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Abstract 

Model fit indices within the framework of structural equation models are crucial 

in evaluating and selecting the most appropriate model to fit data. The performance of fit 

indices under varying suboptimal conditions requires further investigation. Moreover, 

with the increasing interest in applying Bayesian method to social sciences data, the 

comparison of Bayesian estimation and robust maximum likelihood (MLR) estimation 

methods in evaluating models and estimating parameters is of vital importance. This 

study aims 1 ) to investigate the performance of MLR associated model fit indices under 

various conditions of model misfit, data distribution, and sample sizes; 2) to compare the 

performance of Bayesian and MLR methods in model fit and parameter estimation based 

on a confirmatory factor analysis (CFA) model. Data were simulated based on a 

population CFA model consistent with Curran, West and Finch’s (1996) study using R 

3.4.0. Simulation conditions include 3 sample sizes (N = 200, 500, 1000), 3 degrees of 

model misfit (none: RMSEA = 0; mild: RMSEA = .05; moderate: RMSEA = .10), and 3 

degrees of data nonnormality (normal: skewness = 0, kurtosis = 0; mild: skewness = 1, 

kurtosis = 3; moderate: skewness = 2, kurtosis = 7). Model misfit was introduced using 

Cudeck and Browne’s (1992) method through the R package MBESS. Data were fit using 

the R package lavaan for MLR method and blavaan for Bayesian method. Results show 

that scaled CFI and scaled TLI are the most robust model fit indices to various 
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suboptimal conditions; compared to p values associated with MLR, PP p values 

associated with the Bayesian method are robust to small sample size and data 

nonnormality under correctly specified models, less sensitive to models with ignorable 

degree of misfit, and have sufficient statistical power to reject moderately misspecified 

models; Bayesian and MLR methods have similar performance in point estimation; MLR 

method produces more robust standard error estimations. Implications and suggestions 

for future studies are discussed.  
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Chapter 1. Introduction 

Structural equation modeling (SEM) is among the most popular statistical tools in 

social science, and it models relationship between observed variables and between latent 

constructs. Confirmatory factor analysis (CFA) is a type of SEM specializing in 

measurement models which quantifies the relationship between items and the latent 

constructs an instrument intends to measure. It has high popularity in scale validation and 

serves as a precursor step for a full SEM model. Major methodological considerations for 

a CFA model are model fit indices and parameter estimation. Practitioners have long 

been relying on fit indices for model evaluation and selection, but the behavior of fit 

indices maintains a thorny issue in methodology. Model fit evaluates how the model 

implied covariance matrix reproduces the population matrix. Under the framework of 

maximum likelihood estimation (MLE), a likelihood ratio χ2 test is conducted through 

ML fitting function FML(Σ(θ), Σ), where Σ(θ) refers to the model implied covariance 

matrix and Σ is the population matrix. Given large sample size, (N-1) FML approximates a 

χ2 distribution with degree of freedom (df) under the null hypothesis. However, it is 

widely known that the χ2 test would reject a reasonably fitted model under large sample 

size, and the χ2 statistic is inflated with nonnormal variables, users cannot solely rely on 

the test. 
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Structural and distributional assumptions need to be considered in examining 

robustness of SEM (Satorra, 1990). Structural assumption indicates that the fitted model 

fully captures the inter-relationship among variables in the population, or the covariance 

matrix Σ(θ) based on the fitted model well represents the population. However, as 

pointed out by MacCallum (2003), models are only artificial approximation of reality 

under the guidance of theory and experience, so there is no perfect model. He cautioned 

that conclusions made from simulation studies which generate data from a perfect model 

would have limited generalizability to empirical settings. It is typical to include model 

misspecification conditions in simulation designs for studying the behavior of fit indices 

(e.g., Hu & Bentler, 1998; Fan, Thompson & Wang, 1999). As illustrated by Gerbing and 

Anderson (2016), the design of model misspecification imposes a challenge to 

methodological researchers. First, the magnitude and pattern of model misspecification is 

hard to operationalize, since the magnitude is not solely determined by omitting a 

nonzero path, but by the whole set of parameters. Second, it is expected to have a 

prespecified value for fit indices, so that the effect of model misspecification can be 

comparable and well controlled for in simulation design. Similar concern is shared by 

Marsh, Hau and Wen (2004) that in typical simulation study designs for misspecification, 

for example in Hu and Bentler (1998)’s, it is presumed that a model can perfectly reflect 

the real-world phenomenon, and the misspecification only occurs in certain omitted paths 

or factor covariances, which is unrealistic for empirical researchers because it is hard to 

know in advance the exact pattern a misspecification would take.  
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Such generalizability concern with misspecification design is to some degree 

relieved by Cudeck and Browne (1992)’s method of manipulating model misfit. Unlike 

the traditional approach, their method controls the magnitude of misfit through FML (Σ0
*, 

Σ (γ0)) = c, where Σ is the population model specified by the researcher, e.g., a two-factor 

CFA model; Σ0
* denotes the variance-covariance matrix after approximation error is 

introduced to the population model; c indicates the amount of approximation error 

desired by the researcher; and γ0 denotes the sets of parameters minimizing the ML fit 

function. The method of creating perturbed covariance matrix entails two properties: first, 

researchers are allowed to specify the magnitude of population misfit in advance, and it is 

not affected by sample size; second, the perturbed covariance matrix would yield 

unbiased parameter estimates, thus avoiding the confounding effect of model misfit and 

other design factors such as nonnormality on parameter estimation. The method is more 

realistic and the pre-specified approximation error facilitates comparisons across 

simulation conditions, and therefore is adopted in this study.  

Distributional characteristics is another condition that is frequently considered in 

simulation designs (e.g., Hu, Bentler and Kano, 1992; Curren, West and Finch, 1996; Lei 

and Lomax, 2005). According to a systematic review by Micceri (1989), more than one 

half of samples in the educational and psychological field have at least moderate level of 

skewness. Hence, it is unrealistic to assume empirical data sets to be normally distributed. 

By reviewing simulation studies involving nonnormality conditions with MLE, West, 

Finch and Curran (1995) concluded that nonnormality would cause inflated χ2 statistics, 

modest downward bias in fit indices such as Tucker and Lewis (1973) Index (TLI) and 
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Comparative Fit Index (CFI, Bentler, 1990), and moderate to severe downward bias in 

standard errors. Therefore, nonnormality condition is considered in the simulation design 

of this study.  

Given the known problems with ML χ2 test, several robust estimators have been 

proposed such as asymptotic distribution-free methods (ADF; Browne, 1984) and 

Satorra-Bentler scaled method (SB; Satorra & Bentler, 1994) to accommodate the 

estimation bias caused by nonnormal variables. Chou, Bentler and Satorra (1991) 

compared SB, ADF and ML under various conditions of nonnormality and reported that 

SB performed the best of all. Hu, Bentler and Kano (1992) manipulated seven 

nonnormality conditions and six sample sizes to compare the performance of ML, 

generalized least square (GLS), SB, and ADF and made the same conclusion. Similar 

findings were also shared in Curran, West and Finch’s (1996) study. Therefore, ML with 

Satorra-Bentler scaled χ2 statistics and standard error (hereafter denoted as MLR) is 

adopted as the frequentist estimator in this study.  

In face of the fact that ML estimation requires assumptions of large sample, 

multivariate normality, and correct model specification, another estimator of interest in 

this study is Bayesian. Van, Winter, Ryan, Zondervan-Zwijnenburg and Depaoli (2017) 

made a systematic summary of Bayesian usage in social science field and found 

increasing popularity of Bayesian methods. Especially, they reported that in the category 

of technical and simulation articles, SEM is the second most popular statistical tool, 

while in the category of applied articles, SEM is the top widely used model, and they 

foresaw a continuing trend for Bayesian application in SEM in future.   
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As discussed in Muthén and Asparouhov (2012) and Levy (2016), adoption of 

Bayesian methods is motivating because it does not rely on large-sample theory or 

multivariate normality assumption, it allows to incorporate researchers’ prior experience 

and theoretical judgement into parameter estimation through prior specification, and it 

grants more information of model fit (e.g., posterior predictive p-value, denoted as PP p-

value hereafter) and parameter estimates (e.g., posterior mean, mode, SD, and credible 

interval).  

Prior specification is an inseparable part of Bayesian methods. It can be 

noninformative or informative at various degrees. A noninformative prior distribution 

conveys little judgement about parameters, for example a uniform distribution for path 

coefficients; an informative prior distribution implies researchers’ own experience with 

the range or central tendency about parameters, for example a normal distribution with 

zero mean and unit variance for path coefficients. It is cautioned by Lee and Song (2004) 

that priors specification has huge impact on posterior distribution, an undesirable prior 

distribution is even worse than a noninformative prior. In the current study, it is assumed 

that CFA users do not have specific knowledge of model parameters, and thus 

noninformative prior distributions are considered.  

Based on the previous findings on robustness of SEM (a detailed review is 

provided in Chapter 2), several improvements can be made. First, while the majority of 

the simulation studies take a focus on either structural or distributional assumption 

violations, this study considers both at various levels; second, many previous studies only 

consider behavior of model fit indices as the outcome variable in simulation design, this 
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study investigates both fit indices and parameter estimation; third, the design of model 

misspecification in previous studies is all about either omitting factor covariances or 

nonzero paths while still assuming a perfect model in the population, limiting its practical 

value for CFA practitioners, this study incorporates model misfit with a prespecified 

discrepancy value, which can be inferred from RMSEA in a straightforward manner, 

facilitating baseline misfit control and interpretation; last, very few studies have 

compared Bayesian approach with MLR in the context of combined conditions of model 

fit and nonnormality, this study fills the gap by comparing Bayesian and MLR 

approaches in terms of model fit and parameter estimation. 

The purposes of the study are: 1) To investigate the performance of CFA model 

fit indices (scaled χ2 test, CFI, TLI, RMSEA, and SRMR) with robust maximum 

likelihood estimator (MLR) under varying conditions of misfit and data nonnormality; 2) 

to compare the performance of MLR and Bayesian estimation in terms of power and 

parameter estimation. 
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Chapter 2.  Literature Review 

In this chapter, concepts of confirmatory factor analysis, model fit indices, and 

Bayesian method are introduced, prior simulation studies on the performance of 

maximum likelihood (ML) and Bayesian methods with structural equation modeling are 

illustrated, and a contrast between ML and Bayesian approaches is discussed.  

Confirmatory Factor Analysis 

Confirmatory factor analysis (CFA) seeks to detect underlying constructs that 

account for correlation or covariance among observed variables. Users are expected to 

have a priori experience or theoretical rationale to specify the number of latent factors 

and pattern of loadings. CFA serves as a popular tool for scale validation through 

dimensionality determination, construct validation, and measurement invariance 

examination, among others (Brown, 2015). It is posited that responses given to an item is 

a linear combination of the latent constructs and unique variance. The expression is as 

follows: 

y = Λη + ε 

To put it in a covariance matrix form: 

� =  ���� +  � 

where y is a p (indicators) × 1 vector of item responses, Λ is a p × m  factor loading 

matrix, η is a m × 1 vector of factors, ε is a p × 1 vector of measurement error, � refers to 
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the p × p covariance matrix of responses for all the items involved, � is a m × m factor 

variance-covariance matrix, and � is a p × p error variance-covariance matrix. 

Model Fit Indices 

The χ2 Test 

The χ2 test (with MLE) indicates the discrepancy between the sample covariance 

matrix and the hypothesized model. Following Chou and Bentler (1995), the ML fitting 

function is as follows: 

FML = log|Σ(θ)| + Trace(Σ(θ)-1S| - log|S| - p 

where Σ(θ) refers to the model implied matrix, θ is the parameter vector minimizing the 

fit function, S refers to the sample covariance matrix, and p is the number of variables.  

Regarding hypothesis testing, H0: Σ(θ) = Σ which implies that the model implied 

covariance matrix perfectly reproduces the population covariance matrix. Under null 

hypothesis, the following expression approximates a χ2 distribution.  

(N-1) FML 

where N is the sample size. The χ2 statistic in relation to the model degrees of freedom 

(df) yields a p value (chi-p) indicating whether the null hypothesis should be rejected or 

not.  

However, the χ2 test is based on the assumption of large sample, multivariate 

normality, and correct model specification. Violation of these assumptions would yield 

biased χ2 statistics. Additionally, it tests exact fit, which is not of practical use because it 

is known that a best fit model is only an approximation to population (MacCallum, 2003). 

Other fit indices have been developed to capture various aspects of model performance. 
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Incremental Fit Indices 

Incremental fit indices quantify the improvement of a hypothesized model against 

a null model, which is a restricted model assuming no relationship among variables. 

Comparative Fit Index (CFI; Bentler, 1990) and Tucker-Lewis Index (TLl; Tucker and 

Lewis, 1973) are included in this study. Following Schumacker and Lomax (2016, 

pp.106-143), CFI and TLI are expressed as follows: 

CFI = 1 - 
��� (�,   ������

� ��������)

��� (�,   �����
� �������)

 

TLI = 

�����
�

������
� 

������
�

�������

�����
�

������
��

 

A value closer to 1 represents better fit, a value larger than .95 was considered 

satisfactory for both CFI and TLI (Hu & Bentler, 1999).  

 Absolute Fit Indices 

 Root-mean-square error of approximation (RMSEA; Steiger & Lind, 1980) and 

Standardized Root-mean square residual (SRMR; Bentler, 1995) are included in this 

study. The calculations are as follows: 

RMSEA = �
��� (�,   ������

� ��������)

(���)�������
 

SRMR = �∑ ∑
���

�

�(���)/�����  

where ���
�  refers to the squared elementwise difference between the sample and model 

implied correlation matrix, and p is the number of variables. A value less than 0.05 or 
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0.06 is considered as satisfactory for RMSEA, and a value less than 0.08 is considered as 

decent for SRMR (Hu & Bentler, 1999).  

 Prior Simulation Studies on ML/MLR Performance 

Curran, West, Finch (1996) conducted a Monte Carlo simulation study to 

investigate the effects of nonnormality, sample size, and model misspecification on 

behaviors of the χ2 test estimated with ML, and Satorra-Bentler (SB) ML. The data 

generation model is a three-factor nine-indicator CFA model. Three levels of univariate 

skewness and kurtosis were considered representing normal, moderate nonnormal, and 

extremely nonnormal distribution of variables. Model misspecification refers to either 

adding a path which is zero in the population model, or omitting a nonzero cross loading. 

Four levels of sample size were considered ranging from 100 to 1000. Results showed 

that under the condition of correct model specification and normal distribution, both ML 

and SB-ML yield unbiased χ2 estimates regardless of sample size, and ML- χ2 is inflated 

as nonnormality increases; under the condition of model misspecification, as 

nonnormality increases, ML- χ2 has upward bias, while SB-ML has downward bias and 

thus its power to detect model misspecification decreases.  

Nevitt and Hancock (2000) conducted a simulation study to explore effects of 

model specification and nonnormality on performance of ML-based and SB-based 

RMSEA. Their simulation design is very similar to Curran et al.’s (1996) including four 

levels of sample size, two levels of misspecification, and three levels of nonnormality. 

Their results showed that when the model is correctly specified, as nonnormality 

increases, both ML-based and SB-scaled RMSEA have increasing average value, with 
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SB-scaled RMSEA displaying better Type I error control; when the model is misspecified 

and data is normal, ML-based RMSEA has power close to the nominal level only when 

sample size is 1000, and SB-scaled RMSEA has similar behavior; as nonnormality 

increases, ML-based RMSEA increases while SB-scaled RMSEA decreases. All these 

findings are referring to the close fit: reject H0 when RMSEA > .05. 

Hu and Bentler (1998, 1999) investigated sensitivity of fit indices to model 

misspecification under systematically varied conditions of nonnormality and sample 

sizes. The data generation model is a three-factor fifteen-indicator CFA model. Model 

misspecification is defined by either covariance (e.g., collapsing two factors into one) or 

loading (e.g., omitting a cross-loading) misspecification. Seven combined conditions of 

skewness and kurtosis were added to factor scores, measurement errors, or both. Sample 

sizes ranged from 150 to 5000. Their results revealed that CFI, TLI, RMSEA belong to a 

cluster and are more sensitive to loading misspecification, while SRMR behaves the least 

similar to others and is more sensitive to covariance misspecification. Therefore, they 

suggested a two-index strategy for fit indices reporting, ML-based CFI, TLI, RMSEA 

together with SRMR. In addition, they proposed cutoffs for the indices, which are 0.95 

for CFI and TLI, 0.06 or 0.05 for RMSEA, and 0.08 for SRMR. The findings have 

exerted widespread influence in guiding SEM practitioners.  

Despite the popularity of their study, the generalizability to models in other 

settings have been called into question. As pointed out by Marsh, Hau and Wen (2004), 

cautions should be made in applying the cutoffs to research by SEM users. First, the 

magnitude of misspecifications in Hu and Bentler’s (1998, 1999) study falls into an 
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acceptably misspecified range according to the criteria per their own suggestion (e.g., 

TLI > 0.95). In addition, there is a paradox in the behavior of indices, with misspecified 

models, small sample size would lead to higher false rejection rate of a correct model and 

false acceptance of a misspecified model, while large sample would lead to zero rejection 

rate of a correct model and a 100% false acceptance rate for a misspecified model. 

Moreover, the indices other than SRMR have higher rejection rate for loading 

misspecification than for covariance misspecification, while the reverse pattern is found 

for SRMR. Marsh et al. (2004) further cautioned that not only the magnitude, but also the 

pattern of misspecification is limited in its representativeness in real life, because it 

assumes a true model perfectly representing the population while misspecification is 

narrowly defined as either omitted factor covariances or cross loadings.  

Fan and Sivo (2005) also raised the generalizability concern with Hu and Bentler 

(1998, 1999)’s conclusions in the sense that the magnitude and type of model 

misspecification are confounded with loading misspecification having larger magnitude. 

They replicated the design and adjusted population parameters so that the magnitude of 

misspecification, as operationally defined as the statistical power of χ2 test to reject an 

incorrect model, can be comparable across models. When correlating fit indices, it was 

found that SRMR is less correlated than the others, but a subsequent exploratory factor 

analysis suggests a clear one-factor solution, indicating that SRMR is not behaving 

exclusively from others. Their ANOVA results also suggested that SRMR is more 

sensitive to covariance misspecification while the other indices more sensitive to loading 

misspecification. However, once the factor covariance misspecification was adjusted to 
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be fixed to one, SRMR does not have differential sensitivity to the two misspecification 

types, casting doubts on the two-index strategy.  

Lei and Lomax (2005) investigated effects of nonnormality on performance of fit 

indices and parameter estimates of SEM. The data generation model is a SEM model 

with one exogenous and two endogenous latent variables, each with two indicators. 

Sample sizes range from 100 to 1000. Seven combined levels of univariate nonnormality 

with manifest variables were considered, a skewness around 0.3 and kurtosis around 1.0 

were specified for slight nonnormality, a skewness > 0.7 and kurtosis > 3.5 were 

specified for severe nonnormality. Results showed that nonnormality does not 

significantly affect standard errors across samples sizes; for both exogenous and 

endogenous variables, nonnormality exerts more important impact than sample size on 

bias of parameter estimates, and sample sizes have larger effect on endogenous variables 

than on exogenous variables; small sample sizes (less than 500) significantly affect all fit 

indices including χ2, TLI, and CFI; large sample size and nonnormality significantly 

affects χ2 statistics only, revealing that the χ2 statistic is lacking robustness. 

Yang and Liang (2013) studied effects of nonnormality and model 

misspecification on model fit indices and parameter estimates for two-factor ten-indicator 

CFA models. Nine combined levels of nonnormality on factor scores and errors were 

considered, skewness = 0.75 and kurtosis = 1.75 were specified for second degree of 

nonnormality, skewness = 1.25 and kurtosis = 3.75 were specified for third degree of 

nonnormality. Model misspecification is defined as either omitting a factor covariance, or 

omitting a nonzero cross loading. Results showed that for misspecified models, CFI and 



14 
 

RMSEA with ML/MLR were insensitive to main effects of sample size and nonnormality 

and two-way interactions between them. In terms of parameter estimation, ML/MLR 

estimates were robust to nonnormality at the moderate level. 

Xia, Yung and Zhang (2016) examined the performance of robust χ2 tests and 

standard error estimation of a CFA model under varying conditions of sample size, data 

nonnormality, and model misfit. They reported that under no model misfit, robust χ2 

rejection rates are inflated when N = 200 or smaller, and become closer to .05 when 

sample size reaches 500; under mild model misfit, robust χ2 over-reject the model; under 

higher degrees of model misfit, robust χ2 have sufficient statistical power to reject the 

model even when N = 200. In terms of standard error estimation, regardless of degrees of 

model misfit, it decreases with sample size and increases with data nonnormality. The 

bias in standard error estimation increases slightly with data nonnormality, but with a 

negligible magnitude when sample size reaches 200.   

 Bayesian Estimation 

Bayesian analysis produces posterior distribution for parameters through Bayes 

theorem as follows. 

p(θ|y)  p(y|θ)p(θ) 

where p(θ|y) refers to the probability to observe parameter vector θ given the 

available data, p(y|θ) refers to likelihood of data, and p(θ) is prior distribution for 

parameters. The theorem shows that the posterior distribution of parameters is 

proportional to the product of likelihood of data and prior information. It indicates that 

the information in data is augmented by priors and then yields the posterior distribution. 
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The choice of priors is influential to posterior estimates. When researchers have 

no prior concept or experience with parameter estimates, noninformative priors such as a 

uniform distribution U(0, 106) can be used for a non-negative regression coefficient. If 

researchers have prior experience about model parameters, or gain information from 

articles in the same field, informative priors can be specified such as a normal 

distribution N(0.5, 1) for a regression effect. Conjugate priors are commonly used in 

available software (e.g., blavaan package by Merkel & Rosseel, 2015). Data likelihood 

updated by a conjugate prior would produce the posterior distribution which is in the 

same distributional family with priors, easing computational burden. Based on the CFA 

model in this study, the noninformative default priors adopted in the R package blavaan 

are as follows for a CFA based covariance matrix: 

 Σ =  ΛΦΛ� +  � 

Priors are: 

Λ ~ �(0, 100) 

Φ ~ Inverse Wishart(I, 4) 

� ~ Inverse Gamma (1, 0.5) 

All the factor loadings follow a normal distribution with mean of zero and 

variance of 100. The variance-covariance matrix of the latent factors follows an inverse 

Wishart distribution with the scale matrix being a 3*3 identity matrix and degrees of 

freedom being 4. Each error variance follows an inverse Gamma distribution with shape 

parameter of 1 and scale parameter of 0.5. According to Merkel and Rosseel (2015), the 

default priors are conjugate and proper.  
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            Markov Chain Monte Carlo (MCMC)  

Bayesian analysis is based on Markov chain Monte Carlo (MCMC) sampling 

which draws samples from posterior distribution of parameters rather than calculating 

high-dimensional numerical integration. In blavaan, Gibbs sampling is used. Following 

Kaplan and Depaoli (2015), the idea of Gibbs sampler is as follows: 

Sample ��
� from �(��|��

���, ��
���, … , ��

���, �), then 

                                     Sample ��
� from �(��|��

�, ��
���, … , ��

���, �) 

                                     Sample ��
� from �(��|��

�, ��
�, … , ����

� , �) 

Starting from a set of initial values, the Gibbs algorithm samples a first parameter 

��
� from the conditional distribution of �� given the data and all the other parameters, 

then draws a second parameter ��
� conditional on the other parameters in the previous 

draw, all the way through ��
� where q denotes the number of parameters, until the pre-

specified number of iterations is reached.  

Convergence Diagnosis   

Convergence is diagnosed by a potential scale reduction factor (PSR) (Gelman & 

Rubin, 1992). It requires at least two Markov chains, and it implies the ratio of between-

chain variance to within-chain variance. The ratio shall be close to 1.0 if the chains are 

mixing well to a stationary status. The current study adopts two chains, and specifies that 

any parameter estimates exceeding PSR of 1.2 is considered to have a serious 

convergence problem, and any replicate having a convergence concern is discarded and 

not considered for further analysis. Convergence diagnosis is also aided by checking 

trace plots and autocorrelation plots. Trace plots tell whether the two chains are mixing 
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well and proceeding smoothly as the number of iterations increases; autocorrelation plots 

tell whether draws at a certain lag, say every 10th, is relatively independent from the 

previous draws, and a near-zero correlation between draws symbolizes good 

convergence.  

 Posterior Predictive p-value 

Model fit for Bayesian estimation is represented by the posterior predictive p-

value (PP p-value) in this study. It is an exact fit index reflecting how close the replicated 

data is from the raw data. Following Gelman, Carlin, Stern and Rubin (2004), pthe 

osterior predictive distribution is expressed as: 

�(����|�) =  � �(����|�)�(�|�)�� 

where ���� refers to replicated data, �(����|�) refers to the probability of 

���� given the parameter vector �, which is drawn from the posterior distribution denoted 

by �(�|�). After obtaining a sample of ���� , a test statistic shall be defined as the 

discrepancy measure, which is a χ2 statistic in this study. The χ2 statistic is calculated for 

the raw data and the replicated data sets, and PP p-value is calculated as: 

PP p-value = �(��(����) ≥  ��(�)|�) 

which means the proportion of replications where χ2 statistics based on ���� is larger than 

or equal to that of raw data.  

 The closer a PP p-value is to 0.5, the better the model fit. It is worth mentioning 

that PP p-value has quite different interpretations from the p-value associated with χ2 test 

in MLR. Although both are based on χ2 statistics, the p-value in MLR implies that under 

the null hypothesis of χ2 central distribution, the probability to observe values falling into 
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the critical region, while PP p-value within Bayesian framework implies that how well 

the replicated data mimic the raw data. For the sake of comparing rejection rate of p-

value both with MLR and Bayesian approaches, a cut-off point of .05 is specified for PP 

p-value. Asparouhov and Muthen (2010) did a series of simulation studies to explore the 

performance of PP p-value and argued that a cut-off of .05 is reasonable. Therefore, 

analogous to MLR estimator, a PP p-value < .05 is considered as successfully detecting 

the model misfit given there is misfit or as wrongly rejecting the model given a correctly 

specified model. In the blavaan package, other model fit indices are available such as 

Deviance Information Criterion (DIC), Widely Applicable Information Criterion 

(WAIC), given that in the current study, no model comparisons or model selections are 

concerned, these indices are thus not relevant to this study.  

 MLR vs Bayesian 

Comparing MLR with Bayesian estimation, first, MLR treats data as random and 

parameters as fixed, it seeks to find the maximum value for the likelihood surface; in 

contrast, Bayesian treats data as fixed and parameters as random, it seeks to produce the 

posterior distribution for parameters, and users are free to obtain mean, mode or other 

descriptive statistics based on the whole distribution.  Second, in MLR, the confidence 

interval (CI) is interpreted as out of a huge number of samples for CI of a certain 

parameter, 95% of the CIs would contain the true value; while in Bayesian, the posterior 

distribution is an empirical distribution for a parameter, therefore the credible interval can 

be inferred from percentiles, and its interpretation is straight-forward: the probability for 

the true value to fall in the credible interval is .95. Third, the two approaches can give rise 
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to similar results when sample size is large and the prior is a uniform distribution, then 

point estimates from the  maximum likelihood method is similar to the posterior mean in 

Bayesian approach, and the confidence interval is similar to the credible interval.  

 Prior Studies Comparing Frequentist vs Bayesian 

 Lee and Song (2004) compared Bayesian versus ML estimation for simulated 

CFA and SEM models with small sample sizes. They used priors obtained from initial 

runs adopting noninformative prior distribution with Bayesian method. Sample sizes 

were manipulated varying from 2 times to 5 times the number of parameters to be 

estimated, and models with varying magnitude of parameters were tested. They found 

that under normal data distribution, the PP p-value has accurate (close to .5) and stable 

performance across sample size conditions, while the chi-square test under ML approach 

has an inflated rejection rate for correctly specified models, and the chi-square statistic is 

deviating from the chi-square distribution; in terms of parameter estimation, Bayesian 

approach yields accurate results with acceptable root mean square (RMS), while ML 

approach yields biased estimates with large RMS, showing that Bayesian performs better 

than ML both in goodness-of-fit and parameter estimation under small sample sizes. 

They further reported that under nonnormal data distribution, Bayesian performs less 

stable than in normal condition, and the estimates of variances and covariances are 

noticeably worse.   

Muthen and Asparouhov (2012) compared performance of MLE and Bayesian 

methods (with noninformative priors) based on simulated CFA models. They 

manipulated sample sizes, and model misspecification defined by various magnitudes of 
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cross-loadings or residual correlations. They reported that when the model is correctly 

specified, PP p-values rejection rates are close to the level of .05, while ML-p values 

have slight inflation; when the model is mildly misspecified, ML-p values are over-

sensitive to the misspecification; when the degree of misspecification is higher, ML-p 

values have higher rejection rates than PP p-values, but both display sufficient statistical 

power to reject the model as long as sample size reaches 200. These results agreed with 

each other when the model misspecification was defined by cross-loadings and by 

residual correlations respectively. In terms of parameter estimation, they reported that the 

two estimation methods yielded highly comparable parameter accuracy and thus no 

preference was made.  

Liang and Yang (2016) compared MLR and Bayesian estimation (with non-

informative priors) based on CFA and bi-factor models with varying model complexity. 

They manipulated sample size, nonnormality of data, and model misspecification defined 

by collapsing latent factors. They found that under the condition of normal data and 

relatively small sizes, the Bayesian method has lower statistical power to detect a 

misspecified model and lower Type I error when the model is correct; moreover, such 

pattern is offset by increasing degrees of nonnormality. In addition, they found the utility 

of the Bayesian method to detect nonnormality when model is correct even with small 

sample size, while the chi-square test in MLR tends to reject correct models too often for 

models with large number of variables (e.g., 16). They also reported that Bayesian 

estimation yields comparable parameter estimates and standard errors with MLR across 
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simulation conditions, and suggested the usage of the Bayesian method in parameter 

estimation under nonnormality conditions.  
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Chapter 3.  Method 

A Monte Carlo simulation study is conducted for evaluating MLR and Bayesian 

estimators for a CFA model. In this chapter, the simulation design, data generation 

procedures, data analysis, and evaluation criteria are illustrated.  

Design of the Simulation Study 

Design factors include 3 sample sizes × 3 levels of model misfit × 3 degrees of 

data nonnormality, all factors being fully crossed, yielding 27 conditions. In each 

condition, 200 replications are performed, thus generating 27*200 = 5400 data sets. Each 

data set is then fit to a CFA model using MLR and Bayesian estimators repeatedly. In the 

Bayesian analysis, noninformative priors are involved which suits the situation when 

CFA users have no prior experience for the parameters.  

Population Model 

The CFA model used to generate data is based on Curran, West and Finch 

(1996)’s study. As shown in Figure 1, it is a 3-factor model with three indicators loaded 

on each factor. All the factor loadings are set to 0.70, error variances are 0.51, resulting in 

unit variance in each indicator. The factor variances are 1.0, and the inter-factor 

correlations are 0.30.  
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Figure 1. Three-Factor CFA Model with Data Generation Parameters 

 

Sample Sizes 

 Three levels of sample size are manipulated to be 200, 500, and 1000 indicating 

small, medium, and large samples. These levels are commonly adopted in simulation 

research (e.g., Curran et al., 1996).  

Data Nonnormality 

Three levels of data distribution are considered. Normal: skewness = 0, kurtosis = 

0; mild nonnormality: skewness = 1, kurtosis = 3; moderate nonnormality: skewness = 2, 

kurtosis = 7. All the distributional characteristics target at the observed variables. These 

distributions are chosen because they reflect common distribution in the field of applied 

psychology (Micceri, 1989). 

Model Misfit 

The current study adopted Cudeck and Browne’s (1992) method to specify model 

misfit. Three levels of misfit are considered, no misfit (δ = 0), mild misfit (δ = 0.06), and 
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moderate misfit (δ = 0.24). These values are chosen because they correspond to RMSEA 

of 0, 0.05, and 0.1, indicating perfect fit, good fit, and poor fit (Browne & Cudeck, 1993). 

No extremely bad misfit is considered here because for SEM practitioners, no further 

attention is expected to be paid to a model if RMSEA is larger than 0.10. 

Data Generation Procedure 

All the data were generated using R 3.4.0 (R Core Team, 2017). Based on the 

population model as depicted in Figure 1, the population variance-covariance matrix was 

generated, denoted as Σ. Then, perturbed covariance matrix was generated using Cudeck 

and Browne’s (1992) method. Explicitly, the R package MBESS (Kelley, 2018) was used 

to incorporate approximation error into Σ using Lai’s (2018) function 

Sigma.2.SigmaStar(). The input is model specification and the desired error (the value c). 

The value c is derived from RMSEA thorough the expression c = RMSEA2*df where df 

refers to the degrees of freedom of the population model (df = 24). Based on a simulated 

large sample of 100000, the three levels of misfit correspond to model fit indices of 

[perfect fit: CFI = 1.000, TLI = 1.000, RMSEA = .002], [good fit: CFI = .972, TLI = 

.958, RMSEA = .051], [poor fit: CFI = .896, TLI = .845, RMSEA = .101], revealing a 

good recovery of model fit indices. The variance-covariance matrix after incorporated 

with increasing levels of approximation error are hereafter denoted as Σ0, Σ1, and Σ2. 

Data nonnormality was introduced afterwards. Multivariate normal data was 

generated in R based on the three variance-covariance matrices. For each misfit 

condition, three levels of nonnormality were incorporated using Fleishman’s (1978) 
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method. It manipulates univariate skewness and kurtosis through the following 

transformation expression: 

X = a + bZ + cZ2 + dZ3 

Where X is the transformed data, Z is the raw data which are normally distributed, a, b, c 

and d are the coefficients derived from the desired skewness and kurtosis. The 

coefficients are available by checking Fleishman table (Fleishman, 1978; Fan, Felsovalyi, 

Sivo & Keenan, 2002). Table 1 and Table 2 display the covariance matrices for data 

generation models under selected simulation conditions.  
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Table 1 Covariance Matrices for Data Generation Models with Three Degrees of Misfit 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 

 Σ0 : no misfit  
V1 1         
V2 0.49 1        
V3 0.49 0.49 1       
V4 0.147 0.147 0.147 1      
V5 0.147 0.147 0.147 0.49 1     
V6 0.147 0.147 0.147 0.49 0.49 1    
V7 0.147 0.147 0.147 0.147 0.147 0.147 1   
V8 0.147 0.147 0.147 0.147 0.147 0.147 0.49 1  
V9 0.147 0.147 0.147 0.147 0.147 0.147 0.49 0.49 1 

 Σ1 : mild misfit  
V1 1         
V2 0.516 1        
V3 0.491 0.463 1       
V4 0.078 0.143 0.203 1      
V5 0.083 0.148 0.208 0.499 1     
V6 0.091 0.155 0.215 0.49 0.48 1    
V7 0.076 0.141 0.201 0.101 0.141 0.176 1   
V8 0.084 0.148 0.208 0.108 0.149 0.183 0.493 1  
V9 0.092 0.156 0.217 0.116 0.157 0.192 0.49 0.487 1 

 Σ2 : moderate misfit  
V1 1         
V2 0.541 1        
V3 0.491 0.438 1       
V4 0.014 0.138 0.255 1      
V5 0.024 0.148 0.264 0.508 1     
V6 0.038 0.163 0.279 0.491 0.472 1    
V7 0.01 0.135 0.251 0.057 0.136 0.203 1   
V8 0.025 0.149 0.266 0.072 0.151 0.217 0.496 1  
V9 0.04 0.165 0.281 0.087 0.166 0.233 0.49 0.484 1 
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Table 2 Covariance Matrices for Data Generation Models with Three Degrees of Misfit 
Plus Moderate Nonnormality 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 

 No misfit + moderate nonnormality  
V1 0.99         
V2 0.302 0.939        
V3 0.297 0.219 1.015       
V4 0.056 0.103 0.056 1.005      
V5 0.033 0.074 0.089 0.341 1.019     
V6 0.017 0.104 0.073 0.339 0.345 1.077    
V7 0.061 0.027 0.025 0.041 0.08 0.094 0.846   
V8 0.091 0.033 0.057 0.082 0.084 0.11 0.308 0.982  
V9 0.012 0.048 0.045 0.057 0.034 0.069 0.241 0.288 1.028 

                                       Mild misfit + moderate nonnormality 

V1 0.989         
V2 0.269 0.846        
V3 0.288 0.287 0.936       
V4 -0.057 0.089 0.054 1.062      
V5 0.006 0.109 0.097 0.333 1.092     
V6 -0.007 0.069 0.062 0.342 0.321 0.963    
V7 0 0.02 0.109 0.065 0.063 0.056 1.099   
V8 -0.031 0.046 0.083 0.091 0.114 0.074 0.374 1.083  
V9 0.02 0.074 0.035 0.034 0.028 0.089 0.278 0.377 1.003 

           Moderate misfit + moderate nonnormality   
V1 1.039         
V2 0.321 1.058        
V3 0.315 0.289 1.058       
V4 -0.002 0.102 0.176 1.059      
V5 0.037 0.119 0.207 0.416 1.047     
V6 -0.053 0.073 0.138 0.344 0.354 0.977    
V7 0.033 0.06 0.095 0.081 0.092 0.13 1.182   
V8 0.021 0.099 0.181 0.092 0.128 0.177 0.389 0.989  
V9 0.015 0.052 0.085 0.1 0.095 0.153 0.425 0.324 0.962 
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Model Estimation 

 For the combined 27 conditions, 200 replicates were performed. The data was 

then fit to a same CFA model with the population model using the R package lavaan 

(Rosseel, 2012) for MLR and blavaan (Merkle & Rosseel, 2015) for Bayesian estimation. 

In lavaan, estimator = “MLR” is used. In blavaan, several trials were initially made to 

gain an empirical understanding of the number of iterations needed for convergence. It is 

tested that with burnin = 5000 and number of iterations = 15000, model convergence was 

reached even for the largest degree of nonnormality and misfit. Therefore, the settings 

were adopted for every run with two chains.  

Results Saving 

The outcomes saved include, for each replication per condition, standardized 

parameter estimates together with their standard errors (SE) for the CFA model, model fit 

indices of scaled χ2, p value for scaled χ2, RMSEA, CFI, TLI (all based on scaled χ2), and 

SRMR for MLR estimator, since these are among the most commonly reported indices in 

published articles, and are consistent with those reported in Mplus output, which 

facilitates comparisons with Mplus results popularly adopted in journal articles in social 

science. For Bayesian estimator, PP p-value, parameter estimates with standard error 

were saved. Model convergence constitutes a crucial concern for both MLR and 

Bayesian, variables indicating convergence were also programmed in R and saved in 

results. Additionally, since inadmissible cases would distort the interpretation of 

estimation results, inadmissible issue was defined as either negative factor variance or 
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error variance of indicators, programmed in R, and saved. Only replicates without 

convergence and inadmissibility concerns were considered further.  

Data Analysis 

Based on the saved replicates, those with nonconvergence or inadmissible issues 

were recorded and discarded from further analysis. First, the percentages of 

nonconvergence or inadmissible cases were reported for each crossed condition to gain 

an initial insight to the estimation performance. Second, for MLR estimator, ANOVA 

analysis was conducted using SPSS 24.0 to examine the effects of design factors of 

sample size, degree of misfit and nonnormality on each fit index separately to gain 

understanding of sensitivity of indices to various suboptimal conditions. Main effects and 

two-way interactions were considered in ANOVA models. For Bayesian analysis, the 

ANOVA model was fit to examine the sensitivity of PP p-value to conditions. Third, for 

both MLR and Bayesian estimators, mean values of point estimates and SEs were 

calculated for later use of parameter estimation performance evaluation. Fourth, in order 

to compare MLR vs Bayesian in terms of statistical power in rejecting misfit models, 

rejection rates (α = .05) of scaled χ2 associated p-value and PP p-value were calculated 

across conditions.  

Evaluation Criteria 

In terms of sensitivity of model fit indices, η2 is calculated using the formula 

��������

�������
 , where �������� denotes the Type III sum of square for a main effect or an 

interaction effect in the ANOVA model, and ������� denotes the corrected total effect 

provided in the ANOVA table. Eta squared (η2) is used because if its clear and 
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straightforward interpretation of effect size, that is, the proportion of variation in the 

outcome accounted for by the main effect or interaction effect, which is equivalent to R2. 

A value of .10 for η2 would be considered as an adequate amount of variance explained 

by a predictor (Cohen, 1988). 

In regard to parameter estimation performance, relative bias (RB) serve as the 

criterion for both point estimates and standard error estimates. The calculation is as 

follows: 

RB = 
|�� – �|

�
 

Where �� denotes the mean estimates over replicates, � denotes the population value; 

regarding SE estimates, � is given by the SD of the corresponding point estimates. The 

cutoff for RB is .10 for point estimates and standard error estimates (Hoogland and 

Boomsma, 1998).  

With respect to statistical power to reject misfit models, rejection rates of scaled 

χ2 associated p-value or PP p-value exceeding 80% are considered appropriate.  

 



31 
 

Chapter 4.  Results                                  

In this chapter, I began with displaying the percentage of solutions that had model 

nonconvergence or inadmissible solution issues by design factors. After removing the 

inadmissible solutions, a series of factorial ANOVA models were performed to examine 

the effects of design factors (sample size, model misfit, and data nonnormality) and their 

interactions on each model fit index associated with MLR. The following sections present 

the results for the differences between MLR and Bayesian estimation methods in terms of 

power, and parameter estimations. Power (or Type I error under correctly specified 

model) was evaluated by the rejection rates of p values associated with the two methods. 

Parameter estimations were discussed based on relative biases of loading and inter-factor 

correlation estimations, standard errors, and relative biases of standard error estimations. 

Descriptive plots, factorial ANOVA models for outcomes associated with each 

estimation method, and mixed-design ANOVA models accommodating both between-

subjects effects and within-subjects effects were adopted to examine the differences 

between MLR and Bayesian methods.  

Nonconvergence and Inadmissible Solutions 

Table 3 displays the percentage of replicates with nonconvergence issues and 

inadmissible solutions. For the column names, N refers to sample size, cov refers to 

model misfit, and dist refers to data distribution. The notations are hereafter adopted in 
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the subsequent tables. The highest percentage was associated with the combined 

condition of small sample size (N = 200), moderate nonnormality, and moderate misfit. 

When sample size was larger (N = 500 or 1000), no convergence issue or inadmissible 

replicates were found. It reveals that small sample size, higher degree of misfit and 

nonnormality are more likely to have nonconvergence and inadmissibility problems, 

which is consistent with assumptions with maximum likelihood estimation. Overall, 39 

(0.72%) of the simulated samples were removed from further analyses.  

 

Table 3 Percentage (%) of Nonconvergence and Inadmissibility 

  
  cov 

N dist a b c 

200 1 0 0 0.5 

 2 0 0 1.5 

 3 3 5 9.5 

500 1 0 0 0 

 2 0 0 0 

 3 0 0 0 

1000 1 0 0 0 

 2 0 0 0 

  3 0 0 0 
Note. N: sample size; dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = 
moderate nonnormal; cov: model misfit, a = no misfit, b = mild misfit, c = moderate 
misfit. 
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Sensitivity of Model Fit Indices 

Descriptive Statistics 

Table 4 shows the sample means for the model fit indices associated with MLR 

estimator by design factors. When there was no misfit (cov = a), all five indices indicate 

satisfactory fit to the data, namely, χ2 close to the degree of freedom of the CFA model 

(df = 24), scaled CFI and scaled TLI were above 0.95, and both scaled RMSEA and 

SRMR were less than .05. As the degree of misfit increased, the indices showed 

decreasing model fit, which is consistent with the expectations from the simulation 

design. Sample size seemed to not affect model fit indices remarkably, with the exception 

of scaled χ2 which increased with sample sizes under misspecified model conditions. For 

scaled χ2, scaled RMSEA, and SRMR, higher degree of nonnormality appeared to be 

related to poorer model fit under correct model specification, while opposite pattern was 

observed under model misfit, suggesting the need to consider interaction effects of the 

design factors on the performance of model fit indices in the subsequent ANOVA 

models.  
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Table 4 Sample Means of Model Fit Indices across Design Factors 

N dist 
 Scaled 

χ2 
Scaled 

CFI 
Scaled 

TLI 
Scaled 

RMSEA 
SRMR 

  cov = a (no misfit) 

200 1 (Normal) 24.741 0.993 0.998 0.016 0.035 
 2 (Mild NN) 26.467 0.989 0.991 0.021 0.037 
 3 (Moderate NN) 28.779 0.957 0.954 0.026 0.043 

500 1 (Normal) 24.623 0.997 0.999 0.01 0.022 
 2 (Mild NN) 24.921 0.996 0.999 0.011 0.024 
 3 (Moderate NN) 25.574 0.987 0.993 0.012 0.027 

1000 1 (Normal) 24.09 0.999 1 0.007 0.016 
 2 (Mild NN) 24.009 0.999 1 0.007 0.016 

  3 (Moderate NN) 24.957 0.995 0.998 0.008 0.019 
  cov = b (mild misfit) 

200 1 (Normal) 38.133 0.967 0.952 0.051 0.048 
 2 (Mild NN) 36.635 0.967 0.952 0.046 0.047 
 3 (Moderate NN) 30.583 0.946 0.934 0.031 0.045 

500 1 (Normal) 53.941 0.973 0.959 0.049 0.039 
 2 (Mild NN) 52.966 0.969 0.954 0.047 0.039 
 3 (Moderate NN) 32.739 0.971 0.959 0.023 0.032 

1000 1 (Normal) 84.712 0.972 0.958 0.05 0.036 
 2 (Mild NN) 76.834 0.971 0.957 0.046 0.035 

  3 (Moderate NN) 37.147 0.978 0.968 0.021 0.025 
  cov = c (moderate misfit) 

200 1 (Normal) 76.605 0.891 0.836 0.103 0.072 
 2 (Mild NN) 73.726 0.882 0.823 0.1 0.071 
 3 (Moderate NN) 41.499 0.88 0.823 0.053 0.052 

500 1 (Normal) 159.165 0.885 0.828 0.104 0.067 
 2 (Mild NN) 137.784 0.888 0.83 0.097 0.065 
 3 (Moderate NN) 51.707 0.886 0.878 0.045 0.041 

1000 1 (Normal) 281.231 0.891 0.837 0.103 0.065 
 2 (Mild NN) 246.506 0.888 0.832 0.096 0.063 

  3 (Moderate NN) 73.088 0.923 0.885 0.044 0.037 

Note. NN: nonnormal. 
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Factorial ANOVA Results 

With the aim of examining the effects of the design factors on model fit indices, 

factorial ANOVA models were fitted for each fit index separately. Main effects and 

interactions were included in the models to enable a better understanding of the effects. 

Practical significance was indicated by η2, which is calculated using the formula 
��������

�������
 , 

as was illustrated in Chapter 3. The statistics represents the proportion of variance in the 

outcome explained by a predictor. Effects with η2 larger than or close to .10 were 

considered as having adequate contribution to the model. Table 5 presents the ANOVA 

results for scaled χ2. According to η2, all the three design factors had meaningful impacts 

on the outcome, and model misfit had the strongest influence, accounting for 37.3% of 

the variation in scaled χ2. Tukey’s Post Hoc multiple comparison results for the three 

factors are displayed in Table 6 through Table 8. It can be told from the tables that scaled 

χ2 inflated with larger sample size and higher degree of misfit, and decreased with 

nonnormality.  

It is worth noting that the interaction between model misfit and sample size, and 

the interaction between misfit and distribution had practical significance around 0.1 as 

indicated by η2, which suggests that about 10% of the variation in the outcome were 

explained by the interactions each. In the presence of significant interactions, it is more 

important to understand the effect of a design factor within each level of another factor 

involved. Therefore, interaction plots based on marginal means are provided. As shown 

in the upper panel of Figure 2, when the model was correctly specified, there were no 

differences across sample sizes. The sample size differences became the largest when the 



36 
 

model was moderately misspecified, with larger sample size yielding more inflated 

Scaled χ2. As shown in the lower panel of Figure 2, when there was no misfit, there were 

no differences across distribution conditions. The distribution differences became the 

most salient when there was moderate degree of misfit, with the highest degree of 

nonnormality condition yielding the least inflated scaled χ2. The results highlighted the 

importance of considering the effect of a design factor in the context of another factor, 

and no single rule can be thoroughly relied on to evaluate the performance of a model fit 

index.  

 

Table 5 ANOVA Results for Scaled χ2 

Source SS df MS F p η2 

cov 10016424.03 2 5008212 6201.653 <.001 0.373 

N 2756036.22 2 1378018 1706.395 <.001 0.103 

dist 2242950.324 2 1121475 1388.719 <.001 0.084 

cov * N 3151226.647 4 787806.7 975.539 <.001 0.117 

cov * dist 2609697.201 4 652424.3 807.895 <.001 0.097 

N * dist 876946.278 4 219236.6 271.48 <.001 0.033 
cov * N * 
dist 

901034.278 8 112629.3 139.468 <.001 0.034 
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Table 6 Tukey HSD Multiple Comparisons for the Effect of Degree of Model Misfit on 
Scaled χ2 

 (I) cov (J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b -24.064 0.949 <.001 -26.289 -21.838 

 c -102.516 0.951 <.001 -104.746 -100.285 

b c -78.452 0.952 <.001 -80.683 -76.220 
 Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 

 

 

Table 7 Tukey HSD Multiple Comparisons for the Effect of Sample Size on Scaled χ2 

(I) N 
(J) N I-J SE p 95% Confidence Interval 

     Lower Upper 

200 500 -20.620 0.953 <.001 -22.853 -18.386 

 1000 -55.024 0.953 <.001 -57.257 -52.790 

500 1000 -34.404 0.947 <.001 -36.625 -32.183 
 

 

 

Table 8 Tukey HSD Multiple Comparisons for the Effect of Distribution on Scaled χ2 

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 7.443 0.948 <.001 -26.289 -21.838 

 3 46.715 0.952 <.001 -104.746 -100.285 

2 3 39.273 0.952 <.001 -80.683 -76.220 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 
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Figure 2. Interaction Plots of Misfit*Sample Size (Upper Panel) and Misfit*Distribution 
(Lower Panel) for Scaled χ2 . Note. NN: nonnormal. 
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Table 9 ANOVA Results for Scaled CFI 

Source SS df MS F p η2 

cov 8.971 2 4.485 3319.02 <.001 0.529 

N 0.253 2 0.126 93.602 <.001 0.015 

dist 0.006 2 0.003 2.215 0.109 0 

cov * N 0.003 4 0.001 0.56 0.692 0 

cov * dist 0.258 4 0.064 47.639 <.001 0.015 

N * dist 0.24 4 0.06 44.337 <.001 0.014 

cov * N * dist 0.013 8 0.002 1.201 0.294 0.001 

 

 

The ANOVA results for scaled CFI are presented in Table 9. Model misfit was 

the only design factor that exerted noteworthy effect (η2 = 0.529), explaining 52.9% of 

the variation in the outcome. Tukey’s HSD multiple comparison results, as shown in 

Table 10, revealed that scaled CFI became smaller with increasing level of model misfit, 

indicating that model misfit impairs model fit, which is within expectation. In the current 

model, no salient interaction effect was detected. The results indicate that scaled CFI 

serves as an ideal model fit index given that it is sensitive to model misfit while not 

saliently affected by other factors such as sample size and distribution of observed 

variables.  
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Table 10 Tukey HSD Multiple Comparisons for the Effect of Degree of Misfit on Scaled 
CFI 

 (I) cov (J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b 0.022 0.001 <.001 -26.289 -21.838 

 c 0.096 0.001 <.001 -104.746 -100.285 

b c 0.074 0.001 <.001 -80.683 -76.22 

 Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 

 

 Similar to scaled CFI, the performance of scaled TLI suggests a decent model 

index. As shown in Table 11, model misfit was the only predictor that had meaningful 

practical significance (η2 = 0.493) explaining nearly half of the total variation in the 

outcome. Post hoc multiple comparison results, as shown in Table 12, revealed that 

scaled TLI became lower with increasing level of model misfit, indicating that the model 

fit was worse in the presence of misfit. Meanwhile, scaled TLI was robust to other design 

factors as well as the interactions as indicated by the tiny amount of variation explained 

by the remaining predictors in the ANOVA model. The results endorsed scaled TLI as 

another ideal model fit index.  

 

Table 11 ANOVA Results for Scaled TLI 

Source 
SS df MS F p η2 

cov 21.999 2 11.000 2757.107 <.001 0.493 

N 0.351 2 0.176 44.006 <.001 0.008 

dist 0.032 2 0.016 3.962 0.019 0.001 

cov * N 0.014 4 0.003 0.852 0.492 0.000 

cov * dist 0.459 4 0.115 28.783 <.001 0.010 

N * dist 0.399 4 0.100 25.032 <.001 0.009 

cov * N * dist 0.054 8 0.007 1.686 0.096 0.001 
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Table 12 Tukey HSD Multiple Comparisons for the Effect of Degree of Model Misfit on 
Scaled TLI 

 (I) cov 
(J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b 0.038 0.002 <.001 0.033 0.043 

 c 0.151 0.002 <.001 0.146 0.156 

b c 0.113 0.002 <.001 0.108 0.118 
 Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 

 

 

Table 13 displays ANOVA results for scaled RMSEA. Model misfit accounted 

for the majority of variation in the outcome (η2 = 0.604). Tukey’s HSD multiple 

comparison results, as reported in Table 14, show that scaled RMSEA became larger with 

increasing level of misfit, which is consistent with theoretical expectation. The finding 

indicates that the scaled RMSEA is sensitive to misfit, which is a desirable feature. 

Distribution was another design factor that had practical significance on the outcome (η2= 

0.096), explaining about 10% of the variation in the outcome. A further inspection of post 

hoc multiple comparison (see Table 15) reveals that as the degree of nonnormality 

increased, scaled RMSEA became smaller, which suggests that scaled RMSEA is 

sensitive to data nonnormality, especially, in an undesirable direction, posing caution on 

its performance in evaluating models under nonnormality condition. Above and beyond 

the main effects, it is more important to discuss the effect of distribution under each level 

of model misfit, as evidenced by the significant interaction effect between misfit and 

distribution (η2 = 0.087), accounting for almost ten percent of the variation in the 

outcome. The interaction plot is shown in Figure 3.  
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Figure 3 reveals that when model is specified correctly, scaled RMSEA was 

around 0.020 regardless of distribution conditions. When mild degree of misfit was 

introduced, scaled RMSEA increased to around 0.050 for normal and mild nonnormal 

distribution conditions, but was around only 0.030 for moderate nonnormal condition. 

The distribution differences were more salient under moderate model misfit, with the 

highest degree of nonnormality yielding scaled RMSEA far below the other two 

distribution conditions. The results suggest that while scaled RMSEA is sensitive to 

model misfit, its sensitivity is impaired by data nonnormality. The results further 

demonstrate that the performance of scaled RMSEA in evaluating models should be 

considered in the context of combined effects of model misfit and data distribution.  

 

Table 13 ANOVA Results for Scaled RMSEA 

Source SS df MS F p η2 

cov 4.388 2 2.194 8047.260 <.001 0.604 

N 0.050 2 0.025 92.254 <.001 0.007 

dist 0.697 2 0.349 1279.101 <.001 0.096 

cov * N 0.022 4 0.006 20.617 <.001 0.003 

cov * dist 0.633 4 0.158 580.513 <.001 0.087 

N * dist 0.014 4 0.004 13.035 <.001 0.002 

cov * N * dist 0.002 8 0.000 1.047 0.398 0.000 
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Table 14 Tukey HSD Multiple Comparisons for the Effect of Degree of Misfit on Scaled 
RMSEA 

(I) cov (J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b -0.027 0.001 <.001 -0.029 -0.026 

 c -0.070 0.001 <.001 -0.071 -0.069 

b c -0.043 0.001 <.001 -0.044 -0.041 

Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 

 

Table 15 Tukey HSD Multiple Comparisons for the Effect of Distribution on Scaled 
RMSEA 

(I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 0.003 0.001 <.001 0.001 0.004 

 3 0.026 0.001 <.001 0.024 0.027 

2 3 0.023 0.001 <.001 0.022 0.024 

Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 

 

 

 

Figure 3. Interaction Plot of Misfit*Distribution for Scaled RMSEA. Note. NN: 
nonnormal. 
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Table 16 presents the ANOVA results for SRMR. Model misfit and sample size 

were the noteworthy predictors, accounting for 58.5% and 12.9% of the variation in the 

outcome respectively. Tukey’s HSD multiple comparison results (see Table 17 and Table 

18) show that SRMR increased with degree of misfit, and decreased with sample size, 

indicating that lower misfit and larger sample size contribute to better model fit. More 

importantly, the interaction between misfit and distribution explained 9.6% of the 

variation in SRMR. A further inspection of the interaction plot (see Figure 4) reveals that 

when there was no model misfit, SRMR values were all below .030 across distribution 

conditions. When misfit was at mild level, SRMR under moderate nonnormal distribution 

showed the lowest value. The pattern became more salient under moderate misfit 

condition. The interaction effect indicates that although SRMR is sensitive to model 

misfit which is desirable, the sensitivity is impaired by a moderate degree of data 

nonnormality. The results suggest that the performance of SRMR in evaluating models is 

affected by sample size and data distribution.   

 

Table 16 ANOVA Results for SRMR 

Source SS df MS F p η2 
cov 0.976 2 0.488 14009.426 <.001 0.585 

N 0.215 2 0.108 3088.169 <.001 0.129 

dist 0.091 2 0.045 1299.112 <.001 0.054 

cov * N 0.020 4 0.005 139.972 <.001 0.012 

cov * dist 0.160 4 0.040 1148.618 <.001 0.096 

N * dist 0.009 4 0.002 64.325 <.001 0.005 

cov * N * dist 0.001 8 0.000 3.439 0.001 0.001 

 



45 
 

Table 17 Tukey HSD Multiple Comparisons for the Effect of Degree of Model Misfit on 
SRMR 

 (I) cov (J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b -0.012 0.000 <.001 -0.013 -0.012 

 c -0.033 0.000 <.001 -0.033 -0.032 

b c -0.021 0.000 <.001 -0.021 -0.020 
 Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 

 

 

Table 18 Tukey HSD Multiple Comparisons for the Effect of Sample Size on SRMR 

 (I) N (J) N I-J SE p 95% Confidence Interval 

     Lower Upper 

200 500 0.010 0.000 <.001 0.010 0.011 

 1000 0.015 0.000 <.001 0.015 0.016 

500 1000 0.005 0.000 <.001 0.004 0.005 
 

 

 

 

Figure 4. Interaction Plot of Misfit*Distribution for SRMR. Note. NN: nonnormal. 
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Differences between MLR and Bayesian Methods 

Rejection Rates of p-values 

In an effort to investigate the performance of MLR and Bayesian methods in 

terms of rejection rates associated with p values, descriptive plots were made to check the 

impacts of design factors on rejection rates. Given that the rejection rate data is 

aggregated over replicates, ANOVA models are not performed.  

Figure 5 through Figure 7 display the rejection rates of p-values using MLR and 

Bayesian estimation methods under the three model misfit conditions. In the basic facet 

of each figure, x axis refers to degrees of data nonnormality (1, 2, and 3), and y axis 

refers to rejection rates. The triangular dots denote the rejection rates associated with 

MLR method, and the circular dots denote the rejection rates associated with Bayesian 

method. The facets are placed side by side in the increasing order of sample sizes (200, 

500, 1000 as shown in the column label). Each figure corresponds to a level of model 

misfit (ordered as no, mild, moderate misfit). 

When the model is correctly specified (see Figure 5), it would be ideal that 

rejection rates fall below .05 regardless of sample size and data nonnormality, and thus a 

reference line was flagged at .05 in the figure. Under small sample size (N = 200), both 

MLR and Bayesian estimation methods showed greater rejection rates under data 

nonnormality. With larger sample size (N = 500 or 1000), rejection rates of p value (PP p-

value for Bayesian) using either method were not affected much by distribution 

conditions. The performance of rejection rates appeared to have less fluctuations under 
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larger sample sizes. Contrasting the two estimation methods, in general, p values 

associated with MLR had higher rejection rates, most of which being larger than .05.  The 

most notable difference between the two methods was observed when sample size was 

small, as can be told from the gap between the circular and triangular dots. Especially, 

rejection rates under MLR estimation exhibited the highest value when sample size was 

small and degree of nonnormality was moderate. The results suggest that under a 

correctly specified model, p values associated with MLR estimation in general have 

inflated type I error across conditions of other design factors, and the worst performance 

occurs under the combined condition of small sample size and nonnormal data 

distribution. PP p-values associated with Bayesian estimation have stable performance 

across conditions of design factors, and yield rejection rates consistently below .050. The 

finding lends support for Bayesian method in terms of decent type I error control 

compared to MLR method, especially when sample size is small. 
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Figure 5. Rejection Rates of p-values Associated with MLR and Bayesian under No 
Misfit. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 
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When the model is mildly misspecified (see Figure 6), it is expected that rejection 

rates be higher than those in Figure 5 but still below 80% because mild degree of 

misspecification is acceptable and realistic, so a reference line was flagged at .80 in the 

figure. For both methods, rejection rates increased with sample size and became smaller 

when data nonnormality reached moderate level. In general, Bayesian method produced 

lower rejection rates than MLR. Under small sample size (N = 200), all the rejection rates 

were below .80. When sample sizes were larger and data were not deviating much from 

normality, rejection rates for both methods exceeded 80%. Comparing Bayesian and 

MLR methods, the most notable difference was observed when sample size was small. 

The results suggest that under mildly misspecified models, rejection rates of both 

methods are positively related to sample size and negatively related to data nonnormality 

(moderate vs less degrees of nonnormality). MLR associated p values over-reject the 

model under larger sample sizes, and Bayesian associated PP p values exhibit decent 

performance when sample size is smaller than 1000. 
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Figure 6. Rejection Rates of p-values Associated with MLR and Bayesian Method under 
Mild Misfit. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = moderate 
nonnormal. 
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When the model is moderately misspecified (see Figure 7), it would be ideal that 

rejection rates fall above 80% because the model is expected to be rejected, so a reference 

line was flagged at .80 in the figure. For both methods, rejection rates exceeded 80% 

regardless of sample sizes when data distribution were not deviating from normality 

much. When data were moderately misspecified and sample sizes were smaller than 

1000, rejection rates were deflated, indicating an impaired statistical power to detect the 

misfit. Comparing the two methods, they generally yielded similar results. The findings 

suggest that when the model is moderately misspecified, both Bayesian and MLR 

methods exhibit similar and decent statistical power to reject the model even under small 

sample sizes (N = 200), except for the conditions of moderate degree of data 

nonnormality.  
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Figure 7. Rejection Rates of p-values Associated with MLR and Bayesian under 
Moderate Misfit. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = moderate 
nonnormal. 
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Relative Bias in Point Estimates 

 In order to investigate the performance of MLR and Bayesian methods in terms of 

point estimations, descriptive plots were made to check the impacts of design factors on 

each outcome, and a series of factorial ANOVA models were performed to examine the 

effects of the design factors and their interactions on relative bias of loadings and inter-

factor correlations associated with MLR and Bayesian method separately. In an initial 

effort of inspecting the descriptive statistics (mean, standard deviation, minimum, 

maximum, and distributions) of the parameter estimates (point estimates, and standard 

error estimates) based on the simulated data, the parameter estimates were comparable 

across items (for loading related parameters) or latent factors (for inter-factor correlation 

related parameters), and thus relative biases of estimates were calculated based on an 

arbitrarily selected parameter associated with the loading from the 2nd item to the 1st 

latent factor for loading estimates, and the inter-factor correlation between the first two 

latent factors for covariance estimates. This applies to all the subsequent analyses related 

to parameter estimations. Practical significance was represented by η2, and those effects 

with η2 larger than or close to .10 were considered as having adequate contribution to the 

model. Tukey’s HSD multiple comparisons were conducted for the noticeable main 

effects. For the interaction effects with adequate practical significance, interaction plots 

based on marginal means were further inspected to gain a better understanding of the 

relationships. 

Figure 8 presents the relative biases of loading estimates using MLR and 

Bayesian estimation methods across the design factor conditions. Each row represents a 
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level of model misfit (in increasing order), and each column represents a level of sample 

size (ordered from 200 to 1000). In each basic facet, x axis refers to increasing degree of 

data nonnormality (denoted as dist), and y axis refers to relative biases. A reference line 

was flagged at the value of .10 to indicate considerable magnitude of relative bias. 

Circular dots denote Bayesian estimation and triangular dots denote MLR estimation. In 

general, relative biases became slightly smaller as sample size increased. Compared to 

normal and mildly nonnormal data distributions, moderately nonnormal distribution 

produced higher relative biases, indicating that data nonnormality is associated with 

parameter inaccuracy. When distributions were normal or mildly nonnormal, relative 

biases were below or close to .10 across sample sizes and estimation methods, indicating 

an acceptable level of parameter accuracy. Comparing the three misfit conditions, models 

with higher degree of misfit appeared to produce slightly lower parameter accuracy. 

Comparing MLR and Bayesian estimation methods, parameter accuracy did not seem to 

be affected by the two methods. The most notable (if any) differences occurred under 

small sample size (N = 200) combined with moderate nonnormality. The results indicate 

that under normal or mildly nonnormal data distributions, both MLR and Bayesian 

estimation methods produce acceptable parameter accuracy for loading estimations.  
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Figure 8. Relative Biases of Loadings Associated with MLR and Bayesian across 
Conditions. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = moderate 
nonnormal. 

 

 

Table 19 shows the ANOVA results for relative bias of loadings estimated using 

MLR. It can be seen that data distribution was the only noteworthy predictor, accounting 

for half of the variation in the outcome (η2 = .500). The remaining main effects and 

interaction effects did not exert remarkable contribution. A further inspection of Tukey’s 

HSD multiple comparison results (see Table 20) reveal that higher degree of data 

nonnormality was associated with greater relative bias in loadings. The result indicates 
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that relative bias of loadings using MLR estimation method is mainly affected by data 

distribution, and data nonnormality is related to lower parameter accuracy.  

 

Table 19 ANOVA Results for Relative Bias of Loadings with MLR Estimator 

Source SS df MS F p η2 
cov 0.213 2 0.106 17.923 <.001 0.003 

N 1.253 2 0.626 105.596 <.001 0.019 

dist 33.397 2 16.699 2815.329 <.001 0.500 

cov * N 0.057 4 0.014 2.413 0.047 0.001 

cov * dist 0.015 4 0.004 0.646 0.630 0.000 

N * dist 0.210 4 0.053 8.858 <.001 0.003 

cov * N * dist 0.015 8 0.002 0.321 0.959 0.000 

Total 66.798 5360         
 

 

 

Table 20 Tukey HSD Multiple Comparisons for the Effect of Distribution on Relative 
Bias of Loadings with MLR Estimator 

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.007 0.003 <.001 -0.013 -0.001 

 3 -0.171 0.003 <.001 -0.177 -0.165 

2 3 -0.164 0.003 <.001 -0.170 -0.158 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 

 

 

Table 21 shows the ANOVA results for relative bias of loadings estimated using 

Bayesian method. It can be seen that data distribution was the only noteworthy predictor, 

accounting for nearly half of the variation in the outcome (η2 = .459). The remaining 
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main effects and interaction effects did not have notable contribution. A further 

inspection of Tukey’s HSD multiple comparison results (see Table 22) reveal that higher 

degree of data nonnormality was associated with greater parameter inaccuracy. The result 

indicates that relative bias of loadings using Bayesian estimation method is mainly 

affected by data nonnormality. Comparing relative bias of loadings with MLR and 

Bayesian estimation methods, Bayesian method yielded slightly lower overall variation in 

relative bias (Type III SS = 58.070) than that of MLR method (Type III SS = 66.798). 

Data nonnormality was the only noteworthy predictor for both ANOVA models, and it 

accounted for slightly less proportion of variation in the outcome estimated with 

Bayesian method (η2 = .459) than with MLR method (η2 = .500). The results from Table 

19 through Table 22 suggest that MLR and Bayesian estimation methods have similar 

performance in terms of parameter accuracy in loadings.  

 

Table 21 ANOVA Results for Relative Bias of Loadings with Bayesian Estimator 

Source SS df MS F p η2 
cov 0.183 2 0.092 16.287 <.001 0.003 

N 0.628 2 0.314 55.826 <.001 0.011 

dist 26.642 2 13.321 2368.293 <.001 0.459 

cov * N 0.009 4 0.002 0.389 0.817 0.000 

cov * dist 0.013 4 0.003 0.586 0.673 0.000 

N * dist 0.578 4 0.145 25.711 <.001 0.010 

cov * N * dist 0.013 8 0.002 0.297 0.967 0.000 

Total 58.070 5360         
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Table 22 Tukey HSD Multiple Comparisons for the Effect of Distribution on Relative 
Bias of Loadings with Bayesian Estimator 

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.007 0.003 0.025 -0.012 -0.001 

 3 -0.153 0.003 <.001 -0.159 -0.147 

2 3 -0.147 0.003 <.001 -0.153 -0.141 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 

 

 

Figure 9 presents the relative biases of inter-factor correlations using MLR and 

Bayesian estimation methods across conditions. The figure was displayed in the same 

format as Figure 8. A reference line was flagged at the value of .10 to indicate 

considerable magnitude of relative bias. Circular dots refer to Bayesian estimation and 

triangular dots refer to RML estimation. In general, relative biases decreased slightly as 

sample size increased. Compared to normal and mildly nonnormal data distributions, 

moderately nonnormal distribution conditions were associated with higher parameter 

inaccuracy. An acceptable level of parameter accuracy was only observed when sample 

sizes reached 1000, where relative biases were below or close to .10. Comparing the three 

misfit conditions, relative biases were slightly affected. Comparing MLR and Bayesian 

estimation methods, parameter accuracy did not seem to be affected by the two methods 

given that the circular and triangular dots were generally overlapping. The results 

indicate that parameter accuracy of inter-factor correlations is impaired by moderate data 

nonnormality, and an acceptable level of relative biases can only be reached under large 

sample sizes.  
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Figure 9. Relative Biases of Inter-Factor Correlations Associated with MLR  and 
Bayesian  across Conditions. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = 
moderate nonnormal. 

 

Table 23 shows the ANOVA results for relative bias of inter-factor correlations 

estimated using MLR. It can be seen that data distribution was the most noteworthy 

predictor, accounting for 24.6% of the variation in the outcome (η2 = .246). Sample size 

accounted for a small amount of the overall variation (η2 = .058). The remaining main 

effects and interaction effects only exerted little contribution. A further inspection of 

Tukey’s HSD multiple comparison results (see Table 24) reveal that moderate degree of 
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data nonnormality was associated with greater relative bias in inter-factor correlations 

than the other two distribution conditions. The results indicate that parameter accuracy of 

inter-factor correlations using MLR estimation method is mainly affected by data 

distribution, and moderate data nonnormality would impair parameter accuracy of inter-

factor correlations.  

 

Table 23 ANOVA Results for Relative Bias of Inter-Factor Correlations with MLR 
Estimator 

Source SS df MS F p η2 
cov 1.206 2 0.603 14.969 <.001 0.004 

N 18.199 2 9.099 225.923 <.001 0.058 

dist 76.962 2 38.481 955.430 <.001 0.246 

cov * N 0.520 4 0.130 3.226 0.012 0.002 

cov * dist 0.495 4 0.124 3.071 0.015 0.002 

N * dist 0.802 4 0.201 4.979 0.001 0.003 

cov * N * dist 0.358 8 0.045 1.110 0.353 0.001 

Total 313.373 5360         
 

 

 

Table 24 Tukey HSD Multiple Comparisons for the Effect of Distribution on Relative 
Bias of Inter-Factor Correlations with MLR Estimator 

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.004 0.007 0.813 -0.020 0.012 

 3 -0.256 0.007 <.001 -0.272 -0.240 

2 3 -0.252 0.007 <.001 -0.268 -0.236 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 
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Table 25 shows the ANOVA results for relative bias of inter-factor correlations 

estimated using Bayesian method. It can be seen that data distribution was the only 

noteworthy predictor, accounting for 27.6% of the variation in the outcome (η2 = .276). 

Sample size accounted for a small amount of the overall variation (η2 = .048). The 

remaining main effects and interaction effects exerted little contribution. A further 

inspection of Tukey’s HSD multiple comparison results (see Table 26) reveal that 

moderate degree of data nonnormality was associated with greater parameter inaccuracy. 

The result indicates that relative bias of inter-factor correlations using Bayesian 

estimation method is mainly affected by data nonnormality. Comparing MLR and 

Bayesian estimation methods, Bayesian method yielded similar overall variation in 

relative bias (Type III SS = 298.335) than that of MLR method (Type III SS = 313.373). 

Data nonnormality was the only noteworthy predictor for both ANOVA models, and it 

accounted for comparable proportion of variation in the outcome estimated with Bayesian 

method ( η2 = .276) than with MLR method ( η2 = .246). The results from Table 23 

through Table 26 suggest that MLR and Bayesian estimation methods have comparable 

performance in terms of parameter accuracy in inter-factor correlations.   
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Table 25 ANOVA Results for Relative Bias of Inter-Factor Correlations with Bayesian 
Estimator 

Source SS df MS F p η2 
cov 0.478 2 0.239 6.410 0.002 0.002 

N 14.440 2 7.220 193.824 <.001 0.048 

dist 82.399 2 41.199 1105.987 <.001 0.276 

cov * N 0.369 4 0.092 2.477 0.042 0.001 

cov * dist 0.846 4 0.212 5.681 <.001 0.003 

N * dist 0.729 4 0.182 4.894 0.001 0.002 

cov * N * dist 0.376 8 0.047 1.262 0.259 0.001 

Total 298.335 5360         
 

 

Table 26 Tukey HSD Multiple Comparisons for the Effect of Distribution on Relative 
Bias of Inter-Factor Correlations with Bayesian Estimator 

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.004 0.006 0.841 -0.019 0.011 

 3 -0.265 0.006 <.001 -0.280 -0.250 

2 3 -0.261 0.006 <.001 -0.276 -0.246 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 

 

 

Standard Errors  

In order to examine the performance of MLR and Bayesian in terms of standard 

errors, descriptive plots were made to visualize the impacts of design factors on the 

standard errors of loading and inter-factor correlations, and factorial ANOVA models 

were fit separately for the related outcomes.  



63 
 

Figure 10 presents the standard errors of loadings using MLR and Bayesian 

estimation methods across conditions. The figure is displayed in the same format as 

Figure 8. Circular and triangular dots refer to Bayesian estimation and MLR estimation 

respectively. In general, standard errors decreased as sample size increased. Moderately 

nonnormal distribution conditions produced larger standard errors compared to the less 

nonnormal distribution conditions. Comparing the three misfit conditions, no salient 

differences in relative biases were detected. Comparing MLR and Bayesian estimation 

methods, the circular dots overlapped with the triangular dots in some conditions, and fell 

slightly below the triangular dots in some other conditions. Explicitly, the most 

remarkable gap between the two methods occurred when sample size was 200, data 

distributions were moderately nonnormal, and models were moderately misspecified.  

The results indicate that standard errors of loadings are mainly affected by sample size 

and data nonnormality, and Bayesian method produces smaller standard errors than MLR 

method in the combined condition of small sample size, higher degrees of nonnormality 

and model misfit.  
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Figure 10. Standard Errors of Loadings Associated with MLR  and Bayesian  across 
Conditions. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = moderate 
nonnormal. 

 

 

Table 27 presents the ANOVA results for standard errors of loadings estimated 

using MLR. It can be seen that sample size and data distribution were the most 

noteworthy predictors, accounting for 15.7% and 11.9% of the variation in the outcome 

respectively (η2 = .157 for N, and η2 =.119 for dist). The remaining main effects and 

interaction effects only exerted a small contribution. A further inspection of Tukey’s 

HSD multiple comparison results (see Tables 28 and 29) show that larger sample sizes 

were associated with smaller standard errors of loadings, and higher degree of data 
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nonnormality was associated with larger standard errors. The results indicate that 

standard errors of loadings using MLR estimation method are mainly affected by sample 

size and data distribution, and larger sample sizes and greater approximation to normal 

distribution contribute to smaller standard errors of loadings.  

 

Table 27 ANOVA Results for Standard Errors of Loadings with MLR Estimator 

Source SS df MS F p η2 
cov 0.335 2 0.168 74.590 <.001 0.019 

N 2.783 2 1.391 619.114 <.001 0.157 

dist 2.099 2 1.050 467.096 <.001 0.119 

cov * N 0.075 4 0.019 8.314 <.001 0.004 

cov * dist 0.001 4 0.000 0.137 0.969 0.000 

N * dist 0.404 4 0.101 44.957 <.001 0.023 

cov * N * dist 0.024 8 0.003 1.333 0.222 0.001 

Total 17.708 5360         
 

 

 

Table 28 Tukey HSD Multiple Comparisons for the Effect of Sample Size on Standard 
Errors of Loadings with MLR Estimator 

 (I) N (J) N I-J SE p 95% Confidence Interval 

     Lower Upper 

200 500 0.037 0.002 <.001 0.033 0.040 

 1000 0.054 0.002 <.001 0.050 0.057 

500 1000 0.017 0.002 <.001 0.013 0.021 
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Table 29 Tukey HSD Multiple Comparisons for the Effect of Distribution on Standard 
Errors of Loadings with MLR Estimator  

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.005 0.002 0.011 -0.008 -0.001 

 3 -0.043 0.002 <.001 -0.047 -0.039 

2 3 -0.039 0.002 <.001 -0.042 -0.035 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 

 

 

Table 30 presents the ANOVA results for standard errors of loadings estimated 

using Bayesian method. It can be seen that sample size accounted for a substantial 

proportion of overall variation (η2 = .550), followed by data distribution which accounted 

for 26.0% of the variation (η2 =.260). The remaining main effects and interaction effects 

only exerted small contribution. A further inspection of Tukey’s HSD multiple 

comparison results (see Tables 31 and 32) reveal that larger sample sizes and less 

deviation from normal data distribution were associated with smaller standard errors. 

Comparing MLR and Bayesian estimation methods, Bayesian method yielded 

considerably smaller overall variation in standard errors (Type III SS = 3.361) than that 

of MLR method (Type III SS = 17.708). Sample size and data nonnormality, the 

noteworthy main effects in both ANOVA models, accounted for considerably higher 

proportion of variation in the outcome estimated with Bayesian method than with MLR 

method. The results suggest that standard errors of loadings estimated by MLR and 

Bayesian methods are both affected by sample size and data distribution, and Bayesian 

method yields less variation in standard errors. 
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Table 30 ANOVA Results for Standard Errors of Loadings with Bayesian Estimator 

Source SS df MS F p η2 
cov 0.020 2 0.010 111.452 <.001 0.006 

N 1.850 2 0.925 10078.793 <.001 0.550 

dist 0.873 2 0.436 4753.927 <.001 0.260 

cov * N 0.003 4 0.001 7.323 <.001 0.001 

cov * dist 0.003 4 0.001 7.579 <.001 0.001 

N * dist 0.122 4 0.030 332.212 <.001 0.036 

cov * N * dist 0.001 8 0.000 0.877 0.535 0.000 

Total 3.361 5360         
 

 

 

Table 31 Tukey HSD Multiple Comparisons for the Effect of Sample Size on Standard 
Errors of Loadings with Bayesian Estimator  

 (I) N (J) N I-J SE p 95% Confidence Interval 

     Lower Upper 

200 500 0.030 0.0003 <.001 0.029 0.030 

 1000 0.044 0.0003 <.001 0.043 0.045 

500 1000 0.015 0.0003 <.001 0.014 0.015 
 

 

 

Table 32 Tukey HSD Multiple Comparisons for the Effect of Distribution on Standard 
Errors of Loadings with Bayesian Estimator  

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.001 0.000 <.001 -0.002 -0.0007 

 3 -0.027 0.000 <.001 -0.028 -0.026 

2 3 -0.026 0.000 <.001 -0.027 -0.025 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 
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Figure 11 presents the standard errors of inter-factor correlations using MLR and 

Bayesian estimation methods across conditions. Circular and triangular dots denote 

Bayesian and MLR estimation method respectively. In general, standard errors decreased 

as sample size increased. Similar to the standard errors for loadings, moderately 

nonnormal distribution conditions yielded larger standard errors compared to the 

distribution conditions deviating less from normality. Comparing the three misfit 

conditions, the relative biases were slightly affected. Comparing MLR and Bayesian 

estimation methods, the circular dots generally overlapped with the triangular dots under 

correctly or mildly misspecified models, and fell slightly below the triangular dots under 

moderately misspecified models. Similar to the pattern in Figure 10, the greatest gap 

between the two methods occurred in the combined condition of small sample size, 

moderate data nonnormality and moderate model misfit.  The results indicate that 

standard errors of inter-factor correlations are mainly affected by sample size and data 

distribution, and Bayesian method produces smaller standard errors than MLR method 

under moderate model misfit conditions.  
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Figure 11. Standard errors of inter-factor correlations associated with MLR  and 
Bayesian  across conditions. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = 
moderate nonnormal. 

 

 

Table 33 presents the ANOVA results for standard errors of inter-factor 

correlations estimated using MLR. Similar to the ANOVA results for standard errors of 

loadings, sample size and data distribution were the most noteworthy predictors, 

accounting for 41.8% and 14.4% of the variation in the outcome (η2 = .418 for N, and η2 

=.144 for dist). The remaining main effects and interaction effects only made a small 

contribution. A further inspection of Tukey’s HSD multiple comparison results (see 
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Tables 34 and 35) show that larger sample sizes and less deviation from normal 

distribution were associated with smaller standard errors.  

 

Table 33 ANOVA Results for Standard Errors of Inter-Factor Correlations with MLR 
Estimator 

Source SS df MS F p η2 
cov 0.355 2 0.177 256.708 <.001 0.036 

N 4.112 2 2.056 2975.799 <.001 0.418 

dist 1.419 2 0.709 1026.677 <.001 0.144 

cov * N 0.016 4 0.004 5.694 <.001 0.002 

cov * dist 0.002 4 0.001 0.806 0.521 0.000 

N * dist 0.247 4 0.062 89.332 <.001 0.025 

cov * N * dist 0.004 8 0.000 0.646 0.739 0.000 

Total 9.840 5360         
 

 

 

Table 34 Tukey HSD Multiple Comparisons for the Effect of Sample Size on Standard 
Errors of Inter-Factor Correlation with MLR Estimator  

 (I) N 
(J) N I-J SE p 95% Confidence Interval 

     Lower Upper 

200 500 0.043 0.0009 <.001 0.041 0.045 

 1000 0.066 0.0009 <.001 0.064 0.068 

500 1000 0.023 0.0009 <.001 0.021 0.025 
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Table 35 Tukey HSD Multiple Comparisons for the Effect of Distribution on Standard 
Errors of Inter-Factor Correlation with MLR Estimator 

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.002 0.001 0.048 -0.004 -0.00001 

 3 -0.035 0.001 <.001 -0.037 -0.033 

2 3 -0.033 0.001 <.001 -0.035 -0.030 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 

 

 

Table 36 presents the ANOVA results for standard errors of inter-factor 

correlations estimated using Bayesian method. It can be seen that sample size accounted 

for a substantial proportion of overall variation (η2 = .795), followed by data distribution 

which explained 14.3% of the variation (η2 =.143). The remaining main effects and 

interaction effects exerted little contribution. Tukey’s HSD multiple comparison results 

(see Table 37 and Table 38) reveal that standard errors decreased as sample size 

increased and as data approached a normal distribution. Comparing MLR and Bayesian 

estimation methods, Bayesian method yielded smaller overall variation in standard errors 

(Type III SS = 3.456) than that of MLR method (Type III SS = 9.840). Sample size and 

data nonnormality exerted noteworthy main effects in both ANOVA models. Sample size 

accounted for considerably higher proportion of variation in the outcome estimated with 

Bayesian method than with MLR method. The results suggest that standard errors of 

inter-factor correlations estimated by MLR and Bayesian methods are both affected by 

sample size and data distribution, and Bayesian method produced less variation in 

standard errors. 
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Table 36 ANOVA Results for Standard Errors of Inter-Factor Correlations with Bayesian 
Estimator 

Source SS df MS F p η2 
cov 0.011 2 0.005 174.137 <.001 0.003 

N 2.747 2 1.374 43625.435 <.001 0.795 

dist 0.494 2 0.247 7845.655 <.001 0.143 

cov * N 0.000 4 0.000 2.302 0.056 0.000 

cov * dist 0.000 4 0.000 3.800 0.004 0.000 

N * dist 0.035 4 0.009 278.340 <.001 0.010 

cov * N * dist 0.000 8 0.000 0.834 0.572 0.000 

Total 3.456 5360         
 

 

 

Table 37 Tukey HSD Multiple Comparisons for the Effect of Sample Size on Inter-Factor 
Correlation with Bayesian Estimator  

 (I) N (J) N I-J SE p 95% Confidence Interval 

     Lower Upper 

200 500 0.036 0.0002 <.001 0.035 0.036 

 1000 0.054 0.0002 <.001 0.054 0.055 

500 1000 0.019 0.0002 <.001 0.018 0.019 
 

 

 

Table 38 Tukey HSD Multiple Comparisons for the Effect of Distribution on Inter-Factor 
Correlation with Bayesian Estimator  

 (I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.001 0.000 <.001 -0.001 -0.0005 

 3 -0.020 0.000 <.001 -0.021 -0.020 

2 3 -0.019 0.000 <.001 -0.020 -0.019 
 Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 
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Relative Biases of Standard Errors 

With the aim of examining the accuracy of standard error estimations using MLR 

and Bayesian methods, descriptive plots were made to visually inspect the effects of 

design factors on the relative biases in standard errors, factorial ANOVA models were 

performed for relative biases in standard errors of loadings and inter-factor correlations 

separately.  

Figure 12 presents the relative biases of standard errors of loadings using MLR 

and Bayesian estimation methods across conditions. Circular and triangular dots refer to 

Bayesian and RML estimation respectively. A reference line was flagged at the value 

of .10 to indicate considerable magnitude of relative bias. Regarding MLR method, it 

appeared not be affected by the design factors remarkably. When models were correctly 

specified or mildly misspecified, relative biases yielded by MLR were consistently 

below .010, indicating a non-severe degree of bias. In contrast, relative biases associated 

with Bayesian method increased with sample size, and generally became larger with 

increasing degrees of data nonnormality. Under lower degrees of model misfit (cov = a or 

b) and smaller sample size conditions (N = 200 or 500), Bayesian method produced 

relative biases of standard errors less than or close to .10. The results indicate that relative 

bias of standard errors of loadings associated with Bayesian method were more sensitive 

to the design factors of model misfit and data distribution compared to those yielded by 

MLR method.  

 



74 
 

 

Figure 12. Relative bias of standard errors of loadings associated with MLR  and 
Bayesian  across conditions. Note. Distribution: 1 = normal, 2 = mild nonnormal, 3 = 
moderate nonnormal. 

 

 

Table 39 presents the ANOVA results for relative bias of standard errors of 

loadings estimated using MLR method. It can be seen that the main effects and 

interaction effects exerted little contribution, with the largest η2 being .033. The 

corresponding results estimated using Bayesian method are presented in Table 40. Model 

misfit and data distribution served as the most noteworthy predictors, accounting for 

15.4 % and 18.9% of the variation in the outcome (η2 = .154 and .189 respectively). 

Tukey’s HSD multiple comparison results (see Tables 41 and 42) reveal that relative bias 
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of standard errors increased as degree of model misfit and data nonnormality increased. 

Comparing MLR and Bayesian estimation methods, Bayesian method yielded smaller 

overall variation in relative bias of standard errors (Type III SS = 69.432) than that of 

MLR method (Type III SS = 1530.135). Results associated with Bayesian method were 

affected by model misfit and data nonnormality, while results associated with MLR did 

not appear to be affected by the design factors much. The results suggest that relative bias 

of standard errors of loadings estimated by MLR and Bayesian methods differ in terms of 

influencing factors, and Bayesian method produced less variation in relative bias of 

standard errors. 

 

Table 39 ANOVA Results for Relative Bias of Standard Errors of Loadings with MLR 

Source SS df MS F p η2 
cov 50.013 2 25.006 91.855 <.001 0.033 

N 14.143 2 7.072 25.976 <.001 0.009 

dist 0.415 2 0.208 0.762 0.467 0.000 

cov * N 1.605 4 0.401 1.474 0.207 0.001 

cov * dist 4.591 4 1.148 4.216 0.002 0.003 

N * dist 3.598 4 0.900 3.304 0.010 0.002 

cov * N * dist 3.661 8 0.458 1.681 0.098 0.002 

Total 1530.135           
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Table 40 ANOVA Results for Relative Bias of Standard Errors of Loadings with Bayesian 
Estimator 

Source SS df MS F p η2 
cov 10.686 2 5.343 711.771 <.001 0.154 

N 0.068 2 0.034 4.525 0.011 0.001 

dist 13.104 2 6.552 872.811 <.001 0.189 

cov * N 1.639 4 0.410 54.589 <.001 0.024 

cov * dist 1.806 4 0.451 60.137 <.001 0.026 

N * dist 1.158 4 0.289 38.559 <.001 0.017 

cov * N * dist 0.929 8 0.116 15.466 <.001 0.013 

Total 69.432           

 

 

 

Table 41 Tukey HSD Multiple Comparisons for the Effect of Model Misfit on Relative 
Bias of Standard Errors of Loadings with Bayesian Estimator 

(I) cov (J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b -0.010 0.003 0.001 -0.017 -0.003 

 c -0.100 0.003 <.001 -0.107 -0.093 

b c -0.090 0.003 <.001 -0.097 -0.083 
Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 

 

 

Table 42 Tukey HSD Multiple Comparisons for the Effect of Distribution on Relative 
Bias of Standard Errors of Loadings with Bayesian Estimator 

(I) dist (J) dist I-J SE p 95% Confidence Interval 

     Lower Upper 

1 2 -0.041 0.003 <.001 -0.048 -0.035 

 3 -0.120 0.003 <.001 -0.127 -0.113 

2 3 -0.079 0.003 <.001 -0.086 -0.072 
Note. dist: data distribution, 1 = normal, 2 = mild nonnormal, 3 = moderate nonnormal. 
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Figure 13 presents the relative biases of standard errors of inter-factor correlations 

using the two estimation methods across conditions. Circular and triangular dots denote 

Bayesian and RML estimation respectively. A reference line was flagged at the value 

of .10 to indicate considerable relative bias. The patterns were less clear than those in the 

previous plots, which suggested that the performance of both methods need to be 

considered under the combined effects of the design factors. Under correctly specified 

models, the relative biases were generally below .010, and were merely affected by 

sample sizes and data distributions. Under mildly misspecified models, the relative biases 

produced by MLR were below or close to .010 across conditions. In contrast, the relative 

biases produced by Bayesian method decreased with data nonnormality when N = 200, 

and increased with data nonnormality under larger sample sizes. Under moderately 

specified models, MLR method produced most ideal results when N = 1000, while 

Bayesian method produced best performance when N = 200 and data were nonnormally 

distributed. The results indicate that in terms of accuracy of standard errors for inter-

factor correlations, Bayesian method is preferred when sample size is small and data are 

nonnormally distributed, while MLR method is preferred under large sample sizes (N = 

1000) regardless of data distribution.  
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Figure 13. Relative bias of standard errors of inter-factor correlations associated with 
MLR  and Bayesian  across Conditions. Note. Distribution: 1 = normal, 2 = mild 
nonnormal, 3 = moderate nonnormal. 

 

 

Table 43 presents the ANOVA results for relative bias of standard errors of inter-

factor correlations estimated using MLR method. It can be seen that the main effects and 

interaction effects exerted little contribution, with the largest η2 being .021. The results 

estimated using Bayesian method are shown in Table 44. Model misfit served as the most 

noteworthy predictor, accounting for 30.6 % of the variation in the outcome (η2 = .306). 

Tukey’s HSD multiple comparison results (see Table 45) reveal that relative bias of 

standard errors increased with degree of model misfit. Moreover, the interaction between 
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sample size and data nonnormality accounted for 8.5% of the variation in the outcome (η2 

= 0.085). A further inspection of the interaction plot (see Figure 14) reveals that when 

data were moderately nonnormal, relative bias of standard errors increased with sample 

size, when data were mildly nonnormal, relative bias increased with sample size then 

decreased, and when data were normally distributed, relative bias decreased with sample 

size then leveled off. Other predictors also contributed small proportion of variation, 

post-hoc comparisons were not discussed here given the complexity of the model.  

Comparing MLR and Bayesian estimation methods, Bayesian method yielded smaller 

overall variation in relative bias of standard errors (Type III SS = 26.242) than that of 

MLR method (Type III SS = 413.735). Results associated with Bayesian method were 

mainly affected by model misfit, together with other main effects and interactions, while 

results associated with MLR did not appear to be significantly affected by the design 

factors. The results suggest that relative bias of standard errors of inter-factor correlations 

estimated by Bayesian method are more sensitive to design factors compared to those 

estimated by MLR method. 
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Table 43 ANOVA Results for Relative Bias of Standard Errors of Inter-Factor 
Correlations with MLR 

Source SS df MS F p η2 
cov 8.791 2 4.395 59.448 <.001 0.021 

N 5.439 2 2.719 36.780 <.001 0.013 

dist 1.989 2 0.995 13.453 <.001 0.005 

cov * N 0.416 4 0.104 1.407 0.229 0.001 

cov * dist 0.282 4 0.070 0.953 0.432 0.001 

N * dist 1.797 4 0.449 6.075 <.001 0.004 

cov * N * dist 0.651 8 0.081 1.100 0.360 0.002 

Total 413.735           

 

 

Table 44 ANOVA Results for Relative Bias of Standard Errors of Inter-Factor 
Correlations with Bayesian Estimator 

Source SS df MS F p η2 
cov 8.037 2 4.019 1992.281 <.001 0.306 

N 0.801 2 0.401 198.620 <.001 0.031 

dist 1.623 2 0.811 402.265 <.001 0.062 

cov * N 0.418 4 0.104 51.753 <.001 0.016 

cov * dist 0.714 4 0.178 88.466 <.001 0.027 

N * dist 2.228 4 0.557 276.103 <.001 0.085 

cov * N * dist 1.663 8 0.208 103.042 <.001 0.063 

Total 26.242           

 

 

Table 45 Tukey HSD Multiple Comparisons for the Effect of Model Misfit on Relative 
Bias of Standard Errors of Inter-Factor Correlations with Bayesian Estimator 

(I) cov (J) cov I-J SE p 95% Confidence Interval 

     Lower Upper 

a b -0.035 0.002 <.001 -0.038 -0.031 

 c -0.095 0.002 <.001 -0.098 -0.091 

b c -0.060 0.002 <.001 -0.063 -0.056 
Note. cov: model misfit, a = no misfit, b = mild misfit, c = moderate misfit. 
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Figure 14. Interaction plot of sample size * distribution for relative bias of standard 
errors of inter-factor correlation using Bayesian. Note. Distribution: 1 = normal, 2 = mild 
nonnormal, 3 = moderate nonnormal.  

 

 

Mixed-design ANOVA Results 

In order to statistically test the differences between MLR and Bayesian methods, 

a series of mixed-design ANOVA models were performed for the relative biases of point 

estimates and standard errors separately. In each ANOVA model, the design factors of 

sample size, model misfit, data distribution, and their interactions served as between-

subjects variables, estimation method and its interactions with design factors served as 

within-subjects variables. The practical significance was indicated by η2. Above and 

beyond the main effect of estimation method, the effects with η2 larger than or close 

to .10 were considered as noteworthy.  
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Table 46 shows the mixed-design ANOVA results for relative bias of loadings. 

The effects with noticeable contribution were highlighted in grey. For within-subjects 

effects, estimation method contributed a small proportion of variation in the outcome (η2 

= .068), indicating that there exist differences between MLR and Bayesian estimation 

methods, through of small magnitude. As can be told from Figure 8, on conditions where 

method differences were shown, Bayesian method yielded slightly smaller standard 

errors compared to MLR method. More importantly, the interaction between estimation 

method and data distribution served as a noteworthy predictor, accounting for 12.4% of 

the variation. A further inspection of Figure 8 reveals that the differences between the 

two estimation methods were more salient when the degree of nonnormality was 

moderate. The remaining within-subjects variables only exerted a small contribution. For 

between-subjects effects, data distribution accounted for a notable proportion of variation 

(η2 = .485). The other between-subjects variables only had small amount of contribution. 

The between-subjects effects results were consistent with those in the aforementioned 

separate factorial ANOVA models, and thus post-hoc multiple comparisons were not 

conducted here. The results suggest that parameter accuracy of loadings associated with 

Bayesian method are slightly better than those estimated with MLR method, especially 

when data distribution is moderately nonnormal and sample size is small (based on 

evidence from Table 46 and Figure 8). 
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Table 46 Mixed-design ANOVA Results for Relative Bias of Loadings 

Source SS df MS F p η2 

Tests of Within-Subjects Effects      
estimator 0.104 1 0.104 495.624 <.001 0.068 

estimator * cov 0.001 2 0.000 2.199 0.111 0.001 

estimator * N 0.058 2 0.029 137.141 <.001 0.037 

estimator * dist 0.191 2 0.095 454.697 <.001 0.124 

estimator * cov  *  N 0.014 4 0.004 16.877 <.001 0.009 

estimator * cov  *  dist 0.001 4 0.000 0.832 0.504 0.000 

estimator * N  *  dist 0.050 4 0.012 59.218 <.001 0.032 

estimator * cov  *  N  *  dist 0.001 8 0.000 0.331 0.955 0.000 

Tests of Between-Subjects Effects 
     

cov 0.395 2 0.197 17.403 <.001 0.003 

N 1.823 2 0.912 80.341 <.001 0.015 

dist 59.849 2 29.924 2637.336 <.001 0.485 

cov * N 0.052 4 0.013 1.143 0.334 0.000 

cov * dist 0.028 4 0.007 0.613 0.654 0.000 

N * dist 0.739 4 0.185 16.282 <.001 0.006 

cov * N * dist 0.028 8 0.004 0.309 0.963 0.000 

 

 

Table 47 shows the mixed-design ANOVA results for relative bias of inter-factor 

correlations. The effects with noticeable contribution are highlighted in grey. For within-

subjects effects, all the variables contributed small amount of variation in the outcome 

(e.g., the greatest contribution was only 2.0%). Regarding the effect of estimation method 

which is major interest, it had tiny practical significance (η2 = .006), indicating that there 

is merely a difference between MLR and Bayesian methods. As can be observed from 

Figure 9, no salient difference between the two methods was found. The result also 

echoed the findings in the aforementioned ANOVA models performed separately for the 

two estimation methods. For between-subjects effects, data distribution was the most 
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notable predictor, accounting for 26.3% of the variation in the outcome (η2 = .263). Other 

between-subjects variables only had small amount of contribution. The between-subjects 

effects results were also consistent with those in the separate ANOVA models, and thus 

post-hoc multiple comparisons were not conducted here. The results suggest that relative 

bias of inter-factor correlations associated with Bayesian method are comparable to those 

estimated with MLR method. 

 

Table 47 Mixed-design ANOVA Results for Relative Bias of Inter-Factor Correlations 

Source SS df MS F p η2 

Tests of Within-Subjects Effects      
estimator 0.036 1 0.036 36.010 <.001 0.006 

estimator * cov 0.104 2 0.052 52.238 <.001 0.018 

estimator * N 0.115 2 0.057 57.752 <.001 0.020 

estimator * dist 0.047 2 0.023 23.418 <.001 0.008 

estimator * cov  *  N 0.060 4 0.015 15.191 <.001 0.011 

estimator * cov  *  dist 0.026 4 0.006 6.522 <.001 0.005 

estimator * N  *  dist 0.002 4 0.001 0.514 0.726 0.000 

estimator * cov  *  N  *  dist 0.005 8 0.001 0.612 0.769 0.001 

Tests of Between-Subjects Effects 
     

cov 1.579 2 0.790 10.319 <.001 0.003 

N 32.524 2 16.262 212.484 <.001 0.054 

dist 159.314 2 79.657 1040.823 <.001 0.263 

cov * N 0.828 4 0.207 2.706 0.029 0.001 

cov * dist 1.315 4 0.329 4.297 0.002 0.002 

N * dist 1.529 4 0.382 4.996 0.001 0.003 

cov * N * dist 0.729 8 0.091 1.190 0.300 0.001 

 

 

Table 48 shows the mixed-design ANOVA results for standard errors of loadings. 

The effects with noticeable contribution were highlighted in grey. For within-subjects 
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effects, estimation method contributed the largest proportion of variation in the outcome 

(η2 = .046), though not of a considerable magnitude, indicating that there exists 

significant differences between MLR and Bayesian estimation methods. As can be told 

from Figure 10, Bayesian method yielded smaller standard errors compared to MLR 

method. The remaining within-subjects variables only exerted small contribution. For 

between-subjects effects, sample size accounted for the majority of variation (η2 = .300), 

followed by data distribution which accounted for 18.6% of the variation (η2 = .186). The 

between-subjects effects results were highly consistent with those in the separate 

ANOVA models performed for MLR and Bayesian methods, and thus post-hoc multiple 

comparisons were not conducted here. The results suggest that standard errors of loadings 

associated with Bayesian method are smaller than those estimated with MLR method, 

though with a small magnitude of effect size. 
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Table 48 Mixed-design ANOVA Results for Standard Errors of Loadings 

Source SS df MS F p η2 

Tests of Within-Subjects Effects      
estimator 0.278 1 0.278 273.706 <.001 0.046 

estimator * cov 0.096 2 0.048 47.185 <.001 0.016 

estimator * N 0.048 2 0.024 23.471 <.001 0.008 

estimator * dist 0.134 2 0.067 66.069 <.001 0.022 

estimator * cov  *  N 0.025 4 0.006 6.193 <.001 0.004 

estimator * cov  *  dist 0.000 4 0.000 0.101 0.982 0.000 

estimator * N  *  dist 0.044 4 0.011 10.926 <.001 0.007 

estimator * cov  *  N  *  dist 0.011 8 0.001 1.395 0.193 0.002 

Tests of Between-Subjects Effects 
     

cov 0.260 2 0.130 98.161 <.001 0.017 

N 4.585 2 2.293 1731.811 <.001 0.300 

dist 2.838 2 1.419 1071.869 <.001 0.186 

cov * N 0.052 4 0.013 9.872 <.001 0.003 

cov * dist 0.004 4 0.001 0.680 0.605 0.000 

N * dist 0.482 4 0.120 90.971 <.001 0.031 

cov * N * dist 0.013 8 0.002 1.253 0.263 0.001 

Note. The highlighted cells represent noteworthy effects. 

 

 

Table 49 shows the mixed-design ANOVA results for standard errors of inter-

factor correlations. The effects with noticeable contribution are highlighted in grey. For 

within-subjects effects, estimation method contributed the largest proportion of variation 

in the outcome (η2 = .174), indicating that there exists significant differences between 

MLR and Bayesian estimation methods. As can be told from Figure 11, Bayesian method 

yielded smaller standard errors compared to MLR method. The remaining within-subjects 

variables only exerted small contribution. For between-subjects effects, sample size 

accounted for the majority of variation (η2 = .598), followed by data distribution which 

accounted for 15.8% of the variation (η2 = .158). The between-subjects effects results 
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were highly consistent with those in the ANOVA models (e.g., Table 35, Table 36) built 

separately for MLR and Bayesian methods, and thus post-hoc multiple comparisons were 

not conducted for the current model. The results confirm that standard errors of inter-

factor correlations associated with Bayesian method are significantly smaller than those 

estimated with MLR method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

Table 49 Mixed-design ANOVA Results for Standard Errors of Inter-Factor Correlations 

Source SS df MS F p η2 

Tests of Within-Subjects Effects      
estimator 0.407 1 0.407 1385.773 <.001 0.174 

estimator * cov 0.120 2 0.060 205.141 <.001 0.052 

estimator * N 0.069 2 0.034 116.966 <.001 0.029 

estimator * dist 0.119 2 0.060 203.019 <.001 0.051 

estimator * cov  *  N 0.006 4 0.002 5.187 <.001 0.003 

estimator * cov  *  dist 0.001 4 0.000 0.542 0.705 0.000 

estimator * N  *  dist 0.049 4 0.012 41.508 <.001 0.021 

estimator * cov  *  N  *  dist 0.002 8 0.000 0.694 0.697 0.001 

Tests of Between-Subjects Effects 
     

cov 0.245 2 0.123 285.965 <.001 0.022 

N 6.791 2 3.395 7918.953 <.001 0.598 

dist 1.794 2 0.897 2091.574 <.001 0.158 

cov * N 0.010 4 0.002 5.792 <.001 0.001 

cov * dist 0.002 4 0.001 1.207 0.305 0.000 

N * dist 0.233 4 0.058 135.968 <.001 0.021 

cov * N * dist 0.002 8 0.000 0.627 0.756 0.000 

Note. The highlighted cells represent noteworthy effects. 

 

Table 50 shows the mixed-design ANOVA results for relative bias in standard 

errors of loadings. For within-subjects effects, none of the main effects or interaction 

terms served as a noticeable predictor, with the largest η2 being .010. Estimation method 

only contributed a small proportion of variation in the outcome (η2 = .002), indicating 

that there exists no salient differences between MLR and Bayesian estimation methods. 

For between-subjects effects, model misfit was the most noteworthy predictor, 

accounting for 6.4% of the variation (η2 = .064). The between-subjects effects results 

overlapped with those in the ANOVA models built separately for MLR and Bayesian 

methods, and thus post-hoc multiple comparisons were not conducted for the current 
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model. The results suggest that relative bias in standard errors of loadings associated with 

Bayesian method do not differ significantly from those estimated with MLR method. 

 

Table 50 Mixed-design ANOVA Results for Relative Bias of Standard Errors of Loadings 

Source SS df MS F p η2 

Tests of Within-Subjects Effects      
estimator 1.597 1 1.597 11.621 0.001 0.002 

estimator * cov 7.234 2 3.617 26.327 <.001 0.009 

estimator * N 7.564 2 3.782 27.526 <.001 0.010 

estimator * dist 4.530 2 2.265 16.486 <.001 0.006 

estimator * cov  *  N 2.342 4 0.586 4.262 0.002 0.003 

estimator * cov  *  dist 1.296 4 0.324 2.358 0.051 0.002 

estimator * N  *  dist 3.623 4 0.906 6.592 <.001 0.005 

estimator * cov  *  N  
*  dist 

1.634 8 0.204 1.487 0.156 0.002 

Tests of Between-Subjects Effects 
  

cov 53.465 2 26.733 187.789 <.001 0.064 

N 6.648 2 3.324 23.349 <.001 0.008 

dist 8.989 2 4.495 31.573 <.001 0.011 

cov * N 0.902 4 0.226 1.584 0.175 0.001 

cov * dist 5.101 4 1.275 8.958 <.001 0.006 

N * dist 1.134 4 0.283 1.991 0.093 0.001 

cov * N * dist 2.956 8 0.369 2.596 0.008 0.004 

Note. The highlighted cell represents relatively noteworthy effects. 

 

Table 51 shows the mixed-design ANOVA results for relative bias in standard 

errors of inter-factor correlations. For within-subjects effects, none of the main effects or 

interaction terms exerted noticeable contribution, with the largest η2 being .024. 

Estimation method only contributed a small proportion of variation in the outcome (η2 

= .006), indicating that there exist no remarkable differences between MLR and Bayesian 
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estimation methods. For between-subjects effects, model misfit served as the most 

noteworthy predictor, accounting for 7.4% of the variation (η2 = .074). The between-

subjects effects results were consistent with those in the ANOVA models built separately 

for MLR and Bayesian methods, and thus post-hoc multiple comparisons were not 

conducted for the current model. The results suggest that relative bias in standard errors 

of inter-factor correlations associated with Bayesian method do not differ significantly 

from those estimated with MLR method. 

 

Table 51 Mixed-design ANOVA Results for Relative Bias of Standard Errors of Inter-
Factor Correlations 

Source SS df MS F p η2 

Tests of Within-Subjects Effects      
estimator 1.320 1 1.320 34.945 <.001 0.006 

estimator * cov 0.079 2 0.039 1.041 0.353 0.000 

estimator * N 5.024 2 2.512 66.518 <.001 0.024 

estimator * dist 0.075 2 0.037 0.989 0.372 0.000 

estimator * cov  *  N 0.329 4 0.082 2.177 0.069 0.002 

estimator * cov  *  dist 0.359 4 0.090 2.376 0.050 0.002 

estimator * N  *  dist 3.520 4 0.880 23.303 <.001 0.016 

estimator * cov  *  N  
*  dist 

1.339 8 0.167 4.433 <.001 0.006 

Tests of Between-Subjects Effects 
 

cov 16.749 2 8.375 219.284 <.001 0.074 

N 1.216 2 0.608 15.923 <.001 0.005 

dist 3.537 2 1.769 46.313 <.001 0.016 

cov * N 0.505 4 0.126 3.305 0.010 0.002 

cov * dist 0.637 4 0.159 4.168 0.002 0.003 

N * dist 0.505 4 0.126 3.303 0.010 0.002 

cov * N * dist 0.974 8 0.122 3.188 0.001 0.004 

Note. The highlighted cell represents relatively noteworthy effects 
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Chapter 5.  Discussion 

This chapter is a summary of the results, which are discussed and compared to the 

findings from previous research, suggestions for future directions, and recommendations 

for applied users.  

 

Summary of the results 

Sensitivity of Model Fit Indices 

The sensitivity of model fit indices was examined through a series of ANOVA 

models to inspect the effects of sample size, model misfit, data distribution, and their 

interactions on each fit index. The ANOVA model for scaled χ2 shows that the index 

increases with sample size and model misfit, and decreases with data nonnormality. 

Moreover, the effects of sample size and nonnormality are more salient under moderate 

misfit. The results suggest that under misspecified models, the power of scaled χ2 can be 

inflated by large sample sizes, and be deflated by nonnormal data distribution. The 

ANOVA models for scaled CFI and scaled TLI show that these two indices are sensitive 

to model misfit only, suggesting decent performance. The result for scaled RMSEA 

shows that it increases with model misfit, decreases with nonnormality, and the effect of 

data distribution is more salient under misspecified models. A similar pattern is found 

with SRMR, which is also sensitive to sample sizes. In summary, scaled CFI and scaled 
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TLI display adequate performance in sensitivity, scaled RMSEA has impaired statistical 

power under misspecified models due to data distribution, and scaled χ2 and SRMR are 

sensitive to sample sizes and data distribution in addition to model misfit.  

The inflation of scaled χ2 towards larger sample size is within expection given that 

sample size is an embedded parameter in the formula giving rise to χ2. A possible reason 

for scaled χ2 and scaled RMSEA to have impaired statistical power in the presense of data 

nonnormality is that the adjustment for nonnormality designed in the robust version of χ2 

leads to overcorrection, so that higher level of nonnormality is accompanied by greater 

adjustment. Scaled CFI and scaled TLI, although as a function of χ2, are not as sensitive 

to nonnormality, possibly because their formulas involve a ratio structure of χ2 for the 

target model divided by χ2 for the null model, partly canceling out the weakness of  χ2. 

Differences between MLR and Bayesian Methods 

 In order to contrast MLR and Bayesian estimation methods regarding model fit, 

rejection rates (α = .05) of p values associated with the two methods are investigated 

across the design factors. Under correctly specified models, PP p values associated with 

Bayesian estimation constantly yield rejection rates below .05, and are stable across 

sample sizes and data distributions. In contrast, p values associated with MLR yield 

rejection rates constantly larger than those of the Bayesian method. Especially, when N = 

200, MLR over-rejects correct models as the degree of nonnormality increases. With 

larger sample sizes, MLR produces rejection rates higher than or close to the alpha level 

of .05. Under mild misfit, both methods start to produce rejection rates larger than or 

close to .80 when N = 500, 1000, and both have impaired statistical power under 
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moderate nonnormality. Still, the Bayesian method has lower rejection rates than MLR. 

Under moderate misfit, both methods produce statistical power above .80 regardless of 

sample sizes. When N = 200 and 500, statistical powers are impaired by nonnormality. 

Altogether, when a model is correctly specified, the Bayesian method has better type I 

error control under small sample sizes. When there is mild misfit, the Bayesian method is 

less sensitive to the acceptable degree of misfit than MLR. When there is moderate 

misfit, Bayesian and MLR have comparable performance when the data are not 

considerably deviating from normality.  

 In order to contrast MLR and Bayesian estimation methods regarding parameter 

estimation, biases of point estimates are investigated first. The inspection of descriptive 

plots and ANOVA model results reveal that the two estimation methods produce 

comparable parameter accuracy for both loading and factor correlation estimates. Data 

nonnormality noticeably increases biases across conditions, while other design factors do 

not have considerable effects on biases. For loading estimates, relative biases are well 

controlled below or close to 10% when the data is not deviating from normality much. 

For factor correlation estimates, a reasonable amount of bias is reached only when N = 

1000. In summary, when the data is close to a normal distribution, both estimation 

methods exhibit adequate parameter accuracy across sample sizes for loading estimates, 

but only under large sample size (N = 1000) for factor correlation estimates.  

 Standard errors for the point estimates are also investigated. For both estimation 

methods, standard errors decrease with sample sizes, which is expected. Additionally, 

standard errors increase when the data are moderately nonnormal. For both loading and 
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factor correlation estimates, Bayesian and MLR methods produce similar results with the 

exception that under the combined conditions of small sample size and moderate model 

misfit, the Bayesian method yields lower standard errors than MLR, and is slightly less 

sensitive to data nonnormality.  

 The bias analysis results of standard errors show that MLR is robust to sample 

size, nonnormality, and model misfit, and yields relative bias below or close to 10% in 

almost all the combined conditions. In contrast, the Bayesian method is sensitive to 

model misfit and data nonnormality, and produces relative biases above 10% in many 

conditions especially when the model is moderately misspecified and data is considerably 

deviating from normality. The results suggest that while Bayesian and MLR produce 

comparable point estimates, MLR is more robust to all the design factors in terms of bias 

of standard errors, possibly because the design of robust version of MLE is intended to 

adjust standard errors for nonnormality.  

 

Comparisons with previous findings 

Sensitivity of Model Fit Indices 

 The current findings regarding scaled χ2 are consistent with previous research. For 

example, Jackson (2007) reported that model misfit, and the interaction between misfit 

and sample size affects χ2 with noticeable practical significance. Curran, West and Finch 

(1996) found that the statistical power of scaled χ2 to reject misspecified models 

decreased as data nonnormality increased, with a possible explanation that the χ2 statistics 

was over-adjusted to accommodate nonnormality. The current study also found that 
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scaled RMSEA decreases with nonnormality, which is consistent with Nevitt and 

Hancock’s (2000), and Yu’s (2002) findings. For the results of SRMR, Yu (2002) had 

similar finding in the sense that SRMR is deteriorating with sample size, which is 

supported in the current study. They further reported that SRMR increases with 

nonnormality, which is not observed in this study. Beauducel and Wittmann (2005) also 

reported that SRMR is affected by sample size. Moreover, in a principal component 

analysis performed for multiple model fit indices, they found that RMSEA, SRMR, and 

χ2/df loaded on a same component, suggesting that these three indices share common 

characteristics. This is consistent with our finding in the sense that scaled χ2, scaled 

RMSEA, and SRMR are sensitive to design factors above and beyond model misfit, 

while scaled CFI and TLI are only sensitive to model misfit.  

Differences between MLR and Bayesian Methods 

Regarding rejection rates of p values associated with MLR, Xia, Yung and Zhang 

(2016) reported that under correctly specified models, the rates are all above or close to 

.05 regardless of sample size, indicating inflated χ2 statistics; under moderate misfit, the 

rates are all above 80%, indicating an adequate statistical power. Their results are 

supported by the current study. However, in Xia et al.’s (2016) study, the rejection rates 

are not affected by data nonnormality, which is different from this study. Concerning the 

performance of MLR associated χ2 under small sizes, this study shows an over-rejection 

pattern when N = 200, which is consistent with Hu, Bentler and Kano’s (1992) finding. 

Regarding rejection rates of PP p values associated with the Bayesian method, Muthen 

and Asparouhov (2012) conducted simulation studies to compare Bayesian and MLE. 
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They reported that given no model misfit, MLE inflated χ2 while PP p values had decent 

type I error control; under ignorable degree of misfit, PP p values were less sensitive to 

the misspecification; under moderate model misfit, PP p values had sufficient statistical 

power to reject the models. These findings are supported by the current study that PP p 

values generally yield rejection rates lower than those of MLR, and under moderate 

misfit, both have decent statistical power. This study extends Muthen and Asparouhov’s 

(2012) study by incorporating data nonnormality as one of the design factors. Similarly, 

Liang and Yang (2016) conducted simulation studies to compare Bayesian and MLR 

methods, and found that rejection rates of PP p values are more conservative than p 

values of MLR, which is also observed in this study. They also reported an increase in 

rejection rates for both methods with degrees of data nonnormality, which is different 

from the current study.  

In terms of parameter estimation performance associated with MLR, Xia et al. 

(2016) conducted simulation studies based on a CFA model and reported that standard 

errors for loading estimates are not affected by degree of model misfit, decrease with 

sample size, and increase with degree of kurtosis. Our findings are consistent with their 

research in the sense that standard errors are mainly affected by sample size and data 

distribution, not saliently by model misfit. Regarding the bias of standard errors, under 

the sample sizes of 200, 500, and 1000, the estimated and empirical standard errors in Xia 

et al.’s (2016) are comparable when kurtosis = 7, which is also observed in the current 

study that MLR associated relative bias of standard errors are robust to nonnormality. In 

terms of parameter estimation associated with the Bayesian method, Muthen and 
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Asparouhov (2012) compared point estimates of loadings and factor correlations between 

Bayesian and MLE, and reported that the two estimation methods exhibited comparable 

performance and both produced little bias in estimation, and thus no preference need to 

be made between the estimation methods. Our study is consistent with Muthen and 

Asparouhov’s (2012) in the sense that for the point estimates of loadings across model 

misfit conditions, both estimation methods had similar performance and produced 

relative biases below 10% when data are not considerably deviating from normality. 

Different from their results, the relative biases for factor correlation estimates in this 

study exceeded 10% under smaller sample sizes (N < 1000). Moreover, Liang and Yang 

(2016) compared parameter estimation performance between Bayesian and MLR through 

simulation studies varying model misfit and data distribution. In their findings, the two 

estimation methods produced comparable estimates for both loadings and factor 

correlations, and data nonnormality slightly impaired parameter accuracy. Additionally, 

the two methods also yielded similar standard errors, while the Bayesian method was 

more robust to data nonnormality. The results of this study are consistent with Liang and 

Yang’s (2016) in the sense that Bayesian and MLR have comparable point estimation 

performance, and estimation bias increases under moderate nonnormality. Different from 

their results which show that point estimates were acceptable across conditions, this study 

shows that point estimates for factor correlations have considerable bias when sample 

sizes are smaller than 1000, which is consistent with Lee and Song’s (2004) findings that 

Bayesian method yielded less good performance in inter-factor correlation estimation 

compared to factor loading estimation.  
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Suggestions for future directions 

Suggestions for future research are made as follows: 

First, within the same CFA model, varying magnitudes of model parameters are 

suggested to be specified to examine the performance of Bayesian and MLR under 

different loadings and factor correlations. Previous simulation studies (e.g., McNeish, An, 

& Hancock, 2017) have suggested that holding other conditions constant, increasing 

degrees of factor loading magnitude (or measurement reliability) is accompanied by 

worsening RMSEA (higher values of RMSEA) even when the model is properly 

specified. Moreover, since incremental fit indices (CFI, TLI) indicate the extent to which 

the target model outperforms the independent model, larger factor loadings may 

contribute to a better performance of CFI and TLI. In real-world settings, although 

researchers typically desire for a measurement model with higher reliablity, it is realistic 

to encounter models with lower magnitude of factor loadings. Therefore, it would be 

informative to investigate model fit performance and parameter estimation under CFA 

models with varying degrees of measurement quality (e.g., factor loadings of 0.4 – 0.8).  

Second, it is suggested to extend this study to CFA models with greater model 

complexity. For example, Kenny and McCoach’s (2003) simulation study showed that 

increasing number of indicators in a measurement model is associated with better 

performance of RMSEA and worsening performance of CFI and TLI. Hence, it would 

facilitate understandings about model performance by inspecting CFA models with 

varying number of indicators (or degree of freedom).   
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Third, in the current study where a noninformative normal prior distribution is 

specified for Bayesian estimation, future research is encouraged to try different priors 

such as the t distribution to better match the nonnormal data distribution.  

Fourth, since this study shows that biases of parameter estimation increase 

noticeably under moderate data nonnormality, more degrees of nonnormality need to be 

examined in between the mild and moderate levels, and different combinations of 

skewness and kurtosis need to be investigated to render understandings of the separate 

effects from skewness and kurtosis.  

 

Recommendations for applied users 

 In terms of MLR associated model fit indices, given that scaled χ2, scaled 

RMSEA, and SRMR are sensitive to design factors above and beyond model misfit, 

while scaled CFI and scaled TLI are only sensitive to misfit which is desirable, it is 

recommended that users rely on multiple fit indices to evaluate performance of a model. 

More importantly, instead of making decisions simply based on cut-off points of the fit 

indices, applied users are encouraged to develop a better understanding and interpretation 

of multiple fit indices combined with a careful inspection of data characteristics such as 

sample size and nonnormality. 

 In respect of p values associated with Bayesian and MLR methods, given that PP 

p values are robust to small sample size and data nonnormality under correctly specified 

models, less sensitive to models with ignorable degree of misfit, and have sufficient 
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statistical power to reject moderately misspecified models, PP p values are recommended 

under small sample sizes.  

 In terms of parameter estimation associated with the two methods, given that 

when the data distribution is close to normal, both methods produce acceptable point 

estimates for loadings regardless of sample size and model misfit, no preference is 

rendered.  

 In terms of standard errors, given that the relative biases associated with MLR are 

robust to data nonnormality, sample size, and model misfit, while Bayesian method is 

sensitive to both model misfit and data distribution, MLR estimation is suggested for an 

adequate estimation of standard errors.  
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