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Abstract

The advent of high performance supercomputers enables scientists to perform extreme-

scale simulations that generate millions of cells and thousands of time steps. Through

exploring and analyzing the simulation outputs, scientists can gain a deeper understanding of

the modeled phenomena. When the size of simulation output is small, the common practice

is to simply move the data to the machines that perform post analysis. However, as the size

of data grows, the limited bandwidth and capacity of networking and storage devices that

connect the supercomputers to the analysis machine become a major bottleneck. Therefore,

visualizing and analyzing large-scale simulation datasets are posing significant challenges.

This dissertation addresses the big data challenge and suggests distribution-based in-situ

techniques. The technique uses the same supercomputer resources to analyze the raw data

and generate compact data proxies which use distribution to statistically summarize the raw

data. Only the compact data proxies are moved to the post-analysis machine to overcome

the bottleneck. Because the distribution-based data representation keeps the statistical

data properties, it has the potential to facilitate flexible post-hoc data analysis and enable

uncertainty quantification.

We firstly focus on the problem of large data volume rendering on resource-limited

post analysis machines. To tackle the limited I/O bandwidth and storage space challenge,

distributions are used to summarize the data. When visualizing the data, importance

sampling is proposed to draw a small number of samples and minimize the demand of
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computational power. The error of the proxies is quantified and visually presented to

scientists by uncertainty animation. We also tackle the problem of error reduction when

approximating the spatial information in distribution-based representations. The error could

cause low visualization quality and hinder the data exploration. The basic distribution-

based approach is augmented by our proposed spatial distribution which is represented by

a three-dimensional Gaussian Mixture Model (GMM). The new representation not only

improves the visualization quality but can also be used in various visualization techniques,

such as volume rendering, uncertain isosurface, and salient feature exploration. Then, a

technique is developed to tackle the problem of large-scale time-varying datasets. This

representation stores the time-varying datasets with a lower temporal resolution and utilizes

the temporal coherence to reconstruct the data at non-sampled time steps. Each pixel ray at

a view at non-sampled time step is decoupled into a value distribution and samples’ location

information. Our representation utilizes the data coherence to recover the samples’ location

information and store less data. In addition, similar value distributions from multiple rays

are represented by one distribution to save more storage. Finally, a statistical-based super

resolution technique is proposed to solve the big data problem caused by a huge parameter

space. Simulation runs with a few parameter samples output full resolution data which is

used to create the prior knowledge. Data from rest of simulation runs in the parameter space

is statistically down-sampled to compact representation in situ to reduce the data size. These

compact data representation can be reconstructed to high resolution by combining with the

prior knowledge for data analysis.
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Chapter 1: Introduction

1.1 Background and Motivation

The computational power of supercomputers grows rapidly in the past decade. Ac-

cording to the list of TOP500 supercomputers, which is released in June 2008, the most

powerful supercomputer is RoadRunner in the Department of Energy’s Los Alamos National

Laboratory where its peak performance just breaks the PFLOPS barrier to reach 1.042

PFLOPS (Peta floating-point operations per second). But according to the updated list of

TOP500 supercomputers , which is released on June 2018, the most powerful supercomputer

is Summit, which runs in the Department of Energy’s Oak Ridge National Laboratory.

Its peak performance can reach 187.6 PFLOPS. The computational power of the fastest

supercomputer in the world has increased around 180 times in the past ten years. The

increasing performance of supercomputers allows scientists to model complex physical

phenomena with high-resolution simulations which has millions of spatial grid points and

hundreds or even thousands of time steps. Scientists can explore the high-resolution data

and have greater understanding about the physical phenomena. To save the supercomputing

resources, the datasets are usually moved out from the supercomputer and stored on other

devices for data analysis later when the simulation is done. If the size of simulation output

is small, common practice is to simply move the data to machines that perform post analysis.
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However, as the size of data grows, the limited bandwidth and capacity of networking and

storage devices that connect the supercomputers to the analysis machine become a major

bottleneck [2, 60, 105]. Handling and analyzing the large-scale datasets are not easy tasks.

So, an appropriate approach is crucial.

To overcome the bottleneck, the datasets generated by the simulation can be replaced

by a compact data proxy then written to the storage devices. An ideal data proxy should

be compact with minimal error and allow scientists to explore the dataset with minimal

constraints. However, to create such a general data proxy that can be applied to all types

of datasets and analysis tasks is difficult. In practice, scientists often have different needs

depending on the analysis tasks and types of datasets. To reach a good trade-off between the

size and error of the data proxy, the data proxy should be designed by considering (1) the

analysis and visualization techniques which will be used to explore the dataset, (2) the error

tolerance and the allowed proxy size budget, and (3) the type of dataset which is analyzed.

The application scenarios this proposal focuses on and their challenges are listed below:

• Direct volume rendering is a widely used scientific data visualization technique

[14, 47, 73]. With transfer function exploration, scientists can discover salient features

and attain a deep understanding of the datasets. However, while using the compact

proxies to overcome the aforementioned big data challenge, preserving the ability

of exploring occluded features and the quality of data visualization are not trivial

tasks. Furthermore, quantizing and visualizing the error in the compact proxies to

scientists are also important [7, 17, 59]. This prevents making incorrect data analysis

conclusions from the error in the data proxy. Therefore, a compact proxy design that

enables both transfer function exploration and error quantification is needed.
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• To deeply understand physical phenomenon, modern supercomputers allow scientists

to run simulations with very high spatial and temporal resolutions [5,35,69]. To handle

such big datasets, a common practice is to reduce the spatial and temporal resolution

of datasets. However, this naive approach will introduce large error and could mislead

the analysis tasks [56, 80]. For example, when visualizing the data, interpolation

approximation is usually used to reconstruct the data. This could reconstruct non-

existing values and incorrect feature shapes. Therefore, it is necessary to develop a

technique to reconstruct datasets to original spatial and temporal resolutions with less

error. This technique should not only have good trade-off between the size and the

error but also needs to control the size of data proxy flexibly by the given size budget.

• Simulations usually allow different initial conditions to produce different simulation

results. The datasets produced by same simulations are called ensemble dataset and

each result produced by an initial condition is called a ensemble member. Scientists

are often interested in studying the relation among different initial conditions [91, 92].

Many data visualization and analysis techniques have been developed for ensemble

study to understand the uncertainty of the output datasets and the sensitivity of the

input parameters [30, 67]. However, the total data size of an ensemble dataset is often

very large. For example, if an initial condition consists of P parameters and each

parameter has N possible values, the size of the ensemble dataset will be P∗N times

than that of one ensemble member. Therefore, an ensemble dataset is often a terabyte-

to petabyte-scale data. To design a compact proxy for ensemble study is important.
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1.2 Proposed Solutions

We propose a novel technique which we call distribution-based in-situ data summariza-

tion to tackle the above challenges of the applications. Our proposed technique has two key

components which are in-situ technique and distribution representation.

The in-situ technique processes the data and generates the compact data proxies when

the data resides on the supercomputer. Only the data proxies are moved to the post analysis

machine for data exploration later. Compared with the traditional data analysis pipeline,

which stores raw datasets to the persistent disk and then explores the raw datasets, the in-situ

technique has some benefits. The expensive data movement is significantly reduced by

only moving the compact data proxies to the post analysis machine and the post analysis

computer requires lower storage and less memory footprint.

The distribution-based approach compactly represents a population of data points by

summarizing the data using a distribution. The distribution does not only store the data points

compactly, but also preserves their statistical characteristics. Compared with traditional

data reduction approaches, the distribution-based approach has some benefits. The more

flexible post-hoc data analysis approaches can be built on top of the distribution-based

representation because the statistical characteristics of data points are preserved. In addition,

error is inevitable in the compact data representation, which could mislead the data analysis.

The distribution-based representation has the potential to enable uncertainty quantification

and show confidence of the visualization to scientists.

In this dissertation, we propose in-situ distribution-based data summarization approaches

to tackle different types of large-scale data analysis problems. (1) When experts need

to study large volume datasets using volume rendering, we propose a view-dependent

distribution-based approach which compactly summarizes the data projected to an image
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pixel. To accurately preserve the depth cue in the visualization, the data proxy irregularly

subdivides each pixel frustum to minimize the information loss in the distribution of each

sub-frustum based on the user-given size budget. This representation can visualize the data

efficiently on the low-cost post analysis machine and quantify the uncertainty by adapting

the user given transfer function. (2) For the datasets with large spatial resolution, we propose

a compact data proxy which uses distribution to model data values and their spatial locations

separately. The distribution of data values is summarized by a histogram. Because the

distribution of data values does not preserve the data samples’ location, we use a spatial

Gaussian Mixture Model (GMM) to compactly model the spatial location distribution of

data samples which fall in the value interval of a bin. The distributions of data values

and their spatial location information can be combined by Bayes’ rule to reconstruct the

data value at arbitrary spatial locations. The error quantification of each reconstructed data

value is provided. (3) To tackle the big data problem which is caused by the high temporal

resolution, we propose a view-dependent data proxy which can capture the evolution of

features at non-sampled time steps when the naive temporal down-sampling is used to

handle the dataset. We decouple each ray at non-sampled time steps into a value distribution

which summarizes samples along the ray and the samples’ location information. We either

directly store the samples’ location information or utilize data coherence in the temporal

domain to represent the samples’ location information. In addition, our technique can

identify the similar value distributions and location informations to save more storage. (4)

For ensemble dataset, we propose a data proxy which utilizes the data coherence in the

simulation parameter space to create a compact data proxy. Most of ensemble members

are statistically down-sampled. The spatial domain is subdivided into multiple blocks and

data in each block is represented by a Gaussian Mixture Model. However, GMM does not
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preserve the samples’ location information in the data block. Therefore, we store a small

number of full resolution ensemble members which are called prior knowledge. When we

reconstruct a data block to high resolution, a data block’s statistical values and surrounding

data blocks are used to look up the most similar data block in the prior knowledge. Because

the data coherence in the parameter space, the retrieved data block in the prior knowledge

can be used to predict the samples’ location in the data block.

In summary, this dissertation is organized as follows: In Chapter 2, we discuss the

relevant previous research works. Chapter 3 provides the details of the proposed image- and

distribution-based large volume rendering technique. Chapter 4 presents the distribution-

based representation augmented by value-based spatial distribution in detail. Chapter 5

introduces the technique which compactly stores the non-sampled time steps in the temporal

domain and provides high quality evolution of features. The details of the data proxy for

ensemble data study are explained in Chapter 6. Finally, we conclude this dissertation in

Chapter 7 and discuss several future research directions.
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Chapter 2: Background and Related Work

In this chapter, we discuss the previous research works related to this dissertation. These

related research works are organized into several categories such as large data representations,

in-situ approaches, distribution-based data analysis, image-based approaches and uncertainty

visualization. In the beginning, we discuss the techniques which are developed to represent

and store large-scale datasets. Section 2.2 covers the research works related to in-situ

workflow. In Section 2.3, we summarize the statistical based approaches used on data

analysis and visualization. The related works of the image-based approaches are discussed

in Section 2.4. Finally, the works which focus on error quantification and visualization are

discussed in Section 2.5.

2.1 Data Representation for Large Dataset

Data representation plays an important role in large data analysis. It is designed to reduce

the memory footprint, save the I/O time, or efficiently access the data on demand in the task

of data analysis. A traditional and straightforward approach to reduce the size of volume data

is to down-sample the volume to a smaller resolution. However, this approach suffers from

aliasing and inconsistent artifacts, as pointed out in [56,80,104]. The compression technique

is one of the major categories to reduce the I/O overhead [11, 21, 39, 40, 48, 49, 55, 58, 83].

The compression techniques could also produce the inconsistent artifacts in the visualization
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without the proper error quantification. Multi-resolution strategy loads different level-of-

detail data proxies by the need to reduce the requirement of I/O bandwidth and memory

footprint. Shen et al. [79], Sicat et al. [80] and Xie et al. [98] used this strategy to handle the

large datasets on the commodity computers. Statistically summarizing each low-resolution

block preserves more information for the reconstruction to the original data resolution when

visualizing the datasets. Dutta et al. [26] irregularly subdivided a volume by minimizing

the data distribution entropy in each sub-region to both reduce the proxy size and preserve

the representation quality. Wei et al. [96] used stratified sampling to preserve both data

distribution of each low-resolution block and samples’ location distribution in the spatial

domain for the accurate data reconstruction. The simulations which generate time-varying

datasets can easily have hundreds or thousands time steps, and simply create huge amount

of data. Therefore, many techniques have been proposed to handle the time-varying datasets.

Hazarika et al. [41] proposed CoDDA which is a flexible distribution-based framework

to handle large-scale multi-variate data. Chen et al. [17] used quadratic Bezier curve to

calculate the vector between two sampled time steps and compute the reliable pathlines. Gau

et al. [34] used temporal coherence to increase rendering performance. Some approaches

focus on specific analysis applications to produce the compact proxies. Sauer et al. [75]

proposed a new data structure which combines Eulerian and Lagrangian reference frames

to provide efficient data sampling and querying. Yu et al. [106] proposed scalable and

hierarchical tree structure to compute the distance field from large datasets in parallel. The

state-of-the-art data reduction techniques for scientific data visualization and analysis are

summarized by Meyer et al. [63] and Li et al. [53]. They discussed and categorized the

approaches in term of different use cases.
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2.2 In-situ Techniques

While the simulations run on the modern supercomputers to produce Pera-byte scale

datasets, the common practice which moves whole datasets to persistent disk and wait

for analysis are infeasible. In-situ workflow is proposed to tackle the problem from the

constraint of the I/O bandwidth and the limited disk capacity by processing the raw datasets

to produce compact data proxies using the same supercomputer resources. Many works

which target on different applications integrate in-situ workflow to solve their own large

data problems. Ma et al. [60] and Yu et al. [105] proposed systems which use in-situ

workflow to visualizing large time-varying datasets. Ahrens et al. [2, 3] and O’Leary et

al. [68] proposed image-based approaches which directly render a set of images in the

supercomputer to reduce the data movement. Scientists can interactively explore the dataset

via these images. Dutta et al. [23] modeled the dataset from a jet engine simulation by a

set of Gaussian Mixture Model to reduce the data size and visualize the jet engine behavior

by these GMMs only. Dutta et al. [25] proposed a prediction driven approach on the same

application. It requires small number of training set from the domain expert to train the

model for the jet engine stall prediction. The model is used to predict the region of the jet

engine stall and their technique only outputs the data around the stall region to persistent

disk for analysis. Bennett et al. [9] proposed an hybrid approach which combines in-situ

and in-transit workflows to enable the analysis on multiple scientific applications. Friesen et

al. [33] compared in-situ and in-transit workflows by using two popular analysis scenarios

on the cosmological simulation. They pointed out the pros and cons of these two workflows

under different simulation configurations.
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2.3 Distribution-based Data Analysis

Distribution-based approaches have been proposed to summarize datasets for analysis or

keep the statistical characteristics of datasets while reducing the memory footprint. Chen

et al. [17] improved pathline computation by interpolating from temporally down-sampled

data and model the error with a Gaussian distribution. He et al. [42] used particle filtering

to visualize streamlines from datasets with uncertainty. They utilized distribution-based

querying to find the regions with certain types of distributions. Chaudhuri et al. [15, 16]

and Lee et al. [51] used a histogram based Summed Area Table to access the histogram

of any sub-volume of the data set, which can be used to support a variety of data analysis

tasks. Their work focused on the efficient access of local distributions rather than a compact

representation. Wei et al. presented an efficient algorithm to search similar distributions of

local regions [95]. Thompson et al. [84] used a histogram representation to approximate

topological structures and fuzzy isosurfaces. Liu et al. [56] used Mixture of Gaussian to

summarize datasets and visualize the hidden probability model in the simulation. Athawale et

al. [6,7] proposed statistical isosurface visualization techniques that compute the probability

of an iso-value crossing at each voxel and visualize the probability field. Johnson et al. [45]

found that the distribution of a local region contains meaningful information which is

relevant to many feature queries. Therefore, they proposed a visualization system which

allows users to interactively enter customize statistical hypothesis and explore volume

datasets. Dutta et al. [24] proposed a framework which can accurately track a user-defined

feature. It modeled the feature by a distribution and kept updating the distribution over time.
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2.4 Image-based Techniques

Image-based approaches are particularly suited for visualization of large scale data

where a proxy is constructed from the original dataset. These approaches mainly focus on

both data reduction and fast volume rendering by re-organizing the data along pixel rays.

One of the main advantages of the image-based approach is to bound the memory footprint

and enable the interactive data exploration [18, 31, 32, 66, 72, 78]. Tikhnova et al. [85–87]

proposed image-based frameworks which allow users to change the transfer function and

explore volume datasets by storing small number of image slices used to approximate pixel

color. Fernandes [28] proposed a volume depth image to model the data of each pixel ray

in the spatiotemporal domain for time-varying datasets. Yu et al. [100] proposed an in-situ

simulation technique which stores the image-based depth map for isosurfaces. The posterior

feature extraction and tracking are enabled from their depth map proxies. Ahrenes et al.

and O’Leary et al. [2, 3, 68] created a “Cinema” database from large scale datasets where

snapshots are taken from different views along with stored material information. Once the

database is constructed, scientists view and analyze the datasets from the stored images.

Meyer et al. [64] defined a light field to store images of different materials from the dataset

for volume rendering. Another application category of the image-based data structure is to

select the proper visualization configuration. Correa and Ma [19] used a ray distribution of

visibility to assist the transfer function design in direct volume rendering. For streamline

visualization, Lee et al. [50] proposed maximum entropy projection to select the views

which have low occlusion and high importance.
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2.5 Uncertainty Visualization

The error and uncertainty in datasets can come from multiple different sources. The

first category of uncertainty is from the data measurement because of the limit precision

of sensors. The second category of uncertainty is from the stochastic model used in the

simulation. The third category of the uncertainty is from the error which is generated

from the data size reduction. Quantifying and visualizing the uncertainty to scientists are

valuable because scientists can deeply understand the physical phenomenon. Therefore, the

uncertainty quantification and visualization techniques which focus on different categories

of uncertainty have been developed to inform the error to scientists. Box plot [61] is an

well-known uncertainty visualization approach which shows the uncertainty by its mean

and standard deviation on 2-D plot. Spaghetti plot [4] is a visualization technique which is

used to visualize the uncertainty in the ensemble forecast system. Liu et al. [56] generated

animation by keeping re-sampling samples from the uncertain data over time to convey the

degree of uncertainty at different spots in the dataset. Sakhaee and Entezari [74] proposed an

approach to render the volume data with uncertainty. Their approach assumes that each grid

point is represented by a distribution and it computes a distribution at a sampling location

by a distribution-based interpolation. The transfer function is applied to the interpolated

distribution to compute the color at a sampling location for volume rendering. Athawale

and Entezari [7] proposed an uncertain level-crossing algorithm to compute the field of

the occurrence probability of an isovalue to visualize an uncertainty dataset. Schlegel et

al. [76] pointed out the problem of using the traditional linear interpolation to recover the

missing data. The traditional linear interpolation often makes an incorrect assumption to

visualize the data and mislead the analysis. They proposed a method which uses Gaussian

process regression to interpolate uncertain data and gain a continuous uncertainty field
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for visualization. Thompson et al. [84] proposed an algorithm to compute the uncertain

isosurface which describes the probability of a isosurface which passes a grid point.
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Chapter 3: Image and Distribution Based Volume Rendering for

Large Data Sets

The advent of high performance supercomputers enables scientists to perform extreme

scale simulations that generate millions of cells and thousands of time steps. Through

exploring and analyzing the simulation outputs, scientists can gain a deeper understanding of

the modeled phenomena. When the size of simulation output is small, the common practice

is to simply move the data to the machines that perform post analysis. However, as the size

of data grows, the limited bandwidth and capacity of networking and storage devices that

connect the supercomputers to the analysis machine become a major bottleneck [2, 60, 105].

To ensure high quality analysis of the large scale datasets, the concept of in-situ data analysis

has been proposed. In-situ techniques use the same supercomputer resources to analyze and

generate compact data proxies without moving the raw datasets [23, 27, 60, 97]. Among

the different techniques, the imaged-based approach has emerged as a promising method

for in-situ visualization and analysis [2, 85, 87]. In the image-based approaches, scientists

pre-select several interesting views based on their prior-knowledge and goals, and produce

images for post data analysis. Comparing to the scale of large scale simulations ( > 109∼15

), objects defined in image space have a relatively smaller size (∼ 106) [2, 87], thus offering

the potential to overcome the big data challenge.
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Although these image-based approaches have demonstrated successful results on differ-

ent analysis scenarios, they have potential shortcomings. In the context of volume rendering,

the existing image-based approaches have very limited or no ability for transfer function

exploration. This results in difficulties in discovering and analyzing unfamiliar features

that are occluded or far away from the camera. Although there exist approaches that can

produce approximated images with modified transfer functions, the error from the approxi-

mation is not quantified and communicated to the scientists. In addition, when image-based

approaches generate compact proxies from large scale datasets, information loss become

inevitable, which complicates the task of data analysis.

To address these problems, this paper presents a novel image-based approach for large

scale data analysis and visualization using statistical distributions as the proxy. Our image-

based proxy allows transfer function exploration at the post analysis stage, as well as

quantification and visualization of the error introduced by the proxy. To enable error

quantification, we use distributions to summarize data samples along each ray. Distribution-

based approaches have been used to reduce the data size by summarizing data in the object

space and also provide the required information for uncertainty quantification [23,56,84,93].

Our technique casts multiple rays from a single image pixel and collect samples at a sufficient

sampling rate. The data on the pixel ray can be re-sampled from the distributions and then

the image is rendered by applying the user-supplied transfer function to the reconstructed

samples. To render an image, the correctness of spatial order among the samples affects

the visualization quality. Since the distribution does not keep the location information of

samples, distributions that have a larger degree of randomness tend to introduce larger

rendering error. Our technique uses Shannon entropy [90] to evaluate the randomness of

sample values belonging to each pixel. Distributions collected from more ray segments are
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used to represent data of a pixel with higher randomness to preserve the visualization quality.

Our framework also adapts the proxy size to the target storage bandwidth and post analysis

machine’s storage by adjusting the randomness tolerance threshold. In the post analysis

stage, we propose an approach to integrate both scientist-given transfer function and ray

distribution to re-sample the data on the pixel ray, instead of directly re-sampling from ray

distributions. This scheme avoids spending time on sampling transparent samples to achieve

interactive exploration on the post analysis machine.

The remainder of this chapter is organized as follows. Section 3.1 is an overview of our

approach. Section 3.2 describes our proxy generation algorithm. The rendering algorithm

on the post analysis is discussed in Section 3.3. Section 3.4 presents our results. Section 3.5

provides a discussion of our approach. Finally, Section 3.6 concludes the approach.
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3.1 System Overview

Figure 3.1: An overview of our proposed technique.

Figure 3.1 shows an overview of our proposed framework. Our technique takes the

dataset from the simulator to generate distribution- and image-based proxies for each

scientists’ selected view. The scientist can set the storage size budget for each view proxy.

Our framework generates the view proxy by the given size limit, and then moves only the

proxies to the post analysis machine. In the post data analysis step, the dataset is visualized

directly from the proxies. The scientists can provide different transfer functions to explore

the dataset. The uncertainty of the proxies is also quantified and visualized to the scientists.
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We implemented both the proxy generation and post-hoc visualization using the data-

parallel programming model. To write the data-parallel program, the processed data (either

the raw data in the proxy generation or the proxy in the post-hoc visualization) is separated

into data units by image pixels. Each independent processor performs the same algorithm on

each data unit. The algorithms written by data-parallel programming model are portable on

different back-end devices [57]. Our algorithms are implemented on the VTK-m library [65].

VTK-m can run algorithms written by the data-parallel programming model on either GPU

(CUDA) or multicore CPU (Intel TBB) by simply changing the compiler configuration

without rewriting the code.
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3.2 Image-based Distribution Proxy

In this section, we present a detailed description of our image based distribution proxy.

For each view sample, an image plane is defined with a target pixel resolution, R. At

each pixel, a distribution summarizes the information within the pixel frustum. Since a

distribution lacks depth information, it may be beneficial to subdivide the pixel frustum into

sub-frustums that are non-overlapping and depth ordered, as shown in Figure 3.2. Each sub-

frustum (three are shown in the figure) will be associated with a different distribution that

summarizes information within that smaller region. This will provide a better approximation

of location information of the samples summarized in a distribution. We present our

subdivision algorithm in Section 3.2.1.

Figure 3.2: An illustration of our proxy where the image plane is shown on the upper right.
Each pixel, such as the pixel shown in blue, stores a depth ordered list of sub-frustums
(shown on the left). A distribution is associated with each sub-frustum containing a summary
of the information within the sub-frustum.
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3.2.1 Proxy Construction

A pixel frustum at pixel p is subdivided into K p sub-frustums and a distribution is

computed for each sub-frustum. The total number of sub-frustums in the proxy will be

limited by the storage size budget provided by the scientists. Though, the number of

subdivisions between different pixel frustums may not be the same. A pixel frustum is

subdivided according to the “randomness” of the scalar values in the frustum. A sub-

region in a pixel frustum with scalar values in a narrow value range (low randomness)

will be appropriate to define a distribution that will incur low error during reconstruction.

Whereas a sub-region with high randomness will incur a larger error and would need to be

subdivided into smaller sub-regions to alleviate this error. We use a threshold on randomness

that represents a tolerance to decide whether or not to further sub-divide a sub-region.

Randomness is estimated with Shannon entropy [90] which is shown in Equation 3.1.

E(h) =−
B

∑
b=1

hN(b)∗ log2(hN(b)) (3.1)

where h is a histogram, B is the bin count of h and hN is the normalized histogram from h

where ∑
B
b=1 h′(b) = 1.

We decided to represent a distribution associated with a sub-frustum by a histogram

because the computational cost to construct a histogram from samples is cheaper when

compared with other representations, such as Gaussian or Gaussian Mixture Model which

need the time consuming EM algorithm to estimate the parameters of the distribution

representation. In addition, the histogram would be convenient to compute Shannon entropy.

In order to sufficiently sample the information in the sub-frustums, we supersample at the

pixel with multiple sampling rays. A histogram is constructed by accumulating samples

across the sampling rays within the boundaries of the associated sub-frustum. This will
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typically include hundreds to thousands of samples that are summarized within a histogram.

All of the per-pixel sampling rays will define the same number of samples along each ray.

Pixel sub-frustums can be easily delimited with indices assigned to the samples along the

rays in depth order. The sample closest to the image plane will be assigned index 0 while

the samples further away will be assigned larger indices according to depth. The samples

across the per-pixel sampling rays within the same sub-frustum are easily identified by the

minimum and maximum indexes of the samples that belong to that sub-frustum.

Algorithm 1 shows the steps to subdivide the pixel frustum into sub-frustums. Samples

are collected from all per-pixel rays in lock step according to front-to-back order. At each

step, the samples with the same indices across the per-pixel rays are used to update the

histogram associated with the current sub-frustum. Once the entropy of the histogram

exceeds the entropy threshold, a new sub-frustum is started along with a new histogram.

At Line 10 in Algorithm 1, we re-calculate the entropy of the histogram hist with the

next samples. Since re-calculating the entropy with Equation 3.1 is expensive, we can use

Equation 3.2 to quickly update the entropy when only a single bin changes and given the

entropy of the histogram before the update.

En+1 =
Sn

Sn + c
(En− (− f b

n
Sn

log
f b
n

Sn
))

−(Sn− f b
n )(

1
Sn + c

log
Sn

Sn + c
)

+(− f b
n + c

Sn + c
log

f b
n + c

Sn + c
) (3.2)

where En+1 and En are the entropy of the updated and old histogram, Sn is sum of

frequency of the unupdated histogram, f b
n is the frequency of the changed bin (b) before

updating and c is the change of frequency of the bin. Equation 3.2 is derived from the

fundemental Shannon entropy equation [90]. We use it to update the entropy at Line 10 in
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Algorithm 1 Proxy construction at a pixel
1: . p: a pixel
2: . E: randomness (entropy) threshold
3: procedure PixelProxyConstruction(p, E)
4: i = 0 . sample counter on a per-pixel ray
5: e = 0 . entropy of a updated histogram
6: while MoreSampleOnPixel(p, i) == True do
7: for each sub-ray in p: r do . r: a sub-ray in pixel p
8: if MoreSampleOnRay(r, i) == True then
9: v = GetSampleOnRay(r, i)

10: e, hist = update(e, hist, v) . entropy and histogram update
11: end if
12: end for
13: if e ≥ E then
14: SaveHistogram(hist)
15: e = 0
16: hist = reset(hist)
17: end if
18: i = i + 1
19: end while
20: end procedure

Algorithm 1. This entropy updating is a constant time computation. In addition, the table

for logarithm computation is pre-computed for Equation 3.2. Thus, the process to subdivide

the pixel frustum does not introduce too much overhead when generating the proxy.

3.2.2 Entropy Threshold Selection

In our technique, the scientists can give a proxy size budget for each view according

to the storage bandwidth and capacity of the post analysis machine. Or the budget can be

decided based on the error tolerance of each selected view. Before generating the proxy for

a view, our system computes the entropy threshold based on the given proxy size budget,

and then use the entropy threshold to perform the algorithm in Section 3.2.1.
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To compute the desired entropy threshold for the given size budget, a straightforward

approach is to simply use the algorithm in Section 3.2.1 to test different entropy thresholds

and use the corresponding proxy size to pick the threshold that produces the proxy closest

to the target size. In order to make the entropy threshold selection more efficient, we made

two modifications to the naive approach. Firstly, our technique uses binary search to find

the threshold which can generate the proxy whose size falling within the size budget. It first

estimates the largest proxy size using the smallest threshold and the smallest size by the

largest entropy threshold. Then the binary search is applied to identify the proper entropy

threshold. Secondly, the binary search is only applied to the first time step of the dataset.

From the second time step, we use the threshold from the previous time step as an initial

guess. Then, shifting 1% of the maximal entropy from the initial guess to find the proper

threshold. This saves a significant amount of time on the entropy threshold selection step

after the second time step.

3.2.3 Proxy Data Structure

Figure 3.3 illustrates the data structure for our proxy at a view sample and for a single

time step. The data structure compactly stores the proxy with four arrays. The two arrays

shown at the bottom of the Figure 3.3 contain all of the histograms in the proxy. We select

to store the histogram in a sparse representation where zero frequency bins are not stored

explicitly. Although the sparse histogram representation in general does not always cost less

storage than the non-sparse representation, the histogram in our approach only represents

a pixel sub-frustum which is a small space region and usually only includes samples with

small value interval. This makes most of the histogram bin’s frequency zero, so we choose

to use the sparse representation. The two blue arrays are the Bin IDs and frequencies of
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histograms in a sparse representation. Each histogram is associated with its respective pixel

and sub-frustum using references from the top two arrays, as shown in the figure. The top

array is a list of the pixels on the image plane, where each pixel refers to the first sub-frustum

in its list of sub-frustums in depth order. The array below this one contains all per-pixel

sub-frustum lists. Each sub-frustum refers to its associated histogram.

Figure 3.3: The proxy data structure for one view and one time step.
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3.3 Proxy Visualization

A basic algorithm to volume render the proxy is to compute a color at each pixel by

rendering the associated pixel sub-frustums in front-to-back order. To render a pixel sub-

frustum, s f p
k

re-sample locations are used along the pixel ray within this sub-frustum, where

s f p
k

is the number of samples reconstructed from the frustum’s ( f p
k ) distribution. s f p

k
is

computed by Equation 3.3

s f p
k
= sp ∗ (

FS( f p
k )

∑
K p

i=1 FS( f p
i )

) (3.3)

where sp is the desired re-sample count of a pixel, FS( f p
k ) is the frequency sum of the

kth sub-frustum’s histogram on pixel p and the ∑
K p

i=1 FS( f p
i ) is the frequency sum of all

sub-frustums’ histograms on pixel p .

The scalar value at a re-sample location can be determined from the histogram associated

with a sub-frustum containing the location using Monte Carlo sampling, a well known

reconstruction approach. The first drawn sample is applied to the front-most re-sample

location and then this continues for re-sample locations further away. Each re-sampled value

is applied to the transfer function and composited to determine a color and opacity for the

sub-frustum.

It is well known that Monte Carlo sampling reproduces samples well when the number of

samples drawn approaches infinity, which is infeasible in practice. In the following sections,

we present improvements to the basic algorithm using an importance distribution, which

incorporates both scalar and opacity information at each pixel sub-frustum. The importance

distribution can better sample the data distribution at each sub-frustum for improved image

quality. Also, the importance distribution allows for fewer samples to be used to achieve

faster frame rates with only a small loss of image quality.
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3.3.1 Importance Sampling

Samples drawn from a sub-frustum’s distribution using Monte Carlo sampling are biased

towards scalar values with high frequency. If these samples contribute little to the final

pixel color according to the opacity transfer function, then drawing these samples from

the distribution may be a waste of computation. Scalar values associated with higher

opacities represent features of interest to the scientists while scalar values with lower opacity

contribute little or not at all to the final pixel color. When the allowed sample count is

limited, drawing more samples from scalar values with lower opacities means drawing less

samples from scalar values with higher opacities. The feature of interest will be rendered

with lower quality. Thus, sampling a data distribution should account for both the frequency

of the scalar values as well as the opacity associated with the scalar values.

Figure 3.4 illustrates how using Monte Carlo sampling on the data distribution can lead

to poor image quality because very few samples with nonzero opacity are drawn. The red

curve represents the data distribution for a pixel sub-frustum. The green curve represents the

opacity portion of the transfer function where a region of interest has been defined by the

scientist between 0.6 and 0.9 with high opacity. The red dots are 100 samples drawn from

the high frequency region in the data. Since these samples are not located in the scientist’s

region of interest, they will contribute little or not at all to the final rendering. Samples

should have been drawn in the scientist’s region of interest where the data distribution has

lower frequencies in this example.

Our technique uses an importance distribution, which is shown by the blue curve in

Figure 3.4. This distribution increases the chance to retrieve samples in the data that have

high opacities. Equation 3.4 shows how to compute the importance distribution from the
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Figure 3.4: The green curve is the opacity function. The red dots are 100 samples drawn
from a data distribution (red curve). Most red dots have no significant opacity, so most of
the sampling time is wasted. The blue dots are 100 samples drawn from the importance
distribution (blue curve), which incorporates both the data distribution (red curve) and the
opacity function (green curve) by Equation 3.4. Most blue dots have significant opacity. In
order to avoid occlusion, red and blue circles are drawn separately on the top and bottom
of the figure. We normalize the highest peaks of the data distribution and importance
distribution to 1 in order to visualize them clearly.

given opacity function and a pixel sub-frustum’s distribution.

hI(b) = h(b)∗O(b) (3.4)

where h is the histogram of a sub-frustum and O is the opacity function. O(b) is the opacity

for bin b where O(b) =
∫ bU

bL
O(v)dv. bL and bU are the value lower and upper bound of bin

b. hI is the importance distribution. The intuition of this equation is that only the scalar

values with both high occurrence probability and opacity have higher importance. When

sampling on the importance distribution notice that samples are drawn from the region of

interest, as shown by the blue dots in Figure 3.4.
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3.3.2 Re-sample Count

A larger re-sample count can better reconstruct from the distribution, but will result in

longer rendering time. This is because the number of samples drawn from a distribution is

propotional to the rendering time. Thus, the re-sample count needs to be manageable for

rendering on a low cost platform for effective data analysis. Decreasing the total re-sample

count, sp in Equation 3.3, and using Equation 3.3 to assign each sub-frustum the re-sample

count may lead to poor reconstruction and image quality. This is because sub-frustums with

higher randomness that contribute more opacity to the final image could have an insufficient

re-sample count. For an improved trade off between rendering speed and image quality,

our approach gives a sub-frustum with a larger random importance distribution a higher

re-sample count than a sub-frustum with a smaller random importance distribution. The

following equation shows how to calculate the re-sample count for a pixel sub-frustum.

s′f p
k
= s f p

k
∗ (E(hI)

Emax )
c (3.5)

where s f p
k

is the re-sample count for the sub-frustum f p
k from Equation 3.3, E(hI) is the

entropy of the importance distribution, Emax is the maximal value of entropy and c is used

to adjust the final re-sample count. If c is 0, s′f p
k

and s f p
k

are the same. c can be increased

to reduce the total re-sample count and achieve faster rendering speed. When c increases,

the re-sample count of the sub-frustum with less random importance distribution will drop

much faster than that of the sub-frustum with a larger random importance distribution.

Although Shannon entropy is the standard way to evaluate the randomness of a distri-

bution, entropy computation is time-consuming. To efficiently determine the re-sample

count, we use the number of bins with non-zero frequency in the histogram to approximate
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randomness. Equation 3.5 can be rewritten in the following way

s′f p
k
= s f p

k
∗ (nzb

B
)c (3.6)

where nzb is the number of bins with non-zero frequency in the importance distribution

and B is the total number of bins. The scientist can simply adjust c to control the trade-off

between rendering speed and image quality.

3.3.3 Opacity Function Modulation

Color blending samples drawn from the importance distribution with the adjusted

re-sample count and then applying the samples to the transfer function directly without

modulation can result in incorrect images. Some sub-frustums will be too opaque or too

transparent. Hence, the opacity function should be modulated before its application to

the samples so that each sub-frustum has the same opacity as the sub-frustum rendered

by the Monte Carlo sampling algorithm. Equation 3.7 is used to estimate the opacity of a

sub-frustum rendered by the Monte Carlo sampling algorithm when the samples are well

reconstructed by Monte Carlo sampling with a sufficient re-sample count.

A f p
k
= 1−

B

∏
b=1

(1−O(b))
s f p

k
∗hN(b)

(3.7)

where O is the original opacity function, hN is the sub-frustum’s histogram after normaliza-

tion where ∑
B
b=1 hN(b) = 1. s f p

k
∗hN(b) is the expected re-sample count for the scalar values

in bin b’s value range. Equation 3.8 shows the opacity of the sub-frustum when we use the

adjusted re-sample count and draw samples from the importance distribution.

A′f p
k
= 1−

B

∏
b=1

(1−O′(b))
s′

f p
k
∗hN

I (b) (3.8)

where s′f p
k

is the adjusted re-sample count in Section 3.3.2 and hN
I is the normalized impor-

tance distribution where ∑
B
b=1 hN

I (b) = 1. So, s′f p
k
∗hN

I (b) is the expected re-sample count
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for scalar values in bin b’s value range from the importance distribution and the adjusted

re-sample count. In order to make A f p
k
= A′f p

k
, we adjust the opacity function by Equation

3.9.

O′(vb) = 1− (1−O(vb))
(`/`′) (3.9)

where ` = s f p
k
∗ hN(b) and `′ = s′f p

k
∗ hN

I (b) and vb is a scalar value in bin b’s value range.

Algorithm 2 summarizes the rendering procedure introduced in this section.

Algorithm 2 Proxy rendering
1: . p: a pixel which contains histograms of sub-frustums
2: . sp: given re-sample count of p
3: . c: parameter to adjust re-sample count
4: . T c and T o: color and opacity function
5: procedure ProxyRendering(p, sp, c, T c, T o)
6: color = (0,0,0,0)
7: pxlFS = PixelFreqSum(p) . compute freqency sum of all histograms on p
8: K p = GetNumO f Hist(p)
9: for k = 1→ K p do

10: h = GetHist(p,k) . get the k-th histogram on p
11: hI = ImpDistr(h,T o) . compute the importance distribution
12: s = (sp ∗ FreqSum(h)

pxlFS )∗ ( Nzb(hI)
Bins(hI)

)c . adjust the re-sample count
13: T o

k = Ad justOpacityFunc(T o,sp,s) . modulate the opacity function
14: for i = 1→ s do
15: v = ReSample(hI)
16: colorV = T c(v)
17: opacityV = T o

k (v)
18: color = blend(color,colorV,opacityV )
19: end for
20: CheckEarlyRayTermination(color)
21: end for
22: return color
23: end procedure
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3.3.4 Uncertainty Quantification and Visualization

Since our proxy reduces the size of a large dataset according to the scientist’s given

size budget, information loss is inevitable. The major information loss in the proxy comes

from the loss of spatial information in the pixel sub-frustums, especially the loss of the

samples’ depth order. This is because each pixel sub-frustum is represented by a distribution

of data, and the distribution does not store the samples’ location information. This could

give the imprecise depth cue of features. To avoid providing misleading information, our

technique can show the uncertainty from the information loss to the scientists. We have two

methods to quantify and convey the uncertainty to the scientists. The first method is to use

probabilistic animations generated from our proxy rendering scheme. Our renderer keeps

generating a new frame from the proxy of the same view and time step in an animation, and

each new frame re-samples from the distribution over again. When the animation shows

pixels with high color variability, this indicates distributions associated with these pixel

have high randomness. Thus, the image should have less confidence on these pixels. This

uncertainty visualization keeps the scientists informed of the error.

The second method to provide visualization of uncertainty in the result is to use static

images. To compute the randomness of a sub-frustum, we first compute the importance

distribution which considers the opacity function given by the scientist. Then, instead of

computing the distribution’s randomness at the scalar value domain directly, our technique

transforms the importance distribution to YUV color space from the color portion of the

transfer function. YUV color space is a well-known color space which is closer to human’s

perception. Y, U and V channel are all divided into U discrete intervals. This makes the

YUV color space define a histogram with U3 bins. In our system, the default U is set to

10. The randomness of the sub-frustum is computed by the entropy of the histogram in
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Algorithm 3 Static uncertainty visualization
1: . p: a pixel which contains histograms of sub-frustums
2: . sp: given re-sample count of p
3: . T c and T o: color and opacity function for data rendering
4: . T c

U : color map for uncertainty visualization
5: procedure StaticUncertaintyVisualization(p, sp, T c, T o, T c

U )
6: color = (0,0,0,0)
7: pxlFS = PixelFreqSum(p)
8: K p = GetNumO f Hist(p)
9: for k = 1→ K p do

10: h = GetHist(p,k)
11: hI = ImpDistr(h,T o)
12: hYUV

I = Trans f ormToYUV Space(hI,T c) . map scalar to YUV space
13: e = ComputeEntropy(hYUV

I )
14: colorU = T c

U(e) . look up color by e
15: opacityU = ExpectedOpacity(h,T o,(sp ∗ FreqSum(h)

pxlFS ))
16: . compute the opacity of a sub-frustum in data rendering image
17: color = blend(color,colorU,opacityU)
18: CheckEarlyRayTermination(color)
19: end for
20: return color
21: end procedure

YUV space, then a color map is used to look up a color to represent the randomness of

the sub-frustum. The color of each sub-frustum’s randomness on a pixel is blended in

the front-to-back order and the opacity of the sub-frustum’s randomness is defined by the

expected opacity of the sub-frustum in the image of data rendering, which is computed

from Equation 3.7. Algorithm 3 shows the procedure to visualize the uncertainty of a pixel

when a transfer function is given. With the method, the resulting visualization shows the

impact of the loss of samples’ depth information under the current transfer function. This

means even if two sub-frustums’ distributions have the same shape but represent different

scalar value ranges, our technique displays higher uncertainty on the distribution whose

range has higher color variety. Also, if samples or sub-frustums contribute more opacity
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in the data rendering image, we emphasize the uncertainty they generate in the uncertainty

visualization. Our technique computes the randomness of each sub-frustum’s distribution

to quantify the uncertainty. Figure 3.5 shows a static uncertainty visualization example. In

our system, users can switch between the volume image and the static uncertainty image by

pressing a key to intuitively compare and identify regions with low and high confidence.

(a) (b) (c)

Figure 3.5: Static uncertainty visualization on the right bottom part of the 1st time step of
Turbine dataset. (a) is the “Cool2Warn” color map which is used to visualize the uncertainty.
The color closer to blue indicates low uncertainty and the color closer to white or red
indicates higher uncertainty. (b) is a grayscale image calculated from the difference between
images rendered by the raw dataset and our proxy, and a given transfer function. (c) is the
uncertainty visualization from our technique. This image is calculated by Algorithm 3. We
highlight the regions which has high error in (b) and the corresponding regions in (c).
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3.4 Evaluation

We show results from our experiments utilizing four datasets to evaluate the performance

of proxy generation and the quality of visualization from the proxy. The experiments were

carried out on a machine with two 14-core Intel (Broadwell) Xeon E5-2680 v4 processors,

128 GB DDR3 Memory, one NVIDIA Tesla K80 GPU card. The post data analysis machine

used to visualize the proxy is a desktop computer with an Intel 8-Core i-7-4770 3.40GHz

CPU, 16 GB main memory, and an NVIDIA GeForce GTX 660 video card with 2 GB

of memory. The Isabel dataset is a pressure field of Hurricane Isabel from the IEEE

Visualization 2004 Contest. The raw data resolution is 500x500x100 with 48 time steps. We

up-scaled its spatial resolution to 2200x2200x445 to perform the experiment (the total data

size is 385 GB). The Plume dataset is a simulation of Solar Plume for thermal down flow

on the surface layer of the Sun and was provided by the National Center for Atmospheric

Research. We used the vector magnitude field in our experiments. The raw data resolution

is 126*126*512 with 29 time steps. We up-scaled its spatial resolution to 756x756x3072

to perform the experiment (the total data size is 189 GB). The Combustion dataset was

provided by Sandia National Laboratories where we used the mixture fraction field. The

dataset has a resolution of 480x720x120 with 50 time steps. We scale up its spatial resolution

to 1800x2700x450 to perform the experiment (the total data size is 407 GB). The Turbine

dataset is a turbine engine compressor simulation, which was used in [23]. The original

Turbine dataset is a curvilinear grid data, and its Pressure variable is re-sampled to a regular

grid. The resolution of the regular grid Turbine dataset is 2036x2036x352 with 50 time

steps(the raw size is 271 GB).
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3.4.1 Proxy Size and Proxy Generation Time

This section presents proxy sizes and generation times with our approach. In the

evaluation, we take six views from each dataset to produce the proxies. The six views are

set up to look at the centers of six faces of the volume cube. All proxies in this section have

a pixel resolution of 1024x1024. To precisely calculate the distribution for the proxies, we

cast 16 sub-rays into the volume from each pixel. Each distribution used to represent a pixel

sub-frustum is a histogram with 128 bins. We set 50MB as the size budget to generate a

proxy for one view and one time step. Each dataset will generate the proxy with 3%-6% of

the raw dataset size and covers the six given views and all time steps,. The total proxy size

of each dataset is reported in Table 3.1.

The time reported in Table 3.1 is the average time to produce a proxy of one view and one

time step. The average proxy generation time is computed as “(total proxy generation time +

total entropy selection time) / (total views * total time steps)”. The total generation time

includes the entropy threshold selection time (Section 3.2.2) and the time for generating the

proxy using the selected entropy threshold (Algorithm 1). The average of entropy selection

time for the first time step is only calculated the average time to produce proxies in the

first time step. The time in the right-most column in Table 3.1 is the average time to select

the entropy thresholds after the second time step. Because the entropy thresholds of the

consecutive time steps are similar and our technique uses the threshold from the previous

time step as the initial guess and just slightly adjusts it, only the first time step spends longer

time searching the proper entropy threshold.
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Table 3.1: The proxy size and generation time.

Size Time (Average)
Size Budget

(Per view/time step proxy)
Raw Data

(Total)
Proxy
(Total)

Proxy
Generation

Entropy Selection
(1st time step)

Entropy Selection
(From 2nd time step)

Isabel 50MB 385GB 14.2GB 19.6s 42.3s 11.4s
Plume 50MB 189GB 8.9GB 23.2s 125.2s 17.7s
Combustion 50MB 407GB 15.2GB 27.6s 112.2s 16.7s
Turbine 50MB 271GB 15.3GB 44s 203s 28s

3.4.2 Image Quality and Rendering Time

We evaluate the quality of rendering images in this section. We choose one view from

the proxies generated in Section 3.4.1 to evaluate. The view of each dataset is shown in

Figure 3.6, 3.7, 3.8 and 3.9. In this experiment, each dataset has their own color portion of

the transfer function. Turbine and Plume use regular “Jet” color map as their color map.

(a) (b) (c)

Figure 3.6: The 12th time step of Turbine dataset. (a) is the transfer function. The higher
scalar value is at the top. The black curve is the opacity function and the right hand side
indicates the highr opacity. (b) is the image rendered from the raw data. (c) is the image
rendered from our proxy.
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(a) (b) (c)

Figure 3.7: The 25th time step of Isabel dataset. (a) is the transfer function. The higher
scalar value is at the top. The black curve is the opacity function and the right hand side
indicates the highr opacity. (b) is the image rendered from the raw data. (c) is the image
rendered from our proxy.

Isabel uses the color map “Asymmetric Blue/Green Divergent”. Combustion uses the color

map “Asymmetric Blue/Orange Divergent”. The last two color maps are from the color map

web page [1] of Data Science at Scale in Los Alamos National Laboratory. We design the

opacity portion of the transfer function by the principle which gives one or two scalar value

intervals higher opacity as the value of interest and give other scalar values low opacity as

the context. This is one of the common transfer function design principles when exploring

the datasets. The actually transfer function for each dataset is shown in Figure 3.6, 3.7, 3.8

and 3.9.

To evaluate the image quality, we calculate the peak signal-to-noise ratio (PSNR) [43]

between the image rendered from our proxy and the ground truth image which is rendered

from the raw dataset. The higher PSNR indicates that the tested image is more similar to
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(a) (b) (c)

Figure 3.8: The 35th time step of Combustion dataset. (a) is the transfer function. The
higher scalar value is at the top. The black curve is the opacity function and the right hand
side indicates the highr opacity. (b) is the image rendered from the raw data. (c) is the image
rendered from our proxy.

the ground truth image. The average PSNR of all time steps of a dataset is calculated and

reported. Turbine, Isabel, Combustion and Plume have 37.07, 35.97, 33.29 and 43.71 db

PSNR, respectively. Figure 3.6, 3.7, 3.8 and 3.9 also visually show that the image rendered

by our proxy is similar to the ground truth images. The average rendering times of all time

steps using the transfer function in Figure 3.6, 3.7, 3.8 and 3.9 to render are also reported.

The average rendering time of Turbine, Isabel, Combustion and Plume are 0.19, 0.12, 0.078

and 0.075 second, respectively.
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(a)

(b)

(c)

Figure 3.9: The 10th time step of Plume dataset. (a) is the transfer function. The higher
scalar value is at the top. The black curve is the opacity function and the right hand side
indicates the highr opacity. (b) is the image rendered from the raw data. (c) is the image
rendered from our proxy.

3.4.3 Importance Sampling

Information in the importance distribution can help to reduce the number of samples

drawn by drawing more samples that have a high frequency in the data space and in the

regions of interest and less samples otherwise. Figure 3.10 shows PSNR comparisons

between importance sampling and Monte Carlo sampling using different data sets and using

different numbers of samples. The proxies used in these experiments are the same as the

proxies in Section 3.4.2. The PSNR is the average PSNR of all time steps. The plots show

that the quality of images rendered by importance sampling decreases more slowly than

the quality of images rendered by the traditional Monte Carlo sampling. Hence, using

importance sampling can keep the image quality when scientists decrease the number of

re-sample count to gain fast rendering and interaction speed on the post analysis machines.
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Note that 100% number of samples in Figure 3.10 indicates the re-sample count is the sames

as the re-sample count used in Section 3.4.2.
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Figure 3.10: Image quality comparison between Importance sampling and basic Monte
Carlo sampling for varying numbers of re-sample count.
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3.5 Discussion

3.5.1 Transfer Function

The rendering quality is not only affected by the proxies but also affected by the transfer

function in use. Hence, it is worth to study the impact from transfer functions. We firstly

study the opacity portion of the transfer function. We use the same datasets, color portion

of the transfer function and proxies in Section 3.4.2, but give different opacity functions to

run the experiment. Table 3.2 shows the average PSNR of all time steps from all datasets

with different opacity functions. The opacity function 1 (OF1) is the sames as the opacity

function used in Section 3.4.2. The opacity function 2 (OF2) is designed to give all scalar

values high opacity (0.85). It means only the samples close to the surface of the volume

cube contribute to the final color of the image. The opacity function 3 (OF3) is designed to

give all scalar values low opacity (0.05). It means most samples in the data contribute to

the final color of the image. Table 3.2 shows that the PSNR could be either much better or

worse than the PSNR in OF1 when the scalar values have high opacity (OF2). Some datasets

have worse PSNR because the pixel color can be very different if the depth order of samples

is incorrect. Some datasets, e.g. Plume, have better PSNR because the samples close to the

surface of the volume cube have similar color and they occlude all other samples. Hence,

the image quality highly depends on the data and the color map design when the opacity

function gives samples high opacity. Comparing with OF2, OF3 has constantly similar or

better PSNR than OF1. This is because the sample does not occlude too much color from

the samples behind it, the neighboring samples along the pixel ray will contribute similar

intensity of color to the image. So, even if our proxy loses the samples’ depth order in

the local region defined by a pixel sub-frustum, the incorrect samples order does not have

huge impact in this case. We also evaluate the image quality on different transfer functions.
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Table 3.2: Quality (PSNR) of images rendered by different transfer function. Reported
numbers of OF1, OF2 and OF3 are the average PSNR of all time steps of a dataset. Reported
numbers of RTF are the mean and variance from PSNRs of 10 random transfer functions.

Image Quality
Dataset OF1 OF2 OF3 RTF
Turbine 37.07 17.14 34.08 30.24 (0.19)
Isabel 35.97 25.28 37.55 36.69 (0.38)
Combustion 33.29 32.08 35.53 39.05 (0.51)
Plume 43.71 51.09 46.43 48.98 (0.71)

We randomly pick 10 different transfer functions for each dataset to evaluate the image

quality. The color portion of a random transfer function is chosen from the pre-defined

color maps in VTK-m library [65]. To determine the opacity portion of a transfer function,

we uniformly pre-define 11 scalar values to randomly select the opacity values and use the

linear interpolation to compute the full opacity function. We report the mean and variance

of PSNRs from 10 random transfer functions in Table 3.2.

3.5.2 Bin Count of Histograms

The bin count of histograms directly affects the image quality, preprocessing time and

rendering time. Figure 3.11 shows the image quality, preprocessing time and rendering

time when the bin count of the histogram changes. This test is carried out by generating the

proxies at the views in Figure 3.6, 3.7, 3.8 and 3.9 for the four datasets.

In Figure 3.11(a), we generate proxies with different bin counts by giving each time step

proxy a 50MB budget. Transfer functions in Figure 3.6, 3.7, 3.8 and 3.9 are used to generate

images and the PSNR of a dataset and a bin count is the average PSNR of all time steps. In

the figure, we observe that images have best PSNR when the bin counts are 64 or 128. If the

bin count is smaller, the PSNR decreases. This is because each bin represents a wider scalar
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(a) (b) (c)

Figure 3.11: The impact of different histogram’s bin counts on the image quality, proxy
generation time and rendering time.

value range which may map to quite different colors or opacity values. If the bin count is

very large, the PSNR also reduces. This is because each pixel sub-frustum’s histogram costs

more storage and the proxy loses more information of samples’ depth order if the same size

budget of the proxy is given. According to this test, the bin count selection is a trade-off

between the accuracy of samples’ depth-order information and re-sample scalar values.

We also evaluate the proxy generation time and the rendering time when the histogram’s

bin count changes. Figure 3.11(b) shows that the proxy generation time does not have

significant difference when the bin count increases. This is because the proxy generation

time is mainly controlled by the number of samples taken from the raw dataset to generate

the proxy. Computing the sub-frustum’s histograms with different bin counts from the

same number of samples does not significantly change the proxy generation time. However,

Figure 3.11(c) shows that the rendering time increases when the larger histogram’s bin count

is used. This is because the time complexity of sampling a value from a histogram is O(B)

where B is the bin count. The re-sample process takes a longer time if the histogram’s bin

count increases.
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3.5.3 Image Resolution

(a) (b) (c)

Figure 3.12: The impact of different image resolutions on the image quality, proxy generation
time and rendering time. In this test, the image width and height are the same. The X-axis
in each subfigure is the image width and height.

In this subsection, we discuss the impact of different image resolutions on the image

quality, preprocessing time and rendering time. We fixed the histogram’s bin count to 128

and varied the image resolution. The other test settings are the same as that in Section 3.5.2.

Figure 3.12(a) shows that the image quality decreases when the image resolution increases.

This is because each pixel ray has less size budget if the image resolution increases and

a proxy budget is fixed. When each pixel ray has less size budget, each histogram will

represent a longer sub-frustum and has more losses in the samples’ depth order information.

However, the image quality also slightly reduces when a smaller image resolution is used.

In this case, although each pixel ray has more size budget and the proxy loses less samples’

depth order information, each pixel sub-frustum covers more sub-rays and increases the

randomness of a sub-frustum’s histogram. This also slightly increases the uncertainty and

error in the re-sample process. Figure 3.12(b) and (c) show the preprocessing time and

rendering time if different image resolutions are used. Both the preprocessing and the
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rendering time increase when the larger image resolutions are used because more pixels

have to been processed.

3.5.4 Size Budget

(a) (b) (c)

Figure 3.13: The impact of different size budgets on the image quality, proxy generation
time and rendering time.

We also varied the size budget to evaluate the impact on the image quality, proprocessing

time and rendering time. We use 10MB, 30MB, 50MB, 70MB and 90MB as the size budget

for one view and one time step to carry out this test. The histogram’ bin count and image

resolution are fixed to 128 and 1024x1024, respectively. The other test settings are the same

as that in Section 3.5.2. Figure 3.13(a) shows that PSNRs of all datasetes are monotonically

increasing while a larger size budget is given. One interesting observation in this figure

is that the left most two points on both Turbine’s and Isabel’s curves are the same. This

means that the image quality does not increase even if the size budget increases from 10MB

to 30MB. We examine these proxies and find that all pixels are only represented by one

histogram. This is because the proxy size for one time step and one view exceeds the giving

size budget even if each pixel is only represented by one histogram. So, the actual proxy
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size will exceed the giving size budget if the size budget is too small. For example, the

actual proxy size of the Isabel’s proxy generated by 10MB size budget is 38.4MB because

this is the minimal storage cost when each pixel is only represented by one histogram. We

can also observe that the image quality improves if we give 50MB size budget because this

size budget is greater than 38.4MB and the proxy can represent a ray by multiple histograms

to reduce the samples’ depth order loss. In addition, we can also observe that the right most

three points on Plume’s curve are almost the same. In this case, because 50MB budget is

enough to divide a pixel’s frustum into fine-grained sub-frustums, increasing the size budget

does not significantly improve the image quality. Figure 3.13(b) shows that the preprocessing

time slightly increases while a larger size budget is given. When the larger size budget is

given, each ray produces more sub-frustum histograms and the process is slowed down a

little bit. Figure 3.13(c) shows that, in general, the rendering time decreases while more size

budget is given. Because the entropy threshold selection selects a smaller entropy threshold

when a larger budget is given. This makes each histogram has less non-zero bins. To draw a

sample from a histogram with less non-zero bins spends less time because only the non-zero

bins have to be visited. Therefore, the rendering time is smaller because less time is needed

to draw a sample from a histogram. However, we can also observe an exception on the

Combustion’s curve if we give only 10MB size budget. We examine this case and discover

that this results from the early ray termination technique in the rendering pipeline. Early ray

termination is a popular technique to finish the rendering process of a pixel and save the

computation if the pixel is already fully opaque. In this case, due to a small size budget is

given and the proxy loses a lot of samples’ depth order information, high opacity samples

which are far away from the view point in the raw data could be drawn early and terminate

the pixel rendering process.
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3.5.5 Parameter Selection

In our approach, we have to select several parameters to produce the proxy. The first

one is view point selection for the proxy generation. Usually, the scientists may have prior-

knowledge to select preferred views to observe the datasets. However, if prior-knowledge is

not available, one alternative approach is to use the geodesic grid [15] to sample the views

around the datasets. This provides an uniform view coverage around the dataset. The other

alternative is to take a few time steps and apply the view selection techniques [12, 44]. The

view selection techniques select salient views by analyzing the dataset to generate proxies.

The histogram’s bin count is the other important parameter which has to be selected

before generating proxies. As the test in Section 3.5.2, the bin count selection is a trade-off

between the accuracy of samples’ depth-order information and re-sampled scalar value.

Hence, to select the histogram’s bin count, the transfer functions which will be applied

should be taken into account. The rule of thumb to select the bin count is that the value

interval of each bin should map to as similar as possible colors and opacities in the desired

transfer function designs and also the histogram uses as less as possible bin count. This way,

we can minimize both the uncertainty of sample color drawn within a bin and the samples’

depth information loss. In practice, scientists often have prior-knowledge about the dataset

and the scalar value of interest. Scientists often map the values of interest to more different

colors. Hence, scientist can give different scalar value intervals different bin counts. For

example, the range of interesting scalar values should receive more bin count than other

value ranges. Thus, our technique can utilize the size budget more efficiently and generate

images with better quality by the scientists’ prior-knowledge. But, if the scientist does not

know the value interval of interest, we can uniformly give entire value range the same bin

count as how we run the experiments in Section 3.4.
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3.6 Conclusion

This paper presented an image and distribution-based representation for large scale

data analysis, which allows transfer function exploration and uncertainty quantification.

Distributions are used to compactly store the data on each pixel ray and each ray is irregularly

subdivided to minimize the randomness of each distribution and preserve the visualization

quality. Our approach generates the proxy by the scientist’s selected views and the storage

size budget that the post analysis machine’s storage bandwidth and capacity can afford. The

analysis and visualization are carried out on the post analysis machine by accessing these

compact proxies only. The uncertainty of the volume image is visualized by either the static

images or flickering animation to scientists.
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Chapter 4: Statistical Visualization and Analysis of Large Data Using

a Value-based Spatial Distribution

The computational power of modern supercomputers allow scientists to model physi-

cal phenomena with high-resolution simulations. Data-driven analysis and visualization

techniques help scientists understand the dataset with greater depth and create more precise

prediction models. However, analyzing such large-scale scientific simulation data is chal-

lenging due to the incompatibility between memory limitations, I/O capacities, and high

computational power [8,54]. Reducing the size of the dataset is a viable option for visualiza-

tion and analysis on commodity hardware, but information loss in the proxy representation

must be controlled. Approaches to construct a proxy include lossy compression [29,36,102],

subsampling [81], and statistical based data representations [7, 24, 56, 84]. The latter ap-

proach is increasingly becoming more popular not only for data reduction but also due to

the ability to retain important statistical features.

Many statistically based data representations partition the data domain into non-overlapping

block regions, where the scalar field within each block is represented by a statistical sum-

mary of the scalar field, e.g. the mean or standard deviation of the scalar values within the

block. Storing a distribution of the scalar values, such as a histogram, better represents the

scalar field than simple summary metrics, but still suffers from limited accuracy. Though

recent work on uncertain volume rendering and isosurface extraction [6, 7, 42, 56, 84] has
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tried to address this issue, they have not tackled the inherent problem of the loss of spatial

information in the distribution. Thus, estimating the value at a position within a block using

its corresponding distribution will incur inevitable approximation errors that are difficult to

overcome.

We present a novel distribution based representation that incorporates spatial information

at a small additional storage cost. The dataset is partitioned into blocks, where the data

in each block is used to construct two types of distributions. One is a value distribution

on the scalar values. The other is a spatial distributions where the locations of samples

within the block are collected and stored as a multi-dimensional distribution for each value

sub-range. Each multi-dimensional distribution is stored using a Gaussian Mixture Model

(GMM) and hereafter referred to as a Spatial GMM. Whereas current approaches that

use GMMs map data values to probabilities, our Spatial GMM maps the locations of the

data points in different value ranges to probabilities. An adaptive scheme is employed to

determine the number of Gaussian components that are required for each Spatial GMM,

which makes the total size to store Spatial GMMs smaller than using a fixed number of

Gaussian components. Given an arbitrary location, we utilize our representation to infer

the probability for a value to reside at this location using Bayes’ rule, which combines

known information (the value distribution) and additional evidences (the Spatial GMMs)

from a given condition. Equipped with this spatial information, our approach produces

lower variance, and hence lower uncertainty, in the results of statistical based analysis

and visualizations. Figure 4.1 shows an example of using our approach to provide clearer

and more accurate uncertain isosurface rendering when compared with recently proposed

distribution-based data representations.
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(a) True isosurface (b) Block hist. (c) Block hist. w/
INTRPL

(d) Block GMM (e) Our approach

(f) True isosurface (g) Block hist. (h) Block hist. w/
INTRPL

(i) Block GMM (j) Our approach

Figure 4.1: Our value-based spatial distribution representation includes spatial information
(called a Spatial GMM) that is compact, which is lacking in current distribution based
representations. We illustrate our approach with volume rendering of the probability field
for the location of an isosurface of the Isabel dataset (500x500x100). Figures (a) and (f)
show the ground truth isosurface rendering using +90Pa and -900 Pa, respectively. Using a
hot to cold transfer function, where red indicates a high probability for the isosurface and
blue indicates a low probability, the rest of the columns show volume renderings of our
approach (the last column) compared with current approaches. Equipped with added spatial
information, our representation is able to better identify with higher certainty the location of
the isosurface including small details, which are missed in the other representations. The
block sizes used to compute the renderings in the last four columns are 123, 123, 63 and 163,
respectively. In our approach, the value histogram costs 3.5MB and the Spatial GMM costs
3.26MB.

The rest of the chapter is organized as follows. Section 4.1 provides an overview of

our approach. Our representation is presented in Section 4.2. Section 4.3 discusses the

use of Bayes’ rule to integrate the Spatial GMM and the block distribution. Section 4.4

presents quantitative experiments using Root Mean Square Error (RMSE) to compare our

representation with other distribution-based representations. We demonstrate in Section 4.5

that our approach provides a marked improvement in visual quality when applied to a variety

of visualization and analysis tasks. Section 4.6 presents timings to construct and evaluate our
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representation as well influence of parameters and the scalability of our approach. Section

4.7 concludes the paper.
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4.1 Overview

Figure 4.2: Overview of our approach. In a pre-processing step (shown on the left), the
dataset is subdivided into blocks and both a value distribution and spatial distributions
(Spatial GMMs) are computed for each block. To estimate a value at a given location, Bayes’
rule is used to integrate the value and spatial distributions to obtain the probability density
function of values at this location (shown on the right).

Our representation combines two kinds of distributions, the value distribution and spatial

distributions. Figure 4.2 illustrates our representation and approach where our augmented

representation is used to approximate a data value at a given location. The representation is

constructed in a pre-processing step where the dataset is first subdivided into blocks. For

each block, a value distribution is computed from the values of the samples in the block.

This is a histogram consisting of B bins, where each bin represents a data value range as an

53



interval. If bi denotes the ith bin, then the bin interval for bi represents a data value range

[Lowerbi,U pperbi]. If M denotes the number of grid sample points in the block that have a

value within the interval [Lowerbi,U pperbi] and N denotes the total number of grid sample

points of the block, then the ith bin has a probability of M/N. In addition, at each bin a

distribution of spatial locations is computed from the grid sample locations in the block,

which provides the probability of the locations for the data values in the bin interval. Each

spatial distribution modeled with a GMM, called a Spatial GMM, whose dimensionality

is determined by the spatial dimensions of the data. For example, a 3D dataset will define

Spatial GMMs with three dimensions. Details of the spatial distribution are introduced in

Section 4.2. To determine a probability density function (PDF) to use for value estimation

(see Section 4.3), we use Bayes’ rule by integrating information from the value distribution

and the Spatial GMMs.
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4.2 Spatial Distribution

In this section, we describe the Spatial GMM associated with each bin in the value

distribution and show how to use the Gaussian Mixture Model to compactly represent the

distribution. The number of Gaussian components to use for a Spatial GMM should vary

from one Spatial GMM to another in order to accurately represent coherence of the data

values across the block represented by the bin interval. Fewer components should be used

when data values are distributed coherently in space. Figure 4.3 illustrates the process of

computing the spatial GMM on a local data block. Details of the data structure are presented

at the end of this section.

Figure 4.3: This diagram shows the steps used to compute the spatial GMM for a raw data
block (shown in blue). Besides the computation of the value distribution, the raw data in
the block is used to construct the Spatial GMM. First, the locations of the data samples are
collected into the corresponding bin interval according to the data value at that location
(shown in the bottom left). Then, a Spatial GMM is constructed (shown on the right) for
each bin interval using the locations in the interval (illustrated here for Bin0).
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4.2.1 Spatial Distribution Per Bin Interval

The spatial distribution associated with a bin describes the probabilities of the locations

for the values in the bin interval. The spatial distribution of a particular bin bi can be

modeled from the coordinates of the sample grid points whose scalar values belong to

interval represented by bin bi by using the Kernel Density Estimation (KDE) [38]:

Sbi(x) =
1
N

N

∑
j=1

Kh(x− x j) (4.1)

where x is an arbitrary location in the block. Equation 4.1 computes Sbi , which is the spatial

distribution of bin bi. Sbi(x) describes how likely x has a value within the interval bi. Value

N is the total number of grid points that have values within the bin interval bi, x j is the jth

grid point, and Kh is a kernel function.

4.2.2 Spatial Gaussian Mixture Model

A representation constructed directly from Equation 4.1 would incur a high storage

cost to store information for N grid points. Instead, we can use the multivariate Spatial

Gaussian Mixture Model [10], which compactly captures spatial coherence amongst similar

data values, such as those in the same bin interval. The GMM is a widely used probabilistic

model [24, 56, 101] because it can fit complex data well with a few number of parameters.

As opposed to the block GMM [24, 56], which maps a data value in the block to a

probability, the Spatial GMM maps a spatial location to a probability. The Spatial GMM is

a multivariate GMM where the dimensionality is determined by the spatial dimensions of

the dataset. A Spatial GMM for a location x is expressed in Equation 4.2

SGmmbi(x) =
K

∑
j=1

w j ∗N (x|µ j,Σ j) (4.2)
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where SGmmbi(x) is the Spatial GMM of bin bi, K is the number of Gaussian components,

and w j, µ j and Σ j are the weight, mean and covariance matrix for the jth Gaussian com-

ponent. N (x|µ j,Σ j) is the probability density at x of the Gaussian distribution, which is

defined by µ j and Σ j. For a three dimensional dataset, µ j are the location coordinates and

Σ j is a 3x3 covariance matrix. ∑
K
j=1 w j has to be equal to 1.

To obtain the weights, means and covariance matrices, of the Spatial GMM, we use

the Expectation-Maximization (EM) algorithm [10] where the locations of the grid points

whose values are within the interval of bin bi are collected as the input training samples to

find the parameters of SGMMbi . The EM algorithm iteratively maximizes the likelihood

function described in Equation 4.3

argmaxθ SGmmθ (X) =
M

∑
m=1

log[
K

∑
k=1

wkN (xm|µk,Σk)] (4.3)

where θ represents the parameters of the Spatial GMM. The EM algorithm iteratively adjusts

and finds the parameters of the Spatial GMM by maximizing the likelihood of input samples

X = {x1,x2, ...,xM}. M is the number of grid points whose values are within the bin interval

and xm is the location coordinate of these input samples. By maximizing Equation 4.3, the

difference between Sbi and SGmmbi is minimized.

The EM algorithm may suffer from large computational overhead due to the number

of iterations needed for the algorithm to converge. Though, the convergence rate of the

algorithm depends on the initial parameters [46, 103], where good initial parameters result

in fewer iterations needed for convergence. In general, finding good initial parameters

is difficult. However in our case, we observe that the parameters SGmmbi can be a good

initial guess for parameters SGmmbi+1 because the locations of the samples belonging to

neighboring bins bi and bi+1 are usually close to each other in scientific datasets. We can
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leverage this property to help the EM algorithm to quickly estimate the parameters and save

on training time.

4.2.3 Varying Number of Gaussian Components

An advantage of using the Gaussian Mixture Model is the ability to approximate any

arbitrary target distribution. In general, using more Gaussian components can fit the target

distribution better. Using too many Gaussian components may not significantly improve

the approximation quality, but it will increase storage overhead costs and sometimes causes

over-fitting.

In order to decide on a suitable number of Gaussian components to be used in a Spatial

GMM, we use Bayesian Information Criterion (BIC) [70] to choose the number of Gaussian

components. Given a model and data, i.e. a Spatial GMM and the input training samples,

BIC will reward with a high likelihood over training samples and penalizes with a higher

number of Gaussian components. In our implementation, an upper bound on the number

of Gaussian components, called ubg, is given manually before training the Spatial GMMs.

We iteratively check the BIC scores by changing the number of Gaussian components used

for training a Spatial GMM. The number of Gaussian components with the smallest BIC

is then selected for that Spatial GMM because lower BIC scores mean a better result for

fitting. Hence, each Spatial GMM can have a different number of Gaussian components,

which is determined by the complexity of the input data. This scheme avoids using too many

Gaussian components without gaining significant quality improvement compared to using a

fixed number of Gaussian components.
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4.2.4 Data Structure

The data structure for the Spatial GMM is illustrated in Figure 4.4. Each Gaussian

component stores a weight, a mean (location), and a covariance matrix. Because the

covariance matrix is symmetric, only the upper triangle of the matrix is stored. Each bin

consists of the adjusted probability of the histogram, the Gaussian component count of the

GMM, and the Gaussian components.

Figure 4.4: Data structure for our data representation using Spatial GMMs. Each block
is indexed with a table of the starting locations of each block (shown at the top). Each
block (shown in blue) stores bins (bin b0 is shown in orange for Block0). Each bin stores K
Gaussians of the GMM for the bin. The data structure of a Gaussian component is shown in
red.
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Note that we store the adjusted probability instead of the original probability of the

histogram in our data structure because this can preserve the correctness of the PDF com-

putation, as described in the next section. Ideally, we would like the Spatial GMM to only

model the space in a block region, but the Spatial GMM model is an approximate distribution

representation and the domain is defined in infinite space. The Spatial GMM could give

probabilities to coordinates outside the block and introduce bias in the PDF computation.

Hence, we store the adjusted probability, H ′(bi), to correct this, as shown in Equation 4.4

H ′(bi) =
H(bi)∫

Ω
SGmmbi(l)dl′

(4.4)

where H(bi) is the original probability in the histogram, Ω is the spatial region of the block

and
∫

Ω
SGmmbi(l)dl′ is the accumulated probability over Ω of SGmmbi . In Section 4.3.1,

we will show how to compute the PDF using H ′(bi) and SGmmbi in order to avoid the bias.

Different bins may have differing numbers of Gaussian components (see Section 4.2.3).

So, a bin with zero probability requires storing zero Gaussian components. A homogeneous

block, in which only one bin has probability, will not need the Spatial GMM. Sine the

number of Gaussian components may differ per bin, the data size of each block varies as

well, which leads to an irregular storage footprint. To easily access the data within blocks,

an additional index table is stored where each index points to the starting location of the

data in a block.
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4.3 Probability of Data Values From Block and Spatial Distributions

This section describes how to to estimate a value at given a location within a block

by combining information in the value distribution and the Spatial GMMs. Using Bayes’

rule, we compute a probability density function (PDF) that provides probabilities for each

possible value.

4.3.1 PDF Computation by Bayes’ Rule

Bayes’ rule is a popular theorem that is widely used in classification problems. It tells us

how to rationally augment the known information with additional evidences from a given

condition. In our scenario, the block value distribution is the known information and the

additional evidences are the probabilities from each Spatial GMM at a given location. Bayes’

rule is written as the random variable form

P(I = bi|L = `) =
fL(`|I = bi)P(I = bi)

fL(`)
(4.5)

fL(`) =
B−1

∑
k=0

fL(`|I = bk)P(I = bk) (4.6)

where I is a random variable that represents a bin index, bi is the ith bin index, L is a random

variable that represents a location in the spatial space of the block, and ` is the location

in question. Given a data value within the interval of bin bi, fL(`|I = bi) represents the

probability that the value of bi is at the location `. P(I = bi) is the probability of bin bi of

the value distribution. fL(`) sums up the numerator term in Equation 4.5 over all bins bi for

normalizing P(I = bi|L = `).
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Figure 4.5: This flow chart shows the steps to compute the PDF consisting of probabilities
associated with possible data values at a given a location `. The input of this algorithm is a
3D location `.

The function fL(`|I = bi) comes from the normalized Spatial GMMs,
SGmmbi(`)∫

Ω
SGmmbi(l)dl′ ,

which ignores the probability outside the block region. P(I = bi) comes from the value

distribution. Equation 4.5 can be rewritten as Equation 4.7

P̀ (bi) =

SGmmbi(`)∫
Ω

SGmmbi(l)dl′ ∗H(bi)

∑
B−1
k=0

SGmmbi(`)∫
Ω

SGmmbi(l)dl′ ∗H(bk)

=
SGmmbi(`)∗H ′(bi)

∑
B−1
k=0 SGmmbk(`)∗H ′(bk)

(4.7)

where P̀ (bi) is the probability that the data sample at location ` has a value that belongs

to the value sub-range of bin bi, H(bi) is the probability associated with bin bi in the value

distribution, and P̀ is a PDF, which can be used to estimate the probabilities of various data

values at location `. The denominator normalizes ∑
B−1
k=0 P̀ (bk) to 1. H ′(bi) is the adjusted
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probability of the histogram, which is mentioned in Section 4.2.4. The flow chart shown in

Figure 4.5 illustrates how to compute the PDF at a given location `.
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4.4 Quantitative Evaluation

We show results from our experiments utilizing four datasets to analyze the storage

cost of our representation and the quality of the value estimation. We used an Intel 8-Core

i-7-4770 3.40GHz CPU with 16 GBs of main memory and an NVIDIA GeForce GTX 660

video card with 2 GBs of video memory in our experiments. The Plume dataset was provided

by the National Center for Atmospheric Research and is a simulation of Solar Plume for

thermal down flow on the surface layer of the Sun. The data resolution is 504x504x2048

(the raw size is 1984 MB) and where we used the vector magnitude field in our experiments.

The Isabel dataset is a pressure field of Hurricane Isabel from the IEEE Visualization 2004

Contest with a resolution of 500x500x100 (the raw size is 95 MB). The Combustion dataset

was provided by Sandia National Laboratories and the mixture fraction field was used. The

dataset has resolutions of 480x720x120 (the raw size is 158 MB). The Turbine dataset is a

turbine engine compressor simulation which was used in [24]. The original Turbine dataset

is a curvilinear grid data, and its Pressure variable is re-sampled to a regular grid. The

resolution of the regular grid Turbine dataset is 2545x2545x440 (the raw size is 10871MB).

4.4.1 Representation Quality

We illustrate the improved accuracy of our representation using the Spatial GMM over

two popular distribution-based representations: the block histogram, also called Hixel

in [84], and the block GMM [24, 56]. We also compare our representation with histogram

based trilinear interpolation (described in [71]) applied to the block histogram. Since a

fundamental flaw of the block histogram is loss of spatial information, interpolation may

compensate for this to some extent.
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To evaluate the quality of data value estimation at given locations, we use the Root

Mean Square Error (RMSE) metric, which encodes both bias and variance [89] as shown in

equation 4.8

RMSE(P̀ ,x`) =
√

Bias(P̀ ,x`)2 +Variance(P̀ ) (4.8)

where the variable ` is a given location, P̀ is a PDF that indicates the possible values at

location ` and their associated occurrence probability, and x` is the true value from the raw

data. P̀ with a lower RMSE indicates that the estimate of a data value is closer to the true

value and has smaller uncertainty.

We use Equation 4.7 to compute the PDF P̀ using our representation. The block

histogram and block GMM representations directly use the corresponding block distribution

of location ` as the basis to estimate the data value at location `. P̀ is the interpolated

histogram at ` when we used the block histogram with interpolation approach. The RMSE is

calculated directly from the PDF at a location ` and the true value, as shown in equation 4.9.

RMSE(P̀ ,x`) =
√∫

∞

−∞

P̀ (v)∗ (v− x`)2dv (4.9)

Figure 4.6 shows the improved estimation accuracy of using our Spatial GMM repre-

sentation (bottom three curves) when compared with the the block histogram and block

GMM distribution-based representations (top three curves). Each curve has four points that

represent the block sizes used in the experiment. Each point is a plot of the storage cost

vs. RMSE using a particular block size. The RMSE in Figure 4.6 is the average of the

RMSE values at all grid points in the dataset. The histograms for all representations used

128 bins and the block GMM used 5 Gaussian components (as was used in [24]). The curves

representing the block histogram with and without interpolation have the same storage cost
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Figure 4.6: The trade off between accuracy (RMSE) and storage cost when comparing our
spatial GMM approach using different block sizes and current approaches. Block sizes from
left to right for (a),(b) and (c) are 643, 323, 163 and 83. Block sizes from left to right for (d)
are 1283, 643, 323 and 163. The bottom three curves show this trade off using our approach
with upper bounds of 1, 3 and 5 on the number of Gaussian components.

since the same block histograms were used in both cases. Given the same block size, block

GMMs use less storage because the block histogram is a more compact representation. Even

though our representation requires additional storage cost to incorporate spatial information,

it significantly improves the RMSE. The bottom three curves show the estimation accuracy

and storage cost of our Spatial GMM using up to 1, 3, and 5 Gaussian components for the

spatial distributions. The spatial GMMs achieve lower RMSE when compared with all the
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other representations using just 1 Gaussian component, as illustrated by the red curve. In

addition, given the same storage cost as the other approaches, our representation has smaller

RMSE with different numbers of Gaussian components set as the upper bound. This trend

can be observed consistently in all test data sets, which indicates that our approach gives

better trade off between the quality and storage cost.
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Figure 4.7: Comparison of RMSE when block histogram with our spatial GMM and without
our spatial GMM are used under different block sizes.

We also performed experiments to study the benefit of using the spatial distribution for

different block sizes. We compared the RMSE of using only a block histogram compared
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with using a block histogram with our Spatial GMM, as shown in Figure 4.7. It is clear

that by combining our Spatial GMM with the block histogram, we achieve a smaller RMSE

when compared to only using a block histogram. Another observation is that when the block

size is larger, the difference in RMSE with without our Spatial GMM is larger. The reason

being that when a larger block size is used, more spatial information is lost, and thus we can

benefit more from the spatial information found in the Spatial GMM.

4.4.2 Varying vs. Fixed Number of Gaussian Components

In this experiment, we show the benefit of varying the number of Gaussian components

for the different spatial GMMs (see Section 4.2.3) rather than using the same or fixed

number of Gaussian components for all of the Spatial GMMs. Using an upper bound on

the number of Gaussian components (ubg) of 4 and compared with the fixed number of

Gaussian components scheme, varying number of Gaussian components saves 29%, 28%,

16% and 13% Gaussian components on the Plume, Isabel, Combustion and Turbine datasets,

respectively. We also compare these two schemes by varying different parameters such as

block size and the upper bound on the number of Gaussian components. Both alternatives

are compared with the RDperMB(g) metric shown in Equation 4.10

RDperMB(g) =
RMSE(0)−RMSE(g)

Size(g)−Size(0)
(4.10)

where RDperMB(g) stands for ”RMSE Decrease per MBytes” and g represents the Gaussian

components of a Spatial GMM, which is a fixed value when using a fixed number of Gaussian

components and an upper bound when using a varying number of Gaussian components.

Size(g) is the storage cost using the Spatial GMM. The value g = 0 corresponds to using the

block histogram only, i.e. no spatial information. Note that a higher RDperMB(g) value

corresponds to better storage utilization in order to further decrease RMSE.
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Figure 4.8: Comparison of varying and fixed number of Gaussian components schemes. The
curves with same color use the same local block size. The solid and dotted lines indicate
the representations generated from the varying and fixed number of Gaussian components
schemes respectively.

Figure 4.8 shows the decrease in RMSE per MBytes using both schemes. Four pairs

of curves are shown for each dataset where the solid curves represent results from using a

varying number of Gaussian components and the dotted curves represents the fixed number

scheme. Each pair of curves, from the top to the bottom, was computed using the same block

size. Varying the number of Gaussian components provides the same or larger decrease in

RDperMB(g), as shown by the the solid curves always being above the dotted curves. This is
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observed for all block sizes and is more pronounced for smaller block sizes. In addition, this

is also observed when using a larger upper bound on the number of Gaussian components,

indicated by the horizontal axis in the plots. In many cases, the spatial information in a

smaller local block is more easily modeled so that using more Gaussian components may

not be a good trade off. Varying the number of Gaussian components allows for fewer

components and the use of more components on a need only basis.
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4.5 Visualization and Analysis

This section compares our approach to the block histogram and block GMM approaches

[24, 56] on three data visualization and analysis applications. The first application is

volume rendering of a reconstructed scalar field generated by sampling values from a

distribution based representation. The second application is uncertain isosurface generation

by computing the level crossing probability [7] at each voxel. The third application is local

distribution-based feature matching. For each of these three applications, we first construct

the appropriate field from a dataset using user provided parameters for the visualization task

and a user defined region to construct the field and its resolution. Thus, scalar, probability,

and similarity fields are constructed for the first, second, and third applications, respectively.

Once constructed, we render the field with Paraview and perform viewpoint and transfer

function exploration. We use the entire region of the dataset to construct each field. We

use the same datasets used in our experiments in Section 4.4. We used the same spatial

resolution as the original raw datasets to construct the fields for the Combustion, Isabel and

Plume datasets. The Turbine dataset uses 1272x1272x220 as the spatial resolution. In this

experiment, we set the local block size to 163 for the Combustion, Isabel and Plume datasets

and 323 for Turbine dataset for our approach. We set the number of bins for the histograms

to 128 and the upper bound of the number of Gaussian components for each Spatial GMM

to 4. The datasets Plume, Isabel, Combustion and Turbines have averages of 51.03, 16.04,

10.36 and 31.38 Gaussian components per block, respectively. For the block histogram

approaches, the histogram has 128 bins. We used 5 Gaussian components for each GMM in

the block GMM approach. We ensured that all three representations, the block histograms

with interpolation, the block histogram without interpolation, and block GMMs all had close

storage size as our representation by adjusting the local block size.
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(a) Rendering from raw data (b) Block histogram (7.93MB)

(c) Block histogram w/ interpo-
lation (7.93MB)

(d) Block GMM: (7.03MB) (e) Our approach (6.76MB)

Figure 4.9: Visual comparison of volume rendering in Pressure variable of Isabel dataset.
The samples are drawn from the PDFs, which are calculated at all grid points of the raw data,
using Monte Carlo sampling. The block size of (b),(c),(d) and (e) are 123, 123, 63 and 163,
respectively. In (e), the value histogram costs 3.5MB and the Spatial GMM costs 3.26MB.

4.5.1 Volume Rendering

Our first experiment is to use each of the distribution-based representations for a direct

volume render volume rendering task. We reconstruct the scalar field by drawing sam-

ples from the computed PDF of our representation, and from the histogram, interpolated

histogram and GMM of other these approaches.

Figures 4.9 - 4.12 show renderings of each dataset (Isabel (Figure 4.9), Combustion

(Figure 4.10), Plume (Figure 4.11) and Turbine (Figure 4.12)) using the four approaches.
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(a) Rendering from raw data (b) Block histogram (20.73MB)

(c) Block histogram w/ interpo-
lation (20.73MB)

(d) Block GMM: (19.34MB) (e) Our approach (20.63MB)

Figure 4.10: Visual comparison of volume rendering in combustion dataset. The samples are
drawn from the PDFs, which are calculated at all grid points of the raw data, using Monte
Carlo sampling. The block size of (b),(c),(d) and (e) are 103, 103, 53 and 163, respectively.
In (e), the value histogram costs 5.27MB and the Spatial GMM costs 15.36MB.

Renderings computed with the block histogram without interpolations (shown in (b)) clearly

shows blocky artifacts and lost detail. Renderings using the block histogram with inter-

polations (shown in (c)) alleviate the blocky artifacts, but details are blurred. Renderings

computed with the block GMM (shown in (d)) show clear improvement from the block

histogram only approaches. However, the approach also suffers from blocky artifacts and

noise. Our approach (shown in (e)) is a marked improvement over the other approaches.

Though our results do not exactly match the ground truth renderings (shown in (a)), it is

much closer with a little noise, as illustrated in the zoomed in views.

73



(a) Rendering from raw data
(b) Block histogram
(120.16MB)

(c) Block histogram w/ interpo-
lation (120.16MB)

(d) Block GMM (141.39MB) (e) Our approach (103.17MB)

Figure 4.11: Visual comparison of volume rendering in Plume dataset. The thumbnail at
right upper of (a) is the global view of Plume. We zoom in to the red box region in this
visual comparison. We zoom in and render part of the dataset. The samples are drawn
from the PDFs, which are calculated at all grid points of the raw data, using Monte Carlo
sampling. The block size of (b),(c),(d) and (e) are 133, 133, 63 and 163, respectively. In (e),
the value histogram costs 64MB and the Spatial GMM costs 39.17MB.

4.5.2 Uncertain Isosurface

Our next experiment is to show a visual comparison using uncertain isosurface rendering

between the approaches using a statistical isosurface visualization technique with uncertain

realizations [6, 7, 84]. We use the uncertain isosurface technique proposed by Athawale et
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(a) Rendering from raw data (b) Block histogram (131.4MB)

(c) Block histogram w/ interpo-
lation (131.4MB)

(d) Block GMM (163.71MB) (e) Our approach (151.54MB)

Figure 4.12: Visual comparison of volume rendering in Turbine dataset. The samples are
drawn from the PDFs, which are calculated at all grid points of the raw data, using Monte
Carlo sampling. The block size of (b),(c),(d) and (e) are 223, 223, 103 and 323, respectively.
In (e), the value histogram costs 43.75MB and the Spatial GMM costs 107.79MB.

al. [6] which computes the probabilities of the isovalue crossing in each cell and renders the

probability field. We use Equation 4.11 to compute uncertain isosurface

Pcrossing(c) = 1−
7

∏
k=0

∫ c

−∞

P̀ k(v)dv−
7

∏
k=0

∫
∞

c
P̀ k(v)dv (4.11)

where c is an isovalue and P̀ 0...P̀ 7 are the PDFs for the data values at the eight grid points

on the cell.
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(a) True isosurface (b) Block histogram (20.73MB)

(c) Block histogram w/ interpo-
lation (20.73MB)

(d) Block GMM (19.34MB) (e) Our approach (20.63MB)

Figure 4.13: Uncertain isosurface (isovalue = 0.15) visualization of the Combustion dataset.
(a) is the true isosurface from the raw data. The sizes of the distribution-based representations
were similar in the results shown in (b),(c),(d), and (e). The color orange indicates locations
with higher possibility for the location of the isosurface. The color blue indicates locations
with less possibility for the isosurface. The settings used here are the same as used for the
results in Figure 4.10.

Figure 4.1 shows renderings using the four approaches on the Isabel dataset. Figure 4.1

(a) and (f) show isosurface renderings generated from the original raw data to represent

the ground truth. As was seen in the volume rendering results, renderings computed using

the block histogram (Figure 4.1 (b) and (g)) and the block GMM (shown in Figure 4.1 (d)

and (i)) approaches clearly suffer from blocky artifacts. Interpolation applied to the block

histogram (Figure 4.1 (c) and (h)) greatly alleviates these blocky patterns, but the result only

shows a rough uncertain isosurface. Our approach is able to show the isosurfaces much

more clearly and accurately (Figure 4.1 (e) and (j)). Rendering using the Combustion dataset

are shown in Figure 4.13. Notice the two holes in the zoomed in region for the ground truth
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rendering in (a). This feature is completely or nearly absent in the renderings using the other

approaches (Figure 4.13 (b) (c) and (d)) due to higher uncertainty from these representations.

On the contrary, this feature is preserved using our approach (Figure 4.13) (e)).

4.5.3 Local Distribution-based Feature Matching

(a) True Similarity Field (b) Block histogram (20.73MB)

(c) Block histogram w/ interpo-
lation (20.73MB)

(d) Block GMM (19.34MB) (e) Our approach (20.63MB)

Figure 4.14: Images of the distribution similarity field. (a) is the similarity field from the
raw data. (b)(c)(d) and (e) are the similarity field from other distribution representation with
similar storage size. Red color indicates high similarity. Blue color indicates low similarity.
The data representations here are the setting in Figure 4.10.

One application of local distribution-based features [16, 45, 95] is to identify locations

where local histograms are similar to a target feature defined by the user [16, 95]. Given a
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target distribution and a neighborhood size, the local distribution at each voxel in the raw data

domain is computed from its neighborhood, and the L1-norm distance measure is applied

to compute the similarity between the local distribution and the target distribution. Figure

4.14 shows renderings of the similarity fields from the search results on the Combustion

dataset. The neighborhood size is set to 5x5x5 and the target distribution is selected from

a region with pure fuel mass in the mixture fraction variable of Combustion data. Figure

4.14 (a) shows a ground truth rendering of the search result applied to the raw data. Results

when using the block histogram (figures 4.14 (b) and (c)) and the block GMM (Figure 4.14

(d)) are unsatisfactory due to areas that are overestimated in the region around the pure fuel

mass as a result of using an improper PDF with large uncertainty to estimate a value at each

voxel. As the zoomed in results show, our approach (Figure 4.14 (e)) is extremely close to

the ground truth.
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4.6 Discussion

Preprocessing Time: We discuss and report the preprocessing time per block of our

approach for the four datasets used in our experiments. We measure the preprocessing time

to compute our representation with the same settings reported in Section 4.5 and computed

on the same machine reported in Section 4.4. In the preprocessing step, we subdivide

the data into blocks, compute the block histogram and Spatial GMMs using our adaptive

scheme described in Section 4.2.3. The program is written in Python 3.3 using the mixture

package in the scikit-learn library [13] to train the Spatial GMM. Since preprocessing

time is affected by data complexity, more complex data requires more time to run the EM

algorithm in training the Spatial GMMs due to more iterations needed for the algorithm

to converge. For example, our algorithm took the most time to pre-process each block on

average on the Combustion dataset since it has the most complexity among all of our test

datasets. Computation time for each test dataset was 0.97 seconds to pre-process each block

on average on the Combustion dataset, 0.51 second on the Plume dataset, 0.55 second on

the Isabel dataset, and 0.69 second on the Turbine dataset.

PDF Computation Time: The time to compute the PDF depends on the number of

Gaussian components. Hence, the time complexity of computing a PDF at a given location

is O(G), where G is the average number of Gaussian components per block and bin. We

implemented the PDF computation using the NVIDIA CUDA Thrust Library and used the

same machine as was used for the experiments conducted in Section 4.4 to compute run

times here. We report both the total and average computation times on each dataset. Also,

we use the same parameter settings that were used in Section 4.5. Since the resolutions of

reconstructed fields are different, the total number of computed PDFs are also different. The

total time to compute the PDF for the Combustion dataset took 3.79 seconds (9.15∗10−8
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second in average), 1.12 seconds (4.48 ∗ 10−8 second in average) for the Isabel dataset,

20.99 seconds (3.91∗10−8 second in average) for the Plume dataset, and 291.08 seconds

(8.17∗10−7 second in average) for the Turbine dataset. Note that the times reported here

only include the time to compute the PDF computation.

We also report the total time to construct the scalar field in Section 4.5, which includes

PDF computation time and value sampling time from the distribution. The time measure-

ments for Combustion, Isabel, Plume and Turbine are 5.19, 1.89, 32.81 and 351.67 seconds,

respectively. After the field is constructed and the two stage visualization pipeline (see

Section 4.5) is used, both viewpoint and transfer function exploration can be computed in

real-time.

Influence of Parameters: Three important parameters are the number of bins, the upper

bound of the Gaussian components, and block size. An obvious trade off is that by increasing

the bin number, you will increase the size of the histogram and the number of Spatial GMMs

needed, but improve precision in the value domain. The influence of the upper bound of

Gaussian components of the Spatial GMM can be seen in our experiments. In Figure 4.7,

the RMSE computed over the datasets is decreasing for all block sizes when the upper

bound of Gaussian components of the Spatial GMM increases. The reason is that with more

Gaussian components used in the Spatial GMM there can be a better approximation of the

Spatial distribution. But the ”RMSE Decreasing per MByte” keeps decreasing while the

upper bound of Gaussian components increases, as shown in Figure 4.8. This means that

the per unit storage cost for the Spatial GMM results in decreasing quality improvement

when the upper bound of Gaussian components is increasing. As mentioned previously, the

PDF computation time is proportional to the total number of Gaussian components. Thus,

increasing the upper bound of Gaussian components helps to improve quality but is affected

80



by diminishing returns and increases PDF computation time. Also, an infinitely small block

size makes the spatial distribution useless because no spatial information is lost. In Figure

4.8, we observe that the curves showing larger block sizes are always on the top of the

curves showing smaller block sizes. This means that the per unit storage cost for the Spatial

GMM improves quality more. But, Figure 4.7 also shows that the smaller block size always

has better RMSE. Hence, when a larger block size is used, we can gain more by using the

Spatial GMMs, but the smaller block size can provide better overall RMSE.

Scalability: Since computation of the distributions is done in a separate pre-processing

step and distributions are localized to individual blocks, our approach scales well and easily

leverages parallel processing. Pre-processing tasks over a single block are independent of

pre-processing tasks in other blocks and only requires the data within that local block. Thus,

the memory requirement for pre-processing each block only depends on the local block

size and does not increase with raw data size. The computation time for pre-processing is

proportional to the number of data points within a local block and the number of blocks of

the dataset. Although the time to process each Spatial GMM in a local block is difficult

to estimate, as it depends on the parameters of EM algorithm and properties of the data,

the computation time of a Spatial GMM increases in general with more data points in a

local block, and vice versa. The pre-processing time over the entire dataset grows just

linearly with the number of blocks. Computing the pre-processing is suitable on multi-

node supercomputers to bound the overall pre-process time for large datasets. Since no

communication is needed between processes, no specially designed parallel algorithm is

needed to apply our algorithm for pre-processing to multi-node supercomputers.
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4.7 Conclusion

This paper presented a novel distribution-based representation for large-scale data

sets, which allows high-quality statistical based analyses and visualization. Our proposed

Spatial GMM representation compactly stores spatial information, which is missing in

current distribution-based representations. In order to keep the storage overhead small,

an adaptive scheme is used to determine the number of Gaussian components needed for

each Spatial GMM. We qualitatively compared our representation with existing distribution

representations. Our approach is able to compute the probability density function of values at

any location, which represents the possible values and its associated occurrence probabilities,

with less bias and variance at each voxel and provides superior visual results in the three

visual analysis applications in our experiments.
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Chapter 5: Ray-based Exploration of Large Time-Varying Volume

Data Using Proxy Per-Ray Distributions

The advance of large scale supercomputers enables scientists to model complex physical

phenomena with high-resolution simulations which have millions of spatial grid points

and hundreds or even thousands of time steps. Scientists can understand the modeled

phenomena in great detail by observing and analyzing the evolution of features in the

simulation output over time. When the size of simulation output is small, common practice

is simply to move the data to machines that perform post analysis. However, as the size

of data grows, the limited bandwidth and capacity of networking and storage devices that

connect the supercomputers to the analysis machine become a major bottleneck of the data

analysis [2, 24, 94]. Furthermore, most post analysis and visualization machines do not have

sufficient storage space to hold the entire simulation output. Rather they can handle only a

small portion of the original dataset.

One common way to transfer large time-varying data sets to the analysis machine is

to reduce the sampling rate in the temporal domain by storing volume datasets at every

tenth or hundredth time step [17, 60, 105]. The drawback is that the scientist can easily lose

track of the evolution of features between the two sampled time steps. Feature evolution

between sampled time steps can be inferred by domain knowledge and approximated by

linear interpolation or stored by compact data proxies. Though, smaller temporal sampling
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(a) True Volume (time
step 45)

(b) True Volume (time
step 46)

(c) True Volume (time
step 47)

(d) True Volume (time
step 48)

(e) Interpolation (time
step 45)

(f) Interpolation (time
step 46)

(g) Interpolation (time
step 47)

(h) Interpolation (time
step 48)

(i) Our approach (time
step 45)

(j) Our approach (time
step 46)

(k) Our approach (time
step 47)

(l) Our approach (time
step 48)

Figure 5.1: Our approach mixes naive interpolation approximation, ray histogram and depth
information to produce the animation of time-varying data sets. We illustrate our approach
with the mixture fraction field of Combustion time varying dataset. We sampled this dataset
every ten time steps in temporal domain. In this figure, we have the sampling time steps at
40 and 50. The time steps at 45, 46, 47 and 48 are shown. The images in the first row are
the ground truth rendered from the raw volumes of these four time steps. The images in the
second row are rendered based on the interpolation approach which interpolates data from
time steps 40 and 50. The images in third row are rendered by our approach. In the black
circle, our approach shows the feature evolution of the red material, which is very close to
the ground truth. However, we cannot observe similar feature evolution in the second row.
This may mislead the scientists’ analysis.

rates may not be sufficient for the use of domain knowledge to correctly predict features

between sampled time steps. Interpolation approximation is prone to large errors leading to

incorrect analysis, which is illustrated in Figure 5.1. The pure fuel region (red material) is

clearly apparent as it moves over time in the ground truth rendering from the raw data, but is

barely seen in the renderings in the second row. Another way to visualize feature evolution

at non-sampled time steps is to create compact data proxies to replace the non-sampled
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time step volumes. These include compression [39, 48, 55] and spatial subsampling-based

techniques [24, 80, 93]. The drawback is that these approaches do not take into account

image space properties and ignore information from the sampled time steps. Thus, it is

difficult to arrive at a good trade-off between storage and image quality. The image-based

approach [2,85,87] is promising in that salient views are selected and data proxies are created

based on the image space at the skipped time steps to compensate for lost information. The

approach has demonstrated successful results in many analysis applications to overcome

the big data challenge. Though, their potential shortcomings either have limited ability for

transfer function exploration or imprecise assumptions regarding depth information. This

may result in difficulties in identifying the salient features. In addition, existing image-based

approaches do not incorporate information from sampled time steps to achieve a good

trade-off between storage and image quality. Therefore, it is still an open problem to develop

techniques to explore large scale time-varying data in post analysis machines, while not

losing any critical information between the sampled time steps.

In this paper, we present a ray-based approach for time-varying volume analysis. The

goal is to better preserve temporal data fidelity between sampled time steps with a small

storage cost. With our algorithm, scientists can select salient views to generate compact

ray-based proxies with the ability to allow for arbitrary transfer function modification to

compensate for the lack of information from non-sampled time steps. To produce the

compact ray-based data representation, we decouple a pixel ray into the samples’ value

distribution and bin-wise depth informations, and store them separately. The samples’

distribution along a ray from the raw data at non-sampled time steps is stored as a histogram,

which captures the statistical characteristics of the samples. The bin-wise depth informations

are the location information of data samples of each histogram bin. It provides the clues to
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place the samples of a ray histogram along the ray. By decoupling the rays into histograms

and bin-wise depth informations, the histograms and bin-wise depth informations can be

encoded to save on storage cost. Ray histograms and bin-wise depth informations are

encoded into codebooks, where similar ray histograms and bin-wise depth informations

are identified and represented by a single ray histogram and a bin-wise depth information,

respectively. In addition, we use data coherence in the temporal domain to further define a

more compact representation. The data along a pixel ray at a non-sampled time step and a

corresponding pixel ray at a sampled time step are often similar due to trends in how data

values change in the time sequence. One simple example is that sample values on both

pixel rays are monotonically increasing even if they have different corresponding sample

values along the rays. In this example, the depth information along the pixel ray at the

sampled time step can be used instead of the bin-wise depth information of the pixel ray at

the non-sampled time step, which saves on the cost to store bin-wise depth informations in

this case. Also, some pixel rays could pass regions where the data values are not changing,

changing very little, changing smoothly over time. In this case, naive interpolation of values

from the sampled time steps is sufficient to reconstruct a pixel ray at a non-sampled time

step and we can completely avoid storing a ray histogram and bin-wise depth informations.

When constructing the data proxy in a preprocessing step, our approach analyzes temporal

coherence in the time-varying data to choose the most appropriate representation for scalar

data along pixel rays at non-sampled time steps. Our view-dependent proxy allows for fast

rendering of the time-varying data from view samples used to create the proxy as well as

rendering from nearby view angles to improve scientists understanding of evolving features

over time.
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5.1 Overview

Figure 5.2: The proxy data structure stores sampled volume time steps and a collection of
index images at each non-sampled time step, which are located between two neighboring
sampled time steps (t− and t+). The samples defined on a pixel ray are represented by a
ray histogram and bin-wise depth informations except when temporal coherence is detected
and corresponding pixel rays in neighboring sampled time steps provide information to
describe the samples on the pixel ray. Samples along index image pixel rays are quickly
reconstructed for fast volume rendering in the context of transfer function changes. Ray
histogram and bin-wise depth informations are stored in codebooks.

Our proxy data structure stores only a subset of the volumes in the time series of a

time-varying volume dataset, called sampled time steps. Each volume in the rest of the time

series, called a non-sampled time step, is replaced by a collection of index images. The

scalar values of the samples along a pixel ray defined at an index image are summarized with
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a histogram, called a ray histogram. The location information of these samples is similarly

summarized as bin-wise depth information. We call this compact pixel ray representation the

decoupled ray representation. The ray histograms and bin-wise information across pixel rays

are stored in codebooks for further storage savings. Though, temporal coherence in the time-

varying volume data allows for two alternative pixel ray representations that provide a better

tradeoff between storage cost and sample reconstruction quality. Our proxy data structure is

illustrated in Figure 5.2. Each pixel ray at an index image is represented by one of three

possible ray representations: the interpolation ray, depth profile ray, or decoupled ray. The

interpolation ray representation (Section 5.4) incurs the least storage cost among the three

options because it approximates the scalar function along a pixel ray using scalar information

from rays at the same image coordinate on the neighboring two sampled time steps. The

depth profile ray representation (Section 5.3) combines a histogram constructed from data

along the pixel ray and depth profile information found at the neighboring sampled time

steps. The storage cost is a ray histogram and a pointer. The decoupled ray representation

(Section 5.2) is the most expensive among the three representations because bin-wise depth

information incurs a larger storage cost than depth profile information. During data proxy

construction, one of these three ray representations is chosen for each pixel ray such that

the chosen representation provides the least storage cost and quality that is greater than a

user-defined threshold, Tr. This quality metric, we call Qr, is defined to be between 0 and 1

where higher values denote better reconstruction quality, as shown in Equation 5.1.

Qr = 1− (

√
∑

L−1
i=0 (rgt(i)− rre(i))2

L
/Vrange) (5.1)

The data value range is Vrange and L is the number of samples on the ray. The sample values

at the ith sample along the ray are rre(i) and rgt(i) from the reconstructed time step and

the raw volume, respectively. The quality of the approximation of the samples along the
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pixel ray is measured using Root Mean Square Error (RMSE),
√

∑
L−1
i=0 (rgt(i)−rre(i))2

L . The

choice of which ray representation to use for the pixel ray is as follows. The interpolation

ray representation is selected if the quality, Qr, is greater than Tr. If not, then the depth

profile ray representation is selected if its quality is greater than Tr. Otherwise, the pixel

ray is represented with the decoupled ray representation. In this case, if the number of

rays that do not satisfy the quality threshold Tr is greater than e% of the number of rays

at the non-sampled time step, then e% of the rays with the lowest reconstruction quality

are selected to compute the ray histogram. All of the ray histograms in the data proxy are

encoded into a codebook by removing “redundant” ray histograms that are too similar to

each other. Bin-wise depth information is encoded similarly to gain further storage savings.

The codebooks are described in Section 5.5.

89



5.2 Ray-based Proxy Representation

Each non-sampled volume time step is replaced with a proxy consisting of index images

defined at pre-chosen view samples. At each pixel ray of an index image, a ray is cast

into the non-sampled volume and sampled in depth order. The samples are encoded in a

statistical summary, called a ray histogram, and their locations are preserved in a bin-wise

depth data structure. In this section, we describe how to compute these two data structures,

which together is called the decoupled ray representation because sample values are stored

separately from their locations. Section 5.5 describes how the ray histograms and bin-wise

depth information are stored into codebooks for further savings. Sections 5.3 and 5.4 present

two alternative pixel ray representations to the decoupled ray representation that are more

compact by leveraging temporal coherence.

5.2.1 Ray Histogram

The decoupled ray representation summarizes the sampled data values along the pixel

ray in a histogram consisting of B bins, where each bin represents a value interval in the data

range. The value intervals may be defined to equally subdivide the data range or defined by

scientists to represent value ranges based on material properties. If bi denotes the ith bin in

the histogram, the value interval of bin bi represents the data value range [Lowerbi,U pperbi].

The probability mass for the ith bin is M/N, where M is the number of sample values within

the data interval [Lowerbi,U pperbi] and N is the total number of samples along the pixel

ray.
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5.2.2 Bin-wise Depth Information

The ray histogram lacks location information for the pixel ray samples, which is needed

for quality rendering. We compactly represent this information by identifying runs of

consecutive samples along the ray in depth order such that all samples in the same run map

to the same ray histogram bin. This is illustrated in Figure 5.3 where depth information

of the samples along a ray is modeled as a list of five runs. The first run consists of two

samples whose data values map to bin b3, the second run consists of three samples whose

data values map to bin b0, etc. Samples from different runs may map to the same bin, such

Figure 5.3: To preserve location information, samples are collected along a pixel ray bin-
wise into runs in depth order. In the example above, each circle represents a sample and
samples with the same color map to the same histogram bin, i.e. material. A sample run is
a group of consecutive samples that map to the same bin. These runs are stored in a table
indexed by bin ID and connected via a linked list in depth order. Each run stores the fraction
of samples found in the run over all runs in the bin, w, and a link, o, that refers to the bin
containing the next run in the linked list.
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as the first and last runs denoted by b3 in the figure. We define a table to hold all the runs on

the pixel ray such that each run is stored with its bin, also shown in Figure 5.3. The table is

indexed by bin IDs where each table entry stores a depth ordered list of runs that map to the

bin for those bins with non-zero probability. We store with each run the percentage of the

sample count in the run with respect to the sample count of all runs that map to the same bin

to use as a weighting factor. Equation 5.2 defines this value for the cth run in the list of runs

stored at bin ID b. The value SmpCountb(i) is the sample count of the ith run in the list at

bin ID b and N is the length of the bin’s list. In the example in Figure 5.3, bin b3 has two

runs along the ray with weights 0.4 and 0.6, respectively.

wb(c) =
SmpCountb(c)

∑
N−1
i=0 SmpCountb(i)

(5.2)

To preserve the ordering of the runs along the pixel ray in the table, we encode the

list of runs as a linked list by storing with each run a link value that is a relative bin ID to

the next run. This link value is defined in Equation 5.3 for the cth run at bin ID b, where

NextBinID(c) is the bin ID of the run after run c along the pixel ray and BinID(c) is the

bin ID of run c. In Figure 5.3, the link value for the first b3 run is 0 - 3 = -3. We use -1 to

represent the next bin ID after the last run. For example, the link value of the second b3 run

is -1 - (3) = -4. The table also stores the bin ID of the first run, called the starting bin ID.

Thus, the runs may be visited in depth order, where in our example the first pixel ray run is

found in the first run at bin ID 3, then the next run is found as the first run at bin ID = 3 +

(-3) = 0, then the run at bin ID = 0 + 1 = 1, then the second run at bin ID = 1 + (-1) = 0, and

finally the second run at bin ID = 0 + 3 = 3.

ob(c) = NextBinID(c)−BinID(c) (5.3)
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5.2.3 Ray Reconstruction

A pixel color resulted from volume rendering can be computed from the ray histogram

and bin-wise depth information. The sample runs are processed in front-to-back order by

traversing the linked list of runs. Color and opacity are computed for each run using the

transfer function where these values are blended together for the final pixel value. As shown

in Equation 5.4, the number of samples in the cth run at bin bi, SmpCountbi(c), is computed

from the weight, w, of the run, the probability mass value of the bin containing the run found

in the ray histogram, H, and the expected number of samples along the entire ray, S.

SmpCountbi(c) = S∗H(bi)∗w(c) (5.4)

Algorithm 4 Ray reconstruction and rendering with the ray histogram and bin-wise depth
information

1: . rh: ray histogram; d ptIn f os: bin-wise depth informations
2: . stBinID: starting Bin ID of the ray
3: . S: expected number of samples on the reconstructed ray
4: procedure RayReconstruction(rh, depIn f ors, stBinID, S)
5: color = (0,0,0)
6: currBin = stBinID
7: currComps = [0,0,...,0]
8:
9: while currBin 6= −1 do

10: di = dptInfos(currBin)
11: compSmps = S*rh[currBin]*di.w[currComps[currBin]]
12: rgba = tf(currBin)
13: al pha = 1.0 - pow((1.0 - rgba.a), compSmps)
14: color += clr.rgb * al pha
15: currBin += di.o[currComps[currBin]]
16: currComps[currBin] += 1
17: end while
18:
19: return color
20: end procedure
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The steps to compute the pixel color are shown in Algorithm 4. Line 7 initializes an

array of indices with length equal to the number of bins in the histogram. Each entry records

the number of runs that have been processed in the bin, which is used to index the next bin

to process. Line 10 retrieves the next run to process. Next, the sample count of this run is

computed in line 11. Accumulated color, denoted by variable color, for the pixel is blended

in lines 13 - 14 after color and opacity is determined for the run in line 12 using the transfer

function. The location of the next run to process, currBin, is computed in lines 15 - 16 using

the link o. The variable currComps[currBin] is updated to refer to the next run in the bin.
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5.3 Depth Profile Ray Representation

As mentioned in the previous section, a ray histogram lacks location information of the

samples, which is needed for rendering. We leverage temporal coherence that may exist in

time-varying datasets and present a cheaper alternative to approximate location information

than using bin-wise depth information described in Section 5.2.2. A depth profile of the

scalar function defined on a pixel ray represents how the scalar values change along a pixel

ray in depth order. We observe that many pixel rays may share the same depth profile due

to temporal coherence. For example, this is seen in the Isabel dataset (Figure 5.8) where

scalar values along many pixel rays are monotonically increasing due to lower altitudes

having higher pressure. The depth profile ray representation combines the ray histogram of

the samples along a pixel ray in the non-sampled time step and the depth profile of a pixel

ray in the nearest sampled time step, where the latter requires storing only a reference to

the identified pixel ray. Thus, the depth profile ray representation requires less storage than

decoupled ray representation.

5.3.1 Detection and Search

To determine whether a pixel ray rp at image coordinate p at a non-sampled time step

should be represented in the proxy with a depth profile ray, the pixel ray rp is cast into the

non-sampled volume and sampled at L locations along the ray. This pixel ray represents

the ground truth and is used to evaluate a candidate depth profile ray. Next, a small pixel

region is defined in the nearest sampled time step around image coordinate p. A ray is

cast at each pixel in this region where samples are reconstructed from the volume at L

locations. Each sample is a two-tuple (value, location) holding a scalar value and its location

along the pixel ray. A search for the best depth profile among these pixel rays is done
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to find a candidate depth profile to use for representing pixel ray rp. Before the search,

a list of the L scalar values of the samples along pixel ray rp is constructed by sorting

these scalar values and ignoring their locations. For each candidate pixel ray in the search

region, its L (value, location) tuples are sorted by their scalar values. A pixel ray with L

approximated samples is constructed by taking the sorted list of scalar values from pixel ray

rp and creating a corresponding list of (value, location) tuples, where the first component of

each tuple holds a scalar value from the sorted list of scalar values. The location value for

the second component of each two-tuple is copied from the location value of a two-tuple

in the candidate pixel ray sample list whose scalar value’s rank in its sort is the same rank

as the scalar value in this two-tuple. Thus, the approximated samples in this pixel ray hold

the scalar values from pixel ray rp using the depth profile defined in the candidate ray.

The metric Qr is computed using Equation 5.1, where rgt(i) is the ith sample value along

the ground truth pixel ray pr and rre(i) is the corresponding sample value on the pixel ray

holding the approximated samples. If the value of Qr is above the user-defined threshold,

Tr, then pixel ray rp can be represented with a depth profile ray. In the proxy, storage for

the pixel ray will be a ray histogram and a reference to the candidate pixel ray found in the

search.

5.3.2 Ray Reconstruction

If a pixel ray at image coordinate p in the proxy is represented with a depth profile ray,

we describe how to reconstruct the ray to be used to calculate pixel color. First, a ray is cast

at the pixel found in the search region around image coordinate p in the nearest sampled

time step and S samples are reconstructed from the volume, where each sample is a (value,

location) tuple, and then the samples are sorted by their scalar values. Next, S scalar values
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are drawn from the ray histogram and placed into a sorted list. A list of (value, location)

tuples is created from this sorted list of scalar values where each scalar value is stored in

the first component of a tuple. The location of a tuple is copied from the location in a tuple

from the ray cast into the nearest sampled time step whose scalar value’s rank is the same as

the rank of this tuple’s scalar value. This list of tuples is sorted according to location and the

pixel ray is rendered in front-to-back order.

Algorithm 5 Depth profile ray reconstruction
1: . dr: depth information ray; rh: ray histogram;
2: . S: number of samples on reconstructed ray
3: procedure RayReconstruction(dr, rh, S)
4: reconRay = createRayBuffer(S)
5:
6: drt = buildTuples(dr, (value,location))
7: smps = takeSamples(rh, S)
8: drt = sortTuples(drt, value)
9: smps = sort(smps)

10:
11: for i := 0 to (S−1) do
12: reconRay[drt[i].location] = smps[i]
13: end for
14:
15: return reconRay
16: end procedure

Algorithm 5 illustrates these steps in pseudo code. Line 4 allocates S spaces for the ray

that will hold the reconstructed sample values from the ray histogram and associated depth

order. Line 6 retrieves the list of (value, location) tuples from the pixel ray at the nearest

sampled time step that is referenced by the depth profile ray. Line 7 draws S samples from

the ray histogram. Line 8 sorts the array of tuples, drt, by their samples values. Line 9 sorts

the list of sample values drawn from the ray histogram. The steps in Lines 11-13 associate

97



a location from the depth profile drt with a scalar value from smps such that scalar values

from both sorted lists have the same rank.

5.4 Interpolation Ray Representation

Time-varying datasets possess temporal coherence in spatial regions where scalar values

either do not change or change smoothly over time. In this case, simply interpolating corre-

sponding sample values from the two nearest sampled time steps will suffice to approximate

sample values along a pixel ray at the non-sampled time step t from the data proxy. To

determine whether the pixel ray at pixel p cast into the non-sampled time step t will be

represented with the interpolation ray representation, we first cast a pixel ray from pixel

p into the non-sampled volume at time step t and define L samples. The samples along

this pixel ray represent the ground truth. Next, two pixel rays are cast from the same pixel

location p at the two nearest neighbor sampled time steps, Vt− and Vt+ , and L samples

corresponding to the ground truth samples are collected along both of these rays. The

corresponding sample pair at location ` along the pixel rays at the sampled time steps are

linearly interpolated over time to time step t using Equation 5.5

Rt(`) = Rt−(`)∗ (1−a)+Rt+(`)∗a (5.5)

where Rt(`) is the sample value at location ` along the pixel ray at time step t where

a = (t− t−)/(t+− t−). The quality of the interpolation over all samples along the pixel ray,

Qr, is computed using the Root Mean Square Error (RMSE) metric as shown in Equation

5.1. If the value of Qr is above a user-defined threshold, Tr, then the data proxy will simply

store a single flag at pixel p of time step t to indicate that linear interpolation (equation 5.5)

should be used to reconstruct the pixel ray samples during rendering.
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5.5 Ray Histogram and Bin-wise Depth Information Codebooks

The ray histogram and bin-wise depth data structures presented in Section 5.2 may be

compressed into codebooks for further storage savings in the proxy. A codebook for the

ray histograms will replace similar histograms with a single representative ray histogram.

Equivalently, a codebook for bin-wise depth information will store depth information by

identifying similarity as well. After the codebooks are constructed, representative ray

histograms and bin-wise depth information are found in the codebooks using a bitmap index

data structure for efficient search. The following sections describe how to construct the

codebooks and then search for representatives.

5.5.1 Ray Histogram Codebook

Ray histograms are defined in the decoupled ray and depth profile ray representations.

The proxy can encode these histograms into a codebook where each ray histogram is either

stored in the codebook or indexes a representative histogram. We observe that similar ray

histograms are often found within a neighborhood of pixel rays and across the temporal

domain. Groups of similar ray histograms can be replaced with a single representative

ray histogram where it is expected that sizable groups would be identified since the ray

histogram is a statistical summary of scalar values lacking the constraint of associated depth

information.

Ray Histogram Similarity

To group similar ray histograms, we define a similarity metric, HistD(Hi,H j), that

indicates the difference between two ray histograms Hi and H j. Two ray histograms are

not similar if corresponding bins with non-zero probability do not match. This avoids
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introducing non-existent scalar values that may map to non-existent colors from the transfer

function during rendering. In this case, HistD(Hi,H j) is assigned to infinity. Two ray

histograms are similar when the shapes of their distributions are close, which is measured

by the L1-norm distance metric as shown in Equation 5.6

L1(Hi,H j) =
B−1

∑
k=0

∣∣Hi(bk)−H j(bk)
∣∣ (5.6)

where Hi(bk) and H j(bk) are the probability mass at bin bk of both histograms. The similarity

metric HistD(Hi,H j) is shown in Equation 5.7

HistD(Hi,H j) =


L1(Hi,H j) i f nz(Hi) = nz(H j)

∞ Otherwise
(5.7)

where nz(Hi) and nz(H j) are the sets of bins with non-zero probability in both histograms.

Codebook and Bitmap Indexing Table Construction

The ray histogram codebook is constructed incrementally by encoding each ray his-

togram into the codebook one at a time, as illustrated in Figure 5.4. To encode a ray

histogram Hn, a ray histogram He is found in the codebook that minimizes HistD(He,Hn).

If the similarity HistD(He,Hn) is less than a pre-defined threshold Th, then Hn will index

He. Otherwise histogram Hn is inserted into the codebook. Instead of using a linear search

to find He that compares Hn with every ray histogram in the current codebook, we reduce

the search space using bitmap indexing, which is an efficient indexing data structure that is

supported by fast bit-wise operators implemented in computer hardware. It is used widely

in visualization applications [82, 95] for fast value range queries.

Bitmap Indexing Table: Equation 5.7 illustrates that in order for two histograms to

be similar both must have the exact same bins with zero probability and a small enough
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Figure 5.4: The ray histogram codebook is constructed by individually inserting each ray
histogram. If a ray histogram is similar using a pre-defined threshold to a histogram already
contained in the codebook, then it will index the representative histogram. Otherwise the
ray histogram is inserted into the codebook.

difference in the probabilities of corresponding non-zero bins. Given a ray histogram Hn, the

bitmap indexing data structure can quickly identify similar histograms to Hn in a codebook

that satisfy both of these criteria using bit-wise operations. Consider a simple example

where each ray histogram has only a single bin. The table on the left in Table 5.1 shows

a codebook containing six histograms with IDs 0 to 5 and probability mass indicated in

the second column. A bitmap indexing table is shown on the right where table entries hold

a binary value, i.e 0 or 1. Each row matches an ID in the codebook. The first column,

p0, encodes histograms with zero probability in their bins as a bit vector. Here, the bit

vector (0, 0, 1, 0, 0) indicates that only the histogram with ID = 2 has zero probability in

its bin. To determine the histograms with non-zero bin probabilities we just compute the

negation of this vector, i.e. ¬(0, 0, 1, 0, 0) = (1, 1, 0, 1, 1). The probability range (0, 1]

is partitioned into five subranges (0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1.0],
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Table 5.1: 2D bitmap indexing example

Ray Histogram
Database Bitmap Indexing

ID Bin Prob p0 p1 p2 p3 p4 p5
0 (0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1.0]

0 0.7 0 0 0 0 1 0
1 0.6 0 0 0 1 0 0
2 0 1 0 0 0 0 0
3 0.2 0 1 0 0 0 0
4 0.5 0 0 0 1 0 0
5 0.9 0 0 0 0 0 1

which are defined in the columns p1, p2, p3, p4, and p5 in the table. The bit vectors in these

columns indicate the histograms that have a bin probability within the indicated subrange.

For example, the ray histograms with IDs 1 and 4 have bin probabilities in the subrange

(0.4, 0.6]. To query histograms having bin probabilities in a wider subrange, bit vectors

in overlapping subranges can be combined using the bitwise OR operator. For example,

histograms with bin probabilities in the subrange (.2, .8] are identified by first retrieving bit

vectors in columns p2, p3, and p4. The bit vector resulting in the calculation (0, 0, 0, 0, 0, 0)∨
(0, 1, 0, 0, 1, 0)

∨
(1, 0, 0, 0, 0, 0) = (1, 1, 0, 0, 1, 0) indicates that ray histograms with

IDs 0, 1, and 4 have bin probabilities in the subrange (.2, .8].

Table Creation: Since we require ray histograms to have more than one bin, we use a

3D bitmap indexing table, as shown in Figure 5.5(a). The three dimensions of the table are

the ray histograms in the codebook, the bins for each histogram, and the probability range

partitioned into sub ranges. The entries of the table are assigned using Equation 5.8.

bmp(c,i,p) =


1 i f p = 0, Hc(bi) = 0
1 i f p 6= 0, f (Hc(bi)) = p
0 Otherwise

(5.8)
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where bmp(c,i,p) is the bit value stored at the table entry with index (c, i, p), c is the ID of a

ray histogram in the codebook, i indexes a particular bin in the histogram, and p indexes a

probability interval. The function f (pr) = dpr ∗ Ie maps a probability pr to a corresponding

probability interval, where I is the number of probability intervals. The time to search

for a similar histogram using the bitmap indexing data structure is sensitive to the number

of probability intervals. Using too few will result in increased search time because fewer

histograms will be filtered out. On the other hand, too many probability intervals will

increase the number of bit-wise vector operations. We define the size of each probability

interval to be Th/2 as a good trade off when defining the 3D bitmap indexing table. Thus,

the number of probability intervals is Th/2 + 1 in order to include zero probability bins. If a

ray histogram Hn is not similar to any histograms currently in the codebook, then an entry is

added for Hn in the 3D bitmap indexing table by computing a 2D bitmap using Equation 5.8

and inserted it at the bottom of the table.

(a) (b) (c) (d)

Figure 5.5: The ray histogram codebook defines a single 3D bitmap index table as shown in
(a). The Bin-wise depth information codebook utilizes three bitmap indexing tables. A 2D
bitmap indexing table, shown in (b), is used for searching given a component count. Two
3D bitmap indexing tables are used for searching based upon matching bin ID differences,
shown in (c), and similar weight vectors, shown in (d).
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Search Space Reduction: Given a ray histogram Hn, an efficient search for the most

similar ray histogram in the codebook must only consider ray histograms that have the same

set of bins with zero and non-zero probabilities to Hn. This calculation can be done quickly

using the 3D bitmap indexing table as shown in Equation 5.9

C1 = (
∧

b∈Hn(b)=0

bmp(:,b,0))∧ (
∧

b∈Hn(b)6=0

¬bmp(:,b,0)) (5.9)

where
∧

and ∧ are bitwise AND operators and ¬ is the bitwise NOT operator for bit vectors.

Let bmp(:,i,p) be a bit vector for some ray histograms given bin ID i and probability interval

p, where “:” is a wild card. The first term computes a bit vector encoding ray histograms

having the same collection of zero probability bins as Hn. The second term performs a

similar calculation for the non-zero probability bins. The resulting bit vector, C1, encodes

the ray histograms in the codebook with matching zero and non-zero probability bins with

Hn.

In addition to the ray histograms identified in C1, we also identify ray histograms

that have similar probability bin values with Hn in corresponding non-zero probability

bins. We observe that if the difference between any non-zero probability bin in Hn and a

corresponding non-zero probability bin in a ray histogram He is larger than threshold Th,

then HistD(Hn,He) must be larger than Th and He can be avoided in the search. To identify

ray histograms that satisfy this check with the threshold, we use Equation 5.10

C2 =
∧
∀b′
(

f (Hn(b′)+Th)∨
p= f (Hn(b′)−Th)

bmp(:,b′,p)) (5.10)

where b′ represents the set of bins containing non-zero probabilities in Hn,
∨

is the bitwise

OR operator, and function f was defined in Equation 5.8. The term
∨ f (Hn(b′)+Th)

p= f (Hn(b′)−Th)
bmp(:,b′,p)

computes a bit vector encoding ray histograms in the codebook whose differences between
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the non-zero probability bin value in bin b′ and the corresponding bin value in Hn are within

the subrange [ f (Hn(b′)−Th), f (Hn(b′)+Th]. These bit vectors are combined with the AND

operator to identify only those ray histograms that satisfy this condition over all non-zero

probability bins into the final bit vector C2.

The final bit vector is computed as C1 ∧C2. These calculations result in a considerable

reduction in the search space even though it may not filter out all the ray histograms He that

fail to satisfy the check HistD(Hn,He) ≤Th. The ray histograms encoded in the final bit

vector are compared with the ray histogram Hn to find the most similar histogram, Hs
e , using

Equations 5.6 and 5.7 and the check HistD(Hn,He) ≤Th. If ray histogram Hs
e exists in the

codebook, then Hn will index this histogram. Otherwise, ray histogram Hn is inserted into

the codebook.

5.5.2 Bin-wise Depth Information Codebook

Bin-wise depth information described in Section 5.2.2 also incurs a considerable over-

head storage cost in the proxy. We show how to efficiently encode this information into a

codebook, which is similarly built as the ray histogram codebook by incrementally adding

bin-wise depth information. Bin-wise depth information for each pixel ray is defined at the

bins with non-zero probability values in the ray histogram.

Bin-wise Depth Information Similarity

We define a similarity metric to compare bin-wise depth information using three con-

ditions: (1) The numbers of runs are the same, (2) The bin ID differences of all runs are

the same, and (3) The L1-norm distance of the weight vectors is smaller than a pre-defined

threshold, Td . The L1-norm distance calculation on weight vectors is shown in Equation

5.11
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Lweight
1 (wi,w j) =

C−1

∑
c=0

∣∣wi(c)−w j(c)
∣∣ (5.11)

where wi and w j are the weight vectors found when comparing bin-wise depth information.

Bin-wise Depth Information Codebook Construction

To build the codebook, the bin-wise depth information to be inserted into the codebook,

DIn, is compared with all entries currently in the codebook that satisfy the first and second

conditions for similarity outlined in the previous section. These entries are filtered using the

third condition, which must satisfy Lweight
1 (wi,w j) ≤Td .

To avoid a costly linear search over all bin-wise depth information in the codebook, we

again use bitmap indexing to reduce the search space. We use three bitmaps as shown in

Figures 5.5 (b) - (d). A 2-dimensional bitmap indexing table (see Figure 5.5(b)) is used to

quickly identify bin-wise depth information that have the same number of runs as DIn. The

bit assignment for this 2D bitmap index table is shown in Equation 5.12

compBmp(d,c) =
{

1 i f Comp(DId) = c
0 Otherwise (5.12)

where d indexes the bin-wise depth information DId in the codebook and c is the number of

runs. The function Comp returns the number of runs of the given bin-wise depth information.

Let C3 = comBmp(:,Comp(DIn)) be the bit vector that encodes bin-wise depth information in

the codebook that meets the first similarity condition. A 3-dimensional bitmap indexing

table (see Figure 5.5(c)) is used to compute a bit vector C4 that encodes bin-wise depth

information in the codebook whose bin ID differences of all runs are the same as DIn.

Another 3-dimensional bitmap indexing table (see Figure 5.5(d)) is used to compute a bit

vector C5 that encodes bin-wise depth information in the codebook whose Lweight
1 of DIn

is possibly less than Td . The final bit vector is computed as C3 ∧ C4 ∧ C5. The entry e
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with the smallest Lweight
1 (we,wn) that satisfies Lweight

1 (we,wn)≤ Td , is used to represent DIn.

Otherwise, DIn is inserted into the three bitmaps. Figure 5.6 illustrates the incremental

algorithm to construct the codebook with the three bitmaps.

Figure 5.6: Steps to construct the bin-wise depth information codebook for a pixel ray.
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5.6 Multi-view Rendering

While rendering when the user’s viewpoint is fixed at a view sample provides scientists

with a way to get a better understanding of the dataset through temporal evolution and transfer

function changes, motion parallax is another important tool for data analysis. Rendering

requires reconstruction of samples along each ray in the view-dependent proxy, applying the

transfer function, and then blending these to compute a color. Rendering nearby views of a

view sample is possible by using the parameters of the camera model. After reconstructing

samples on all pixel rays at an index image, these samples are stored in a buffer. If a new

view point is given and a sample on a ray from this new view point is requested, the closest

reconstructed samples in the spatial domain is returned for color blending.
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5.7 Evaluation

We present qualitative and quantitative results from experiments using three datasets.

The Plume dataset is a simulation of Solar Plume for thermal down flow on the surface

layer of the Sun and was provided by the National Center for Atmospheric Research. Our

experiments used the vector magnitude field. Data resolution is 126x126x512 with 29 time

steps (the raw size is 877 MB). The Isabel dataset is a pressure field of Hurricane Isabel

from the IEEE Visualization 2004 Contest with a resolution of 500x500x100 and 48 time

steps (the raw size is 4577 MB). The Combustion dataset was provided by Sandia National

Laboratories where we used the mixture fraction field. The dataset has a resolution of

480x720x120 with 50 time steps (the raw size is 7910 MB).

We compare our approach with five other approaches: a traditional interpolation ap-

proach, called interpolation approximation, a ray-based technique for volume rendering [88],

called IAF, a state-of-the-art lossy compression technique called ISABELA [49], and two

popular lossless compression techniques, called zlib (version 1.2.1) and XZ (version 5.2.3).

Storage size comparisons are made with zlib and XZ since it is a lossless compression

technique. Comparisons regarding rendering quality under varying transfer functions are

made with the interpolation approximation, IAF, and ISABELA approaches. Comparisons

regarding reconstruction error of scalar values along pixel rays are made with the interpola-

tion approximation and ISABELA approaches since IAF techniques directly infer the pixel

colors from their data structures. Results from the interpolation approximation approach

used temporal down-sampling with 2, 5 and 10 subsampling time intervals. Results from

the IAF approach use 128 bins in the histograms to produce its attenuation functions. The

size of the compressed data from ISABELA’s lossy compression is determined by the given

error tolerance. We adjust the error tolerance to get a as small as possible compressed data
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from ISABELA. Because of the limitation of ISABELA, the smallest size of compressed

data we can have is around 30% of the raw data.

Proxy generation was computed on a machine with two 14-core Intel (Broadwell)

Xeon E5-2680 v4 processors, 128 GB DDR3 Memory, one NVIDIA Tesla K80 GPU card.

Rendering from the proxy was run on a desktop computer with an Intel 8-Core i-7-4770

3.40GHz CPU, 16 GB main memory, and an NVIDIA GeForce GTX 660 video card with 2

GB of memory. Results from our approach use a sampling interval of 10 time steps, 128

bins for each ray histogram, a ray quality threshold (Tr) of 0.99, a similarity threshold (Th) of

0.1, a threshold (Td) of 0.1 for the weight vector on depth information similarity, at most 5%

using the decoupled ray representation, and a 512x512 image resolution where the image

region covers entire dataset. We also present storage costs, preprocessing, and rendering

times in this section.

5.7.1 Qualitative Evaluation

Figures 5.7, 5.8, and 5.9 compare our approach with the others. Figure 5.7 shows a

comparison on the Plume dataset where the transfer function is defined to highlight high

magnitude regions with orange and high opacity. The low and middle magnitude regions

are displayed with blue and green and lower opacity. It is clear that our approach more

accurately preserves features and depth cues in high magnitude regions. Figure 5.8 compares

results on the Isabel dataset focusing on the hurricane eye, which is a low pressure region.

When compared with the ground truth and other ray based approaches, our approach and IAF

preserve the shape of the hurricane eye better than other approaches. Figure 5.9 compares

results on the Combustion dataset focusing on the region with pure fuel mass, which is
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(a) Ground truth (b) STI: 10 (c) STI: 5 (d) STI: 2

(e) IAF (f) ISABELA (g) Our approach

Figure 5.7: A comparison of rendering quality of the Solar Plume dataset at time step 6.
Images at (b), (c) and (d) are approximated by interpolation from time steps 1 and 11, 3 and
8, and 5 and 7, respectively. STI stands for sampling time interval.
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(a) Ground truth (b) STI: 10 (c) STI: 5 (d) STI: 2

(e) IAF (f) ISABELA (g) Our approach

Figure 5.8: A comparison of rendering quality of the pressure variable of the Isabel dataset
at time step 6. Images at (b), (c) and (d) are approximated by interpolation from time steps 1
and 11, 3 and 8, and 5 and 7, respectively.

colored with magenta and green. Our approach preserves complex details found in the pure

fuel region very well.

Multi-view rendering results are shown in Figure 5.10 using the same view-dependent

proxies and transfer functions that were used for the results in Figures 5.7, 5.8 and 5.9.

When the view was rotated considerably to 45 degrees from the view sample, it is clear that

overall structures are preserved when compared with renderings from the raw data.

5.7.2 Quantitative Evaluation

We use Root Mean Square Error (RMSE) to quantitatively evaluate pixel ray recon-

struction quality over the entire time sequence between our approach and the interpolation

approximation and ISABELA lossy compression approaches applied to the raw data. RMSE
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(a) Ground truth (b) STI: 10 (c) STI: 5 (d) STI: 2

(e) IAF (f) ISABELA (g) Our approach

Figure 5.9: A comparison of rendering quality of the mixture fraction field of the Combustion
dataset at time step 36. Images (b), (c) and (d) are approximated by interpolation from time
steps 31 and 41, 33 and 38, and 35 and 37, respectively.

curves are shown in Figure 5.11 where the red curve is plot from our approach. The orange,

green, and blue curves plot results from interpolation approximation and the black curve

plots results from the ISABELA lossy compression approach. Note that we do not plot the

RMSE at the sampled time steps. The plots illustrate that the reconstruction quality from our

approach is better than almost all of the other approaches. The interpolation approximation

approach, which is applied to the Isabel dataset with a high temporal sampling rate (blue

curves), has a slightly lower error. The reason is that a high sampling rate stores raw data

at many more time steps to provide a closer approximation in the temporal domain at

non-sampled time steps. In addition, there is higher temporal coherence in the Isabel dataset

where interpolation approximation can reconstruct the data well using a higher temporal

sampling rate. The local minimums in the curves illustrate how our approach and naive

interpolation approximation both exploit information from the sampled time steps at the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: A comparison of multi-view rendering and rendering directly from the raw data.
The results on the left are rendered from the raw data and results on the right are rendered
by rotating 45 degrees from the view sample used in Figures 5.7, 5.8 and 5.9.

non-sampled time steps. The later time steps in the plots in graph (c) of the figure have

higher error because the structure of the data becomes more complex over time making it

more difficult for quality reconstruction.
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(a) (b) (c)

Figure 5.11: Quantitative evaluation of our approach and interpolation approximation and
ISABELA lossy compression using RMSE.

We use the average Peak Signal-to-Noise Ratio (PSNR) to quantitatively evaluate

rendering quality over the entire time sequence of the datasets. A lower PSNR indicates

rendering quality is worse when compared with the ground truth renderings. We use three

transfer functions in our analysis. The first transfer function (TF1) uses a rainbow color

map with at least two narrow ranges of data values mapping to high opacities. Other data

values map to semi-transparent color as the context. This transfer function is used in the

renderings shown in Figures 5.7, 5.8, and 5.9. The transfer function (TF2) uses a sharp

color map where the opacity function maps all scalar values to high opacity. The samples

close to the surface of the volume cube contribute color to the rendered image. The transfer

function (TF3) uses the same color mapping as TF2, but the opacity function maps all scalar

values to low opacity. Here, most of the samples in the data contribute to the rendered image.

The graphs in Figure 5.12 show the difference in average PSNR of between the approaches.

Our approach has higher image quality over the other approaches for all datasets and the

transfer functions. We can also observe that our approach and IAF provided better image

quality when using the transfer function TF3 compared with TF2. This is because both
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our approach and IAF could have incomplete sample order along rays and the incomplete

sample order results in more pixel color shift if samples are more opaque.

(a) (b) (c)

Figure 5.12: Image quality comparison using average PSNR between our approach and
interpolation approximation, IAF, and ISABELA lossy compression.

5.7.3 Proxy Storage Cost and Construction Time

We report in Table 5.2 storage costs of our approach applied to the three datasets that

include only the proxies computed at the non-sampled time steps. We use a temporal

sampling interval of 10 with a storage cost of 4 - 10% of the size to store the raw volumes

found at the non-sampled time steps. Storage size is adaptable to data complexity where

more coherence uses less storage, as shown in the storage costs for the Isabel dataset. When

material shape is simple and smooth, our approach requires much less storage for bin-wise

depth information but still represents this information well.

We also measured the storage cost over the same non-sampled time steps for the other

approaches. The interpolation approximation approach with a sampling time interval of 2

stores 3 additional sampled time steps in each set of the nine non-sampled time steps. The

additional cost to reconstruct data is 44%. A larger sampling time interval of 5 incurs an
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additional cost of 11%. Increasing the sampling time interval to 10 incurs no additional

cost because it directly approximates the time steps by interpolation. The IAF technique

needs additional 16%, 23% and 11% to store the data proxies for the Plume, Isabel, and

Combustion datasets, respectively. The ISABELA lossy compression approach needs

additional 31%, 32% and 29% to store the data at non-sampled time steps for the Plume,

Isabel and Combustion datasets, respectively. Although zlib and XZ lossless compression

techniques can preserve data quality perfectly, they have lower data reduction rates. Zlib

and XZ incurs 90%, 88% and 47%, and 80%, 69% and 29% to store data at non-sampled

time steps for the Plume, Isabel and Combustion datasets, respectively.

Table 5.2: Storage consumption of our approach. N.S. means Non-Sampled and Combus.
stands for the Combustion dataset.

Plume Isabel Combus.
Ray histogram (MB) 39.2 65.0 240.0
Bin-wise Depth information (MB) 8.2 0.44 226.0
Index image (MB) 33.5 77.0 80.3
Total size of our approach (MB) 80.9 142.44 580.3
N.S. volume size (MB) 775.2 4005.4 6960.9
Ratio of ours to N.S. volumes 10.4% 3.6% 8.3%

In the construction of the proxy, the average preprocessing time per view sample at a non-

sampled time step to compute a data proxy for the Plume, Isabel, and Combustion datasets

are 3.77, 11.53 and 18.04 seconds, respectively. This preprocessing time is accelerated

by both GPU and multi-thread CPUs. Using the VTK-m library [65], the GPU is used to

process pixel rays in parallel where the ray casting algorithm is executed to collect samples,

select the appropriate ray representation, and construct the ray histogram and bin-wise depth

information. Creating codebooks was executed using OpenMP with multi-threaded CPUs.
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The time complexity to create the data proxies at a time step is O(L∗R+R2 ∗B), where R

is image resolution, L is the number of samples used for all rays, and B is the number of

bins defined for all ray histograms. The term L∗R represents the cost to reconstruct samples

from the pixel rays and selecting an appropriate pixel ray which is linearly proportional to

R and L. The term R2 ∗B represents the work to construct the ray histogram and bin-wise

depth information codebooks. The computational bottleneck here is searching for a similar

ray histogram or bin-wise depth information in the current codebook. The number of items

in a codebook is linearly proportional to the number of rays which have been processed.

The time to insert bin-wise depth information is proportional to the number of bins because

a pixel ray can have at most B bin-wise depth information elements. The average fps during

rendering from our experiments in Section 5.7.2 are 8.3, 5.4 and 7.8 for the Plume, Isabel,

and Combustion datasets, respectively. Rendering is accelerated using a GPU and the

VTK-m library.
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5.8 Discussion

5.8.1 Pixel Ray Representations

We discuss the use of the interpolation ray, depth profile ray and decoupled ray repre-

sentations and what role each plays in the proxy. Figure 5.13 illustrates the use, distribution,

and placement of the three representation types across an index image in various scenarios.

The image in the left most column, see (a), (d), (g), are renderings from the raw data and

are shown for comparison purposes. The images in the middle column, see (b), (e), and (h),

are color coded index images computed at the same time steps and view used in the left

most column results. This is a non-sampled time step close to a sampled time step when

generating our proxy. The blue, green and red colors indicate the use of the interpolation

ray, depth profile ray, and decoupled ray representations at a pixel, respectively. The last

column, see (c), (f), and (i), is color coded index images computed at a non-sampled time

step in the middle between two sampled time steps.

The interpolation ray representation is defined at pixel rays intersecting regions with

scalar values changing smoothly over time. This is illustrated in the Plume and Combustion

datasets where scalar values changes are small and smooth over time at the peripheral areas.

This is also illustrated at the peripheral areas in Figures 5.13 (b), (c), (h) and (i). The depth

profile ray representation was defined at pixel rays intersecting regions with similar structure.

For example, the Plume dataset has a higher magnitude region surrounded by a region with

lower magnitude. A pixel ray at the sampled time step passing through the region can

capture trends that will be similar along pixel rays at the nearby non-sampled time steps in

the same region. The depth profile ray representation is heavily used in the Isabel dataset

because lower altitudes usually have a higher pressure and higher altitudes usually have

lower pressure. This is illustrated in the index images shown in Figures 5.13 (e) and (f),
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where the depth profile rays are colored green. Pixel rays that pass through regions with

drastic changes in the scalar field over time are usually represented well with the decoupled

ray representation due to the lack of temporal coherence from the neighboring sampled

time steps. This is illustrated in the index images in Figures 5.13 (b), (c), (h) and (i), where

the decoupled ray representation, shown in red, is chosen to represent regions with larger

value changes over time. The pixel rays shown in the index images from the middle column

can be represented well with temporal coherence than the representations shown in the last

column in the figure.

5.8.2 Parameter Study

There are a few parameters that need to be determined for proxy generation that affect

the trade off between storage size and rendering quality, which is shown in Figure 5.14.

Since the threshold Tr determines reconstruction quality along pixel rays, decreasing it

will increase the RMSE of the reconstruction and decrease the proxy size, as shown in

Figures 5.14 (a) and 5.14 (b). The interpolation ray and depth profile rays will more likely

be selected in this case, which require less storage than the decoupled ray representation.

The ray histogram similarity threshold Th affects the size of the ray histogram codebook.

Larger values of the threshold allows for larger groups of ray histograms that can be

represented by a single representative histogram in the codebook, which results in a smaller

codebook size and reduced accuracy. This is shown in Figures 5.14 (c) and 5.14 (d), where

the ray histogram codebook size decreases and the RMSE increases for higher threshold

values. Two parameters affect the proxy size and reconstruction quality when using the

decoupled ray representation. Larger values for the upper bound ratio e increase the

accuracy for reconstruction decreasing the RMSE. Figure 5.14 (e) shows that the RMSE of
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(a) Time step: 10 (b) Time step: 10 (c) Time step: 6

(d) Time step: 10 (e) Time step: 10 (f) Time step: 6

(g) Time step: 40 (h) Time step: 40 (i) Time step: 36

Figure 5.13: The placement of the three pixel ray representations in index images. The
left most column shows renderings from the raw data. The middle column shows index
images created at non-sampled time steps close to sampled time steps. The interpolation
and depth profile ray representations are mostly used here. The right most column shows
index images created at non-sampled time steps in the center between two sampled time
steps. The decoupled ray representation is used more here than in the middle column case
because there is less temporal coherence that can be leveraged.

the Combustion dataset decreases when the upper bound ratio increases. Though, the RMSE

does not significantly change in the results on the Plume and Isabel datasets because most

rays in these datasets can be represented well with the interpolation ray and the depth profile

ray representations. Increasing the upper bound ratio does not increase the number of rays

represented by the decoupled ray representation. Similarly, the proxy sizes using the Plume

and Isabel datasets change slightly, as shown in Figure 5.14 (f). For a dataset containing
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more complexity, such as the Combustion dataset, increasing the upper bound ratio can be a

good trade off between proxy size and quality. The bin-wise depth information similarity

threshold Td has similar trade offs with the ray histogram similarity threshold Th. Larger

values of the threshold Td define a higher error tolerance for the codebook and result in a

smaller codebook size with lower quality. This is illustrated in Figures 5.14 (g) and 5.14

(h). Figure 5.14 (j) shows that the data proxy size increases if more samples are taken from

rays. The reason is that more samples result in more non-zero bins and increased size in the

bin-wise depth information. The RMSE decreases when more samples are taken on rays,

which is shown in Figure 5.14 (i).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 5.14: Parameter study on thresholds of the reconstructed ray quality, histogram simi-
larity, bin-wise depth information similarity, maximal ratio of rays using the decoupled ray
representation and number of samples on rays. DRR stands for decoupled ray representation.
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5.8.3 View Selection

Selecting view samples to locate index images can be determined manually or automati-

cally. The scientists may have prior-knowledge about the data generated by their simulations.

Thus using their experts domain knowledge, scientists can manually select views which can

benefit their analysis goals. However, if prior-knowledge is not available, the view angle

which provides a larger variation of important features over time is usually preferred. The

view selection techniques [12, 44] can automatically choose several top salient views to

generate our data proxies by analyzing the statistical characteristic of features in the dataset.

Our multi-view rendering technique is able to show scientists the shape evolution of features

for improved data analysis.
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5.9 Conclusion and Future Work

We present a new approach to high quality visualization and analysis of large time-

varying data by replacing most of the volumes in the time series with proxies using a novel

ray-based representation at the non-sampled time steps. To capture the evolution of features

at non-sampled time steps, our representation decouples a ray into a distribution of the

sample values and information encoding the locations of these samples along a pixel ray.

This information is stored into compact cookbooks. Temporal coherence is utilized to

further reduce the size of the proxy in two ways. Depth information at pixel rays defined at

a sampled time step provides a depth profile that may be used to locate samples at pixels

defined at non-sampled time steps. Regions of a volume that have constant or smooth

changing scalar values can be reconstructed on pixel rays from nearby sampled time steps

using linear interpolation. In future work, We will apply our approach to multivariate and

vector datasets. We need to determine a new distribution representation to replace the ray

histogram for scalar values because a multivariate histogram will be expensive in terms of

storage cost. Our approach can also be applied to applications such as pathline tracing for

vector datasets and isosurface rendering for scalar datasets.
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Chapter 6: Statistical Super Resolution for Data Analysis and

Visualization of Large Scale Cosmological Simulations

Exploring and modeling parameters of the initial conditions of our universe is one of

the most important tasks in cosmology, which can help cosmologists to build more precise

universe models [5,20]. Recently, a cosmological simulation code called Nyx, developed by

Lawrence Berkeley National Laboratory, is used for simulating large-scale cosmological

phenomena [5]. It requires performing many cosmological simulations to conduct a large-

scale, multi-dimensional parameter study to find the “best matching” set of parameters

that matches the current state of the observable universe. In addition, every cosmological

simulation output is ‘scientifically rich’ [77]. Cosmologists may discover new insights into

the physical model by interactively exploring and analyzing the datasets [33]. When the size

of parameter study is small, the data analysis pipeline consists of running the simulation

with different parameter inputs, writing the output to disk, and repeatedly loading the data

from disk to visualize and analyze the datasets. To compare ensemble simulation runs

with observations and understand the evolution of the universe, it requires high-resolution

simulations to match the desired accuracy. This easily produces datasets at the order of

petabytes, and the traditional data analysis pipeline becomes infeasible because of disk

bandwidth constraints and limited capacity of storage devices. Disk bandwidth constraints

result in longer I/O time. Also, only a portion of the output can be kept in disk due to the
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limited capacity of disks. Therefore, it is essential to develop an approach to improve the

whole cosmological data analysis pipeline.

To tackle such large-scale data problem, the concept of in situ data processing has

been proposed. In situ techniques use supercomputer resources to generate compact data

representations for analysis without moving the raw datasets. A naive approach is to down-

sample the datasets, but the quality of this data representation would be insufficient for

many data analysis tasks [80]. Statistically modeling the datasets can quantify the error

of the down-sampled datasets, but the quality of the data representation is not improved

significantly [23,56]. Wang et al. [93] and Soumya et al. [26] propose accurate and compact

data representations, but they need a long data processing time. Other in situ techniques

produce the data representations for specific data analysis or visualization requirements

[2, 33, 94].

The goal of this work is to develop an efficient technique which can compactly represent

multi-variate (quantity) cosmological datasets and used for various data analysis and visu-

alization tasks. We propose an in situ technique called statistical-based super-resolution

(SbSR) for cosmological simulations. In computer vision and image processing community,

the super-resolution technique [52, 99] enhances the resolution of an image using a prior

knowledge database to predict high-resolution images from low-resolution images. Prior

knowledge in our statistical-based super-resolution is created by the raw data from a small

portion of simulation runs and used to reconstruct down-sampled data with other simulation

parameters. The down-sampling is accomplished in situ by a Gaussian Mixture Model

(GMM). We use GMMs to compactly represent low-resolution cosmology data, because

data values of some quantities (e.g., density), from different cosmological simulation runs,

can spread in an extremely wide value range, and a 3D down-sampled region can contain
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a large number of data values. Distributions provide richer information to facilitate the

process of high-resolution data reconstruction. To minimize computation time for in situ

statistical down-sampling, a parallel Expectation-Maximization (EM) algorithm based on the

VTK-m framework [65] is implemented to train multiple GMMs concurrently by utilizing

either GPU or multi-threads CPU. We show that our in situ statistical down-sampling can

significantly reduce data storage and does not increase the total simulation time.

The remainder of this chapter is organized as follows. Section 6.1 is an overview of our

approach. Section 6.2 describes the in situ statistical down-sampling. The prior knowledge

creation is introduced in Section 6.3. Section 6.4 presents the process to reconstruct

statistical down-sampled data to high-resolution data. Section 6.5 shows the quantitative

and qualitative evaluations. Section 6.6 is the discussion of our approach. Finally, Section

6.7 concludes the paper and provides future work.
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6.1 Overview

The Nyx cosmological simulation [5] solves compressible hydrodynamics with an N-

body treatment of the dark matter. The simulation can have up to 10 different simulation

input parameters. Fixing the values for these simulation input parameters will produce

one simulation run. In each simulation run, Nyx produces both derived quantities volumes

and particle data. In this work, we focus on data analysis of the derived quantities. Nyx

can output up to seven derived quantities, density, xmom, ymom, zmom, Temp, rho e and

phi grav. Each quantity is a regular grid and can have up to 40963 grid points according to

the settings of the simulation. Nyx produces hundreds of time steps in each simulation run.

The number of time steps varies according to the converging speed of the simulation run.

Therefore, if the domain experts have P simulation input parameters of interest to study,

have Q quantities of interest to study, take I value samples on each input parameter, set the

output resolution of each quantity of interest to R3 and each simulation run has T time steps,

the scale of raw data size will be O(IP ∗T ∗Q∗R3). This raw data size usually is hundreds

of TBs to several PBs. To output such huge datasets to disks and access these datasets in a

post data analysis pipeline is challenging. We propose an in situ statistical super-resolution

to address this challenge.

Figure 6.1 shows the workflow of our method for a single time step and a single quantity

of Nyx. The leftmost circles in Figure 6.1 are simulation parameter inputs and each one is

fed to Nyx to perform one simulation run. Our technique uses latin hypercube sampling [22]

to draw a small number of simulation parameter inputs to run the simulation (blue arrows).

These simulation runs will write the full resolution data to storages. These full resolution

datasets are used to compute the prior knowledge. For other simulation parameter inputs

(e.g. brown circles), we perform statistical down-sampling in situ to reduce the datasets
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Figure 6.1: We illustrate the overview of the workflow of our proposed technique.

generated from the simulation. A local data block size, B, is pre-set by users and a point

(`p) in the low-resolution space is created from a B3 data block (hp) in the raw (high)

resolution. When performing post data analysis, our approach uses the information from

the prior knowledge to reconstruct the statistical down-sampled data to high-resolution

data. We create independent prior knowledge for each quantity of interest. Because Nyx

produces multiple time step data and the data has coherence in the temporal domain, we

create the prior knowledge only at every τ time steps. Figure 6.2 illustrates this scheme.

When reconstructing the statistically down-sampled data at time step t (red dot in Figure

6.2) to high resolution, the closest prior knowledge in the temporal domain is used.

Figure 6.2: We display the overview of prior knowledge creation and usage in the temporal
domain.
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6.2 In situ Statistical Down-sampling

A way to reduce the size of any dataset is to down-sample the data and store it at a

lower resolution. The down-sampling process usually applies a filter to each spatial local

region to calculate one value, such as an average value, to represent the region. Although

this approach can effectively reduce the data size without complicated computation, only

limited information is kept in the low-resolution proxy and it introduces error in the post

analysis. For example, the minimum and maximum data values in some local data blocks

of the density quantity can have a difference on the 1012 scale. The average value will

introduce severe bias in the data analysis. Therefore, instead of using one value to represent

the data in a spatial local block, we suggest a statistical approach to down-sample the dataset.

The data in a local block is summarized by a distribution. Distributions can keep abundant

information, such as the occurrence probabilities of values and statistical characteristics in

the data block, to have the potential to better reconstruct data back to high resolution.

6.2.1 Gaussian Mixture Model

To compactly store a local data block and model the wide data value range in cosmologi-

cal datasets, we adopt the Gaussian Mixture Model (GMM) to represent the distribution.

GMM is a popular parametric distribution model which consists of multiple weighted Gaus-

sian distributions. The unique statistical properties of Gaussian distribution allow GMM to

model arbitrary distribution shape in a compact and flexible fashion. The proposed statistical

down-sampling method uses GMM described in Equation 6.1 to model and store the samples

in a high-resolution data block (hp) corresponding to a low-resolution point (`p). Figure 6.3

illustrates an example of statistical down-sampling a volume of a quantity.
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gp(x) =
K

∑
i=0

wi ∗ (x|µi,σi) (6.1)

where gp(x) is a probability density function which is represented by a GMM. K is the

number of Gaussian components. wi, µi and σi are the weight, mean and standard deviation

of the ith Gaussian component, respectively. The sum of the weights, ∑
K
i=0 wi, in a GMM

must be 1. After statistical down-sampling, all local data blocks, from every quantity of

interest and time step, are represented by independent GMMs.

Figure 6.3: We illustrate the statistically down-sampling of a raw volume to 23 low-resolution
grids. The orange block is a local data block. The orange point is a down-sampled point
represented by a GMM which is computed from the orange block, and a minimum and a
maximum value of the orange block.

6.2.2 In situ Workflow

To implement the statistical down-sampling for Nyx, we append an in situ call at the

end of each time step. The in situ processing collects all data of all quantities of interest

which reside in the same computing node to perform the statistical down-sampling. Our
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statistical down-sampling has to compute the GMM, minimum value, and maximum value

for each local data block. Minimum and maximum values are used to filter out the values

that are out of the value range when reconstructing the down-sampled data to high resolution.

Expectation-Maximization (EM) algorithm is used to estimate the weights, means, and

standard deviations of a GMM. The EM algorithm is an iterative method which adjusts

the parameters of GMM to maximize the likelihood of input data values. To minimize the

time for GMM modeling, we implement a data parallel EM algorithm based on the VTK-m

framework [65]. The algorithm takes data from all data blocks of all quantities from one

time step on one computing node to estimate the parameters of all GMMs in parallel, which

can fully utilize the computational resource on the computing node. In addition, our system

allows users to flexibly control the time of in situ call by sub-sampling partial data to run

the EM algorithm.
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6.3 Prior Knowledge

To reconstruct a down-sampled point back to a high-resolution data block, the data

values can be obtained by re-sampling from the GMM. However, the data values lack the

spatial location information to allocate them in space. Without predicting the spatial location

for the re-sampled data values, the reconstruction quality will be poor. To address this,

we propose prior knowledge to predict the location of the re-sampled data values from a

GMM. The prior knowledge is computed from the raw data of a small number of simulation

runs. We call these simulation runs prior simulation runs. The data generated by different

parameter inputs have a correlation, and by creating the prior knowledge from the prior

simulation runs, they are used to compensate the lack of the location information. The prior

knowledge consists of two parts. One is the spatial information dictionary and the other

one is a feature matching metric. The spatial information dictionary is a mapping between

feature vectors to location information, and is used to assign each data value from a GMM

to a position of high-resolution data. A feature vector is a descriptor of a given data block

and computed from the statistical moments of the local neighboring data blocks. Figure 6.4

gives an overview of the spatial information dictionary. A feature matching metric defines a

distance space to match a feature vector for a down-sampled point to a feature vector in the

spatial information dictionary to access proper location information for high-resolution data

reconstruction. This section introduces the details of the spatial information dictionary and

the feature matching metric.

6.3.1 Spatial Information Dictionary

The spatial information dictionary maps feature vectors to spatial location information.

Each entry in the dictionary is computed from a B3 data block of the raw data from the
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prior simulation runs, where B is pre-defined down-sampled block size. A feature vector

consists of the statistical moments from itself and those of the neighboring data blocks. We

use the means and standard deviations from the data blocks to build the feature vector. This

is illustrated in Figure 6.4. The feature vector is normalized by the minimum and maximum

mean values in the vector to capture the relative trend of data values in neighboring regions.

Equation 6.2 shows a feature vector of a data block, hp.

f Ω
hp

=
[µ∆0 µ∆1 ... µ∆n−1 σ∆0 σ∆1 ... σ∆n−1]

Max([µ∆0 ... µ∆n−1])−Min([µ∆0 ... µ∆n−1])
(6.2)

where f Ω
hp

is the feature vector of data block hp. Ω= {∆0,∆1, ...,∆n−1} defines n functions to

locate the neighboring data blocks, which also includes hp itself. The numerator is a vector,

and µ∆i and σ∆i are the mean and standard deviation calculated from data block h∆i(p). If a

high resolution data block h∆i(p) is out of the global spatial domain of the dataset, we pad

the outside region to zero to calculate the mean and standard deviation. Max([µ0 ... µn−1])

and Min([µ0 ... µn−1]) are the maximum and minimum mean values, respectively. Since the

neighbor locality function Ω is predefined, we use fhp , ignoring Ω, to indicate the feature

vector of hp in the rest of this paper.

Due to the spatial, temporal and parameter correlation between simulation runs, if the

distributions of the data values in neighboring data blocks are similar, the locations for data

values in the center data block are likely to be similar, too. For example, the locations of

the largest values are similar in the local block. When reconstructing a down-sampled point

back to high resolution, the re-sampled data will be assigned to space by using the location

distribution of data values in the data block, whose feature vector is most similar to the

feature vector of the down-sampled point. For example, the largest/smallest value among

the re-sampled data will be assigned to the location which has the largest/smallest value in
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the data block. The detail of computing the feature vector from the down-sampled data is

introduced in Section 6.4.

The distribution of data sample locations for each data block in the prior simulation runs

is retrieved from the data block then stored as the location information in the dictionary.

The location information (shp) in the dictionary is represented by a sequence of location

indexes. The sequence is sorted according to the corresponding data values and only the

location indexes are stored in the dictionary without the data values. We convert the 3D

location index to 1D, and this usually requires less than 2 bytes to save a location index in a

local data block. Essentially, the stored location information is a function which maps the

samples’ order defined by samples’ value among a group of samples to location indexes in

the high-resolution domain. By giving a group of re-sampled data values and calculating

the order of data values, shp , we can map data values to locations in high-resolution space.

Figure 6.4 illustrates the spatial information dictionary creation.

Figure 6.4: We illustrate a 2D example of creating an item, f1 and s1 in the spatial informa-
tion dictionary from the dark orange point in low-resolution space. The orange points are
the neighboring points, and the orange blocks in high-resolution data are the corresponding
neighboring data blocks. The mean and standard deviations are directly computed from the
data in these data blocks to generate f1. The location information s1 is extracted from the
dark orange data block.
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6.3.2 Feature Matching Metric

To recover low-resolution GMM point to high resolution, we need to find a matching

feature vector in the dictionary to get the location information. This requires a feature

matching metric to define a distance space between feature vectors of the point in the

dictionary such that corresponding location information of a feature in the dictionary is more

likely to better reconstruct a down-sampled grid point to a high resolution. The distance

metric, D( fhi, fh j), is constructed from prior simulation runs to create a distance space which

separates feature vectors if the location information retrieved from the corresponding data

blocks of a feature vector does not well reconstruct the disorder data samples collected from

the other one. For example, Uhi and Uh j are data samples’ collected from data blocks hi and

h j. Locations of data samples are unknown in Uhi and Uh j . rh j
hi

is a reconstructed block by

combining samples from Uhi and the location information (sh j) which is retrieved from h j

and rhi
h j

is a reconstructed block by combining samples from Uh j and the location information

(shi) which is retrieved from hi. We call the reconstruction error of rh j
hi

and rhi
h j

the cross

reconstruction error of hi and h j. D( fhi, fh j) should approximate the cross reconstruction

error of hi and h j. The cross error between hi and h j is shown in Equation 6.3.

CE(hi,h j) =
NR(hi,r

h j
hi
)+NR(h j,r

hi
h j
)

2
(6.3)

where NR(h,r) is the function to compute normalized RMSE between the raw and recon-

structed data. The detail is shown in Equation 6.4.

NR(h,r) =

√
E2(h,r)

Max(h)−Min(h)
(6.4)
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where h is a true data block and r is a reconstructed data block in high resolution. Max(h)

and Min(h) calculate the maximum and minimum values in h. E2(h,r) calculates the

average of the square differences of all data values at the same location. The fundamental

form of distance between two feature vectors in our system is Mahalanobis distance [62]

and Equation 6.5 shows the Mahalanobis distance.

D( fhi, fh j) =
√
( fhi− fh j)∗S−1 ∗ ( fhi− fh j) (6.5)

where fhi and fh j are two feature vectors, and S is a covariance matrix. The distance between

two feature vectors defined by Equation 6.5 should approximate the cross reconstruction

error of the corresponding data blocks. This approximation is achieved by finding a proper

covariance matrix S which transforms the feature distance space to approximate the cross

reconstruction error space. This transformation is built from data blocks collected from prior

simulation runs. Equation 6.6 shows the cost function to be optimized for the covariance

matrix calculation.

S =
N−1

∑
i=0

N−1

∑
j=i

(D( fhi, fh j)−CE(hi,h j))
2 (6.6)

where N is the total number of data blocks collected from data of prior simulation runs. The

covariance matrix is stored and used to reconstruct high-resolution data.

6.3.3 Data Collection for Prior Knowledge Creation

The prior knowledge is created from the prior simulation runs. To collect data which has

good coverage and variation in the parameter space, we use Latin hypercube sampling [22] to

sample the parameters and run the simulation to create the prior knowledge. Latin hypercube

sampling is often used by domain experts to sample simulation parameters to run a few
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simulation runs for data analysis, when they cannot output and store results from many

simulation runs. The Latin hypercube sampling is similar to the problem of having n rooks

(towers) on a high-dimensional chess board without threatening each other. Figure 6.5 gives

a 2D example.

When generating data for the prior knowledge creation, the simulation outputs the data at

every τ timesteps instead of every time step. Due to data coherence in the temporal domain,

the prior knowledge created at a time step can be used to reconstruct data at neighboring

time steps. This also reduces the I/O of the prior simulation runs, prior knowledge size, and

creation time. To create the prior knowledge, every raw volume of any quantity of interest

and any output time step is subdivided into several spatial sub-blocks, called prior knowledge

blocks, and each one creates independent prior knowledge. Due to the data coherence in

the local spatial domain, mixing data from the whole spatial domain to create a single prior

knowledge is not desirable and could lower the quality of the prior knowledge. Note that

a prior knowledge block is different from a local data block (hp) which is represented by

a GMM. The whole data spatial domain contains multiple prior knowledge blocks and

each prior knowledge block contains multiple local data blocks. For example, if the data

spatial domain is divided into L prior knowledge blocks, a domain expert has Q quantities

of interest, and T ′ is the output time steps, our system will create (L∗Q∗T ′) independent

prior knowledges. Figure 6.5 shows the prior knowledge creation workflow.

To collect the data for prior knowledge creation, we use a “sliding block” with size

B3 to collect sample instances from the prior simulation runs, where B3 is the predefined

down-sampled block size. The sample instances are examined to only keep one instance

to represent multiple similar sample instances across multiple prior simulation runs. The

similarity is defined by the cross-error of Equation 6.3. This preprocess simplifies the prior
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Figure 6.5: We illustrate prior knowledge creation workflow. The chess board at the left
upper corner is a 2D example of the simulation parameter input space. The green squares
are the result of the Latin hypercube sampling. We illustrate one sampled parameter, which
is the input to Nyx, and one time step (t ′) output, for prior knowledge creation here. The
white cubes at the bottom are the output volumes of quantities of interest at time step t ′. The
blue divisions illustrate the defined prior knowledge blocks. The orange block illustrates
using a sliding block to extract sample instances creating one prior knowledge block.

knowledge creation and makes the data reconstruction process in Section 6.4 more efficient,

because it shrinks the size of spatial information dictionary.
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6.4 Statistical Super-resolution

After creating the prior knowledge from a few simulation runs, remaining simulation

runs in the parameter space can be performed with in situ statistical down-sampling and later

reconstructed with prior knowledge. Only the compact statistical down-sampled data are

saved to disk. This does not only reduce the I/O time when writing data from supercomputers

and loading data to the post-analysis machine, but also can keep output of more simulation

runs on disk for later cosmological data analysis. This section will introduce reconstructing

the statistical down-sampled data to high resolution. The step of up-sampling the low-

resolution data to high resolution consists of (1) re-sampling data values from GMMs (2)

creating the feature vectors from statistical down-sampled data and finding the best matching

location information in prior knowledge, and (3) using the re-sampled data and the location

information to reconstruct the high resolution data.

6.4.1 GMM Data Re-sampling

Each point in low resolution is represented by a GMM, and the GMM is computed from

the data values within a B3 data block in high resolution. The data values in a high-resolution

data block can be reconstructed by drawing B3 data values from the GMM. The procedure to

draw a sample from a GMM has two steps. The first step is to select a Gaussian component

from the GMM according to the weight associated with each Gaussian component. The

second step is to draw a value from the selected Gaussian distribution. By repeating the

sampling step B3 times, the data values in the high-resolution block are reconstructed. In

addition, the domain of a Gaussian distribution is defined in an infinite value space, so

unnecessary values, though associated with extremely small probability in the Gaussian

distribution, still have chances to be drawn. To avoid drawing these unnecessary values, we
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only accept values that are within 3 standard deviations of the mean, and between the stored

minimum and maximum values of the data block. Otherwise, the sample is rejected and

re-drawn from the Gaussian distribution. These re-sampling values do not have the location

information to allocate them in the high-resolution spatial space yet.

6.4.2 Location Information Query

To query location information for the reconstruction of a low-resolution point, the first

step is to compute the feature vector of the point. In Section 6.3.1, we introduced that the

feature vector of a high-resolution data block consists of means and standard deviations

of itself and those of the neighboring data blocks. In contrast to the spatial information

dictionary creation in Section 6.3.1, the high-resolution data blocks are not available here.

Therefore, we have to derive means and standard deviations from GMMs. Equation 6.7 and

6.8 show the mean and standard deviation calculation of a GMM.

µgp =
K−1

∑
k=0

(wi ∗µi) (6.7)

σgp =

√√√√K−1

∑
k=0

(wi ∗µ2
i )+

K−1

∑
k=0

(wi ∗σ2
i )−µ2

gp
(6.8)

where µgp and σgp are the mean and standard deviation of the GMM, gp, at a low resolution

point p. K is the number of Gaussian components of gp. wi, µi and σi are the ith weight,

mean and covariance matrix of gp, respectively. After computing the mean and standard

deviation of a GMM, the feature vector of a point can be computed by Equation 6.2. If the

feature vector computation requests the mean and standard deviation from a point that is out

of the data spatial domain, the mean and standard deviation are set to 0.
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To query the location information for reconstruction of a low-resolution point with

quantity q at time step t, we first look up the prior knowledge whose block spatial domain

contains the point, and time step is the closest to t and quantity is q. The feature vector fp

computed from the point p is used to query the location information s′ which is associated

with the feature vector f ′ in the dictionary. f ′ is the feature vector which is closest to fp

in the spatial location dictionary. The distance between feature vectors was introduced in

Section 6.3.2 and the covariance matrix S learned from data are involved to find the closest

feature vector in the spatial location dictionary. Equation 6.9 shows how to find the feature

vector f ′.

f ′ = f

√
( f − fp)∗S−1 ∗ ( f − fp) (6.9)

After sampled values and location information (s′) are known, they are used to reconstruct

the high-resolution data block.

6.4.3 High Resolution Data Reconstruction

Reconstruction uses the location information function (s′), which maps samples’ order

defined by samples’ value among a group of samples to location indexes, to assign the

samples to the spatial domain. We first sort the samples drawn from GMM according to the

data values to get an order of samples. Then using the location information (s′), we map each

data sample to the spatial domain. Algorithm 6 summarizes the steps to reconstruct high-

resolution data from a low-resolution grid point. Line 6 in Algorithm 6 allocates a buffer

with size B3 for high-resolution data reconstruction. Line 7 selects the prior knowledge

according to the time step, quantity and spatial coordinate of the reconstructing grid point.

The details of Line 7 are in Section 6.4.2. Line 8 and Line 9 generate the feature vector
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for p and find location information from the prior knowledge. Line 10 retrieves the GMM

at location p. In Line 11, up is the collection of samples which are re-sampled from gp.

Line 12 sorts data in up and returns the sorted array to u′p. The loop between Line 13 and

17 goes through the re-sampled values in order, and places data into the high-resolution

data block buffer following the location information. Since the reconstruction of each low-

resolution grid point is independent, we have a portable parallel statistical super-resolution

implementation based on the VTK-m framework [65]. This implementation can increase the

speed of super-resolution on either GPU (CUDA) or multicore CPU (Intel TBB) backend

according to the available resource on the post-analysis machine by changing the compiler

configuration, and without changing the code.

Algorithm 6 Statistical Super-resolution
1: . Lt,q: a statistical down-sampled data at time t with quantity q
2: . p: the low resolution coordinate of a point for reconstruction
3: . PK: collection of all prior knowledge
4: . B: pre-defined down-sampled data block size
5: procedure StatisticalSR(Lt,q, p, PK, B)
6: hp = AllocateBuffer(B3)
7: pk = PriorKnowledgeSelector(PK, t, q, p)
8: fp = FeatureVectorGenerator( Lt,q, p )
9: s′ = LocationInformationQuery(pk, fp)

10: gp = Lt,q(p)
11: up = GmmResampler(gp, B3)
12: u′p = Sorting(up)
13: for i = 1→ B3 do
14: ` = s′(i)
15: v = u′p[i]
16: SetValueToLocation(hp, v, `)
17: end for
18: return hp
19: end procedure
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6.5 Evaluation

To carry out the evaluation, the simulation parameter space consists of three parameters

of interest: hubble constant (comoving h), the total density of baryons (comoving OmB),

and the total matter density (comoving OmM). Due to the cosmologists’ efforts in the past

decades, they have shrunk the possible value ranges of these parameters to smaller intervals.

The domain ranges of interest are 0.55 ≤ comoving h ≤ 0.85, 0.0215 ≤ comoving OmB

≤ 0.0235 and 0.12 ≤ comoving OmM ≤ 0.155. 10 samples are regularly taken in each

dimension of interest across the simulation input parameter space which results in 1000

possible simulation inputs. Each simulation run can have a different number of time steps

according to the convergence speed of each simulation input. In this experiment, we use

the first 200 time steps from each simulation run to carry out this evaluation, because all

simulation runs have at least 200 time steps.

We evaluate our technique on 7 different output quantities: density of dark matter

particles (density), X-momentum (xmom), Y-momentum (ymom), Z-momentum (zmom),

internal energy of the gas (rho e), temperature (Temp) and gravitational potential (phi grav).

Each output data is a regular grid with a resolution of 2563 grid points. The prior knowledge

is created from only 5 simulation runs, which is sampled from the simulation parameter

input space by latin hypercube sampling. In addition, we create the prior knowledge at every

10 time steps and set the prior knowledge block size to 643. For the feature vector creation,

the surrounding grid points (Ω in Equation 6.2) of a given grid point at (i, j,k) are 7 points

which includes (i, j,k), (i+ 1, j,k), (i− 1, j,k), (i, j + 1,k), (i, j− 1,k), (i, j,k + 1) and

(i, j,k−1). The in situ statistical down-sampling for all other simulations only uses 25% of

grid points, in each 163 data block, to compute a GMM with 5 Gaussian components. Each
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simulation run is carried out on a node of supercomputer with two 14-core Intel (Broadwell)

Xeon E5-2680 v4 processors and 128 GB DDR3 Memory.

6.5.1 Quantitative Evaluation
Storage

Our technique outputs the prior knowledge and the statistical down-sampled data for all

output quantities, time step and simulation runs. The ratio of the statistical down-sampled

data size to the raw data size can be computed by Equation 6.10.

ZSDS =
G∗3+2

B3 (6.10)

where G∗3 means each GMM has G Gaussian components. Each Gaussian component is

represented by a weight, a mean and a standard deviation. 2 represents the stored minimum

and maximum values of a down-sampled data block. B is the down-sampled data block

resolution. In our experiment, we use a GMM with 5 Gaussian components to represent

a 163 data block. The storage consumption of the statistical down-sampled data is only

0.42% of the raw data. Our prior knowledge for all 7 quantities is generated at every tenth

times step. The total size of the prior knowledge is 25GB. If we store raw data for 1000

simulation runs with 200 time steps and 7 quantities, it requires 85 TB storage. In contrast,

our approach only consumes 388 GB (25 GB for prior knowledge and 363 GB for all

statistical down-sampled data), which is a total of 0.44% of the raw data.

Error of Reconstruction

We compare the reconstruction error with 4 other different approaches. The first is a

naive down-sampling, which uses the average value to represent a local data block and

reconstructs data by interpolation. The second is statistical down-sampling, without the
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prior knowledge. It reconstructs data by re-sampling data from a GMM, and randomly

placing samples to a data block. The third and fourth approaches are scientific data lossy

compression techniques, “ISABELA” [49] and “SZ” [21].

To achieve a fair comparison on reconstruction error, we adjust the parameters of these

four approaches to generate data proxies whose size are as close as possible to our approach.

Comparing with raw data size, our approach outputs 0.44%. For naive down-sampling

approach, each 63 data block is represented by one average value and this consumes 0.46%

of the raw size. The statistical down-sampling without prior knowledge also down-samples a

163 data block to a GMM and consumes 0.42% of the raw size. We adjust the error tolerance

and the number of stored coefficients to minimize the size from ISABELA. The smallest

size of compressed data we can achieve is approximately 24% of the raw data, around 55

times more than our approach. For SZ compression, we adjust the PSNR error bound to 12

dB to generate a compressed data with an average around 2.44% of the raw size.

We randomly draw 250 simulation parameter inputs to run the simulation and compare

the error of the ground truth to the reconstructed data in each case. The RMSE of one

reconstructed volume is calculated by Equation 6.4, where h and r are the whole raw volume

and reconstructed volume, respectively. Max(h) and Min(h) are the maximum and minimum

values of the raw volume. Figure 6.6 shows the average Root Mean Square Error (RMSE)

of the reconstructed data among 250 simulation runs. Since we create the prior knowledge

at every 10 times steps and use the closest prior knowledge in the temporal domain to

reconstruct data, the error curves for our approach have periodic bumps. Our approach

has the best reconstruction RSME, except for several time steps of the Temp quantity. By

examining the data, we found the simulated universe initially has a uniform temperature over

the whole space. Therefore, the denominator of Equation 6.4 is extremely small, greatly
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amplifying errors due to the re-sampling process from GMM. In general, our approach

shows lower reconstruction error than all other approaches for all 7 quantities.

We used a domain tool, Gimlet [33], to compute the power spectrum from the raw data

and reconstructed data. The power spectrum of the density fluctuations is a frequently used

cosmological statistical measure. The error of the power spectrum computed from raw data

and reconstructed data is plotted in Figure 6.6(h). The error from our technique is lower

than other alternatives.

Performance

The computation time of the in situ statistical down-sampling consists of two parts, time

for the EM algorithm to compute GMMs and time for writing down-sampled data to disk.

The average time to write the down-sampled data for one time step to disk is 0.8 seconds

among all time steps and simulation runs. In contrast, the time to write full resolution

raw data to disk is 11.2 seconds. The statistical down-sampling runs the EM algorithm to

compute GMMs and the average time to compute GMMs for one step is 9.4 seconds. The

time to compute GMMs at different time steps is not constant. Because the data values

usually have higher variation in later time steps in the Nyx simulation, the EM algorithm

requires more time to converge for the later time steps. Figure 6.6(i) shows the time of in situ

down-sampling over time steps. The average of the in situ statistical down-sampling time

per simulated time step is 10.19 seconds. Therefore, our approach significantly reduces the

stored data size without spending more supercomputer time and reduces the data movement

cost to post-analysis computers.

In this experiment, we created 64 * 7 * 21 prior knowledge data sets, because we have

64 prior knowledge blocks per volume, 7 quantities, and 21 time steps for prior knowledge

creation. We subdivided the prior knowledge creation tasks into 140 non-overlapping sets,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: (a) - (g) are average reconstruction RMSE of 7 quantities over 250 simulation
runs. (h) is the average error of the power spectrum. (i) is the average in situ down-sampling
time. X-axis is the time steps. Y-axis in (a) - (h) is the RMSE in log scale.

where each set takes 1.37 hours on average. Note that the prior knowledge creation is a

one-time task from the 5 simulation runs. Once the prior knowledge is generated, it can

be used for reconstructing down-sampled data of all subsequent simulation runs. The wall

time can be reduced by subdividing the tasks into more sets if more computational resources

are available. The time to reconstruct a statistical down-sampled volume to full resolution
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(a) Raw data (100%) (b) Naive D.S. (0.46%) (c) Statistical D.S. (0.42%)

(d) ISABELA (24%) (e) SZ (2.44%) (f) Our approach (0.44%)

Figure 6.7: We display volume rendering of density quantity at time step 180 from a
simulation run with input parameters, comoving h = 0.61666, comoving OmB = 0.02216
and comoving OmM = 0.14328. D.S. stands for down-sampling. The numbers in sub-figure
captions are the ratio of the storage consumption to the raw data size.

is 1.28 seconds, using an Intel 8-Core i-7-4770 3.40GHz CPU with 16GB memory. Each

local data block reconstruction is an independent task, and the time can be further reduced if

more computational resources are available.

6.5.2 Qualitative Evaluation

We use direct volume rendering, isosurfaces, streamlines, and Gimlet [33] to show the

quality of reconstruction. Figure 6.7 shows rendering images of the reconstructed data for
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(a) Raw data (100%) (b) Naive D.S. (0.46%) (c) Statistical D.S. (0.42%)

(d) ISABELA (24%) (e) SZ (2.44%) (f) Our approach (0.44%)

Figure 6.8: We display isosurface of phi grav=0 at time step 153 from a simulation run with
input parameters, comoving h = 0.55, comoving OmB = 0.02326 and comoving OmM =
0.1394. D.S. stands for down-sampling. The numbers in sub-figure captions are the ratio of
the storage consumption to the raw data size.

density using one selected time step and input parameters. Our approach shows the most

similar image compared to the raw data.

Figure 6.8 shows an isosurface from the reconstructed data of phi grav quantity. Our

approach most accurately preserves the shape of the isosurface. We circle several regions

where other alternatives show incorrect shapes, such as the pieces at the left upper corner,

the connection at the bottom left corner, and the hold at the middle.
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(a) Raw data (100%) (b) Naive D.S. (0.46%) (c) Statistical D.S. (0.42%)

(d) ISABELA (24%) (e) SZ (2.44%) (f) Our approach (0.44%)

Figure 6.9: We display streamlines of the vector field from xmom, ymom and zmom quan-
tities at time step 200 with input parameters, comoving h = 0.58333, comoving OmB =
0.02304, and comoving OmM = 0.12776. 250 seeds are put on the line between [0,0,0] and
[255,255,255] to compute streamlines. We zoom-in to sub-domains of the data to show
the details. The red and blue color on the streamlines indicate the higher and lower vector
magnitudes, respectively. D.S. stands for down-sampling. The percentage in the sub-figure
captions are the ratio of the storage consumption to the raw data size.

Figure 6.9 shows streamlines using the vector field from xmom, ymom, and zmom

quantities. We highlight and zoom-in two regions, a vortex and a swirl. Our approach

reproduces the left vortex. Naive down-sampling also reproduces it, but the vortex shifts in

space. All methods cannot reproduce the right swirl, but our approach approximates this

feature the best.
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(a) (b)

Figure 6.10: (a) and (b) are power spectra computed from data at time step 200 with input
parameters, comoving h = 0.84997, comoving OmB = 0.02304 and comoving OmM =
0.13552, and comoving h = 0.61666, comoving OmB = 0.02216 and comoving OmM =
0.14328, respectively.

Figure 6.10 shows the power spectrum at time step 200 for two simulation runs. We

observe that the power spectrum computed from our approach is the most similar to the

raw data. A low error power spectrum is also computed from reconstructed data using

ISABELA, but ISABELA requires 55 times storage than our approach.

152



6.6 Discussion

6.6.1 Parameter Turning

In our system, several parameters have to be selected. They are the number of Gaussian

components of each GMM, the number of prior simulation runs, the size of a down-sampled

block, and the number of samples in each local data block for the EM algorithm. The

size of a down-sampled block is mainly determined by the affordable size of statistical

down-sampled data. The selection of the number of samples in each local data block for the

EM algorithm determines in situ time. A very small number simulation runs with sparse

in situ calls in the temporal domain can be used to determine the number of sub-sampling

data samples to run the EM algorithm. The number of prior simulation runs impacts the

reconstruction quality. To study the reconstruction quality, we compared the reconstruction

results when parameters are changed. Keeping all high-resolution data for this study is not

feasible. Therefore, data generated from fewer qualities, and smaller spatial and temporal

resolution are used to study and select the parameters. We have run this study by 643

resolution, 3 quantities (“density”, “zmom” and “Temp”), 4 time steps (50, 100, 150, 200),

and a down-sampled block size 83. The raw data of all 1000 simulation runs, defined in

the simulation parameter space in Section 6.5, are saved for this study using 12 GB. We

use Latin hypercube sampling to sample 1, 3, 5, 7, 9 simulation runs for prior knowledge

creation. Figure 6.11(a) shows the normalized RMSE. When only one simulation run is used

to create the prior knowledge, the reconstruction error is high. The error decreases when

the number of simulation runs for prior knowledge creation increases. We see diminishing

returns when the number of simulation runs is more than 5. In addition, we also varied the

number of Gaussian components to study the impact on reconstruction quality. In Figure

6.11(b), we observe similar diminishing returns if the number of Gaussian components is
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greater than 4. Figure 6.11(c)-(f) show the quality of reconstructed data with fewer Gaussian

components and prior simulation runs. With fewer prior simulation runs, the GMM samples

are more likely to be assigned incorrect locations. If fewer Gaussian components are used,

the GMM may not accurately summarize the data, and a large error may be introduced to

re-sampled data.

(a) (b)

(c) (d) (e) (f)

Figure 6.11: We show the impact of the reconstruction quality using different numbers of
simulation runs for prior knowledge creation and a different number of Gaussian compo-
nents. Every point on each curve is the average RMSE of quantities, “density”, “zmom”
and “Temp”. (c) is an isosurface from raw data. (d), (e) and (f) are isosurfaces from
the reconstructed data with 5 prior simulation runs and 5 Gaussian components, 5 prior
simulation runs and 1 Gaussian component, and 1 prior simulation run and 5 Gaussian
components, respectively.
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6.6.2 Data Variation in Parameter Space of Nyx

We will discuss the variation produced from Nyx simulation. Density, at time step 200,

is used as an example in this discussion. We examine all simulation runs in Section 6.5 and

find the maximum density value, 3.8∗1013, and the minimum value in the same simulation

run is 4.8∗108. For the smallest valued simulation, the maximum density value is 1.2∗1011.

So, Nyx can produce datasets where the maximum value of a simulation run is 300 times

larger than that of another. In addition, the standard deviation of the maximal values among

simulation runs is 1.7∗1013. We show how data values change among different simulation

runs in Figure 6.12(a). We compared values along raycast segments from simulation runs as

an example. The ray is cast from the center of the x-y plane with z=0 to the center of the x-y

plane with z=255 on the density quantity of 5 prior simulation runs in Section 6.5 and 20

randomly sampled test simulation runs to collect data values on the ray and plot. It shows

that data values from different simulation runs have large differences and the trends of data

value change among simulation runs are also different. For example, the curves circled by

the purple ellipse have a concave in the region, but the curves circled by the red and green

ellipses are peaks. On the other hand, we also observe that multiple curves may have similar

trends of data value change in a local region, but these curves still have quite different data

values. In our approach, GMM accurately captures the data values without keeping location

information. The trends of value change from the prior knowledge, the colored solid lines

in Figure 6.12(a), is used to place values into space. We show the isosurfaces from a prior

simulation run and a test simulation run, which are marked in Figure 6.12(a). Although they

have relatively close curves in Figure 6.12(a), the isosurfaces in Figure 6.12 (b) and (c) are

significantly different.
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(a) (b) (c)

Figure 6.12: (a) Data values on raycast segments from 5 prior simulation runs and 20
randomly sampled test simulation runs. Data values on rays from prior simulation runs
and sampled test simulation runs are plotted by colored solid lines and black dashed lines,
respectively. Two simulation runs, a prior simulation run marked by (b) and a test simulation
run marked by (c), show isosurfaces with isovalue 1010 in (b) and (c), respectively.

6.6.3 Domain Expert Feedback

We have interviewed a cosmologist, who is one of the authors of Nyx simulation, and

summarized his comments. We discuss the applicability of our technique in their data

analysis workflow. Using the setting in Section 6.5, it requires approximately 2 hours to

finish one simulation. As we have noted before, it is not feasible to retain data from the

high-resolution simulations permanently, due to the size. Re-running the simulation every

time cosmologists need a data will require waiting hours to continue their analysis tasks.

Our technique does not significantly reduce the overall simulation time, but it provides a

high data reduction rate and reconstruction quality to retain data. Thus, the cosmologists are

able to keep simulation runs and access data without re-running the simulation. The domain

expert also commented, These simulations are often very expensive, so you don’t want to

run and re-run them every time you want to do some analysis. The cosmologist commented

that the visual quality looks good and it’s good that our method has the lowest RMSE.
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6.7 Conclusion and Future Work

This paper presents a novel in situ technique for cosmological data analysis and visual-

ization. The data from a few simulation runs are selected by Latin hypercube sampling and

used to create prior knowledge which captures the relation between low- and high-resolution.

Data from simulation runs with other simulation parameter inputs are down-sampled in

situ to reduce the requirements of I/O bandwidth and disk storage. We implement data

parallel statistical down-sampling and data sub-sampling to remain the simulation time of

new workflow at the same scale of the traditional workflow. Because our approach hugely

reduces the data from the cosmological simulation, the data from more simulation runs is

affordable to save for data analysis. We qualitatively and quantitatively demonstrate that our

technique outperforms other alternative approaches. In future work, we will explore using

error quantification and machine learning technique. To quantify the point-wise error and

convey that to scientists are valuable because knowing the error range in the visualization

could change scientists’ decision and avoid that the data analysis task is misled by the region

with a higher error. Machine learning techniques, such as neural network based approaches,

could improve the prior knowledge to capture more precise feature shapes and allow our

technique to be used on more diverse types of simulations.
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Chapter 7: Conclusion and Future Works

7.1 Conclusion

In this dissertation, we have demonstrated different types of distribution-based techniques

and their effectiveness in large dataset analysis and visualization. To tackle the problem

of big data volume rendering, we proposed a ray- and distribution-based approach which

collects the samples projected to each image pixel and compactly summarizes them by

distributions. When rendering the dataset from the proxy, a proposed importance distribution

computed from the ray-based distribution and the user-given transfer function are used to

draw small number of samples and render high quality images. In chapter 4, we focus

on the problem of the spatial information loss in the traditional distribution representation

when it is used to tackle the big data problem caused by high spatial resolution. Spatial

Gaussian Mixture Model corresponding to each defined data value interval stores the spatial

location distribution of samples in the data value interval. The traditional distribution

representation is augmented by the proposed spatial GMMs to reconstruct the data value at

arbitrary location with a narrow uncertainty. This data representation can not only be applied

to various visualization algorithms but also provide high quality visualization. We also

develop a view-dependent technique to tackle the big data problem caused by high temporal

resolution. A pixel ray at a non-sampled time step is decoupled into a value distribution
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and their location information. We either directly store the samples’ location information or

utilize the data coherence in the temporal domain to represent the location information. We

demonstrate that our data proxy spends small storage size on the non-sampled time steps

but reconstructs evolution of features with high quality. For ensemble dataset, we propose

a compact data proxy which utilizes the data coherence in the simulation parameter space.

The data coherence is used to predict the data samples’ locations when we reconstruct a

statistical down-sampled data to high resolution. We show that our data proxy can reach a

high data reduction rate and a small reconstruction error.

7.2 Future Research Directions

In this section, we discuss the potential future directions which can be extended from the

research works in this proposal. Current research works use the distribution representation

to compactly store the high resolution datasets in spatial domains. We can extend our

current in-situ workflow to in-transit workflow [9, 33]. The in-situ workflow directly halts

the simulation and runs the analysis to produce the compact data proxies after the simulation

run of every time step. The advantage of in-situ worklet is that the implementation is easier,

but the disadvantage is that the sumpercomputer resource could be wasted if the analysis

part does not need the same scale of computational resource as the simulation. In-transit

workflow allows the simulation and analysis to run simultaneously although it usually needs

a more invasive code modification in the simulation code. A technique should be developed

to predict the need of the computational resource for the analysis part. If the computational

resource requirement of the analysis part is low, we can switch the workflow to in-transit

and utilize the resource better. Otherwise, we can keep using the in-situ workflow. In

addition, machine learning algorithms have the potential to tackle big data problems of
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ensemble datasets in scientific visualization. For example, GAN (Generative Adversarial

Networks) [37] is often used to train a model to capture the distribution of the training dataset.

The model can take input parameters to reproduce different results. In scientific visualization

and analysis scenarios, GAN has the potential to capture relation among ensemble members

and take new simulation parameters to produce other ensemble members later.
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[36] Enrico Gobbetti, José Antonio Iglesias Guitián, and Fabio Marton. Covra: A
compression-domain output-sensitive volume rendering architecture based on a sparse
representation of voxel blocks. In Computer Graphics Forum, volume 31, pages
1315–1324. Wiley Online Library, 2012.

[37] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[38] Luke J Gosink, Christoph Garth, John C Anderson, E Wes Bethel, and Kenneth I
Joy. An application of multivariate statistical analysis for query-driven visualization.
IEEE Transactions on Visualization and Computer Graphics, 17(3):264–275, 2011.

[39] Stefan Guthe and Wolfgang Straßer. Real-time decompression and visualization of
animated volume data. In Proceedings of the conference on Visualization’01, pages
349–356. IEEE Computer Society, 2001.

[40] Stefan Guthe and Wolfgang Strasser. Advanced techniques for high-quality multi-
resolution volume rendering. Computers & Graphics, 28(1):51–58, 2004.

164



[41] Subhashis Hazarika, Soumya Dutta, Han-Wei Shen, and Jen-Ping Chen. Codda: A
flexible copula-based distribution driven analysis framework for large-scale multivari-
ate data. IEEE transactions on visualization and computer graphics, 2018.

[42] Wenbin He, Chun-Ming Chen, Xiaotong Liu, and Han-Wei Shen. A bayesian
approach for probabilistic streamline computation in uncertain flows. In 2016 IEEE
Pacific Visualization Symposium (PacificVis), pages 214–218. IEEE, 2016.

[43] Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of psnr in image/video
quality assessment. Electronics letters, 44(13):800–801, 2008.

[44] Guangfeng Ji and Han-Wei Shen. Dynamic view selection for time-varying volumes.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1109–1116, 2006.

[45] C Ryan Johnson and Jian Huang. Distribution-driven visualization of volume data.
IEEE Transactions on Visualization and Computer Graphics, 15(5):734–746, 2009.

[46] Dimitris Karlis and Evdokia Xekalaki. Choosing initial values for the EM algorithm
for finite mixtures. Computational Statistics & Data Analysis, 41(3):577–590, 2003.

[47] Gordon Kindlmann and James W Durkin. Semi-automatic generation of transfer
functions for direct volume rendering. In Proceedings of the 1998 IEEE symposium
on Volume visualization, pages 79–86. ACM, 1998.

[48] Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham,
Rob Ross, and Nagiza F Samatova. Compressing the incompressible with isabela:
In-situ reduction of spatio-temporal data. In European Conference on Parallel
Processing, pages 366–379. Springer, 2011.

[49] Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Seung-Hoe Ku, Choong-
Seock Chang, Scott Klasky, Rob Latham, Rob Ross, and Nagiza F Samatova. Isabela
for effective in situ compression of scientific data. Concurrency and Computation:
Practice and Experience, 25(4):524–540, 2013.

[50] Teng-Yok Lee, Oleg Mishchenko, Han-Wei Shen, and Roger Crawfis. View point
evaluation and streamline filtering for flow visualization. In Visualization Symposium
(PacificVis), 2011 IEEE Pacific, pages 83–90. IEEE, 2011.

[51] Teng-Yok Lee and Han-Wei Shen. Efficient local statistical analysis via integral
histograms with discrete wavelet transform. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2693–2702, 2013.

[52] Juan Li, Jin Wu, Shen Yang, and Jin Liu. Dictionary learning for image super-
resolution. In Control Conference (CCC), 2014 33rd Chinese, pages 7195–7199.
IEEE, 2014.

165



[53] Shaomeng Li, Nicole Marsaglia, Christoph Garth, Jonathan Woodring, John Clyne,
and Hank Childs. Data reduction techniques for simulation, visualization and data
analysis. In Computer Graphics Forum, volume 37, pages 422–447. Wiley Online
Library, 2018.

[54] Jimmy J. Lin, Jian Pei, Xiaohua Hu, Wo Chang, Raghunath Nambiar, Charu Aggarwal,
Nick Cercone, Vasant Honavar, Jun Huan, Bamshad Mobasher, and Saumyadipta
Pyne, editors. 2014 IEEE International Conference on Big Data, Big Data 2014,
Washington, DC, USA, October 27-30, 2014. IEEE, 2014.

[55] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point
data. IEEE Transactions on Visualization and Computer Graphics, 12(5):1245–1250,
2006.

[56] Shusen Liu, Joshua A Levine, P Bremer, and Valerio Pascucci. Gaussian mixture
model based volume visualization. In Large Data Analysis and Visualization (LDAV),
2012 IEEE Symposium on, pages 73–77. IEEE, 2012.

[57] Li-ta Lo, Christopher Sewell, and James P Ahrens. Piston: A portable cross-platform
framework for data-parallel visualization operators. In EGPGV, pages 11–20, 2012.

[58] Eric B Lum, Kwan Liu Ma, and John Clyne. Texture hardware assisted rendering
of time-varying volume data. In Proceedings of the conference on Visualization’01,
pages 263–270. IEEE Computer Society, 2001.

[59] Claes Lundström, Patric Ljung, Anders Persson, and Anders Ynnerman. Uncertainty
visualization in medical volume rendering using probabilistic animation. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1648–1655, 2007.

[60] Kwan-Liu Ma. In situ visualization at extreme scale: Challenges and opportunities.
IEEE Computer Graphics and Applications, 29(6):14–19, 2009.

[61] Desire Luc Massart, A J Smeyers-verbeke, et al. Practical data handling visual
presentation of data by means of box plots. 2005.

[62] Geoffrey McLachlan. Discriminant analysis and statistical pattern recognition,
volume 544. John Wiley & Sons, 2004.

[63] M Meyer, S Takahashi, and A Vilanova. Data reduction techniques for scientific
visualization and data analysis. STAR, 36(3), 2017.

[64] Miriah Meyer, Hanspeter Pfister, Charles Hansen, Chris Johnson, Miriah Meyer,
Hanspeter Pfister, Charles Hansen, and Chris Johnson. Image-based volume rendering
with opacity light fields. no. UUSCI-2005-002. Tech Report, 2005.

166



[65] Kenneth Moreland, Christopher Sewell, William Usher, Li-ta Lo, Jeremy Meredith,
David Pugmire, James Kress, Hendrik Schroots, Kwan-Liu Ma, Hank Childs, et al.
Vtk-m: Accelerating the visualization toolkit for massively threaded architectures.
IEEE computer graphics and applications, 36(3):48–58, 2016.

[66] Klaus Mueller, Naeem Shareef, Jian Huang, and Roger Crawfis. Ibr-assisted volume
rendering. Late Breaking Hot Topics of Visualization99, pages 5–9, 1999.

[67] Keith W Oleson, Gordon B Bonan, J Feddema, and Mariana Vertenstein. An urban
parameterization for a global climate model. part ii: Sensitivity to input parameters
and the simulated urban heat island in offline simulations. Journal of Applied
Meteorology and Climatology, 47(4):1061–1076, 2008.

[68] Patrick OLeary, James Ahrens, Sébastien Jourdain, Scott Wittenburg, David H Rogers,
and Mark Petersen. Cinema image-based in situ analysis and visualization of mpas-
ocean simulations. Parallel Computing, 55:43–48, 2016.

[69] J Patchett and G Gisler. Deep water impact ensemble data set. Los Alamos National
Laboratory, LA-UR-17-21595, available at http://dssdata. org, 2017.

[70] David Posada and Thomas R Buckley. Model selection and model averaging in
phylogenetics: advantages of akaike information criterion and bayesian approaches
over likelihood ratio tests. Systematic biology, 53(5):793–808, 2004.

[71] AL Read. Linear interpolation of histograms. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 425(1):357–360, 1999.

[72] Christof Rezk-Salama, Severin Todt, and Andreas Kolb. Raycasting of light field
galleries from volumetric data. In Computer Graphics Forum, volume 27, pages
839–846. Wiley Online Library, 2008.

[73] Marcos Balsa Rodrı́guez, Enrico Gobbetti, José Antonio Iglesias Guitián, Maxim
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