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Abstract

My dissertation research introduces new econometric model specifications for

a spatial panel data set describing intertemporal strategic interactions of forward-

looking economic agents. We assume that each agent in our economy has its fixed

geographic location. Estimation methods with their statistical properties for my new

econometric models are studied. For each econometric model, I also conduct an em-

pirical application to show how to implement the model. Our models are appropriate

to analyze local governments’ behaviors such as their expenditures and tax rates.

The first chapter, Spatial dynamic models with intertemporal optimization I: spec-

ification and estimation, firstly introduces a dynamic spatial interaction econometric

model. There are n forward-looking agents of them each has a parametric linear-

quadratic payoff, and interacting with neighbors through a spatial network. Consid-

ering a Markov perfect equilibrium (MPE), we derive a unique equilibrium equation

and construct a new spatial dynamic panel data (SDPD) model. For estimation, we

suggest mainly the quasi-maximum likelihood (QML) method. Asymptotic proper-

ties of the QML estimator are investigated. In a Monte Carlo study, we estimate the

models parameters and compare the results with those from traditional SDPD mod-

els. The model is applied to an empirical study on counties public safety spending in

North Carolina. We conduct impulse response and welfare analyses corresponding to

changing exogenous characteristics in a region.
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The second chapter, Spatial dynamic models with intertemporal optimization II:

coevolution of economic activities and networks, introduces a panel data model de-

scribing agents’ intertemporal optimization decisions with spatial interactions and

spatial network evolution. The main purpose is to establish an estimation equation

that explains spatial/time dependencies among observed agents’ actions and endoge-

nously changing spatial networks. To provide a theoretical foundation of our model,

we establish a network interaction model for forward-looking agents. An agent’s cur-

rent action can affect his/her own and neighbors’ future marginal payoffs via future

spatial network links. Since parameters characterize an agent’s payoff, a correspond-

ing parametric econometric model is established. To estimate the model’s parame-

ters, we consider a GMM estimation method based on first-order conditions of agents’

lifetime problems. Asymptotic properties of the GMM estimator are studied for sta-

tistical inferences. For practical uses, we introduce an estimation method for spatial

network links using flow variables. Using our model, we study policy interdependence

of U.S. states’ health expenditures.

The third chapter, Spatial dynamic models with intertemporal optimization III:

a dynamic Stackelberg game with spatial interactions, introduces a spatial dynamic

panel data (SDPD) model explaining relationships between two types of forward-

looking agents: a leader and multiple followers. They empirically represent the cen-

tral and local governments. Hence, the main purpose of our model is to account for

the intertemporal spatial interactions of them: (i) interactions between a leader and

followers and (ii) interactions among followers. As an economic foundation of our

estimation equation, we establish a dynamic Stackelberg game played on a spatial
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network. Derived optimal actions for both types of agents lead to a spatial econo-

metric model. Next, we introduce how to implement the quasi-maximum likelihood

(QML) method for recovering parametric payoff functions of the two types of agents.

Asymptotic and finite sample properties of the QML estimator are investigated. Last,

we employ our model to examine (i) policy interdependence among U.S states’ gen-

eral expenditures and (ii) interrelations between their expenditures and grants from

the federal government.
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Chapter 1: Introduction

Recently, an economic researcher is facing a data-rich environment. In a large

panel data set, we have been observed cross-sectional or time series dependencies

in a lot of economic variables. If information in space is available and it involves

individuals’ characteristics, a spatial econometric model can be a tool that explains

the role of space in those dependencies. For example, Case et al. (1993) find that

a state government’s expenditure is positively correlated with its neighbors’ expen-

ditures by using a spatial econometric model. In a cross-sectional setting, a linear

spatial autoregressive (SAR) model is popular. Examples are Cliff and Ord (1973),

Ord (1975), Anselin (1988), and Lee (2004, 2007). The linear SAR model can be

considered as an equilibrium equation if we take a parametric linear-quadratic pay-

off function (Ballester et al. (2006), Calvo-Armengol, Patacchini and Zenou (2009),

Chapter 4 in Jackson and Zenou (2014), and Ushchev and Zenou (2018)). Then, the

dependent variables in a SAR model can represent agents continuous type optimal

actions (or ourcomes), and their actions can be interrelated with spatial network ma-

trices. Geographic locations of agents usually form spatial networks. If an agent is a

local government, its action can be some specific expenditure or tax rates (i.e., local
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government’s action). As an example, Figure shows public safety spending of county

governments in North Carolina in 2015. 1

Figure 1.1: Public safety spending of county governments in North Carolina in 2015

In my dissertation chapters, we extend a SAR model for a large panel data set

by considering appropriate economic reasonings. Note that a large panel data set

includes a lot of cross-section and time series units. With spatial interactions, hence,

dynamic interactions (which mean the interactions of spatial units across different

time periods) can be captured. Currently, there are various researches in panel data

extensions of SAR models, which are called spatial dynamic panel data (SDPD) mod-

els. Examples are Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee

and Yu (2010, 2012, 2014), Shi and Lee (2017), Qu et al. (2018), Han et al. (2019),

and LeSage et al. (2019). Those SDPD models can be justified by an extended

linear-quadratic payoff function with myopic behaviors. By basic features of a panel

data set, a practitioner can capture dynamics of individuals actions (or outcomes). If

1If a local government is regarded as an economic agent and its action is a regional policy (e.g.,
tax rate, expenditure, and so on), the linear-quadratic payoff function represents a representative
resident’s utility. In this setting, hence, we can interpret that a local government tries to maximize a
common person’s utility in its region. For more details, refer to Brett and Pinkse (2000), Brueckner
(2003) and Revelli (2005).
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we consider rational economic agents, observed actions from a panel data set might

come from forward-looking behaviors. Hence, we try to construct panel data spatial

econometric models based on forward-looking agents’ behaviors with the extended

parametric linear-quadratic payoff specification. That is, our three model specifica-

tions belong to structural econometric models which are products of Lucas critique

(1976).

First, we introduce a basic dynamic spatial interaction econometric model. There

are n forward-looking agents of them each has a parametric linear-quadratic payoff,

and interacting with neighbors through a spatial network. In the first model specifica-

tion, each economic agent is assumed to have its fixed and innate geographic location.

That is, a spatial network is constructed by only geographical arrangements implying

that a spatial network is time-invariant and exogenous. Hence, a local government

can be a good example of an agent. For each period, for example, a local govern-

ment makes its fiscal decision by considering neighbors’ current and expected future

decisions with their demographic characteristics. Considering a Markov perfect equi-

librium (MPE), we derive a unique equilibrium equation and construct a new SDPD

model. As a refined version of subgame perfect Nash equilibrium, an MPE is pop-

ular in structural econometric modeling because an optimal action under the MPE

concept is only a (time-invariant) function of state variables. Deriving the MPE equa-

tion relies on solving algebraic matrix Riccati equations. For details in MPE, refer to

Maskin and Tirole (1988a, 1988b, 2001) and Chapter 7.6 in Ljungqvist and Sargent

(2012). Since the derived optimal actions (dependent variables) are linear in state

variables, we can fully characterize the correlation structure of dependent variables.
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Hence, we can derive the likelihood function for estimation. For estimation, we sug-

gest mainly the quasi-maximum likelihood (QML) method. Asymptotic properties of

the QML estimator are investigated. Since the resulted models dependent variables

are still linear in disturbances, we can apply the same asymptotic technique in Yu et

al. (2008), which is a panel data extension of the martingale difference central limit

theorem (MD-CLT) for a linear-quadratic form (Kelejian and Prucha (2001)). Since

the model equation includes incidental parameters showing unobserved individual and

time characteristics, we need to adjust the asymptotic biases from them. A famous

research about the asymptotic bias in dynamic panel models (without interactions)

is Hahn and Kuersteiner (2002). As Lee and Yu (2010, 2014), our bias correction is

based on evaluating the expected values of scores at the true parameter values. In

a Monte Carlo study, we estimate the model’s parameters and compare the results

with those from traditional SDPD models. The model is applied to an empirical study

on counties’ public safety spending in North Carolina. We compare our estimation

results with those of Yang and Lee (2017).

Second, we introduce a spatial panel data model describing forward-looking agents’

decisions with spatial interactions and spatial network evolution. The main purpose

is to establish an estimation equation that explains spatial/time dependencies among

observed agents’ actions and endogenously changing spatial networks. There are var-

ious researches in SAR models (or SDPD models) with endogenous spatial networks.

Examples are Kelejian and Piras (2014), Qu and Lee (2015), Han and Lee (2016),

Hsieh and Lee (2017), Qu et al. (2017), Johnsson and Moon (2017), Kuersteiner and

Prucha (2018), and Han, Hsieh, and Ko (2019). However, our second model speci-

fication firstly considers a SDPD model specification with time-varying endogenous

4



spatial networks by the forward-looking agent assumption. We establish a network

interaction model for forward-looking agents. The forward-looking agent assumption

can yield reasonable economic interpretations of having time-varying endogenous spa-

tial networks. An agent’s current action can affect his/her own and neighbors’ future

marginal payoffs via future spatial network links. This feature is similar to habit

formation models in macroeconomics (e.g., Fuhrer (2000)). Since parameters charac-

terize an agent’s payoff, a corresponding parametric econometric model is established.

In contrast to the first model specification, deriving the agents’ optimal actions is chal-

lenging due to highly nonlinearity. To estimate the model’s parameters, hence, we

consider a GMM estimation method based on first-order conditions of agents’ lifetime

problems. This method is motivated by Hansen and Singleton (1982). Consistency

and the asymptotic distribution of the GMM estimator are studied. To establish the

law of large numbers (LLN) for consistency, we employ the notion of spatial-time

near epoch dependence (NED) in Jenish and Prucha (2012) and Qu et al. (2017)

since dependent variables of our model (optimal actions) might not be a linear func-

tion of disturbances. To study the asymptotic distribution of the GMM estimator,

we consider asymptotic properties of the main statistics conditional on unspecified

exogenous components stemming from spatial network formation. That is, we utilize

a central limit theorem (CLT) for a linear quadratic form of martingale difference

arrays with the C-stable convergence concept established in Kuersteiner and Prucha

(2013, 2018). This CLT belongs to a CLT with random norming. A basic idea can

be seen in Chapter 25.2 in Davidson (1994). To test whether spatial networks evolve

exogenously or not, the Wald test can be applied. By Theorem 4 in Kuersteiner and
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Prucha (2018), the Wald test statistic asymptotically follows the unconditional chi-

square distribution. For practical uses, by considering formulations of gravity models

in international trade literature (e.g., Anderson and Wincoop (2003)) and Qu and

Lee (2018), we introduce an estimation equation for spatial network links using flow

variables. Using our model, we study policy interdependence of U.S. states’ health

expenditures.

Motivated by Chapter 19 in Ljungqvist and Sargent (2012), third, we introduce

a spatial dynamic panel data (SDPD) model explaining the relationships between

two types of forward-looking agents: a leader and multiple followers. In a practical

application, a leader can represent the central U.S. government while followers can be

state governments. The main purpose of the third model is to explain intertemporal

spatial interactions of them: (i) interactions between a leader and followers and (ii)

interactions among followers. As an economic foundation of our estimation equation,

we establish a dynamic Stackelberg game played on a spatial network. As a review of

dynamic Stackelberg game models, refer to Li and Sethi (2017). Under the rational

expectation equilibrium, derived optimal actions for both types of agents lead to a

spatial econometric model. Based on the induced correlation structure of the depen-

dent variables, we derive the log likelihood function and introduce how to apply the

quasi-maximum likelihood (QML) method for recovering parametric payoff functions

of the two types of agents. Asymptotic and finite sample properties of the QML

estimator are investigated.

This thesis proceeds as follows. Chapter 2 introduces estimation and specification

methods if a spatial network is time-invariant. Chapter 3 considers the case of time-

varying endogenous spatial networks. Chapter 4 deals with intertemporal spatial

6



interactions among two types of economic agents: a leader and multiple followers. For

each model specification, a corresponding empirical application will be introduced.

7



Chapter 2: Spatial dynamic models with intertemporal

optimization I: Specification and estimation

2.1 Introduction

Interactions among rational economic agents are characterized by a network (a

spatial weights or socio-economic matrix). Since rational agents might be forward-

looking instead of myopic, we focus on their behaviors by considering intertemporal

optimization. Specification on forward-looking agents’ decision-making with network

interactions will be introduced. We formulate an econometric model for recovering

economic agents’ payoff. The econometric model is a new spatial dynamic panel

data (SDPD) model, which can be estimated by panel data and it can be regarded

as a product of Lucas critique (1976).2 For the econometric model, identification,

estimation, and asymptotic properties of estimators are investigated. Using the new

SDPD model, empirical economists can conduct (i) forecasting on future economic

activities, (ii) impulse response analyses, and (iii) welfare and counterfactual analyses.

As an application of our econometric model, we study counties’ public safety spending

competition. We recover key parameters describing counties’ decision-making and

2It means our econometric model is a structural model and its interpretations do not rely on just
statistical relationships among economic variables.
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compare estimation results with those from traditional models. We give various and

fruitful policy implications from this research.

Three contributions will be established in this paper. The first is a theoretical

one. We introduce a forward-looking agent’s decision-making model with network

interactions. There are n economic agents in the economy and their interactions are

characterized by an n × n socio-matrix, which is assumed to be time-invariant and

known to agents as well as econometricians. An outcome of an agent’s economic

activity is assumed to be a continuous one. For example, players select how much

time or effort on some economic activity. In order to specify agent’s payoff, we

take a parametric linear-quadratic payoff function (Ballester et al. (2006) and Calvo-

Armengol, Patacchini and Zenou (2009)). The most notable advantages in taking this

payoff structure are (i) easily characterizing an equilibrium and (ii) specifying agent’s

payoff by some key parameters, in addition that a linear-quadratic payoff function

might provide a good approximation to an underlying nonlinear function. Chapter 4

in Jackson and Zenou (2014) provides a review for that structure. Based on the payoff

function, an agent’s choice problem is to maximize his/her discounted lifetime payoff

by intertemporally choosing his/her effort. An agent will face future uncertainty

and form expectation for it. In addition to future economic shocks, another source

of uncertainty is due to unknown future changing exogenous environments of an

economy. From that, we describe how an agent forms expectations for series of future

decisions and possibly changing exogenous environments.

To derive a complete model, our next step is characterizing an equilibrium under a

game setting. An ”equilibrium” is a result of rationality of economic agents. Forward-

looking decisions on an equilibrium realize the ”rationality” of economic agents. For

9



this, we employ a Markov perfect equilibrium (MPE). In the MPE, agents’ current

decisions depend only on their payoff relevant previous actions, and backward induc-

tion can be applied to specify the equilibrium. Under some stability conditions, we

have agents’ optimizing values, which are results from solving dynamic (differential)

games problems, and they are linear-quadratic. In consequence, the vector of agents’

equilibrium decisions becomes a unique Nash equilibrium (NE) solution of a linear

system. The derived equilibrium equations describe the dynamics of individuals’

forward-looking decisions by reflecting series of (discounted) expected future actions

and exogenous characteristics in a dynamic NE game setting. As the implied model

equations are linear in outcomes, we have a unique NE equilibrium so to obtain a

bijective mapping from the model to a likelihood function for estimation.3

Second, we deliver an econometric contribution. The popular spatial autoregres-

sive (SAR) model from Cliff and Ord (1973), Ord (1975), Anselin (1988) and Lee

(2004, 2007) can be considered as an equilibrium equation of a static quadratic util-

ity model with network interactions. In the literature, panel data can capture the

dynamics of individuals’ decisions (but mostly without interactions). For spatial in-

teraction issues, there are fruitful studies with spatial dynamic panel data (SDPD)

models. Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee and Yu

(2010, 2014) are papers in this area. For the various SDPD models, Lee and Yu (2015)

provide a review. Those SDPD models can only be justified by myopic behaviors.

In this paper, the designed framework analyzes agents’ forward-looking behaviors.

With proper panel data, revealed economic activities might be results of dynamic

optimization instead of considering only current payoffs. Our derived equilibrium

3For this, see Section 8 in Amemiya (1985).
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equation provides a new estimable SDPD model. Our SDPD nests traditional SDPD

models as special cases if economic agents are myopic.

For estimation, we suggest the quasi-maximum likelihood (QML) method. Iden-

tification of the model and asymptotic properties (consistency and asymptotic nor-

mality) of the QML estimator are investigated. Because our specification includes

individual and time fixed effects, which are infinite incidental parameters and, in con-

sequence, may lead to asymptotic biases in estimates, a bias correction for the QML

estimator is studied. Estimating the individual and time dummies relies on residu-

als, so their asymptotic distributions are affected by convergence rates of the QML

estimator of the main parameters. We observe using residuals based on the bias-

corrected QML estimator has a mild condition for ratios of n and T relative to using

those from the QML estimator without bias-correction. As an alternatively simpler

but inefficient estimation, the nonlinear two-stage least squares (NL2S) method is

also briefly introduced. Monte Carlo simulations are conducted to evaluate (i) finite

sample performance of the QML estimator and its bias correction and (ii) misspec-

ification, when a traditional SDPD specification is taken for estimation as if agents

were not forward-looking, i.e., myopic. We find that the QML estimator and its bias

correction show reliable performance in small samples. We observe that significant

misspecification errors on estimators would appear even for large samples, as the tra-

ditional SDPD specification is mistakenly used. When selecting a time-discounting

factor, we suggest considering likelihood measures (e.g., sample log-likelihood) if a

signal is high with sufficiently many observations. The NL2S estimator shows rela-

tively small biases but does not provide efficient estimates compared to those of the

QML estimator.
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Finally, we give an empirical study with policy implications on counties’ public

safety spending. In this application, an economic agent is a local government, and

its decision variable is the public safety spending for a county. Yang and Lee (2017)

provide a theoretical model for this issue and apply it to cities in North Carolina.

They find strong free-riding effects: there are strategic interactions among local gov-

ernments and, which induce a negative relationship between a city’s public safety

spending and its neighbors’. In this paper, we revisit this issue with an extended

panel data set. We estimate structural parameters using our dynamic interaction

model and compare the estimation results with those from the traditional SDPD

model. In explaining the spillover effects of local governments’ public safety spend-

ing, our intertemporal SAR specification turns out to be more statistically favorable

than the traditional SDPD model. We find some evidence of persistency of public

safety spending, positive diffusion effects from previous neighbors’ decisions, positive

effects of own total revenue, and negative externalities from neighboring total rev-

enues, but no significant contemporaneous spilled over effects. From the recovered

counties’ payoff function, we also investigate cumulative effects in the MPE and con-

duct impulse response analyses corresponding to changing exogenous characteristics

in a region. An overshooting impact in the sense of a negative neighboring revenue

effect is observed.4 In the welfare analysis, we observe giving subsidy to the county

which has a small number of neighbors turns out to be the most effective policy in

the sense of public safety spending.

4It means that the contemporaneous negative revenue effect converts to the positive effect after
some periods and finally decays.
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2.2 A spatial dynamic game with intertemporal optimization

In this section, we give a theoretical economic foundation and suggest a corre-

sponding econometric model. First, we review some motivating literature on the

spatial autoregressive model in a cross-sectional setting and then its extension to dy-

namic panel data model in the econometric literature. From these, we motivate our

formulation of a dynamic spatial autoregressive model with agents’ decision processes

which take into account intertemporal consequences.

2.2.1 Literature review: spatial dynamic panel models and
myopic choices

We assume there are n economic agents in an economy and they choose a contin-

uous type economic activity. A tax rate or public spending can be a good example

of a continuous economic activity when an agent is a local government. There are

interactions among agents’ activities through a certain network relationship. Since

there are n economic agents, a network is characterized by an n× n matrix Wn with

prespecified non-negative entries (links), which can be formed by social, geographi-

cal and/or economic distances. All the diagonal elements of Wn are assumed to be

zero to exclude self-influence. From economic reasoning, a way of modeling agents’

interactions is to formulate agents’ decisions in a game setting. Given existing net-

work connections in Wn, one may specify a linear-quadratic payoff function for each

individual (e.g., Ballester et al. (2006) and Calvō-Armengol et al. (2009)) with

ui (Yn, ηit) = ηiyi + λ0yiwi.Yn −
1

2
y2
i (2.1)

where Yn = (y1, · · · , yn)′ denotes the vector of agents’ decisions (activities, outcomes),

ηi is i’s exogenous heterogeneity containing his/her exogenous characteristics, wi.
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denotes the ith row of Wn, and λ0 determines the strength of strategic interaction

among agents while elements ofWn represent relative strength if there are interactions.

The first part, ηiyi, describes a choice-specific benefit from i’s characteristics in his

index ηi. Increasing ηi by one unit leads to rising i’s marginal payoff ∂ui(Yn,ηit)
∂yi

.

From i’s perspective, decisions by others linked to i will be strategic complements

if λ0 > 0, strategic substitutes if λ0 < 0, and no interactions when λ0 = 0. The last

quadratic term represents a cost for yi being taken. Let ηn = (η1, · · · , ηn)′, Xn =

(x1, · · · , xn)′ where xi = (xi1, · · · , xiK)′ denotes agent i’s observed characteristics, and

En = (ε1, · · · , εn)′ be an n×1 vector of unobservable (for econometrician) components.

By specifying ηn as a regression function, ηn = Xnβ0 +En, agents’ optimized decisions

in a perfect information game give rise to the spatial autoregressive (SAR) model

Yn = λ0WnYn +Xnβ0 + En (2.2)

where Yn is the vector of Nash equilibrium (NE). The system (2.2) can have a unique

NE and can be stable under the assumption that ‖λ0Wn‖ < 1 for some matrix norm

‖·‖.

The SAR model provides a static model for strategic interactions with a given

network. On the other hand, with various panel data sets, one can go beyond the

static setting and may track the dynamics of individual’s decisions. With panel

data, observed decisions of individuals might come from dynamic optimization. Let

{Ynt, Xnt} be a set of panel data where Ynt = (y1t, · · · , ynt)′ stands for a vector of

individuals’ decisions at time t and Xnt = (x1t, · · · , xnt)′ denotes an n × K matrix

of tth-period observable (for econometricians) exogenous variables. Existing spatial

panel data (SDPD) models in the literature (e.g., Kapoor et al. (2007), Baltagi et
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al. (2007), Yu et al. (2008), Lee and Yu (2010, 2014)) actually take a similar form

as the SAR model (2.2) but with additional time lags Yn,t−1, diffusion WnYn,t−1 and

individual and time fixed effects:

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 +Xntβ0 + cn0 + αt0ln + Ent (2.3)

where cn0 is an n-dimensional column vector of individual fixed effects, αt0 captures

the tth-period time specific effect with ln being an n-dimensional vector of ones. This

equation can be justified by a game framework with agent i’s payoff

ui (Ynt, Yn,t−1, ηit) = ηityit + λ0yitwi.Ynt + ρ0yitwi.Yn,t−1 − c (yit, yi,t−1) (2.4)

and c (yit, yi,t−1) = γ0
2

(yit − yi,t−1)2 + 1−γ0
2
y2
it where 0 < γ0 < 1.5 The ηit denotes

the tth−period index of heterogeneity of agent i containing those exogenous charac-

teristics, which might evolve over time.6 The third component, ρ0yitwi.Yn,t−1, de-

scribes agent’s learning process. Learning or adopting new technology is a time-

consuming process as an agent has to spend some time to understand his/her friends’

5In this paper, we use the normalized payoff due to identification easiness. We can consider
the following alternative cost specification ċ (yit, yi,t−1) =

γ1,0
2 (yit − yi,t−1)

2
+

γ2,0
2 y2

it where 0 <
γ1,0, γ2,0 < 1. Then, the first order conditions of maximizing the per period payoff can yield
(γ1,0 + γ2,0)Ynt = λ0WnYnt + γ1,0Yn,t−1 + ρ0WnYn,t−1 +Xntβ0 + cn0 + αt0ln + Ent. It’s impossible
to identify all the parameters at the same time.

Note that an affine transformation preserves cardinal preferences realized by Von Neumann-
Morgenstern utilities. If we consider the payoff normalized by 1

γ1,0+γ2,0
, we have structural pa-

rameters are normalized by 1
γ1,0+γ2,0

.

6In this framework, ηit represents i’s tth−period ”overall” characteristic by including (i) agent i’s
own exogenous characteristics (time-invariant and/or time-variant), (ii) his/her rivals’ characteristics
combined with elements in Wn showing externalities and (iii) common economic shocks globally
affecting all individuals’ decision-making.
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past decisions and accommodate to the new environment innovated by new technolo-

gies.7 In this setting, individual’s learning comes from his/her recent past neigh-

boring decisions.8 The parameter ρ0 determines how past neighboring actions affect

agent i’s current decision. If ρ0 > 0 and agent j (who is an i’s friend) increased

his/her effort yesterday, agent i may choose a higher level of effort today (because

∂2ui(Ynt,Yn,t−1,ηit)

∂yi,t−1∂yit
= ρ0wij ≥ 0). With ρ0 < 0 if agent j increased his/her effort yester-

day, agent i tends to select a low level of effort (since ∂2ui(Ynt,Yn,t−1,ηit)

∂yi,t−1∂yit
= ρ0wij ≤ 0).

The fourth part, c (yit, yi,t−1), represents a cost of i’s decision.9 In our framework,

c (yit, yi,t−1) consists of two parts: (i) dynamic adjustment cost, γ0
2

(yit − yi,t−1)2, and

(ii) agent’s cost 1−γ0
2
y2
it of selecting activity level yit. If there is a large gap be-

tween i’s current decision yit and his/her recent previous decision yi,t−1, the term

γ0
2

(yit − yi,t−1)2 may give a high penalty on i’s payoff, therefore, it may cause persis-

tency on i’s behavior. The parameter γ0 captures the persistent tendency of agents’

7In the case of policy effect analyses, this part also shows policy lags. i.e., affecting neighboring
policies on my city’s one is time-consuming.

8It means that agent’s learning follows a Markov process. However, the entire history of past
decisions could be relevant to the agents’ current choices. In this case, agents’ learning process
is a Polya process. For the details, refer to Liu et al. (2010). They study peer group effects in
laboratory experiments based on Milgrom and Roberts’ (1982) entry limit pricing game and use two
specifications for agents learning: (i) A Markov model and (ii) a Polya model.

9In this paper, we adopt the specification of the quadratic adjustment cost (the famous study
about that is Kennan (1979)). Alternatively, Engsted and Haldrup (1994) employ the following
quadratic adjustment cost for analyzing the demand for labor,

γ0(lt − l∗t )2 + (lt − lt−1)
2

(2.5)

where lt is the t−period labor demand, l∗t denotes the steady-state level of the variable lt and
parameter γ is the relative cost parameter.

However, if we consider 1−γ0
2 (yit − y∗)2 where y∗ denotes a time-invariant social norm showing

agents’ stereotype, identification of y∗ is difficult (in the sense of econometrics). In case of an
econometric model based on a static framework, y∗ will be absorbed in the intercept. In the case of
dynamic one, it will be a part of individual fixed effects.
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choices. The term 1−γ0
2
y2
it is a kind of social cost, which prevents an agent from

choosing an extremely high effort.

At time t, agent i maximizes his/her payoff ui (yit, Y−i,t, Yn,t−1, ηit) where Y−i,t =

(y1t, · · · , yi−1,t, yi+1,t, · · · , ynt)′. It means that agent i knows the optimum choices Y−i,t

of others. The first order conditions of such optimization problems give equation

(2.3) which characterizes a NE at time t. Since each agent only maximizes his/her

per period payoff, this model assumes agents are myopic in their decisions. In this

project, we attempt to go beyond myopic behaviors of agents. We consider an agent’s

intertemporal choice problem and characterize the NE in an infinite horizon in order

to derive an estimating equation.10 Under the linear-quadratic payoff (2.4), this will

result in a new spatial dynamic panel data (SDPD) model.

2.2.2 Intertemporal choices

The main feature of our model is that agents are not myopic but rational to

expect what would happen in the future based on their available information. An

agent considers a series of his/her (expected) future payoffs when he/she makes a

current decision based on currently available information, and he/she expects that

future realized decisions of all agents will result in an NE. Let Bit be the tth−period

information set of agent i’s perceivable events and it is defined by

Bit = σ
(
{yjs}nj=1 |

t−1
s−∞, {ηjs}

n
j=1 |

t
s−∞

)
,

10The derivation can also be done for a finite horizon case if one knows the terminal period.

17



where σ (·) denotes the σ−field11 generated by the argument inside. This specification

is assumed to be a complete information game from the past to the current period t

with uncertainty only for future periods. The ηit contains both time-invariant ηivi and

time-varying ηvit individual characteristics (some of them might not be observable by

econometricians).

To understand the implication of intertemporal choices on spatial interactions,

it will be simpler to consider an intertemporal choice problem with two periods.

Denote ηnt = (η1t, · · · , ηnt)′ for each t. Given (Yn0, ηn1), agent i (i = 1, · · · , n) is

assumed to maximize the expected discounted intertemporal payoff for t = 1 and 2:

at t = 1, ui(Yn1, Yn0, ηi1) + δE (ui(Yn2, Yn1, ηi2)|Bi1); and at t = 2 : ui(Yn2, Yn1, ηi2), by

sequentially selecting yit for t = 1, 2. By considering the subgame perfect NE (SPNE)

economic activities, the agent i’s equilibrium decision at the period 1 is

y∗i1(Yn0, ηn1) = γ0yi0 + ρ0wi.Yn0 + λ0wi.Y
∗
n1(Yn0, η1n)

+δ
(
∆ie

′
iA

trad
n Y ∗n1(Yn0, ηn1)− γ0y

∗
i1(Yn0, ηn1)

)
+ηi1 + δ∆ie

′
iS
−1
n E(η2n|Bi1)

where Atradn = S−1
n (γ0In + ρ0Wn) and ∆i =

∂e′iS
−1
n (γ0In+ρ0Wn)Y1

∂yi1
= e′iA

trad
n ei. The

quantity ∆i means a marginal change of the future expected equilibrium decisions of

i corresponding to changing yi1.12 Let ∆n = Diag(Atradn ). Then, the NE vector at

11In a measure theoretical interpretation, the sequence of Bit’s is a filteration on (Ω,Bi). Ω
contains all possible outcomes and Bi can be defined by

Bi=σ
(
{yjs}nj=1 |

∞
s−∞, {ηjs}

n
j=1 |

∞
s−∞

)
.

Then, for t1 ≤ t2, Bi,t1 ⊆ Bi,t2 ⊆ Bi, which means agents’ knowledge increases over time.

12Since there is no additional future period, the expected NE decisions at t = 2 are
E (Y ∗n2(Yn1, ηn2)|Bi1) = Atradn Yn1 + S−1

n E (ηn2|Bi1) for all i.
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t = 1 can be characterized by a modified SAR equation:

Y ∗n1(Yn0, ηn1) = λ0WnY
∗
n1(Yn0, ηn1) + δ

[
∆nA

trad
n − γ0In

]
Y ∗n1(Yn0, ηn1)

+ (γ0In + ρ0Wn)Yn0 + ηn1 + δ∆nS
−1
n E1(η2n)

where Et (·) denotes the mathematical conditional expectation on (Yn,t−1, ηnt) at t = 1

and 2. Let Rn1 = (1 + δγ0) In− λ0Wn− δ∆nA
trad
n . By assuming invertibility for Rn1,

the unique NE can be characterized as

Y ∗n1(Yn0, ηn1) = R−1
n1 (γ0In + ρ0Wn)Yn0 +R−1

n1

(
ηn1 + δ∆nS

−1
n E1(η2n)

)
. (2.6)

From equation (2.6), we see that taking into account the expected outcomes in the sec-

ond period, as δ > 0, it brings in the additional spatial influence δ∆nA
trad
n Y ∗n1(Yn0, ηn1)

and the time influence δγ0In due to their effects on possible future outcomes.

Based on recursion, we extend this two-period model to an infinite horizon model.

At each time t, given Yn,t−1 = (y1,t−1, , · · · , yn,t−1)′ and ηnt = (η1t, · · · , ηnt)′, each

agent, say i, is assumed to maximize the expected discounted intertemporal payoff

ui (yit, Y−i,t, Yn,t−1, ηit) +
∞∑
s=1

δsE (ui (Yn,t+s, Yn,t+s−1, ηi,t+s) |Bit) (2.7)

by selecting yit. The time-discounting factor δ ∈ [0, 1) is introduced to give weights

on agent’s future choices. The main reason considering an infinite horizon problem

is to allow that possibility, and in that case one can get a same functional form (over

time periods) of an estimable equation with given information.13

13From a panel data set, in practice, a researcher might not know initial and terminal periods
of agents’ decision-making. When we consider a time-invariant equation as an estimating model,
utilizing that model is available without concerning specific time period t relative to a finite terminal
period.

In perspective of economics, employing an infinite horizon model is prevalent in a lot of theoretical
and/or empirical studies. Even though agents actually have a terminal decision-making period, they
might keep the same pattern of decision-making at the terminal period because of (i) leaving a
bequest, (ii) keeping a nice reputation and so on.
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2.2.3 Nash equilibrium characterization

In this subsection, we characterize the NE. In the infinite horizon model, the

Markov perfect equilibrium (hereafter, MPE) characterizes the equilibrium strategies

of all agents as best responses to one another and helps to yield a unique equilibrium

equation. ”Markov” means that agent i’s tth-period optimal strategy only depends on

the state variables (Yn,t−1, ηnt) and does not rely on other earlier parts of its histories

(Maskin and Tirole (1988a)). ”Perfect” means that the NE constructs an optimizing

behavior of each individual for all possible uncertain future states. Hence, an MPE is

a refined version of subgame perfect NE. As its old definition is ”closed-loop equilib-

rium”, the definition of the MPE involves a dynamic programming equation (the Bell-

man equation).14 Since the tth−period optimal decisions only depend on (Yn,t−1, ηnt)

and, under the Markov assumption other past histories and exogenous characteris-

tics are irrelevant to the current decision-making, E (·|Bit) = E (·|Yn,t−1, ηnt) for all

i = 1, · · · , n. Hence, we can simply define the conditional expectation operator Et (·)

by Et (·) = E (·|Yn,t−1, ηnt). Also, time itself is not payoff-relevant, so we can drop the

subscript ”t” from agents’ optimal policy functions y∗it(Yn,t−1, ηnt) (for i = 1, · · · , n)

in the definition of MPE.

Definition 2.2.1 (Markov perfect equilibrium) A MPE will be a set of value

functions Vi (·) (i = 1, · · · , n) and a set of policy functions fi (·) (i = 1, · · · , n) such

that

(i) (Markov strategy) y∗it(Yn,t−1, ηnt) = fi (Yn,t−1, ηnt),

14For more information in MPE, refer to Maskin and Tirole (1988a, 1988b, 2001) and Chapter
7.6. in Ljungqvist and Sargent (2012).
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(ii) given f1, · · · , fi−1, fi+1, · · · , fn, Vi satisfies the Bellman equation

Vi(Yn,t−1, ηnt) = max
yit

 ui
(
yit, Y

∗
−i,t(Yn,t−1, ηnt), Yn,t−1, ηit

)
+δEt

(
Vi(yit, Y

∗
−i,t(Yn,t−1, ηnt), ηn,t+1)

)  (2.8)

where

Y ∗−i,t(., .) =
(
y∗1t(., .), · · · , y∗i−1,t(., .), y

∗
i+1,t(., .), · · · , y∗nt(., .)

)′
, and

(iii) (principle of optimality) the policy function fi (·) = y∗it (·) attains the right

side of the Bellman equation (2.8).

The principle of optimality characterizes the equivalent relationship between the

two solutions to the intertemporal choice problem (2.7) and the functional equation

(2.8). In other words, given (Yn,t−1, ηnt),

Vi(Yn,t−1, ηnt) = ui (Y
∗
nt (Yn,t−1, ηnt) , Yn,t−1, ηit) + δEt (Vi(Y

∗
nt (Yn,t−1, ηnt) , ηn,t+1))

= ui (Y
∗
nt (Yn,t−1, ηnt) , Yn,t−1, ηit)

+
∞∑
s=1

δsEt
(
ui
(
Y ∗n,t+s (Yn,t+s−1, ηn,t+s) , Y

∗
n,t+s−1 (Yn,t+s−2, ηn,t+s−1) , ηi,t+s

))
where Y ∗t (Yn,t−1, ηnt) = (f1 (Yn,t−1, ηnt) , · · · , fn (Yn,t−1, ηnt))

′.

Since payoff (2.4) is linear-quadratic and there is a time-discounting factor δ, the

agent i’s intertemporal choice problem in an infinite horizon setting belongs to a

discounted linear regulator problem. The agent i’s value function Vi (·) takes the

form

Vi (Yn,t−1, ηnt) = Y ′n,t−1QiYn,t−1 + Y ′n,t−1Liηnt + η′ntGiηnt + ci (2.9)

for some n × n matrices Qi, Li, Gi, and a scalar ci for each i = 1, · · · , n. Note that

Qi, Li, Gi and ci are the unique solutions of the algebraic matrix Riccati equations

stemming from a recursive relationship.15 To have a well-defined Bellman equation

15Formation of the algebraic matrix Riccati equations can be found in Appendix A. When we
are only interested in agents’ optimal policies rather than values, computational advantages are en-
joyable since obtaining Qi and Li is sufficient for that. This fact is consistent with that Howard’s
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(a recursive relationship), Vi (·) should be a continuous and bounded function. When

we consider a conventional intertemporal choice problem in economics, a choice set

is usually limited by a budget or a resource constraint. Due to the existence of a

constraint, agent’s value will not be explosive, so it becomes continuous and bounded.

In our problem, however, while there is no explicit constraint on agents’ choices, there

are costs which limit choices. The Bellman equation (2.8) can be characterized by

using the maximum operator T :

Vi(Yn,t−1, ηnt) = T (Vi) (Yn,t−1, ηnt)

= max
yit

 ui
(
yit, Y

∗
−i,t(Yn,t−1, ηnt), Yn,t−1, ηit

)
+δEt

(
Vi(yit, Y

∗
−i,t(Yn,t−1, ηnt), ηt+1)

)  ,
where the functional solution Vi (·) will be a fixed point of the operator T in an

infinite horizon setting. The existence and uniqueness of the value functions Vi (·)’s

for all agents can be guaranteed by imposing regularity conditions on ui (·), Wn, and

strength of interactions so that T is a contraction mapping.16 For this, define

Q∗n = [(Q1 +Q′1) e1, · · · , (Qn +Q′n) en]′andL∗n = [L′1e1, · · · , L′nen]′. (2.10)

Assumption 2.2.1 We assume

(i) (Process of ηvnt) For each t, ηvn,t+1 = Πnη
v
nt+ξn,t+1 where ‖Πn‖ < 1, ‖·‖ denotes

a proper matrix norm, ηvnt = (ηv1t, · · · , ηvnt)
′, Et (ξn,t+1) = 0 and Et

(
ξn,t+1ξ

′
n,t+1

)
= Ωξ

which is positive definite.

(ii) For each i = 1, · · · , n, all entries of Qi, Li, Gi and ci are bounded.

improvement algorithm (policy function iteration) often converges faster than value function iter-
ation. For more details in the Riccati equation and relevant issues, refer to Chapters 3 and 5 in
Ljungqvist and Sargent (2012).

16The detailed arguments can be found in Appendix A.
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Under Assumption 2.2.1 (i), we have a linear expectation Et
(
ηvn,t+1

)
= E

(
ηvn,t+1|ηvnt

)
=

Πnη
v
nt and other parts of histories (e.g., ηvn,t−1, ηvn,t−2, · · ·) are not relevant.17 Since we

assume ‖Πn‖ < 1 andEt
(
ξn,t+1ξ

′
n,t+1

)
= Ωξ > 0, it implies maxi=1,···,n suptEt

(
|ηi,t+1|2

)
<

∞. If some elements of ηn,t+1 are invariant over time, it would be reasonable to assume

them to be known for all agents, then corresponding coefficients in Πn would be one

and ξn,t+1 would be zero. By controlling Qi, Li, Gi and ci, the restrictions of Assump-

tion 2.2.1 (iii) help to avoid agents’ extreme decisions so that lifetime values would

not be explosive. The restriction on Qi makes manageable dependence between Yn,t−1

and Ynt. The restriction on Li comes from forward-looking features of our model, but

would not appear in a myopic model. By imposing this restriction, expected remote

future exogenous effects on the current decisions become negligible.18

As T is a contraction mapping, with an initial guess function V (0) (·), it can

iteratively generate a sequence of functions V (j) (·) such that V (j) (·) = T
(
V (j−1)

)
(·),

and the value function V will be the limiting value, i.e., Vi (·) = limj→∞ T
(
V

(j−1)
i

)
(·)

for each agent i.19 The Bellman equation thus characterizes the value function. With

an available limiting value Vi (·), the agent i’s optimum activity yit can be solved from

the maximization problem with

y∗it (Yn,t−1, ηnt) = arg maxyit

 ui
(
yit, Y

∗
−i,t(Yn,t−1, ηnt), Yn,t−1, ηit

)
+δEt

(
Vi(yit, Y

∗
−i,t(Yn,t−1, ηnt), ηt+1)

)  .
17The linear conditional expectation would likely be used for practical estimation. Theoretically,

it can be generalized to nonlinear functions if needed and desirable. It is convenient in notation
here.

18Note that Gi and ci are not relevant to agents’ equilibrium decisions. However, controlling them
is needed to have bounded Vi’s.

19This process is called ”the method of successive approximations” (Stoket et al. (1989)).
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For our model, because the payoff function ui (·) is a linear-quadratic form in Ynt

and (Yn,t−1, ηnt), we would expect that the value function Vi (·) would be a linear-

quadratic form. The Bellman equation with a fixed point for Vi (·) would provide

the characterization of coefficients of the linear-quadratic form, which in turn, may

provide us a system of estimation equations for y∗it (·) for i = 1, · · · , n at each t. For the

system of estimation equations, we shall consider its estimation with methods such

as the quasi-maximum likelihood (QML) and a possibly simpler nonlinear two-stage

least squares (NL2S).

Whether the value function is indeed in a linear-quadratic form can be revealed by

fixed point iterations of the contraction mapping T and be confirmed by mathematical

induction. Indeed, iterations of T would provide value functions, and then optimized

activities of agents can also be derived in a finite horizon setting. For either a finite

horizon or infinite horizon setting, one should start with the initial V
(0)
i = 0 (i.e., a

zero initial function) and then have the iterations,

V
(j)
i (Yn,t−1, ηnt) = max

yit

 ui
(
yit, Y

∗(j)
−i,t (Yn,t−1, ηnt), Yn,t−1, ηit

)
+δEt

(
V

(j−1)
i

(
yit, Y

∗(j)
−i,t (Yn,t−1, ηnt), ηt+1

))  ,
for j = 1, 2, · · ·. We see that with V

(0)
i = 0, V

(1)
i (·) is the value function of agent i

at t being the terminal period; V
(2)
i (·) would be the value function at t while t + 1

were the terminal period, and in general, V
(J+1)
i (·) would be the value function at t

while t + J were the terminal period. So for a model with a finite horizon of future

J periods at time t, the corresponding optimum activity could be derived as

y
∗(J+1)
it (Yn,t−1, ηnt) = arg maxyit

 ui
(
yit, Y

∗(J+1)
−i,t (Yn,t−1, ηnt), Yn,t−1, ηit

)
+δEt

(
V

(J)
i

(
yit, Y

∗(J+1)
−i,t (Yn,t−1, ηnt), ηn,t+1

)) 
and the value function for agent i would be V

(J+1)
i (·).
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For the situation with infinite horizon, the iterations continue to infinity and the

stable system of NE is

Y ∗nt (Yn,t−1, ηnt) = (λ0Wn + δQ∗n)Y ∗nt (Yn,t−1, ηnt)+(γ0In + ρ0Wn)Yn,t−1+(In + δL∗nΠn) ηnt,

(2.11)

which captures the contemporaneous spatial spillover effect through λ0WnY
∗
nt (Yn,t−1, ηnt),

dynamic effect γ0Yn,t−1, spatial- past time effect or diffusion ρ0WnYn,t−1, and addi-

tional expected spatial- future time effect δQ∗nY
∗
nt (Yn,t−1, ηnt). The additional term

δL∗nΠnηnt is due to expected future unknown explanatory factors and disturbances, as

ηnt may contain time-varying and invariant explanatory variables and disturbances.

The spatial-time filter of our model is defined by

Rn = Sn − δQ∗n, whereSn = In − λ0Wn. (2.12)

So the NE activity vector at time t is

Y ∗nt (Yn,t−1, ηnt) = AnYn,t−1 +Bnηnt (2.13)

where An = R−1
n (γ0In + ρ0Wn) and Bn = R−1

n (In + δL∗nΠn). Note that the trans-

formation Rn characterizes the interrelation among agents’ decisions. Due to the

forward-looking feature of our model, direct influences (i.e., first-order spatial effects)

can come from all spatial units even for a sparse Wn.20 In the view of SAR models, Rn

would reduce to the conventional Sn = In − λ0Wn when δ = 0, i.e., with completely

discount of future values, or equivalently with myopic behavior. The transformation

20For illustrative purposes, suppose there is no isolated spatial unit. Then, all elements in Q∗n
are nonzero. In our system equation (2.11), note that the direct influences can be composed by two
parts: (i) λ0WnY

∗
nt and (ii) δQ∗nY

∗
nt. If wij = 0, there is no direct contemporaneous spill over effect

(i.e., λ0wijyjt = 0 if wij = 0). Even for wij = 0, δ [Q∗n]ij yjt 6= 0 since agent i has in mind j’s
expected future indirect influences (i.e., future NE) in his/her current decision-making.
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L∗n can be represented by

L∗n =
∞∑
m=1

δm−1Dn,mΠm−1
n (2.14)

where Dn,m (m = 1, 2, · · ·) denote some n×n matrices, which only rely on λ0, γ0, ρ0,

and δ with Wn.21 In estimating parameters, both the structural and nuisance param-

eters (related to Πn) are included in the linear term L∗n, but the parts of structural

parameters and nuisance one can be distinguished. Using Dn,1, moreover, we find the

relationship between Q∗n and L∗n:

Q∗n = Dn,1 (γ0In + ρ0Wn)− γ0In, (2.15)

which implies

Y ∗nt (Yn,t−1, ηnt) = (λ0Wn + δDn,1 (γ0In + ρ0Wn)− δγ0In)Y ∗nt (Yn,t−1, ηnt)(2.16)

+ (γ0In + ρ0Wn)Yn,t−1 +

(
In +

∞∑
m=1

δmDn,mΠm
n

)
ηnt

and

Rn = (1 + δγ0) In − λ0Wn − δDn,1 (γ0In + ρ0Wn) (2.17)

Equation (2.16) describes a role of future relevant components combined with δ.

The additional components δγ0In and −δDn,1 (γ0In + ρ0Wn) in Rn are due to agents’

forward-looking decision-making and they are respectively counterparts of the time

influence δγ0In and the additional spatial influence δ∆nA
trad
n in the two-period model.

Note that e′iQ
∗
n = e′i (Qi +Q′i) and e′iL

∗
n = e′iLi for all i = 1, · · · , n. To explain equa-

tion (2.16), consider the first-order condition of agent i’s arbitrary t period problem:

y∗it(Yn,t−1, ηnt) = ηit + γ0yi,t−1 + ρ0wi.Yn,t−1 + λ0wi.Y
∗
nt(Yn,t−1, ηnt)

21Detailed forms and their derivations can be found in our Appendix A.
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+δ

(
eiQ

∗
nY
∗
nt(Yn,t−1, ηt) +

∞∑
m=1

δm−1e′iDn,mΠm
n ηnt

)
= ηit + γ0yi,t−1 + ρ0wi.Yn,t−1 + λ0wi.Y

∗
nt(Yn,t−1, ηnt)− δγ0y

∗
it(Yn,t−1, ηnt)

+δe′iDn,1 ((γ0In + ρ0Wn)Y ∗nt(Yn,t−1, ηnt) + Πnηnt) +
∞∑
m=2

δme′iDn,mΠm
n ηnt.

Hence, we can observe δDn,1 ((γ0In + ρ0Wn)Y ∗nt(Yn,t−1, ηnt) + Πnηnt) plays a similar

role to the additional terms in the two-period model except the additional exoge-

nous influences
∑∞
m=2 δ

me′iDn,mΠm
n ηnt. The reason why only Dn,1 appears in Rn and

Y ∗nt (Yn,t−1, ηnt) just relies on the payoff relevant history Yn,t−1 are due to the Markov

property of agents’ decision-making.

2.3 The econometric model

In this section, we construct an econometric model and suggest estimation meth-

ods for this model with a panel data set. Assume a researcher has observed
(
{Ynt, Xnt}Tt=0

)
and Wn from a panel data set, where Ynt is an n × 1 vector of dependent variables

and Xnt = (Xnt,1 · · · , Xnt,K) with Xnt,k = (x1t,k, · · · , xnt,k)′ for k = 1, · · · , K is an

n × K matrix of (exogenous) explanatory variables.22 Each Ynt is supposed to be

realized as an equilibrium, (i.e., Ynt = Y ∗nt (Yn,t−1, ηnt)). For estimation, we assume

some structures on ηnt. First, ηnt contains time-varying explanatory variables (Xnt)

with coefficients β0 = (β1,0, · · · , βK,0)′ and disturbances. In addition, fixed individual

and time effects can be introduced as components of ηnt. It is of interest to note for

the infinite horizon case, the modified dynamic SAR equation can allow the specifi-

cation of additive individual effect c∗i,0 and time effect αt,0. With all individual effects

in a vector c∗n0 =
(
c∗1,0, · · · , c∗n,0

)′
which is invariant over time, the corresponding Πn

22After the subsection, we add the subscript n (or T ) to point out that it is constructed by n (or
T ) sample points.
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would be an identity matrix, thus individual effects would be reparameterized into

cn0 = (In + δL∗n) c∗n0. For a time effect αt,0ln, if αt,0’s are random shocks which might

influence every agent, then its corresponding Πn is zero, so the time effect αt,0ln can

be additive.

Hence, we have the model specification

Ynt = (λ0Wn + δQ∗n)Ynt+(γ0In + ρ0Wn)Yn,t−1+(In + δL∗nΠn)Xntβ0+cn0+αt,0ln+Ent

(2.18)

for t = 1, · · · , T , where Ent = (ε1t, · · · , εnt)′ is an n-dimensional vector of i.i.d. dis-

turbances with mean zero and variance σ2
ε,0 > 0. The main parameters are λ0, γ0,

ρ0, β0 and σ2
ε,0. The time-discounting factor δ is considered as a primitive parame-

ter and the incidental parameters in Πn are assumed to be covered by the process

of Xnt’s already. We shall explore the estimation approach in the situation of both

n and T being large. In this situation, it is appropriate to consider the estimation

of the structural parameter vector θ0 =
(
λ0, γ0, ρ0, β

′
0, σ

2
ε,0

)′
together with the fixed

individual and time effects cn0 and αT0, where αT0 = (α1,0, · · · , αT,0)′ is the vector of

time effects.

As special cases of model specification (2.18), we consider two cases because they

have distinct features. First, consider λ0 = ρ0 = 0, which means no spatial interac-

tions but not myopic due to individual own time lag effect. In this case, Rn = zIn

such that z = 1 + δγ0 +
−δγ20

1+δγ0+
−δγ2

0

1+δγ0+
−δγ2

0
···

. Using the formula of infinite continued

fractions23, we have

Rn =
1

2

(
1 + δγ0 +

√
1 + 2δγ0 − δγ2

0 (4− δ)
)
In. (2.19)

23This is,
√
x2 + y = x+ y

2x+ y

2x+
y
···

.
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To obtain validity of (2.19), 1 + 2δγ0− δγ2
0 (4− δ) > 0 is required. The second case is

λ0 = 0, which means no direct contemporaneous spatial interaction. In conventional

SDPD models, there is no contemporaneous spatial interaction if λ0 = 0. In our case,

however, the forward-looking spatial filter Rn becomes In − δQ∗n where the ith-row

of Q∗n is e′iA
′
n [−eie′i + δ (Qi +Q′i)]An + γ0e

′
i [A

′
neie

′
i + (An − In)]. It implies that (i)

Q∗n 6= 0n×n even for λ0 = 0 since agents’ consider the expected future diffusion effects,

and (ii) Q∗n would be simpler than that of λ0 = 0 case.

The reduced form of equation (2.18) is

Ynt = AnYn,t−1 +R−1
n [(In + δL∗nΠn)Xntβ0 + cn0 + αt,0ln + Ent] (2.20)

where An = R−1
n (γ0In + ρ0Wn) with Rn = In − (λ0Wn + δQ∗n). Stability of sys-

tem (2.18) means the spatial-time dependence should be manageable. Note that

Q∗n = Dn,1 (γ0In + ρ0Wn)−γ0In, L∗n =
∑∞
m=1 δ

m−1Dn,mΠm−1
n and Dn,m (m = 2, 3, · · ·)

are generated by Dn,1. Then, assuming uniform boundedness of Dn,1 yields well-

definedness and uniformly boundedness of L∗n. Hence, the current and expected fu-

ture exogenous effects In+δL∗nΠn become manageable.24 When absolute summability

for
∑∞
j=1A

j
n and its uniform boundedness in row and column sums hold, we have the

infinite summation representation

Ynt =
∞∑
j=0

AjnR
−1
n [(In + δL∗nΠn)Xn,t−jβ0 + cn0 + αt−j,0ln + En,t−j] . (2.21)

As n increases, ‖An‖ < 1 and uniform boundedness of R−1
n guarantees the variance

of each yit is not explosive and remains to be bounded.

24If c∗n0 is a vector of uniformly bounded constants, cn0 = (In + δL∗n) c∗n0 is also uniformly bounded
if ‖Dn,1‖ < cD.
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2.4 Estimation

2.4.1 Quasi-maximum likelihood estimation

To estimate equation (2.18), we firstly suggest the quasi-maximum likelihood es-

timation (QML) method, which gives a fundamental background in parameter es-

timation. Asymptotic results for the QML estimator are based on the increasing-

domain asymptotic.25 Let θ = (λ, γ, ρ, β′, σ2
ε )
′

be the set of structural parameters

for estimation, where θ0 is the true value of θ. The dimension of the parameters is

4+K. To distinguish the individual- or time-specific effects for estimation, we denote

cn = (c1, · · · , cn)′ and αT = (α1, · · · , αT )′. Let θ1,0 be the true θ1 = (λ, γ, ρ)′, which

consists of parameters involved in L∗n and Q∗n. For each θ1, we define Q∗n (θ1) and

L∗n (θ1) with Rn (θ1) = In−λWn− δQ∗n (θ1) and An (θ1) = R−1
n (θ1) (γIn + ρWn). The

log-likelihood function with a panel with nT observations will be

lnLnT (θ, cn, αT ) = −nT
2

ln 2π − nT

2
lnσ2

ε + T ln |Rn (θ1)| (2.22)

− 1

2σ2
ε

T∑
t=1

E ′nt (θ, cn, αT ) Ent (θ, cn, αT )

where Ent (θ, cn, αT ) = Rn (θ1)Ynt − (γIn + ρWn)Yn,t−1 − (In + δL∗n (θ1) Πn)Xntβ −

cn − αtln.

The computation of this model will be more complicated than that of the conven-

tional SDPD model. Note that the conventional SDPD model is linear in parameters

except σ2
ε,0. But for the equation from the intertemporal dynamic spatial model, the

implied matrices Q∗n and L∗n are both functions of the parameters λ0, γ0, ρ0 and the

time-discounting factor δ. Hence, we need to numerically evaluate Q∗n (θ1) and L∗n (θ1)

25It means that sample observations are from a growing observation region (spatial domain). In
case of the fixed-domain asymptotic, a spatial domain (a region) is fixed and bounded and the
number of observations in that spatial domain increases.
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for each θ1 (i.e., inner loop). As the total number of individual and time fixed ef-

fects in cn0 and αT0 is n + T , it is desirable to focus on the use of the concentrated

log-likelihood function with the fixed effects cn0 and αT0 concentrated out. In con-

sequence, the optimization of the concentrated log-likelihood function is on a fixed

number of structural parameters. As the fixed effects are linear in the generalized

SAR equation, they can be estimated as regression coefficients when other structural

parameters in the equation are given.

Let ȲnT = 1
T

∑T
s=1 Yns, ȲnT,−1 = 1

T

∑T−1
s=0 Yns and X̄nT = 1

T

∑T
s=1Xns. With fixed

individual and time effects concentrated out, the concentrated log-likelihood with

parameter subvector θ is

lnLnT,c (θ) = −nT
2

ln 2π − nT

2
lnσ2

ε + T ln |Rn (θ1)| − 1

2σ2
ε

T∑
t=1

♥E ′nt (θ) Jn
♥Ent (θ) (2.23)

where ♥Ent (θ) = Rn (θ1) Ỹnt− (γIn + ρWn) Ỹ
(−)
n,t−1− (In + δL∗n (θ1) Πn) X̃ntβ with Ỹnt =

Ynt− ȲnT , Ỹ
(−)
n,t−1 = Yn,t−1− ȲnT,−1, and X̃nt = Xnt−X̄nT in deviation from time mean,

and Jn = In− 1
n
lnl
′
n being the deviation from group mean operator.26 From (2.23), we

obtain the maximum likelihood estimators, θ̂ml,nT = arg maxθ∈Θ lnLnT,c (θ), where Θ

denotes the parameter space of θ. For computation, in particular, with a large size

sample, we shall put more attention on the evaluation of the determinant |Rn (θ1)|

and its inverse R−1
n (θ1). In the spatial literature, the suggestion by Lesage and Pace

(2009) on a Taylor series analytic expansion of the determinant |In − λWn| in λ may

be useful. For the inverse of Rn (θ1), one might also consider the Neumann series

expansion. That Neumann series expansion can be justified by the stability of our

spatial dynamic process.

26Note that we cannot eliminate the time fixed effects by introducing a traditional orthonormal
transformation like Lee and Yu (2010) and derive a partial likelihood for estimation because the
spatial filter matrix Rn does not have a row-normalization property.
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Define Rnλ (θ1) = ∂Rn(θ1)
∂λ

, Rnγ (θ1) = ∂Rn(θ1)
∂γ

, Rnρ (θ1) = ∂Rn(θ1)
∂ρ

, L∗nλ(θ1) = ∂L∗n(θ1)
∂λ

,

L∗nγ(θ1) = ∂L∗n(θ1)
∂γ

, and L∗nρ(θ1) = ∂L∗n(θ1)
∂ρ

. Note that Rnλ, Rnγ, Rnρ, L
∗
nλ, L

∗
nγ, and L∗nρ

denote those quantities at θ = θ0. Here are assumptions for asymptotic properties of

θ̂ml,nT . Subsequent asymptotic analysis of the QMLE extends properly that in Yu et

al. (2008).

Assumption 2.4.1 (i) The diagonal elements of Wn are zero.

(ii) Wn is strictly exogenous and uniformly bounded in row and column sums in

absolute value.

Assumption 2.4.2 For all i and t, εit i.i.d.
(
0, σ2

ε,0

)
, and E |εit|4+η < ∞ for some

η > 0.

Assumption 2.4.3 The parameter space Θ of θ is compact. The true parameter θ0

is in int(Θ).

Assumption 2.4.4 {Xnt}Tt=1, {αt0}Tt=1 and cn0 are conditional upon nonstochastic

values with

supn,T
1
nT

∑n
i=1

∑T
t=1 |xit,k|

2+η <∞ for all k, supT
1
T

∑T
t=1 |αt0|

2+η <∞ and

supn
1
n

∑n
i=1 |ci,0|

2+η <∞ for some η > 0.

Assumption 2.4.5 Let Θ1 be the compact parameter space for θ1.

(i) Rn (θ1) is invertible for θ1 ∈ Θ1. Q∗n (θ1) and L∗n (θ1) uniformly bounded in

both row and column norms, uniformly in θ1 ∈ Θ1.

(ii) At any θ ∈ int (Θ), the first, second and third derivatives of Rn (θ1) and

L∗n (θ1) with respect to θ1 exist and are uniformly bounded in both row and column

sum norms, uniformly in θ1 ∈ Θ1.
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(iii)
∑∞
h=1 abs

(
Ahn
)

is uniformly bounded in both row and column sum norms,

where [abs(An)]ij =
∣∣∣[An]ij

∣∣∣.
(iv) ‖δDn,1Πn‖ < 1 where ‖·‖ is a proper matrix norm.

Assumption 2.4.6 We assume that T goes to infinity and n is an increasing func-

tion of T .

Assumption 2.4.1 is a standard assumption in spatial econometrics. By assuming

uniform boundedness of Wn, spatial dependence becomes not too large and man-

ageable (spatial stability condition). Assumption 2.4.2 (i) assumes i.i.d. disturbances

across i and t for simplicity. Assuming a compact parameter space (Assumption 2.4.3)

is for theoretical analyses (for details, refer to Chapter 4 in Amemiya (1985)). As-

sumption 2.4.4 means the conditioning argument and is for simplicity of asymptotic

analyses for the QMLE. In our economic environment, Xnt and αt0 are stochastic, so

agents can make predictions about their future values. For estimation of the implied

structural equation (2.18), Xnt, cn0 and αt0 are conditional upon as constants and

we introduce the higher than the second empirical moment restrictions for Xnt, αt0

and cn0.27 Assumption 2.4.5 is for well-definedness of our model. Invertibility of

Rn(θ1) for θ1 ∈ Θ1 guarantees for existence and uniqueness of the equilibrium system

(2.18) for any θ1 ∈ Θ1 (Assumption 2.4.5 (i)). Uniform boundedness assumption

for Rn(θ1) for θ1 ∈ Θ1 means spatial dependence of dependent varaibles from our

model is manageable (stable spatial process). Assumption 2.4.5 (ii) is a trivial re-

quirement. Existence and uniformly boundedness of the first and second derivatives

of Rn (θ1) and L∗n (θ1) should be required so that
∂ lnLnT,c(θ)

∂θ
and

∂2 lnLnT,c(θ)

∂θ∂θ′
for θ ∈ Θ

27By Kelejian and Prucha (2001), these higher than the second moment restrictions (with the
higher than the fourth-moment restriction for εit) are required to apply a central limit theorem for
a linear quadratic form.
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are well-defined. The reason for having the third derivatives of Rn (θ1) and L∗n (θ1) is

for the uniform convergence of the second order derivatives of the log-likelihood func-

tion. Assumption 2.4.5 (iii) plays a crucial role to study the asymptotic properties

of θ̂ml,nT by restricting dependence between time series and between cross sectional

units so that the process is stable in both the space and time dimensions. Under

Assumption 2.4.5 (iii) and large T , the initial value Yn0 does not affect asymptotic

properties of θ̂ml,nT . A sufficient condition for absolute summability is ‖An‖∞ < 1, so

the infinite sum
∑∞
h=0A

h
n exists and is (In−An)−1. If we have Assumption 2.4.5 (iv),∑∞

h=1 δ
h−1Dh

n,1Πh−1
n = Dn,1 (1− δDn,1Πn)−1.28 It means expected future exogenous

effects become manageable, so the remote (expected) future exogenous effects on Ynt

are small to be asymptotically ignorable. Assumption 2.4.6 is needed to consistently

estimate the individual and time dummies. Large T is for consistent estimation of

cn0 and large n is required for consistent estimation of αt0.

For asymptotic analysis of θ̂ml,nT , note that 1√
nT

∂ lnLnT,c(θ0)

∂θ
takes the following

linear-quadratic form29:

1√
nT

T∑
t=1

[
By,nỸ

(−)
n,t−1 +Dnt

]′
Jn
♥Ent +

1√
nT

T∑
t=1

[♥E ′ntB′q,nJn♥Ent − σ2
ε,0tr (Bq,n)

]
(2.24)

where By,n and Bq,n are some n×n uniformly bounded (in n) matrices and Dnt denotes

some time-varying nonstochastic component. By (2.24), θ̂ml,nT can be asymptotically

biased because ȲnT,−1 and �EnT are correlated even for large n and T due to many

incidential paramaters of individual and time effects. To derive the asymptotic dis-

tribution of θ̂ml,nT and adjust its asymptotic bias, we can decompose 1√
nT

∂ lnLnT,c(θ0)

∂θ

into an uncorrelated part and a correlated part. For this, consider the decomposition

28Since Dn,h’s (h = 2, 3, · · ·) are generated by Dn,1, L∗n =
∑∞
h=1 δ

h−1Dn,hΠh−1
n is uniformly

bounded in n.

29The formulas of
∂ lnLnT,c(θ0)

∂θ can be found in Appendix A.
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JnỸ
(−)
n,t−1 = JnỸ

(−)(u)
n,t−1 − JnŪnT,−1 where

JnỸ
(−)(u)
n,t−1 = Jn

[ ∞∑
h=0

AhnR
−1
n

[
(In + δL∗nΠn) X̃n,t−j−1β0 + α̃t−h−1,0ln

]]

+Jn

[ ∞∑
h=0

AhnR
−1
n En,t−h−1

]

and ŪnT,−1 = 1
T

∑T−1
t=0

∑∞
h=0A

h
nR
−1
n En,t−h.

Using the decomposition, we have 1√
nT

∂ lnLnT,c(θ0)

∂θ
= 1√

nT

∂ lnL
(u)
nT,c(θ0)

∂θ
−∆1,nT−∆2,nT .

Note that

1√
nT

∂ lnL
(u)
nT,c (θ0)

∂θ
=

1√
nT

T∑
t=1

[
By,nỸ

(−)(u)
n,t−1 +Dnt

]′
JnEnt (2.25)

+
1√
nT

T∑
t=1

[
E ′ntB′q,nJnEnt − σ2

ε,0tr (JnBq,n)
]
,

which determines the asymptotic distribution of θ̂ml,nT . The terms ∆1,nT and ∆2,nT

characterize asymptotic biases. Note that ∆1,nT and ∆2,nT are respectively√
T
n

[(
By,nŪnT,−1

)′
Jn
�EnT + �E ′nTB′q,nJn�EnT

]
and

√
T
n

[
σ2
ε,0 (tr (Bq,n)− tr (JnBq,n))

]
where

the detailed forms of ∆1,nT and ∆2,nT can be found in Appendix B. ∆1,nT comes from

estimating cn0 while ∆2,nT is generated from estimating {αt0}Tt=1. The main stochastic

components of ∆1,nT are Ū ′nT,−1Bn
�EnT , and �E ′nTBn

�EnT where Bn denotes some uni-

formly bounded (in n) matrix in row and column sum norms. However, ∆2,nT is deter-

mined by non-stochastic components, tr (−RnλR
−1
n )−tr (Jn(−RnλR

−1
n )), tr (−RnγR

−1
n )−

tr (Jn(−RnγR
−1
n )), tr (−RnρR

−1
n )− tr (Jn(−RnρR

−1
n )), and 1

2σ2
ε,0

. By Lemmas 2.1 and

2.2 in our supplementary file, ∆1,nT =
√

n
T
an,1(θ0) + O

(√
n
T 3

)
+ Op

(
1√
T

)
, where

an,1(θ0) = O(1), and, ∆2,nT =
√

T
n
an,2(θ0), where an,2(θ0) are O(1). The formulas of

an,1(θ0) and an,2(θ0) can be found in Appendix A.
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Consistency and asymptotic normality

First, consider consistency of θ̂ml,nT . For each θ ∈ Θ, define

QnT (θ) =
1

nT
E lnLnT,c (θ) = −1

2
ln 2π − 1

2
lnσ2

ε +
1

n
ln |Rn (θ1)|

− 1

2σ2
ε

1

nT
E

(
T∑
t=1

♥E ′nt (θ) Jn
♥Ent (θ)

)

To show consistency, the first step is verifying uniform convergence of sample aver-

age of the log-likelihood function, supθ∈Θ

∣∣∣ 1
nT

lnLnT,c (θ)−QnT (θ)
∣∣∣→p0 as n, T →∞.

After this, we show QnT (θ) is well-behaved at any point θ in Θ by verifying uniform

equicontinuity of QnT (θ) Obtaining the identification uniqueness completes the proof

of consistency. The assumption below describes the identification uniqueness condi-

tions.

Assumption 2.4.7 (Identification) To identify θ0, we assume

(i) limn,T→∞
[

1
n

ln
∣∣∣σ2
ε,0R

−1′
n R−1

n

∣∣∣− 1
n

ln
∣∣∣σ2
ε,nT (θ1)R−1′

n (θ1)R−1
n (θ1)

∣∣∣] 6= 0 for θ1 6=

θ1,0 where

σ2
ε,nT (θ1) =

1

nT

T∑
t=1

E

 Z̃nt (θ1)− X̃nt (θ1)
[∑T

s=1 X̃′ns (θ1) JnX̃ns (θ1)
]−1

×∑T
s=1 X̃′ns (θ1) JnZ̃ns (θ1)

′

×Jn

Z̃nt (θ1)− X̃nt (θ1)

[
T∑
s=1

X̃′ns (θ1) JnX̃ns (θ1)

]−1 T∑
s=1

X̃′ns (θ1) JnZ̃ns (θ1)


+

σ2
ε,0

n− 1
tr
(
R−1′
n R′n (θ1) JnRn (θ1)R−1

n

)
+ o(1),

Z̃nt (θ1) = [Rn (θ1)R−1
n (γ0In + ρ0Wn)− (γIn + ρWn)] Ỹ

(−)
n,t−1+Rn (θ1)R−1

n

[
X̃ntβ0 + α̃t,0ln

]
,

and X̃nt (θ1) = (In + δL∗n (θ1) Πn) X̃nt with X̃nt = X̃nt (θ1,0).

(ii) limT→∞
1
nT

∑T
t=1 X̃′ntJnX̃nt exists and is nonsingular.
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Let QnT,c (θ1) = QnT

(
θ1, βnT (θ1) , σ2

ε,nT (θ1, βnT (θ1))
)

where

σ2
ε,nT (θ1, β) = arg maxσ2

ε
QnT (θ1, β, σ

2
ε ) and βnT (θ1) = arg maxβ QnT (θ1, β, σ

2
ε ). As-

sumption 2.4.7 (i) comes from the information inequality for the concentrated ex-

pected log-likelihood function QnT,c (θ1). Note that

σ2
ε,nT (θ1) = 1

nT
E
(∑T

t=1
♥E ′nt (θ1, βnT (θ1)) Jn

♥Ent (θ1, βnT (θ1))
)

and this expectation does

not depend on a normal distribution, but it comes from the correctly specified first

two moments. Also, we observe σ2
ε,nT (θ1) = σ2

ε,nT,1(θ1) + σ2
ε,nT,2(θ1) + o (1) where

σ2
ε,nT,1(θ1) =

1

nT

T∑
t=1

E
(
Z̃nt (θ1)− X̃nt (θ1) βnT (θ1)

)′
Jn
(
Z̃nt (θ1)− X̃nt (θ1) βnT (θ1)

)
(2.26)

and σ2
ε,nT,2(θ1) =

σ2
ε,0

n−1
tr (R−1′

n R′n (θ1) JnRn (θ1)R−1
n ). Note that JnZ̃nt (θ1) is an ap-

proximation function for JnX̃ntβ0 since JnZ̃nt (θ1,0) = JnX̃ntβ0. Hence, the first term,

σ2
ε,nT,1(θ1), is a quadratic function of the difference between the two approximation

functions for JnX̃ntβ0 while σ2
ε,nT,2(θ1) = E

(♥E ′ntR−1′
n R′n (θ1) JnRn (θ1)R−1

n
♥Ent
)
, which

is strictly positve. When θ1 approaches to θ1,0, σ2
ε,nT,1(θ1) is close to zero. Hence,

σ2
ε,nT,2(θ1) will play a main role in identifying θ1,0 if θ1 is around θ1,0. Identifying β0 is

done by Assumption 2.4.7 (ii), which is analogous to identification of β0 in a standard

linear regression once θ1,0 is identified. When replacing X̃nt by X̃nt, we can observe

this feature and Assumption 2.4.7 (ii) becomes equivalent to the identification con-

dition of β0 in conventional SDPD models. These conditions (i) and (ii) validate the

strict information inequality (in the limit at least) so that θ0 is globally identifiable.

Here is the theorem showing consistency of θ̂ml,nT .

Theorem 2.4.1 Suppose Assumptions 2.4.1 - 2.4.7 hold. Then, θ̂ml,nT →p θ0 as

T →∞.
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Next, we will derive the asymptotic distribution of θ̂ml,nT . Denote Σθ0,nT =

−E
(

1
nT

∂2 lnLnT,c(θ0)

∂θ∂θ′

)
and Ωθ0,nT = E

(
1
nT

∂ lnL
(u)
nT,c(θ0)

∂θ

∂ lnL
(u)
nT,c(θ0)

∂θ′

)
. For that, we in-

troduce the following assumption.

Assumption 2.4.8 lim infn,T→∞ φmin (Ωθ0,nT ) > 0 and lim infn,T→∞ φmin (Σθ0,nT ) >

0 where φmin (·) denotes the smallest eigenvalue.

Due to Assumption 2.4.5 (ii), we have continuity of Σθ,nT = −E
(

1
nT

∂ lnLnT,c(θ)

∂θ∂θ′

)
in θ ∈ N (θ0) where N (θ0) denotes some neighborhood of θ0. Hence, assuming

infn,T φmin (Σθ0,nT ) > 0 implies that Σθ,nT is also nonsingular for any θ ∈ N (θ0). The

derivation of the asymptotic normality of θ̂ml,nT will be based on the mean value theo-

rem, and the central limit theorem for martingale difference arrays to 1√
nT

∂ lnL
(u)
nT,c(θ0)

∂θ
.

The theorem below gives the asymptotic distribution of θ̂ml,nT .

Theorem 2.4.2 Suppose Assumptions 2.4.1 - 2.4.8 hold. Then,

√
nT

(
θ̂ml,nT − θ0

)
+

√
n

T
Σ−1
θ0,nT

an,1(θ0) +

√
T

n
Σ−1
θ0,nT

an,2(θ0)

+Op

max

√ n

T 3
,

√
T

n3
,

√
1

T


→d N

(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)
,

where Ωθ0 = limT→∞Ωθ0,nT and Σθ0 = limT→∞Σθ0,nT .

By Theorem 2.4.2, we have the results: (i) if n
T
→ 0, n

(
θ̂ml,nT − θ0

)
+Σ−1

θ0,nT
an,2 (θ0)→p

0, (ii) if n
T
→ c ∈ (0,∞),

√
nT

(
θ̂ml,nT − θ0

)
+
√
cΣ−1

θ0,nT
an,1 (θ0)+

√
1
c
Σ−1
θ0,nT

an,2 (θ0)→d

N
(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)
, and (iii) if n

T
→∞, T

(
θ̂ml,nT − θ0

)
+ Σ−1

θ0,nT
an,1 (θ0)→p 0. θ̂ml,nT

has an asymptotic bias of orderO
(
max

{
1
n
, 1
T

})
due to− 1

T
Σ−1
θ0,nT

an,1 (θ0)− 1
n
Σ−1
θ0,nT

an,2 (θ0).

Hence, the confidence interval for θ̂ml,nT is not properly centered at θ0 even if n and
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T have the same order (that is, n
T
→ c ∈ (0,∞)). If n and T do not have the same

order, θ̂ml,nT will be degenerated. Hence, a bias corrected estimator constructed by

θ̂cml,nT = θ̂ml,nT −
1

T

[
−Σ−1

θ0,nT
an,1(θ)

]
|θ=θ̂ml,nT −

1

n

[
−Σ−1

θ0,nT
an,2(θ)

]
|θ=θ̂ml,nT , (2.27)

can be valuable. The assumption below is introduced for θ̂cml,nT .

Assumption 2.4.9
∑∞
h=0 A

h
n (θ1) and

∑∞
h=1 hA

h−1
n (θ1) are uniformly bounded in ei-

ther row or column sums uniformly in a neighborhood of θ0.

Under Assumption 2.4.9, we have

√
n

T

([
Σ−1
θ,nTan,1(θ)

]
|θ=θ̂ml,nT − Σ−1

θ0,nT
an,1(θ0)

)
→p 0, and√

T

n

([
Σ−1
θ,nTan,2(θ)

]
|θ=θ̂ml,nT − Σ−1

θ0,nT
an,2(θ0)

)
→p 0

when n
T 3 → 0 and T

n3 → 0. Hence, we can apply the asymptotic equivalence.30

Corollary 2.4.3 Under the additional Assumption 2.4.9, n
T 3 → 0 and T

n3 → 0, then

√
nT

(
θ̂cml,nT − θ0

)
→d N

(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)
. (2.28)

For the bias-adjusted estimator θ̂cml,nT , if n and T are not too much large relative

to each other, it can have a nondegenerate distribution and its confidence interval

can properly be centered. For finite samples performance, results from Monte Carlo

simulations are in Section 2.5.

30That is, if (i)

√
nT
(
θ̂cml,nT − θ0

)
−
√
nT

(
θ̂ml,nT −

1

T

[
−Σ−1

θ0,nT
an,1(θ0)

]
− 1

n

[
−Σ−1

θ0,nT
an,2(θ0)

]
− θ0

)
→p 0

and (ii)
√
nT
(
θ̂ml,nT − 1

T

[
− (Σθ0,nT )

−1
an,1(θ0)

]
− 1

n

[
−Σ−1

θ0,nT
an,2(θ0)

]
− θ0

)
→d N (0, ∗) where

∗ denotes the asymptotic variance derived in Corollary 2.4.3, we also have
√
nT
(
θ̂cml,nT − θ0

)
→d

N (0, ∗).
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Next, consider asymptotic properties of ĉn,ml(θ̂ml,nT ) and α̂t,ml(θ̂ml,nT ) for t =

1, · · · , T . Recovering cn0 and αt0’s is meaningful because they are employed to obtain

welfare measures. To identify cn0 and αt0’s, we impose the normalization restric-

tion
∑T
t=1 αt0 = 0 because ci,0 + αt0 = (ci,0 + x) + (αt0 − x) for any x. Since T

goes to infinity and n is an increasing function of T , consistently estimating cn0

and αt0’s is feasible. For each θ, define r̂nt (θ) = Rn (θ1)Ynt − (γIn + ρWn)Yn,t−1 −

(In + δL∗n (θ1) Πn)Xntβ. Because we impose
∑T
t=1 αt0 = 0, ĉn,ml(θ) = 1

T

∑T
t=1 r̂nt(θ)

and α̂t,ml(θ) = 1
n
l′n [r̂nt(θ)− ĉn,ml(θ)]. Two estimates for cn0 + αt0ln + Ent can be

considered: (i) r̂nt
(
θ̂ml,nT

)
, and (ii) r̂nt

(
θ̂cml,nT

)
. The theorem below shows their

asymptotic properties.

Theorem 2.4.4 Suppose Assumptions 2.4.1 - 2.4.8 hold. Additionally, assume∑T
t=1 αt0 = 0. Then,

(i) for each i, if
√
T
n
→ 0,

√
T (ĉi,ml − ci,0)→d N(0, σ2

ε,0) where ĉi,ml = ĉi,ml(θ̂ml,nT )

and they are asymptotically independent with each other.

(ii) For each t, if
√
n
T
→ 0,

√
n (α̂t,ml − αt0)→d N(0, σ2

ε,0) where α̂t,ml = α̂t,ml(θ̂ml,nT )

and they are asymptotically independent with each other.

(iii) Assume Assumption 2.4.9, n
T 3 → 0 and T

n3 → 0. For each i,
√
T
(
ĉci,ml − ci,0

)
→d

N(0, σ2
ε,0) where ĉci,ml = ĉi,ml(θ̂

c
ml,nT ). For each t,

√
n
(
α̂ct,ml − αt0

)
→d N(0, σ2

ε,0) where

α̂ct,ml = α̂t,ml(θ̂
c
ml,nT ). Asymptotic independence holds like (i) and (ii).

Parts (i) and (ii) show that the conditions are symmetric for the other effects. By

Theorem 2.4.2, we have the convergence rate of θ̂ml,nT

(i.e., θ̂ml,nT − θ0 = Op

(
max

(
1√
nT
, 1
T
, 1
n

))
). Then, ĉi,ml − ci,0 = 1

T

∑T
t=1 εit + Op (1) ·∥∥∥θ̂ml,nT − θ0

∥∥∥ and α̂t,ml−αt0 = 1
n

∑n
i=1 εit+Op (1)·

∥∥∥θ̂ml,nT − θ0

∥∥∥. Hence, the conditions
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√
T
n

= o (1) for ĉi,ml and
√
n
T

= o (1) for α̂t,ml come respectively from31
√
T (ĉi,ml − ci,0) =

1√
T

∑T
t=1 εit +Op

(
max

(
1√
n
, 1√

T
,
√
T
n

))
,

and
√
n (α̂t,ml − αt0) = 1√

n

∑n
i=1 εit + Op

(
max

(
1√
n
, 1√

T
,
√
n
T

))
. Note that the residu-

als r̂nt
(
θ̂ml,nT

)
contain the individual- and time-dummy as an additive way. If T is

large with small n, there exists a O
(

1
n

)
bias for the regression coefficients since there

are only n observations for each time dummy. For the estimate of individual effects,

ĉi,ml, so
√
T
n
→ 0 would appear in its asymptotic distribution normalized by 1√

T
. The

symmetric argument can be applied to α̂t,ml.

Part (iii) means the ratio conditions of n and T can be relaxed when we employ

the residuals based on θ̂cml,nT . Corollary 2.4.3 implies θ̂cml,nT−θ0 = Op

(
1√
nT

)
if n
T 3 → 0

and T
n3 → 0. Then,

√
T
(
ĉci,ml − ci,0

)
= 1√

T

∑T
t=1 εit+Op

(
1√
n

)
, and

√
n
(
α̂ct,ml − αt0

)
=

1√
n

∑n
i=1 εit +Op

(
1√
T

)
. Since n

T 3 → 0 and T
n3 → 0 are milder conditions than

√
T
n
→ 0

and
√
n
T
→ 0, estimating both cn0 and αT,0 via (ii) r̂nt

(
θ̂cml,nT

)
would be beneficial

compared to employing r̂nt
(
θ̂ml,nT

)
.

2.4.2 Nonlinear two-stage least squares (NL2S) estimation

In practical applications, we may like to have a robust estimator to unknown het-

eroskedasticity and/or unknown serial/cross-sectional correlations. Under a limited

information setting, the NL2S method can be a reasonable estimation approach. In

addition to possible robustness, it might have computational advantage relative to

the ML or QML methods by avoiding evaluating ln |Rn (θ1)|. In this subsection, we

briefly discuss the implementation of this method.

31In conventional SDPD literature (e.g., Yu et al. (2008), and Lee and Yu (2012)), the convergence

rate of the QMLE is Op

(
max

(
1√
nT
, 1
T

))
. In this case, the condition

√
T
n = o (1) for ĉi,ml is not

required. Since we adopt the direct estimation approach of estimating cn0 and αT,0, we have the
different convergence rate of the QMLE.
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For each t, let Znt be the n×q IV matrix where q ≥ 4+K means the order condition

of identifiability. By observing the form of additional endogenous component Q∗nYnt,

we can consider [Yn,t−1, Xnt] and its transformations by [In,Wn,W
′
n,W

′
nWn,W

2
n , · · ·]

as IVs. Define the sample moment function gL
nT (θ, cn, αT ) = 1

nT

∑T
t=1 Z

′
ntEnt (θ, cn, αt)

and observe E
(
gL
nT (θ0, cn0, αT,0)

)
= 0q×1. Then, the NL2S estimator (NL2SE) can

be obtained by minimizing the objective function:

gL′
nT (θ, cn, αT )

(
1
nT

∑T
t=1 Z

′
ntZnt

)−1
gL
nT (θ, cn, αT ).32 For regularity conditions about

IV Znt, we need to assume existence of plimn,T→∞
1
nT

∑T
t=1 Z

′
ntZnt and nonsingularity

of it. Remaining conditions for consistency and asymptotic normality can be achieved

by our suggested assumptions for the QML method.33 In next section, we compare

estimation results by the QML and NL2S methods to investigate whether the NL2S

estimation method could work well.

2.5 Simulations

In this section, we report Monte Carlo simulation results on small sample perfor-

mance of the QMLE. For t = 1, · · · , T , the DGP for our simulation is

RnYnt = γ0Yn,t−1+ρ0WnYn,t−1+
K∑
k=1

(In + δL∗nΠn) (β1,k,0In + β2,k,0Wn)Xnt,k+cn0+αt0ln+Ent

(2.29)

and the expectation function Πn is specified based on

Xnt,k = Ak,nXn,t−1,k + cn,k,0 + αt,k,0ln + Vnt,k (2.30)

32Since the incidental parameters cn0 and αT,0 are linear in Ent (θ, cn, αt), the concentrated

statistical objected function will be gL′nT,c (θ)
(

1
nT

∑T
t=1 Z

′
ntZnt

)−1

gLnT,c (θ) where gLnT,c (θ) =

1
nT

∑T
t=1 Z

′
ntJn
♥Ent (θ).

33For basic discussions on the NL2SE, refer to Theorems 8.1.1 and 8.1.2 in Amemiya (1985).
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for k = 1, · · · , K where Ak,n = γk,0In + ρk,0Wn. We consider the joint estimation

for the main parameter vector θ0 and the nuisance parameters
{
γk,0, ρk,0, σ

2
V,k,0

}K
k=1

where σ2
V,k,0In is the variance of Vnt,k.

34

For sample sizes, we consider the combinations of n = 49, 81 and T = 10, 30.

We generate our data with 30 + T periods where the starting value is drawn from

N (0n×1, In), but employ the last T periods as our sample. This design makes the

initial value Yn0 close to be in steady state. We experiment two cases with the

primitive δ, (i) δ = 0.5 (large discounted for the future) and (ii) δ = 0.95 (small

discounted for the future). The cn0, cn,k,0, αt0, αt,k,0, Ent, and Vnt,k’s (k = 1, · · · , K)

are independently drawn from the standard normal distribution. For Wn, a row-

normalized rook matrix as for a chess board is utilized. We consider K = 1, and

fix γ0 = 0.4, β1,1,0 = 0.4, β2,1,0 = 0.4, σ2
ε,0 = 1, γ1,0 = 0.4, ρ1,0 = 0.1 and σ2

V,1,0 = 1

throughout the experiment. For (λ0, ρ0), we consider four scenarios: (i) (λ0, ρ0) =

(0.2, 0.2), (ii) (λ0, ρ0) = (0.2,−0.2), (iii) (λ0, ρ0) = (−0.2, 0.2) and (iv) (λ0, ρ0) =

(−0.2,−0.2). The tolerance level of the inner loop is 0.0001 (evaluated by ‖·‖∞).35 We

compare performance of four estimators, (i) the QMLE θ̂ml,nT (ii) the bias corrected

QMLE θ̂cml,nT , (iii) QMLE as if δ = 0 (denoted by θ̂Sml,nT ) and (iv) the bias corrected

QMLE as if δ = 0 (denoted by θ̂S,cml,nT ). That is, θ̂Sml,nT and θ̂S,cml,nT are the QMLEs based

on Lee and Yu’s (2010). In order to evaluate performance of estimators, we consider

four criteria: (i) empirical bias, (ii) standard deviation (SD), (iii) empirical root

34As a simpler alternative, we can consider a two-step estimation instead of the joint estimation.
In the first step, the nuisance parameters are estimated and generated regressors from the first step
are used in the second step to estimate the structural parameters θ0. However, it sometimes might
yield a bad statistical inference without taking into account the asymptotic influence of the first step
estimate through the generated regressors. See, e.g., Pagan (1984) and Murphy and Topel (1985).
For the empirical analyses, we also take the joint estimation.

35This level is also applied to our empirical analysis.
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mean square error (RMSE) and (iv) 95% coverage probability (CP).36 The number

of sample repetitions I is 400. The obtained MC results reported in Table 2.1 with

δ = 0.95 are summarized in Subsections 5.1 and 5.2.

Table 2.1: Performance of the QML estimators when δ = 0.95
(n, T ) = (49, 10) and (λ, ρ) = (0.2, 0.2)

λ γ ρ β1 β2 σ2
ε γ1 ρ1 σ2

V,1

0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.02 −0.15 0.05 0.04 0.06 −0.21 −0.15 −0.01 −0.14
SD 0.07 0.06 0.08 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.07 0.16 0.10 0.06 0.10 0.23 0.16 0.09 0.15
CP 0.93 0.22 0.86 0.84 0.88 0.14 0.06 0.94 0.31

θ̂cml,nT Bias 0.00 −0.03 0.00 0.02 0.03 −0.05 −0.03 −0.00 −0.04

SD 0.07 0.07 0.09 0.04 0.08 0.09 0.05 0.09 0.07
RMSE 0.07 0.07 0.09 0.05 0.09 0.10 0.06 0.09 0.08
CP 0.93 0.84 0.90 0.92 0.93 0.79 0.87 0.91 0.81

θ̂Sml,nT Bias 0.02 −0.19 0.02 0.00 0.03 −0.43

SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.06 0.19 0.07 0.04 0.08 0.44
CP 0.92 0.00 0.95 0.94 0.92 0.00

θ̂S,cml,nT Bias 0.05 −0.10 −0.04 −0.01 0.01 −0.37

SD 0.06 0.05 0.07 0.04 0.07 0.04
RMSE 0.08 0.11 0.08 0.04 0.07 0.37
CP 0.81 0.32 0.89 0.94 0.93 0.00

2.5.1 The overall results

(i) The empirical biases of θ̂ml,nT and θ̂cml,nT tend to decrease when n and T

are large. In particular, we have biases for γ̂ml,nT (γ̂cml,nT ), σ̂2
ml,nT (σ̂2,c

ml,nT ), γ̂1,ml,nT

36The 95% coverage probability is defined by

1

I
#I

{
[θ0]l ∈

[[
θ̂
]
l
− 1.96√

nT

[ ̂Σ−1
θ0

Ωθ0Σ−1
θ0

] 1
2

ll
,
[
θ̂
]
l
+

1.96√
nT

[ ̂Σ−1
θ0

Ωθ0Σ−1
θ0

] 1
2

ll

]}
for l = 1, · · · , 4 + 5K, I is the total number of sample repetitions,, #I {·} denotes the number of

counts of coverage, where, θ̂ is an estimate of θ0 and ̂Σ−1
θ0

Ωθ0Σ−1
θ0

denotes a consistent estimate of

Σ−1
θ0

Ωθ0Σ−1
θ0

. We employ
[
Σ−1
θ ΩθΣ

−1
θ

]
θ=θ̂ml,nT

for ̂Σ−1
θ0

Ωθ0Σ−1
θ0

.
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Continued Table 2.1: (n, T ) = (49, 10) and (λ, ρ) = (0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.08 −0.16 0.10 0.03 0.04 −0.24 −0.15 −0.02 −0.14
SD 0.07 0.06 0.09 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.11 0.17 0.13 0.05 0.09 0.26 0.16 0.09 0.15
CP 0.78 0.16 0.77 0.89 0.91 0.07 0.06 0.94 0.31

θ̂cml,nT Bias −0.02 −0.04 0.02 0.02 0.02 −0.06 −0.03 −0.01 −0.04

SD 0.08 0.07 0.10 0.04 0.08 0.09 0.05 0.09 0.07
RMSE 0.08 0.08 0.10 0.05 0.08 0.11 0.06 0.10 0.08
CP 0.89 0.82 0.88 0.92 0.93 0.71 0.86 0.91 0.81

θ̂Sml,nT Bias −0.11 −0.20 0.12 −0.02 0.00 −0.46

SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.13 0.20 0.14 0.04 0.07 0.46
CP 0.51 0.00 0.61 0.93 0.94 0.00

θ̂S,cml,nT Bias −0.08 −0.11 0.06 −0.03 −0.02 −0.39

SD 0.06 0.05 0.08 0.04 0.07 0.04
RMSE 0.10 0.12 0.10 0.05 0.07 0.40
CP 0.69 0.24 0.85 0.88 0.94 0.00

Continued Table 2.1: (n, T ) = (49, 10) and (λ, ρ) = (−0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.02 −0.15 0.01 0.03 0.03 −0.23 −0.15 −0.02 −0.14
SD 0.07 0.06 0.08 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.07 0.16 0.08 0.05 0.08 0.25 0.16 0.09 0.15
CP 0.94 0.19 0.97 0.90 0.92 0.10 0.06 0.94 0.31

θ̂cml,nT Bias −0.00 −0.03 −0.00 0.02 0.01 −0.06 −0.03 −0.01 −0.04

SD 0.08 0.06 0.10 0.04 0.08 0.09 0.05 0.10 0.07
RMSE 0.08 0.07 0.10 0.04 0.08 0.10 0.06 0.10 0.08
CP 0.92 0.83 0.91 0.92 0.93 0.74 0.86 0.91 0.81

θ̂Sml,nT Bias 0.05 −0.19 −0.02 −0.02 −0.02 −0.46

SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.08 0.20 0.07 0.04 0.07 0.46
CP 0.87 0.00 0.94 0.90 0.93 0.00

θ̂S,cml,nT Bias 0.07 −0.10 −0.04 −0.03 −0.03 −0.39

SD 0.06 0.04 0.08 0.04 0.07 0.04
RMSE 0.10 0.11 0.09 0.05 0.08 0.40
CP 0.72 0.23 0.87 0.86 0.93 0.00

(γ̂c1,ml,nT ), ρ̂1,ml,nT (ρ̂c1,ml,nT ) and σ̂2
V,1,ml,nT (σ̂2,c

V,1,ml,nT ), which are reduced substantially

as sample sizes become larger. While the empirical biases diminish when n and T
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Continued Table 2.1: (n, T ) = (49, 10) and (λ, ρ) = (−0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.07 −0.16 0.07 0.03 0.03 −0.23 −0.15 −0.02 −0.14
SD 0.07 0.06 0.08 0.04 0.08 0.07 0.04 0.09 0.06
RMSE 0.10 0.17 0.11 0.05 0.08 0.24 0.16 0.09 0.15
CP 0.78 0.14 0.86 0.88 0.92 0.10 0.06 0.94 0.31

θ̂cml,nT Bias −0.02 −0.04 0.03 0.02 0.01 −0.06 −0.03 −0.01 −0.04

SD 0.07 0.06 0.09 0.04 0.08 0.09 0.05 0.09 0.07
RMSE 0.08 0.07 0.10 0.05 0.08 0.10 0.06 0.10 0.08
CP 0.90 0.79 0.89 0.91 0.93 0.74 0.86 0.91 0.81

θ̂Sml,nT Bias −0.07 −0.19 0.09 −0.01 −0.01 −0.44

SD 0.06 0.04 0.07 0.04 0.07 0.04
RMSE 0.09 0.20 0.11 0.04 0.07 0.44
CP 0.69 0.00 0.74 0.94 0.94 0.00

θ̂S,cml,nT Bias −0.05 −0.10 0.06 −0.02 −0.02 −0.37

SD 0.06 0.05 0.08 0.04 0.07 0.04
RMSE 0.08 0.11 0.10 0.04 0.08 0.38
CP 0.81 0.25 0.84 0.90 0.92 0.00

Continued Table 2.1: (n, T ) = (49, 30) and (λ, ρ) = (0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.04 −0.04 0.04 0.02 0.04 −0.08 −0.05 0.00 −0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.06 0.06 0.06 0.03 0.06 0.09 0.06 0.05 0.07
CP 0.84 0.70 0.84 0.82 0.84 0.53 0.49 0.93 0.60

θ̂cml,nT Bias −0.00 −0.00 −0.00 0.00 0.01 −0.01 −0.00 0.00 −0.01

SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CP 0.96 0.93 0.96 0.96 0.96 0.90 0.91 0.93 0.91

θ̂Sml,nT Bias 0.02 −0.11 −0.00 −0.01 0.03 −0.38

SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.04 0.11 0.04 0.02 0.05 0.38
CP 0.87 0.00 0.96 0.94 0.87 0.00

θ̂S,cml,nT Bias 0.06 −0.08 −0.04 −0.02 0.01 −0.35

SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.07 0.09 0.05 0.03 0.04 0.36
CP 0.55 0.06 0.83 0.85 0.95 0.00

increase, contribution of large T for reducing biases is relatively larger compared to

that of large n.
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Continued Table 2.1: (n, T ) = (49, 30) and (λ, ρ) = (0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.06 −0.05 0.04 0.02 0.03 −0.09 −0.05 −0.00 −0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.07 0.06 0.06 0.03 0.05 0.10 0.06 0.05 0.07
CP 0.75 0.59 0.90 0.87 0.89 0.36 0.49 0.93 0.60

θ̂cml,nT Bias −0.00 −0.01 −0.00 0.00 0.00 −0.01 −0.00 0.00 −0.01

SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CP 0.96 0.93 0.95 0.95 0.95 0.88 0.91 0.93 0.91

θ̂Sml,nT Bias −0.11 −0.12 0.07 −0.02 −0.00 −0.41

SD 0.03 0.02 0.04 0.02 0.04 0.02
RMSE 0.12 0.12 0.08 0.03 0.04 0.41
CP 0.08 0.00 0.62 0.78 0.95 0.00

θ̂S,cml,nT Bias −0.08 −0.09 0.04 −0.03 −0.02 −0.38

SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.09 0.09 0.06 0.04 0.04 0.38
CP 0.31 0.04 0.81 0.65 0.95 0.00

Continued Table 2.1: (n, T ) = (49, 30) and (λ, ρ) = (−0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.03 −0.05 0.01 0.02 0.02 −0.09 −0.05 −0.00 −0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.05 0.06 0.05 0.03 0.05 0.10 0.06 0.05 0.07
CP 0.88 0.65 0.95 0.88 0.90 0.39 0.49 0.93 0.60

θ̂cml,nT Bias −0.00 −0.01 −0.01 0.00 0.00 −0.01 −0.00 0.00 −0.01

SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CP 0.95 0.92 0.94 0.95 0.96 0.88 0.91 0.93 0.91

θ̂Sml,nT Bias 0.05 −0.12 −0.03 −0.03 −0.02 −0.41

SD 0.03 0.02 0.04 0.02 0.04 0.02
RMSE 0.06 0.12 0.05 0.04 0.04 0.41
CP 0.72 0.00 0.89 0.67 0.95 0.00

θ̂S,cml,nT Bias 0.08 −0.09 −0.05 −0.04 −0.03 −0.38

SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.08 0.09 0.06 0.04 0.05 0.38
CP 0.35 0.03 0.79 0.55 0.87 0.00

(ii) θ̂cml,nT performs better with smaller empirical biases and RMSE compared to

those of θ̂ml,nT . The biases observed in γ̂ml,nT , ρ̂ml,nT , σ̂2
ml,nT , γ̂1,ml,nT , ρ̂1,ml,nT and

σ̂2
V,1,ml,nT can be corrected by the bias correction procedure.
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Continued Table 2.1: (n, T ) = (49, 30) and (λ, ρ) = (−0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.05 −0.05 0.03 0.02 0.02 −0.09 −0.05 −0.00 −0.06
SD 0.04 0.03 0.05 0.02 0.04 0.04 0.03 0.05 0.04
RMSE 0.06 0.06 0.05 0.03 0.05 0.10 0.06 0.05 0.07
CP 0.78 0.52 0.93 0.88 0.92 0.36 0.49 0.93 0.60

θ̂cml,nT Bias −0.00 −0.01 0.00 0.00 0.00 −0.01 −0.00 0.00 −0.01

SD 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
RMSE 0.04 0.03 0.05 0.02 0.04 0.05 0.03 0.05 0.04
CP 0.96 0.93 0.95 0.95 0.95 0.89 0.91 0.93 0.91

θ̂Sml,nT Bias −0.08 −0.12 0.05 −0.02 −0.01 −0.39

SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.09 0.12 0.07 0.03 0.04 0.39
CP 0.25 0.00 0.72 0.82 0.95 0.00

θ̂S,cml,nT Bias −0.06 −0.08 0.04 −0.03 −0.02 −0.35

SD 0.03 0.02 0.04 0.02 0.04 0.03
RMSE 0.06 0.09 0.05 0.03 0.04 0.36
CP 0.58 0.05 0.85 0.74 0.93 0.00

Continued Table 2.1: (n, T ) = (81, 10) and (λ, ρ) = (0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias 0.00 −0.15 0.05 0.03 0.05 −0.21 −0.15 −0.01 −0.13
SD 0.05 0.04 0.06 0.04 0.07 0.06 0.03 0.07 0.04
RMSE 0.05 0.16 0.08 0.05 0.08 0.22 0.15 0.07 0.14
CP 0.93 0.06 0.82 0.83 0.88 0.03 0.01 0.94 0.16

θ̂cml,nT Bias 0.01 −0.03 0.00 0.02 0.02 −0.04 −0.02 −0.00 −0.04

SD 0.06 0.05 0.07 0.04 0.07 0.07 0.04 0.08 0.05
RMSE 0.06 0.06 0.07 0.04 0.07 0.08 0.05 0.08 0.06
CP 0.91 0.80 0.90 0.90 0.93 0.78 0.86 0.90 0.80

θ̂Sml,nT Bias 0.04 −0.19 0.02 −0.01 0.02 −0.43

SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.06 0.19 0.06 0.03 0.06 0.43
CP 0.80 0.00 0.92 0.91 0.90 0.00

θ̂S,cml,nT Bias 0.06 −0.10 −0.04 −0.01 0.01 −0.37

SD 0.05 0.04 0.06 0.03 0.06 0.03
RMSE 0.08 0.10 0.07 0.03 0.06 0.37
CP 0.69 0.14 0.86 0.89 0.93 0.00

(iii) In the case of θ̂ml,nT , the coverage probabilities increase for all cases and

approach to 0.95. The coverage probabilities of θ̂ml,nT also increase and are close to
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Continued Table 2.1: (n, T ) = (81, 10) and (λ, ρ) = (0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.06 −0.16 0.09 0.02 0.03 −0.24 −0.15 −0.01 −0.13
SD 0.06 0.04 0.07 0.04 0.07 0.06 0.03 0.07 0.04
RMSE 0.08 0.17 0.12 0.04 0.07 0.24 0.15 0.07 0.14
CP 0.79 0.04 0.67 0.86 0.89 0.01 0.01 0.93 0.16

θ̂cml,nT Bias −0.01 −0.04 0.02 0.02 0.01 −0.06 −0.02 −0.00 −0.04

SD 0.06 0.05 0.08 0.04 0.07 0.07 0.04 0.08 0.05
RMSE 0.06 0.06 0.08 0.04 0.07 0.09 0.05 0.08 0.06
CP 0.90 0.78 0.88 0.90 0.92 0.74 0.86 0.91 0.80

θ̂Sml,nT Bias −0.10 −0.20 0.11 −0.02 −0.01 −0.45

SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.11 0.20 0.12 0.04 0.06 0.45
CP 0.43 0.00 0.51 0.85 0.93 0.00

θ̂S,cml,nT Bias −0.08 −0.10 0.06 −0.03 −0.02 −0.39

SD 0.05 0.04 0.06 0.03 0.06 0.03
RMSE 0.09 0.11 0.08 0.04 0.06 0.39
CP 0.59 0.09 0.79 0.78 0.92 0.00

Continued Table 2.1: (n, T ) = (81, 10) and (λ, ρ) = (−0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias 0.00 −0.15 0.01 0.02 0.02 −0.23 −0.15 −0.01 −0.13
SD 0.06 0.04 0.07 0.04 0.07 0.05 0.03 0.07 0.04
RMSE 0.06 0.16 0.07 0.04 0.07 0.23 0.15 0.07 0.14
CP 0.95 0.05 0.94 0.88 0.90 0.01 0.01 0.94 0.16

θ̂cml,nT Bias 0.00 −0.03 −0.00 0.01 0.01 −0.05 −0.02 −0.00 −0.04

SD 0.06 0.05 0.08 0.03 0.07 0.06 0.04 0.08 0.05
RMSE 0.06 0.06 0.08 0.04 0.07 0.08 0.05 0.08 0.06
CP 0.93 0.80 0.92 0.91 0.92 0.75 0.86 0.91 0.80

θ̂Sml,nT Bias 0.06 −0.19 −0.03 −0.03 −0.02 −0.45

SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.08 0.19 0.06 0.04 0.06 0.45
CP 0.72 0.00 0.91 0.82 0.92 0.00

θ̂S,cml,nT Bias 0.08 −0.10 −0.05 −0.03 −0.04 −0.39

SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.09 0.11 0.08 0.05 0.07 0.39
CP 0.61 0.09 0.85 0.73 0.89 0.00

0.95 when we increase n and T . Overall, the results (i), (ii) and (iii) also hold for

δ = 0.5.
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Continued Table 2.1: (n, T ) = (81, 10) and (λ, ρ) = (−0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.06 −0.16 0.06 0.03 0.02 −0.22 −0.15 −0.01 −0.13
SD 0.05 0.04 0.07 0.03 0.07 0.05 0.03 0.07 0.04
RMSE 0.08 0.16 0.09 0.04 0.07 0.23 0.15 0.07 0.14
CP 0.78 0.03 0.82 0.86 0.91 0.01 0.01 0.94 0.16

θ̂cml,nT Bias −0.02 −0.04 0.02 0.02 0.01 −0.05 −0.02 −0.00 −0.04

SD 0.06 0.05 0.08 0.03 0.07 0.06 0.04 0.08 0.05
RMSE 0.06 0.06 0.08 0.04 0.07 0.08 0.05 0.08 0.06
CP 0.90 0.78 0.88 0.90 0.92 0.78 0.86 0.91 0.80

θ̂Sml,nT Bias −0.06 −0.19 0.08 −0.02 −0.01 −0.44

SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.08 0.20 0.10 0.04 0.06 0.44
CP 0.66 0.00 0.67 0.87 0.92 0.00

θ̂S,cml,nT Bias −0.05 −0.10 0.05 −0.03 −0.03 −0.37

SD 0.05 0.03 0.06 0.03 0.06 0.03
RMSE 0.07 0.11 0.08 0.04 0.06 0.37
CP 0.76 0.09 0.79 0.83 0.91 0.00

Continued Table 2.1: (n, T ) = (81, 30) and (λ, ρ) = (0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.02 −0.05 0.03 0.02 0.04 −0.07 −0.05 −0.00 −0.05
SD 0.03 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.05 0.05 0.03 0.05 0.08 0.05 0.04 0.06
CP 0.86 0.57 0.85 0.81 0.80 0.41 0.31 0.94 0.54

θ̂cml,nT Bias −0.00 −0.00 0.00 0.00 0.01 −0.01 −0.00 0.00 −0.01

SD 0.03 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.03 0.03 0.04 0.02 0.04 0.04 0.02 0.04 0.03
CP 0.92 0.93 0.93 0.93 0.94 0.92 0.94 0.94 0.93

θ̂Sml,nT Bias 0.04 −0.11 −0.00 −0.01 0.03 −0.38

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.05 0.11 0.03 0.02 0.04 0.38
CP 0.62 0.00 0.95 0.88 0.84 0.00

θ̂S,cml,nT Bias 0.06 −0.08 −0.03 −0.02 0.01 −0.35

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.07 0.08 0.05 0.02 0.04 0.35
CP 0.31 0.01 0.80 0.80 0.92 0.00

(iv) For θ̂Sml,nT and θ̂S,cml,nT , they do not have a good pattern of performance. The

RMSEs and the coverage probabilities of θ̂Sml,nT and θ̂S,cml,nT even tend to increase after

the bias correction. Also, this tendency does not disappear for large n and T . For
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Continued Table 2.1: (n, T ) = (81, 30) and (λ, ρ) = (0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.04 −0.05 0.04 0.01 0.03 −0.08 −0.05 −0.00 −0.05
SD 0.04 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.05 0.06 0.05 0.02 0.05 0.09 0.05 0.04 0.06
CP 0.76 0.44 0.85 0.87 0.86 0.26 0.30 0.94 0.54

θ̂cml,nT Bias −0.00 −0.00 0.00 0.00 0.00 −0.01 −0.00 0.00 −0.01

SD 0.04 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.03 0.04 0.02 0.04 0.04 0.02 0.04 0.03
CP 0.94 0.94 0.92 0.93 0.94 0.92 0.94 0.94 0.93

θ̂Sml,nT Bias −0.10 −0.12 0.07 −0.03 −0.00 −0.40

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.10 0.12 0.08 0.03 0.03 0.40
CP 0.04 0.00 0.38 0.64 0.93 0.00

θ̂S,cml,nT Bias −0.08 −0.09 0.04 −0.03 −0.02 −0.37

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.08 0.09 0.05 0.04 0.04 0.37
CP 0.16 0.01 0.73 0.50 0.90 0.00

Continued Table 2.1: (n, T ) = (81, 30) and (λ, ρ) = (−0.2, 0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.02 −0.05 0.01 0.01 0.02 −0.08 −0.05 −0.00 −0.05
SD 0.04 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.05 0.04 0.02 0.04 0.08 0.05 0.04 0.06
CP 0.88 0.51 0.94 0.87 0.87 0.31 0.30 0.94 0.54

θ̂cml,nT Bias −0.00 −0.00 −0.00 0.00 0.00 −0.01 −0.00 0.00 −0.01

SD 0.04 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.04 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
CP 0.93 0.94 0.93 0.93 0.94 0.91 0.94 0.94 0.93

θ̂Sml,nT Bias 0.06 −0.12 −0.03 −0.03 −0.02 −0.40

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.07 0.12 0.04 0.03 0.04 0.40
CP 0.38 0.00 0.87 0.52 0.88 0.00

θ̂S,cml,nT Bias 0.08 −0.09 −0.04 −0.04 −0.03 −0.37

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.08 0.09 0.05 0.04 0.05 0.37
CP 0.19 0.01 0.75 0.37 0.79 0.00

all cases, θ̂Sml,nT and θ̂S,cml,nT do not seem to work well due to crucial misspecification

errors.
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Continued Table 2.1: (n, T ) = (81, 30) and (λ, ρ) = (−0.2,−0.2)
λ γ ρ β1 β2 σ2

ε γ1 ρ1 σ2
V,1

−0.2 0.4 −0.2 0.4 0.4 1 0.4 0.1 1

θ̂ml,nT Bias −0.04 −0.05 0.03 0.01 0.02 −0.08 −0.05 −0.00 −0.05
SD 0.03 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.05 0.06 0.04 0.02 0.04 0.08 0.05 0.04 0.06
CP 0.78 0.39 0.88 0.86 0.88 0.32 0.30 0.94 0.54

θ̂cml,nT Bias −0.00 −0.01 0.00 0.00 0.00 −0.01 −0.00 0.00 −0.01

SD 0.03 0.02 0.04 0.02 0.04 0.03 0.02 0.04 0.03
RMSE 0.03 0.03 0.04 0.02 0.04 0.03 0.02 0.04 0.03
CP 0.94 0.93 0.95 0.93 0.93 0.92 0.94 0.94 0.93

θ̂Sml,nT Bias −0.07 −0.11 0.05 −0.02 −0.01 −0.38

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.07 0.12 0.06 0.03 0.04 0.38
CP 0.22 0.00 0.56 0.73 0.90 0.00

θ̂S,cml,nT Bias −0.05 −0.08 0.04 −0.03 −0.02 −0.35

SD 0.03 0.02 0.03 0.02 0.03 0.02
RMSE 0.06 0.08 0.05 0.03 0.04 0.35
CP 0.42 0.01 0.73 0.60 0.88 0.00

2.5.2 The results for specific parameters

(λ0) In terms of empirical biases and coverage probabilities, λ̂cml,nT works

relatively better than λ̂ml,nT . For most cases, downward biases are observed. When

ρ0 < 0, it seems that λ̂ml,nT and λ̂cml,nT have relatively low coverage probabilities.

Based on λ̂S,cml,nT when (n, T ) = (49, 10), the signs of misspecification biases are

positive if ρ0 > 0, but are negative if ρ0 < 0. From these results, the sign of ρ0

determines the sign of the misspecification bias of λ̂S,cml,nT while the sign of λ0 would

not be so.

(γ0) Under small T , γ̂ml,nT has significant downward biases for all cases. When

T increases, the absolute values of biases decrease. This result is consistent with

those of Hahn and Kuersteiner (2002) for dynamic panels (with neither spatial nor

intertemporal effects). The bias corrected γ̂cml,nT reduces the bias.
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Focusing on γ̂S,cml,nT when (n, T ) = (49, 10), we observe misspecification biases in

estimating γ0 are negative and their degree of bias might be affected by values of λ0

and ρ0.

(ρ0) For ρ0, the magnitude of biases is smaller than that of γ0. For all cases, we

observe upward biases in ρ̂ml,nT . If λ0 > 0 and ρ0 < 0, substantial upward biases in

ρ̂ml,nT are observed. On the other hand, we detect relatively small upward biases in

ρ̂ml,nT if λ0 < 0 and ρ0 > 0. By introducing the bias correction to ρ̂ml,nT or increasing

n or T , the amount of bias decreases and coverage probabilities become better.

Consider the misspecification bias by focusing on ρ̂S,cml,nT . Based on ρ̂S,cml,nT when

(n, T ) = (49, 10), misspecification biases turn to be upward if ρ0 < 0, but are down-

ward if ρ0 > 0. It seems that the sign of misspecification bias takes the opposite sign

of ρ0 but can be irrelevant to signs of λ0.

(β1,1,0) Performances of β̂1,1,ml,nT and β̂c1,1,ml,nT are reasonable in biases and cov-

erage probabilities. For all cases, upward biases in β̂1,1,ml,nT are detected but they

diminish after correcting biases or increasing n or T .

To analyze the misspecification bias, consider β̂S,c1,1,ml,nT when (n, T ) = (49, 10).

We observe downward biases and those biases increase when δ increases in absolute

values.

(β2,1,0) Like the case of β1,1,0, we detect upward biases in β̂2,1,ml,nT but they de-

crease and coverage probabilities become better after correcting the biases or increas-

ing n or T .

To study misspecification errors, focus on β̂S,c2,1,ml,nT with (n, T ) = (49, 10). When

both λ0 and ρ0 > 0, there are upward misspecification biases in β̂S,c2,1,ml,nT . For other

cases, however, downward misspecification biases in β̂S,c2,1,ml,nT are observed.
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(
σ2
ε,0

)
When n and T are small, biases of σ̂2

ε,ml,nT are downward and the bias

correction is needed.

For all cases of σ̂2,S
ε,ml,nT and σ̂2,S,c

ε,ml,nT , there are downward biases.

(γ1,0) Properties of γ̂1,ml,nT of X processes are very similar to γ̂ml,nT . That is,

large downward biases in γ̂1,ml,nT are observed but the bias can be reduced and the

coverage probability can become more adequate from the bias correction.

(ρ1,0) In case of ρ1,0, ρ̂1,ml,nT and ρ̂c1,ml,nT perform well with small biases and

adequate coverage probabilities even for small samples.(
σ2
V,1,0

)
Lastly, consider σ̂2

V,1,ml,nT and σ̂2,c
V,1,ml,nT . Similar to σ2

ε,0, we detect a sub-

stantial downward bias for small T = 10 cases. By introducing the bias correction or

increasing sample size T , biases are reduced and coverage probabilities are improved.

2.5.3 Identification of δ and effects of misspecified δ on esti-
mation

In nonlinear structural econometric analyses, identifying the true time-discounting

factor (δ0) is a challenging issue since the statistical objective function is very flat

around δ0.37 Hence, we conduct an additional experiment on identifying δ0 the true

time-discounting factor. To identify the true δ0, we suggest using the log-likelihood

measures such as the sample log-likelihood function, Akaike information criterion

(AIC), and Bayesian information criterion (BIC). Employing those likelihood mea-

sures can be justified by the information inequality in likelihood theory. Via Figures

2.1 and 2.2, we report the sample likelihood functions across various δ’s and the

misspecification errors of estimating λ0, γ0, and ρ0 in terms of the RMSE for the

two representative cases: (i) δ0 = 0 and (ii) δ0 = 0.95 with a large finite sample

37Komarova et al. (2017) discuss this issue in a framework of dynamic discrete choice models.
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Figure 2.1: Selection of δ via likelihood measures

Note: We show two representative cases: (i) Myopic: δ = 0, (n, T ) = (81, 30), and
K = 2 (ii) Forward-looking: δ = 0.95, (n, T ) = (81, 30), and K = 2 We set λ = 0.2 ,
γ = 0.4, and ρ = 0.2, and other circumstances are the same as the main simulation.

The x-axis shows δs while the y-axis reports the sample log-likelihood.

and rich exogenous variables. Additional results and discussions can be found in the

supplementary file of Jeong and Lee (2018).

Throughout all cases, three observations can be summarized. First, having suffi-

ciently large observations is needed to identify the true δ0. If we do not have sufficient

observations, we may not distinguish the true model via the likelihood measures. Sec-

ond, the number of significant exogenous variables also affects identifying δ0. Under

same circumstance, including additional exogenous variables means a (relatively) high

signal-to-noise ratio. If a portion of the explainable part is large, we can distinguish

the myopic and forward-looking models by the likelihood measures and estimation

results are less affected by misspecified δ’s. Third, it is easier to identify δ0 if the true

model is a myopic one. It seems that the myopic model’s complexity is much simpler,

so less information might be required to identify δ0, which is zero.
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Figure 2.2: RMSEs in estimating λ , γ, and ρ for misspecified δ

Myopic, figures for (λ, γ, ρ), respectively

Forward-looking, figures for (λ, γ, ρ), respectively
Note: We show two representative cases: (i) Myopic: δ = 0, (n, T ) = (81, 30), and
K = 2 (ii) Forward-looking: δ = 0.95, (n, T ) = (81, 30), and K = 2 We set λ = 0.2 ,
γ = 0.4, and ρ = 0.2, and other circumstances are the same as the main simulation.

The x-axis shows δs while the y-axis reports the sample log-likelihood.

2.5.4 Performance comparison: QML and NL2S methods

In this subsection, we compare estimation performance of the QML and NL2S es-

timators. For this experiment, we set (n, T ) = (81, 30), δ = 0.95, λ0 = 0.2, γ0 = 0.4,

ρ0 = 0, β1,1,0 = β1,2,0 = 0.4, β2,1,0 = β2,2,0 = 0, and other circumstances are the

same as in the main simulation. This design means no spatial time lag as well as no

Durbin regressor for simplicity. As IVs, we employ [Yn,t−1, Xnt] and its transforma-

tions by [In,Wn,W
′
n,W

′
nWn,W

2
n ]. Under this circumstance, Wn [Yn,t−1, Xnt] can play

an important role in identifying θ0.
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Figure 2.3: Performance comparison: QMLE and NL2SE

Figures for (λ, γ), respectively

Figures for (ρ, β), respectively
Note: We set (n, T ) = (81, 30), δ = 0.95, λ0 = 0.2, γ0 = 0.4, ρ0 = 0,

β1,1,0 = β1,2,0 = 0.4, no Durbin regressor, and other circumstances are the same as
the main simulation. As IVs for the NL2SE, we consider [Yn,t−1, Xnt], and its

transformations by [In,Wn,W
′
n,WnW

′
n,W

2
n ].

For each estimation method and parameter value, we report empirical bias, stan-

dard deviation, and RMSE as bar graphs (Figure 2.3).38 Except for ρ0, two methods

show the same signs of empirical biases (negative for λ0 and γ0, and positive for

β1,1,0). The NL2SE tends to yield smaller magnitude of empirical biases than that

of the QMLE (except for γ0). In terms of standard deviation and RMSE, however,

the NL2SE is worse than the QMLE. This implies the NL2SE is not efficient, so we

may need to include more IVs or consider quadratic moment conditions to improve

efficiency. If we include many moment conditions, however, it leads to additional

38We do not report results for β1,2,0, which are similar to those of β1,1,0.
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biases (Lee and Yu (2014)). Compared to the main structural parameters λ0, γ0, and

ρ0, there is the relatively small gap in efficiency in estimating β1,1,0.

In the aspect of computation costs, it seems using the NL2S method does not

reduce computation time. In the inner loop, solutions of algebraic matrix Riccati

equation Q∗n (θ) and L∗n (θ) are obtained for given θ, so ♥Ent (θ)’s are calculated. Note

that this procedure is required for both estimation methods. In the outer loop,

however, parameter searching on Θ is conducted by optimizing different statistical

objective functions. We expect reduced computation time in the outer loop by avoid-

ing calculating ln |Rn (θ)| if we use the NL2S method. Hence, the main computation

costs might be originated from the inner loop. If we have very large n, calculating

ln |Rn (θ)| can be also demanding. For this situation, using approximation methods

for ln |Rn (θ)| will be helpful.

2.6 Application

In this section, we consider an application of our model. Since our model is

based on strategic interactions stemming from fixed locations, we consider analyzing

spillover effects of local governments’ welfare spending. Two sources of strategic in-

teractions can be considered in making local policies. First, welfare recipients can

move in from or out to nearby cities to enjoy more beneficial policies. Second, the

”yardstick competition” is considered. It means that a decision-maker of a local gov-

ernment has an incentive to make an efficient fiscal decision by comparing its decision

with those of neighboring local governments. Since there exists ”vote” to evaluate the

performance of a local government by residents, this type of competitions arises. To

econometrically investigate these strategic interactions, SAR and/or SDPD models
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describe optimal reaction functions of local governments when they play a simultane-

ous move game at each period. With payoff specification (2.4), conventional SDPD

models present the vector of myopic best response functions while the intertemporal

spatial dynamic model shows the forward-looking best responses.

In this paper, we consider public safety spending competitions among counties in

North Carolina. Both myopic and forward-looking policy reaction functions are con-

sidered.39 In the case of the public safety spending competition, a decision maker shall

consider specific policy externalities. Those policy externalities arise since criminals

can commit crimes with moving to neighboring cities and they are punished in every

city. On one hand, a local government has an incentive to decrease its safety spending

to enjoy ”free-riding” effects when its neighbor spends more on public safety (substi-

tution effect). On the other hand, a local government can increase its effort (public

safety spending) to reduce overall criminal activities corresponding to a substantial

safety spending in a neighboring city (similar to income effect in consumer theory).

Yang and Lee (2017) consider a criminal’s payoff function describing an incentive to

commit a crime. Under certain conditions of payoff, they show the substitution effect

will dominate. In both complete and incomplete information settings, they establish

a SAR equation as a policy reaction function and find significant estimated substitu-

tion effects in cities’ public safety spending. However, their framework is based on a

static game, so a cross-sectional data set is employed.

We revisit this issue with a panel data set and two kinds of econometric specifi-

cations: (i) conventional SDPD model, and (ii) our intertemporal SAR model. From

39Reasons for considering our forward-looking model are that (i) a policymaker can be assumed
to be benevolent (for the regional economic growth) and (ii) he/she has an incentive to make a
forward-looking decision to keep his/her political reputation.
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Table 2.2: Descriptive statistics: counties in North Carolina
Variables Mean Standard dev. Min Max
Public safety spending (106) 20.55 26.34 0.00 237.37
Total revenue (106) 126.23 216.43 0.00 1786.45
Proportion on total expenditure 0.19 0.06 0.00 0.45
Population (103) 94.43 140.55 4.14 1035.61
Land area (km2) 1259.18 497.48 446.70 2457.92
Population density (/km2) 74.76 99.90 3.40 763.93
Median ages 40.08 4.58 23.90 51.30
Median household income (104) 4.14 0.77 2.51 7.06
Distance (km) 248.15 147.84 12.26 751.90
No. of observations 1200 - - -

Note: Sample is 100 counties in North Carolina from 2005 to 2016. Dollar amounts
are real values adjusted by the GDP deflator with base year 2009.

the North Carolina Department of State Treasurer’s website, we obtain the govern-

ment finance data. The data on counties’ demographic and economic characteristics

are from the United States Census Bureau. We have samples of 100 counties in

North Carolina from 2005 to 2016 (total 1,200 observations). We construct a panel

data set, so it might capture the dynamics of local governments’ decision-making

and their demographic/economic characteristics.40 Table 2.2 summarizes the sample

statistics. All dollar amounts are real values adjusted by the GDP deflator with the

base year 2009. We observe that counties have distinct characteristics in financial

status as well as economic/demographic characteristics. There are substantial differ-

ences among county governments’ revenues, amounts of public safety spending, and

proportion of expenditures on public safety. The maximal public safety spending is

40For some demographic and economic variables (Median ages and Median household income),
there are some missing observations from 2005 to 2008 (164 observations among 1,200 observations).
To get a balanced panel data set, we conduct the extrapolation scheme.
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237.365 million dollars, and the minimal one is zero. The number of observations

taking zero is 31 among a total of 1,200 observations (2.58%).41 In the proportion

of expenditures on public safety, the average is 19.3%, and the standard deviation is

0.06%. The largest portion is 44.8% while the smallest one is 0%. County govern-

ments in North Carolina also differ in demographic/economic status. The smallest

population is 4,127 in 2016 (Tyrrell county) while two big counties are: Mecklenburg

county (1,035,605 in 2016) and Wake county (1,007,631 in 2016). The population

density is calculated by Population
Landarea(km2)

, where the minimum and maximum areas are

respectively 446.701 km2 and 2457.924 km2. The average median age of counties is

40.08, and the median household income is 41,410 dollars.

For construction of a network Wn, we employ a concept of ”neighbors” such that

wij = w̃ij∑n

k=1
w̃ik

where w̃ij = 1 if i and j are ”neighbors”; w̃ij = 0 otherwise. To define

”neighbors”, geographic distances among counties are considered. The kilometer-base

geographic distance between two counties i and j (denoted by dij) is evaluated by the

Haversine formula:

dij = 2rE arcsin
(

sin2
(
ϕj − ϕi

2

)
+ cos (ϕj) cos (ϕi) sin2

(
τj − τi

2

))
(2.31)

where rE = 6356.752 km denotes the Earth radius, ϕi and ϕj are latitudes, and τi

and τj are longitudes in radians.42 If dij < dc where dc is a specified cutoff value,

i and j are ”neighbors”. We consider four sets of model pairs (myopic model v.s

forward-looking model) by choosing four different cutoff values, dc = 50, 65, 80, and

95. On average, a county has 4.34 neighbors if dc = 50; 7.34 neighbors if dc = 65;

10.54 neighbors if dc = 80; and 14.76 neighbors if dc = 95.

41Because the zero proportion is small, so we do not build a Tobit model for this application.

42That is, county i’s location is characterized by a pair (ϕi, τi).
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This application studies the main structural parameters. λ0, γ0, and ρ0 under

two different assumptions for agents. i.e., myopic v.s forward-looking agents. Instead

of directly estimating the time-discounting factor δ, we consider and compare two

values of δ: (i) δ = 0 (myopic agents) and (ii) δ = 0.9704 (forward-looking agents).

The value δ = 0.9704 is set by 1
1+ı̄r

where ı̄r = 0.0305 is the average annual 10-year

Treasury Constant Maturity Rate from 2005 to 2016.43 To achieve a stable process

of a decision variable, we consider counties’ public safety spending per capita as a

dependent variable. Since a local government’s public safety spending is based on its

budget, the annual revenue (per capita) of a county is considered as an explanatory

variable. Since the population size and residents’ wealth level might affect the scale of

criminal activities, a decision of a local government reflects those features. To control

them, the population density and the median household income are included in a set

of explanatory variables. We also include the median age of residents of a county.

Lastly, Durbin regressors (WnXnt) of all explanatory variables are also considered so

that they describe the externalities of explanatory variables affecting decisions. For

estimation of the structural and nuisance parameters, we consider the joint estimation

of the equations (2.29) and (2.30).44

The estimation results are summarized in four tables of Table 2.3: They are respec-

tively for various neighboring systems with dc = 50, 65, 80, and 95. For both δ = 0

and 0.9704, and all cutoff values, county government’s public safety spending (per

43In macroeconomic literature, δ is calibrated with targeting to the first moment of capital to
output ratio (about 3) or is set to be a reciprocal of the gross long-run (risk-free) interest rate.
They usually take a value from 0.95 to 0.99 if an annual data set is considered. We select the
latter approach, which implies δ (1 + ı̄r) = 1. In a conventional intertemporal consumption-saving
model, δ (1 + ı̄r) = 1 means completely smoothed consumption. For the detailed discussion, refer to
Chapter 1.3 in Ljungqvist and Sargent (2012).

44Derivation and statistical properties (including asymptotic properties) of the joint QML method
can be found in the supplement file.
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Table 2.3: Model estimation

Myopic Forward-looking
Total revenue per capita 0.1008*** (0.0054) 0.1226*** (0.0066)
Population density 0.0002 (0.0003) 0.0002 (0.0003)
Median ages 0.0035 (0.0022) 0.003 (0.0022)
Median Household income 0.0011 (0.0011) 0.001 (0.0011)
Neighboring total revenue per capita -0.0295*** (0.0096) -0.0379*** (0.0117)
Neighboring population density -0.0001 (0.0006) 0 (0.0005)
Neighboring median ages 0.0011 (0.0041) 0.0008 (0.004)
Neighboring median household income -0.0018 (0.0021) -0.0017 (0.0022)
λ -0.0309 (0.043) -0.0623 (0.0561)
γ 0.384*** (0.0252) 0.5099*** (0.069)
ρ 0.0582 (0.0515) 0.1154* (0.0662)
σ2
ε 0.003*** (0.0001) 0.0051*** (0.0003)

Conditional log likelihood -2713.5 -2713.3
AIC 4935 4934.6
BIC 5610.4 5610
No. of Obs 1200 1200
No. of neighbors 4.3400 (1.4229) 4.3400 (1.4229)
Cutoff distance 50 50

Note: The conditional log likelihood is the sample log likelihood for Ynt given Xnt.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1
percent levels are respectively marked by *, **, and ***.
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Myopic Forward-looking
Total revenue per capita 0.1012*** (0.0053) 0.1226*** (0.0066)
Population density 0.0002 (0.0003) 0.0002 (0.0002)
Median ages 0.0032 (0.0022) 0.0027 (0.0021)
Median Household income 0.0011 (0.0011) 0.001 (0.0011)
Neighboring total revenue per capita -0.0394*** (0.0129) -0.053*** (0.0157)
Neighboring population density -0.0001 (0.0006) 0 (0.0005)
Neighboring median ages -0.001 (0.0054) -0.001 (0.0053)
Neighboring median household income -0.0027 (0.0027) -0.0026 (0.0028)
λ -0.0308 (0.0559) -0.0321 (0.072)
γ 0.3796*** (0.0251) 0.5228*** (0.0656)
ρ 0.0747 (0.0657) 0.1486* (0.0833)
σ2
ε 0.003*** (0.0001) 0.0051*** (0.0003)

Conditional log likelihood -2712.9 -2712.5
AIC 4932.2 4931.3
BIC 5607.6 5606.7
No. of Obs 1,200 1,200
No. of neighbors 7.3400 (2.1937) 7.3400 (2.1937)
Cutoff distance 65 65

Note: The conditional log likelihood is the sample log likelihood for Ynt given Xnt.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1
percent levels are respectively marked by *, **, and ***.
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Myopic Forward-looking
Total revenue per capita 0.1023*** (0.0054) 0.1239*** (0.0066)
Population density 0.0002 (0.0003) 0.0002 (0.0002)
Median ages 0.0032 (0.0022) 0.0028 (0.0021)
Median Household income 0.0011 (0.0011) 0.001 (0.0011)
Neighboring total revenue per capita -0.052*** (0.0158) -0.0667*** (0.0191)
Neighboring population density -0.0003 (0.0007) -0.0002 (0.0006)
Neighboring median ages -0.0028 (0.0074) -0.0031 (0.0072)
Neighboring median household income -0.0041 (0.0034) -0.0036 (0.0036)
λ 0.0142 (0.0657) 0.0058 (0.0845)
γ 0.3739*** (0.0251) 0.5081*** (0.065)
ρ 0.0705 (0.0784) 0.1726* (0.0984)
σ2
ε 0.003*** (0.0001) 0.0051*** (0.0003)

Conditional log likelihood -2712.9 -2712.5
AIC 4927.8 4927.1
BIC 5603.3 5602.5
No. of Obs 1,200 1,200
No. of neighbors 10.5400 (3.0465) 10.5400 (3.0465)
Cutoff distance 80 80

Note: The conditional log likelihood is the sample log likelihood for Ynt given Xnt.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1
percent levels are respectively marked by *, **, and ***.

65



Myopic Forward-looking
Total revenue per capita 0.1031*** (0.0054) 0.1237*** (0.0066)
Population density 0.0003 (0.0003) 0.0002 (0.0002)
Median ages 0.0033 (0.0022) 0.0028 (0.0021)
Median Household income 0.0012 (0.0011) 0.0011 (0.0011)
Neighboring total revenue per capita -0.0673*** (0.0187) -0.082*** (0.0226)
Neighboring population density -0.0006 (0.0008) -0.0004 (0.0008)
Neighboring median ages -0.0044 (0.0088) -0.0041 (0.0086)
Neighboring median household income -0.0028 (0.0042) -0.0024 (0.0044)
λ 0.0434 (0.0805) 0.027 (0.1049)
γ 0.3616*** (0.0252) 0.506*** (0.0661)
ρ 0.1607 (0.1002) 0.1696 (0.1255)
σ2
ε 0.003*** (0.0001) 0.0051*** (0.0003)

Conditional log likelihood -2713.1 -2713.2
AIC 4927.1 4927.4
BIC 5602.5 5602.8
No. of Obs 1,200 1,200
No. of neighbors 14.7600 (4.1709) 14.7600 (4.1709)
Cutoff distance 95 95

Note: The conditional log likelihood is the sample log likelihood for Ynt given Xnt.
AIC and BIC are the values of information criteria. Theoretical standard deviations
are in parenthesis. Estimates that are significant at the 10 percent, 5 percent, and 1
percent levels are respectively marked by *, **, and ***.
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capita) is persistent itself, the total revenue is significantly positive, but the neigh-

boring total revenue is significantly negative. The current competition parameter λ0

is negative for dc = 50 and 65 while it is positive for dc = 80 and 95. However, those

are not significant. For the learning and/or diffusion parameter ρ0, the sign is posi-

tive for all cases, but it is significant only for the forward-looking agent model (except

dc = 95) at the 10% significance level. Thus, for the forward-looking agent model,

this result indicates that the learning and diffusion effects diminish when dc char-

acterizing ”neighbors” becomes 95 kilometers. The population density, median age,

median household income and their Durbin regressors do not have significant effects.

To evaluate the model’s performance, we consider three likelihood measures: sample

conditional log-likelihood values45, values of Akaike information criterion (AIC) and

Bayesian information criterion (BIC). In choosing a spatial weight matrix, Chapter

2 in Lee (2008) suggests using the goodness-of-fit measures (e.g., adjusted R2 or log-

likelihood). Via Section 2.5, we provide evidence for using likelihood measures in

selecting δ. Based on those likelihood measures, hence, the forward-looking agent

model with cutoff value dc = 80 is the best one among the 8 model specifications.

For each cutoff value dc, the forward-looking agent model is more favorable than the

myopic model except dc = 95. For both myopic and forward-looking models, dc = 80

is selected in general as preferred.46

Here we provide economic interpretations based on the forward-looking agent

model with dc = 80. We can recover the cost function: c (yit, yi,t−1) = 0.2541 (yit − yi,t−1)2+

45It means the log-likelihood function conditional on exogenous variables.

46However, AIC selects dc = 95 in case of the myopic model.
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0.2459y2
it. The marginal direct effect of increasing previous own public safety spend-

ing (per capita) by one thousand dollars on the current one is 0.508 thousand dollars.

The marginal direct effect of increasing previous neighbors’ public safety spending

(per capita) by one thousand dollars is ρ0
∑n
j=1wij = ρ0 = 0.1726 thousand dollars.47

Consider the direct marginal effects of own and neighbor’s revenues on the public

safety spending. When the current revenue (per capita) of a county increases by one

thousand dollars, it induces an increment of 0.124 thousand dollars directly on its

public safety spending (per capita). On the other hand, the direct effect of neigh-

bors’ revenues (per capita) by increasing one thousand dollars will decrease the public

safety spending (per capita) by 0.067 thousand dollars. It provides evidence of the

negative externalities of revenues on the public safety spending.

Since our intertemporal SAR equation describes an equilibrium system, the cu-

mulative marginal effects of an increase in the total revenue can be evaluated. The

formula of the cumulative marginal effects from j’s kth-exogenous characteristic on

i’s decision is

∂yit
∂xjt,k

=
[
R−1
n (In + δDn,kAk,n) (β1,k,0In + β2,k,0Wn)

]
ij

(2.32)

where Dn,k =
∑∞
l=1 δ

l−1Dn,lA
l−1
k,n for each k = 1, · · · , K. Correspondingly, the cumu-

lative own marginal effects are [R−1
n (In + δDn,kAk,n) (β1,k,0In + β2,k,0Wn)]ii. On the

other hand, the direct neighboring marginal effect is β2,k,0wij while the direct own

marginal effect is β1,k,0. Equation (2.32) says the cumulative marginal effects differ

across spatial units and heterogeneity of these comes from the network Wn. To in-

vestigate the cumulative effect, we select two specific counties based on the number

of neighbors. Based on dc = 80, Iredell county has the largest number of neighbors

47For specific j’s effect on i’s decision, it will be ρ0wij = ρ0
Numberofi′sneighbors .
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Table 2.4: The direct and cumulative effect of increasing the total revenue (per capita)
by one thousand dollars

Iredell county Dare county
Direct Own effect 0.1239 0.1239

Neighboring effect -0.0039 -0.0222
Cumulative Own effect 0.1046 0.1045

Neighboring effect -0.003 -0.0167
No. of neighbors 17 3

(17 neighbors) while Dare county has the smallest number of neighbors (3 neighbors).

Figure 2.4 describes neighbors of the two counties.

Figure 2.4: Neighbors of the two counties (based on dc = 80)

Table 2.4 shows direct own/neighboring effects and cumulative own/neighboring

effects for the two counties. First, magnitudes of neighboring effects (both direct and

cumulative) are bigger for the isolated county. Second, the negative direct neighboring
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effects are smaller than the negative neighboring cumulative effects. For Dare county,

that negative effect is weakened by 29.28% while 23.07% of the effect is alleviated for

Iredell county in the equilibrium. Third, the positive direct effects are also weakened

in the equilibrium. For Dare county, the positive own effect is alleviated by 15.66%

and 15.58% of the positive effect is weakened for Iredell county. These results might

be affected by a structure of Wn and structural parameters θ0.48

A notable advantage of using dynamic models is doing impulse response analyses.

The effect of changing j’s tth-period kth-exogenous characteristic xjt,k on i’s (t+h)th-

period economic activity yi,t+h (h = 1, 2, · · ·) is characterized by the impulse response

function:

∂ [Et (Yn,t+h)]i
∂xjt,k

=

 h∑
g=0

Ah−gn R−1
n (In + δDn,kAk,n) (β1,k,0In + β2,k,0Wn)Agk,n


ij

.

(2.33)

Using formula (2.33), we plot the impulse response functions of own effects
∂[Et(Yn,t+h)]

i

∂xit,k

and neighboring effects
∂[Et(Yn,t+h)]

i

∂xjt,k
(j is a neighbor of i) for the two counties.

First, observe the impulse response functions of own effects. Note that Iredell

county’s own cumulative effect (impulse response function at h = 0) is slightly larger

than that of Dare county (see Table 2.4). However, there is a crossover at h = 4.

Since two impulse responses are so close in this case, we only plot the impulse response

functions of the two counties between h = 4 and 5 to show the intersecting point.

It means Dare county’s own effects will be larger than that of Iredell county after

h = 4. Second, we capture the overshooting effects for both counties. The negative

neighboring effects are alleviated by h = 2. After h = 3, the neighboring effects

become positive and they are diminishing when h increases. In case of Dare county,

48Additional comments for this issues can be found in the supplement file of Jeong and Lee (2018).
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Figure 2.5: Impulse response functions: own effects (left) and neighboring effects
(right)

that overshooting effect is more distinct relative to that of Iredell county. It seems

that the negative neighboring effects diminish over time combined with other positive

effects: self-reinforcing effects, positive diffusion effects, and positive own revenue

effects. Since we consider a row-normalized Wn, nonzero elements in the row of Wn

for Dare county are much larger than those of Iredell county. This fact may be a

primary reason for distinct overshooting effects in case of Dare county.

Last, we want to deliver policy implications by conducting welfare analyses. We

consider a situation that the North Carolina state government gives some amount of

subsidy (per capita) to a county in 2016. So, the initial period is set to be 2016 in

this analysis. Let ∆x denote the amount of subsidy and k = 1 for the index of a

county’s total revenue. Then, we generate a new regressor XnT,1 (denoted by ẌnT,1)

ẌnT,1 = [x1,T,1, · · · , xj,T,1 + ∆x, · · · , xn,T,1]′ (2.34)
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Table 2.5: Changes of social welfare if a countys total revenue (per capita) increases
by one thousand dollars

Case 1 Case 2 Case 3 Case 4

Welfare change ∆̂W -0.0013 0.0097 0.0121 0.0918

Note: We select four specific counties: (Case 1) Mecklenburg county (richest and the
most populated county), (Case 2) Tyrrell county (poorest and the least populated
county), (Case 3) Iredell county (the largest number of neighbors (17 neighbors)),
and (Case 4) Dare county (the most isolated one (3 neighbors)).

describing a changed economic environment, where j denotes a subsidy recipient.

Note that the realized pair {YnT , XnT,1} and the generated one
{
YnT , ẌnT,1

}
yield

distinct dynamics, so they have different expected lifetime values as well as social

welfare. Using the bias corrected QMLE (θ̂cml,nT ), we can compute a change of welfare

∆̂W = ♥WF
({
YnT , ẌnT,1

}
; θ̂cml,nT

)
− ♥WF

(
{YnT , XnT,1} ; θ̂cml,nT

)
(2.35)

where ♥WF ({YnT , XnT,1} ; θ) stands for the welfare measure defined by the summation

of counties’ (expected) lifetime payoffs with the initial value {YnT , XnT,1} and pa-

rameter θ. ♥WF
({
YnT , X̃nT,1

}
; θ̂cml,nT

)
captures social welfare when a county receives

some subsidy while ♥WF
(
{YnT , XnT,1} ; θ̂cml,nT

)
evaluates social welfare in a given re-

alized economic environment. The difference between ♥WF
({
YnT , X̃nT,1

}
; θ̂cml,nT

)
and

♥WF
(
{YnT , XnT,1} ; θ̂cml,nT

)
will capture a welfare change corresponding to the change

of policy.49

For convenience of analysis, we only select four specific counties: (Case 1) Meck-

lenburg county (richest and the most populated county), (Case 2) Tyrrell county

49The detailed derivation and specification can be found in the supplement file of Jeong and Lee
(2018).
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(poorest and the least populated county), (Case 3) Iredell county (has the largest

number of neighbors (17 neighbors)), and (Case 4) Dare county (has the smallest

number of neighbors (3 neighbors)). The amount of subsidy (per capita) from the

state government is set to be one thousand dollars (i.e., ∆x = $1, 000). Table 2.5

reports ∆̂W ’s for Cases 1 - 4. First, we observe that the number of neighbors affects

social welfare more than population and/or level of revenues in our framework. When

the state government increases Mecklenburg county’s revenue (per capita) by $1,000,

social welfare decreases by 0.0013 welfare measure. This negative welfare effect might

come from the negative externalities of revenues on the public safety spending. Wel-

fare increases for each of the other three cases. By comparing Cases 3 and 4, giving

subsidy to the county whose number of neighbors is small increases social welfare

more in the sense of public safety spending.

2.7 Conclusion

In this paper, we consider the specification and estimation of a spatial intertem-

poral competition model in a dynamic (differential) game setting. Agents are linked

in a given spatial network. To characterize agent’s payoff function, a linear-quadratic

one is considered. By the MPE with a unique NE equation, we build an econometric

model and consider model identification and estimation. In particular, we investigate

the QML estimator. We obtain consistency and asymptotic normality of the QML

estimator under some regularity conditions. Due to the presence of many nuisance

parameters, bias correction of the QML estimator is needed. To fortify those results

and investigate finite sample performance of the estimator, we conduct Monte Carlo

simulations. From the simulations, the QML estimator and its bias-correction reveal
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reliable performance. In particular, for small T , the bias corrected QML estima-

tor is recommended. For a misspecified conventional SDPD model, which ignores

the intertemporal decision, significant empirical biases of estimates and low cover-

age probabilities are detected. Using the established model, we analyze strategic

spillover effects of counties’ public safety spending in North Carolina. We estimate

structural parameters and compare the estimation results with those from the conven-

tional SDPD model. First, our intertemporal SAR specification turns out to be more

statistically favorable than the corresponding traditional SDPD model. Second, we

find some evidence of persistency of public safety spending, positive learning and/or

diffusion effects from previous neighbors’ decisions, positive effects of own total rev-

enue, and negative externalities from neighboring total revenues. An overshooting

effect is captured for the case of negative neighboring revenue effect. In the welfare

analysis, we observe giving subsidy to counties whose number of neighbors is small

can be effective in the sense of public safety spending.
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Chapter 3: Spatial dynamic models with intertemporal

optimization II: Coevolution of economic activities and

networks

3.1 Introduction

For many economic variables, cross-sectional or time series dependencies have been

observed. For example, Case et al. (1993) find that a state government’s expenditure

is positively correlated with its neighbors’ expenditures. In this paper, by focusing

on interactions among rational agents (characterized by spatial units), we establish

a new spatial dynamic panel data (SDPD) model. The purpose of our model is to

explain both dependencies with time-evolving endogenous spatial networks by eco-

nomic reasonings. That is, it accounts for the co-dynamics of (i) interrelated actions

of rational agents and (ii) their network relationships. To construct a model with

a rigorous economic foundation, two aspects of rationality are considered. Because

agents may live multi-periods when we focus on a panel data set, their economic

decisions do not arise once but for every period. Hence, we assume that agents are

forward-looking instead of myopic. We formulate their interactions via a spatial net-

work, which leads to a game played on a spatial network. The network game can
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characterize optimal actions by the Nash equilibrium (NE) concept and our estima-

tion equation will specify their optimal actions. Since our target is a long panel data

set showing multiple agents (n denotes the number of agents) with long decision-

making periods, (i) strength of connections of a spatial network represented by an

n × n matrix Wnt might be changing over time t50, and (ii) it can be affected by

economic actions. Corresponding research questions are verifying sources of endoge-

nous spatial network evolution and relating this issue to network interactions. We

formulate an estimation equation by considering both problems at the same time,

namely, (i) network interactions, and (ii) a network formation. In consequence, our

econometric model gives a tool to explain spatial/time dependencies among agents’

actions as well as time-varying spatial networks affected by agents’ actions.

As an economic foundation for our econometric model, first, we introduce a the-

oretical model that establishes a connection between agents’ optimal actions and

evolution of spatial networks by the forward-looking agent assumption.51 A motivat-

ing example is studying interdependencies of local governments’ expenditures. For

example, an agent is a state government, and it selects an amount of health ex-

penditure for each period by considering neighboring states’ current and expected

future health expenditures with their demographic characteristics. We formulate a

network interaction model by internalizing agents’ decisions on network links. In

50Empirical evidence for time-varying relationships among agents can be found in Tables 1 and 2
in Goldsmith-Pinkham and Imbens (2013). Using the Add Health survey, they report 534 students’
friendship links at two points in time (Wave I and Wave II). In their Table 2, we observe that 1.17%
of friendship links are changed.

51A recent study in the coevolution of agents’ actions and networks is Han, Hsieh, and Ko (2019).
There are two different features of our model. First, our key mechanism generating coevolution is
the forward-looking agent assumption. The mechanism of Han, Hsieh, and Ko (2019) is the dynamic
feature of latent variables affecting both network interactions and formation. Second, we focus on
the case of spatial networks rather than friendship networks.
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detail, agents’ current actions (automatically) construct their future network links.

For this, we assume that a spatial network Wnt is composed of nonnegative val-

ues exhibiting (relative) intensities of interactions and differentiable with respect to

agents’ actions. Fixed geographic locations of agents basically form a spatial net-

work Wnt. However, the policy interdependence dynamically arises via Wnt driven by

agents’ economic similarities52 in addition to geographic similarities. If spatial net-

works evolve with time-varying economic indicators, which are affected by optimal

actions of forward-looking agents, this gives a recursive structure and we might face

an issue on time-varying endogenous spatial networks.

To describe endogenously changing spatial networks, we establish a differential

network game model. For identification of parameters about agents’ preferences, we

consider a parametric payoff function, which is a dynamic extension of Ballester et al.

(2006). The designed payoff function contains a time-varying spatial network Wnt,

and rivals’ actions can affect an agent’s payoff via Wnt. The theoretical model for

our econometric specification is based on the payoff function with the forward-looking

agent assumption. For each period, state variables consist of recent past actions and

currently realized exogenous characteristics. We assume complete information up to

the current period for agents’ information to form expectations of future exogenous

characteristics. Based on the payoff specification and the information set, a lifetime

payoff is defined by a weighted sum of expected per period payoffs with a time-

discounting factor. Each agent’s current action can affect his/her future economic

52Economic indicators showing the economic status of agents construct economic similarities. In
the case of regional expenditure decisions, a regional income level can be an economic indicator.
As an example of economic similarities, hence, a reciprocal value of an absolute difference of two
different regional income levels can be considered.
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indicators forming future spatial network links. Compared to Jeong and Lee (2018)53,

even though the payoff function is still linear-quadratic (LQ), our specification has

an additional nonlinear channel with that agents’ current actions can affect their

future payoffs via future spatial network links by evolution of economic similarities

(indicators). In consequence, feedback effects can arise from that (i) agents’ current

actions help to form future spatial network links, and (ii) (expected) future spatial

network links also influence their current actions due to the forward-looking agent

assumption. Therefore, our model provides a connection between optimal actions of

forward-looking agents and their time-evolving spatial networks.

Second, we provide a new econometric model for a spatial panel data set describing

the theoretical specification. Since, in this paper, networks (Wnt) are allowed to

evolve with actions, our model does not belong to a LQ dynamic programming. As a

result, it is difficult to derive optimal actions in an explicit functional form and our

econometric model belongs to a nonlinear SDPD model with endogenous networks.

Instead of deriving the optimal action vector, we characterize optimal actions via

Euler equations for an estimation purpose (Hansen and Singleton (1982)). Since

Euler equations can show the relationship among past, current and expected future

optimal actions, we can study the marginal effect of changing a current action on

future payoffs through changing future spatial network links. By estimating some

structural parameters in Euler equations, we can detect the existence of co-dynamics

between agents’ current actions and their future spatial network links. The derived

Euler equations involve infinite expected future actions since an agent’s current action

53Under an intertemporal optimization specification based on a linear-quadratic (LQ) pyoff func-
tion, but with an exogenous spatial network, they derive a linear optimal decision vector in state
variables via a LQ programming setting.
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nonlinearly affects his/her own and rivals’ future period payoffs. For a practical use,

we approximate some (expected) future components in an Euler equation by the LQ

perturbation method54 and obtain a tractable measure for estimation. With linear

moment orthogonality conditions, the nonlinear two-stage least squares estimation

(NL2S) method can be considered. To improve estimation efficiency, in addition to

instrumental variables (IV) moments for orthogonality conditions, we also consider

quadratic moment conditions, which capture spatial correlation. By those moment

conditions, we study the GMM estimation method for our model.

With both large numbers of spatial units and time series periods, under the in-

creasing domain asymptotic framework, consistency and the asymptotic distribution

of the GMM estimator (GMME) are studied. As dependent variables of our model

(agents’ optimal actions) can be serially and spatially correlated, but might not be

a linear function of disturbances, we employ the notion of spatial-time near epoch

dependence (NED) in Jenish and Prucha (2012) to establish the law of large numbers

(LLN) for the GMME. In order to derive the asymptotic distribution of the GMME,

we utilize a central limit theorem (CLT) for a LQ form of martingale difference ar-

rays based on the C-stable convergence concept. In Kuersteiner and Prucha (2013,

2018), this notion is a joint convergence concept of main statistics and a C-measurable

random variable. Then, the asymptotic distribution of the GMME would be normal

conditional on C. An advantage of taking this concept is to analyze asymptotic prop-

erties of main statistics conditional on unspecified exogenous components stemming

from spatial network formation. From the derived asymptotic distribution, we observe

the existence of asymptotic biases due to incidental parameters due to individual and

54Since the large number of agents (n) is targeted, we need to consider a computation method
which is free to a curse of dimensionality.
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time effects and, so we suggest a bias correction method. For testing whether spatial

networks evolve exogenously or not, the Wald test can be applied. The Wald test

statistic follows the asymptotic unconditional chi-square distribution.

Lastly, we apply our econometric model to empirically investigate policy interde-

pendence of U.S. states’ health expenditures. The state’s health expenditure yields

its human capital accumulation potentially improving regional future economic sta-

tus. To implement our model, we should know (or prespecify) a formation function of

spatial networks to evaluate the marginal effect of changing a current action on future

spatial network links. For practical reasons, hence, we suggest an estimation method

to specify formation of spatial networks by using flow variables (e.g., state-to-state

migration flows).55 Coefficients of the spatial (for geographic and economic distances)

network formation model mean elasticities of intensities of interactions. Under this

specification, 1% change in states’ economic distances yields -0.1313% change in in-

tensities of interactions. A positive spatial spillover effect is captured in states’ health

expenditures, but its estimated coefficient is not significant. The Wald statistic shows

that the coevolution of states’ health expenditures and their spatial networks is not

significant. We observe that health expenditures of U.S. states are persistent. A

positive effect of federal grants on the state government’s marginal payoff is detected.

3.2 Model specification

There are two main components in our analysis. The first is a spatial econometric

model specification.56 In this section, we have two issues to rigorously formulate a

55Such formulations are many as pointed out in Qu and Lee (2018), which considers flows with
multiple fixed effects for estimation.

56Another aspect is statistical theories for spatial econometric models (e.g., large sample theory)
due to the dependencies generated by spatial networks. This issue will be discussed in Section 3.4.
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spatial econometric model. The first issue is to reveal how spatial networks shape

forward-looking agents’ actions. The second issue is how agents’ actions affects spatial

network links in the aspect of network interaction models.

At first, we introduce a spatial dynamic panel data (SDPD) model and a cor-

responding payoff function specification justifying it. Second, the agent’s lifetime

problem will be designed based on the payoff function. That is, we build a theo-

retical foundation of an estimation equation based on the payoff function. Third,

we will characterize optimum actions by Euler equations to construct the estimation

equation.

3.2.1 Related literature and payoff specification

Suppose we have a set of panel data {Ynt, Xnt} where Ynt = (y1t, · · · , ynt)′ de-

notes an n × 1 vector of (continuous type) dependent variables at time t and Xnt =

(x1t, · · · , xnt)′ with xit = (xit,1, · · · , xit,K)′ stands for an n × K matrix of explana-

tory variables. Using a panel data set, we may capture dynamics of individual units’

actions (or outcomes). As there are interactions among individual units and these in-

teractions can be specified by spatial networks, SDPD models formulate dependence

in individuals’ actions (or outcomes) across individuals and over time periods.57 Un-

der this framework, each unit i is a spatial unit having its innate and fixed geographic

location, e.g., a local government. In the conventional regional science literature, spa-

tial network links are formed by spatial units’ physical distances, which indicate that a

57Examples are Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee and Yu (2010,
2012, 2014), and Qu et al. (2017).
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spatial weights matrix is fixed over time. However, if intensity of network interactions

is affected by economic consequences, spatial networks might vary over time.58

If there are n spatial units, an n × n matrix Wnt captures the tth-period socio-

economic relationships among units. Each non-diagonal component of Wnt shows a

(socio-economic) relationship between two spatial units at time t. In the conventional

spatial econometrics literature, one assumes all entries in Wnt are nonnegative. Ele-

ments of Wnt only show relative magnitudes of interactions. By assuming all diagonal

entries in Wnt (for any t) to be zero, we exclude the self-influence. A specification of

SDPD models is59

Ynt = λ0WntYnt + γ0Yn,t−1 +Xntβ0 + ent, t = 1, · · · , T (3.1)

where (λ0, γ0, β
′
0)′ denotes a set of parameters, and ent is an n-dimensional vector

of unobservables.60 The time-varying Wnt can potentially come from time-evolving

economic indicators, which might be affected by individual units’ actions (or out-

comes). Let Znt = (Znt,1, · · · , Znt,P ) (where Znt,p = (z1t,p, · · · , znt,p)′ for p = 1, · · · , P

and zit = (zit,1, · · · , zit,P ) for i = 1, · · · , n) be an n× P matrix of economic indicators

at time t. We allow that some strictly exogenous indicators in Znt can be components

of forming Wnt. All indicators in Znt are assumed to be continuous type variables for

58Examples of employing economic variables in the empirical regional network formation are
plenty, e.g., Case et al. (1993), and Figlio et al. (1999).

59For SDPD models and their statistical properties, refer to Yu et al. (2008), and Lee and Yu
(2010, 2012, 2014). Lee and Yu (2015) provide a review of this model structure. The diffusion effect
ρ0Wn,t−1Yn,t−1 might be included in equation (3.1). In this paper, we consider the case of ρ0 = 0
for model’s simplicity.

60ent can contain individual/time fixed/random effects and idiosyncratic disturbances.
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technical simplification.61 For the formation of Znt, we consider the linear specifica-

tion based on Han and Lee (2016):62

Znt = Yn,t−1ψ0 + Vnt (3.2)

where ψ0 = (ψ1,0, · · · , ψP,0) is an 1 × P vector of parameters showing dependencies

upon the past actions Yn,t−1, and Vnt denotes an n× P matrix of exogenous compo-

nents, which may consist of observed as well as unobserved variables.63 Specification

(3.2) means that Wnt is generated by Znt, which is driven by Yn,t−1.64 If ψp,0 = 0

for some p, Znt,p would be a strictly exogenous indicator forming Wnt. To illustrate

ramifications from Yn,t−1, we represent Wnt [Yn,t−1] as the tth-period spatial network

and wt,ij [yi,t−1, yj,t−1], wt,i. [Yn,t−1] and wt,.i [Yn,t−1] denote, respectively, the (i, j)th-

element, ith-row, and ith-column of Wnt [Yn,t−1].65

A properly modified equation (3.1) can be justified by a myopic dynamic game

with n agents who have the LQ payoff: the agent i’s tth-period payoff (denoted by uit

later on) is

ui(yit, Y−i,t, Yn,t−1, ηit) = (ηit + λ0wt,i. [Yn,t−1]Ynt) yit − c(yit, yi,t−1) (3.3)

61In our framework, the network link wt+1,ij [yit, yjt] obtains differentiability by considering a
continuous type economic indicators zi,t+1 and zj,t+1. However, some indicators (potentially con-
structing agents’ social distances) might be dichotomous. For example, we can consider the discrete
political metric: dp (i, j) = 0 if i and j support the same political party; dp (i, j) = 1 otherwise. We
leave this issue for future research.

62Nowadays, we see some empirical applications which consider flow variables zij,t affecting for-
mation of Wnt (Qu and Lee (2018)). For example, zij,t can be a linear function of yit, yjt, and other
variables. We leave this issue for future works.

63We focus on the relationship between Znt and Yn,t−1 and do not have a detailed specification
on Vnt. The Vnt can contain agents’ observable/unobservable exogenous characteristics (both time-
invariant and variant ones) as well as common economic shocks (time factors). In the estimation
part, we introduce how to relate {Vnt} to the GMM estimator’s asymptotic properties.

64Note that zi,t+1 is only affected by own tth-period action yit (no spatial interaction effects from
neighbors’ activities yjt’s).

65The argument Yn,t−1 in those functions emphasizes its important role in the network formation.
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where Y−i,t = (y1t, · · · , yi−1,t, yi+1,t, · · · , ynt)′ and c(yit, yi,t−1) = γ0
2

(yit − yi,t−1)2 +

1−γ0
2
y2
it with 0 < γ0 < 1. At time t, agent i selects his/her action yit to maximize

uit. This is a myopic dynamic extension of the LQ payoff discussed by Ballester et al.

(2006), and Calvo-Armengol et al. (2009), which concern about static models.66 In

the LQ network game, equation (3.1) shows linear best replies. The ηit presents i’s

tth-period exogenous heterogeneity and, for all n agents, its vector version is denoted

by ηnt = (η1t, · · · , ηnt)′ at time t.67 The ηit contains time invariant (ηivi ) and time vari-

ant (ηvit) individual characteristics affecting decision-making. They are public to all

agents (if they belong to the information set) but some of them might not be observ-

able by econometricians. The parameter λ0 describes strategic interactions among

agents’ current economic activities. c (·, ·) denotes a cost function in agents’ actions

and consists of two components: (i) a dynamic adjustment cost and (ii) an agent’s

cost of selecting activity level yit. The coefficient γ0 captures a relative weight for

the adjustment cost, so high γ0 yields persistency of agent’s action. In consequence,

equation (3.1) would characterize NE activities if agents were assumed to completely

discount future payoffs, i.e., myopic behavior Focusing on studying regional policies

(see Section 3.5), payoff (3.3) describes a local government’s objective function (refer

to Brueckner (2003) and Revelli (2005)).

66Payoff (3.3) shows the local-aggregate model (i.e., yit
∑n
j=1 wt,ij [yi,t−1, yj,t−1] yjt) Recently,

Ushchev and Zenou (2018) introduce a local average model and its interpretations as a theoreti-
cal foundation of the SAR model. The local average means a ”social norm”, and this specification
imposes a penalty when an agent takes a large deviation from the social norm. In a static game
setting, the two theoretical specifications yield the same econometric model specification. In our
forward-looking agent framework, however, those might generate different econometric models. In
this paper, we take a notion of the local aggregate model since there is a limitation in interpreting
the parameter λ0 (λ0 > 0) under the notion of the local average model.

67In particular, equation (3.1) comes from supposing ηnt = Xntβ0 + ent for each t.
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3.2.2 Agent’s intertemporal choice problem

In this subsection, we set up the forward-looking agent’s lifetime problem based

on periodic payoff (3.3). We introduce a time-discounting factor δ ∈ [0, 1) to make

different weights on future economic choices to distinguish them from the current one.

An agent’s lifetime payoff (3.6) below is defined by the discounted summation (by δ)

of per period payoffs (3.3). There are four different features compared to a conven-

tional macroeconomic dynamic model: (i) the existence of network interactions, (ii)

network heterogeneities stemming from spatial location’s heterogeneities, (iii) linear

(via adjustment costs) and nonlinear (via future network links) effects of the current

action on (expected) future marginal payoffs68, and (iv) a large number of spatial

units (large n).

With going beyond a forward-looking spatial interaction model, an agent knows

his/her current action (yit) will influence the next future network links via (zi,t+1) by

equation (3.2). As there are uncertainty in future exogenous characteristics

(ηn,t+1, ηn,t+2, · · ·), each agent would form expectations on future events based on

their currently available information. To specify expectation for uncertainty, let Bit

be the tth-period information set of agent i’s perceivable events. Below are definitions

of an agent’s intertemporal choice problem (ICP) and relevant concepts taking into

account on interactions with other agents. σ (·) denotes the sigma-field generated by

arguments inside. The superscript ”∗” denotes agents’ optimal actions.

68This payoff belongs non-separable preferences. Among them, our model specification is similar to
habit formation models (e.g., Fuhrer (2000)). In macroeconomic dynamic models, a payoff function
is usually specified by a time-separable one (e.g., Hansen and Singleton (1982)).
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Definition 3.2.1 (Intertemporal choice problem (ICP)) (i) (Information set)

For each i at time t, Bit is specified by

Bit = σ
(
{yjs}nj=1 |

t−1
s=−∞,

{
ηivj
}n
j=1

,
{
ηvjs
}n
j=1
|ts=−∞

)
. (3.4)

(ii) (Process of ηvnt) η
v
nt = (ηv1t, · · · , ηvnt)

′ follows a linear Markov process:

ηvnt = ρη,0η
v
n,t−1 + ξnt (3.5)

where |ρη,0| < 1, and ξnt ∼ i.i.d.N (0n×1,Ωξ) with Ωξ > 0.69

(iii) Given (Yn,t−1, ηnt), agent i (i = 1, · · · , n) maximizes his/her expected lifetime

payoff by selecting yit for each t: that is,

{y∗is}
∞
s=t = arg max

{yis}∞s=t

{
ui(yit, Y−i,t, Yn,t−1, ηit)

+
∑∞
s=1 δ

sE (ui(yi,t+s, Y−i,t+s, Yn,t+s−1, ηi,t+s)|Bit)

}
. (3.6)

Definition 3.2.1 means that Bit contains all previous actions and exogenous hetero-

geneities up to t. This setting means complete information up to the current period

t. In Definition 3.2.1 (ii), the linearity assumption with parameter ρη,0 in ηvnt is for

simplicity.70 For agents’ innate (time-invariant) characteristics ηivn = (ηiv1 , · · · , ηivn )
′
,

they are known to all agents. Key parts of Definition 3.2.1 (ii) are that (a) ηvnt only

depends on ηvn,t−1 and ξnt (not other part of history) and (b) ξnt and ηvn,t−1 are inde-

pendent. Since (a) uncertainty only arises by future exogenous heterogeneities ηvn,t+1

and (b) ηvnt evolves by equation (3.5), E
(
ηvn,t+1|Bit

)
= E

(
ηvn,t+1|ηvnt

)
= ρη,0η

v
nt for all

i and t. Given (Yn,t−1, ηnt), all agents expect that future actions will be realized as

69Since the agent’s lifetime value would not be linear-quadratic in state variables, we assume
normality of ξnt to have a linear conditional expectation E

(
ηvn,t+1|Bit

)
. This assumption will be

relaxed in the estimation part. For example, the likelihood function can be formed for estimation
but would be quasi-likelihood if ξnt were not really normally distributed.

70Or, we can generalize specification (3.5) to a case of finite numbers of parameters governing the
process of ηvnt.
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NEs, in that all agents form same expectations on future actions. Hence, we have

E (·|Bit) = E (·|Yn,t−1, ηnt) for all i and t, where (Yn,t−1, ηnt) represents the initial

condition at time t. As agents’ rational expectations can be characterized by the

mathematical expectation, we define the conditional expectation operator at time t

by Et (·) = E (·|Yn,t−1, ηnt) for simplicity.

By Definition 3.2.1 (iii), we can specify the agent i’s lifetime value V ∗i (·): given

(Yn,t−1, ηnt)

V ∗i (Yn,t−1, ηnt) = ui(Y
∗
nt, Yn,t−1, ηit) +

∞∑
s=1

δsEt
(
ui(Y

∗
n,t+s, Y

∗
n,t+s−1, ηi,t+s)

)
(3.7)

where Y ∗nt = (y∗1t, · · · y∗nt)
′ at time t. By observing equation (3.7), agent i at time

t chooses yit with considering (a) the adjustment cost γ0
2

(yi,t+1 − yit)2 and (b) the

future network links wt+1,ij [yit, yjt], which are included in the (t+ 1)th-period payoff.

Hence, there exist ”feedback effects” due to the forward-looking assumption in de-

cision makers: the optimal actions Y ∗nt of all agents influence the future network by

equation (3.2) and in turn are affected by the (expected) future network Wn,t+1 [Y ∗nt].

If an agent completely discounts future payoffs, feedback effects would not arise and

the resulted model would be the myopic one. That is, the relationship between Y ∗nt

and Wn,t+1 [Y ∗nt] will be simultaneous if agents are forward-looking while evolution of

Wn,t+1 [Y ∗nt] becomes adaptive if agents are myopic. Another distinguished feature of

Definition 3.2.1 (iii) is that the agent’s decision-making problem will not be a LQ

programming (his/her payoff function is not LQ in state variables (Yn,t−1, ηnt)) unless

ψ0 = 0 in equation (3.2), because his/her action would nonlinearly influence his/her

own and rivals’ future marginal payoffs via future network links.71 It implies that

71When actions take limited dependent variables, we might have other examples of a nonlinear
equation of exogenous variables under the linear-quadratic payoff specification. Examples are Xu
and Lee (2015, 2016).
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agents’ optimal actions which will be a function of (Yn,t−1, ηnt) might not be a linear

one. Therefore, for the current model, it is difficult to directly derive an optimal de-

cision rule like that in Jeong and Lee (2018).72 This difficulty motivates us to specify

agents’ optimal actions based on a set of first-order conditions of (3.7), i.e., Euler

equations.

To specify Y ∗nt using the Euler equations, we introduce a set of technical assump-

tions for the payoff function and network links in addition to Znt, taking into account

that Ynt influence the future network links. First of all, the Euler equations should

be sufficient to characterize the optimum of the ICP (3.7). For this, consider the

potential nonlinear part wt+1,ij [yit, yjt] (j 6= i) of ui,t+1. First, wt+1,ij [yit, yjt] (j 6= i)

are required to be differentiable with respect to yit. There are additional components

affecting Wn,t+1 [Ynt]. We assume that each agent’s physical location is given and does

not change over time. For relevant components of fixed physical locations, let dij be

a distance between i and j and let dc denote a finite threshold distance. We assume

that when dij ≤ dc, agents i and j make a network link, but on the other hand, if

agents i and j are sufficiently far (i.e., dij > dc), they would not make a link. Then,

dc determines the maximum number of neighbors of agent i, which will be denoted as

72To see this feature, consider a simple two-period model. Given (Yn,t−1, ηnt), agent i (i = 1, · · · , n)
maximizes his/her discounted lifetime payoffs: at t = 1, ui1 + δE1 (ui2); and at t = 2, ui2, by
sequentially selecting yit for t = 1, 2. Since there were no additional future periods after t = 2, the
NE activity vector at time t = 2 is given by the conventional SAR equation Y ∗n2 = λ0Wn2 [Yn1]Y ∗n2 +
γ0Yn1 + ηn2. Since agents’ choice problem at t = 2 is considered as a subgame, agent i’s SPNE
activity at t = 1 is derived by maximizing ui1 + δE1 (u∗i2) where u∗i2 = 1

2 (y∗i2)
2 − γ0

2 y
2
i1 denotes the

i’s second-period payoff evaluated at Y ∗n2. The first-order conditions are

0 = ηi1 + γ0yi0 + λ0w1,i. [Yn0]Y ∗n1 − (1 + δγ0) y∗i1 + δE1

(
∂y∗i,2
∂yi,1

y∗i,2

)
|Y ∗n1

, fori = 1, · · · , n. (3.8)

The SPNE vector at t = 1 (denoted by Y ∗n1) satisfies equations (3.8). Even though we consider the
linear-quadratic payoff function, deriving the explicit form of Y ∗n1 is a challenging issue since it is a
highly nonlinear function of (Yn0, ηn1).
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dc (i). If dc is large, the number of i’s neighbors dc (i) might be large but that number

remains as n tends to infinity.While there might be some different specifications on

Wnt, this specification seems the most popular one for sparse spatial networks.

Contrast to conventional friendship network formation models with observable

dichotomous links, our spatial network links wt,ij’s can have (relative) intensities of

interactions. It implies that they take nonnegative real numbers. As agents know that

their current actions (yit) can affect strength of future network links (wt+1,ij [yit, yjt]

and wt+1,ji [yjt, yit] for j = 1, · · · , n; but j 6= i), they optimize their actions by taking

into account future strength of network links. That is, we formulate the network

interaction model by internalizing individual decisions on network links.

Here is a formal assumption in order to have a tractable network formation model.

Assumption 3.2.1 At each time t, we assume wt,ij [yit, yjt] = h (zi,t+1, zj,t+1)·hd (dij, dc).

For each pair (i, j), h (zi,t+1, zj,t+1) is infinitely differentiable a.e73. The first-order

derivatives of h (·), ∂h(zi,t+1,zj,t+1)

∂zi,t+1
and ∂h(zi,t+1,zj,t+1)

∂zj,t+1
, are bounded.74

First, we need to have a smoothness condition for the agent’s payoff function since

deriving the Euler equations relies on the envelope theorem. By Assumption 3.2.1, the

agent’ payoff ui(Ynt, Yn,t−1, ηit) is infinitely differentiable a.e.75 Then, we can represent

73In our model setting, a functional form of h (·) is time-invariant since we seek to a stable
economic environment. For h (zi,t+1, zj,t+1), e.g., we might take the distance-based specification

h (zi,t+1, zj,t+1) = |zi,t+1 − zj,t+1|−αe where αe > 0, which is infinitely differentiable a.e.

74Assumption 3.2.1 implies that the network link wt,ij is only affected by yit and yjt. How-
ever, this assumption can be generalized to a row-normalized Wnt. For example, wt,ij [Ynt] =

h(zi,t+1,zj,t+1)·hd(dij ,dc)∑
dik≤dc

h(zi,t+1,zk,t+1)·hd(dik,dc)
. Then, the network link wt,ij [Ynt] can be affected by yit, yjt as well

as ykt such that k 6= i, k 6= j with dik ≤ dc.
75In detail, this requirement is a key for obtaining differentiable agents’ lifetime values and optimal

decision functions (with respect to (Yn,t−1, ηnt)). Also, we can check the second-order condition to
obtain the sufficiency of considering the Euler equations for optimality. For this issue, refer to the
supplement file. Related results can be found in Theorem 4.11 in Stokey et al. (1989) and Santos
(1991).
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the agent’s optimal action (y∗it) as the solution to the first order condition. Also, the

agents’ optimal lifetime values and actions are continuously differentiable functions

in (Yn,t−1, ηnt). Second, differentiability of wt+1,ij [yit, yjt] gives a formulation of the

marginal effects of yit and yjt on wt+1,ij [yit, yjt] in the (t + 1)th-period payoffs, e.g.,

∂wt+1,ij [yit,yjt]

∂yit
=
∑P
p=1 ψp,0

∂h(zi,t+1,zj,t+1)

∂zi,t+1,p
· hd (dij, dc) where a bounded function hd (·)

plays a role in controlling the intensity of interactions stemming from dij (or dc).
76

For each p = 1, · · · , P , (i) ∂zi,t+1,p

∂yit
= ψp,0 is the effect of changing yit on its pth

future economic indicator (zi,t+1,p) and (ii) ∂h(zi,t+1,zj,t+1)

∂zi,t+1,p
· hd (dij, dc) represents the

changed network link via zi,t+1,p. To implement our model, a functional form of

h (zi,t+1, zj,t+1) is required to be known for evaluation of ∂h(zi,t+1,zj,t+1)

∂zi,t+1,p
. Third, in order

to obtain a tractable measure for estimation, we will employ a perturbation method

to approximate Vi (·) using ui(Ynt, Yn,t−1, ηit) around the population averages.

The following is an illustrative example.

Example 3.2.2 Consider Han and Lee’s (2016) Medicaid related spending competi-

ton model. Then, yit is the state i’s tth-period Medicaid related spending. In their

specification, zit is the state i’s tth-period income per capita, and it is significantly pos-

itively affected by yi,t−1 (ψ0 > 0). Simply, assume wt+1,ij [yit, yjt] = 1
|zi,t+1−zj,t+1| imply-

ing ∂h(zi,t+1,zj,t+1)

∂zi,t+1,p
= −sgn(zi,t+1−zj,t+1)

|zi,t+1−zj,t+1|2
Then, the effect of changing yit on wt+1,ij [yit, yjt]

is governed by −sgn (zi,t+1 − zj,t+1) since |zi,t+1 − zj,t+1|2 > 0 a.e. First, consider

the case that zi,t+1 > zj,t+1. When yit marginally increases, zi,t+1 increases and

wt+1,ij [yit, yjt] decreases. It means weakened intensity of interactions at time t + 1

since the economic distance between i and j becomes far by increasing yit. Second,

76e.g., hd (dij , dc) can be specified by 1
dij

1 {dij ≤ dc}+ 1
cd

1 {0 ≤ dij ≤ cd} for some small cd such

that 0 < cd < dc.
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consider the case that zi,t+1 < zj,t+1. By marginally increasing yit, zi,t+1 increases,

which it yields that wt+1,ij [yit, yjt] increases. Increasing yit makes that i and j be

economically close, so intensity of interactions becomes strengthened.

3.2.3 Characterizing the NE actions by the Euler equations

The purpose of this subsection is characterizing agents’ NE actions to formulate

an equation for estimation. We consider a stable economic environment based on

the infinite horizon problem. Then, the agent’s decision problem will be the same

at each period conditional on its immediate information generated by (Yn,t−1, ηnt).

As a result, the ICP (3.6) can be represented by a functional equation (FE). A

corresponding equilibrium concept is a Markov perfect equilibrium (MPE).77 Here is

the definition of MPE.

Definition 3.2.3 (Markov perfect equilibrium) A MPE is a set of value func-

tions Vi (·) (i = 1, · · · , n) and a set of policy functions fi (·) (i = 1, · · · , n) such that

(i) (Markov strategy) y∗it = fi (Yn,t−1, ηnt) (let Y ∗nt = f(Yn,t−1, ηnt)),

(ii) given f1, · · · , fi−1, fi+1, · · · , fn, Vi satisfies the Bellman equation

Vi(Yn,t−1, ηnt) = max
yit

{
ui(yit, Y

∗
−i,t, Yn,t−1, ηit) + δEt

(
Vi(yit, Y

∗
−i,t, ηn,t+1)

)}
(3.9)

where Y ∗−i,t =
(
y∗1t, · · · , y∗i−1,t, y

∗
i+1,t, · · · , y∗nt

)′
, and

(iii) the policy function fi (·) attains the right side of the Bellman equation (3.9).

77The MPE is a refined version of a subgame perfect Nash equilibrium (SPNE). It characterizes
the equilibrium strategies of all agents as best responses to one another. Further, each agent’s
optimal strategy only depends on the state variables (Yn,t−1, ηnt) and does not rely on other parts
of histories.
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By Definition 3.2.3 (i), the optimal action y∗it is a function of the previous actions

of all agents (Yn,t−1) and the currently realized exogenous characteristics (ηnt). Def-

inition 3.2.3 (iii) is the principle of optimality, which says the equivalence between

the solutions of ICP (3.6) and FE (3.9). That is, Vi (·) = V ∗i (·) for all i = 1, · · · , n.

In consequence, the optimal activities y∗it’s and the state variables (Yn,t−1, ηnt) have a

time-invariant relationship f (·).78 Since each network link wt,ij [yi,t−1, yj,t−1] is not a

LQ function of yi,t−1 and yj,t−1, we do not generally have a closed form of Vi (·)79 and

it is infeasible to directly construct an estimating equation by fi (·)’s.

To build an econometric model based on agents’ optimal actions, we utilize the

first-order conditions of agents’ lifetime problems. The first-order condition of the

agent i’s tth-period optimal decision is80

0 = ηit+γ0yi,t−1 +λ0wt,i. [Yn,t−1]Y ∗nt−y∗it+δ
∂

∂yit
Et (Vi (Ynt, ηn,t+1)) |Y ∗ntfori = 1, · · · , n.

(3.10)

The main issue is to represent the expectation function ∂
∂yit

Et (Vi (Ynt, ηn,t+1)) in the

current and future state variables. For this, we need the smoothness condition for

ui (·) by Assumption 3.2.1 and exchangeability of the differential operator ∂
∂yit

to the

conditional expectation Et (·) by Definition 3.2.1 (ii).81

78For details in the principle of optimality, refer to the supplement file.

79If a network does not evolve, the agent i’s lifetime value would be linear-quadratic in state
variables and we can derive a closed form expression for Vi (·) and f (·). For that case, refer to Jeong
and Lee (2018).

80 ∂F (x)
∂x |x∗ denotes the derivative of F (·) with respect to x evaluated at x = x∗.

81Then, by the Lebesgue dominant convergence theorem,

∂

∂yit

∫
ξn,t+1

Vi (Ynt, ηn,t+1) dµξn,t+1
=

∫
ξn,t+1

∂Vi (Ynt, ηn,t+1)

∂yit
dµξn,t+1

atY ∗nt

where µξn,t+1
is the measure for ξn,t+1.
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By the law of iterated expectations and substitutions, we have the Euler equation

for agent i

0 = ηit + γ0yi,t−1 + λ0wt,i. [Yn,t−1]Y ∗nt − y∗it (3.11)

−δγ0y
∗
it + δEt

[(
γ0 + λ0

∂wt+1,i. [Y
∗
nt]

∂yit
Y ∗n,t+1

)
y∗i,t+1

]

+δEt
n∑
j 6=i

∂yj,t+1

∂yit
λ0wt+1,ij [Y ∗nt] y

∗
i,t+1

+
∞∑
k=1

δk+1Et

 λ0
∑n
j1,···,jk 6=i

∂yj1,t+1

∂yit
· · · ∂yjk,t+k

∂yjk−1,t+k−1

∂wt+k+1,i.[Y ∗n,t+k]
∂yjk,t+k

Y ∗n,t+k+1y
∗
i,t+k+1

+λ0
∑n
j1,···jk+1 6=i

∂yj1,t+1

∂yit
· · · ∂yjk+1,t+k+1

∂yjk,t+k
wt+k+1,i,jk+1

[
Y ∗n,t+k

]
y∗i,t+k+1


since (i) ∂ui(Yn,t+1,Ynt,ηi,t+1)

∂yit
=
(
γ0 + λ0

∂wt+1,i.[Ynt]

∂yit
Yn,t+1

)
yi,t+1 − γ0yit,

(ii) ∂ui(Yn,t+1,Ynt,ηi,t+1)

∂yjt
= λ0

∂wt+1,i.[Ynt]

∂yjt
Yn,t+1yi,t+1 for j 6= i, and (iii) ∂ui(Yn,t+1,Ynt,ηi,t+1)

∂yj,t+1
=

λ0wt+1,ij [Ynt] yi,t+1 for j 6= i.

Equation (3.10) equates the negative marginal change in uit with the expected

future marginal payoffs when there is a small change in yit. By the Euler equations,

we can capture the marginal effect of changing yit on future network links (contained

in the future marginal payoffs), i.e., the existence of coevolution of agents’ actions

and spatial network links. However, a difficulty arises on utilizing the Euler equation

approach since the agents’ current actions can (nonlinearly) affect future marginal

payoffs through future network links. Utilizing equation (3.9) and the envelope the-

orem, substitution yields

∂Vi (Ynt, ηn,t+1)

∂yit

=
∂ui(Yn,t+1, Ynt, ηi,t+1)

∂yit
|Y ∗n,t+1

+
n∑
j 6=i

∂yj,t+1

∂yit

 ∂ui(Yn,t+1,Ynt,ηi,t+1)

∂yj,t+1

+δEt+1

(
∂Vi(Yn,t+1,ηn,t+2)

∂yj,t+1

)  |Y ∗n,t+1

=
∂ui(Yn,t+1, Ynt, ηi,t+1)

∂yit
|Y ∗n,t+1

+
n∑
j 6=i

∂yj,t+1

∂yit

∂ui(Yn,t+1, Ynt, ηi,t+1)

∂yj,t+1

|Y ∗n,t+1
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+
∞∑
k=1

δkEt+1


∑n
j1,···,jk 6=i

∂yj1,t+1

∂yit
· · · ∂yjk,t+k

∂yjk−1,t+k−1

∂ui(Yn,t+k+1,Yn,t+k,ηi,t+k+1)

∂yjk,t+k

+
∑n
j1,···jk+1 6=i

∂yj1,t+1

∂yit
· · · ∂yjk+1,t+k+1

∂yjk,t+k

∂ui(Yn,t+k+1,Yn,t+k,ηi,t+k+1)

∂yjk+1,t+k+1

 |Y ∗
n,t+k+1

since the first-order condition (3.10) leads to the envelope theorem

∂y∗i,t+1

∂yit

(
∂ui(Yn,t+1,Ynt,ηi,t+1)

∂yi,t+1
+ δEt

(
∂Vi(Yn,t+1,ηn,t+2)

∂yi,t+1

))
|Y ∗n,t+1

= 0. Hence, we do not need to

compute
∂y∗i,t+1

∂yit
for all i = 1, · · · , n.82 Due to the agents’ non-cooperative behaviors,

however, we observe that ∂ui(Ynt,Yn,t−1,ηit)

∂yjt
|Y ∗nt + δEt

(
∂Vi(Ynt,ηn,t+1)

∂yjt

)
|Y ∗nt might not be

zero for j 6= i. From this, we see that a change of i’s current action yit generates

changes of his/her entire expected future payoffs through changing his/her rivals’

next period actions (indirect effect). In our dynamic network game framework, hence,

the envelope theorem cannot eliminate ∂yj,t+1

∂yit
for j 6= i due to the non-cooperative

feature and hence future terms involving ∂yj,t+1

∂yit
for j 6= i in the above equation, i.e.,

the Benveniste-Scheinkman formula cannot be applied.

We observe that the coevolution of agents’ actions and spatial network links can be

summarized by the terms
∂wt+1,i.[Y ∗nt]

∂yit
and

∂wt+k+1,i.[Y ∗n,t+k]
∂yj,t+k

, and the two parameters (λ0

and ψ0) control these effects. It implies that the coevolution comes from two channels:

(i) evolution of economic indicators driven by agents’ actions (ψ0, see equation (3.2))

and (ii) spatial interaction effects (λ0). If ψ0 = 0, the variables forming the economic

similarities (e.g., 1/ |zit − zjt|) are not affected by their previous actions, and network

links might only come from geographic arrangements. Also, even though ψ0 6= 0, if

λ0 = 0, spatial networks do not play a role in agents’ actions because every agent

solves his/her optimization problem without considering other agents’ actions. In this

82Basically, the envelope theorem means that a marginal change of the optimizer does not con-
tribute to the change in the optimal value. Then, the marginal effects of state variables on the control
variable need not be computed in order to evaluate the marginal change of the objective function
(Judd (1998), p453). For example, the Benveniste-Scheinkman formula (well utilized in macroeco-
nomics) says that the marginal change of the value can be characterized by only the marginal change
of the per period payoff at the optimum. In our model, however, the envelope theorem gives that
no player can improve his/her lifetime payoff by unilaterally marginally changing his/her strategy.
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case, the agent i’s Euler equation becomes

0 = ηit + γ0yi,t−1 − y∗it + δγ0

(
Et
(
y∗i,t+1

)
− y∗it

)
, (3.12)

which implies that the economic system is autarky.

Since equation (B.5) involves a lot of future terms, it is infeasible for estima-

tion. Hence, our next step is to obtain a feasible estimating equation based on (B.5).

Note that
∂wt+1,i.[Y ∗nt]

∂yit
mainly describes an impact of agent’s action on future net-

work links. With highlighting out the marginal effect of yit on his/her (t + 1)th-

period payoff, we represent the other future terms as ∂Vi(Yn,t+1,ηn,t+2)

∂yj,t+1
|Y ∗n,t+1

for j 6= i

and try to approximate them using a numerical approximation method. For each

p = 1, · · · , P , let mt+1,p,ij

[
y∗it, y

∗
jt

]
= ∂h(zi,t+1,zj,t+1)

∂zi,t+1,p
hd (dij, dc), and mt+1,p,i. [Y

∗
nt] =

(mt+1,p,i1 [y∗it, y
∗
1t] , · · · ,mt+1,p,in [y∗it, y

∗
nt]). The mt+1,p,ij

[
y∗it, y

∗
jt

]
describes the marginal

impact of the pth economic indicator zi,t+1,p on the (t + 1)th-period network link

wt+1,ij

[
y∗it, y

∗
jt

]
. Then, λ0

∂wt+1,i.[Y ∗nt]
∂yit

=
∑P
p=1 λ0ψp,0mt+1,p,i. [Y

∗
nt]. By (B.5), the sys-

temized stochastic Euler equation is

0n×1 = ηnt + γ0Yn,t−1 + λ0Wnt [Yn,t−1]Y ∗nt − (1 + δγ0)Y ∗nt (3.13)

+δEt


 γ0In + diagni=1

(∑P
p=1 λ0ψp,0mt+1,p,i. [Y

∗
nt]Y

∗
n,t+1

)
+λ0diag

n
i=1

((
e′ni∆

∗
n,t+1 ◦ ẽ′ni

)
w′t+1,i. [Y

∗
nt]
) Y ∗n,t+1

+δ∇Vn,t+2


where ∆∗n,t+1 is an n× n matrix having ∂yj,t+1

∂yit
as the (i, j)-element, ∇Vn,t+2 is

an n-dimensional column vector defined with its ith-element being(
e′ni∆

∗
n,t+1 ◦ ẽ′ni

) (
ẽni ◦ ∂Vi(Yn,t+1,ηn,t+2)

∂Yn,t+1
|Y ∗n,t+1

)
, ◦ denotes the Hadamard product, and

ẽni = ln − eni with ln an n × 1 vector of ones. The system equation (3.13) can be
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simply represented for Ynt at Y ∗nt by83

0n×1 = J (Yn,t−1, ηnt, Ynt) |Y ∗nt . (3.14)

That is, values of J (Yn,t−1, ηnt, Ynt) take zero at the optimum Y ∗nt given (Yn,t−1, ηnt).

The particular complication in evaluating this J (·) value is that Vi (Yn,t+1, ηn,t+2)

captures all the future optimized values after t+2 via∇Vn,t+2. To implement equation

(3.14) using a spatial panel data set, one may consider a (direct) numerical method

(e.g., value/policy function iteration method). However, numerically evaluating those

terms will lead to a curse of dimensionality since we consider the large spatial units

(n) yielding the corresponding large state space.84

Hence, we are motivated to use an alternative approximation method. That is, we

try to reduce model’s complexity by a behavioral assumption (bounded rationality).

By an approximation technique, this concept is useful when we have a difficulty in

deriving a solution under full rationality. For the related issues, refer to Chapter 7.4 in

Rubinstein (1998). Under the concept of bounded rationality, agents have limitations

in their forecasting abilities (limited foresight).

83Note that Y ∗n,t+1 in the conditional expectation Et (·) is the function of Y ∗nt and ηn,t+1, while
Y ∗nt is a function of Yn,t−1 and ηnt, ηn,t+1 is a function of ηnt.

84Due to the existence of Wnt, yit might be affected by all previous actions y1,t−1, · · · , yn,t−1 and
all realized characteristics η1t, · · · , ηnt. It yields a large dimensional state space. If an agent is a state
government and we consider the 48 contiguous states in the U.S, the dimension of state variables is
96. Moreover, the state variables in this case belong to a continuous type. Then, the computation
of evaluating Vi (·) by the grid method is extremely challenging.
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3.3 Construction of the econometric model

In this section, we build an econometric model by approximating the system Eu-

ler equation (3.13) under bounded rationality.85 Our issue is to estimate structural

parameters using a panel data set: {Ynt, Xnt, Znt} defined on a common probability

space (Ω,F , P ). From this section, the superscript ”*” denoting optimality and paren-

thesis [Y ∗nt] in wt+1,ij [Y ∗nt] are dropped. First, we need to achieve uniqueness of the

optimal policy function since the unique representations of ∆∗n,t+1 and ∂Vi(Yn,t+1,ηn,t+2)

∂yj,t+1

(for j 6= i) are required. For this, we introduce the following assumptions.

Assumption 3.3.1 For each i, ȳ◦i and η̄◦i denote respectively the population means

of {yit}t and {ηit}t. Let Ȳ ◦n = (ȳ◦1, · · · , ȳ◦n)′ and η̄◦n = (η̄◦1, · · · , η̄◦n)′. We assume

supn,t φmax

(
∂J (Yn,t−1,ηnt,Ynt)

∂Y ′nt

)
< 0 at (Yn,t−1, ηnt, Ynt) =

(
Ȳ ◦n , η̄

◦
n, Ȳ

◦
n

)
where φmax (·)

denotes the largest eigenvalue.

The main purpose of Assumption 3.3.1 is to have a unique relationship between

(Yn,t−1, ηnt) (state variables) and Ynt (decision variables) nearby
(
Ȳ ◦n , η̄

◦
n

)
. Note that

the realized {Ynt} comes from one of the possible f (·) satisfying equation (3.14).86

85To have an analytic form of the first order conditions in estimation, Li et al. (2007) approximate
the first order condition of the concentrated log-likelihood function based on the Taylor approxi-
mation. Even though the objective functions of ours and their cases are different, the purpose
of the approximation is the same (approximating the first order condition to a tractable form for
estimation).

86The system of Euler equations is sufficient to represent the optimum by Assumption 3.3.1.
However, there are potentially many data generating processes satisfying the system of Euler equa-
tions (3.14) (i.e., multiple equilibria) due to highly nonlinearity of equation (3.14). Then, there are
multiple mapplings from the state variables to the decision variables. i.e., We cannot guarantee
for a unique form of ∆∗n,t+1. Around the population averages, however, we can have their unique
representations by the implicit function theorem.

If the original NEs were multiple, economic agents select the NE near
(
Ȳ ◦n , η̄

◦
n, Ȳ

◦
n

)
, which are

known to all agents. It means the equilibrium selection mechanism into the structure. For this, we
need to assume that all agents know

(
Ȳ ◦n , η̄

◦
n

)
. For the econometric analysis of multiple equilibria

issues, refer to de Paula (2013).
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The population mean Ȳ ◦n in Assumption 3.3.1 comes from the data generating pro-

cess of the actually realized decision variables and is the baseline of applying the

implicit function theorem.87 The existence of Ȳ ◦n and η̄◦n is implied by the stable

economic environment.88 Assumption 3.3.1 is a key condition of the implicit function

theorem. supn,t φmax

(
∂J (Yn,t−1,ηnt,Ynt)

∂Y ′nt

)
|(Ȳ ◦n ,η̄◦n,Ȳ ◦n ) < 0 means that the n × n Hessian

matrix ∂J (Yn,t−1,ηnt,Ynt)

∂Y ′nt
is negative definite. This is the second-order condition justfy-

ing the optimum at the population average values. Also, the maximum eigenvalue of

the Hessian should be still negative even for large n. By applying the implicit func-

tion theorem, there exists a unique function f (·) such that (Yn,t−1, ηnt, Ynt) around

the population averages
(
Ȳ ◦n , η̄

◦
n, Ȳ

◦
n

)
and f (·) is infinitely differentiable because our

J (·) is infinitely differentiable.89 Note that this uniqueness is due to the implicit

function theorem at the local neighborhood of
(
Ȳ ◦n , η̄

◦
n, Ȳ

◦
n

)
.

Then, the optimal policy function Ynt = f (Yn,t−1, ηnt) can be represented by the

first-order Taylor polynomial (a mean value theorem) around
(
Ȳ ◦n , η̄

◦
n

)
,

f (Yn,t−1, ηnt) = f
(
Ȳ ◦n , η̄

◦
n

)
+
∂f (Yn,t−1, ηnt)

∂Y ′n,t−1

|(Y +
n,t−1,η

+
nt)

(
Yn,t−1 − Ȳ ◦n

)
(3.15)

+
∂f (Yn,t−1, ηnt)

∂η′nt
|(Y +

n,t−1,η
+
nt)

(ηnt − η̄◦n)

where
(
Y +
n,t−1, η

+
nt

)
lies between (Yn,t−1, ηnt) and

(
Ȳ ◦n , η̄

◦
n

)
. That is, we pursue the

local unique solution near the population averages. Using equation (3.15), the linear

87Note that evolution of ηnt consisting of ηvnt and ηivn is not affected by that of Ynt and ηnt. Since
|ρη,0| < 1 and Et (ξn,t+1) = 0n×1, η̄◦i = ηivi for all i.

88For each i, a way of generating the data (fi (·)) has a time-invariant functional form.

89The theorem is stated in Section 3.4 in Judd (1996). Indeed, if J (·) is a Ck-function, then f (·)
is a Ck−1-function. This is reason why Santos (1992) introduces a condition of C2 on the per period
payoff function for differentiability of the optimal policy function.
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approximation of f (·) (denoted by f e (·)) is

f e (Yn,t−1, ηnt) = f
(
Ȳ ◦n , η̄

◦
n

)
+
∂f (Yn,t−1, ηnt)

∂Y ′n,t−1

|(Ȳ ◦n ,η̄◦n)
(
Yn,t−1 − Ȳ ◦n

)
(3.16)

+
∂f (Yn,t−1, ηnt)

∂η′nt
|(Ȳ ◦n ,η̄◦n) (ηnt − η̄◦n) .

Since Znt and Yn,t+1 are observable and the formation function h (·) (or hd (·)) is (pre-)

specified by an econometrician, they give specifications on {wt,ij} and {mt+1,p,ij} in

equation (3.13).90

Now we approximate the Euler equation system (3.13) to a tractable form. To get

approximations of ∆∗n,t+1 and ∂Vi(Yn,t+1,ηn,t+2)

∂yj,t+1
(for j 6= i), the main task is calculating

f e (·) and the corresponding approximated value functions V e
i (·)’s. A source of diffi-

culty is that ui (Ynt, Yn,t−1, ηit) is not a LQ function of Yn,t−1 (in particular, network

links wt,ij [yi,t−1, yj,t−1]’s). To avoid the curse of dimensionality, we employ a regular

LQ perturbation method91 for approximating ui (·) around the steady state92
(
Ȳ ◦n , η̄

◦
n

)
(approximated ui (·) is denoted by uei (·)) and get V e

i (·) using the uei (·).93 Note that

we only need to approximate the smooth functions {wt,ij [yi,t−1, yj,t−1] yityjt}i 6=j in

90In contrast to conventional spatial econometric literature, a researcher needs to know the for-

mation functions hd (·) and h (·) to evaluate
∂h(zi,t+1,zj,t+1)

∂zi,t+1
. One way to get hd (·) and h (·) is to

prespecify them. Another way is to use an estimation method by assuming a parametric functional
form of h (·). For this, we suggest an estimation method to specify h (·) and hd (·) in Appendix C.

91The regular perturbation means that a small change in the problem induces a small change in
the solution.

92From systems theory, a process Ynt is in a steady state if Ynt = Yn,t−1 for all t. Steady state
values what we select here are the population averages,

(
Ȳ ◦n , η̄

◦
n

)
.

93The LQ approximation method is a local approximation method and explains how the dynamic
system evolves around the steady state. Famous examples are Magill (1977) and Kydland and
Prescott (1982). Benigno and Woodford (2012) provide theoretical discussions in this method. For
a review, refer to Chapters 3 and 4 of Judd (1996) and Chapters 13 and 14 of Judd (1998).
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ui (·). For the details about the approximation procedure, refer to Appendix A.94 In

practice, for each i ȳ◦i and η̄◦i can be computed by the time averages η̄i,T = 1
T

∑T
t=1 η

obs
it

and ȳi,T = 1
T

∑T
t=1 yit where ηobsit denotes the observable part of ηit. After computing

V e
i (·)’s by solving the algebraic matrix Riccati equations based on the LQ functions

uei (·)’s, the marginal effect matrix ∆∗n,t+1 can be obtained. Because ∆∗nt is time invari-

ant, it will be denoted by ∆∗n.95 By replacing ∆∗n,t+1 and ∂Vi(Yn,t+1,ηn,t+2)

∂yj,t+1
(in equation

(3.14)) with ∆∗n and
∂V ei (Yn,t+1,ηn,t+2)

∂yj,t+1
using V e

i (·), we have the system of Euler equa-

tions under bounded rationality,

0n×1 = J e (Yn,t−1, ηnt, Ynt) . (3.17)

For each t, the observable part of ηvnt (ηobsnt =
(
ηobs1t , · · · , ηobsnt

)′
) is specified by

Xntβ0 where β0 = (β1,0, · · · , βK,0)′ stands for a K-dimensional vector of coefficients.

By studying λ0ψ1,0, · · · , λ0ψP,0, we can capture (i) whether the agents’ actions and

spatial networks coevolve, and (ii) which economic indicators work to the coevolution.

Then, the parameters of our interests are the true values λ0, γ0, ψ0, and β0, which are

summarized as θ0 = (λ0, γ0, ψ0, β
′
0)′. The time-discounting factor δ is considered as a

primitive parameter96 and the incidental parameters in ρη,0 are supposed to be already

94One can analyze the approximated linear optimal policy induced by V ei (·)’s. To investigate
coevolution of economic activities and networks, however, we need to consider the simultaneous
relation between the (approximated) outcome equation and the entry equation (3.2). Since the
simultaneous effects of network links and optimal actions are highly nonlinear, it is difficult to
capture the simultaneous relationship. Since the system Euler equation can represent (i) evolution

of Ynt and (ii) effects of evolving spatial networks from Ynt by diagni=1

(∑P
p=1 λ0ψp,0mt+1,p,i.Yn,t+1

)
,

we take the Euler equation approach.

95Since the approximated ui (Ynt, Yn,t−1, ηit) becomes a LQ function of its arguments, the
V ei (Yn,t−1, ηnt) is linear-quadratic in (Yn,t−1, ηnt). Then, the resulted ∆∗n from V ei (Yn,t−1, ηnt)’s
is a time-invariant matrix.

96In structural econometrics, we usually avoid estimating δ due to difficulties in identification. In
practice, δ is selected by economic reasonings. For example, δ = 1

1+r̄ where r̄ is a long-term interest
rate.
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revealed based on estimating process of Xnt.
97 One of the advantages of using panel

data is robustly controlling unobserved cross-section and time heterogeneities if n and

T are large. To simply control them, we consider the additive individual and time

dummies as incidental parameters98: cn0 = (c1,0, · · · , cn,0)′ and αT,0 = (α1,0, · · · , αT,0)′.

Let Ent = (ε1t, · · · , εnt)′ denote the idiosyncratic disturbances in implementing the

approximated Euler equation system, (3.17).99 For each pair (i, t), hence, the error

term is specified by a linear function, ci,0 + αt,0 + εit. To achieve robust estimation

results, we try to directly estimate cn0 and αT,0 instead of considering them as random

components.

From equation (3.17), we set up the moment conditions for estimation. For each

t, for example, let

`t = σ
(
{Yns}ts=0 , {Xns}Ts=0 , {Z

∗
ns}

T
s=0 , cn0, αT,0

)
(3.18)

where Z∗nt denotes the strictly exogenous part of Znt. As Z∗nt, agents’ geographic

and their time varying exogenous characteristics can be considered. The tth-period

disturbances, ε1t, · · · , εnt, are orthogonal to `t−1. Then, equation (3.17) at time t can

be econometrically specified by


[Sn (Wnt)Ynt − γ0Yn,t−1 −Xntβ0] + δγ0

(
Ynt − Y e

n,t+1

)
−δ

{[∑P
p=1 λ0ψp,0Mn,t+1,p + λ0Nn,t+1

]
Y e
n,t+1

}
−δ2∇V e

n,t+2

 = cn0 +αt,0ln+Ent (3.19)

97We can reveal the process of Xnt without considering the outcome process Ynt since Xnt comes
from ηvnt, and it is supposed to follow an exogenous linear Markov process.

98As a statistical extension, we can also consider multiplicative (interactive) fixed effects (i.e., fac-
tor structure). In practice, however, we should set aside relatively large T for using the specification
of interactive fixed effects. In a regional data set (our model’s main target), T is not quite large.

99The error term εit can be interpreted as the agent i’s tth-period expectational error by using the
(t− 1)th-period information set (to predict the tth-period forward-looking structural system).
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or

E


[Sn (Wnt)Ynt − γ0Yn,t−1 −Xntβ0] + δγ0

(
Ynt − Y e

n,t+1

)
−δ

{[∑P
p=1 λ0ψp,0Mn,t+1,p + λ0Nn,t+1

]
Y e
n,t+1

}
−δ2∇V e

n,t+2 − cn0 − αt,0ln
|`t−1

 = 0n×1 (3.20)

for t = 1, · · · , T , where Sn (Wnt) = In − λ0Wnt denotes the spatial filter at time t,

Y e
n,t+1 =

(
ye1,t+1, · · · , yen,t+1

)′
is the expected Yn,t+1 from the LQ method, Mn,t+1,p =

diagni=1

(
mt+1,p,i.Y

e
n,t+1

)
for p = 1, · · · , P , Nn,t+1 = diagni=1

(
(e′ni∆

∗
n ◦ ẽ′ni)w′t+1,i.

)
, and

∇V e
n,t+2 denotes the approximated ∇Vn,t+2. Then, Y e

n,t+1 = AenYnt+ρη,0B
e
nXntβ0 +Ce

n

and ∆∗n = Ae′n for some n × n matrices Aen and Be
n and some n × 1 vector Ce

n. The

explicit forms of Aen, Be
n, Ce

n and components in ∇V e
n,t+2 can be found in Appendix A.

We observe that equation (3.19) represents a conventional SDPD model if δ = 0; Ynt is

a nonlinear function of Ent; Mn,t+1,p for p = 1, · · · , P show coevolution of actions and

spatial networks; Nn,t+1 represents the indirect changes of the agent i’s next period

payoff via changes of rivals’ next period actions by changing i’s current period action;

∇V e
n,t+2 describes the indirect changes of the i’s remaining future payoffs via changes

of rivals’ next period actions by changing i’s current period action. Since Mn,t+1,p

and ∇V e
n,t+2 are functions of Ynt, and Nn,t+1 and ∇V e

n,t+2 rely on the time average

ȲnT = (ȳ1,T , · · · , ȳn,T )′, they are potentially endogenous.100 For asymptotic analysis,

we will impose some restrictions on those weights matrices in the next section.

Our theoretical model is considered by given n, but our estimation framework is

for samples with both large n and T . Hence, here is the model assumption about

100If spatial networks and their relevant components are endogenous, estimates of main parameters
in a network interaction model can yield incorrect statistical inferences. For this issue, there are
recent studies concerning time-evolving socio-economic networks and/or endogeneity of them. Ex-
amples are Lee and Yu (2012), Goldsmith-Pinkham and Imbens (2013), Kelejian and Piras (2014),
Qu and Lee (2015), Han and Lee (2016), Hsieh and Lee (2017), Qu et al. (2017), Johnsson and
Moon (2017), Kuersteiner and Prucha (2018), and Han, Hsieh and Ko (2019).
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the population moment conditions and stability of Ynt under large n. For detailed

regularity conditions for Ent, we state those in Section 3.4.

Assumption 3.3.2 (i) At θ0, cn0, and αt,0, equation (B.6) holds.

(ii) supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂Y ′n,t−1

)
≤ τ < 1 for some 0 ≤ τ < 1 and

supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂η′nt

)
≤ cη for some cη < ∞ a.e where ρmax (An) stands for the

spectral radius of An.

Hence, Assumption B.13 (i) yields the moment conditions for the GMM estima-

tion, which is based on the approximated Euler equation system (3.17). For stability

of the system under large n, we impose Assumption B.13 (ii) as sufficient conditions.

In particular, supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂Y ′n,t−1

)
< 1 and supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂η′nt

)
≤ cη

give sufficient conditions to avoid an explosive Euler equation even for large n.

This guarantees for bounded lifetime values given initial conditions.101 Also, they

are key devices of showing asymptotic properties of suggested estimators.102 First,

supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂Y ′n,t−1

)
< 1 means that f e (·) is a contraction mapping of Yn,t−1.

This property gives a background of using a sample mean ȲnT = (ȳ1,T , · · · , ȳn,T )′ as

an estimate of Ȳ ◦n . Second, supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂η′nt

)
≤ cη implies that f e (·) is a

Lipschitz continuous function of exogenous characteristics given Yn,t−1. This device

helps to restrict the degree of dependencies in the spatial dimension.

101Hence, this assumption implies the principle of optimality: given initial conditions, lifetime
values and policy functions are bounded. For this issue, see the supplement file.

102In case of myopic spatial-dynamic models, we can characterize the stability conditions using
parameter values and properties of a spatial network matrix (see Lee and Yu (2015)). For the
forward-looking spatial-dynamic models, it is difficult to capture the relationship between potential
causes via (i) the parameter values (λ0, γ0), (ii) time-discounting factor δ, and (iii) magnitude and
denseness of Wnt and stability conditions. Hence, we introduce a high level assumption, Assumption
B.13 (ii). Intuitively, we might need to have that (i) λ0, γ0 and δ are small, (ii) elements in Wnt are
small, and (iii) Wnt’s are sparse.
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3.4 Parameter estimation

This section implements the GMM estimation method based on the derived mo-

ment conditions (B.6). Second, we will study statistical properties of the GMM

estimator. For this, we characterize a topological space where spatial-time units are

located. On the defined space, the set of realized data (e.g., {Ynt, Xnt} and {Ent})

are (weakly dependent) random fields. Distances among spatial-time units on the

topological space will specify intensities of spatial-time dependencies. Based on this

specification, we formulate sample moment functions (for notational convenience) and

investigate asymptotic properties of the GMM estimator.

3.4.1 Topological specification

Each data generating process (DGP) can be indexed by a spatial-time unit on

a specific topological space. The purpose of this setting is to characterize (weak)

dependencies among spatial-time units based on their distances and network links. It

is essential that, if two spatial-time units are sufficiently far, those two spatial-time

processes would be nearly uncorrelated. Hence, the issue here is to specify ”farness”

of spatial-time units. Relevant concepts are borrowed from Chapter 17 in Davidson

(1994), Jenish and Prucha (2012) and Qu et al. (2017).

Note that we have n spatial units over T periods as a data set. We assume that

a spatial unit i has its fixed location in a subset of Rd (d ≥ 1) for all t. When

a state government is considered as an individual (or spatial) unit, it is located on

Earth, so its latitude and longitude can specify its physical location. Since a pair

of latitude and longitude can be one-to-one transformed to R2, a state government

can be placed on an unevenly spaced lattice in R2. By the same logic, in addition to
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physical distance, there might be economic characteristics which can be regarded as

other dimension of locations. So, in general, i’s tth-period location is characterized in

a subset of Rd+1 (i.e., nT spatial-time processes on Rd+1). Based on this idea, define

a location function

l : {1, · · · , n} × {1, · · · , T} → DL ⊂ Rd+1 (3.21)

by l (i, t) = (l1(i), · · · , ld(i), t). Since we have L = nT observations, it means there

are L observed locations, and they are specified by the unevenly spaced lattice DL.103

For i = 1, · · · , n, l(i, 0) = (l∗1(i), · · · , l∗d(i), 0) denotes i’s physical location. At time

t = 1, l(i, 1) = (l∗1(i), · · · , l∗d(i), 1). It means that all spatial units i = 1, · · · , n move

vertically and parallelly upward from t = 0 to t = 1. By the same logic, l(i,−1) =

(l∗1(i), · · · , l∗d(i),−1) at t = −1. Here is the formal setting.

Assumption 3.4.1 A possible set of locations is described by a lattice D, which is

an infinitely countable subset of Rd+1 (d ≥ 1). There exists a mapping l (·) from

{1, · · · , L} to DL ⊂ D. The minimum distance between two different elements in D

is 1.

Assumption 3.4.1 characterizes weak dependence of the spatial-time processes for

our asymptotic inference. The set DL stands for the collection of locations in Rd+1

corresponding to an (available) spatial panel data set. Since there are n cross-section

units with T time periods, the number of spatial-time units’ locations in DL is L. The

set D is a set of potential locations which can accomodate all n spatial units, where

n can tend to infinity, so it contains infinitely countable locations (i.e., |D| = |N|

where N denotes the set of natural numbers). When a bounded region in D is taken,

103Then, |DL| = L where |A| denotes the cardinality of a set A.

105



Assumption 3.4.1 implies that there exist at most a finite spatial-time units which

can be located there. It implies that our asymptotic inference will be based on the

increasing domain asymptotics.104

From Jenish and Prucha’s (2012) and Qu et al. (2017), we consider the maximum

metric to evaluate the distance between two spatial-time units l (i, t) and l (j, t′):

‖l (i, t)− l (j, t′)‖∞ = max {|t− t′| , ‖l (i, 0)− l (j, 0)‖∞} . (3.22)

Then, l (i, t) and l (j, t′) are neighbors if i and j are physical neighbors and time t′ is

a near epoch to t. Then, two spatial-time processes indexed by l (i, t) and l (j, t′) are

nearly uncorrelated if either |t− t′| or ‖l (i, 0)− l (j, 0)‖∞ is large. This maximum

metric (3.22) is employed to define a base σ-field,

Fl(i,t),L(s) = σ
(
ςl(j,t′) : l (j, t′) ∈ DL, ‖l (i, t)− l (j, t′)‖∞ ≤ s

)
(3.23)

where s denotes a threshold distance, and the random field
{
ςl(i,t)

}
denotes a set of

baseline processes. Based on the base σ-field Fl(i,t),L(s), a spatial-time process located

at l (i, t) will be approximated by ςl(j,t′)’s such that ‖l (i, t)− l (j, t′)‖∞ ≤ s. Some

regularity conditions will be introduced to obtain a controllable dependencies. We

will rely on this setting for proving consistency of GMM estimators.

3.4.2 Estimation: nonlinear two-stage least squares (NL2S)
and generalized method of moments (GMM) estima-
tion methods

To estimate θ0, we consider the generalized method of moments (GMM) estima-

tion method based on the approximated Euler equations. We have only a partial

104An opposite concept is the infill asymptotic (fixed domain asymptotic) where the number of
sampling spatial-time units increases even though a bounded region is selected. In the limit, then,
the intensity of interactions could not be controlled (strong dependence). Since our model’s primary
applications are studying local government’s behavior, considering the increasing domain asymptotic
would be appropriate.
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specification105 of the model by the system of stochastic Euler equations. Under

this limited information setting, considering GMM estimation is a frequently chosen

option (e.g., Hansen and Singleton (1982)). By Assumption B.13, we select instru-

mental variables (IVs) from `t−1. Let qnt = (q′1t, · · · , q′nt)
′ be an n × q matrix of IVs

and qit = (qit,1, · · · , qit,q) for i = 1, · · · , n. The order condition for identification says

that q ≥ 2 +K + P is required. Let Θ denote a (2 +K + P )-dimensional parameter

space. Let θ = (λ, γ, ψ′, β′)′, cn = (c1, · · · , cn)′, and αt denote parameter values. For

each θ ∈ Θ, define Sn (Wnt, λ), Aen (θ), Be
n (θ), and Ce

n (θ), Mn,t+1,p (θ), Nn,t+1 (θ),

and ∇V e
n,t+2 (θ) to being Sn (Wnt) = Sn (Wnt, λ0), Aen = Aen (θ0), Be

n = Be
n (θ0), Ce

n =

Ce
n (θ0), Mn,t+1,p = Mn,t+1,p (θ0), Nn,t+1 = Nn,t+1 (θ0), and ∇V e

n,t+2 = ∇V e
n,t+2 (θ0).

For each θ ∈ Θ, hence, Y e
n,t+1 (θ) = Aen (θ)Ynt + ρη,0B

e
n (θ)Xntβ + Ce

n (θ). Then, we

have

Ent (θ, cn, αt) = [Sn (Wnt, λ)Ynt − γYn,t−1 −Xntβ] + δγ
(
Ynt − Y e

n,t+1 (θ)
)

−δ

 P∑
p=1

λψpMn,t+1,p (θ) + λNn,t+1 (θ)

Y e
n,t+1 (θ)

−δ2∇V e
n,t+2 (θ)− cn − αtln

by equation (3.19). The ith-element of Ent (θ, cn, αt) is denoted by εit (θ, ci, αt).

For each l (i, t) ∈ DL and (θ, cn, αt), we have ql(i,t),L = qit and εl(i,t),L (θ, ci, αt) =

εit (θ, ci, αt), and define the linear IV moment function to practically implement (B.6)

gL
l(i,t),L (θ, ci, αt) = ql(i,t),Lεl(i,t),L (θ, ci, αt) , (3.24)

so E
(
gL
l(i,t),L (θ, ci, αt)

)
= 0q×1 at (θ, ci, αt) = (θ0, ci,0, αt,0) by Assumption B.13. To

help identification of ψ0, we can add the linear moment conditions originated from

105Note that we do not fully recover the whole economic structure (including network interactions
and formation). We focus on estimating only the network interaction part.
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specification (3.2).106 If we only use the IV moments, our estimation methodology

will be the nonlinear two-stage least squares (NL2S) estimation method. Note that

the linear IV moment conditions are originated from the population orthogonality

condition (B.6), so they become the main source of identification.107

We can also consider a quadratic moment introduced in conventional spatial econo-

metrics literature.108 For each time t, let Rnt,1, · · · , Rnt,m be n×n matrices whose all

components are strictly exogenous and all diagonal elements are zero.109 Under the

i.i.d disturbance assumption, for each time t and l = 1, · · · ,m,

E (E ′ntRnt,lEnt) = σ2
0tr (Rnt,l) = 0. (3.25)

The quadratic moment function for each l (i, t) ∈ DL can be defined by

gQ
l(i,t),L (θ, cn, αt) =


∑
l(j,t) [Rnt,1]ij εl(i,t),L (θ, ci, αt) εl(j,t),L (θ, cj, αt)

...∑
l(j,t) [Rnt,m]ij εl(i,t),L (θ, ci, αt) εl(j,t),L (θ, cj, αt)

 . (3.26)

In employing the quadratic moment condition, the i.i.d. disturbances assumption,

strictly exogenous components and zero diagonal entries of Rnt,l (l = 1, · · · ,m) are

essential.

Hence, we have the (m+ q)-dimensional moment vector

gl(i,t),L (θ, cn, αt) =

[
gQ
l(i,t),L (θ, cn, αt)

gL
l(i,t),L (θ, ci, αt)

]
and E

(
gl(i,t),L (θ0, cn0, αt0)

)
= 0(q+m)×1 for

106For a simple example, qitvit,p (ψp,0, ci, αt) for p = 1, · · · , P where vit,p (ψp,0, ci, αt) = zit,p −
ψp,0yi,t−1 − ci − αt.

107We only rely on Et−1 (εit) = 0 for the linear IV moment conditions. It implies that the NL2S
estimation method can be robust to unknown heteroskedasticity and unknown serial/spatial corre-
lations since this method does not rely on additional stochastic properties (e.g., heteroskedasticity
and correlations) of εit.

108Refer to Lee (2007) and Lee and Yu (2014).

109A broader class of quadratic moment matrices can be also considered: e.g., Rnt,l satisfying
tr (Rnt,l) = 0. However, this class of quadratic moment matrices would not be valid under unknown
heteroskedasticity. Since we do not want to highlight the i.i.d. property of

{
εl(i,t),L

}
, we take a

narrower class of quadratic moment matrices for robust estimation.
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each l (i, t) ∈ DL.110 To give different weights for the (q +m)-moment conditions, let

aL be a Ka × (m+ q) random matrix with a full row rank greater than or equal to

the number of unknown parameters 2 + P + K. Assume a0 =plimL→∞aL is of full

row rank. Then, the GMM estimator is defined by

(
θ̂L, ĉn,L, α̂T,L

)
= arg min

θ∈Θ,cn,αT
ḡ′L (θ, cn, αT ) a′LaLḡL (θ, cn, αT ) (3.27)

where ḡL (θ, cn, αT ) = 1
L

∑
l(i,t)∈DL gl(i,t),L (θ, cn, αt).

Let EL (θ, cn, αT ) = (E ′n1 (θ, cn, αt) , · · · , E ′nT (θ, cn, αt))
′ with

Ent (θ, ci, αt) = (ε1t (θ, ci, αt) , · · · , εnt (θ, ci, αt))
′ for each t and θ ∈ Θ, and qL =

(q′n1, · · · ,q′nT )′. Then, we have king vector representations of ḡL (θ, cn, αT ), which are

useful in computation:

ḡL
L (θ, cn, αT ) =

1

L

∑
l(i,t)∈DL

gL
l(i,t),L (θ, ci, αt) =

1

L
q′LEL (θ, cn, αT ) (3.28)

and ḡQ
L (θ, cn, αT ) = 1

L

∑
l(i,t)∈DL g

Q
l(i,t),L (θ, cn, αt) = 1

L


E ′L (θ, cn, αT ) RnT,1EL (θ, cn, αT )

...
E ′L (θ, cn, αT ) RnT,mEL (θ, cn, αT )


where RnT,l = diag (Rn1,l, · · · , RnT,l) is a L × L block diagonal matrix for l =

1, · · · ,m. Let SL (θ, cn, αT ) = ḡ′L (θ, cn, αT ) a′LaLḡL (θ, cn, αT ) for each (θ, cn, αT )

where ḡL (θ, cn, αT ) =

[
ḡQ
L (θ, cn, αT )
ḡL
L (θ, cn, αT )

]
.

Our next issue is to deal with the incidental parameters cn0 and αT,0. We consider

the direct estimation approach using the concentrated statistical objective function.

Observe that εl(i,t),L (θ, ci, αt) is nonlinear in θ while it is linear in ci and αt. To

concentrate out cn0 and αT,0 from SL (θ, cn, αT ), let Jn = In − 1
n
lnl
′
n and JT =

110In conventional spatial econometrics models (e.g., linear SAR models), we can observe model’s
reduced form and derive its (best) moment conditions (functions of exogenous variables and unknown
parameters). Since we do not exactly derive a reduced form of our model, it is hard to obtain the
best moment conditions. The ideal instruments might be a highly nonlinear function of exogenous
variables in `t−1 and unknown structural parameters.
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IT − 1
T
lT l
′
T be the demeaning (orthogonal) operators. Note that Jn eliminates the

time fixed effects αT,0 while JT involves in deleting the individual specific effects cn0.

As a result, the optimization of the GMM objective function is on the fixed number

of parameters.

For each l (i, t) ∈ DL and θ ∈ Θ, hence, we define

εl(i,t),L (θ) = [(e′ni − λwt,i.)Ynt − γyi,t−1 − xitβ] + δγ
(
yit − yei,t+1 (θ)

)
−δ

 P∑
p=1

λψp [Mn,t+1,p (θ)]ii + λ [Nn,t+1 (θ)]ii

 yei,t+1 (θ)


−δ2

[
∇V e

n,t+2 (θ)
]
i
,

and EL (θ) = (E ′n1 (θ) , · · · , E ′nT (θ))′ with Ent (θ) = (ε1t (θ) , · · · , εnt (θ))′ for each t =

1, · · · , T . The direct estimation approach is to use the demeaned data by the de-

meaning operators JT and Jn. That is, we rely on that (JT ⊗ Jn) EL (θ, cn, αT ) =

(JT ⊗ Jn) EL (θ) for each θ ∈ Θ.

Then, the concentrated GMM objective function is obtained using Jn and JT :

ScL (θ) = ḡc′L (θ) a′LaLḡ
c
L (θ)whereḡcL (θ) =

[
ḡQ,c
L (θ)

ḡL,c
L (θ)

]
, (3.29)

ḡQ,c
L (θ) = 1

L


E ′L (θ) (JT ⊗ Jn) RnT,1 (JT ⊗ Jn) EL (θ)

...
E ′L (θ) (JT ⊗ Jn) RnT,m (JT ⊗ Jn) EL (θ)

, and

ḡL,c
L (θ) = 1

L
q′L (JT ⊗ Jn) EL (θ). Hence,

θ̂L = arg min
θ∈Θ

ScL (θ) . (3.30)

In practice, we conduct the iterative estimation procedure (nested fixed-point algo-

rithm). As individual and time dummies are linear parameters, they can be identified

like regression coefficients after the main structural parameters θ0 are recovered. If

the model is over-identified, we can check whether the moment conditions match the
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data set by using the J test statistic. The J test statistic can capture (i) whether

the Euler equation system fits the data well and (ii) whether the conditions of the

quadratic moments are valid or not.

Note that the GMM estimator θ̂L satisfies
[
∂ḡcL(θ̂L)
∂θ′

]′
a′LaLḡ

c
L

(
θ̂L
)

= 0(2+K+P )×1, so

we observe
∂ḡcL(θ)

∂θ′
and ḡcL (θ) are the key statistics for asymptotic analyses. To specify

components of
∂ḡcL(θ)

∂θ′
, define Anλ (θ) = ∂An(θ)

∂λ
, Anγ (θ) = ∂An(θ)

∂γ
, Anψp (θ) = ∂An(θ)

∂ψp

for p = 1, · · · , P , Anβk (θ) = ∂An(θ)
∂βk

for k = 1, · · · , K where An (θ) is a vector or

matrix relying on θ. And, note that Anλ, Anγ, Anψp and Anβk represent respectively

Anλ = ∂An(θ)
∂λ
|θ=θ0 , Anγ = ∂An(θ)

∂γ
|θ=θ0 , Anψp = ∂An(θ)

∂ψp
|θ=θ0 for p = 1, · · · , P and Anβk =

∂An(θ)
∂βk
|θ=θ0 for k = 1, · · · , K.

3.4.3 Asymtotic analysis

In this subsection, we establish consistency and derive the asymptotic distribution

of the GMM estimator. Note that the dependent variables of our model are serially

and spatially correlated, but those variables may not be a linear function of distur-

bances. Following Jenish and Prucha (2012), consistency of θ̂L will be established

based on the near-epoch dependence (NED) of spatial-time processes by controlling

dependencies among them. Here is the definition of the spatial-time NED based on

Fl(i,t),L(s).

Definition 3.4.1 (Lp near-epoch dependence) Consider two random fields, Y ={
yl(i,t),L : l (i, t) ∈ DL, L ≥ 1

}
with

∥∥∥yl(i,t),L∥∥∥
Lp
<∞, p ≥ 1 and

ς =
{
ςl(i,t),L : l (i, t) ∈ D,L ≥ 1

}
, and an array of finite positive constants, d ={

dl(i,t),L : l (i, t) ∈ DL, L ≥ 1
}

. Assume |DL| → ∞ as L → ∞ where |DL| denotes
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a cardinality of DL. Then, Y is Lp-NED on ς if

∥∥∥yl(i,t),L − E (yl(i,t),L|Fl(i,t),L(s)
)∥∥∥

Lp
≤ dl(i,t),Lψ(s) (3.31)

for a sequence ψ(s) ≥ 0 such that ψ(s) → 0 as s → ∞. If supL,l(i,t)∈DL dl(i,t),L < ∞,

Y is uniformly Lp-NED on ς.

Note that the NED is a property of a mapping from ς to Y instead of a stochastic

feature of Y itself. Choose l(i, t) for some i ∈ {1, · · · , n} and t ∈ {1, · · · , T} for inter-

pretations. First, E
(
yl(i,t),L|Fl(i,t),L(s)

)
means the approximated yl(i,t),L using ”some

near random elements” ςl(j,t′),L’s such that ‖l (i, t)− l (j, t′)‖∞ ≤ s. The random field

ς contains ”input processes”, and it consists of all ςl(j,t′),L’s indexed by D. Note that

the NED concept relates two random fields, as an example, Y is approximately mixing

if the input process ς is mixing. Second, this approximation error is bounded by some

constant dl(i,t),L and a decreasing function ψ(s) in s. The first term dl(i,t),L depends

on a specific unit l (i, t), which it means that this term controls heterogeneity of unit

l (i, t). By the Minkowski and the (conditional) Jensen’s inequalities,

∥∥∥yl(i,t),L − E (yl(i,t),L|Fl(i,t),L(s)
)∥∥∥

Lp
≤
∥∥∥yl(i,t),L∥∥∥

Lp
+
∥∥∥E (yl(i,t),L|Fl(i,t),L(s)

)∥∥∥
Lp
≤ 2

∥∥∥yl(i,t),L∥∥∥
Lp
.

(3.32)

Then, we can choose dl(i,t),L ≤ 2
∥∥∥yl(i,t),L∥∥∥

Lp
, which it leads to 0 ≤ ψ(s) ≤ 1. By

introducing some regularity conditions restricting
∥∥∥yl(i,t),L∥∥∥

Lp
, hence, we focus on the

uniform Lp − NED concept. The second term ψ(s) controls weak dependencies

on adjacent units, l (j, t′)’s. This device describes the intensity of dependence, so it

should be negligible if two units l (i, t) and l (j, t′) are sufficiently far. By the Lyapunov

inequality, if Y is Lp−NED on ς, then it is also Lq−NED on ς with the same scaling
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factor dl(i,t),L and coefficient ψ(s) for q ≤ p. Xu and Lee (2018) provide a review of

related asymptotic techniques.

To derive the asymptotic properties of the GMM estimator, we establish some

laws of large numbers (LLN) and central limit theorem (CLT). For this, we produce

some regularity assumptions.

Assumption 3.4.2 For all i and t, εit ∼ i.i.d. (0, σ2
0), and supi,tE |εit|

4+ηε < ∞ for

some ηε > 0.

Assumption 3.4.3 The parameter space Θ of θ is compact. θ0 ∈ int (Θ).

Assumption 3.4.4 {Xnt}Tt=0, {αt0}Tt=1 and cn0 are conditional upon nonstochastic

values.

supn,T
1
nT

∑n
i=1

∑T
t=1 |xit,k|

2+η <∞ for all k, supT
1
T

∑T
t=1 |αt0|

2+η <∞ and

supn
1
n

∑n
i=1 |ci,0|

2+η <∞ for some η > 0.

Assumption 3.4.5 For each t and i 6= j, wt,ij = h(zit, zjt) · hd (dij) · 1 {dij ≤ dc}

where h (·) and hd (·) are uniformly bounded nonnegative functions and 0 < dc <∞.

max
{

supn,t ‖Wnt‖∞ , supn,t ‖Wnt‖1

}
≤ cw for some cw > 0.

Assumption 3.4.6 (i) For θ ∈ Θ, Aen (θ), Be
n (θ) and Mn,t+1 (θ) are uniformly

bounded in both row and column sum norms a.e., uniformly in θ ∈ Θ. All elements

of Ce
n (θ) are uniformly bounded a.e., uniformly in θ ∈ Θ. A matrix norm of Aen (θ)

is bounded by τ ∈ [0, 1) a.e.

(ii) For θ ∈ int (Θ), the first, and second derivatives of Aen (θ) and Be
n (θ) with

respect to θ are uniformly bounded in both row and column sum norms a.e., uniformly

in θ ∈ Θ. All elements of the first, and second derivatives of Ce
n (θ) for θ ∈ int (Θ)

are uniformly bounded a.e., uniformly in θ ∈ Θ.
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(iii) Let Θ1 be the parameter space for λ. For any t, Sn (Wnt, λ) is nonsingular

and uniformly bounded in both row and column sum norms, uniformly in λ ∈ int (Θ1).

Assumption 3.4.7 (i) For any t and i 6= j,

|h (zit, zjt)− h (ẑit, ẑjt)| ≤ ch (|zit − ẑit|+ |zjt − ẑjt|) (3.33)

for two pairs (zit, zjt) and (ẑit, ẑjt) where ch > 0.

(ii) For each i 6= j and p, note that mt,p,ij = ∂h(zit,zjt)

∂zit,p
· hd (dij) · 1 {dij ≤ dc}.

Let m̃p (zit, zjt) = mt,p,ij. Assume m̄ = maxp=1,···,P supi,j,n,t |m̃p (zit, zjt)| <∞ and

for any t, p and i 6= j,

|m̃p (zit, zjt)− m̃p (ẑit, ẑjt)| ≤ cm (|zit − ẑit|+ |zjt − ẑjt|) (3.34)

for two pairs (zit, zjt) and (ẑit, ẑjt) where cm > 0.

Assumption 3.4.8 T goes to infinity and n is an increasing function of T .

Assumption 3.4.2 states regularity assumptions for εit. We consider i.i.d. distur-

bances across i and t for simplicity. Based on Assumption 3.4.2 with assuming that

the IV qnt is uniformly L4-bounded, the moment functions gcl(i,t),L (θ) would be p-

dominated on Θ for p = 2. This helps to establish the uniform law of large numbers

(ULLN).111 Also, the higher than the fourth moment assumption for εit is needed to

apply a central limit theorem for a LQ form.112 Compact parameter space in Assump-

tion 3.4.3 is for a well-defined nonlinear extremum estimator (Chapter 4 in Amemiya

111This result yields that εl(i,t),L (θ) becomes L4+ηε -bounded uniformly in i, t, L and uniformly θ ∈
Θ. It means that the residual evaluated at θ ∈ Θ (εl(i,t),L (θ)) has the same stochastic boundedness
condition as that of εl(i,t),L.

112Related articles are Kelejian and Prucha (2001), Yu et al. (2008), Qu et al. (2017), and
Kuersteiner and Prucha (2018). The detailed discussion about the LLN and CLT can be found in
Appendix B.
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(1985)). To achieve simplicity of asymptotic analyses, we employ the conditioning ar-

gument (Assumption 3.4.4) and the boundedness assumption for empirical moments

of explanatory and dummy variables. Assumption 3.4.5 is a standard assumption

on Wnt in the spatial econometric literature.113 By Assumption 3.4.6 (i), we impose

manageable dependence between Yn,t−1 and Ynt for each θ ∈ Θ since Ae′n (θ) formu-

lates ∂Ynt
∂Y ′n,t−1

at θ ∈ Θ. For asymptotic analyses, Assumption 3.4.6 (i) supposes that

Aen (θ), Be
n (θ), Ce

n (θ) and Mn,t+1 (θ) transforming Ynt make manageable changes at

θ ∈ Θ.114 This device makes the same orders of moments of εl(i,t),L and εl(i,t),L (θ) for

each θ ∈ Θ (i.e., εl(i,t),L and εl(i,t),L (θ) are both L4+ηε-bounded). Assumption 3.4.6 (ii)

is for having an identification condition and applying the LLN to
∂ḡcL(θ)

∂θ′
. Assumption

3.4.6 (iii) characterizes the magnitude of contemporaneous spatial influences. This

assumption helps to establish that yl(i,t),L is a spatial-NED process given Yn,t−1.

Assumption 3.4.7 (i) is the Lipschitz condition on the formation function h (·) so

that the NED property for wt,ij can be obtained from zit and zjt. Assumption 3.4.7 (ii)

also imposes the boundedness and Lipschitz conditions on the marginal effect of yi,t−1

on wij,t via zit,p. By Assumption 3.4.7, that is, values of h (zit, zjt) and m̃p (zit, zjt)

have manageable changes when their arguments, (zit, zjt), are changed. Assumption

3.4.8 means that large n and T cases would be considered for our asymptotic analysis

to deal with the incidental parameter problem. Large n is for estimating the time

113In detail, we require that the formation functions h (·) and hd (·) are uniformly bounded. Uniform
boundedness of h (·) can be achieved by limiting a maximum intensity of influences: for example,
h (zit, zjt) = 1

‖zit−zjt‖ if ‖zit − zjt‖ > cz and h (zit, zjt) = 1
cz

otherwise for some cz > 0.

114For example, note that [Mn,t+1,p (θ)]ii = mt+1,p,i.Y
e
n,t+1 (θ). Note that Y en,t+1 (θ) can be an

unbounded stochastic component. Hence, Assumption 3.4.6 (i) implies the following specification:

[Mn,t+1,p (θ)]ii =

{
sgn

(
mt+1,p,i.Y

e
n,t+1 (θ)

)
cM if

∣∣mt+1,p,i.Y
e
n,t+1 (θ)

∣∣ > cM
mt+1,p,i.Y

e
n,t+1 (θ) otherwise

(3.35)

for some constant cM > 0, which can be selected by a researcher.
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dummies αT,0 while estimating the individual specific parameters cn0 is required to

have large T . Also, the effect of initial values on estimation becomes ignorable under

large T .

Under the provided regularity conditions, we establish the large sample properties

of the GMM estimator θ̂L. For consistency of θ̂L, we require (i) the ULLN, (ii)

stochastic equicontinuity, and (iii) identification uniqueness as sufficient conditions.

For consistency of θ̂L, the first issue is to establish the LLN for
{
yl(i,t),L

}
l(i,t)∈DL

, which

is the main stochastic component of gcl(i,t),L (θ). Let ςl(i,t),L be a measurable function of

εl(i,t),L, Z∗L, XL, cn0, and αT,0 where Z∗L = (Z∗′n1, · · · , Z∗′nT ), and XL = (X ′n1, · · · , X ′nT )′,

i.e, ςl(i,t),L = ς
(
εl(i,t),L, Z

∗
L, XL, cn0, αT,0

)
for each l (i, t) ∈ D. Then, we define the

baseline σ-field for approximation:

Fl(i,t),L(s) = σ
(
ςl(j,t′) : l (j, t′) ∈ D, ‖l (i, t)− l (j, t′)‖∞ ≤ s

)
. (3.36)

Hence, the sequence
{
yl(i,t),L

}
l(i,t)∈DL

forms a random field with respect to another

random field
{
ςl(i,t),L

}
l(i,t)∈D

. So, we discuss the NED properties of
{
yl(i,t),L

}
l(i,t)∈DL

based on Fl(i,t),L(s). Proposition B.2.5 says that
{
yl(i,t),L

}
l(i,t)∈DL

is uniformly L4+ηε-

bounded and is uniformly L2−NED on
{
ςl(i,t),L

}
l(i,t)∈D

. Then, we can apply the

LLN to
{
yl(i,t),L

}
l(i,t)∈DL

in the sense of L1-norm (Proposition B.2.6). The idea of

showing this is to verify two steps: (i) the approximated
{
yl(i,t),L

}
l(i,t)∈DL

(which is

a function of Fl(i,t),L(s)) satisfies the LLN, and then, (ii) the distance between the

actual sequence and the approximated one can be closed to zero if distance s grows.

A main part of (ii) is to have a nonlinear moving average representation of yl(i,t),L

using
{
ςl(i,t),L

}
l(i,t)∈D

. This LLN helps to establish convergence of the sample moment

function ḡcL (θ) = 1
L

∑
l(i,t)∈DL g

c
l(i,t),L (θ) to its expected value for each θ ∈ Θ. To

hold 1
L

[ḡcL (θ)− E (ḡcL (θ))]→p0 for each θ ∈ Θ, Lemmas B.2.12 and B.2.13 verify
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respectively supL,l∈DL E |ḡ
c
L (θ)|2 < ∞ and ḡcL (θ) is uniformly L1-NED on ς for each

θ ∈ Θ. This is a pointwise LLN, so for arbitrary finite points θ’s in Θ ḡcL (θ) converges

its expected value by the same reason of Proposition B.2.6. Since Θ is compact,

it can be covered by finite subcovers. To extend the pointwise LLN to the ULLN,

ḡcL (θ) satisfies the Lipschitz continuity condition in parameter, which gives enough

smoothness of ḡcL (θ) (in θ). In Appendix B, Lemma B.2.14 verifies this feature and

gives (i) the uniform convergence supθ∈Θ [ḡcL (θ)− E (ḡcL (θ))]→p0, and (ii) uniformly

equicontinuity of E (ḡcL (θ)).

To obtain consistency of θ̂L, the last requirement is the identification uniqueness

of θ0. We only consider the linear IV moments as the source of identification since

(i) they come from the underlying model assumption (i.e., population orthogonal-

ity condition) and (ii) the derivation of identification conditions is relatively simple.

To have the identified system, we need to have a unique solution so that for all

l (i, t) ∈ DL E
[
gL
l(i,t),L (θ, ci, αt)

]
= 0q×1 if and only if (θ, ci, αt) = (θ0, ci,0, αt,0). Since

we are interested in the structural parameter θ0, the equation plimL→∞ḡ
L,c
L (θ) = 0q×1

is required to have a unique solution θ0. For each l (i, t) ∈ DL and θ ∈ Θ, de-

fine the following generated regressors: Lλ,it (θ) =
∂εl(i,t),L(θ)

∂λ
, Lγ,it (θ) =

∂εl(i,t),L(θ)

∂γ
,

Lψp,it (θ) =
∂εl(i,t),L(θ)

∂ψp
for p = 1, · · · , P , and Lβk,it (θ) =

∂εl(i,t),L(θ)

∂βk
for k = 1, · · · , K.

For each θ ∈ Θ, let Lψ,it (θ) = [Lψ1,it (θ) , · · · , LψP ,it (θ)]′ (P × 1 vector), Lβ,it (θ) =

[Lβ1,it (θ) , · · · , LβK ,it (θ)]′ (K×1 vector), Lit (θ) =
[
Lλ,it (θ) , Lλ,it (θ) , L′ψ,it (θ) , L′β,it (θ)

]
for θ ∈ Θ ((2 + P +K)-dimensional row vector), Lnt (θ) = (L′1t (θ) , · · · , L′nt (θ))′, and

LL (θ) = (L′n1 (θ) , · · · ,L′nT (θ))′. Since plimL→∞
1
L
q′L (JT ⊗ Jn) EL = 0q×1 by Lemma

B.2.16, the unique solution of plimL→∞ḡ
L,c
L (θ) = 0q×1 at θ0 needs that θ0 is a unique
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solution of

plimL→∞
1

L
q′L (JT ⊗ Jn) LL

(
θ̄
)
· (θ0 − θ) = 0 (3.37)

where θ̄ lies between θ0 and θ. Then, if plimL→∞
1
L
q′L (JT ⊗ Jn) LL (θ) has the full

column rank 2+P+K around θ0, we have a sufficient condition for identification. The

two assumptions below state regularity conditions for linear and quadratic moments.

Assumption 3.4.9 (i) qnt is predetermined at time t (i.e., E (qnt|`t−1) = qnt).

And, its column dimension of qnt is fixed (= q ≥ 2 + P +K) for all n and t.

(ii) For some ηq > 0, supi,t,LE
∣∣∣ql(i,t),L∣∣∣4+ηq

<∞ and

supi,t,n,T
∑n
j=1

∑T
t′=1 E

∣∣∣ql(i,t),Lq′l(j,t′),L∣∣∣ <∞.

(iii)
{
ql(i,t),L

}
l(i,t)∈DL

is uniformly L2-NED on ς.

(iv) plimL→∞
1
L
q′L (JT ⊗ Jn) LL (θ) is of full column rank 2 +P +K for θ ∈ N (θ0)

where N (θ0) denotes some neighborhood of θ0.

Assumption 3.4.10 (i) For each t and l, all diagonal elements of Rnt,l are zero

so that E
(

1
L
E ′LRL,lEL

)
= 0 and all entries in Rnt,l are measurable functions of{

ς∗l(i,t),L
}
l(i,t)∈D

where ς∗l(i,t),L = ς∗
(
z∗l(i,t),L, XL, cn0, αT,0

)
.

(ii) The matrices Rnt,l’s are uniformly bounded in both row and column sums in

absolute values.

(iii) For any i, t and l, [Rnt,l]ij = 0 if ‖l (i, 0)− l (j, 0)‖∞ > adc for some a ∈ N.

Assumption 3.4.9 (i) implies that for each t E (q′ntEnt) = E (q′ntE (Ent|`t−1)) =

0q×1 by the law of iterated expectations. Assuming the existence of the (higher than)

fourth moment for ql(i,t),L is for the dominance condition of gL,c
l(i,t),L (θ) for each θ ∈ Θ.

Via Assumption 3.4.9 (ii), we impose the spatial-time stability condition for IVs. By

Assumption 3.4.9 (iii), we achieve that the sequence of sample moment functions
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{
gcl(i,t),L (θ)

}
l(i,t)∈DL

is uniformly L1-NED on ς, so the pointwise LLN can be applied

to 1
L

∑
l(i,t)∈DL g

c
l(i,t),L (θ). Assumption 3.4.9 (iv) is a sufficient condition that θ0 is a

unique solution to equation (3.37).

Assumption 3.4.10 (i) means thatRnt,1, · · · , Rnt,m are not relevant to
{
εl(i,t),L

}
l(i,t)∈DL

,

but can be affected by the exogenous part of Znt, Xnt, cn0, and αt,0. This implies that

for each l = 1, · · · ,m E (E ′L (JT ⊗ Jn) RL,l (JT ⊗ Jn) EL) = σ2
0tr (E (RL,l) (JT ⊗ Jn)).

As a quadratic moment matrix, we can use the spatial network matrix Wn (if avail-

able), and approximated functions for Wn,t−1 based on the part of strictly exogenous

components
{
ς∗l(i,t),L

}
l(i,t)∈DL

. For example, if W̌n,t−1 is a projected (approximated)

Wn,t−1 on the space generated by
{
ς∗l(i,t),L

}
l(i,t)∈DL

, we can use W̌n,t−1, W̌ ′
n,t−1, and

W̌ ′
n,t−1W̌n,t−1 − tr

(
W̌ ′
n,t−1W̌n,t−1

)
as a quadratic moment matrix. For the relevant

issue, refer to Kelejian and Piras (2014). We do not consider that a quadratic mo-

ment matrix depends on unknown parameters.115 Assumption 3.4.10 (ii) restricts the

magnitude of the quadratic moment matrices. By imposing Assumption 3.4.10 (iii),

the number of nonzero elements in Rnt,l is finite even for large n (i.e, sparse Rnt,l’s).

Now we obtain consistency of θ̂L, which is implied by (i) uniform convergence

of [ScL (θ)− E (ScL (θ))] in θ ∈ Θ, (ii) uniform equicontinuity of {E (ScL (θ))} on Θ,

and (iii) identification uniqueness. Note that the NL2SE can also achieve consistency

since that approach shares those conditions.

Theorem 3.4.2 Assume Assumptions 3.4.1 - 3.4.10 hold. Then, θ̂L→pθ0 as L→∞.

For statistical inferences, the next step is to derive the asymptotic distribution of

θ̂L. Since plimL→∞aL = a0, the random function
√
L · a0ḡ

c
L (θ0) mainly characterizes

115Since we do not derive the feasible reduced form, it is difficult to analyze the asymptotic impacts
of the estimator obtained by the first step on the quadratic moment matrices.
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the asymptotic distribution of θ̂L with
∂ḡcL(θ̂)
∂θ′

= 1
L

∑
l(i,t)∈DL

∂gc
l(i,t),L(θ̂)
∂θ′

. By Theorem

3.4.2 and the continuous mapping theorem, we have
∂ḡcL(θ̂)
∂θ′
− ∂ḡcL(θ0)

∂θ′
= op (1), which

implies that
∂ḡcL(θ0)

∂θ′
can be considered instead of

∂ḡcL(θ̂)
∂θ′

in the asymptotic analysis.

First, by Propositions B.2.9, B.2.10 and B.2.11 in Appendix B, the random field{
∂gc
l(i,t),L

(θ0)

∂θ′

}
l(i,t)∈DL

is uniformly L1-NED on ς. Then, we can apply the LLN to

∂ḡcL(θ0)

∂θ′
. We denote GL = E

(
∂ḡcL(θ0)

∂θ′

)
and G0 as its limit.

Second, consider
√
L·a0ḡ

c
L (θ0), which is a linear combination of linear and quadratic

moment conditions. The linear moment part 1√
L
q′L (JT ⊗ Jn) EL can be composed by

the mean zero part 1√
L
q′L (IT ⊗ Jn) EL and the asymptotic bias part− 1

T
√
L
q′L (lT l

′
T ⊗ Jn) EL.

By Lemma B.2.16, we have − 1
T
√
L
E (q′L (lT l

′
T ⊗ Jn) EL) = O

(√
n
T

)
and

1
T
√
L

(q′L (lT l
′
T ⊗ Jn) EL − E (q′L (lT l

′
T ⊗ Jn) EL)) = Op

(
1√
T

)
. Then, define

bLL (θ0, σ
2
0) = 1

n

∑T
t=1E (q̄′nTJnEnt) = O (1). Hence,

1√
L

q′L (JT ⊗ Jn) EL =
1√
L

q′L (IT ⊗ Jn) EL −
√
n

T
bLL
(
θ0, σ

2
0

)
+Op

(
1√
T

)
. (3.38)

Observe the quadratic moment part: for l = 1, · · · ,m

1√
L
E ′L (JT ⊗ Jn) RL,l (JT ⊗ Jn) EL

=
1√
L

[
E ′L (JT ⊗ Jn) RL,l (JT ⊗ Jn) EL − σ2

0tr (RL,l (JT ⊗ Jn))
]

+
σ2

0√
L
tr (RL,l (JT ⊗ Jn)) .

By Lemma B.2.17, we have
σ2
0√
L
tr (RL,l (JT ⊗ Jn)) = −

√
T
n
bQL,l (σ

2
0) +Op

(
1√
L

)
where

bQL,l (σ
2
0) =

σ2
0

L

∑T
t=1

∑n
i=1

∑n
j=1 [Rnt,l]ij for l = 1, · · · ,m and bQL,l (σ

2
0) = Op (1) by

Assumption 3.4.10 (ii). Let aL =
(
a

(1)
L , · · · , a(m)

L , a
(q)
L

)
and a0 =plimL→∞aL where

a0 =
(
a

(1)
0 , · · · , a(m)

0 , a
(q)
0

)
. By applying the asymptotic equivalence, we can consider
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the ktha −element of
√
L · a0ḡ

c
L (θ0) (for ka = 1, · · · , Ka):

1√
L
E ′L (JT ⊗ Jn)

(
m∑
l=1

a
(l)
0,ka

RL,l

)
(JT ⊗ Jn) EL (3.39)

+
1√
L
a

(q)
0,ka

q′L (JT ⊗ Jn) EL

=
1√
L

 E ′L (JT ⊗ Jn)
(∑m

l=1 a
(l)
0,ka

RL,l

)
(JT ⊗ Jn) EL

−σ2
0tr

(∑m
l=1 a

(l)
0,ka

RL,l (JT ⊗ Jn)
) 

+
1√
L
a

(q)
0,ka

q′L (IT ⊗ Jn) EL −
√
n

T
a

(q)
0,ka

bLL
(
θ0, σ

2
0

)

−
√
T

n

m∑
l=1

a
(l)
0,ka

bQL,l
(
σ2

0

)
+Op

(
1√
T

)
+Op

(
1√
L

)

where a
(l)
0,ka

is the ktha -element of a
(l)
0 , and a

(q)
0,ka

is the ktha -row of a
(q)
0 . Then, the mean

zero term 1√
L
q̃′L,kaEL + 1√

L

[
E ′LR̃L,kaEL − σ2

0tr
(
R̃L,ka

)]
where

R̃L,ka = (JT ⊗ Jn)
(∑m

l=1 a
(l)
0,ka

RL,l

)
(JT ⊗ Jn) and q̃′L,ka = a

(q)
0,ka

q′L (IT ⊗ Jn) character-

izes the asymptotic distribution of the GMME. Hence, we can represent
√
L·aLḡcL (θ0)

as
√
L ·aLḡcL (θ0) =

√
L ·aLḡc,(u)

L (θ0)−
√

n
T
a

(q)
L bLL (θ0, σ

2
0)−

√
T
n

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)+op (1)

where ḡ
c,(u)
L (θ0) denotes the mean zero part of ḡcL (θ0).

For the asymptotic distribution of
√
L ·a0ḡ

c,(u)
L (θ0), we need to find an appropriate

limit theorem. We take ideas from Kuersteiner and Prucha (2013, 2018) and Qu et al.

(2017). Note that {Znt, dij, dc} can affect network formation. Except for a channel of

affecting Yn,t−1 on Znt, remaining components of Znt are unspecified. For each l (i, t)

the (unspecified) exogenous network formation component ς∗l(i,t),L can be represented

by sub-σ-field Cl(⊂ F). Elements in Vnt in equation (3.2) can be ς∗l(i,t),L. Hence, we

specify
{
ς∗l(i,t),L

}
l(i,t)∈DL

as C = ∨Ll=1Cl and E
(
εl(i,t),L|C

)
= 0 for all l (i, t) ∈ DL where

∨ is the notation for the sigma field generated by the union of two sigma fields. Then,

the C-stable convergence concept can be established, which it is joint convergence

of main statistics and a C-measurable random variable. An advantage of taking the
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notion is that strictly exogenous components from network formation
{
ς∗l(i,t),L

}
l(i,t)∈DL

can be represented by C. If we treat
{
ς∗l(i,t),L

}
l(i,t)∈DL

as constants, a conditional

limiting distribution will follow a normal distribution meaning a conventional CLT

framework. Observe that the main statistics
√
L · a0ḡ

c,(u)
L (θ0) takes a LQ form of

disturbances conditional on C if a0 is C-measurable. Lemma B.2.19 shows that the

LQ form converges C-stably. With considering randomness of a C-measurable random

variable,
√
L · a0ḡ

c,(u)
L (θ0) may follow mixed normal due to random norming by the

continuous mapping theorem.116

The assumption below states conditions for having the well-defined asymptotic

variance of θ̂L.

Assumption 3.4.11 G0 and a0 are C-measurable.

lim infL→∞ φmin (G′La
′
LaLGL) > 0 and lim infL→∞ φmin (ΣL) > 0 where φmin (·)

denotes the smallest eigenvalue and ΣL = 1
L
V ar

(∑
l(i,t)∈DL g

c
l(i,t),L (θ0)

)
.

In Hansen’s (1982) GMM setting, the optimal GMM (OGMM) estimation can be

considered by the approximated ΣL. Let

ωL,m = [vecD ((JT ⊗ Jn) RL,1 (JT ⊗ Jn)) , · · · , vecD ((JT ⊗ Jn) RL,m (JT ⊗ Jn))]

(3.40)

and

κL,m = [vec
(
(JT ⊗ Jn) R′L,1 (JT ⊗ Jn)

)
, · · · , vec

(
(JT ⊗ Jn) R′L,m (JT ⊗ Jn)

)
]′

×[vec
(
(JT ⊗ Jn) Rs

L,1 (JT ⊗ Jn)
)
, · · · , vec

(
(JT ⊗ Jn) Rs

L,m (JT ⊗ Jn)
)
].

116Or, we can argue that
√
L ·a0ḡ

c,(u)
L (θ0) follows asymptotically normal conditional on C. A basic

idea of the CLT with random norming, refer to Chapter 25.2 in Davidson (1994).

122



Then, the ΣL can be approximated by

Σ̃L =
1

L

[
(µ4 − 3σ4

0)ω′L,mωL,m + σ4
0κL,m µ3ω

′
L,m (IT ⊗ Jn) qL

µ3q
′
L (IT ⊗ Jn)ωL,m σ2

0q
′
L (IT ⊗ Jn) qL

]
(3.41)

where µ3 = E (ε3it) and µ4 = E (ε4it) , and ΣL and Σ̃L can achieve the same probability

limit, i.e., Σ0 =plimL→∞ΣL(=plimL→∞Σ̃L). Since Σ̃L depends on nuisance parame-

ters σ2
0, µ3 and µ4, consistent estimates for them are required for practical uses. The

Theorem below shows the asymptotic distribution of θ̂L.

Theorem 3.4.3 If Assumptions 3.4.1 - 3.4.11 hold,

√
L
(
θ̂L − θ0

)
+ [G′La

′
LaLGL]

−1


√

n
T
G′La

′
La

(q)
L bLL (θ0, σ

2
0)

+
√

T
n
G′La

′
L

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)

+ op (1)(3.42)

→dplimL→∞ΩL (a′LaL)
1
2 · ξ∗

where ΩL (a′LaL) = [G′La
′
LaLGL]−1G′La

′
LaLΣLa

′
LaLGL [G′La

′
LaLGL]−1, and ξ∗ ∼

N
(
0(2+P+K)×1, I2+P+K

)
is independent of plimL→∞ΩL (a′LaL) (because they are C-

measurable).

Let ξ∗,L =
√
L
(
θ̂L − θ0

)
+ [G′La

′
LaLGL]−1

{√
n
T
G′La

′
La

(q)
L bLL (θ0, σ

2
0) +

√
T
n
G′La

′
L

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)
}

and Ω0 (a′0a0) =plimL→∞ΩL (a′LaL)

for further explanations.

First, Theorem 3.4.3 says the existence of asymptotic biases (they are ofO
(
max

{
1
n
, 1
T

})
)

due to direct estimation of incidental parameters. And, θ̂L−θ0 = Op

(
max

{
1√
L
, 1
n
, 1
T

})
.

If n
T
→ 0 or T

n
→ 0, the GMME’s asymptotic distribution will be degenerated: (i) if

n
T
→ 0,

n
(
θ̂L − θ0

)
+ [G′La

′
LaLGL]−1G′La

′
L

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)→p0, and (ii) if T

n
→ 0,

T
(
θ̂L − θ0

)
+ [G′La

′
LaLGL]−1G′La

′
La

(q)
L bLL (θ0, σ

2
0)→p0. To avoid degenerate distribu-

tions, hence, an appropriate ratio of n and T is required. If n
T
→ c ∈ (0,∞),
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√
L
(
θ̂L − θ0

)
+
√
c [G′La

′
LaLGL]−1G′La

′
La

(q)
L bLL (θ0, σ

2
0)

+
√

1
c

[G′La
′
LaLGL]−1G′La

′
L

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0) →dΩ0 (a′0a0)

1
2 · ξ∗.

Second, consider the case of n
T
→ c ∈ (0,∞) for illustrative purposes. Then,

Theorem 3.4.3 means that convergence of the characteristic function conditional on

C, E (exp (i$′ξ∗,L) |C) → exp (−$′Ω0 (a′0a0)$/2) where i =
√
−1, and $ is a linear

combination. It implies that E (exp (i$′ξ∗,L)) → E (exp (−$′Ω0 (a′0a0)$/2)), which

means that the unconditional asymptotic distribution of $′ξ∗,L is a mixed normal.

Third, observe that the asymptotic distribution of
√
L
(
θ̂L − θ0

)
is not centered at

0(2+P+K)×1 conditional on C if n
T

has a moderate ratio. Hence, a bias correction for θ̂L

is needed. Fourth, the optimal GMM weight matrix (conditional on C) can be specified

by a′LaL = Σ−1
L by the Hansen’s (1982) GMM setting, i.e., ΩL

(
Σ−1
L

)
=
[
G′LΣ−1

L GL

]−1
.

Then, its probability limit is
[
G′0Σ−1

0 G0

]−1
, which is C-measurable. Since Σ−1

L involves

unknown nuisance parameters including the second, third and fourth moments of εit,

the optimal GMM estimator (OGMME) (denoted by θ̂L,o) is infeasible. After getting

consistent estimates of σ2
0, µ3, and µ4, we can employ an estimated one (denoted by

̂̃
ΣL) and get the feasible OGMME (FOGMME), θ̂L,f . So long as

̂̃
ΣL − ΣL = op (1),

the FOGMME and OGMME are asymptotically equivalent.117

117Due to the model’s complexity, many IVs might be needed to approximate endogenous variables
in the model or to increase GMME’s efficiency. However, we do not recommend using many moment
conditions since it can yield an additional asymptotic bias (see Lee and Yu (2014)). That asymptotic
bias is of an order proportional to the ratio of the number of moments and the total observation
numbers. By observing (3.42), we can also expect that using many quadratic moments leads to large

asymptotic biases (since it involves the sum
∑m
l=1 a

(l)
L b

Q
L,l

(
σ2

0

)
and it may increase corresponding

to m). In practice, therefore, we suggest selecting the number of IVs as well as quadratic moments
carefully with considering feasible sample observations.
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Bias correction

By observing (3.42), the two kinds of asymptotic biases exist. The first source of

bias is due to estimating the incidental parameters αT,0 and employing the quadratic

moments, bQL,l (σ
2
0) =

σ2
0

L

∑T
t=1

∑n
i=1

∑n
j=1 [Rnt,l]ij. Since we select Rnt,l’s, b

Q
L,l (σ

2
0) can

be evaluated after getting a consistent estimate of σ2
0. The second source of bias

comes from the incidental parameters cn0 and using the linear moments, bLL (θ0, σ
2
0) =

1
n

∑T
t=1E (q̄′nTJnEnt). Hence, a key part of bias correction is to evaluate E (q̄′nTJnEnt).

Since qnt is predetermined, bLL (θ0, σ
2
0) = 1

L

∑T
t=1

∑
t′>tE (q′nt′JnEnt). Note that pos-

sible choices for qnt are lagged dependent variable Yn,t−1, (lagged) exogenous vari-

ables Xn,t−1, Xnt, and their affine transformations. Our difficulty is to formulate

E (q′nt′JnEnt) for t′ > t if qnt consists of Yn,t−1 and its linear transformations118 since

we do not derive the reduced form of Yn,t−1. One way to reduce the bias is to use

similar Yn,t−1 (e.g., Y e
n,t−1) which has a feasible reduced form.119

Then, we have a bias corrected estimator

θ̂cL = θ̂L −
1

T
[C ′LCL]

−1
C ′La

(q)
L

̂bLL (θ0, σ2
0)− 1

n
[C ′LCL]

−1
C ′L

m∑
l=1

a
(l)
L

̂
bQL,l (σ

2
0) (3.43)

where CL = aLGL, and ·̂ denotes an estimate of ·. In case of θ̂L,o and θ̂L,f , we

can have the Cholesky factorization of Σ−1
L (or Σ̃−1

L ), i.e., Σ−1
L = a′ΣL,LaΣL,L where

aΣL,L =
(
a

(1)
ΣL,L

, · · · , a(m)
ΣL,L

, a
(q)
ΣL,L

)
is an (m + q)× (m + q) square matrix and aΣL,L is

positive definite for sufficiently large L by Assumption 3.4.11. Then, θ̂cL,o and θ̂cL,f can

118When considering a linear combination with Yn,t−1 as qnt (i.e., BnYn,t−1 where Bn is some
n × n matrix), a linear combination matrix should be strictly exogenous. If we use Wn,t−1 as a
linear combination matrix, we need to additionally adjust nonlinearity of Wn,t−1 since Wn,t−1 might
be a nonlinear function of Yn,t−2.

119For example, we can choose Y en,t−1 which comes from the LQ perturbation method and formulate
E (Y e′nt′JnEnt) for t′ ≥ t. If a spatial network matrix Wn is available, we can also use a linear optimal
decision vector based on the LQ value functions (Jeong and Lee (2018)).
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be also defined. Indeed, the second source of bias bLL (θ0, σ
2
0) might not be perfectly

measured even for the large samples since the functional form of actual Ynt is difficult

to be achieved. Hence, we firstly consider the ideal situation (i.e., we can successfully

evaluate E (q′nt′JnEnt) for t′ > t). For example, (i) all IVs are strictly exogenous; (ii)

limL→∞ b
L
L (θ0, σ

2
0) is obtainable. After that, we investigate the asymptotic impact

originated from a misspecification of bLL (θ0, σ
2
0). Here is the ideal regularity condition

for θ̂cL.

Assumption 3.4.12 Assume√
n
T

[
[C ′LCL]−1C ′La

(q)
L

̂bLL (θ0, σ2
0)− [C ′LCL]−1C ′La

(q)
L bLL (θ0, σ

2
0)
]
→p0, and√

T
n

[
[C ′LCL]−1C ′L

∑m
l=1 a

(l)
L

̂
bQL,l (σ

2
0)− [C ′LCL]−1C ′L

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)
]
→p0.

Assumption 3.4.12 gives the asymptotic equivalence.120 SinceGL→pG0 and aL→pa0,

we need to have ̂bLL (θ0, σ2
0) − bLL (θ0, σ

2
0)→p0q×1 and

̂
bQL,l (σ

2
0) − bQL,l (σ2

0)→p0 for l =

1, · · · ,m to satisfy Assumption 3.4.12. As long as getting a consistent estimate of σ2
0,

we can achieve
̂

bQL,l (σ
2
0)− bQL,l (σ2

0)→p0. Now we have the following corollary.

Corollary 3.4.4 Under the same assumptions of Theorem 3.4.3 with Assumption

3.4.12, we have

√
L
(
θ̂cL − θ0

)
→dΩ0 (a′0a0)

1
2 · ξ∗. (3.44)

That is, we have

√
L
(
θ̂cL − θ0

)
−
√
L

(
θ̂L − 1

T
[C ′LCL]−1C ′La

(q)
L bLL (θ0, σ

2
0)

− 1
n

[C ′LCL]−1C ′L
∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)− θ0

)
→p 0,

120If we take Y ent for the bias correction and Y ent is correctly specified, we can assume that (i)∑∞
h=0 [Aen (θ)]

h
and

∑∞
h=1 h [Aen (θ)]

h
are uniformly bounded in either row or column sums uniformly

in a neighborhood of θ0, and (ii) n
T 3 → 0 and T

n3 → 0 for the asymptotic equivalence. They come
from Corollary 4.3 in Jeong and Lee (2018).
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implying

√
L
(
θ̂cL − θ0

)
=
√
L

(
θ̂L − 1

T
[C ′LCL]−1C ′La

(q)
L bLL (θ0, σ

2
0)

− 1
n

[C ′LCL]−1C ′L
∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0)− θ0

)
+ op (1)

→ dΩ0 (a′0a0)
1
2 · ξ∗.

Hence, if we have a moderate ratio of n and T and good approximations of bLL (θ0, σ
2
0)

and bQL,l (σ
2
0)’s, the asymptotic distribution of

√
L
(
θ̂cL − θ0

)
will be properly centered

conditional on C.

However, we might not have ̂bLL (θ0, σ2
0)− bLL (θ0, σ

2
0)→p0q×1 since we approximate

E (q̄′nTJnEnt) if qnt includes Yn,t−1. Let bL∗ =plimL→∞
̂bLL (θ0, σ2

0) (=probability limit of

the approximated one) and bL0 = limL→∞ b
L
L (θ0, σ

2
0) (=probability limit of the actual

bias term). Suppose bL∗ 6= bL0 . Then, the first part of Assumption 3.4.12 fails. Observe

that

√
n

T

[
[C ′LCL]

−1
C ′La

(q)
L

̂bLL (θ0, σ2
0)− [C ′LCL]

−1
C ′La

(q)
L bLL

(
θ0, σ

2
0

)]
=

√
n

T
[C ′LCL]

−1
C ′La

(q)
L

[( ̂bLL (θ0, σ2
0)− bL∗

)
−
(
bLL
(
θ0, σ

2
0

)
− bL0

)
+
(
bL∗ − bL0

)]
.

If n
T
→ c ∈ (0,∞), we have

√
L
(
θ̂cL − θ0

)
→dΩ0 (a′0a0)

1
2 · ξ∗ +

√
cplimL→∞ [C ′LCL]

−1
C ′La

(q)
L

(
bL∗ − bL0

)
(3.45)

Hence, if we expect large errors in using this bias-correction method, having large T

(relative to n) can alleviate the problem.

By using θ̂cL, the statistical inferences might yield more accurate results. If we

consider the linear constraints121 R, the Wald statistic

121We can also consider a non-linear constraint by applying the delta method.
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TL =
∥∥∥(RΩL (a′LaL)R′)

1
2
√
L
(
Rθ̂cL − r

)∥∥∥2
can be used to test H0 : Rθ0 = r (against

H1 : Rθ0 6= r) where r is a dim (r)-dimensional vector and R is a dim (r)×(2 +K + P )

full row rank matrix. By applying Lemma B.2.20, TL will follow the asymptotically

chi-square distribution: under H0 : Rθ0 = r, TL→dχ
2
dim(r) implying

P
(
TL > χ2

dim(r),1−α

)
→ α where χ2

dim(r),1−α denotes the (1− α) quantile of the chi-

square distribution with dim (r) degrees of freedom. Even for the existence of C-

measurable random components plimL→∞ΩL (a′LaL)
1
2 in the asymptotic distribution

of θ̂cL, the Wald statistic asymptotically follows the unconditional chi-square distribu-

tion. This result has the same implication as Theorem 4 in Kuersteiner and Prucha

(2018).

3.4.4 Finite sample properties

In this subsection, we conduct Monte Carlo experiment with data generated from

equation (3.19). There are two purposes of the simulations: (i) performance eval-

uation of the NL2S and GMM estimators, and (ii) the analysis of misspecification

errors when we estimate the model with ignoring the forward-looking feature. The

simulation design aligns with the empirical application in Section 3.5 in terms of the

sample size (n, T ) = (48, 24), the spatial networks (Wnt), and the averages of depen-

dent variables (Ȳ ◦n ).122 We set K = 1, P = 1, and δ = 0.95. We draw Xnt, cn0,

αT,0, and Ent mutually independently from the standard normal distributions. We

generate the data with 20 + T periods, where the starting vector values are Ȳ ◦n , but

122That is, we employ the same spatial networks and relevant terms as the application part to have
a unique reduced form of equation (3.19). We generate Y en,t+1 and ∇V en,t+2 by the LQ perturbation

method around Ȳ ◦n . In the supplementary file, we conduct additional simulations for the case of a
time-invariant spatial network matrix. Since this case can have a well-defined correlation structure of
Ynt, we can do the quasi maximum likelihood (QML) approach. We compare estimation performance
of the NL2S and GMM estimators with that of the QML estimator.
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Table 3.1: Simulation results
Case 1: (λ0, γ0, ψ0, β0) = (0.1, 0.2, 0.5, 1)

NL2S GMM
λ0 γ0 ψ0 β0 λ0 γ0 ψ0 β0

Bias 0 -0.0309 -0.0013 -0.0202 -0.0117 -0.0309 -0.0014 -0.0181
SD 0.0208 0.0268 0.0237 0.0346 0.0116 0.0269 0.0239 0.0345
T-SD 0.0201 0.0263 0.0242 0.0346 0.0108 0.0261 0.0242 0.0344
RMSE 0.0208 0.0409 0.0237 0.0401 0.0165 0.041 0.024 0.0389

GMMC
λ0 γ0 ψ0 β0

Bias -0.0011 -0.0037 0.0238 -0.0026
SD 0.0115 0.0279 0.024 0.0345
T-SD 0.0108 0.0261 0.0242 0.0344
RMSE 0.0116 0.0282 0.0338 0.0346

utilize the last T periods as our sample. For the true parameter values, we consider

two sets of θ0, (0.1, 0.2, 0.5, 1)′ and (−0.1, 0.2,−0.5,−1)′. We select small amounts

of θ0 to obtain fast convergence in solving algebraic matrix Riccati equations. Linear

IVs are qnt = [Yn,t−1,WnYn,t−1,W
2
nYn,t−1, Xnt,WnXnt,W

2
nXnt] where Wn is the row

normalized adjacency matrix of the U.S. states. The quadratic moment matrix is

formed with RL,1 = IT ⊗Wn.

First, we compare the three estimation methods: (i) NL2S, (ii) GMM, and (iii)

GMM with bias correction (denoted by GMMC). By comparing performance of (i)

NL2SE and (ii) GMME, we can investigate whether using the quadratic moment

condition plays a role in efficiency. To evaluate performance of estimators, we report

four criteria: (i) bias, (ii) standard deviation (SD), (iii) theoretical standard deviation
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Misspecification errors

NL2S GMM
λ0 γ0 ψ0 β0 λ0 γ0 ψ0 β0

Bias -0.0122 -0.0525 0.0006 -0.1346 -0.0214 -0.0514 0.0006 -0.1331
GMMC
λ0 γ0 ψ0 β0

Bias -0.0123 -0.0525 0.0302 -0.1344

Case 2: (λ0, γ0, ψ0, β0) = (−0.1, 0.2,−0.5,−1)

NL2S GMM
λ0 γ0 ψ0 β0 λ0 γ0 ψ0 β0

Bias 0.0029 -0.0309 -0.0021 0.0186 -0.0099 -0.034 -0.0021 0.0241
SD 0.0229 0.0261 0.0228 0.0369 0.0134 0.0259 0.0231 0.0366
T-SD 0.025 0.0263 0.0239 0.0354 0.0135 0.0261 0.0239 0.0345
RMSE 0.0231 0.0404 0.0229 0.0414 0.0166 0.0427 0.0232 0.0438

GMMC
λ0 γ0 ψ0 β0

Bias 0.0005 -0.0049 0.0227 0.0025
SD 0.0136 0.0272 0.0231 0.0367
T-SD 0.0135 0.0261 0.0239 0.0345
RMSE 0.0136 0.0277 0.0323 0.0368

Misspecification errors

NL2S GMM
λ0 γ0 ψ0 β0 λ0 γ0 ψ0 β0

Bias 0.0156 -0.0534 -0.0004 0.1368 0.0028 -0.0547 -0.0004 0.1401
GMMC
λ0 γ0 ψ0 β0

Bias 0.0139 -0.0545 0.0292 0.1372
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(T-SD), and (iv) root mean square error (RMSE). To obtain those measures, we

conduct 400 repetitions. In Table 3.1, we obtain several findings:

(1) First, consider estimation of λ0. NL2SE has smaller bias relative to that of

GMME in absolute values. There exists downward biases in GMME. After the bias

correction, the magnitudes of bias become smaller. In terms of efficiency, GMME is

significantly better than NL2SE.

(2) Second, consider estimating γ0. In NL2SE and GMME, there are downward

biases. After correcting the bias, the magnitude of bias decreases. In estimating γ0,

additionally considering RL,1 does not improve efficiency.

(3) Third, consider estimation of ψ0. In NL2SE and GMME, there are downward

biases for both cases, λ0 > 0 and λ0 < 0. In estimating ψ0, our bias correction

increases magnitudes of biases (in absolute values). It seems that our bias correction

method overevaluates the bias for estimating ψ0.

(4) Fourth, we report estimation results of β0. For the NL2S and GMM methods,

the signs of biases are opposite to those of the true β0. After applying the bias

correction method, we can reduce the magnitude of bias. It seems that additionally

using RL,1 does not affect efficiency.

In sum, (i) using the quadratic moment condition is only beneficial in estimating

λ0; (ii) our bias correction works well in estimating λ0, γ0 and β0. For accurate

estimation for λ0, using quadratic moment conditions can be additionally considered

(to support NL2SE).

Second, we study misspecification errors when we estimate equation (3.19) with

0 < δ < 1 using the conventional SDPD model (equation (3.1)). If θ0 = (0.1, 0.2, 0.5, 1)′,
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we detect significant downward biases except for the estimates of ψ0 when we disre-

gard the forward-looking feature. If θ0 = (−0.1, 0.2,−0.5,−1)′, we observe upward

misspecification biases in estimating λ0 and ψ0. That is, estimated coefficients λ0,

γ0 and β0 will be underestimated (in absolute values) without the forward-looking

behaviors.

3.5 Application

In this section, we introduce an empirical application to show how to implement

our model. Note that our model assumptions are appropriate for fixed physical lo-

cations of agents with their time-varying intensities of interactions by the economic

indicators. Hence, we consider policy interdependencies among the U.S. state’s health

expenditures.123 Each state government becomes an economic agent i, and its action

at each period is state health expenditure per capita. A government officer makes its

health expenditure decision by considering two potential factors (Brueckner (2003)):

(i) welfare recipients can move to neighboring states to enjoy favorable welfare en-

vironment (i.e., welfare motivated move), and (ii) they can expel the officer when

the state government makes an inefficient expenditure decision by comparing that of

similar states (i.e., yardstick competition).124 In consequence, a state decision maker

123Since the state’s health expenditure is used for health-related research, immunization programs,
regulation of air and water quality, etc., it can yield the policy spillover effects to neighboring states.

124Brueckner (2003) reviews the justifications of payoff function (3.3) in the framework of local gov-
ernment strategic interactions. The yardstick competition can be explained by the policy spillover
model. Then, the payoff specification (3.3) for a local government describes the utility of a repre-
sentative resident of region i.

The welfare motivated move is justified by the resource-flow model. In consequence, a jurisdiction’s
payoff would be the same as (3.3) and show a representative resident’s utility. In this case, however,
jurisdiction i is indirectly affected by other jurisdictions Y−i,t via resources such as population. A
resident in region i can be a labor force and can move to other regions to enjoy a favorable economic
policy. Hence, jurisdiction i has a motivation of considering neighboring policies.
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Table 3.2: Descriptive statistics: 48 contiguous states in U.S.

Variables Mean Standard dev. Min Max

Health expenditure 0.1425 0.0805 0.0271 0.5855
Proportion on total expenditure 0.0247 0.0124 0.0047 0.0707
Total expenditure 5.7992 1.2951 3.4631 11.6327
Total revenue 5.8646 1.2749 1.5816 14.8746
Grants from the Federal government 1.4947 0.4185 0.5757 4.1586
Population (millions) 6.0305 6.5155 0.4663 39.25
Population density 73.7276 100.0283 469.5999 1.8541
Personal income 35.7279 5.6464 25.7151 59.1866
Unemployment rate 0.0559 0.0187 0.023 0.1361
Proportion of the population aged 0-17 0.2475 0.0216 0.1898 0.3532
Proportion of the population aged 18-65 0.6198 0.0151 0.559 0.6511

Note: Sample is 48 contiguous states from 1992 to 2016. Dollar amounts are in
thousands and real per capita values adjusted by the GDP deflator with base year
2012.

considers neighboring actions. Note that the state’s health expenditure can posi-

tively affect its future economic status by human capital accumulations (Bloom et

al. (2004)). In consequence, we take the time-varying Wnt since evolution of Wnt is

driven by the states’ economic status. As Han and Lee (2016), economic proximities

of states are captured by their personal income per capita (i.e., variable Znt).

We estimate the underlying incentive structure of U.S. states’ actions on health

expenditure by assuming forward-looking agents and network evolution. For data,

we choose 48 contiguous states in the U.S. (excluding Alaska, Hawaii, and Wash-

ington D.C.) and time periods are from 1992 to 2016 (total 1,200 observations for

each variable). From the United States Census Bureau, we obtain the states’ demo-

graphic/economic and finance data.125 For the additional macroeconomic variables

125For the government finance data, two periods of observations (years 2001 and 2003) are not
available. Hence, we generate the government finance data for the two periods by the interpolation.
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(e.g., GDP deflator, interest rates, states’ unemployment rates), we use the website

of the Federal reserve bank of S.t. Louis. All dollar amounts are in thousands and

real per capita values adjusted by the GDP deflator with the base year 2012. Table

3.2 shows the descriptive statistics for collected variables.

The main issue is verifying whether a local government decision affects their net-

work links by the economic proximities. 126 In our model, the coevolution of economic

activities and networks arises if ψ0 6= 0. By using Znt and {dij}, we need to specify

socio-economic networks Wnt.
127 We consider Wnt based on the following specification

wt,ij = h (zit, zjt) · hd (dij) · 1 {(i, j)nbd} (3.47)

for i 6= j to represent the intensity of interaction between i and j at time t. To

measure the economic distance, we consider Et,ij = |zit − zjt|.128 By introducing

1 {(i, j)nbd}, we can have sparse Wnt.

To give reasonable backgrounds of selecting spatial networks, we consider the

Cobb-Douglas function specification of wt,ij:

wt,ij = E−αet,ij d
−αd
ij

(
yj,t−1

yi,t−1

)αw
· 1 {(i, j)nbd} (3.48)

126A famous discussion related to this issue is Barro (1990).

127Each state government’s physical location can be characterized by the pair of latitude and
longitude for its capital (denoted by (ϕi, υi) in radians). By the Haversine formula, we compute
the physical distance between two states denoted by dij : Let (ϕi, υi) and (ϕj , υj) be respectively
geographic locations of i and j. Then,

dij = 2rE arcsin

(
sin2

(
ϕj − ϕi

2

)
+ cos (ϕj) cos (ϕi) sin2

(
υj − υi

2

))
(3.46)

where rE = 6356.752km denotes the Earth radius.

128For a case of |zit − zjt| < $200, we set Et,ij to be $200 to exclude extremely strong intensity of
economic interactions. Selection of the minimum Et,ij does not significantly affect our estimation
results.
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Table 3.3: Estimated coefficients (elasticities) of spatial-economic network formation
models

Coefficients Specification (1) Specification (2)
αe 0.3017*** [0.0266] 0.1313*** [0.0242]
αd 1.4575*** [0.0272] 2.0421*** [0.0213]
αw 0.0388* [0.0231] 0.0808* [0.0459]
Fixed effects No Yes

Note: Estimates that are significant at the 1 percent, 5 percent, and 1 percent levels
are respectively marked by *, **, and ***.

for i 6= j where αd, αe, and αw are coefficients. The estimation procedure is introduced

in Appendix B. Table 3.3 shows the estimated coefficients in specification (3.48). The

estimated αe and αd are significant under the 1% significance level, and estimate of

αw is significant under the 10% significance level.

We estimate model’s main parameters based on Assumption B.13 via the NL2SE

and GMME. For the GMME, we consider the FOGMME. For the time-discounting

factor, we employ the average of 10-year Treasury constant maturity rates during the

sample periods: i.e., δ = 0.956 ' 1
1+ı̄r

where ı̄r = 0.0457 denotes the average interest

rates. As explanatory variables, we utilize (i) total revenue, (ii) federal grants, (iii)

time differenced population density129, (iv) unemployment rate, (v) proportion of

the population aged 0˜17, and (vi) proportion of the population aged 18-65. This

specification is guided by Case et al. (1993). For the linear IV moment conditions, we

129We find that the U.S. population densities are quite persistent. In our model framework, all
exogenous (time-varying) characteristics (ηvnt in the theoretical model) should be stationary. To
avoid nonstationary variable issues, we use the time differenced population densities.
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Table 3.4: Model estimation
Case 1: δ = 0

Estimation method NL2S GMM GMMC
Variables

Grants from the Fed. 0.0173** [0.0071] 0.0179*** [0.0062] 0.0176*** [0.0062]
λ0 0.0052 [0.0161] 0.0046 [0.0110] 0.0100 [0.0110]
γ0 0.8963*** [0.0228] 0.8932*** [0.0224] 0.8940*** [0.0224]
ψ0 0.3627** [0.1859] 0.3613* [0.1859] 0.4050** [0.1859]

No. of Obs. 1152 1152 1152
Sample objective function 3.59E-06 0.0175 0.0192

Note: Estimates that are significant at the 10 percent, 5 percent, and 1 percent levels
are respectively marked by *, **, and ***.

consider [Yn,t−1, Xnt] and its transformation byWn andW 2
n .130 We set RL,1 = IT⊗Wn.

Bias correction of the GMME is conducted based on the optimal policies from the

LQ perturbation method.

Table 3.4 shows the main estimation results for two models: (i) δ = 0 (myopic),

and (ii) δ = 0.956. The reported standard errors are based on the conditional asymp-

totic normality on the C-measurable random variables. We also report the Wald

test statistics TL for H0 : λ0ψ0 = 0 based on the bias corrected GMME. Here is

the summary of estimation results. First, significantly positive γ0 is captured under

the 1% significance level. It implies that a state government is hard to extremely

change its health expenditure over time due to the high level of adjustment costs.

The spatial interaction coefficients (λ0) are positive, which it means that a state

130The spatial network Wn is specified by a row-normalized one wij =
w̃ij∑n

k=1
w̃ij

where

w̃ij = 1 {(i, j)nbd} (3.49)

if j 6= i. Then, Wn is strict exogenous.
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Case 2: δ = 0.956

Estimation method NL2S GMM GMMC
Variables

Grants from the Fed. 0.0200** [0.0083] 0.0207*** [0.0074] 0.0191** [0.0073]
λ0 0.0032 [0.0096] 0.0029 [0.0069] 0.0028 [0.0069]
γ0 0.9839*** [0.0060] 0.9840*** [0.0059] 0.9954*** [0.0059]
ψ0 0.3627** [0.1859] 0.3612* [0.1859] 0.4095 [0.1859]
TL for H0 : λ0ψ0 = 0 0.1566

No. of Obs. 1152 1152 1152
Sample objective function 4.31E-06 0.0176 0.0236

Note: Estimates that are significant at the 10 percent, 5 percent, and 1 percent levels
are respectively marked by *, **, and ***.

government decision on health expenditure is reinforced by rival states’ decisions.

However, the estimated coefficients are not significant. For ψ0, we detect the positive

effect of state’s health expenditure on its economic status. The Wald test statistic

TL = 0.1566 does not reject H0 : λ0ψ0 = 0 since χ2
1,0.95 = 3.82. It seems that the

U.S. health expenditure decisions and the spatial networks do not coevolved. We

observe the significantly positive effect of the federal grants on the state’s marginal

payoff under the 5% significance level. For other exogenous characteristics, there is no

significant effect. In comparing the two models, the estimated coefficients for γ0 and

β0 from the conventional model are lower than those of the forward-looking model.

3.6 Conclusion

In this paper, we introduce a new spatial econometric model describing optimal

actions of forward-looking agents and spatial network evolution. Due to the forward-

looking agent assumption, the feedback effect arises: agents are not only affected by

spatial networks, but their actions can also affect the spatial networks. Since the
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agent’s payoff function is characterized by parameters, a corresponding parametric

econometric model is established. To estimate structural parameters, we consider a

GMM estimation method based on a set of Euler equations. Asymptotic properties

of the GMM estimator are studied for statistical inferences. Using the Wald test,

we can test whether spatial networks are exogenous evolve or not. As an applica-

tion, we explore policy interdependencies among the U.S. states’ decisions on health

expenditure.
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Chapter 4: Spatial dynamic models with intertemporal

optimization III: A dynamic Stackelberg game with spatial

interactions

4.1 Introduction

This paper suggests a new spatial econometric model for a panel data set de-

scribing spatial interactions among two types of forward-looking agents: a leader and

multiple followers. In an application of public economics, a leader represents the

federal government while followers are for the state governments. Using our estima-

tion equation, we want to empirically investigate two types of policy interdependence

at the same time: (i) interactions between the U.S. federal and state governments,

and (ii) interactions among the state governments. In traditional literature, regional

policy interdependence can be explained by a spatial econometric model (Case et al.

(1993)), which can describe strategic interactions among spatial units. For example,

a linear spatial autoregressive (SAR) model describes a vector of best responses of

a game played on a spatial network with a parametric linear-quadratic (LQ) utility

function. However, conventional spatial econometric models are designed for study-

ing policy interrelations among the same level of local governments (e.g., interactions
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among state governments). To formulate the two types of spatial interactions, we es-

tablish a dynamic Stackelberg game with spatial interactions motivated by Chapter

19 in Ljungqvist and Sargent (2012). LQ parametric payoff functions characterize

preferences of the two types of agents. Focusing on the linear rational expectations

equilibrium, we derive the parametric econometric model. The resulted model is a

new spatial dynamic panel data (SDPD) model showing the different levels of inter-

actions.

As the first contribution, we establish a spatial econometric model based on a dy-

namic Stackelberg game played by the leader and the multiple followers. As a review

of dynamic Stackelberg game models, refer to Li and Sethi (2017). Our model speci-

fication is useful to study spatial interactions of the central (one leader) and the local

governments (multiple followers). Two points are considered in our model specifica-

tion. The first point is basic features of a spatial panel data set. Since a policy decision

of a (central/local) government arises at each fiscal year, observed policies by them

are reported in a panel data set. In formulating our theoretical model, we consider

strategic interactions among rational economic agents. Hence, we assume that the

revealed actions come from agents’ intertemporal optimization (i.e., forward-looking

agent assumption). At each period, both types of agents rationally expect uncertain

future actions and exogenous characteristics given their available information. As

the second point of view, we assume that there is a hierarchy in decision-making of

the two types of agents. For each period, two stages of decision-making exist. For

each period, the leader firstly chooses its continuous type actions (grants) to sup-

port n followers (i.e., n decision variables). After observing the leader’s actions, the

n followers simultaneously choose their own (continuous type) actions (e.g., state’s
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expenditure) by considering (i) neighboring followers’ current and expected future ac-

tions with their exogenous characteristics and (ii) expected future leader’s actions. At

each period, the influences from the leader and the followers are unilateral and they

are formulated as some parameters. Like a conventional spatial econometric model,

interrelations among the followers are characterized by a spatial network (formulated

by an n× n matrix Wn).

We derive the rational expectation equilibrium equations with assuming a stable

economic environment. We seek to estimate parameters characterizing agents’ payoff

functions. Each follower has a LQ payoff function in his/her action.131 This LQ payoff

specification justifies a conventional SDPD model (e.g., Lee and Yu (2010)). Based

on the proposed LQ payoff specification, we build the agents’ lifetime optimization

problems. A follower’s payoff can be influenced by rival followers’ actions through a

spatial network Wn. Leader’s payoff is defined by the summation of followers’ payoff

functions, which shows social welfare. Hence, a follower’s payoff can be also affected

by the leader’s actions because there is a hierarchy in decision-making. Since both

agents’ payoff functions are LQ in actions as well as state variables, the vector of

optimal actions for both types of agents will be linear in state variables. Due to

the Stackelberg game structure, for each time period the followers’ optimal actions

depend on the optimal actions made by the leader. It means that we also need to

verify the vector of leader’s optimal actions to implement the econometric model.

By giving a specific structure on the followers’ exogenous characteristics, we finish

specifying the estimation equation. In the econometrician’s perspective, they con-

tain (i) observable exogenous variables with sensitivity parameters, (ii) unobserved

131This LQ payoff function is a dynamic extension of static network interaction models discussed
by Ballester et al. (2006), Calvo-Armengol et al. (2009), and Bramoullé et al. (2014).
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individuals’ (followers’) innate characteristics, (iii) an unobserved time specific shock,

and (iv) i.i.d. disturbances for estimation. The individual and time effects are treated

as parameters, so we can allow arbitrary correlations between those unobserved ef-

fects and the exogenous variables. By the reduced form, we derive the log-likelihood

function. For the incidental parameters showing individual- and time dummies, we

employ the direct estimation approach by the concentrated log-likelihood function.

Hence, estimation of structural parameters can come from optimization under a finite

parameter space and the quasi maximum likelihood (QML) estimator is obtained by

maximizing the concentrated log-likelihood function.

Large sample properties, consistency and asymptotic normality, are studied based

on (i) the conventional arguments for nonlinear extremum estimators and (ii) the sta-

tistical theories for a LQ form of martingale differences (Yu et al. (2008)). Asymptotic

analyses in this paper are conducted based on (i) large n and T and (ii) increasing do-

main asymptotic frameworks. From the derived asymptotic distribution of the QML

estimator, we observe the existence of asymptotic biases due to the incidental parame-

ters. Achieving a moderate ratio between n and T is crucial to have the nondegenerate

distribution of the QML estimator. To have the asymptotically centered confidence

intervals, we suggest a bias correction method. We conduct Monte Carlo simulations

for finite sample properties of the QML estimator and its bias corrected version. As

conventional SDPD model’s estimation, the bias correction method is based on the

scores’ expected values at the true parameters. In many cases, we observe that the

QML estimator underestimate the true parameter values in absolute values. After

the bias correction, we find that the magnitude of biases tends to diminish.
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Last, we employ our model to examine (i) policy interdependence among U.S

states’ general expenditures and (ii) interrelations between their expenditures and

grants from the federal government. Among the U.S. state governments, we find

that there is a positive spatial spillover effect in their expenditure. In our estimation

results, it seems that there is no effect of the federal grants on the states’ expenditures.

Also, we observe that the state expenditures are dynamically persistent. We observe

that there exists a significant positive effect of the state’s total revenue. Also, a

significant negative effect of the state’s unemployment rate is detected.

4.2 Model specification

In this section, we introduce a dynamic Stackelberg game consisting of one leader

and multiple followers. A basic payoff specification will follow a (dynamic version) LQ

payoff function (Jeong and Lee (2018)). This payoff function can justify a conventional

time space dynamic model for a spatial panel data set. Reversely, we attempt to

make a theoretical model using this LQ payoff function with (i) the forward-looking

agent assumption and (ii) the existence of the two types of agents with hierarchical

decision-making. The derived rational expectation equilibrium equation will lead to

an estimation equation.

4.2.1 Spatial network interaction model with a dynamic Stack-
elberg game

We assume that two types of agents exist: (i) a leader, and (ii) followers. There is

only one leader while multiple followers exist (the number of followers is denoted by

n). For an empirical example, the U.S. federal government is a leader and followers
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are state governments. We assume that (i) decision-making periods are infinite132 for

a stable economic environment, and (ii) agents are forward-looking instead of myopic

(i.e., they maximize their lifetime payoffs rather than their per period payoffs). Each

agent’s lifetime payoff (for both types of agents) is defined by a weighted summation

of his/her per period payoff. For this, we introduce a time-discounting factor δ ∈ [0, 1)

to distinguish the future payoffs from the current one.133 We assume that δ is common

to the leader and the followers.

To characterize relations among agents, we specify geographic locations of them.

This is because we assume that interactions among agents arise due to geographic

arrangements. The leader is indexed by 0 and indexes i = 1, · · · , n represent the

followers. We assume that each agent has its fixed location on the (subset of) Eu-

clidean space Rd (d ≥ 1). Hence, each endowed index contains information in the

agent’s geographic location. Based on those specified locations, interactions among

followers are characterized by an n × n spatial network matrix Wn. Each element

in Wn takes a nonnegative real number and represents a (relative) intensity of inter-

action. To exclude the self-influence, we assume that all diagonal entries in Wn are

zero. For notational convenience, wi. and wij denote respectively the ith-row of Wn

and the (i, j)-element of Wn. Interactions between the leader and the followers will

be characterized later.

Three types of variables exist in an economy. First, let Ynt = (y1t, · · · , ynt)′ be an

n × 1 vector of followers’ continuous type actions. Second, let bnt = (b1t, · · · , bnt)′

132We can also consider a finite horizon problem if an econometrician knows initial and terminal
periods of decision-making.

133Even for δ = 0 (myopic agents), we will also have a new spatial econometric model specification
describing hierarchical decision-making of the two types of agents. After introducing a general case,
we will introduce this special case.
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be n-dimensional vector of leader’s actions for followers at time t. For example, yit

is a local government i’s action (e.g., expenditure or tax rates) while bit is a level

of grants for a local government i. For the followers’ behaviors, we will derive the

optimal actions Y ∗nt:

Y ∗nt (Yn,t−1,bnt, ηnt) = AnYn,t−1 +Bnbnt + Cnηnt (4.1)

where An, Bn, and Cn are some n × n matrices.134 That is, the followers’ cur-

rent optimal actions (Y ∗nt) rely on their previous ones (Yn,t−1), and realized exoge-

nous characteristics (ηnt). Since the followers choose their actions after observing

the leader’s actions (bnt), Y
∗
nt rely on bnt (i.e., hierarchical decision-making). Last,

let ηnt = (η1t, · · · , ηnt)′ be an n × 1 vector of exogenous characteristics of followers

controlled by nature. It can compose of time-invariant (ηivn = (ηiv1 , · · · , ηivn )
′
) and time-

varying (ηvnt = (ηv1t, · · · , ηvnt)
′) characteristics. Considering the U.S. state governments

as an example for followers, the following components in ηnt can be included.

Example 4.2.1 Let’s pick an arbitrary state government i. First, ηivi might include

state i’s geographic characteristics such as (i) the number of bordering states, (ii)

land/water areas, etc. For time varying characteristics, second, state i’s time-varying

demographic and economic characteristics can be included: by Case et al. (1993),

(i) total revenue, (ii) grants from the federal government, (iii) population density,

(iv) unemployment rate, and (v) compositions of state’s population. In our model

specification, (ii) the federal grants are the leader’s choice variables.

134For example, equation (4.1) can take a reduced form of a SDPD model specification. We
will rigorously characterize An, Bn, and Cn in the next step. Since we pursue a stable economic
environment, the solutions An, Bn, and Cn would be time-invariant.
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We assume that there is uncertainty in future exogenous characteristics ηn,t+1, ηn,t+2, · · ·,

so both types of agents rationally expect them in their decision-making. For this, sup-

pose that ηnt follows a first-order linear Markov process: ηnt = π0ηn,t−1 + ξnt where

ξnt ∼ i.i.d. (0n×1,Ωξ). For the part of ηvnt, we assume that |π0| < 1 for stationary and

Ωξ is positive definite. For the part of ηivn , π0 = 1 and Ωξ = 0.

A justification for equation (4.1) comes from the following linear-quadratic (LQ)

payoff135: for i = 1, · · · , n and for each t,

ui (yit, Y−i,t, ;Yn,t−1, bit, ηit) (4.2)

= (ηit + φi,0bit + ρ0wi.Yn,t−1 + λ0wi.Ynt) yit − c (yit, yi,t−1)

where c (yit, yi,t−1) = γ0
2

(yit − yi,t−1)2 + 1−γ0
2
y2
it with 0 < γ0 < 1, and

Y−i,t = (y1t, · · · , yi−1,t, yi+1,t, · · · , ynt)′. Parameter φi,0 shows a direct effect of the

grants on the follower i’s marginal payoff. If a follower is myopic, the first order

condition of the follower i’s maximization problem yields his/her best response,

y∗it (Yn,t−1, bit, ηit) = λ0wi.Ynt + γ0yi,t−1 + ρ0wi.Yn,t−1 + φi,0bit + ηit. (4.3)

Without φi,0bit, equation (4.3) can represent a conventional spatial dynamic panel

data (SDPD) model (e.g., Yu et al. (2008) and Lee and Yu (2010)). A new term

in this paper is φi,0bit, and the parameter φi,0 can represent follower i’s (financial)

dependency upon the leader. We assume that φi,0 = φ0Λd,i where Λd,i is a function

of geographic distance between i and 0. We will introduce more specification on

φi,0 later. Through wi., other followers’ previous and current actions can affect the

follower i’s tth-period marginal payoff. Directions of influences are governed by two

135We consider a (dynamic extension of) parametric linear-quadratic payoff function introduced by
Ballester et al. (2006), and Calvo-Armengol et al. (2009).
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parameters, λ0 and ρ0. If λ0 > 0, a follower’s action is reinforced by neighboring

followers’ current actions. On the other hand, neighboring followers’ current actions

offset each other if λ0 < 0. Similar interpretations can be done for ρ0. To avoid having

an extreme option, a cost function specification (c (yit, yi,t−1)) exists. It consists of

two parts and is governed by parameter γ0. The first part is a dynamic adjustment

cost showing persistency of actions, and the second part shows a cost of selecting

a level of activity. The parameter γ0 captures a (relative) weight for the dynamic

adjustment cost. If γ0 is large, the followers’ actions are persistent.

Based on payoffs (4.2), we consider the leader’s payoff function. The leader’s per

period payoff is defined by the summation of followers’ payoffs and costs of selecting

b1t, · · · , bnt: for each t,

W0,t (bnt;Ynt, Yn,t−1, ηnt, τnt) (4.4)

=
n∑
k=1

uk (Ynt, ;Yn,t−1, bkt, ηkt)−
1

2

n∑
k=1

b2
kt +

n∑
k=1

τktbkt

where τnt = (τ1t, · · · , τnt)′, τkt is the autonomous payment for the follower k at period

t. We assume that τkts are not relevant to actions of both types of agents. The first

part of W0,t (·) represents social benefits defined by the summation of the followers’

payoffs. The second part describes the cost of selecting b1t, · · · , bnt. The third part,∑n
k=1 τktbkt, represents an incentive of giving the autonomous payments. When φ0 = 0

without the third component, the optimal grant level for every follower will be zero

since taking bkt > 0 in this case only raises the quadratic cost −1
2
b2
kt. The amount of

autonomous payment τkt might depend on aggregate economic shocks and k’s innate

characteristics. Hence, τkt is a function of ηivk and ηvkt. In Section 4.3, we will introduce

a specification of τkt.
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Note that the leader’s choice variables at time t are bnt given the initial conditions

(Yn,t−1, ηnt). For each t, the leader knows that the followers take the strategy (4.1).

By observing the leader’s payoff (4.4), we can see that there are two channels of bit

affecting W0,t (·). First, selecting bit directly affects (i) ui (·) via φi,0bityit, (ii) −1
2
b2
it,

and (iii) τitbit. Second, bit can affectW0,t (·) through changing followers’ actions. Note

that ∂yjt
∂bit

= Bn,ji where Bn,ji denotes the (j, i)-element of Bn. Hence, the diagonal

element of Bn, Bn,ii, shows the direct influence of bit on yit in the rational expectation

equilibrium. Since the leader’s payoff is also LQ in its actions as well as state variables,

the leader also adopts the linear optimal policy function of (Yn,t−1, ηnt):
136 for each t

b∗nt(Yn,t−1, ηnt, τnt) = DnYn,t−1 + Enηnt + Fnτnt

where Dn, En and Fn are n× n matrices specified in the upcoming subsection.

4.2.2 Intertemporal decision-making

In this subsection, we define the intertemporal choice problems of the two-type

agents. The matrices An, Bn, Cn, Dn, En and Fn will be verified as the solutions to

the leader’s and followers’ intertemporal optimization problems.

At time t, we assume that all agents know all past actions {bns, Yns}s=t−1
s=−∞ and

all realized exogenous characteristics {ηns}s=ts=−∞ (perfect recall and complete infor-

mation up to the current period). Based on this information setting, the conditional

expectation operator Et (·) is defined. In the economy, uncertainty arises due to

the future exogenous characteristics ηn,t+1, ηn,t+2, · · ·. Expectations for the future

exogenous characteristics are rationally (i.e., mathematically) formed through Et (·)

136Note that τnt is a function of ηnt. In order to highlight a role of τnt, we include τnt as an
argument for b∗nt (·).
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(e.g., Et (ηn,t+1) = π0ηnt). We suppose that Et (τn,t+1) = π̃0τnt with |π̃0| < 1 and

V art (τn,t+1) = Ωτ > 0 where τn = (τ1, · · · , τn)′. That is, for each t τn,t+1 = π̃0τnt+ ξτnt

with Et (ξτnt) = 0n×1. Under this rational expectation framework, the timeline of

intertemporal decision-making can be described by the following figure:

Figure 4.1: The timeline of intertemporal decision-making

For each t, {bn,t−1, Yn,t−1} and ηnt are determined or realized, and there are two

stages of decision-making. In the first stage, the leader chooses the optimal level of

grants (b∗nt) for the followers. In the second stage, after observing b∗nt, the followers

simultaneously choose their optimal actions Y ∗nt. And then, {bnt, Ynt, ηn,t+1} are de-

termined/realized (bnt = b∗nt and Ynt = Y ∗nt), and the first stage of the (t+1)th-period

will be open.
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Now we formally define the lifetime optimization problems of the two-type agents.

Given (Yn,t−1, ηnt), for each t the leader chooses {bns}∞s=t by maximizing

W0,t (bnt;Ynt, Yn,t−1, ηnt, τnt) (4.5)

+Et

∞∑
s=1

δsW0,t+s (bn,t+s;Yn,t+s, Yn,t+s−1, ηn,t+s, τn,t+s)

with knowing Y ∗nt = AnYn,t−1 +Bnbnt+Cnηnt.
137 Since we consider a stable economic

environment, the maximization problem (4.5) can be represented by the recursive

relationship (Bellman equation): given (Yn,t−1, ηnt)

V L (Yn,t−1, ηnt, τnt) = max
bnt

{
W0,t (bnt;Y

∗
nt, Yn,t−1, ηnt, τnt)

+δEtV
L (Y ∗nt, ηn,t+1, τn,t+1)

}
(4.6)

subject to Y ∗nt = AnYn,t−1 +Bnbnt+Cnηnt. Suppose that An, Bn, and Cn are given138,

and they are going to be revealed by solving the followers’ problems. Since (i)W0,t (·)

is linear-quadratic in bnt and (ii) b∗nt is an affine function of (Yn,t−1, ηnt, τnt), the value

V L (Yn,t−1, ηnt, τnt) would take a LQ form of (Yn,t−1, ηnt, τnt):

V L (Yn,t−1, ηnt, τnt) = Y ′n,t−1Q
L
nYn,t−1 + Y ′n,t−1L

L
nηnt + Y ′n,t−1L

L,τ
n τnt

+η′ntQ
L,η
n ηnt + τ ′ntQ

L,τ
n τnt + τ ′ntL

L,τ,η
n ηnt + cLn

where n × n matrices QL
n , LLn , LL,τn , QL,η

n , QL,τ
n , and LL,τ,ηn and a scalar cLn are the

solutions to the algebraic Riccati equations. Verifying and computing the forms of

them can be found in Appendix C.

137That is, the leader knows (rationally expects) the followers’ optimal actions at the same decision-
making period. Then, Y ∗nt = AnYn,t−1 +Bnbnt + Cnηnt plays a role as a linear constraint.

138In practice, by applying backward induction, An, Bn, and Cn are firstly verified.
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Now we can reveal Dn, En and Fn from equation (4.6). The first order condition139

is

0n×1 = Φn,0Y
∗
nt − b∗nt + τnt (4.7)

+B′n
[
ηnt + Φn,0b

∗
nt + (γ0In + ρ0Wn)Yn,t−1 − SLnY ∗nt

]
+δB′n

[
QL,∗
n Y ∗nt + π0L

L
nηnt + π̃0L

L,τ
n τnt

]
where Φn,0 = diag (φ1,0, · · · , φn,0), SLn = In − λ0 (Wn +W ′

n), and QL,∗
n = QL

n + QL′
n .

By (4.7) and the form of Y ∗nt, we have

(In −B′nΦn,0) b∗nt

=
(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
Y ∗nt +B′n (γ0In + ρ0Wn)Yn,t−1

+B′n
(
In + δπ0L

L
n

)
ηnt +

(
In + δπ̃0B

′
nL

L,τ
n

)
τnt

implying

[
In −B′nΦn,0 −

(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
Bn

]
b∗nt (4.8)

=
[(

Φn,0 −B′n
(
SLn − δQL,∗

n

))
An +B′n (γ0In + ρ0Wn)

]
Yn,t−1

+
[
B′n

(
In + δπ0L

L
n

)
+
(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
Cn
]
ηnt

+
(
In + δπ̃0B

′
nL

L,τ
n

)
τnt.

Hence, we obtain

Dn =
(
RL
n

)−1 [(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
An +B′n (γ0In + ρ0Wn)

]
,

En =
(
RL
n

)−1 [
B′n

(
In + δπ0L

L
n

)
+
(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
Cn
]
,

139This comes from

0n×1 =
∂W0,t (bnt;Y

∗
nt, Yn,t−1, ηnt, τnt)

∂bnt
+
∂Y ∗′nt
∂bnt

∂W0,t (bnt;Y
∗
nt, Yn,t−1, ηnt, τnt)

∂Y ∗nt

+δEt
∂Y ∗′nt
∂bnt

∂V L (Y ∗nt, ηn,t+1, τn,t+1)

∂Y ∗nt
,

and ∂
∂Ynt

EtY
′
ntL

L,τ
n τn,t+1 = EtL

L,τ
n τn,t+1 = LL,τn τn.
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and

Fn =
(
RL
n

)−1 (
In + δπ̃0B

′
nL

L,τ
n

)

where RL
n = In −B′nΦn,0 −

(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
Bn.

At time t, after observing the leader’s optimal decisions on grants (b∗nt), each

follower i selects yit by maximizing his/her lifetime payoff: given (Yn,t−1, ηnt)

ui (yit, Y−i,t, ;Yn,t−1, bit, ηit) + Et

∞∑
s=1

δsui (yi,t+s, Y−i,t+s, ;Yn,t+s−1, bi,t+s, ηi,t+s) . (4.9)

Note that the followers choose their current economic actions by rationally expecting

(i) the leader’s and followers’ future optimal actions
{
b∗n,t+s, Y

∗
n,t+s

}∞
s=1

, and (ii) the

future exogenous characteristics {ηn,t+s}∞s=1. For example, at time t, a follower expects

the (t+ 1)th-period leader’s optimal grant decisions by

Etb
∗
n,t+1 = DnYnt + π0Enηnt + π̃0Fnτnt, (4.10)

which is a function of Ynt. In the rational expectation equilibrium, there are two no-

table findings: (i) current followers’ actions (Ynt) are affected by the leader’s expected

future actions (Etb
∗
n,t+1)140, and (ii) the leader confirms the forecasts Etb

∗
n,t+1 =

DnYnt + π0Enηnt + π̃0Fnτnt and determines b∗n,t+1 = DnYnt + Enηn,t+1 + Fnτn,t+1

at time t + 1. To the leader, that is, using the same Dn, En and Fn plays a role

as a constraint (commitment). Then, at period t, the expectation error would be

b∗n,t+1−Etb
∗
n,t+1 = Enξn,t+1+Fnξ

τ
n,t+1, which is a linear function of the (t+1)th-period

unexpected exogenous shocks. Since we will specify τnt (and its affine transforma-

tion) as interactive unobserved effects in estimation, the nuisance parameter π̃0 has

no meaning. Hence, we assume π̃0 = 0.

140That is, each follower knows that he/she can affect Etb
∗
n,t+1 in his/her current decision-making.
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Under the stable economic environment, the follower i’s lifetime problem can be

also shown as the Bellman equation:141

V F
i (Yn,t−1,b

∗
nt, ηnt) = max

yit

 ui
(
yit, Y

∗
−i,t, ;Yn,t−1, b

∗
it, ηit

)
+δEtV

F
i

(
yit, Y

∗
−i,t,b

∗
n,t+1, ηn,t+1

)  (4.11)

such that b∗n,t+1 = DnY
∗
nt + Enηn,t+1 + Fnτn,t+1. Since ui (·) is LQ in actions of

both types of agents, their optimal actions are linear in state variables. For each

i = 1, · · · , n, hence V F
i (·) takes a LQ function of its argument:

V F
i (Yn,t−1,b

∗
nt, ηnt) = Y ′n,t−1Q

F
i Yn,t−1 + Y ′n,t−1L

F,b
i b∗nt + Y ′n,t−1L

F,η
i ηnt

+b∗′ntQ
F,b
i b∗nt + b∗′ntL

F,b,η
i ηnt + η′ntQ

F,η
i ηnt + cFi

where n × n matrices QF
i , LF,bi , LF,ηi , QF,b

i , LF,b,ηi , and QF,η
i and a scalar cFi are the

solutions to the algebraic matrix Riccati equations. The formulas of them can be

found in Appendix C. The first order condition of follower i’s lifetime problem is

0 = ηit + φi,0b
∗
it + e′i (γ0In + ρ0Wn)Yn,t−1 − e′iSnY ∗nt (4.12)

+δe′i
(
QF
i +QF ′

i

)
Y ∗nt + δe′iL

F,b
i Etb

∗
n,t+1 + δe′iL

F,η
i Etηn,t+1

where ei denotes the ith unit vector, and Sn = In−λ0Wn. Note that the followers are

not able to change the leader’s same period actions b∗nt.

Based on (4.12), we characterize An, Bn, and Cn. For each i = 1, · · · , n, define the

n × n matrices QF,∗
n , LF,b,∗n , and LF,η,∗n such that e′iQ

F,∗
n = e′i

(
QF
i +QF ′

i

)
, e′iL

F,b,∗
n =

e′iL
F,b
i , and e′iL

F,η,∗
n = e′iL

F,η
i . Using (4.10), equation (4.12) yields

[
Sn − δQF,∗

n − δLF,b,∗n Dn

]
Y ∗nt = (γ0In + ρ0Wn)Yn,t−1 (4.13)

+Φn,0b
∗
nt +

[
In + δπ0

(
LF,b,∗n En + LF,η,∗n

)]
ηnt.

141When π̃0 = 0, the arguments of V Fi (·) are only Yn,t−1, b∗nt, and ηnt.
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Hence, we obtain

An =
(
RF
n

)−1
(γ0In + ρ0Wn) , Bn =

(
RF
n

)−1
Φn,0,

and Cn =
(
RF
n

)−1 [
In + δπ0

(
LF,b,∗n En + LF,η,∗n

)]
where RF

n = Sn − δQF,∗
n − δLF,b,∗n Dn.

Note that b∗nt is endogenous since Cnηnt and Enηnt might be correlated. Then, the

model’s representation as exogenous variables is

RF
nY
∗
nt = (γ0In + ρ0Wn + Φn,0Dn)Yn,t−1 (4.14)

+
(
In + Φn,0En + δπ0

(
LF,b,∗n En + LF,η,∗n

))
ηnt + Φn,0Fnτnt.

4.3 Econometric model

In this section, we establish an econometric model based on rational expectation

equilibrium equations (4.8) and (4.13).142 From this section, we drop the superscript

”*” since the observed actions (bnt, Ynt) are assumed to be optimally realized. We

want to estimate the structural parameters λ0, γ0, ρ0, and {φi,0}ni=1 based on a panel

data set {Ynt, Xnt}Tt=0, and {bnt}Tt=1 with observed (or prespecified) Wn.143

First, we consider stability of equations (4.8) and (4.13) to have a well-defined log

likelihood function (variance structure). Second, we will characterize the parameters

φi,0 (showing dependencies upon the leader) as a function of geographic distances

between the leader and the followers. Next, we will derive the log-likelihood function

by giving a structure to ηnt and τnt. After that, we discuss implementing the (quasi)

maximum likelihood (QML) estimation method. We assume that there are n spatial

142Our estimation is based on equation (4.14). To implement this, note that we also need to recover
equation (4.8).

143We do not attempt to estimate the time-discounting factor δ for easy identification.
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units and T periods in a sample. Our estimation is based on the large n and large T

framework.144

4.3.1 Stability

A motivation of considering stability of the system is to characterize manageable

dependence across space and time. Our economic model is based on the time stable

environment with given n. To obtain both space and time stability145 of equations

(4.8) and (4.13), we need to additionally impose the following sufficient conditions146:

‖An‖s < 1, ‖An +BnDn‖s < 1, and ‖BnEn + Cn‖s ≤ cf where ‖·‖s denotes the

spectral matrix norm, and cf > 0 is an uniformly bounded (in n) constant. Under

‖An +BnDn‖s < 1, and max {‖BnEn + Cn‖s , ‖BnFn‖s} ≤ cf ,

Ynt =
∞∑
s=0

(An +BnDn)s {(BnEn + Cn) ηn,t−s +BnFnτn,t−s} , (4.15)

which is useful to capture the variance structure of Ynt. To recover the variance

structure of Ynt, observe that verifying the optimal actions of both types of agents

is required ({An, Bn, Cn} as well as {Dn, En, Fn}). Consider the leader’s decision

variables. If ‖An‖s < 1, by infinite substitution,

bnt =
∞∑
s=1

DnA
s−1
n Bnbn,t−s + Enηnt + Fnτnt +

∞∑
s=1

DnA
s−1
n Cnηn,t−s. (4.16)

By observing (4.16), note that bnt relies on the entire histories {bns}s=t−1,t−2,···, and all

realized exogenous characteristics {ηns}s=t,t−1,··· (and τnt), which they do not appear

the leader’s optimization problem.

144Note that our theoretical model is based on given n. From this section (estimation part), we
consider both large time series observations as well as spatial units.

145It means that the equilibrium system is stable regardless of the number of agents n.

146When δ = 0, stability conditions can be represented by a function of parameters and eigenvalues
of Wn. If 0 < δ < 1, however, it is difficult to find simple stability conditions due to highly
nonlinearity in parameters.
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Now we can evaluate V ar (Ynt) and V ar (bnt) using equation (4.15) and assuming

ηnt ∼ i.i.d. (0, σ2
0In).147 The importance of verifying the variance structures is to find

additional sources of identification. Note that

V ar (Ynt) = σ2
0

∞∑
j=0

(An +BnDn)j (BnEn + Cn) (BnEn + Cn)′ (A′n +D′nB
′
n)
j
,

and

V ar (bnt)

= σ2
0

 EnE
′
n

+
∑∞
j=1Dn (An +BnDn)j−1 (BnEn + Cn)

· (BnEn + Cn)′ (A′n +D′nB
′
n)j−1D′n

 .
As a special case, consider δ = 0 (myopic agents). For each period t, the two types

of agents play the two-stage game, which can be solved by backward induction. By

firstly solving the followers’ problems, we have

Ynt = S−1
n (γ0In + ρ0Wn)Yn,t−1 + S−1

n Φn,0bnt + S−1
n ηnt (4.17)

for time t as the subgame perfect Nash equilibrium (SPNE) equation. Then, An =

S−1
n (γ0In + ρ0Wn), Bn = S−1

n Φn,0, and Cn = S−1
n . Equation (4.17) follows a reduced

form of spatial dynamic panel data (SDPD) models with considering that bnt is

endogenous. The vector of leader’s optimal actions is

[
In − Φn,0 (SnS

′
n)
−1

Φn,0

]
bnt

= Φn,0 (SnS
′
n)
−1

(γ0In + ρ0Wn)Yn,t−1 + Φn,0 (SnS
′
n)
−1
ηnt + τnt

since

In −B′nΦn,0 − Φn,0Bn +B′nS
L
nBn = In − Φn,0 (SnS

′
n)
−1

Φn,0,

147We will give statistical disturbances as a part of ηnt. For τnt, we will consider a structure of
interactive fixed effects.
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((
Φn,0 −B′nSLn

)
S−1
n +B′n

)
(γ0In + ρ0Wn)

= Φn,0 (SnS
′
n)
−1

(γ0In + ρ0Wn) ,

and B′n +
(
Φn,0 −B′nSL

)
Cn = Φn,0

(
S−1
n + S−1′

n − S−1′
n SLnS

−1
n

)
= Φn,0 (SnS

′
n)−1 in

this case.148 That is,

Dn =
[
In − Φn,0 (SnS

′
n)
−1

Φn,0

]−1
Φn,0 (SnS

′
n)
−1

(γ0In + ρ0Wn) ,

En =
[
In − Φn,0 (SnS

′
n)−1 Φn,0

]−1
Φn,0 (SnS

′
n)−1, and Fn =

[
In − Φn,0 (SnS

′
n)−1 Φn,0

]−1
.

If Φn,0 = φ0In, ‖Wn‖∞ = 1, and ‖Wn‖1 ≤ cw < ∞, we can find a sufficient

condition for stability. Observe that

An +BnDn = S−1
n (γ0In + ρ0Wn) + φ2

0S
−1
n

(
In − φ2

0 (SnS
′
n)
−1
)−1

· (SnS ′n)
−1

(γ0In + ρ0Wn)

= S−1
n

(
In + φ2

0

(
In − φ2

0 (SnS
′
n)
−1
)−1

(SnS
′
n)
−1
)

(γ0In + ρ0Wn)

= S−1
n

(
In − φ2

0 (SnS
′
n)
−1
)−1

(γ0In + ρ0Wn)

by using a Neumann series expansion,
(
In − φ2

0 (SnS
′
n)−1

)−1
=
∑∞
k=0 φ

2k
0 (S ′−1

n S−1
n )

k
.149

As a sufficient condition, note that we need to have |φ0|2
(1−|λ0|)(1−|λ0|cw)

< 1 to have the

148Note that

S−1
n + S−1′

n − S−1′
n SLnS

−1
n = S−1

n + S−1′
n − S−1′

n (Sn − λ0W
′
n)S−1

n

= S−1
n + S−1′

n − S−1′
n

(
In − λ0W

′
nS
−1
n

)
=

(
In − λ0S

−1′
n W ′n

)
S−1
n

= S−1′
n S−1

n = (SnS
′
n)
−1

since In − λ0S
−1′
n W ′n = S−1′

n .

149Then, ∥∥∥∥(In − φ2
0 (SnS

′
n)
−1
)−1

∥∥∥∥
∞
≤

∞∑
k=0

|φ0|2k
∥∥S′−1

n S−1
n

∥∥k
∞

≤
∞∑
k=0

(
|φ0|2

∥∥S−1
n

∥∥
1

∥∥S−1
n

∥∥
∞

)k
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Neumann series expansion. To have a stable system, that is, |φ0| is also needed to be

manageable. In consequence,

‖An +BnDn‖∞

=
∥∥∥∥S−1

n

(
In − φ2

0 (SnS
′
n)
−1
)−1

(γ0In + ρ0Wn)
∥∥∥∥
∞

≤ γ0 + |ρ0|
1− |λ0|

· (1− |λ0|) (1− |λ0| cw)

(1− |λ0|) (1− |λ0| cw)− |φ0|2
< 1.

Since γ0+|ρ0|
1−|λ0| < 1 is a sufficient stability condition of the conventional SDPD model

and (1−|λ0|)(1−|λ0|cw)

(1−|λ0|)(1−|λ0|cw)−|φ0|2
> 1, a stability condition of our model with δ = 0 will be

stricter than the conventional one.

4.3.2 Topological specification for φi,0

In this subsection, we specify the unilateral influences from the leader and the

followers by the parameters φi,0’s. We will characterize φi,0 as a known function of

geographic arrangements.150 Recall that there are n + 1 spatial units: 0 denotes the

leader while i = 1, · · · , n denote the followers. We assume that they have innate

locations and (possibly) unevenly placed in Rd (d ≥ 1). Let G be a lattice in Rd,

which is a set of potential locations of spatial units.151 A subset Gn ⊂ G denotes

a set of locations relevant to observed (sample) spatial units. The location function

is a one-to-one and onto mapping from {0, 1, · · · , n} to Gn: i.e., l : {0, 1, · · · , n} 7→

Gn and l (0), l (1), · · ·, l (n) ∈ Gn. As a metric, we can consider the Euclidean

≤ 1

1− |φ0|2 / (1− |λ0|) (1− |λ0| cw)

if |φ0|2
(1−|λ0|)(1−|λ0|cw) < 1.

150As a general setting, a nonparametric specification for φi,0 can be also considered. We leave this
issue for future study.

151Then, G is countably infinite.
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distance: d (i, j) = ‖l (i)− l (j)‖E for i 6= j. We set the minimum distance between

two different spatial units to be a positive constant for asymptotic inferences (i.e.,

increasing domain asymptotics).

Based on this setting, we evaluate the distances between the leader and the fol-

lowers, {d (0, i)}ni=1. Note that ∂2ui(yit,Y−i,t,;Yn,t−1,bit,ηit)

∂bit∂yit
= φi,0, so the parameter φi,0

describes the direct effect of the leader’s action bit on the i’s marginal payoff. In the

rational expectation equilibrium, the total effect of bit on the i’s marginal payoff will

be φi,0 +λ0
∑n
j=1wijBn,ji since bit can also affect other followers’ current actions in the

equilibrium. We can consider the following two specifications152: (i) (homogeneous

effects) φi,0 = φ0 for all i = 1, · · · , n, and (ii) (heterogeneous effects by geographic

locations) φi,0 (di) = φ0 (dmax − di) for each i = 1, · · · , n. Under the second specifi-

cation, Φn,0 = φ0Λd where Λd = diag (dmax − d1, · · · , dmax − dn) (which is known or

prespecified by an econometrician).

4.3.3 Derivation of log-likelihood function

For each t, we can consider ηnt = Xntβ0 + ηivn +αt,0ln + Ent where Xnt is an n×K

matrix of explanatory variables, β0 = (β1,0, · · · , βK,0)′ is a K−dimensional vector

of parameters, ηivn = (ηiv1 , · · · , ηivn )
′

denotes an n × 1 vector of individuals’ invariant

characteristics, αt,0 denotes the tth-period time specific effect, and Ent = (ε1t, · · · , εnt)′

is an n× 1 vector of disturbances. Assume that (i) αt,0 and Ent are orthogonal to the

(t−1)th-period information set153, and (ii) nuisance parameters involving the process

Xnt (π0) are prespecified (or already revealed) before estimation. We can define

152In our simulation study, it is difficult to identify multiple parameters in Φn,0 from the log-
likelihood function. Hence, we suggest specifying Φn,0 by one parameter.

153It means that π0’s corresponding to αt,0ln and Ent are zeros.
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individual fixed effects cn0 = (c1,0, · · · , cn,0)′.154 Next, consider the specification of

Φn,0Fnτnt. As the simplest case, Φn,0Fnτnt will be absorbed in cn0 if τnt = τn for all t.

Then, the estimation equation generated by equation (4.14) is

RF
nYnt = (γ0In + ρ0Wn + Φn,0Dn)Yn,t−1 (4.18)

+Xntβ0 +Re
n (cn0 + αt,0ln + Ent)

for t = 1, · · · , T , where

Re
n = In + Φn,0En,

RF
n = Sn − δQF,∗

n − δLF,b,∗n Dn,

and

Xnt =
(
In + Φn,0En + δπ0

(
LF,b,∗n En + LF,η,∗n

))
Xnt.

For all i and t, assume εit ∼ i.i.d. (0, σ2
0) where σ2

0 > 0. Wn and Λd are functions of

geographic arrangements, and they are assumed to be prespecified. In implementing

equation (4.18) via the (quasi) maximum likelihood method, we do not need {bnt}

since (i) we know how to generate {bnt} for each parameter value given state variables

and (ii) the components of algebraic matrix Riccati equations do not depend on levels

of state variables (due to the LQ payoff assumption).

For parameter values, let θ = (λ, γ, ρ, φ, β′, σ2)
′
, cn = (c1, · · · , cn)′, αT = (α1, · · · , αT )′,

and θ0, cn0, αT,0 denote the true values. Observe dim (θ) = 5 + K. Note that the

154The cn0 is linearly transformed ηivn . In detail,

cn0 = (Ren)
−1 (

In + Φn,0En + δπ0

(
LF,b,∗n En + LF,η,∗n

))
ηivn .
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asymptotic matrices RF
n , Re

n, Dn, En, LF,b,∗n , and LF,η,∗n (which are needed to numer-

ically evaluate) are functions of λ, γ, ρ, φ, and Wn. For this, let θ1 = (λ, γ, ρ, φ)′ and

θ1,0 denote the true parameters. For each θ1, define Φn (φ), RF
n (θ1), Re

n (θ1), Dn (θ1),

En (θ1), LF,b,∗n (θ1), and LF,η,∗n (θ1) representing those asymptotic matrices evaluated

at θ1. That is, Φn,0 = Φn (φ0), RF
n = RF

n (θ1,0), Re
n = Re

n (θ1), Dn = Dn (θ1), En =

En (θ1,0), LF,b,∗n = LF,b,∗n (θ1,0), and LF,η,∗n = LF,η,∗n (θ1,0). To deal with the incidental

parameters cn0 and αT,0, we employ the direct estimation approach. To eliminate cn0

in the log-likelihood function, we define Ỹnt = Ynt − ȲnT , Ỹ
(−)
n,t−1 = Yn,t−1 − ȲnT,−1,

X̃nt = Xnt−X̄nT and X̃nt = Xnt−X̄nT where ȲnT = 1
T

∑T
s=1 Yns, ȲnT,−1 = 1

T

∑T−1
s=0 Yns,

X̄nT = 1
T

∑T
s=1Xns and X̄nT = 1

T

∑T
s=1 Xns. The orthogonal projector Jn = In− 1

n
lnl
′
n

is introduced to delete αt,0 in the log-likelihood function.

Now we derive the log-likelihood function based on equation (4.18). To derive the

proper density function for Ynt, suppose invertibility of Re
n. Conditional on Yn,t−1,

Xnt, cn, and αt, the stochastic component of Ynt is
(
RF
n

)−1
Re
nEnt. The concentrated

log-likelihood function for θ with cn0 and αT,0 concentrated out is

lnLnT,c (θ) = −nT
2

ln 2π − nT

2
lnσ2 + T ln

∣∣∣RF
n (θ1)

∣∣∣− T ln |Re
n (θ1)| (4.19)

− 1

2σ2

T∑
t=1

♥E ′nt (θ) Jn
♥Ent (θ)

where

♥Ent (θ) = (Re
n (θ1))−1RF

n (θ1) Ỹnt (4.20)

− (Re
n (θ1))−1 (γIn + ρWn + Φn (φ0)Dn (θ1)) Ỹ

(−)
n,t−1

− (Re
n (θ1))−1 X̃nt (θ1) β
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where

Xnt (θ1) =

(
In + Φn,0 (φ)En (θ1)

+δπ0

(
LF,b,∗n (θ1)En (θ1) + LF,η,∗n (θ1)

) )Xnt

and X̃nt (θ1) = Xnt (θ1)− X̄nT (θ1). Then, the maximization for parameter searching

will be done on the fixed dimensional parameter space Θ: i.e., θ̂nT = arg maxθ∈Θ lnLnT,c (θ).

This is the outer loop maximization procedure. For each θ1, the inner loop (itera-

tion) procedure is to get the numerical solutions to RF
n (θ1), Re

n (θ1), Dn (θ1), En (θ1),

LF,b,∗n (θ1), and LF,η,∗n (θ1). For the detailed evaluation method for the inner loop, refer

to Appendix C.

4.4 Estimation and statistical properties: the quasi-maximum
likelihood (QML) estimation method

Now we study large sample properties of the quasi-maximum likelihood (QML)

estimator. By introducing some regularity conditions, we can derive consistency

and the asymptotic normality of the QMLE. The framework studying large sample

properties is the increasing domain asymptotics. i.e., increasing the sample size is

ensured by growing a spatial domain. To support the large sample properties, we will

conduct the Monte Carlo simulations in next section.

4.4.1 Regularity assumptions

For asymptotic analysis, define RF
n,λ (θ1) = ∂RFn (θ1)

∂λ
where Θ1 be a subparameter

space for θ1. Other (first, second, and third orders) derivatives of RF
n (θ1), Re

n (θ1),

Dn (θ1), En (θ1), LF,b,∗n (θ1), and LF,η,∗n (θ1) with respect to an element of θ1 are simi-

larly defined by adding a relevant subscript. At θ1 = θ1,0, we denote RF
n,λ = RF

n,λ (θ1,0)

and so on. For the (unconditional) expectation operator in the estimation part, we
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use the notation E (·). Here are regularity conditions for consistency and asymptotic

normality.

Assumption 4.4.1 Wn has zero diagonal elements. Wn is nonstochastic and bounded

in row and column sums in absolute value. All components in Λd are uniformly

bounded

Assumption 4.4.2 For all i and t, we assume εit˜i.i.d. (0, σ
2
0), and E |εit|4+ηε < ∞

for some η > 0.

Assumption 4.4.3 Compact parameter space Θ is assumed. θ0 ∈ int (Θ).

Assumption 4.4.4 We assume that {Xnt}Tt=0, cn0, and {αt,0}Tt=1 are conditional

on nonstochastic values. For some η > 0, maxk supn,T
∑n
i=1

∑T
t=1 |xit,k|

2+η < ∞,

supT
1
T

∑T
t=1 |αt,0|

2+η <∞, and supn
1
n

∑n
i=1 |ci,0|

2+η <∞.

Assumption 4.4.5 (i) For θ1 ∈ Θ1, RF
n (θ1) and Re

n (θ1) are nonsingular. The

matrices RF
n (θ1), Re

n (θ1), Dn (θ1), En (θ1), LF,b,∗n (θ1), and LF,η,∗n (θ1) are uniformly

bounded in both row and column sum norms, uniformly in θ1 ∈ Θ1.

(ii) For θ1 ∈ int (Θ1), the existence of the first, second, and third derivatives

of RF
n (θ1), Re

n (θ1), Dn (θ1), En (θ1), LF,b,∗n (θ1), and LF,η,∗n (θ1) with respect to θ1 is

assumed. And, they are uniformly bounded in both row and column sum norms,

uniformly in θ1 ∈ Θ1.

(iii) Recall that An +BnDn =
(
RF
n

)−1
(γ0In + ρ0Wn + Φn,0Dn).∑∞

h=1 abs
(
(An +BnDn)h

)
is uniformly bounded in both row and column sum norms,

where [abs (An +BnDn)]ij =
∣∣∣[An +BnDn]ij

∣∣∣, for example.

Assumption 4.4.6 n is an increasing function of T with T →∞.
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In spatial econometrics, Assumption 4.4.1 is conventional. Uniform boundedness

of Wn gives the spatial stability condition. For simplicity, we assume i.i.d. distur-

bances εit’s across i and t by Assumption 4.4.2. In Assumption 4.4.2, assuming the

higher than the fourth moment for εit is for a central limit theorem for a LQ form

(Kelejian and Prucha (2001)). Assumption 4.4.3 gives compactness of Θ, which is

for asymptotic analysis of a nonlinear extremum estimator (Chapter 4 in Amemiya

(1985)). Note that Xnt and αt,0 are stochastic in the theoretical model’s environ-

ment.155 Since the expected their future values can be represented as currently re-

alized ones with π0, by Assumption 4.4.4, we assume that Xnt, cn0, and αT,0 are

conditional upon as constants with the empirical moment restrictions. This assump-

tion is for simplicity of asymptotic analysis, so Assumption 4.4.4 can be relaxed.

To have well-definedness of the model for each θ ∈ Θ, we introduce Assumption

4.4.5. By Assumption 4.4.5 (i), invertibility of RF
n (θ1) and Re

n (θ1) implies existence

and uniqueness of the system 4.18 (and its correlation structure) for each θ1 ∈ Θ1.

The second part of Assumption 4.4.5 (i) characterizes weak dependencies generated by

the model’s structure and Wn for each θ1 ∈ Θ1. Assumption 4.4.5 (ii) is introduced for

technical issues to guarantee that − 1
nT

∂2 lnLnT,c(θ̂nT )
∂θ∂θ′

− E
(
− 1
nT

∂2 lnLnT,c(θ0)

∂θ∂θ′

)
= op (1)

uniformly in the set Θ. For simple asymptotic analysis, we introduce Assumption

4.4.5 (iii), which is a sufficient condition of time and space stability. Since we take

the direct estimation approach for cn0, and αT,0, Assumption 4.4.6 is introduced.

Since we focus on the large n and T framework, it is convenient to have a king vec-

tor representation. Let L = nT , and the subscript ”L” in a vector/matrix denotes a

stacked vector/matrix. For example, YL = (Y ′n1, · · · , Y ′nT )′ and XL = (X ′n1, · · · , X ′nT )′

155Since (i) Xnt and αt,0 are parts of ηnt, (ii) ηnt follows a linear Markov process, and (iii) economic
agents know them, they rationally expect future values of them based on Et (·).
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become respectively an L× 1 vector and an L×K matrix. Using this representation,

equation (4.18) can be rewritten by

(
IT ⊗ (Re

n)−1RF
n

)
YL = (IT ⊗ (γ0In + ρ0Wn + Φn,0Dn))YL,−1 (4.21)

+
(
IT ⊗ (Re

n)−1
)

XLβ0 + cL,0 + αL,0 + EL

where YL,−1 =
(
Y ′n0, · · · , Y ′n,T−1

)′
, cL,0 = lT ⊗ cn0, and αL,0 = (α1,0, · · · , αT,0)′ ⊗ ln.

And, the king vector representation of the concentrated log-likelihood function is

lnLL,c (θ) = −L
2

ln 2π − L

2
lnσ2 + T ln

∣∣∣RF
n (θ1)

∣∣∣− T ln |Re
n (θ1)| (4.22)

− 1

2σ2
E ′L (θ) (JT ⊗ Jn) EL (θ)

where EL (θ) = (E ′n1 (θ) , · · · , E ′nT (θ))′, and

Ent (θ) = (Re
n (θ1))−1RF

n (θ1)Ynt

− (Re
n (θ1))−1 (γIn + ρWn + Φn (φ)Dn (θ1))Yn,t−1

− (Re
n (θ1))−1 Xnt (θ1) β.

Then,

EL (θ) =
(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

)
YL

−
(
IT ⊗ (Re

n (θ1))−1 (γIn + ρWn + Φn (φ)Dn (θ1))
)
YL,−1

−
(
IT ⊗ (Re

n (θ1))−1
)

XL (θ1) β.

4.4.2 Consistency

The main purpose of this subsection is to show plimL→∞θ̂L = θ0. Let QL (θ) =

E
(

1
L

lnLL,c (θ)
)
. The first step is verifying supθ∈Θ

∣∣∣ 1
L

lnLL,c (θ)−QL (θ)
∣∣∣ →p 0 as
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L → ∞. Second, uniformly equicontinuity of QL (θ) will be verified. To obtain

consistency, lastly, the identification uniqueness conditions are required. By the in-

formation inequality in likelihood theory, the assumption below characterizes the

identification uniqueness.

Assumption 4.4.7 (Identification) Assume

(i) limL→∞


1
n

ln
∣∣∣∣σ2

0

(
RF
n

)−1
Re
nR

e′
n

(
RF
n

)−1′
∣∣∣∣

− 1
n

ln
∣∣∣∣σ2
L (θ1)

(
RF
n (θ1)

)−1
Re
n (θ1)Re

n (θ1)′
(
RF
n

)−1′ (
RF
n (θ1)

)−1′
∣∣∣∣
 6=

0 for θ1 6= θ1,0.

(ii) limL→∞
1
L
X′L

(
IT ⊗ (Re

n)−1′
)

(JT ⊗ Jn)
(
IT ⊗ (Re

n)−1
)

XL exists and is positive

definite.

Note that Assumption 4.4.7 states the identification conditions focusing on large

sample statistical theories. Derivation of the conditions in Assumption 4.4.7 is rele-

gated to Appendix C. Assumption 4.4.7 (i) is a sufficient condition for unique identifi-

cation of θ1,0. This condition is derived from the expected concentrated log-likelihood

function QL,c (θ1) ≡ QL (θ1, βL (θ1) , σ2
L (θ1)) where βL (θ1) = arg maxβ QL (θ) and

σ2
L (θ1) = arg maxσ2 QL (θ1, βL (θ1) , σ2). That is, Assumption 4.4.7 (i) is a sufficient

condition of the unique identification condition under large samples,

i.e., lim supL→∞maxθ1∈N c(θ1,0,ε) [QL,c (θ1)−QL,c (θ1,0)] < 0 where N c (θ1,0, ε) denotes

the complement of an open neighborhood of Θ1 of radius ε > 0. Assumption 4.4.7 (ii)

is for identifying β0. Given identified θ1,0, β0 is identified if there are sufficient varia-

tions in the generated regressors XL. Observe that the two conditions in Assumption

4.4.7 do not depend on normality on Ent. Hence, we can apply the identification

conditions in Assumption 4.4.7 to the quasi log-likelihood function.
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Here is the theorem stating consistency of θ̂L. Proof of Theorem 4.4.1 can be

found in Appendix C.

Theorem 4.4.1 Under Assumptions 4.4.1-4.4.7, plimT→∞θ̂L = θ0.

Note that the limiting argument in Theorem 4.4.1 is T due to Assumption 4.4.6,

i.e., T →∞ implies L→∞.

4.4.3 Asymptotic normality

In the previous subsection, we show that the QML estimator θ̂L can be accurate

under large L. The next step is to obtain the asymptotic variance of θ̂L for statistical

inferences. Since deriving the asymptotic distribution relies on the Taylor approxi-

mation argument, the main part at this point is studying
∂ lnLL,c(θ0)

∂θ
. In Appendix

C, we report the formulas of
∂ lnLL,c(θ0)

∂θ
. In general, each component of 1√

L

∂ lnLL,c(θ0)

∂θ

takes the LQ form of EL:

s̃L =
1√
L

((IT ⊗By,n)YL,−1 + (IT ⊗ Cx,nt))′ (JT ⊗ Jn) EL (4.23)

+
1√
L

(
E ′L
(
IT ⊗B′q,n

)
(JT ⊗ Jn) EL − σ2

0tr (IT ⊗Bq,n)
)

where Cx,nt represents an n × 1 vector of time-evolving nonstochastic components

(a linear transformation of Xnt or αt,0ln), and By,n and Bq,n are n × n (uniformly

bounded) linear transformation matrices. The LQ form (4.23) says that our asymp-

totic analysis will be based on the martingale difference arrays for LQ forms. How-

ever, E (̃sL) and its asymptotic value are not zero. Since it implies the existence of

asymptotic biases in 1√
L

∂ lnLL,c(θ0)

∂θ
(so is θ̂L), we need to adjust them for the asymp-

totically centered confidence intervals. Hence, our bias correction method will rely

on calculating the scores’ expected values at θ0.
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To specify the asymptotic bias of θ̂L, we need to consider E (̃sL): let s̃L = s̃
(u)
L −

∆s
1,L −∆s

2,L where E
(
s̃

(u)
L

)
= 0 (mean zero part),

∆s
1,L =

√
T

n

[(
By,nŪnT,−1

)′
Jn
�Ent + �E ′ntB′n,qJn�Ent

]
,

∆s
2,L =

√
T

n
σ2

0 [tr (Bq,n)− tr (JnBq,n)] ,

and ŪL,−1 = 1
T

∑T−1
t=0

∑∞
h=0 (An +BnDn)h (BnEn + Cn) En,t−h. Note that

(i)
∑∞
h=0 (An +BnDn)h (BnEn + Cn) En,t−h is the stochastic component of Ynt for each

t; (ii) ∆s
1,L and ∆s

2,L denote the sources of asymptotic biases. Using Lemmas 2.1 and

2.2 in the supplementary file of Jeong and Lee (2018), we have

∆s
1,L =

√
n

T
asn,1 (θ0) +O

(√
n

T 3

)
+Op

(
1√
T

)
,

and

∆s
2,L =

√
T

n
asn,2 (θ0)

where asn,1 (θ0) = 1
n
tr
(
JnBy,n

(∑∞
h=0 (An +BnDn)h

)
(BnEn + Cn)

)
+ 1

n
tr (JnBq,n) =

O (1) and asn,2 (θ0) = 1
n
l′nBq,nln = O (1). Note that asn,1 (θ0) and asn,2 (θ0) are uniformly

bounded constants by Assumption 4.4.5 (i). Using those formulations, we obtain

1√
L

∂ lnLL,c(θ0)

∂θ
= 1√

L

∂ lnL
(u)
L,c(θ0)

∂θ
−∆1,L−∆2,L where ∆1,L =

(
∆λ

1,L,∆
γ
1,L,∆

ρ
1,L,∆

φ
1,L,∆

β′
1,L,∆

σ2

1,L

)′
and ∆2,L =

(
∆λ

2,L,∆
γ
2,L,∆

ρ
2,L,∆

φ
2,L,∆

β′
2,L,∆

σ2

2,L

)′
. The superscripts in ∆1,L and ∆2,L

denote the components corresponding to a specific parameter. We can also define the

vectors a1,n (θ0) and a2,n (θ0) based on ∆1,L and ∆2,L.

Next, consider deriving the asymptotic distribution of θ̂L. For each θ ∈ Θ, define

Σθ,L = −E
(

1
L

∂2 lnLL,c(θ)

∂θ∂θ′

)
, Σθ0,L = −E

(
1
L

∂2 lnLL,c(θ0)

∂θ∂θ′

)
, Ωθ,L = E

(
1
L

∂ lnLL,c(θ)

∂θ

∂ lnLL,c(θ)

∂θ′

)
and Ωθ0,L = E

(
1
L

∂ lnLL,c(θ0)

∂θ

∂ lnLL,c(θ0)

∂θ′

)
. Here is the assumption for Σθ0,L and Ωθ0,L to
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have the well-defined asymptotic variance of θ̂L. For this assumption, let φmin (Mn)

denote the smallest eigenvalue of a matrix Mn.

Assumption 4.4.8 lim infL→∞ φmin (Σθ0,L) > 0 and lim infL→∞ φmin (Ωθ0,L) > 0.

Due to the parts (i) and (ii) of Assumption 4.4.5, Σθ,L and Ωθ,L are continuously

differentiable functions in θ ∈ int (Θ). Around θ0, therefore, Σθ,L and Ωθ,L are non-

singular for sufficiently large L. Let Σθ0 = limL→∞Σθ0,L and Ωθ0 = limL→∞Ωθ0,L. In

consequence, the limiting distribution of θ̂L is obtained.

Theorem 4.4.2 Under Assumptions 4.4.1-4.4.8,

√
L
(
θ̂L − θ0

)
+

√
n

T
Σ−1
θ0,L

an,1 (θ0) +

√
T

n
Σ−1
θ0,L

an,2 (θ0) + op (1)

→ dN
(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)

as L→∞.

Here are interpretations of Theorem 4.4.2. First, θ̂L − θ0 = Op

(
max

{
1√
L
, 1
n
, 1
T

})
,

which implies the convergence rate of θ̂L. Even though we can achieve θ̂L−θ0 →p 0 as

L→∞, a ratio of n and T plays an important role in characterizing the asymptotic

distribution of θ̂L. Namely, a moderate ratio between n and T is required to have

the nondegenerate asymptotic distribution of θ̂L. Suppose n
T
→ c ∈ (0,∞). Since

an,1 (θ0) and an,2 (θ0) are of O (1),
√
L
(
θ̂L − θ0

)
+
√
cΣ−1

θ0,L
an,1 (θ0) +

√
1
c
an,2 (θ0) →d

N
(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)
. i.e., we can have the nondegenerate asymptotic distribution of

θ̂L if n
T
→ c, but the asymptotic biases exist. If n

T
→ 0 or n

T
→ ∞, the asymptotic

distribution of θ̂L will be degenerated. Focusing on the case of n
T
→ c, the next step

is to have a bias corrected estimator.
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4.4.4 Bias correction

By Theorem 4.4.2, we define

θ̂cL = θ̂L −
1

T

[
−Σ−1

θ̂L,L
an,1

(
θ̂L
)]
− 1

n

[
−Σ−1

θ̂L,L
an,2

(
θ̂L
)]
, (4.24)

which is the bias corrected MLE. Note that the ideal bias correction terms are re-

spectively −Σ−1
θ0,L

an,1 (θ0) and −Σ−1
θ0,L

an,2 (θ0). To have a successful bias correction, we

need to achieve some conditions for the asymptotic equivalence. To have a success-

ful bias correction, we need to achieve some conditions for the asymptotic equivalence:

i.e.,
√

n
T

(
Σ−1

θ̂L,L
an,1

(
θ̂L
)
− Σ−1

θ0,L
an,1 (θ0)

)
→p 0 and

√
T
n

(
Σ−1

θ̂L,L
an,2

(
θ̂L
)
− Σ−1

θ0,L
an,2 (θ0)

)
→p

0 as L→∞. The assumption below describes the conditions to have the asymptotic

equivalence.

Assumption 4.4.9 (i) n
T 3 → 0 and T

n3 → 0.

(ii) In a neighborhood of θ1,0,
∑∞
h=0 (An (θ1) +Bn (θ1)Dn (θ1))h

and
∑∞
h=1 h (An (θ1) +Bn (θ1)Dn (θ1))h−1 are uniformly bounded in row and column

sums.

Under the additional assumption (Assumption 4.4.9), we have

√
L
(
θ̂cL − θ0

)
→d N

(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)
(4.25)

as L→∞. For the details on Assumption 4.4.9, refer to Corollary 4.3 of Jeong and

Lee (2018).

4.5 Simulations

This section reports some simulation results to study small sample properties of

the QMLE. For t = 1, · · · , T , the DGP for our simulation is specified by

RF
nYnt = (γ0In + ρ0Wn + Φn,0Dn)Yn,t−1 + Xntβ0 +Re

n (cn0 + αt,0ln + Ent) (4.26)
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where

Re
n = In + Φn,0En,

RF
n = Sn − δQF,∗

n − δLF,b,∗n Dn, and Xnt = (In + Φn,0En)Xnt. i.e., we set K = 1 and

π0 = 0. For this, Xnt is drawn from i.i.d.N (0n×1, In).

Our simulation design aligns with the empirical application in Section 4.6 in terms

of the sample size and the spatial network Wn. As sample sizes, we consider (n, T ) =

(48, 25). That is, economic agents in this simulation represent the 48 contiguous U.S.

states. For each pair (i, j), let wij = w̃ij∑n

k=1
w̃ik

where

w̃ij = 1 {(i, j)nbd} (4.27)

if j 6= i. We choose δ = 0.9. From the standard normal distributions, we draw cn0,

αT,0, and Ent. To have a stable functional form of the DGP, we firstly generate the data

with 30 +T periods and take the last T periods as our sample. We consider four sets

of the true parameter values: θ0 = (0.1, 0.2, 0.1, 0.4, 1, 1)′, (0.1, 0.2,−0.1, 0.4, 1, 1)′,

(−0.1, 0.2, 0.1, 0.4, 1, 1)′, and (−0.1, 0.2,−0.1, 0.4, 1, 1)′. Four criteria are reported

for performance evaluation: (i) bias, (ii) standard deviation (SD), (iii) theoretical

standard deviation (T-SD), and (iv) root mean square error (RMSE). We conduct

400 repetitions for each case.

Table 4.1 shows the detailed simulation results. Overall, the estimated theoretical

standard deviations are similar to empirically evaluated ones. For all cases of θ0’s, the

QMLE and its bias corrected version show similar performance in terms of RMSEs.

We detect downward biases in the QMLEs for λ0, γ0, φ0 and σ2
0. In estimating ρ0,

the magnitude of biases in θ̂L is small. Our bias correction method can reduce the

magnitude of biases except for estimation of ρ0 and φ0. Since biases in the QMLEs
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Table 4.1: Performance of the QML estimator
Case 1: θ0 = (0.1, 0.2, 0.1, 0.4, 1, 1)′

θ̂L
λ γ ρ φ β σ

Bias -0.0332 -0.0249 0.0052 -0.0125 -0.0028 -0.0634
SD 0.0334 0.0202 0.0407 0.1115 0.0307 0.061
T-SD 0.0313 0.0201 0.0386 0.1046 0.0304 0.0578
RMSE 0.047 0.0321 0.041 0.1122 0.0308 0.088

θ̂cL
λ γ ρ φ β σ

Bias -0.0123 -0.0016 0 -0.0411 -0.0014 0.0062
SD 0.0317 0.0206 0.0411 0.1071 0.0306 0.0619
T-SD 0.0313 0.0201 0.0386 0.1046 0.0304 0.0578
RMSE 0.034 0.0207 0.0411 0.1147 0.0306 0.0623

Case 2: θ0 = (0.1, 0.2,−0.1, 0.4, 1, 1)′

θ̂L
λ γ ρ φ β σ

Bias -0.0328 -0.0261 0.0081 -0.0136 -0.0027 -0.0631
SD 0.0334 0.0204 0.0406 0.1137 0.0307 0.0615
T-SD 0.0313 0.0201 0.0388 0.1143 0.0304 0.0584
RMSE 0.0468 0.0332 0.0414 0.1145 0.0308 0.0881

θ̂cL
λ γ ρ φ β σ

Bias -0.0121 -0.0018 0.0009 -0.0426 -0.0014 0.0066
SD 0.0318 0.0208 0.0412 0.1099 0.0306 0.0625
T-SD 0.0313 0.0201 0.0388 0.1143 0.0304 0.0584
RMSE 0.034 0.0209 0.0412 0.1179 0.0307 0.0628
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Case 3: θ0 = (−0.1, 0.2, 0.1, 0.4, 1, 1)′

θ̂L
λ γ ρ φ β σ

Bias -0.0303 -0.0255 -0.0002 -0.0115 -0.0038 -0.0685
SD 0.034 0.0204 0.0425 0.1209 0.0308 0.0648
T-SD 0.033 0.0202 0.0408 0.1223 0.0304 0.062
RMSE 0.0456 0.0327 0.0425 0.1214 0.031 0.0943

θ̂cL
λ γ ρ φ β σ

Bias 0.0029 -0.0028 -0.0035 -0.0238 -0.0012 -0.0029
SD 0.0318 0.0207 0.0429 0.1114 0.0308 0.0651
T-SD 0.033 0.0202 0.0408 0.1223 0.0304 0.062
RMSE 0.0319 0.0209 0.043 0.1139 0.0308 0.0651

Case 4: θ0 = (−0.1, 0.2,−0.1, 0.4, 1, 1)′

θ̂L
λ γ ρ φ β σ

Bias -0.03 -0.0266 0.004 -0.0112 -0.0037 -0.0684
SD 0.034 0.0206 0.0421 0.1197 0.0308 0.065
T-SD 0.0329 0.0202 0.0409 0.1222 0.0304 0.0621
RMSE 0.0453 0.0337 0.0423 0.1202 0.0311 0.0944

θ̂cL
λ γ ρ φ β σ

Bias 0.003 -0.0024 -0.0009 -0.0233 -0.0012 -0.003
SD 0.0318 0.0209 0.0426 0.1105 0.0308 0.0653
T-SD 0.0329 0.0202 0.0409 0.1222 0.0304 0.0621
RMSE 0.0319 0.0211 0.0426 0.1129 0.0308 0.0654
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Table 4.2: Descriptive statistics: 48 contiguous states in U.S.

Variables Mean Standard dev. Min Max
Total expenditure 5.7992 1.2951 3.4631 11.6327
Total revenue 5.8646 1.2749 1.5816 14.8746
Grants from the Federal government 1.4947 0.4185 0.5757 4.1586
Population (millions) 6.0305 6.5155 0.4663 39.25
Population density 73.7276 100.0283 469.5999 1.8541
Personal income 35.7279 5.6464 25.7151 59.1866
Unemployment rate 0.0559 0.0187 0.023 0.1361

Note: Sample is 48 contiguous states from 1992 to 2016. Dollar amounts are in
thousands and real per capita values adjusted by the GDP deflator with base year
2012.

for ρ0 and φ0 are not large, we can say that the proposed bias correction method is

effective.

4.6 Application

In this section, we apply our econometric model. The federal government is a

leader, and the 48 contiguous state governments (excluding Alaska, and Hawaii) are

followers (i.e., n = 48). Time periods of our data set are 1992 to 2016 (i.e., T = 25,

so L = 1, 200). From the United States Census Bureau, we obtain the states’ finance

and demographic/economic variables. Levels of grants from the federal governments

can be also found in this source. For the additional macroeconomic variables (e.g.,

GDP deflator, interest rates, states’ unemployment rates), we utilize the website of

the Federal reserve bank of S.t. Louis. All dollar amounts are in thousands and real

per capita values adjusted by the GDP deflator (with the base year 2012). Table 4.2

shows the descriptive statistics for the collected variables. Note that the vector of
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dependent variables (Ynt) represents the states’ general expenditures at time t. As

explanatory variables (Xnt), we employ (i) total revenue, (ii) time differenced popu-

lation density156, and (iii) state’s unemployment rate. We observe large variations in

the variables across states and time periods.

We will estimate payoff functions for general expenditures of state governments by

estimating θ0. After recovering θ0, we can also recover the leader’s payoff by summing

followers’ payoffs. At each t, the federal government allocates the national resources

to the states by deciding levels of grants. Each state government selects an amount

of expenditure after observing the level of grants. Among state governments, there

might exist spatial interactions. For this, we use the same Wn in Section 4.5. We

choose δ = 0.956 by considering the average of long-run interest rates for the sampling

periods. For Φn,0, we consider two specifications: for i = 1, · · · , n (i) (Specification

(1)) φi,0 = φ0di, and (ii) (Specification (2)) φi,0 = φ0. For each i, we compute di by

the Haversine formula.157 The mean and standard deviation of {di} are respectively

1.4583 and 1.0691.

Table 4.3 summarizes the estimation results. In Table 4.3, we report the bias

corrected QML estimates with their corresponding standard deviations. For both

specifications, we obtain the similar estimation results. When we consider the sample

log likelihood as a goodness-of-fit measure, Specification (1) is better. We find that

there is a positive spatial spillover effect in the states’ expenditures. The estimates

for γ0 are large, so the dynamic adjustment cost is high. The estimated coefficients

156We find that the U.S. population densities are quite persistent. In our model framework, all
exogenous (time-varying) characteristics (ηvnt in the theoretical model) should be stationary. To
avoid nonstationary variable issues, we use the time differenced population densities.

157For example, dOhio denotes the (thousand) kilometer based distance between Columbus and
Washington D.C.
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Table 4.3: Model estimation
Specification (1): Specification (2)

Total revenue per capita 0.1028*** [0.0098] 0.1026*** [0.0098]
∆ Population density -0.0041 [0.0139] -0.0050 [0.0138]
Unemployment rate -1.8004*** [0.6768] -1.7490*** [0.6720]
λ 0.0748* [0.0410] 0.0770* [0.0418]
γ 0.8520*** [0.0162] 0.8626*** [0.0608]
ρ -0.0540 [0.0462] -0.0512 [0.0460]
φ 0.0261 [0.0228] 0.2015 [1.8148]
σ2 0.0283*** [0.0012] 0.0290*** [0.0040]
Sample log likelihood 445.0063 430.4086
No. of Obs. 1152 1152

Note: Theoretical standard deviations are in parenthesis. Estimates that are signifi-
cant at the 10 percent, 5 percent, and 1 percent levels are respectively marked by *,
**, and ***.

for ρ0 are negative, but they are not significant even for the 10% significance level.

The estimates of φ0 in both specifications are positive. In Specification (1), the

central government positively affects the state governments’ expenditures and those

effects diminish corresponding the geographic distances between the central and state

governments. However, estimated coefficients for φ0 are not statistically significant. It

seems that there is no effect of the federal grants on the states’ expenditures. For the

exogenous characteristics, there exists a significant positive effect of the state’s total

revenue; a significant negative effect of the state’s unemployment rate is detected.

4.7 Conclusion and future works

This paper introduces a spatial dynamic panel data (SDPD) model explaining

the relationships between two types of forward-looking agents: a leader and multiple

followers. In practical applications, they represent the central and local governments.
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Motivated by Chapter 19 of Ljungqvist and Sargent (2012), we establish a dynamic

Stackelberg game played on a spatial network. Derived optimal actions lead to a spa-

tial econometric model. Next, we introduce how to apply the quasi-maximum likeli-

hood (QML) method for recovering structural parameters. Large and finite sample

properties of the QML estimator are investigated.

4.7.1 Future works

Since our model specification also describes the central government behaviors, we

can consider aggregate economic shocks directly affecting the central government.

Hence, there might exist aggregate economic shocks heterogeneously affecting the

state governments’ decisions. Instead of having the additive specification for individ-

ual and time fixed effects, the interactive fixed effect specification (factor structure)

can be considered. In order to specify
(
Φn,0 + δπ̃0L

F,b,∗
n

)
Fnτnt, also, we consider a

general specification (factor structure) for individual and time effects: Γnft where

ft = (ft,1, · · · , ft,r0)
′ be an r0-dimensional common factors and Γn =

(
Γ′n,1, · · · ,Γ′n,n

)′
(with Γn,i = (Γn,i,1, · · · ,Γn,i,r0)

′ for each i) denotes an n×r0 matrix of factor loadings.

Note that the dimension of commen factors (r0) can be multiple. Let fT = (f ′1, · · · , f ′T )′

be a T × r0 matrix of common factors. We can allow flexible correlations between

Xnt and Γnft, so they are considered as parameters.

Also, we have another reason for having the factor structure. Recall that the first

order condition of follower i’s lifetime problem:

0 = ηit + φi,0b
∗
it + e′i (γ0In + ρ0Wn)Yn,t−1 − e′iSnY ∗nt (4.28)

+δe′i
(
QF
i +QF ′

i

)
Y ∗nt + δe′iL

F,b
i Etb

∗
n,t+1 + δe′iL

F,η
i Etηn,t+1.
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The error specification involves ηit+δe
′
iL

F,η
i Etηn,t+1 and ηit might include the time spe-

cific shock αt,0. Note that the additive specification comes from assuming Et (αt+1,0) =

0. If {αt,0} follows an AR(1) process and the followers rationally expect the future

aggregate shock, the unobserved individual and time effects will follow the factor

structure. A famous study for this issue in a regression model is Bai (2009) and the

application to SDPD models can be found in Shi and Lee (2017). Shi and Lee (2017)

treat the interactive individual and time effects as incidental parameters.
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Appendix A: Appendix for Chapter 2

A.1: Derivation of the MPE equation

In this appendix, we derive the NE equation by solving equation (2.8). By the

principle of optimality, a solution from the intertemporal choice problem (2.7) is

equivalent to that of the functional equation (2.8) if the latter exists. For this, we

need to verify the existence and uniqueness of Vi (·) satisfying both (2.7) and (2.8).

The unknown Vi (·) will be implied by known ui (·). All mathematical arguments in

this part are based on Stokey et al. (1989) and Fuente (2000). Here we present some

basic discussions and essential mathematical results.

Step 1 (Formation of V
(j)
i (·)’s): We choose an arbitrary agent i for our analysis.

Consider the period t. For any given (Yn,t−1, ηnt) and Y ∗−i,t(Yn,t−1, ηnt), define the

operator T which maps the jth approximation to the (j+ 1)th approximation of Vi (·)

by

V
(j+1)
i (Yn,t−1, ηnt) = T

(
V

(j)
i

)
(Yn,t−1, ηnt)

= max
yit

 ui
(
yit, Y

∗(j+1)
−i,t (Yn,t−1, ηnt), Yn,t−1, ηit

)
+δEt

(
V

(j)
i

(
yit, Y

∗(j+1)
−i,t (Yn,t−1, ηnt), ηn,t+1

)) 
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for j = 0, 1, 2, · · ·. From V
(j)
i (·)’s, we can also generate Y

∗(j)
nt (Yn,t−1, ηnt)’s (j =

1, 2, · · ·). Using T , we generate V
(j)
i (·)’s (from V

(0)
i = 0) and corresponding (approx-

imated) MPE equations.

Step 2 (Continuity of T ): Note that the domain of T contains a set of Vi (·)’s

(i.e., V
(j)
i (·)’s). Consider a set of continuous and bounded functions C ((χy)

n × (χη)
n)

where all possible Yn,t−1 ∈ (χy)
n ⊆ Rn and ηnt ∈ (χη)

n ⊆ Rn. Note that C ((χy)
n × (χη)

n)

is a well-known Banach space. Under Assumption 2.2.1,
{
V

(j)
i (·)

}
j
⊂ C ((χy)

n × (χη)
n)

for any continuous and bounded function V
(0)
i (·). Then, we can apply the theorem

of maximum, which yields (i) existence of optimal decisions and (ii) continuity of

T V (j)
i (Yn,t−1, ηnt) at (Yn,t−1, ηnt). Since ui (·) is strictly concave with strictly decreas-

ing marginals158 with respect to large yit, we can guarantee for unique NE decisions.159

Step 3 (Contraction mapping theorem): Since T is the maximum oper-

ator, its arguments V
(j)
i (·)’s are continuous and bounded functions in (Yn,t−1, ηnt)

and δ ∈ (0, 1), T satisfies the Blackwell’s (1965) sufficient conditions to be a con-

traction mapping. By the contraction mapping theorem, there exists a unique fixed

point Vi (·) in C ((χy)
n × (χη)

n) for each i = 1, · · · , n and subsequently a unique NE

Y ∗nt (Yn,t−1, ηnt).

Step 4 (Recovering Vi (·) for each i and Y ∗nt (Yn,t−1, ηnt)): From the initial

iteration with V
(0)
i = 0, we have V

(1)
i (Yn,t−1, ηnt) = Y ′n,t−1Q

(1)
i Yn,t−1 + Y ′n,t−1L

(1)
i ηnt +

η′ntG
(1)
i ηnt + c

(1)
i , where A(1)

n = S−1
n (γ0In + ρ0Wn), B(1)

n = S−1
n ,

Q
(1)
i = 1

2

(
A(1)′
n IiA(1)

n − γ0Ii
)
, L

(1)
i = A(1)′

n IiB(1)
n , G

(1)
i = 1

2
B(1)′
n IiB(1)

n and c
(1)
i = 0

with Ii being a diagonal matrix with only a unit for its ith diagonal element and

158Note that ui (·) will eventually decrease in yit. This property is important because our maxi-
mization problem is not constrained.

159Refer to Theorems 3.8 and 4.9 in Stokey et al. (1989).
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zero elsewhere. By mathematical induction, we generate the following matrix Riccati

equations:

Q
(j+1)
i = A(j+1)′

n

[
Ii
(

1

2
In − Sn

)
+ δQ

(j)
i

]
A(j+1)
n + A(j+1)′

n Ii (γ0In + ρ0Wn)− γ0

2
Ii,

(A.1)

Q∗(j+1)
n = [

(
Q

(j+1)
1 +Q

(j+1)′
1

)
e1, · · · ,

(
Q(j+1)
n +Q(j+1)′

n

)
en]′,

L
(j+1)
i = A(j+1)′

n

 [Ii
(

1
2
In − Sn

)
+ δQ

(j)
i ]

+[Ii
(

1
2
In − Sn

)
+ δQ

(j)
i ]′

B(j+1)
n (A.2)

+A(j+1)′
n

(
Ii + δL

(j)
i Πn

)
+ (γ0In + ρ0Wn)′ IiB(j+1)

n ,

L∗(j+1)
n = [L

(j+1)′
1 e1, · · · , L(j+1)′

n en], (A.3)

G
(j+1)
i = B(j+1)′

n

[
Ii
(

1

2
In − Sn

)
+ δQ

(j)
i

]
B(j+1)
n +B(j+1)′

n

(
Ii + δL

(j)
i Πn

)
+δΠ′nG

(j)
i Πn,

(A.4)

and c
(j+1)
i = δ

(
c

(j)
i + tr

(
G

(j)
i Ωξ

))
, where A(j+1)

n =
[
R(j+1)
n

]−1
(γ0In + ρ0Wn) and

B(j+1)
n =

[
R(j+1)
n

]−1 (
In + δL∗(j)n Πn

)
with R(j+1)

n = Sn − δQ∗(j)n .

By taking j → ∞, we obtain the asymptotic version of algebraic matrix Riccati

equations for Qn, Ln, Gi’s and ci, i.e., for each i,

Vi (Yn,t−1, ηnt) = Y ′n,t−1QiYn,t−1 + Y ′n,t−1Liηnt + η′ntGiηnt + ci

where Qi = limj→∞Q
(j)
i , Li = limj→∞ L

(j)
i , Gi = limj→∞G

(j)
i and ci = limj→∞ c

(j)
i .

Then, the activity outcomes NE equation will be

Y ∗nt (Yn,t−1, ηnt) = (λ0Wn + δQ∗n)Y ∗nt (Yn,t−1, ηnt) + (γ0In + ρ0Wn)Yn,t−1 + (Ii + δL∗nΠn) ηnt,
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which implies that

Y ∗nt (Yn,t−1, ηnt) = AnYn,t−1 +Bnηnt,

where An = R−1
n (γ0In + ρ0Wn) and Bn = R−1

n (In + δL∗nΠn) with Rn = Sn − δQ∗n.

From the above expressions, we can also have an alternative representation of

Q∗n in the subsequent Proposition A.1.1, which has some similarity on the additional

term due to future influence as in the two-period case. First of all, we can have an

alternative representation of B(j)
n , j = 1, 2, · · ·. Note that B(1)

n = S−1
n . Consider

B(2)
n =

[
R(2)
n

]−1 (
In + δL∗(1)

n Πn

)
. Using e′iL

∗(1)
n = e′iL

(1)
i with L

(1)
i = A(1)′

n IiS−1
n , we

can define D
(2)
n,1 = Diag

(
A(1)
n

)
B(1)
n such that B(2)

n =
[
R(2)
n

]−1 (
In + δD

(2)
n,1Πn

)
. This

has

Y
∗(2)
nt (Yn,t−1, ηnt) = A(2)

n Yn,t−1 +
[
R(2)
n

]−1 (
ηnt + δL∗(1)

n Et (ηn,t+1)
)

= A(2)
n Yn,t−1 +

[
R(2)
n

]−1 (
In + δD

(2)
n,1Πn

)
ηnt.

Consider iteratively B(j+1)
n =

[
R(j+1)
n

]−1 (
In + δL∗(j)n Πn

)
for j = 2, 3, · · ·. We can

show that

L∗(j)n = D
(j+1)
n,1 + δD

(j+1)
n,2 Πn + · · ·+ δj−1D

(j+1)
n,j Πj−1

n (A.5)

for some D
(j+1)
n,1 , D

(j+1)
n,2 , · · ·, D(j+1)

n,j by the method of undetermined coefficients.

Hence,

B(j+1)
n =

[
R(j+1)
n

]−1 (
In + δD

(j+1)
n,1 Πn + δ2D

(j+1)
n,2 Π2

n + · · ·+ δjD
(j+1)
n,j Πj

n

)

so that

Y
∗(j+1)
nt (Yn,t−1, ηnt)

= A(j+1)
n Yn,t−1 +

[
R(j+1)
n

]−1 (
In + δL∗(j)n Πn

)
ηnt
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= A(j+1)
n Yn,t−1 +

[
R(j+1)
n

]−1
(
ηnt + δD

(j+1)
n,1 Et (ηn,t+1) + δ2D

(j+1)
n,2 Et (ηn,t+2)

+ · · ·+ δjD
(j+1)
n,j Et (ηn,t+j)

)

= A(j+1)
n Yn,t−1 +

[
R(j+1)
n

]−1 (
In + δD

(j+1)
n,1 Πn + δ2D

(j+1)
n,2 Π2

n + · · ·+ δjD
(j+1)
n,j Πj

n

)
ηnt.

The second equality holds due to the law of iterative expectations. For notational

convenience, let

C
(j+1)
i = A(j+1)′

n

{[
Ii
(

1

2
In − Sn

)
+ δQ

(j)
i

]
+
[
Ii
(

1

2
In − Sn

)
+ δQ

(j)
i

]′}
+ (γ0In + ρ0Wn)′ Ii

= A(j+1)′
n

{
Ii [−In + λ0 (Wn +W ′

n)] + δ
(
Q

(j)
i +Q

(j)′
i

)}
+ (γ0In + ρ0Wn)′ Ii

for j = 1, 2, · · ·. And, C
(1)
i = A(1)′

n Ii [−In + λ0 (Wn +W ′
n)] + (γ0In + ρ0Wn)′ Ii, so

observe

e′i

(
C

(1)
i

[
R(1)
n

]−1
+ A(1)′

n Ii
)

= e′iA
(1)′
n Ii [−In + λ0 (Wn +W ′

n)]S−1
n + e′i (γ0In + ρ0Wn)′ IiS−1

n + e′iA
(1)′
n Ii

= e′iA
(1)′
n Ii

(
−In + λ0W

′
nS
−1
n

)
+ e′iA

(1)′
n Ii + e′i (γ0In + ρ0Wn)′ IiS−1

n

= e′iA
(1)′
n Iiλ0W

′
nS
−1
n + e′i (γ0In + ρ0Wn)′ IiS−1

n

= e′i
(
A(1)′
n Iiλ0W

′
n + (γ0In + ρ0Wn)′ S−1′

n S ′nIi
)
S−1
n

= e′iA
(1)′
n IiS−1

n = e′iD
(2)
n,1.

By equation (A.2),

L
(j)
i = C

(j)
i B(j)

n + A(j)′
n Ii + δA(j)′

n L
(j−1)
i Πn

= C
(j)
i B(j)

n + δA(j)′
n C

(j−1)
i B(j−1)

n Πn + A(j)′
n Ii + δA(j)′

n A(j−1)′
n IiΠn

+δ2A(j)′
n A(j−1)′

n L
(j−2)
i Π2

n
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= C
(j)
i B(j)

n + δA(j)′
n C

(j−1)
i B(j−1)

n Πn + · · ·

+δj−2A(j)′
n A(j−1)′

n · · ·A(3)′
n C

(2)
i B(2)

n Πj−2
n

+A(j)′
n Ii + δA(j)′

n A(j−1)′
n IiΠn + · · ·+ δj−2A(j)′

n A(j−1)′
n · · ·A(2)′

n IiΠj−2
n

+δj−1A(j)′
n A(j−1)′

n · · ·A(2)′
n L

(1)
i Πj−1

n .

Then, we have

L
(j)
i = C

(j)
i

[
R(j)
n

]−1 (
In + δD

(j)
n,1Πn + δ2D

(j)
n,2Π2

n + · · ·+ δj−1D
(j)
n,j−1Πj−1

n

)
+A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
(
δΠn + δ2D

(j−1)
n,1 Π2

n + δ3D
(j−1)
n,2 Π3

n

+ · · ·+ δj−1D
(j−1)
n,j−2Πj−1

n

)
+ · · ·

+A(j)′
n A(j−1)′

n · · ·A(3)′
n C

(2)
i

[
R(2)
n

]−1 (
δj−2Πj−2

n + δj−1D
(2)
n,1Πj−1

n

)
+A(j)′

n Ii + δA(j)′
n A(j−1)′

n IiΠn + · · ·+ δj−2A(j)′
n A(j−1)′

n · · ·A(2)′
n IiΠj−2

n

+δj−1A(j)′
n A(j−1)′

n · · ·A(2)′
n L

(1)
i Πj−1

n

=
(
C

(j)
i

[
R(j)
n

]−1
+ A(j)′

n Ii
)

+δ
(
C

(j)
i

[
R(j)
n

]−1
D

(j)
n,1 + A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
+ A(j)′

n A(j−1)′
n Ii

)
Πn

+δ2


C

(j)
i

[
R(j)
n

]−1
D

(j)
n,2 + A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
D

(j−1)
n,1

+A(j)′
n A(j−1)′

n C
(j−2)
i

[
R(j−2)
n

]−1

+A(j)′
n A(j−1)′

n A(j−2)′
n Ii

Π2
n + · · ·

+δj−1


C

(j)
i

[
R(j)
n

]−1
D

(j)
n,j−1 + A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
D

(j−1)
n,j−2 + · · ·

+A(j)′
n A(j−1)′

n · · ·A(3)′
n C

(2)
i

[
R(2)
n

]−1
D

(2)
n,1

+A(j)′
n A(j−1)′

n · · ·A(1)′
n IiS−1

n .

Πj−1
n .

As e′iL
∗(j)
n = e′iL

(j)
i , by applying the method of undetermined coefficients based on

(A.5) and by taking e′i, we have

e′iD
(j+1)
n,1 = e′i

(
C

(j)
i

[
R(j)
n

]−1
+ A(j)′

n Ii
)
,

e′iD
(j+1)
n,2 = e′i

(
C

(j)
i

[
R(j)
n

]−1
D

(j)
n,1 + A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
+ A(j)′

n A(j−1)′
n Ii

)
,
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e′iD
(j+1)
n,3 = e′i


C

(j)
i

[
R(j)
n

]−1
D

(j)
n,2 + A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
D

(j−1)
n,1

+A(j)′
n A(j−1)′

n C
(j−2)
i

[
R(j−2)
n

]−1

+A(j)′
n A(j−1)′

n A(j−2)′
n Ii

 , ...
and

e′iD
(j+1)
n,j = e′i


C

(j)
i

[
R(j)
n

]−1
D

(j)
n,j−1 + A(j)′

n C
(j−1)
i

[
R(j−1)
n

]−1
D

(j−1)
n,j−2 + · · ·

+A(j)′
n A(j−1)′

n · · ·A(3)′
n C

(2)
i

[
R(2)
n

]−1
D

(2)
n,1

+A(j)′
n A(j−1)′

n · · ·A(1)′
n IiS−1

n .


We observe

{
D

(1)
n,1, D

(2)
n,1, · · ·

}
(whereD

(1)
n,1 = 0n×n) characterize evolution of

{
D

(j+1)
n,k

}
k,j

.

Proposition A.1.1 A relationship between Q∗(j)n and L∗(j)n from D
(j+1)
n,1 is

Q∗(j)n = D
(j+1)
n,1 (γ0In + ρ0Wn)− γ0In

for j = 1, 2, · · ·.

Proof of Proposition A.1.1. Note that e′iQ
∗(j)
n = e′i

(
Q

(j)
i +Q

(j)′
i

)
and

e′i
(
Q

(j)
i +Q

(j)′
i

)
= e′iA

(j)′
n

{
Ii [−In + λ0 (Wn +W ′

n)] + δ
(
Q

(j−1)
i +Q

(j−1)′
i

)}
A(j)
n

+e′iA
(j)′
n Ii (γ0In + ρ0Wn) + e′i (γ0In + ρ0Wn)′ IiA(j)

n − γ0e
′
i

= e′iA
(j)′
n

{
Ii [−In + λ0 (Wn +W ′

n)] + δ
(
Q

(j−1)
i +Q

(j−1)′
i

)}
A(j)
n

+e′iA
(j)′
n eie

′
i (γ0In + ρ0Wn) + γ0e

′
iA

(j)
n − γ0e

′
i

= e′iA
(j)′
n

{
Ii [−In + λ0 (Wn +W ′

n)] + δ
(
Q

(j−1)
i +Q

(j−1)′
i

)} [
R(j)
n

]−1
(γ0In + ρ0Wn)

+e′i (γ0In + ρ0Wn)′ Ii
[
R(j)
n

]−1
(γ0In + ρ0Wn) + e′iA

(j)′
n eie

′
i (γ0In + ρ0Wn)− γ0e

′
i

= e′i

 A(j)′
n

{
Ii [−In + λ0 (Wn +W ′

n)] + δ
(
Q

(j−1)
i +Q

(j−1)′
i

)} [
R(j)
n

]−1

+ (γ0In + ρ0Wn)′ Ii
[
R(j)
n

]−1
+ A(j)′

n Ii


× (γ0In + ρ0Wn)

−e′iγ0In

= e′i
(
D

(j+1)
n,1 (γ0In + ρ0Wn)− γ0In

)
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for j = 2, 3, · · ·, since e′i (γ0In + ρ0Wn) ei = γ0 by e′iWnei = wii = 0 for all i = 1, · · · , n.

Q.E.D.

To have a stable system, a sufficient condition is
∥∥∥A(j+1)

n

∥∥∥
∞
< 1 for each j. By the

following mathematical result, we can check invertibility of R(j+1)
n and the possibility

of representing its inverse as a Neumann series.

Proposition A.1.2 (Stewart (1998)) Consider a linear operator In−Cn satisfies

limj→∞ ‖Cj
n‖ = 0 where ‖·‖ denotes a well-defined operator norm. Then, In − Cn is

invertible and its inverse has a Neumann series expansion:

(In − Cn)−1 =
∞∑
j=0

Cj
n.

Hence, for our model, the implied spatial time series process for Ynt to be stable

in both space and time dimensions, it suffices to assume that∥∥∥∥∥ λ0

1 + δγ0

Wn +
δ

1 + δγ0

D
(j+1)
n,1 (γ0In + ρ0Wn)

∥∥∥∥∥
∞
< 1.

Then,
[
R(j+1)
n

]−1
has the Neumann series expansion,

[
R(j+1)
n

]−1
=

1

1 + δγ0

In +
∞∑
j=1

(
1

1 + δγ0

)j (
λ0Wn + δγ0D

(j+1)
n,1 + δρ0D

(j+1)
n,1 Wn

)j .
A.2: Statistical results

In this section, we list components of asymptotic biases of the QMLE, and provide

briefly proofs of Theorems 2.4.1, 2.4.2, 2.4.4 and Corollary 2.4.3. The detailed proofs

can be found in our supplementary file.

First order derivatives of the log-likelihood function

Note that

Ỹnt = AnỸ
(−)
n,t−1 +

K∑
k=1

R−1
n (In + δL∗nΠn) X̃nt,kβ0 +R−1

n

(
α̃t,0ln + ♥Ent

)
.
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The components of
∂ lnLnT,c(θ0)

∂θ
are

∂ lnLnT,c(θ0)

∂λ
=

1
σ2
ε,0

∑T
t=1

 −RnλR
−1
n

(
(γ0In + ρ0Wn) Ỹ

(−)
n,t−1

+ (In + δL∗nΠn) X̃nt,kβ0 + α̃t0ln

)
+δL∗nλΠnX̃nt,kβ0


′

Jn
♥Ent

+ 1
σ2
ε,0

∑T
t=1

[♥E ′nt (−R−1′
n R′nλ) Jn

♥Ent − σ2
ε,0tr (−RnλR

−1
n )

] ,

∂ lnLnT,c(θ0)

∂γ
=

1
σ2
ε,0

∑T
t=1

 −RnγR
−1
n

(
(γ0In + ρ0Wn) Ỹ

(−)
n,t−1

+ (In + δL∗nΠn) X̃nt,kβ0 + α̃t0ln

)
+Ỹ

(−)
n,t−1 + δL∗nγΠnX̃nt,kβ0


′

Jn
♥Ent

+ 1
σ2
ε,0

∑T
t=1

[♥E ′nt (−R−1′
n R′nγ

)
Jn
♥Ent − σ2

ε,0tr (−RnγR
−1
n )

] ,

∂ lnLnT,c(θ0)

∂ρ
=

1
σ2
ε,0

∑T
t=1

 −RnρR
−1
n

(
(γ0In + ρ0Wn) Ỹ

(−)
n,t−1

+ (In + δL∗nΠn) X̃nt,kβ0 + α̃t0ln

)
+WnỸ

(−)
n,t−1 + δL∗nρΠnX̃nt,kβ0


′

Jn
♥Ent

+ 1
σ2
ε,0

∑T
t=1

[♥E ′nt (−R−1′
n R′nρ

)
Jn
♥Ent − σ2

ε,0tr (−RnρR
−1
n )

] ,

∂ lnLnT,c(θ0)

∂βk
= 1

σ2
ε,0

∑T
t=1

[
(In + δL∗nΠn) X̃nt,k

]′
Jn
♥Ent for k = 1, · · · , K,

∂ lnLnT,c(θ0)

∂σ2
ε

= 1
2σ4
ε,0

∑T
t=1

[♥E ′ntJn♥Ent − nσ2
ε,0

]
.

Components of asymptotic biases of QMLEs

Here are the components of ∆1,nT , ∆2,nT , an,1(θ0), and an,2(θ0):

∆λ
1,nT = 1

σ2
ε,0

√
T
n

 (−RnλR
−1
n (γ0In + ρ0Wn) ŪnT,−1

)′
Jn
�EnT

+�E ′nT (−R−1′
n R′nλ)Jn

�EnT

,

∆γ
1,nT = 1

σ2
ε,0

√
T
n

 ((−RnγR
−1
n (γ0In + ρ0Wn) + In) ŪnT,−1

)′
Jn
�EnT

+�E ′nT (−R−1′
n R′nγ)Jn

�EnT

,

∆ρ
1,nT = 1

σ2
ε,0

√
T
n

 ((−RnρR
−1
n (γ0In + ρ0Wn) +Wn) ŪnT,−1

)′
Jn
�EnT

+�E ′nT (−R−1′
n R′nρ)Jn

�EnT

,

∆
β1,k
1,nT = 0K×1, ∆

σ2
ε

1,nT = 1
2σ4
ε,0

√
T
n
�E ′nTJn�EnT ,

∆λ
2,nT =

√
T
n

[tr (−RnλR
−1
n )− tr (Jn(−RnλR

−1
n ))],

∆γ
2,nT =

√
T
n

[tr (−RnγR
−1
n )− tr (Jn(−RnγR

−1
n ))],

∆ρ
2,nT =

√
T
n

[tr (−RnρR
−1
n )− tr (Jn(−RnρR

−1
n ))],

∆β
2,nT = 0K×1, and ∆

σ2
ε

2,nT =
√

T
n

1
2σ2
ε,0

,
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an,1(θ0) =



1
n
tr
(
Jn(−RnλAn)

(∑∞
h=0A

h
n

)
R−1
n

)
+ 1

n
tr (Jn(−RnλR

−1
n ))

1
n
tr
(
Jn (−RnγAn + In)

(∑∞
h=0A

h
n

)
R−1
n

)
+ 1

n
tr (Jn(−RnγR

−1
n ))

1
n
tr
(
Jn (−RnρAn +Wn)

(∑∞
h=0 A

h
n

)
R−1
n

)
+ 1

n
tr (Jn(−RnρR

−1
n ))

0K×1
n−1
n

1
2σ2
ε,0


,

and

an,2(θ0) = [
1

n
l′n(−RnλR

−1
n )ln,

1

n
l′n(−RnγR

−1
n )ln,

1

n
l′n(−RnρR

−1
n )ln,01×K ,

1

2σ2
ε,0

]

Sketches of Proofs (Consistency and asymptotic normality)

Sketch of proof of Theorem 2.4.1. Consistency can be shown in three steps.

In the first step, we shall show the uniform convergence of sample average of the

log-likelihood function, supθ∈Θ

∣∣∣ 1
nT

lnLnT,c (θ)−QnT (θ)
∣∣∣→p 0 as T →∞. The main

component of 1
nT

lnLnT,c (θ)−QnT (θ) is 1
nT

∑T
t=1

[♥E ′nt (θ) Jn
♥Ent (θ)− E

(♥E ′nt (θ) Jn
♥Ent (θ)

)]
.

Since (i) θ is bounded in the compact parameter space Θ and Rn (θ1), R−1
n , and L∗n (θ1)

are uniformly bounded in both row and column sum norms, uniformly in θ1 ∈ Θ1, it

follows that Rn (θ1)R−1
n − In and L∗n−L∗n (θ1) are also uniformly bounded in row and

column sum norms uniformly in θ1 ∈ Θ1. By Lemmas 8 and 15 in Yu et al. (2008),

1
nT

∑T
t=1

[♥E ′nt (θ) Jn
♥Ent (θ)− E

(♥E ′nt (θ) Jn
♥Ent (θ)

)]
→p 0 uniformly in θ ∈ Θ. Since σ2

ε

is assumed to be bounded away from zero,

1

nT
lnLnT,c (θ)−QnT (θ) = − 1

2σ2
ε

1

nT

T∑
t=1

[♥E ′nt (θ) Jn
♥Ent (θ)− E

(♥E ′nt (θ) Jn
♥Ent (θ)

)]
→p 0

uniformly in θ ∈ Θ.

Secondly, we will show that QnT (θ) is uniformly equicontinuous in θ ∈ Θ. Note

that
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1

nT

T∑
t=1

E
(♥E ′nt (θ) Jn

♥Ent (θ)
)

= qnT,1 (θ1, β) + qnT,2 (θ1) + o(1)

where

qnT,1 (θ1, β) =
1

nT

T∑
t=1

E

 (Rn (θ1)R−1
n (γ0In + ρ0Wn)− (γIn + ρWn)) Ỹ

(−)
n,t−1

+α̃t,0Rn (θ1)R−1
n ln

+Rn (θ1)R−1
n X̃ntβ0 − X̃nt (θ1) β


′

×Jn

 (Rn (θ1)R−1
n (γ0In + ρ0Wn)− (γIn + ρWn)) Ỹ

(−)
n,t−1

+α̃t,0Rn (θ1)R−1
n ln

+Rn (θ1)R−1
n X̃ntβ0 − X̃nt (θ1) β

 ,
and qnT,2 (θ1) = T−1

nT
σ2
ε,0tr (R−1′

n R′n (θ1) JnRn (θ1)R−1
n ). For the equicontinuity of

QnT (θ), we verify (i) lnσ2
ε is uniformly continuous, (ii) 1

n
ln |Rn (θ1)| is uniformly

equicontinuous, and (iii) qnT,1 (θ) and qnT,2 (θ1) are uniformly equicontinuous. The

basic idea of showing those properties is to verify that each component can be repre-

sented by (θ1 − θ2) · hnT
(
θ̄
)
, where θ1, θ2 ∈ Θ, θ̄ lies between θ1 and θ2, and hnT (·)

are uniformly bounded. Uniform boundedness of hnT (·) comes from Assumptions

2.4.3 - 2.4.5. By applying Assumption 2.4.7, we achieve the desired result. Q.E.D.

Sketch of proof of Theorem 2.4.2. This proof relies on the Taylor expansion:

√
nT

(
θ̂ml,nT − θ0

)
=

− 1

nT

∂2 lnLnT,c
(
θ̄nT

)
∂θ∂θ′

−1 1√
nT

∂ lnL
(u)
nT,c(θ0)

∂θ

−∆1,nT −∆2,nT


where θ̄nT lies between θ0 and θ̂ml,nT . By Assumptions 2.4.2 (ii), 2.4.3 and 2.4.5,− 1

nT

∂2 lnLnT,c
(
θ̄nT

)
∂θ∂θ′

− Σθ0,nT =
∥∥∥θ̄nT − θ0

∥∥∥ ·Op (1) +Op

(
1√
nT

)
.

Theorem 2.4.1 implies
∥∥∥θ̄nT − θ0

∥∥∥ = op (1). Under large T , Σθ0,nT is nonsingular in

θ around θ0 by Assumption 2.4.8. These imply − 1
nT

∂2 lnLnT,c(θ̄nT )
∂θ∂θ′

is of Op (1) and

invertible. Hence,

√
nT

(
θ̂ml,nT − θ0

)
=

− 1

nT

∂2 lnLnT,c
(
θ̄nT

)
∂θ∂θ′

−1
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·

 1√
nT

∂ lnL
(u)
nT,c (θ0)

∂θ
−∆1,nT −∆2,nT

 ,
which means θ̂ml,nT − θ0 = Op

(
max

(
1√
nT
, 1
T
, 1
n

))
. Note that

√
nT

(
θ̂ml,nT − θ0

)
+ Σ−1

θ0,nT
· (∆1,nT + ∆2,nT )

+Op

(
max

(
1√
nT

,
1

T
,

1

n

))
· (∆1,nT + ∆2,nT )

=

(
Σ−1
θ0,nT

+Op

(
max

(
1√
nT

,
1

T
,

1

n

)))
· 1√

nT

∂ lnL
(u)
nT,c (θ0)

∂θ
.

Since (i) Σθ0 = limT→∞Σθ0,nT exists and is nonsingular by Assumption 2.4.8, (ii)

∆1,nT =
√

n
T
an,1(θ0) +O

(√
n
T 3

)
+Op

(
1√
T

)
by Lemmas 2.1 and 2.2 in our supplement

file, and (iii) ∆2,nT =
√

T
n
an,2(θ0).

The last task is to investigate 1√
nT

∂ lnL
(u)
nT,c(θ0)

∂θ
. The stochastic components of

1√
nT

∂ lnL
(u)
nT,c(θ0)

∂θ
take a linear-quadratic form, 1√

nT

∑T
t=1

∑n
i=1 ξnt,i, whereE (ξnt,i|Fn,t,i−1) =

0

Fn,t,i = σ (ε11, · · · , εn1, · · · , ε1,t−1, · · · , εn,t−1, ε1t, · · · , εit) , (A.6)

and Fn,0,0 = {φ,Ω}, where Ω is the sample space. Let Fn,t,0 = Fn,t−1,n. Since

Fn,t,i−1 ⊆ Fn,t,i and Fn,t−1,0 ⊆ Fn,t,0, we construct the martingale difference arrays,

{(ξnt,i,Fn,t,i) : i = 1, · · · , n, andt = 1, · · · , T}. Then, we can apply the martingale cen-

tral limit theorem to 1√
nT

∑T
t=1

∑n
i=1 ξnt,i as Yu et al. (2008).160 In consequence, we

obtain 1√
nT

∂ lnL
(u)
nT,c(θ0)

∂θ
→dN (0,Ωθ0) as T →∞ and have the desired results. Q.E.D.

Sketch of proof of Corollary 2.4.3. By Theorem 2.4.2,

√
nT

(
θ̂ml,nT − θ0

)
+

√
n

T
Σ−1
θ0,nT

an,1 (θ0) +

√
T

n
Σ−1
θ0,nT

an,2 (θ0)

+Op

max

√ n

T 3
,

√
T

n3
,

1√
T


→dN

(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)
.

160Also, refer to Kelejian and Prucha (2001).
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Since θ̂cml,nT = θ̂ml,nT − 1
T

[
−Σ−1

θ,nTan,1(θ)
]
|θ=θ̂ml,nT −

1
n

[
−Σ−1

θ,nTan,2(θ)
]
|θ=θ̂ml,nT ,

√
nT

(
θ̂cml,nT − θ0

)
→dN

(
0,Σ−1

θ0
Ωθ0Σ

−1
θ0

)

if √
n

T

([
Σ−1
θ,nTan,1(θ)

]
|θ=θ̂ml,nT − Σ−1

θ0,nT
an,1(θ0)

)
→p0 (A.7)

and √
T

n

([
Σ−1
θ,nTan,2(θ)

]
|θ=θ̂ml,nT − Σ−1

θ0,nT
an,2(θ0)

)
→p0. (A.8)

Assumption 2.4.9, n
T 3 → 0 and T

n3 → 0 (with Assumptions 2.4.3 and 2.4.5) imply

(A.7) and (A.8). The detailed arguments can be found in our supplementary file.

Q.E.D.

Sketch of proof of Theorem 2.4.4. (i) First, note that ĉi,ml = ci,ml
(
θ̂ml,nT

)
.

By Theorem 2.4.1 with
∑T
t=1 αt0 = 0, we observe ci,ml

(
θ̂ml,nT

)
− ci,0 = 1

T

∑T
t=1 εit +∥∥∥θ̂ml,nT − θ0

∥∥∥ · Op (1) = 1
T

∑T
t=1 εit + Op

(
max

(
1√
nT
, 1
T
, 1
n

))
by Theorem 2.4.2. Under

the rate
√
T
n

= o (1), 1
T

∑T
t=1 εit will be the dominant term. Therefore, for each i,

√
T
(
ĉi,ml(θ̂ml,nT )− ci,0

)
→dN(0, σ2

ε,0) if
√
T
n
→ 0; and ĉi,ml(θ̂ml,nT )’s are asymptotically

independent from each other.

(ii) Using the same logic, the dominant term of
√
n
(
α̂t,ml(θ̂ml,nT )− αt0

)
is 1√

n
l′nEnt

if
√
n
T

= o (1). This yields
√
n (α̂t,ml − αt0)→dN(0, σ2

ε,0) if
√
n
T
→ 0; and the estimates

α̂t,ml’s for t = 1, · · · , T are asymptotically independent with each other.

(iii) Under Assumption 2.4.9, n
T 3 → 0 and T

n3 → 0, ci,ml
(
θ̂cml,nT

)
−ci,0 = 1

T

∑T
t=1 εit+

Op

(
1√
nT

)
and α̂t,ml(θ̂

c
ml,nT )−αt0 = 1

n
l′nEnt+Op

(
1√
nT

)
since

∥∥∥θ̂cml,nT − θ0

∥∥∥ = Op

(
1√
nT

)
.

We can apply the same strategies as Parts (i) and (ii). Q.E.D.
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Appendix B: Appendix for Chapter 3

B.1. Linear-quadratic (LQ) approximation

Using the LQ perturbation method around the population averages161, we want

to find an approximate solution V e
i . Observe that

ui (Ynt, Yn,t−1, ηit) = ηityit + γ0yi,t−1yit −
γ0

2
y2
i,t−1 −

1

2
y2
it + λ0

n∑
j=1

wt,ij [yi,t−1, yj,t−1] yityjt.

Then, the non LQ components are only wt,ij [yi,t−1, yj,t−1] yityjt for j 6= i such that

dij ≤ dc. Hence, we need to approximate the interaction term with the network link,

wt,ij [yi,t−1, yj,t−1] yityjt. Let ỹt,ij = [yi,t−1 − ȳ◦i , yj,t−1 − ȳ◦j , yit − ȳ◦i , yjt − ȳ◦j ]′. Around(
ȳ◦i , ȳ

◦
j

)
, the second-order Taylor approximation of wt,ij [yi,t−1, yj,t−1] yityjt (denoted

by wLQt,ij [yi,t−1, yj,t−1, yit, yjt]) is

wt,ij [yi,t−1, yj,t−1] yityjt

' wLQt,ij [yi,t−1, yj,t−1, yit, yjt] = cij + [lij,1, lij,2, lij,3, lij,4]ỹt,ij

+
1

2
ỹ′t,ij


qij,11 qij,12 qij,13 qij,14

qij,12 qij,22 qij,23 qij,24

qij,13 qij,23 0 qij,34

qij,14 qij,24 qij,34 0

 ỹt,ij.

161A brief explanation can be found in Judd (1996), Judd’s (1998) book Chapter 14.5 and
Ljungqvist and Sargent (2002), pp. 143-145.
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where cij = wt,ij
[
ȳ◦i , ȳ

◦
j

]
ȳ◦i ȳ

◦
j , lij,1 =

∂wt,ij[ȳ◦i ,ȳ◦j ]
∂yi,t−1

ȳ◦i ȳ
◦
j , lij,2 =

∂wt,ij[ȳ◦i ,ȳ◦j ]
∂yj,t−1

ȳ◦i ȳ
◦
j , lij,3 =

wt,ij
[
ȳ◦i , ȳ

◦
j

]
ȳ◦j , lij,4 = wt,ij

[
ȳ◦i , ȳ

◦
j

]
ȳ◦i , qij,11 =

∂2wt,ij[ȳ◦i ,ȳ◦j ]
∂y2i,t−1

ȳ◦i ȳ
◦
j , qij,12 =

∂2wt,ij[ȳ◦i ,ȳ◦j ]
∂yi,t−1∂yj,t−1

ȳ◦i ȳ
◦
j ,

qij,13 =
∂wt,ij[ȳ◦i ,ȳ◦j ]

∂yi,t−1
ȳ◦j , qij,14 =

∂wt,ij[ȳ◦i ,ȳ◦j ]
∂yj,t−1

ȳ◦i , qij,22 =
∂2wt,ij[ȳ◦i ,ȳ◦j ]

∂y2j,t−1
ȳ◦i ȳ

◦
j , qij,23 =

∂wt,ij[ȳ◦i ,ȳ◦j ]
∂yi,t−1

ȳ◦j ,

qij,24 =
∂wt,ij[ȳ◦i ,ȳ◦j ]
∂yj,t−1

ȳ◦i , qij,34 = wt,ij
[
ȳ◦i , ȳ

◦
j

]
. Note that qij,33 = qij,44 = 0 and all compo-

nents in wLQt,ij [yi,t−1, yj,t−1, yit, yjt] are zero if i = j.

Then, uei (·) can be written as

uei (Ynt, Yn,t−1, ηit)

= (ηit + γ0yi,t−1) yit −
γ0

2
y2
i,t−1 −

1

2
y2
it

+λ0

n∑
j=1


c̃ij,0 + c̃ij,1yi,t−1 + c̃ij,2yj,t−1 + c̃ij,3yit + c̃ij,4yjt
+1

2
qij,11y

2
i,t−1 + 1

2
qij,22y

2
j,t−1 + qij,12yi,t−1yj,t−1

+qij,13yi,t−1yit + qij,23yj,t−1yit + qij,34yjtyit
+qij,14yi,t−1yjt + qij,24yj,t−1yjt


where

c̃ij,0 = cij − (lij,1 + lij,3) ȳ◦i − (lij,2 + lij,4) ȳ◦j +
(

1

2
qij,11 + qij,13

)
(ȳ◦i )

2

+
(

1

2
qij,22 + qij,24

) (
ȳ◦j
)2

+ (qij,12 + qij,14 + qij,23 + qij,34) ȳ◦i ȳ
◦
j ,

c̃ij,1 = lij,1 − [qij,11 + qij,13] ȳ◦i − [qij,12 + qij,14] ȳ◦j ,

c̃ij,2 = lij,2 − [qij,12 + qij,23] ȳ◦i − [qij,22 + qij,24] ȳ◦j ,

c̃ij,3 = lij,3 − qij,13ȳ
◦
i − [qij,23 + qij,34] ȳ◦j ,

and c̃ij,4 = lij,4 − qij,24ȳ
◦
j − [qij,14 + qij,23] ȳ◦i .

We observe that uei (·) is a LQ function of its argument, so V e
i (Yn,t−1, ηnt) will be a

LQ function of (Yn,t−1, ηnt):

V e
i (Yn,t−1, ηnt) = Y ′n,t−1Q

e
iYn,t−1 + Y ′n,t−1L

e
iηnt + Y ′n,t−1D

e
i + η′ntE

e
i ηnt + η′ntF

e
i + gei
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where Qe
i , L

e
i , and Ee

i are n× n matrices, De
i and F e

i are n-dimensional row vectors,

and gei is a scalar. A corresponding vector of linear optimal actions is

Y e
nt = AenYn,t−1 +Be

nηnt + Ce
n

where Aen and Be
n denote n×n matrices, and Ce

n is an n×1 vector. The solutions Aen,

Be
n, Ce

n, and {Qe
i , L

e
i , D

e
i , E

e
i , F

e
i , g

e
i }
n
i=1 can be obtained by the following equation:

V e
i (Yn,t−1, ηnt) = max

yit
{uei (yit, Y−i,t, Yn,t−1, ηit) + δEtV

e
i (yit, Y−i,t, ηn,t+1)}

= uei (Y e
nt, Yn,t−1, ηit) + δEtV

e
i (Y e

nt, ηn,t+1

The components Aen, Be
n, and Ce

n can be characterized by the first order conditions.

For notations, let ai. = (ai1, · · · , ain) be a row vector consisting of ai1, · · · , ain. By the

first order conditions, we have

(In − λ0Q34,n − δQe,∗
n )Y e

nt

= (γ0In + λ0diag
n
i=1 (qi.,13ln) + λ0Q23,n)Yn,t−1 + (In + δρη,0L

e,∗
n ) ηnt + λ0C̃3,n + λ0D

e,∗
n

where for each i e′niQ34,n = qi.,34, e′niQ
e,∗
n = e′ni (Q

e
i +Qe′

i ), e′niQ23,n = qi.,23, e′niL
e,∗
n =

e′niL
e
i , e

′
niC̃3,n = c̃i.,3ln, and e′niD

e,∗
n . By defining Re

n = In − λ0Q34,n − δQe,∗
n , we have

Aen = (Re
n)−1 (γ0In + λ0diag

n
i=1 (qi.,13ln) + λ0Q23,n) ,

Be
n = (Re

n)−1 (In + δρη,0L
e,∗
n ) ,

and Ce
n = (Re

n)−1
(
λ0C̃3,n + δDe,∗

n

)
. Note that computing Y e

nt just requires evaluating

Qe
i , L

e
i , and De

i .

Next, we will provide formulas for the components {Qe
i , L

e
i , D

e
i }
n
i=1. Define Ii =

enie
′
ni for notational convenience. For each i,
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Qe
i = γ0A

e′
n Ii −

γ0

2
Ii −

1

2
Ae′n IiA

e
n + δAe′nQ

e
iA

e
n +

λ0

2
l′nq
′
i.,11Ii +

λ0

2
diagnj=1qij,22

+λ0eniqi.,12 + λ0l
′
nq
′
i.,13IiA

e
n + λ0eni (qi.,23 + qi.,14)Aen

+λ0A
e′
neniqi.,34A

e
n + λ0diag

n
j=1qij,24A

e
n,

Lei = Ae′n Ii + γ0IiB
e
n − Ae′n IiBe

n + δAe′n (Qe
i +Qe′

i )Be
n + δρη,0A

e′
nLi

+λ0qi.,13lnIiB
e
n + λ0eniqi.,23B

e
n

+λ0A
e′
n

(
eniqi.,34 + q′i.,34e

′
ni

)
Be
n + λ0eniqi.,14B

e
n + λ0diag

n
j=1qij,24B

e
n,

and

De
i = γ0IiC

e
n − Ae′n IiCe

n + δAe′n (Qe
i +Qe′

i )Ce
n + δAe′nD

e
i + λ0c̃i.,1lneni + λ0c̃

′
i.,2

+λ0A
e′
nenil

′
nc̃
′
i.,3 + λ0A

e′
n c̃
′
i.,4 + λ0qi.,13lnIiC

e
n + λ0eniqi.,23C

e
n

+λ0A
e′
n

(
eniqi.,34 + q′i.,34e

′
ni

)
Ce
n + λ0eniqi.,14C

e
n + λ0diag

n
j=1qij,24C

e
n.

Hence, ∆∗n = Ae′n , and

Et

∂V e
i

(
Y e
n,t+1, ηn,t+2

)
∂Yn,t+1


= Et

(
(Qe

i +Qe′
i )Y e

n,t+1 + Leiηn,t+2 +De
i

)
= (Qe

i +Qe′
i )AenYnt + (Qe

i +Qe′
i )
(
ρη,0B

e
n + ρ2

η,0L
e
i

)
ηnt + (Qe

i +Qe′
i )Ce

n +De
i

for each t and i. Hence, the ith-element of ∇V e
n,t+2 is

Et

(e′ni∆
∗
n ◦ ẽ′ni)

ẽni ◦ ∂V e
i

(
Y e
n,t+1, ηn,t+2

)
∂Yn,t+1


= (e′ni∆

∗
n ◦ ẽ′ni)

{
(Qe

i +Qe′
i )AenYnt + (Qe

i +Qe′
i )
(
ρη,0B

e
n + ρ2

η,0L
e
i

)
ηnt

+ (Qe
i +Qe′

i )Ce
n +De

i

}
.
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Principle of optimality

A main purpose of this section is to obtain the stationary property of the values

(Vi (·)) and optimal policy function (f (·)). Note that our model does not belong to

a linear-quadratic programming since the agent’s current decision-making can non-

linearly affect his/her own and opponents’ future marginal payoffs. To achieve the

principle of optimality, a key part is to have a bounded lifetime value given an ini-

tial condition (Yn,t−1, ηnt): the infinite sum of current and (expected) future payoffs

should be bounded given (Yn,t−1, ηnt). When boundedness of the infinite sum of pay-

offs is achieved, we can represent the agent’s lifetime value and his/her optimal policy

function as recursive forms of the state variables, i.e., Vi (Yn,t−1, ηnt) and fi (Yn,t−1, ηnt)

where Vi (·) and fi (·) do not rely on a specific time t.

As contrary to a myopic (conventional) SDPD model specification, in case of

forward-looking models, it is difficult to find a combination of parameters to being a

stable space-time process. Hence, we introduce the specification of the agent’s choice

set using the vector of myopic choices. Note that the agents’ values and optimal policy

functions are the limit functions of some sequences of functions. The assumption

below states that the NE vector from the myopic agent assumption can be an initial

guess to calculate those limit functions when (Yn,t−1, ηnt) is given.

Assumption B.11 Let Y B
nt = S−1

nt (γ0Yn,t−1 + ηnt) where Snt = In − λ0Wnt. Given

(Yn,t−1, ηnt), there exists My > 0 such that each y∗it is an interior solution in

Γ (Yn,t−1, ηnt) =
[

min
i=1,···,n

yBit −My, max
i=1,···,n

yBit +My

]
(B.1)

where yBit denotes the ith-element of Y B
nt .
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Assumption B.11 means that we restrict the outcome space for the agents’ lifetime

problem. However, it does not mean that the forward-looking agents’ optimal choices

(Y ∗nt) are similar to the myopic ones (we can take a large but bounded My > 0).

Note that the optimal policy function f (Yn,t−1, ηnt) is a unique limit of sequence of

functions
{
f (l) (Yn,t−1, ηnt)

}
, i.e., liml→∞ f

(l) (Yn,t−1, ηnt) = f (Yn,t−1, ηnt). Assumption

B.11 means that we can achieve the limit f (Yn,t−1, ηnt) when we start with Y B
nt =

f (1) (Yn,t−1, ηnt). Invertibility of Snt is for well-definedness of Y B
nt , which is a vector

of unique maximizers of per period payoffs for all i = 1, · · · , n.162 Conditional on

(Yn,t−1, ηnt), hence, all elements of Y B
nt become bounded. The existence of My > 0

is supposed so that Γ (Yn,t−1, ηnt) 6= φ. Also, restricting each agent’s choice to the

interior of Γ (Yn,t−1, ηnt) leads to avoiding explosive his/her lifetime values, so the

solution to ICP V ∗i (Yn,t−1, ηnt) will be bounded.

Now we establish a time-invariant functional form of agents’ optimal decisions by

showing equivalence of the two solutions to the ICP and FE. On one hand, we claim

that the solution to ICP V ∗i (·) implies that of FE Vi (·). Note that Γ (Yn,t−1, ηnt) 6= φ.

Then, the agent’s objective function (lifetime payoff) is well-defined for every point

in the feasible choice set. Thus, the agent’s lifetime value will not be explosive given

(Yn,t−1, ηnt). Hence, V ∗i (·) satisfies the FE by Theorem 4.2 in Stokey et al. (1989).

On the other hand, we want to know that the solution Vi (·) to the FE satisfies that

to the ICP V ∗i (·). The maximum operator T , the Bellman equation is characterized

by

Vi (Yn,t−1, ηnt) = T (Vi) (Yn,t−1, ηnt) = max
yit

 ui
(
yit, Y

∗
−i,t, Yn,t−1, ηit

)
+δEt

(
Vi
(
yit, Y

∗
−i,t, ηn,t+1

))  ,
162Due to existence of the cost function c (·, ·), we have ∂2uit

∂y2
it

= −1 (strict concavity of uit), the

agent i’s tth-period payoff uit eventually decreases in yit. It leads to the existence and uniqueness
of Y Bnt without explicit constraints.

197



where the functional solution Vi (·) is the fixed point of T . The solution Vi (·) should

be a continuous and bounded function of (Yn,t−1, ηnt) to have a recursive relationship.

First, given (Yn,t−1, ηnt) the vector Y B
nt is the unique optimizer of {uit}ni=1: for any

strategy profile Ynt

ui (Ynt, Yn,t−1, ηit)

≤ ui
(
Y B
nt , Yn,t−1, ηit

)
= γ2

0Y
′
n,t−1S

−1′
nt enie

′
niS
−1
nt Yn,t−1 −

γ0

2
y2
i,t−1

+2γ0Y
′
n,t−1S

−1′
nt enie

′
niS
−1
nt ηnt + η′ntS

−1′
nt enie

′
niSntηnt

for all i = 1, · · · , n, which is bounded in every t. By the monotonicity of integrals, for

any Ynt Et−1 (ui (Ynt, Yn,t−1, ηit)) ≤ Et−1

(
ui
(
Y B
nt , Yn,t−1, ηit

))
< ∞ for all t. Hence,

for all choices {Yns}∞s=t satisfying (B.1)

ui (Ynt, Yn,t−1, ηit) +
∞∑
s=1

δsEt (ui (Yn,t+s, Yn,t+s−1, ηi,t+s)) ≤ V̂i

where V̂i = 1
1−δ suptEt−1ui

(
Y B
nt , Yn,t−1, ηit

)
< ∞, which is an upper bound of the

agent i’s lifetime value. This implies that the solution to i’s ICP V ∗i (Yn,t−1, ηnt) is

bounded by V̂i. Then, by Theorem 4.14 in Stocky et al. (1989), Vi (·) = V ∗i (·).

Discussions on the second-order condition

In this subsection, we provide discussions on the second-order condition for op-

timality. By introducing a static (linear-quadratic) network game, we explain the

motivations and implications. Assume that (i) there are n agents, (ii) they are in-

terrelated via a spatial network Wn, and (iii) each agent i has his/her exogenous

characteristic ηi and chooses yi by maximizing the linear-quadratic payoff,

ui (yi, Y−i,n, ηi) = (ηi + λ0wi.Yn) yi −
1

2
y2
i
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where Yn = (y1, · · · , yn)′, Y−i,n = (y1, · · · , yi−1, yi+1, · · · , yn)′, and wi. denotes the ith-

row of Wn. The first-order condition is

ηi + λ0wi.Yn − yi = 0. (B.2)

Since the second-order condition is ∂2ui
∂y2i

= −1 < 0 (strictly concavity), the first-order

condition is sufficient to characterize the optimum y∗i . For this, hence, we do not need

a restriction on λ0 and/or Wn.163

Now we need to check the second-order condition to employ the first-order con-

dition as a sufficient condition for optimality. Here is the high level assumption for

strict concavity of the ICP.

Assumption B.12 (i) y∗it takes a (first-order) Markov strategy, i.e., y∗it = y∗it (Yn,t−1, ηnt).

(ii) Assumption B.11 holds

(iii) supt φmax

(
∂J (Yn,t−1,ηnt,Ynt)

∂Y ′nt
|Y ∗nt

)
< 0 where J (·) is an n×1 vector of first-order

conditions, and φmax (·) denotes the maximum eigenvalue.

Assumption B.12 (i) restricts the state dependency of the optimal choices. Since

the ICP is not a linear-quadratic dynamic programming, we introduce a restriction

on the agent’s choice set by Assumption B.12 (ii). That assumption is a device of

having a bounded lifetime value. Assumption B.12 (iii) is strict concavity of the

agent i’s lifetime problem. Mathematically, it is equivalent that ∂J (Yn,t−1,ηnt,Ynt)

∂Y ′nt
|Y ∗nt is

163Even though we achieve the optimality of equation (B.2) by ∂2ui
∂y2
i

= −1 < 0, obtaining a unique

NE is a different story. Consider the characterization of a unique NE. By the first-order conditions,
we have the following system:

Y ∗n = λ0WnY
∗
n + ηn (B.3)

where Y ∗n = (y∗1 , · · · , y∗n)
′

and ηn = (η1, · · · , ηn)
′
. To achieve uniqueness of Y ∗n , we need to impose

‖λ0Wn‖ < 1 to being Y ∗n as a unique fixed point of the system (B.3). In summary, we firstly need
to check the second-order conditions. And then, try to find conditions specifying a unique NE from
the first-order conditions.
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negative definite. Under Assumption B.12 (iii), the first-order condition is sufficient

to characterize the optimum.

Discussions on the qualities of the LQ approximation

Note that the difference between two solutions, (i) under full rationality and (ii)

under bounded rationality, can be captured by studying qualities of the LQ approxi-

mation. Here are some conditions that the two solutions are similar. In this analysis,

we suppose dim(zit) = 1.

Condition B.11 (i) For each t, |ηit| is not large for every i.

(ii) dc > 0 is not large and uniformly bounded in n.

(iii) |ψ0|, αe and αd are small.

(iv) |λ| is small.

Consider Condition B.11 (i). Note that ηnt drives the dynamics of Ynt. Note that

the optimal policy function f (Yn,t−1, ηnt) is continuously differentiable to its argu-

ments since the agent’s payoff function ui (Ynt, Yn,t−1, ηit) is supposed to be infinitely

differentiable (Santos (1991)). It implies that Ynt = f (Yn,t−1, ηnt) is a Lipschitz con-

tinuous function of ηnt. In consequences, the outcome process {Ynt} stably evolves

around the optimal steady state Ȳ ◦n = (ȳ◦1, · · · , ȳ◦n)′ such that Ȳ ◦n = f
(
Ȳ ◦n , η̄

◦
n

)
. This

condition is consistent with the conventional qualification condition of the LQ ap-

proximation (e.g., Benigno and Woodford (2012)). In a data set, we can directly

precheck the deviations, yit − ȳ◦i .

Condition B.11 (ii), (iii), and (iv) are specific ones in our model. To inves-

tigate them, we firstly consider the LQ approximation of the per period payoff
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ui (Ynt, Yn,t−1, ηit). Observe that

ui (Ynt, Yn,t−1, ηit) = ηityit + γyi,t−1yit −
γ

2
y2
i,t−1 −

1

2
y2
it

+λ
n∑
j=1

wt,ij [yi,t−1, yj,t−1] yityjt.

i.e., the non LQ components are only λ
∑n
j=1 wt,ij [yi,t−1, yj,t−1] yityjt. Hence, our ap-

proximation target is to approximate a network link combined with activity interac-

tions, wt,ij [yi,t−1, yj,t−1] yityjt.

Note that dc > 0 characterizes the number of approximation terms

(i.e., wt,ij [yi,t−1, yj,t−1] yityjt = 0 if dij > dc). If dc is large, so is

# {j : wt,ij [yi,t−1, yj,t−1] > 0}. Hence, considering a sparse Wnt can reduce poten-

tial numerical approximation errors. If # {j : wt,ij [yi,t−1, yj,t−1] > 0} is uniformly

bounded in n, the approximation errors do not explode in increasing n since the

number of approximated functions is uniformly bounded.164 Choose such j (dij ≤ dc)

and consider the LQ approximation of wt,ij [yi,t−1, yj,t−1] yityjt. Around
(
ȳ◦i , ȳ

◦
j

)
, the

second-order Taylor approximation of wt,ij [yi,t−1, yj,t−1] yityjt (denoted by

wLQt,ij [yi,t−1, yj,t−1, yit, yjt]) is

wt,ij [yi,t−1, yj,t−1] yityjt = wLQt,ij [yi,t−1, yj,t−1, yit, yjt] + Ψt,ij

where Ψt,ij denotes the approximation error.

Recall that wt,ij [yi,t−1, yj,t−1] yityjt is a real analytic function around
(
ȳ◦i , ȳ

◦
j

)
. For

notational convenience, ω = (ω1, ω2, ω3, ω4)′, ω1 = yi,t−1, ω2 = yj,t−1, ω3 = yit, and

ω4 = yjt. We set ω̃1 = yi,t−1 − ȳi, and ω̃2, ω̃3, ω̃4 and ω̃ are defined similarly. The

approximation error Ψt,ij can be characterized by the third order Taylor expansion:

Ψt,ij = wt,ij [yi,t−1, yj,t−1] yityjt − wLQt,ij [yi,t−1, yj,t−1, yit, yjt]

164In spatial econometric literature, the number of j satisfying dij ≤ dc for each i is assumed to
independent with the number of units n.
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=
1

6

4∑
k1=1

4∑
k2=1

4∑
k3=1

∂3wt,ij [ω1, ω2]ω3ω4

∂ωk1∂ωk2∂ωk3
|ω̄∗ω̃k1ω̃k2ω̃k3

where ω̄◦ =
(
ȳ◦i , ȳ

◦
j , ȳ
◦
i , ȳ
◦
j

)′
and ω̄∗ lies between ω and ω̄◦. First, observe that Ψt,ij

is a function of yi,t−1 − ȳ◦i , yj,t−1 − ȳ◦j , yit − ȳ◦i , and yjt − ȳ◦j . The components of

∂3wt,ij [ω1,ω2]ω3ω4

∂ωk1∂ωk2∂ωk3
are

(i) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y3i,t−1

|ω̄∗ =
∂3wt,ij[ȳ∗i ,ȳ∗j ]

∂y3i,t−1
ȳ∗i ȳ

∗
j ,

(ii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y2i,t−1∂yj,t−1

|ω̄∗ =
∂3wt,ij[ȳ∗i ,ȳ∗j ]
∂y2i,t−1∂yj,t−1

ȳ∗i ȳ
∗
j ,

(iii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y2i,t−1∂yit

|ω̄∗ =
∂2wt,ij[ȳ∗i ,ȳ∗j ]

∂y2i,t−1
ȳ∗j ,

(iv) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y2i,t−1∂yjt

|ω̄∗ =
∂2wt,ij[ȳ∗i ,ȳ∗j ]

∂y2i,t−1
ȳ∗i ,

(v) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yi,t−1∂y2j,t−1

|ω̄∗ =
∂3wt,ij[ȳ∗i ,ȳ∗j ]
∂yi,t−1∂y2j,t−1

ȳ∗i ȳ
∗
j ,

(vi) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yi,t−1∂y2it

|ω̄∗ = 0,

(vii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yi,t−1∂y2jt

|ω̄∗ = 0,

(viii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yi,t−1∂yj,t−1∂yit

|ω̄∗ =
∂2wt,ij[ȳ∗i ,ȳ∗j ]
∂yi,t−1∂yj,t−1

ȳ∗j ,

(ix) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yi,t−1∂yj,t−1∂yjt

|ω̄∗ =
∂2wt,ij[ȳ∗i ,ȳ∗j ]
∂yi,t−1∂yj,t−1

ȳ∗i ,

(x) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yi,t−1∂yit∂yjt

|ω̄∗ =
∂wt,ij[ȳ∗i ,ȳ∗j ]

∂yi,t−1
,

(xi) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y3j,t−1

|ω̄∗ =
∂3wt,ij[ȳ∗i ,ȳ∗j ]

∂y3j,t−1
ȳ∗i ȳ

∗
j ,

(xii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y2j,t−1∂yit

|ω=ω̄∗ =
∂2wt,ij[ȳ∗i ,ȳ∗j ]

∂y2j,t−1
ȳ∗j ,

(xiii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y2j,t−1∂yjt

|ω=ω̄∗ =
∂2wt,ij[ȳ∗i ,ȳ∗j ]

∂y2j,t−1
ȳ∗i ,

(xiv) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yj,t−1∂y2it

|ω̄∗ = 0,

(xv) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yj,t−1∂y2jt

|ω̄∗ = 0,

(xvi) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yj,t−1∂yit∂yjt

|ω̄∗ =
∂wt,ij[ȳ∗i ,ȳ∗j ]
∂yj,t−1

,

(xvii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y3it

|ω̄∗ = 0,

(xviii) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y2it∂yjt

|ω̄∗ = 0,

(xix) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂yit∂y2jt

|ω̄∗ = 0,
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(xx) ∂3wt,ij [yi,t−1,yj,t−1]yityjt
∂y3jt

|ω̄∗ = 0.

We observe that Ψt,ij can be affected by ∂kwt,ij [yi,t−1,yj,t−1]

∂y
k1
i,t−1∂y

k2
j,t−1

where k1, k2 = 0, 1, 2, 3, and

k = 1, 2, 3 such that k = k1 +k2. It means that the functional forms of h (·) and hd (·)

with parameter γZ,0 (Condition B.11 (iii)) affect the quality of the LQ approximation.

To see the details, consider h (zit, zjt) = |zit − zjt|−αe and h (dij, dc) = d−αdij 1 {dij ≤ dc}

where αe and αd are positive sensitivity parameters. The first order derivative of

wt,ij [yi,t−1, yj,t−1] with respect to yi,t−1 is

∂wt,ij [yi,t−1, yj,t−1]

∂yi,t−1

= −ψ0αe |zit − zjt|−(1+αe) sgn (zit − zjt) d−αdij 1 {dij ≤ dc} .

In this casse, there exist three factors influencing the LQ approximation: (i) two

sensitivity parameters αe and αd, (ii) the levels of distances, |zit − zjt| and dij, and

(iii) the magnitude of effect of Yn,t−1 on Znt (captured by γZ,0).

Here is an example.

Example B.12 Consider a simple linear formation function wt,ij [yi,t−1, yj,t−1] =

Φiyi,t−1 + Φjyj,t−1 + Geoij where Φi and Φj denote respectively coefficients of yi,t−1

and yj,t−1, and Geoij is a part of wt,ij [yi,t−1, yj,t−1] purely constructed by geographical

relationships between i and j. In this case, we observe that the all components above

third-order derivatives except for
∂wt,ij[ȳ∗i ,ȳ∗j ]

∂yi,t−1
= Φi and

∂wt,ij[ȳ∗i ,ȳ∗j ]
∂yj,t−1

= Φj (parts (x) and

(xvi)) are zero.

Then, we represent Ψt,ij = Ψt,ij

(
O
(
(maxk,t |ykt − ȳ◦k|)

3
)
,
{

∂kwt,ij

∂y
k1
i,t−1∂y

k2
j,t−1

|ω̄∗
}
k=1,2,3

)
and the LQ approximation error would be shown by

ui (Ynt, Yn,t−1, ηit)− uei (Ynt, Yn,t−1, ηit) (B.4)

= λ
∑

j,dij≤dc
Ψt,ij

O((max
k,t
|ykt − ȳ◦k|

)3
)
,

{
∂kwt,ij

∂yk1i,t−1∂y
k2
j,t−1

|ω̄∗
}
k=1,2,3

 .
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The magnitude of parameter λ, i.e., |λ|, linearly controls the approximation error.

When |λ| is closed to zero, one can expect a small approximation error (Condition

B.11 (iv)). In case of Example B.12, the approximation error takes a simpler form,

λ
∑

j,dij≤dc
Ψt,ij

(
O

((
max
k,t
|ykt − ȳ◦k|

)3
)
,Φi,Φj

)
.

Last, consider evaluating an upper bound of Vi (Yn,t−1, ηnt)− V e
i (Yn,t−1, ηnt). For

this, we remind the following features.

Remark B.13 Let (Yn,t−1, ηnt) be the common initial condition of the two dynamic

programming. Note that the process ηnt exogenously evolves. Let Y m
nt = fm (Yn,t−1, ηnt)

and Y e
nt = f e (Yn,t−1, ηnt) denote the vector of two Markov strategies. Consider two

choice-specific lifetime payoffs by taking Y m
nt and Y e

nt:
165

Vmi ({Y m
ns}
∞
s=t ;Yn,t−1, ηnt) = uit (Y m

nt , Yn,t−1, ηit)

+
∞∑
s=1

δsEt
(
ui,t+s

(
Y m
n,t+s, Y

m
n,t+s−1, ηi,t+s

))

and

Vei ({Y e
ns}
∞
s=t ;Yn,t−1, ηnt) = ueit (Y e

nt, Yn,t−1, ηit)

+
∞∑
s=1

δsEt
(
uei,t+s

(
Y e
n,t+s, Y

e
n,t+s−1, ηi,t+s

))
.

We consider the difference of the two functions denoted by ∆V,i:

∆V,i = Vmi ({Y m
ns}
∞
s=t ;Yn,t−1, ηnt)− Vei ({Y e

ns}
∞
s=t ;Yn,t−1, ηnt)

= [ui (Y
m
nt , Yn,t−1, ηit)− uei (Y e

nt, Yn,t−1, ηit)]

+
∞∑
s=1

δsEt

 ui
(
Y m
n,t+s, Y

m
n,t+s−1, ηi,t+s

)
−uei

(
Y e
n,t+s, Y

e
n,t+s−1, ηi,t+s

)  .
165For the uncertain future exogenous characteristics ηn,t+1, ηn,t+2, · · ·, the conditional expectation
Et (·) is formed based on ηnt. Hence, the two lifetime payoffs share the same conditional expectation.
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Hence, the issue of characterizing ∆V,i is the difference of the per period payoff func-

tions, ui (·) and uei (·) under the difference choices (Y m
n,t+s and Y e

n,t+s) as well as initial

conditions (Y m
n,t+s−1 and Y e

n,t+s−1) at time t+ s. Note that the difference at the initial

period, ui (Y
m
nt , Yn,t−1, ηit)−uei (Y e

nt, Yn,t−1, ηit), is a special case (same initial conditions

with different choices). Then, by using (B.4),

ui
(
Y m
nt , Y

m
n,t−1, ηit

)
− uei

(
Y e
nt, Y

e
n,t−1, ηit

)
= uei

(
Y m
nt , Y

m
n,t−1, ηit

)
− uei

(
Y e
nt, Y

e
n,t−1, ηit

)
+λ

∑
j,dij≤dc

Ψt,ij

O((max
k,t
|ykt − ȳ◦k|

)3
)
,

{
∂kwt,ij

∂yk1i,t−1∂y
k2
j,t−1

|ω̄∗
}
k=1,2,3


= ηit (ymit − yeit) + γ

(
ymi,t−1y

m
it − yei,t−1y

e
it

)
− 1

2

(
(ymit )2 − (yeit)

2
)

−γ
2

((
ymi,t−1

)2
−
(
yei,t−1

)2
)

+λ
∑

j,dij≤dc

[
wLQt,ij

[
ymi,t−1, y

m
j,t−1, y

m
it , y

m
jt

]
− wLQt,ij

[
yei,t−1, y

e
j,t−1, y

e
it, y

e
jt

]]

+λ
∑

j,dij≤dc
Ψt,ij

O((max
i,t
|ykt − ȳ◦k|

)3
)
,

{
∂kwt,ij

∂yk1i,t−1∂y
k2
j,t−1

|ω̄∗
}
k=1,2,3

 .
Hence, ui

(
Y m
nt , Y

m
n,t−1, ηit

)
−uei

(
Y e
nt, Y

e
n,t−1, ηit

)
consists of (i) the LQ function of ymls −

yels for l = i, j and s = t − 1, t, and (ii) the approximation error of the per period

payoff. An upper bound of ymls − yels can be characterized by

|ymls − yels| = |(ymls − ȳl)− (yels − ȳl)| ≤ 2 max
l=1,···,n

max
s=t−1,t

max {|ymls − ȳ◦l | , |yels − ȳ◦l |} .

Observe that the first component of the difference, ηit (ymit − yeit), involves the i’s

exogenous characteristic. Either |ymls − yels| or |ηit| is large, the LQ approximation

would be worse. This is the re-justification of importance of Condition B.11 (i).

Hence, ∆V,i can be characterized by

∆V,i = ∆V,i

ω̃max, (ω̃max)2 , (ω̃max)3 ,

{
∂kwt,ij

∂yk1i,t−1∂y
k2
j,t−1

|ω̄∗
}
k=1,2,3

, |ηit| , |λ| , dc


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where ω̃max = maxk,t |yit − ȳ◦i |.

Approximated Euler equation system J e (Yn,t−1, ηnt, Ynt)

Now we study errors of using J e (Yn,t−1, ηnt, Ynt) at the true parameter values. We

reproduce the Euler equation system and relevant assumptions for completeness. For

agent i at time t,

0 = ηit + γ0yi,t−1 + λ0wt,i. [Yn,t−1]Y ∗nt − (1 + δγ0) y∗it (B.5)

+δEt

[(
γ0 + λ0

∂wt+1,i. [Y
∗
nt]

∂yit
Y ∗n,t+1

)
y∗i,t+1

]

+δEt
n∑
j 6=i

∂yj,t+1

∂yit
λ0wt+1,ij [Y ∗nt] y

∗
i,t+1

+
∞∑
k=1

δk+1Et

 λ0
∑n
j1,···,jk 6=i

∂yj1,t+1

∂yit
· · · ∂yjk,t+k

∂yjk−1,t+k−1

∂wt+k+1,i.[Y ∗n,t+k]
∂yjk,t+k

Y ∗n,t+k+1y
∗
i,t+k+1

+λ0
∑n
j1,···jk+1 6=i

∂yj1,t+1

∂yit
· · · ∂yjk+1,t+k+1

∂yjk,t+k
wt+k+1,i,jk+1

[
Y ∗n,t+k

]
y∗i,t+k+1

 .
And, the approximated Euler equations are

E


[Sn (Wnt)Ynt − γ0Yn,t−1 −Xntβ0] + δγ0

(
Ynt − Y e

n,t+1

)
−δ

{[∑P
p=1 λ0ψp,0Mn,t+1,p + λ0Nn,t+1

]
Y e
n,t+1

}
−δ2∇V e

n,t+2 − cn0 − αt,0ln
|`t−1

 = 0n×1 (B.6)

for t = 1, · · · , T

Assumption B.13 (i) At θ0, cn0, and αt,0, equation (B.6) holds.

(ii) supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂Y ′n,t−1

)
≤ τ < 1 for some 0 ≤ τ < 1 and

supn,t ρmax

(
∂fe(Yn,t−1,ηnt)

∂η′nt

)
≤ cη for some cη < ∞ a.e where ρmax (An) stands for the

spectral radius of An.

First of all, the Euler equation (B.5) involves the infinite sum, so summability

helps to obtain a non explosive Euler equation system. For this, it suffices to consider

controlling
∑n
j1,···,jk 6=i

∂yj1,t+1

∂yit
· · · ∂yjk,t+k

∂yjk−1,t+k−1
since this summation increases n − 1 ad-

ditional components when a time horizon increases by one unit. Under Assumption
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B.13 (ii),

∑
j1,···,jk 6=i

∂yj1,t+1

∂yit
· · · ∂yjk,t+k

∂yjk−1,t+k−1

≤
∑
j1 6=i
· · ·

∑
jk 6=i

∣∣∣∣∣∂yj1,t+1

∂yit
· · · ∂yjk,t+k

∂yjk−1,t+k−1

∣∣∣∣∣
≤

∑
j1 6=i
· · ·

∑
jk−1 6=i

∣∣∣∣∣∂yj1,t+1

∂yit
· · ·

∂yjk−1,t+k−1

∂yjk−2,t+k−2

∣∣∣∣∣ ∑
jk 6=i

∣∣∣∣∣ ∂yjk,t+k
∂yjk−1,t+k−1

∣∣∣∣∣
≤ τ k → 0

as k →∞. A key is to control the n− 1 additional components
∑
jk 6=i

∣∣∣∣ ∂yjk,t+k
∂yjk−1,t+k−1

∣∣∣∣ by

the uniformly bounded constant, 0 < τ < 1 . Hence, Assumption B.13 (ii) is a device

of limiting the marginal change of yit on the remote future marginal payoffs.

Now we consider

J e (Yn,t−1, ηnt, Ynt)− J (Yn,t−1, ηnt, Ynt)

since J (Yn,t−1, ηnt, Ynt) = 0n×1. Then, the ith-component of Euler equation error

(denoted by %i) is

%i = λ0δEt

yi,t+1

∑
j 6=i

(
[∆∗n]ij −

[
∆∗n,t+1

]
ij

)
wt+1,ij

 (B.7)

+δ2Et


∑
j 6=i


(

[∆∗n]ij −
[
∆∗n,t+1

]
ij

)
∂V ei (Yn,t+1,ηn,t+2)

∂yi,t+1

+
[
∆∗n,t+1

]
ij

(
∂V ei (Yn,t+1,ηn,t+2)

∂yi,t+1
− ∂Vi(Yn,t+1,ηn,t+2)

∂yi,t+1

)

 .

First, if |λ0| or δ is large, so is the magnitude of %i. Second, the level yi,t+1 has an

impact on %i. Third, if Wn,t+1 contains many nonzero elements or some signals from i

to j at time t+1 are strong (large magnitude of wt+1,ij), the magnitude of %i might be

amplified. Fourth, if the approximating error of the value function (∆V,i) is large, %i

would be also large. Last, consider the components
[
∆∗n,t+1

]
ij

and [∆∗n]ij −
[
∆∗n,t+1

]
ij

for j 6= i. By Assumption B.13 (ii),
∥∥∥∆∗n,t+1

∥∥∥ ≤ τ < 1. If the column sum norm is take
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for ‖·‖, it implies that
∑n
j=1

∣∣∣∂yj,t+1

∂yit

∣∣∣ ≤ τ . To deliver an intuition, suppose that (i) |λ0|

is close to zero, (ii) Wnt’s are sparse (most of elements are zero), and (iii) elements of

Wnt’s lie between 0 and 1. Then, due to the adjustment cost parameter 0 < γ0 < 1,

the own dynamic influence ∂yi,t+1

∂yit
might dominate other components ∂yj,t+1

∂yit
, j 6= i (i.e.,

∆∗n,t+1 can be a diagonally dominant matrix166). By the envelope theorem, ∂yi,t+1

∂yit
is

eliminated from the Euler equation. It implies that
∑n
j 6=i

∣∣∣∂yj,t+1

∂yit

∣∣∣ is much smaller than

τ . Note that the difference ∆∗n−∆∗n,t+1 is ∂f(Yn,t−1,ηnt)

∂Y ′n,t−1
|(Ȳ ◦n ,η̄◦n)−

∂f(Yn,t−1,ηnt)

∂Y ′n,t−1
|(Y +

n,t−1,η
+
nt)

.

Since
(
Y +
n,t−1, η

+
nt

)
lies between (Yn,t−1, ηnt) and

(
Ȳ ◦n , η̄

◦
n

)
and f (·) is a C∞-function,

the difference ∆∗n − ∆∗n,t+1 will be small. Moreover, by the envelope theorem, the

(i, i)-components of ∆∗n −∆∗n,t+1 is not considered in the Euler equation.

B.2. Statistical appendix

Recall that ςl(i,t),L = ς
(
εl(i,t),L, Z

∗
L, XL, cn0, αT,0

)
for each l (i, t) ∈ D,

ςnt =
(
ςl(1,t),L, · · · , ςl(n,t),L

)′
for each t and ςL = (ς ′n1, · · · , ς ′nT )′. Observe that the base-

line random field ς for approximation contains (i) the strictly exogenous variables and

(ii) i.i.d. errors. Similarly, we define ς∗nt and ς∗L from ς∗l(i,t),L = ς∗
(
z∗l(i,t),L, XL, cn0, αT,0

)
.

Some lemmas and propositions

In this part, we introduce some basic properties of spatial-time NED on ς. Some

properties verified by Davidson (1994), Jenish and Prucha (2012), Qu and Lee (2015),

and Qu et al. (2017) will be reproduced for completeness of the paper. Our purpose is

to get approximability of yl(i,t),L based on neighboring input processes ςl(j,t′),L’s such

that ‖l (i, t)− l (j, t′)‖∞ ≤ s for some s > 0. By Assumption 3.4.6 (i), we firstly

guarantee for time series stability of Ynt. Hence, Ynt can be approximated by ςnt,

166By the definition, it says that
∣∣∣∂yj,t+1

∂yit

∣∣∣ ≥∑n
j 6=i

∣∣∣∂yj,t+1

∂yit

∣∣∣.
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ςn,t−1, · · ·, ςn,t−s for some s ∈ Z+. For this, define Ft(s) = σ
(
{ςn,t′}tt′=t−s

)
for each

t. The following Proposition is a useful result describing that the conditional mean

(denoted by E (y|F0)) is the optimal predictor of a random variable y given partial

information F0.

Proposition B.2.1 (i) ‖y − E (y|F0)‖L2
≤ ‖y − ŷ‖L2

where ŷ is any F0−measurable

approximation to y.

(ii) For p ≥ 1, ‖y − E (y|F2)‖Lp ≤ 2 ‖y − E (y|F1)‖Lp where y is F0−measurable

and F1 ⊆ F2 ⊆ F0.

Proof of Proposition B.2.1. See Theorems 10. 12 and 10. 28 in Davidson (1994).

Q.E.D.

Note that for each n Ynt is a multivariate time series. Thus, we have the rep-

resentation, Ynt = f e (ςnt, Yn,t−1) where f e (·) is a contraction mapping of Yn,t−1 by

Assumption B.13 (ii). The next Proposition is for the time NED property of Ynt.

Proposition B.2.2 For each n, {Ynt} is time L2-NED on {ςnt}. That is,

‖Ynt − E (Ynt|Ft(s))‖L2
≤ dntψ̃ (s)

where ψ̃ (s) =
∑∞
l=s+1 τ

l−1 and dnt is set to be supt
∥∥∥∂fe(ςnt,Yn,t−1)

∂ς′nt
ςnt
∥∥∥
L2

≤ cη supt ‖ςnt‖L2
.

Proof of Proposition B.2.2. This property is directly implied by the model’s as-

sumption (time stability). Q.E.D.

Note that a key is that f e (·) is a contraction mapping of Yn,t−1 (by Assump-

tion B.13 (ii)), i.e., supn,t ρmax

(
∂fe(ςnt,Yn,t−1)

∂Y ′n,t−1

)
≤ τ < 1. Hence, Ynt can be approx-

imated by ςnt, ςn,t−1, · · · , ςn,t−s for some s ∈ N and the effects of remote past ones

(ςn,t−s−1, ςn,t−s−2, · · ·) diminish when s increases since ψ̃ (s) =
∑∞
l=s+1 τ

l−1 → 0 as
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s → ∞. This result has the same implication of Wold decomposition theorem: any

zero-mean weakly stationary process can have an (infinite) invertible moving average

representation. For each i = 1, · · · , n, hence, we can apply the LLN by Theorem 19.13

in Davidson (1994), i.e., ȳi,T − y◦i →p 0 as T →∞.167

Note that ‖l (i, t)− l (j, t′)‖∞ ≤ s for some s > 0 is equivalent that |t− t′| ≤ s

and ‖l (i, 0)− l (j, 0)‖∞ ≤ s for some s > 0. In the spatial dimension, there might

also exist some spatial units j = j1, · · · , jM satisfying ‖l (i, 0)− l (j, 0)‖∞ ≤ s, which

approximate yl(i,t),L well. That is, at most (M + 1) (s+ 1)-spatial-time processes

ςl(i,t),L, ςl(j1,t),L, · · ·, ςl(jM ,t),L, · · ·, ςl(i,t−s),L, ςl(j1,t−s),L, · · ·, ςl(jM ,t−s),L may approximate

yl(i,t),L and (M + 1)(s+ 1) is much smaller than L. Thus, we need to verify whether

yl(i,t),L is a spatial-NED process given Yn,t−1.

Hence, we consider only the spatial dimension (a countable subset of Rd). First,

consider the basic topological structure for the space for spatial units, which is intro-

duced by Claim B.1 in Qu and Lee (2015).

Proposition B.2.3 For any spatial unit i and distance s ≥ 1, let

Bi (s) = {j : ‖l (i, 0)− l (j, 0)‖∞ ≤ s}. Then, there exist at most c5s
d spatial units in

Bi (s) where c5 > 0.

Proof of Proposition B.2.3. See Lemma A.1 (ii) in Jenish and Prucha (2009).

Q.E.D.

Proposition B.2.3 says that the maximum number of spatial units around i is

specified by the distance s.168 By Assumption 3.2.1, there is a finite threshold dc

167Then, we can justify the LQ perturbation method using the feasible time averages
(
Ȳn,T , η̄n,T

)
instead of

(
Ȳ ◦n , η̄

◦
n

)
.

168i.e., the number of spatial units of D within radius s ≥ 1 centered at i ∈ Rd is of O
(
sd
)
. Note

that this order O
(
sd
)

does not depend on specific i.
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characterizing a physical neighbor. Then, 1 ≤ infi,n dc (i) ≤ supi,n dc (i) ≤ c5d
d
c <∞,

which means that every spatial unit has at least one neighbor and at most uniformly

(in n) bounded number of neighbors. Then, we derive the following proposition.

Proposition B.2.4 For any 0 < dc <∞ and a > 0,

lim
s→∞

sup
L,l(i,t)∈D

∑
l(j,t)∈D,‖l(i,0)−l(j,0)‖∞>s

1 {j : ‖l (i, 0)− l (j, 0)‖∞ ≤ adc} = 0. (B.8)

Proof of Proposition B.2.4. If s ≤ adc, the number of spatial units satisfying

‖l (i, 0)− l (j, 0)‖∞ > s and ‖l (i, 0)− l (j, 0)‖∞ ≤ adc is at most c5 (adc)
d units by

Proposition B.2.3. However, if s > adc, there is no spatial unit satisfying both

‖l (i, 0)− l (j, 0)‖∞ > s and ‖l (i, 0)− l (j, 0)‖∞ ≤ adc. Hence, the quantity

sup
L,l(i,t)∈D

∑
l(j,t)∈D,‖l(i,0)−l(j,0)‖∞>s

1 {j : ‖l (i, 0)− l (j, 0)‖∞ ≤ adc} = 0

if s > adc implying (B.8). Q.E.D.

The sum
∑
l(j,t)∈D 1 {j : ‖l (i, 0)− l (j, 0)‖∞ ≤ adc} means the number of neigh-

boring spatial units relevant to the ath-order (a ∈ Z+) spatial effects when the unit i

is centered.169 When s becomes large, the ath-order spatial effect will disappear. For

s > adc where sufficiently large a, and for each l (i, t) ∈ D

{l (j, t′) ∈ D : ‖l (i, t)− l (j, t′)‖∞ > s} (B.9)

= {l (j, t′) : ‖l (i, 0)− l (j, 0)‖∞ > s, 6= i, |t− t′| ≤ s}

∪ {l (j, t′) : ‖l (i, 0)− l (j, 0)‖∞ > s, j 6= i, |t− t′| > s}

∪ {l (j, t′) : ‖l (i, 0)− l (j, 0)‖∞ ≤ s, |t− t′| > s} .

169Note that dc > 0 controls the direct (first-order) spatial effects. If 2dc is considered, the sum∑
l(j,t)∈D 1 {j : ‖l (i, 0)− l (j, 0)‖∞ ≤ 2dc} means the number of spatial units affected by i’s neigh-

bors’ neighbors.
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By Assumption B.13 (ii), Ynt = f e (ςnt, Yn,t−1) is a contraction mapping of Yn,t−1

and a Lipschitz continuous function of ςnt. For the last two cases (a time horizon

of two units is far) in (B.9), the dependence between two units is controlled by the

weak time dependence (τ). Hence, we focus on the first part of (B.9): a set of

spatial units which are far from unit i but near epoch to t. Now the spatial-time

NED property of
{
yl(i,t),L

}
l(i,t)∈DL

will be satisfied by random fields generated from

nonlinear Lipschitz type functionals of spatial processes
{
ςl(i,t),L

}n
i=1

(at time t).170

By considering the Lipschitz condition, we want to obtain that small changes in{
ςl(i,t),L

}n
i=1

lead to small changes in
{
yl(i,t),L

}
l(i,t)∈DL

given Yn,t−1. Pick l (i, t) ∈ DL

and consider yl(i,t),L = f e (ςnt, Yn,t−1) and y′l(i,t),L = f e (ς ′nt, Yn,t−1) given the same

Yn,t−1. Then,

∣∣∣yl(i,t),L − y′l(i,t),L∣∣∣ ≤ n∑
j=1

∣∣∣∣∣∣
[
∂f e (ςnt, Yn,t−1)

∂ς ′nt

]
ij

∣∣∣∣∣∣
∣∣∣ςl(j,t),L − ς ′l(j,t),L∣∣∣ .

Note that an amount of
∑n
j=1

∣∣∣∣[∂f(ςnt,Yn,t−1)

∂ς′nt

]
ij

∣∣∣∣ is bounded by cη by Assumption B.13

(ii).

The next step is to characterize
∣∣∣∣[∂f(ςnt,Yn,t−1)

∂ς′nt

]
ij

∣∣∣∣ as a function of ‖l (i, 0)− l (j, 0)‖∞,

dc and the parameter λ. The purpose of this is to employ Proposition 1 in Jenish and

Prucha (2012), which is a tool to justify a weakly dependent random field. For this,

define W̄n = [w̄n,ij] where w̄n,ij = suptwt,ij, and note that the column and row sums

of W̄n are uniformly bounded in n by Assumption 3.4.5 (ii). Due to the existence of

dc > 0, we also have w̄n,ij = 0 if ‖l (i, 0)− l (j, 0)‖∞ > dc. By Assumption 3.4.6 (iii),∥∥∥λ̄W̄n

∥∥∥ < 1 where λ̄ = supλ∈Θ1
|λ| > 0. Then, In − λ̄W̄n is invertible. For l (i, t),

l (j, t′) ∈ D, we specify the maximum cumulative spatial-time effects between units

170That is, we require that yl(i,t),L is a spatial-NED on
{
ςl(j,t),L

}n
j=1

given Yn,t−1.
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l (i, t) and l (j, t′):

wl(i,t),l(j,t′) =



[(
In − λ̄W̄n

)−1
]
ij
if, t = t′

τ |t−t
′|if, i = jand, t 6= t′

τ |t−t
′|
[(
In − λ̄W̄n

)−1
]
ij
if, i 6= j, andt 6= t′

. (B.10)

If i 6= j, the intensity of spatial interactions between yl(i,t),L and yl(j,t),L given Yn,t−1 is

controlled by a Neumann series expansion based on W̄n, W̄ 2
n , · · ·. If i 6= j, the spatial

effects are bounded by the potentially maximum spatial influences of the linear SAR

model given Yn,t−1. If i 6= j with t 6= t′, the spatial-time interaction between l (i, t)

and l (j, t′) would be weaker than the case of i 6= j with t = t′ since the spatial-time

process
{
yl(i,t),L

}
l(i,t)∈DL

is a stable autoregressive time-series process. If i = j with

t 6= t′, the interaction between two units l (i, t) and l (i, t′) (i’s own dynamic effect) is

controlled by the maximum time influence τ |t−t
′| from Assumption 3.4.6 (i).

Then, wl(i,t),l(j,t′) ≥ 0 is well specified for any l (i, t) and l (j, t′) in D. Note that

for sufficiently large a ≥ 2 with a ∈ Z+ and i 6= j
[
In +

∑a
k=1 λ̄

kW̄ k
n

]
ij

= λ̄w̄n,ij +∑a
k=2 λ̄

k∑n
m1=1 · · ·

∑n
mk−1=1 w̄n,i,m1 · · · w̄n,mk−1,j. Note that[(

In − λ̄W̄n

)−1
]
ij

= lima→∞
[
In +

∑a
k=1 λ̄

kW̄ k
n

]
ij

since
∥∥∥λ̄W̄n

∥∥∥ < 1. By Qu and Lee

(2015),
[
W̄ a
n

]
ij

= 0 if ‖l (i, 0)− l (j, 0)‖∞ > adc. If ‖l (i, 0)− l (j, 0)‖∞ > s for some

large s > 0,

[(
In − λ̄W̄n

)−1
]
ij

= λ̄w̄n,ij +

[ sdc ]∑
k=2

λ̄k
n∑

m1=1

· · ·
n∑

mk−1=1

w̄n,i,m1 · · · w̄n,mk−1,j (B.11)

+
∞∑

k=[ sdc ]+1

λ̄k
n∑

m1=1

· · ·
n∑

mk−1=1

w̄n,i,m1 · · · w̄n,mk−1,j

→ 0 as s → ∞ where
[
s
dc

]
is the biggest integer that is less or equal than s

dc
. Then,

for large s > 0

sup
L,l(i,t)∈D

∑
l(j,t′)∈D,‖l(i,t)−l(j,t′)‖∞>s

wl(i,t),l(j,t′) (B.12)
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≤ sup
L,l(i,t)∈D

∑
l(j,t′)∈D,‖l(i,0)−l(j,0)‖∞>s,|t−t′|≤s

wl(i,t),l(j,t′)

+ sup
L,l(i,t)∈D

∑
l(j,t′)∈D,‖l(i,0)−l(j,0)‖∞>s,|t−t′|>s

wl(i,t),l(j,t′)

+ sup
L,l(i,t)∈D

∑
l(j,t′)∈D,‖l(i,0)−l(j,0)‖∞≤s,|t−t′|>s

wl(i,t),l(j,t′)

≤
∞∑

k=[ sdc ]+1

λ̄k
n∑

m1=1

· · ·
n∑

mk−1=1

w̄n,i,m1w̄n,m1,m2 · · · w̄n,mk−1,j

+2 sup
L,l(i,t)∈D

∑
l(j,t′)∈D,|t−t′|>s,j=i

τ s

→ 0 as s→∞ since 0 < τ < 1. The first inequality is due to set relation (B.9). For

the second inequality, we use (B.11) and τ |t−t
′| < τ s if |t− t′| > s.

Using wl(i,t),l(j,t′), we have the nonlinear infinite moving average representation171

yl(i,t),L = f̃l(i,t),L
({
ςl(j,t′),L : l (j, t′) ∈ D

})
,

i.e., yl(i,t),L is a nonlinear functional of the random field ς =
{
ςl(i,t),L : l (i, t) ∈ D

}
.

That is, f̃l(i,t),L : ED → R and E ⊆R. Proposition B.2.5 below shows the random

field Y =
{
yl(i,t),L : l (i, t) ∈ DL, L ≥ 1

}
is L2-NED on ς. The proof of Proposition

B.2.5 is a spatial-time extension of Proposition 1 in Jenish and Prucha (2012).

Proposition B.2.5 Assume Assumptions 3.4.2 and 3.4.4 hold. If

∣∣∣f̃l(i,t),L (e)− f̃l(i,t),L (e′)
∣∣∣ ≤ ∑

l(j,t′)∈D
wl(i,t),l(j,t′)

∣∣∣el(j,t′),L − e′l(j,t′),L∣∣∣ (B.13)

where e, e′ ∈ ED, Y is L2-NED on ς with dl(i,t),L = supL,l(i,t)∈D
∥∥∥ςl(i,t),L∥∥∥

L2

and

ψ (s) = sup
L,l(i,t)∈D

∑
l(j,t′)∈D,‖l(i,t)−l(j,t′)‖∞>s

wl(i,t),l(j,t′).

Note that supL,l(i,t)∈DL dl(i,t),L <∞ under the regularity conditions (Assumptions 3.4.2

and 3.4.4). Hence, Y is uniformly L2-NED on ς.

171As contrary to a spatial process, the domain of input processes should be D (instead of DL) due
to the existence of infinite time lags.
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Proof of Proposition B.2.5. As the first step, we need to show yl(i,t),L is L4+ηε-

bounded. Similar to Proposition B.2.2, we consider the sequence

y
(s)
l(i,t),L = f̃l(i,t),L

({
ς

(s)
l(j,t′),L : l (j, t′) ∈ D

})

where ς
(s)
l(j,t′),L = ςl(j,t′),L if ‖l (i, t)− l (j, t′)‖∞ ≤ s; 0 if ‖l (i, t)− l (j, t′)‖∞ > s. Let

ς(s) =
{
ς

(s)
l(j,t′),L : l (j, t′) ∈ D

}
be the random field for approximation. By condition

(B.13), for any s, r ∈ N

∣∣∣y(s+r)
l(i,t),L − y

(s)
l(i,t),L

∣∣∣ =
∣∣∣f̃l(i,t),L (ς(s+r)

)
− f̃l(i,t),L

(
ς(s)

)∣∣∣ (B.14)

≤
∑

l(j,t′)∈D,s<‖l(i,t)−l(j,t′)‖∞≤s+r
wl(i,t),l(j,t′)

∣∣∣ς(s)
l(j,t′),L

∣∣∣ .
Hence, by the Minkowski’s inequality, for p = 4 + ηε

∥∥∥y(s+r)
l(i,t),L − y

(s)
l(i,t),L

∥∥∥
L4+ηε

=
∥∥∥f̃l(i,t),L (ς(s+r)

)
− f̃l(i,t),L

(
ς(s)

)∥∥∥
L4+ηε

≤ sup
L,l(i,t)∈D

∥∥∥ςl(i,t),L∥∥∥
L4+ηε

·
∑

l(j,t′)∈D,s<‖l(i,t)−l(j,t′)‖∞≤s+r
wl(i,t),l(j,t′)

≤ sup
L,l(i,t)∈D

∥∥∥ςl(i,t),L∥∥∥
L4+ηε

·
∑

l(j,t′)∈D,‖l(i,t)−l(j,t′)‖∞>s
wl(i,t),l(j,t′) → 0

as s→∞ since supL,l(i,t)∈D
∥∥∥ςl(i,t),L∥∥∥

L4+ηε

<∞ by Assumptions 3.4.2 and 3.4.4, and∑
l(j,t′)∈D,‖l(i,t)−l(j,t′)‖∞>swl(i,t),l(j,t′) → 0 as s→∞ by relation (B.10). Hence,

{
y

(s)
l(i,t),L

}
s

is a Cauchy sequence in the L4+ηε−space. Since L4+ηε−space is complete, lims→∞ y
(s)
l(i,t),L =

yl(i,t),L exists and that limit point belongs to the L4+ηε−space.

Second, we show the NED property. By Proposition B.2.1 (i),

∥∥∥yl(i,t),L − E (yl(i,t),L|Fl(i,t),L(s)
)∥∥∥

L2

≤
∥∥∥f̃l(i,t),L (ς)− f̃l(i,t),L

(
ς(s)

)∥∥∥
L2

≤ sup
L,l(i,t)∈D

∥∥∥ςl(i,t),L∥∥∥
L2

·
∑

l(j,t′)∈D,‖l(i,t)−l(j,t′)‖∞>s
wl(i,t),l(j,t′).
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If we set ψ (s) =
∑
l(j,t′)∈D,‖l(i,t)−l(j,t′)‖∞>swl(i,t),l(j,t′) for each s, the NED property is

shown by relation (B.10). Q.E.D.

Once we show that Y is NED on ς, we can have the LLN,

i.e., 1
L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L

))
= op (1). To achieve the LLN, it suffices to

have L1-NED of Y on ς. Since Y is L2-NED on ς, Y is also L1-NED on ς, so the

condition for LLN is achieved. The Proposition below says the LLN.

Proposition B.2.6 Under the same assumptions in Proposition B.2.5,

lim
L→∞

∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L

))∥∥∥∥∥∥
L1

= 0.

Since L1 convergence implies convergence in probability, we have

1
L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L

))
→p 0 as L→∞.

Proof of Proposition B.2.6. First, note that yl(i,t),L is uniformly L4+ηε-bounded

since yl(i,t),L belongs to the L4+ηε-space. This implies supL,l(i,t)∈DL E
∣∣∣yl(i,t),L∣∣∣4 < ∞.

For each given s > 0, define y
(s)
l(i,t),L = E

(
yl(i,t),L|Fl(i,t),L(s)

)
. Second, consider L4-

boundedness of y
(s)
l(i,t),L. By the (conditional) Lyapunov and Jensen’s inequalities, we

have

E
∣∣∣y(s)
l(i,t),L

∣∣∣4 ≤ E
[
E
(∣∣∣yl(i,t),L∣∣∣4 |Fl(i,t),L(s)

)]
≤ sup

L,l(i,t)∈DL
E
∣∣∣yl(i,t),L∣∣∣4 <∞

for all s > 0, and l (i, t) ∈ DL with L ≥ 1. Hence, y
(s)
l(i,t),L is uniformly L4-bounded,

which implies it is uniformly integrable. Note that for each s > 0, y
(s)
l(i,t),L is a mea-

surable function of{
ςl(j,t′),L : l (j, t′) ∈ D, ‖l (i, t)− l (j, t′)‖∞ ≤ s

}
. Then, we can apply the L1-norm LLN

for the spatial-time process y
(s)
l(i,t),L, which is an extension of Theorem 1 in Jenish and

216



Prucha (2012) (or Theorem 3 in Jenish and Prucha (2009)172). Note that showing the

LLN relies on the Chebyshev’s inequality, so a key of verifying this LLN is to control

Cov
(
y

(s)
l(i,t),L, y

(s)
l(j,t′),L

)
. Then, Cov

(
y

(s)
l(i,t),L, y

(s)
l(j,t′),L

)
= 0 if ‖l (i, t)− l (j, t′)‖∞ > 2s for

any s > 0. Hence, we obtain for any s > 0∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
y

(s)
l(i,t),L − E

(
yl(i,t),L

))∥∥∥∥∥∥
L1

→ 0 (B.15)

as L→∞.

By Proposition B.2.5, we have∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L|Fl(i,t),L(s)

))∥∥∥∥∥∥
L1

→ 0 (B.16)

as s→∞. The results (B.15) and (B.16) with the triangle inequality yield

lim
L→∞

∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L

))∥∥∥∥∥∥
L1

= lim
s→∞

lim
L→∞

∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L

))∥∥∥∥∥∥
L1

≤ lim
s→∞

lim sup
L→∞

∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
yl(i,t),L − E

(
yl(i,t),L|Fl(i,t),L(s)

))∥∥∥∥∥∥
L1

+ lim
s→∞

lim
L→∞

∥∥∥∥∥∥ 1

L

∑
l(i,t)∈DL

(
E
(
yl(i,t),L|Fl(i,t),L(s)

)
− E

(
yl(i,t),L

))∥∥∥∥∥∥
L1

= 0.

This completes the proof. Q.E.D.

A key intuition of the LLN is using the approximated yl(i,t),L based on ςl(j,t′),L such

that ‖l (i, t)− l (j, t′)‖∞ ≤ s for some s > 0 (denoted by y
(s)
l(i,t),L). Since ςl(i,t),L is based

172Theorem 3 in Jenish and Prucha (2009) is designed for a spatial mixing process. Note that the
main input process in our research belongs to α-mixing since it is based on an i.i.d. continuous
innovation. By Theorem 14.1 in Davidson (1994), any measurable transformation of finite α-mixing
processes is also α-mixing and the size is preserved.
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on the i.i.d. disturbance εl(i,t),L, Cov
(
y

(s)
l(i,t),L, y

(s)
l(j,t′),L

)
= 0 if ‖l (i, t)− l (j, t′)‖∞ > 2s

for any s > 0. And then, we require that y
(s)
l(i,t),L approaches to yl(i,t),L when s→∞.

For this, the condition lims→∞ ψ (s) = 0 is enough. Based on this LLN, we establish

pointwise convergence of the sample moment function gcl(i,t),L (θ) for each θ ∈ Θ. Note

that the main component of gcl(i,t),L (θ) is εl(i,t),L (θ) consisting of yl(i,t),L’s and their

transformations. Hence, we consider the NED property and kinds of transformations

preserving that property. Proposition B.2.7 (i), (ii) and (iii) are respectively spatial-

time extensions of Theorems 17.8, 9 and 10 in Davidson (1994).

Proposition B.2.7 (i) Assume
∥∥∥xl(i,t),L − E (xl(i,t),L|Fl(i,t),L(s)

)∥∥∥
Lp
≤ dxl(i,t),Lψx (s)

and∥∥∥yl(i,t),L − E (yl(i,t),L|Fl(i,t),L(s)
)∥∥∥

Lp
≤ dyl(i,t),Lψy (s) for p ≥ 1. Then,

∥∥∥xl(i,t),L + yl(i,t),L − E
(
xl(i,t),L + yl(i,t),L|Fl(i,t),L(s)

)∥∥∥
Lp
≤ dl(i,t),Lψ (s)

where dl(i,t),L = max
{
dxl(i,t),L, d

y
l(i,t),L

}
and ψ (s) = ψx (s) + ψy (s).

(ii) Assume
∥∥∥xl(i,t),L − E (xl(i,t),L|Fl(i,t),L(s)

)∥∥∥
L2p

≤ dxl(i,t),Lψx (s)

and
∥∥∥yl(i,t),L − E (yl(i,t),L|Fl(i,t),L(s)

)∥∥∥
L2p

≤ dyl(i,t),Lψy (s) for p ≥ 1. Then,

∥∥∥xl(i,t),Lyl(i,t),L − E (xl(i,t),Lyl(i,t),L|Fl(i,t),L(s)
)∥∥∥

Lp
≤ dl(i,t),Lψ (s)

where dl(i,t),L = max
{

supL,l∈DL

∥∥∥xl(i,t),L∥∥∥
L2p

,
∥∥∥yl(i,t),L∥∥∥

L2p

}(
dxl(i,t),L + dyl(i,t),L

)
and ψ (s) =

max {ψx (s) , ψy (s)}.

Proposition B.2.7 says that the summation, and multiplication can preserve the

NED property. The remark below describes it and comes from Theorem 17.16 and

Example 17.17 in Davidson (1994).
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Remark B.2.8 Assume supL,l(i,t)∈DL

∥∥∥xl(i,t),L∥∥∥
L2r

< ∞, supL,l(i,t)∈DL

∥∥∥yl(i,t),L∥∥∥
L2r

<

∞ for r > 2, and
{
xl(i,t),L

}
l(i,t)∈DL

and
{
yl(i,t),L

}
l(i,t)∈DL

are both L2-NED on ς. Then,{
xl(i,t),Lyl(i,t),L

}
l(i,t)∈DL

becomes also L2-NED on ς.

By Proposition B.2.5, we observe that yl(i,t),L belongs to the L4+ηε-space if

supL,l(i,t)∈DL

∥∥∥ςl(i,t),L∥∥∥
L4+ηε

< ∞. Note that ςl(i,t),L consists of εl(i,t),L, exogenous part

of economic variables, nonstochastic regressors and individual and time dummies. By

the conditioning argument, we only consider the moment condition for εl(i,t),L since

the remaining components are assumed to be bounded. By Assumption 3.4.2, we

have supi,tE |εit|
4+ηε < ∞ for some ηε > 0 implying that yl(i,t),L is L4+ηε bounded.

Assume that xl(i,t),L is a (uniformly bounded) linear transformation of yl(i,t),L. Then,{
xl(i,t),Lyl(i,t),L

}
l(i,t)∈DL

will be L2+ ηε
2

-bounded (by the Minkowski’s inequality) and

L2-NED on ς.

Now we establish basic ingredients for consistency of GMM estimator θ̂L. So,

uniform convergence of ḡcL (θ) is required: i.e., supθ∈Θ |ḡcL (θ)− E (ḡcL (θ))| →p 0 as

L → ∞. As the first step, all components of εl(i,t),L (θ) should converge to their ex-

pected values for each θ ∈ Θ. It relies on the following three propositions. Note that{
yl(i,t),L

}
l(i,t)∈DL

is uniformly L4+ηε-bounded and is uniformly L2-NED on ς. Note

that all elements in εl(i,t),L (θ) are uniformly bounded transformation of
{
yl(i,t),L

}n
i=1

,{
yl(i,t−1),L

}n
i=1

and
{
ςl(i,t),L

}n
i=1

. By Proposition B.2.7 and Remark B.2.8 with As-

sumptions 3.4.5, 3.4.6, and 3.4.7, the following propositions can be shown.

Proposition B.2.9
{∑n

j=1wt,ijyl(j,t),L
}
l(i,t)∈DL

is also uniformly L4+ηε-bounded and

is uniformly L2-NED on ς.
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Proposition B.2.10 For any p = 1, · · · , P ,
{

[Mn,t+1,p (θ)]ii · y
e
l(i,t+1),L (θ)

}
l(i,t)∈DL

is

uniformly L4+ηε-Bounded and is uniformly L2-NED on ς.

Proposition B.2.11
{
yel(i,t+1),L (θ) · [Nn,t+1 (θ)]ii

}
l(i,t)∈DL

and
{

[∇eVn,t+2 (θ)]i

}
l(i,t)∈DL

are uniformly L4+ηε–bounded and uniformly L2-NED on ς.

By Proposition B.2.7 (i), the addition preserves the NED properties. Therefore,

for each θ ∈ Θ
{
εl(i,t),L (θ)

}
l(i,t)∈DL

is uniformly L4+ηε-bounded and uniformly L2-NED

on ς since Θ is closed and bounded (Assumption 2.4.3). Also,
{
∂εl(i,t),L(θ0)

∂θ

}
l(i,t)∈DL

is

uniformly L4+ηε-bounded and uniformly L2-NED on ς.

Demeaning operator JT ⊗ Jn

Consider the sample moment function ḡcL (θ). Without loss of generality, suppose

m = 1 since all quadratic moments have the same form. We have

ḡL,c
L (θ) =

1

L
q′L (JT ⊗ Jn) EL (θ)

=
1

L
q′LEL (θ)− 1

L
q′L

(
1

T
lT l
′
T ⊗ In

)
EL (θ)

− 1

L
q′L

(
IT ⊗

1

n
lnl
′
n

)
EL (θ) +

1

L
q′L

1

L
lLl
′
LEL (θ)

and

ḡQ,c
L (θ) = 1

L
E ′L (θ) (JT ⊗ Jn) RL,1 (JT ⊗ Jn) EL (θ)

= 1
L
E ′L (θ) RL,1EL (θ)− 1

L
E ′L (θ) RL,1

(
1
T
lT l
′
T ⊗ In

)
EL (θ)

− 1
L
E ′L (θ) RL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ) + 1

L
E ′L (θ) RL,1

1
L
lLl
′
LEL (θ)

− 1
L
E ′L (θ)

(
1
T
lT l
′
T ⊗ In

)
RL,1EL (θ) + 1

L
E ′L (θ)

(
1
T
lT l
′
T ⊗ In

)
RL,1

(
1
T
lT l
′
T ⊗ In

)
EL (θ)

+ 1
L
E ′L (θ)

(
1
T
lT l
′
T ⊗ In

)
RL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ)− 1

L
E ′L (θ)

(
1
T
lT l
′
T ⊗ In

)
RL,1

1
L
lLl
′
LEL (θ)

− 1
L
E ′L (θ)

(
IT ⊗ 1

n
lnl
′
n

)
RL,1EL (θ) + 1

L
E ′L (θ)

(
IT ⊗ 1

n
lnl
′
n

)
RL,1

(
1
T
lT l
′
T ⊗ In

)
E ′L (θ)

+ 1
L
E ′L (θ)

(
IT ⊗ 1

n
lnl
′
n

)
RL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ)− 1

L
E ′L (θ)

(
IT ⊗ 1

n
lnl
′
n

)
RL,1

1
L
lLl
′
LEL (θ)
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+ 1
L
E ′L (θ) 1

L
lLl
′
LRL,1EL (θ)− 1

L
E ′L (θ) 1

L
lLl
′
LRL,1

(
1
T
lT l
′
T ⊗ In

)
EL (θ)

− 1
L
E ′L (θ) 1

L
lLl
′
LRL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ) + 1

L
E ′L (θ) 1

L
lLl
′
LRL,1

1
L
lLl
′
LEL (θ).

For each θ ∈ Θ, all components of ḡL,c
L (θ) and ḡQ,c

L (θ) should converge to their

own expected values. To show them, we can have the alternative representations as

summations of lT l
′
T ⊗ In and IT ⊗ lnl′n using properties of the Kronecker product: (a)

lT l
′
T ⊗In =

∑n
i=1 (lT ⊗ en,i)

(
l′T ⊗ e′n,i

)
, and (b) IT ⊗ lnl′n =

∑T
t=1 (eT,t ⊗ ln)

(
e′T,t ⊗ l′n

)
.

Lemmas and theorems

Uniform laws of large numbers

For the ULLN (of ScL (θ)) and uniform equicontinuity of (E (ScL (θ))), we need to

check the three conditions suggested by Assumption 6 in Jenish and Prucha (2012).

Proofs can be found in the supplement file. First, the moment functions gcl(i,t),L (θ)

are required to be p-dominated on Θ for p = 2.

Lemma B.2.12 Under the suggested regularity conditions in the main text,

sup
L,l(i,t)∈DL

E sup
θ∈Θ

∣∣∣gcl(i,t),L (θ)
∣∣∣2 <∞. (B.17)

Proof of B.2.12. Choose arbitrary spatial-time unit l (i, t) ∈ DL and fix it. First,

consider the linear moment function gL,c
l(i,t),L (θ) = q′L (JT ⊗ Jn) eL,lεl(i,t),L (θ). Then,

E sup
θ∈Θ

∣∣∣gL,c
l(i,t),L (θ)

∣∣∣2

= sup
θ∈Θ

∣∣∣εl(i,t),L (θ)
∣∣∣2
 (n−1)(T−1)

nT

∣∣∣ql(i,t),L∣∣∣2 − n−1
nT

∑
l(i,t′)∈DL,t6=t′

∣∣∣ql(i,t′),L∣∣∣2
−T−1

nT

∑
l(j,t)∈DL,j 6=i

∣∣∣ql(j,t),L∣∣∣2 + 1
nT

∑
l(j,t′)∈DL,j 6=i,t 6=t′

∣∣∣ql(j,t′),L∣∣∣2


≤ 4 sup
θ∈Θ

∣∣∣εl(i,t),L (θ)
∣∣∣2 · sup

L,l(i,t)∈DL

∣∣∣ql(i,t),L∣∣∣2 ,
so by the Minkowski’s inequality,

E sup
θ∈Θ

∣∣∣gL,c
l(i,t),L (θ)

∣∣∣2 ≤ 4 sup
θ∈Θ

∥∥∥εl(i,t),L (θ)
∥∥∥2

L4

· sup
L,l(i,t)∈DL

∥∥∥ql(i,t),L∥∥∥2

L4
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The right hand side of inequality above is uniformly bounded by Assumption 2.4.7

(ii) and supθ∈Θ

∥∥∥εl(i,t),L (θ)
∥∥∥2

L4+ηε

<∞ due to the results in Propositions B.2.9, B.2.10,

and B.2.11.

Second, consider the quadratic moment function

gQ,c
l(i,t),L (θ) =

∑
l(j,t′)∈DL [(JT ⊗ Jn) RL,1 (JT ⊗ Jn)]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ) where l =

l (i, t) and l′ = l (j, t′). By the Minkowski’s inequality, we have

E sup
θ∈Θ

∣∣∣gQ,c
l(i,t),L (θ)

∣∣∣2 ≤
∣∣∣∣∣∣
∑

l(j,t′)∈DL

[(JT ⊗ Jn) RL,1 (JT ⊗ Jn)]l,l′

∣∣∣∣∣∣ · sup
L,l(i,t)∈DL

sup
θ∈Θ

∥∥∥εl(i,t),L (θ)
∥∥∥4

L4

.

The right hand side of the above inequality is bounded since supθ∈Θ

∥∥∥εl(i,t),L (θ)
∥∥∥2

L4+ηε

<

∞ and∣∣∣∣∣∣
∑

l(j,t′)∈DL

[(JT ⊗ Jn) RL,1 (JT ⊗ Jn)]l,l′

∣∣∣∣∣∣ ≤ max
i=1,···,n

n∑
j=1

∣∣∣∣∣e′n,i
T∑
s=1

JtsRnt,1Jst′en,j

∣∣∣∣∣
≤ sup

t
max
i=1,···,n

n∑
j=1

∣∣∣[Rnt,1]ij

∣∣∣ <∞
by Assumption 3.4.10 (ii). This completes the proof. Q.E.D.

Next, we would like to show the LLN for the components of gcl(i,t),L (θ) for each

θ ∈ Θ.

Lemma B.2.13 For θ ∈ Θ, the following results hold.

(i) q′l(i,t),Lεl(i,t),L (θ) and
∑
l′ [RL,1]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ) are uniformly L1-NED on

ς. This implies 1
L

∑
l q
′
l(i,t),Lεl(i,t),L (θ)− E

(
1
L

∑
l q
′
l(i,t),Lεl(i,t),L (θ)

)
= op (1)

and 1
L

∑
l

∑
l′ [RL,1]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ)−E

(
1
L

∑
l

∑
l′ [RL,1]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ)

)
=

op (1) .

(ii) 1
L
q′L
(

1
T
lT l
′
T ⊗ In

)
EL (θ)− E

(
1
L
q′L
(

1
T
lT l
′
T ⊗ In

)
EL (θ)

)
= op (1) ,

and 1
L
E ′L (θ) RL,1

(
1
T
lT l
′
T ⊗ In

)
EL (θ)− E

(
1
L
E ′L (θ) RL,1

(
1
T
lT l
′
T ⊗ In

)
EL (θ)

)
= op (1).
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(iii) 1
L
q′L
(
IT ⊗ 1

n
lnl
′
n

)
EL (θ)− E

(
1
L
q′L
(
IT ⊗ 1

n
lnl
′
n

)
EL (θ)

)
= op (1) ,

and 1
L
E ′L (θ) RL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ)− E

(
1
L
E ′L (θ) RL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ)

)
= op (1).

(iv) 1
L
q′L

1
L
lLl
′
LEL (θ)− E

(
1
L
q′L

1
L
lLl
′
LEL (θ)

)
= op (1) ,

and 1
L
E ′L (θ) RL,1

1
L
lLl
′
LEL (θ)− E

(
1
L
E ′L (θ) RL,1

1
L
lLl
′
LEL (θ)

)
= op (1).

Proof of Lemma B.2.13. (i) By Parts (ii) and (iii) in Assumption 3.4.9,
{
ql(i,t),L

}
l(i,t)∈DL

is uniformly L4+ηq -bounded and uniformly L2-NED on ς. Since
{
εl(i,t),L (θ)

}
l(i,t)∈DL

is uniformly L4+ηε-bounded and uniformly L2-NED on ς,
{
q′l(i,t),Lεl(i,t),L (θ)

}
l(i,t)∈DL

is uniformly L2-bounded (by the Minkowski’s inequality) and uniformly L1-NED by

Proposition B.2.7 (ii) (or uniformly L2-NED by Remark B.2.8). Then,∥∥∥ 1
L

∑
l q
′
l(i,t),Lεl(i,t),L (θ)− E

(
1
L

∑
l q
′
l(i,t),Lεl(i,t),L (θ)

)∥∥∥
L1

→ 0.

Consider
∑
l′ [RL,1]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ) = εl(i,t),L (θ)·∑l′ [RL,1]l,l′ εl(j,t′),L (θ). Since{

εl(i,t),L (θ)
}
l(i,t)∈DL

is uniformly L4+ηε-bounded and uniformly L2-NED on ς, focus on{∑
l′ [RL,1]l,l′ εl(j,t′),L (θ)

}
. Note that

∑
l′ [RL,1]l,l′ εl(j,t′),L (θ) =

∑n
j=1 [Rnt,1]ij εl(j,t),L (θ) =∑

j∈Bi(dc) [Rnt,1]ij εl(j,t),L (θ) by Assumption 3.4.10 (iii). Note that
∑n
j=1

∣∣∣[Rnt,1]ij

∣∣∣ and∑n
j=1 1 {j : j ∈ Bi (dc)} are uniformly bounded in i, t and n and

{
εl(i,t),L (θ)

}
l(i,t)∈DL

is uniformly L4+ηε-bounded, so
{∑

l′ [RL,1]l,l′ εl(j,t′),L (θ)
}

is uniformly L4+ηε-bounded.

Since [Rnt]ij are L2-NED on ς if j ∈ Bi (dc),
{∑

l′ [RL,1]l,l′ εl(j,t′),L (θ)
}

is L1-NED on

ς by Proposition B.2.7 (ii). Then,∥∥∥ 1
L

∑
l

∑
l′ [RL,1]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ)− E

(
1
L

∑
l

∑
l′ [RL,1]l,l′ εl(i,t),L (θ) εl(j,t′),L (θ)

)∥∥∥
L1

→

0.

(ii) First, note that

1
L
q′L
(

1
T
lT l
′
T ⊗ In

)
EL (θ) = 1

n

∑n
i=1

(
1
T
q′L (lT ⊗ eni)

)
·
(

1
T

(l′T ⊗ e′ni) EL (θ)
)

= 1
n

∑n
i=1 q̄

′
i.ε̄i. (θ)
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where q̄i. = 1
T

∑T
t=1 ql(i,t),L and ε̄i. (θ) = 1

T

∑T
t=1 εl(i,t),L (θ). Observe

V ar

(
1

n

n∑
i=1

q̄′i.ε̄i. (θ)

)
=

1

n2

n∑
i=1

n∑
j=1

Cov
(
q̄′i.ε̄i. (θ) , q̄

′
j.ε̄j. (θ)

)

=
1

n2

n∑
i=1

∑
j∈Bi(adc)

Cov
(
q̄′i.ε̄i. (θ) , q̄

′
j.ε̄j. (θ)

)
forsomea ∈ N

≤ 1

n
c5 (adc)

d max
j∈Bi(adc)

Cov
(
q̄′i.ε̄i. (θ) , q̄

′
j.ε̄j. (θ)

)
≤ 1

n
c5 (adc)

d
√

sup
i,t,L

E
(
q4
l(i,t),L

)√
sup
i,t,L

E
(
εl(i,t),L (θ)4

)
= O

(
1

n

)
.

This result implies 1
n

∑n
i=1 q̄

′
i.ε̄i. (θ) − E

(
1
n

∑n
i=1 q̄

′
i.ε̄i. (θ)

)
= Op

(
1√
n

)
by the Cheby-

shev’s inequality.

Observe 1
L
E ′L (θ) RL,1

(
1
T
lT l
′
T ⊗ In

)
EL (θ) = 1

n

∑n
i=1 r̃i. (θ) ε̄i. (θ) where

r̃i. (θ) = 1
T

∑T
t=1

∑n
j=1 [Rnt,1]ji εl(j,t),L (θ). Assumption 3.4.10 (iii) says

r̃i. (θ) = 1
T

∑T
t=1

∑
j∈Bi(adc) [Rnt,1]ji εl(j,t),L (θ). Then, V ar

(
1
n

∑n
i=1 r̃i. (θ) ε̄i. (θ)

)
= O

(
1
n

)
.

Hence, we also have 1
n

∑n
i=1 r̃i. (θ) ε̄i. (θ) − E

(
1
n

∑n
i=1 r̃i. (θ) ε̄i. (θ)

)
= Op

(
1√
n

)
by the

Chebyshev’s inequality, which it is the desired result.

(iii) Consider the time-series average forms of

1
L
q′L
(
IT ⊗ 1

n
lnl
′
n

)
EL (θ) and 1

L
E ′L (θ) RL,1

(
IT ⊗ 1

n
lnl
′
n

)
EL (θ):

1

L
q′L

(
IT ⊗

1

n
lnl
′
n

)
EL (θ) =

1

T

T∑
t=1

(
1

n

(
e′T,t ⊗ l′n

)
qL

)(
1

n

(
e′T,t ⊗ l′n

)
EL (θ)

)

=
1

T

T∑
t=1

q̄′.tε̄.t (θ)

and

1

L
E ′L (θ) RL,1

(
IT ⊗

1

n
lnl
′
n

)
EL (θ) =

1

T

T∑
t=1

(
1

n

(
e′T,t ⊗ l′n

)
RL,1EL (θ)

)(
1

n

(
e′T,t ⊗ l′n

)
EL (θ)

)

=
1

T

T∑
t=1

r̃.t (θ) ε̄.t (θ)

where q̄.t = 1
n

∑n
i=1 ql(i,t),L, ε̄.t (θ) = 1

n

∑n
i=1 εl(i,t),L (θ), and

r̃.t (θ) = 1
n

∑n
i=1

∑n
j=1 [Rnt,1]ij εl(j,t),L (θ).
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First, consider showing 1
T

∑T
t=1 q̄

′
.tε̄.t (θ) − E

(
1
T

∑T
t=1 q̄

′
.tε̄.t (θ)

)
= op (1). Recall

that
{
q′l(i,t),Lεl(i,t),L (θ)

}
l(i,t)∈DL

is uniformly spatial-time L2-NED on ς, so this implies

{q̄′.tε̄.t (θ)} is uniformly time L2-NED on {ςnt}.

That is, supt ‖q̄′.tε̄.t (θ)− E (q̄′.tε̄.t (θ) |Ft (s))‖L2
≤ Cqeτ

∗s implying

∥∥∥∥∥ 1

T

T∑
t=1

q̄′.tε̄.t (θ)− 1

T

T∑
t=1

E (q̄′.tε̄.t (θ) |Ft (s))

∥∥∥∥∥
L2

≤ Cqeτ
∗s (B.18)

for some 0 < Cqe < ∞ uniformly in t and T , and for some 0 < τ ∗ < 1. For

notational convenience, let q̃e,t = E (q̄′.tε̄.t (θ) |Ft (s)). Note that q̃e,t is a function of

ςn,t−s, · · · , ςn,t+s, so q̃e,t1 and q̃e,t2 will not be correlated if |t1 − t2| > 2s. Then,

E

∣∣∣∣∣ 1T
T∑
t=1

[E (q̄′.tε̄.t (θ) |Ft (s))− E (q̄′.tε̄.t (θ))]

∣∣∣∣∣
2

=
1

T

T∑
t1=1

T∑
t2=1

Cov (q̃e,t1 , q̃e,t2)

=
1

T

T∑
t1=1

∑
|t1−t2|≤2s

Cov (q̃e,t1 , q̃e,t2)

≤ 4s

T
sup
L,i,t

E
(∣∣∣ql(i,t),Lεl(i,t),L (θ)

∣∣∣2) ≤ s

T
Cqe,1

for some Cqe,1 ≥ 4 supL,i,tE
(∣∣∣ql(i,t),Lεl(i,t),L (θ)

∣∣∣2). By the Chebyshev’s inequality, we

have

1

T

T∑
t=1

[E (q̄′.tε̄.t (θ) |Ft (s))− E (q̄′.tε̄.t (θ))] = Op

(√
s

T

)
. (B.19)

By combining results (B.18) and (B.19),

∣∣∣∣∣ 1T
T∑
t=1

q̄′.tε̄.t (θ)− E
(

1

T

T∑
t=1

q̄′.tε̄.t (θ)

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

T∑
t=1

q̄′.tε̄.t (θ)− 1

T

T∑
t=1

E (q̄′.tε̄.t (θ) |Ft (s))

∣∣∣∣∣
+

∣∣∣∣∣ 1T
T∑
t=1

[E (q̄′.tε̄.t (θ) |Ft (s))− E (q̄′.tε̄.t (θ))]

∣∣∣∣∣
= Op

(
τ ∗s +

√
s

T

)
→ 0

as T →∞ if we set s =
√
T .
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Second, observe that r̃.t (θ) = 1
n

∑n
i=1

∑
j∈Bi(adc) [Rnt,1]ij εl(j,t),L (θ), [Rnt,1]ij are

measurable functions of
{
ς∗l(j,t′),L

}n
j=1
|tt′=1 and σ

({
ς∗l(j,t′),L

}n
j=1
|tt′=1

)
⊆ Fl(i,t),L (s) for

any s > 0. It implies r̃.t (θ) is a cross-section average of a linear combination of

εl(j,t),L (θ)’s (with finite components). By using similar arguments verifing the linear

moment part, we have the desired result.

(iv) First, consider the linear moment part, 1
L
q′LlL

1
L
l′LEL (θ). Note that

Cov
(

1

L
q′LlL,

1

L
l′LEL (θ)

)
=

1

L2

∑
l

∑
l′
Cov

(
ql(i,t),Lεl(j,t′),L (θ)

)
≤ 1

L
sup

L,l(i,t)∈DL

∑
l′
Cov

(
ql(i,t),Lεl(j,t′),L (θ)

)
= O

(
1

L

)
,

so 1
L
q′LlL

1
L
l′LEL (θ) − E

(
1
L
q′LlL

1
L
l′LEL (θ)

)
= Op

(
1√
L

)
by the Chebyshev’s inequality.

By using the similar arguments, we have

1
L
E ′L (θ) RL,1lL

1
L
l′LEL (θ)− E

(
1
L
E ′L (θ) RL,1lL

1
L
l′LEL (θ)

)
= Op

(
1√
L

)
. Q.E.D.

For each θ ∈ Θ, by Lemma B.2.13, hence, we have∣∣∣∣∣∣ 1L
∑

l(i,t)∈DL

gcl(i,t),L (θ)− E

 1

L

∑
l(i,t)∈DL

gcl(i,t),L (θ)

∣∣∣∣∣∣→p 0

as L → ∞.This implies |ScL (θ)− E (ScL (θ))| →p 0 as L → ∞ for each θ ∈ Θ.

To obtain consistency of θ̂L, the pointwise LLN should be extended to the ULLN.

To achieve smoothness of gcl(i,t),L (θ) on the parameter space Θ, hence, a sufficient

condition is that gcl(i,t),L (θ) should satisfy the Lipschitz condition in θ ∈ Θ: for l (i, t) ∈

DL, L ≥ 1, and θ, θ′ ∈ Θ

∣∣∣gcl(i,t),L (θ)− gcl(i,t),L (θ′)
∣∣∣ ≤ Ll(i,t),L · |θ − θ′|

a.s., and lim supL→∞
1
L

∑
l(i,t)∈DL EL

η
l(i,t),L < ∞ for some η > 0. The lemma below

verifies this.

Lemma B.2.14 For any l (i, t) ∈ DL, gcl(i,t),L (θ) is Lipschitz in θ ∈ Θ.
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Proof of B.2.14. Choose θ, θ′ ∈ Θ arbitrary with θ 6= θ′ and fix them. For each

l (i, t) ∈ DL, the Taylor approximation of gcl(i,t),L (θ) around θ′ consists of

gL,c
l(i,t),L (θ) = gL,c

l(i,t),L (θ′) + [(JT ⊗ Jn) qL]′l.

[
Lλ,it

(
θ̄
)
, Lγ,it

(
θ̄
)
, L′ψ,it

(
θ̄
)
, L′β,it

(
θ̄
)]

· (θ − θ′) ,

and

gQ,c
l(i,t),L (θ) = gQ,c

l(i,t),L (θ′)

+
∑
l′

[(JT ⊗ Jn) RL,l (JT ⊗ Jn)]l.l′ εl(j,t),L (θ)

·
[
Lλ,it

(
θ̄
)
, Lγ,it

(
θ̄
)
, L′ψ,it

(
θ̄
)
, L′β,it

(
θ̄
)]
· (θ − θ′)

where θ̄ lies between θ and θ′. Observe that Lλ,it (θ), Lγ,it (θ), Lψ,it (θ), and Lβ,it (θ)

are uniformly L4-bounded for any θ ∈ Θ (due to the compact parameter space as-

sumption). Hence, the Lipschitz condition in θ is satisfied for both gL,c
l(i,t),L (θ) and

gQ,c
l(i,t),L (θ). Q.E.D.

This condition yields L0 stochastic equicontinuity of gcl(i,t),L (θ) with respect to

θ ∈ Θ by Proposition 1 in Jenish and Prucha (2009). Formally, for any ε > 0

lim sup
L→∞

1

L

∑
l(i,t)∈DL

P

(
sup

‖θ−θ′‖≤η

∣∣∣gcl(i,t),L (θ)− gcl(i,t),L (θ′)
∣∣∣ > ε

)
→ 0

as η → 0. By Theorem 2 in Jenish and Prucha (2009), therefore, we obtain (i) uniform

convergence

sup
θ∈Θ
|ḡcL (θ)− E (ḡcL (θ))| →p 0,

and (ii) uniform equicontinuous of {E (ḡcL (θ))} on Θ,

i.e., lim supL→∞ supθ′∈Θ sup‖θ−θ′‖≤η |E (ḡcL (θ))− E (ḡcL (θ′))| → 0 as η → 0. For uni-

form convergence of ScL (θ), we produce the following lemma, which is a modified

version of Lemma 3.3 in Pötscher and Prucha (1997).
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Lemma B.2.15 Let {ϑL (·, ·)} be uniformly equicontinuous on Rq ×Θ.

(a) If supθ∈Θ |ḡcL (θ)− E (ḡcL (θ))| →p 0 as L→∞, then

sup
θ∈Θ
|ϑL (ḡcL (θ) , θ)− ϑL (E (ḡcL (θ)) , θ)| →p 0

as L→∞.

(b) If {E (ḡcL (θ))} is uniformly equicontinuous on Θ, then so {ϑL (E (ḡcL (θ)) , θ)}

is.

Proof of Lemma B.2.15. See Lemma 3.3 in Pötscher and Prucha (1997). Q.E.D.

The lemma below is not only for the identification assumption (Assumption 3.4.9),

but it also differentiate the linear moment part (at θ0), 1√
L
q′L (JT ⊗ Jn) EL, to (i) the

mean zero part and (ii) the asymptotic bias part.

Lemma B.2.16 For IV matrix qnt, plimL→∞
1
L
q′L (JT ⊗ Jn) EL = 0q×1.

In 1√
L
q′L (JT ⊗ Jn) EL, the mean zero part is

1√
L

∑n
i=1

∑T
t=1 qitεit − 1

n
√
L

∑n
i=1

∑n
j=1

∑T
t=1 qjtεit while the asymptotic bias part is

− 1
T
√
L

∑n
i=1

∑T
t=1

∑T
t′=1 qit′εit + 1

L
√
L

∑n
i=1

∑n
j=1

∑T
t=1

∑T
t′=1 qjt′εit.

Proof of Lemma B.2.16. Note that

1

L
q′L (JT ⊗ Jn) EL =

1

L

n∑
i=1

T∑
t=1

qitεit −
1

TL

n∑
i=1

T∑
t=1

T∑
t′=1

qit′εit

− 1

nL

n∑
i=1

n∑
j=1

T∑
t=1

qjtεit +
1

L2

n∑
i=1

n∑
j=1

T∑
t=1

T∑
t′=1

qjt′εit.

Assumption 3.4.9 (i) implies E (q′ntEnt) = E (q′ntE (Ent|`t−1)) = 0q×1 by the law of

iterated expectation. Consider the first term. Note that

E

(
1

L

n∑
i=1

T∑
t=1

qitεit

)
=

1

L

n∑
i=1

T∑
t=1

E (qitE (εit|`t−1)) = 0q×1.
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Since E
(

1
L

∑n
i=1

∑n
j=1

∑T
t=1

∑T
t′=1 qitεitεjt′q

′
jt′

)
=

σ2
0

L

∑n
i=1

∑T
t=1E (qitq

′
it) = O (1) by As-

sumption 3.4.9 (ii), the first term is Op

(
1√
L

)
by the Chebyshev’s inequality.

The expected value of the second term is

E

(
1

TL

n∑
i=1

T∑
t=1

T∑
t′=1

qit′εit

)

=
1

TL

n∑
i=1

T∑
t=1

∑
t′≤t

E (qit′E (εit|`t−1)) +
1

TL

n∑
i=1

T∑
t=1

∑
t′>t

E (qit′εit) = 0q×1 +O
(

1

T

)

since
∑
t′>tE (qit′εit) = O (1). We observe 1

TL

∑n
i=1

∑T
t=1

∑
t′>tE (qit′εit) yields the

asymptotic bias stemming from using JT . Note that 1
TL

∑n
i=1

∑T
t=1

∑T
t′=1 qit′εit =

1√
TL

1√
TL

∑n
i=1

∑T
t=1

∑T
t′=1 qit′εit. Consider a stochastic order of the variance part of

1√
TL

∑n
i=1

∑T
t=1

∑T
t′=1 qit′εit:

E

 1

TL

n∑
i=1

n∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t′1=1

T∑
t′2=1

qit′1εit1εjt2qjt′2

 =
1

TL

n∑
i=1

T∑
t=1

T∑
t1=1

T∑
t2=1

E
(
ε2itqit1q

′
it2

)
= O (1)

since
∑T
t1=1E

(
ε2itqit1q

′
it2

)
is uniformly bounded in i, t, t2 and T .

Thus, 1
TL

∑n
i=1

∑T
t=1

∑T
t′=1 qit′εit = Op

(
1√
TL

)
by the Chebyshev’s inequality.

Consider the third term. Note that

E

 1

nL

n∑
i=1

n∑
j=1

T∑
t=1

qjtεit

 =
1

nL

n∑
i=1

n∑
j=1

T∑
t=1

E (qjtE (εit|`t−1)) = 0q×1,

which means that using Jn incorporated with the IVs qnt does not generate the

asymptotic bias. Note that

E

 1

nL

n∑
i=1

T∑
t=1

n∑
j1=1

n∑
j2=1

ε2itqj1tq
′
j2t

 =
σ2

0

nL

n∑
i=1

T∑
t=1

n∑
j1=1

n∑
j2=1

E
(
qj1tq

′
j2t

)
= O (1)

since
∑n
j1=1 σ

2
0E

(
qj1tq

′
j2t

)
is uniformly bounded in j2, t and n.

Then, 1
nL

∑n
i=1

∑n
j=1

∑T
t=1 qjtεit = Op

(
1√
nL

)
.
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Last, consider the fourth term. The expected value of that term is

E

 1

L2

n∑
i=1

n∑
j=1

T∑
t=1

T∑
t′=1

qjt′εit

 =
1

L2

n∑
i=1

n∑
j=1

T∑
t=1

∑
t′≤t

E (qjt′E (εit|`t−1))

+
1

L2

n∑
i=1

T∑
t=1

n∑
j=1

∑
t′>t

E (qjt′εit) = O
(

1

L

)

since
∑n
j=1

∑
t′>tE (qjt′εit) is uniformly bounded in i, t and n.

And, 1
L

∑n
i=1

∑n
j=1

∑T
t=1

∑T
t′=1 E (qjt′εit) = O (1), which implies

1
L2

∑n
i=1

∑n
j=1

∑T
t=1

∑T
t′=1 qjt′εit = Op

(
1
L

)
. This completes the proof. Q.E.D.

The mean zero part characterizes the asymptotic distribution of θ̂L, which it can

be written as 1√
L

∑T
t=1 q′ntJnEnt. The asymptotic bias part is 1√

L

∑T
t=1 q̄′nTJnEnt where

q̄nT = 1
T

∑T
t′=1 qnt′ and its stochastic order is of Op

(
1
T

)
. Hence, we obtain

√
LḡL,c

L (θ0) =
1√
L

T∑
t=1

q′ntJnEnt −
1√
L

T∑
t=1

q̄′nTJnEnt

=
1√
L

T∑
t=1

q′ntJnEnt −
√
n

T

1

n

T∑
t=1

E (q̄′nTJnEnt)

− 1√
L

[
T∑
t=1

[q̄′nTJnEnt − E (q̄′nTJnEnt)]
]
,

where
√

n
T

1
n

∑T
t=1 E (q̄′nTJnEnt) =

√
n
T
O (1) by Lemma B.2.16 and

1√
L

[
T∑
t=1

[q̄′nTJnEnt − E (q̄′nTJnEnt)]
]

=
1√
T

1√
TL

[
T∑
t′=1

T∑
t=1

[q′nt′JnEnt − E (q′nt′JnEnt)]
]

= Op

(
1√
T

)

by the Chebyshev’s inequality. Hence, we have

√
LḡL,c

L (θ0) =
1√
L

T∑
t=1

q′ntJnEnt −
√
n

T
bLnT

(
θ0, σ

2
0

)
+Op

(
1√
T

)

where bLnT (θ0, σ
2
0) = 1

n

∑T
t=1E (q̄′nTJnEnt) = O (1).

Consider the order of asymptotic bias from using the quadratic moments.
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Lemma B.2.17 For l = 1, · · · ,m,
σ2
0√
L
tr (RL,l (JT ⊗ Jn)) = Op

(√
T
n

)
.

Proof of Lemma B.2.17. Observe

σ2
0√
L
tr (RL,l (JT ⊗ Jn)) =

σ2
0√
L
tr (RL,l)−

σ2
0

T
√
L
tr (RL,l (lT l

′
T ⊗ Jn))

− σ2
0

n
√
L
tr (RL,l (IT ⊗ lnl′n)) +

σ2
0

L
√
L
tr (RL,llLl

′
L) ,

tr (RL,l) = 0, and tr (RL,l (lT l
′
T ⊗ Jn)) = 0. The third term− σ2

0

n
√
L
tr (RL,l (IT ⊗ lnl′n)) =

− σ2
0

n
√
L

∑T
t=1

∑n
i=1

∑n
j=1 [Rnt,l]ij = Op

(√
T
n

)
since Rnt,l’s column and row sums are uni-

formly bounded in n and t. By the same argument,

σ2
0

L
√
L
tr (RL,llLl

′
L) =

σ2
0

L
√
L

∑T
t=1

∑n
i=1

∑n
j=1 [Rnt,l]ij = Op

(
1√
L

)
. Q.E.D.

The implication of this result is that the asymptotic bias part originated from

using quadratic moments is

− σ2
0

n
√
L
tr (RL,l (IT ⊗ lnl′n)) +Op

(
1√
L

)

= −
√
T

n

σ2
0

L

T∑
t=1

n∑
i=1

n∑
j=1

[Rnt,l]ij +Op

(
1√
L

)
.

So, define bQnT,l (σ
2
0) =

σ2
0

L

∑T
t=1

∑n
i=1

∑n
j=1 [Rnt,l]ij for l = 1, · · · ,m and is of Op (1).

Central limit theorem for a linear quadratic form of martingale difference
arrays

Consider the asymptotic distribution of UL = 1√
L
A′LEL+ 1√

L
[E ′LBLEL − σ2

0tr (BL)]

where AL is an L×1 vector of predetermined variables and BL is an L×Lmatrix whose

components are measurable functions of ς∗L. The AL and BL represent respectively

q̃L,ka and R̃L,ka for ka = 1, · · · , Ka. We can assume BL is symmetric since it can

be replaced by 1
2

(BL +B′L) and E ′LBLEL = E ′L 1
2

(BL +B′L) EL. Let l = l (i, t) and

l′ = l (j, t′) for notational convenience. Note that

UL =
1√
L

L∑
l=1

(
[AL]l εl + εl

L∑
l′=1

[BL]l,l′ εl′ − E
(
εl

L∑
l′=1

[BL]l,l′ εl′|ς
∗
L

))
(B.20)
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=
1√
L

L∑
l=1

(
[AL]l εl + 2εl

l−1∑
l′=1

[BL]l,l′ εl′ + [BL]l,l

(
ε2l − σ2

0

))
=

L∑
l=1

uL,l

where uL,l = 1√
L

[
[AL]l εl + 2εl

∑l−1
l′=1 [BL]l,l′ εl′ + [BL]l,l (ε

2
l − σ2

0)
]

for each l = 1, · · · , L.

Note that

E
(

1√
L
A′LEL|ς∗L

)
= 0, E

(
1√
L

[E ′LBLEL − σ2
0tr (BL)] |ς∗L

)
= 0,

V ar
(

1√
L
A′LEL|ς∗L

)
= 1

L
σ2

0E (A′LAL|ς∗L),

Cov
(

1√
L
A′LEL, 1√

L
[E ′LBLEL − σ2

0tr (BL)] |ς∗L
)

= 1
L
µ3E (A′L|ς∗L) vecD (BL) where µ3 =

E (ε3l ), and

1

L
Cov (E ′LBL,1EL, E ′LBL,2EL|ς∗L) =

1

L

(
µ4 − 3σ4

0

)
vec′D (BL,1) vecD (BL,2)

+
1

L
σ4

0tr
(
BL,1

(
BL,2 +B′L,2

))
where µ4 = E (ε4l ). Let σ2

UL
= V ar (UL|ς∗L). Hence,

σ2
UL

=
1

L
σ2

0E (A′LAL|ς∗L) +
1

L

(
µ4 − 3σ4

0

)
vec′D (BL) vecD (BL) (B.21)

+
2

L
σ4

0tr
(
B2
L

)
+

2

L
µ3E (A′L|ς∗L) vecD (BL) .

The exogenous component (ς∗l ) from the network formation process can be cap-

tured by a sigma field Cl ⊂ F . i.e., ς∗l is measurable with respect to Cl. Then, {ς∗l }
L
l=1

is specified by C = C1∨· · ·∨CL where ∨ is the notation for the sigma field generated by

the union of two sigma fields.173 Now we want to establish C-stable convergence of UL,

which says the joint limiting distribution for (UL, ς
∗) where ς∗ is any C-measurable

random variable (or vector or matrix). Since C-stable convergence belongs to a joint

convergence concept, C-stable convergence implies convergence in distribution. Here

is the formal definition of convergence in distribution C-stably stated by Definition 2

in Kuersteiner and Prucha (2013).

173Kuersteiner and Prucha (2013, 2018) consider C as a representation of common economic shocks,
i.e, C =∨Tt=1Ct and each Ct represents tth-period common economic shocks. So, we extend this notion.
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Definition B.2.18 Let U be a random variable on (Ω,F , P ) and C ⊂ F . We say

UL →d U C-stably if for all ς∗ ∈ C and all U ∈ B (R) with P (U ∈ ∂U) = 0,

P ({UL ∈ U} ∩ ς∗) → P ({U ∈ U} ∩ ς∗) as L → ∞ where B (R) denotes the Borel

σ-field on R and ∂U is the boundary of U .

Proposition A.1 in Kuersteiner and Prucha (2013) introduces the alternative def-

initions of C-stable convergence. One of the alternative definitions verifying the

CLT is related to the characteristic function: for any t ∈ R and C-measurable

p-essentially bounded random variable ς∗, E [ς∗ exp (itUL)] → E [ς∗ exp (itU)] as

L → ∞. The key of showing this is using the law of iterated expectations, i.e.,

E [ς∗ exp (itUL)] = E [ς∗E [exp (itUL|C)]] and E [ς∗ exp (itU)] = E [ς∗E [exp (itU|C)]].

In consequence, we will have UL|C→dN (0, σ2
U) a.s. where σ2

U =plimL→∞σ
2
UL

and it

is equivalent that limL→∞E (exp (itUL) |C) = exp (−t2σ2
U/2) a.s. However, the un-

conditional distribution will be limL→∞E (exp (itUL)) = E (exp (−t2σ2
U/2)) a.s. (i.e.,

a mixed Gaussian distribution).

Now we establish the CLT for (B.20). Note that

σ2
U = plimL→∞

 σ2
0

L

∑L
l=1 [AL]2l +

(µ4−σ4
0)

L

∑L
l=1 [BL]2ll

+
4σ4

0

L

∑L
l=1

∑l−1
l′=1 [BL]2ll′ +

2µ3
L

∑L
l=1 [AL]l [BL]ll

 (B.22)

by using (B.21) and tr
(
B2
L,1

)
=
∑L
l=1

∑L
l′=1 [BL]2ll′ =

∑L
l=1 [BL]2ll + 2

∑L
l=1

∑l−1
l′=1 [BL]2ll′ .

Observe that σ2
UL

and σ2
U are C-measurable.

Lemma B.2.19 Assume σ2
UL

> 0 for sufficiently large L, and σ2
0, µ3 and µ4 are

constant.174 Then, UL→dσU · ξ C-stably as L → ∞ where ξ N (0, 1) is independent

of σU (which is C-measurable).

174Or, we can assume σ2
0 , µ3 and µ4 are C-measurable.
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Proof of Lemma B.2.19. The first step is to construct increasing sub-σ-fields of F

starting with C. For l = 1, · · · , L define

GL,1 = σ (ε1,1) ∨ C, ...

GL,n+1 = σ (ε1,1, · · · , εn,1, ε1,2) ∨ C, ...

GL,l = σ (ε1,1, · · · , εn,1, ε1,2, · · · , εn,2, ε1,t, · · · εit) ∨ C

for l = l (i, t) with GL,0 = C. Then, we observe (i) GL,0 ⊂ GL,1 ⊂ · · · ⊂ GL,l−1 ⊂ GL,l ⊂

· · · , (ii) uL,l is GL,l-measurable and (iii) E (uL,l|GL,l−1) = 0 (i.e., uL,l’s are martingale

differences). These establish the martingale difference array, {(uL,l,GL,l) : 1 ≤ l ≤ L,L ≥ 1}.

As the second step, we shall show the Liapounov type condition: i.e.,
∑L
l=1E |uL,l|

2+ηU →

0 as L→∞ for some ηU > 0. Pick any p, q > 0 such that 1
p

+ 1
q

= 1. By the triangle

inequality, we have

|uL,l| ≤
1√
L

 |[AL]l|
p 1
p · |εl|q

1
q + |[BL]ll|

1
p · |[BL]ll|

1
q · |ε2l − σ2

0|
q 1
q

+2q
1
q |εl|q

1
q ·∑l−1

l′=1 |[BL]ll′ |
1
p · |[BL]ll′ |

1
q |εl′|q

1
q

 ,
which takes a form of E |X · Y |. By the Hölder inequality,

|uL,l| ≤
1√
L

[
|[AL]l|

p +
l∑

l′=1

|[BL]ll′ |
] 1
p

·
[
|εl|q + |[BL]ll| ·

∣∣∣ε2l − σ2
0

∣∣∣q + 2q |εl|q ·
(
l−1∑
l′=1

|[BL]ll′ | |εl′|
q

)] 1
q

implying

E |uL,l|q ≤
1

L1+
ηU
2

E

[
|[AL]l|

p +
l∑

l′=1

|[BL]ll′|
] q
p

(= partI)

·
[

E |εl|q + |[BL]ll| · E |ε2l − σ2
0|
q

+2qE |εl|q ·
(∑l−1

l′=1 |[BL]ll′|E |εl′|
q
) ] (= partII)

Take q = 2 + ηU for some small ηU > 0. Consider the part II in the above inequality.

Since supl |εl|
4+ηε < ∞, |[BL]ll| and

∑L
l′=1 |[BL]ll′ | are uniformly bounded in l and
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L, the part II is uniformly bounded in l and L. Consider the part I. Since we set

q = 2 + ηU , q
p

= 1 + ηU . By applying the cr-inequality, we have

partI = E

[
|[AL]l|

p +
l∑

l′=1

|[BL]ll′|
]1+ηU

≤ 2ηU
(
E |[AL]l|

2+ηU + cB
)

for some cB > 0. Since [AL]l is a part of qL, E |[AL]l|
4 = O (1) implying E |[AL]l|

2+ηU =

O (1), so part I is of O (1). In consequence,
∑L
l=1E |uL,l|

2+ηU = 1

L1+
ηU
2

∑L
l=1 O (1) =

O
(
L−

ηU
2

)
→ 0 as L→∞.

In the third step, we need to verify that the conditional variance converges to σ2
U:∑L

l=1 E
[
u2
L,l|GL,l−1

]
→d σ

2
U. Note that

u2
L,l =

1

L

 ([AL]l εl + 2εl
∑l−1
l′=1 [BL]ll′ εl′

)2
+ [BL]2ll (ε

2
l − σ2

0)
2

+2 [BL]ll (ε
2
l − σ2

0)
(
[AL]l εl + 2εl

∑l−1
l′=1 [BL]ll′ εl′

)
 ,

E

([AL]l εl + 2εl
l−1∑
l′=1

[BL]ll′ εl′

)2

|GL,l−1


= [AL]2l σ

2
0 + 4 [AL]l σ

2
0

l−1∑
l′=1

[BL]ll′ εl′ + 4σ2
0

l−1∑
l′=1

l−1∑
l′′=1

[BL]ll′ [BL]ll′′ εl′′

= σ2
0

(
[AL]l + 2

l−1∑
l′=1

[BL]ll′ εl′

)2

,

E
[
[BL]2ll

(
ε2l − σ2

0

)2
|GL,l−1

]
= [BL]2ll

(
µ4 − σ4

0

)
,

and

E

[
2 [BL]ll

(
ε2l − σ2

0

)(
[AL]l εl + 2εl

l−1∑
l′=1

[BL]ll′ εl′

)
|GL,l−1

]

= 2µ3 [BL]ll

(
[AL]l + 2

l−1∑
l′=1

[BL]ll′ εl′

)
.

Hence,

L∑
l=1

E
[
u2
L,l|GL,l−1

]
=

σ2
0

L

L∑
l=1

(
[AL]l + 2

l−1∑
l′=1

[BL]ll′ εl′

)2

+
1

L

L∑
l=1

[BL]2ll

(
µ4 − σ4

0

)

+
1

L

L∑
l=1

2µ3 [BL]ll

(
[AL]l + 2

l−1∑
l′=1

[BL]ll′ εl′

)
,
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which converges to σ2
U stated in (B.22).

The multivariate case can be considered by applying the Cramér-Wold device,

i.e., if UL is a multivariate random variable, we can consider an arbitrary linear

combination c′UL with c′c = 1 which becomes a univariate random variable. Q.E.D.

The first step is to build increasing sub-σ-fields of F starting with C. For l =

1, · · · , L define

GL,1 = σ (ε1,1) ∨ C, · · · ,GL,n+1 = σ (ε1,1, · · · , εn,1, ε1,2) ∨ C, ...

GL,l = σ (ε1,1, · · · , εn,1, ε1,2, · · · , εn,2, ε1,t, · · · εit) ∨ C

for l = l (i, t) with GL,0 = C. Then, we observe (i) GL,0 ⊂ GL,1 ⊂ · · · ⊂ GL,l−1 ⊂ GL,l ⊂

· · · , (ii) uL,l is GL,l-measurable, and (iii) E (uL,l|GL,l−1) = 0 (i.e., uL,l’s are martingale

differences). These establish the martingale difference array, {(uL,l,GL,l) : 1 ≤ l ≤ L,L ≥ 1}.

By showing (i)
∑L
l=1 E |uL,l|

2+ηU → 0 as L→∞ for some ηU > 0, and

(ii)
∑L
l=1 E

[
u2
L,l|GL,l−1

]
→d σ

2
U, we finish the proof.

We observe that the limiting distribution of UL is the mixed normal σU ·N (0, 1)

and two components σU and N (0, 1) are independent. As a special case, the limiting

distribution of UL will be N (0, σ2
U) if σ2

U is nonstochastic. Even though σ2
UL

and σ2
U

can be stochastic (C-measurable), we have
(
UL/σ

2
UL

)2
→d χ

2
1 as L → ∞ by using

σ2
UL
→p σ

2
U and asymptotic independence between UL and σ2

UL
.

Lemma B.2.20 Suppose the same assumptions of Lemma B.2.19. Then, (UL/σUL
)2 →d

χ2
1 as L→∞.

Proof of Lemma B.2.20. Note that 1/σ2
UL
→p 1/σ2

U C-measurable by continuous

mapping theorem and 0 < 1/σ2
U <∞ since σ2

UL
> 0 is assumed for sufficiently large
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L. Then, UL/σUL
= UL/σU + op (1) implying UL/σUL

→d N (0, 1) as L → ∞.

Hence, by the continuous mapping theorem, we have the desired result. Q.E.D.

Note that conventional test statistics (e.g., Wald statistic) may involve (UL/σUL
)2.

Proof of Theorem 3.4.2. As a first step, consider uniform convergence of ScL (θ).

i.e.,,

supθ∈Θ

∣∣∣ScL (θ)− S̄cL (θ)
∣∣∣ →p 0 as L → ∞ where S̄cL (θ) = [EḡcL (θ)]′ a′0a0 [EḡcL (θ)] for

each θ ∈ Θ, which is the nonstochastic analogue of ScL (θ). By the triangle inequality,

sup
θ∈Θ

∣∣∣ScL (θ)− S̄cL (θ)
∣∣∣

≤ sup
θ∈Θ

∣∣∣ḡc′L (θ) a′0a0ḡ
c
L (θ)− [EḡcL (θ)]′ a′0a0 [EḡcL (θ)]

∣∣∣+ sup
θ∈Θ
|ḡc′L (θ) (a′LaL − a′0a0) ḡcL (θ)|

≤ sup
θ∈Θ

∣∣∣ḡc′L (θ) a′0a0ḡ
c
L (θ)− [EḡcL (θ)]′ a′0a0 [EḡcL (θ)]

∣∣∣+ ‖a′LaL − a′0a0‖∞ · sup
θ∈Θ
|ḡcL (θ)|2 .

Consider the first term of the right hand side of the second inequality. Observe that

sup
θ∈Θ

E |ḡcL (θ)| ≤ E sup
θ∈Θ
|ḡcL (θ)| ≤ 1

L

∑
l(i,t)∈DL

E sup
θ∈Θ

∣∣∣gcl(i,t),L (θ)
∣∣∣ ,

which is uniformly bounded by Lemma B.2.12. Hence, by applying Lemma B.2.15

(i), we have the first term converges uniformly in θ ∈ Θ:

supθ∈Θ

∣∣∣ḡc′L (θ) a′LaLḡ
c
L (θ)− [EḡcL (θ)]′ a′LaL [EḡcL (θ)]

∣∣∣→p 0.

Consider the second term of the left hand side of the second inequality. Note that

E sup
θ∈Θ
|ḡcL (θ)|2 ≤ 1

L2

∑
l(i,t),l(j,t′)∈DL

E

[
sup
θ∈Θ

∣∣∣gcl(i,t),L (θ)
∣∣∣ · sup

θ∈Θ

∣∣∣gc′l(j,t′),L (θ)
∣∣∣]

≤ 1

L2

∑
l(i,t),l(j,t′)∈DL

E

(sup
θ∈Θ

∣∣∣gcl(i,t),L (θ)
∣∣∣)2

 1
2

· E

(sup
θ∈Θ

∣∣∣gc′l(j,t′),L (θ)
∣∣∣)2

 1
2

,

which is uniformly bounded by Lemma B.2.12. The second inequality above holds

due to the Hölder’s inequality. Hence, the second term converges uniformly in θ ∈ Θ

since supθ∈Θ |ḡcL (θ)|2 = Op (1) and we have ‖a′LaL − a′0a0‖∞ →p 0 by the assumption

on aL.
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Now consider uniform equicontinuity of
{
S̄cL (θ)

}
on Θ. By Lemma B.2.14, we

can achieve uniform equicontinuity of {E (ḡcL (θ))} on Θ. By applying Lemma B.2.15

(ii), we have the desired result. Last, with identification uniqueness obtained by

Assumption 3.4.9 (iv), we have θ̂L →p θ0 as L→∞. Q.E.D.

Proof of Theorem 3.4.3. In order to show asymptotic normality, we have the

Taylor expansion:

√
L
(
θ̂L − θ0

)
= −

∂ḡc′L
(
θ̂L
)

∂θ
a′LaL

∂ḡcL
(
θ̄L
)

∂θ′

−1
∂ḡc′L

(
θ̂L
)

∂θ
a′LaL

√
LḡcL (θ0)

= −

∂ḡc′L
(
θ̂L
)

∂θ
a′La

′
L

∂ḡcL
(
θ̄L
)

∂θ′

−1
∂ḡc′L

(
θ̂L
)

∂θ
a′L

×

 √LaLḡc,(u)
L (θ0)−

√
n
T
a

(q)
L bLL (θ0, σ

2
0)

−
√

T
n

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0) + op (1)


where θ̄L lies between θ̂L and θ0. First, note that

∂ḡcL
(
θ̂L
)

∂θ′
=

∂ḡcL
(
θ̂L
)

∂θ′
− ∂ḡcL (θ0)

∂θ′

+

[
∂ḡcL (θ0)

∂θ′
−GL

]
+GL.

The first term is op (1) by Theorem 4.1 and the continuous mapping theorem while

the second term is op (1) by applying the LLN to
∂ḡcL(θ0)

∂θ′
. Hence,

∂ḡcL(θ̂L)
∂θ′

= GL +

op (1). By Assumption 3.4.11, G′La
′
LaLGL is nonsingluar for sufficiently large L, so

∂ḡc′L(θ̂L)
∂θ

a′LaL
∂ḡcL(θ̄L)
∂θ′

is invertible for large L and it is of Op (1).

Hence,
√
L
(
θ̂L − θ0

)
= Op (1) ·

(
Op (1) +O

(√
n
T

)
+Op

(√
T
n

)
+ op (1)

)
, which im-

plies θ̂L − θ0 = Op

(
max

{
1√
L
, 1
n
, 1
T

})
and

√
L
(
θ̂L − θ0

)
= [G′La

′
LaLGL + op (1)]

−1

×G′La′L

 √LaLḡc,(u)
L (θ0)−

√
n
T
a

(q)
L bLL (θ0, σ

2
0)

−
√

T
n

∑m
l=1 a

(l)
L b

Q
L,l (σ

2
0) + op (1)

 .
It leads that

√
L
(
θ̂L − θ0

)
+

√
n

T
[G′La

′
LaLGL]

−1
G′La

′
La

(q)
L bLL

(
θ0, σ

2
0

)
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+

√
T

n
[G′La

′
LaLGL]

−1
G′La

′
L

m∑
l=1

a
(l)
L b

Q
L,l

(
σ2

0

)
+ op (1)

= [G′La
′
LaLGL]

−1
G′La

′
L

√
LaLḡ

c,(u)
L (θ0)→d plimL→∞ΩL (a′LaL)

1
2 · ξ∗

where ΩL (a′LaL) = [G′La
′
LaLGL]−1G′La

′
LaLΣLa

′
LaLGL [G′La

′
LaLGL]−1, and

ξ∗˜N
(
0(2+P+K)×1, I2+P+K

)
which is independent with ΩL (a′LaL) since aL →p a0

and
√
La0ḡ

c,(u)
L (θ0) →d (a0Σ0a

′
0)−

1
2 · ξ∗ by Lemma B.2.19. Observe Ω0 (a′0a0) =

[G′0a
′
0a0G0]−1G′0a

′
0a0Σ0a

′
0a0G0 [G′0a

′
0a0G0]−1 is C-measurable. This completes the proof.

Q.E.D.

B.3. Spatial network formation

In contrast to conventional network formation models, an econometrician might

not observe the realized spatial network links. Hence, entries of Wnt are usually

prespecified by a researcher. Motivated by the gravity model in international trade

literature, we employ the following Cobb-Douglas specification for the spatial network

link at t+ 1, wt+1,ij: for i 6= j

wt+1,ij = d−αdij E−αet+1,ij

(
yjt
yit

)αw
· 1 {(i, j)nbd}

where αd, αe and αw are coefficients. Note that wt+1,ij can be interpreted as the

intensity (or amount) of the signal from i to j at time t+1. The expected signs of αd,

αe, and αw are positive. αd > 0 (or αe > 0) means that the geographic (or economic

distance) between i and j has a negative impact on wt+1,ij. If agent j chooses a large

amount of health expenditure relative to i at time t (i.e., large yjt
yit

), the intensity of

the signal from i to j (wt+1,ij) becomes large at time t+ 1.
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Since we attempt to estimate αd, αe, and αw with unobserved wt+1,ij, we con-

sider a proxy of the true spatial network link. By regional policy examples, demo-

graphic/economic flows can describe intensities of spatial network interactions. Figlio

et al. (1999) consider the state-to-state migration flows to identify which states are

neighbors. By the United States Census Bureau, we collect the data on the state-to-

state annual migration flows (from 2005 to 2016). To estimate αd, αe, and αw, we

consider the following specification by taking logarithm:

lnwmigrationt+1,ij = constant− αd ln dij − αe lnEt+1,ij + αw ln

(
yjt
yit

)
+ ζt+1,ij (B.23)

where wmigrationt+1,ij is the number of residents who live in state i at time t+ 1 but lived

in state j 1 year ago, and ζt+1,ij denotes a statistical error. For the statistical error

ζt+1,ij, we consider two specifications: (i) {ζt,ij} follows i.i.d. disturbances, and (ii)

ζt,ij = ci + cj + αt + ζ∗t,ij where ci is the i’s individual fixed effect, αt is the tth-period

time effect, and ζ∗t,ij denotes the i.i.d. disturbance.

Table 3.3 shows the estimation results. For both specifications, all the coefficients

are significant under the 10% significance level. For interpretations, focus on specifi-

cation (2). First, the intensity of interaction decreses by 2.0421% when dij increases

by 1%. Second, increasing Et,ij by 1% leads to decreasing wt,ij by 0.1313%. Those

two observations can show the yardstick competition because wmigrationt,ij will be large

if i and j are (geographically or economically) similar. Note that the third observa-

tion can show the welfare motivated move. If state j spends more money on health

relative to that of i at time t (i.e., high
(
yjt
yit

)
), the migration flow from i to j at

time t + 1 (wmigrationt+1,ij ) will be large. Then, we can investigate the marginal effect of
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changing yit (or yjt) on wt+1,ij. Observe that

∂wt+1,ij

∂yit
= (−αe)

wt+1,ij

Et+1,ij

ψ0sgn (zi,t+1 − zj,t+1) + (−αw)
wt+1,ij

yit

where ψ0sgn (zi,t+1 − zj,t+1) = ∂Et+1,ij

∂yit
. The first part comes from changing Et+1,ij

via changing zi,t+1. The second part is originated from changing the relative health

expenditure yjt
yit

.
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Appendix C: Appendix for Chapter 4

C.1. Solutions to the algebraic matrix Riccati equations

Theoretical foundations of the infinite horizon problem with spatial interactions

can be found in Jeong and Lee (2018). At first, we apply the backward induction

method. Assume that the initial condition (Yn,t−1, ηnt) is given and fixed. For the

followers, an arbitrary follower i is chosen and fixed. Throughout this section, the

superscript (j) denotes the iteration numbers.

First iterated components

We set V
F,(0)
i = 0 and V L,(0) = 0 as the initial iteration. Let Ii = eie

′
i. For the

derivations, the following representation for ui (Ynt, Yn,t−1, ηit) is useful:

ui (Ynt, Yn,t−1,b
∗
nt, ηit)

=
(
ηnt + Φn,0b

∗
nt + (γ0In + ρ0Wn)Yn,t−1 +

(
λ0Wn −

1

2
In

)
Ynt

)′
IiYnt

−γ0

2
Y ′n,t−1IiYn,t−1.

Consider the first iterated value for the follower i:

V
F,(1)
i

(
Yn,t−1,b

∗,(1)
nt , ηnt

)
(C.1)

= Y ′n,t−1Q
F,(1)
i Yn,t−1 + Y ′n,t−1L

F,b,(1)
i b

∗,(1)
nt + Y ′n,t−1L

F,η,(1)
i ηnt
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+b
∗,(1)′
nt Q

F,b,(1)
i b

∗,(1)
nt + b

∗,(1)′
nt L

F,b,η,(1)
i ηnt + η′ntQ

F,η,(1)
i ηnt + c

F,(1)
i

where Q
F,(1)
i = 1

2

(
A(1)′
n IiA(1)

n − γ0Ii
)
, L

F,b,(1)
i = A(1)′

n IiB(1)
n , L

F,η,(1)
i = A(1)′

n IiC(1)
n ,

Q
F,b,(1)
i = 1

2
B(1)′
n IiB(1)

n , L
F,b,η,(1)
i = B(1)′

n IiC(1)
n , Q

F,η,(1)
i = C(1)′

n IiC(1)
n , c

F,(1)
i = 0,

RF,(1)
n = Sn, A(1)

n =
(
RF,(1)
n

)−1
(γ0In + ρ0Wn), B(1)

n =
(
RF,(1)
n

)−1
Φn,0, and C(1)

n =(
RF,(1)
n

)−1
. For the above, S−1

n = In + λ0WnS
−1
n is employed. b

∗,(1)
nt denotes the

maximizer of the leader’s optimization problem at the first iteration. Note that

Y
∗,(1)
nt = A(1)

n Yn,t−1 +B(1)
n b

∗,(1)
nt + C(1)

n ηnt is the vector of maximizers satisfying (C.1).

By the backward induction method, the next step is to verify the first iterated

value function of the leader, V L,(1):

V L,(1) (Yn,t−1, ηnt, τnt)

= Y ′n,t−1Q
L,(1)
n Yn,t−1 + Y ′n,t−1L

L,(1)
n ηnt + Y ′n,t−1L

L,τ,(1)
n τnt

+η′ntQ
L,η,(1)
n ηnt + τ ′ntQ

L,τ,(1)
n τnt + τ ′ntL

L,τ,η,(1)
n ηnt + cL,(1)

n

where cL,(1)
n = 0, QL,(1)

n =
∑n
k=1Q

L,(1)
n,k , LL,(1)

n =
∑n
k=1 L

L,(1)
n,k , LL,τ,(1)

n =
∑n
k=1 L

L,τ,(1)
n,k ,

QL,η,(1)
n =

∑n
k=1Q

L,η,(1)
n,k , QL,τ,(1)

n =
∑n
k=1Q

L,τ,(1)
n,k , LL,τ,η,(1)

n =
∑n
k=1 L

L,τ,η,(1)
n,k ,

Q
L,(1)
n,k =

(
γ0In + ρ0Wn + Φn,0D

(1)
n

)′
Ik
(
A(1)
n +B(1)

n D(1)
n

)
+
(
A(1)
n +B(1)

n D(1)
n

)′ (
λ0Wn −

1

2
In

)′
Ik
(
A(1)
n +B(1)

n D(1)
n

)
− γ0

2
Ik

−1

2
D(1)′
n IkD(1)

n ,

L
L,(1)
n,k =

(
A(1)
n +B(1)

n D(1)
n

)′
Ik
(
In + Φn,0E

(1)
n

)
+
(
γ0In + ρ0Wn + Φn,0D

(1)
n

)′
Ik
(
C(1)
n +B(1)

n E(1)
n

)
−
(
A(1)
n +B(1)

n D(1)
n

)′
IkSLn

(
C(1)
n +B(1)

n E(1)
n

)
−D(1)′

n IkE(1)
n ,

L
L,τ,(1)
n,k = D(1)′

n Φn,0IkB(1)
n F (1)

n +
(
A(1)
n +B(1)

n D(1)
n

)′
IkΦn,0F

(1)
n

−
(
A(1)
n +B(1)

n D(1)
n

)′
IkSLnB(1)

n F (1)
n −D(1)′

n IkF (1)
n +D(1)′

n Ik,
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Q
L,η,(1)
n,k =

(
In + Φn,0E

(1)
n

)′
Ik
(
C(1)
n +B(1)

n E(1)
n

)
+ (γ0In + ρ0Wn)′ IkB(1)

n F (1)
n

+
(
C(1)
n +B(1)

n E(1)
n

)′ (
λ0Wn −

1

2
In

)′
Ik
(
C(1)
n +B(1)

n E(1)
n

)
−1

2
E(1)′
n IkE(1)

n ,

Q
L,τ,(1)
n,k = F (1)′

n Φn,0IkB(1)
n F (1)

n +
(
B(1)
n F (1)

n

)′ (
λ0Wn −

1

2
In

)′
IkB(1)

n F (1)
n

−1

2
F (1)′
n IkF (1)

n + IkF (1)
n ,

L
L,τ,η,(1)
n,k =

(
B(1)
n F (1)

n

)′
Ik
(
In + Φn,0E

(1)
n

)
+ F (1)′

n Φn,0Ik
(
C(1)
n +B(1)

n E(1)
n

)
−
(
B(1)
n F (1)

n

)′
IkSLn

(
C(1)
n +B(1)

n E(1)
n

)
− F (1)′

n IkE(1)
n + IkE(1)

n ,

RL,(1)
n = In −B(1)′

n Φn,0 − Φn,0B
(1)
n +B(1)′

n SLnB
(1)
n ,

D(1)
n =

(
RL,(1)
n

)−1 [(
Φn,0 −B(1)′

n SLn
)
A(1)
n +B(1)′

n (γ0In + ρ0Wn)
]
,

E(1)
n =

(
RL,(1)
n

)−1 [(
Φn,0 −B(1)′

n SLn
)
C(1)
n +B(1)′

n

]
,

and F (1)
n =

(
RL,(1)
n

)−1
. Note that b

∗,(1)
nt = D(1)

n Yn,t−1+E(1)
n ηnt+F

(1)
n τnt for the relations

above.

Limiting algebraic matrix Riccati equations

Starting with the first iterated results, we generate the following matrix Riccati

equations by mathematical induction. First of all, we consider the following Bellman

equation (recursive relation):

V F
i (Yn,t−1,b

∗
nt, ηnt)

=
(
ηnt + Φn,0b

∗
nt + (γ0In + ρ0Wn)Yn,t−1 +

(
λ0Wn −

1

2
In

)
Y ∗nt

)′
IiY ∗nt
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−γ0

2
Y ′n,t−1IiYn,t−1

+δEt

[
Y ∗′ntQ

F
i Y
∗
nt + Y ∗′ntL

F,b
i b∗n,t+1 + Y ∗′ntL

F,η
i ηn,t+1

+b∗′n,t+1Q
F,b
i b∗n,t+1 + b∗′n,t+1L

F,b,η
i ηn,t+1 + η′n,t+1Q

F,η
i ηn,t+1 + cFi

]

where b∗n,t+1 = DnY
∗
nt + Enηn,t+1 + Fnτn,t+1, Y ∗nt = AnYn,t−1 + BnYn,t−1 + Cnηnt,

An = limj→∞A
(j)
n , Bn = limj→∞B

(j)
n , Cn = limj→∞C

(j)
n , Dn = limj→∞D

(j)
n , En =

limj→∞E
(j)
n , Fn = limj→∞ F

(j)
n , QF

i = limj→∞Q
F,(j)
i , LF,bi = limj→∞ L

F,b,(j)
i , LF,ηi =

limj→∞ L
F,η,(j)
i , QF,b

i = limj→∞Q
F,b,(j)
i , LF,b,ηi = limj→∞ L

F,b,η,(j)
i , QF,η

i = limj→∞Q
F,η,(j)
i ,

and cFi = limj→∞ c
F,(j)
i . Since both types of agents have the LQ payoff functions, all

components of the algebraic Riccati equations (practical as well as limit versions) do

not rely on the state variables, (Yn,t−1, ηnt).
175 Then, we have the recursive formula-

tions

QF
i = (γ0In + ρ0Wn)′ IiAn −

γ0

2
Ii + A′n

(
λ0Wn −

1

2
In

)′
IiAn

+δ
[
A′nQ

F
i An + A′nD

′
nQ

F,b
i DnAn

]
,

LF,bi = A′nIiΦn,0 + (γ0In + ρ0Wn)′ IiBn − A′nSLnIiBn

+δ

 A′n
(
QF
i +QF ′

i

)
Bn + A′n

(
LF,bi Dn +D′nL

F,b′
i

)
Bn

+A′nD
′
n

(
QF,b
i +QF,b′

i

)
DnBn

 ,

LF,ηi = A′nIi + (γ0In + ρ0Wn)′ IiCn − A′nSLnIiCn

+δ


A′n

(
QF
i +QF ′

i

)
Cn

+A′n
(
LF,bi (DnCn + π0En) +D′nL

F,b′
i Cn

)
+π0A

′
nL

F,η
i + A′nD

′
n

(
QF,b
i +QF,b′

i

)
(DnCn + π0En)

+π0A
′
nD
′
nL

F,b,η
i

 ,

QF,b
i = B′nIiΦn,0 +B′n

(
λ0Wn −

1

2
In

)′
IiBn

+δ
[
B′nQ

F
i Bn +B′nL

F,b
i DnBn +B′nD

′
nQ

F,b
i DnBn

]
,

175That is, each component of the algebraic matrix Riccati equations is a function of the parameters
and Wn.
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LF,b,ηi = B′nIi + Φn,0IiCn −B′nSLnIiCn,

+δ


B′n

(
QF
i +QF ′

i

)
Cn

+B′n
(
LF,bi (DnCn + π0En) +D′nL

F,b′
i Cn

)
+π0B

′
nL

F,η
i +B′nD

′
n

(
QF,b
i +QF,b′

i

)
(DnCn + π0En)

+π0B
′
nD
′
nL

F,b,η
i

 ,

and

QF,η
i = C ′nIi + C ′n

(
λ0Wn −

1

2
In

)′
IiCn

+δ


C ′nQ

F
i Cn + C ′nL

F,b
i (DnCn + π0En) + π0C

′
nL

F,η
i

+C ′nD
′
nQ

F,b
i DnCn + π0C

′
nD
′
n

(
QF,b
i +QF,b′

i

)
En

+π0 (DnCn + π0En)′ LF,b,ηi + π2
0Q

F,η
i

 .
Define

QF,∗
n = [

(
QF

1 +QF ′
1

)
e1, · · · ,

(
QF
n +QF ′

n

)
en],

LF,b,∗n = [LF,b′1 e1, · · · , LF,b′n en],

and

LF,η,∗n = [LF,η′1 e1, · · · , LF,η′n en].

Then,

RF
n = Sn − δQF,∗

n − δLF,b,∗n Dn,

An =
(
RF
n

)−1
(γ0In + ρ0Wn) , Bn =

(
RF
n

)−1
Φn,0,

and

Cn =
(
RF
n

)−1 [
In + δπ0

(
LF,b,∗n En + LF,η,∗n

)]
.

To obtain An, Bn, and Cn, we need to evaluate only
{
QF
i , L

F,b
i , LF,ηi

}n
i=1

. i.e., other

components in V F
i (Yn,t−1,b

∗
nt, ηnt) are not needed.
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V L,(1) (Yn,t−1, ηnt, τnt)

= Y ′n,t−1Q
L,(1)
n Yn,t−1 + Y ′n,t−1L

L,(1)
n ηnt + Y ′n,t−1L

L,τ,(1)
n τnt

+η′ntQ
L,η,(1)
n ηnt + τ ′ntQ

L,τ,(1)
n τnt + τ ′ntL

L,τ,η,(1)
n ηnt + cL,(1)

n

To obtain QF,∗
n , LF,b,∗n , and LF,η,∗n , however, we should verify Dn and En, which

characterize the leader’s optimal actions. In calculating Dn and En, the following

recursive relation is employed: given (Yn,t−1, ηnt, τnt)

V L (Yn,t−1, ηnt, τnt) = max
bnt


W0,t (bnt;Y

∗
nt, Yn,t−1, ηnt, τnt)

+δEt

 Y ∗′ntQ
L
nY
∗
nt + Y ∗′ntL

L
nηn,t+1 + Y ∗′ntL

L,τ
n τn,t+1

+η′n,t+1Q
L,η
n ηn,t+1 + τ ′n,t+1Q

L,τ
n τn,t+1

τ ′n,t+1L
L,τ,η
n ηn,t+1 + cLn




subject to Y ∗nt = AnYn,t−1 + Bnbnt + Cnηnt, where QL
n,k = limj→∞Q

L,(j)
n,k , LLn,k =

limj→∞ L
L,(j)
n,k , LL,τn,k = limj→∞ L

L,τ,(j)
n,k , QL,η

n,k = limj→∞Q
L,η,(j)
n,k , QL,τ

n,k = limj→∞Q
L,τ,(j)
n,k ,

LL,τ,ηn,k = limj→∞ L
L,τ,η,(j)
n,k , QL

n =
∑n
k=1 Q

L
n,k, L

L
n =

∑n
k=1 L

L
n,k, L

L,τ
n =

∑n
k=1 L

L,τ
n,k , QL,η

n =∑n
k=1Q

L,η
n,k , QL,τ

n =
∑n
k=1 Q

L,τ
n,k , LL,τ,ηn =

∑n
k=1 L

L,τ,η
n,k and cLn = limj→∞ c

L,(j)
n . Then, we

have the recursive relations:

QL
n,k = (γ0In + ρ0Wn + Φn,0Dn)′ Ik (An +BnDn)

+ (An +BnDn)′
(
λ0Wn −

1

2
In

)′
Ik (An +BnDn)− γ0

2
Ik

−1

2
D′nIkDn + δ

[
(An +BnDn)′QL

n,k (An +BnDn)
]
,

LLn,k = (An +BnDn)′ IkRe
n

+ (γ0In + ρ0Wn + Φn,0Dn)′ Ik (Cn +BnEn)

− (An +BnDn)′ IkSLn (Cn +BnEn)−D′nIkEn

+δ

[
(An +BnDn)′

(
QL
n,k +QL′

n,k

)
(BnEn + Cn)

+π0 (An +BnDn)′ LLn,k

]
,
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LL,τn,k = D′nΦn,0IkBnFn +
(
A(1)
n +B(1)

n D(1)
n

)′
IkΦn,0Fn

− (An +BnDn)′ IkSLnBnFn −D′nIkFn +D′nIk

+δ (An +BnDn)′
(
QL
n,k +QL′

n,k

)
BnFn,

QL,η
n,k = (Re

n)′ Ik (Cn +BnEn) + (γ0In + ρ0Wn)′ IkBnFn

+ (Cn +BnEn)′
(
λ0Wn −

1

2
In

)′
Ik (Cn +BnEn)− 1

2
E ′nIkEn

+δ

[
(BnEn + Cn)′QL,η

n,k (BnEn + Cn)

+π0 (BnEn + Cn)′ LLn,k + π2
0Q

L,η
n,k

]
,

QL,τ
n,k = F ′nΦn,0IkBnFn + (BnFn)′

(
λ0Wn −

1

2
In

)′
IkBnFn

−1

2
F ′nIkFn + IkFn

+δ (BnFn)′QL
n,kBnFn,

and

LL,τ,ηn,k = (BnFn)′ IkRe
n + F ′nΦn,0Ik (Cn +BnEn)

− (BnFn)′ IkSLn (Cn +BnEn)− F ′nIkEn + IkEn

+δ
[
(BnFn)′

(
QL
n,k +QL′

n,k

)
(Cn +BnEn) + π0 (BnFn)′ LLn,k

]
.

Note that Re
n = In + Φn,0En. The resulting Dn and En are

Dn =
(
RL
n

)−1 [(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
An +B′n (γ0In + ρ0Wn)

]
,

En =
(
RL
n

)−1 [
B′n

(
In + δπ0L

L
n

)
+
(
Φn,0 −B′n

(
SLn − δQL,∗

n

))
Cn
]

and Fn =
(
RL
n

)−1
where RL

n = In −B′nΦn,0 − Φn,0Bn +B′n
(
SLn − δQL,∗

n

)
Bn.
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Practical computation

Based on the above limit versions, we introduce a computing method for the

algebraic Riccati equations. In this part, hence, we only report the components

relevant to estimation. Note that the first iterated components were already revealed.

Suppose that the jth iterated components (j = 1, 2, · · ·) are revealed. Then, our

first interest is to verify the (j + 1)th-iterated components for the followers’ lifetime

problems:

Q
F,(j+1)
i = (γ0In + ρ0Wn)′ IiA(j+1)

n − γ0

2
Ii

+A(j+1)′
n

(
λ0Wn −

1

2
In

)′
IiA(j+1)

n

+δ
[
A(j+1)′
n Q

F,(j)
i A(j+1)

n + A(j+1)′
n D(j)′

n Q
F,b,(j)
i D(j)

n A(j+1)
n

]
,

L
F,b,(j+1)
i = A(j+1)′

n IiΦn,0 + (γ0In + ρ0Wn)′ IiB(j+1)
n − A(j+1)′

n SLnIiB(j+1)
n

+δ


A(j+1)′
n

(
Q
F,(j)
i +Q

F,(j)′
i

)
B(j+1)
n

+A(j+1)′
n

(
L
F,b,(j)
i D(j)

n +D(j)′
n L

F,b,(j)′
i

)
B(j+1)
n

+A(j+1)′
n D(j)′

n

(
Q
F,b,(j)
i +Q

F,b,(j)′
i

)
D(j)
n B(j+1)

n

 ,

L
F,η,(j+1)
i

= A(j+1)′
n Ii + (γ0In + ρ0Wn)′ IiC(j+1)

n − A(j+1)′
n SLnIiC(j+1)

n

+δ



A(j+1)′
n

(
Q
F,(j)
i +Q

F,(j)′
i

)
C(j+1)
n

+A(j+1)′
n

(
L
F,b,(j)
i

(
D(j)
n C(j+1)

n + π0E
(j)
n

)
+D(j)′

n L
F,b,(j)′
i C(j+1)

n

)
+π0A

(j+1)′
n L

F,η,(j)
i

+A(j+1)′
n D(j)′

n

(
Q
F,b,(j)
i +Q

F,b,(j)′
i

) (
D(j)
n C(j+1)

n + π0E
(j)
n

)
+π0A

(j+1)′
n D(j)′

n L
F,b,η,(j)
i


,

Q
F,b,(j+1)
i = B(j+1)′

n IiΦn,0 +B(j+1)′
n

(
λ0Wn −

1

2
In

)′
IiB(j+1)

n

+δ

[
B(j+1)′
n Q

F,(j)
i B(j+1)

n +B(j+1)′
n L

F,b,(j)
i D(j)

n B(j+1)
n

+B(j+1)′
n D(j)′

n Q
F,b,(j)
i D(j)

n B(j+1)
n

]
,
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and

L
F,b,η,(j+1)
i

= B(j+1)′
n Ii + Φn,0IiC(j+1)

n −B(j+1)′
n SLnIiC(j+1)

n ,

+δ



B(j+1)′
n

(
Q
F,(j)
i +Q

F,(j)′
i

)
C(j+1)
n

+B(j+1)′
n

(
L
F,b,(j)
i

(
D(j)
n C(j+1)

n + π0E
(j)
n

)
+D(j)′

n L
F,b,(j)′
i C(j+1)

n

)
+π0B

(j+1)′
n L

F,η,(j)
i

+B(j+1)′
n D(j)′

n

(
Q
F,b,(j)
i +Q

F,b,(j)′
i

) (
D(j)
n C(j+1)

n + π0E
(j)
n

)
+π0B

(j+1)′
n D(j)′

n L
F,b,η,(j)
i


,

where RF,(j+1)
n = Sn − δQF,∗,(j)

n − δLF,b,∗,(j)n D(j)
n , A(j+1)

n =
(
RF,(j+1)
n

)−1
(γ0In + ρ0Wn),

B(j+1)
n =

(
RF,(j+1)
n

)−1
Φn,0, and C(j+1)

n =
(
RF,(j+1)
n

)−1 [
In + δπ0

(
LF,b,∗,(j)n E(j)

n + LF,η,∗,(j)n

)]
.

Note that we omit reporting some components which are not relevant to the followers’

optimal actions.

Second, we calculate the (j + 1)th-iterated components relevant to the leader’s

optimal actions:

Q
L,(j+1)
n,k

=
(
γ0In + ρ0Wn + Φn,0D

(j+1)
n

)′
Ik
(
A(j+1)
n +B(j+1)

n D(j+1)
n

)
+
(
A(j+1)
n +B(j+1)

n D(j+1)
n

)′ (
λ0Wn −

1

2
In

)′
Ik
(
A(j+1)
n +B(j+1)

n D(j+1)
n

)
−γ0

2
Ik −

1

2
D(j+1)′
n IkD(j+1)

n

+δ
[(
A(j+1)
n +B(j+1)

n D(j+1)
n

)′
Q
L,(j)
n,k

(
A(j+1)
n +B(j+1)

n D(j+1)
n

)]
,

and

L
L,(j+1)
n,k

=
(
A(j+1)
n +B(j+1)

n D(j+1)
n

)′
Ik
(
In + Φn,0E

(j+1)
n

)
+
(
γ0In + ρ0Wn + Φn,0D

(j+1)
n

)′
Ik
(
C(j+1)
n +B(j+1)

n E(j+1)
n

)
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−
(
A(j+1)
n +B(j+1)

n D(j+1)
n

)′
IkSLn

(
C(j+1)
n +B(j+1)

n E(j+1)
n

)
−D(j+1)′

n IkE(j+1)
n

+δ

 (A(j+1)
n +B(j+1)

n D(j+1)
n

)′ (
Q
L,(j)
n,k +Q

L,(j)′
n,k

) (
B(j+1)
n E(j+1)

n + C(j+1)
n

)
+π0

(
A(j+1)
n +B(j+1)

n D(j+1)
n

)′
L
L,(j)
n,k


where QL,(j+1)

n =
∑n
k=1Q

L,(j+1)
n,k , LL,(j+1)

n =
∑n
k=1 L

L,(j+1)
n,k , RL,(j+1)

n = In−B(j+1)′
n Φn,0−

Φn,0B
(j+1)
n +B(j+1)′

n

(
SLn − δQL,∗,(j)

n

)
B(j+1)
n ,

D(j+1)
n =

(
RL,(j+1)
n

)−1
[ (

Φn,0 −B(j+1)′
n

(
SLn − δQL,∗,(j)

n

))
A(j+1)
n

+B(j+1)′
n (γ0In + ρ0Wn)

]
,

and

E(j+1)
n =

(
RL,(j+1)
n

)−1

 B(j+1)′
n

(
In + δπ0L

L,(j)
n

)
+
(
Φn,0 −B(j+1)′

n

(
SLn − δQL,∗,(j)

n

))
C(j+1)
n

 .
C.2. Large sample properties

Consistency

In this subsection, we discuss proving Theorem 4.4.1. The first step is to verify the

uniform convergence of sample average of the (concentrated) log-likelihood function.

i.e., supθ∈Θ

∣∣∣ 1
L

lnLL,c (θ)−QL (θ)
∣∣∣ →p 0 as L → ∞. Note that σ2 is bounded away

from zero. Then, the main part of 1
L

lnLL,c (θ)−QL (θ) is

1

L
{E ′L (θ) (JT ⊗ Jn) EL (θ)− E [E ′L (θ) (JT ⊗ Jn) EL (θ)]} .

Observe

(JT ⊗ Jn) EL (θ)

= (JT ⊗ Jn)


(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

(
RF
n

)−1
(γ0In + ρ0Wn + Φn,0Dn)

)
−
(
IT ⊗ (Re

n (θ1))−1 (γIn + ρWn + Φn,0Dn (θ1))
)

YL,−1

+ (JT ⊗ Jn)
(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

(
RF
n

)−1
)

XLβ0

+ (JT ⊗ Jn)
(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

(
RF
n

)−1
Re
n

)
(αL,0 + EL) .

251



Note that cL,0 is eliminated by the projector JT . By Assumptions 4.4.1-4.4.5, all

components in (JT ⊗ Jn) EL (θ) are bounded nonstochastic components or stochastic

components with their bounded variances and their uniformly bounded linear trans-

formations in n uniformly in θ ∈ Θ. As L→∞, it implies that

1

L
{E ′L (θ) (JT ⊗ Jn) EL (θ)− E [E ′L (θ) (JT ⊗ Jn) EL (θ)]} →p 0

uniformly in θ ∈ Θ.

The second step is showing uniform equicontinuity of {QL (θ)} in θ ∈ Θ. A

starting point of showing uniform equicontinuity of {QL (θ)} is to utilize the Taylor

approximation argument by continuous differentiability of QL (θ) obtained from As-

sumption 4.4.5 (i) and (ii). For θa, θb ∈ Θ, we can represent each component of QL (θ)

by (θa − θb) ·hL
(
θ̄
)

where θ̄ lies between θa and θb and hL (·) is uniformly bounded in

L and in Θ. Then, we can guarantee for the smooth function class {QL (θ)} in θ ∈ Θ.

Model identification

To finish the proof of consistency, we need to achieve identification uniqueness.

The key identification conditions will be derived based on the information inequality

(Rothenberg (1971)). For this, two definitions in Rothenberg (1971) are reproduced.

Definition C.2.1 For θ ∈ Θ, LL
(
θ| {Ynt}Tt=0

)
denotes the density function when we

have data {Ynt}Tt=0.

(i) θ′ and θ′′ in Θ are observationally equivalent if

LL
(
θ′| {Ynt}Tt=0

)
= LL

(
θ′′| {Ynt}Tt=0

)
a.e.

(ii) θ0 ∈ Θ is identifiable iff there is no observationally equivalent θ ∈ Θ.

We apply Definition C.2.1 to our case, the concentrated log likelihood function

lnLL,c (θ) since the information inequality argument is valid for the concentrated
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log-likelihood function. Even though our log-likelihood function is derived from nor-

mality on Ent, we will show that identification is also valid for the quasi log-likelihood

estimation method (i.e., free to the normal distribution assumption). Then, unique

identification of θ0 is based on two relations: (i) E (lnLL,c (θ)) ≤ E (lnLL,c (θ0)), and

(ii) LL,c (θ) = LL,c (θ0) a.e. in {Ynt}Tt=0 iff E (lnLL,c (θ)) = E (lnLL,c (θ0)).

Recall that

QL

(
θ1, β, σ

2
)

= −1

2
ln 2π − 1

2
lnσ2 +

1

n
ln
∣∣∣RF

n (θ1)
∣∣∣

− 1

n
ln |Re

n (θ1)| − 1

2σ2

1

L
E [E ′L (θ) (JT ⊗ Jn) EL (θ)]

where

EL (θ) =
(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

)
YL

−
(
IT ⊗ (Re

n (θ1))−1 (γIn + ρWn + Φn (φ)Dn (θ1))
)
YL,−1

−
(
IT ⊗ (Re

n (θ1))−1
)

XL (θ1) β.

Note that XL = XL (θ1,0). Let βL (θ1) = arg maxβ QL (θ1, β, σ
2). Then,

βL (θ1) =
[
XL (θ1)′

(
IT ⊗ (Re

n (θ1))−1′
)

(JT ⊗ Jn)
(
IT ⊗ (Re

n (θ1))−1
)

XL (θ1)
]−1

×XL (θ1)′
(
IT ⊗ (Re

n (θ1))−1′
)

(JT ⊗ Jn) E [ZL (θ1)]

where

ZL (θ1) =


(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

(
RF
n

)−1
(γ0In + ρ0Wn + Φn,0Dn)

)
−
(
IT ⊗ (Re

n (θ1))−1 (γIn + ρWn + Φn (φ)Dn (θ1))
)

YL,−1

+
(
IT ⊗ (Re

n (θ1))−1RF
n (θ1)

(
RF
n

)−1
)

XLβ0.

If θ1 = θ1,0, ZL (θ1,0) =
(
IT ⊗ (Re

n)−1
)

XLβ0 and βL (θ1,0) = β0. Then,

(JT ⊗ Jn) E
[
ZL (θ1)−

(
IT ⊗ (Re

n)−1
)

XLβ0

]
for θ1 ∈ Θ1\ {θ1,0} is the main part of
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the misspecification error for (JT ⊗ Jn)
(
IT ⊗ (Re

n)−1
)

XLβ0. If identification for θ1,0

is done, we need to have the existence and positive definiteness of

limL→∞
1
L
X′L

(
IT ⊗ (Re

n)−1′
)

(JT ⊗ Jn)
(
IT ⊗ (Re

n)−1
)

XL. Observe that identification

of β0 does not rely on normality of Ent. It comes from (i) plimL→∞θ̂1,nT = θ1,0 (large

sample) and (ii) sufficient variations in (JT ⊗ Jn)
(
IT ⊗ (Re

n)−1
)

XL. Using βL (θ1),

we define EL (θ1) = EL (θ1, βL (θ1)) for each θ1 ∈ Θ1.

Consider unique identification of θ1,0. For this, note that

σ2
L (θ1) = arg max

σ2
QL

(
θ1, βL (θ1) , σ2

)
=

1

L
E [E ′L (θ1) (JT ⊗ Jn) EL (θ1)] .

Then, the concentrated expected log-likelihood function for θ1 is

QL,c (θ1) ≡ QL

(
θ1, βL (θ1) , σ2

L (θ1)
)

= −1

2
(ln 2π + 1)− 1

2
lnσ2

L (θ1) +
1

n
ln
∣∣∣RF

n (θ1)
∣∣∣− 1

n
ln |Re

n (θ1)| .

At θ1 = θ1,0, QL,c (θ1,0) = −1
2

(ln 2π + 1) − 1
2

lnσ2
0 + 1

n
ln
∣∣∣RF

n

∣∣∣ − 1
n

ln |Re
n|. The iden-

tification uniqueness condition is derived by the sequence of nonstochastic functions

{QL,c (θ1)}: for arbitrary ε > 0,

lim sup
L→∞

max
θ1∈N c(θ1,0,ε)

[QL,c (θ1)−QL,c (θ1,0)] < 0,

where N c (θ1,0, ε) denotes the complement of an open neighborhood of Θ1 of radius

ε > 0. Consider

QL,c (θ1)−QL,c (θ1,0)

= −
(
lnσ2

L (θ1)− lnσ2
0

)
+

1

n

(
ln
∣∣∣RF

n (θ1)
∣∣∣− ln

∣∣∣RF
n

∣∣∣)− 1

n
(ln |Re

n (θ1)| − ln |Re
n|)

=
1

n
ln
∣∣∣∣σ0

(
RF
n

)−1
Re
n

∣∣∣∣− 1

n
ln
∣∣∣∣σL (θ1)

(
RF
n (θ1)

)−1
Re
n (θ1)

∣∣∣∣
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=
1

2


1
n

ln
∣∣∣∣σ2

0

(
RF
n

)−1
Re
nR

e′
n

(
RF
n

)−1′
∣∣∣∣

− 1
n

ln
∣∣∣∣σ2
L (θ1)

(
RF
n (θ1)

)−1
Re
n (θ1)Re

n (θ1)′
(
RF
n

)−1′ (
RF
n (θ1)

)−1′
∣∣∣∣
 .

Under large L, the unique identification condition for θ1,0 is achieved if

lim
L→∞


1
n

ln
∣∣∣∣σ2

0

(
RF
n

)−1
Re
nR

e′
n

(
RF
n

)−1′
∣∣∣∣

− 1
n

ln
∣∣∣∣σ2
L (θ1)

(
RF
n (θ1)

)−1
Re
n (θ1)Re

n (θ1)′
(
RF
n

)−1′ (
RF
n (θ1)

)−1′
∣∣∣∣
 6= 0

(C.2)

for θ1 6= θ1,0 is satisfied. Observe that unique identification condition for θ1,0 by (C.2)

does not rely on the normal distribution assumption on Ent.

Asymptotic normality

As the intermediate procedures of deriving the asymptotic distribution of θ̂L, we

report the components of 1√
L

∂ lnLL,c(θ0)

∂θ
and asymptotic bias parts.

First-order derivatives of the concentrated log-likelihood function

For notational convenience, we define Fn (θ1) satisfying Xnt (θ1) = Fn (θ1)Xnt for

each θ1 ∈ Θ. At θ1,0, we denote Fn = Fn (θ1). Observe that

(JT ⊗ Jn)YL = (JT ⊗ Jn)
(
IT ⊗

(
RF
n

)−1
(γ0In + ρ0Wn + Φn,0Dn)

)
YL,−1

+ (JT ⊗ Jn)
(
IT ⊗

(
RF
n

)−1
Fn

)
XLβ0

+ (JT ⊗ Jn)
(
IT ⊗

(
RF
n

)−1
Re
n

)
(αL,0 + EL) .

A useful formula here is ∂ ln|An(x)|
∂x

= tr
(
A−1
n (x) ∂An(x)

∂x

)
and

∂A−1(x)
∂x

= −A−1 (x) ∂A(x)
∂x

A−1 (x). A subscript to each each parameter value represents

a partial derivative, e.g., Re
n,λ (θ1) = ∂Ren(θ1)

∂λ
. Then,
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∂ lnLL,c(θ0)

∂λ
=

1
σ2
0


IT ⊗

 − [(Re
n)−1RF

n

]
λ

(
RF
n

)−1
(γ0In + ρ0Wn + Φn,0Dn)

+
[
(Re

n)−1 (γ0In + ρ0Wn + Φn,0Dn)
]
λ

YL,−1

+
(
IT ⊗−

[
(Re

n)−1RF
n

]
λ

(
RF
n

)−1
Fn +

[
(Re

n)−1 Fn
]
λ

)
XLβ0

+
(
IT ⊗−

[
(Re

n)−1RF
n

]
λ

(
RF
n

)−1
Re
n

)
αL,0



′

· (JT ⊗ Jn) EL

+ 1
σ2
0

 E
′
L

(
IT ⊗−Re′

n

(
RF
n

)−1′ [
(Re

n)−1RF
n

]′
λ

)
(JT ⊗ Jn) EL

−Tσ2
0tr

(
−
(
RF
n

)−1
RF
n,λ

)
+ Tσ2

0tr
(
− (Re

n)−1Re
n,λ

)


,

∂ lnLL,c(θ0)

∂β
= 1

σ2
0
X ′L

(
IT ⊗

(
RF
n

)−1
Fn

)′
(JT ⊗ Jn) EL,

∂ lnLL,c(θ0)

∂σ2 = 1
2σ4

0
[E ′L (JT ⊗ Jn) EL − Lσ2

0].

Other parts,
∂ lnLL,c(θ0)

∂γ
,
∂ lnLL,c(θ0)

∂ρ
, and

∂ lnLL,c(θ0)

∂φ
, take the similar form to

∂ lnLL,c(θ0)

∂λ

(i.e., a LQ form of EL).

Asymptotic distribution of θ̂L

Deriving the asymptotic distribution of θ̂L follows the conventional argument for

an extremum estimator. The argument is almost similar to that of Jeong and Lee

(2018). Here is a sketch of the argument. By the Taylor expansion, we have

√
L
(
θ̂L − θ0

)
=

− 1

L

∂2 lnLL,c
(
θ̄L
)

∂θ∂θ′

−1 1√
L

∂ lnL
(u)
L,c (θ0)

∂θ
−∆1,L −∆2,L

 (C.3)

where θ̄L lies between θ0 and θ̂L. Since θ̂L →p θ0 and − 1
L

∂2 lnLL,c(θ)

∂θ∂θ′
is a continuous

function of θ, we have − 1
L

∂2 lnLL,c(θ̄L)
∂θ∂θ′

− Σθ0,L = op (1). By Lemmas 2.1 and 2.2 in

the supplementary file of Jeong and Lee (2018), ∆1,L =
√

n
T
an,1 (θ0) + op (1) and

∆2,L =
√

T
n
an,2 (θ0). Hence, (C.3) can be rewritten as

√
L
(
θ̂L − θ0

)
= (Σθ0,L + op (1))−1

 1√
L

∂ lnL
(u)
L,c(θ0)

∂θ
−
√

n
T
an,1 (θ0)

−
√

T
n
an,2 (θ0) + op (1)

 (C.4)

⇔
√
L
(
θ̂L − θ0

)
+

√
n

T
Σ−1
θ0,L

an,1 (θ0) +

√
T

n
Σ−1
θ0,L

an,2 (θ0) + op (1)
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= Σ−1
θ0,L

1√
L

∂ lnL
(u)
L,c (θ0)

∂θ
.

Note that (C.4) implies that θ̂L− θ0 = Op

(
max

{
1√
L
, 1
n
, 1
T

})
(i.e., convergence rate of

θ̂L).

The last part is to characterize the asymptotic distribution of 1√
L

∂ lnL
(u)
L,c(θ0)

∂θ
. We

observe that the components in 1√
L

∂ lnL
(u)
L,c(θ0)

∂θ
take a LQ form of EL. By applying the

martingale CLT for a LQ form (Yu et al. (2008)), we have 1√
L

∂ lnL
(u)
L,c(θ0)

∂θ
→d N (0,Ωθ0).

By the Slutsky’s lemma, we can finish the argument.
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