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Abstract

In crystalline materials, the symmetry of the crystal lattice imposes strict conditions

on the observable properties of the material. These symmetry restricted conditions can be,

in turn, probed by light via the electromagnetic interaction. Studying the electromagnetic

excitations in solids can reveal many fundamental properties of these systems. A quick

introduction and guide to symmetry in solids will be given, with an emphasis on how it can

be used to interpret spectroscopic measurements. The measurement techniques used will

also be described. Time domain Terahertz spectroscopy (TDTS) is the main technique used

in this dissertation. Important experimental considerations pertaining to the construction

of the THz spectrometer will be given.

In the multiferroic Sr2FeSi2O7, we found multiple excitations in the few meV energy

scale (THz), in the material’s paramagnetic phase. Measurements with varying tempera-

ture and magnetic field revealed that these excitations are both electric and magnetic dipole

active. By considering the ground state of the Fe2+ magnetic ion in Sr2FeSi2O7, we con-

cluded that our observation is coming from the spin-orbital coupled states of the ion. This

realization demonstrated that spin-orbit coupling plays a crucial role in these exotic mate-

rials. Interestingly, these spin-orbital THz excitations persist into the magnetically ordered

phase. The single-ion picture of the paramagnetic phase needs to be expanded theoretically

to explain our observations.

CaFe2O4 orders antiferromagnetically below ∼ 200 K. Two co-existing magnetic struc-

tures (A and B phase) have been measured previously by neutron diffraction. The anti-phase

boundaries between these two phases have been proposed to be the cause of the quantized

magnetic excitations (magnons) measured by an inelastic neutron scattering study. We
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measured two antiferromagnetic resonances (magnons) with TDTS. Our observation can

be explained by the orthorhombic crystal anisotropy of CaFe2O4. Mean field classical spin

wave analysis confirmed that indeed the magnon modes come from the low symmetry of

the crystal. These two modes were found to have the same temperature dependence of only

the magnetic B phase. We did not observe the hierachy of quantized magnon modes as

previously reported. However, our measurements offered a hint of another magnon mode

that show temperature dependence similar to the other magnetic structure, A phase.

In the last study, we demonstrated the lattice symmetry breaking effects on the Raman

phonon spectrum of α-RuCl3 at room temperature. The Raman spectrum shows multiple

pairs of phonon peaks with approximately 2 cm−2 (0.248 meV or ≈ 60 GHz) apart. This

observation can be explained by the symmetry lowering effect when going from a perfect

honeycomb layer (D3d point group symmetry), to the monoclinic bulk crystal (C2h). Fur-

thermore, because of the honeycomb layer structure, this material is a host candidate for

the long-sought-after Kitaev quantum spin liquid. Following previous experimental and

theoretical studies with Raman spectroscopy on α-RuCl3, we concluded from our data that

the scattering continuum is magnetic in origin, with little to no quasi-elastic scattering

contribution.
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Chapter 1

Introduction

1.1 General concepts

What is spectroscopy?

First, we can define spectroscopy as the study of the interaction between light and

matter. The rainbow of colors that human can see is called the visible spectrum. It turns

out that the human eyes are spectrometers. We are engaging in spectroscopic measurements

when we are using our eyes to perceive the world around us. For example, while looking at

a red box, a person’s eyes would be detecting the electromagnetic (EM) waves coming from

the box, with frequencies corresponding to the color red. It is important to point out that

in order to see, some light source has to be present. Human are not able to see any color

(in fact at all) in darkness. In the presence of daylight or adequate indoor lighting, we can

discern if a box is red, or blue, or any color of the rainbow.

At this point, one might ask: why does the red paint looks red? After reflecting off

the surface of a painted objects, the light spectrum that enters the eyes contains mostly

EM waves corresponding to red. One might note that the light source illuminating the

painted object might appear to be colorless, or at least not purely red. We automatically

make these observations in our daily lives. The purpose can be as primal as noticing

a dangerously hot surface, to as utilitarian as color coding your luggage. Furthermore,

systematically comparing the EM spectrum coming directly from the light source and the

spectrum reflected off the painted surface can provide important information about the

1



chemical makeup of the paint.

At this point, two important components to spectroscopy should stand out, a spec-

trometer (the human eyes) and a light source (the sun). With these two components, we go

about our daily lives subjecting everything we encounter under a close study, albeit without

much concious effort. As you will find out in the rest of this thesis, I will give a summary

of important findings from my spectroscopic study of a variety of solids. Although the

spectrometers and light sources that I have used are designed for colors that human eyes

cannot see, the same principles still apply.

Figure 1.1: Electromagnetic spectrum[1]. One of the pillars in modern physics is the
discovery of the speed of light. This massless particle, that also behaves like a wave, has a
constant speed in vaccuum, c. This number has recently been defined to be a standard so
that other measurement units (meter, second, etc.) are based on it. Given the wave nature
of light, they wavelength can vary infinitely from smaller than the size of an atom to larger
than the height of a skyscraper. The human eye operates at a much narrower wavelength
range in between. Many interesting phenomena in physics happen beyond what the human
eyes can perceive.
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Some history

In the 1600s, Sir Issac Newton used a glass prism to make the observation that sunlight is

made up of many color. Then in the 1800s, William Herschel extended this idea, establishing

that there exists ”colors” we cannot see. At the beginning of the 20th century, J.K. Maxwell

showed us that light is an electromagnetic wave. Max Planck and Einstein took it a step

further and proposed an idea that there is a fundamental unit in a beam of light, a photon,

each carries a discrete amount of energy, which is proportional to its frequency.

Our modern understanding of light have been well tested. We know that the speed of

light in vacuum is a fundamental constant of nature. The basic equation of waves relating

its frequency f (how fast the wave goes up and down) to its wavelength λ (distance from

crest to crest) is: λf = c. c is the speed of light. It stands to reason that the wavelength

and frequency, λ and f, tell us the same information in vacuum. The problem becomes more

interesting when light enter a medium. That is where spectroscopy comes in.

To go back to the discovery of Max Planck, the quantum of energy that light carry

is directly proportional to its frequency f (the proportionality constant is named after

Max Planck). The law of conservation of energy tells us that f should not change when

light goes from vacuum to a medium. Hence, studying the spectrum should reveal to us

what frequency of light is missing due to the medium. In this simplified picture, there

is a phenomena inside the medium that absorb certain frequency of light. The job of an

optical spectroscopist is to exploit the interaction between light and matter to probe such

properties matter.

1.2 Spectroscopy in condensed matter physics

Condensed matter (CM) is a sub-discipline in physics. A short history lesson about

condensed matter physics can be found in the Jan 2019 publication of Physics Today[9].

This branch of physics focuses on the many emergent phases of matter that exists in solid.

Why do we do this? Many phenomena in CM physics of great interest can be studied

with optical spectroscopy 1.2. The drive can easily come from the search for a fundamental
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Figure 1.2: Some interesting phenomena in the infrared and far-infrared spec-
trum in condensed matter physics[2]. From the more exotic high Tc superconductor’s
Josephson plasmons to more common carrier lifetimes in metals and semiconductors, in-
frared and far-infrared (THz) spectroscopy is the perfect tool to study these phenomena in
solids.

physical law to a more application-centric perspective, often times both. To narrow down

the scope, the focus of my Ph.D. research has been on phenomena that has its energy

characteristic in the far infrared. Within this energy range, magnetic and lattice vibration

resonances are my primary focus. I will attempt to give a general introduction to these

phenomena. Detailed description can be found in most condensed matter/solid states text

book (like this one by Ashcroft and Mermin [10]).

Resonances in crystalline solids

Examples of resonant phenomena can be seen in our daily lives. It can be as simple as

a guitar string producing a ”pure” sound, or the near constant swing of a clock pendulum.

Anyone who has pushed a child on a swing set would recognize that there is a ”right”

time to push. In physics the model concept for resonances is a mass on a spring. As one
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displace the mass from its equilibrium position (if placed in this position, the mass and

spring would remain there forever), the spring force (related to how stiff it is) would pull

or push the mass back to it’s equilibrium. It turns out that this simple concept is the

basis to understand many physical phenomena. We can almost always relate resonances to

something that resembles a spring constant k (stiffness of the spring) and a mass m. The

natural frequency (resonant frequency) is proportional to the square root of k/m.

For example, one can think of a solid as many atoms connected by springs. The end

result is that there are natural frequencies at which this model solid would vibrate at.

If we change the atoms to a heavier type, we should expect the resonant frequencies to

become lower. In a real solid, the situation is much more complicated. As different atoms

have different masses and sizes, the ”springs” that hold them together could also change.

However, this simple and intuitive concept is a great place to start when trying to make sense

of spectroscopic data. What I’ve mentioned is the simplest model of a phonon. Phonons

are resonant or normal modes of vibration in a crystal.

What is a crystal? The basic definition is the regular, well-defined arrangement of atoms.

A perfect crystal is made up of perfectly stacked, identical unit cells, each containing a few

to several hundreds of atoms. The unit cells form a periodic lattice, and stacked in such a

way that it would fill in all the space. Although not a perfect analogy, one can think of the

unit cells as boxes of identical shape, and the lattice is the periodic pattern that you can

stack them. It turns out that there are only a few shapes that would fit together perfectly

so that there would be no gap. A good example of a shape that would leave gaps is the

pentagram in 2 dimensions. Although finding all the shapes that would fit our criteria is

an interesting discussion, the details are outside the scope of this thesis. In 3 dimensions,

there are only 14 lattice types. These Bravais Lattices define the shapes of the unit cells

and are the basic building patterns of crystals.

A phonon is considered a cooperative phenomenon, where all the atoms in the crystalline

lattice vibrate together. Phonons are often studied as a way to probe the type of crystalline

lattice, or any changes to the lattice that might occur as a function of temperature. There

are many other cooperative phenomena in solids (some are seen in fig. 1.2). Magnon is
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another type that’s associated with magnetism. If we imagine each atom on a lattice having

a small magnetic moment (tiny magnet), and the moments have a way to talk to each other

like the chemical bonds between atoms, then a small uniform precession is the magnon (in

contrast to the phononic vibration). Studying these phenomena is a great way to probe the

fundamental properties of condensed matter systems.

Some spectroscopic techniques to probe phonons and magnons

Fortunately, the electromagnetic force is a fundamental one. Barring the more elusive

and exotic dark matter, ordinary matter interacts with each other via these fundamental

forces. This means that spectroscopy can be performed on any ordinary matter. The

experiment can be a simple one: shine light onto solid and measure light scattered off of

solid. Unfortunately, there are many phenomena that would affect the electromagnetic

spectrum. There is a trade-off between how simple the experiment is and how difficult it

is to interpret the result. As experimentalists, we can devise more complicated schemes to

eliminate possible causes to the result.

The simplest experiment can be done with a light source and a spectrometer. In the

infrared regime, Fourier Transform Infrared Spectroscopy (FTIR) is a widely used technique.

Here, a sample is placed between a heat lamp (not unlike an incandescent light bulb) and an

interferometric spectrometer (a special technique that allows the measurement of a spectrum

from near visible to ”far infrared” light). Time-domain Terahertz spectroscopy is similar in

experimental simplicity to FTIR. However, the detection of THz frequency spectrum (0.1-3

THz) is easier and less costly than with an FTIR. Our group at Ohio State University

has the experimental expertise in THz spectroscopy. Raman spectroscopy is typically a

complemental technique to FTIR (and THz) in determining the phonon spectrum of a

material. Some details will be given in the next section.
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Chapter 2

Basic theory of light-matter
interaction in solids

What we are interested in studying is how an electromagnetic(EM) wave interacts with

solids. The macroscopic treatment of Maxwell’s equation in a medium can be seen in most

Electromagnetism textbooks. I will highlight some important points as a guide to later

discussions. Just to note, everything is written in Gaussian unit.

2.1 Electromagnetic waves in solids

One of the great discoveries in physics is the description of light as an electromagnetic

wave by James Clerk Maxwell. In this section, a brief introduction to how light behave

in solids will be given. The units are in CGS and no assumption about µ is made. This

introduction is adequate to showcase the type of information that can be extracted from a

spectroscopic measurement. Starting with the plane wave solution to Maxwell’s equations

in vacuum:

E(r, t) = E0e
−i(k0·r−ωt)

B(r, t) = B0e
−i(k0·r−ωt)

ωB0 = k0 ×E0

(2.1)

Here, E and B are the electric and magnetic field; r and t are position and time coordi-

nate; k0 = 2π/λ and ω = 2π/f are the wave vector and angular frequency. E0 and B0 are
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vectors. These vectors are transversed to the wave vector for plane waves. One can define

the unit vector of the electric field e:

E0 = E0e = E0


ẽi

ẽj

ẽk


k0 · e = 0

(2.2)

The tilde sign represents complex quantities. At finite frequency, we expect the prop-

erties of the medium to be complex. In a medium, where the material can respond to the

changing electric and magnetic field of light, it is useful to have Maxwell’s equation in this

form:

∇ ·D = 4πρfree

∇×E = −1

c

∂B

∂t

∇ ·B = 0

∇×H =
1

c
(
∂D

∂t
+ 4πJfree)

(2.3)

Where D and H are the auxiliary fields; ρfree and Jfree are the free charge and current

density. From this macroscopic point of view, the quantities of interest in our measurements

are ε and µ, the dielectric function and magnetic permeability. They represent the response

functions of the material under the the influence of EM fields. These response functions are

hidden in the auxiliary fields, within the linear approximation:

D = E + 4πP = εE

H = B− 4πM =
1

µ
B

(2.4)

Here, the macroscopic electric polarization P and magnetization M can depend on any

power of E and B. We shall only focus on the linear response in this analysis. Many

important non-linear effects are described in nonlinear optics textbooks such as one by
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Boyd [11]. By substituting eq. 2.1 into eq. 2.3 and 2.4, one can derive the following useful

relationships:

ñ = n1 + in2

ε̃ = ε1 + iε2 =
ñ2

µ̃

(2.5)

Here, n1 and n2 (ε1 and ε2) are related in a fundamental way via the Kramers-Kronig

relation. This relation is a direct consequence of causality and it relates the real to the

imaginary part of these optical ”constants” in a medium [12]. In experiments where the

detector can only detect the intensity of light, Kramers-Kronig analysis can be useful in

determining the real and imaginary part of these properties. In measurements such as Ter-

ahertz time-domain spectroscopy, the electric field of light can be determined as a function

of time. We do not need to use Kramers-Kronig as the data preserve the phase information.

A brief guide to our analysis method can be found in later chapters.

One should note that ε̃ is not only a complex quantity, but can also be a tensor. In an

isotropic medium, one expect |ε̃| to remain the same as we measure different orientation of

the medium. This is typically carried out by physically rotating the subject while keeping

the instrument unchanged, or by changing the polarization of light. Within the linear

response regime, the rank 2 tensor representing ε̃ is a constant complex number times

the identity matrix for an isotropic crystal. The situation is much more interesting in an

anisotropic medium. A rank 2 response tensor, in this case ε̃, is a matrix of this form:

ε̃ =


ε̃xx ε̃xy ε̃xz

ε̃yx ε̃yy ε̃yz

ε̃zx ε̃zy ε̃zz

 (2.6)

2.2 Experimental details

In this section, I will give a brief description of the techniques used in my measurements.
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2.2.1 Time Domain Terahertz Spectroscopy (TDTS)

Most commercial and home-built TDTS cover the frequency range of about 100 GHz

to 3 THz (or 0.414 meV to 12.417 meV). This energy range makes TDTS suitable to study

low energy phenomena in solids such as plasmon resonances, antiferromagnetic resonances,

superconducting pairing energy, etc. (Fig. 1.2) This technique offer one of the more unique

ability that’s available to spectroscopy. The coherent aspect of the light source combines

with the short pulses (broad bandwidth) and the time-domain sampling to automatically

produce magnitude and phase information of these phenomena.

This technique is relatively new. In the 1980’s, David Auston demonstrated the ability of

a photoconductive switch to generate broadband radiation when coupled with an ultrafast

laser [13, 14]. Through various optimizations, the Auston switch became an ideal source

and detector for THz spectroscopy [15]. Presently, there exists other techniques that uses

non-linear optics to generate and detect THz radiation in the time domain [16]. The main

goal of these non-linear sources and detectors is to widen the bandwidth of the radiation,

some upward to more than 10 THz. One of the latest development in the technique is the

use of the inverse-hall effect in the so called ”spintronic emitters” [17].

In general, a TDTS system is made up of an ultrafast laser, an emitter, a detector,

a time-delay mechanism, optical components for steering the radiation and electronics for

collecting the data. The details of how to set up your own system are detailed in numerous

PhD thesis. As I had to build up these systems from scratch, the most useful resource that

I found is a thesis by Luke Bilbro from Johns Hopkins University [18]. In addition, the

experimental philosophy that I followed when designing and aligning these spectrometers

will be discussed below.

There is a fundamental assumption used in TDTS: each THz pulse created are identical

to the others. For this assumption to hold, we need to use a stable infrared laser and

low-noise acquisition instruments. What we’ve found in our lab is that laser stability is the

biggest issue. A commercial 800nm Ti:Sapphire ultrafast laser can stay nearly 99% stable

for many hours. However, ambient condition may change in the course of an hour, especially
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if the environmental control is not functioning correctly. It is absolutely crucial to have a

well regulated room, or a sealed laser. In any case, an imperfect room might be adequate,

given that the drift in ambient condition is slow, ∼ hours. Therefore, it is important to

monitor and anticipate environmental drifts when performing spectroscopic measurements.

A TDTS system might look like Figure 2.1 [4, 19]. Here, the radiation generated from

the emitter, efficiently coupled to free space via a Silicon hyper-hemispherical lens, travels

to the Silicon lens on the detector via the off-axis parabolic (OAP) mirrors. The emitter

and detector that we use are photoconductive antennas with identical geometry (Fig. 2.2).

E

D

OAP

Cryostat

Delay 
Stage

Ultrafast 
Laser BS

M

Retro-Reflector

Figure 2.1: TDTS Schematics. M - Mirror; BS - Beam Splitter; D/E - Detector/Emitter;
OAP - Off-axis Parabolic (mirrors); The sample is in the center of the cryostat. The infrared
(IR) beam is represented by red lines, while the larger THz beam is outlined by green. The
path length of the IR beam is not to scale while the path length of the THz beam is equal
to 8f, were f is the effective focal length of the OAP mirrors. The arrangement of the OAP
mirrors is specifically design to minimize aberration [3, 4].
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Infrared Beam

Hyper-hemispherical 
Silicon Lens

LT-GaAs

Gold 
Antenna

VS/TA

Figure 2.2: Schematics of Emitter/Detector. The ultrafast beam is focused onto a small
gap in the antenna structure. The metallic antenna structure is typically made of gold, on
top of a photoconductive material (Low Temperature grown GaAs). In our laboratory, the
Auston switches were purchased from Menlo Systems. The gap is 5µm, while the striplines
(labeled dipole) are 20µm apart. The striplines of the emitter are connected to a voltage
source (VS), and for the detector, a transimpedance amplifier (TA). The Si lenses also serve
as an index-matching material to efficiently couple THz radiation between LT-GaAs and
air.

To generate THz radiation, an ultrafast infrared pulse (800 nm) is incident upon a small

gap (∼ 10µm) between two metallic electrodes. Inside the gap is a photoconductive material

with short recombination time (∼ 100 fs). The infrared pulse turns the photoconductive

material on, making them temporarily conductive. The duration of the infrared pulse is

much shorter compared to the photoexcited carriers’ lifetime. By having a constant voltage

across the electrode, we have a situation that’s equivalent to the turning on an off of an

electrical circuit on a sub picosecond time scale. The pulse of current that runs through

the emitter creates the THz pulse.

In principle, the detector is an identical device to the emitter. Instead of a constant
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voltage from an external source, the voltage across the electrodes in the detector comes

from the radiation that it’s trying to detect. A current meter is connected to the metal

electrodes as a mean to detect the current driven by the radiation itself. By changing

when the detector get turned ”on” by the infrared pulse, the electric field of many identical

THz pulses can be measured. Once again, this measurement scheme only works if the

fundamental assumption holds.

If you are keeping track, the detector should be ”on” for a duration that’s similar to

the duration of the THz pulse. The discussion about how and why the detection (and

also generation) process works can be found in other thesis (like the one here [18]). The

reasons can be summarized as followed. The detected signal is a convolution of the response

function of the detector and the THz pulse. Although the time scales are similar, the peak

responsiveness of the detector is much shorter than the THz pulse. As a consequence, the

temporal resolution of the detected signal is limited by the rise and fall rate of the detector’s

response function.

Experimental considerations in building a TDTS

In building up a TDTS, one of the biggest challenge is alignment. The main reason is that

THz radiation is low energy. In addition, the intensity generated by the photoconductive

antennas are also low, ∼ µW/cm2. For those reasons, a simple piece of paper and/or an IR-

Scope cannot be used. Detectors for THz or far-infrared frequencies are fairly sophisticated

and do not lend themselves to the quick and mobile nature of alignment. Fortunately, the

advantage of low energy EM waves is the long wavelength of THz radiation, it is much more

forgiving to thermal drift of the OAP mirrors (relative to the silver or dielectric mirrors

used for 800nm light). Hence, once the THz optics are well-aligned, it will remain so for

almost indefinitely (or longer than the duration of a PhD).

The general scheme of alignment that I’ve found successful is to fix the position of the

FRUs (or field-replaceable units) and the OAP mirrors with machine precision, 1 ”mil” or

∼ 25µm, and use two FRUs to control the position of the emitter and detector. One should

note that 25µm is smaller compare to the wavelength of 1 THz, ∼ 300µm. The strategy
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is to use the FRU’s micro-positioners (with ∼ 1µm accuracy) to correct for the error from

machining. Alignment of the IR beams is detailed in this thesis[18]. The method to align

the THz beam is also mentioned in the same thesis (although the degrees of freedom are

much larger).

The last piece of this puzzle is the alignment of the hyper-hemispherical Silicon lenses.

I find that due to the long wavelength nature of THz, it is adequate to ”estimate” their

correct positions for the initial state. In this initial state, one should be able to measure

a noisy THz pulse (given the correct planning of path lengths, IR beam alignment, and

machining accuracy). If the planning, machining, and alignment has been done correctly,

the only necessary adjustments are in the position of the Si lenses. By monitoring the

peak signal of the measured THz pulse while going through iterations of adjustment in

the x-positions of the lenses and then y-positions, an optimal pulse can be obtained. It is

paramount to have a well designed data acquisition interface, capable of quickly moving the

mechanical delay stage and visible signal read-out in real time.

Once the signal from the peak of the THz electric field pulse no longer increase with

Si lenses alignment, the system should be close to well-aligned. Monitoring the usable

bandwidth of the THz pulse is a good way to check for this. With emitter and detector

made from LT-GaAs, this bandwidth should be from 0.1 to 2.5 THz. We determine these

numbers by taking consecutive measurements of the freely propagating THz pulse, find

the average time-domain signal, Fourier transform all the measurements and the average,

then take the ratios of each measured spectrum to the average spectrum (Figure 2.3). This

method will show where the signal-to-noise ratio (SNR) becomes too large for us to make

a repeatable observation. Our criteria is where the amplitude ratio diverges more than 2%

from 1.

Minor adjustments can be made in the position of the emitter and detector along the

beam path. One can use the same approach as the alignment of the Si lenses. It should be

pointed out that the spectroscopic measurements that we perform involve a low temperature

cryostat. These instruments have multiple windows for light to travel through. The addition

of these windows can reduce the usable bandwidth significantly. I found that re-adjustment
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Figure 2.3: Usable THz bandwidth. With photoconductive antennas made from LT-
GaAs, we get a pulse width of ≈ 0.4ps (inset). The spectrum extends from 0.1 THz to
nearly 4 THz (top graph). However, the ratio of the individual spectrum to the average
(time-domain average) spectrum shows that the signal to noise ratio becomes too low above
∼2.5 THz (bottom graph). The bottom graph is a measure of our repeatable bandwidth.

of the Si lenses and emitter/detector positions along the beam path is necessary to achieve

optimal bandwidth. In commercially available cryostats, the windows are typically made

out of amorphous glass (SiO2). The lowest optical phonon in glass attenuates our signal,

reducing the upper limit of our bandwidth to less than 2 THz.

I found that changing the glass windows to films (133µm thick) of Kapton eliminates

the phonon attenuation problem while preserving the integrity of the vacuum jacket of the
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cryostat. There is a small problem of water diffusion across the thin Kapton films, making

it difficult to achieve high vacuum. Water vapor also poses a problem to THz spectroscopy

as there are a plethora of resonances in water molecule in the THz regime. Fortunately,

water vapor is in a TDTS system by constantly flowing Nitrogen gas into a semi-closed box

that encloses the system.

Useful equations to extract optical properties

By placing a sample in the THz beam path, we can measure the transmitted THz

electric field. Fourier Transforming the transmitted THz pulse and dividing it by the Fourier

Transform of a reference pulse (no sample), we can obtain the transmission function via

eq. 2.7. An example is given (see Fig. 2.4, 2.5). The Kapton films exhibit the Fabry-

Perot effect, which happens when the multiple reflections inside the film constructively and

destructively interfere. However, the effect exists in both sample and reference pulses and

get divided out in the frequency domain.

Figure 2.4: Example of measured sample and reference spectra. The red curves
are the Fourier spectrum (magnitude only) and the measured time domain pulse (inset) of
the transmitted electric field through Sr2FeSi2O7. The blue curves are the references (no
sample). By dividing the two spectra, as in eq. 2.7, we can obtain the complex transmission
function of this material.
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Figure 2.5: Example of transmission (magnitude) and the absorption coefficient
α. The transmission is obtained from fig. 2.4. Here we define the absorption coefficient
α as minus the natural log of the magnitude of the transmission function, divided by the
sample’s thickness.

This transmission function can be model by the shape of the sample. The most common

samples that we studied are either a simple slab or a thin film on a thicker substrate. In

either case, they depend on the Fresnel equations [12]. Details of such analysis can be found

elsewhere [18]. The important results will be summarized below.

T̃ (ω) =
Ẽsample(ω)

Ẽref (ω)
(2.7)

For a slab of thickness L with permittivity ε2 and permeability µ2 (we’re in CGS unit),

the transmission function of a plane wave going from medium 1 (such as air) through the

sample and exit back to medium 1 at normal incident is:

T̃ (ω) = t̃1,2t̃2,1 expi
ω
c
L(
√
ε̃2µ̃2−

√
ε̃1µ̃1) (2.8)

t̃1,2 =
2√

µ̃1ε̃2
µ̃2ε̃1

+ 1
(2.9)
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At normal incident, equation 2.9 is the amplitude transmission at the interface of two

general medium (no assumption about µ) [12]. The complex T̃ (ω) is an experimentally

determined quantity. We can assume that ε1 ≈ 1 and µ1 ≈ 1 because the sample is typically

kept in a pure He gas environment. That leaves ε̃2 and µ̃2, the quantities of interest, as the

unknown to be extracted from our experiment. This leads us to acknowledge the limitations

of this measurement. If the material is non-magnetic, e.g. µ̃2 = 1, then the equation 2.8

can be numerically solved with minimal effort. However, if µ̃2 6= 1, we have to solve for 4

unknown quantities (2 unknown complex quantities) from the 2 experimentally determined

quantities. This situation can be resolved by simultaneously measuring the reflectivity of

the sample. Such experiment have been demonstrated [20, 21]. Another scheme to get

around this situation with only the transmission measurement will be discussed in chapter

4.

TDTS is a polarization sensitive measurement. The optical properties of anisotropic

materials require this sensitivity. In an anisotropic material, it is necessary to express the

transmission function as a tensor. At normal incident with a sample, represented by the

transmission tensor T̃, an experiment can be ”simulated” by the following equation:

Ef = T ·Ei =

Txx Txy

Tyx Tyy

 ·
Ex
Ey

 (2.10)

Wire-grid polarizers (QMC Instruments) can be placed in the beam path to change

the incident and transmitted polarization. We use a pair of polarizers to select which

component of the T matrix to probe in our measurement. The polarization can also be

used to selectively excite resonances, such as magnon, phonon, or electronic levels.

2.2.2 Raman Spectroscopy

Initially discovered by scattering monochromatic incoherent light off of various molecules

and liquids, Raman spectroscopy has become a standard tool when it comes to probing

molecular and crystal vibrations [22, 23]. Raman scattering is an inelastic scattering effect.

Monochromatic light is scattered off of a sample. The scattered light can have frequencies
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different from the incident light’s frequency. The effect can be described as the exchange

of energy from the incident EM radiation to the molecule or crystal. By measuring the

scattered light and determine the change in frequencies, we can determine the characteristic

energy of the phenomenon in our sample. In solids, these phenomena range from phonon,

magnon, to crystal field energy levels, etc.

In principle, there are two processes that simultaneously happen as the incident light

interacts with the sample 2.6. First the Stokes process where the light loses energy, while the

second is the anti-Stokes process where the light gains energy. Typically, this energy shift

can come from a phonon, which is a quantum of energy that is associated with the collective

lattice vibration in a crystal. The processes can be thought of as the creation (Stokes) or

destruction (anti-Stokes) of a phonon by the incident light. Our ability to observe of these

effects largely depends on the Raman selection rules. The selection rules for Raman and

infrared (IR)/THz spectroscopy will be described in a later section.

Figure 2.6: Raman Scattering. Schematics of the Raman scattering process. The lowest
horizontal lines represent the ground state of a system. An incident light beam with photon
energy hν0 excite the system into an excited state. This excited state can decay into a
different state. Image taken from Wikipedia [5].
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The work that I’ve done was on a commercial Raman spectrometer, Renishaw inVia

Raman Microscope. Coherent radiation coming from a laser is focused onto the surface of

the sample by a confocal objective. The irradiated spot size is approximately ∼ 1 µm. In

the backscattering measurement geometry, the reflected light is collected and collimated by

the same objective and sent to a spectrometer. Before coming to the spectrometer, a filter

is in place to block off the original laser frequency. The system is capable of measuring

frequency shift of 100cm−1 to 3200cm−1 (or 12.4meV to 396.7meV ). This system also

includes a pair of polarizers to control the polarization of the incident light (before sample)

and scattered light (after sample). These polarizers typically operate at either parallel or

crossed configuration. The use of these polarizers will be made apparent in the discussion

of the Raman selection rules.

2.3 Crystalline symmetry

In general, all 9 elements of the tensor in Eq. 2.6 are not unique inside a crystal. Multiple

tensor elements might be equal to each other, or zero. There is a principle that reduces

the number of independent components of any phenomenological tensor (of any rank) in

a crystal. This is known as Neumann’s principle (which, interestingly, was formulated

by Pierre Curie in term of asymmetry). Neumann’s Principle states that any property

tensor of a crystal must remain invariant under any transformation that leaves the crystal

unchanged[24, 25].

A symmetry operation (or element) of a crystal is any transformation that leaves it

unchanged. An example of a symmetry operation can be seen in a some cubic crystal, such

as NaCl. Rotating the unit cell by 90 degrees about the normal to any of its faces would

leave it unchanged 2.7. Another symmetry operation of a cube is a 120 degrees rotation

around any of the cube diagonal. Each crystal type has a set of symmetry operations

that form a discrete symmetry group. The example here with the perfect cube has the

point group symmetry Oh, which has 48 of these unique symmetry operations. In this

section, I will give a quick introduction to these crystallographic symmetries, and show that
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Figure 2.7: Unit Cell of NaCl. Some symmetries of salt crystal, NaCl. Na is represented
by blue, Cl by red. Looking along the cubic body diagonal [111] axis (left) and [001] axis
(right). The red-dash lines are equivalent under 120◦ rotation (C3) on the left and 90◦ (C4)
on the right.

understanding these concepts is crucial to understanding the spectroscopic data.

There are 230 crystallographic space groups (3-D) [10]. If magnetism is taken into ac-

count, there are 1651 magnetic space groups. The space groups are generated from the 32

crystallographic point groups. It’s adequate to limit this introduction to the point groups.

The symmetry elements within each group must obey the usual requirements of group the-

ory: closure, identity element, associativity, and inverse element. The point groups have

combinations of the following symmetry operations: 1-fold rotation (identity), 2-fold rota-

tion, 3-fold rotation, 4-fold rotation, 6-fold rotation, inversion, and mirror symmetry. Each

symmetry element are defined to be oriented along some direction within the crystallo-

graphic unit cell.

The symmetry operations in each space or point group have been tabulated elsewhere.
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D2d E 2S4 C2(z) C ′2 2σd Linear, Rotation Quadratic

A1 +1 +1 +1 +1 +1 - x2 + y2, z2

A2 +1 +1 +1 -1 -1 Rz -

B1 +1 -1 +1 +1 -1 - x2 − y2

B2 +1 -1 +1 -1 +1 z xy

E +2 0 -2 0 0 (x, y)(Rx, Ry) (xz, yz)

Table 2.1: Character table for tetragonal point group D2d (or 4̄2m)

One can simply look up the character table from any crystallographic online or printed

resource. In condensed matter physics, there are various books that deal group theory

and discrete symmetry [24–28]. The following discussion is by no mean comprehensive. A

quick summary of how to use the tabulated information in spectroscopic measurements is

followed. For example, this is a character table of the point group D2d (or 4̄2m):

On the top row, E, 2S4, C2, 2C
′
2, 2σd are the symmetry elements (classes) of this point

group. E is the identity operation. S4 is an improper rotation (roto-inversion), where

there a 4-fold rotation (90 degrees rotation) followed by an inversion operation, (x, y, z)→

(−x,−y,−z). The axis of rotation of S4 is considered the principal axis, z. C2 is a 2-fold

rotation (180 degrees rotation) sharing the axis with the S4. C ′2 is another 2-fold rotation,

around a different axis. σd is the mirror plane, containing the rotation axis of S4.

The left-most column contains the irreducible representations of the group. In this

context, a representation of one of the point groups can be defined as a set of matrices, each

corresponds to a single symmetry element of the group. The irreducible representations

cannot be made block diagonalized by any similarity transformation. The letters have the

following meaning: A and B are 1-dimensional representations; E is 2-dimensional; and

T is 3-dimensional. The dimensionality mentioned here represents the size of the matrix.

The number subscripts (of any representation) follow certain rules, which would require

more mathematical background to explain. In point groups with inversion symmetry, the

subscripts u and g, short for ungerade and gerade, meaning odd and even under inversion
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respectively. Its importance will be clearer when we discuss the phonon selection rules.

The numbers with + and - are the characters of each symmetry element in a particular

matrix representation. The character of a matrix is the sum of the diagonal elements of the

matrix. The characters of each element are unique within each irreducible representation

(the matrix representations are not however). Each irreducible representation in the group

can be expressed with different orthogonal basis functions. These functions can be linear,

rotational, quadratic, etc. As a convention, the functions in these character tables are

proportional to the real electronic wave function of the Hydrogen atom (in space). A

shorthand way to understand these basis functions is: something that has the symmetry of

say B2 would transform like the functions z or xy under the symmetry operations of the

group D2d. In most character tables, linear, rotational, and quadratic basis functions are

listed.

There are 8 symmetry elements in the D2d point group. One might notice that by

combining certain the elements, we can obtain the other elements of the group. This is in

fact the closure property of a group. Careful examination of all the possible combinations

will reveal that we only need 2 of these elements to generate the rest. These are called the

generators of the group. They are tabulated in various texts, like the one by Birss[24]. For

D2d these generators are S4 and C ′2. The matrix representation (in 3D) of S4 around the

high symmetry axis z and C ′2 around a perpendicular axis y:

Γ(C ′2) =


−1 0 0

0 1 0

0 0 −1

 (2.11)

Γ(S4) =


0 −1 0

1 0 0

0 0 −1

 (2.12)
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2.3.1 Example of application of Neumann’s Principle

To demonstrate Neumann’s Principle, we will examine ε̃ in the point group D2d. One

only need to consider the generators of the group in order to reduce the number of indepen-

dent tensor components. Let’s first define how a property tensor of rank n is transformed

by a symmetry operation (rank 2 tensor):

Tijk...n = SipSjqSkr...SnuTpqr...u (2.13)

Here, a property tensor T is transformed by a symmetry operation S. Each index

represent a Cartesian coordinate. Each of the indices p, q, r, ...u are summed over the set

of x, y, andz. For n = 2, this equation is equivalent to the usual matrix transformation

T = S−1TS.

Tij = SipSjqTpq = Six(SjxTxx + SjyTxy + SjzTxz) + ... (2.14)

By applying the matrices in eq. 2.11 and 2.12 in place of S, and ε̃ in eq. 2.6 we get the

following matrices:

ε̃ =


ε̃xx −ε̃xy ε̃xz

−ε̃yx ε̃yy −ε̃yz

ε̃zx −ε̃zy ε̃zz

 (2.15)

ε̃ =


ε̃yy −ε̃yx −ε̃yz

−ε̃xy ε̃xx ε̃xz

−ε̃zy ε̃zx ε̃zz

 (2.16)

Neumann’s principle implies that the matrix in 2.15 has to be equal to 2.6. We can then

see that ε̃xy, ε̃yx, ε̃yz, ε̃zy = 0. Setting 2.16 equal to 2.6, ε̃xz, ε̃zx also vanish while ε̃xx = ε̃yy.
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As a result, the dielectric tensor has only two unique elements:

ε̃ =


ε̃xx 0 0

0 ε̃xx 0

0 0 ε̃zz

 (2.17)

In addition to having the symmetries imposed by S4 and C ′2 (eq. 2.11,2.12), there is

an intrinsic symmetry to these rank 2 tensors that we must acknowledge. Following the

discussion from Landau Lifshitz[29, 30], we note that ε̃ is a symmetric tensor (or ε̃ij = ε̃ji.

The classical explanation for this property is briefly mentioned in the both texts using ther-

modynamic potential and the fluctuation dissipation theorem. With transport tensors, such

as with the electrical conductivity and thermal conductivity σ and κ, Onsager’s reciprocal

relations state not only that these tensors are symmetric, but also relate the Peltier and

Seebeck tensors [25, 31, 32].

The situation becomes slightly more complicated when time reversal symmetry is broken

by either spontaneous magnetization or an applied magnetic field. The text by Cracknell [25]

details a general method of applying Neumann’s principle with the time reversal symmetry

operation.

σij(H) = σji(−H) (2.18)

σij(H) =
∑
p

∑
q

SipSjqσ
∗
pq(H) (2.19)

Equations 2.18 represent the intrinsic symmetry mentioned above, in the present of a

magnetic field H. H can come from any internal or external field, or some combination.

Eq. 2.19 is the modified version of Eq. 2.13. It is to be used when applying Neumann’s

Principle on a magnetic system’s symmetry (the composite of time reversal and a spatial

symmetry operation would leave the spin system unchanged). One should note that Eq.

2.19 works at finite frequency and any general magnetic field H [25].

What has been demonstrated above can be served as an example for analyzing dif-

ferent optical property tensors in an anisotropic crystal. Within the linear regime, THz

25



spectroscopy only probe two components of a 2x2 matrix in a single measurement (Jones

Matrix formalism). Within the same crystal class (D2distetragonal), the dielectric tensor

looks the same for multiple members of that class (eq. 2.17 is true for point groups D4,

C4v, D2d, and D4h). However, the analysis above becomes extremely useful in non-linear

measurements [33]. The second order susceptibility can be described by a rank 3 tensor.

Changes of the point group symmetry would result in a drastic change of the tensor. These

tensors have been worked out to higher orders and tabulated online and in various texts

(like the one by Birss [24]).

2.4 Basic selection rule

In most quantum mechanics textbooks, the selection rule for the transition between two

states due to an oscillating electric field is derived (for example, Shankar[34]). These deriva-

tions boil down to calculating the probability of transition from an initial to a final state

via Fermi’s golden rule. Besides from the energy conservation requirement, the probability

of transition depends on the matrix element 〈f |H′ |i〉.

P ∝ | 〈f | |Ĥ′ |i〉 |2 (2.20)

H′em = − e

mc
p ·A (2.21)

The electromagnetic interaction that give rise to the electric dipole transition is shown

in equation 2.21 [26]. Here, p is the electron’s momentum and A is the vector potential. p

is odd under inversion while A is not. It can be sen immediately that the matrix element

〈f |H′em |i〉 is only non-zero if the initial and the final state have different parity (odd or

even under inversion). This is the basic result for the electric dipole selection rule.

It turns out that D2d is not such a good point group to give an example for this selection

rule. Since the group lack inversion symmetry, the wave functions representing the ground

state have no definite parity (they are neither odd nor even). The probability integral

doesn’t necessarily vanish base on the above argument. It will be shown in Sr2FeSi2O7 (a
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crystal that has D2d point group symmetry) that not only the phonons are excitable by

both Raman and infrared spectroscopy, but transitions between the d-electrons electronic

states are possible. The following discussion is for crystals that are inversion symmetric.

2.4.1 Phonons

In a solid of N molecules, there are 3N degrees of freedom. There would be 3N normal

modes, or phonons (3 of which are acoustic modes with ω(k = 0) ≡ 0. The derivation

of the selection rules for these phonons would be complicated story. Fortunately, group

theory provides the necessary framework to quickly determine which phonons are excitable

by THz or Raman spectroscopy [26]. To understand why this method should work, one

should think about the Hamiltonian or equation of motion describing the lattice vibrations

and how it must remain invariant under the symmetry operations belong to the crystal’s

symmetry group. As a consequence, the (block) diagonalized and hence the eigen modes

of the Hamiltonian or the dynamical matrix can be classified by the symmetry group’s

irreducible representation.

In optics, the phonon/magnon excitations are typically at the Brillouin Zone Center or

k ≈ 0. The ground state would be the unperturbed lattice (has the symmetry of the totally

symmetric representation A1). The final state would be one of the lattice vibration normal

mode. The symmetry group at k ≈ 0 is the same as the crystallographic symmetry (k ≈ 0

is equivalent to long wavelength oscillation, or the whole lattice moving in unison).

Since group theory has readily characterized the symmetry of these normal modes, it is

a matter of applying equation 2.20 to find out the selection rules for these modes. The THz

and infrared Hamiltonian transforms like a vector (as mentioned above). This means that

in order for the probability of transition (equation 2.20) to be non-zero, the phonon final

state must have the symmetry of a linear basis function. Ultimately, the calculation that

must be done is an integral over all spatial coordinates. If the integrand has odd parity, the

integral vanishes. Additionally, the electric field vector (momentum of the electron) must

not be perpendicular to the symmetry function of the phonon.

This bring us to the Raman selection rule. It is similar to the infrared and THz spec-
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troscopy. However, as explained in 2.2.2, the Raman process involves two different electric

fields, Ei and Es incident and scattered. The Raman interaction Hamiltonian looks like

this:

H′Raman = −∆
↔
α

2
EiEscos(ω ± ω0) (2.22)

Here, ω0 is the phonon frequency,
↔
α is the polarizability tensor (p =

↔
α · Ei). The

transformational properties of H′Raman is that of
↔
α [26].

↔
α is a second rank symmetric

tensor and has the same transformational properties as the quadratic basis functions. A

similar argument to the THz and infrared selection rule can be made. The probability

integral vanishes if the integrand has odd parity. This means that the Raman transition

can only occur between states of the same parity. Since the ground state is totally symmetric,

a phonon has to transform like the quadratic basis functions in order for it to be Raman

active.

2.4.2 Magnons

The classical treatment of ferromagnetic or antiferromagnetic resonances can give us a

useful insight as to how these magnetic resonances can be excited [35]. For a small pertur-

bation coming from an oscillating magnetic field, its direction needs to have a component

transverse to the magnetic moment in order to excite the antiferromagnetic resonance. This

can be understood classically as the application of a torque on the moment by a magnetic

field, τ = Hω × µ. The torque τ is only non-zero if the applied oscillating field Hω is

transverse to the magnetic moment µ.

A quantum mechanical treatment can also be done. The approach for ferromagnetic

magnons can be found in Ashcroft and Mermin [10]. To summarize, a magnon can be

thought of as changing the spin state by 1, |S〉 → |S ± 1〉. Since we are dealing with an

ordered system, the creation of a magnon can mean the flipping of the spin on a single atom,

or the superposition of many. This flipping of spin can be achieved by a raising or lowering

operator. These operators only have non-diagonal elements in the lab frame. What this
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means is that only the transverse magnetic field (transverse to the ordered moment) can

create a magnon.

2.4.3 General application of group theory on selection rules

Here is the general rules from [26]. The arguments come down to finding when the matrix

element in eq. 2.20 is non-zero. Once the transformation properties of the initial, final state

and the Hamiltonian are found, the direct product between the initial state representation ,

Γi, and the perturbation Hamiltonian representation, ΓH′ should be calculated. The direct

product in all space and point groups are tabulated. The result of this direct product must

contain the representation of the final state in order for the matrix element 〈f | |Ĥ′ |i〉 to be

non-zero.
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Chapter 3

Multiferroicity in Sr2FeSi2O7

3.1 Introduction

Multiferroics belong to the class of materials that host more than one type of ferroic

order, i.e. (anti)ferroelectricity, (anti)ferromagnetism, ferroelasticity, etc. In each of these

phases of matter, multiple order parameters exist simultaneously. There are two types of

multiferroics, type I (”conventional”) and type II (”unconventional”). One can imagine a

situation that a coincident can occur inside some material where it orders antiferromagnet-

ically and then ferroelectrically at a different temperature. This is type I. The much more

interesting type II multiferroic has the onset of both order parameters happening simulta-

neously. This implies that the order parameters are coupled. When this coupling occurs,

for example between the magnetization M and electric polarization P, exotic properties can

emerge. It has been demonstrated that P can be controlled by an external magnetic field,

and M can be controlled by an external electric field in TbMnO3 and TbMn2O5 [36–38].

The prospect of electrically controlling the magnetization and vice versa is an enticing

one. Capacitive switching of magnetic memory promises significantly reduce the energy loss

of generating a magnetic field via the current heating effect. Unfortunately, the tempera-

tures where these coupling would occur tend to be only a few Kelvins above absolute zero.

Significant efforts have been made in artificially creating multiferroics out of heterostruc-

tures of ferroelectrics and (anti)ferromagnetic materials[39, 40]. The hope is to use material

engineering to create a feasible room temperature or near room temperature device with

these heterostructures.
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Time-Domain THz spectroscopy has proven to be a key technique to study many mul-

tiferroics. Due to the coupling between P and M, some of the phonons and magnons

can also become coupled. This leads to a hybridization between these two cooperative

phenomena (dubbed the electromagnon). Exotic optical properties such as directional

dichroism and magneto-chiral dichroism have been observed in the multiferroic Ba2CoGe2O7

(BCGO)[41, 42] in the THz frequencies. In BCGO, M and P are coupled below the or-

dering transition temperature TNeel ∼ 6 K. The coupling results in an absorption mode

that is both electrically and magnetically active [42–44]. An interesting feature of these

phenomena is that the electrically-active magnon (or electromagnon) mode survives above

the Neel temperature, which has so far not received a full explanation. The electromagnon

is a signature of the multiferroic phase, and is one of the most exciting discoveries in the

area of quantum magnetism in the last ten years.

It was recognized early in the multiferroic renaissance that the Dzyalonshinskii-Moriya

(DM) interaction is crucial for the coupling between ferroelectricity and spiral magnetic

order [45–47]. The origin of the DM interaction is the spin-orbit coupling (SOC) [48–50],

and thus SOC is at the center of the phenomena of magnetically induced ferroelectricity.

Although SOC can also generate dynamical effects [51], the dynamical response of electro-

magnons in the multiferoic families of RMnO3 and RMn2O5 (where R is a rare-earth ion)

has been explained by the symmetric Heisenberg exchange-striction [43, 52] without the

need for SOC. One of the exceptions is in fact BCGO, where SOC has to be explicitly taken

into account to explain the electromagnons in that system [53–58]. Surprisingly, however,

these theories have not included the effect of tetragonal distortion of the CoO4 tetrahedra

in the explanation of the static and dynamical properties of BCGO. This omission is even

more glaring as highlighted by the fact that the tetragonal distortion of the tetrahedra is of

13% compression with respect to a perfect tetrahedron. For comparison, we find that the

compression in SFSO is ∼ 17%. Just recently the effect of this distortion on the electronic

properties of BCGO and similar materials has been studied using first-principles calcula-

tions [59, 60]. We point out the fact that in BCGO, the magnetic ion is Co2+, with a d7

configuration in the 3d-orbitals; this contrast with SFSO where Fe2+ has a configuration of
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d6. Therefore, the many-body ground states to be considered for the low energy excitations

in BCGO [55] and SFSO are fundamentally different. Thus, this distinction between the

two compounds may explain the dissimilarities in their THz excitations.

In this chapter, we report the THz study above 7.5 K of Sr2FeSi2O7 (SFSO), a material

isostructural to BCGO (space group #113, P4̄21m, Fig. 3.2). The single crystal SFSO

samples show multiple absorption modes above the magnetic order transition temperature,

TNeel ∼ 5 K [61]. These absorption modes can be understood as transitions between

the spin-orbit and crystal field split ground state levels of the Fe2+ ion on a compressed

tetrahedral environment. We find it crucial to consider this tetragonal distortion in order

to explain the details of these magnetic excitations. We will discuss the shortcomings of

this model and point to potential avenues for a better understanding.

3.2 Experimental Methods

The multiferroicity of Sr2FeSi2O7 is briefly summarized here as the details will be re-

ported elsewhere[61]. First of all, Sr2FeSi2O7 undergoes a transition to an antiferromagnetic

state at TN ∼ 5 K. Accompanying the magnetic transition, a small electric polarization

along the c direction Pc appears below TN ; the value of Pc is approximately 3 µC/m2 at

T = 2 K. It is also found that both the magnitude of Pc and the transition temperature

TN change considerably under an external magnetic field along the [110] diagonal direction

(Hab); for instance, Pc at 2 K reaches ∼ 50 µC/m2 for Hab = 2.5 T and TN becomes 2.5

K at Hab = 6.5 T. It would be noteworthy that the evolution of Pc with Hab below TN is

adequately accounted for in terms of the spin dependent p-d hybridization model proposed

for Ba2CoGe2O7[55].

We used a home-built time-domain terahertz spectrometer (TDTS) with photoconduc-

tive antennas as source and detector of THz radiation. This technique has recently risen

to the forefront of the study of novel excitations in quantum magnets [3, 62, 63]. It has

the advantage of being of high energy resolution for Brillouin zone-center excitations, and

it does not need as large single crystals as other techniques. TDTS also has the advantage
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of a phase sensitive measurement, which means that one can obtain the complex optical

constants of the material. The samples were mounted inside a closed-cycle cryostat with

optical access windows that is capable of cooling to 7 K. By comparing the frequency com-

ponents of a THz pulse that has passed through the sample to one reference without a

sample, we can extract the transmission coefficient, t(ω), as a function of frequency. The

absorption coefficient can then be extracted from the transmission data as -log t(ω)/d, where

d is the thickness of the crystal. In this experiment, we fitted each absorption peak with a

Lorentzian lineshape, characterized by the absorption peak frequency, its full width at half

maximum, and by its spectral weight.

We studied two single crystals of SFSO: one is a-plane cut ∼1150 µm thick; and the

second one, ∼460 µm thick, is c-plane oriented. In order to clarify the nature of the

absorption modes with their selection rules, we used a wire grid polarizer to linearly polarize

the THz pulse along the different crystalline axes. To avoid birefringence in the a-plane

sample, we measured the sample with the THz electric field, eω polarized parallel to the

b axis, and with eω ‖c. As expected, the c-plane sample did not show any birefringence

due to its tetragonal crystal structure. The single crystals were grown using a floating zone

method in a reducing atmosphere with feed rods prepared through a solid-state reaction.

Single crystal X-ray diffraction was performed at Ohio State to the space group and

crystalline axes. At room temperature, the unit cell parameters are a = 8.1121 and c =

5.1204 Angstrom. The point group of this crystal was discussed in chapter 2, as D2d.

Although the space group is fairly complicated (there’s a screw axis), and there are many

different atoms in the unit cell, D2d is also the point group of the Fe sites. The consequences

of having a distorted tetrahedron around each Fe site will be discuss later on.

3.3 Results

We measured the absorption spectra of Sr2FeSi2O7 from 7.5 to 300 K, and we identify

three measurable absorption modes with frequencies of ∼ 0.6, 1.0, and 1.4 THz, as shown

in Figure:3.1(D), labeled as α, β, and γ, respectively. At 7.5K, the α mode is the strongest
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among these with absorption coefficient around a few tens of cm−1, comparable to BCGO’s

electromagnon mode [42]. Meanwhile, the β mode is virtually absent at 7.5 K but gradually

increases in strength and peaks at 20 K. The γ mode at 1.4 THz is the weakest of the three.

It is clear from the behavior of the spectral weight of the β mode (see figures 3.1(D)-(F), and

figure 5.3(A)) that it corresponds to a transition between two excited states, as its strength

first increases and then decreases with temperature, a clear indication of population of the

excited states with temperature. The α and γ absorptions, on the other hand, are clearly

from a ground state to two different excited states. This phenomenology can be captured

in a simple three-level system depicted in the inset of figure 3.1(D) and in figure 3.4. The

details will be discussed below.

Around 100 K, another absorption mode starts to move down into our frequency range,

completely dominating the spectra at room temperature. We believe this high frequency-

high temperature mode is consistent with a polar phonon. Interestingly, the peak positions

of the α and β modes are red shifted with increasing temperature, cf. fig. 5.3, a behavior

typical of an order parameter-type phase transition. However, there is no known phase

transition above ∼ 5 K in this material. Therefore, our simple phenomenological three-level

system will need to be expanded in order to explain these frequency shifts.

All three modes exists in all orientations of the THz electric field eω with respect to the

crystal axes, see figures 3.1(D)-(F). This suggests that these modes are active under both

the electric and magnetic dipole selection rule. This is similar to the behavior of the low

energy excitations found in BCGO [42]. We find this behavior in the paramagnetic state of

SFSO as opposed to the magnetically ordered one in BCGO. It is also the case, however,

that the 1 THz electromagnon in BCGO survives to temperatures higher than the Neél

temperature, and has been suggested to be a spin-stretching mode [56]. In SFSO, the main

features of the polarization selection rules of the three modes are: 1) when the magnetic

field of the THz is in the a−b plane, hω ‖ b, the α mode has the same intensity regardless of

the direction of the THz electric field eω, 2) this also applies to the γ mode. 3) When hω ‖ c

or eω ‖ a−b plane, all three modes are much weaker than in the other two orientations. This

behavior suggests that the modes are mainly of magnetic dipole character in the a−b plane,

34



Table 3.1: Selection rules for the excitation of the observed absorption modes.
The absorption modes exist in all 3 configurations, as represented in this table of maximum
spectral weights. The values are normalized to the largest absorption spectral weight of
0.37 mm−1Hz. The values for α and γ are from 7.5K, while the β values are from 20K.
Here eω and hω are the electric and magnetic fields of the THz pulse, respectively. a, b and
c are the crystallographic axes.

hω ‖ b & eω ‖ c hω ‖ b & eω ‖ a hω ‖ c & eω ‖ b

α 77% 100% 38%

β 43% 70% 19%

γ 23% 32% 28%

hω ‖ b, and are only weakly electric dipole on the same plane, eω ‖ b. This is summarized

in table 3.1.

3.4 Discussion

We can begin understanding the nature of these excitations by utilizing a single site

picture of the Fe2+ ion in the crystal field environment of a compressed tetrahedron. Low

et al. [6] showed how the energy levels of the Fe2+ ion are split due to cubic crystal fields,

including tetrahedral symmetries. These predictions were somewhat confirmed by Slack

et al. [64] in the THz range where Fe2+ occupies a tetrahedral site in a ZnS matrix. In

this case, however, Fe2+ ions are very diluted and do not interact with each other. Recent

interest has been given to the excitations of a regular lattice of tetrahedrally coordinated

Fe2+ in the material FeSc2S4 [3, 65]. It is thought that this material does not magnetically

order, however next-nearest neighbor exchange has been used to theoretically explain the

experimental results [66]. The effect of this exchange interaction between Fe2+ sites is to

strongly renormalize the energies of the 5-fold split ground state term, and it also gives a

dispersion in momentum space to the otherwise dispersionless single-site excitation.

Fe2+ has a 3d6 (L=2, S=2) electronic configuration in free space (5D term), but in

Sr2FeSi2O7 it occupies the 2a Wyckoff position in the P4̄21m space group that has S4 (4̄)

site symmetry. This site symmetry corresponds to 4 O2− ions located at the vertices of

35



a tetrahedron compressed along the [001] crystallographic direction. We performed single

crystal X-ray diffraction on our samples and obtained a compression of approximately 17%.

We therefore model the electronic structure, following Low et al. [6]’s Table I in Appendix I,

assuming an energy hierarchy of ∆� δ � λ, where ∆ is the E–T2 tetrahedral crystal field

splitting, δ is the tetragonal compression splitting A–B, and λ is the spin-orbit interaction

energy. In this limit, in the high-spin configuration and following Hund’s rules, the ground

state is a spin-orbital singlet |E0〉 (eqn. 3.1), and the first two excited states are doublets

up to second order in λ, |E1〉 (eqn. 3.2) and |E2〉 (eqn. 4.3). Their wave functions to first

order in λ are (the basis for this expansion are the states |Lz, Sz〉, where both Lz and Sz

go from -2 to +2):

|E0〉 = |0, 0〉+ x
(√

6 |+1,−1〉+
√

6 |−1,+1〉
)

+O(λ2) (3.1)

|E±1 〉 = |0,±1〉+ x
(√

6 |±1, 0〉+ 2 |∓1,±2〉
)

+O(λ2) (3.2)

|E±2 〉 = |0,±2〉+ x (2 |±1,±1〉) +O(λ2) (3.3)

where x =
√

6λ
8(∆+δ/4) , and x� 1. Note that the largest contribution to each of the states is

derived from the Lz = 0 submanifold, and the Sz spin contribution changes by ±1 in each

of the 2 excited states. This is derived from the fact that the lowest energy d-orbital, the z2

orbital [67], is doubly occupied as given by the crystal field of the compressed tetrahedron

[59, 60]. We note that for a perfect tetrahedron, the ground state manifold is split into five

equally separated energy levels by the crystal field and SOC [6].

The second order spin-orbit Hamiltonian takes the form DS2
z , which is the typical form

for single ion anisotropy energy, where D = λ2

16(∆+δ/4) , we take as the zero of the energy the

state |E0〉. In this particular case, since D ≥ 0, this is an easy-plane anisotropy. Figure 3.4

schematically shows the splitting of the ground state term by the crystal field and spin-orbit

coupling, similar to Figure 4 in Low and Weger [6] which applies to the octahedral case. The

states in figure 3.4 are now labeled by the irreducible representations of the point groups

36



belonging to each level of distortion, where SOC does not break any symmetry. We note

that, whereas |E±1 〉 is a doublet of E symmetry, |E±2 〉 are two distinct states of B symmetry;

they are accidentally degenerate only up to second order in λ. We can obtain a value for λ

using ∆ ≈ 0.8 eV [68] and δ ∼ 0.1 eV, and the predicted energy separation between |E0〉

and |E2〉, 12λ2

∆+δ/4 , and obtain an upper limit of λ ≈ 20 meV. This value is lower than 100

meV, the free ion value of λ for Fe2+[69].

Thus, the single-ion picture already contains a three-level structure that reproduces the

basics of the experimental observations. Transitions between the states |E0〉 and |E1〉, and

between |E1〉 and |E2〉 are magnetic dipole allowed as they are connected by an operator

S± = Sx± iSy that changes the Sz value by one. Therefore, a THz magnetic field polarized

in the a− b plane is able to make transitions between these states. The transition between

|E0〉 and |E2〉, in this approximation, is only electric quadrupole since ∆Sz = ±2 (terms

of O(λ3) and higher make the transition between |E0〉 and |E2〉 magnetic dipole as well).

However, we note that because of the lack of inversion symmetry of the Fe2+ site, parity is

not a good quantum number for the wave functions, admixtures of the 5D ground term with

higher energy terms of different parity (i.e. P and F terms) [6] are allowed. This mixing

will make all the transitions between the three lowest states weakly electric dipole as well,

as we find experimentally.

As we noted above, a feature of the data that cannot be explained by this single-

ion picture is the fact that the lowest transition frequency has a very strong temperature

dependence, whereas the second and third transition frequencies barely change, see figure

5.3(B). Therefore, the single-ion picture would need to be expanded to include the effects

of interactions between the spin and orbital angular momenta of the Fe2+ ions at different

sites. In addition, we highlight again that all of this phenomenology is occurring above

the magnetically ordered transition temperature, and thus we expect that models such as

those of Ish et al. [66] would be required to explain all of our experimental results. Below

the ordering temperature, we expect to see antiferromagnetism of a similar type as BCGO.

Magnetic ordering would lower the symmetry of the system even further, potentially causing

splittings and further shifts in the absorption spectrum.
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3.4.1 Magnetic field dependence

We investigate the behavior of these excitations in the paramagnetic phase and the

antiferromagnetic phase in an applied static magnetic field, H0. One would expect the

magnetic ordering to significantly change the spin orbital ground state. At zero magnetic

field, we observed the same THz excitations below TNeel, with a small blue shift in energy.

Interestingly, the behavior with finite H0 is significantly different above and below TNeel.

With the applied field out of the easy plane, above TNeel, we observed a blue shift in the

α excitation frequency, while the γ excitation remain unchanged (fig. 3.5). At this time,

we still do not have a good theory for the change in the energy levels in magnetic field.

The crystalline nature of the Fe2+ should be more complicated than the single ion picture.

Interestingly, below the magnetic ordering temperature, both of the α and γ modes appear

to split in field.

3.5 Summary

In summary, we have observed three spin-orbital transitions in the range between 0.2

THz and 1.7 THz in Sr2FeSi2O7 using time-domain THz spectroscopy. These modes can be

qualitatively explained by Fe2+ in a compressed tetrahedron crystal field environment where

spin-orbit coupling splits the low energy manifold into a three-level structure with a singlet

ground state and two doublet excited states. We estimate a spin-orbit coupling constant

for Fe2+ of λ ≈ 20 meV. We find it crucial to consider the effects of the compression

of the tetrahedron, as without it, the low energy manifold would consist of five equally

spaced energy levels [6]. The effect of this compression should be taken into account when

explaining the THz excitations observed in BCGO as well. We also find that, although the

single-ion picture can qualitatively explain many of our results, modifications will be needed

to explain the strong shift with temperature of the transition frequency between the first two

states. Measuring the THz absorption below TNeel and under an applied magnetic field will

shed more light onto the nature of the low energy excitations in Sr2FeSi2O7, measurements

which are now underway.
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Figure 3.1: Spin-Orbital THz absorption of Sr2FeSi2O7. False color maps of the
absorption from 7.5 K to 300 K and below 1.7 THz for the (A) eω ‖c, hω ‖b, (B) eω ‖b,
hω ‖c , and (C) eω ‖a, hω ‖b configurations. The color corresponds to the absorption value
as indicated in the scale bar in each individual panel. (D)-(F) Selected absorption traces
for the same polarization configurations as in (A)-(C), respectively. The color scale bar in
(D) applies to the three (D) through (F) panels. Please note that the temperature spacing
between each line are not equally separated, but follow a semi-logarithmic increment from
the lowest temperature. Inset in (D) shows the three level structure that is apparent in
the temperature dependence of the absorption. Transitions are labeled as α, β, and γ as
indicated. A different absorption mode appears at higher T, and dominates the other three.
The inset in (E) shows an example of the raw spectrum (red square) at 15 K for eω ‖c,
hω ‖b along with its fitted line (solid blue).
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Figure 3.2: Crystal structure of Sr2FeSi2O7 (space group P4̄21m), a-b plane. The
tetragonal unit cell can be seen by the dark box. The colors represent different atoms: Sr -
green, Si - blue, Fe - brown, O - red. The atoms contributing to SFSO’s magnetism is the
Fe2+. Fe is surrounded by a tetrahedral cage of oxygen. The crystal field environment give
rise to the interesting effects measured in our study.
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Figure 3.3: Temperature dependence of transition parameters. (A) Spectral weight
of α and β transitions versus temperature in the polarization configuration eω ‖c, hω ‖b.
The β transition clearly loses all its spectral weight towards zero temperature, a clear
indication of a transition between two excited states. (B) Temperature dependence of the
frequency of the α transition for the three polarization configurations explored in this work.
Within error bars, the frequencies are identical, a signature of the same transition appearing
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Figure 3.4: Ground state splitting by crystal field and spin-orbit coupling. Split-
ting of the Fe2+ term (5D) in the S4 crystal field environment and due to spin-orbit coupling
up to second order in perturbation theory. The numbers in parenthesis indicate the degen-
eracy of the states. The full splitting is only shown for ground state. States are labeled by
the irreducible representations of the point group corresponding to the distortion. Energy
separations are not to scale. The full term splitting can be found in Low et al. [6].
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(a)

(b)

Figure 3.5: THz measurement of the a-b plane in applied magnetic field H0. (a)
At 6.5 K, in the paramagnetic phase, we observe the shifting in frequency of the α mode
from 0.6 THz to 0.78 THz going from 0 to 7 T. The hump at 0.4 THz is believed to be an
artifact of the Discrete Fourier Transform. Interestingly, the γ mode at 1.45 THz does not
change with magnetic field. (b) At 3.0 K, in the antiferromagnetic phase, we see the clear
splitting of the α mode. The field at which it completely split is between 1 and 2 T. The γ
mode is seems to also split with increasing H0. Due to low signal to noise ratio at higher
frequencies, we can only say that at H0 causes γ to split into at least 2 modes, one remain
unchanged with field, and one changes with field.
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Chapter 4

Antiferromagnetic Magnons in
CaFe2O4

4.1 Introduction

CaFe2O4 is a magnetic semiconductor with a bandgap of 1.9 eV [70, 71]. It has been

subjected to a variety of studies due to its unique nature. Structurally, under high pressure,

spinels tend to transform into the orthorhombic space group Pnma of ambient CaFe2O4 [72,

73]. From a semiconductor perspective, its bandgap makes CaFe2O4 an ideal photocathode

material for water splitting [70, 71]. Extensive research efforts have also been spent on

studying the magnetic properties of CaFe2O4 using neutron scattering [7, 74–76].

The magnetic ground state of CaFe2O4 was determined to be overall antiferromagnetic

(AFM) below 200 K. The Fe3+ ions in assume the high spin configuration, resulting in an on

site magnetic moment close to 4µB pointing along the b axis [7, 74, 75]. The Fe3+ form fer-

romagnetic zig-zag chains along the crystalline b axis, with the chains antiferromagnetically

aligned in the a-c plane [7]. Interestingly, previous neutron experiments showed multiple

magnetic Bragg peaks with differing temperature dependences [7, 74, 75]. This observation

indicates that there are two competing order parameters below the Neel temperature and

the coexistence of two different microscopic magnetic phases. In the coexisting phases, weak

ferromagnetic moment was found [76]. This is especially strange because the centrosym-

metric crystalline structure would prevent canted antiferromagnetism from occurring.

High resolution inelastic neutron scattering work on CaFe2O4 revealed a hierarchy of
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states at the magnon zone center [7]. This behavior is reminiscent of the bound states in the

ferromagnetic Ising chain material CoNb2O6 [77, 78]. The difference in CaFe2O4 is that the

discrete states were observed around the antiferromagnetic transition temperature of 200K,

in comparison to the miliKelvin experiment in CoNb2O6. Stock et. al [7] put forth the idea

that the discrete modes in CaFe2O4 come from the magnetic soliton-like excitations in the

material.

One key ingredient believed to be the source of these phenomena is the anisotropic

nature of CaFe2O4. Such anisotropy is evident in the exchange coupling constants, where

Jc/Jab = 0.14 [7]. Furthermore, it was found that the magnon excitation energy at its zone

center, or k = 0 is non-zero, in zero applied static magnetic field. This uniaxial energy gap

was measured to be roughly around 3 meV (0.725THz) [7]. Such behavior can be explained

by the crystalline or single-ion anisotropy of the material [35]. Upon further inspection,

one would expect the orthorhombic crystal structure of CaFe2O4 to modify the zone center

magnon excitation beyond the uniaxial case [35]. To take into account the orthorhombicity

of the system, we can write the total spin energy as

E =
∑
<i,j>

JijSi · Sj −
Kx

2

∑
i

(Sxi )2 − Ky

2

∑
i

(Syi )2

−Kz

2

∑
i

(Szi )2 − gµBH ·
∑
i

Si

(4.1)

Where Jij represents the exchange coupling constants along different bonds between the

Fe ions, and Kx,Ky,Kz are the anisotropy constants along the crystallographic directions.

In our experiment, we report the k = 0 excitations of the spin wave modes in CaFe2O4

using THz spectroscopy. The momentum transfer from each photon relative to the magnon

momentum is approximately zero.

We found that these excitation are anisotropic within the plane perpendicular to the

easy axis, and thus consistent with the orthorhombic crystal structure. The prediction from

a mean field spin wave theory agrees qualitatively with our data [35].
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4.2 Experiment and Analysis Details

We performed the experiment in our home-built time-domain THz spectrometer. The

spectrometer can be used with a Janis closed-cycled cryostat with optical access or an

Oxford Spectromag, a liquid helium cryostat with a 7 T magnet. The sample was placed

in each cryostat for the transmission measurements, with and without magnetic field. To

obtain the transmission function T (ω) of the sample (4.2), we divided the spectrum of the

THz pulse that passed through the sample by a reference. The reference spectrum, Eref ,

is an identical measurement but without the sample in the THz beam path. The signal

to noise of our instrument allows us to repeatably measure the response function between

0.2 and 2 THz. Each transmission measurement was done at constant temperature and

magnetic field.

T (ω) =
Esample(ω)

Eref (ω)
(4.2)

Our sample was grown by floating-zone method, from the same group in these publica-

tions [7, 76]. The sample is approximately 573 microns thick, with the b axis perpendicular

to the parallel surfaces. A pair of wire grid polarizers were used to determine the direction

of the a and c axis. By aligning the polarization of the THz with the crystal axes, we can

determine the selection rules of the spin wave excitations.

Since our transmission measurements only yield T (ω), further refinement is necessary

in order to obtain the material’s response functions ε(ω) and µ(ω). Equation (4.3) can be

derived by writing down the propagation of a plane wave through a slab of thickness L.

Here, ε, µ, c and ω are the permittivity, permeability, speed of light and angular frequency.

It should be noted that some electromagnetism textbooks implicitly make the assumption

that µ = 1 at finite frequencies. Following the discussion about the dispersion of µ(ω) in

Landau, Lifshitz [29] sect. 79, we came to the conclusion that the value of µ should be close

to unity in our experiment. The reason behind this is the fact that the wavelength (0.03mm)

is an order of magnitude smaller than the sample size (0.5mm). As noted in the textbook,

this does not simply mean µ = 1, but it means that the macroscopic magnetic moment that

we can measure would have a large contribution from dP/dt. Hence, it would be an over-
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refinement to distinguish B and H [29]. Although this assumption holds for wavelengths

comparable or smaller that the dimension of the material, it breaks down around magnetic

resonant frequencies, where the imaginary part of the magnetic susceptibility diverges or

becomes quite large, depending on the damping of the system.

T = t1,2t2,1 expi
ω
c
L(
√
ε2µ2−

√
ε1µ1) (4.3)

t1,2 =
2√

µ1ε2
µ2ε1

+ 1
(4.4)

µ(ω) = 1 +
W

(ω2
0 − ω2) + iωΓ

(4.5)

The resonances for ε and µ can be modeled as Lorentz oscillators [12]. The complex

response functions for these oscillators obey the Kramers-Kronig relations. We model ε

with two Lorentz oscillators, one to emulate the strong phonon absorption above our spec-

trometer’s bandwidth, and one weaker absorption at 1.4 THz. We made the assumption

that at frequencies higher than the magnetic resonance, µ = 1. Fitting the data above 1

THz using this model allows us to extrapolate the value of ε to lower frequencies. Once we

have ε, we can numerically solve for µ around the magnetic resonance, using equation (4.3)

and (4.4). Once µ(ω) has been extracted, we fit it with equation (4.5).

4.3 Results

From the transmission plots in Fig. 5.2, we can see two strong absorptions around 0.62

THz and 0.73 THz at low temperatures, for hω||a and hω||c respectively. These absorption

frequencies are at approximately the same energy as the magnon energy gap reported in the

previous neutron scattering study [7]. We would like to note that the neutron experiment

did not report two different anisotropic magnon gaps. The line shape of the absorptions

around 0.6-0.7 THz is not symmetric, in both orientations. This could be the result of its

interference with a broad absorption feature just below 0.5 THz. This broad feature could

possibly be the so called ”orphan spin” excitation reported in another neutron scattering
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work [76].

One notable difference between the two polarization measurements is an absorption at

1.6 THz, which is only present when hω||a (and eω||c). Its strength is much weaker than

the absorptions below 1 THz. Another weaker absorption feature can be seen in the hω||c

configuration around 0.84 THz. These features are very likely related to the magnetic phase

as we only observe them at lower temperatures. We believe that the overall slope at higher

temperatures is the tail of a phonon at frequencies above our bandwidth. It is expected

for a phonon frequency width to increase and its center frequency to lower as temperature

increases.

After the extrapolation of ε and calculation of µ, we can clearly see that the strong

absorption seen in the transmission is indeed associated with the magnetic phase, see Fig.

5.3. The resonant frequency is redshifted to lower frequencies as the temperature increases

up to TNeel ≈ 200K. The resonance disappears completely above TN . The results of

fitting µ with (4.5) can be seen in Fig. 5.5. The resonant frequencies are unique in each

polarization configuration up to near TN , where they became too weak to resolve. The

temperature dependence of the oscillator strengths can be seen in comparison with the

ordering parameter measured in [7] in Fig. 5.6. It can be seen that the magnons measured

with our THz experiment are associated with the magnetic B-phase.

Another interesting behavior can be seen at low temperature, where there is a sharpening

of the resonance width around 30-40K. The resonance width follows the typical behavior

of thermal broadening at higher temperature as we approaches TN . Above 160K, the

feature that we have been following becomes comparable to the background. Without prior

knowledge of the background, the fitting procedure cannot differentiate between the two.

In an applied static magnetic field, H0||b, we observed the frequency shifting of the two

modes previously observed 4.7. These modes at zero field move in opposite directions to

one another. At about 1 Tesla, there appear another absorption mode in each measurement

configuration. These new modes also shift in frequency with increasing field, and they

move away from the original mode. Upon closer inspection, we notice that the frequency of

these 4 modes at high magnetic field are not unique. It appears that the higher frequency
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absorptions (in different configurations) are degenerate in energy. The same applies to the

lower frequency absorptions.

4.4 Discussions

We can qualitatively explain our data using symmetry. One would expect an isotropic

Heisenberg antiferromagnet to have no energy gap at the magnon zone center [10]. In other

words, it takes a zero energy to create an excitation where the spins are changing uniformly

in space. By breaking the rotational invariant symmetry of such a system, we should expect

to create an energy gap. An example of the consequence of such symmetry breaking can

be observed by applying a static magnetic field. Since there is a unique direction where

the spins would prefer to align, it takes a finite amount of energy, precisely the Zeeman

energy in this case, to create a uniform excitation. An uniaxial anisotropy that arisen from

spin-orbit coupling and crystallographic distortion can also achieve the same effect. One

should expect an orthorhombic anisotropy, where there are multiple unique axes, to have a

more complex effect on the energy gap.

An of interesting behavior emerged from fitting these absorption with a Lorentz oscil-

lator. The oscillator is not able to capture the of resonant ringing or asymmetry of actual

data. The fits are consistently under-fitting the lower frequency portion of the resonance.

It is apparent in our transmission data that the resonances are not symmetric (Fig. 4.2).

Asymmetric line shape (called Fano line shape) can be explained by the coupling between

a sharp resonance (AFM magnon) and some broad feature. This suggests that the magnon

is coupling to an underlying broad feature at low frequencies. In fact inelastic neutron scat-

tering have observed a broad scattering intensity inside the magnon gap [76]. This is argued

to be caused by the excess of magnetic moments due to the antiphase boundaries. These

moments are not compensated, and hence form a net magnetization. The broad scattering

feature is the excitation of these so called ”orphan spins”.

We turn our attention to the description of CaFe2O4 using spin wave theory. Keffer and

Kittel have worked out the problem of the antiferromagnetic spin wave with orthorhombic
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anisotropy [35]. This work ignored the microscopic spin configuration, but instead used two

mean-field magnetization sublattices, antiferromagnetically coupled to one another. The

spin waves resulted from applying the Landau-Lifshitz-Gilbert equation are two distinct

eigen-modes even with zero static magnetic field. By calculating the susceptibility, Keffer

and Kittel determined that each mode is only accessible when the oscillating magnetic

field is oriented at a particular crystalline direction. The experimental data that we have

observed is consistent with this theory.

We next try to explain our observations of the spin waves in the framework of the

measured magnetic structure in [7, 74, 75]. The spin structures found by neutron scattering

are shown in Fig. 4.5. At low temperature, there are two coexisting magnetic Bragg

peaks, implying two different spin structures, labeled A-phase and B-phase. The inelastic

neutron data from [7] revealed the weak exchange coupling along the crystalline c-axis. This

effectively means that spins in CaFe2O4 form a-b layers with intralayer antiferromagnetic

exchange interactions and a relatively weak interlayer coupling, which is ferromagnetic in

the A-phase and antiferromagnetic in the B-phase. Due to the weak interlayer coupling, we

should note that the A and B-phase magnons are expected to be nearly degenerate, making

their detection challenging with our instrument’s resolution.

The model (4.1) was used to calculate the magnon excitation spectrum in CaFe2O4.

The dynamic response of each phase due to an AC magnetic field, hi = h0 e
−i(ωt+q·xi), is

calculated numerically using the Landau-Lifshitz-Gilbert (LLG) equation. The calculated

magnon dispersion 4.6 is used to fit with data from our THz experiment and neutron

scattering experiment. We found that J1 = 7.025meV and J2 = 0.219J1. The coupling J3

is much weaker and ferromagnetic in the A-phase: J3 = −0.004J1. Furthermore, the values

of the anisotropies terms are: Kz −Kx = 0.006J1 and Ky −Kx = 0.0015J1. The Gilbert

damping is found to be α = 0.0031 from fitting our THz resonance data. The calculated ratio

of the absorption spectral weights for the two directions of the THz magnetic field, hω||a

and hω||c, is 1.12 and in good agreement with 1.25 from the THz data at low temperatures.

By ignoring the weak J3 coupling and considering an effective chain model with two

antiferromagnetic sublattices and exchange constants 2J1 and 2J2, we can gain more insight
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into the nature of the antiferromagnetic magnon modes. Using the LLG equation, we can

calculate the antiferromagnetic resonance frequencies for each spin chain in zero applied

magnetic field:

ω1 = S
√

4(J1 + J2)(Kz −Ky) (4.6)

ω2 = S
√

4(J1 + J2)(Kz −Kx) (4.7)

Through the calculated the directional dependence of the magnetic susceptibility, we

confirm that each spin wave mode can be selectively excited by aligning the THz magnetic

field along the a-axis or the c-axis. The frequency splitting, ω1 − ω2, originates from the

difference in anisotropies, Kx and Ky, along the two crystallographic directions. This result

is again consistent with the result from Keffer and Kittel [35] where they only considered two

mean-field magnetization sublattices with no details on the magnetic structure. Applying

a static magnetic field along the crystalline b-axis, the preferred direction of the spins, we

also confirm that the frequency splitting increases and ω1 and ω2 become excitable by an

incident THz magnetic field of any direction within the a-c plane (Fig. 4.7).

4.5 Summary

In summary, we present the magnon zone center measurement using polarized THz

spectroscopy. We observed multiple strong absorption at zero static magnetic field. These

can be thought of as different uniform excitations of an antiferromagnet with orthorhombic

anisotropy. A spin full classical spin wave calculation revealed that the two modes observed

are indeed coming from the orthorhombic anisotropy term in our Hamiltonian. The tem-

perature dependence of the observed excitation implies that it is associated with only the

magnetic B-phase, reported in [7]. Our calculation also confirm the selection rules in the

zero static magnetic field measurement and also when we apply a magnetic field.
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Figure 4.1: Magnitude of transmission function. Transmission of THz radiation
through b-cut sample (A) hω||a(B) hω||c. A resonance around 0.6 THz that changes with
temperature can be seen in each measurement configuration. A small difference between the
the center frequency of these resonances can be seen. A weaker resonance around 1.6 THz
can be seen. The signal to noise ratio makes it difficult to track its temperature dependence.

52



1.02
1.01
1.00
0.99

1.00.80.60.4

250

200

150

100

50

Frequency (THz)

T
em

pe
ra

tu
re

 (
K

)

R
e 

(µ
)

30

20

10

0

x1
0-3

 

1.00.80.60.4

250

200

150

100

50

Im
 (

µ)

T
em

pe
ra

tu
re

 (
K

)

Frequency (THz)

Figure 4.2: Magnetic Response. Real and imaginary parts of the magnetic response of
CaFe2O4 in the THz frequencies as a function of temperature for hω||a. We can clearly see
the appearance of the magnetic resonance below TN

53



0.70

0.60

0.50

0.40

16014012010080604020

0.10

0.09

0.08

0.07

0.06

16014012010080604020

60

50

40

x1
0-3

 

16014012010080604020

Temperature (K)

 F
re

qu
en

cy
 (

T
H

z)
W

ei
gh

t (
a.

u.
)

Γ 
(T

H
z)

 e||a
 e||c

 
A

B

C

Figure 4.3: Lorentzian fitting result. Property of the oscillator as a function of temper-
ature, (A) resonant frequency, (B) width of resonance, (C) strength of oscillator

54



1.0

0.8

0.6

0.4

0.2

N
or

m
al

iz
ed

 O
sc

ill
at

or
 S

tr
en

gt
h

an
d 

M
ag

ne
tiz

at
io

n

250200150100500

Temperature (K)

 A Phase
 B Phase
 hω || a
 hω || c

Figure 4.4: Normalized Spectral Weight. Comparison of the fitting results with mag-
netic moments from [7].The spectral weights are normalized to their maximum values, the
moments are also normalized to their maximum values. We can clearly see that the two
magnons observed with THz spectroscopy is associate with the magnetic B-phase.
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(a) (b)

Figure 4.5: Magnetic orders in the A- and B-phases (panels (a) and (b), respectively).
Arrows represent spins aligned parallel or antiparallel to the z axis. Bonds with three
different exchange constants are indicated by red, green and cyan color.

(a) (b) (c)

Figure 4.6: Numerically calculated magnon spectrum for the wave vector (a) q ‖ x, (b) q ‖ b
and (c) q ‖ z. Blue (red) line is for magnons excited by the ac magnetic field h ‖ x (h ‖ y).
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Figure 4.7: Magnetic field dependence of the THz absorption spectra. The two AFMR
modes measured in magnetic field are compared to numerically calculated resonances(red
dash) at T = 4.5 K and T = 10 K for hω ‖ a and hω ‖ c respectively. This confirms the
breaking down of the selection rule as a static magnetic field is applied along the b-axis
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Chapter 5

α-RuCl3

5.1 Introduction

Quantum spin liquid (QSL) is a thriving area of research in condensed matter physics.

This ground state of matter is of interest due to its quantum mechanical nature and exhibit

exotic behaviors [79]. In typical magnetic crystals, the magnetic moments exhibit long range

correlation (the size of a sample, or at the very least µms size domains). These moments

could either prefer to point parallel to one another or antiparallel to its neighbors. These

two simple pictures represent ferromagnetic ordering and antiferromagnetic ordering. The

details are typically much more complicated as these magnetic moments live on different

crystalline lattices.

Let’s consider a 2-D square lattice, with a spin on each of the vertices 5.1. If the other

factors from the system (atomic orbitals overlap, hopping, etc.) impose that each spin must

align antiferromagnetically with each other (closest distance neighbor). We would have a

simple ground state as seen in Fig. 5.1. Let’s consider a different 2-D lattice, a triangular

one. Let’s assume that the system also imposes an AFM nearest neighbor coupling. There

is no ”good” way to align the spins that would satisfy the AFM coupling requirement. This

is a simple picture of geometric frustration. A similar situation exists in many 3-D crystal

lattices. The ground state of such frustration can be a QSL. What it means is at zero

Kelvin, the spins are not nicely aligned like the square lattice, but the ground state is a

superposition of multiple configurations.

There are more rigorous definitions of a QSL, however, an intuition can be obtain
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?

Figure 5.1: Geometric frustration in 2D triangular spin lattice. A simple picture
of 2D square and triangular lattice, with spins (red arrows). If the constraint is such that
nearest neighbor sites have opposite spins, the square lattice can easily fulfill this condition.
However, the triangular cannot. As a consequence, the third spin can be either up and
down, leaving a degeneracy in the system. Such degeneracy prevents the spins on this
lattice from ordering.

by thinking about the classical liquid. In a solid, all the ”molecules” have long range

correlation. The meaning is that there is a definite relationship between the location of two

atoms across a large distance (infinity if we consider a perfect crystal at zero temperature

and no quantum fluctuation). In a liquid, like water, the molecules have no long range

correlation. However, at short range, there is correlation between adjacent molecules. The

short range correlation typically comes from the interaction between the adjacent molecules,

while thermal fluctuation is the cause of the lost in long range order. In a QSL, there is

short range correlation between the spins, but the long range order has been destroyed by

quantum fluctuations (quantum mechanical fluctuations as oppose to thermal fluctuation).

In a real material, the crystal lattice often distorts itself to relieve this frustration.

α-RuCl3 is a candidate for the Kitaev model [80, 81]. This model is characterized by

3 independent bonds. The magnetic ground state of this model is a QSL. However, it
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was found that α-RuCl3 orders antiferromagnetic below ∼ 6 K [82, 83]. The bulk crystal

symmetry of α-RuCl3 is C2/m [82, 83]. The a-b plane can be characterized by quasi-

honeycomb layers monoclinically stacked along the c axis (Fig. 5.2). The c axis makes

approximately 108◦ angle with the a axis. This monoclinic stacking was found to repeat

every 2 layers (AB stacking). Van der Waals coupling weakly hold each 2-D layer together.

The monoclinic stacking breaks the C3 symmetry of each layer, leaving C2 as the highest

symmetry remaining in the bulk. The special two-fold symmetry axis is in the plane and

along a Ru-Ru bond. Refinement of diffraction data from previous studies revealed a small

distortion of one of these bonds (out of 3), in the order of ∼0.01 Angstrom. This distortion

is possibly the relief mechanism for the magnetic frustration.

Although long range magnetic ordering does occur in α-RuCl3, inelastic neutron scat-

tering (INS) revealed hints on QSL physics in this material [84, 85]. A magnon gap was

measured by both INS and optical spectroscopy, along with a broad scattering continuum.

Fractionalized spin excitations is the proposed explanation to the continuum. Typical spin

excitations have ∆ms = 1, while fractionalized spin excitation would have ∆ms = 1/2. The

details of this excitation lie in the heart of QSL physics and is beyond the scope of this study

[81]. However, an immediate consequence of such exotic QSL behavior should be recognized.

The difference between these two magnetic excitations: a bosonic (∆ms = 1) vs. fermionic

(∆ms = 1/2) excitation. They obey different statistics. THz spectroscopy measurements

have also seen a broad magnetic excitation, similar to one by inelastic neutron scattering

[86–88].

Previous Raman studies of α-RuCl3 have focused on the broad magnetic scattering

continuum and its relation to the Kitaev model [8, 89, 90]. Most of the publications use

the symmetry of α-RuCl3’s perfect honeycomb layer. Specifically, the observed scattering

continuum has been propose to be the same as the predicted Kitaev scattering continuum

in the layered irridate [91], with Eg symmetry. We set out to study the effects of symmetry

breaking on α-RuCl3 ’s phonon spectrum as a whole and more specifically the scattering

continuum.
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Figure 5.2: Crystal structure and Laue X-ray diffraction pattern. Crystal structure
of α-RuCl3 projected onto the a-b and a-c plane. The solid black lines represent the unit
cell. The orange balls represent Cl atoms, while the larger blue balls represent Ru atoms.
Typical Laue diffraction pattern of the a-b plane. The pattern remained unchanged over
many millimeters.

5.2 Experiment

Our sample is grown by the same group in these studies [82, 84, 85]. Laue diffraction

patterns were taken on the surface of the sample (layering plane) to confirm the large

domain single crystal nature of our sample (Fig 5.2). Raman spectra for 514.5308 nm

laser excitation were measured in ambient conditions using a single-grating spectrometer

(Renishaw inVia micro-Raman, 1800 lines/mm grating, 1.27 cm CCD detector) in the 180◦

backscattering configuration. A combination of half wave plates and linear polarizers were

used to measure phonons in either parallel or crossed polarization configurations, where
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the polarization orientations were confirmed using MoS2 as a reference sample. The α-

RuCl3 sample, where the a and b axes were known from Laue diffraction, was placed on a

rotator stage to probe different crystal orientations. To probe the a-c plane, the α-RuCl3

was mounted on its side and a long working distance objective was used to focus on the

m̃m thick side of the sample. Integration times ranged between 5 minutes (a-b plane) and

12 minutes (a-c plane), and the laser power was kept below 200 µm through the objective

(50x, Numerical Aperture 0.75 to probe a-b plane, 100x long working distance objective,

Numerical Aperture 0.75 to probe a-c plane) to avoid any local heating of the sample.

The point group symmetry of the bulk crystal is 2/m (or C2h). One would expect the

Raman response tensor to have the form shown in equation 5.1. It should be pointed out

that the crystallographic b-axis is the high symmetry axis and is identically the tensor y-

axis. We expect to observe 12 Raman active phonons 6Ag + 6Bg in this point group. The

selection rule allows for both Ag and Bg phonons to be measured in our measurement of

the a-b plane. In contrast, the a-c plane should only show Ag phonons. We expect the

intensity of the Ag phonon to be out of phase with Bg as the polarization angle changes

within the a-b plane.

Our experiment can be described by using the Raman response tensor predicted by

group theory.

Ag =


a 0 d

0 b 0

d 0 c

 ;Bg =


0 e 0

e 0 f

0 f 0

 (5.1)

5.3 Results

Through the help of X-ray Laue diffraction, we determined the crystalline b axis of

our sample (Fig. 5.2). With the a-b plane defined as the van der Waals layers plane,

we can uniquely determine the other crystal axes. The initial result of the a-b plane

taken with incoming polarization parallel to b is presented in Fig. 5.3. We observed
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Parallel Crossed

a-b
Ag (a+ b) + (a− b) cos(2θ) (b− a) sin(2θ)

Bg e sin(2θ) e cos(2θ)

a-c
Ag (a+c)+(a−c) cos(2θ)−2d sin(2θ) (a− c) sin(2θ)− 2d cos(2θ)

Bg N.A. N.A.

Table 5.1: Raman Angular Response of the a-b an a-c plane of α-RuCl3 Derived
from Raman tensor in Eq. 5.1. Here, the crystalline b axis is identically the tensor y-axis,
and a is the x-axis, while c is not the z-axis.

similar spectra as previous Raman studies on α-RuCl3 [8, 89]. Upon closer inspection,

we can see small differences in the phonon frequencies between the crossed and parallel

configuration, particularly around 164 cm−1, 270 cm−1, and 295 cm−1. These differences

are approximately 2 cm−1. In addition, the weaker phonon peak at 118 cm−1 seems to have

an additional peak in the parallel configuration. It should be noted that previous studies

did not point out these subtle changes between the crossed and parallel configurations.

They have either assumed that these are the same phonon in [89, 90], or underestimated

the frequency difference (sub cm−1) [8]. The phonons in our spectra have been labeled with

the irreducible representations Ag and Bg of the point group 2/m (C2h) in Table 5.2, which

is the point group symmetry of bulk α-RuCl3.

Our room temperature measurements also show the asymmetric phonon peak at 164

cm−1 (Fig. 5.3), which is consistent with other publications[8, 89]. The asymmetric Fano

lineshape typically arises when a discrete resonance, a phonon in this case, is coupled to a

broad continuum[92]. It was conjectured that at low temperature, such scattering contin-

uum is partially due to the magnetism of α-RuCl3. Multiple authors have argued that this

room temperature magnetic continuum has its root in the Kitaev physics [91, 93]. Quasi-

elastic scattering (QES) has been proposed to be the largest contribution to the continuum

at room temperature. We would like to point out that THz transmission was reported

through ∼mm thick single crystal α-RuCl3 [86, 87]. Such measurement implicates that α-

RuCl3 is highly insulating. We would expect the free electron response to be negligible. It’s

63



1† 2† 3 4† 5† 6

Ag 119.4 164.2 222 271.9 295.8 313.1

Bg 115.8 165.8 269.3 297.6 291.5

Table 5.2: List of Ag and Bg phonons. The symmetry asignment of these phonons were
determined by its intensity when the laser polarizations are on a crystalline axis (a or b).
In such polarization configuration, Ag modes appear in parallel and Bg in crossed. The †

here denotes pairs of nearly degenerate phonon modes.

important to point out that another candidate of the Kitaev magnet, β-Li2IrO3, exhibits

a similar broad continuum along with multiple asymmetric phonons at room temperature

[94].

I(ω) = I0
1

(1 + q2)

(q + (ω−ω0
Γ ))2

1 + (ω−ω0
Γ )2

(5.2)

To determine the phonons resonant frequencies, we fitted each peak with a Lorentzian

lineshape. The exceptions are the peaks around 164 cm−1 where we use the Fano line shape

equation (Eq. 5.2) instead. Here, q represents the asymmetric parameter. A Lorentzian

lineshape is recovered as q goes to infinity (or 1/|q| = 0).

As the relative angle between the laser polarization and the crystalline axes changes, we

observed the apparent oscillations in the phonon frequencies in both crossed and parallel

configuration (Fig. 5.4). Each phonon frequency oscillation can be explained by a pair

of Ag and Bg phonons. Each phonon in the pair changes its intensity as the orientation

is rotated, out of phase with one another. This behavior would give rise to the observed

oscillation. We employed a model that contains multiple phonons with frequencies fixed by

the Ag and Bg phonon frequencies to fit our data (Fig. 5.5).

The results of our fitting procedure is consistent with the assumption of multiple phonons

per oscillation. The spectral weight of each phonon follows what group theory has predicted,

as seen in the a-b plane rows of Table 5.1. In the crossed configuration, the change in

intensity of Ag is indeed out of phase with Bg, as predicted by sin and cos respectively.

The 313.07 cm−1 Ag phonon shows little change in intensity in the parallel configuration
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(Fig. 5.4). This implies its tensor components a = b. That would explain the lack of

intensity in the crossed polarization as the IAg ∝ (a − b) in the crossed configuration. In

contrast, an interesting behavior of the Ag phonons near 270 cm−1 and 295 cm−1 can be

seen in the parallel configuration (Fig. 5.5). The four nearly equal lobes of Ag phonons in

the parallel configuration indicate that the tensor components a and b are approximately

equal in magnitude and opposite in sign (or π phase difference).

We found that the phonon peak at 164 cm−1 shows similar changes to the oscillation

of the 270 cm−1 and 295 cm−1 as the polarization angle changes (Fig. 5.4). In the crossed

configuration, there is a resemblance of the oscillation in the frequency of the maximum

intensities of this peak. In the parallel configuration, the behavior is less simple. The

maximum intensity also shows variations as the sample is rotated (Fig. 5.4). In an attempt

to determine angular dependences of the Ag and Bg phonon near 164 cm−1, we again used

the Fano lineshape equation (Eq. 5.2).

We are unable to obtain a good fit between 146 cm−1 and 180 cm−1 with two Fano

lineshape. We can only speculate that this is likely due to the two extra parameters q.

Another complication might be coming from the change in the background/continuum as

a function of polarization angle. With a single Fano lineshape, we are able to observe

the frequency oscillation in the crossed configuration, with the maximum and minimum

frequency of ∼ 164.2cm−1 and 165.8cm−1. They are of Ag and Bg symmetry respectively.

In the parallel configuration, the behavior of the Fano phonon peak is consistent with the

changing in intensity of these Ag and Bg phonons (see Supp. Mat.) We determined 1/|q|

to be 0.064 and 0.091 for the Ag and Bg mode respectively.

Our measurement of the a-c plane shows no oscillating phonon peak, which is consistent

with group theory (see Supp. Mat.) Only Ag phonons are expected in this plane. The most

interesting feature in our data can be seen around 164 cm−1 (Fig. 5.6). Fitting the Fano

peak in the a-c plane revealed how the asymmetry parameter q changes. In the parallel

polarizations configuration, we see that the linewidth of the phonon is almost symmetric

around 90◦ (see inset). This angle corresponds to when the laser polarizations are pointing

perpendicular to the van der Waals layers. By comparison, the crossed configuration also

65



show changes the phonon lineshape’s Fano parameter. Its 1/|q| value in this configuration

approaches zero when one of the laser polarization point perpendicular to the a-b plane.

5.4 Discussion

Previous studies of α-RuCl3 has analyzed the Raman phonon spectra using the point

group symmetry of each distortionless honeycomb layer D3d [89, 95]. Factor group analysis

reveals that the 4Eg + 2A1g Raman active phonons in such point group would transform

into Ag and Bg phonons of the bulk crystal. Specifically, the doubly degenerate Eg phonons

mode of the higher symmetry point group would split into the Ag and Bg modes of the lower

symmetry point group. Our observation of the nearly degenerate Ag and Bg phonons indi-

cates that they are indeed closely related to the Eg phonons of the distortionless individual

2-D layer.

The Ag phonons at 271.85 cm−1 and 295.79 cm−1 also show evidence of this transfor-

mation. Four prominent intensity lobes in the a-b plane (Fig. 5.5) was measured in the

parallel configuration. We can see that the tensors components probed by this measurement

has the form of: (a+ b)− (a− b)Cos(2θ) (Table 5.1). The observation implies that b ≈ −a.

A quick lookup of the Eg phonon Raman response tensor in the point group D3d reveals

that b = −a. We believe that the pairs of phonons around 270 cm−1 and 295 cm−1 were

originally Eg phonons of each honeycomb layer. In contrast, the Ag phonon at 313.07 cm−1

does not show any angular dependence in the parallel measurement of the a-b plane. This

observation implies that its tensor is similar to the A1g phonon from the D3d point group,

where b = a.

Similar behavior was calculated in CrI3 [96], an isostructural material to α-RuCl3. Den-

sity Functional Theory predicted that the energy differences between the Ag and Bg pairs of

phonons come from the weak interlayer coupling. That would explain the small magnitude

of the frequency differences that we have observed. However, we should also expect the

distortion of each layer to play a similar role in the phonon spectra of these materials. The

magnitude of such distortion is minute [82, 83], which could be as likely to split the degen-
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eracy of the Eg mode. Further theoretical study is necessary to pinpoint the mechanisms

responsible for our observed spectra.

We now turn our attention to the Fano peak around 164 cm−1. We observed changes

in 1/|q| in the a-c planes, where it seems to approach zero at angles corresponding to

polarizations out of the van der Waals layer. Group theory tell us that there is an out of

plane response, specifically due to tensor component c and d in eq. 5.1. The vanishing

1/|q| means that the tensor component c and d has little to almost no coupling to the

broad continuum. Meanwhile, tensor components a and b couple significantly stronger to

the continuum, as seen in the a-b plane.

It should be noted that as 1/|q| becomes close to vanishing in the parallel configuration,

the continuum seems to also vanish (Fig. 5.6). It is important to realize, however, that

the Raman signal around 164 cm−1 comes from the phonon and also the continuum. The

frequency dependence of this continuum makes it difficult to decouple the two effects. Our

observation of the out-of-plane polarization is consistent with the observation of another

group [8].

There are two possible explanations for this observation. The simplest explanation is

that both the continuum and the phonon that’s coupled to it are directly excited via the

Raman process. With this mechanism, our observation would imply that the continuum

is not excitable out of the van der Waals plane. In turn, the phonon’s coupling strength

1/|q| would also diminish as the the continuum diminishes. Another possibility is that the

continuum is excited indirectly via its coupling to the phonon. As the coupling strength

vanishes, we would expect the continuum to vanish as well.

Previous Raman studies have argued that the continuum at room temperature is coming

from some bosonic and fermionic source. Some authors have claimed that the fermionic

contribution at low temperature persists to above T = 7.5J [93], where J is the isotropic

Kitaev exchange constant and of the order of a few meV. According to this claim, we would

expect to measure the Kitaev continuum at room temperature. Other authors from [8]

dismissed the phononic contribution to this continuum entirely based on its disappearance

in the out-of-plane measurement. From then on, the only other contribution is a magnetic
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one. This latter claim is something that our work can shed light on.

The observation of the symmetric phonon lineshape out-of-plane with parallel polariza-

tions indicates that the scattering continuum is not a phononic effect. The continuum is

clearly a 2 dimensional effect. A previous study have sketched out the atomic motion of

the mode at 164 cm−1 [8] as the out of phase motion of the Ru atoms in the a-b plane

[8]. It is conceivable that this motion is coupled to some magnetic excitation via the strong

spin-orbit coupling effect of Ru atoms.

Another key insight can be obtained by looking at the Raman tensors. We observed a

similar change in the Fano parameter in the crossed polarization. We can say that whenever

any polarization is perpendicular to the a-b plane, the Fano coupling becomes vanishingly

small (Fig. 5.6. In term of point group symmetry, the continuum, or rather the coupling

to the continuum, cannot be described by the point group C2h. We expect an out-of-plane

response from a mode with Ag symmetry 5.1. However, this is consistent with the Eg

phonon symmetry of the point group D3d (eq. 5.3), where an out of plane response is not

expected.

A1g =


a 0 0

0 a 0

0 0 b

 ;Eg,1 =


c 0 0

0 −c d

0 d 0

 (5.3)

Previous experimental studies have used Eg to label this scattering continuum [89, 93].

We can only guess as to why this was used. On one hand, the the theoretical study was

done for a perfect honeycomb layer with D3d point group. While the initial experimental

study drew inspiration from other studies on the layered honeycomb irridates (a 3D Kitaev

system) [91]. Since then, there have been multiple theory publications on the 2D honeycomb

system [97].

The Raman selection rule for magnetic scattering was derived for a single honeycomb

layer [97]. For a spin Hamiltonian that only has nearest neighbor interaction, and all the

interactions obey the crystal symmetry, the magnetic excitations have the Eg symmetry.

Again, we expect an excitation with Eg symmetry to vanish out of the 2D plane 5.3. Our
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observation of the vanishing Fano parameter out of plane is indicative of an Eg symmetry.

This means that what we have measured is indeed magnetic in origin. We cannot say,

however, that this magnetic scattering continuum is due to the Kitaev interaction. We

can only say that nearest neighbor exchange is dominant, and symmetric under the crystal

symmetry.

5.5 Summary

In summary, we measured the Raman phonon spectrum of α-RuCl3 at room temperature

and found it to be consistent with the point group C2h. We found multiple links between

these phonons to the point group D3d, the symmetry of each perfect honeycomb layer.

This observation is consistent with factor group analysis where the Eg phonons of D3d

become pairs of Ag and Bg phonons of C2h. We also observed the Fano resonance near

164 cm−1 and found that it is made up of a pair of Ag and Bg phonons with different

coupling parameters to the broad background/continuum. Our measurement with the laser

polarization pointing out of the honeycomb layer is also consistent with the point group

symmetry of the bulk crystal. An interesting observation was made where we see the

coupling of the Fano resonance to be diminishing out of the a-b plane. This vanishing

coupling suggests that the scattering continuum/background is of Eg symmetry. Comparing

to the Raman magnetic scattering selection rule, we concluded that this background is of

magnetic origin.
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Chapter 6

Summary

One of the key to understanding cooperative phenomena such as phonons and magnons is

by the symmetry of the system that host these effects. The discrete translation and rotation

symmetry of a crystal imposes strict symmetry on the quantum mechanical ground state

of such system. Through the electromagnetic coupling, polarized light is not only able to

probe these interesting effects, but also can reveal the symmetry restrictions in the system.

Understanding the symmetry and how it changes is an effective tool when it comes to

probing new phases of matter[33].

In the multiferroric Sr2FeSi2O7, we effectively drew a link between the spin-orbit coupling

(SOC) effect and the coupling of the two order parameters, magnetization M and electric

polarization P. It is well known that the SOC effect has an energy scale much smaller than

the other dominant effects in 3d electronic systems, namely Hund’s coupling (electronic

exchange) and crystal field splitting. Our observations confirmed that through the 2nd order

perturbation effect, SOC lifts the degeneracy of the Fe2+ (3d6) electronic ground state. Our

theoretical analysis and experimental results also confirms that the actual ground state is

that of both spin and orbital in origin. Interestingly, the energetics of the single ion picture

is the origin for the single ion anisotropy energy in the magnetic order phase. Since the

electronic ground state of a single ion has no Sz, in the magnetically ordered phase, the

spins structure is an easy-plane (xy) one. The required energy to take the spins out of this

plane is closely related to the energy difference between our measured ground state and the

first excited state.
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In a different material, CaFe2O4, we measured the effect of crystalline symmetry on the

antiferromagnetic magnons of the system. Below ≈ 200 K, this material order antiferro-

magnetically with the magnetic moments point parallel and antiparallel to the crystalline

b-axis. Although the magnetic structure is complicated, a mean field theory that only takes

into account the orthorhombic symmetry of the crystal lattice can qualitatively explain our

observations. We observed two spin wave (magnon) modes with different energies. They

are coming from the fact that the single ion anisotropy terms in the spin Hamiltonian has

to reflect the highly anisotropic nature of this crystal. Interestingly, our THz spectroscopy

probe manage to catch a glimpse of the coexistence of two magnetic phases in CaFe2O4. A

better theoretical study is necessary to fully explain our observations.

In the last study presented here, we demonstrated that the normal modes of lattice

vibration (phonons) are highly sensitive to the symmetry of the crystal. α-RuCl3 belongs to

the monoclinic crystal group, one of the lower symmetry crystal groups. Each van der Waals

layer is a nearly perfect honeycomb. The symmetry breaking also comes from the monoclinic

stacking, where the near perfect honeycomb layers are stacked at a low symmetry angle of

∼ 180◦. We observed the effect of these broken symmetries in the Raman phonon spectra.

We have good evidence to show that each of the perfect honeycomb layer’s Eg (doubly

degenerate) phonons is split into pairs of Ag and Bg phonons. The subtle splitting can only

be explained by either the weak van der Waals coupling or the distorted honeycomb layer.

We also investigated the asymmetric phonon peak that’s often associated with magnetic

scattering in previous studies. Our analysis revealed that the scattering continuum is of

the Eg symmetry, vanishing when the excitation fields are out of the honeycomb plane.

Comparing to previously derived selection rules, we concluded that the observed scattering

continuum at room temperature is possibly magnetic, and the magnetic interaction is that

of only nearest neighbor and obeying the crystal symmetry.

These studies are some of the examples of how optical spectroscopy can probe the sym-

metry and symmetry breaking effects in solids. Many exotic phases of matter require highly

sensitive optical probes due to their more subtle fingerprints. Performing spectroscopy in

the infrared and far infrared range is a great way to probe the low-energy excitations of the
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crystal or magnetic structure.
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