concentrated log-likelihood function

For notational convenience, we define F), (0;) satisfying X,,; (01) = F,, (61) X, for

each 6, € ©. At 6,9, we denote F,, = F,, (61). Observe that

—1
Ur@ )Yy = (r@ ) (Ir® (RE) ™ (olu+ poWo + @00Da) ) Vi

) > X1.Bo

+(rod) (e (R
+ (Jr @ Jp) ( ( ) >@L0+5L)

A useful formula here is W = tr (A; Y(x) M%x(z)) and

8‘4(;;(“"3) =—A"1(2) %?Ail (x). A subscript to each each parameter value represents

a partial derivative, e.g., R} \ (1) = %/(\91). Then,
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e ( — (B RE] (RE) ™ (ol + poWa + ®00D) ) v

+ [(R;)il (P)/OIn + pOWn + (I)n,ODn)}A

o + (IT ©—|(Ry)" RE| (R}S)*1 Fy+ (R~ Fnh) X180
gl = | + (e [(R)™ RE), (RE) ™ RS o |

(Jr® Jp) €L

i &l (JT ® —RY (Rf;)_l' (o)™ Rfm (Jr @ J,) EL

%0 —Todtr (— (Rf)il Ri,\> + Toatr (— (RZ)_I Z,A)

- /
el Xy (e (RE) B (r® J)
0

95
dnLy (6

e = 501 (€1 (Jr ® J) €L — La].

Other parts, ZELc(®)  Onbrell) anq OLee®) take the similar form to 2Ek=)

(i.e., a LQ form of &).
Asymptotic distribution of 6,

Deriving the asymptotic distribution of 0;, follows the conventional argument for
an extremum estimator. The argument is almost similar to that of Jeong and Lee

(2018). Here is a sketch of the argument. By the Taylor expansion, we have

_ o\ -1
10°InLp, (ﬁ)) ( 1 Oln L(Lug (6o)

VL (61— 0y) = ( L 0000 N Az = A“) (C3)

Ry A . A 9Ly .(0) . .
where 0, lies between 6y and 6. Since 0, —, 0y and —%307;0’,() is a continuous

function of 6, we have _%% — Yg,. = 0p(1). By Lemmas 2.1 and 2.2 in
the supplementary file of Jeong and Lee (2018), A, = \/gam (6p) + 0, (1) and
Ao = \/gang (6y). Hence, (C.3) can be rewritten as

1 OmL$") (60)

L (61— 60) = (S + 0, (1)) VAP (C.4)

R T
s VI (9L - 90) + \/?Zeol,ﬂln,l (6o) + \/Zzeol,ﬂln,z (60) + 0, (1)
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1 9ln LY (6)
N

Note that (C.4) implies that 8, — 6 = 0, (max{

—1
2907

1
n

Si=

Y

%, }) (i.e., convergence rate of

QL).

1 9L (60)

The last part is to characterize the asymptotic distribution of /AR We

. am L™ (6 )
observe that the components in ﬁn#“(w take a LQ form of £,. By applying the
1 L) (60)

martingale CLT for a LQ form (Yu et al. (2008)), we have —=——5=— —q N (0, ().

By the Slutsky’s lemma, we can finish the argument.
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